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Sciences

PREFACE.

It may perhaps be fairly stated that no better guide can be found to the

analytical developments of Pure Mathematics during the last seventy years

than a study of the problems presented by the subject whereof this volume

treats. This book is published in the hope that it may be found worthy to

fonn the basis for such study. It is also hoped that the book may be

serviceable to those who use it for a first introduction to the subject.

And an endeavour has been made to point out what are conceived to be the

most artistic ways of formally developing the theory regarded as complete.

The matter is arranged primarily with a view to obtaining perfectly

general, and not merely illustrative, theorems, in an order in which they can

be immediately utilised for the subsequent theory; particular results, however

interesting, or important in special applications, which are not an integral

portion of the continuous argument of the book, are introduced only so far

as they appeared necessary to explain the general results, mainly in the

examples, or are postponed, or are excluded altogether. The sequence and

scope of ideas to which this has led will be clear from an examination of the

table of Contents.

The methods of Riemann, as far as they are explained in books on the

general theory of functions, are provisionally regarded as fundamental ; but

precise references are given for all results assumed, and great pains have

been taken, in the theory of algebraic functions and their integrals, and in

the analytic theory of theta functions, to provide for alternative developments

of the theory. If it is desired to dispense with Riemann's existence theorems,

the theory of algebraic functions may be founded either on the arithmetical

ideas introduced by Kronecker and by Dedekind and Weber ; or on the

quasi-geometrical ideas associated with the theory of adjoint polynomials;

while in any case it does not appear to be convenient to avoid reference to

either class of ideas. It is believed that, save for some points in the

periodicity of Abelian integrals, all that is necessary to the former ele-

mentary development will be found in Chapters IV. and VII., in connection

with which the reader may consult the recent paper of Hensel, Acta

Mathematica, xviii. (1894), and also the papers of Kronecker and of

B. h
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Dedekind and Weber, Crelles Jow^nal, xci., xcii. (1882). Aud it is hoped

that what is necessary for the development of the theory from the elemen-

tary geometrical point of view will be understood from Chapter VI., in

connection with which the reader may consult the AheVscJie Functionen of

Clebsch and Gordan (Leipzig, 1866) and the paper of Noether, Mathematisdie

Annalen, vii. (1873). In the theory of Riemann's theta functions, the

fonnulae which are given relatively to the ^ and |> functions, and the

general formulae given near the end of Chapter XIV., will provide sufficient

indications of how the theta functions can be algebraically defined ; the

reader may consult Noether, Mathematisdie Annalen, xxxvii. (1890), and

Klein and Burkhardt, ibid, xxxii.—xxxvi. In Chapters XV., XVII., and

XIX., and in Chapters XVIII. and XX., are given the beginnings of that

analytical theory of theta functions from which, in conjunction with the

general theory of functions of several independent variables, so much is to

be hoped; the latter theory is however excluded from this volume.

To the reader who does not desire to follow the development of this

volume consecutively through, the following course may perhaps be sug-

gested; Chaptei-s I., II., III. (in part), IV., VI. (to § 98), VIIL, IX., X.,

XL (in part), XVIII. (in part), XIL, XV. (in part) ; it is also possible to

begin with the analytical theory of theta functions, reading in order Chapters

XV., XVL, XVIL, XIX., XX.

The footnotes throughout the volume are intended to contain the

mention of all authorities used in its preparation ; occasionally the hazardous

plan of adding to the lists of references during the passage of the sheets

through the press, has been adopted ; for references omitted, aud for refer-

ences improperly placed, only mistake can be pleaded. Complete lists of

papers are given in the valuable report of Brill and Noether, " Die Entwicklung

der Theorie der algebraischen Functionen in alterer und neuerer Zeit,"

Jahresbericht der Deutschen Mathematiker-Vereinigung, Dritter Band, 1892—

3

(Berlin, Reimer, 1894); this report unfortunately appeared only after the

first seventeen chapters of this volume, with the exception of Chapter XL,

and parts of VII., were in manuscript; its plan is somewhat different from

that of this volume, and it will be of advantage to the reader to consult

it. Other books which have appeared during the progress of this volume, too

late to effect large modifications, have not been consulted. The examples

throughout the volume are intended to serve several different purposes ; to

provide practice in the ideas involved in the general theory; to suggest the

steps of alternative developments without interrupting the line of reasoning

in the text; and to place important consequences which are not utilised, if

at all, till much subsequently, in their proper connection.

For my first interest in the subject of this volume, I desire to acknowledge

my obligations to the generous help given to me during Gottingen vacations,^
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on two occasions, by Professor Felix Klein. In the preparation of the book

1 have been largely indebted to his printed publications ; the reader is

recommended to consult also his lithographed lectures, especially the one

dealing with Riemann surfaces. In the final revision of the sheets in

their passage through the press, I have received help from several friends.

Mr A. E. H, Love, Fellow and Lecturer of St John's College, has read

the proofs of the volume ; in the removal of obscurities of expression

and in the correction of press, his untiring assistance has been of great

value to me. Mr J. Harkness, Professor of Mathematics at Bryn Mawr
College, Pennsylvania, has read the proofs from Chapter XV. onwards ; many
faults, undetected by Mr Love or myself, have yielded to his perusal; and

I have been greatly helped by his sympathy in the subject-matter of the

volume. To both these friends I am under obligations not easy to discharge.

My gi'atitude is also due to Professor Forsyth for the generous interest he

has taken in the book from its commencement. While, it should be added,

the task carried through by the Staff of the University Press deserves more

than the usual word of acknowledgment.

This book has a somewhat ambitious aim ; and it has been written under

the constant pressure of other work. It cannot but be that many defects

will be found in it. But the author hopes it will be sufficient to shew that

the subject offers for exploration a country of which the vastness is equalled

by the fascination.

St John's College, Cambridge.

Aj)ril 26, 1897.
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ADDENDA. CORRIGENDA.

for cb^da, read db^~'^da.

for deficiency 1, read deficiency 0.

for 2n-2+i), read 2n-2 + 2p.

for called, read applied to.

. dx , dx
for — , read — .
•'

.r y
for in, read is.

for surfaces, read surface.

for ID, read w.

for (x-a)P-\ read (.v-a)P-^+^.

add or <;, (x, y).

for t' - 1, read r,' - 1.

for T^, , read t^ + I.

for x"'"'"'''"'^ Si, 2, read x~'^'''~^ Aj, j.

The argument of § 52 supposes p>\.
See also Hensel, Crelle, cxv. (1895).

from the bottom, add here.

To the references, add, Macaulay, Free. Lon. Math. Soc, xxvi. p. 495.

See also Kraus, Math. Annal. xvi. (1879).

See also Zeuthen, A}in. d. Mat. 2» Ser., t. iii. (1869).

for xii, read xi.

for \h, read Xh.

for \h, read \h.

for A, read B.

for 7(w')~^w, read y (w'}~^ u.

for fourth minus sign, read sign of equality.

supply dz, after third integral sign: the summation is from ^- = 2, k' = 0.

sHjjphj dz, after first integral sign.

for <p{X)i<f>(X), read <f.' {X)lcp(X).

Positive means >0. The discriminant must not vanish.

from bottom. Cf. p. 531, notet.

for il, read O.

the equation is liQr= 'iriP + bP'.

from the bottom, for it, read Uq.

heading, destroy full stop.

for Hi (.r^), read h, (.Cp).

Further references are given in the report of Brill and Noether (see

Preface), p. 473.

For various notations for characteristics see the references in the report of

Brill and Noether, p. 519.

for T,, 1, T/, ,,, read t'l''", t'j/".

read ...characteristic, other than the zero characteristic, as the sum of two
different odd half-integer characteristics in

for one, read in turn every combination.
The relation had been given by Frobenius.

for w'*, read jjJj'-.

for from, read for.

8 and 11; the quantity is AeA.

In this volume no account is given of the dififerential equations satisfied by the tbeta

functions, or of their expansion in integral powers of the arguments. The following refer-

ences may be useful: Wiltheiss, Crelle, xcix., Math. Aumil. xxix., xxxi., xxxiii., Gottnuj.

Nachr., 1889, p. 381; Pascal, GiHtiny. Sachr., 1889, pp. 416, 547, Ann. di Mat., Ser. 2», t.

XVII.; Burkhardt (and Klein), Math. Annal. xxxii. The case p = 2 is considered in Kraust-,

Transf. Hyperellip. Functionen.

The following books of recent appearance, not referred to in the text, may be named here.

(1) The completion of Picard, Traite d'Analyse, (2) Jordan, Cours d'Analyse, t. ii. (1894),

(3) Appell and Goursat, Theorie des Fonctions algebriqites et de leurs integrates (1895), (4)

Stahl, Theorie der AbeVschen Functionen (1896).
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the immediate neighbourhood ot the pomtr : m wnicn case we nn-d,n regaru

the point where the sheets touch as constituting two places, one in each

sheet. Or the sheets may wind into one another : in which case we shall

regard this winding point (or branch point) as constituting one place : this

place belongs then indifferently to either sheet ; the sheets here merge into

one another. In the first case, if a be the value of a; for which the sheets

just touch, supposed for convenience of statement to be finite, and x a value

* For references see Chap. II. § 12, note.

t Such a point is called by Riemann "ein sich aufhebender Verzweigungspunkt "
:
Gesam-

melte Werke (1876), p. 105.
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CHAPTER I.

The Subject of Investigation.

1. This book is concerned with a particular development of the theory

of the algebraic irrationality arising when a quantity y is defined in terms

of a quantity x by means of an equation of the form

ao2/" + ai2/"~' + • • • + dn-iy + «n = 0,

wherein a^, a,, ..., a,i are rational integral polynomials in x. The equation is

supposed to be irreducible ; that is, the left-hand side cannot be written as

the product of other expressions of the same rational form.

2. Of the various means by which this dependence may be represented,

that invented by Riemann, the so-called Riemann surface, is throughout

regarded as fundamental. Of this it is not necessary to give an account

here*. But the sense in which we speak of a place of a Riemann surface

must be explained. To a value of the independent variable x there will in

general correspond n distinct values of the dependent variable y—represented

by as mQ,ny places, lying in distinct sheets of the surface. For some values

of X two of these n values of y may happen to be equal : in that case the

corresponding sheets of the surface may behave in one of two ways. Either

they may just touch at one point without having any further connexion in

the immediate neighbourhood of the point t : in which case we shall regard

the point where the sheets touch as constituting two places, one in each

sheet. Or the sheets may wind into one another : in which case we shall

regard this winding point (or branch point) as constituting one place : this

place belongs then indifferently to either sheet ; the sheets here merge into

one another. In the first case, if a be the value of x for which the sheets

just touch, supposed for convenience of statement to be finite, and x a value

* For references see Chap. II. § 12, note.

t Such a point is called by Riemann "ein sich aufhebender Verzweigungspunkt "
: Gesam-

melte Werke (1876), p. 105.

B. 1



2 THE PLACES OF A RIEMAXN SURFACE. [2

very near to a, and if b be the value of 1/ at each of the two places, also

supposed finite, and ?/i, y.^ be values of y very near to b, represented by

points in the two sheets very near to the point of contact of the two

sheets, each of 3/1
— b, y., — b can be expressed as a power-series in x — a

with integral exponents. In the second case with a similar notation each

of f/i — b, i/.2 — b can be expressed as a power-scries in (x — a)^ with integi'al

exponents. In the first case a small closed curve can be drawn on either

of the two sheets considered, to enclose the point at which the sheets touch

:

and the value of the integi'al ^—. Id log (x — a) taken round this closed curve

will be 1 ; hence, adopting a definition given by Riemann*, we shall say that

x — a is an infinitesimal of the first order at each of the places. In the

second case the attempt to enclose the place by a curve leads to a curve

\ying partly in one sheet and partly in the other ; in fact, in order that

the curve may be closed it must pass twice round the branch place. In this

case the integral ^^— . id log [{x — a)*] taken round the closed curve will be 1 :

and we speak of (x — a)^ as an infinitesimal of the first order at the place.

In either case, if t denote the infinitesimal, x and y are uniform functions

of t in the immediate neighbourhood of the place; conversely, to each point

on the surface in the immediate neighbourhood of the place there con-e-

sponds uniformly a certain value of tf. The quantity t effects therefore a

conformal representation of this neighbourhood upon a small simple area in

the plane of t, surrounding t = 0.

3. This description of a simple case will make the general case clear.

In general for any finite value of x, x = a, there may be several, say k, branch

points J; the number of sheets that wind at these branch points may be

denoted by w, -i- 1, w.,+ 1, ..., Wk+ 1 respectively, where

(w, + 1) + (w., + 1) + ...+ (iUk + 1) = n,

.so that the case of no branch point is characterised by a zero value of the

corresponding w. For instance in the first case above, notwithstanding that

two of the n values of y are the same, each of Wi, w.,, ..., w^ is zero and k is

equal to n : and in the second case above, the values are k = n— 1,10^ = 1, w.i = 0,

W3 = 0, ... , Wk = 0. In the general case each oftliese k branch points is called a
I 1

2)Iace, and at these respective places the quantities (.r- «)«''+^ ..., {x— a)"'*+^

• GesammeUe Werke (1876), p. 96.

+ The limitation to the immediate neighbourhood involves that t is not necessarily a rational

function of x, y.

It may be remarked that a rational function of x and y can be found whose behaviour in

the neighbourhood of the place is the same as that of t. See for example Hamburger,
Zeitschrift f. Math, und Phys. Bd. 16, 1871 ; Stolz, Math. Ann. 8, 1874 ; Harkness and Morley,

Theory of Functiotm, p. 141.

+ Cf. Forsyth, Theory of Functions, p. 171. Prym, Crelle, Bd. 70.
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are infinitesimals of the first order. For the infinite value of x we shall

similarly have n or a less number of places and as many infinitesimals, say

.. 1 -.V 1

C-V.+i , . . . ^

/'_y^^+i
^ where {lo^ + 1) + . . . + {iv, + 1 ) = w. And as in the par-

ticular cases discussed above, the infinitesimal t thus defined for every place

of the surface has the two characteristics that for the immediate neighbour-

hood of the place x and y are uniquely expressible thereby (in series of

integral powers), and conversely i is a uniform function of position on the

surface in this neighbourhood. Both these are expressed by saying that

t effects a reversible conformal representation of this neighbourhood upon a

simple area enclosing ^=0. It is obvious of course that quantities other

than t have the same property.

A place of the Riemann surface will generally be denoted by a single

letter. And in fact a place {x, y) will generally be called the place x.

When we have occasion to speak of the {n or less) places where the inde-

pendent variable x has the same value, a different notation will be used.

4. We have said that the subject of enquiry in this book is a certain

algebraic irrationality. We may expect therefore that the theory is practi-

cally unaltered by a rational transformation of the variables x, y which is of

a reversible character. Without entering here into the theory of such trans-

formations, which comes more properly later, in connexion with the theory

of correspondence, it is necessary to give sufficient explanations to make it

clear that the functions to be considered belong to a whole class of Riemann

surfaces and are not the exclusive outcome of that one which we adopt initially.

Let f be any one of those uniform functions of position on the funda-

mental (undissected) Riemann surface whose infinities are all of finite order.

Such functions can be expressed rationally by x and y*. For that reason we

shall speak of them shortly as the rational functions of the surface. The

order of infinity of such a function at any place of the surface where the

function becomes infinite is the same as that of a certain integral power of

the inverse - of the infinitesimal at that place. The sum of these orders of

infinity for all the infinities of the function is called the order of the function.

The number of places at which the function ^ assumes any other value a is

the same as this order : it being understood that a place at which ^ — a is

zero in a finite ratio to the rth order of t is counted as r places at which | is

equal to af. Let v be the order of ^. Let ?; be another rational function of

* Forsyth, Theoi-y of Functions, p. 370.

t For the integral -—
. /dlog(£-a), taken round an infinity of log(^-a), is equal to the

order of zero of ^ - a at the place, or to the negative of the order of infinity of |, as the case may

be. And the sum of the integrals for all such places is equal to the value round the boundary of

the surface—which is zero. Cf. Forsyth, Theonj of Functions, p. 372.

1—2
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order /*. Take a plane whose real points represent all the possible values of

^ in the ordinary way. To any value of f, say ^ = a, will correspond v

positions Xj, ..., A''^ on the original Riemann surface, those namely where ^
is eijual to a : it is quite possible that they lie at less than v places of the

surface. The values of 7; at Xj, ..., A''^ may or may not be different. Let

H denote any definite rational symmetrical function of these v values of t).

Then to each position of a in the ^ plane will correspond a perfectly unique

value of H, namely, J^ is a one-valued function of ^. Moreover, since t) and

f are rational functions on the original surface, the character of H for values

of I in the immediate neighbourhood of a value a, for which H is infinite, is

clearly the same as that of a jinite power of | — a. Hence H is a. rational

function of ^. Hence, if Hr denote the sum of the products of the values of

77 at Xi, ..., Xy, r together, r) satisfies an equation

77^ - v'-^H, + r)^-iH,-...+ {-YE, = 0,

whose coefficients are rational functions of ^.

It is conceivable that the left side of this equation can be written as the

product of several factors each rational in | and 77. If possible let this be

done. Construct over the ^ plane the Riemann surfaces corresponding to

these irreducible factors, 7; being the dependent variable and the various

surfaces lying above one another in some order. It is a known fact, already

used in defining the order of a rational function on a Riemann surface, that

the values of 7/ represented by any one of these superimposed surfaces in-

clude all possible values—each value in fact occurring the same number of

times on each surface. To any place of the original surface, where f, 77 have

definite values, and to the neighbourhood of this place, will correspond there-

fore a definite place (^, 77) (and its neighbourhood) on each of these super-

imposed surfaces. Let 771, ...,77;. be the values of 77 belonging, on one of

these surfaces, to a value of ^: and 77,', ...,77/ the values belonging to the

same value of ^ on another of these surfaces. Since for each of these surfaces

there are only a finite number of values of | at which the values of 77 are

not all different, we may suppose that all these r values on the one

surface are different from one another, and likewise the s values on the other

surface. Since each of the pairs of values (|, 771), ..., (f, 77;.) must arise on

both these surfaces, it follows that the values 77, , . .
.

, 77^ are included among

V. ••-.'?«'• Similarly the values 77/ 77/ are included among 771, ...,77^.

Hence these two sets are the same and r = s. Since this is true for an

infinite number of values of ^, it follows that these two surfaces are merely

repetitions of one another. The same is true for every such two surfaces.

Hence r is a divisor of v and the equation

77--if,77-i-h...-h(-)''^, = 0,

when reducible, is the vjrth power of a rational equation of order r in 77. It

will be sufficient to confine our attention to one of the factors and the (f, 77)
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surface represented thereby. Let now X^, . .
.

, A''^ be the places on the original

surface where ^ has a certain value. Then the values of rj at X^, . . , X^ will

consist of v/r repetitions of r values, these ?• values being different from one

another except for a finite number of values of ^. Thus to any place (^, tj) on

one of the v/r derived surfaces will correspond v/r places on the original

surface, those namely where the pair (f, 17) take the supposed values. Denote

these by P^Pj) Let Y be any rational symmetrical function of the v/r'

pairs of values {cci, y^, (x^, 2/2). • • • . which the fundamental variables cc, y of the

original surface assume at Pj, P2, — Then to any pair of values (f, t)) will

correspond only one value of Y—namely, Y is a one-valued function on the

(|, rf) surface. It has clearly also only finite orders of infinity. Hence Y is

a rational function of ^, 9;. In particular x-^, x„, ... are the roots of an

equation whose coefficients are rational in ^, 97—as also are y^, y.^,

There exists therefore a correspondence between the (|, rj) and (x, y)

surfaces—of the kind which we call a (1, -
j
correspondence: to every place

of the {x, y) surface corresponds one place of the (^, ?;) surfece ; to every

place of this surface correspond - places of the {x, y) surface.

The case which most commonly arises is that in which the rational

irreducible equation satisfied by rj is of the yth degree in 77: then only one

place of the original surface is associated with any place of the new surface.

In that case, as will appear, the new surface is as general as the original

surface. Many advantages may be expected to accrue from the utilization of

that fact. We may compare the case of the reduction of the general equation

of a conic to an equation referred to the principal axes of the conic.

5. The following method* is theoretically effective for the expression of x, y in terms

of ^, ^.

Let the rational expression of ^, tj in terms of x, y be given by

(•*-•, y) - i^ (•^. 3/) = 0, ^ {x; y) - T,x {-i; y)=o,

and let the rational result of eliminating .r, y between these equations and the initial

equation connecting x, y be denoted by F{^, '7) = 0, each of (^, ..., x^ i^ denoting integral

polynomials. Let two terms of the expression (^ (.r, y) - ^y\r {x, y) = be ax''y^ - ^bx''"y^'.

This expression and therefore all others involved will be unaltered if a, b be replaced by

such quantities a+ h, b + k, that hx''y'= $kx'''y''. In a formal sense this changes /"(^j »;)

into

^'[xL5^ ^Wao^^ft' ^^Waa^-^aft-^'^ ^^-^db^^r
where X 5 1, and F is such that all differential coefficients of it in regard to a and b of order

less than X are identically zero.

Hence the term within the square brackets in this expression must be zero. If it is

possible, choose now r= r'-|-l and s= s', so that k= hxl^.

* Salmon's Higher Algebra (1885), p. 97, § 103.
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Then we obtain the equation

This is an eciuatiou ^f the form .Urjvc referred to, by which x is determinate from | and

»j. And _y is simihirly determinate.

It will be noticed that the rational expression of .r, y by |, ;;, when it is possible

from the equations

<!>{>,!/)- $ylr{-v,!/) = 0, ^(.r,y)-»;;t(.f,y) = 0, f{x,ij) = 0,

will not l)e possible, in general, from the first two equations : it is only the places x, 1/

satisfying the equation /(.r, y)= which are rationally obtainable from the places $, 1;

satisfying the equation F{^, i;)= 0. There do exist transformations, rationally reversil>le,

subject to no such restriction. They are thcjse known as Cremona-transformations*.

They can be compounded by reapplication of the transformation -v : ^ : l = r] : $ : ^rj.

We may give an example of both of these transformations

—

For the surface

9/-^-r,f(x^+.v+ \) + 57/(.v^+ .v+l)^-2x{.v^+x+lf=

the function ^= i/'^i{a;^+x-\-\) is of order 2, being infinite at the places where .v'^-\-x+l = 0,

in each case like {x — a)~", and the function rj^xjy is of order 4, being infinite at the

places x'^-^x+\ =0, in each case like (.r- a)"o, a being the value of x at the place.

From the given equation we immediately find, as the relation connecting ^ and »;,

and infer, since the equation formed as in the general statement above should be of

oi-der 2 in »;, that this general equation will be

(2^,-^+ 5^-5)2= 0.

Thence in accordance with that general statement we infer that to each place (^, rjj) on

the new surface should correspond two places of the original surfiice : and in fact these are

obN-iously given by the equations

If however we take

^=7f!{x^+x+\\ r,=yl{x-^^\

where w is an imaginary cube root of unity, so that ?; is a function of order 3, these

equations are reversible indeixjudently of the original equation, giving in fact

and we obtain the surface

having a (1, 1) correspondence with the original one.

It ought however to be remarked that it is generally possible to obtain reversible

transfoniiations which are not Cremona-transformations.

C. When a surface {x, y) is (1,1) related to a (|, rj) surface, the defi-

ciencies of the surfaces, as defined by Riemann by means of the connectivity,

must clearly be the same.

* See Salmon, Higher Plane Cun-es (1879), § 362, p. 322.
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It is instructive to verify this from another point of view *.—Consider at

how many places on the original surface the function — is zero. It is infinite

at the places where f is infinite : suppose for simplicity that these are

separated places on the original surface or in other words are infinities of

the first order, and are not at the branch points of the original surface. At

dP . . . . .... 1
a pole of ^, ,— is infinite twice. It is infinite like t^ at a branch place (a)

where x — a=- P"^^: namely it is infinite Sw = 2?i + '2p-'2 timesf at the branch

places of the original surface. It is zero 2n times at the infinite places of the

original surface. There remain therefore 1v + in + 2p — 2 — 2n — 2v + ^2) — '2,

d^ .

places where ~ is zero. If a branch place of the original surface be a pole

of ^, and ^ be there infinite like - , -^^ is infinite like .j—77^,, namely 2+w
V CLOG If" » If

times: the total number of infinities of -^ will therefore be the same as
dx

dP
before. Now at a finite place of the original surface where

-f
=^y there are

two consecutive places for which | has the same value. Since - = 1 they can

only arise from consecutive places of the new surface for which ^ has the

same value. The only consecutive places of a surface for which this is the

case are the branch places. Hence -|- there are 2v+2p — 2 branch places of

the new surface. This shews that the new surface is of deficiency p.

When vjr is not equal to 1, the case is different. The consecutive places

of the old surface, for which ^ has the same value, may either be those arising

from consecutive places of the new surface—or may be what we may call

accidental coincidences among the y/r places which correspond to one place

of the new surface. Conversely, to a branch place of the new surface,

characterised by the same value for ^ for consecutive places}:, will correspond

j//r places on the old surface where ^ has the same value for consecutive

places. In fact to two very near places of the new surface will correspond

vjr pairs each of very near places on the old surface. If then G denote the

number of places on the old surface at which two of the vjr places corre-

sponding to a place on the new surface happen to coincide, and w the number

of branch points of the new surface, we have the equation

io'~-^G=^2v + 2p-2,
r

* Compare the interesting geometrical account, Salmon, Higher Plane Curves (1879), p. 326,

§ 364, and the references there given.

t Forsyth, Theory of Functions, p. 348.

X Namely, near such a branch place J=a, f-a is zero of higher order than the first.
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and if p' be the deficiency of the new surface (of ?• sheets), this leads to the

equation

(2r + 2/ - 2) - + C^ = 2z^ + 2j> - 2,

from which

C = 2jj - 2 - (2;/ - 2) ^

.

Corollary*. If p =p', then C = {2p - 2) (^1 - -")
. Thus '^ > 1, so that

C = 0, and the correspondence is reversible.

We have, herein, excluded the case when some of the poles of ^ are of

higher than the first order. In that case the new surface has branch places

at infinity. The number of finite branch places is correspondingly less. The
reader can verify that the general result is unaffected.

Kr. In the example previously given (§ 5) shew that the function f takes any given

value at tiro points of the original surfoce (other than the branch places where it is

infinite), t) having the same value for these two points, and that there are six places at

which the.se two places coincide. (These are the place (.f= 0, y= 0) and the five places

where .i'= —2.)

There is one remark of considerable importance which follows from the

theory here given. We have shewn that the number of places of the {x, y)

surface which correspond to one place of the (^, rf) surface is -
, where v is the

order of ^ and r is not greater than v, being the number of sheets of the (^, r))

surface ; hence, if there were a function ^ of order 1 the correspondence would

be reversible and therefore the original surface would be of deficiency 1.

7. This notion of the transformation of a Riemann surface suggests an

inference of a fundamental character.

The original equation contains only a finite number of terms : the original

surface depends therefore upon a finite number of constants, namely, the

coefficients in the equation. But conversely it is not necessary, in onler that

the equation be reversibly transformable into another given one, that the

equation of the new surfticc contain as many constants as that of the original

surface. For we may hope to be able to choose a transformation whose

coefficients so depend on the coefficients of the original equation as to reduce

this number. If we speak of all surfaces of which any two are connected by

a rational reversible transformation as belonging to the same class"}", it becomes

a question whether there is any limit to the reduction obtainable, by rational

reversible transformation, in the number of constants in the equation of a

surface of the class.

* See Weber, Crelle, 76, 345.

t So that surfaces of the same class will be of the same deficiency.
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It will appear in the course of the book* that there is a limit, and that

the various classes of surfaces of given deficiency are of essentially diflferent

character according to the least number of constants upon which they depend.

Further it will appear, that the most general class of deficiency jp is

characterised by Sp — 3 constants when p > 1—the number for jj = 1 being

one, and for p = none.

For the explanatory purposes of the present Chapter we shall content

ourselves with the proof of the following statement—When a surface is

reversibly transformed as explained in this Chapter, we cannot, even though

we choose the new independent variable ^ to contain a very large number of

disposeable constants, prescribe the position of all the branch points of the

new surface ; there will be Sp — 3 of them whose position is settled by the

position of the others. Since the correspondence is reversible we may regard

the new surface as fundamental, equally with the original surface. We
infer therefore that the original surface depends on Sp — 3 parameters

—

or on less, for the 3/» — 3 undetermined branch points of the new surface may

have mutually dependent positions.

In order to prove this statement we recall the fact that a function

of order Q contains-f- Q—p + 1 linearly entering constants when its poles

are prescribed: it may contain more for values of Q<2p — 1, but we

shall not thereby obtain as many constants as if we suppose Q >2p — 2

and large enough. Also the Q infinities are at our disposal. We can then

presumably dispose oi 2Q — p + 1 of the branch points of the new surface.

But these are, in number, 2Q + 2p — 2 when the correspondence is reversible.

Hence we can dispose of all but 2Q + 2p - 2 — {2Q — jj + 1) = 3^; — 3 of the

branch points of the new surface:]:.

Ea\ 1. The surface associated with the equation

f=X (1 - .r) (1 - k^x) (1 - X^r) (1 - ^2.,;) (1 _ ^2 ,.) (1 _ p2^.)

is of deficiency 3. It depends on 5= 2/? — 1 parametei's, k^, X^, /x^, v'^, p^.

Ex. 2. The surface associated with the equation

2/3 +3/2 (^.^ \\+y{x, \\+ {x, 1),= 0,

wherein the coefficients are integral polynomials of the orders specified by the suffixes, is

of deficiency .3. Shew that it can be transformed to a form containing only 5 = 2/j -

1

parametric constants.

* See the Chapters on the geometrical theory and on the inversion of Abelian Integrals. The

reason for the exception in case p — O or 1 will appear most clearly in the Chapter on the self-

correspondence of a Riemann surface. But it is a familiar fact that the elliptic functions which

can be constructed for a surface of deficiency 1 depend upon one parameter, commonly called

the modulus : and the trigonometrical functions involve no such parameter.

t Forsyth, p. 459. The theorems here quoted are considered in detail in Chapter III. of the

present book.

X Cf. Riemann, Ges. Werke (1876), p. 113. Klein, Ueber Riemann's Theorie (Leipzig,

Teubner, 1882), p. 65.
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8. But there is a ctise iu which this argument fails. If it be possible to

transform the original surfoce into itself by a rational revcreible transforma-

tion involving r parameters, any r places on the surface are effectively

equivalent with, as being transformable into, any other ;• places. Then the

Q pules of the function | do not effectively supply Q but only Q — r dispose-

able constants with which to fix the new surface. So that there are 3/) — 3 + r

branch points of the new surface which remain beyond our control. In this

Ciise we may say that all the surfaces of the class contain 3jj — 3 disposeable

parameters beside r parameters which remain indeterminate and serve to

represent the possibility of the self-transformation of the surface. It will be

shewn in the chapter on self-transformation that the possibility only arises

for ^ = ov p — \, and that the values of r are, in these cases, respectively

3 and 1. We remark as to the case p = Q that when the fundamental

surface has only one sheet it can clearly be transformed into itself by

a transformation involving three constants x= ^ j' ^^^ ^^ regard to p = l,

the case of elliptic functions, that effectively a point represented by the

elliptic argument a is equivalent to any other point represented by an

argument u + 7. For instance a function of two poles is

^••'' = -(
—Trk—?^ + ^

and clearly Fa,p has the same value at u as has i^a+y.e+y at « -f- 7 : so that the

poles (a, /8) are not, so far as absolute determinations are concerned, effective

for the determination of more than one point.

9. The fundamental e([uation

so far considered as associated with a Riemann surface, may also be regarded

as the equation of a plane curve : and it is possible to base our theory on the

geometrical notions thus suggested. Without doing this we shall in the

following pages make frequent use of them for purposes of illustration. It is

therefore proper to remind the reader of some fundamental properties*.

The branch points of the surface con-espond to those points of the curve

where a line x = constant meets the curve in two or more consecutive points

:

as for instance when it touches the curve, or passes through a cusp. On the

other hand a double point of the curve corresponds to a point on the surface

where two sheets just touch without further connexion. Thus the branch

place of the surface which corresponds to a cusp is really a different singu-

larity to that which corresponds to a place where the curve is touched by a

* Of. Forsyth, Tlieory of Functions, p. 355 etc. Harkness and Morley, Theory of Functiom,

p. 273 etc.
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line X = constant, being obtained by the coincidence of an ordinary branch

place with such a place of the Riemann surface as corresponds to a double

point of the curve.

Properties of either the Riemann surface or a plane curve are, in the

simpler cases, immediately transformed. For instance, by Pliicker's formulae

for a curve, since the number of tangents from any point is

t = {n-l)n-28-HK,

where n is the aggregate order in x and y, it follows that the number of

branch places of the corresponding surface is

w = t + K = {n-l)n-2{S + k)

= 2n-2 + 2 {^{n-1) {n-2) - S- k].

Thus since w = 2n — 2+p, the deficiency of the surface is

-i-(«-l)0i-2)-8-/c,

namely the number which is ordinarily called the deficiency of the curve.

To the theory of the birational transformation of the surface corresponds

a theory of the birational transformation of plane curves. For example, the

branch places of the new surface obtained from the surface /(a^, ?/) = by

means of equations of the form
(f)

{x, y) — ^yfr (x, y) = 0,'^ (x, y) — ?;% {x, y) =
will arise for those values of | for which the curve </> (x, y) — ^yfr {x, y) =
touches f{x, y) = 0. The condition this should be so, called the tact inva-

riant, is known to involve the coefficients of ^ {x, y) — ^yjr {x, y) = 0, and

therefore in particular to involve ^, to a degree* n {71 — S) — 2B — Sk + 2nn ,

where n is the order of (x, y) — ^-v/r (x, y) = 0. Branch places of the new

surface also arise corresponding to the cusps of the original curve. The total

number is therefore n (n — S)—28—2k + 2nn' = 2p — 2 + 2nn'. Now nn is

the number of intersections of the curves /(*, y) = and ^ {x, y) — ^^/r (x, y) = 0,

namely it is the number of values of 7; arising for any value of |, and is

thus the number of sheets of the new surface, which we have previously

denoted by 1/ : so that the result is as before.

In these remarks we have assumed that the dependent variable occurs

to the order which is the highest aggregate order in x and y together—and

we have spoken of this as the order of the curve. And in regarding two

curves as intersecting in a number of points equal to the product of their

orders we have allowed count of branches of the curve which are entirely

at infinity. Some care is necessary in this regard. In speaking of the

Riemann surface represented by a given equation it is intended, unless the

contrary be stated, that such infinite branches are unrepresented. As an

example the curve y- = (x, 1\ may be cited.

Bx. Prove that if from any point of a curve, ordinary or multiple, or from a point not

on the curve, t be the number of tangents which can be drawn other than those touching

* See Salmon, Higher Plane Curves (1879), p. Hi.
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at the iHjiiit, and k Ix) the muul)er i>f cii.sp.s of the curve—and if 1/ be the muuber of

jwints other than the point itself in which the curve is intersected by an arbitrary line

through the point—then t + K-2u is independent of the position of the point. If the

equation of the variable linas through the point be written h — ^v = 0, interpret the result

by regarding the curve ivs giving rise to a Riemann surface whose independent variable

is $*.

10. The geometrical considerations here rcfen-ed to may however be

stated with advantage in a very general manner.

In space of any (Ic) dimensions let there be a curve—(a one-dimension-

ality). Let points on this curve be given by the ratios of the k+1 homo-

geneous variables x^, ... , Xk+i. Let u, v be any two rational integral homo-

geneous functions of these variables of the same order. The locus u — ^v —

will intersect the curve in a certain number, say v, points

—

we assume the

curve to be such that this is the same fur all values of ^, and is finite. Let all

the possible values of ^ be represented by the real points of an infinite plane

in the ordinary way. Let w, t be any two other integral functions of the

w
coordinates of the same order. The values of 17 = — at the points where

6

« — ^y = cuts the curve for any specified value of f will be v in number.

As before it follows thence that r) satisfies an algebraic equation of order v

whose coefficients are one-valued functions of ^. Since rj can only be infinite

to a finite order it follows that these coefficients are rational functions of ^.

Thence we can construct a Riemann surface, associated with this algebraic

equation connecting ^ and rj, such that every point of the curve gives rise to

a place of the surface. In all cases in which the converse is true we may

regard the curve as a representation of the surface, or conversely.

Thus such curves in space are divisible into sets according to their

deficiency. And in connexion with such curves we can construct all the

functions with which we deal upon a Riemann surface.

Of these principles sufficient account will be given below (Chapter VI.)

:

familiar examples are the space cubic, of deficiency zero, and the most general

space quartic of deficiency 1 which is representable by elliptic functions.

11. In this chapter we have spoken primarily of the algebraic equation

—and of the curve or the Riemann surface as determined thereby. But this

is by no means the necessary order. If the Riemann surface be given, the

algebraic equation can be determined from it—and in many forms, according

to the function selected as dependent variable (_y). It is necessary to keep

this in view in order fully to appreciate the generality of Riemann's methods.

For instance, we may start with a surface in space whose shape is that of an

* The reader who desires to study the geometrical theory referred to may consult:—

Cayley, Quart. Jnurnal, vii. ; H. J. S. Smith, I'roc. Lond. Math. Soc. vi. ; Noethcr, Math. Annal.

9; Brill, Math. Annal. 16 ; Brill u. Noether, Math. Annal. 7.
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anchor ring*, and construct upon this surface a set of elliptic functions. Or

we may start with the surface on a plane which is exterior to two circles

drawn upon the plane, and construct for this surface a set of elliptic functions.

Much light is thrown upon the functions occurring in the theory by thus

considering them in terms of what are in fact different independent variables.

And further gain arises by going a step further. The infinite plane upon

which uniform functions of a single variable are represented may be regarded

as an infinite sphere ; and such surfaces as that of which the anchor ring

above is an example may be regarded as generalizations of that simple case.

Now we can treat of branches of a multiform function without the use of a

Riemann surface, by supposing the branch points of the function marked on

a single infinite plane and suitably connected by barriers, or cuts, across which

the independent variable is supposed not to pass. In the same way, for any

general Riemann surface, we may consider branches of functions which are

not uniform upon that surface, the branches being separated by drawing

barriers upon the surface. The properties obtained will obviously generalize

the properties of the functions which are uniform upon the surface.

* Forsyth, p. 318 ; Riemann, Ges. Werke (1876), pp. 89, 415.
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CHAPTER II.

The Fundamental Functions on a Riemann Surface.

12. In the present chapter the theory of the fundamental functions is

based upon certain a pHoH existence theorems*, originally given by

Riemann. At least two other methods might be followed : in Chaptere IV.

and W. sufficient indications are given to enable the reader to establish

the theory independently upon purely algebraical considerations : from

Chapter VI, it will be seen that still another basis is found in a preliminary

theory of plane curves. In both these cases the ideas primarily involved are

of a very elementary character. Nevertheless it appears that Riemann's

descriptive theory is of more than equal power with any other ; and that

it offers a generality of conception to which no other theory can lay claim.

It is therefore regarded as fundamental throughout the book.

It is assumed that the Theory of Functions of Forsyth will be accessible

to readei-s of the present book ; the aim in the present chapter has been to

exclude all matter already contained there. References are given also to

the treatise of Harkness and Morley*.

13. Let t be the infinitesimal
"f"

at any place of a Riemann surface : if it is

a finite place, namely, a place at which the independent variable ,v is finite,

the values of x for all points in the immediate neighbourhood of the place

are expressible in the form x = a + V'*'^ : if au infinite place, x = ^-i'^+D.

There exists a function which save for certain additive moduli is one-valued

on the whole surface and everywhere finite and continuous, save at the

place in question, in the neighbourhood of which it can be expressed in the

form

* See for instance: Forsyth, Theoi-y of Functions of a Complex Variable, 1893; Harkness and

Morley, Treatise on the Theory of Functiuns, 1893 ; Schwarz, Gesam. math. AbhandltuKjen, 1890.

The best of the early systematic expositions of many of the ideas involved is found in

C. Neumann, Vorlesumjcn iiber liiemann'x Theorie, 1884, which the reader is recommended to

study. See also Picard, Traitt d'Analyse, Tom. ii. pp. 273, 42 and 77.

t For the notation see Chapter I. §§ 2, 3.
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Herein, as throughout, P (t) denotes a series of positive integral powers of t

vanishing when t = 0, G, A, ... , Ar-i, are constants whose values can be

arbitrarily assigned beforehand, and r is a positive integer whose value can be

assigned beforehand.

We shall speak of all such functions as integrals of the second kind :

but the name will be generally restricted to that * particular function whose

behaviour near the place is that of

-l + G + P(t).

This function is not entirely unique. We suppose the surface dissected

by 2p cutsf, which we shall call period loops; they subserve the purpose of

rendering the function one-valued over the whole of the dissected surface.

We impose the further condition that the periods of the function for transit

across the p loops of the first kind J shall be zero ; then the function is unique

save for an additive constant. It can therefore be made to vanish at an

arbitrary place. The special function^ so obtained whose infinity is that

of— is then denoted by Ta'\ c denoting the place where the function
z

vanishes and x the current place. When the infinity is an ordinary place,

at which either x = a or x = qo , the function is infinite either like
' X — a

or —X. The periods of F/''' for transit of the period loops of the second

kind will be denoted by Hj, ..., flp.

14. Let (x^yi), {x-.y.^ be any two places of the surface : and let the

infinitesimals be respectively denoted by ti, t.2, so that in the neighbourhood

of these places we have the equations x — x^ = ti'"'''^\ x — Xo — V^'-'^'^. Let a

cut be made between the places {x-^y^), (x.y-i). There exists a function, here

denoted by 11^' " , which (a) is one-valued over the whole dissected surface,

(y8) has p periods arising for transit of the period loops of the second kind

and has no periods at the period loop of the first kind, (7) is everywhere

continuous and finite save near (xiyi) and {x.^y.^, where it is infinite re-

spectively like log^i and —\ogU, and, (3), vanishes when the current place

denoted by x is the place denoted by c. This function is unique. If the

cut between (x^y^, {x.^y.^ be not made, the function is only definite apart

from an additive integral multiple of liri, whose value depends on the

* This particular function is also called an elementary integral of the second kind.

t Those ordinarily called the a, b curves; see Forsyth, p. 354. Harkness and Morley,

p. 242, etc.

ij: Those called the a cuts.

§ The fact that the function has no periods at the period loops of the first kind is gene-

rally denoted by calling the function a normal integral of the second kind.
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path by which the variable is supposed to pass from c. It will be called* the

integral of the third kind whose infinity is like that of log(^/^2).

15. Beside these functions there exist also certain integrals of the first

kind—in number p. They are everywhere continuous and finite and one-

valued on the dissected surface. For transit of the period loops of the

first kind, one of them, say v,-, has no periods except for transit of the i**" loop,

ff,-. This period is here taken to be 1. The periods of Vi for transit of the

period loops of the second kind are here denoted by r.^, .... Tip. We may
therefore form the scheme of periods
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A more general integral of the third kind having the same property is

X,. x« . . 'J ' J '

wherein the arbitrary coefficients satisfy the equations A^j = Aji. The pro-

perty is usually referred to as the theorem of the interchange of argument

(x) and parameter (x^).

The property allows the consideration of

as a function of x( for fixed positions of x, c, x.,. In this regard a remark

should be made

:

For an ordinary position of x, the function

KJ, X,
- ^og (^i' - ^) = n^' ;

''' - log {x,' - x)

is a finite continuous function of x^ when Xi is in the neighbourhood of x.

But if Xi be a branch place where w + 1 sheets wind, and x^, x be two

positions in its neighbourhood, the functions of x

n^'/ — log (x.' — x), n*'
''

L log (xi — x)

are respectively finite as x approaches x^' and x^, so that

ul^;;^-\og{x,'-x)

is not a finite and continuous function of x/ for positions of .t/ up to and

including the branch place x-^.

In this case, let the neighbourhood of the branch place be conformally

represented upon a simple plane closed area and let ^1, ^i, f be the represent-

atives thereon of the places x^, x-[, x. Then the correct statement is that

n;';^^-iog(r/-B

is a continuous function of x-[ or ^/ up to and including the branch place x^.

This is in fact the form in which the function 11 " ' arises in the proof
x^ c ^

of its existence upon which our account is based*.

In a similar way the function

pX, c

regarded as a function of x-[, is such that

yX,C 1

is a finite continuous function of ^Z in the immediate neighbourhood of x.

* The reader may consult Neumann, p. 220.

B. 2
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17. It may lie desirable to give some simple examples of these integrals,

(a) For the surface represented by

wherein aj, ..., rt-^p + j are all finite and different from zero and each other, consider the

integral

1 {dxfy + rj y+rii\

{$, rj), (I,, jjj) being places of the surface other than the branch places, which are

(0, 0),(a„ 0),...,{(hp^i, 0).

It is clearly infinite at these places respectively like log {x - $), - log {.v - ^y).

It is not infinite at (^, -rj), (|i, -rji); for (j/+ ri)!{x- $), (j + nOli-^- $i) are finite at

these places respectively.

At a place x= od, where x=t-\ y^ft'V-'^ (1+Pi(0), f being ±1, and P-^it) a series of

positive integral powers of t vanishing for t — Q, we have

and the integral has the form

A being a constant. It is therefore finite.

At a place y= 0, for instance where

x=a^ + t\y= Bt[\ + P^{t)\

B being a constant, the integral has the form

C jdt[\-^P,{t)\

C being a constant, and is finite.

Thus it is an elementary integral of the third kind with infinities at (^, rf), (^j, i;i).

It may be similarly shewn that the integral

^
J X \x x-^J

is infinite at (|i, jjj) like — log(j^- |i) and is not elsewhere infinite except at (0, 0).

Near (0, 0), we have x=f, y= Dt [1 + P5 {1"^)^ and this integral is infinite like

It is therefore an elementary integral of the third kind with one infinity at the

branch place (0, 0) and the other at (^j, 7;i).

Consider next the integral

.[dxd^ (y+T)\ _i (dx y+r, + {x- $) T)'

?j y de\x-i) ^] y {x-i

where rj' = -jr. It can easily be seen that it is not infinite save at (^, >;). Writing for the

neighbourhood of this place, which is supposed not to be a branch place,

y= rj+ {x- ^)i+\{x-^f i'+ ,
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the integral becomes

/
which is equal to

dx r) + {x - ^)r]i+ l{x - ^f r)" +

Thus the integral is there infinite like - -^—r, and is thus an elementary mtegral of
X — $

the second kind.

The elementary integral of the second kind for a branch place, say (0, 0), is a multiple of

J
fdx

In fact near .r= 0, writing x= t'^, y= Dt\\ +P(^^)], this integral becomes

or

which is equal to

as desired.

The integral is clearly not infinite elsewhere.

Example 1. Verify that the integral last considered is the limit of

2D J y y_x-^ x\

as the place (|, ?;) approaches indefinitely near to (0, 0).

Example 2. Shew that the general integral of the first kind for the surface is

O) We have in the first chapter §§ 2, 3 spoken of a circumstance that can arise, that

two sheets of the surface just touch at a point and have no further connexion, and we
have said that we regard the points of the sheets as distinct places. Accordingly we may
have an integral of the third kind which has its infinities at these two places, or an integral

of the third kind having one of its infinities at one of these places. For example, on the

surface

/(^. y)={y- «h'^') iy - ^^^

+

(-^j y)3 + (-*' y)i=

o

where {x, y)^, (.r, y)^ are integral homogeneous polynomials of the degrees indicated by the

sufiixes, with quite general coefficients, and m^, ?»2 are finite constants, there are at x=0
two such places, at both of which y= 0.

In this case

f dx

]/¥)'

where f'{y) = ^ , is a constant multiple of an integral of the third kind with infinities at

these two places (0, 0) ; and

fy - m^x+ A x^+Bxy+ Cy"^ dx

I' Lx+My /(y)

2—2
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is a constant multiple of an integral of the third kind, provided A, B, C be so chosen that

y — m^.r+ A.v^+ B.vi/ + Ci/'- vanishes at t>ne of the two places other than (0, 0) at which

Lx-\-My is zero. Its infinities are at (i) the miconiiiensated zero of Lx-\-My which is not

at (0, 0), (ii) the place (0, 0) at which the expression of y in terms of x is of the form

y= m^-\-Px^+ Qx^-ir...

In fact, at a branch place of the surface where .r= a + ^-', f'iy) is zero of the first order,

and dx= 2t dt; thus \-^rr\ ^^ finite at the branch places. At each of the places (0, 0),

f'{y) is zero of the fii-st oi-der, Lx + My is zero of the first order and y - iriyC+ A x^+ Bxy+ Cy*

is zero at these places to the fir.st and second order respectively. These statements are

easy to verify ; they lead immediately to the proof that the integrals have the character

enunciated.

The condition given for the choice of A, B, C will not determine them uniquely—the

integral will be determined save for an additive term of the form

where P, Q are undetermined constants. The reader may prove that this is a general

integral of the first kind. The constants P, Q may be determined so that the integral of

the third kind has no periods at the period loops of the first kind, whose number in this

case is two. The reasons that suggest the general form written down will appear in the

explanation of the geometrical theory.

(y) The reader may verify that for the respective cases

y^={x-a) {x- 6)2 {x - cy,

y*= {x-a){x-b) {x-cf,

y^={x- a) {x -b) {x- c)*,

y''= {x-a){x-b) {x-cf,

the general integrals of the first kind are

(dx
{x-b){x-cf,

dx . .

dx
^{x-cf[Ay\-B{x-c)l

dr
'^{x-cf[Ay'^+ By{x-c) + C{x-cfl

where A, B, C are arbitrary constants.

See an interesting dis.sertation "de Transformatione aequationis y^= Ii{x),.." Eugen,

Netto (Berlin, Gust. Schade, 1870).

(8) Ex. Prove that if /'denote any function everywhere one valued on the Riemann

surface and expressible in the neighbourhood of every place in the form

^ + j^-\-... + B+ B,t + B/^+ .,.

the sum of the coeflScients of the logarithmic terms log/ of the integral / Fdx, for all

places where such a term occui-s, is zero.
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It is supposed that the number of places where negative powers of t occur in the

expansion of F is finite, but it is not necessary that the number of negative powers be

finite. The theorem may be obtained by contour integration of | Fdx, and clearly

generalizes a property of the integral of the third kind.

18. The value of the integral* jr*''^ dv^.^'' taken round the p closed curves

formed by the two sides of the pairs of period loops {a^, b^), ..., (ay, bp), in such

a direction that the interior of the surface is always on the left hand, is equal

to the value taken round the sole infinity, namely the place a, in a counter-

clockwise direction. Round the pair a,., br the value obtained is

fir I dv.' ,

taken once positively in the direction of the arrow head round what in the

figure is the outer side of b,.. This value is n,.(- coir), where coir denotes the

period of Vi for transit of cir, namely, from Avhat in the figure is the inside of

the oval a^ to the outside.

The relations indicated by the figure for the signs adopted for coir, Tir and

the periods of T ' will be preserved throughout the book.

Since Wi,. is zero except when r = i, the sum of these p contour integrals

is — (Oi^iQ^i. Taken in a counter-clockwise direction, round the pole of T^ ,

where

r'"''' = -- + A+Bt + cr- + ...,
« t

the integral gives

-- + A+Bt+Ct'+ ...

d

.y ^*
*'

Dv. + tD-v. -h .. dt,

where D denotes ^ . Hence, as Wi^i = \,

,r, c ^

J

i la
n! = 2'jriiDv.'

Cf. Forsyth, pp. U8, 451. Harkuess and Motley, p. 439.
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This is true whether a be a branch place or a place at infinity (for which,

if not a branch place, .r = f^) or an ordinary finite place. In the latter case

Similai'ly the reader may prove that the periods of 11 ' are

0, 27rt/"''', Iiriv"'''.

In this case it is necessary to enclose a\ and x., in a curve winding Wj + 1

times at ^i, Wo + 1 times at x.^, in order that this curve may be closed.

19. From these results we can shew that the integral of the second kind

is derivable by differentiation from the integral of the third kind. Apart

fi'om the simplicity thus obtained, the fact is interesting because, as will

appear, the analytical expression of an integral of the third kind is of the

same general form whether its infinities be branch places or not ; this is not

the case for integrals of the second kind.

We can in fact prove the equation

namely, if, to take the most general case, a;i be a winding place and x^' a place

in its neighbourhood such that ct/ = Xi + t^ , the equation.

lim. — r-Tl '

n^-; -n' = r'

For, let the neighbourhood of the branch place j\ be conformally represented

upon a simple closed area without branch place, by means of the infinitesimal

of X, as explained in the previous chapter. Let |i', ^i be the representatives

of the places x-^, x^, and ^ the representative of a place x which is very near

to Xi, but is so situate that we may regard x^' as ultimately infinitely closer

to x^ than x is.

Then x-x^ =(f _^,)"'+i,

where C does not vanish for x/ = x,

and
^l[',T, = log 0'- - 'O + ^' = log (^ - fl') + <f>',

where <}>' is finite for the .specified positions of the places aiid remains finite

when 1/ is taken infinitely near to ^i (§ 16).

^'^^ "!;.'., = ,^1 log {x-x,) + 4> = log (f - fO + (^.
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where </> is also finite. Therefore

x/,x2 x„x, ft
\^ ^ — ^^y ^ ^

and thus

+ <f>'-(fi,

lim.
.r,', a;2 x„ x^

?-|:

where ^ is finite.

Now as ^/ moves up to ^j , for a fixed position of ^, we have

?i Si ~ V^'i ~" ^1/ ~ ^x^ )

and r"''' = li'' = --J-p +^,

where ^ is finite.

Hence B. Xf'" -V"'"

is finite when a; is near to x^.

Moreover it does not depend on x.^. For from the equation

we may regard 11 ' as a function of a^j, which is determinate save for an

additive constant by the specification of x and c only. This additive constant,

which is determined by the condition that the function vanishes when x^ =^x^,

is the only part of the function which depends on x^. It disappears in the

differentiation.

Finally, by the determination of the periods previously given, it follows

that

''Xi x^, X2 X,

has no periods at the 2p period loops. Hence it is a constant, and therefore

zero since it vanishes when x = c.

Corollary i.

Hence A r'''' = A A n''"' =A A n''"''^ = A. r'^"',
"-x Xi ^x ^Xi a;,, X2 '«, ^x .x\ c 'x, x '

of which neither depends on the constant position c.

Corollary ii.

The functions

^1 ^1 ' txi ^1 ^X^ *1
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are respectively infinite like

_1 _1 _1
''X, I'Zt ''X,

We shall generally write i)j;,, D%^, ... instead oi' Df^. , Df

,

When a;,

is an ordinary place Dx, will therefore mean t— , etc.

Corollary iii.

By means of the example (B) of § 17 it can now be shewn that the infinite

parts of the integral

(Fdx,P
in which F is any uniform function of position on the undissected surface

having only infinities of finite order, are those of a sum of terms consisting of

proper constant multiples of integrals of the third kind and ditferential

coeflficients of these in regard to the parametric place.

20. One particular case of Cor. iii. of the last Article should be stated.

A function which is everywhere one-valued on the undissected surface must

be somewhere infinite. As in the case of uniform functions on a single

infinite plane (which is the particular case of a Riemann surface for which

the deficiency is zero), such functions can be divided into rational and

transcendental, according as all their infinities are of finite order and of finite

number or not. Transcendental functions which are uniform on the surface

will be more particularly considered later. A rational uniform function can

be expressed rationally in terms of a; and y*. But since the function can be

expressed in the neighbourhood of any of its poles in the form

c+4'+^'+...+^»+p((),

we can, by subtracting from the function a series of terms of the form

obtain a function nowhere infinite on the surface and having no periods at the

first p period loops. Such a function is a constantf . Hence F can also be

expressed by means of ncjrnial integrals of the second kind only. Since F
has no periods at the period loops of the second kind there are for all rational

functions certain necessary relations among the coefficients Ai, ..., A,n.

These are considered in the next Chapter.

* Forsyth, p. .369. Harkness and Morley, p. 262.

t Forsyth, p. 439.
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21. Of all rational functions there are p whose importance justities a

special mention here ; namely, the functions

dx ' dx '
'" dx

'

In the first place, these cannot be all zero for any ordinary finite place a of

the surface. For they are, save for a factor liri, the periods of the normal

integral F^'''. If the periods of this integral were zero, it would be a rational

uniform function of the first order; in that case the surface would be repre-

sentable conforraally upon another surface of one sheet*, ^= F/-'' being the

new independent variable ; and the transformation would be reversible

(Chap. I. § 6). Hence the original surface would be of deficiency zero

;

in which case the only integral of the first kind is a constant. The functions

are all infinite at a branch place a. But it can be shewn as here that the

quantities to which they are there proportional, namely D^Vi, ..., DaVp, cannot

be all zero. The functions are all zero at infinity, but similarly it can be

shewn that the quantities, Dv^, ... , Dvp, cannot be all zero there.

Thus p linearly independent linear aggregates of these quantities cannot all vanish at

the same place. We remark, in connexion with this property, that surfaces exist of all

deficiencies such that p - 1 linearly independent linear aggregates of these quantities

vanish in an infinite number of sets of two places. Such surfaces are however special, and
their equation can be putf into the form

y — ("*-') 1 )2P + 2 •

We have seen that the statement of the property requires modification

at the branch places, and at infinity ; this particularity is however due to the

behaviour of the independent variable x. We shall therefore state the pro-

perty by saying: there is no place at which all the differentials dv^, ..., dVp

vanish. A similar phraseology will be adopted in similar cases. For instance,

we shall say that each of dv^, dv.^, ... , dvp hasj 2jj — 2 zeros, some of which

may occur at infinity.

In the next place, since any general integral of the first kind

XiVi*-|-... +X,pV/

must necessarily be finite all over any other surface upon which the original

surface is conformally and reversibly represented and therefore must be an

integral of the first kind thereon, it follows that the rational function

* I owe this argument to Prof. Klein. f See below, Chap. V.

X See Forsyth, p. 461. Harkness and Murley, p. -ioO.
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is necessarily transformed with the surface into

where F,- = Vj is an integral of the first kind, not necessarily normal, on the

dp
new surface, | being the new independent variable, and il/ = _p

.

Thus, the ratios of the integi'ands of the first kind arc transformed

into ratios of intcgi'ands of the first kind ; they may be said to be invariant

for birational transformation.

This point may be made clearer by an example. The general integral

of the first kiiid for the surface

If = (x, 1\

can be shewn to be

jyiA+Bx + Caf^),

A, B, G being arbitrary constants.

If then
<f>i

:
<f).2

: 4>3 denote the ratios of any three linearly independent

integrands of the first kind for this surface, we have

\ : X : x- = Oitf)^ + 6i0o + Ci<^3 : tucjji f ^(f). + Cocf)^ '•

a's(f>i + 63(^2 + Cs(t>s

for proper values of the constants «i, b^, ... , C3,

and hence

{ai<t>i + bi<f>. + Ci(f)s) (03(^1 + 63(^2 + C3<^3) = («2</>i + b.cf). + c.,(f):,f.

Such a relation loill therefore hold for all the surfaces into which the given

one can be birationally transformed.

22. It must be remarked that the determination of the normal integi-als

here described depends upon the way in which the fundamental period loops

are drawn. An integral of the first kind which is normal for one set of

period loops will be a linear function of the integrals of the first kind which

are normal for another set ; and an integral of the second or third kind, which

is normal for one set of period loops, will for another set differ from a normal

integral by an additive linear function of integrals of the first kind.
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CHAPTER III.

The Infinities of Rational Uniform Functions.

23. In this chapter and in general we shall use the term rational function

to denote a uniform function of position on the surface of which all the

infinities are of finite order, their number being finite. We deal first of all

with the case in which these infinities are all of the first order.

If k places of the surface, say cii, a^ ... a^, be arbitrarily assigned we can

always specify a function with p periods having these places as poles, of the

first order, and otherwise continuous and uniform ; namely, the function is of

the form

where the coefficients /Aq
, /^i • . • /^jt are constants, the zeros of the functions T

being left undetermined. Conversely, as remarked in the previous chapter

(§ 20), a rational function having cii, ...,ak as its poles must be of this form.

In order that the expression may represent a rational function the periods

must all be zero. Writing the periods of T^ in the form flj (a), . .
. , fl^ (a),

this requires the equations

^1 n,: (fti) + fi.,ni, (a,) + ... + fik^i (ait) = 0,

for all the p values, i = l, 2, ...,p, oi i. In what follows we shall for the sake

of brevity say that a place c depends upon r places Ci, c.,, ..., c,. when for all

values of i, the equations

n,(c)=/;o,-(c,)+...+/.n,(c.)

hold for finite values of the coefficients f^,...,fr, these coefficients being

independent of i. Hence we may also say

:

In order that a rational function should exist having k assigned places as

its poles, each simple, one at least of these places must depend upon the others.

24). Taking the k places ai, tta. • • • , "fc in the order of their suffixes, it may

of course happen that several of them depend upon the others, say ag+i, ...,«*
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upon III, ...,«(,, the latter set a^,...,ag being independent: then we have

equations of the form

the coertieients in any of the rows here being the same for all the j) values of

I. In particular, if 5 be as great as p and aj, ... , a, be independent, equations

of this form will hold for all positi(ms of a,+i, ...,ajfc. For then we have

enough disposeable coefficients to satisfy the necessary p equations.

When it does so happen, that ««+,,..., (7^. depend upon a, ...a<j, there

exist rational functions, of the form

^*+i = o"»+i + \+i [^^",+
1
~ ".".+1, 1 r'a,

~ ~ "*+i, * l^oj '

J^k = o-k + >-t [ I'^i - "Jt, r: -

wherein o-g+j ... o-j, \^+i ... Xt are constants, which are all infinite once in

Oi ... a, and are, beside, infinite respectively at Oj+i, ..., a/c; and the most

general function uniform on the dissected surface, which is infinite to the

first order at tti , . .
.

, a^ , being, as remarked, of the form

Mo + /ii r^, -I- + flk Ta^ ,

can be written in the form

Mo + Ml r^^ + + M« r^^

+ M«+i

+

-^»+l + ''*+l,l ^ rt, "t" + "s+l,s ' at~

^k ^k
+ H'k

namely, in the form

v, + ViT^^^ + + I',, r^, + v,+,R,+,-\- +VkKk-

If this function is to have no periods, the equations

i'ifi,(ai) + +i/.n.K) = 0, {i=l,2,...,p),

must hold. Since tt, , . .
.

, Ug are independent, such equations can only hold

when vi = = ... = v^. Thus the most general rational function having k

poles of the first order, at a,, ...,0^, is of the form

fo + v,+iRs+i + + VkRk,

and involves k — s + 1 linearly entering constants, s being the number of

places among flj, ... , ot which are independent. These constants will generally

be called arbitrary : they are so only under the convention that a function
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which has all its poles among a^, ...,af. be reckoned a particular case of a

function having each of these as poles ; for it is clear that, for instance, R^ is

only infinite at a^, ..., Ug, a^. The proposition with a slightly altered enuncia-

tion, given below in | 27 and more particularly dealt with in § 37, is called

the Riemann-Roch Theorem, having been first enunciated by Riemann*,

and afterwards particularized by Rochf.

25. Take now other places a^+i, CLk+2i ••• upon the surface in a definite

order, and consider the possibility of forming a rational function, which beside

simple infinities at a^, ..., a^ has other simple poles at, say, ajt+j, a;k+j, ...,ah.

By the first Article of the present chapter it follows that the least value

of h for which this will be possible will be that for which ah depends

on a^ ...a/cak+i ... ah-i, that is, depends on a^ . . . Ug ajc+i . . . ah-^. This will

certainly arise at latest when the number of these places a^ ... Ug ak+i . . . a^-i

is as great as p, namely h — l=k + p — s, and if none of the places a^+i

.

. . a^^i

depend upon the preceding places ai...as,it will not arise before: in that

case there will be no rational function having for poles the places

«1 Clk <^k+\ Cf'k+j

for any value ofj from 1 to p — s.

But in order to state the general case, suppose there is a value of j less

than or equal to ^ — s, such that each of the places

depends upon the places

"i «s «A;+i Cik+j,

the smallest value of j for which this occurs being taken, so that no one of

afc+i . . . ajk+j depends on the places which precede it in the series

^1 ^s ^A;+i (^k+j •

Then there exists no rational function with its poles at «,...%- ttk+i . . . ajc+j,

but there exist functions

^k+j+i = O-k+j+i + '^k+j+i [Sak+j + i

— %+i+i,i r'a,
-

~" nk+j-{-i,s ^ ag ~ ^'A+j+i,fc+i i aj, + j
~ "~ ''i-k+j+i,k+j 1 a^ + yj

.

Rk+j+i = O-k+j+i + ^fc+;+(- L^fli+y + i
~ "A;+j+i,i ^a,~

~ "t+j+j'.s *- Og— fik+j+i,k+i L rtj.^j
— — nic+j+i,k+j 1 (Tj.+^J)

whose poles are respectively at

«i «S) O'ifc+i f*ifc+j> O'k+j+i

for all values of i from 1 to h — k —j.

* Riemann, Ges. Werke, 1876, p. 101 (§ 5) and p. 118 (§ 14) and p. 120 (§ 16).

t Crelle, 64. Cf. also Forsyth, pp. 459, 464. The geometrical significance of the theorem
has been much extended by Brill and Noether. {Math. Ann. vii.)
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Then the most general rational function with poles at

is in fact

and involves k— s + i + 1 arbitrary constants, namely the same number as

that of the places of the set

which depend upon the places that precede them.

For such a function must have the form

M.>+/^i !'«, + +/*sr^, + /^.s+i 1^3 + 1
+ +H'ki''!,k + H'k+iKk^^+

+ f^k+j 1 a* + ;
+ H'k+j+i i

flt +y ^ 1
+ + H'k+j+i 1 flfc+j + i

,

namely,

Mo + /^i r^, + +fisTl^+nk+i^l,^, + + fik+jVl^^.

k-s

+ S fl^ + r

r = l

t=i

+ S f^k+i+t

1 p j^X

C -^k+j+t + '>^k+j+t, 1
A a, + ... .

^k+j+t

+ W;fc+j+,_g * ag + 'ilk+j+t,k+i 'ak + i+ + >i'k+j+t,k+j ^ a^+j "
5;^

.

'^k+j+tj

which is of the form

v^> + Vi r*^ + + Pg r^^ + i/s+,i?.,+i + + VkRic

+ vk+, It,,, + + Vk+jK,^j + i^fc+j+i^,,,>, + + Vk+j+iM^^.^.;

and the p periods of this, each of the form

V, n (a,) + +v,n (a,) + Vk+i n (ajt+i) + + I'k+jil (ak+j),

cannot be zero unless each of j/, ...v^Vk+i ••• ^k+j he zero, for it is part of

the hypothesis that none of ak+y . . . ctk+j depend upon preceding places.

20. Proceeding in this way we shall clearly be able to state the following

result

—

Let there be taken upon the surface, in a definite order, an unlimited

number of places Oj, a... Suppose that each of «, ...a^, is inde-

pendent of those preceding it, but each of an-,,+i-" % depends on

ill ... a^_^. Suppose that each of «y +1^^ +2 ••• % -« ^^ independent of

those that precede it in the series a, ... a^ a^ a^ but each of

"0.- v.+i • • • % depends upon a, . .
. «q_ _,,aQ_+i • . • a^_g^. This requires that

Q>-(I> + [Q.-fI.-Q^]>p.
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Suppose that each of a^ +i • • • «o - ^'"^ independent of those that precede it

in the series «,...«„ «,^ , i • • • «n „o,n A.^ ••' ("^n « > ^^t each of a„ „,,••• a^
H\-Qi Vi+l Wi-li y-z+l V3-93 y3~93+l Va

depends upon the places of this series. This requires that

Qi-qx + [Q2-q2-Qi] + [Q3-q3-Q2]>p-

Let this enumeration be continued. We shall eventually come to places

«Q +1' ^Q +2' •' % - '
®^^^ independent of the places preceding, for which

the total number of independent places included, that is, of places which

do not depend upon those of our series which precede them, is p—so that

the equation

P={Qh-qh-Qh-i)+ +(Q2-q2-Qi) + (Qi-qi)

= Qh-qi-q-2- -qh

will hold. Then every additional place of our series, those, namely, chosen

in order from a„ ,,, a^ ..,,••• will depend on the preceding places of the

whole series.

This being the case, it follows, using Rf as a notation for a rational

function having its poles among Qi ... a/, that rational functions

x2i . . . R^ ; R^ , , . . . R^ ', Rr, , 1 • • • R^i « j 't
Rn _li • • • Rn «

do not exist.

The number of these non-eocistent functions is p.

For all other values off a rational function Rf eocists.

To exhibit the general form of these existing rational functions in the

present notation, let m be one of the numbers 1,2, ..., h ; i be one of the

numbers 1, 2, ... q,n, and let the dependence of a^ _ . upon the preceding

places arise by p equations of the form

then, denoting T^ by V,., there is a rational function

which has its poles at

and the general rational function having its poles at

ill . • Ct^ (^r\ r -• • • • ^/-» Ot^
,

- • • . Ct^
I

.'
Qi Qi+i <i(2 $2+1 Q„.-9™+*
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is of the form

and involves 9, + </.. + . . . + q„i-\ + * + 1 arbitrary coefficients.

The result may be summarised by putting down the line of symbols

i,2,...{(l-qr),(Qi-q^ + n-,Q.,Qi + h..-{Q.-q.\

ydth a bar drawn above the indices corresponding to the places which depend

upon those preceding them in the series. The bar beginning over Qh — qh + ^

is then continuous to any length. The total number of indices over which

no bar is dra^^^l is p. There exists a rational function Rf, in the notation

above, for every index which is beneath a bar.

The proposition here obtained is of a very fundamental character. Sup-

pose that for our initial algebraic equation or our initial surface, we were able

only to shew, algebraically or otherwise, that for an arbitrary place a there

exists a function Kl, discontinuous at a only and there infinite to the first

order, this function being one valued save for additive multiples of k periods,

and these periods finite and uniquely dependent upon a, then, taking arbitrary

places cii, a.,, ... upon the surface, in a definite order, and considering func-

tions of the form

that is, functions having simple poles at a^, ..., ay, we could prove, just as

above, that there are A- values of N for which such functions cannot be one

valued ; and obtain the number of arbitrary coefficients in uniform functions

of given poles. Namely, the proposition would furnish a definition of the

characteristic number k—which is the deficiency, here denoted hy p— based

upon the properties oi the uniform rational functions.

We shall sometimes refer to the proposition as Weiei'sti'ass's gap

theorem*.

27. When a place a is, in the sense here described, dependent upon places

6,, 6^,, ...,br, it is clear that of the equations

• "Liickensatz." The proposition has been used by Weierstrass, I believe primarily under

the form considered below, in which the places Aj, a^, ... are consecutive at one place of the

surface, as the definition of p. Weierstrass's theory of algebraic functions, preliminary to a theory

of Abelian functions, is not considered in the present volume. His lectures are in course of

publication. The theorem here referred to is published by Schottky : Conforme Abbildung

mehrfach zusammenhangender ebener Flachen, Crelle Bd. 83. A proof, with full reference to

Schottky, is given by Noether, Crelle Bd. 97, p. 224.
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A,n, (br) + ...+ A^n^ (br) =
Ai^i{a) + ... + ApClpia) =0

the last is a consequence of those preceding—and conversely that when the

last equation is a consequence of the preceding equations the place a depends

upon the places bi, b^, ...,br.

Hence the conditions that the linear aggregate

n (x) = A,n, (w) + ... + Aj^n^ (*•)

should vanish at the places

^
Ql Ql+ l Qi Q2+ I Vm~?m+»

wherein t':^ q^n, are equivalent to only

{Ql - ?.) + (Q2 - q-i - Ql) + • • • + {Qm - q,n - Qvi-x)

or

Hm 9^1 • • • 9.W

linearly independent equations.

If then T + 1 be the number of linearly independent linear aggregates of

the form H {x), which vanish in the Q„j, — q^ + i specified places, we have

T + 1 = ^J - {Qni - gi - ... - qm).

Denoting Qm — qm + 'i' by Q, and the number of constants in the general

rational function with poles at the Q specified places, of which constants one

is merely additive, by q + 1,

q + l=q, + q.+ ... + q,„_, + i + 1.

We therefore have

Q-q=p-(T + l).

Recalling the values of ^^{x)... Clp(x) and the fact (Chapter II. § 21)

that every linear aggregate of them vanishes in just 2jj — 2 places, we see

that when Q is greater than 2p — 2, r + 1 is necessarily zero.

In the case under consideration in the preceding article the number
T + 1 for the function M^ , namely the number of linearly independent

linear aggregates fl {x) which vanish in the places

is given, by taking m = h — l and i = qj,_-^ in the formula of the present

article, by the equation

T + l=p-{Qh-i-q,-...-qh-i)

= Qh — qh — Qh-1'

B. 3
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Hence one such linear aggi'egate vanishes in the places

and therefore

Qh-qh-l>2p-2

or, the index associated vrith the last place a^. of our senes, corresponding to

which a rational function Rq _ does not exist, is not greater than 2p—l. A

case in which this limit is reached, which also furnishes an example of the

theory, is given below § 37, Ex. 2.

28. A limiting case of the problem just discussed is that in which the

series of points «i, a.,, ... are all consecutive at one place of the surface.

A rational function which becomes infinite only at a place, a, of the

surface, and there like

t ^^ + -^v'
where any of the constants Cj, C.,, ... C^-i, but not C,., maybe zero, t being the

infinitesimal, is said to be there infinite to the ?'th order. If— A,,- = Ci/{i — 1)1,

such a function can be expressed in a form

\ + \, r.^ + \,DaV^, + ... + \,D:r' Vf,

where, in order that the function be one valued on the undissected surface,

the p equations

\i fl,- (a) 4- \.Da Hi (a) + ... + XrD'-' H,- (a) =

must be satisfied : and conversely these equations give sufficient conditions

for the coefficients Xi, Xo, ...,Xr-

In other words, since \,. cannot be zero because the function is infinite to

the ?*th order, the j^ differential coefficients 7);;-> O,- (a), each of the ?•— 1th

order, must be expressible linearly in terms of those of hnvrr order,

n,- (a), DO; («),..., i>-^a- (a),

with coefficients which are independent of i. We imagine the p quantities

Z)',~^n, («), for i=l, 2, ...,p, written in a column, which we call the 7'th

column ; and for the moment we say that the necessary and sufficient con-

dition for the existence of a rational function, infinite of the ?-th order at a,

and not elsewhere infinite, is that the 7'th column be a linear function

of the preceding columns.

Then as before, considering the columns in succession, they will divide

themselves into two categories, those which are linear functions of the pre-

ceding ones and those which are not so expressible. And, since the number

of elements in a column is p, the number of these latter independent columns
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will be just p. Let them be in succession the kith, k^th, ...,kpih. Then

there exists no rational function infinite only at a, and there to these

orders k^, k.^, ...,kp, though there are integrals of the second kind infinite

to these orders. But if Q be a number different from ki, ..., kp, there does

exist such a rational function of the Qth. order, its most general expression

being of the form

namely, the integral of the second kind whose infinity is of order Q is

expressible linearly by integrals of the second kind of lower order of infinity,

with the addition of a rational function.

If q + 1 be the number of linearly independent coefficients in this function,

one being additive, we have an equation

where jj — (t + 1) is the number of the linearly independent equations of the

form

X^a- (a) + \,Dai{a) + ... + XqDQ-iH, (a) = 0, (i = 1, 2,...,p),

from which the others may be linearly derived. x\s before, t + 1 is the

number of linearly independent linear aggregates of the form

Aini{x) + ...+Apnp{w)

which satisfy the Q conditions

^iD'Hi (a) + . . . + ApD'-Qp (a) =

forr = 0, 1,2, ..., Q-1.

29. In regard to the numbers k^ ... kp we remark firstly that, unless p = 0,

ki = 1—for if there existed a rational function with only one infinity of the

first order, the positive integral powers of this function would furnish rational

functions of all other orders with their infinity at this one place, and there

would be no gaps (compare the argument Chapter II. § 21); and further

that in general they are the numbers 1, 2, 3 ... p, that is to say, there is only

a finite number of places on the surface for which a rational function can be

formed infinite there to an order less than p + 1 and not otherwise infinite.

We shall prove this immediately by finding an upper and a lower limit to

the number of such places (§ 31).

30. Some detailed algebraic consequences of this theory will be given in

Chapter V. It may be* here remarked, what will be proved in Chapter VI.

in considering the geometrical theory, that the zeros of the linear aggregate

Aini{x)+ ...+Apap{x)

* It is possible that the reader may find it more convenient to postpone the complete

discussion of § 30 until after reading Chapter vi.

3—2
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cau be interpreted in general as the intersections of a certain curve, of the

form

(f)
= A,(f), (.r) + . . . + Ay<t)j, (w) = 0,

wherein <^i ...
(f)j,

are integral polynomials in x and i/, witli the curve repre-

sented by the fundamental equation of our Riemann surfjice. In such

interpretation, the condition for the existence of a rational function of order Q
with poles only at the place a, is that the fundamental curve be of such

character at this place that every cuive <^, obtained by giving different values

to Ji ... Ap, which there cuts it in Q—l consecutive points, necessarily cuts

it in Q consecutive points. As an instance of such propert}', which seems

likely also to make the general theory clearer, we may consider a Riemann

surface associated with an equation of the form

/(a-, y) = K + {x, y\ + (.r, y), + {x, y), + {x, y\ = 0,

wherein (x, y),. is a homogeneous integral polynomial of the rth degree, with

quite general coefficients, and K is a constant. Interpreted as a curve, this

equation represents a general curve of the fourth degi"ee ; it will appear

subsequently that the general integral of the first kind is

dx

h
(A+Bx+Cy),

where f (y) = df/dy, and A, B, G are arbitrary constants; and thence, if we
recall the fact that n, {x), ..., D,p(x) are differential coefficients of integrals

of the first kind, that the zeros of the aggregate

A,n,{x)+ ... +Apnp(x)

may be interpreted as the intersections of the quartic with a variable straight

line.

Take now a point of inflexion of the quartic .as the place a. Not every

straight line there intersecting the curve in one point will intersect it in any

other consecutive point ; hut every straight line there intersecting the curve

in two consecutive points will necessarily intersect it there in three consecu-

tive points. Hence it is possible to form a rational function of the third

order whose only infinities are at the place of inflexion ; in fact, if

AoX + Boy+l =

be the equation of the inflexional tangent, and

\ {A,,v +B„y+l) + fi (Ax + By + l)=0

be the equation of any line through the fourth point of intersection of the

inflexional tangent with the curve, the ratio of the expressions on the left

hand side of these equations, namely

Ax + By+1
^^^A^ + B,y+1'
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is a general rational function of the desired kind, as is immediately obvious

on consideration of the places where it can possibly be infinite. Thus for the

inflexional place the orders of two non-existent rational functions are 1, 2.

It can be proved that in general there is no function of the fourth order—the

gaps at the orders 1, 2, 4 are those indicated by Weierstrass' theorem.

In verification of a result previously enunciated we notice that since

Aa; + By +1=0 may be taken to be any definite line through the fourth

intersection of the inflexional tangent with the curve, the function contains

q + 1 = 2 arbitrary constants. From the form of the integrals of the first

kind which we have quoted, it follows that p = 3 ; thus the formula

Q-q=p-(T + i),

wherein Q = 3, requires r + 1 = 1 ; now by § 28 r + 1 should be the number

of straight lines which can be drawn to have contact of the second order with

the curve at the point : this is the case.

If the quartic possess also a point of osculation, a straight line passing

through two consecutive points of the curve there will necessarily pass

through three consecutive points and also necessarily through four. Hence,

for such a place, we can form a rational function of the third order and one

of the fourth. In fact, if A^x + B^^y + 1=0 be the tangent at the point of

osculation and A^x + B^y + 1 = be any other line through this point, while

Xx + fiy + V = is any other line whatever, these functions are respectively,

in their most general forms,

A^x + B^y + 1 lu; + /j,y+v
^ A,x + Boy + i ' Aox + B„y + l

'

wherein X, fi, v are arbitrary constants.

It can be shewn that in general we cannot form a rational function of the

fifth order whose only infinity is at the place of osculation. Thus the gaps

indicated by Weierstrass's theorem occur at the orders 1, 2, 5. (Cf. the

concluding remark of § 34.)

In case, however, the place a be an ordinary point of the quartic, the

lowest order of function, whose only infinity is there, is ^j + 1 = 4 : it will

subsequently become clear that a general form of such a function in S'jS,

where *Sf = is any conic drawn to intersect the quartic in four con-

secutive points at a, and 8' = is the most general conic drawn through

the other four intersections of 8 with the quartic. 8' will in fact be of the

form A,*S* + fiT, where T is any definite conic satisfying the conditions for 8',

and \, /i are arbitrary constants; the equation Q — q=p — {r-\-\) is clearly

satisfied by Q = 4, fy = 1, ^j = 3, t + 1 = 0.

The present article is intended only by way of illustration ; the examples
given appear to find their proper place here. The reader will possibly
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find it desirable to read them in connexion with the geometrical account

given in Chapter VI.

31. Consider now what places of the surftices arc such that we can form

a rational function infinite, only there, to an order as low as p.

For such a place, as follows from § 28, the determinant

A = Hi (a.-) ,
n,(x) , , np{x)

Dn,(x) ,i)n,{w)
,

,Dnj,(x)

Dp-' n, (x), DP-' n, (x), , Dp-' Up (x)

must vanish. Assume for the present that none of the minors of A vanish

at that place. It is clear by § 28 that A only vanishes at such places as we

are considering.

Let t; be any integral of the first kind. We can w^rite

iii (^') = -77 iw the form -j- -y-
,'^ ' dt dt dv
'

and similarly put
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Now A can vanish either by the vanishing of the factor D or by the

vanishing of the factor f -7-) . The zeros of the last factor are, however,

the poles of D. Hence the aggregate number of zeros of A is {p — 1) /) {p + 1).

We shall see immediately that these zeros do not necessarily occur at as

many as (jt) — 1) j? (p + 1) distinct places of the surface.

In order that a rational function should exist of order less than p, its

infinity being entirely at one place, say of order p — r, it would be necessary

that the r determinants formed from the matrix obtained by omitting the

last r rows of A should all vanish at that place. We can, as in the case of

A, shew that each of these minors will vanish only at a finite number of

places. It is therefore to be expected that in general these minors will not

have common zeros ; that is, that the surface will need to be one whose

Sp — 3 moduli are connected in some special way.

Moreover it is not in general true that a rational function of order jj 4- 1

exists for a place for which a function of order ^j exists, these functions not

being elsewhere infinite. For then we could simultaneously satisfy the two

sets of p equations

XjOi (a) + \,Dni (a)+ + X^-iD^-^fli (a) + X^D^-'Ili (a) = 0,

fi^rii (a) + fi,Dni (a) + + fi^_,DP-mi (a) + /Xj,+,D^i (a) = 0,

rfA
namely, A and -7- would both be zero at such a place. The condition that

this be so would require that a certain function of the moduli of the

surface—what we may call an absolute invariant—should be zero.

Therefore when of the p gaps required by Weierstrass's theorem, p — 1

occur for the orders 1, 2, ..., p — 1, the other will in general occur for the

order jj + 1. The reader will see that there is no such reason why, when a

function of order p exists, a function of order p + 2 or higher order should

not exist.

32. The reader who has followed the example of § 30 will recall that the

number of inflexions of a non-singular plane quartic* is 24 which is equal to

the value of {p - I) p (p + 1) when p = S. The condition that the quartic

possess a point of osculation is that a certain invariant should vanish*}-.

When the curve has a double point, there are only two integrals of the

first kind
J,
and j) is equal to two. Thus in accordance with the theory above,

there should be (p — 1) jj (j) + 1) = 6 places for which we can form functions

* Salmon, Higher Plane Curves (1879), p. 213.

t The equation can be written so as to involve only 5 = 3^j - 3 - 1 parametric constants

(Chap. V. p. 98, Exs. 1, 2).

t Their forms are given Chapter XL § 17 /3. Reasons are given in Chapter VI. The reader

may compare Forsyth, p. 395.
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of the second order infinite only at one of these places. In fact six tangents

can be drawn to the curve from the double point : if A.^c + B„>/ = be the

equation of one of these and X {Ax + By) + fj.
{A^v + Boy) = be the equation

of any line through the double point, the mtio

Ax + By
,

A^c + B,y '^

represents a function of second order infinite only at the point of contact of

A^^-B,,y = ^*.

For the point of contact of one of these tangents the p gaps occur for the

orders 1 and 3.

The quartic with a double ix)iut cau be biratioually related to a surface expressed by

au equation of the form

r=(^, i)6>

^ being the function above. The reader should compare the theory in Chapter I. and the

section on the hyperelliptic ca«e, Chapter V. below.

33. Ex. For the siu-face represented by the equation

f{x, y)=xhf {.i-,y}i + a;y {x, y)^^{x, y)^-\-{x, y\+ {x, y)i=

where the brackets indicate general integral jwlynomials of the order of the suffixes, p is

equal to 4, and the general integral of the first kind is

/
dx {Axy+Bx+ C^+ D)lf {y)

where f'{y) = J- . Prove that at the (/> - 1 )^ (/> + 1 ) = 60 places for which rational fmictions

of the 4th oi-der exist, infinite only at these places, the following equations Ure satisfied

2y"7y-3(y7y)^=o,

-''^''
L^-*--'

''' ^ ox' dy J" J'^"^ dx Ctf-
^''^' 8/ J'

J

where y=^, etc.,/,=^, etc.

Explain how to express these functions of the fourth order.

Enumerate all the zeros of the second differential expression here given.

Ex. 2. In general, the corresponding places are obtiiined by forming the differential

equation of the pih order of all adjoint curves. In a certain sense A is a differential

invariant, for all reversible rational transformations. (See Chapter VI.)

* Here the number of intep^'ands of the integrals of the first kind, which are of the form

(r-.r+ .1/y )//'(»/) (cf. Chapter III. § 28), which vanish in two consecutive points at the point of

contact of /l,,r + /i„.v = 0, is clearly 1, or t + 1 = 1 : hence the formula Q- q-p - (r+l) is verified

by Q= 2, q — l,p= 2, .so that the form of function of the second order given in the text is the

most general possible.
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84, We pass now to consider whether the (p — 1) j) (j) + 1) zeros of A
will in general fall at separate places*.

Consider the determinant

V = ,a,(x)
,

,np{a:)

x^,n/^-i)(a ,^/--^H^)

wherein H^'"' (^) = Z>|^fl,: (|^), and ki, ..., kp are the orders of non-existent

rational functions for a place ^, in ascending order of magnitude, {ki = \);

and let its value be denoted by

Xj &)i (a;) + . . . + \w,p {x),

so that u,. = I (o,. {x) dtx is an integral of the first kind.

Then a)^(a;) vanishes at ^ to tJte (A;,. — l)t}i order'.

For (Of (x) is the determinant

V, = (-)' n,{x)
,

,np{x)

n/^'-^H^) ,

,n/'-i)(^)

np-'-'\^), ,n/>--1)(|)

f2^(A:.+i-i)(|)^
,
n/'-+i-i)(^)

ni(^--i)(l)
, ,

n/^'-i)(e

now the (Av — l)th differential coefficient of this determinant (in regard to

the infinitesimal at x) has at ^ a value which is in fact the minor of the

element (1, 1) of V, save for sign. That this minor does not vanish is part

of the definition of the numbers k^, k.^, .,,, kp. But all differential coeffi-

cients of V,. of lower than the (A;, — l)th order do vanish at ^: some, because

for x = ^ tbey are determinants having the first row identical with one of

the following rows, this being the case for the differential coefficients of

orders k^ — \,k.2—\, ... ; others, because when /* is not one of the numbers

ki, k.,, ..., kp, Z)'^~^fli(^) is a linear function of those of D'''~^ D,i{^),

D^~^i1;{^), ... for which /a is greater than k^, k^., ... , the coefficients of the

linear functions being independent of i. This proves the proposition.

It is clear that the ^vth differential coefficient of V,. may also vanish at f.

In particular (i)i{x) does not vanish at f : a result in accordance with a

remark previously made (Chapter II. § 21), that there is no place at which

the differentials of all the integrals of the first kind can vanish.

* The results in §§ 34, 35, 36 are given by Hurwitz, Math. Annul. 41, p. 409. They will

be useful subsequently.
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An iinpurt-ant corollary is that the highest order for ivhich no rational

function exists, infinite only at the place ^, is less than 1p. For Wp {x) vanishes

only 2/) — 2 times, namely, kp — \<2p — 1.

35. We can now prove that if k\ > 2, the sum of the orders ki, k\, ... , kp

is less than p-. For if there be a rational function of order ni, infinite only

at ^, and r be one of the non-existent orders* A-j ... kp, r — m is also one of

these non-existent orders—otherwise the product of the existent rational

function of order r — ni with the function of order m would be an existent

function of order r. The powers of the function of order m are existent

functions, hence none of k^ ... kp are divisible by 7/i.

Let ri be the greatest of the non-existent orders Aj ... kp which is con-

gi'uent to i(< m) for the modulus m : then, by the remark just made,

r,-, r,- — m, ri — 2ni, ... , m + i, i

are all non-existent orders—and all congruent to i for the modulus in. Since

;\ occurs among ki...kp, all these also occur. Take i in turn equal to

1, 2, ... w-1.

Then, the number of non-existent orders being p,

.so that /'i + r., -}-...+ r,„_i = rnp — \ m (m — 1

)

= ^ ni{2p-m + 1).

Now the sum of the non-existent orders is

which is equal to

m-l
2 [ri + {ri - m) + (r,- - 2//i) + . . . + t]

,

1 m-l
jr- S (ri + ni - i) (ri + i)
2m ,=1

= 2V.^tn-(2,.-l)] + 2LSr..[2p+,.-l]

-I- 1 m (m - 1) - tV ("^ - ^) (2»^ - 1),

and, since Sn = ^ m{2p — in 4-1), this is ecjual to

~ 2n [n - {2p - 1)] + 4 [^p- - {m - 1)-] -h J, {m - 1) {m + 1),

or f - 2^ Sr.- {2p - 1 - r,) - i {m - \){m - 2).

* i.e. orders of rational functions, infinite only at ^, which do not exist: and similarly in

what follows.
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Since, by the corollary of the preceding article, 2^j — 1 is not less than r,;,

this is less than p- unless m is 1 or 2. Now m cannot be equal to 1 ; and if

it is 2 then also h, > 2. Hence the statement made at the beginning of the

present Article is justified.

When there is a rational function of order 2, it is easy to prove that

there are places for which ^'i ... kp are the numbers 1, 3, 5, ... , 2j; — 1, whose

sum* is p'. An example is furnished by § 32 above.

Ex. For the surface

yH/(.'-, l)i+^(.«-, 1)2 + (*-, 1)4= 0,

for which p = 3, there is, at .f= QO , only one place, and the non-existent orders are 1, 2, 5 :

whose sum is ^'-^ — 1.

36. We have in § 34 defined p integrals of the first kind

I a)i{x)dtrc, ... , I Wp{x)dtx

by means of a place ^. Since the differential coefficients of these vanish at |
to essentially different orders, these integrals cannot be connected by a homo-

geneous linear equation with constant coefficients. Hence a linear function

of them with parametric constant coefficients is a general integral of the first

kind. Therefore each of D,i(x) ... ilp(x) is expressible linearly in terms of

©i (x) ... (Op {x) in a form

flj {x) = ditUi {x)+ ... + CipWp (x),

where the coefficients are independent o{ x. Thus the determinant A (§ 31),

which vanishes at places for which functions of order less than jj + 1 exist, is

equal to

oJiix) , , COp(x)

DxO)i(x) , , Dx(Op{x)

G

D>^^(o^{x), , DPr^u)p{x)

where G is the determinant of the coefficients Cy. It follows from the result

of § 34 that the determinant here multiplied by G vanishes at | to the order

{k,-l) + {k,-^) + ...+{kp-p) = k,^-...+kp-^p{p-^\).

Thus, the determinant A vanishes at any one of its zeros to an order equal

to the sum of the non-existent ordersfor the place diminished by Ij^ ip + !)•

For example, it vanishes at a place where the non-existent orders are

1, 2, ... , p — \, p -\-l to an order ^p{p — 1) +p + ^ -\p{p + 1) or to the

first order. We have already remarked that such places are those which

most usually occur.

* Cf. Burkhardt, Math. Annul. 32, p. 388, and the section in Chapter V., below, on the hyper-

elliptic case.
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Hence, since A-, 4 . . . + A^ ^ />'-, A vanishes at one of its zeros to an order

Further, if r be the number of distinct phices where A vanishes, and

//J,, /»o, ... , ni,. be the orders of multiplicity of zero at these places, it follows,

from

m, + ... +vir = {p-l)p(p + l),

and m^ + ... +mr<i^^p{p—l),

that r > 2p + 2, or

there are at least 2p + 2 distinct places for which functions of less order

than p + l, infinite only thereat, exist] this lower limit to the number of

distinct places is only reached when there are places for which functions of

the second order exist.

Ex. For tlie surface given by

p is equal to 3 ; there are 12= 2^+ 6 distinct places where A vanishes.

37. We have called attention to the number of ai'bitrary constants con-

tained in tlie most general rational function having simple poles in distinct

places (§ 27) and to the number in the most general function infinite at a

single place to prescribed order (§ 28) : in this enumeration some of the con-

stants may be multipliers of functions not actually becoming infinite in the

most general way allowed them, that is, either of functions which are not

really infinite at all the distinct places or of functions whose order of infinity

is not so high as the prescribed order.

It will be convenient to state here the general result, the deduction of

which follows immediately from the expression of the function in terms of

integrals of the second kind :

—

Let «!, a.,, ... be any finite number of places on the surface, the infinitesi-

mals at these places being denoted by t^, t.,, .... The most general rational

function whose expansion at the place a^ involves the terms

Jl Jl Jl
ti''' tf-' ti^''

•••

—whose number is finite, = Q, say,—and no other negative powers, involves

q + I linearly entering arbitrary constants, of which one is additive, q being

given by the formula

Q-q=p-(r + ^),

where Q is the sum of the numbers Qi, and t + 1 is the number of linearly

independent linear aggregates of the form
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which satisfy the sets of Q{ relations, whose total number is Q, given by

A,D^-' n, (ad + A,D^>-' n, (tti) +... + ApD^~' H^ (a,) = 0,

A,D>^>-' n, («,) + A.D^^r^ n, (cii) +...+ ApD>^.-' n^ (cii) = 0,

As before, this general function will as a rule be an aggregate of functions

of which not every one is as fully infinite as is allowed, and it is

clear from the present chapter that in the absence of farther information in

regard to the j^laces a^, a., ... it may quite well happen that not one of these

functions is as fidly infinite as desired, the conditions analogous to those stated

in §§ 23, 28 not being satisfied. See Example 2 below.

The equation Q — q=p — {T + \) will be referred to as the Eiemann-Roch
Theorem.

Ex. 1. For a rational function having only simple poles or, more gene-

rally, such that the numbers X;, /Zj, Vi, ... for any pole are the numbers

1, 2, o, ... (^i,

if Q > 2j9 — 2, T + 1 is zero, since D, {x) has only an aggregate number

2p — 2 of zeros : the function involves Q — p + 1 constants,

if Q=2p — 2, T+l cannot be greater than 1 ; for the ratio of two of the

aggregates n{x) then vanishing at the poles, being expressible in a form

dV
-j^ , where V, W are integrals of the first kind, would be a rational function

without poles, namely a constant ; then the linear aggregates D. (x) would be

identical : thus the function involves Q — p + I or Q — p + 2 constants,

namely p — 1 or p constants,

if Q= 2}) — 3; T + 1 cannot be gi'eater than 1, since the ratio of two of

the aggregates fl (x) then vanishing at the poles would be a rational function

of the first order and therefore p be equal to unity—in which case 2jj — 3 is

negative : thus the function involves jp
— 2 or p — 1 constants,

if Q = 2p — 4, and t + 1 be greater than unity, the ratio of two of the

vanishing aggregates 12 (x) would be a rational function of the second order

:

we have already several times referred to this possibility as indicative that

the surface is of a special character—called hyperelliptic—and depends in

fact only on 2jd — 1 independent moduli. In general such a function would
involve p — S constants.

Ex. 2. Let V be an integral of the first kind and a be an arbitrary

definite place which is not among the 2^ — 2 zeros of dV. We can form a

rational function infinite to the first order at the 2^ — 2 zeros of dV and to

the second order at a; the general form of such a function would contain

2p — 2 + 2—p + l=p^l arbitrary constants. But there exists no 7'ational

function infinite to the first order at the zeros ofdV and to the first order at
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the place a. Such a function would indeed by the Riemann-Roch theorem

here stilted, contain 2p — 2 + 1 —p -\- 1= p arbitrary constants: but the coeffij-

cients of these constants are in fact infinite only at the zeros of dV. For when

the places a^, ... , a._^_. are all zeros of an aggregate of the form

the conditions that the periods of an expression

".•/< -2

be all zero, namely the equations

\,n,(rtj)+... + >-.p-2n,(rt,^_,) + /in,(a) = o, (2 = 1,2, ...,p),

lead to

/i [A,^, (a) + ... + ^l^n^(a)] = 0,

and therefore to /u, = 0.

Thus the function in question will be a linear aggregate of p functions

whose poles are among the places a^, ... , a.ip-«. As a matter of fact, if W be

a general integral of tlie first kind, expressible therefore in the form

\V+\,V,+ ...+\j,Vj„

dW .

wherein V.,, ... , Vp are integrals of the first kind, ,p: involves the right

number of constants and is the function sought.

In this case the place a does not, in the sense of | 23, depend upon the

places a,, ... , a.ip-o; the symbol suggested in § 26 for the places a^, ... , a.jj^o.

a, ... is

l,2,S,...,p-l,p,p+l,...,2p-2, 2p-l,2p,2p + l,

It may be shewn quite similarly that there is no rational function having

simple poles in a^, a.,, ..., a.,p_. and infinite besides at a like the single

term -
, t being the infinitesimal at the place a.

Ex. 3. The most general rational function R which has the value c at

each of Q given distinct places, R — c being zero of the first order at each of

these places, is obviously derivable by the remark that l/(R — c) is infinite at

these places.
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CHAPTER IV.

Specification of a General Form of Riemann's Integrals.

38. In the present chapter the problem of expressing the Kieniann

integrals is reduced to the determination of certain fundamental rational

functions, called integral functions. The existence of these functions, and

their principal properties, is obtained from the descriptive point of view

natural to the Riemann theory.

It appears that these integral functions are intimately related to certain

functions, the differential-coefficients of the integrals of the first kind, of

which the ratios have been shewn (Chapter II. § 21) to be invariant for

birational transformations of the surface. It will appear, further, in the

next chapter, that when these integral functions are given, or, more pre-

cisely, when the equations which express their products, of pairs of them, in

terms of themselves, are given, we can deduce a form of equation to re-

present the Riemann surface ; thus these functions may be regarded as

anterior to any special form of fundamental equation.

Conversely, when the surface is given by a particular form of fundamental

equation, the calculation of the algebraic forms of the integral functions may
be a problem of some length. A method by which it can be carried out is

given in Chapter V. (§| 72 ff.). Compare | 50 of the present chapter.

It is convenient to explain beforehand the nature of the difficulty from which the

theory contained in §§ .38—44 of this chapter has arisen. Let the equation associated

with a given Riemann surface be written

wherein A, A^,.,., J„ are integral polynomials in x. An integral function is one whose

poles all lie at the places .t'=Qo of the surface; in this chapter the integral functions

considered are all rational functions. If y be an integral function, the rational

symmetric functions of the n values of y corresponding to any value of x, whose

values, given by the equation, are -A^jA, A^jA, -AJA, etc., will not become infinite
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for any finite value of .»-, and will, therefore, be integral ix)lynomials in .v. Thus when

_y is an integral function, the polynomial -1 divides all the other ix>lynonuaLs J,,

A 4, , A^. Conversely, when ^1 divides these other jwlynomials, the form of the

equation shews that y cannot become infinite for any finite value of a; and is therefore

an integral function.

When y is not an integral function, we can always find an integral iwlynomial in

.r, say /3, vanishing to such an order at each of the finite jxiles of y, that /3y is an

integn\l function. Then also, of course, /S^-, /Sy, ...are integral functions: though it

often hapixjus that there is a polynomial ^., of less order than ff-, such that ^.,i/'- is

an integi-al function, and similarly an integral jxjlynomial /S^ of le.ss order than /SP,

such that /Jj^ is an integnil function ; and similarly for higher jwwers of y.

In jKirticular, if in the equation given we put A>/=t], the equation becomes

r,"-\-Air,»-^ + AoA7j'*-^- + ...+A„A"-^^0,

and T} is an integral function.

Supi>ose that y is an integral function. Then any rational integral polynomial in

X and }/ is, clearly, also an integral function. But it does not follow, convei-sely,

though it is sometimes true, that every integral rational function can be written as an

integral j)olynomial in .v and >/. For instixnce on the surface associated with the

equation

f+ Bf-x+ CyaP'+ Bx^ -E (f - x^) = ,

the three values of y at the places .r=0 may be expressed by series of positive integral

ix>wers of .r of the resjiective forms

y=x+\x-+ ..., 1/= —.r+fix^+ ,.., y=E+px+ ...

.

Thus, the rational fimction (j/- — Ey)/x is not Infinite when x=0. Since y is an

integral function, the function cannot be infinite for any other finite value of x.

Hence (y- - Ei/)'x is an integi-al function. And it is not possible, with the help of the

equation of the surfiice, to write the function as an integral polynomial in ./• and y.

For such a polynomial could, by the equation of the surface, be reduced to the form

of an integral jwlynomial in x and y of the second oi-der in y ; and, in order that such

a polynomial should be equal to {j/'-Ey)/x, the original equation would need to be

reducible.

Ex. Find the rational relation connecting x with the function r}= (j/^-Ey)/x ; and

thus shew that j] is an integral function.

39. We concern ourselves first of all with a method of expressing all

rational functions whose poles are only at the places where x has the same
finite value. For this value, say a, of a; there may be several branch places:

the most general case is when there are k places specified by such equations as

X- a = ^,«•'+^ ... , X- a = fi«'t+^

The orders of infinity, in these places, of the functions considered, will be

specified by integral negative powers of f,, .,., tt respectively. Let F be

such a function. Let a- + 1 be the least positive integer such that (x — oY^'^F

is finite at every place x = a. We call a + 1 the dimensiou of F. Let

f(x, i/) = be the equation of the surface. In order that there may be any

branch places at x = a, it is necessary that d/jdi/ should be zero for this value
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of X. Since this is only true for a finite number of values of x, we shall suppose

that the value of x considered is one for which there are no branch places.

We prove that there are rational functions h^, ..., hn-i infinite only at

the n places x = a, such that every rational function whose infinities occur

only at these n places can be expressed in the form

(-^,l)+(-^ , l) A, + ... + f-^, l) K-^ (A),
\x —a J\ \x — a /Xj \x — a J\_^

in such a way that no term occurs in this expression which is of higher

dimension than the function to be expressed : namely, if cr + 1 be the dimen-

sion of the function to be expressed and ai + 1 the dimension of hi, the

function can be expressed in such a way that no one of the integers

\, Xi + (Ti + 1, . . . , A,i_i + (Tn-i + 1

is greater than a + 1. We may refer to this characteristic as the condition

of dimensions. It is clear conversely that every expression of the form (A)

will be a rational function infinite only for x = a.

Let the sheets of the surface at x = a be considered in some definite

order. A rational function which is infinite only at these n places may be

denoted by a symbol (R^, R,, ... , R71), where J^i, R.2, -.. , Rn are the orders of

infinity in the various sheets. We may call R^, R., ... , Rn the indices of the

function. Since the surface is unbranched at x = a, it is possible to find a

certain polynomial in , involving only positive integral powers of this
cc ^ a

I 1 X^n
quantity, the highest power being (

j
,
such that the function

(A, i?„...,i?„)-f^ , 1) ,
= (^„^„ ...,;Sf„_i,0)say (i),

is not infinite in the ?ith sheet at x = a.

Consider then all rational functions, infinite only at x = a, of which the

nih. index is zero. It is in general possible to construct a rational function

having prescribed values for the {n — 1) other indices, provided their sum be

^ + 1, When this is not possible a function can be constructed* whose indices

have a less sum than p + l, none of them being greater than the prescribed

values. Starting with a set of indices (p + 1, 0, ... , 0), consider how far the

first index can be reduced by increasing the 2nd, 3rd, ... ,
(?i — l)th indices.

In constructing the successive functions with smaller first index, it will be

necessary, in the most general case, to increase some of the 2nd, 3rd, ...,

{n — l)th indices, and there will be a certain arbitrariness as to the way in

which this shall be done. But if we consider only those functions of which

the sum of the indices is less than p + 2, there will be only a finite number

* The proof is given in the preceding Chapter, (§§ 24, 28).

B. 4
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possible for which the first index has a given value. There will therefore

only be a finite number of functions of the kind considered*, for which the

further condition is satisfied that tlie first index is the least possible such that

it is not less than any of the others. Let this least value be 7\, and suppose

there ai'e k^ functions satisfying this condition. Call them the reduced

functions of the first class—and in general let any function whose nth index

is zero be said to be of the first class when its first index is greater or not

less than its other indices. In the same way reckon as functions of the

second class all those (with ?ith index zero) whose second index is greater

than the first index and greater than or equal to the following indices. Let

the functions whose second index has the least value consistently with this

condition be called the reduced functions of the second class ; let their

number be k., and their second index be r.,. In general, reckon to the tth

class (i < n) all those functions, with nth index zero, whose ith index is

greater than the preceding indices and not less than the succeeding indices.

Let there be ki reduced functions of this class, with ith index equal to r^.

Clearly none of the integers 7\, ... , r,i_i are zero.

Let now (s, ... 5,-_i n5,+i ... s„_i 0),

where ?'; > Si , • • • , ri > Si_, , n > Si+, , ... ,ri> s„_i

,

be any definite one of the ki reduced functions of the ith class. Make a

similar selection from the reduced functions of every class. And let

(^1 ... <S/_i Ri Si+i . . . Sn-i 0)

be any function of the ith class other than a reduced function, so that

Ri > >S'i , . .
.

, Ri> Si-i, Ri > ^,+1 , . .
. , Ri> Sn-^.

Then by choice of a proper constant coefficient \ we can write

(^1 . . . *S,_i Ri Si+, . . . Sn-^ 0) - X (a- - a) ~
'""'

(.<?, . . . S;_i r; S,+i . . . Sn-i 0)

in the form

(Ti ... Ti_i Ri Ti+i . . . Tn-i, Ri — ri) (ii),

where R/ < Ri', T^ may be as great as the greater of <S'i, Ri — {ri - Sj), but is

certainly less than Ri\ and similarly T.,, ... , 2'i_i are certainly less than Ri;

while 7'i+i may be as great as the greater of ^Sit^i, J?i — (?\ — iv+i), ^"d is there-

fore not greater than Ri\ and similarly !/\+o, ... , T^-i are certainly not greater

than Ri.

* Functions which have the same indices are here regarded as identical. Of course the

general function with given indices may involve a certain number of arbitrary constants. By the

function of given indices is here meant any one such, chosen at pleasure, whicli reall}' becomes

infinite in the specified way.
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Further, if ( , 1] be a suitable polynomial of order Ri — Vi in

(x — a)~^, we can write

{T, ... Ti_, R{ ... r«_„ 7?,-7-0- f-^, l)^
\x — a JRi-Vi

= (S\ . . . S'i-i R"i S'i+i . . . S'n-i 0) (iii),

where R"i may be as great as the greater of R'i, Ri — r,-, but is certainly less

than Ri; S\ may be as great as the greater of 1\, Ri — Vi, but is certainly less

than Rii and similarly >S^'o, ..., ^'j_i are certainly less than Ri] while S'i+i

may be as great as the greater of T^+j, Ri—ri, and is certainly not greater

than Ri] and similarly S'i+2> ••• , S'n-i are certainly not greater than Ri.

Hence there are two possibilities.

(1) Either (S\... S'i_,R'iS'i+,... S'n_^ 0) is still of the ith class,

namely, R"i >S„..., R'U > S'i_, , R"i > S'i+, ,..., R"i > S'n^,

,

and in this case the greatest value occurring among its indices {R"i) is less

than the greatest value occurring in the indices of {8^ ... Si-i Ri Si-^-i ... Sn-i 0).

(2) Or it is a function of another class, for which the greatest value

occurring among its indices may be smaller than or as great as Ri (though

not greater) ; but when this greatest value is Ri, it is not reached by any of

the first i indices.

If then, using a term already employed, the greatest value occurring

among the indices of any function (Rj, ..., Rn) be called the dimension of

the function, we can group the possibilities differently and say, either

{S\ .

.

. S'i-i R"i S'i+i . . . ;S'„_i 0) is of lower dimension than

(^1 ... 8i-i Ri Si+i . . . Sn-i 0),

or it is of the same dimension and then belongs to a more advanced class,

that is, to an {i + k)th. class where k >0.

In the same way if (ti ... 4_i Viti^^ ... tn-i 0) be any reduced function of

the ith class other than (Sj ... Si_i r^ Sj+j . . . Sn-i 0), we can, by choice of a

suitable constant coefficient fM, wi-ite

(tj ... ti^i Vi ti+i . . . tn-i 0) - yu, (Si . . . S;_i Vi Si+i .

.

. S^_i 0)

= {t\...t'i^^r'it'i+^ ...t'n-iO) (iv),

where r'i<7'i, t\ ... t'i^i may be respectively as great as the greater of the

pairs (^1, 5i) ... (^i_i, Si_i) but are each certainly less than Vi, while similarly

no one of t'i+i, ... , t'n-i is greater than 7\.

The function (^'i . . . t'i^i r'i t'i^i . . . t'n-i 0) cannot be of the ith. class, since

no function of the tth class has its ith index less than r^- : and though the

greatest value reached among its indices may be as great as Vi (and not

greater), the number of indices reaching this value will be at least one less

4—2
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than for (Sj . . . s,_i r,- s,+i . . . 5,j_i 0). Namely (t\ . . . <',_, r',- <',+i . . . t'n-i 0) is

certainly of more advanced class than (Sj ... 5j_i r,s,+i ... s,i_i 0), and not of

higher dimension than this.

Denote now by h^, ...,/<„_, the selected reduced functions of the 1st,

2nd, ...,(« — l)th classes. Then, having regard to the equations given by

(ii), (iii), (iv), we can make the statement.

Ant/ function (Si... Si-i RiSi+^ ... >Si„_iO) can he expressed as a sum o/(l)

an integral jwlynomial in {x — a)~'^, (2) one ofh^, ... , /j„_i multiplied hy such

a polynomial, (3) a function F which is either of lower dimension than the

function to be expressed or is of more advanced class.

In particular when the function to be expressed is of the (n — l)th class

the new function F will necessarily be of lower dimension than the function

to be expressed.

Hence by continuing the process as far as may be needful, every function

f={Si... *Sij_i Ri Si+i . . . ;S',i_i 0)

can be expressed in the form

f-^, l) +f-^, l) /h + ... + f-i-. l) hn-^+F„ (V)
\x—a J\ \x — a J\ \x — a /x„_j

where Fj is of lower dimension than/!

Applying this statement and recalling that there are lower limits to the

dimensions of existent functions of the various classes, namely, those of the

ki + ... + k'n^i reduced functions, and noticing that the reduction formula (v)

can be applied to these reduced functions, we can, therefore, put every func-

tion /= (*S'j . . . *S^i_i Ri *S',+i . . . Sn-i 0) into a form

\x — a J\ \x — a J\ \x -a /x„_j

Now it is to be noticed that in the equations (ii), (iii), (iv), upon which

this result is based, no terms are introduced which are of higher dimension

than the function which it is desired to express : and that the same remark

is applicable to equation (i).

Hence every function (Ri, ... , Rn) can be written in theform (A) in such a

way that the condition of dimensions is satisfied.

40. In order to give an immediate example of the theory we may take

the case of a surface of four sheets, and assume that the places x = a are such

that no rational function exists, infinite only there, whose aggregate order of

infinity is less than p + 1. In that case the specification of the reduced

functions is an easy arithmetical problem. The reduced functions of the first

class are (m,, m.^, m^, 0), where m^ is to be as small as possible without being

smaller than nii or m3 : by the hypothesis we may take

???! + m., + m^ = p + 1.
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Those of the second class require nu as small as possible subject to

Wi + W2 4- nia = p + 1, W2 > ith, m. > m-i

:

those of the third class require m^ greater than mj and vu but otherwise as

small as possible subject to m^ + n^ + ms = J9 + 1. We therefore immediately

obtain the reduced functions given in the 2nd, 3rd and 4th columns of the

following table The dimension of any function of the ith class being denoted

by o-j + 1, the values of ai are given in the fifth column, and the sum

o-j + cr., + 0-3 in the sixth. The reason for the insertion of this value will

appear in the next Article.

p
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and thus obtain on the whole

(J/, M+l, M- 1,0) = fih, + Xh, + A'h, + B',

for suitable values of the constants A', B'.

(6) When p = 3P we obtain

(P + 1, P + 1, P - 1, 0) = \h, + ^ (P, P + 1, P, 0) + 5
= \//, + A [filu + Ch^ + D} + 5.

Ex. 1. Shew for a surface of three sheets that we have the table

P ^n fi-i
! 0-1, 0-2

I

0-1 + 0-2

[40

odd (.41,.|i,o)(e-,^-±?,o)

e-f^|.»)(f.^-^.o)

i?-i p+\
2 ' 2

^ P
2' 2

^.r. 2. Shew, for a surface of n sheets, that if the places x= a be such that it is

impossible to construct a rational function, infinite only there, whose aggregate order of

infinity is less than j9+ l, a set of reduced functions is given by

/*i...^, ^ 1= (/{•,. ..>(-,/{--l,...,>f--l,0),(X-l,X\...>(-,X- -!,...,/(•- 1,0) (!•- I,...,/-- 1, /•,.../(•, 0)

_!= (>(•- 1, ...,>{• -!,/(+ 1, /•, ...k, 0)(X-1, ...,k-\,l;k+ \,k, ...k,0)

{k-l,...,k-l,k, ...k,k+\,0)

wherein /o + l = (« — l)/' — r (r<H— l) and, in the first row, there are r numbers / — 1 in

each symbol, and, in the second row, there are r+ 1 numbers / — 1 in each symbol. In

each case k, ...k denotes a set of numbei-s all equal to k and k — \, ..., k—\ denotes a set of

numbers all equal to I-— 1.

The values of o-j, ..., ar + i
^re each /• — 1, those of a-r + 2y •••> '''n-i ^'''e each k. Hence

<ri+...+(rr^i+ <Tr^2+-'+<rn-i= {>-+ l){k-l) + {n-r-2)k= {n-l)k-r-l^p.

Ex. 3. Shew that the resulting set of reduced functions is effectively independent of

the order in which the sheets are supposed to be arranged at x=a.

41. For the case where rational functions exist, infinite only at the places

x = a, whose aggregate order of infinity is less than p+l, the specification

of their indices is a matter of greater complexity.

But we can at once 2)^ove that the property already exemplified and

expressed by the equation o-j + ... + cr„_i =p, or by the statement that the sum

of the dimensions of the reduced functions is p + n — \,is true in all cases.

For consider a rational function which is infinite to the 7*th order in each

sheet at a; = a and not elsewhere : if 7- be taken great enough, such a function

necessarily exists and is an aggregate of nr —^j + 1 terms, one of these being

an additive constant (Chapter III. § 37). By what has been proved, such a

function can be expressed in the form

(_L,i)+(_i .i) ,„ + ... + (
1 ,i)\x-a J\ \x- a J\. \x- a J

1) h„.„
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where the dimensions of the several terms, namely the numbers

X, Xi + CT] + 1, ... , A-,,i_i + an-i + 1,

are not greater than the dimension, r, of the function.

Conversely*, the most general expression of this form in which Xi.Xa, ...,

X,i_i attain the upper limits prescribed by these conditions, is a function of the

desired kind.

But such general expression contains

(X + l) + (X,+ l)+...+(X„_, + 1),

that is (? + 1) + (r - o-i) + . . . + (r - a^-i),

or nr - (o-j + . . . + (Tn-i) + 1

arbitrary constants.

Since this must be equal to nv — p + 1 the result enunciated is proved.

The result is of considerable interest—when the forms of the functions hy,..h,^_^ are

determined algebraically, we obtain the deficiency of the surface by finding the sum of the

dimensions of /; j. . .h^ _ j . It is clear that a proof of the value of this sum can be obtained by

considerations already adopted to prove Weierstrass's gap theorem. That theorem and
the present result are in fact, here, both deduced from the same fact, namely, that the

number of periods of a normal integral of the second kind is p.

42. Consider now the places « = oo : let the character of the surface be

specified by k equations

there being k branch places. A rational function g which is infinite only

at these places will be called an integral function. If its orders of infinity

at these places be respectively r^, r^,..., r^ and G [ri/(nJi+ 1)] be the least

positive integer greater than or equal to ri/(tVi + 1), and p + 1 denote the

greatest of the k integers thus obtained, then it is clear that p + 1 is the

least positive integer such that x~^p+^^ g is finite at every place x= qc . We
shall call p + 1 the dimension of g.

Of such integral functions there are n — 1 which we consider particularly,

namely, using the notation of the previous paragraph, the functions

{x - a)<^'+i hu ,(x- a)%-i+i hn-i,

which by the definitions of o-j, , cr„_i are all finite at the places x = a,

and are therefore infinite only for a; = oo . Denote (x — a)^+^ hi by gi. If hi

do not vanish at every place x=cc , it is clear that the dimension of gi is

It is clear that this statement could not be made if any of the indices of the function to be
expressed were less than the dimension of the function. For instance in the final equation of

§ 40 (a), unless /x, X, A' be specially chosen, the right hand represents a function with its third

index equal to 31+1.
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cr, + 1. It" however /<, do so vanish, the dimension of g; may conceivably be

less than o-, + l; denote it by p,- + 1, so that p, < o-,. Then a;~"'i+" ^,-, and

therefore also (.v — a)~^''i^^^gi, = {x — ayi~''ihi, is finite at all places a;=x :

hence {x — aYr''i hi is a function which only becomes infinite at the places

x = a. But, in the phraseology of § 39, it is clearly a function of the same

class as A,-, it does not become infinite in the ?ith sheet at x = a, and is of

less dimension than /*,- if cri > pf. That such a function should exist is

contrary to the definition of hi. Hence, in fact, cr; = pi. The reader will

see that the same result is proved independently in the course of the present

paragraph.

Let now F denote any integral function of dimension p + 1. Then
^-(p+i) ^ jg finite at all places x=oo : and therefore so also is (a; — a)~'''+'' F.

This latter function is one of those which are infinite only at places x = a; if

F do not vanish at all places x=a, the dimension o- + 1 of (x — a)~^'''^^' F
will be /3 + 1 : in general we shall have o-^ p.

By § 39 we can write

(x-ay^"^^' F=(-^,l) +fJ— ,l) h,+ + f-J-,l) hn-,,

where a -{ 1 > X, + o-, + 1,

and therefore, a fortiori,

p + 1 > \i + CTj + 1 > Xi + /O; -f 1.

Hence we can also write

F={l,x- a)j, (x - a)P-^ + (1, a; - a)A, (^ - ay-^^-"' g, 4

.

+ {l,x- aX„_i {x - a)''-^-l-^.-l Qn-i,

or say

F={l,x\ + {\,x)^^fJ,+ + (l,^V„_i^n-i, (B)

where /n,- + p, + 1 = p - o-,- + p,•+ 1 = p + 1 - (o-,- - pi) < p + 1,

namely, there is no term on the right whose dimension is greater than that

of i^ (and each oi fi, fiy, , /i,,i_i is a positive integer).

Hence the equation (B) is entirely analogous to the e([uation (A)

obtained previously for the expression of functions which are infinite only

at places x = a. The set (1, ^i, , gn-i) will be called a fundamental set

for the expression of rational integral functions*.

It can be proved precisely as in the previous Article that pi + Pi+
+ Pn-i=p. For this purpose it is only necessary to consider a function

* The idea, derived from arithmetic, of making the integral functions the basis of the theory

of all algebraic functions has been utilised by Dedeliind and Weber, Tlipor. d. alg. Fund. e.

Veriind. Crelle, t. 92. Kronecker, U. die Discrim. alg. Fctnen. Crelle, t. 91. Kronecker, Grundziige

e. arith. Theor. d. algebr. Grossen, Crelle, t. 92 (1882).
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which is infinite at the places x=cc respectively to orders r(Wi + l), ...,

* {Wk + 1). And the equations %p = So- = p, taken with o-^ > pi, suffice to shew

that (Ti = pi. It can also be shewn that from the set gi ... gn-i we can

conversely deduce a fundamental set 1, (^r — 6)~<Pi+^' Qi, ••-, (^' — 6)~*''»-i~^' gn-\

for the expression of functions infinite only at places x = h; these have the

same dimensions as 1, (/i, ..., gn-i*-

43. Having thus established the existence of fundamental systems for

integral rational functions, it is proper to refer to some characteristic pro-

perties of all such systems.

(a) If Gi ... Gn-i be any set of rational integral functions such that

every rational integral function can be expressed in the form

{W, l). + (.r, 1),, G,+ + (X, !),„_, Gn-^ (C),

there can exist no relations of the form

{X, 1)^ + {X, 1)^, G,+ + (X, 1)^^_^ Gn-i = 0.

For if k such relations hold, independent of one another, k of the functions

Gi ... Gn-i can be expressed linearly, with coefficients which are rational

in X, in terms of the other n — l—k. Hence also /Siy, /S.^y^,..., ^n-i-k
7/'"'~'^~'',

jSii^k
y'"'~^, which are integral functions when /3i, ...,^n~k are proper poly-

nomials in X, can be expressed linearly in terms of the n—l—k linearly

independent functions occurring among Gi...Gn-i, with coefficients which

are rational in x. By elimination of these n — \—k functions we therefore

obtain an equation

A + A,y+ ^An-ky"-^ = 0,

whose coefficients A, A-^, ,An-k f^r© rational in x. Such an equation is

inconsistent with the hypothesis that the fundamental equation of the surface

is irreducible.

(6) Consider two places of the Riemann surface at which the inde-

pendent variable, x, has the same value : suppose, first of all, that there

are no branch places for this value of ^. Let \, X^, , \n-i be constants.

Then the linear function

X, + Xi G"! + + X,j_i Gn—\

cannot have the same value at these two places foi^ all values of \,

\: X„_i.

For this would require that each of Gi, , Gn-i has the same value

at these two places. Denote these values by ai, , a,i_i respectively.

We can choose coefficients yuj,
, /jin-i such that the function

/ii(G^i -ai)+ + fMn-i{Gn-i - an-i),

* The dimension of an integral function is employed by Heusel, Crelle, t. 105, 109, 111 ; Acta

Math. t. 18. The account here given is mainly suggested by Hensel's papers. For surfaces

of three sheets see also Baur, Math. Annul, t. 43 and Math. Annul, t. 46.
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which clearly vanishes at each of the two places in question, vanishes also

at the other /) - 2 places arising for the same value of x. Denoting the

value of X by c, it follows, since there are no branch places for x = c, that

the function

[/il(G, - a,) + + fMn-l(CTn-^ " «,.-i)]/(-r - c)

is not infinite at any of the places x = c. It is therefore an integral

rational function.

Now this is impossible. For then the function could be expressed in

the form

(x, l)x + {x, 1)m Gi + + {x, 1\ G,^i

,

and it is contrary to what is proved under (a) that two expressions of

these forms should be equal to one another.

Hence the hypothesis that the function

X, + Xi (xi + + X,i_i Gn-j

can have the same value in each of two places at which x has the same

value, is disproved.

If there be a branch place at x=c, at which two sheets wind, and no

other branch place for this value of x, it can be proved in a similar way,

that a linear function of the form

Xi u-j + + X,i_i (t„_i

cannot vanish to the second order at the branch place, for all values of

Xi, , Xn-i namely, not all of Gj, , Gn-i can vanish to the second

order at the branch place. For then we could similarly find an integral

function expressible in the form

{HaG,+ + /x„_i Gn-i)Kx - c).

More generally, whatever be the order of the branch place considered,

at x= c, and whatever other branch places may be present for x = c, it is

always true that, if all of Gi, , (r„_i vanish at the same place A of

the Riemann surface, tJiey cannot all vanish at another place for which x

has the same value ; and if A he a branch place, they cannot all vanish

at A to the second order.

Ex. 1. Denoting the function

X + Xi6'i + ...+X„_i6'„_i

Ky K, and its values in the n sheets for the same vahie of x by A'(i), A'C-', ..., A'("), we

have shewn that, for a particular value of .r, we can always choose X, X,,..., X„_i, so

that the equation A'('> = A'('-) is not verified. Prove, similarly, that we can always

choose X, Xi,..., X„_i so that an equation of the form

where 7n,,..., wi)t_i, m,^ are given constants whose sum is zero, is not verilied.
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Ex. 2. Let .^= Vl, ...,yfc be k distinct given values of x : then it is possible to

choose coefficients X, Xj,..., fi, /xj,..., finite in number, such that the values of the

function

{X + IJUl-+ vx'+ ...) + {Xi + HiX+ViX'^+ ...)Gi + ... + {\n-i + l^,i-l'^'+ l'n-l-V^+-'-)Gn-li

at the places x=yi, shall be all different, and also the values of the function, at the

places x=y2, shall be all different, and, also, the values of the function, for each of

the places x=y^,..., yk, shall be all different.

(c) If 1, H^, H.2, , Hn-i be another fundamental set of integral

functions, with the same property as 1, Gi, , Gn-\, we shall have

linear equations of the form

1 = 1

Hi = ai + ai^i G^+ 4-ai,n-i G-n-i (D),

where a^, j is an integral polynomial in cc.

Now in fact the determinant
| aij \

is a constant (i=l, 2, ..., n— 1;

j = 1, 2, ..., n — 1). For if /Zi""* denote the value of Hi, for a general value

of x, in the ?"th sheet of the surface, we clearly have the identity

1, 1, ,1

^iW, H,'-\ ,i7i'«)

fc_,w,ir„_,'^ ,zr„_, (n)

1, 0, ,

^n—i> ^?i—i.ii ) ")i— 1, M-l

1, 1,... ,1

,Gr'

G »' G '=> G '")

If we form the square of this equation, the general term of the square of

the left hand determinant, being of the form Z/"j<i'i/,w + + Hi^>'^ ff/"^ , will

be a rational function of x which is infinite only for infinite values of a; ; it

is therefore an integi'al polynomial in x. We shall therefore have a result

which we write in the form

A (1, H,, , ir„_0 = V^ . A (1, G„ G.„ , (?„_,)>

where V is the determinant
| «,;_ j [. A (1, H^, , Hn-\) may be called the

discriminant of 1, ^i , , H^-i-

If /3 be such an integral polynomial in x that /3y, = r), say, is an integral

function, an equation of similar form exists when 1, r], rf, , t;""^ are

written instead of 1, H^, , i/n-i- Since then A (1, rj, rf, ,
>;"~^) does

not vanish for all values of x it follows that A (1, G^, G.,, , Gn-i) does

not vanish for all values of x. (Cf. (a), of this Article.)

But because 1, Hi, H.,, , Hn-i are equally a set in terms of which all

integral functions are similarly expressible, it follows that A (1, ZTj, , Hn-i)

does not vanish for all values of x, and that

A (1, Gi, , Gn_0 = Vr A (1, H„ ,Hn-i),

where Vj is an integral function rationally expressible by x only.
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Hence V- . V,- = 1 : thus each ofV and V, is an absolute constant.

Hence also the discriminants A (1, Gi, , G^„-,) of all sets in temis of

which integral functions are thus integrally expressible, are identical, save

for a constant factor.

Let A denote their common value and Vi)---iVn denote any n integral

functions whatever ; then if A (77, , rj.,, ... , t]„) denote the determinant which is

the square of the determinant whose (s, ?-)th element is rj^^J, we can prove, as

here, that there exists an equation of the form

A (7/1,7;,,..., TJn) = M'-^,

wherein M is an integral polynomial in a;. The function A (771, tj.,,..., 7/,,) is

called the discriminant of the set 7;,, 77.,,..., 7;,,. Since this is divisible by A,

it follows, if, for shortness, we speak of 1, Hi,..., Hn-i, equally with 77,,

77.,,..., rjn, as a set of n integral functions, that A is the higJiest divisor coinmon

to the discriminants of all sets of n integral functions.

(d) The sets (1, G,, , (z„_i), (1, ^1, , Hn-i) are not supposed

subject to the condition that, in the expression of an integral function in

terms of them, no term shall occur of higher dimension than the function to

be expressed. If (1, 5^1, > 9n-i) be a fundamental system for which this

condition is satisfied, the equation which expresses G,- in terms of 1,5^1,

g.,^ , gn-i ^^"111 not contain any of these latter which are of higher

dimension than that of G,. Let the sets Gj, , G„_i, g^, ,gn-i be each

arranged in the ascending order of their dimensions. Then the equations

which express Gj, Go , Gk in terms of g^, , gn-i must contain at least

k of the latter functions ; for if they contained any less number it would be

possible, by eliminating those of the latter functions which occur, to obtain

an equation connecting Gj , , G^ of the form

(x, l). + (^, IK G,+ + (x, 1\ Gfc = 0;

this is contrary to what is proved under (a).

Hence the dimension of gif is not greater than the dimension of G*:

hence the sum of the dimensions of Gi, Go, , G„_i is not less than the

sum of the dimensions of gi, g-,, , gn-i- Hence, the least value which is

possible for the sum of the dimensions of a fundamental set (1, Gj, , G„_i)

is that whicJi is the sut7i of the dimensions for the set (1, gi i7n-i). namehj,

the least value is p + n — \.

We have given in the last Chapter a definition of p founded on

Weierstrass's gap theorem : in the property that the sum of the dimensions

of ^1,..., gTn-i is j;+7i — 1 we have, as already remarked, another definition,

founded on the properties of integral rational functions.

Ex. 1. Prove that if (1, ^,, ..,, gn-\\ (1, -^i, •••, '^n-i) he two fundamental sets both

ha\-ing the property that, in the expression of integral functions in terms of them, no terms
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occur of higher dimension than the function to be expressed, the dimensions of the

individual functions of one set are the same as those of the individual functions of the

other set, taken in proper order.

Ex. 2. Prove, for the surface

that the function

'/= (y^-^y + «]C)/«i

satisfies the equation

,^3 _ (,^2^ (iji)^ _ a,^a^ — ;

and that

A (1, _y, ?;) = b'^c^+ lM^a.Jjc — "ila-^a,^ — ^a-fi^ - 4a2&^

In general 1, y, rj are a fundamental set for integral functions, in this case.

44. Let now (1, g^, g.., , gn-i) be any set of integral functions in

terms of which any integral function can be expressed in the form

(cv, 1V + (*, l)^,gi+ + (^, lU_i gn-i,

and let the sum of the dimensions of ^i, , gn_-^ be ^ + w — 1.

There will exist integral polynomials in x, ^y, ^^ ,/3«-i, such that

Piy'^ is an integral function: expressing this by r/j, ,gn-i iii the form

above and solving for g^, , gn-i we obtain* expressions of which the

most general form is

^ _ H-i, n-i f'~' + + /^i,iy + /^i

where fii^n-\, , fXi^i, fii, Di are integral polynomials in w. Denote this

expression by gi (y, x).

Let the equation of the surface, arranged so as to be an integral

polynomial in a; and y, be written

f(y, '^) = Qo r + Qi f'-' + + Qn-iy + Qn = o,

and let ^i (y> *') denote the polynomial

Qof+Q,r-'+ + Qi-^y + Qi,

so that
'Xo (y, x) is Q^.

Let cf)J, ^/, , ^',i_i be quantities determined by equating powers of y
in the identity

^0 + 4>i <7i (y, x) +
(f),'

. g. (y, a:) + + </>'„_, . g,,_, {y, x)

= Xo 2/""' + 2/""' %i iy\ ^)+ + 2/ %n-2 {y\ x) + %n-i {y', x) :

* Since g^, ..., ^„_j are linearly independent.
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in other words, if the equations expressing \,y,y-, ,
?/'» ^ in terms of

9x (y. ^). ,gn-^ {y,x) be

1 = 1,

ij = a, + «,,,y, + + (?,, „_i ^,,-1,

y" » = 0„_, + «„_,, 1 </, + + an-^, n-i <7n-i.

where the coefficient a,-, ; is an integral polynomial in x divided by yS,-, then

So that if we write

(1, y, f, , r~0 = ^ (1> 5'. !7n-.),

ft being the matrix of the transformation, we have

(0o', 4>i, , </>'n-i) = ft (%'n-i , x'n-2. Xi', Xo),

where ;)j;/
= %,- (y, a;), and ft represents a transformation whose rows are the

columns of ft, its columns being the rows of ft.

But if (Q) denote the substitution

Qn-i, Qn-.. ,Qn Qo

Qn-., Qn-s, >Qo,

Qu Qo, 0,

Qo, 0,

we have

(Xn-i, Xn-2, - %i. Xo) = iQ) (1' y. y''
'
2/""')-

Hence, changing y' to y in
(f)/

and writing therefore </>i for (f)/,
we may write

{<t>o, 0: <^„-,)= n (Q) ft (1, r/„ r;,,
, ^„_,) (E).

Either this, or the original definition, which is equivalent to

<f>o (y, ^) + <f>i {y, -f) gi (y, ^0 + + <^n-i iy', ^) On-i (y, -v)

= f(y''^)-f (y' ^)

y'-y

= xo 2/'""' + y'""*
Xi (2/> ^) + + y' Xn-". (y, ^0 + x^-^ (y. -0

= Xo y"-' + 3/"-' Xi (3/'. ^) + + y X»-2 (/> ^) + X"-i (y'. ''^) (F).

may be used as the definition of the forms <^o> </>i , ^/i-i-

The latter form will now be further changed for the purposes of an

immediate application : let ?/i, ,yn denote the values of 3/ corresponding
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to any general value of x for which the values of y are distinct. Denote

<^i {yr, *). 9i iVr, ^). by 4>i^'\ gi^'\ etc.

Then putting in (F) in turn y = y' = y^ and y' = y^,y = yg, we obtain

<^o<^' + </>.'^' ^.'^' + + 4>t^C =
(|)^^

=f'(y.) say,

Hence if, with arbitrary constant coefficients Cq, Ci, , c„_i, we write

(1)

co(^o'^> +ci<^i<" + +C.-1 <f>,:_,=<f>^'\

we have

Cn Ci Ci»_i <A'

1 5^1'^' ^n-:'^' Z'Oa)

1 ^i<'-' 5'n-i"-'

1 ^i
(n)

^'n-

or
(/,(

/' (2/0

1 ^'x' i/n-i'

1 ^1
(«)

^'n-i
(ji)

'

Cq Ci

1 5^1'^'

= 0,

Cn—

1

1 ^'i' 9n-
in)

.(G);

and we shall find this form very convenient : it clearly takes an inde-

terminate form for some values of a\

If we put all of Ci, , Cn~i, = except c,., and put Cr= 1, and multiply

both sides of this equation by the determinant which occurs on the left hand,

the right hand becomes

where, i( Sij = gi^^^ g/^^ +5'i''*/7/"' + + 5'i*"' g/'^\ ^ij means the minor of Sij

in the determinant

^ 0->9i>92> > 9n-l) = n Si

St s
1, 1 .'I, 2

5jl—

1

^1, W—

1

n—1 ^71—1, 1 -^n—1, 2

Since this is true for every sheet, we therefore have

<^r _ Sr + >^V , 1 9\-\- + ^r, n-i ^7t-i

f~&
~

A {\,g„ , gn-.)

1 aA \_ d^^

^ dsr ^ A as, 1
^'

'^' + -A

1 aA

Aa^r
9n-i' (H),
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and therefore, also

/' (y) 9r = ''^r <^o + -V 1 01 + + -V, n-i <f>,i-l (H').

The equation (H) has the remai-kable property that it determines the

functions ^ty~\ ^''^™ ^^^ functions (/i loith a knowledge of these latter only.

But we can also express g^, ,gn-\ so that they are determined from

-z^—, , -, , , , , ^A^. , with a hiowledqe of these onlu.

f'iy) f iy) f (y) ^ -^

For let these latter be denoted by 7,,, 71, , 7„_i: and, in analogy with

ra

the definition of Sr, i, let o-,., ,• = S 7^'"' 71'"'.

s=l

Then from equation (H)

i 7,W ^i^ = \ SrSi + Sr,iSi,,+ + Sr, »_a S,-, „_,

= or 1 according as i ^ r or i = r.

Therefore, also, by equation (H),

1
a- = S 0/ '** 'v-'*' =-*^r, t — ^ 7r 7» A

«=1 ^
Sr i 7i"^> +^^V,: 2 ^'i'*' 7.-'^' + + Sr,n-^ t g^^\^ r^A

s=\ s=l s=l J

-Is- ^ Or, i,

so that equation (H) may be written

7,- = o"c, + o-/-,
1 5^1 + + ^^ "-1 On-\-

If then 2r, i denote the minor of o-,., , in the determinant of the quantities

o-r,i—which determinant we may call V(7n,7, , , 7n-i)—we have, in

analogy with (H),

gr=;^ (5:, 7„ + Xm 7i+ + 2,., n-i 7»-i) (K)*-

Of course ^ = ^ and S;., i
= r^ s^, i, and equation (K) is the same as (H').

Ex. 1, Verify that if the integral functions g^, ..,, </„^i have the forms

wherein Z>j, ..., /),i-i '^^re integral polynomials in .r, then 0o) •••> <^»-i '''•r*^ given by

* The equations (H) and (K) are given by Hensel. In his papers they arise immediately from

the method whereby the forms of 7,, 70, arc found.
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Ex. 2. Prove from the expressions here obtained that

s=l

and infer that 2 {dvldx)g= 0,

V being any integral of the first kind.

45. We are now in a position to express the Riemann integrals.

Let i^' ^ be a general integral of the third kind, infinite only at the

places a?!, x^. Writing, in the neighbourhood of x^, x — Xi = ti^'+^, dP/dx
will (§§ 14, 16) be infinite like

1 d

(wi + 1) t,'"^ dt,

namely, like

\ogt, + A+A,t, + A^t,^+.

1

Wi + 1

1 A, 2A.

w X-^ t/j Li
w,—l

dP . . 1
thus (x — x^) -y- is finite at the place x^ and is there equal to

dx '- w^ +
1'

dP . 1
Similarly (x — x.2) , is finite at Xo and there equal to —

dx ' ^ W2 + I'

Assume now, first of all, for the sake of simplicity, that at neither x = Xi

nor x = X2 are there any branch places ; let the finite branch places be at

At any one of these where, say, x = a + f+\ dP/dx is infinite like

1 d

(lu + 1) f" dt
[B + B,t + B.i'+ ...I

dP
and therefore (a; — a) -y- is zero to the first order at the place.

Hence, if a = (x — ttj) (x — Uo). .

.

be the integral polynomial which vanishes at all the finite branch places of

the surface, and g be any integral function whatever, the function

dPK = a.g .(x — Xi) (x — x.,) -,—

is a rational function which is finite for all finite values of x and vanishes at

every finite branch place.

Therefore the sum of the values of K in the n sheets, for any value of x,

being a symmetrical function of the values of K belonging to that value of x,

is a rational function of x only, which is finite for finite values of x and is

therefore an integral polynomial in x. Since it vanishes for all the values of

B. 5
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X which make the polynomial a zero, it is divisible by a, and may be written

in the form aJ.

Let the polynomial / be ^VTitten in the form

\i (x — a-.) — X, (x — Xi) + (x —Xi)(x — X2) H,

wherein \ and X^ are constants and H is an integral polynomial in x. This

is uniquely possible. Let H be of degree /m — 1 in a; ; denote it by (x, 1 )**"'.

Then, on the whole,

/ dP\ [ dP\ X, Xo , ,,

Multiply this equation by x — x^^ and consider the case when x = x^, there

being by hypothesis no branch place at x = x^. Thus we obtain the value of

Xi ; namely, it is the value of g at the place x^. This we denote by g{x^, 3/,).

Similarly X. is g{x^, y.,). Further, at an infinite place where x = f"*'""*"",

dx w + 1 dt
'

so that x^dP/dx is finite at all places x = x . Hence if p + 1 be the dimen-

sion of the integral function g, and we write

/ .
.<IP\ ( .

.dP\

xf^^ix-x,) x(>-^{x-x.^ xP-^ '

we can infer, since p cannot be negative, that fi is at most equal to p.

Hence, taking g in turn equal to 1, ^1, ... , gn-\, the dimensions of these

functions being denoted by 0, Tj + 1, ... , t,i_i -I- 1, wc have the equations

(f)+ + (f)=_L__^,
Veto /i \ax In X — a'l x — x^

„, (dP\
, ,

/dP\ Qi(x., Vi) Oiix., y.,) , ,. ,
,

where t\, ... , t'„_, are positive integer's not greater than t, , . . . , t„_, respectively.

Let these equations be solved for (;i— ) • then in accordance with equa-

tions (G) on page 63 we have, after removal of the suffix.
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dP
dx

dP

. (f>o + 4>i 9i (^1, 3/i) + • • • + 0»-i 9n-i (^1, Vi)

where <^i stands for <^i (x, y).

This, by the method of deduction, is the most general form which dP/dx

can have; the coefficients in the polynomials (x, ly'i"^ are in number, a^ most,

Ti + r.,+ ... +T,i_i,

or p ; and no other element of the expression is undetermined. Now the

most general form of dPjdx is known to be

^ dx '" ^ dx \dx J
'

fdP\ dP
wherein N— 1 is any special form of -^ having the necessary character, and

Xi, ... , \p are arbitrary constants. Hence, by comparison of these forms, we

can infer the two results

—

(i) The most general form of integral of the first kind is

j
jrr-^ [(*'. lf'~' </>. (^^ 2/) + ••• + (^> iy'n~r' </)n-i (^> y)l

wherein r'i < tj and the coefficients in (x, iy'~^ are arbitrary

:

(ii) A special and actual form of integi^al of the third kind logarithmically

infinite at the two finite, ordinary, places (x\, y^, {xo, y^), namely like

log [{x — Xi)/(x — x.,)], and elsewhere finite, is

>o (x, y) + </>! (a;, y) gi (x^,y-,)+...+ (})n-^ {^, y) gn-x (^'i , yO

_ </>o {x, y) + <^i (^-, y) gi {^\, 3/2) + • • • + </>«-i i^, y) gn-i ( \̂, y-^'

or

'^ dx f^> _ d r<^o («, y) + <f>i (^, y) gi{^,v)+---+ </>n-i (^, y) gn-i(^, v)

P dx

J ITy

p dx p. .

di X — ^

In the actual way in which we have arranged the algebraic proof of this

result we have only considered values of the current variable x for which the

n sheets of the surface are distinct : the reader may verify that the result

is valid for all values of x, and can be deduced by means of the definitions

of the forms c^^, ..., ^n-\, which have been given, other than the equation

(G).

Ex. Apply the method to obtain the form of the general integral of tlie first kind only.

5—2
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We shall find it convenient sometimes to use a single symbol for the

expression

<t>o (^. y) + </>! (j-, y)gi {^,v) + --' + <f>n-i (a?, y) gn-i (?, ^7)

{^-^)f'{y)

and may denote it by {x, |). Then the result proved is that an elementary

integi-al of the third kind is given by

This integral can be rendered normal, that is, chosen so that its periods at

the p period loops of the first kind are zero, by the addition of a suitable

linear aggregate of the p integrals of the first kind.

Now it can be shewn, as in Chapter II. § 19, that if E^' " denote an elemen-

tary integral of the second kind, the function of {x, y) given by the differ-

ence

wherein D^ denotes a differentiation, is not infinite at (^, ?;). It follows from

the form of P^' *
, here, that this function does not depend upon (aro, y^.

Hence it is nowhere infinite, as a function of {x, y). Therefore, if not inde-

pendent of {x, y), it is an aggregate of integrals of the first kind. Thus we

infer that one form of an elementary integral of the second kind, which is

once algebraically infinite at an ordinary place {^, t/), like —{x— ^)~^, is

given by

* dx d

fJy)d^1 f
>o (^, y) + <f>i (^, y) gi(^,v) + --- + <An-i (^. y) 9n-i (I, vT

X — ^ J

The direct deduction of the integral of the second kind when the infinity

is at a branch place, which is given below, § 47, will furnish another proof of

this result.

46. We proceed to obtain the form of an integi-al of the third kind when
one or both of its infinities (x^, y,), {xo, y.,) are at finite branch places; and

when there may be other branch places for x = x^ or x = x.,.

As before, let a be the integral polynomial vanishing at all the finite

branch places. The function

ga {x — x^){x — x.y) dP/dx

will vanish at all the places x = x^: and though it may vanish at some of

these to more than the first order, it will vanish at (xi, ?/,) only to as high

order as (a; — x^). Hence the sum of the values of this function in the several

sheets for the same value of x is of the form aJ, where J is a polynomial in x

which does not vanish, in general, for x = x\ or a; = x.,.
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Hence as before (§45) we can write

y dx Ji
'" \ dx Jn X — Xi x — x.^

Multiply this equation by x — x^ and consider the limiting form of the

resulting equation as {x, y) approaches to {x^, y^) : let w + 1 be the number of

sheets which wind at this place. Recalling that the limiting value of

(x — x^)dF/dx is l/(w + l), we see that w+1 terms of the left hand, corre-

sponding to the w+1 sheets at the discontinuity of the integral, will take a

form

w^[1 +A,te + 2A,t'e^ + ...][g{x„y,) + Ct + Dt' + ...I

where e is a (w + l)th root of unity. The limit of this when t = is

5'(^i. yi)/(w + 1) ; the corresponding terms of the left will therefore have

9{^i,y\) as limit. The other terms of the left hand will vanish.

Hence \i=g{xi, y^), \-2 = g{x.,, y.,). The determination of the upper limit

for fji and the rest of the deduction proceed exactly as before. Thus,

The expression already given for an integral of the third kind holds ivhether

{xi, 2/i), (a'o, ?/o) he branch places or ordinary places.

If we denote the form of integral of the third kind thus determined by

P*' " , the zero c being assigned arbitrarily, it follows, as in § 45, above, that

an elementary integral of the second kind, which is infinite at a branch

place ^1, is given by

lim-a;,'=a:,
-pX^ c jyx, c

t ^ = lim. f =,0
XI

dx [(x, Xi) — {x, Xj)}
J c

t-'

lim.p^'' .t-'

Now if we write t for tx^ and Xt^ = x^ + V'^^, the coefficient of dx/f'(y) in the

integrand of the form here given for P^'/' is

rr /r /w+1

(f>o + ^i.gi+ ..• + <f)n-i <7n-i
}

wherein (j>o, ..., <f)n-\ are functions of x, y, and g^, ..., ^h-i> i/i'» 0-^' ••• ^^'®

written for g^{x^, y,\ ... , (/„_i {x^, y,), Dg,(x„ y,), Dg.,(x,, y,), ... , respectively,

P denoting a differentiation in regard to t. Hence the ultimate form is

, <^i^i' + ... + (f)n-ig'n-i
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That is, introducing |, t;, instead of .r,, y^, an elementary integral of the

second kind, infinite at a finite branch place (^, t}), is given by

r dx <^i {x, y) g[ (^, >?)+... 4- <^n-i {x, y) g'n-, (f y)

I f'iy) •^•-f
'

'

where g[{^, rj), ... are the differential coefficients in regard to the infini-

tesimal at the place. It has been shewn in {b) § 43 that these differential

coefficients cannot be all zero.

Sufficient indications for forming the integrals when the infinities are at

infinite places *)i' the surface are given in the examples below (1, 2, 3, ,..); in

fact, by a linear transformation of the independent variable of the surface we
are able to treat places at infinity as finite places.

Ex. 1. Shew that an integral of the third kind with infinities at (.r,, i/y), (.r.^, .Va) can

also he written in the form

f dx rXi~^0o(j^, y)-|-2Xi'''-<^r(^, y)9r{^y, 111) _ X .,
-

1 0,, (>•, ;,) + 2X./'- <^, {x, y)gr {x^y y^T]

lf'iy)l .r-.'-, .v-.r, J'

wherein Xj = (.r-a)/(.ri-o), X2= (.v-«)/(-*'2~<^))
''r + i

is the dimension of ^r> a»d a is any

arbitrary finite quantity.

It can in fact be immediately verified that the difference between thi.s form and that

previously given is an integral of the first kind. Or the residt may be obtained by con-

sidering the surftice with an independent variable ^= {x-a)-^ and using the forms of § 39

of this chapter for the fundamental set for functions infinite only at places x= a. The
corresponding forms of the functions <fi are then obtainable by equations (H) § 44.

Ex. 2. Obtain, as in the previous and present Articles, corresponding forms for inte-

grals of the second kind.

E.i: 3. Obtiiin the forms for integrals of the third and second kinds which have an

infinity at a place .>;= (» .

It is only necessary to find the limits of the results in Examples 1 and 2 as (.I'j, i/j)

approaches the prescribed place at infinity. It is clearly convenient to take a= 0.

Ex. 4. For a surface of the form

f= x {x - aj) (.r- «2,. + iX

wherein «,, ..,, 0,^ + 1 arc finite and different from zero and from each other, we may* take

the fundamental set (I, g^) to be (1, y), and so obtain ((^y, 4>i)
=

(j/, 1). Assuming this,

obtain the forms of all the integrals, for infinite and for finite positions of the infinities.

Ex. 5. In the case of Example 4 for which /»= !, the integral of Example 1, when a
is taken 0, is

fdx r.vi y+x^Xj -^iji _ x^ y+xlv^-^i/fi

J .'/ L-^ •^-•^1 ^ x-^-i J

Putting .rj = X and i/^ = mxj^+ nx^ + A-\- Z?,r,
-

1 -|- . .
.
, this takes the form

- J y \_ X {x-X2)x T2(.r-.r2)J

* Chap. V. § 56.
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Prove that this integral is infinite at one place x= oo. like log(-j and is otherwise

infinite only at {.v^, 1/2), namely like - log (a- - .^g), if (.ig, v/2) ^^ i^ot a branch place.

Ex. 6. Prove in Example 5 that the limit of

2
j y [_.r x-Xy X J

as (xy, 1/^ approaches that place (ao , 00 ) where y= inx'^-{-nx-^A +B/x+ ,.., is

-*/— (y+ mx^ + nx).

and that the expansion of this integral in the neighbourhood of this place is

and that it is otherwise finite. It is therefore an integral of the second kind with this

place as its in-finity. The process by which the integral is obtained is an example of the

method followed in the present and the last Articles, for obtaining an elementary integral

of the second kind from an elementary integral of the third kind.

47. We give now a direct deduction of the integral of the second kind

whose infinity is at a finite place (|, ?;) : we suppose that (^y + l) sheets of

the surface wind at this place, and find the integral which is there infinite

like an expression of the form

_2 -4. :4r 4. 4. _'" 4. «'+!

t being the infinitesimal at the place.

Firstly, let F be an integral which is infinite like the single term {x — f)~S

so that in the neighbourhood of the infinity its expansion has a form

a? — ^

Forming as before the sum of the values of the functions g .{x — ^)- dF/dx in

the n sheets of the surface, g being any integral function, we obtain an

expression

i=n
= X + /i (*• - 1) + (*• - ^f . (x, 1 y-K

Putting A- = ^ we infer, since all terms on the left except those belonging to

the place (^, rj) vanish, that

Differentiating, and then putting x = ^, we obtain, from the terms on the left

belonging to the infinity,

^|«,+ l=hm.X|3^^.(.-?)'^+j,.^„[-l +(:«-?)' j^(A + B«+
...)J},

the summation extending to (w + 1) terms.
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Now

vanishes when t is zero : hence

[(^-f)'i{A+Bt + ...)
d

{iv + iyvdt
[r+-(£+2C% + ...)]

fJL = -r-D-^'g{^,V).
\w

Hence we can prove as before that, save for additive terms which are

integrals of the first kind, the integral which is infinite like {x — ^)~' is

given by

r < ..,^\i ^^ «/>o + <t>i9i (^>V)+ '•+ <^n-i «7«-i (^. v)

\w]f{y) x-^

This result is true whether (^, ?;) be a branch place or an ordinary place.

Consider now the integral, say E, which is infinite at (^, t;) like i"'", m
being a positive integer less than iv -\-\. At this place, therefore, {x — ^) dEjdx

111 1
is infinite like :r • t:;; • If, as before, we consider the sum of the n values

w + 1 t"*

of the expression ol , g . {x — ^) dE/dx, wherein g is any integral function and

a is the integi'al polynomial before used, which vanishes at all the finite

branch points of the surface, we shall obtain

= \ + {x-^){x,\Y-\

To find X, let x approach to ^. Then all the terms on the left, except

those for the w+\ sheets which wind at the infinity of E, vanish : for such a

non-vanishing term we have an expansion of the form

t'

9 + iDg+-. D'g +
1
+ A+Bt+ Ct- +

where D denotes, as usual, a differentiation in regard to the infinitesimal of

the surface at (^, r)), and g is written for g (^, 77). The sum of these w + 1

expansions is

?u ^ 1 m
- \—^

-i
D^"9

|_|m-l ^ w + 1 "^
i'» w +

' -o 1 ml ^„. , ^ 1~|

i^-^-^^ + -+.r-fl|7.-i^'""^--iJ

+ (iu+l)Ag + (Ag' + Bg)tt+ ....

Now in fact every summation Si'', being a sum of terms of the form

V + e'f + ... -t-e^^^XT,

wherein e is a primitive (iy + l)th root of unity, will be zero unless r be a

multiple of iv + 1. Thus the terms involving negative powers of t in the
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sum will vanish : those involving positive powers of t will vanish ultimately

when ^ = ; and in fact A is zero, otherwise E would contain the logarithmic

term A log {x — ^) when {x, y) is near to (^, ?;). Hence on the whole

\m-\ ^ ^^ '

Then, proceeding as before, we obtain an expression of the integral in the

form,

\ {^ dx 1

|

?>^-i i f {y)
'
x-^

Thus, denoting the expression

n-\

(f)o
(x, y) -f- 2 4)r {x, y) Or (?, v)

by ^, an integral which is infinite like an expression

A,

is given by

- (W + 1) ^w+i
dx

+

^

J ./" (;y)
' ^ - <

A,D + ^D^ + ^D^-V +
iw— 1

2)w
-I-

^''+^
i)"'+i <l>.

Of course the differentiations at the place {^, rj) must be understood in

the sense in which they arise in the work. If
<f>(^, v) be any function of

^, 7], D(j> (^, 7j) means that we substitute in
(f>

(x, y), for x, ^ + P"'^'^, and for y,

an expression of the form rj + P{t), that we then differentiate this function of

t in regard to t, and afterwards regard t as evanescent.

Ex. 1. Obtain this result by repeated difl'erentiatiou of the integral Pt'|j.

Ex. 2. Obtain by the formula the integral which is infinite like A/t+ B/t'^ in the

neighbourhood of (0, 0), the surface being y^= .i,- (.^^ 1)^. Verify that the integral obtained

actually has the property required.

48. The determinant A (1, ^i, ... , gn-i), of which the general element is

can be written in the form

x-'^i-'^ s,

x-^i~^ s,

X~^l' s, ,

^2?l—2+2p

X'^l'^n-l'" S,

X~\-l' ^n—1 > ^ "^1 1 " •?«—
1 , 1

)

^,--2t
>?i—i,?i— 1

In this form the determinant factor is finite at every place x= <x>: hence

also x-^^i'-"-+^>'^ A{1, g^, ..., gn-i) is finite (including zero) at infinity. Thus
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A(l, gy, ... , <7»_,), which is an integml polynomial in x, is of not higher order

than 2» — 2 + 2p in x.

But when the sheets of the surface for x= x are separate, it is not of less

order ; it is in fiict easy to shew that if for any value of .r, x = a, there he

several branch places, at which respectively u\ + 1, W2+ 1, ... sheets wind, then

A (1, ^1, ..., gn-i) contains the factor (.c— (/)k'i+«'j+...

For, writing, in the neighbourhood of these places respectively,

the determinant (§ 43)

1,
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For this surface fundamental integral functions are given by
ffi
= i/, 5'2=yV-''» 93=!/'^/^-

With these values, prove that A (1, g^, g^, g-i)—
— 256.<;2 (.r— !)•' (.»; — «)'', there being a factor

^- corresponding to the superimposed branch places at .v=0, while the other factors are of

the same orders as the branch places corresponding to them.

Ex. 2. The surface ?/*= ,c-(.i'— 1) is similar to that in the last example, but there is a

branch place at infinity at which the fom- sheets wind, so that, in the notation of this

Article, 5= 3. As in the last example 2)i-{-2jj — 2=-8, and 1, j/, y"/x,i/^/.v are a fundamental

system of integral functions. Prove that, now, A (1, g^, g2, g^ i« equal to — 256.r^(.i;— 1)^,

its order in x being 2ft+ 2p— 2 — s= 8 — 3 = 5.

49. In accordance with the previous Chapter* the most general rational

function having poles at p + \ independent places, is of the form AF+B,
where i^ is a special function of this kind and A, B are arbitrary constants.

The function will therefore become quite definite if we prescribe the

coefficient of the infinite term at one of the p + l poles—the so-called residue

there—and also prescribe a zero of the function.

Limiting ourselves to the case where the p + l poles are finite ordinary

places of the surface, we proceed, now, to shew that the unique function thus

detennined can be completely expressed in terms of the functions introduced

in this chapter. It will then be seen that we are in a position to express

any rational function whatever.

If the general integral of the third kind here obtained with unassigned

zero be denoted by P^ , the current variables being now (z, s), instead of

(w, y), the infinities of the function being at x and a, the function

/.// X ^^x, a _ i>n {Z, S) + </>! {Z, s) g^ (x, y) + + (pn-i {z, s) gn-i («, y)
J ^^^ dz~

"
J^r^

<^o {z,s) + (j>^{z,s) g^+ + (/>,,_! {z, s) g>^_^

z — a

+ </), {Z, S) (Z, iy>-'+ + (f>a-i (Z, S) {Z, iyn-r\

wherein g^, .,., g,i-i are written for the values of the functions g^ (z,s), ...,

g-n-i (z, s) at the place denoted by a, contains p disposeablc coefficients,

namely, those in the polynomials {z, ly^^^, , {z, !)''«-1~\

Let now Ci , , Cp denote p finite, ordinary places of the surface, the

values of ^^ at these places being actually d, ..., Cp, which are so situated that

the determinant

'-^ — Yl f Yl ^1) .) <Pi ^1 ' » T* n—l > Y n—l t^i

,

, Cp ,i_i Ci n-i

Y\ ) V'l ^p } V'l ^V ' > Y n—\ , Y "-1 ^P> ' Y n—i Cp n-1

wherein 0/'"' is the value of 0^ {z, s) at the place c,-, does not vanish. That it

is always possible to choose such p places is clear : for if Wj , , Vp denote a

* Chap. III. § 37.
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set of independent integrals of the first kind, the vanishing of A expresses

the condition that a rational function of the form

f'{s) ^'dz^ '^^^
dz

involving only jj — 1 disposeable ratios \i : Xo : :Xj,, vanishes at each of

the places Cj , , Cp.

Choose the p coefficients in the function /'(.s-) dP/dz, so that this function

vanishes at Cj, , Cpi and denote the function dPjdz, with these coeffi-

cients, by i/r (a;, a ; ^, Ci

,

,Cp), so that A /' {s) y^{x,a\ z,Ci Cp) is equal

to the determinant

[z, x\ - [z, a],
(f>i

{z, s), z(f)^ (z, s), ..., 2^'-'
(f)i

(z, s), ..., z\-r^ <f>n-i {z, s)

[(h. ^] - [cn a], <^,'". c. (/),<", ..., c/.-' 0,"', ..., c/n-r^ </><!L,

[Cp, a;] - [Cp, a],
<f>,^"\

Cp </>/"', . .
. , c/-- (/>/"', . . ., Cp\-r' (j>\!'\

where [z, x] denotes the expression

<f>o
{z, s) + <l>i

(z, s) g,(x,y) + ...+ (f),^^ (z, s) g^

{

x, y)

Z — X

Suppose now that {z, s) is a finite place, not a branch place, such that

none of the minors of the elements of the first row of this determinant

vanish. Consider '^ {x, a\ z, c^, , Cp) as a function of (x, y). It is

clearly a rational function ; and is in fact rationally expressed in terms of all

the quantities involved. It is infinite at each of the places z, Ci, Cj, , Cp—
and in fact as x approaches z, the limit of {z — x)'>^{x, a\ z, Ci, Cp) is

the same as that of

(f)o
(Z, S) + S (f)r

(Z, S)
ffr {^, y)

f'{s)

namely, unity (§ 44, F) : so that at a; = ^, i/r is infinite like — {x — z)~^. And

at Ci, ..., Cp it is similarly seen to be infinite to the first order.

To obtain its behaviour when x is at infinity, we notice that, by the

definition of the dimension of gi (x, y), the expression

Qiix, y) , .[1 z
. z^r^l

Z — X

which is of the form

- a;-<^+>) gi {x, y)

^T.+ l ^r.+2 -|

Z\ + + —^+...
X X- ^

is finite for infinite values of x. If then we add to the first column of the

determinant which expresses the value of A/'(s) -^ {x,a\ z, Ci, ..., Cp), the

following multiples of the succeeding p columns

gi{i^,y) gi (a, h) gjWy) g^ («, h) .'..o _._'_i9 _. x— , —,— ,
—

;

TT-- ,... \Ti — X, ^, . .. , Tj, T^ — ±, ii, . .., T2, ••• ),

x'^ a^^ x^^ a^*
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the determinant will contain only quantities which remain finite for infinite

values of x.

On the whole then, as the reader can now immediately see, we can

summarise the result as follows.

yfr (cc, a; z, c^, , c^) is a rational function of x, having only p + 1 'poles,

each of the first order, namely z, c^, , Cp. It is infinite at z like — {x — z)~^

and it vanishes at x = a.

It is immediately seen that if a function of x of the form

X^^'+ + X ^,

which is so chosen that it is zero at all of c,, ..., Cp except Cj and is unity at

Ci, be denoted by (ot (x), then '\lr(x, a; z, Ci ... Cp) is infinite at ci like .

X Ci

Let now R (x, y) be a rational function of (x, y) with poles at the finite

ordinary places Zi, z.2, ..., z^: let its manner of infinity at Zi be the same as

that of — \i (x — zi)~^. Then the function

-R (^> y)-\i^(^'> «*; ^i> Ci, ...,Cp)-...~\Q'^}r{x, a; ^y, c, ..., Cp)

is a rational function of (x, y) which is only infinite at c^, ..., Cp. Since

however these latter places are independent*, no such function exists—nor

does there exist a rational function infinite only in places falling among

Ci, ..., Cp. Hence the function just formed is a constant; thus

R (x, y) = \y}r{x, a; z,, c„ ...,Cp) +...+ \Qylr(x, a; Zq, c,, ..., Cp) + \.

Conversely an expression such as that on the right hand here will represent

a rational function having z^, ..., Zq for poles, for all values of the coefficients

Xi, ..., \q, \, which satisfy the conditions necessary that this expression be

finite at each of Ci , . .
. , c^ ; these conditions are expressed by the p equations

Xi coi (5i) + X2 o)i (z.,) +. . .+ Xg Wi {Z(^) = 0,

where i = l, 2, ..., j).

When these conditions are independent the function contains therefore

Q-p+l
arbitrary constants—in accordance with the result previously enunciated

(Chapter III. § 37). The excess arising when these conditions are not inde-

pendent is immediately seen to be also expressible in the same way as before.

We thus obtain the Riemann-Roch Theorem for the case under con-

sideration.

The function -^ {x, a; z, c^, ..., Cp) will sometimes be called Weierstrass's

function. The modification in the expression of it which is necessary when
* In the sense employed Chapter III. § 23.
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some of its poles ai-e branch points, will appear in a subsequent utilization

of the function (Chapter VII.*). The modification necessary when some of

these poles are at infinity is to be obtained, conformably with § 39 of the

present chapter by means of the transformation ic = (^— m)~\ whereby the

place a: = 00 becomes a finite place ^= in.

50. The theory contained in this Chapter can be developed in a different

oi*der, on an algebraical basis.

Let the equation of the surface be put into such a form as

y/» + j/«-» a, +. . .+ 2/t^.-i + Un = 0,

wherein o, , . .
.

, «„ are integral polynomials in oc: so that y is an integral

function of x.

By algebraical methods only it can be shewn that a set of integral

functions g^, ..., gn-i exists having the property that every integral function

can be expressed by them in a form

(x, l\ + (x, l)x. g,+...+ {^', 1)a„-i gn-i,

in such a way that no term occui-s in the expression which is of higher

dimension than the function to be expressed ; and that the sum of the

dimensions of //, , . .
. , gn-^ is not less than n—l but is less than that of any

other set (1, /ii, ..., /i„_i), in terms of which all iutegi-al functions can be

expressed in such a form as

[(x, l\ + {x, IX, h^+,..+ (a', l);,„_i h„_,l(x, l),n.

If the sum of the dimensions of g^, ..., g„_^ be then written in the form

p + n — 1, p is called the deficiency of the fundamental algebraic equation.

The expressions of the functions gi, g^, ..., ^„_i being once obtained,

and the forms </>o, ^i, ...,<^„_i thence deduced as in this Chapter, the integrals

of the fii-st kind can be sliewn, as in this Chapter or otherwise"!", to have the

form

dx

If (y)
^^'''

"^^'''~'
*^'

"^ ^^''' '^^''""'"' '^"-'^'

wherein t'i<t,, etc., r, + 1 being the dimension of g,. Thus the number
of terms which enter is at most Tj + + t„_, or p. But it can in fact be

shewn algebraically that every one of these terms is an integi-al of the first

kind, namely, that an integral of the form

dx

/'Ty)'"""*^'
(^ = i'-> '"-')

is everpvhere finite;): provided :^ ?• :|» t, — 1.

* The reader may, with advantage, consult the early parts (e.g. §§ 122, 180) of that chapter at

the present stage.

+ Hensel, Crelle, 109.

t For this we may use the definition (G) or the definition (H) (§ 44). The reader may
refer to Hensel, Crelle, 105, p. 336.

/
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Then the forms of the integrals of the second and third kind will follow

as in this Chapter: and an algebraic theory of the expression of rational

functions of given poles can be built up on the lines indicated in the

previous article (§ 49) of this Chapter. In this respect Chapter VII. may be

regarded as a continuation of the present Chapter.

A method for realising the expressions of g^, ..., g^-i for a given form of

fundamental equation is explained in Chapter V. (§ 73).

For Kronecker's determination of a fundamental set of integral functions,

for which however the sum of the dimensions is not necessarily so small as

p + n — 1, the reader may refer to the account given in Harkness and

Morley, Theory of Functions, p. 262. It is one of the points of interest of the

system here adopted that the method of obtaining them furnishes an algebraic

determination of the deficiency of the surface.



CHAPTER V.

On certain forms of the Fundamental Equation of the Riemann
Surface.

.')1. We have already noticed that the Riemann surface can be expressed

in many different ways, according to the rational functions used as variables.

In the present chapter we deal with three cases : the first, the hyperelliptic

case (§§ 51—59), is a special case, and is characterised by the existence of a

rational function of the second order ; the second, which we shall often

describe as that of Weierstrass's canonical surface (§§ 60—68), is a general

case obtained by choosing, as independent variables, two rational functions

whose poles are at one place of the surface : the third case referred to

(§§ 69—71) is also a general case, which may be regarded as a generalization

of the second case. It will be seen that both the second and third cases

involve ideas which are in close connexion with those of the previous chapter.

The chapter concludes with an account of a method for obtaining the funda-

mental integral functions for any fundamental algebraic equation whatever

(% 73-79).

It may be .stated for the guidance of the reader that the results obtained for the

second and third ca.ses (§§ GO—71) are not a necessary preliminary to the theory of the

remainder of the book ; but they will be found to furnish useful examples of the actual

application of the theory.

52. We have seen that when p is greater than zero, no rational function

of the first order exists. We consider now the consequences of the hypothesis

of the existence of a rational function of the second order. Let ^ denote

.such a function ; let c be any constant and a, /3 denote the two places where

^=c, so that (^— c)"^ is a rational function of the second order with poles

at a, /9. The places a, yS cannot coincide for all values of c, because the

rational function d^jdx has only a finite number of zeros. We may therefore

regard a, ^ as distinct places, in general. The most general rational function

which has simple poles at a, yS cannot contain more than two linearly entering

arbitrary constants. For if such a function be \ + \ifi + X.2/2+ ..., \ \, ...

being arbitrary constants, each of the functions /i, /o, ... must be of the

second order at most and therefore actually of the second order : by choosing

the constants so that the sum of the residues at a is zero, we can therefore



53] THE HYPERELLIPTIC CASE. 81

obtain a function infinite only at /3, which is impossible*. Thus the most

general rational function having simple poles at a, /3 is of the form

A (^ — c)~^ + B. Therefore, from the Riemann-Roch Theorem (Chapter III.,

§ 37), Q- q=p— {t ->rl), putting Q = % q = \, we obtain ^j
— (t + 1) = 1;

namely, the number of linearly independent linear aggregates

n {x) = Xj Hi (a;) + ... +\p Clp {x),

which vanish in the two places a, /S is jj -1. Since a may be taken arbitrarily

and c determined from it, and j;; — 1 is the number of these linear aggregates

which vanish in an arbitrary place, we have therefore the result

—

When there

exists a function of the second order, every jilace a of the surface determines

another place /3 : and the determination may he expressed by the statement

that every linearly independent linear aggregate Cl {x) which vanishes in

one of these places vanishes necessarily in the other.

53. Conversely when there are two places a, /3 in which p — 1 linearly

independent H {x) aggregates vanish, there exists a rational function having

these two places for simple poles. To see this we may employ the formula

of § 37, putting Q = 2, T + l=p — 1, and obtaining q=l. Or we may
repeat the argument upon which that result is founded, thus—Not every

one of Hi (.r), ... , H^ {x) can vanish at a. ; let fij (a) be other than zero. Since

p — \ linearly independent fl (x) aggregates vanish in a, and, by hypothesis,

p — \ linearly independent H {x) aggregates vanish in both a and 13, it

follows that every n{x) aggregate which vanishes in a vanishes also in yS.

Hence each of the p — \ aggregates

Ha (a) Hi {x) - Hi (a) H^ {x), , fl^ (a) n^ (a;) - Hj (a) n^ {x),

vanishes in /3, namely, we have the p — 1 equations

n, (a) n, {^) - fl, (a) ft, (^) = 0, (i = 2, 3, . .
. , p).

Therefore the function

n,(^)r:-a(a)r;

has each of its periods zero. Thus it is a rational function whose poles are at

a and /3 : and flj (/3) cannot be zero since otherwise the function would be of

the first order.

Hence when there are two places at which p — \ linearly independent

Vl{x) aggregates vanish, there is an infinite number of pairs of places having

the same character. For any pair of places the relation is reciprocal, namely,

if the place a determine the place /3, a is the place which is similarly

determined by /3: in other words, the surface has a reciprocal {1, 1) corre-

spondence with itself. It can be shewn by such reasoning as is employed in

* By the equation Q-q=p- (t + 1), if q were 2, 7 + 1 would be p, or all linear aggregates 0{x)

would vanish in the same places, which is impossible (Chap. II. § 21).

B. 6
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Chap. I. (p. 5), that if {Xi, y^), (x«, y^) be the values of the fundamental

variables of the surface at such a pair of places, each of Xi, y^ is a rational

function of a-, and y^, and that conversely x.^, y., are the same rational

functions of a-j and y^.

54. We proceed to obtain other consequences of the existence of a rational

function, ^, of the second order. If the poles of ^ do not fall at finite distinct

ordinary places of the surface, choose a function of the form (^ — c)~\ in

accordance with the explanation given, for which the poles are so situated.

Denote this function by z. Then* the function dzjdx has 2.2+2p— 2=2p+2
zeros at each of which z is finite. Denote their positions hy x^, x^, ..., x.^^^.,.

If these are not all finite places we may, if w^e wish, suppose that, instead of

X, such a linear function of x is taken that each of a-,,... , x^j^.. becomes

a finite place. They are distinct places. For if the value of z at Xi be Cf,

z — d is there zero to the second order : that another place Xj should fall at

Xi would mean that z — d is there zero to higher than the second order,

which is impossible because z is only of the second order. By the expla-

nations previously given it follows that a linear aggregate D, (x), which

vanishes at any one of these places ^i, ... , a^ap+o, vanishes to the second order

there. Hence there is no linear aggregate fl (x) vanishing at p or any

gi-eater number of these places, for H (x) has only 2p — 2 zeros. The general

rational function which has infinities of the first order at the places a;, ,..., a;^^^

will therefore -f contain a number of ^ + 1 of constants given hy p +7' — q = p,

namely, will contain r + 1 constants. Such a function will therefore not

exist when r = 0. In order to prove that a function actually infinite in the

prescribed way does exist for all values of r greater than zero, it is sufficient,

in accordance with §§ 23—27 (Chap. III.), to shew that there exists no

rational function having x^, x.,, ... , Xi for poles of the first order for any

value of i less than p + l. Without stopping to prove this fact, which will

appear a posteriori, we shall suppose r chosen so that a function of the

prescribed character actually exists. For this it is certainly sufficient that r

be as great as pi. Denote the function by h, so that h has the form

h = X + \iSi+ ... +\r'^r,

\, \j , . .
. , \^ being arbitrary constants.

Let h, h' denote the values of h at the two places {x, y), {x, y'), where

z has the same value. Then to each value of z corresponds one and only one

value of h + h', or h + h' may be regarded as an uniform function of z : the

infinities of h + Ji are clearly of finite order, so that h + h' is a rational

function of z. Consider now the function (2 - c,)
(2 - Co) ... (2 - Cp^r) {h + li).

* Chap. I. § fi.

+ Chap. III. § 37.

t Chap. III. § 27. For the need of the considerations here introduced compare § 37 of

Chap. III.
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Since h and Jt are only infinite at places of the original surface at which

z is equal to one or other of Ci, ..., Cp+,., this function is only infinite for

infinite values of z. As it is a rational function of z, it must therefore be a

polynomial in z of order not greater than p -\- r. Hence we may write

h + h' = {Z, l)p+r/(z -Ci) ... (Z- Cp+r).

But here the left hand is only infinite to the first order, at most, at any

one of Ci, ..., Cp+r—and the denominator of the right hand is zero to the

second order at such a place. Hence the numerator of the right hand must
be zero at each of these places, and must therefore be divisible by the

denominator. Thus h + Ii is an absolute constant, = 2(7 say. From the

equations

h =A,4-Xi2i +... +\.'%r,

h' =k-\- XiS'i + . . . + Xr't'r,

we infer then that Si + S'i is also a constant, = 2(7^ say : for h was chosen to

be the most general function of its assigned character and the coefficients

\, ..., \r are arbitrary. Thence we obtain

= A. -|- AiCj -f- . . , -}- KfLif.

We can therefore put

s = h-C = -s' = -{h'-G) = \{%-C,)+...+ \, {tr - Gr),

so that s will be a function of the same general character as h, such however

that s + s' = : in its expression the constants Xj , . .
.

, X^ are arbitrary, while

the constants G^, ..., Gy depend on the choice made for the functions

2(1, ... , Z^.

55. Consider now the two places a, a' at which z is infinite. Choose the

ratios Xj : Xo : ... : X,. so that s is zero to the {r — l)th order at a. This can

always be done, and will define s precisely save for a constant multiplier,

unless it is the case that when s is made to vanish to the (r — l)th order

at a, it vanishes, of itself, to a higher order. In order to provide for this

possibility, let us assume that s vanishes to the (r — 1 + ^')th order at a.

Since s' = — s, s will also vanish to the (r — 1 + ^•)th order at a. There will

then be other p + r — 2 (r — 1 + k), or p — 7^ + 2 — k, zeros of s. From the

manner of formation this number is certainly not negative. Consider now
the function

f={z-Ci)...(z-Cp+r)s'-

At the places where z is infinite / is infinite of order p + 7'—2{r — l+k),
or p — r + 2 — 2k times. At the places, Xi, ..., Xp+r where s is infinite, it is

finite; each of the factors z — Ci, ..., z — Cp+r is zero to the second order at

the place where it vanishes. Since s^= — ss', f is a symmetrical function of

the values which s takes at the places where z has any prescribed value.

Hence, by such reasoning as is previously employed, it follows that the func-

G—

2
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tiun / is a rational integral polynomial in z of order jj — ;• + 2 — 2^. Denote

this polynomial by H. By consideration of the zeros of/ it follows that the

2 (;) — r 4- 2 — 2A) zeros of the polynomial H are the zeros of s^ which do not

fall at a or a'. But since the sum of the values of s at the two places where

z has any prescribed value is zero, it follows that s is zero at each of the

places Xp^r^-\y •••> ^'2p+2- Foi' each of these is formed by a coalescence of two

places where z has the same value, and at each of them s is not infinite.

Hence the polynomial H must be divisible by (z — Cp+,.+i) ... (2 — Cap+a).

Thus, as H is a, polynomial of order p — r + 2 — 2k in z, p — r + 2 — 2k nmst

be at least equal to 2^> + 2 — {p + ?•) or to ;; — ?' + 2. Hence k is zero, and

the value of H is determinate save for a constant multiplier. Supposing

this multiplier absorbed in s we may therefore write

{z-Ci)...{z- Cp+r) s- = {z- Cp+,.+i) ...{z- Cg,+..) (A)

;

and s is determined uniquely by the conditions, (1) of being once infinite at

a\, ..., a;p^,., (2) of being (r— 1) times zero at each of the places a, a' where z

is infinite. Denote s, now, by Sp+r, and denote the function h from which w^e

started, which was defined by the condition of being once infinite at each of

a-,, ..., Xp^r> by hp^,., and consider the function {z - Cp+;-)5^+,-. This function

is once infinite at each of a\, ..., a;^,+,_i, it is zero to the first order at ap+,-,

and it is ?•— 1 — 1, = r - 2 times zero at each of the places a, a! where z is

infinite. Hence the function

{z - Cp+,) Sp+r {A+A,z+ ...+Ar-2 z''-) + B,

wherein B, A, A^, .., A,._.^ are arbitrary constants, has the property of being

once infinite at each of x^, ..., a-^+,._i, and not elsewhere. It is then exactly

such a function as would be denoted, in the notation suggested, by hp+,._i,

and it contains the appropriate number of arbitrary constants—and we can

from it obtain a function Sp+r-i, having the property of being once infinite at

each of Xi, ..,, Xp^,—i and vanishing (r — 2) times at each of the places a, a'

where z is infinite.

Kr. 1. Determine «p+,._i in accordance with this .suggestion.

Ex. 2. Prove that h„ + ^ is of tlie form s,, + ^ ( . 1 + .1 ji; + . . . + J ^ _ j^'" -^) + B.

Ex: 3. Prove that h, ^ , ^ ^ is of the form
«n^r{A+Ai2+ +Ar^t-i^'-*'-') ^ jj

Ex. 4. Shew that the square root /(^-^>'^'-^i)-(^-<^2p^2)
^._^„ ^^ interpreted as an

one-valued function on the original surface.

56. The functions, z, Sp+r are defined as rational functions of the ./;, y
of the original surface. Conversely x, y are rational functions of z, Sp+r-

For* we have found a rational irreducible equation (A) connecting z and

* See Chap. I. § 4.



56] FUNDAMENTAL INTEGRAL FUNCTIONS. 85

Spj^r wherein the highest power of Sp^r is the same as the order of z. Hence

this equation {A) gives rise to a netv surface, of two sheets, iviih branch places

at z=Ci,..., Cop+ai whereon the original surface is rationally and reversihly

represented.

It is therefore of interest to obtain the forms of the fundamental integral

functions and the forms of the various Riemann integrals for this new surface.

It is clear that the function

{Z-C) ...{Z- Cp+r) Sp+r (z, l)fc-i

,

where A; is a positive integer, and (z, l);t-i denotes any polynomial of order

k —1, is infinite only at the places a, a' where z is infinite, and in fact

to order p + r — (r — 1) + k — 1, = 2) + k : and that, therefore, by suitable choice

of the coefficients in another polynomial (z, l)p+k, we can find a rational

function

(Z-Ci) ...{Z- Cp+r) Sp+r {z, l)jt_i + {z, l)p+h,

which is not infinite at a', and is infinite at a to any order, p -\- k, greater

than p. Now, of rational functions which are infinite only at a, there are p
orders for which the function does not exist*. Hence these must be the

orders 1, 2, ...,p.

Hence, of functions infinite only in one sheet at ^ = oo , on the surface

\Z — Ci) ...yZ ~ Cpj^y) S p+r = {Z — Cp-^,.+i) ... {Z — C2p+2)>

that of lowest order is a function of the form

T] = {Z — Ci) ... {Z — Cp+r) Sp+r + \Z, i-)p+i

,

which becomes infinite to the (p + l)th order. Hence by Chapter IV. § 39,

every rational function which becomes infinite only at the places z = <x> , can

be expressed in the form

(Z, l)A + (2r, 1)^7J,

and if the dimension of the function, namely, the number which is the order

of its higher infinity at these places, be p + 1, X and
fj,

are such that

p + l>\, p + 1% fJL+p+l.

Therefore also, if a = (z — Ci) ...{z -Cp+r)Sp+r = v — {z> l)i>+i. ill which case

equation (A) may be replaced by the equation

0-2 = (2 - Ci) (z - C.) ...(Z- C.2P+2),

we have the result that all such functions can be also expressed in the form

{Z, I)y + (Z, 1^0-,

with

p + l>\', p + l^fx'+p + l.

* Chap. III. § 28,
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By means of this result, hitherto assumed, the forms for the various

integrals given Chapter II., § 17, Chapter IV., § 46, are immediately

obtainable by the methods of Chapter IV.

57. Or we can obtain the forms of the integials of the first kind thus—
Let V be such an integral. Consider the rational function

*p+r {2 — Ci) . . . {2 — Cp+r) j~ •

It can only be infinite (1) where 2 is infinite (2) where dz = 0, that is at

the bi-aneh places of the {Sp+r, 2) surface. It is immediately seen that the

latter possibility does not arise. Where z is infinite the function is infinite

to the order j9 + 1 — 2, or p— 1. Hence it is an integral polynomial in 2 of

order p — 1. Namely, the general integral of the first kind* is

(2, l)p-id2

I \2 — Cy) . . . {2 — Cp+r) Sp+r

58. E.V. 1. A rational function ^p-i, infinite only at the places where 2= 0^, ..., Cp_)t,

contains p-l-j) + T+ l + l = r+ 2-l- arbitrary constants, where t + 1 is the nunil^er of

coefficients in a general polynomial {2, l)p_i which remain arbitrary after the prescription

that (z, l);,_i shall vanish at Cj, ..., c,,_t. Prove this: and infer that kj,, Ap_i, ...do not

exist.

Ex. 2. It can be shewn as in § 57 that at any ordinary place of the surface

0-2 =.(2 -Ci)... (2-^2,. + 2))

rational fimctions exist, infinite only there, of orders j9+ 1, jo + 2, ... : the gaps indicated by
"Weierstnuss's theorem (Chapter I IT. § 28) come therefoi-e at the orders I, 2, ...,p. At a

branch place, say At z= c, the gaps occur for the orders 1, 3, 5, ..., (2/)- 1). For, all other

jxxssible orders, which a rational function, infinite only there, can have, are expressible in

one of the forms 2{p-l-), 2jD+ 2r+l, 2p + 2r, where I- is a positive integer less than p, or

zero, and r is a positive integer: and we can immediately put down rational functions

infinite to these orders at the branch place z= c and nowhere else infinite. Prove in fact

that the following functions have the respective characters

(^. ^)p-t (2, I)r a-+ {Z-C){z, l)p^r {z, l)p^r

(2-C)P-»' (2_c)P + '' + l > (2_c)p + r»

wherein (z, l)p_i, {z, 1),., (z, l)p + r are polynomials of the orders indicated by their suflfixes

with arbitrary coefficients.

Shew further that the most general Q{x) aggregate which vanishes 2p - 21- times at the

branch place contains k arbitrary coefficients: and infer that the expressions given

represent the most general functions of the prescribed chariicter (see Chapter III. § 37).

Ex. 3. Prove for the surface

A.r^+Bxy + C/+ Px^+ Qxhf+ Rxy'^+Sf+ a^v^ + a^x^y + a^r^/ + a^^y 4. „^yi= q

that the function

* Cf. the forms quoted from Weierstrass. Forsyth, Theory of Functions, p. 456.
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wherein X and n are arbitrary constants, is of the second order. And that there are six

values of z for which the pairs of places at which z takes the same value, coincide, these

places of coincidence being zeros of the function

2 (J .i'2+ Bx^+Cf) + Px^+ Qxhj+ Rxf+ Sy\

Prove further that a rational function which is infinite at these six places is given by

2{Ax''-+ Bxy+ Cy"^) + P'x"^+ Q'xhj+ R'xtf+ S'y^

2 {Ax'+ Bxy + Cy^)^-Fx^+ Qx'^y-\-Rxy^+ Syi

for arbitrary values of the constants P\ Q', R', S'.

This function is, therefore, such a function as has been here called /ip^^ : and since there

are six places at which dz is zero, p is equal to 2 and ;• equal to 4.

Prove that the sum of the values of A at the two places other than (0, 0) at which z has

the same value is constant and equal to 2.

We may then proceed as in the text and obtain the transformed surface in the simple

hyperelliptic form. But a simpler process in practice is to form the equation connecting

z and h. Writing ^-^A- 1 and Z=x/y, prove that

F {(PZ3+ QZ^+RZ+ Sy - 4 (JZ2 + BZ+C) (a^Z^+ a^Z^+ a.;^Z^+ a^Z-y a^]

= {{F -P)Z^+ {Q'-Q)Z^+ {R'-R)Z+ {S' - ,S')}2.

Hence, if the coefficient of k'^ on the left be written {Z, 1 )q , and we write

r= [(P' - P) Z3+ {Q'-Q)Z^+ {R - R) Z+ (S' - S)]lk

= [2 {Ax^-+ Bxy + CY) + Px^+ i^x'-y +Rxy+ Sy^-]ly\

we have

Y'= {Z,\\,

which is the equation of the transformed surface. And, as remarked in the text, the

transformation is reversible ; verify in fact that x\ y are given by

x=2Z{AZ''+ BZ+C)l[Y-{PZ-^ + qZ-^+ RZ+S)l

y= 2{AZ-' + BZ+C)/[r-{PZ^+QZ^+ RZ+S)].

Hence any theorem referred to one form of equation can be immediately transformed so

as to refer to the other form.

59. The equation

by which, as we have shewn, any hyperelliptic surface can be represented,

contains 2p 4- 2 constants, namely Cj, c,, . .
.

, 02^+2- If we write z = {ax 4- h)/(a; + c)

we introduce three new disposable constants ; by suitable choice of these

the equation of the surface can be reduced to a form in which there are only

2p — 1 parametric constants. For instance if we put

(z - Ci) (C3 - C2)/(Z - C2) (Cs - Ci) = x/(x - 1)

and then, further,

s= A(T (z - C3)-P-\

where the constant A is given by

A = {c,- c,y (cg - c,y/(c, - c.;)P+^ (c, - c,y {c, - c,)^ ...(c,- C2^+2)^
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the equation becomes

s^ = x{a;-l){a;- a^) {x - aj) ... (a: - a^^+j),

wherein

and the right-hand side of the ecjuation is now a polynomial of order 2/) + 1

only. Of its branch places three are now at x=Q, x=\, x = x , and the

values of x for the others are the parametric constants upon which the

equation depends. It is quite clear that the transformation used gives s, x

as rational function of <r, z. Thus

The hyperelliptic surface depends on 2p—\ moduli only. Among the

positions of the 3/9 — 3 branch places upon which a general surface depends

(Chapter I. § 7), there are, in this case, Sp — 3 — {2p — l)=p — 2 relations.

Thus a surface for which p = 2 is hyperelliptic in all cases. There are in

fact (p — l)p (p + 1) = G places* for which we can construct a rational

function of order 2 infinite only at the place.

A surface for which /j = 1 is also hyperelliptic—but it is more than this

(Chapter I. § 8), being susceptible of a revereible transformation into itself in

which an arhitrary parameter enters.

Ex. 1. On the surface of six .sheets associated with the equation

^^=x{x-a){x-hY

there are four branch places, one at (0, 0) where six sheets wind, and at {a, 0) where six

sheets wind, two at {b, 0) at each of which three sheets wind. These count t in all as

?p= 6-l+6-l + 2(3-l) = 14.

Hence, by the formula

putting n = 6, we obtain p= 2.

Thus there exists a rational function ^ of the second order, and the surface can be

reversibly transformed into the form j?"= (|, 1),,. In fact the function

is infinite to the first order at each of the branch places (6, 0), (a, 0) and is not elsewhere

infinite.

To obtain the values of ^ at the branch places of the new surface, we may expre.ss either

X or y \Q terms of |. Since there are two places at which f takes any value, each of x and

y will be determined from ^ by a quadratic equation—which may re<luce to a simple

equation in particular cases. When | has a value such that the corresponding two places

coincide, each of these quadratic equations will have a repeated root.

Now we have

{x-hf ^ /l^
^ x{x-a) {b+y$){b-a+y$y

* Chap. III. § 31. t Forsyth, Theory of Fitnctionx, p. 349,
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Hence

3/'(^«-l)-yr'(«-26)-6(«-^')^*-0.

The condition then is

P(rt - 26)2+ 46 («- 6)^* (^«-l) = 0, or |«[«2(^G_i) + (a-2&)2]= 0.

The factor
«2(^G _!) + («_ 26)2,

is equal to

[rt2 {{.V - 6)2 - x {X- a)] + (a - 26)2 .^. ^^ - a)]/.f (.r - o),

which is immediately seen to be the same as

\x {a - 26) + a6]/.r {x - a)

or

{[x (a - 26) + a6] [a- - Ufh/'^.

Thus this factor gives rise to the six places at which x= - ahl{a - 26). And if we put

Tl^[x{a- 26) + a6] [.r- hfjf,

we obtain

^2= a2(^-l) + (a-26)2,

which is then the equation associated with the transformed surfixce.

Then, from the equation

;,^
- 3= [x {a - 26) + ah\l[x - 6],

we obtain
.r=[6;, + a6|3]/[^-|3(a-26)],

y= [26(a-6)f]/[^-^3(«_26)],

which give the reverse transformation.

Ex. 2. Prove for the surface

y^=X {x - a) {x - 6)2 (x- cf

that jo= 2 and that the function

^={x-h){x-c)ly

is of the second order. Prove fiu-ther that

[«|3-h-cf+ 4bc (^3- 1 )= {[a - 6 - c) x^ + 2bcx - abc]/x {x- a)}2

Hence shew that the surface can be transformed to

^2= [a^3_^,_c]2+ 46c(^3-l)

and that

X

=

[a2^3+ ar, +2bc-ab- ac]/[ff|3+ r) + b +c-2al
7/= 2^^[bc+ a2-ab- ac] [a^$^ + ar) + 2bc-ab- ac] /[a$^+ r] +b+c- 2af.

Ex. 3. In the following five cases shew that p= 2, that | is a function of the second

order, that in each case i;2 is either a quintic or a sextic polynomial in ^, and obtain each

of X and y as rational functions of ^ and jj ;

(a) /o= A- {.v - ay {x - by', $= {x- a) {x- b)ly\ r, = >s/a.{x- af {x- bf

(/8) y^=x{x-ay{x-by, ^= {x-a){x-b)ly^, r) = 'Ja .{x-af{x-byiy^

(y) /= X (x - a) {X- by, ^= (x - b)/y, rj = [x {a - 26) + ab] [x- bf/y^

(S) /= .r2 {x- ay{x- by(x - c)*, $= .v{x - a) {x - 6) (.r - c)/y^, r, = ex {x - ay {x -by {x - c)!y^

(e) 2/'= -^ (^ - « )' (•*'- ^>f (^- - c)^ ^= (.^- a) {x - b) {x - cf/y^ r, = c {x - a) {x - 6) (.r - c}/xy.
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Ex. 4. Shew that the surface

y''= (.r-a,)*'...(x-a,)*'-

can always be transformed to such form that li,, ..., n^ are positive integers whose sum is

di\'isible by n : and in that form determine the deficiency of the surface. Shew also that,

in that form, the only cases in which the deficiency is 2 are those given in Eis. 1, 2, 3.

Prove that the cases in which />= 1 are*

2^=x{x-af{x-bf, y^=x{x-a){x—b),

y*=x{x-a){x-bf, i/^=x {x - a) {x - b) {x - c).

The results here given have been derived, with alterations, from the dissertation,

E. Xetto, Be Traiuformatiajie AeqiuUionis y''= R{x) (Berlin, 1870, G. Schade).

The equation

y^= {x-a^f\..{x-ary^

is considered by Abel, (Euvres Complkes (Christiania, 1881), vol. I., pp. 188, etc.

It is to be noticed that in A-irtue of Chapter lY. we are now in a pasition, immediately

to put down the fundamentiU integrals for the surfaces considered in Examples 1, 2, 3.

60. Passing from the h}-perelliptic case we resume now the considera-

tion of the circumstances considered in Chapter III. ^ 28, 31—36.

Consider any place, c, of a Riemann surface : and consider rational

functions which are infinite only at this place : all such functions will be

denoted by spubols of the form g^, the suffix N denoting the order of infinity

of the fiinction at the place.

Let ga be the function of the lowest existing order. The suffixes of all

other existing functions g^r can be written in the form N = fia + i, where

i < a. Since there are only p orders for which functions of the prescribed

character do not exist, all the values i = 0, 1 , . .
. ,
(a — 1) will arise. Let /A,-a + 1

be the suffix of the function of lowest order whose order is congruent to i for

modulus a. We obtain thus a functions

ffa> giiia+i) 5'M»a-*-2j •••) ^'m,, _ ^a+a—i

•

Then, if 5r,„a+f be any other function that occurs, m cannot be less than /xf,

and a constant \ can be chosen so that gma+i— ^5'"* '^
g^^a+i, which is clearly

a rational function infinite only at c, is not infinite to the order /i,a + i.

Thus we have an equation of the form

gina-^i — ^g„ fffija+i + ffiui+ji

wherein fui +j is less than ma + i. Proceeding then similarly with g^+j, we

clearly reach an equation of the form

gma+i = ^ + Bg^,^a+\ + ^^9t^a+'i + • • • + -^/7m„ _ ^a+a-i (0

wherein the coefficients A, B, ..., K, whose number is a, are rational integral

polynomials in ga-

* Cf. Forsyth, p. 486. Briot and Bouquet, TMorie des Fonct. Ellipt. (Paris, 1875), p. 390.
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In particular, if (/,. be any rational function whatever of the g^ functions,

we have equations

g,? =A^ + Bo_g^,a+i + 4- K^u _ ,«+a-i (ii).

61. If these equations, regarded as equations for obtaining g^^a+i>"',

9i^a- «+«-! ^^ terms of g^^ and g,., be linearly independent, we can obtain, by

solving, such results as

g^nH = Qm {gr - ^i) + Qifl {g>? - ^0 + • • • + Qi,a-i igl'"-
- A^-,),

wherein Qi^^, ..., Qi^a-\ are rational functions of ga, which are not necessarily

of integral form.

If however the equations be not linearly independent, there exist equations

of the form

P,((7,-^0 + P.(^,.^-A)+...+P„_,((7r'-^a-0 = O

or say

Pa-.gl~' + Pa-.gl~'+:-+P.gr^-P = o (iii),

wherein Pj, Pj, ..., Pa-\, P are integral rational polynomials in ga- Denote

the orders of these in ga by Aj, X^, ••, \i-i, ^ respectively; here P denotes

the expression

P,A, + P,A,+ ...+Pa-,Aa-^.

Then P^g is of order aX^ + rk at the place c of the surface. In order

that such an equation as (iii) may exist, the terms of highest infinity at

the place c must destroy one another : hence there must be such an

equation as

a\]c + rk= a\jc' + rk',

and therefore

r/a = (\t- 'Xk)/{k - k').

Now k and k' are both less than a : this equation requires therefore that

r and a have a common divisor.

62. Take now r prime to a ; then it follows that the equations (ii) must

be linearly independent. And in that case each of g^^a+i, ", g^- _ a+a-\ can

be expressed rationally in terms of g^ and g^., the expression being integral

in gr but not necessarily so in (/«.

Also by equation (i) it follows that every function infinite only at c is

rationally expressible by g^ and gr'. and in particular that there is an

equation of the form

Lgl + L,gl-^ + ... + L^-.g,- + i„ = (iv),
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wherein L, L^, ..., La are integral rational polynomial-s in ga, of which

however, since gr is only infinite when ga is infinite, L is an absolute

constant. It follows from the reasoning given that the equation (iv) is

irreducible, and therefore belongs to a new Riemanu surface, wherein ga and

gr are independent and dependent variables. Further, any rational function

whatever on the original surface can be modified into a rational function

which is infinite only at the place c, by multiplication by an integral

polynomial in ga of the form {ga — E^Y' {ga — E.,)"' Hence any rational

function on the surface is expressible rationally by ga and gr- Hence the

surface represented by (iv) is a surface upon which the original surface can

be rationally and reversibly represented.

Since g~^ is zero to order a at the place where ga is infinite, it is clear that

the new surface is onefor which there is a branch place at infinity at which all

the sheets wind.

To every value of gr there belong r places of the old surface, at which gr

takes this value, and therefore also, in general*, r values o{ ga. Hence the

highest power of ga in equation (iv) is the ?'th, and this term does actually

enter. While, because ga only becomes infinite when gr is infinite, the

coefficient of the term g^^ is a constant (and not an integi-al polynomial in gr).

The equation (iv) is the generalization of that which is used in introducing what are

called Weierstraas's elliptic functions, namely of the equation

S'3^-(^2^-c'2^2-«3) = 0-

This equation is satisfied by writing g-,= ^{u), ffz^P'iu)' it is a known fact that the

poles of |>(w) are at one place (where tc = 0). This is not true of the Jacobian function

sn«.

63. It follows from equation (i) that the functions

fonn a fimdamental set for the expression of rational functions infinite only

at the place c of the surface, that is, a fundamental set for the expression

of the integi-al rational functions of the surface (iv). And, defining the

dimension D of such an integi-al function F as the lowest positive integer

such that g'^F is finite at infinity on the surface (iv), in accordance vnih

Chap. IV., § 39, it is clear that in the expression of an integral function by

this fundamental system there arise no terms of higher dimension than the

function to be expressed : this fundamental set is therefore entirely such

an one as that used in Chapter IV. If k be the order of infinity of an

integral function F, at the single infinite place of the surface (iv), it is obvious

that the dimension of F is the least integer equal to or gi'eater than - .

* Tliat is, for an infinite number of values of f/,..
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64. We shall generally call the equation (iv) Weierstrass's canonical form;

a certain interest attaches to the tabulation of the possible forms which the

equation can have for different values of the deficiency p. It will be sufficient

here to obtain these forms for some of the lowest values of ^) ; it will be seen

that the method is an interesting application of Weierstrass's gap theorem.

Take the case p= 4, and consider rational functions which are only infinite

at a single place c of a surface which is of deficiency 4. Such functions do

not exist of all orders—there are four orders for which such functions do not

exist ; these four orders may be 1, 2, 3, 4, and this is the commonest case*,

or they may fall otherwise. We desire to specify all the possibilities : their

number is limited by the considerations

—

(i) If functions of orders k^, k., ... exist, say F^, F.,, ... , then there exists

a function of order WiA'i +n2k.2+ ... , where n^, n^,... are any positive integers.

In fact Fi'Fi'... is such a function.

(ii) The number of non-existent functions must be 4.

(iii) The highest order of non-existent function cannot bef greater than

2^ - 1 or 7.

It follows that a function of order 1 does not exist, and if a function of

order 2 exists then a function of order 3 does not exist ; for every positive

integer can be written as a sum of integral multiples of 2 and 3.

Consider then first the case when a function of order 2 exists. Write

down all positive integers up to 2p or 8. Draw;]: a bar at the top of the

numbers 2, 4, 6, 8 to indicate that all functions of these orders exist

—

12 3 4 5 6 7 8 (a).

If then the functions of orders 5 or 7 existed there would need to be

a gap beyond 8, which is contrary to the consideration (iii) above. Hence

the non-existent orders are 1, 3, 5, 7. We have thus a verification of the

results obtained earlier in this chapter (§ 58, Ex. 2).

Consider next the possibility that a function of order 3 exists, there being

no function of order 2. If then a function of order 4 exists, the symbol

will be _ _ _
1234567 8,

a function of order 6 being formed by the square of the function of order 3,

that of order 7 by the product of the functions of orders 3 and 4, and the

function of order 8 by the square of the function of order 4. Thus there

would need to be a gap beyond 8. Hence when a function of order 3 exists

* Chap. III. 31.

t Chap. III. § 34. Also Chap. III. § 27.

X Cf. Chap. III. § 26.
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there cannot be one of order 4. If however functions of oitiers 3 and 5

exist the symbol would be

12 3 4 5 6 7 8 (/9),

the function of order 8 being formed by the product of the functions of orders

3 and 5. So fjir then iis our conditions are concerned this symbol represents

a possibility. Another is represented by the symbol

12345678 (7).

In this case however the existent integi-al function of order 8 is not expressible

as an integral polynomial in the existent functions of orders 3 and 7.

When a function of order 3 exists there are no other possibilities ; other-

wise more than 4 gaps would arise.

Consider next the possibility that the lowest order of existent function

is 4. Then possibilities are expressed by

1 2 3 ^5 6 7 8 (S),

1 2 3 -T^ r8 (e),

12 3 4 5 6 y^ (0,

as is to be seen just as before.

Finally, there is the ordinary case when no function of order less than

5 exists, given by

12 3 4 5 TT 8 (17).

For these various cases let a denote the lowest order of existent function

and r the lowest next existent order prime to a. Then the results can be

summarised in the table

p=4 a
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That the seventh and eighth columns of this table should agree is in

accordance with Chapter IV., § 41. The significance of the last column is

explained in § 68 of this Chapter.

Similar tables can easily be constructed in the same way for the cases

p = ] , 2, 3.

Ex. 1. Prove that for jo= 3 the results are given by

p= 3
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wherein (g^^, 1\, denotes an integral polynomial in r/^ of order 2 at most, the

upper limit for the suffix being determined by the condition that no terms

shall occur on the right of higher dimension than those on the left. Similarly

for the other polynomials occurring here on the right.

Instead of ^r^, g^ we may clearly use any functions gy — [g^, l\, g» — (g3, 1),.

Choosing these polynomials to be those occurring on the right in the value of

ffrffst
^^'^ niay write our equations

g,- = CLjj, + ^.^, + a^, (/g- = 7.,^8 + a^g^ + a,, g,g, = ^, (A),

where the Greek letters denote polynomials in g^ of the orders given by

their suffixes.

Multiplying the first and last equations by gg and g- respectively, and

subtracting, we obtain

9r^5 = gs (a^gs+ ^-gr + ^,)

= a, (70^8 + a,g, + a,) + ^S-. + O^^x

,

and thence, since* 1, g-, g^ cannot be connected by an integral equation of

such form,

007., + a, = 0, OUT, - ^, = 0, a„ci, + /S^ySs = 0,

fi-om which, as oto is not identically zero,—for then g^ would satisfy a quadratic

equation with rational functions of g^ as coefficients—we infer

Oo + ^20iz = (B).

Similarly from the last two equations (A) we have

gs^o=g7{y29» + asg, + a,)

= 72^35 + a., (oM/s + ^2^7 + a.) + dog?,

and thence

0,-aM, = O, a^o + a, = 0, y.A + (^^^i = 0,

so that, since a.^ cannot be zero—as follows from the second of equations (A)

—

we have
y.ou + a, = (C).

The equations (B) and (C) have been formed by the condition that the

equations (A) should lead to the same values for g^-gs and g»-g-, however these

latter products be formed from equations (A). We desire to shew that, con-

versely, these equations (B) and (C) are sufficient to ensure that any integral

polynomial in g^ and g^ should have an unicjue value however it be formed

from the equations (A). Now any product of powei-s of g^ and g^ is of one of

the three forms g^, gg, grg^ K. In the first two cases it can be formed from

equations (A) in one way only. In the third case let us suppose it proved

that K has an unique value however it be derived from the equations (A);

Chap. IV. § 43.
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then to prove that g^g^K has an unique value we require only to prove that

g^.g^K =gs.g^ K. Let K be written in the form g^L + g^M + N. Then the

condition is that g^ {Lgi + Mg^g^ + Ng^) shall be equal to g^ {Lg^g^ + Mg^^ + Ng-j).

This requires only g? gs^ = gs - gT9s and g.^ . g^gs = ga • g?^ and it is by these

conditions that we have derived equations (B) and (C). Hence also gyg^K

has an unique value.

Thus every rational integral polynomial in g-j and g^ will, when the con-

ditions (B), (C) are satisfied, have an unique value however it be formed from

equations (A).

The equations (B) and (C) are equivalent to 0.^= - (i^'y-i, /^s = a^as,

ttg = — fla/Sa, and lead to

gi" = ao^Tg + ^.g, - a.272, 9^' = J^g, + <^,g7 - ^s^o, g,gs = o-m^.

Thence

if?

or g/ - ^2^7^ + 02 72.77 - <^M = 0,

which is the form of equation (iv) which belongs to the possibility under

consideration.

The expression of the fundamental set of integral functions 1, ff^j, g^ in terms of g^ and

g>i
is therefore

«2

66. Take as another example the possibility e, § 64 above, where

a = 4, r = Q, the orders of non-existent functions being 1, 2, 8, 6. For a

fundamental system of integral functions we may take \, g^, g^, g-;.

We have then such an equation as

9^97 = 97(94, ^)i + cg,- + g,{g„ \)x + {g,, l\

where c is a constant : let this be written in the form

9^97 = ^i97 + ^'s' + ^15^5 + ofa,

the constant c being supposed absorbed in g^.

Write /ig for g^ — ol^ and h^ for g^ — hr, — /3i
— 2ai.

Then
/?5/?7 = ai- + ai/3i -I- as.

Replacing now h^, h-j by the notation g^, g^ and flg + Oj/Si + fli" by as we may
write

9597 = ^z, 5'7' = ^3 + a25'5 + au^.'i' + A5'7, 9^^ = 7^ + ^295 + 7i95- + 7297-

B. 7
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Hence the condition g^ . g-? = g-jj- . g- requires

a:./7r = ^:.!75 + ^iOt + Qt, [73 + /3,.'75 + 71/75= + 7,^77] + ^ifls,

from whicli

ai=a.,r^i, /93 + ai/3, = 0, a,+ a,7, = 0, ai7a = -/9ia,,

;in<l thence

^iy3= - ^lOLij.,, or if fli is not zero, 73=-/?, 7,.

Substituting this value for 73 and the value ^7=03/(75=2172/^5 in the

expression for ^5^ we obtain

05^ = - ^i7-> + ^-^95 + yi9^- + ^iTi^'O^

or

9* - yig' - ^-/J^- + /3i7o(75 - ai7o- = 0,

wiiich is then a form of the equation (iv) corresponding to the possibility (e).

In this case the fundamental integral functions may be taken to be

1. 9-o^ 9-^, i9o^-yiffi^-^2ff&+^iy2)/Y2-

It is true in general, as in these examples, that the terms of highest order

of infinity in the equation (iv) are the terms ga, gr- For there must be two

terms (at least) of the highest order of infinity which occurs ; and since 7' is

prime to a, two such terms as gag*^, gagr cannot be of the same order of

infinity.

Ex. 1. Prove that for /)= 3 the form of the equation of the surface in the case where

a= 3, r= 4 is

and shew that tliis is reducible to the form

y^ \-yx {x+ a) + x^+ a^x^+ a.A:-+ a^x -\-a^= 0,

X being of the form Ag^-\-B, y of the form Cff^ + Dg^+ E, A, B, C, B, J? being constants.

Thus the surface depends on 3p - 4 or 5 constants, at most.

Ex. 2. The reader who is acquainted with the theory of plane curves may prove that

the homogeneous equation of a quartic curve which has a point of osculation, can be put

into the form

By putting x= t)/^, y= (o/$, this takes the form of the final equation of Example 1. Com-

pare Chapter III. § 32.

Ex. 3. Prove that for jo= 3, the form of the equation of the surface in the case where

a= 3, r=5 is

9i+9b{9z^ ^)i+9o93(93> 1)2+S'3M.93> 1)3=0-

Ex. 4. Denoting the left hand of equation (iv) hj /{ffr, 9a), ^f/^9r ^Y f'{9r) and the

operator
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by Z), prove that if y„i be any rational function which is infinite only where g^ and y,. are

infinite, there exists an equation

where 2'o, , X„_i are polynomials in g^.

67. We have already in Chapter IV. referred to the fact that an integral

function is not necessarily expressible integrally in terms of the coordinates

X, y by which the equation of the surface is expressed, even though y be an

integral function. The consideration of the Weierstrass canonical surface

suggests interesting examples of integral functions which are not expressible

integrally.

In order that an integral function g whose order is [x should be expressible

as an integral polynomial in the coordinates Qa, g,- of the surface, in the form

m n
g = 9agr +

it is necessary that there should be a term on the right hand whose order of

infinity is the same as that of the function ; we must therefore have an

equation of the form

fi = ma + nr

wherein m, n are positive integers. Since a polynomial in (/^ and g,. can be

reduced by the equation of the surface until the highest power of g^ which

enters is less than a, we may suppose n less than a.

This equation is impossible for any value of /i, of the form nr — ka. And
since herein k may be taken equal to any positive integer less than w/a, the

number of integers of this form, with any value of 7i, is E(nr/a), or the

greatest integer contained in the fraction nr/a. Hence on the whole there

are

""i E(nr/a)
n = \ '

orders of integral functions which are not expressible integrally by ga and g,..

Corresponding to any order which is not expressible in the form nr — ka,

which is therefore of the form nr + ma, we can assign an integrally expressible

integral function * namely g^g^ ' hence the p orders corresponding to which,

according to Weierstrass's gap theorem, no integral functions whatever exist,

must be among the excepted orders whose number we have proved to be

"S E (nr/a) orf i (a - 1) (7- - 1).

* Thongli it does not follow that every integral function whose order is of the form nr + ma
can be expressed wholly in integral form.

t If a right-angled triangle be constructed whose sides containing the right angle are

respectively a and r, and the interior of the triangle be ruled by lines parallel to the sides

7—2
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Hence the number of orders of actually existing integral functions which are

not expressible integrally is

^(a-l){r-l)-p.

In the table which we have given for jJ = 4 (§ G4) the existing integral

functions which are not expressible integrally are, for the case (7), of orders 8

and 11 ; for the case (8) of orders 6 and 11 ; for the case (e) of orders 7 and

11 ; for the cjxse (0 of orders 6, 9, 10, 13, 17 : for case (7;) of orders 7, 8, 9, 13,

14, 19. The reader can easily assign the numbers for the cases in which

;; = 3.

E.V. 1. Prove that for the .surface

the function

ff7=95(£f5-<')/93

is an integral function which is not expressible as an integral |X)lynomial in ^3 and gr,.

Ex. 2. Prove that for the surface

.97^+97%+ 970272+ 0^03= 0,

where 02= c{g^-ki){g^- k:^),

&2-i33-h)fi +K
/i being of the first order in g^, and c, b^, l\, k., being constants, the two following functions

are integral functions not integrally expressible

—

5^8 ^97 {97 + /32)/a2
, 9n =97 (S'r + Kl'^3 " ^\)-

68. The number ^ (a — 1) (7' — 1) —^ is susceptible of another interpre-

tation which is in close connexion with the last. Let the set of fundamental

integral functions for the Weierstrass canonical surface be denoted by

1, Gi, Go,..., Ga-\- From the equations whereby 1, g^., g^^..., g^~ are

expressed in terms of them we are able (Chapter IV., § 43) to deduce an

equation

A(l,i/„...,r/r') = V^A(l, G„G„...,(?„_i),

wherein A(l, g^, ..., gr~^) is formed as a determinant whose (i,j)t\x element

is the sum of the values of ^^"''•'"^ at the a places of the surface where ga has

the same value, and is therefore an integral polynomial in^„, A(l, Gj,..., Ga-\)

is formed as a determinant whose {i,j)th. element is the sum of the values of

Gi-iGj-i for the same value of ga, which also is an integral polynomial in

containing the right angle, and at unit distances fiom these sides and each other, so describing

squares interior to the triangle, the number of angular points interior to the triangle is easily

a-1
seen to be S E (nria). On the other hand if the right-angled triangle be regarded as the half of

n=l

a rectangle whose diagonal is the hypotenuse of the right-angled triangle, and the ruled lines be

continued into the other half, it is easily seen that the total number of angular points of the

squares interior to the whole rectangle is (« - 1) (r - 1).
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Qa, and V is a determinant whose elements are those integral polj^nomials in

Qa which arise in the expressions of 1, g^, ..., g^~ in terms of 1, Gi, ... , Ga-i.

The determinant A(l, gr, ••• ,g1~^) is the square of the product of all the

differences of the values of g,. which correspond to any value of (/«. It

therefore vanishes, for finite values oi ga, when and only when two of these are

equal. If the form of the equation of the surface be denoted hy f{g,., g^) = 0,

this happens when, and only when, df/dgr=0. Now df/dg,- is an integral

polynomial in ga and gr, of order a— 1 in the latter. Regarded as a rational

function on the surface it is only infinite when ga and g,- are infinite. It

follows from the fact (§ 66), that g'^ is a term of the highest order of infinity

which enters in the polynomial /(g,-, go), that dfjdg.,. is infinite, at ga= '^
,

to an order r{a— 1). This is therefore the number of finite places on the

surface at which df/dg.r vanishes. Hence we infer that the polynomial

A(l, (/^,..., r/^"^) is of degree r(a-l) in ga.

Since there is a branch place at infinity counting for (a — 1) branch

places, the polynomial A(l, (ri, ..., (r„_i) is of order 2a+ 2jJ — 2 — (a— 1)

= a-1 ^ 2p in ga{% ^8, 61).

Thus V is of order

Lir{a-l)-{a-l+2p)l
that is, of order

^(r-l)(a-l)-p,

This interpretation of the degree of v i« of interest when taken in connexion with the

theorem—Every integral function can be written in the form

iffa, 9r)K9a, 1),

the numerator being an integral polynomial in </„ and g,., and the denominator being an

integral polynomial in ^„. All the polynomials {g^, 1) thus occurring are divisors of the

polynomial y. See § 48 and § 88 Exx. ii, iii*.

When the factors of v fi^re all simple we may therefore expect to be able to associate

each of them, as denominator, with an integral function which is not integrally expressible.

In this connexion some indications are given in a paper, Camh. Phil. Trans, xv. pp. 430, 436.

For Weierstrass's canonical surface see also a dissertation, De aequatione algebraica...in

quandam formam canonicam transformata. G. Valentin. Berlin, 1879. (A. Haack.)

Also Schottky, Crelle, 83. Conforme Abbildung. . .ebener Flachen.

69. The method which has been exemplified in §§ 65, 66 for the formation

of the general form of the equation of a surface when the fundamental set

of integral functions is given, is not limited to Weierstrass's canonical surface.

Take for instance any surface of three sheets, and let 1, ^j, ^2 be any set

* Cf. Harkness and Morley, Theory of Functions, p. 268, § 186.
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of fundamental integral functions wdth the properties assigned in Chapter IV.

§ 42, Then there exist equations of the form

5fi5'2 = 7 + ^ i/i + a
i72

wherein the Greek letters denote polynomials in the independent variable

of the surface, x, whose degrees are limited by the condition that no terms

occur on the right of higher dimensions than those on the left.

Thus the dimension of /3 is not greater than that of g., and the dimension

of a is not gi-eater than that of ^i. Hence we may use gi—a., g^ — ^ instead

of ^Ti and g. respectively, and so take the first equation in the form g^g.^ = ry,

the form of the other equations being unaltered. As before, there are con-

ditions that these equations should lead to unique values for every integral

polynomial in g^ and g.., namely

g«. (7i + ^li/i + «!!/=;) = ffij' g^ (72 + a2<7i + ^25^2) = g/y-

These lead to the equations

7 = «!«.;> 7i "" - ^i/^i. 72 = - «j^i>

and thence to

gi' - ^igi' + ^iB,g, - a,- a, =

gi - ^.g.'+^.^^g. - a.^^i = o. ( v)

Since every rational function can be represented rationally by .v and

gi and g2 = ociOu/gi, it follows that every rational function can be represented

rationally by x and gi. Hence the surface represented by the first of these

two final equations is one upon which the original surface is rationally and

reversibly represented. So also is the surface represented by the second of

these equations.

The fundamental integi-al functions are derived immediately from the

equation, being

£.1: 1. Prove that the integrals of the first kiud for the surface

arc given by

cLv

L
where Ti4- 1, t, + 1 are the dimensions of g^ and g.^ a,ndf {gj) = df/dgi.

Ex. 2. Prove that for the case quoted in Ex. i, § 40, Chapter IV, the form of the

equation is, (i) when/) is odd= 2H- 1, say,

ffn^ - anUn + «!! - 1 a„ -m </„ - O",, _
i 0„ ^. ^ = 0,
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where a„_i, a„, a„ + i,
o^^., are polynomials in x of the orders indicated by their suffixes,

(ii) when/* is even = 2u-2, say,

where o„, ^„, y„, 8„ are polynomials in .i- of the «th order.

Ej;. 3. Writing
ffi
= ai^, the first of the equations (v) becomes

«iy'-^iy'+^2y-«2=o. (A)

If the dimensions of g^ and ^2 ^ ^i + l) ^2 + 1) fi"tl the degrees of the polynomials

Oi, ^i, a.^, 13.2. And prove that if the positive quadrant of a plane of rectangular co-

ordinates (.r, >/) be divided into squares whose sides are each 1 unit in length, and a convex

polygon be constructed whose angular points are determined from this equation (A), by

the rule that a term x'y in the equation determines the point {r, s) of the plane, then the

number of angular points of the squares which lie within this polygon is p.

70. In obtaining the equation

5'i' - A^i' + ai/^ai/i - ai'a2 = (E)

we have spoken as if the original surface were of three sheets. It is im-

portant to notice that this is not necessary.

Suppose our given surface to be any surface for which a rational function

of the third order, ^, exists. Take c so that the poles of the function (^ — c)~\

which is also a function of the third order, are distinct ordinary places of the

surface. So determined denote the function by x. Let aj, Oo, (h denote these

poles. Then just as in § 39 of Chapter IV. it can be shewn that there exist

two rational functions ji and g^, only infinite in (^i and a.,, such that every

rational function which is infinite only in Oi, a.., a^ can be expressed in the

form

wherein 7, a, /8 are integral polynomials in x whose degrees have certain

upper limits determined by the condition of dimensions.

And as before we can obtain the equation (E). Further, if F be any

rational function whatever and A^, A„, ... be the values of x at the places

other than a^, a^, as at which F becomes infinite, it is clearly possible to find

a polynomial iT of the form {x — A^)"^' {x — A^y^^ ... such that ^i^only becomes

infinite at a^, a^, a^. Hence every rational function of the original surface

can be expressed rationally by x and (/j.

Thus as X, gi are rational functions on the original surface, (E) represents

a new surface upon which our canonical surface is rationally and reversibly

represented. And it is as much tJie j^^'oper normal form for surfaces upon

which a rational function of the tidrd order exists as is the equation
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a- = {2, l)op+o, previously derived, for the Jiyperelliptic surfaces upon which a

function of the second order exists.

Ex. Obtiiin the hyiKjrelliptic equation in this way.

71. In the same way we can obtain a canonical form for surfaces upon

which a function of the fourth order exists. We can shew that there exist

three functions f/j, <j.,, g^ satisfying such equations as

g^' = (i,g^ + h,g., + c.g-i + 1\

OiOs = ihgi + %3 + /'u

,

wherein the nine coefficients are integral j)olynoniials in a rational function cc,

which is of the fourth order; and that the surface is rationally and reversibly

representable upon a surface given by the equation

g-s*
-

^/s' («3 + Ci)- g-i {a.hi +ki- a-^c,) + g-, (a^h - hh + « Ac-'i + «/'i)

+ Oibjc^ + a-Aki + aj)Jci = 0.

E.V. These coefficients a^, ..., /^ satisfy certain relations; prove that the conditions

that 92- 93^=929^.93, 9\-9^=i1\9z-9%^ 9i9a- 9t=9i9z-gx ''ire that the following nine

l)olynomials should be divisible by a polynomial A, whose value is a^h.^— UyO.^^- a.l>^^ ;

Oh + as^l) («1^3 - «3^l) - ^1 («2^3**l - ^1^3). »'''1^3 («1^3 - «3^l) " ^3 (-^1^3 + ^l^s)^

^3(«1^3-«3'a)-M3^'2-
Herein «i = f'3-Ci, h^ = a^.j^ — k^.

In fact if

9\92= a&9i+ br,9.i+ c-^g^+ kr„ g.^= a^g^ + b^g.^ + c^g^ + k\, g^= a^g, + h^g,+ i^g^ + Xa,

the results of the division of these nine polynomials by A are respectively

%) '^hl ^6' ^4) '^4) *^4' '^'fi' ''fi) ^'o>

while

72. When the order of the independent function, denoted in §§ 69—71 by x, is known,

and the dimensions of the fundamental integral functions in regard thereto, the general

forms of the polynomial coefficients in the equations, whereby the products of pairs of

these integral functions are expressed as linear functions of themselves, can be written

down. And thence, if the necessary algebra (such fis that indicated in the example of

§ 71), which ser\'es to limit the forms of these polynomial coefficients, can be carried out, a

canonical form of the equation of the surface can be deduced.

But the converse process may arise : when we are given a form of the fundamental

equation associated with the surface, we may require to replace the given equation by one

in which the dependent variable is one of the set of fundamental integral functions. More

generally we may replace it by an equation in which the dependent variable is an integral

function of the form
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This replacement possesses a high degree of interest (§ 88. Ex. iii). lu either case

it is necessary to be able to calculate the fundamental integral functions.

73. We give now sufficient explanation to enable the reader to calculate the expression

of the fundamental integral functions for any given form of the fundamental equation

associated with the Riemaun surface. This equation may* be taken in the form

yn^ y,'. - 1
Of.j -I- . . . +ya„ _

J
+ «,^= 0, (A)

«i, ..., a,i being integral polynomials in .*.• ; thus y is an integral function of.*; (§ 38).

The n values of any rational function, ;;, which arise for the same value of x, will be

denoted by »;('), ... , »;(") and called conjugate values ; their sum will be denoted by 2?;. If

any of the possible rational expressions of >; be (a', v/)/i|a {x^ y), <^ and »// being integral

polynomials in x and y, and if in the expression of t;('),

we multiply numerator and denominator by the product of the n— 1 values conjugate to

>// (.r, 3/(')), the denominator will become an integral symmetric function of ^/(i),
. .

. ,
y("), and

can therefore be expressed by means of the equation (A), as an integral polynomial in x
;

and the numerator will take a form which can be expressed as an integral polynomial in

X and ?/('). Hence the value of any rational function, on the surface associated with the

equation (A), can be expressed in the form

n
J)

) (^)

A, ..., An-i, D denoting integral polynomials in .r, with no common divisor.

Thus, to determine the expression of the fundamental integral functions, we may
enquire what modification this general form undergoes when r] is an integral function.

74. In the first place the denominator D must be such that D^ is a factor of the

integral polynomialf A(l,?/, ...,y"~i)
; so that D is capable only of a Hmited number of

forms. For let ^'— a be a factor of Z), repeated r times, and write

A,= {x-aYB,-VCi, {i=0, l,...,(»i-l))

wherein Cf is a polynomial of order less than r ; since A, ,.., An_y have no common divisor

which divides D, not all of C, Cj, . .

.
, C„_i can be divisible by x-a. Then the function

r)Dj{x-aY-{B+ B,i/+ ...JrB^_^y^-^), = {C+C\y + ... + G,,^^y^^-^)l{x-aY,

is an integral function, when r; is an integral function, as appears from its first form of

expression. Denote it by (.

Suppose Ci not divisible by x— a. From the equation f

recalling the form of the determinant which is the square root of the left hand side, we
infer

Hence, save for sign,

V/Vi= (.i'-a)VCi,

so that (*' — «)' divides v-

Thus the first step in the determination of the integral functions is to put A(l,y,

•••>y'~^) into the form w/'i ... u,h\ wherein %,..., ?«,. are polynomials having only simple

* Chap. IV. § 38. t Chap. IV. § 43.
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factors. This can always be done by the rational process of finding the highest divisor

common to A(l,j/, ...,//""') and its differential coefficients in regard to x. It will include

most cases of practical application if we further supjwse all the linear factors of

^(liy>-">y"~*) ^ ^ known*.

75. Suppose then that x— a is a factor which occurs to at least the second order in

A (l,y, ...,^"~'). Denote x — a by u. By the solution of a system of linear equations,

we can (below, § 78) find all the existing linearly inde|)endent expressions of the form

(a + aiy+ ...+«„_iy»-')/M,

wherein a, Oi, ..., a„_i are constants, which represent integral functions. If the highest

power of >/ actually entering be the same in two of these integral functions, say in f and f

,

we can iLse instead of (' a function of the form C~t^C where /* is a certiihi constant. By

continued appliaition of this method of reduction we obtain, suppose, X.- integral functions,

of the form

Cr= {a'+ a\>/+...+a'r>/n/u, (C)

wherein, since these functions are linearly indejxjndent, k is less than «, and the values of

r that occur are all different. These values of r that occur are among the seqvience

1, 2, ..., {n— 1) ; let s denote in turn all the ?i— l—k other integers in this sequence. Put

f, for y*. Consider now the set of integral functions

As before we can determine by the s(jlution of a system of linciir equations all the

linearly independent functions of the form

(/3+|3iCi+.-+^„-iC»-i)/«,

wherein ft,ffi, . .
. , ^„ _ i are constants, which are integral fimctions ; and, as before, we can

choose them so that the f 's of highest suffix which occur shall not be the same in any two

of these integral functions. Then in place of 1, fj, ... , f„_i we obtain a set 1, |,, ... , ^„_i,

wherein ^^ is Cr unless there be an integral function of the form

(i3'+^'l(r^+...+^'rCr)/w, P)
wherein the ( of highest suffix occurring is (^^ i'' which case ^r denotes this function.

Then we enquire whether there are any integral functions of the form

(y+yi^i-i----+r«-i^n-i)/«,

y, ...,y„_i being constants. If there are, the process is to be continued t- If there are

none, let v denote any other Unear factor occurring in A (1, y, ..., ^""1) to at least the

second order. Then, as for the set 1, y, ..., ,y"~\ we investigate what hnearly independent

integral functions exist of the form

(a+ ai|i + ...+a„_i^„_i)/y,

and continue the process for v as for u : and afterwards for all other repeated factors of

76. When these proceases are completed, we shall obtiiin a set of integral functions

such that there exists no integral function of the form

(a+ a,T;i + ...+a„_j.;„_,V(»--<'),

* lu the work below, if ii be a polynomial of order r, it is necessary to suppose a, a,, ..., o* to

be polynomials of order r — 1.

t The number of steps is finite, by § 74.



77] FUNDAMENTAL INTEGRAL FUNCTIONS, 107

wherein a, ... , a„_i are constants, for any value of c. It is obvious now from the successive

definitions (C), (D), ... of the sets (1, fi, ..., f„_i), (l,^i, ...,|„_i), ..., (1, ^j, ..., ,;„_j), that

every power oi y can be represented in the form

y=y+Vi»7i + ... + »-'„-i'7n-i,

wherein y, y,, ...,w,i_j are integral polynomials in x. Hence every integral function can

be written in the form

r; = (A'+ A\ ;;i + . . . + E^ _!,;„_ ^/i^,

wherein E, ,.., E^-i^ F are integral polynomials in x without common divisor. If now
.r— c be a factor of F and we write

'
Ei= {x-c)Gi^-ai, ^•=0, 1, 2,...,(/i-l),

Oi being a constant, the function

>;/'7(.»-f)-[6' + 6'i7/i + ... + 6'„_i77„_i] = (a4-ai7i + ...+n,i_ir;„_i)/(,r-c)

is an integral function, as appears from the foi-m of the left-hand sitle. By the pro2)erty

of the set \,rf^, ...,rjn-i there is no integral function having the form of the right-hand

side, unless each of a, ci, ..., a„_i be zero.

Hence each of E, ...,En-i are divisible hy x— c. By successive steps of this kind it

can be shewn that every integral function can be written in the form

TI = ff+ffiril + -'- + ^n-lVH-l, (E)

wherein H, IIi, ..., Hn_^ are integral polynomials in x.

77. But in order that the set 1, rj^, ,.., r^^-i should be such a fundamental set as

l)5'i> •••}9n-i, "sed in Chap. IV., there must be no terms occurring on the right-hand side

here, which are of higher dimension than rj. We prove now that this requires a further

reduction in the forms of l,r]i, ...,?/„_i, which is of a kind precisely analogous to the

reductions already described.

Let (r+ l be the dimension of i;, pi the order, and therefore also the dimension of the

polynomial Hi (§ 76) and o-j+ I the dimension of rji; we suppose o-i :^ o-g ::}>... :j> o-„ _ j ;

then

r,/x''+' = ...+iHiX-'i)Mx''^^')x^i+''i-''+ ....

Putting x=l/^, h= T]/x'^ , hi= Tii/x'^ , Hi^ '''=(1) ^)p-, an integral polynomial in |,

this equation is

If now in equation (E) a term arises of higher dimension than rj, one of the integers

p-{<T + l), ..., pi+ ai-a-,...

is greater than zero. In that case let r+ l be the greatest of these integers. Then we can

write

wherein the symbols (1, |),„. denote integral polynomials in ^. Putting

(l,^)m.= ^A'£-hai, (i= 0, 1, 2, ...,«-!),

wherein a^ is a constant, we have

^'7i- {K+ A'l /ti -f . . . -f /f„ _ 1 /(„ _ i)
= (a -I- ai Ai -I- . . . -f a„ _ 1 /;„ _ i)/f

Herein the left hand is a function which is not infinite when x is infinite. Hence,
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when the set 1, >;,,..., %_, are such that the coudition of dimensions* is not satisfied,

there exist functions of the form

(a+ ai/ii + ...+o„_iA„_i)/|,

i.e. of the fonn

J- [a+ a, iji/x" + ^ + . . . + a„ _ 1 .,„ _ l/x"^- >
+ ^],

wherein a, ...,0^-1 are con.stiints which are not infinite when ^ is zero or x is infinite.

In virtue of their definition the functions /«,,..., A„_i are not infinite when x is infinite,

and are therefore infinite only when x is zero or $ infinite. We may therefore regard them

as integral fmictions of ^. And since there exists no integral function of the fonn iji/x, the

dimensions of Aj , . .
.

, A„ _ , as functions of ^ are o-, + 1 , . .
.

, <r„ _ 1 + 1.

As before determine a set of linearly independent functions of the form

(a+ aiAi + ..,+a„_iA„_i)/^,

a, ..., o„_j being constants, which are not infinite when ^= 0, choosing them so that the k

of highest suftix which occurs is not the same in any^two of the functions. Let the

function wherein the h of highest suffix is A, be denoted hj kr, so that iv is of the form

Then
I o-r Tr+l , . <r,-rl , ,

or,+l,

is a function which is not infinite when .»;= 0, as appears from the form of the right-hand

side ; it is therefore an integral function of .r, and since k^ is not infinite when .)• is infinite

it is an integral function of x whose dimension is only Vr- Denote it by G^, Then 17^ can

be expressed in the foriu

Mr

and in the right hand no term occurs of higher dimension than that of r]ri while G^ is of

less dimension than 17^. If then there be ra functions such as />) '" of the functions

^n •••) f/n-i can be expressed in the form (F) in terms of the remaining n — \ — in fmictions

of
jji

, ...,»;„_ 1 and m fmictions Gy ; the sum of the dimensions of these m functions G^ is

less by m than that of the dimensions of the functions j;^ which they replace. Denoting

the functions among i;i, ..., ?7„_i which are not thus replaced by functions 6-', also by the

symbol 6', for the sake of imiforn)ity, every integral function is expressible in the form

(^,l),+ (.r.l\//x + ... + (.>•. 1),„_^6'„_.,

and the sum of the dimensions of 6'i, ..., &'„_i is less by m than the sum of the dimensions

If now in this expression of integral functions by Gy^ ..., G'n-i any terms can arise

which are of higher dimension than the functions to be expressed, we can similarly replace

the set 6'i, ..., O-'^-i by another set whose dimensions have a still less sum.

Since no integral function can have a less dimension than 1, the sum of the dimensions

of the functions whereby integral functions are expres.sed, cannot be diminished below n — 1.

"We shall therefore arrive at length at a set ^Tj, ..,,^„_i of integral functions, in terms of

which all integral functions can be expressed so that the condition of dimensions is

satisfied.

It is this system which it was our aim to deduce.

• Chap. IV. § 39.
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Ex. For the surface associated with the equation y^— {x, 1)2^ + 2 all integral functions

can in fact be represented in the form {x, \)^-\-{x, 1)^ rj^, where j;i=y +.*•'". If w>jo+ l

the dimension of r^^ is m. In order to ascertain whether the condition of dimensions is

satisfied we enquire whether there exist any functions of the form .r [a+ oi (y+ .r"')/.r™],

wherein a, a^^ are constants, which are finite for a'=cx), namely whether [a+ ai(_y^"' + l)]/^

can be an integral function of ^.

Shew that this can only be the case when a+ ai = 0. Putting ^r=[-a+ ai(3/^"'+l)]/|

it is clear that Xv-*""'""'=ai2'- Thus all integral functions can be represented in the form

{x, l)^-|-(-^', 1\ y- Shew that the condition of dimensions is now satisfied.

78. There is one part of the process given here which has not been explained. Let

j;i, ..., j;„_i be integral functions, and let ?« denote a linear function of the form x — c. It

is required to find all possible functions of the form

(a + oi7;i + ...+«„-iT?„_i)M

wherein a, ..., a„_i are constants, which are not infinite when u= 0. We suppose

i;i, ..., j?„_i to be such that the product of every two of them is expressible in the form

v+ Vi?7i + ... + i'n-i»7rt-i, *')•••? *'«-! being integral polynomials in x ; this condition is

always satisfied in the actual case under consideration.

The integral function Z/'=a+ ai7;i+... +a„_ir/,i_i will satisfy an equation of the form

(II-Hm) ... {H-m^)) = H'^+ A\H''^ + ...+K^_^H+A\=0,

wherein A'j is an integral polynomial in a, ..., a„_i of the ith order ; A'^ is also an integral

polynomial in x. In order that Ulu be an integral function it is sufficient that K^ be

divisible by «*, and when H/it is an integral function these n conditions will always be

satisfied. And it is easy to see that if S^ denote the sum of the ith. powers of the n values

of H which arise for any value of x, these conditions may be replaced by the conditions

that Si be divisible by w^. It is clear that it may not be an easy matter to obtain the

values of a, ..., a,i_j, which satisfy the conditions thus expressed.

But in fact these conditions can be reduced to a set of linear congruences, and event-

ually to a set of linear equations for a, ..., a,i_i. We shall not give here the proof of this

reduction*, but give the resulting equations. For in many practical cases we can obtain

the results, geometrically or otherwise, in a much shorter way.

Let

1 J- '1
denote in order of magnitude all the positive rational numerical fractions not greater than

unity, whose denominators are not greater than n ; each being in its lowest terms. Let

/;j, ..., rjr denote any linearly independent integral functions. Let 2 denote the sum of the

71 values of a function which arise for any value of x. Determine all the possible sets of

values of the constants a, a^, ,.., a^ such that the congruence

2 (a+ aiT]^ + ...+a,.r]r) (c + Oir;i + ... +C,.j;^) = (mod. u)

is satisfied for all values of the quantities c, Cj, ..., c,.. Substituting in the left hand the

value of X for which u= and equating separately to zero the coefficients of c, Cj, ..., c^, we
obtain r+ \ linear equations for the constants a, «i, ..., a,.. By these equations we can

* Which is given by Hensel, Acta Math. 18, pp. 284—292. His use of homogeneous variables

is explained below Chap. VI. § 85. But it is unessential to the theory of the reduction referred to.
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express a certain number* of a, a,, ..., a,, in terms of the others ; denoting these others by

/3,, ..., ^, the function a + nj»;i + ...+«,.ry,. tiikes the form i3,Ci + ...+/3,f„ wherein f,, ..., C,

are definite Hnear functions of 1, i;,, ..., r), with constant coefficients, and the equations in

question are then satisfied for all constant values of <y,,..., ^,. We associate j^ the functions

(i, ... , (t with the first term - of the series of fractions specified above. We proceed thence

to deduce a set of integral functions associated with the next term of the series, —_ .

But in oi-der to be able to describe the successive processes in as few words as possible, let

us assume we have obtjiined a set of integral functions ^j, ..., ^,„ which in the sense

employed are associated with\ the fraction e of the series, and wish to deduce a set of

fiuictious associated with the next following fraction of the series, f. Put down the con-

gruence

2(yi^, + ...+y„.f„)(e,^i + ...+c',„en)'"'= (mod. «l'*'i).

Herein -y,, ..., y,„ denote constants, i denotes in turn all positive integers not greater

than n which are exact multiples of the denominator of the fraction t, so that it is an

integer, \if'\ denotes the least integer which is not less than if, and, for any proper value

of i, the congruence is to be satisfied for all values of the quantities Cj, ..., e,„. It will be

found in practice that the left-hand side divides by ?i''« "^ for all values of y^, ...,y„,>

gj, ..., e„,. If we carry out the division, then, in the result, substitute the value of x

which makes «= 0, and equate separately to zero the coefficients of the
(

. 1 products of

<'j, ..., e,n which enter on the left, we shall have this number of linear equations for

yij ••) ym- Solving these, and thereby expressing as many as possible of yj, ..., y,„ in

tei-ms of the remaining, which we may denote by y/, ,.., y',„/, yi^i+ ...+ym^m will take a

form yi^i+ ...-{-y'm'k'm'i wherein y,', ..., y',„' are arbitrary constants, and I/, ..., ^'„j' are

definite linear functions of ^j, ..., ^j^. We say that I/, ..,, |'„/ are associated with the

fraction e'.

This process is to be continued beginning with the case when €— - and ending with the

case when e' = I. The functions associated with the last term, 1, of the series of frac-

tions, say 6'i, ..., G^, are all the functions of the form a-f-air;, + ... + a„_i»;„_i, wherein

a, ai, ..., n„_, are constants, which are such that 6',/?<, ..., (4/« are finite when ?<=0.

For the case '/t= 3, of a surface of three sheets, the series is \, s, % 1. The successive

congruences may therefore be denoted by

(,S'J = (mod. u), {S.^) = (mod. ?<-), {>%) = (mod. «-), (.S3) = (mod. u^),

wherein (Si) denotes such an expression as 2 (yiii + ..+ym$,n) {''i$i + -'-+<^m$mY~^-

In fact 3 is the only integer not greater than 3 such that 3. ^ is integral and |3.^| = 2.

And 2 is the only integer not greater than 3 such that 2.^ is integral and |2.5| = 2;

finally 3 is the only integer such that 3. jj
is integral, and |3. 1| = 3.

For a surface of four sheets the fractions are

J> 3» 2> Tj' i> '•

* At most, and in general, equal to r.

1

t In a certain sense the functions f, , ..., f, are all divisible by un.

X Divisible by x', in a sense.
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Hence 1, y, -
,
— are a fundamental system such sts 1, ^j, ff^^ y^ in Chap. IV. ; and

the deficiency of the surface is 1 + 1 +- - (4- 1) = 1.

Ex. ii. In partial illustration of Hensel's method of reduction consider the case of the

equation

y

-

Zry-+ 2yx (.r - 1 )+ x^ (.r- 1
)-' (9.f3+ 7.i-+ 5.r+ 3) = 0,

for which the sums of the powers of y are given by

Sy = a/-, X, = .3.r^ + 6./-, «3= - 27.*-' + Sa**+ ar^+ 1 Sj^,

i^= - 10ai-« + 132j,-'"+air«+ 36.f3 + iai-2.

The determinant A (1, y, y-) is divisible by x^ and by (.r— 1)-, as appears on calculation.

By fonning the equation satisfied by y-jx it apj)ears that y'-jx is an integral function.

Denote it by tj. We consider now what functions exist of the form

(a+ a,y+ a2.7)/(.i--l),

wherein a, a^, a.> are constants, which are integral fimctions.

The congruence {8.^) = -^ {a-\-a^y + a.,rf){c+ c^y+ c.ir)) = Q {mod. x-\) leads, considering

the coefficients of c, Cj, Co separately, to the congruences

3a+ ai«i + a.,^,= 0( ,x-\), aiy->ra^s.^+ a.iS.^'x=0{ ,.r-l), a ^H-Oj ^ +a./^^= ( ,.r-l),

and therefore to the equations

3a + 3ai + 9a.^= 0, 3a-f 9ai + 27a2= 0, 9a + 27ai + 81a.= 0,

which give a= 0, a,= —3a.,, and shew that the only function of the land required is, save

for a constant nniltiplier,

(,,-3y)/(.r-l).

The other three congruences reduce then to conditions for this function ; for example,

the congruence (.5^3)= ( ,.7^) becomes

^[.-(J^,-^iJ-(.-)-

But in fact, if we write g= {y--Zxy)!x {x-\), J = ftj-^+ 7.J'2+ 5.r+ 3, we immediately

find from the original equation that

g^+ Og'^'-Zg {Ax-Z)-itA\r {_x-\)-\-^Ax= 0,

so that g is an integral function.

Apply the method to shew that y^Jx is the only integral function of the form

Prove that the dimensions of the functions

l,y, (y'-3.ry)/.r(.r-l)

are respectively 0, 3, 3.

Putting x=\/^, y/.r''= A, examine whether there exists any integral function of | of

the form

and deduce the fundamental integral functions.

The deficiency of the surface is 3 + 3 - (3 — 1 )= 4.
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CHAPTER YI.

Geometrical Investigations.

80. It has already been pointed out (§ 9) that the algebraical equation,

associated with a Riemann surface, may be regarded as the equation of a

plane curve ; for the sake of distinctness we may call this curve the funda-

mental curve. The most general form of a rational function on the Riemann

surface is a quotient of two expressions which are integral polynomials in

the variables (x, y) in terms of which the equation associated with the surface

is expressed. Either of these polynomials, equated to zero, may be regarded

as representing a curve intersecting the fundamental curve. Thus we may
expect that a comparison of the theory of rational functions on the Riemann

surface with the theory of the intersection of a fundamental curve with other

variable curves, will give greater clearness to both theories.

In the present chapter we shall make full use of the results obtainable

from Riemann's theory and seek to deduce the geometrical results as con-

sequences of that theory.

81. The converse order of development, though of more elementary

character, requires much detailed preliminary investigation, if it is to be

quite complete, especially in regard to the theory of the multiple points

of curves. But the following account of this order of development may be

given here with advantage (§§ 81— 83). Let the term of highest aggregate

degree in the equation of the fundamental cx\v\ef{y, x) = Q be of degree n\

and, in the usual way, regard the equation as having its most general form

when it consists of all terms whose aggregate degree, in x and y, is not

greater than n\ this general form contains therefore \ {n -\- \){n -\-
'2.) terms.

Suppose, further, that the curve has no multiple points other than ordinary

double points and cusps, 8 being the number of double points and k of cusps.

Consider now another curve, -^ {x, y) = 0, of order m, whose coefficients are

at our disposal. By proper choice of these coefficients in -v/r we can determine

yjr to pass through any given points of/, whose number is not greater than

the number of disposeable coefficients in -vl^. Let k be the number of the

prescribed points, and interpret the infinite intersections of / and yfr, in the

usual way, so that their total number of intersections is mn. Then there

B. 8
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remain mn — k intersections of/ and yjr which are determined by the others

already prescribed. We proceed to prove that if m > /i — 3, and if we utilise

all the coefficients of yjr to prescribe as many of the intersections of yfr and/
Jiy possible, and introduce further the condition that >|r .shall pass once through

each cusp and double point off, then the number of remaining intersections

which are deterniined by the others will be p = ^(n — '[) (n - 2) — S — k*, for

all values of m. For, if m ^ n, the intersections of t/t with /are the same as

those of a curve

wherein £/,„_,» is any integral polynomial in the coordinates x and y, in which

no term of higher aggregate dimension than m — n occurs. By suitable

choice of the ^ {m — n + 1) (t?^ — w + 2) coefficients which occur in the general

form of U^n-n we can reduce ^ {m—n + l){m—n + 2) coefficients in >^+ Um-nf
to zerof. It mil therefore contain, in its new form,

M + 1 = 1 + ^m (m + S) - ^ (m - ?i + 1) (m -n + 2)

arbitrary coefficients. M is therefore the number of the intersections of yjr

with / which we can dispose of at will, by choosing the coefficients in yfr

suitably. Of these intersections, by hypothesis, 2 {8 + k) are to be taken

at the double points and cu.sps of the curve / This can be effected by the

disposal of B + K of the arbitrary coefficients. There remain then

1 + ^m (m + 3) - "I
(m -n+l) (m -7i+2)- 8 - k

disposeable coefficients and mn — 2(8 + k) intersections. Of these, therefore,

mn -2(8 + K)-[h m (m + 3) - ^ (m -n + l) (m -n + 2)-8-K]

is the number of intersections determined by the others which are at our

disposal ; and this number is

i(n-l){n-2)-(8+K).

In case m < n, of the m7i — 2 (8 + k) intersections of -v/r with/ which are

not at the double points or cusps of/ we can, by means of the ^m{m+S)—8—K
coefficients of -yjr which remain arbitrary when -v/r is prescribed to vanish at

each double point and cusp, dispose of all except

mn -2(8 + k)- [^m (m + 3) -{8+ k)]
;

when m = n — 1 or vi — 2 it is easily seen that this is the same as before.

82. Let us a.ssumc now that the polynomials which occur, as the nume-

rator and denominator, in the expression of a rational function, have the

* Reasons are given, Forsyth, Theory of Functions, p. 356, § 182, for the conclusion that this

number is the deficiency of the Riemann surface having / (i/, x) = as an associated equation.

We shall assume this result.

t As, for instance, the coefficients of y"*, j/"'~', j/'""'x, ..., ?/", ?/".t, ..., j/"x"''", in which case

the highest power of y, in ^+ Vm-nf> ^^^^ remains, is ;/""'•



83] INTRODUCTORY SKETCH. 115

property here assigned to -v/r, of vanishing once at each double point and

cusp of/. Without attempting to justify this assumption completely, we

remark that if it is not verified at any particular double point, the rational

function will clearly take the same value at the double point by whichever of

the two branches of the curve / the double point be approached. As a

matter of fact this is not generally the case. Suppose then we wish to obtain

a general form of rational function which has Q given finite points of

/, Ai, ... , Aq, as poles of the first order. Draw, through these poles,

Ai, ..., Aq, any curve -v/^ whatever, of degree greater than n— 3, which passes

once through each double point and cusp of/ Then yjr will intersect /in

mn-2{8 + K)-Q

other points B^, B.^, .... Through these other points B^, B.^, ... of/ and

through the double points, draw another curve, ^, of the same degree as yfr.

The curve ^ will in general not be entirely determined by the prescription

of the mn — 2{8 + k) — Q points B^, B.2, Let the number of its coefficients

which still remain arbitrary be denoted by q + 1. Then it would be possible

by the prescription of, in all,

mn -2{S + K)-Q + q

points of ^, to determine ^ completely. But by what has just been proved,

^ is determined completely when all but p of its intersections are prescribed.

Wherefore
m7i—'2.{S + K) — Q + q = mn-2(S + K) — p.

Hence Q — q=p, and ^ has the form

where X, Xj, ..., Xq are arbitrary constants and yfr,^, ...,^q are q+1 linearly

independent curves, all passing through the inn — 2 (8 + k) — Q points

Bi, B2, ..., as well as through the double points and cusps; and the general

rational function with the Q prescribed poles will have the form

\ + \l Jii + . . . + AqJriq
,

where Ri — ^i/yjr ; and this function contains ^ + 1 arbitrary coefficients.

83. In this investigation, which is given only for purposes of iUustration, we have

assumed that the prescription of a point of a curve determines one of its coefiicients in

terms of the remaining coefficients, and that the prescription of this one point does not of

itself necessitate that the curve pass through other points ; and we have obtained not

the exact form of the Riemann-Roch Theorem (Chap. III. § 37), but the first approxima-

tion to that theorem which is expressed by Q-'q=p ; this result is true for all cases only

when Q>7i{n-S)-2{8 + K).

We may illustrate the need of the hypothesis that the curves ^ and ^ pass through the

double points and cusps, by considering the more particular case when the fundamental

curve

/=(*, .y)2+ (•'»> ]/\+ {-'>^^ 3/)4 = 0>
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wherein {x, y\ is an integi-al homogeneous ix)lynomial in .r and y of the second degree, etc.,

is a quartic with a double point at the origin .r= 0, y= 0. Since here n=4 and 8+ k = 1,

we have
^=i(n-l)(n-2)-8-ic=i.3.2-l=2,

and therefore (in accordance with Chap. III. §§ 23, 24, etc.) there exi.sts a rational function

having any three prescribed points as poles of the first order. Let vis attempt to express

this function in the form ^/\/^, wherein ^, y\r are curves, of degree m, (m > 1), which do not

vanish at the double point. Beside the three prescribed poles A^, A.^, A 3 of the function,

yjr will intersect /in 4m— 3 points B^, B.>, .... The intersections with / of the general

curve ^ of degree m, are the same as those of a curve

provided »i 4 4, and are therefore determined by |»>i(?)i + 3)- V(«i-4 + l) (w-4 + 2), or

4m — 3 of them. And it is easily seen that the same result follows when m — Z or 2.

Hence no curved can be drawn through the points B^, B.^, ... other than the curve yjr,

which already passes through them ; and the rational function cannot he determined in

the way desired. It will be found moreover that this is still true when the hypothesis,

here made, that \p- and ^ shall be of the same degree, is allowed to lapse. As in the

general case, this hypothesis is made in order that the function obtained may be finite for

infinite values of x and y.

A ciu-ve which passes through each double point and cusp of the fundamental curve/

is said to be adjoint. When /has singularities of more complicated kind there is a corre-

sponding condition, of greater complexity. For example in the case of the curve

/=/-(l-.^'2)(l-F.^2) = 0,

which, in the present point of view, we regard as a quartic, there is a singularity at the

infinite end of the axis of y. If, in the usual way, we introduce the variable z to make the

equation homogeneous, and then* puty=l, whereby the equation becomes

z'^= {z'^-x'^){z'^-k\v'^),

we see that the branches are, approximately, given by 5= + k.i^, namely there is a point of

self contact, the common tangent being 2= 0. If we assume that it is legitimate to regard

this self contact as the limit of two coincident double points, we shall infer that the condi-

tion of adjointness for a curve >// is that it shall touch the two branches of / at the point.

For example this condition is satisfied by the parabola

y= ax^ -\- hx + c,

which, by the same transformation as that above, reduces to

2= a.?;2 -J- hxz+ cz"^,

and it is obvious that the four intersections with / of this parabola, other than those at

the singular jioint, are determined by all but jo of them, p being in this case equal to 1.

We shall see in this cha[)ter that we can obtain these results in a somewhat different

way: the equation y'^={\—x^){\—k^x'^) is a good example of those in which it is 7wt

convenient to regard the equation as a jiarticular case of a curve of degree equal to the

highest degree which occurs. Though tliis method, of regarding any given curve as a

particular case of one whose degree is the degree of the highest term which occurs in the

given equation of the curve, is always allowable, it is often cumbersome.

Ex. 1. Prove that the theorem, that the intersections with / of a variable curve y\r are

determined by all but/) of them, may be extended to the case where / has multiple points

* This process is equivalent to projecting; the axis 7 = to infinity.
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of order k, with separated tangents, by assuming that the condition of adjointness is that

y\r should have a multiple point of order k — \ at every such multiple point of /, whose

ttxngents are distinct from each other and from those of/! (In this case any such multiple

point of/ furnishes a contribution \]c (^" — 1) to the number S + /< of/.)

Ex. 2. The curve y^= {-v, l)g may be regarded as a sextic. Shew that the singular

point at infinity may be regarded as the limit of eight double points, and that a general

adjoint curve is

Ex. 3. Shew that for the curve y^= (.r, 1)2^ + 3 * general adjoint curve is

For further information on this subject consult Salmon, Higher Plane Curves (Dublin,

1879), pp. 42—48, and the references given in this volume, § 9 note, § 93, § 97, § 112 note,

§ 119.

84. In the remaining analytical developments of this chapter we
suppose* the equation associated with the Riemann surface to be given in

the form

f{y, x) = ,r + y-'{x, l),^ + ...+;^(,;, ]),„_j + (^, 1)a„ = 0,

so that y is an integral function of x. Let <7 + 1 be the dimension of y ;

then cr + 1 is the least positive integer such that y/x'^^^ is finite when x is

infinite; thus if we put x=l/^ and y=vl^'^^\ cr + 1 is the least positive

integer, such that 77 is an integral function of ^. This substitution gives

f{y, x)=^-''^''+'^ F(r), ^), where

so that (7 + 1 is the least positive integer which is not less than any of the

quantities

Xi, Xo/2, ..., \n-i/(n-l),Xjn.

Ex. 1. For the case

y*+fx^ix, l)3+y*-3(.*-, l)4+.r*(.r, 1)^=

the dimension of y as an integral function of x is 3. Writing y= rj/^^, where x=ll^, the

equation becomes

'?'+'?'i(i, ^)3+'?^'(i, 1)4+^^(1, a=o
and T) is an integral function of | of dimension 2. In fact

!/i
= r]/$^=i//x satisfies the

equation

and is finite when |= qo , or .r=0.

Ex. 2. Shew that in the case in which the equation associated with the Riemann

surface contains y to a degree equal to the highest aggregate degree which occurs, o-= 0.

* Chap. IV. § 38.
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Whenever we are.considering the places of the surface for which a; = 00,

we shall consider the surface in association with the equation F{r), |) = ;

and shall speak of the infinite places as given by ^=0. The original equation

is practically unaffected by writing x-c for x, c being a constant. We may

therefore suppose the equation so written that at x = 0, the n sheets of

the surface are distinct ; and may speak of the places x = as the places

^= 00

.

85. By the simultaneous use of the equations f{y, a) = 0, F (77, |) = 0,

we shall be better able to formulate our results in accordance with the view,

hitherto always adopted, whereby the places x= <x> are regarded as exactly

like any finite places. But it should be noticed that both these equations

may be regarded as particular cases of another in which homogeneous variables,

of a particular kind*, are used. For put x = o)/2, y = u/z''+^; we obtain

f(y^
^)=^-'M<r+l) 1/(11; 0), Z), whcrC

and it is clear that U{Li; co, z) is changed into /(y, x) by writing u = y,

(o = x, z=l, and is changed into Firj, |) by writing u = r}, &> = 1, z = ^.

We may speak of w, 2; as forins, of degree 1, and suppose that they do not

become infinite, the values x = <x> being replaced by the values z = Q. When

ft), z are replaced by ta, tz, t being any quantity whatever, u is replaced by

t^-^hi, y and x remaining unaltered. We may therefore speak of u as a. form

of degree a + 1.

Similarly U{il; co, z) is a form of degree 7i(o- + l), being multiplied by

i'M<r+i) -when u, to, z are replaced by f^'^u, tw, tz respectively. That there

is some advantage in using such homogeneous forms to express the results of

our theory will sufficiently appear; but it seems proper that the results

should first be obtained independently, in order that the implications of the

notation may be made clear. We shall adopt this course.

Some examples of the change which our expressions will undergo when

the results are expressed by homogeneous forms, may be fitly given here :

—

Instead oi f(y, x) we shall have U{u\ co, z) which is equal to z'^^"^^^f{y, x)\

instead of/' {y) we shall have U' (u) = ^"'-'» i-^+^'Z' (y) ; instead of the integral

functionf gi, of dimension Ti + 1, an integral form gi of degree Ti+ 1, equal

to z^i-^^gi, will arise; since S(Ti+ l) = n+2J — l, it is easy to see that the

determinant^ A (1, gy,..., gn-i) is equal to z"^^^-^ ^{\, g,,-.-, gn-i). In

accordance with § 48, Chap. IV. the former determinant will have a factor

* This homogeneous equation is used by Hcnscl. See the references given in Chap. IV.

(§ 42). It may be regarded as a generalization of the familiar case when cr = 0.

t Chap. IV. § 42.

+ Chap. IV. § 43.
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((o—czY corresponding to a finite branch place of order r where x = c, and a

factor z^ corresponding to a branch place of order s at a; = oo . Further, if,

by the formula (H) of page 63, we calculate the form ^i{u, co, z) from

^1, ..., gn-i, as (^i{oc, y) is there calculated from gi, ..., Qn-i, it is easy to see

that we obtain a form, 4>i{u, to, z), which is equal to ^<»^-^>"'+i>-(^i+i'^i(a;, y).

Hence also, ii ih, Wi, z^ denote special values of it, w, z, the integral

U' {u) (OZi — (OiZ

wherein fi = (bco — az)/{b(o^ — az^), a and b being arbitrary constants, is equal to

;

^(n-1) (<r+l)y (^)
•

^^^ (-^ _ ^^)

and is thus equal to

where \ — fiz^Jz = (bx — a)/{bxi — a).

If in this we put 6 = 0, Ave obtain the form which we have already shewn

to be part of the expression of an integral of the third kind (Chap. IV, p. 67).

But if we put 6=1, the integral is exactly what we have already deduced

(Chap. IV. p. 70, Ex. 1) by the ordinary process of putting x=l/(^-a)

and regarding ^ as the independent variable.

We may, if we please, further specialise the quantities &), z, of which

hitherto only the ratio has been used, supposing* them defined by

(o =x/{x — c), z = l/{x— c), where c is a constant. Then co—cz=l.

Ex. 1. The integral of the first kind obtained in Chap. IV. § 45, p. 67, can similarly

be written

/^^^^'[(co, .f'-'^xK CO, .) + +(co,.r-^"'^„_i(«, CO, .-)].

E.v. 2. In the case y'^= {.v, 1)2,, + 2) wherein y is of dimension p+ l, the equation

U {u; a, z) = is

?t2= (a), 2)2p + 2

obtained by putting y= u/zP'^^, x= <olz.

86. We shall be largely concerned here with rational polynomials which

are integral in x and y. The values of such a polynomial here considered

are only those which it has for values of y and x satisfying the fundamental

equation. We shall therefore suppose every integral polynomial in x and y

reduced, by means of the fundamental equation, to a form in which the

highest power of y which enters is y^~^, say to a form

f(y, x) = y^-'{x, l),^+...+y^-'-H^, 1),,+ ... + {00, 1)^„_,.

* In this view w and z are functions. If we regard c as throughout undetermined, we may

regard these functions as having no definite infinities.
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If herein wc write jj
= vl^'^'^\ x=l/^, a + I being, as before, the dimen-

sion of 7/ as an integral function of x, we shall obtain yfr (i/, w) = |~^' ^ (?/, ^),

where ^ (?;, |) is an integral polynomial in tj and | of which a representative

term is
^n-i-i p'-(»-i-,-| (<T+i)-Mi(l,

^)^., ,-=0, 1, ,
(«-l)

and G is the positive integer equal to the greatest of the quantities

{n-l-{){a-{-l) + fii.

Thus G is the highest dimension occurring for the terms of -^ {y, x),

and ^ {r], ^) is not identically divisible by |. The dimension of the integral

function i/r (y, x) may be G ; but if "^
(?/, ^) vanish in every sheet at ^ = 0,

the dimension of yjriy, x) will be less than G. For this reason we shall

speak of G as the grade of t/t (y, a;). It is clear that if all the values of rj

for f = be distinct, that is, if F {ri) do not vanish for any place | = 0, the

polynomial "^ (t;, |), of order m — 1 in rj, cannot vanish for all the n places

|^= 0. In that case the grade and the dimension of ^{y, x) are necessarily

the same. Further, by the vanishing of one of the coefficients, a polynomial

of grade G may reduce to one of lower grade. In this sense a polynomial of

low grade may be regarded as a particular case of one of higher grade.

In what follows we shall consider all polynomials whose grade is lower

than (?i — 1) cr + ?i — 3 or (m — 1) (a- + 1) — 2, as particular cases of polynomials

of grade {n — 1 ) cr + ?i — 3 : the general expression of the grade will therefore *

be (71 — l)cr + H — 3 + r, or (?i - 1) (o- + 1) + r — 2, where r is zero or a positive

integer. The most general form of a polynomial of grade (ti — l)((r+l)H-?' — 2

is easily seen to be

1 1>. *•) = y'"' {^> 1 )'-2 + 2/"--^ (.X-, i),_i + . . . + 2/»-i-''
(*•, i),_i ^... + {x, i),_i

+ X' {3/»-= {x, 1 ),+i_, + + y"-i-' {X, l),(<,+i)_, + + (*, l),„_i, (,+„_,]

,

wherein the first line is to be entirely absent if r = 0, the first term of the

first line is to be absent if r = 1, and the first term of the second line is to be

absent if a- = 0.

Hence when r > 0, the general polynomial of grade (?i - 1) cr + n — 8 + r

contains

nr -l+^{n-l){n-2 + no-)

terms, this being still true if o- = ; but when r = 0, the general polynomial

of grade (/i — 1) cr + ?i — 3 contains

1(71- l)(7l-2 + 7lO-)

terms. This is not the number obtained by putting /• = in the number
obtained for ;• > 0.

* The number is written in the former way to point out the numbers for the common case

when (r = 0.
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Further, putting

and denoting the aggregate number of zeros of "^ (rj, ^) at ^ = by /x, it

is clear that the aggregate number of infinities of yjr {y, x) &X x= co is

\{n — 1) o- + ?2 — 3 + r] 7? — /i. Since -^ {y, x) is only infinite for x= co , this

is also the total number of zeros of i/r (y, x). We shall find it extremely

convenient to introduce a certain artificiality of expression, and to speak

of the sum of the number of zeros of ylr(y, x) and the number of zeros of

^ iv> ^) at ^ = as the number of generalized zeros of -v/r (y, x). This number

is then n (n - 1) (a- + 1) + 7i (?^ - 2).

If by a change in the values of the coefficients in yjr (y, x), ^ (t], ^)

should take the form ^"^j {ij, ^) where "^i (77, ^) is an integral polynomial

in rj and ^, so that -yfr (y, x) is equal to ^-("-i»<^-("-3)-(»--i) y^r^
(^^ |)^ the sum of

the number of finite zeros of yjr {y, x) and the number of z'eros of "^i (?;, ^)

is n{n — \){a- \-\) + n{r — Z). But, since "^
(/;, |) is equal to ^^i (^, ^),

the number of zeros of "^
(77, ^) at ^ = is n more than the number of zeros

of ^1 (77, 1^) at I = 0. Hence the sum of the number of finite zeros of i/r (y, x)

and the number of zeros of "^
(?/, ^) at |^ = 0, is still equal to

n{n-l){cT + l) + n{r-2).

Ex. i. The number ?j (/i— 1) ((r + l) + H (r-2) is clearly the iiuiiiber of zeros of the

integral form

Ex. ii. The generalized number of zeros of/' (y), for which ?•= 2, is n (n — 1) (tr + 1).

Ex. iii. The general polynomial of grade d, < (n — l) a+ n — 3, contains

[^+^(4i)]['+''-4('+"^(^i)' terms,

E{x) being the greatest integer in x. Its generalized number of zeros is nd.

87. We introduce now a certain speciality in the integral polynomials

under consideration, that known as adjointness.

An integral polynomial yjr (y, x) is said to be adjoint at a finite place

{x = a, y = b) when the integral

1 f{y)f'iy)

is finite at this place. If t be the infinitesimal at the place (Chap. I. §§ 2, 3)

the condition is equivalent to postulating that the expression

^ (y. ^0 dx

f'{y) dt
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shall be finite at the place ; or again equivalent to postulating that the

expression

(a; - g) Vr (y, x)

f'iy)

shall be zero at the place, to the first order at least.

As a limitation for the polynomial y^{y, x), the condition is therefore

ineftective at all places where /' {y) is not zero. And if at a finite place

where /'(y) vanishes, i + lo denote the order of zero of/'(y/), w+1 being

the number of sheets that wind at this place*, the condition is that i/r {y, x)

vanish to at least order i at the place. We shall call \i the index of the

place ; the condition of adjointncss is therefore ineffective at all places

of zero index.

If -^ (y, x) be of grade (?i — 1) cr + /i — 3 + r, and

^ (y, X) = ^-(n-v,T-(n-3)-r \^ (^^ ^^^

the condition of adjointness of i/r (y, x) for infinite places, is that, at all

places ^ = where F' {rj) = 0, the function

F'irj)

should be zero, to the first order at least. It is easily seen that this is

the same as the condition that the integral

\'l^Jr~.dx

should be finite at the place considered.

When the condition of adjointness is satisfied at all finite and infinite

places where /' {y) = or F' (77) = 0, the polynomial yjr (y, x) is said to be

adjoint. If 11 (a; — «) denote the integral polynomial which contains a

simple factor corresponding to every finite value of x for which /'(y) vanishes,

and if N denote the number of these factors, it is immediately seen that the

polynomial yjr (y, x) is adjoint provided the function

"(^-^1^0/ x)
a^^'-\f'{yV^^'^

is zero, to the first order at least, at all the places where /' (y) = or

F' (r)) =0.

£x. i. For the surface associated with the equation

/ (y ,
A-)

=

{^, y)-i+ (•*', y ).-,+ (•*-, y)4= <

'

there are two places at .r=0, at each of which .y= 0. At each of these places/' (2^) vanishes

to the first order, and 10= 0. Hence the condition of adjointness is that ^^(.y, 1') vanishes

* It is easy to see that 1 is not a ncyative integer. Cf. Forsytli, 'Theory of Functions, p. 169.
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to the first order at each of these places. The general adjoint polynomial will therefore

not contain any term independent of x and i/.

Ex. ii. For the surface

yi _ yi
[( 1 + X-^) .^'2+ 1 ] + k\i^=

there are two places at .r=0, at each of which y is zero of the second order : they are not

branch places. At each of these /'(y) vanishes to the second order.

The dimension of y is 1, and the general polynomial of grade (w — 1) o-+ « — 3+ 1 or 2, is*

Aif-^Bi/+ C+ X \py+ Ex+ F\.

In order that this may vanish to the second order at the places in question, it is sufficient

that C—Q and i^=0. Then the polynomial takes the form

By^Ay'^^Dxy->rEx\

and if we put xlr\ for x and 1/j; for y this becomes, save for a factor t;"^^

which is therefore an adjoint polynomial for the surface

1 - ( 1 + X'2) A-2- ri''+ IcK^= 0.

Compare § 83.

Ex. iii. Prove that the general adjoint polynomial for the surfoce

y'^=.{x-af,

is y{x, lX._2 + (,r-«)(,r, l),_i = 0.

(The index of the place at .r= a is 1.)

88. Since the number of generalized zeros of /'(?/) is 7i (w— l)(cr + 1),

(§ 86, Ex. ii), we have, in the notation here adopted,

2 {% + id) = n {n - 1) (a- + 1),

or if / denote %% and W denote 2w, the summation extending to all finite

and infinite places of the surface

/+ Tr=7i(7i-l)(o- + l).

Hence, asf
Tf = 2?i + 2jw - 2,

we can infer

p = i(7i-l)(n-2 + /ic7)-A/,

shewing that / is an even integer.

Further if X denote the number of zeros of an adjoint polynomial

a/r (?/, X), of grade (?i — 1) o- + ?i — 3 + r, exclusive of those occurring at places

where /' (3/) =0 or F' (rj) = 0, and calculated on the hypothesis that the

adjoint polynomial vanishes, at a place wheref (y) or F' (rj) vanishes, to an

order equal to twice the index of the place
J,
we have the equation

X + I = n(n-1){(7+1) + n (r - 2).

* § 86 preceding.

t Forsyth, Theory of Functions, -p. 349.

X So that a place of index \i where \j/ (y, r), or 4' (tj, ^), vanishes to order / + X, will furnish a

contributiou \ to the number X.
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Thus, as

I = n(n-l){a + l)-2{n-l)- 2p,

we have

A' = 7ir + 22) -2;

and this is true when r = 0.

These important results may be regarded as a generalization of some of

Pliicker's equations* for the case o- = 0.

E.V. i. The number of terms in the general polynomial of grade (ri - 1) o-+ ?i - 3+ r was

proved to be i (u- l)(?i-2 + 7io-) + 7tr- 1 or ^{n-l) {n-2 + n<r), according as r>Oor r=0.

This number may therefore be expressed asp+^I+ nr-1 or p+U in these two cases.

Ex. ii. It is easy to see, in the notation explained in § 85, that the homogeneous form

A (1, M, ?(-, ... , u"-^) is of degree n {n-\) (0-+ 1) in o) and ,-, and the form A (1, £^1, ... , ^„_i)

of degree W. The quotient A(l, u, ..., u»-i)/A(l, gi, ... , ^»_i) is (§ 43) an integral form

in o), i, which, by an equation proved here, is of degree /. It is the square of an integral

homogeneous form v whose degree in a, z together is i/.

Ex. iii. It can be proved (compare § 43 6, Exx. 1, 2, and § 48; also Harkness and

Morley, Theory of Function, pp. 269, 270, 272, or Kronecker's original paper, Crelle, t. 91)

that if for y we take the fimction

wherein X, Xj, ... , X„_i are integral polynomials in x, of sufficient (but tinite) order, the

polynomial V occurring in the equation,

A(l,y, ...,3/""^)=V-A(l, 5^1, ...,^„_i),

cannot, for general values of the coefficients in X, Xj, ... , X„_i, have any repeated factor, or

have any factor which is also a factor of A (1,^1, ...,^„_i). And the inference can be

madef that for this dependent variable y, there is no place at which the index is greater

than \, and no value oi x for which two places occur at which /'(y), or F'{q), is zero.

89. We proceed, now, to shew the utility of the notion of adjoint

polynomials for the solution of the problem of finding the expression of

a rational function of given poles.

Let R be any rational function, and suppose, firet, that none of the finite

poles of R are at places where/' (y) = 0. Let ^ be any integral pol}Tiomial,

chosen so as to be zero at every finite pole of R, to an order at least as high

as the order of the pole of R, and to be adjoint; at every finite place where

f'{y) vanishes. Denote the integral polynomial II {x — a), which contains a

linear factor corresponding to every finite value of x for which /'(y) vanishes,

by fM. Then the rational function

fi,A{y,x) = fiRylrlf'{y)

* Salmon, Higher Plane Curies (Dublin, 1879), p. 65.

t See also Noether, Math. Annal. t. xxiii. p. 311 (Rationale Ausfiihnmg, u.s. w.), and Halphen,

Comptes Rendus, t. 80 (1875), where a proof is given that every algebraic plane curve may be

regarded as the projection of a space curve having only one multiple point at which all the

tangents are distinct. But see Valentiner, Acta Math., ii. p. 137.
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is finite at all finite places where R is infinite, and is finite, being zero,

at every finite place at which /' (y) = 0. 1( y^, ... , yn denote the n values

of y which belong to any value of x, and c be an arbitrary constant, the

function

I
(c-y,)fc-y,)...(o-y..)

^^ (^^^ ^)_
i=i c — yi

is a symmetrical function of ?/i, ..., y^ and, therefore, expressible as a rational

function in x only; moreover the function is finite for all finite values of

X and, therefore, expressible as an integral polynomial in x. Since this

polynomial vanishes for every finite value of x which reduces the product

/x to zero, it must divide by jx. Finally, the function is an integral polynomial

in c, of degree n — 1. Hence we have an equation of the form

i=i c yi

wherein A^, A^, ..., u4,i_i are integral polynomials in x.

Therefore, putting c = yi, recalling the form of the function A {y, x), and

replacing y^ by y, we have the result

Eyjr = y'^-'A, + y'^'-'A, + . . . + yA,,-, + A,,-,
,

which we may write in the form

R = ^/i/r,

^ being an integral polynomial in x and y.

Since

{x — a)^_ j^(x — a) -ijr

%, like yjr, is adjoint at every finite place where/' (y) vanishes.

Suppose, next, that the function R has finite poles at places wheref {y)

vanishes. Then the polynomial yfr is to be chosen so that R(x — a) "^1/' (y)

is zero at such a place, a being the value of x at the place. This may be

stated by saying that -yjr is adjoint at such a place and, besides, satisfies

the condition of being zero at the place to as high order as R is infinite.

Corollary. Suppose R to be an integral function ; and for a finite place,

x= a, y=b, where /' (y) vanishes, suppose ^ + 1 to be the least positive

integer such that (x — ay^^jf (y) has limit zero at the place. Then the

polynomial y^r of the preceding investigation may be replaced by the product

H(x — ay, extended to all the finite values of x for which f (y) is zero.

Hence, any integral function is expressible in the form

"^jUix-ay,



126 RATIONAL FUNCTION OF GIVEN POLES. [89

where ^ is an integral polynomial in x and y, which is adjoint at every finite

place where /'(y) vanishes.

If the order of a zero of /'(y) be represented as before by t + w, it is

clear that the corresponding value of f + 1 is the least positive integer for

which {t-\-\)(yW^-\)>i-\-w, or, for which i > (t — !)/(«;+ 1). Hence the

denominator 11 (a; — a)' only contains factors corresponding to places at which

the index \i is gi-eater than zero ; if the index be zero at all the finite places

at which/' (j/) vanishes, every integral function is expressible integrally.

It does not follow that when the index is zero at all finite places, the functions

1, y, ... ,
y"~', form a fundamental system of integral fimctions for which the condition of

dimensions is satisfied. For the sum of the dimensions of 1, y, ... ,

y"~i is greater than

p-\-n—\ by the sum of the indices at all the places t=oo .

It is clear that if K be any rational function whatever, it is possible

to find an integral polynomial in x only, say \, such that \R is an integral

function. To this integral function we may apply the present Corollary.

The reader who recalls Chapter IV. will compare the results there obtained.

90. Let the polynomial -v^ be of grade (n— 1) o- + ?i — 3 +?', and the

poljmoraial ^ of grade (71 — 1) o- + « — 3 + 5, so that

^ __ fc— ./I—lio— 1«—3)—
/•\J/-

^ __ fc— Ol—ll<7— in—3»—«

and R = f-''0/^,

0, ^V being integral polynomials in ri and |^.

If R have poles for ^ = 0, it will generally be convenient to choose the

poljTiomial -v/r so that R>^ is finite at all places ^ = ; if i^' (77) vanish for

any places |^= 0, it is also convenient, as a rule, to choose i/r so that ^"^jF^rj)

vanishes at every place ^ — where F' (7)) vanishes, namely, so that yjr

is adjoint at infinity. When both R is infinite and F' (tj) vanishes at a

place where ^ = 0, we may suppose -v/r so chosen that ^R^F' (77) is zero at

the place. Let -^/r be chosen to satisfy these conditions. Then, since

R"^, = Ryjr ,

^i^^-'i><^+'^-3+r^
is finite at every place, except ^=x, and

(1 — a|) ^/F' {t}), = ^'^^ {x — a)y^lf' (y), vanishes at every place .r = a, y = b,

where x is finite, at which f'{y) vanishes, except ^= ac , it follows, a.s here,

that R can be written in a form

R = 0,/^,

wherein 0, is an integral polynomial in 77 and ^.

Hence 0, = f
'"""0, and therefore r — s is not negative : namely, the

polynomial ^ which occurs in the expression of a rational function in the

form R = ^/V^, is not of higher grade than the denominator y\r, provided

\^ be chosen to be adjoint at infinity, and, at the same time, to compensate

the poles of R which occur for a; = oo . Since a polynomial of low grade
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is a particular case of one of higher grade we may regard ^ and yjr as of the

same grade.

Hence we can formulate a rule for the expression of a rational function of

assigned poles as follows

—

Choose any integral polynomial -y^ which is adjoint

at all finite places and is adjoint at infinity, which, moreover, vanishes at

every finite place and at every infinite place* wher^e R is infinite, to as high

order as that of the infinity of R. If a pole of R fall at a place where

f'{y)> or F' (t]), vanishes, these two conditions may be replaced by a single one

in accordance with the indications of the text. Then, choose an integral

polynomial ^, of the same grade as yfr, also adjoint at all finite and infinite

places, which, moreover, vanishes at every zero of the polynomial t/t other than

the poles of R, to as high order as the zero of yfr at that place. Then the

function can be expressed in theform ^/'^.

91. We may apply the rule just given to determine the form of the

integrals of the first kind.

If V be any integral of the first kind, dv/dx is a rational function having

no poles, for finite values of x, except at the branch places of the surface. If

a be the value of x at one of these branch places, the product (x — a) dv/dx

vanishes at the place. Hence we may apply to dv/dx the same reasoning

as was applied to the function A (y, x) in § 89, and obtain the result, that

dv/dx can be expressed in the form

dv ^ y^'-'Ap + y^-Mi + . + yAn-2 + ^n-i
d^ f'{y)

wherein Aq, ..., An-i are integral polynomials in x. Denote the numerator

by <\>, and let its grade be denoted by (?i — 1) o- + w — 3 + ?• ; then

~T^~^ 'dx"^ ' |:-(n-l) a-in-V jr'(rf) ^1%])
'

But, as a function of ^, dv/d^ has exactly the same character as has dv/dx

as a function of x. Thus by a repetition of the argument F' (rj) dv/d^ is

expressible as an integral function of r/ and ^. Thus r is either zero or

negative,

dv
Wherefore, /' (y) -rj is an integral polynomial in x and y, of grade

(w — l)o- + w — 3 or less. It is clearly adjoint at all finite places, and,

reckoned as a particular case of a polynomial of grade (w — 1) cr + 7i — 3, it is

clearly also adjoint at infinity.

Conversely, it is immediately seen, that if ^ be any integral polynomial of

* That is, if the polynomial be xp, of grade (?i- 1) a + n- 3 + r and ,p = <ir^-i^i-'^)r-(n-Z)-r^ ^
vanishes at ^=::0 to the order stated. A similar abbreviated phraseology is constantly employed.
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grade (n — 1)a + n — S, which is adjoint at all finite and infinite places, the

integral

h
doc,

7'(y)
is an integral of the first kind.

Corollary. We have seen that the general adjoint polynomial of grade

(n — l)<r + n — S contains p + ^I terms, and wo know that there ai-e just

p linearly independent integrals of the first kind. We can therefore make
the inference

The condition of adjointness,for a polynomial of grade (?? — 1) o- + n — 3,

is equivalent to ^I linearly independent conditions fur the coejficients of the

polynomial, and reduces the number of terms in the polynomial to p.

92. We have shewn that a general polynomial of grade {n— l)a+n—S + r

is of the form

We shall assume in the rest of this chapter that the condition of adjoint-

ness for a general polynomial of grade (n — 1)(t + n — S + r is equivalent

to as many independent linear conditions as for a general poljTiomial of

grade (?i — 1) o- + ?J — 3. Thence, the general adjoint polynomial of grade

(n— l)a + n — S + r contains nr — \-\-p terms.

Further we shewed that the adjoint polynomial of grade (;? — l)o- + ?i — 3

has 2p — 2 zeros exclusive of those falling at places where /' {y) = 0, or

Hence, the 2p — 2 zeros of the differential dv (Chap. II. § 21) are the

zeros of the ^iolynominl f (y)dv/dx, exclusive of those where f'{y) — ^, or

F'{'n) = 0.

It is in fact an obvious corollary from the condition of adjointness that

only vani!she.s when vani.she.s. For, at a place where f {y)=0, ^ vanishes i times, -j-

vanishes w times, and/'(y) vanishes i+w times.

Ex. i. For the surface a-ssociated with the equation

f{y, ^)=y+^'(-^, i)i +/(•', n>+y{^\ 1)3 +(•'•. 1)4=0,

where (.r, l)j, ... are integral polynomials in x of the degrees indicated by their suflSxes,

(r= ; and the general polynomial of grade {n-\)a+n-Z or 1, is of the form (§ 86)

Ay+Bx+ C.

The indices of the places where /'(y) = are easily .seen to be everywhere zero—there

are no places, beside l)ranch phices, at which f'{y) vanishes. Hence p is equal to the

number of terms in this polyTioniial, or p = 3. And this polynomial vanishes in 2/j-2= 4

places. The.se results may be niddified when the coefficients in tlie equ.ition have .special

values.
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Ex. ii. For the more particular case when the equation is

/(y, x)=y'+y^{x, l\+y''{x, \).,+yx{x, \).,+x''{x, \).,=

there are two places at ^= at which y=0. For general values of the coefficients in the

equation these are not branch places and f'{y) vanishes to the first order at each ; the

index at each place is therefore \i where i=l, and the condition for adjointness of the

general polynomial of grade 1, is that it shall vanish once at each of these places. These

conditions are equivalent to one condition only, that C=0. Hence, as there are no other

places where the index is greater than zero, the general integral of the first kind is

/
{Ay+ Bx)dxjf'{y)

and p= 2 ; the polynomial Ay+ Bx vanishes in 2p - 2 or 2 places other than the places

^= 0, y= at which /'(?/)= 0.

Ex. iii. In general when the equation of the surface represents a plane curve with a

double point, the condition of adjointness at the places which correspond to this double

point, is the one condition that the adjoint polynomial vanish at the double point*.

Ex. iv. Prove that for each of the surfaces

y^+y^x, \\+y{x, \).,+{x, 1)4-0,

y^^M^, l)2+y(-*, l)4+(^, l)r=0,

there is only one place at infinity and the index there, in both cases, is 1.

Shew that the index at the infinite place of Weierstrass's canonical surface f is in all

cases

-
1
means the least integer greater than rja, and that the deficiency is given bywhere

p = h{r-\){a-\)-r,

where 7' denotes the sum of the indices at all finite places of the surface.

Cf. Camb. Phil. Trans, xv. iv. p. 430. The practical method of obtaining adjoint poly-

nomials of grade {n- 1) o- -1-/1-3 which is explained in that paper (pp. 414—416) is often of

great use.

Ex. v. In the notation of Chap. IV. the polynomial

{X, \Y^-^<i>i+...+{x, l)^n-l-l </,„_!

is an adjoint polynomial of grade {n — \)(T+ n — Z.

Ex. vi. We can prove in exactly the same way as in the text that an integral of the

third kind infinite only at the ordinary finite places {x^, y^), (a-/, yi), at the former like

C\og{x-Xi) and at the latter like - C log {x - .%\'), C being a constant, can be written in

the form

p [ ^ d^

J{x-x,){x-x,')f'{y)'

where v//- is an adjoint integral polynomial in x and y, of grade {7i—l)<r + n — l, which

* The sum of the indices at the k places of the surface corresponding to an ordinary fc-ple

point of the curve is ^k (k-1); the index at each of the places is in fact J(fc - !)• Cf. § 83, Ex. 1.

t Chap. V. § 64.

B. 9
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vanishes at the {n- 1) places x= Xi where n/ is not equal to y, and at the (?;-!) places

j;=^,' where y is not equal to i/j". Puttiug ^ in the form

+(0,— A-i)(x-^i')(^^or"*+^iy"~H...+/f„-i),

where C^, ..., C,_,, Cq, ... , C„_i are constants, it follows, since {x-x'i')y^~^ is of grade

(71— l)<r+ n, and {RQi/*~^+ Itii/^~'^+ ... + R„_i) (x-Xj) (x-Xi) is of grade {n-\)a + n+ l

at least, that li^ is zero and Cq=Co'. Further, if the equation as.sociated with the surface

be written

and Xi {^) denote

^'+Qir~' + -- + Qi,

it follows, from the condition for \^ which ensures that the integral P is not infinite at

all the 71 places jr=.rj, that the factors of the polynomial

are the same as those of/(y, x)l{y—y^, or of

Hence, save for a constant multiplier, P has the form

[ dx

^^j/'G)^^"^'
^i)-(-^, xi)+r~H^, 1)^-1+^-^-^, i),,+...+(.r, i)(„_i)<,^„_3],

where {x, Xj) denotes

so that (r, x^) = {x^ , x), and (x, x^') denotes a similar expression.

A general polynomial \lf of grade {n — l)a+ n-l contains 2n — 1 more terms than a

general polynomial of grade {7i-l)ar+ n — 3. In accordance with the assumption made in

§ 92 the general adjoint polynomial yfr of grade (?i — 1) o-+ ri— 1 will contain 2n—l+p
terms. The condition that yj/ vanishes in the 2n-2 places x=Xi, x^x^' other than those

where y=yi, y=y\ resi>ectively, will reduce the nimiber of terms to^+ 1. This is exactly

the proper number of terms for a general integral of the third kind (cf. § 45, p. 67). The
assumption of § 92 is therefore verified in this instance.

The practical determination of an integral of the third kind here sketched is often very

usefiiL In the hypereUiptic case it gives the integral immediately.

Ex. vii. Prove that if the matrix of substitution Q occurring on p. 62, in the equation

(l,i/,/, ...,y"-') = Q(l,5', ...,^„-,),

be denoted by Q^, and the general element of the product-matrix Q Q be denoted by

Cr,„ and if, for distinctness of expression, we denote the elements

respectively by
Mj, M2) '•• > ^n-l) ^n> *'l> *'2) "'3) ••• ) »'

then the function

</>o ix) + </>! {x) 5^1 (a-i)+ . . . + 0„ _
J
(.r) g^ _ ,

(a;,),

which occurs in the expression of an integral of the third kind given in § 45, is equal to

This takes the form «i/i + ... + w„X-„ obtained in E.k. vi. when r„= and c^^= \, namely

when Q is a constant. This condition will be satisfied when the index is zero at all finite

and infinite places.
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Ex. viii. Prove for the surface associated with the equation

that the condition of adjointness for any polynomial is that it vanish to the second order

at the place ^= 0.

Thence shew that the polynomial

{X - X{) |>2 ^y^^ (.^j)+ ^^ {x^)\ - {x- X\) [y'^+yxi {^{) + X'l
(•*!')]

+ {Ay+ Bx"^ \-Cx+ D) {x - x^) {x- x.^)

is adjoint provided B=0 ; and thence that the integral of the third kind is

f dx^ pHyxi(^i)+X2(-^i) _ /+yxi(-^i')+X2(-^'i')

^ j^^ q^ ^ ^1
i/' (y) L :r-.rj .r— .r^ J

Ex. ix. There is a very important generalization* of the method of Ex. vi. for forming

an integral of the third kind. Let /x be any positive integer. Let a general non-adjoint

polynomial of grade /i be chosen so as to vanish in the two infinities of the integral, which

we suppose, first of all, to be ordinary finite places. Denote this polynomial by L. It

will vanish t in 7i/i-2 other places i?i, B<^., .... Take an adjoint polynomial >/r, of grade

(>i-l)<r+?t — 3+^, chosen so as to vanish in the places ^j, B^., .... The polynomial will

presumably contain (§ 92) n/x— 1+jo- («/u — 2) or p+ l homogeneously entering arbitrary

coefficients, and will vanish (§ 88) in nfi+ 2p-2-{nfi-2) or 2p places other than the

places Bi, B^, ... and places where /'(?/), or F' (rj), vanishes. Then the integral

[\lr dx

LfW)
is a constant multiple of an elementary integral of the third kind.

The proof is to be carried out exactly on the lines of the proof of the form of an

integral of the first kind in § 91, with reference to the investigation in § 89.

Further as we know (§ 16) that dPjdx is of the form

C {dPld.v\ + Xi (dvjdx) + ... + \p (dVp/dx),

where C,\, ... ,\p are arbitrary constants, (dPjdx)^ is a special foi'm of dP/dx with the

proper behaviour at the infinities, and v^, ... , Vp are integrals of the first kind, it follows

that the polynomial \|/-, which is an adjoint polynomial of grade {n — l)a-+n-S+ fi, pre-

scribed to vanish at all but two of the zeros of a non-adjoint polynomial L of grade fi, is of

the form

ylr= -^Q + L(f),

where -(//-q is a particular form of yjr satisfying the conditions, and cf) is any adjoint poly-

nomial of grade {n-l)<r+ n— 3 ; for this is the only form of >// which will reduce dP/dx to

the form specified.

Ex. X. Shew that if in Ex. ix. one or both of the infinities of the integral be places

where /'(y)= 0, the condition for L is that it vanish to the first order in each place.

Ex. xi. For the case of the surface associated with the equation

(y. *")4+(y, -^Oa+Cy. •^•)2=o>

* Given, for <t = 0, /x= 1, in Clebsch and Gordan, Abel. Functionen (Leipzig, 1866), p. 22, and
Noether, "Abel. Differentialausdriicke," Math. Annal. t. 37, p. 432.

t Counting zeros which occur for x=oo, or supposing all the zeros to be at finite places.

Zeros which occur at a; = oo are to be obtained by considering if^L, which is an integral polynomial

in I and t? (§ 86).

9—2
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for which the dimension of y is 1, let us form the integral of the third kind with its

infinities at the two places .r= 0, y= by the rules of Exs. ix. and x. ; taking ^= 1, the

general iKjlyuomial of gnvde 1 which vanishes at the two places in question is \x\\ty.

The general polynomial of grade n - 3 + /*, or 2, is of the form ax*+ %*+ 'ikxy+ Igx+ Ify + c.

In order that this may be adjoint, c must vanish ; in order that it may vanish at the two

l)oints, other than (0, 0) at which \.v+ ni/ vanishes, it must reduce to the form

{\x+fii/){Ax+Bi/+C).

Hence the integral of the third kind is UAx+ By-\-C)dxjf\y). (Cf. § 6 /3, p. 19.)

Ex. xii. Obtain the other result of § 6 ^, p. 19 in a similar way.

Ex. xiii. It will be instructive to compare the method of expressing rational functions

which is explained here, with a method founded on the use of the integral functions

obtained in Chap. IV. We consider, as example, the ca.se of a rational function which has

simple ix)les at k^ places where x=a^, k.^ places where x=a2, ..., k^ places at x=ar, and for

simplicity we supjMise all these values of .r to be finite, and a.ssume that the sheets of the

surface are all distinct for each of these values of .v. If It be the rational function, the

function {x-a^)...(x-tfr) R i"^ ^i^ integral function of dimension r, and is expressible in

the form
(.r, l)r+(.r, 1);._, _i 5^1 + . ..4-(^-, 1)^.^ _i 5'n-i ;

' n—

1

this form contains (r + l) + (r — ri) + ... + (r— t„_i) ot nr—p+ \ coefficients; these co-

efficients are not arbitrary, for the function {x — a^)...{x— ar) R mast vanish at each of the

n — k\ places x= aj where It is not infinite, and must vanish at each of the places x=a^
where R is not infinite, and so on. The number of linear conditions thus imposed is

m — {ky+L^-\-...+kr) or m — Q, if Q be the total number of poles of the function R.

Hence the number of coefficients left arbitrary is 7ir—p + l -{nr- Q) or Q-p + \ ; this is

in accordance with results already obtained.

Ex. xiv. If the diffisrential coefficients of t+ 1 linearly independent integrals of the

first kind vanish in the Q ix)les, in Ex. xiii., the conditions for the coefficients are equi-

valent to only nr-Q-{T-\-\) independent conditions.

93. Let A^, ... , Aq be Q arbitrary places of the Riemann surface. We
shall suppose these places so situated that a rational function exists of which

they are the poles, each being of the first order*. This is a condition which

is always satisfiedf when Q >p. The general rational function in question is

of the form

X + \\Zi -|- . . . -f- \qZq

,

wherein \ \,...,\ are arbitrary constants and Z^,..., Zq are definite

rational functions who.se poles, together, are the places A^,..., A^^.

The number q is connected with Q by an equation

(2-ry = p-T- 1,

where t + 1 isj: the number of linearly independent linear aggregates of the

form

fi^Q. {x)-\- + fjLyVlj, {x),

* We speak as if the poles were distinct. This is unimportant.

+ Cf. Chap. III. X Chap. III. §§ 27, 37.
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which vanish in A^, ..., J-q. This aggregate is the differential coefficient, in

regard to the infinitesimal at the place x, of the general integral of the

first kind. We have seen* that this differential coefficient only vanishes

at a zero of the integral polynomial of grade (?i— l)(r + n — 3, which occurs

in the expression of the integral of the first kind. Hence t + 1 is the

number of linearly independent adjoint polynomials of grade (n — 1) o- + w — 3

which vanish in the places A^, ..., Aq\ in other words, r + 1 is the number of

coefficients in the general adjoint polynomial of grade (?i — 1) o- + w — 3

which are left arbitrary after the prescription that the polynomial shall

vanish in A^, ... , Aq.

Now we have proved that if any adjoint polynomial -v/r, of grade

(n — l)a-+ n — 3 + r be taken to vanish at the places A-^, ...,Aq-]-, its other

zeros being B^, ...,Bji, where | R = nr + 2p-'2-Q, and ^ be a proper general

adjoint polynomial of grade (w-l)cr + n — 3 + r vanishing at B^,..., 5^,

any rational function having ^i, ..., ^^ as poles, is of the form ^/-v/^. Hence

the rational functions Z^, ..., Zq are of the forms ^i/yfr, ..., %/>/^, and the

general form of an adjoint polynomial of grade {n — l)(T + 7i — S + r vanishing

a,t Bi, ..., Bji must be

wherein \, Xj, ..., Xq are arbitrary constants, and yjr, %,..., ^q are special

adjoint polynomials of grade {71— 1) cr + n — S + r which vanish irv B^, ... , B^,

some of them possibly vanishing also in some of ^1, ..., Aq.

Since the general adjoint polynomial ^ of grade (?i — 1) cr + « — 3 +r
contains nr—l+p arbitrary coefficients, and these, in this case, by the

prescription of the zeros B^, ..., Bji for '^, reduce to 5- + 1, we may say that

the places B^, ..., Br, as determinators of adjoint polynomials of grade

(n—l)(r+n—S+r, have the strength nr—1+p—q— 1, or R—(p — l) + Q — q — l,

or jR — (t+1). And, calling these places B^, ..., Bji the residual of the

places Ai, ..., Aq, because they are the remaining zeros of the adjoint

polynomial -^jr of grade {n—l)a + n — S + r which vanishes in Ai,..., Aq,

we have the result :

—

When Q places ^1,..., Aq have the strength p — (t + 1) or Q — q as

deterTninators of adjoint polynomials of grade {:n—\)a-\-n — 3, their i^esidual

of R = 7ir+2p — 2— Q places, which a7^e the other zeros of any adjoint

polynomial of grade (n — l)o- + ?i — 3 + r prescribed to vanish in the places

A^,..., Aq, have the streiigth R — {t+1) as determi7iato7's of adjoi7it poly-

nomials of g7^ade {n—l)a- + 7i — S + r.

Particular cases are, (i), when no adjoint polynomial of grade (n- l)o--|-/i-3 vanishes

in Ai, ..., Aq] then the places Bi,...,Ba have a strength equal to their number;

(ii), when one adjoint polynomial of grade (?i — 1) (t+ w— 3 vanishes in A^, ..., A^; then

* § 92. t A condition requiring in general Q<nr~ l+p. + § 88.
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there are 7^ — 1 of the places B^, ..., B^ such that every adjoint polynomial of grade

(« — l)(r+ «-3+ r, vanishing at these places, vanishes at the remaining place. For an

example of thi.s Civse we may cite the theorem : If a cubic curve be drawn through three

collinear points A^, A^, A^ of a plane quartic curve, the remaining nine intersections

/?!, ..., Bg are such that every cubic through a proper set of eight of them necessarily

passes through the ninth. In general any set of eight of them may be chosen.

When T 4- 1 is greater than zero we may take the polynomial -^ itself to

be of grade {n — 1) a- + 7i — 3. Since then a general polynomial ^ of grade

(w — l)o- + 71 - 3 contains p arbitrary coefficients, we can similarly prove

that

117/en T+1 adjoint polynomials of grade {n—l)a-\-n—Z vanish in Q
places Ai, ..., .4^, so that the Q 'places have the strength Q — q as deter-

minators of adjoint polynomials of grade (;i — 1) tr + ?i — 3, tlieir residual

Bi, ... , Bjt, of R = 2p — 2 — Q places, have the strength p — q — 1, or R — r, a^

determinators of adjoint polynomials of grade (71 — 1) o- + n — 3. In this case

the numbers are connected by the equations

Q + R = 2p-2, Q-R = 2(q-r),

and the characters of the sets A^, ..., Aq, B^, ..., Bj^ are perfectly reciprocal*.

Ex. When the strength of a set Jj, ..., J^, wherein Q<p, as determinators of adjoint

polynomials of grade (?i — l)(r+ 7i-3, is equal to their number, so that the number of

linearly independent adjoint polynomials of grade (?j-l)o-+ n-3 which vanish in the

places of the set is given by t+ 1 =jo-(?, it follows that q= 0. Thus if ^1, ... , ^„ be the

residual zeros of an adjoint polynomial, c^, of grade (w- l)cr + « — 3, which vanishes in

Ayy ..., Afi, so that It+ Q= 2p-2, only one adjoint polynomial of grade (?i-l)o- +«-3
vanishes in B^, ..., /i„, namely

(f>.

94. It is known that the number of placesf of the Riemann surface

at which a rational function takes an arbitrary value c, is the same as the

number of places at which the function is infinite. The sets of places at

which c has its different values, may be called equivalent sets of places for

the function under consideration. For such sets we can prove the result :

—

if a set of places Aj,',..., A'q be equivalent to a set A^, ..., Aq, in the sense

that a rational function g takes the value c at each place of the former set

and at no other jdaces, and takes the value c at each of A^, ..., Aq and
at no other places of the Riemann surface, then the general rational function

with simple poles at A(, ...,A'q contains as many linearly entering arbitrary

constants as the general rational function whose poles are at A^ Aq.

* For the theory of such reciprocal sets from tlie point of view of the algebraical theory of

curves, see the classical paper. Brill u. Noether, "Uebcr die algebraischen Fuuctionen u.s.w.".

Math. Annul, vii. p. 283 (1873).

+ In this Article, when a rational function g is said to have the value c at a place, it is

intended that .7
- c is zero of the first order at the place. A place where 17 - c is zero of the k-ih

order is regarded as arising by the coalescence of k places where g is equal to c.
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For let the general rational function with poles at ^j, ..., ^q be denoted

by G, and be given by
G = Vq -\- vfii -{- +VqGq,

where v^^, ...,Vq are arbitrary constants, and Gy, ...,Gq are particular functions

whose poles are among A^, ..., AQ— of which one, say Gi, may be taken

to be the function (g - c)/(g - c). Then if G' denote any function what-

ever having poles Ax,..., A'q, and not elsewhere infinite, the function

G' {g - c')l{g - c) is one whose poles are at -4i, ... , ^q ;
thus G' (g - c)l(g - c)

can be expressed in the form

G' (9 - C')l(g -C)= Vo+l^iG, + + VqGq,

for proper values of Vo, ..., Vq. Therefore G' can be expressed in the form

9-0 g-c ^ ^g-c

Since this is true of every function whose poles are at A^', ..., A'q, and that

the functions Gi(g — c)/{g — c) are functions whose poles are at A^ , ..., A'q,

the result is obvious.

95. If the symbol oo be used to denote the number of values of an

arbitrary (real or complex) constant, the general adjoint polynomial ^, of

grade (n — 1) o- + ?i — 3 + r, of the form

^ = \-»/r + Xi^i + +X5^5,

which vanishes in the places B^, ..., Bj^, gives rise to oo ^ sets of places,

constituted by the zeros of ^ other than 5,, ...,Bji, each set consisting of,

say, Q places. Let -4i, ..., -4q be one of these sets.

We shall say that these sets are a lot of sets ; that each set is a residual

of By, ..., Bji, and that they are co-residual with one another; in particular

they are all co-residual with tlie set Ai, ..., Aq. Further we shall say that

the multiplicity of the sets, or of the lot, is q, and that each set has the

sequence Q — q; in fact an individual set is determined by q independent

linear conditions, namely, of the Q places of a set, q can be prescribed and

the remaining Q — q are sequent.

It is clear then that any set, A-^, ..., A'q, which is co-residual with

Ai,..., Aq, is equivalent with Ai, ..., Aq, in the sense of the last article;

for these two sets are respectively the zeros and poles of the same rational

function ; in fact if yfr be the polynomial vanishing in Bi, ..., B^, A^, ..., Aq,

and ^ the polynomial vanishing in B^, ..., Bj^, A^ , ..., A'q, the rational

function ^/^/r has A^', ..., A'q for zeros and A^, ..., Aq for poles. Hence

by the preceding article it follows that the number q + 1 of linear, arbitrary,

coefficients in a general rational function prescribed to have its poles at

Ay, ..., Aq, is the same as the number in the general function prescribed to
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have its poles at the co-residual set A^',..., A'q. In other words, co-residual

sets of places have the same multiplicity, this being determined by the

number of constants in the general rational function having one of these

sets as poles ; they have therefore also the same strength Q — q, or p — {t + 1),

as determinators of adjoint polynomials of grade {n — I) a + n - 3.

96. In the determination of the sets co-residual to a given one, A^, ....

A
(J,
we have made use of a particular residual, Bi, ..., Bj.. It can however

be shewn that this is unnecessary

—

and that, if two sets he co-residual for any

one common residual, they are co-residual for any residual of one of them. In

other words, let an adjoint polynomial yfr, of grade {a — l)a-+n—S + r, be

taken to vanish in a set A^, .,., A^, its other zeros (besides those where

f'(^ij) = or jP'(7;) = 0), being jB,, ...,5jj,and an adjoint polynomial ^,. of

grade (« — 1) o- + » — 3 + '*, be taken to vanish in Bi, ..., Bji, its other zeros

being the set A^, ..., A'^, co-residual with A^, ..., .4^; then if an adjoint

polynomial, i/r', of grade (/i — l)o--|- w — 3-t-r', which vanishes in Ai, ..., Aq,

have Bi, ..., B'a- for its residual zeros, R being equal to nr -|- 2/) — 2 — Q, it

is possible to find an adjoint polynomial ^', of grade (n — 1) o--f- h — 3 -f-
r',

whose zeros are the places B^, ..., B'n,, A^, ..., J.'g.

For we have shewn that any rational function having J.j, ... , ^^ as its

poles can be written as the quotient of two adjoint polynomials, of which the

denominator is arbitrary save that it must vanish in the poles of the function,

and be of sufficiently high grade to allow this. In particular therefore the

function ^/>/r, whose zeros are J./, . .
.

, A'q, can be written as the quotient of

two polynomials of which i/r' is the denominator, namely in the form '^'j'^'-

The polynomial ^' will therefore vanish in the places Bi, ..., B'jf, A^', ...,A'q,

as stated.

Hence, not only are equivalent sets necessarily co-residual, but co-residual

sets are necessarily equivalent, independently of their residual*.

97. The equivalence of the representations '^/^, ^'/^', here obtained, of the same

function, ha.s place algebraically in virtue of an identity of the form

where/=0 is the equation associated with the Riemann surface and K is an integral poly-

nomial in j; and //. Reverting to the i)hra.seology of the theory of plane curves, it can in

fact be shewn that if three curves /=0, ^ = 0, 11=0 be so related that, at every common
point of/ and

yf^,
which is a multiple ^wint of order k for / and of order I for >//, whereat

/and ^ intersect in kl+ ^ points, the curve II have a multiple point of order k+ l- 1 -I-/3,

so that in particular JI i)asses through every simple intersection of / and >//•, then there

exist curves ^'= 0, K=0, such that, identically,

Now in the case under consideration in the text, if the only multiple points of / be

multiple points at which all the tangents are distinct, the adjointness of >^ ensures that ^
* For the theory of co-residual sets for a plane cubic curve see Salmon, Higher Plane Curves

(Dublin, 1879), p. 137. That theory is ascribed to Sylvester; of. Math. Anml., t. vii., p. 272 note.
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has a multiple point of order k-l at every multiple point of/ of order k. The adjointness

of the polynomials ^, \|/-' ensures that the compound curve ^'^' has a multiple point of

order 2(/J:— 1) or /(; + /(; — 1 — 1 at every multiple point of/ of order k. Further, the ciu-ve

^yjr' passes through the simple intersections of / and x//', which consist of the sets

Ai, ..., Aq, Bi, ..., B„; for ^ passes through Bi,...,B„, and yj^' is drawn through

Ai, ... , Aq. Hence the conditions are fully satisfied in this case by taking 11=^^1^' ; thus

there is an equation of the form

from which it follows that the curve ^' is adjoint at the multiple points of / and passes

through the remaining intersections of / and ^y}r\ namely through A\, ... , A'q and

B\, ... , B'r, . This is the result of the text.

In case of greater complication in the multiple points of /, there is need for more care

in the application of the theorem here quoted from the algebraic theory of plane curves.

But this theorem is of great importance. For further information in regard to it the

reader may consult Cayley, Collected Works, Vol. i. p. 26 ; Noether, Math. Anrial. vi.

p. 351 ; Noether, Math. Annal. xxiii. p. 311 ; Noether, Math. Annal. xl. p. 140 ; Brill and

Noether, Math. Annal. vii. p. 269. Also papers by Noether, Voss, Bertini, Brill, Baker in

the Math. Annal. xvii, xxvii, xxxiv, xxxix, xlii respectively. See also Grassmann, Die

Ausdehnungslehre von 1844 (Leipzig, 1878), p. 225. Chasles, Compt. Rendus, xli. (1853).

de Jonquiferes, Mem. par divers savants, xvi. (1858).

98. From the theorem, that a lot of co-residual sets, of Q places, may be

regarded as the residual of any residual of one set, *S'q, of the lot, it follows,

that every lot wherein the sequence of a set is less than p, may be determined

as the residual zeros of a lot of adjoint polynomials of grade (w — 1) o- -f w — 3,

which have R = 2p — 2 — Q common zeros. For the sequence Q — q\B equal

to p — (r-f-l), and when t-|-1>0 an adjoint polynomial (involving r-fl

arbitrary coefficients) can be determined which is zero in any one set, Sq, of

the lot, and in R other places.

Hence also, when Q places are such that the most general rational

function, of which they are the poles, contains more than Q—p+\ arbitrary

constants, this general rational function can be expressed as the quotient of

two adjoint polynomials of grade (/i— l)o- + ?i — 3 ; the same is true when
the Q places are known to be zeros of an adjoint polynomial of grade

(«- l)o-+/i-3.

It follows from what was shewn in Chap, III. §§ 23, 27, that if j9 places be

the poles of a rational function, an adjoint polynomial of grade (n— l)(r + ?i—

3

vanishes in these places ; and an adjoint polynomial of that grade can always

be chosen to vanish in ^ — 1, or a less number, of arbitrary places. Hence,

every rational function of order less than /? + 1, is expressible as the quotient

of two adjoint polynomials of grade {n — 1) a + n — ^.

E.V. i. A rational function of order 2p — 2 which contains p, or more, arbitrary/ constants

{one being additive) is expressible as the quotient of two adjoint polpwmials of grade

{n-\)(T-\-n-Z.

Ex. ii. For a general quartic curve, co-residual sets of 4 places with multiplicity 1 are

determined by variable conies having 4 given zeros ; but co-residual sets of 4 places with
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multiplicity 2 are determined as the zeros of variable polynomials of degree 1, i.e. by

straight lines.

Ex. iii. The equation of a plane quintic curve with two double points, can bo written

in the form ^S' -^'S=0, where ^, ^' are cubics jxissiug through the double jxtints and

seven other common jjoints, and S, S' are couics passing through the double points and

two other common iwints.

Ex. iv. "VMien t+1 adjoint polynomials of grade (w — l)<r+ n — 3 vanish in a set, Sg, of

Q places, there must be p — r — l independent places A^, ... , Jp_r-i, in S^, such that

every adjoint i)olynomial of grade (n— l)(7 + n — 3 which vanishes in them vanishes of

itself in the remaining q places Ap^r, ... , Aq. Let S^ be a residual of >%, R being equal

to 2p — 2-Q. Then, regarding *S'« and Ap_T, ..., Aq, together, as forming a residual of

Jj, ...,Jp_T_i, it follows (§ 93) that there is only one adjoint polynomial of grade

(n- l)o-+ 7i — 3 which vanishes in S^ and in Jp_T, ... , Af^. Hence there exists no rational

function having poles only at the places A-^, ..., Ap_r-i. For such a fxmction could be

expressed as the quotient of two adjoint polynomials of grade (n— l)(r+/i — 3 having

Sr and -4p_T, ... , .4^ as common zeros. Compare § 26, Chap. III.

It can also be shewn, in agreement with the theory given in Chapter III., that if

jB,, ... , Br+\ be any r'+ l indei>endent places, t being less than r, there exists no rational

function having poles in S^^ and B^, ..., Bt+\. In fact r+l -(r'+ l) linearly indei)endent

adjoint polynomials of grade (n-l)(r +n-3 vanish in S^ and B^^ ..., Bt+\. Let S^-,

where R = 2p —2- {Q+ t +\),\ie the residual zeros of one of these polynomials. Then the

strength of S^., as determinators of adjoint polynomials of grade (7i-l)(r+ ?i-3 is (§ 93)

R — {t— t') + \ =R— t, where R= 2p — 2 — Q, namely the .strength of S^, is the same as the

strength of .S"^, and B^, ..., Bt+i together; hence every adjoint polynomial of grade

(n— l)o-+ n— 3 which vanishes in S„,, vanishes also in B^, ... , Br+i. Now every rational

function having Sq and .Sj, ... , .5, +1 as poles, could be expressed as the quotient of two
adjoint polynomials of grade («- l)o-+ 7i-3 ha\nng S^- as common zeros; since each of

these ixjlynomials will also have B^, ... , .Cz+i as zeros, the result is clear.

99. The remaining Articles of this Chapter are devoted to developments

more intimately connected with the algebraical theory of curves.

We have seen that an individual set of a lot of co-residual sets of Q
places is determined by the prescription of a certain number, q, of the places

;

this number q being less than* Q and not greater than Q-j)-

But it does not follow that any q places of a set are eflfective for this

purpose ; it may happen that q places, chosen at random, are ineffective to

give q independent conditions.

We give an example of this which leads (§ 100) to a result of some interest.

Suppose that a set of Q places, Sq, is given, in which no adjoint polyno-

mial of grade (/i — 1) cr + n — 3 vanishes ; then t 4- 1 is zero, and co-residual

sets are determined hy Q-p places. Suppose that among the Q places there

are p-^s-l places, forming a set which we shall denote by crp+g_i, which
are common zeros of t' -f- 1 adjoint polynomials of grade (n-l)o--t-n-3;
denote the other Q-p- s + \ ov q-s -^-l places by o-^,+i.

The formula is Q -q=p- (t + \); if q were Q and therefore T+l=p, all adjoint poly-

nomials of grade {n-l)a + n-d would vanish in the same Q places, contrary to what is proved
in § 21, Cbap. II.
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Take an adjoint polynomial of grade (n—l)(T + 7i — S + r which vanishes

in the places of the set Sq, and let Sji denote its remaining zeros, so that

11+ Q = nr + 2p — 2. If we now regard the sets S^^, a-qs+i together as the

residual of the set a-p+g-i, it follows (§ 93) that S^, o-q^g+i together have only

the strength R + q — s + 1 — (t + 1), or nr +p — 2—(t' +s), as determinators

of polynomials of grade (n — l)a- + n-S + r: and if we choose s — 1 places

^1, ..., Ag-i from <Tp^s-i> the polynomial of grade (n — 1) a + n — S + 7' with

zeros in Sji, which vanishes in the q places constituted by a-q^g+i and

Ai, ..., Ag-i together, will not be entirely determined, but will contain*

r+2 arbitrary coefficients, at least "j* : thus t' + 1 further zeros must be

prescribed to make the polynomial determinate.

A particular case of this result is as follows :—Consider a lot of co-

residual sets of Q, =q + p, places, in which no adjoint polynomial of grade

{n — 1)<T + n — S vanishes. If p of the places of a set be zeros of r +1
adjoint polynomials of grade {n—l)(r + n — S, then the other q places are not

sufficient to individualise the set ; r' + 1 additional places are necessary.

For instance a particular set from the double infinity of sets of 5 places, on a plane

quartic curve, determined by variable cubic curves having seven fixed zeros, is generally

determined by prescribing 2 places of the set. But if there be one of the sets for which

3 of the five places are collinear, then the other two places do not determine this set

;

we require also to specify one of the three collinear places. It is easy to verify this result

in an elementary way.

100. Consider now two sets Sjt, Sq^, which are residual zeros of an

adjoint polynomial, yjr^, of grade {n — 1) cr + ?i — 3 + rj, so that

Q^ + R = nr, + 2p-2.

Let Xf-ri + i be the number of terms in the general non-adjoint polynomial

of grade r — ?\ and N^r-r, be the total number of zeros of such a non-adjoint

polynomial of grade r — r,. Take Xr-n independent places on the Riemann

surface, forming a set which we shall denote by Tr-r,, and determine a non-

adjoint polynomial, x> of grade r — 7\, to vanish in Tr-r,- It will vanish in

Nr-r, — Xr-r, othcr placcs, Ur-r^- Supposc that no adjoint polynomials of

grade (?i — 1) cr -f- ?i — 3 vanish in all the places of Sq^ and Tr-^- The product

of the polynomials -^^^ and x is an adjoint polynomial of grade {n — \)a + n

— 3 -I- r. A general adjoint polynomial of grade (w — l)cr + ?i — 3-Fr which

vanishes in 8^ will vanish in all the places forming ^S^^ , Tr-r, , Ur-r^ together,

provided we choose the polynomial to have a sufficient number of these

places as zeros. Divide the set ^S^^^ into two parts, one, T, consisting of

Qi—p + {N'r-ri — Xr_r,) placcs, the other U consisting o( p — {Nr-n — Xr-r,)

* For nr+p-2 is the number of independent zeros necessary to determine an adjoint poly-

nomial of grade (n-l)<r + n-3 + r.

t More if the s - 1 places A,, ..., Ag-i be not independent of the others already chosen.
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placea The sets T and Tr-r, together consist of Qi — }y -\- Nr-r,y or Q — p,

places, where

Q=Q,+Nr-r,, =nr-\-2p-2-R,

for ^"^r-r^ = n{r— i\), (§ 86, Ex. iii.) ; if thou the sots U and Ur-r, together

are not zeros of any adjoint polynomial of grade (?i— l)o- + n — 3, the general

adjoint polynomial, of grade (71 — I) a + n — S -{ r, which vanishes in aS'^, will

be entirely determined by the condition of vanishing also in the places of

T and jTr-r, ,and will of itself vanish in the remaining places t^ and Ur-r,-

If, however, t' + 1 adjoint polynomials of giade (71 — 1) o- + n — 3 — (r — i\)

vanish in the places U, the products of these with the non-adjoint polynomial

^^ give t'+1 adjoint polynomials of grade (n — 1)o- + h-3 vanishing in II

anil Ur-r,- 1" that case, assuming that no adjoint polynomials of grade

(71— 1) (7 + 71 —3 vanish iu the p places U, Ur-r,, other than those contain-

ing
;:^

as a factor, the adjoiut polynomial of grade {n — 1) cr + n — S + r which

vanishes in S^t, T and Tr-r^, will require t' + 1 further zeros for its complete

determination (§ 99).

Since now the set Tr-r, entirely determines the set f7r_,-, , we may drop

the consideration of it, and obtain the result

—

The adjoint polynomial, of grade {n—l)a + n — S + r, which vanishes in

all but p — {Nr-r^ - Xr-r,) of the zeros of an adjoint polj-nomial of grade

{n — 1) a + n — S + Vi, will have a multiplicity t +1 + Xj.^^, where t' -F 1 is

the number of adjoint polynomials of grade (71 — 1) o- + ?i — 3 — (r — rj) which

vanish in these other p — Nr-r, + Xr-r, zeros. When r +1 is zero the adjoint

polynomial of grade {n— l)a- + n—S + r vanishes of itself in the remaining

p — Nr-r^+Xr-r, zcros of the adjoiut polynomial of grade {n — l)cr + n — S + Vi.

When t' -I- 1 is not zero it is necessary, for this, to prescribe t' -f- 1 further

places of these ]) — -A^r-r, + Xr-r, zeros (provided t' + 1 < p — Nr-r^ + Xr-r)-

We have noticed (§ 8G, Ex. iii.) that

Nr-n=n{r-ri\

Xr-r, = E(j^) + l][r-r. + l-i('r + l)E
f-- •;)]

- 1,

where E(x) denotes the greatest integer in x.

For <r = 0, therefore, the number ^; — Nr-r, + Xr-r, is immediately seen to

be equal to

H7-l)(7-2)-i/,
where y = n — {r — r^), and ^I is the sum of the indices, of the surface, for

finite and infinite places (§ 88).

Thus the result, for cr = 0,— an adjoint polynomial of degree n — S + r

which vanishes in all but ^(y—l)('y — 2) — ^I of the zeros of an adjoint

polynomial of degree 71— S + 7', (r > 7\, y = n — {r — 7-,) <^ 3) will have a
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viultiplicity t' + 1 + ^ (w- — 7) (w — 7 + 3), where t' + 1 is the number of adjoint

polynomials of degree 7—8 which vanish in the ^{y — l)(y — 2)— ^I un-

assigned zeros ; if r' -{-l is zero this polynomial of degree w — 3 + r will of

itself vanish in these unassigned zervs : if r +1>0 it is necessary, for this, to

prescribe r +1 or, if t' + I > ^ (y — I) (y — 2) — ^I, to prescribe all the un-

assigned zeros.

For example let n= b ; take as the fundamental curve a plane quintic with 2 double

points (^= 4) ; let the remaining point of intersection with the quintic, of the straight line

drawn through these double points, be denoted by A.

(i) Take r— 2, r^^l. Then ^=5-1= 4, •y-3 = l; thus, an adjoint quartic curve

vanishing in all but ^(y — l)(y-2) — 2, or 1, of the zeros of an adjoint cubic, that is,

vanishing in 10 of these zeros, beside vanishing at the double points, will have a multi-

plicity r'+ l+^4, or t'+ 1 + 2, where t' + 1 is zero if the non-assigned zero be not the point

A : and this quartic will then, of itself, pass through the unassigned zero. In this case, in

fact, the prescription of the 10 -t- 2 zeros of the quartic on the cubic, is a prescription of

more than 4.3-jOi, where ^j is the deficiency of the cubic. Hence the quartic will

contain the cubic wholly, as part of itself. (In general, the condition to provide against

this can be seen to be r > 3.)

(ii) Take the same fundamental quintic, with r=A, /•^= 3. Then an adjoint sextic

curve, y\r, passing through all but |3 . 2 — 2, or 1, of the zeros of an adjoint quintic, ^, that

is through 20 of them, will have multiplicity t' -f 1 -|- 2, where r' -f- 1 is zero unless the other

zero of the quintic, '^, be the point A.

If however the unassigned zero of the quintic, ^, be the point A, the 20 points are not

sufficient ; the sextic, !//, has multiplicity 3 and the 20 points plus A are necessary to

make -v^ go through the remaining 7 points.

It should be noticed that an adjoint curve of degree 7 — 8 can always be

made to pass through ^ (7 — 1)(7 — 2) — ^/— 1 places. The peculiarity in

the case considered is that such curves pass through one more place.

The theorem here proved was first given by Cayley in 1843 {Collected Works, Vol. i.

p. 25) without special reference to adjoint curves. A further restriction was added by

Bacharach {Math. Annal. t. 26, p. 275 (1886)).

101. In the following articles of this chapter we shall speak of an

adjoint polynomial of grade (n — 1) o- -f w — 3 as a ^-polynomial. In chapter

III. (§ 23) we have seen that the set of places constituted by the poles

of a rational function, is such that one of them ' depends ' upon the others
;

thus (§ 27) there is one place of the set such that every (^-polynomial vanish-

ing in the other places, vanishes also in this. Conversely when a set of

places is such that every ^-polynomial vanishing in all but one of the places,

vanishes of necessity also in the remaining place, this remaining place

depends upon the others*. When a set S is such that every i^-polynomial

* Or on some of them. For instance, if in a two-sheeted hyperelliptic surface, associated with

the equation y'^=[x, l)2j,+2, we take three places (x-^, y-^, [x^, y„), (a;,, -?/o), every 0-polynomial,

(x-x^) (.T-.T2) [x, l)p_3, of order ^j- 1 in x, which vanishes in (x^, y^), (x^, y„), vanishes also in

(xg, -2/2). But this last place does not, strictly, 'depend' on (.r,
, y^) and {x,,, y^); it depends on

(xa, y.) only.
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vanishing in S, vanishes also in places A, B, ...,\t will be convenient, here, to

say that these places are determined by S.

Take now any p — S places of the surface, which we suppose chosen

in order in such a way that no one of them is determined by those preceding.

Then the general ^-polynomial vanishing in them will be of the form

X^ + /i^ + pyp-, wherein X, fi, v are arbitrary constants and </>, ^, >/r are

(^-polynomials vanishing in the jj - 3 places. We desire now to find a

place (a^i) such that all (^-polynomials vanishing in the p — 3 given places

and in a;,, shall vanish in another place a-.,- For this it is sufficient that

the ratios ^ {x^) : ^ (x^) : yp- (x^) be equal to the ratios
<f>

(x.^ : ^ (x^) : yjr (x.^.

From the two equations thus expressed, with help of the fundamental

equation of the surface, we can eliminate x., and obtain an equation for x^, so

that the problem is in general a determinate one and has a finite number of

solutions : as a matter of foct (§ 102, p. 144, § 107) the number of positions

for x^ is hpip ~'^)*' ^^^ ^^^h determines the corresponding position of x.,.

Hence there exist on the Riemann surface x p~^ sets of p—1 places such

that a single infinity of ^-polynomials vanish in them ; such a set can be

determined from jj — 3 quite arbitrarily chosen places, and, from them, in

hP (P ~ ^) ^^''i-ys. Putting Q = jj - 1, T -t- 1 = 2, we obtain, by the Riemann-

Roch Theorem ^^ = 1 . Hence to each set once obtained there corresponds

a single infinity of co-residual sets.

102. The reasoning employed in the last article, to prove that there

are a finite number of positions possible for a-i,and the reasoning subsequently

to be given to determine the number of these positions, is of a kind that

may be follacious for special forms of the fundamental equation associated

with the Riemann surface. An extreme case is when the surface is hyper-

elliptic, in which case all the (^-polynomials vanishing in any given place

have another common zero (Chap. V. § 52). In what follows we consider only

surfaces which are of perfectly general character for the deficiency assigned.

In particular we assume, what is in accordance Avith the reasoning of the

last article, that not every set of p — 2 places is such that the two (or more)

linearly independent ^-ptjlynomials vanishing in them, have another common

zero-f-.

* This result is given in Clebsch and Gordan, Theorie der Abel. Funct. (Leipzig, 1866) p. 213.

t Noether {Math. Annal. xvii.) gives a proof that this is true for every surface which is not

hyperelliptic. Take a set of p - 2 independent places, denoted, say, by S, and, if every p-2 places

determine another place, let A be the place determined by the set S. Take a further quite

arbitrary place, B. When the surface is not hyperelliptic, B will not determine another place.

Each of the ^{p-^ ip - 2) sets, of /j - 3 places, which can be selected from the p -I places formed

by S and A, constitutes, with B, a set of j) - 2 places, and, in accordance with the hypothesis

allowed, each of these sets determines another place. It is assumed that the p - 2 places S, and

the place B, can be so chosen that the ^(p -1) (p-2) other places, thus determined, are different

from each other and from the p places constituted by S, A and B together. Since the places S are

independent, the ^-polynomial vanishing in S and B is unique; and, by what we have proved,
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Then it will be possible to choose p — 3 independent places, S, as in the

last article, such that there is a finite number of solutions of the problem of

finding a place (Xj) such that the ^-polynomials vanishing in S and (^i), have

another common zero ; let p — 3 places, forming a set denoted by S, be

so chosen. Let ^ be a place not coinciding with any of the positions possible

for Wi, and not determined by S. Let (/>, ^ be two linearly independent

^-polynomials vanishing in S and A. Then the general (^-polynomial vanish-

ing in S and A is of the form \cf) -f- /j,^, \ and
fj,

being arbitrary constants,

and the general ^-polynomial vanishing in the places ^S^ only can be written

in a form X^ + fi^ + v^, wherein v is an arbitrary constant and i/r is a

^-polynomial so chosen as not to vanish at the place A.

Consider now the rational functions* 2=(f)jyjr, s =^/^fr, each of the

(p + l)th order. They both vanish at the place A.

These functions will be connected by a rational algebraic equation,

(s, z) = 0, obtained by eliminating {x, y) between the fundamental equation

and the equations zy^ = <jy, s\/r = ^ ; associated with the equation (s, z) =
will be a new Riemann surface ; to every place (x, y) of the old surface

will belong a definite place z = (^j'^, s = ^/y{f, of the new surface ; to every

place of the new surface will belong one or more places of the original surface,

the number being the same for every place of the new surface -|-; since there

is only one place of the old surface at which both z and s are zero, namely

the place which was denoted by -4, it follows that there is only one place of

the old surface corresponding to any place of the new surface. Hence each

of X, y can be expressed as rational functions of s, z, the expression being

obtained from the equations zy^r =
<f),

syjr — ^, (s, ^) = J.

Since a linear function, 'Kz+ fis + v, equal to (X0 -I- /u^ + 1'\|/')/\|/-, vanishes* at the variable

zeros of the polynomial \cj) + [x^+ vyjr, namely in p+ l places, it follows that the equation

(s, z)=-0 may be interpreted as the equation of a plane curve of order p+ l ; the number

it vanishes inp + l{p-l) (p-2) places. This number, however, is greater than 2p - 2 when p>3.
Hence the hypothesis, that every p-2 places determine another is invalid. In case p= 3 the

surface is clearly hyperelliptic when every p-2 places determine another. In case p = 2 or 1 the

surface is always hyperelliptic. It may be remarked that when we are once assured of the

existence of a rational function of p poles, we can infer the existence of a set oi p-2 places

which do not determine another (cf. § 103). We have already shewn (Chap. III. § 31) that in

general a rational function of order p does exist. The reader may prove that for a hyperelliptic

surface whose deficiency is an odd number there does not exist any rational function of order p.
* It must be borne in mind that, in dealing with a rational function expressed as a ratio of

two adjoint polynomials, we speak of its poles as all given by the zeros of the denominator; some
of these may be at x— oo (cf. § 86), and in that case their existence is to be shewn by considering

(§ 84), instead of the polynomial, i//, of grade /*, the polynomial in rj and ^, given by
^>^\f/. Or we

may use homogeneous variables (§ 85). For instance, for p = 3, we may, in the text, have (§ 92,

Ex. i.) (p=x, ^= y, \p — \. Then <p :% •.^—1: tj: f=w :u:z; and f has a zero at z = oo .

t Chap. I. § 4.

t Or by the direct process of § 5, Chap. I.
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of its double points will, therefore*, be ^p{p-l)—p, or ^p{p- 3), though it is not shewn

here that they occur as simple double points. These double points are the transforma-

tions of the pairs of places, (.rj, (j-.^), on the old surface, which were such that every

(^-polynomial, vanishing in the />— 3 fixed places S, and in .r,, also vanished in x.^.

Since a double ix)int of a curve requires one condition among its coefficients, and the

nimiber of c<x}fficients that can be introduced or destroyed, in the equation of a curve, by

general linear transformation of the coordinates is 8, it follows that a curve of order m has

^m{m + 3)-{8+ K)-8, or ^7n{m + 3)-ii{m-l){7n-2)+p-S, or S7)i+p-9

constants which are not removeable by linear transformation. In the case under con-

sideration here, there are p — S place.s, aS", of each of which an infinite number of jjositions

is possible, inde^iendently of the others, and the most general linear transformation of

s and ; is equivalent only to adopting three new linear functions of 0, ^, yfr, instead of

0> ^» ^1 i» order to express the general ^polynomial through the places »S'. Hence

there are, in the new surface («, z) effectively

3{p+\)-9+p-(p-3),

that is, 3/) — 3 intrinsic constants : this is in agreement with a result jjreviously obtained

(Chap. I. § 7).

103. The p — ^ places S may be defined in a particular way, thus :

—

In general there are (Chap. III. § 31) {p — l)p{p+ 1) places of the original

surface, for each of which a rational function can be found, infinite only

at such place and infinite to the pth order. Every rational function, whose

order is less than p-\-l, can be expressed as the quotient of two ^-polynomials

(§ 98). The ^-poljTiomial, 0, occurring in the denominator of the function,

will-}- vanish 2^ times at the place where the function has a pole of order jy^,

and will vanish in p — 2 other places forming a set T. The general

^-polpiomial § through these p— 2 places T will not have another fixed

zero, or it would be impossible to form a rational function of order p with

as denominator. Let now A denote any place of the set T, the remaining

^ — 3 places being denoted by S. Then we may continue the process exactly

as in the hxst Article.

The p variable zeros of the ^-polynomials, of the form X^ + /i^, which

vanish in the jj — 2 places T will, for the transformed curve, become the

variable intersections of it with the straight lines, \z + fis = 0, which pass

through the place 5=0, z = 0. We enquire now how many of these straight

lines will touch the new curve. This number may be found either by the

ordinary methods of analytical geometry || or as the number of places where

• By the formula p = i(n - 1) {nff + n - 2) - | Zi, for it is clear that .« is an integral function of z

of dimension 1, so that <r = 0. And we have remarked that / is 1 at each of the places cor-

responding to a double point of the curve, so that 5 + /c = J2i ; cf. Forsyth, Theory of Functions,

§182.

+ See the note (*) of § 102.

X This is the fact expressed by the vanishing of the determinant A in § 31, Chap. III.

§ Which we assume to be of the form \<p + fi^, involving q + l = 2 arbitrary coefficients. If q
were greater than unity, it would be possible to construct a function of lower than the pth

order. This possibility is considered below (§ 10.5 flf.).

II
See for example Salmon's Hiijher Plane Curves.
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the differential of the function ^/(^, of order p, vanishes to the second order,

namely* 2j3 + 2p-2. Among these tangents, however, there is one Avhich

touches the transformed curve in p points, counting as p-1 tangents.

There are, therefore, 3j9 - 1 other tangents. Of the '?,}) distinct tangent

lines thus obtained, there are op — 3 distinct cross ratios, formed from the

3p _ 3 distinct sets of four of them, and these cross ratios are independent of

any linear transformation of the coordinates s and z.

There are thus ^p — 3 quantities obtainable for the transformed curve.

We prove, novvf-, that they entirely determine this curve, and may, therefore,

since the transformation is reversible, be regarded as the absolute constants

of the original curve. For take any arbitrary point ; draw through it

3 arbitrary straight lines and draw 3jj — 3 other straight lines which form

with the 3 straight lines first drawn pencils of given cross ratios. Then the

coefficients of a curve of order ^ + 1, which passes through 0, has ^p (p — 3)

double points, and touches Sp straight lines through 0, one of them in p
consecutive points, are subject to 1 +^p(p - 3) + Sp—l+p— l or Ip^+^p—^
linear conditions. The number of these coefficients is i (p + l)(_p + 4) or

^j)" + fjJ+ 2. Hence there are three coefficients left arbitrary ; besides these

there are five other constants in the equation of the curve, namely, those

which settle the position of and the three arbitrary straight lines through

0. The eight constants thus involved in the curve can be disposed of by

a linear transformation.

The reader will recognise here a verification of the argument sketched in

§ 7, Chap. I. ; the present argument is in fact only a particular case of that,

obtained by specialising the dependent variable of the new surface, and the

order of the independent variable g. The restriction that the ^j poles of g
shall be in one place can be removed, with a certain loss of defiuiteness and

conviction.

The argument employed clearly fails for the hyperelliptic case, since

then the p — 2 fixed zeros of the polynomials
(f)
and ^ determine other places,

and the function ^/4> is not of the ^jth order.

For ^= 3 we have the result :—If an inflexional tangent of a plane quartic curve meet

the curve again in 0, eight other tangents to the curve can be drawn from 0. The cross

ratios of the six independent sets of four tangents, which can be formed from these nine

tangents, determine the curve completely—save for constants which can be altered by

projection.

More generally, from any point of the quartic, ten tangents to the curve can be

drawn. The seven cross ratios of these tangents leave, by elimination of the coordinates

of 0, six quantities from which the curve is determinate, save for quantities altered by

projection.

* Chap. I. § 6.

t Cayley, Collected Worhfi, vol. vi. p. 6. Brill n. Noether, Math. Annal. t. vii. p. .S03.

B. 10
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104. It is <a very slight step from the process of the last Article to take

the independent variable to be f/ =
^!(f>, where ^, <)> arc (^-polynomials, having

j[)
— 2 common zeros forming a set such that a single infinity of (^-polynomials

vanish in the places of the set. And it may be convenient to take another

dependent variable.

In the process of Article 102, the fixed zeros of the pol}momials used

are p — 3 in number, and a double infinity of (/>-polynomials vanish in the

places of the set.

These two processes are capable of extension. If we can find a set Sq,

of Q places, in which just (t + 1 =) 3 (^-polynomials vanish, and if the places

Sq be such that these three (^-polynomials have no other common zero, while

the problem of finding a further place ocy , such that the two ^-polynomials

vanishing in Sq and a-j have another common zero cc^, is capable of only a

finite number of solutions, then we can extend the process of Article 102
;

we can then, in fact, transform the surface into one of 2p — 2 — Q sheets.

The dependent variable in the new equation will be of dimension unity,

and the equation such as represents a curve of order 2p — 2 — Q. If, there-

fore, we can find sets Sq in which Q > p — S, the new surface will have a

less number of sheets, and therefore, in general, a simpler form of equation,

than the surface obtained in § 102.

Similarly, if we can find a set, Sq, which are the common zeros of

(t -h 1 =) 2 (^-polynomials, say ^ and
(f),

we can use the function g = ^/(f), with

a suitable other function, as independent and dependent variables respectively,

to obtain a new form of equation for which there are 2])— 2 — Q sheets : and

if we can get Q>p — 2 the new surface will be simpler than that obtained

in § 103.

105. We are thus led to en(|uire what are the conditions that r + 1

linearly independent (^-polynomials should vanish in any Q places Oj, ...,aQ.

If the general ^-polynomial be written in the form \i<f)i(a;)+ ...+\p<f>p(x),

where Xj, ..., X^, are arbitrary constants, the conditions are that the Q
equations

X, (/), (cii) +...+\4>p (a,) =0, (i=l,2, ...,Q)

should be ecjuivalent to only p —t — 1 equations, for the determination of

the ratios Xj : . . . : Xj, ; we suppose Q >p— t — 1, and further that the notation

is so chosen that the independent equations are the first p —t —1 of them.

Then there exist Q — (p — t — 1) sets, each of j) equations, of the form

(f>j {(tp-r-l + a) = 111 i<f)j{a,)+ ...+ mj^^_,
<f)j

(rtp_r-i), (j = 1 , 2, . . . , p)

for each value of a from 1 to Q —{p — t — 1), the values of Wi, ..., W;,_t-i

being, for any value of a, the same for every value of j. The set, of p, of
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these equations, for which cr has any definite value, lead to t + 1 equations,

of the form

4>l((h), '••> 0i(S-T-l) > ^1 («i7-T-H-<7) = 0,

(pp-T—i-hk \(li)> • • • ) Yp—T—i+k \(^p—T—i)) (pp—T-i+k \^p—T—i+<r)

arising for ^ = 1, 2, . .
.

, t + 1.

Putting q= Q — (p — T — 1), we have therefore ^'(t + I) such equations*

connecting the Q places aj, ..., Uq.

It is obvious from the method of formation that these q(T + 1) equations

are in general independent ; in what follows we consider only the cases in

which they are independent and determinate. Then, taking Q—q(T+l)
quite arbitrary places, it is possible to determine q{T + 1) other places, such

that there are r + 1 linearly independent (^-polynomials vanishing in the

total Q places.

The determination of the y (r + 1) places, from the arbitrary Q — q{T+ l) places, may be

conceived of as the problem of finding p — t— I — [Q — q {t+ 1)], or qr, places, T, to add to

the Q— q{T+ l) arbitrary places, S, such that all 0-polynomiaLs vanishing in the resulting

p — T— l places S, T, may have Q-(p — T — l), or q, other common zeros. The^ — r—

1

places ;S', T are independent determinators of 0-polynomials.

For instance, when Q=p-l, r+ l = 2, it follows that q— l and Q — q{r+l)=p — 3, and

hence, from the theory here given, it follows that we can determine p—l places in which

two 0-polynomials vanish, and, of these, ^ — 3 places are arbitrary. The problem of

determining the other two places may be conceived of as the problem of determining

p — T — l-[Q— q(T+ l)], or one, other place, to add to the ^ — 3 places, such that all cp-

polynomials vanishing in the resulting p — 'S, places, which are independent determinators

of 0-polynomials, may have ^= 1 other common zero. We have already seen reason for

believing that, when the ^ — 3 places are given, the other two places can be determined in

^p{p-S) ways.

To every set of Q places thus determined, there corresponds a co-residual

lot of sets of Q places, the multiplicity of the lot being q ; and every

co-residual set will have the same character as the original set. The number,

q, of places of a co-residual set which are arbitrary, cannot, obviously, be

greater than the number, Q — q(r+l), of the original set, which are

arbitrary. Hence, the self-consistence of the theory clearly requires that

Q — q{T + l)>q. From this, by means of the relation Q — q = p — r — 1, we
can deduce the two important results

p>{q + l)(T+l), Q>q+p
q+ I'

* These equations are necessary in order that a^, ..., Oq should be the poles of a rational

function.

10—2
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Putting Q — q {t + 1) = q + a, we obtain

^ = (T+l)(^+l)+a, Q =q+p^^ + --^,

From each such set *S^q we can deduce, as its residuals, sets, Sj^, of

-R> =2p— 2 — Q, places, in which q + l ^-polynomials vanish, and it is

immediately seen that

Q - q (t + I) - q = a= R - r (q + 1) - T.

lOG. If now we determine, in accordance with this theory, a set Sq in

which t4-1=3 ^-polynomials vanish, it being assumed that these three

^-polynomials have no other common zero, and determine 4>, ^ to be two

(^-polynomials vanishing in Sq and in one other place 0, -^jr being another

^-polj'nomial vanishing in Sq but not in 0, then the equations z = ^/i/r,

s = ^/yjr, determine, as before, a reversible transformation of the surface, to

a new surface of which the number of sheets is R =^ 2p — 2 — Q, and in which
s is of dimension 1 in regard to z.

Since R^t-\- pTJ{r + I), the value of i? is > 2 -I- Ip. Thus writing p = Stt,

or Stt + 1, or Stt -|- 2, according as it is a multiple of 3 or not, i^ is ^ — tt -f- 2

in all cases.

From R=p-'7r + 2 follows Q = p - ^ + tt ; thus q= Q - p + S = tt - 1,

and Q - q (t + I) = p + TT — 4; - Stt + S = p — 2'Tr — 1. This is the number
of places of the set Sq which may be taken arbitrarily. If this number
be equal to q = 7r — l, it follows that, by taking two different sets of

Q — q(T + l), =2^ ~ 27r - 1, places, we get only two co-residual sets, and

for the purposes of forming the functions <f>j-yfr, ^/^Ir, one is as good as the

other. If however Q — q (r + 1) > q, we do not get co-residual sets by taking

different arbitrary sets of Q — ^ (t -f 1) places :—and there is a disposeableness

which is expressed by the number of the arbitrary places, Q — ^(T-f 1),

which is in excess of the number, q, which determines the sets co-residual to

any given one.

Now Q- q(T +l) — q = p — 277 - 1 —TT + 1 = p - Stt. And, in a surface

of m sheets and deficiency p, the number of constants independent of linear

transformations is Sm + p — 9 (§ 102). Hence the number of unassignable

quantities in the equation of the surface is

2(p-7r+2)+p-9-(p- Stt) or 3;? - 3
;

and this is in accordance with a result previously obtained (§ 7, Chap. I.).

Ex. i. The values of tt for p= 4, 5 are 1, 1 re.spectively, and p — n + 2, in these cases,

= 5, 6 resi^ctively.

Hence a quintic curve with two double points (p= 4), can be transformed into a

quintic ; this will also have two double points, in general, since the deficiency mu.st be

unaltered. We determine a set consisting of Q, =1, quite arbitrary place. Let the
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general conic through this place, and the two double points, be
\(f) + fi^-\-vyj/^= 0. Then the

formulae of transformation are 2= (/)/\//-, s=^l-^. As in the text, we may suppose 0, ^
to have another common point, in which

yf/
does not vanish.

Ex. ii. A quintic with one double point (p= 5) can be transformed into a sextic with,

in general, ^(6 — 1) (6— 2) — 5 = 5 double points. For this we take p — 27r— 1 = 2 arbitrary

points ; if X(f) + fi^ + vyfr be the general conic through the two points and the double point,

the equations of transformation are z= (f)/^, s='^/\lr.

Ex. iii. Shew that the orders ^> — 7r+ 2 of the curves obtainable by this method to

represent curves of deficiencies

^0= 6, 7, 8, 9

are respectively R= 6, 7, 8, 8.

107. But, as remarked (§ 104), we can also make use of sets of R places

for which r + 1 = 2, to obtain transformations of our original surface.

We can obtain such a set by taking R— r(q+ I), or R — q— 1, arbitrary

places, and determining the remaining q + 1 such that q + 1 ^-polynomials

vanish in the whole set of R places.

It is proved by Brill* that the number of sets of q+l thus obtainable

from R — q — 1 arbitrary places, is

7 ^ ^ W [2p-l-R-q-lJ'

where fji'=2l o^" i(5' + 1)> according as q is even or odd, and 1 j
denotes

\(X-1) ...(X-v+l)/vl.

For instance with R=p, J = 0, the series reduces to one term, whose value is p — \,

which is clearly right ; while, when R=p- 1, q= \, the series reduces to

(^0-2)"-^ (^-2)'

or \p{p-2\ as in § 101, § 102, p. 144.

When p is even and R= \p + \, q = \p — 1, this series can be summed,

and is equal to

2 |p-l/|ip-l \hp + l.

When p is odd and R = \{p -\- I) ^-1, g' = i (p — 1) — 1, the series can be

summed, and is equal to

4j> |^^/|Kp-3)
i

i(j9 + 3) .

Now let \(^ + /A^ be the general </>-polynomial vanishing in a set which is

residual to one of these sets of R places, X and ^i being arbitrary constants
;

we may transform the surface with z = ^/^ as the new independent variable.

The new surface obtained will have R sheets. The new dependent variable

may be chosen at will, provided only the transformation be reversible.

* Math. Annul, xxxvi, pp. 354, 358, 369. See also Brill and Noether, Math. Annal. vii. p. 296.



150 riemann's normal equation. [107

The function ^+ X, =/i^/</>+ X, dei>ends on 2 + 11 -q- I arhitrary quantities, namely
the constants X, n and the i)o.sition of the Ii-q-\ arbitrarily taken ph\ce.s. There are

•2li+ 2p-2 places where dz is zero to the second order, namely, 2It+ 2p-2 places where

the cun-e a^ + b4t=0 touches the fundamental cur\-c ; there remain then

2li+ 2p-2-{R-q+l), =R-\-p + q + l+3p-3, =3p-3

of the 2Ii + 2p-2 values which z has when dz vanishes to the second order, which iire

quite arbitrary. Compare § 7, Chap. I.

The least possible value of R is given by the formula R > t + pt/(t-\- 1).

If then p be written equal to 27r, or 27r + 1, accordiug as p is even or odd, we

may take* R = p — 7r + l, that is ^p + 1 or ^(^+1)+1, according asp
is even or odd.

Hence, when p is even, we can determine a single infinity of co-residual

sets of ^p + I places, these sets being the zeros of ^-polynomials, \<^ -f /x^,

which have ^p — 3 common zeros. To determine one of these sets of ^j) + 1

places, we may take one place, A, arbitrarily. The other ^p places can

then be determined in 2 Ijo — 1/ ^p — 1 ^p + 1 ways. Let two of these ways

be adopted, corresponding to one arbitrary place A ; the resulting sets of

^p + 1 places will not be co-residual ; for the seta co-residual with a given

set have a multiplicity 1, and therefore no two of these sets can have a

place common without coinciding altogether. Let the sets co-residual to

these two sets be given by \(f> + fj.^
= 0, \'(f)' + /j."^' = 0, ^ and

(f>'
being chosen

so as to vanish in A : we assume that
(f), (f)'

have no other common zero.

Then the equations z = <f)/^, s =
<f)'

/^' will determine a reversible trans-

formation, as is immediately seen in a w^ay analogous to those already

adopted. In the new equation z and s enter to a degree ^p + 1, and, since

there exists* no rational function of loAver order than ^p+l, no further

reduction of the degree to which z and s enter^ is possible.

The new equation may be interjireted as the equation of a curve of order p + 2 : it

will have the form

(z, l)'»s'»+ (2, l)'"s'"-i-|-...-h(-% 1)'"= 0,

wherein m= ^/>+ 1.

By putting 2= 1/24, 5=l,.?i, it is reduced to the equation of a curve of order p. The

form possesses the interest that it was employed by Riemann.

Ex. Obtain the 2 sets of ^jo-f-1 places corresponding to a given arbitrary ix)int for a

quintic curve with two double points, and transform the equation.

108. If we have a set of R places'^, for which t -f 1 = 4, the co-residual

places being given by the variable zeros of (^-polynomials of the form

X</>i -I- /x<^2 -I- v(f)3 + -v/r, we can, by writing

X=<f>Jylr, Y =<!>,! yjr, Z = cf>,!^{r,

* Thus, for perfectly general surfaces of deficiency p, no rational function exists of order less

than 1 + ip. Cf. Forsyth, Theory of Functions, p. 460. Riemann, Gesam. Werke (1876), p. 101.

+ Wherein R-r <p, or R <.p + 3.
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and eliminating x, y from these three equations and the fundamental equation

associated with the Riemann surface, obtain two rational algebraic equations

connecting X, Y, Z; these equations determine a curve in space, of order R;

for this is the number of variable zeros of the function \X + fjuY+ vZ + 1.

To a point X = X^, Y= Fj, Z = Zi of the curve in space, will correspond the

places of the surface, other than the fixed zeros of (^i, (f).,, ^3, yjr, at which

X,^jr-^, = 0, Y,ylr-<f>, = 0, Z,^|r -
(f>,
= 0,

and it is generally possible to choose 0i, 0.,, (f)s, if so that these equations

have only one solution.

The lowest order possible for the space curve is given by

R>T + tpI{t +1)^3 + 3^/4.

If then p = 47r, or 47r+l, or 47r + 2, or 47r + 3, R may be taken equal

to jJ — TT + 3.

For instance with*/)= 4, R= Q, taking a plane curve with double points at the places

^= 00
, ,y= and x= 0, y= Qo

,
given by

xY {x, y\ + xy {x, y\+ {x, y\+ (^, y\ + (.r, y\^-A= 0,

we mayt take \(^-^-V \i(^.i-\- v<^.^-^^= \xy \- \xx -\-vy + \ ; the places residual to the variable

set of R places are, in number, 2/) — 2-6, =0. Then the equations of transformation are

X=xy, Y^x, Z=y,

and these give points (X, Y, Z) lying on the surfaces,

X= YZ,

X^{Y, Z\ + X{Y, Z), + {Y, Z\+ {Y, Z),+ {Y, Z\ +A=0,

of which the first is a quadric and the second a cubic.

A set of R places with multiplicity r = 3 may of course also be used

to obtain a transformation to another Riemann surface. With the same

notation we may put z = (fii/ir, s = </)2/'^. It is clear that the resulting

equation, regarded as that of a plane curve, is the orthogonal projection, on

to the plane Z =0, of the space curve just obtained.

A set of R places with multiplicity r > 3 may be used similarly to obtain

a curve of order R in space of t dimensions. Some considerations in this -

connexion will be found in the concluding articles of this chapter.

109. It has already been explained that the methods of transformation

given in §§ 101—108 of this chapter are not intended to apply to surfaces

which are not of general character for their deficiency, and that, in particular,

hyperelliptic surfaces are excluded from consideration. We may give here a

practical method of obtaining the canonical form of a hyperelliptic surface,

* Since 2J must be 5 (r + l) (q + l), this is the first ease to which the theory applies.

t It is easy to shew that this is the general adjoint polynomial of degree n - 3. We may also

shew that the integrals, \xydxjf'(y), etc., are finite, or use the method given Camh. Phil. Trans.

XV. iv. p. 413, there being no finite multiple points.
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whose existence has ah-eady been demonstrated (Chap. V. § 54.). Suppose

first that /)>l. In the hyperelliptic case every (^-polynomial vanishing

in any place A will vanish, of itself, in another place A'. Any one of these

</)-polynonuals will have 2^ — 4 other zeros, forming a set which we shall

denote by S. Putting Q = 2 and t+1 = p — l in the formula Q — q=p — r — l,

we find
(J
= 1, so that the general (^-polynomial vanishing in the places *S'

will be of the form X,^j — Xo^., wherein Xj, \. are arbitrary constants; in

fact these 2/) — 4 places S consist of ^j — 2 independent places and the other

y) — 2 places determined by them, one by each. Thus a function of the

second order is given by ^ = ^,/<^.j. A general adjoint polynomial of grade

(n — \ ) a + II - 2 will contain /; + j) — 1 terms and vanish, in all, in )i -f 2^9 — 2

places; thus the general adjoint polynomial, of this grade, which is prescribed

to vanish in a set T of n -\- p — S arbitrary places, will be of the form

H'l^i'^ H'i^-ii /^i> H"2 being arbitrary constants, and will vanish in p-1- 1 other

places. We may suppose t/tj so chosen that it vanishes in one of the two

zeros of <^i which are not among the set S, and we shall assume that i/tj

does not vanish in this place, and that yjr^ does not vanish in the other

of these two zeros of
(f)^.

Then the functions 2 = <^i/<^a, s = y^il-^^, are

connected by a rational equation, (s, z) = 0, with which a new Riemann

surface may be associated ; to any place of the old surface there corresponds

only one place 2^= ^,/^o, s = i/tj/t^o, of the new surface; to the place z = 0,

s=0 of the new surface corresponds only one place of the original surface,

and the same is therefore true of every place of the new surface. Thus

the equation {s, z) = is of degree 2 in s and degree p+l in z. The highest

aggregate degree in s and z together, in the equation {s, z) = 0, is the same

as the number of zeros of functions of the form \z \- fxs -{• v, for arbitrary

values of \, /x, v, and therefore if the poles s be different from the poles

of z, namely, if the zeros of y\r., other than T, be different from the zeros

of ^2 other than S, the aggi'egate degree of {s, z) in s and z together will

be ^j + 3 ; thus the equation will be included in the form

s-a + s^ + y = 0,

where a, /3, y are integral polynomials in z of degree j) + 1.

If we put cr = sa -I- ^l3, this takes the form

a- = \a? — ay,

which is of the canonical form in question.

Ex. A plane quartic curve with a double point {p = 2) may be regarded as generated

by the common variable zero A of (i) straight lines through the double point, vanishing

also in variable points A and A\ (ii) conies through the double point and three fixed

points, vanishing also in variable points A, B, C.

When jj is 1 or 0, the method given here does not apply, since then

adjoint 0-polynomials (which in general vanish in 2p — 2 variable places)
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have no variable zeros. In case p = l or p = 0, if //.i-v/^i +/tto\/ro + /z^i^j, with

jjLi,fi.2, 1^3 arbitrary, be the general adjoint polynomial of grade {n — l)a + n — 2

which vanishes in Ji+p — 4 fixed places, -yJTj, ylr^ being chosen to have one

other common zero beside these n+p — 4> fixed places, we may use the

transformation z = yjri/yfr-,, s = -^Jy^a, z being a function of order p + 1, and s

being a function of order \i + 2. Then, since the function \z^r iis-\-v vanishes

in j9 4- 2 places, we obtain an equation of the form *

8" {z, l)p + s (z, 1)^+1 + (z, l)j>+. = 0,

of which the further reduction is immediate.

Ex: For a plane quartic curve with two double points (/»=1) let Mi>/^i + M2V'2+ Ms^s be

the general conic through the double points and a further point A, yj/^ and yjr^ being chosen

also to vanish at any point B. Then we may use the transformation z= yj/'J-^3, s=-^^ly\r^.

110. In the transformations which have been given we have made

frequent use of the polynomials which we have called ^-polynomials, namely

adjoint polynomials of grade {n— l)a-\-n — 3. For this there is the special

reason, already referred to-f, that, in any reversible transformation of the

surface, their ratios are changed into ratios of ^-polynomials belonging to

the transformed surface ; thus any property, or function, which can be

expressed by these ^-polynomials only, is invariant for all birational trans-

formations. We give now some important examples of such properties.

Let the general (^-polynomial be always supposed expressed in the form

\(f)i + ... + \pcf)p,\i, ..., A.p being arbitrary constants. Instead of (pi, ..., ^p
we may use any ^; linearly independent linear functions of ^i, .,.,

(f)p,

agreed upon beforehand. A convenient method is to take ^ independent

places Ci , . .
.

, Cp and define (f)i as the </)-polynomial vanishing in all of Cj , . .
,

, Cp

except Ci ; but we shall not adhere to that convention in this place. Let any

general integral homogeneous polynomial in </>i , . . . ,
(f)p,

of degree /u,, be

denoted by (i> ^^ or $'('^*. This polynomial contains p{p + 1) ...{p + fi — l)/fi !

terms.

In a polynomial <I>'^' there are ^p(p + l) products of two of
(f)i, ..., (pp.

But these ^p (p + 1 )
products of pairs are not linearly independent. For

example in a hyperelliptic case, we can choose a function of the second order,

z, such that the ratios of p independent ^-polynomials are given by

(pi :

<f>„
: ... :

(f)p
= l : z : z- : ... : zP'^

;

then there will be p — 2 identities of the form

(^o/</)l = <Pzl<p.i
= ... = (f)p/(fip-l ,

* Further developments are given by Clebsch, Crellc, t. 64, pp. 43, 210. For this subject and

for many other matters dealt with in this Chapter, the reader may also consult Clebsch-

Lindemann-Benoist, Lemons sur la Geometrie (Paris 1883), t. iii.

t Chap. II. § 21.
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whereby the number of linearly independent products of pairs of ^i, ..., <pj,

is reduced to ^p(p -\-l) — (p — 2), at most. But we can in fact shew,

whether the surface be hyperelliptic or not, that there are not more than

3(y) — 1) linearly independent products of pairs of <^i, ..., <^p. For consider

thi- 4 (/>— 2) places in which any general quadratic polynomial, 4><-*, vanishes.

If (})i4>j be any product of two of the polynomials 0,, ...,
<f)p,

the quotient

<f)i<f>ji<t>''-^ represents a rational function having no poles except such as occur

among the zeros* of <I>'-' ; there are therefore at least as many linearly

independent rational functions, with poles among the zeros of 4>'-', as there

are linearly independent products of pairs of <^i, ...,
(f)p.

But the general

rational function having its j)oles among the 4> (p — 1) zeros of <l>*-*, contains

only 4'(p — ])—p + l, = 3 (^; — 1 ), arbitrary constants. Hence there are not

more than this number of linearly independent pairs of ^i, ...,
(f)j,.

In

precisely the same way it follows that there are not more than (2/i — l){p— l)

linearly independent products of fi of the polynomials <^i, ..., <^p.

111. But it can be further shewn that in general
-f-

there are just

(2/Lt — 1) (jj — 1) linearly independent products of
fj,

of the polynomials

(pi, ...,
<f)p:

so that there are

;>U; + 1). (p + /x-l) _ ^ ^.^^

identical relations connecting the products of fi of the polynomials 0j, ..., (pp.

Consider the case /j, = 2. Take p - 2 places such that the general

^-polynomial vanishing in them is of the form X0i-f-/^</)2, \ and /j, being

arbitrar}', and ^j, ^^ having no zero common beside these p — 2, places. Let

<!>"', ^''" denote two general linear functions of ^i, ..., (pp. The polynomial

is quadratic in (pi,...,(pp. It contains 2/; terms. But clearly these terms

are not linearly independent, for the term (p«(pi occurs both in <^i4>'^* and

in </).j<t>''''. Suppose, then, that there are terms, </>2^''", occurring in ^o^'"'.

which are equal to terms, ^i"^''*, occurring in <^i<P'''. The necessary equation

for this,

^•'' " (p^

'

shews that ^'^' vanishes in the jj zeros of (p. w^hich are not zeros of ^j.

But since these p zeros form a set which is a residual of a set (of p — 2 places)

* Here, as in all similar cases, the zeros of the polynomial are its generalised zeros when it

is regarded as of its specified grade.

t Precisely, the theorem is true when the surface is sufiiciently general to allow the existence

of p-2 places such that the general </)-polynomial, vanishing in them, is of the form X^j + /x02»

X and
fj.

being arbitrary constants, and <pj, 0., having no common zero other than the p-2
places. We have already given a proof that this is always the case when the surface is not

hyperelliptic (§ 102).
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in which two ^-polynomials vanish, it follows* that only one ^-polynomial

vanishes in these p places ; and such an one is <^2- Hence '^'^' must be

a multiple of (/)o, and therefore ^'<^> a multiple of </>!. Thus the polynomial

contains 2p - 1 linearly independent products of pairs of ^i, ..., j)p.

Let now ^^ be a ^-polynomial not vanishing in the common zeros of

^1, ^2, and let ^^, ..., ^p ^^ chosen so that ^i, (f)., ^3, ..., ^p are linearly

independent. Consider the polynomial

wherein X3, ..., \p are arbitrary constants. Herein ^3 (^3^3 4- ... + X^</y)

cannot contain any terms (f):i{X/(p3+ ... +\p(f)p) which are equal to terms

already occurring in the part (^i^)'^ + (f).'^''^^^
or else Xs'^s + ... + \p^p would

vanish in the p — 2 common zeros of <^i and ^o ; and this is contrary to the

hypothesis that X^^ + /x(f)., is the most general ^-polynomial vanishing in

these p — 2 places. Hence the polynomial <I> contains 2^; — 1 + j) — 2, or

3^ — 3, independent products of twos of the polynomials ^1, ...,^p. As

we have proved that a greater number does not exist, 3j9 — 3 is the number

of such products of pairs.

Consider next the case /a = 3. Since co-residual sets of 2p—l places

have ]* a multiplicity ^j — 1, it follows that the general polynomial, "^I"-*, of

the second degree in <^i, ...,
(f)p,

which vanishes in 2p — 3 fixed places, and

therefore in 2^j — 1 variable places, contains p arbitrary coefficients. If then

the 2j?— 3 fixed zeros of ^i-' be zeros of a definite polynomial, ^2, it follows

that ^•-' is of the form ^2^*^', ^*'' being of the first degree in ^1, ^2, •••, <f>p-

Hence, as in the case /u, = 2, it can be proved that if 01, cf>^ be ^-polynomials

with one common zero, the reduction in the number, 2 {3p — 3), of terms

in a polynomial ^jO*-' + (^2^''"*> which arises in consequence of the occurrence

of terms, <^2^'*""', in <^2^'*"', which are equal to terms, — ^i"^'-', occurring

in <^i<I>'^'. is at most equal to p. Hence the polynomial 0i<I>'2' -h ^o^'^*

contains at least 5p — 6 linearly independent products of threes of <^i, ..., <f>p.

Hence taking ^3, and a quadratic polynomial ^"(-', such as do not vanish

in the common zero of
(f>i, 02, it follows that a cubic polynomial with at least

5p — 5 linearly independent products, is given by

</)l<|)<^> -t- 02<I>'<'' -I- 03^"<2>.

We have thus proved that in the cases yu. = 2, fi = S, the polynomial

<I>"^' contains {2/ji, — 1) (p — 1) linearly independent products. Assume now
that <I»<'^-i) contains (2fi-S)(p-l) independent terms, and that <l><''-2)

* From the formula (Chap. VL § 93)

Q-R = 2{q-r),

putting Q=p-2, R=p, t=1, we obtain q-0.

t From Q-q=p-{T + l), putting t + 1=0 (because 2p-l>2p-2) Q = 2p-1, q=p-l.
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contains {2fi — o){p — I) independent terms. A general polynomial >{'<>'-»)

vanishing in the zeros of a definite (^-polynomial, </>«, will have 2(fi—2)(p— \)

variable zeros; and the multiplicity of co-residual sets of 2 (/j, — 2) (p — I)

places, when /jl > 3, is (2/i — 5){p — l)- 1, which by hypothesis is the same

as the multiplicity of the sets of zeros of a polynomial
<f).,'^''^~-\

in which

^(M-2) has its most general form possible. Hence the general polynomial

^(M-i) vanishing in the zeros of ^2. is of the form ^.j^"*~-'. If then, in a

polynomial, <^,<I>'''~'» -I- <^s<I>'
''*"", of the fith degree in <^,, ...,

<f>p,
wherein

</),, (f).,
have no common zeros, there be terms, ^o"^' •''"", occurring in (f).(i>'^~^^,

which are equal to terms, -
(f>i'^'^~^\ occurring in 0i<I>"'-", then ^^-^^ must

be of the form </),"^P"^--', and ^V-'> of the form (jy^^V' '''--^
, and the resulting

reduction in the number, 2 (2^ - 3) (yj - 1), of terms in <^i<I>"^-i' + </>.<!>'"*-»>,

is at most equal to the number, (2/i —')) (jj — 1), of terms in a polynomial

^(M-2)_ Thus, there are at least

2{2fjL-S)(p-l)-{2fi-o)(p-l), ={2f.-l){p-l),

linearly independent terms in the poljniomial (f>i^^-^^ + (f>./^'^~^^ ; as we have

proved that no greater number exists, it follows that (2/Lt — 1)(;;— 1) is the

number of linearly independent products of yu, of the polynomials ^1, ...,
(f)p.

112. Another most important theorem follows from the results just

obtained: Every rational function whose poles are among the zeros of a

polynomial ^''*' can he expressed in a form 4)''^'/'^"*'. For the most general

function having poles in these 2yu, (jd — 1) places contains 2/jL{p — l)-p+l
arbitrary constants*, and we have shewn that a polynomial <!>'>" contains just

this number of terms; thus the quotient ^(miZ-^w, which clearly has its

poles in the assigned places, is of sufficiently general character to represent

any such function.

For further information on the matter here discussed the reader may consult Noether,

Math. Annal. t. xvil. p. 263, " Ueber die invariacte Darstellung algebraischer Func-

tionen." Andt ibid. t. xxvi. p. 143, "Ueber die Normalcm-veu fiir /)= 5, 6,
7.''

In order to explain the need for the theorem just obtained, we may consider the simple

case where the fundamental equation is that of a general plane quartic curve, /(.r, y, 2)= 0,

homogeneous coordinates being used. If we take the four polynomials,

which are not ^-polynomials, from which we obtain

X : y : 2=
'»^i

: V^j : ^^4,

* When ^> 1. The theorem has already been proved for /u = l (§ 98, Chap. VI.).

t In the present chapter all the polynomials considered in connexion with the fundamental

equation have been adjoint; there is also a geometrical theory for polynomials of any grade in

extension of the theory here given, in which the associated polynomials are not adjoint. For its

connexion with the theory here, the reader may compare Klein, "Abel. Functionen," Math.

Annal. t. 36, p. 60, Clebsch-Lindemann-Benoist, Ler^ons sur la Gfomftrie, Paris 1883, t. iii., also

Lindemann, Untersuchungen Hber den Rienumn-Eoch'gchen Satz (Teubner 1879), pp. 10, 30 etc.,

Noether, Math. Annal. t. 15, p. 507, "Ueber die Schnittpunktssysteme einer algebraischen

Curve mit nicht adjnngirten Curven."
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then the general rational function with poles at the sixteen zeros of a polynomial, ^(2), of

the second order in
yj^i, yfr^, ^3, \//-4, contains 14 homogeneously entering arbitrary con-

stants. Now there are only ten terms in the general polynomial *(2), of the second order

in -^1, ..., ^^ ; and these are equivalent to only nine linearly independent terms, because

of the relation ^/']^/^2= V'3^•
Hence the rational function in question cannot be expressed in

the form $(2)/v^(2).

113. The investigations in regard to the ^-polynomials </>!, ..., (j)p, which

have been referred to in §§ 110—112, find their proper place in the con-

sideration of the theory of algebraic curves in space of higher than two

dimensions.

Let ^1, ...,
(f)p

be linearly independent adjoint polynomials of grade

{71 — I) a + n — 3, defined, suppose, by the invariant condition that if

Ci, ..., Cp be p independent places on the Riemann surface,
(f)i

vanishes in

all of Ci , ..., Cp except Cj. Let oc^, ..., Xp be quantities whose ratios are

defined by the equations

a^i : ^'3 : ... : Xp = <f)i : (p.^ '•
• • • '

(f>p-

We may suppose * that there is no place of the original surface at which

all of x^, ..., Xp are zero, and, since only the ratios of these quantities are

defined, we may suppose that none of them become infinite.

Hence we may interpret x^, ... , Xp as the homogeneous coordinates

of a point in space of p — 1 dimensions ; we may call this the point x.

Corresponding then to the one-dimensionality constituted by the original

Riemann surface, we shall have a curve, in space of 2^ — 1 dimensions. Its

order, measured by the number of zeros of a general linear function

XiiCi -1- ... + \ppCp, will be 2/) — 2. To any place x of this curve there cannot

correspond two places c, c' of the original surface, unless

<^i (c) : (/). (c) : . . . : <Pp (c) = <^i (c') : </>, (c') : ... :(}>p (c).

Now, from these equations we can infer that the ^-polynomials corre-

sponding to tlie normal integrals of the first kind, have the same mutual

ratios at c as at c' ; such a possibility, however, necessitates the existence of

a rational function of the second order, expressible in the form

^r^ —fiTe/,

where X, fi are constants whose ratio is definite, and r^', Tc, are normal

elementary integrals of the second kind with unassigned zeros. Hence the

correspondence between the original Riemann surface and the space curve,

C^_2, is reversible except in the hyperelliptic case.

In the hyperelliptic case the equations of transformation are reducible to

a form

1 • "^2 • • • • ^'p ~~ -^ • Z , Z • ••• \ Z •

* Chap. II. § 21.
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To any point x of the space curve corresponds, therefore, not only the place (», z) of the

Riemann surface, but equally the place ( - «, z). The space curve may be regarded as a

doubled curve of order jt; — l. (Cf. Klein, Varies. Ub. d. Theorie der ellip. Modulfunctionen,

Leipzig, 1890, t. i. p. 569.)

For the general case in which p = 3, the curve, C.ip_^, is the ordinary

plane quartic curve. For the general case, /) = 4, the curve Cjp-o is a sextic

curve in space of three dimensions, lying* on ^jo(jt) + 1)— (8jt; — 3), = 1,

surface of the second order and ^j){p-\-\){j) + '2) — {hp — b), =5, linearly

independent surfaces of the third order.

Ex. If, for the case />= 4, we suppose the original surface to be associated with the

equation f

+ .S>3 4. j.t.2+ 2Hx^+ Bif+ Cx+% + 1 = 0,

and put Z=xi/, X=x, Y=y, as the non-homogeneous coordinates of the points of the

curve C^p-^i the single quadric surfoce containing the curve is clearly given by

l\=Z-XY=0,

and one cubic surface, containing the curve, is given by

l\ = Z^ (ZA'+MY )+Z ((/A'-'+ IhX }'+ h ]'2) + PX^+ QX"- F-f AM' }'2

+ .S' r3+ J Z2

+

=iHX j'+ B Y"-+ r.r+ z) }'+ 1 = o.

Four other cubic surfaces, ri = 0, Y-i — ^, ^'3= 0, 1^4= 0, can be obtained from 6^3=0 by

replacing XYhy Z, respectively in, (i) the coefficient of h, (ii) the coefficient of ^, (iii) the

coefficient of R., (iv) the coefficient of H \ these are linearly independent of ^'3= 0, and of

one another. Other cubic surfaces can be obtained from ^'3= by replacing A' J' by Z'xn

two of its terms simultaneously ; for instance, if we replace XY by Z in the coefficients of

h and ZT, we obtain a surface of which the equation is Fj — f/3+ T^= 0. Similarly all

others than £^3=0, rj = 0, ... , T'^= 0, are linearly deducible from these.

114. As an example of more general investigations, consider now the

correspondence between the space curve f\^_o, for /)=4, and the original

Riemann surface. Let us seek to form a rational function having jj -f 1 = ,5

given poles on the sextic curve. A surface of order /a can be drawn through

5 arbitrary points of the curve when /x is great enough ; we may denote

its equation by ^"^'=0, in accordance with § 110. It was proved that

the rational function can be written in the form 4>''*'/^''*'. 4*"** being another

polynomial, of order yu in the space coordinates, which vanishes in the 6/i — 5

zeros of ^(^i other than the 5 given points. Since a general surface of

order /* contains (/i,-f3, 3);|: terms, the most general form possible for ^^\
when subject to the conditions enunciated, will contain

(^ + 3, 3) -(6/. -5)

arbitrary, homogeneously entering, coefficients ; the polynomials which

multiply these coefficients, represent, equated to zero, all the linearly inele-

• § 111 preceding.

t Cf. § 108.

X Where (|i, v) is used for the number yLt(/u- l)...(|i-)/ + l)/"*!.
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pendent surfaces of order /x which vanish in the 6fi — 5 points spoken of

;

they will therefore include the

^•^
,^^ +

^"^^
-(2/.- !)(;;- 1), or (/. - 3, 3) - (6/x - 3),

surfaces of the fxth. order which* contain the sextic curve. Denote the

number of these surfaces by r and their equations by 11^ = 0, ..., 11,. = 0.

Then the general form of the equation of a surface, ^''*> = 0, vanishing in the

6yu — 5 given points will be

wherein \^, ..., X^, \, fx are arbitrary constants, and ?7 is a surface of order /i,

other than ^"'>, which vanishes in the 6^t — 5 points, and does not wholly

contain the curve. The intersections of the surface <J>"*' =0 with the sextic

are the same as those of the surface X,'^''^' + /xf7= ; and the general form of

the rational function having the p-\-\ = o given points as poles is

involving the right number (g' + l=Q— jj + l = 5— 4 + 1) of arbitrary

constants.

Ex. i. There are sixteen of the surfaces \-ir'^i^'^ + fiU—0 which touch the sextic (in points

other than the 6/x - 5 fixed points).

For there are 2.5 + 2.4-2, =16, places at which the differential, dz, of the rational

function z= Clj'ir^i^'i, is zero to the second order.

Ex. ii. In the example of the previous Article, prove that

and that the integrals of the first kind, expressed in terms of X, Y, Z, are given by

\\X+ X,Y+\^Z+\)dXI^,

for arbitrary values of the constants Xj, X2) ^.i) ^4+-

/<

115. We abstain from entering on the theory of curves in space in this

place. But some general considerations on the same elementary lines as

those referred to in §§ 81—83, as applicable to plane curves, may fitly

conclude the present chapter
J.

The general theorem considered is, that

of the intersections of a curve, in space of k dimensions, which is defined

as the complete locus satisfying k — 1 algebraic equations, with a surface

* § 111.

t The canonical curve discussed by Klein, Math. Annal. t. 36, p. 24, is an immediate
generalisation of the curve C^p_^ here explained. But it includes other cases also.

X See the note in Salmon, Higher Plane Curves (Dublin 1879), p. 22, "on an apparent
contradiction in the Theory of Curves" and the references there given, which include a reference

to a paper by Euler of date 1748. For further consideration of curves in space see Appendix I. to

the present volume.
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of sufficiently high order, r, there are a certain number, P, which are deter-

mined by prescribing the others, P being independent of r.

We take first the case of the curve in three dimensions, defined as the

complete intersection of two surfaces of orders m and 7J, say 17^ = 0, Un = 0.

The curve is here supposed to be of the most general kind possible, having

onlv such singularities as those considered in Salmon, Solid Geometry

(Dublin, 1882, p. 291). For instance the surfaces 17,,, = 0, Un = are not

supposed to touch ; for at such a place the curve would have a double point.

We prove that if r>m + n — 4, all but ^mn (tn + n — 4) + 1 of the inter-

sections of the curve Um = 0, Un = with a surface of order r, Ur = 0, are

determined by prescribing the others, whose number is

rinn — hnui (m + n — -i) — I.

For when, firstly, r >m + n—l, the intersections of Ur = with the

cun^e are the same as those of a surface

F - F V —TTV — r U V =0

wherein Vr-m, ^"^r-n, l"r-m-n are general pol\Tiomials whose highest aggregate

order in the ctX)rdinates is that given by their suffixes. Hence, in analogy

with the argument given in § 81, it may at first sight appear that, of the

(r + 3, 3) coefficients in Ur, we can reduce a certain number, K, given by

K = (r-m + 3, S) + {r-n + 3, 3) + (r - m -n + 3, 3),

to zero, by using the arbitrar}- coefficients in F,._m, V^r-n, ^r-m-n- This

however is not the case. For if Wr-m-n, Tr-m-n denote general polynomials,

of the orders of their suffixes, we can write the modified equation of the

surface of order r in the form

TJ — U (V — U W \— U lY - U T ^^r '^ m V r—m ^ n '' r—m—n) ^ n\ ' r—n '^ m-'- r—m—n/

IJ m*-'n \ ' r—m—n " r—m—n -^ r—m—n) ^ "•

Now, whatever be the values assigned to the coefficients in Wr_m-n, ^r-m-n.

the coefficients in F,._w_„— Wr-m-n— Tr-m-n are just as arbitrary as those

of Vr-m-n- And we may use the coefficients in Tr^_„,_„, Tr-m-n to reduce

(r — ?» — n + 3, 3) of the coefficients in each of the polynomials

V — TJ W V — U T' r—m '~' n '' r—m—n> ' r—n ^ m-^ r—m-nt

to zero.

Hence the K equations by which we .should reduce the number of

effective coefficients in Ur to (r + 3, 3) — K, are really unaltered when

2 (r — m — n + 3, 3) of the disposeable quantities entering therein, are put

equal to zero. Thus we may conclude, that so far as the intersections of Ur

with the curve are concerned, its coefficients are effectively

(r + 3, 3) - (r - m + 3, 3) - (r- n + 3, 3) + (r-m -n + S, 3)

in number. Provided the linear equations reducing the others to zero are
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independent, what we prove is that the number of effective coefficients

is certainly not more than this.

This number can immediately be seen to be equal to

rmn — \mn (m + 7i — 4).

Hence, we cannot arbitrarily prescribe more than 7'mn — ^mn (m + n- 4) — 1

of the intersections of £7^ = with the curve.

This result is obtained on the condition that r > m + n — l. If ? = m + n — l,

fn^n—2 or m + n — 3, the number of effective coefficients in Ur cannot

be more than in the polynomial

TJ - TT V - U V'-' r '^ in' r—m ^n' r—n>

namely, than

(r + 8, 3) - (r - m + 3, 3) - (r - w + 8, 3).

By the previous result this number is equal to

rmn — ^mn (m + n — 4) — (?' — ??i — n + 3, 3),

and (r -m-n + S, 3), = (r - m - n + 1) (r - m - n + 2)(r-m-n- 3)/3 !

,

vanishes when r= m + n—1, in + n-2, or m + n - 3. Hence the result

obtained holds provided ?- > m + 71 — 4.

If we denote the number ^nn(m +?i-4)4- 1 by P, the result is, that

when 7^> m + n — 4, we cannot prescribe more than m»?- — P of the inter-

sectioTis of the curve Um = 0, Un = with a surface of order ?• ; the prescription

of this number of independent points determines the remaining intersections.

Corollary. Hence it follows, when (r+3, 3) — 1 > r??in — P + 1, that

a surface of order r described through r7n7i — P + 1 quite general points

of the curve, will entirely contain the curve. Hence, in general, the curve

lies upon (r + 3, 3)-/T/i/i + P — 1 linearly independent surfaces of order

r, r being greater than m + « — 4.

Ex. i. For the curve of intersection of two quadric surfaces, P=\ ; every siirface of

order r drawn through Ar quite arbitrary points of the curve entirely contains the curve
;

the 4r intersections of a surface of order r, which does not contain the curve, are deter-

mined by 4r-l of them. When /'= 2, the number (r+ 3, Z)-rmn + P-\ is equal to 2.

This is the number of Unearly independent quatlric surfaces containing the curve.

E:c. ii. For the curve of intersection of a quadric surface with a cubic surface, P= 4 ;

of the 6r intersections of the curve with a surface whose order r is >1, 6r-4 determine

the others. The number (r+ 3, 3)-r/>m+P-l is equal to 1 when r= 2, and equal to 5

when r=3; thus, as prevdously found, the curve lies on one quadric surface and on five

Unearly independent cubic surfaces ; the number, for any value of r, is in agreement with

the result of § 111.

116. In regard to the intersections, with the curve, of a surface of

order ?/i + ?? — 4, such a surface has effectively not more coefficients than are

contained in the polynomial

^m+n—i ^m ' n—4 ^ n ' m—i>

B. 11
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for arbitrary values of the coefficients in F„_4 and F,„_4. Here we firstly

suppose m > 3, n > 3.

Now we can prove, as before, that

(m + n-1, 3)-(«-l,3)-(m-l, S) = ^mn{m + n -4) + 1, = P.

Hence, also when m > 3 and 7i = 3, 2 or 1,

{m + n - 1, 3) - (m -1,3), = ^mn (m + w - 4) + 1 + (« - 1) {n - 2) (« - 3)/6.

is equal to P, and the number of effective coefficients in a polynomial

^m+n-i— U^n^m-4, wherein the coefficients in F„,_4 are arbitrary, is as before

equal to P. Similarly for other cases.

Hence P is the number of coefficients in a polynomial Ujn+n-4, which are

effective so fai* as the intersections of the curve with the surface Um+n~4 =

are concerned ; in other words, P — 1 of the intersections determine the

others. The total number of intersections is 77in {m + n — 4), = 2P — 2.

The analogy of these polynomials of order m + n — 4 \vith the (^-poly-

nomials in the case of a plane curve is obvious.

117. If now, the homogeneous coordinates of the points of the curve in

space being denoted by X^, X2, X3, X^, the symbol [i,j] denote the Jacobian

d{Um, Urd/d{Xi, Xj),8ind{X, + dX„ X, + dX„ Xs-\- dX„ X, + dX,) denote

a point of the curve consecutive to (A'^i, X,, X^, X^), it follows from the

equations

|^"rfX, + 1^^ dX, + ^j£ ^^3 + ^' ^^^ = ^

-^'JX,^^"-dX,^'dTs^' dX,'

and the similar equations holding for Un, that the ratios

XodXs — X^dX^ ' X^dX^ — X^dXs : X^dX^ — X^dX^ : X^dX^

— XidXi : X^dX^ — X^dX. : XidXi — Xi — dX^,

are the same as the ratios

[1,4]:[2. 4]:[3,4]:[2,3]:[3,1]:[1,2];

each of these rows is in fact constituted by the coordinates of the tangent

line of the curve. If then u^, u.^, U3, W4, Vi, v.,, V3, v^ denote any quantities

whatever, and, in each of these rows, we multiply the elements respectively by

M2V3 - W^Va, «3^'i — UyVs, UiV.2 - «.,V, , lliVi — U4V,, U2l\ — lUV., UslU — "5V3,

and add the results, we shall obtain for the first row

2 (u-iVa — U3V3) {X^X^ — X-idXi) = udv — vdu,

where

?/ = «iXi -h ii.X. + u-^X^ + u^X^, du = UidXi + u.2dX2 + K^dX^ + ^/^fZX^, etc..
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and, for the second row we shall obtain the determinant

163

Wi ,
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Ex. i. For a plane curve of oi-der n, without multiple points, prove similarly that we

can obtain p finite algebraical integrals in the form

/
<^n_^{udv-vdu)l{uvf),

where/ (aTj, ^^2, ^3)= is the homogeneous equation of the curve, w= Mi.ri + w._>.r2+ ityP3, etc.,

and {uvf) denotes a determinant of three rows.

Ex. ii. Shew that a surface of order ?;i + n-4+/i which vanishes in all but two of the

intersections of the curve in space with a surface of order ^, U^= 0, is of the form

ylr
=\r+{\\\ + ... + \^ V,.) Uy.= 0,

where X, Xi, ... , \,. are arbitrary ; and that an integral of the third kind is of the form

x//' iidv — vdu

I Uy. {uvC^„,U„)'

118. Retaining still the convention that u = 0, v = are the equations of

planes, let u' = 0, v' = be the equations of other planes whose line of inter-

section does not coincide with the line m = = v.

From the equations

ZU -V=0, SU' - V' = 0, U,n = 0, Un = 0,

wherein z, s have any values, we can eliminate the coordinates of the points

of the curve in space, and obtain a rational equation, {s, z)=0, witli which

we may associate a Riemann surface*. To any point of the curve corre-

sponds a single point, z — v/u, s = v'jii , of the Riemann surface ; to any point

of the Riemann surface will in general correspond conversely only one point

of the curve in space. Hence the Riemann surface will have mn sheets,

the places, at which z has any value, being those which correspond to the

places, on the curve in space, at which the plane zu — v = intersects this

curve. Thus the Riemann surface will have 2mn + 2j;) — 2 branch places,

p being the deficiency of the surface. These are the places where dz is zero

of the second order. Thus they correspond to the places, on the curve in

space, where udv — vdu is zero to the second order. We have seen that these

are given as the intersections of this curve with the surface (uvUmUn)=0,
of order m + n — 2 ; their number is therefore mn (vi + n — 2) = 2v>n + 2P — 2.

Hence the number P, obtained for the curve in space, is equal to the

deficiency p of the Riemann surface with which it is rcversibly related.

The same result can be proved when w, v are polynomials of any, the same,

order, and u', v' are polynomials of any, the same, order.

And from the reversibility of this transformation it follows that the

everywhere-finite integrals for the Riemann surface arc the same as those

here obtained for the curve in space.

* We may of course interpret the equation as that of a plane curve ; a particular case is that

in which this curve is a central projection of the space curve.
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Ex. Prove that if ej , Cg > ^3 be such that e^ -|- gg+ 63= 0,

(b-c) (c-a) {a-b) = {b-c) (a — d) /{e.^ - e^) — (c - a) (b - d)/(e^- e^) = {a - b) {c — d)!{e-^- e^),

the points of the curve aX^+ bF^+ cZ'^+ dT^= 0, A'2+ V'^+Z^+T^^O can be expressed

in terms of two quantities, x, y, satisfying the equation ^^= 4 (x — e^) (x—e^) {x — e^, in the

form T : X : Y : Z

=y : sjb- c [{x - e^f - {e^ - e^) {e^ - ^3)] : \Jc - a [{x - e^Y - (e^ - 63) {e^ - e^)]

:\Ja-b {{x - e^f - (63

-

e^) (eg

-

e^)].

Find X, y in terms of X, }^, Z, T in the form

[gj {e^-e^ Xl\]b-c-\-e.j{e^-e-^Yj'\Jc-a-\-e^ (cj -e^Zjs/a-byx

= {H - 63) '^W^ -c+ (63 - 61) YI\Jg - a+ (e?! - 62) Z/\/« - 6= 2 (^2- 63) (63 - ^i) («! - e^) Tjy.

See Mathews, London Math. Soc. t. xix. p. 507.

119. As ah'eady remarked we have considered here only the case of a non-singular

curve in space which is completely defined as the intersection of two algebraical sm-faces.

For this case the reader may consult Jacobi, Crelle^ t. 15 (1836), p. 298 ; Plucker, Crelle,

t. 16, p. 47 ; Clebsch, Crelle, t. 63, p. 229 ; Clebsch, Crelle, t. 64, p. 43 ; Salmon, Solid

Geometry (Dublin, 1882), p. 308 ; White, Math. Annul, t. 36, p. 597 ; Cayley, Collected

Works, passim. For the more general case, in connexion however with an extension of the

theory of this volume to the case of two independejit variables, the following, inter alia,

may be consulted : Noether, Math. Annul, t. 8 (1873), p. 510 ; Clebsch, Comptes Rendus de

VAcad. des Sciences, t. 67, July—December, 1868, p. 1238 ; Noether, Muth. Annul, t. 2,

p. 293, and t. 29, p. 339 (1887) ; Valentiner, Acta Muth. t. ii. p. 136 (1883) ; Halphen,

Journal de I'Ecole Polyt. t. lii. (1882), p. 1 ; Noether, Abh. der Akud. zu Berlin (1882) ;

Cayley, Collected Works, Vol. v. p. 613, etc. ; and Picard, Lioicv. Journ. de Math.

1885, 1886 and 1889.

Ex. i. Prove that

(7-+^, k)-'S. (?- + ^-

-

nii, ^•)-|-2 (r+ X-- Hii -m,-, X") - ... -l-( - )'^ -
1 (r + /i- - mj - ...-m^_]^, k)

1 2

= rm^m^...mj,_^-\mym^...m^_^{m]^^m.^-\-,,.-\-mT,_^-k-Y),

where (r, /*) denotes r(r- 1 )...(?• -/i+ l)//ii !, m-^, ... , mk-.x^ k are any positive integers, ;• is a

positive integer greater than m^+m^^ ..,+mji_]^ — k—\, 2 denotes a summation extending

to all the values i— 1, 2, ... ,
{k- 1), 2 denotes a summation extending to every pair of two

2

unequal numbers chosen from the series TOj, m^, ..., Wjt-i, and so on. Hence infer that

of the intersections of a general curve in space of k dimensions, which is determined as the

complete locus common to k-\ algebraic surfaces of orders mj, ??i2, ..., »%_!, with a

surface of order r, all but

|?>iim2...TOfc_i(mi+m2+ ...+mfc_i-^-l) + l

are determined by the others. The result is known to hold for k= 2. We have here been

considering the case ^=3.

Ex. ii. With the notation and hypotheses employed in Salmon's Solid Oeometry (1882),

Chap. XII. (p. 291) (see also a note by Cayley, Quarterly Journal, t. vii., or Collected Works,

Vol. v. p. 517), where m is the degree of a curve in space, n is its class, namely the number
of its osculating planes which pass through an arbitrary point, r is its rank, namely the

number of its tangents which intersect an arbitrary line, a is the number of osculating

planes containing four consecutive points of the curve, ^ the number of points through

which four consecutive planes pass, x the number of points of intersections of non-consecu-
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live tangents which lie in an arbitrary plane, y the number of planes containing two non-

consecutive tiiugents which pass through an arbitrary iK)int, h the number of chords of the

curve which am. be drawn through an arbitrary i>oiut, g the numl;)er of lines of intersection

of two non-consecutive osculating planes which lie in an arbitrary plane, ^ the number of

tangent hues of the curve which contain three consecutive points, prove, by using Pllicker's

equations (Salmon, Higher Plane Curves, 1879, p. 65) for the plane curve traced on any

plane by the intersections, with this plane, of the tangent lines of the cune in si>ace, that

the equations hold,

(1) 7i= r{r-\)-±v-3m-3^, (3) r=« (?i- 1) -2^-3a,

(2) a-3r(r-2)-&i--8(»i-|-^), (4) m+'^= 3n{n-2)-eg-8a,

Pi-l = ^r{r-3)-x-m-^= ^>i{)i-3)-g-a (A),

Pi being the deficiency of this plane curve.

Prove further, by projecting the curve in space from an arbitrary point, and using

Pllicker's equations for the plane curve in which the cone of projection is cut by an

arbitrary plane, the equations

(5) r= m(m-l)-2A-3;3, (7) 7?i = /- (r- l)-2y-3 (^-|-n),

(6) ^-\-n = 3m{m-2)-6h-8ti, (8) ^= 3r {r-2)-6y-8{'^+ n),

p,-l=^m{m-3)-k-^=^r{r-3)-y-n-^ (B),

jDj being the deficiency of this plane curve.

From the equations (1) and (7) we can infer n -m= 3n — 3m — 2 (.r-y), and therefore

i/+n=x+m.
Hence />i= /Jo-

Ex. iii. For the non-singular curve which is the complete intersection of two algebraic

surfaces of orders /x, p, prove (cf. Salmon, Solid Geometry, pp. 308, 309) that in the notation

of Ex. ii. here,

|3= 0, m=fiv, r= fiv(ji+ v-2), k = ^ ^v(ji-l) (u-l).

Hence, by the equations (B) of Ex. ii. prove that, now,

pl=p2= hf^v{fi + v--i) + l.

This is the number we have denoted by P.

Ex. iv. Denoting the number Pi=p.,, iu Ex. ii., by p, prove from equations (5) and (B)

that

6{p-l)= m{7n-7)-'2h+ 2r= 3 (r-\-^-2m).

Hence shew that if, through a curve C of order m, lying on a surface S of order /*, we
draw a surface of order p, cutting the surface S again in a curve C" of order 7n', and if

p, p' denote the values of^ for these curves C, C respectively, then

m'{n + v-4)-{2p'-2)= m(fi+ v-4)-(2p-2)

(.see Salmon, pp. 311, 312). Shew that each of these numbers is equal to the number, t,

of points in which the curves C, C intersect, and interpret geometrically the relation

i+r+d= m{n + p-2).

Ex. V. If in Ex. iv. a surface
(f)

of order
fj.
+ p-4 be drawn through (/i -|- 1» - 4) ?«' —p' -\- 1,

or i—l+p', of the points of the curve C", prove that, so far as its intersections with the

curve C are concerned, the surface
<f>

contains effectively p terms. Prove further that
<f>

contains the curs'e C" entirely.
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Ex. vi. Prove that a surface of order /ii+ f — 4 passing through i—\ of the intersections

of the curves C, C, in Ex. iv., will pass through the other intersection.

Ex. vii. An example of the case in Ex. iv. is that in which /x=2, v^i, m= Z, m'= \.

Then C is a straight line and^'=0: hence p is given by — 2 = 2jo-2. Hence, for the

cubic curve of intersection of two quadrics having a common generator, />= 0. And in fact

coordinate planes can be chosen so that the homogeneous coordinates of the points of the

cubic can be expressed in the form

X : Y : Z : T=l : e :
6'^

: e\

6 being a variable parameter. For instance (using Cartesian coordinates) the polar planes

of a fixed point {X'Y'Z') in regard to quadrics confocal with X'^la+ V'^lb + Z'^lc= l are the

osculating planes of such a cubic curve, the coordinates of whose points are expressible in

the form

XX'= (a + \f/{a - b) (a - c), YY'= ib + Xfl{b - c) {b - a), ZZ'= (c + Xf/{c -a){c- b),

X being a variable parameter.

Ex. viii. For the quintic curve of intersection of a quadric and a cubic surface having

a common generator we obtain, from Ex. iv., putting ??i'=l, y = 0, m = b, that p = 2 ;
the

results of Exx. iv., v., vi. can be immediately verified for this curve ;
further, if the surfaces

be taken to be yU-zV=^0, yS-zT=0, where U, V are of the first degree in x, y, z and

^S", T ol the second degree, and we put y— z^, x=zrj, we obtain

2(,;ai + a2)=Xi, z' {ri'^^+ r,^^->r^^) + z{r^y^^y,,) +\= 0,

where the Greek letters a^, ag, . . . denote polynomials in ^ of the degrees of their suffixes.

Hence, if a be defined by the equation,

XiO-= 2;; (Xi^iSj+ Xiaiyi + Siai^) + Xi2/32+ Xi (aiva+ a^yi) + 2Via2>

we obtain 0-^=
(^, 1)6 ; |, o- are rational functions of x, y, z and x, y, z are rational functions

of I,
0-.

Ex. ix. Prove that if the sextic intersection of a cubic surface and a quadric surface,

break up into a quartic curve and a curve of the second order, the numbers p, p for these

curves are /5 = 1, y= or /'= 0, jo'= - 1 according as the curve of the second order is a

plane curve or is two non-intersecting straight lines.

Ex. X. In analogy with Ex. iv., shew that the deficiencies of two non-singidar plane

curves of orders «i, m' are connected by the equation

m {m + m' - 3) - (2p - 2) = mm'= m' (m -1- m' - 3) - (2p' - 2),

and further in analogy with Ex. v. that if a plane curve, of order m+ m'-3, be drawn

through (m + m' - 3) m' -p'+l independent points of the curve of order »i', only p - 1 of its

intersections with the curve of order m can be prescribed.

Further indications of the connexion of the theory of curves in space with the subject

of this chapter will be found in Appendix I.
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CHAPTER VII.

Coordination of simple elements. Transcendental uniform

functions.

120. We have shewn in Chapter II. (§§ 18, 19, 20), that all the funda-

mental functions are obtainable from the normal elementary integral of the

third kind. The actual expression of this integi'al for any given form of

fundamental equation, is of course impracticable without precise conventions

as to the form of the period loops, and for numerical results it may be more

convenient to use an integral which is defined algebraically. Of such

integrals we have given two forms, one expressed by the fundamental

integral functions (Chap. IV. §§ 45, 46), the other expressed in the terms of

the theory of plane curves (Chap. VI. § 92, Ex. ix.). In the present Chapter

we shew how from the integral P^,'", obtained in Chap. IV.*, to determine

algebraically an integral Q^'" for which the equation Q^" = Q^'' has place;

incidentally the character of P^c> ^ ^ function of z, becomes plain; and

therefore also the character of the integral of the second kind, E'^"' , which

was found in Chap. IV. (§§ 45, 47).

This determination arises in close connexion with the investigation of

the algebraic expression of the rational function of x which was obtained in

§ 49 and denoted by y}r{x,a; z,Ci,...Cp). It was there shewn that every

rational function of x can be expressed in terms of this function. It is shewn

in this Chapter that any uniform function whatever, which has a finite

number of distinct infinities, which may be essential singularities, can be

expressed by such a function.

Further, it is here shewn how to obtain an uniform function of x having

only one zero, at which it vanishes to the first order, and one infinity ; and

that any uniform function can be expressed in factors by means of this

function.

* For the integral of the third kind obtained in Chap. VI. the reader may compare Clebsch

and Gordan, Theorie der Abel. Functionen (Leipzig, 1866), p. 117, and, for other important results,

Noether, Math. Annul, xxxvii. (1890), pp. 442, 448; also Cayley, Amer. Journal, v. (1882), p. 173.
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121. Let Wj'", ...,'iLp'^ denote any p linearly independent integrals of

the first kind, vanishing at the arbitrary place a. Let t denote the infinit-

esimal at X, and let Dii[, , Du^ denote the differential coefiicients of the

integrals in regard to t, all of which are everywhere finite. Let c^, ..., Cp

denote any p fixed places of the Riemann surface, so chosen that no linear

aggregate of the form

\iDui + + \pDup ,

where \^, ..., Xp are constants, vanishes in all the places c,, ..., Cp, but such

that one linear aggregate of this form vanishes in every set oi p — 1 of these

places*; and let o)i{x) denote the linear aggregate, of this form, which

vanishes in all of Ci, ...,Cp except Cj, and is equal to 1 at the place Cj.

Then coi (x) is expressible as the quotient of two determinants ; the

denominator has Dug for its {r, s)th element, the numerator differs from the

denominator only in the I'-th row, which consists of the quantities Duj , ...,

Ditp ; thus (Oi{x), ..., (»p{x) are determinable algebraically when Wj, ..., Up are

given. Conversely the differential coefficients of the normal integrals of the

first kind (§§ 18, 23) are clearly expressible by w^ix), ..,, oop{x), in the form

VLi {x) = CO, (x) Hi (ci) + +(Op{x) fli (Cp).

We have already used vf'^ as a notation for the normal integral

^r- . i ni{x)dta:. In this chapter we shall use the notation 1^^'"=
I Wi(x)dtx.

Zirl J a •'a

If the period of the integral Ui''' at the j-th period loop of the first kindf

be denoted by Cij, we can express vf " as the quotient of two determinants,

the denominator having Cj_ ,; for its {i, j)th element, and the numerator being

different from the denominator only in the ith. row which consists of the

1 , x.a X, a
elements u ',..., u .

1 ' p

122. Consider now the function of a; expressed;}: by

z being any place whatever. The function is clearly infinite to the first

order at the place z, like —t~^, t^ being the infinitesimal at ^^ ; it is also

infinite at each of the places Ci, ..., Cp, and, at ci, like coi {z)t^_ , t^. being the

infinitesimal at Ci. The function has no periods at the period loops of the

* Thus there exists no rational function infinite only to the first order at each of Cj, ..., Cp.

Cf. §§ 23, 26.

t Cj,, is the quantity by which the value of w''" on the left side of this period loop exceeds

the value on the right side. See the figure, § 18, Chap. II.

X Klein, Math. Annul, xxxvi. p. 9 (1890), Neumann, loc. cit. p. 14, p. 259.
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first kind. At the tth period loop of the second kind the function has the

period

r=l

which, as remarked (§ 121), is also zero. Hence the function is a rational

function of x. It vanishes at the place a. We shall denote the function by

•^{x, a\ 2, Ci, ..., Cp). It is easy to see that it entirely agrees, in character,

with the function given in § 49.

For the places Cj, ..., Cp have been chosen so that no aggregate of the

form

Xin,(a;)+ +\pnp{x)

vanishes in all of them. Hence (Chap. III. § 87) the general rational function

having poles of the first order at the places z, Ci, ... ,Cp is of the form Ag + B,

where g is such a function, and A, B are constants. These constants can be

uniquely determined so that the residue at the pole, z, is — 1, and so that

the function vanishes at the place a.

Ex. For the case jo= l, if we use Weierstrass's elliptic functions, the places x, a, z, c,

being represented by the arguments v, a, v, yj, and put .r= ^?<, y= '^'{u) etc., we may

take, supposing v not to be a half period,

rr=-^,[c(«-^')-C(a--)-^-(«-a)], 0,^=1^,

and obtain

or

^^{x,a; 2,c,) = -^^{f(«-iO-C("-Vi)-f(a-0 + aa-yi)},

"'"^
' '

^' '^~2p'{v)lip{u-v)-i(>{u-y,) ip{a-v)-ip{a-y,)j'

and any doubly periodic function can be expressed linearly by functions of this form,

in which the same value occm^ for y^ and different values for v. (Cf. § 49, Chap. IV.)

123. Since (Oi(z), = -^ V^'% is a linear function of VL^{z),..., ^p{z), it

follows that coi{z) -J- is a rational function of z; and F.' ,
=

-jr H^'^,

^f^n''"^^, is such that* F^' "
/ ^ is a rational function of z; hence

\dz '' ' J dtz ' I dt

dz
* Throughout this chapter such an expression as /(z) 3- is used to denote the limit, when a

variable place $ approaches the place z, of the expression /(|) — , t being the infinitesimal for

dt

^
dt
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dz

di

dz .

>\r{x,a\ z, Ci, ..., Cp)j
-J-

in a. rational function of z. It is easy also to see,

dci .

from the determinant expression of coi {z), that coi (z) -j^ is a rational function

of Ci, ..., Cp.

I dz
Hence -^{x, a; z, Ci, ..., Cp) I -r- is a rational function of the vai'iables q/

all the places x, a, z, Ci, ..., Cp.

Further, as depending upon z, -v/r {x, a; z, Ci, ..., Cp) is infinite only when
d ~ . . .

r*' "'
is infinite ; and P^' '^, = -rr H*' ", is infinite ouly when 2^ is at ^ or at a.

At the place x, F*''" is infinite like j— log t^, namely like the inverse of the

infinitesimal at the place x.

Hence ylr(x, a; z, c^, ..., Cp), regarded as depending upon z, is infinite only

when z is in the neighbourhood of the place x, or in the neighbourhood of tJte

place a. At the place x, -^ {x, a; z, Ci, ..., Cp) is infinite like the positive

inverse of the infinitesimal, at the place a it is infinite like the negative inverse

of the infinitesimal. The rational function of z denoted by

yir{x,a; z,Ci, ..., Cp) -^

will therefore be infinite at the place x like and at the place a
Wi + 1 z — X ^

like =- , where w, + 1, m, + 1 denote the number of sheets thatW2+lz — a

wind at the places x, a respectively ; and will be infinite at every branch

place, like , ~-m7.,) t being the infinitesimal at the place, tu + 1 the number
^

(ty + 1 ) P ° f
'

of sheets that wind there, and A the value of \/r(a;, a; z, Ci, ..., Cp) when z is

at the branch place.

The actual expression of the function y^ {x, a\ z, Ci, ..., Cp) is given below

(§ 130).

124. From the function -^{x, a] z, Ci, ..., Cp) we obtain a function,

7^ / X Jc
'''(•'' "' "^^ *' ''"^ '^^' n'' " - I v';"

r'- "

l!j{x, z) = e , = e • r=i
,

wherein c is an arbitrary place, which has the following properties, as a

function of x.

the neighbourhood of the place z. When z is not a branch place y = 1 ; when w + 1 sheets wind

at z, —=:(w + !)(" (cf. §§ 2, 3 ; Chap. I.). Ample pi'actice in the notation is furnished by the

examples of this chapter.
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(i) It is au uniform function of x. For the exponent has no periods at

the period loops of the first kind, and at the ith period loop of the second

kind it has the period

which, as follows from the equation

n,- {z) = o), (^) Of (ci) + -\-(Op {z) VLi {cp),

is equal to zero. Further the integral multiples of liri, which may accrue

to n*' " when x describes a contour enclosing one of the places z, c, do not

alter the value of the function.

(ii) The function vanishes only at the place z, and to the first order.

(iii) The function has a pole of the first order at the place c.

(iv) The function is infinite at the place c,-, like e^ / 'c.
, tc. being the

infinitesimal at the place. We may therefore speak of Ci, ..., c^ as essential

singularities of the function.

125. In order to call attention to the importance of such a function

as this, we give an application. Let R (x) denote a rational function, having

simple poles at a^, ..., a,„, and simple zeros at ySi, ..., /S„,. We suppose these

places different from the fixed places c, a, Cj, ..., Cp. Then the product

F(:c) = RW ^'^•''' !<^'°'">
.

^'E(x.fi,) Eix,fi„)

is an uniform function of x, which becomes infinite only at the places Ci, ... Cp]

at d it is infinite like a constant multiple of

Now, in fact, \ogF{x) is also an uniform function of x: for it is only

infinite at the places Cj, ..., Cp, and, at the place c,, like —
(
S F*""' ""j r^'**.

r fF' (x)
Hence the integral \d\og F(x), = i-^^dx, taken round any closed area

on the Riemann surface which does not enclose any of the places Cj, ..., Cp, is

m
a. fir fdt

certainly zero, and taken round the place c,- is equal to — S V/^' I — , taken
r=l J t

Ci

round c,-, and is, therefore, also zero.

But an uniform function of x which is infinite only to the first order at

each of Cj, ..., Cp does not exist. For the places Ci, ..., Cp were chosen

.so that the conditions that the periods of a function, of the form
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wherein X^, ...,\p are constants, should be zero, namely the conditions

Xinr(ci)+ +Xpnr(Cp) = 0, r = 1, 2, p,

are impossible unless each of Xj , . .
.

, \p be zero.

Hence we can infer that S V^' '' = 0, for i = 1, 2, . .
. , p, and that F (x) is

r=l

a constant ; this constant is clearly equal to F (a), for £ {a, z) = 1 for all

values of z.

Hence, any rational function can be expressed as a product of uniform

functions of a;, in the form

R{a,) = R (a)l('^hi--l(^>M
^

E{x, Oj) E{x, a,n)

where a^, ...,cim are the poles and /3i, ..., ^^ the zeros of the function. We
have given the proof in the case in which the poles and zeros are of the first

order. But this is clearly not important.

Further, the zeros and poles of a rational function are such that

m a- , c ni P , c

2 PV = 2 Vi'' , i=l, 2, ...,p,
r=l r=l

c being an arbitrary place. This is a case of Abel's Theorem, which is to be considered in

the next Chapter. We remark that in the definition of the function JS(x, z) by means of

Riemann integrals, the ordinary conventions as to the paths joining the lower and upper

limits of the integrals are to be regarded ; these paths must not intersect the period loops.

Ex. i. For the case »= 0, n'^'"= losf ("
) and E Lv, z) =

Ex. ii. For the case p = l, su2:)posing the place c represented by the argument y, we
have

^{x,a; z, q, ..., Cp)=- ~—{^{u-v)-({u-y^)-({a-v) + C{a-yi)]

\ogE(.v,z)=j ylA{x,a; z, c^, ... , ef,)dz = -
j

dv {C{u-p)-Cin -yi)- ^(a-v) + C(a-yi)}

{x -c) (a- z)

and therefore

(t{u-v) (r{a-y)

a-{u-y) a-{a-v) ^ ^^ Lb \ n/ s. \ ri/p

pf^ ,\ a-{u-v)(ria-y) (^,-y)K(»-y.)-^(f,-v,)]
£/ V*) ^) — 7 \

7 \ ^
a- [U-y) <T {a — v)

Ex. iii. Prove, if «/, c' denote any places whatever, that

E (x, z) L (a , c ) n ' — 2 I
i r

E(x,c')E{a',z)

Ex. iv. The rational function of x, i/a (.r, f ; z, Cj, ... , c,,), will, beside f, have p zeros,

say Yi, ...,yp, such that the set f, yj, ...
, y^ is equivalent with or coresidual with the set

z, Cj, ... , Cp (§§ 94, 96, Chap. VI.). Hence, in the product

i|^(x-, C; z, Cj, ..., Cp) \p (.r, z
; ^, y^, ...

, y,,).
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the zeros of either fact<jr are the poles of the other, and the product is therefore a constant.

To find the v;Uue of this constant, let x approach to the place z. Then the product

becomes equal to
- tx~^ • tz L-OxV' i^, ' ; C. yi. ••• , y^)]x=, •

it is clear from the expression of ylr{x, a ; z, c^, ... , c,,) which has been given, that

D^y^t{x, a; z, c^, ..., c^) does not depend upon the place a. Thus, by the symmetry, we

have the result

= -D^^\r{(,a^, 2, Cj, ..., Cp),

where a is a perfectly arbitrary place, and the sets 2, ^i, ..., <^p> C) yn •••) y;> *re subject to

the condition of being coresidual.

Hence also if W {x ; *, c,, .. , Cp) denote the expression

Dx\jf{t:, a; z, q, ..., Op)-r^'''],

we have
'^(-'; C, yi> •••) yp)= 'f'CC; -^ ^i, ..., Cp),

provided only the set 2, Oj, ..., Cp be coresidual with the set f, yj, ..., yp.

Ex. v. Prove, with the notation of Ex. iv., that

y^{x, a; 2, Cj, ..., Cp) r/. (2, a
; f, yi, ..., yp) = ^{x, C ; ', q, ..., Cp)^{.i; a (, yi, •••, yp)-

126. These investigations can be usefully modified*; we can obtain

a rational function yjr {x, a ; z. c), having the same general character as

y^ {x, a; z, c^, ..., Cp) but simpler in that its poles occur only at two distinct

places z, c, of the Riemanu surface, and we can obtain an uniform function

E (x, z) having only one zero, of the first order, at the place z, which is

infinite at only one place, c, of the surface.

The limit, when the place x approaches the place c, of the rih differential

coefficient of n,(vr) in regard to the infinitesimal at the place c, will be

denoted by n^p (c), or simply by nf\ We have shewn (Chap. III. § 28)

that there are certain numbers k\, ..., k^, such that no rational function

exists, infinite only at the place c, to the orders l\, ..., kp. The periods of a

function of the form

c c ^ c c Tcp'
wherein Xj, ..., X.p are constants, and y/"^!^'" denotesf the limit, when z

approaches c, of the kth. differential coefficient of the function 11*'^ in regard

to the infinitesimal at c, /a being an arbitrary place, are all of the form

ni*'-'^-\nf'-'>- -Xynjf'--'^ (i = i, 2, ...,p).

These periods cannot all vanish when k is any one of the numbers

k^, ...,kp\ thus the determinant formed with the /)- quantities H^.
~^' does

* Gunther, Crelle, cix. p. 199 (1892).

t For purposes of calculation, when c is a branch place, it is necessary to have care as to the

definition.
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not vanish ; but Xj , . .
.

, Xp can be chosen to make all these periods vanish

when k is not one of the numbers ki, ..., kp.

127. Consider now the function

f (x, a ; z,c) = , n,{z) , . ,
%{z)

Dkr-\ y^X, a n (kr-\) n(kr-l)

V

li'
(A-i-l)

Xl
(Al 1)

'V

n(fcp-i)
n'

(A-p-l)

'P

wherein r = 1, 2, P-

Since the period of V' ", at the ith. period loop of the second kind, is

^i{z), the periods of the elements of the first column of the first deter-

minant are the elements of the various other columns of that determinant.

Thus the function is a rational function of x.

We shall denote the minors of the elements of the first column of the

first determinant, divided by the second determinant, by 1, — Wi {z), ..., — cOp (z),

although that notati(m has already (§ 121) been used in a different sense.

Before, w,- (z) was such that coi (c,.) = unless r = i in which case oii (c,) = 1
;

now, as is easy to see, \_D
"""^

Wj (^)jz=c is or 1 according as r is not equal or

is equal to i. The integrals I a>i{z)dtz are linearly independent integrals of

the first kind (cf Chap. III. § 36).

Then the function can be written

f {x, a; z,c)^V':"'- S o^i {z) D^J
"

' T
p

\ki - 1 Tyx, a

the function is infinite at z like — t ^, t^ being the infinitesimal at the

place z, and is infinite at c like*

|Aa - 1 O), (Z)t-"^ + + \kp - 1 . (Op {Z)r''',

tc being the infinitesimal at the place c. It is not elsewhere infinite. The
function vanishes when x approaches the place a. As before (§ 123)

/dz
^{x, a; z, c) / -77 is a rational function of all the quantities involved; and

•»|r {x, a ; z, c), as depending upon z, is infinite only at the places x, a, in each

case to the first order.

* This is clear when c is not a branch place, since then, when x is near to c, T''" is infinite

like - r— ; and the (fc-l)th differential coefficient of this in regard to c is - \k - 1 {x - c)-K

When c is a branch place, exactly similar reasoning applies if we first make a conformal repre-

sentation of the neighbourhood of the place, as explained in Chap. II. §§ 16, 19.
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128. If now R(x) be a rational function with poles of the fii-st order at

the places z^ ^„, , it is possible to choose the constants X, , . .
. , Xy so that

the difference

R (a-) - Xji/r {x, a; Zi,c)- X^-^/r {x, a; Zo, c)- - X,„-^ {x, a; z,n, c)

is not infinite at any of the places z^, ..., z,n; this difference is therefore

infinite only at the place c, and is infinite at c like

- {A, k,-l r*' + + Ap kp-1 <;*"),

where

A
i
= X,w,- (^i) + + X,„6),- (z,„), (t = 1, 2, . .

. , p).

But, a rational function whose only infinity is that given by this ex-

pression, can be taken to have a form

A+A,Dl^-'r;'' + + A^l/f-'r'\

wherein A is a constant; and we have already remarked (§ 126) that the

periods of this function cannot all be zero unless each of ^i, ..., ^p be zero.

Hence this is the case, and we have the equation

R {x) = A + Xi^fr^x, a ; z,, c) + + \,„yfr (x, a ; z,n, c),

whereby any rational function with poles of the first order is expressed by

means of the function -v/r (x, a ; z, c). It is immediately seen that the

equations Ai = 0= ... = Ap enable us to reduce the constants Xj, ..., X,„ to

the number given by the Riemann-Roch Theorem (Chap. III. § 37).

When some of the poles of the function R (x) are multiple, the necessary

modification consists in the introduction of the functions

D,ylr(x, a ; z, c), Dlfix, a; z, c),

Rv. U wiix), ...,ap{x) denote what are called u>^{x), ..., u>p{x) in § 121, and the

notation of § 127 be preserved, prove that

«r(2)= 2 «i(2)Z) ' »r(c),
i=l

and that
A-.-l

^(.r, a; z, c) = V'(.r, o; z, Oj, ..., Cp)-2ai{z)D^ yj/' {x, a; c,c,, ..., Cp)

>(r(.r, a; z, q, ..., Cp) = «// (.r, a; z, c) - 2o»j (2) t/r (.r, a; Cj, c).

129. From the function yjr (x, a; z, c) we derive a function of ^, given by

E {x, z) = e ,
= e '=1

,

where, in the notation of § 127, Y'^''^\ (o,(z)df,, which has the following
• c

properties

:

(i) It is an uniform function of a;; there exists in fact an equation

27r^T;;''^= i r;'n'-'-'\
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(ii) The function vanishes to the first order when the place x approaches

the place z ; and is equal to unity at the place a.

(iii) The function is infinite only at the place c, and there like

As before we can shew that any rational function R{x), with poles at oj, ..., a„j, and

zeros at /3i, ..., /S^, can be written in the form

this being still true when some of the places oi, ..., a^, or some of the places /Sj, ..., /3,„

are coincident.

130. We pass now to the algebraical expression of the functions which

have been described here*. We have already (Chap. IV. § 49) given the

expression of the function ^{x, a; z, Ci, ..., Cp) in the case when all the

places a, z, Ci , . .
. , Cp are ordinary finite places. In what follows we shall

still suppose these places to be finite places ; the necessary modifications

when this is not so can be immediately obtained by a transformation of

the form x = {^ — k)~^, or by the use of homogeneous variables (cf § 46,

Chap. IV., § 85, Chap. VL).

If, s being the value of y when x = z, we denote the expression

(/)o {s, ^) + S <^, {s, z) gr (y, x)

{z-x)f{8)

byf {z, x), and use the integrands &)i(«), ..., (ap{x) defined in § 121, the

rational expression of ^{x, a; z, Ci,..., Cp), which was given in § 49, can be

put into the form

p
'^{x,a;z,Ci,..., Cp) = {z, x) - (z, a)- 1 w,. (z) [(d, x) - (a, a)].

In case ^r be a branch place, the expression (z, x) is identically infinite in

virtue of the factor /' (s) in the denominator, and this expression can no
longer be valid. But, then, the limit, as ^ approaches z, of the expression

* It is known (Klein, Math. Annul, xxxvi. p. 9 (1890); Giinther, Crelle, cix. p. 199 (1892)) that

the actual expressions of functions having the character of the functions ^(.r, a; z, q, ..., Cp),

E (x, 2), Q^'", have been given by Weierstrass, in lectures. Unfortunately these expressions have

not yet (August, 1895) been published, so far as the writer is aware. Indications of some value

are given by Hettner, Gotting. Nachi: 1880, p. 386; Bolza, Gotting. Nachr. 1894, p. 268;
Weierstrass, Gesamm. Werke, Bd. ii. p. 235 (1895), and in the Jahreshericht cler Deuts. Math.-
Vereinigimg, Bd. iii. (Nov. 1894), pp. 4U3—436. But it does not appear how far the last of these
is to be regarded as authoritative ; and it has not been used here. The reader is recommended
to consult the later volumes of Weierstrass's works.

t This notation has already been used (§ 45). It will be adhered to.

B. 12
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(?' ^) j7 » wherein t is the infinitesimal at the place z, is finite* ; if we denote

dz
this limit by {z, x) -7-

, and introduce a similar notation for the places

Ci , . .
. , Cp , we obtain the expression

dz P dc-
^|r{x,a•, 2,Cu ..-, c^) = [{z, x) - (z, »)] ^ - 1 (o, (z) . [(c.-, x) - (c,-, a)] -^

,

which, as in § 49, has the necessary behaviour, for all finite positions of

Zf a, Cj, ..., Cp.

From this expression we immediately obtain (§ 45)

131. In a precisely similar way it can be seen (see § 127) that

yjr{x,a; z, c) = [{2, x) - (z, a)] J - ^S w, (z) D]''^ |[(c, x) - (c, a)] ^ ,

wherein D';-' j[(c, x) - (c, a)] || = limit,.,
[^(^J'"

|[(r. x) - {^ a)]
^j

for this expression can be written as the quotient of two determinants, in

the manner of § 49, and the integrands flj (2), . .
. , ^p{z) are linear functions

of the p integrands

^1 {z) dz Z(f>i (z) dz z^'~^
(f>i

(z) dz
(f>2

(z) dz

f'Js)di' Yis) di'"" /'(s) dt' fjs) di

'

'

these latter quantities can therefore be introduced in the determinants in

place of fli (z), ..., Cljj (z), the same change being made, at the same time,

for the quantities ni(c), ..., fij,(c), throughout. Then it can be shewn

precisely as in § 49 that the expression is not infinite when a; is at infinity.

In regard to finite places, it is clear that the expression

Zt-'|[(c..)-(c,a)]g, = i).''i^-,

regarded as a function of x, has the same character, when x is near to c, as

the function iy='"^r''".
c c

Hence, also, it follows that E{x, z) has the form

L{x, z) = e r=\ \ «'l

.

* /' {'?). when T) is verj- nearly o-, vanishes to order i + ic, and df/dt to order ir (see Chap. VI.

§ 87). Or the result may be seen from the formula

(Chap. rV. g 45).
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132. Ex. i. For the case (^ = 1) where the surface is associated with the equation

y'^^ix, 1)4,

if the values of the variables x, y at the place a be respectively a, b, and the values at the

Ijlace Cy be Cj, d^ respectively, then

(a) when (Ci, c^i) is not a branch place '^i (^) =^ ^ > (^1. ''^) =
2s (g - .r)

and

r s+y g+6 "|c?s c?iC?gr c?i+y dy-\-h
"It (•'»-. «

;
^> «i) -

[_2s (2 - .r) 2s (z - a)J dt s dt \_2di {c^ - x) 2dy {c^ - a)\

_ 1 dzVs+y s+ b d^+y dy+ b~\
_~

2s dt[j — x z-a Cy-x Cj — aj '

0) when (ci, d{) is a branch place, in the neighbourhood of which

, ^ -4 «^2 / \O^Ci T -i. r -4^+3/ a^ y
x= c, + t\y = At+ ...,.M = f,J,,

(^i'-^)^-l^«^^*«f 2l7(^r-^)-2^= J(^^3^)' •

r s+y s-\-b ~\dz _A_dz ( y b "j

V' (-^^ «
;

2, '^i)-|_2s(z-^) "
2s (3- a)J di~¥sdt {A^c^-x) ~ A{Cy-a)]

_ 1 dz (s+y s+ b y
i

^ \
~ 2s dt\z-x z-a c^^-x c^-a)

'

If (s, z) be not a branch place, ^ -7. = ^ ', if (s, s) be a branch place, in the neighbour-

hood of which ^=0+ «2j 2^= ^^ + ..., — ^", =Hmit of -^ 2^, =-=,.

Ex. ii. For the case {p= 2) where the surface is associated with the equation y^=f(,x),

where f{.v) is an integral function of x of the sixth order, we shall form the function

yp-{x, a; z, e^, c^) for the case where Cj, Cg are branch places, so that f{Gi)—f{c.^= 0, and

shall foi'm the function \p{x, a; 2, c) for the case when c is a branch place, so that /(c) = 0.

When Cj, Cg are branch places, in the neighbourhood of which, respectively, x=Cy+ t^,

y= A-^i+ ..., and^=C2+ f2^ y= -^%h'^ ••> ^o that A-^=f' {c^, A^=f' {c^,-WQ\\ii\e

z-c^ Aydz . . z-c, Aodz ^ . , , \n c^c. 1 / '/ b \

''^^'^=^;^,Tsdt> ^^^^=,rzi^-idr t(^--^-)-(^i'")^^ = zAc:^.^-.7^aJ'

and

^irix a- z c cl^r '^^ '^^ 1"^^ ^
dz(z-c^/ y b_\

^^ ' ' ' 1' 2>' |_2s(s-^) 2s{z-a}_\dt 2s dt\ci-c^\Ci-x c^-a)

_^z-c,fy _ Ml

When c is a branch place, in the neighbourhood of which x= c+ f, y = At+ Bfi+ ...,

so that A^=f'{c), the numbers k^, k.^ are 1, 3 respectively (Chap. V. § 58, Ex. ii.). In the
definition of the forms a)i(s), 0)2(2) (§ 127) we may, by linear transformation of the 2nd,
3rd, ..., (^ + l)th columns of the numerator determinant, and the same linear transforma-
tion of the columns of the denominator determinant, replace ^1(3), ...,12^(0) by the
differential coefficients of any linearly independent integrals of the first kind. In the case
now under consideration we may replace them by the differentia] coefficients of the

integrals I —
,

I^ . Hence the denominator determinant becomes

12—2
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J_cfx

2y dt

X dx

2y di

2 /\^dx\ 2 fa^dx\
^- \iy dt)' ""'y^ydt)

: limit. 2t_

2At 2At
2t

\dtj \At + Bfi+ ..J' \dt) \At+ Bfi-\-...)

I, =2/41

Hence 0)1(2) -jg =limit2=(

25
A' '

:

]_dz

2s dt

(-T^

2 0?2

2sdt ={
25 2

Z^^ + 4
/ c5\1 2 c??

V ^ // 2« c^f

«V2y rf«/' ^\2y rf^y

'

=^^[^+5(2
.,1^2

'^hdi'
and

«2(2)22=-^^"^i*^*= ':

1 C?2 </0

2s ^ ' 2« rfi

1 c?a: 07 rfa;

2y ^' 2y rfi

1 dzc — z

2s dt ^' '

Hence

Further

a,(.)^[4+5(.-c)]IJ, ^^iz)=^A{z-c)l^^.

)Ut

vl« + 5<3+6 22/

^-^)]24]=-i^t^-^^-^-^^i-^in^2t^^-^^"-'^^^-2{At-irBf^){c-a+ i:^)} JJ yl2(^-c)2'

Hence the function -^{x^a; z, c) is given by the expression

r s+y s+ b Idz A+B{z-c) \ dz f y h \

|_2s {z - x) 2s (2 - a)J dt A 2s dt\c — x c-aj

z — c 1 dz fA — B{x-c)
X 2sdt

+
/A-B{x-c) _ A-B{a -c),\

\ {x-cf ^ {a-cf /•

Ex. iii. Apart from the algebraical determination of the function ^^(.r, a ; 2, Ci, ..., Cp)

which is here explained, it will in many cases be very easy* to determine the function by

the methods of Chapter VI. It is therefore of interest to remark that, when the function

^{x, a ; 2, Cj, ..., Cp) is once obtained the forms of independent integrals of the first and

.second kinds can be immediately obtained as the coefficients in the first few terms of the

expansion of the function in the neighbourhood of its poles, in terms of the infinitesimals

at the.se poles.

* An adjoint polynomial ^ of grade (n-l)<r + n-2 which vanishes in the p + 1 places

2. Cj, ..., Cp will vanish in n+p-3 other places. The general adjoint polynomial of grade

(h - 1) (7 + 71 - 2 which vanishes in these n + /j-3 places will be of the form X4' + yu9, where X and

/i are constants. The function \p(x, a ; 2, c,, ..., Cp) is obtained from X + /t6/»l', by determining

X and n properly. Cf. Nopther (loc. cit.) Math. Annal. xxxvii,



132] THE FUNCTION i^ IS FUNDAMENTAL. 181

In fact, if ti be the intinitesimal in the neighbourhood of the place Cj, and 31r, i
denote

A^ licr, Ci) -^\ , i/i,i denoting |z>^ I (cj, x) ^ + -\i
^^ ,

the expansion oi ^(x, a; z, Ci, ...^ Cp), as a function of ^, in the neighbourhood of the

place Ci, has, as the coefficient of ti~\ the expression <of (2), which is one of a set of linearly

independent integrands of the first kind, while the coefficient of ti is

A, [(2, Ci) j\- 2 0)^ (z) Mr,i.

Now the elementary integral of the second kind obtained in Chap. IV. (§§ 45, 47)

with its pole at a place c, when z is the current place, is E^' "= I dzD^ {z, c), whether c be
J a

a branch place or not, and when z is near a branch place this must be taken in the form

^r-/>,i'.[(.c)|].

Hence the coefficient of ti in the expansion of yj/{x, a; z, Ci, ..., Cp), when x is near to Cj,

is equal to

D.El" - 2 a>r{z)Mr,i.
» r=l

This is the diflferential coefficient of an integral of the second kind, with its pole at Cj,

the current place being z. We shall see that the integral of the second kind with its pole

at any place 2 can be expressed by means of the functions Ec , ..., E^ (§135, Equation x.).

Ex. iv. Similar results hold for the expansion of the function ^ {x, a ; 2, c), as a func-

tion of X, when x is in the neighbourhood of the place c. If t^ be the infinitesimal at this

place, the terms involving negative powers are

tsj^a,i(2)+ ...-|—-^^ -a,j,(2),

of which the coefficients of the various powers of t^ are differential coefficients of linearly

independent integrals of the first kind ; the terms involving positive powers are

.!,il{^'('^'">S)-i,"'<'>^"f

where Pf, t is the limit, when the place x approaches the place c of the expx'ession

\ki-\\

/4{4.-[(«,^)*].^}

Among the coefficients of these positive powers of <<;, only those are important for

which k is one of the numbers k^,...,kp. This follows from the fact that D^

-

1 r^' ", when
k is not one of the numbers ky, ..., ;fcp, is expressible by those of

c c ^ ^ c c '

of which the indices k^-l, ^2-1, ..., a,re less than k-\, together with a rational function
of X (Chap. III. § 28).
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Ex. V. In the expansion of the function y^ {x, a ; z, c) whose expression is given in

Example ii., the terms involving negative powers are

A + B{z-c) dz \,z-c.dz \

2« dt' tc 25 dt' tc^
'

and the terms involving positive powers ai-e

, dz . 1 I dz .r A B C r, L^, s1

where the quantities .1, B, ,.., E are those occurring in the expansion of >/ in the neigh-

bourhood of the place c ; this expansion is of the form y= At+ Bfi + Ct^ + I)t' + Et'^+

Ex. vi. If in Ex. v. the integrals of the coefficients of t, fi and ^ be denoted by

Fi, F^', F^, find the equation of the form

i^5'= X/'/+/ii^3' + integi-als of the first kind + rational function of (s, ;)

which is known to exist (Chap. III. §§ 28, 26 ; Chap. V. § 57, Ex. ii.), X and ^ being

constants.

Prove, in fact, if the surface be associated with the equation

f= {x - cf +_^i (.r - cf+ p, {x- cf +^3 {x - cf +p^ {x- cf +p^ {x - c)

that

j 2s L {T^cf
^•^+ 2i;,+A(^-c)J = -(^.-_-)3 + constant.

133. We pass now to a comparison of the two forms we have obtained

for each of the rational functions yjr (x, a; z, Cj, ..., c^,), "^{x, a; z, c), one

of which was expressed by the Riemann integi'als, the other in explicit

algebraical form.

The cases of the two functions are so far similar that it will be sufficient

to give the work only for one case \lr(x, a; z, Ci, ..., Cp), and the results for

the other case.

From the two equations (§§ 122, 130)

p

i=l

yjr{x,a: z, c„ ..., c^,) = [{z, x) - (z, a)] ^ - S coi {z) [(c,-, x) - {a, a)] ^

,

we infer, denoting the function

by jy'-'*, that

rr-[(^,^)-(^,«)]| (i)

^!'"= i iOi{z)H';'' (ii).

1=1 *
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The function H^'"^ is not infinite at the place z, but is algebraically

infinite at infinity; it has the same periods as F^' ". The equation (ii) shews

that ZT*'
"^

/
-J-

is a rational function of z, while the equation
dt

r*''«_ TU ^\ — (^ «M
dt i=i

rj " = [{z, X) - {z, a)] ^ + I <ci (z) Hi

"

(iii)

dz
gives the form of F^'

**
/ -7- as a rational function of z.

Integrating the equation (iii) in regard to z, we obtain

z, c x.a . t C: \ />

where c is an arbitrary place, and P^' ^ is the integral of the third kind, as a

function of z, which was determined in Chap. IV. (§§ 45, 46).

Since the integral of the second kind E^'"', obtained in Chap. IV.

(§§ 45, 46), is equal to D^Pl''^, we deduce from the last equation, inter-

changing X and z, and also a and c, and then differentiating in regard to z,

E^ 4- 2 Fi D,E,[ =i),n^;«, =An,,,, =F^ (v),

and thence, using equation (iii) to express F^''*,

e:'
'
= [(^, ^0 - {z, a)] I +

1^
[a,, (^) if

:•

" - Fr d,hx -] (vi),

which* gives the form of ^2' " / -^7 as a rational function of 2^.

The difference of two elementar}'- integrals of the second kind must needs be a function

which is everywhere finite, and therefore an aggregate of integrals of the first kind. The

equation (v) expresses the difference of E^''^ and r^'" in this way. But it should be

noticed that the coefficients of the integrals of the first kind in this equation, which
depend upon z, become infinite for infinite values of z. They are the quantities

D H''
2 Ci

From the equation (iv) we have

z, e s, c . , t c-
? = 1 '

wherein the coefficients of Vi'"' on the right may be characterised as integi-als of the

second kind. From this equation also, if the periods of V^' " at the ^th period loops of the

* An equation of this form is given by Clebsch and Gordan, Abel. Functnen. (Leipzig, 1866),

p. 120.
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first and second kind be denoted by Ci,j and C'i,j respectively, we obtain, as the corre-

sponding periods of /*^'

"

- 2 Ci,j H'^
1=1('':")r

from these equations the i^eriods of E'^ " are immediately obtainable. These equations

may be used to express the integrals H^" ' in terms of the periods of /*^' ** at the period

loops of the first kind.

134. But all these equations are in the nature of transition equations

;

they connect functions which are algebraically derivable with functions whose

definition depends upon the form of the period loops. We proceed further

to eliminate these latter functions as far as is possible, replacing them by

certain constants, which, in the nature of the case, are not determinable

algebraically.

The function of x expressed by H^'" is not infinite at the place z.

Hence we may define jjr finite constants ^,_ ,. by the equation

where c is an arbitrary place. And if, as in § 132, Ex. iii., we use the

algebraically determinable quantities given by

we have

and

^i,r = I)c.[(c,-,C,)^J, iV,.i = |z).

Mi,r + Ai,r = DcT';;'' = ^c,'^c''/ = Mr.i + Ar,i,

Mi,i + A;,i = M^^^'^ll
Then, from equation (v), putting therein c,. for z,

HV=lfcl''-[{Cn^)-{Cna)]^^=El''-[(c^^^^^ (vii)

and thence, since E^r =
j
dx i)^. {x, Cr)

J a

D:. Hi" = D^ \^{X, Cr) ^'j - /). [(C„ X) ^^j + _i J,. O,, (x).

If in this equation we replace x by z and i by r and then substitute

in equation (v), we obtain

»=1 i

(^, c.)
dz

dt
-D.

, . dci

^"' '^
dt

+ 1 A,.,i(Or(z)i;
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and thus, if we define an, algebraically determinable, integral by the equation

{z,Ci)
dz

di
-i)^[(c^, ^)

dci

dt

-ll.(Mr,i-Mir)fOr(z)\ (viii),

r=l

we have

1=1 r=l

or

Tr=Gr + it F?"S (A,,i + A,,,.)a>,(z),
1=1 r=l

from which, by integration in regard to z, we obtain an equation

Qtc = f g:' " dt, = nj: - 1 'ff (Ar,i + Ai,r) vT " r;

"

J e 1 = 1...p

either of these expressions being, by equation (viii), also equal to

(viii)',

(ix),

P7,c + 2 f;
X, a

^c;'-[(Ci,^)-(Ci,c)]
dci

dt

p p
+ 12 2 (VT^Vr- Fr Fr^)(il/,:,,.- J/,,,) (ix)'.

i=l r=l

The equation (ix) shews that the integi-al Q
'

" is such that

^z, c ^x, a

while every term of (ix)' is capable of algebraic determination.

135. From the equation (ix), when none of the places x, z, Cj, ..., Cp are

branch places, we obtain

n P.

+ 12 l[cOi (*) CO, (Z) - ft), (W) ft), (Z)] [Ml,, - Mr,i] (X),
1=1 r=l

and hence, from the characteristic property ^—^ Q^^ = 5-3- Qa, «> we infer

^/•^'^)-|;^^'^"> + A^^^(*')
|-_(.,cO-|(c,,.) •«,:(2)

aT/^''^^^-4^^^'^'>

+ 1 2 2 [ft)£ (^) ft), (^) - ft), (^0 ft), (2)] [71/,,, - i¥,,i] = (xi),
i=\ r=\

wherein every quantity which occurs is defined algebraically. The form

when some of the places are branch places is obtainable by slight modi-
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fications. This is then the general algebraic relation underlying ilw funda-

mental property of the interchange of argument and parameter, which was

oHginally denoted, in this volume, by the equation 11^'" = n^'^^.

The relation is of course independent of the places Cj, ..., c,,. For an expression in

which these places do not enter, see § 138, Equation 17.

The equation (xi) can be obtained in an algebraic manner (§ 137, Ex. vi.). The method

followed here gives the relations connecting the Riemann normal integrals and the particular

integrals obtained in Chap. IV., with the canonical integrals 6''^'", (2^'".

It should be noticed, in equation (xi), that in the last summation each term occurs

twice. By a slight change of notation the factor ^ can be omitted.

The interchange of argument and parameter was considered by Abel ; some of his

formulae, with references, are given in the examples in § 147.

136. From the equation (viii)' we have

From this equation, and the equation (viii)', we infer that

s=l
"« ^ «=l

"'

= ylr{x,a; z, c„ .... Cp) (xii),

which result may be regarded as giving an expression of the function

^ff (x, a; z, Ci, ... , Cp) in terms of the integrals G ; but, written in the form

Gl'" =^ (o, (z) rjj
"" + [(z, x) - {z, a)] j^- X coi (z) [{a, x) - {a, a)] -^

,

the equation (xii) has another importance; if we call Q,' an elementary

canonical integral of the third kind, and G^ ,
= -D,Q,' , an elementary

canonical integral of the second kind, we may express the result in words

thus—T/te elementary canonical integral of the second kind luith its pole at

any place z is expressible in theform

% (Og{z) G*' "+ (rational function of a;, z, c^, ... , Cp) -j-
,«=!*'« ' Ctt

vjherein the elementary canonical integrals occurring, have their jjoles at p)

arbitrary independent j^ldces Cj, ... , Cp.

Further, by equation (xii) the function E {x, z), of § 124, can be written

in the form

£j {x, z) = e •-! (xin).
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If we put

K'^'^=G:'''-[(z,a:)-{.,a)]^£ (xiv),

the equation following equation (xii) gives

K:'''=ia>i(^)Kl'' (XV),
i = l '

and therefore, also

Z,C Z,C ^^1 I c.

and

D. {{z, x) ^) - D, {{x, z) ^') = i^ [a,, {x) DX: "-
^i (^) D, K: "] (xvii)

which is another form of equation (xi).

It is easy to see that

137. Ex. i. Prove that the most general elementary integral of the third kind, with

its infinities at the places s and c, and vanishing at the place a, which is unaltered when
X, z are interchanged and also a and c, is of the form

z, c . " '^
J r '

1=1 r=l

wherein aj, ,. are constants satisfying the equations oi, i-=ac) i-

Ex. ii.

prove that

Ex. ii. If the integral of Ex. i. be denoted by §'^' "', and 1)^ (/'' " be denoted by G^' "
,

-^{XjU; z,Ci,...,Cp) = Gl;
" - 2 o)g (s)G^!' " .

Ex. iii. If, in particular, Q' be given by

p p
2 2
J=lr=l

cr=cr-i.2 '^ {M,,,+M„,.)v["'v:'\

prove that

i', a j-,z, aG^=E:''- 2if,,,Ff
'

' r=l

This is the integral, in regard to z, of the coefficient of ti in the expansion of

x//' (a;, a; 2, Cj, ..., c^), as a function of ^-j in the neighbom-hood of the place q (§ 132,

Ex. iii.).

The integral §^'^ is algebraically simpler than the integirJ (£''^
, of this example, in

that its calculation does not require the determination of the limits denoted by M^, j.

Ex. iv. For the case jo= 1, when the fundamental equation is of the form

f = {x, 1)4,
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if the variables at the place Cj be denoted by ^= c,, //= o^i, the place not being a branch

place, prove that

I (^' '^-l^'^ ''^=2ris
^-^""^^^

• ('^-^^^f'''(=^ (-'-^n

and calculate ^", from the equation xi, in the form

^a _ p f' !/s+/{x, z) dx dz _ i_ ., [' dx f" dz

^''"'Jajc 2(x-zf y 8 24-^ ^'''^Ja y ic s'

where, if y'-=f{x) = af^x*-\-Aa^oi^-\-^2^'^^^3^'^°At ^'^ symbol f{x, z) denotes the sym-

metrical expression

.r^ (aQ22+ 2ai3-|- 02)+ 2:p (042'^+ 2022+ 03) + (a2'^^+ 2032+ 04).

Prove also that in this ca.se M^^^= ~/' (Ci)/4/(Ci).

Calculate the integral ^' " when the place Cj is a branch place, and prove that in that

case J/^,,1, =limit<=o (1 , + l) > '"^herein a;= Ci + ^", y = At-\-Bfi+..., vanishes.

Ex. V. For the case (p= 2) in which the fundamental equation is

where /(.r) is a sextic polynomial, taking q, c.^ to be the branch places (cj, 0), (cj, 0), in

the neighbourhood of which, respectively, x= Ci + t^, y= Aj^ti + Bit^-\-..., and x=C2-\-t./^

y= A2t2+ B2t./+ ..., prove that

p,^c_ f-dz Jj^ z-c-i \dz ,xC?c,_l «_ . , , ___A_
^''i ~jc2s2-Ci' '^'^•'-^'c^-c^isdt' ^'''''' dt~AiC^-z' ^^"2-J,(ci-c,)

and infer that

K(.z;)a,2(.-)-a,2(.r)a,i(2)][J/2,i-i/„2]=-(^^(^-2)2-,^^^.

Supposing a; and 2 have general positions, deduce from equation (ix) that

Ays {x-zf |^|- 2y.= +^11S^±1^ {x-zf+f (z) {x-z) + 2f{z)

,(r ,^2r[/(gi)+/(^)](^-gi)-2/(^) :>;-C2 U'{c,)+f'{z)-\[z-c^-'2f{z) x-cA
^ '^t (^-Cx)2 Ci-c-2 {z-c,f c^-c,]^

where A^, A^ have been replaced hyf {cyi,f {c.^ respectively.

Prove that this form leads to

where, if /(.f) be aoA*+ 6aiar^ + 15a2A-^4-20a3.t-''+ 15a4x''^+ 6':'5./;+ «6, f{x,z) denotes the

expreasion

x^ («o2^+ ^iz'^+ 8022+ 03)+ Sx^ {UiZ^ + :ia^z^+ 8032 + 04)

+ Zx {a^^+ 8032^+ 804 2+ Og) + (032^ 4- 804 ;2 + 3ag2+ a^,

and L, M, N are certain constants depending upon Cj and c.^.

Ex. vi. Let R{x) be any rational function. By expressing the fact that the value of

the integral jli{x)dx taken round the complete boundary of the Kiemann surface, is equal
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to the sum of its value taken round all the places of the surface at which the integral is

infinite, we shall (cf. also p. 232) obtain the theorem

^[«wS-.=«'

where the summation extends to all places at which the expansion of R (.r) -j- , in terms of

the infinitesimal, contains negative powers of t, and R{x)-^ means the coefficient of

^-Mn the expansion. If all the poles of R {x) occur for finite values of x, this summation

dx
will contain terms arising from the fact that -5- contains negative powers of t when x is

infinite, as well as terms arising at the finite poles of R (x). If however R (x) be of the

d
form U{x)--j- V{x), wherein U{x), V{x) are rational functions of x, whose poles are at

finite places of the surface, there will be no terms arising from the infinite places of the

surface.

Now let ^ denote the current variable, and x, z denote fixed finite places : prove, by

applying the theorem to the case* when

that

^(l)= V' (I. «; ^. ^1, ...,Cp)^>/a(|, a; a;, Cj, ...,Cp),

D^^ {x, z)-D,ylr {z, x)= 2 {cof (x) [x/^ {x, z)] - coi (z) [>/^ (2, x)] },

t= l C. Ci

where ylr{x, z) is written for shortness for \lr{x, a; z, c^, ..., Cp), and [yl/^ix, z)] denotes the

coefficient of te. in the expansion of yjr {x, z), regarded as a function of x, in the neighbour-

hood of the place c^.

Shew, when all the involved places are ordinary places, that this equation is the same

as equation (xii) obtained in the text.

Prove also that

^•'^ i=lr=l i=l %

Hence, as the forms wi (x) are also obtainable by expansion of the function v|/' {z, x), every

term on the right hand is immediately calculable when the form of the function -^ {x, z)

is knotvn ; then by integrating the right hand in regard to x and z we obtain an integral

of the third kind for which the property of the interchange of argument and parameter

holds. (Cf. Ex. iii. p. 180.)

Ex. vii. By comparison of the two forms given for the function -^{x, a; .s, c) (§§ 126,

131), we can obtain results analogous to those obtained in §§ 133—136 for the function

y {x, a; 2, c^ , , . .
, Cp).

Putting, as before, H'^' = r^' - [(2, x) - {z, a)] -^ , and, when 2 is a branch place, under-
"^ " Cut

standing by D H^J " the expression Z),. (n'^' — P^] '^

), and, further, putting

* Gunther, CreUe, cix. p. 206.



190 MODIFICATION [137

wherein m is an arbitrary place and te the infinitesimal at the place c, so that

i = e

prove, in order, the following equations, which are numbered as the corresponding equa-

tions in §§ 133—136
;

i^f'"= la„(.)Z)'*-^<-" (u),
1=1

P"'"=lf-"- 2 V''"i/'~'h-"' (iv),

<""=[(^,.^^)-('-,a)]§+ l[a„(.)Z)^*-^<--rf-2),Z)^'-'<'"] (vi),

wherein, when c is a branch place, the first term of the right hand is to be interpreted as

also the equations

xt-.^".|,rri>:'-[A((.0|)-A((c,4')]

+ 22 J^iT,'' "«,(.-),
! = 1 r = l

and thence, that the algebraically determinable integral

is equal to

and, finally, that the integral

•i 2 2 {X,,,-Ni,r)V^''u>ri^\
<=lr=l

r, -^2 2 I,. u>r{:){B„i+ Bi,r) (vni);
1 = 1 r=l

C:=<:-iI I r;="'r;-'(i5,„+5.„) (ix),

1=1 r=l

which, clearly, is such that ^' " =^ "'
, can be algebraically defined by the equation

(/'-=p^-+ 2 V"" d"''' \E'''"-[{c,z)-{c,m)]^\

-U2(if''F;""-F;^''Tf'")/r„, (ix)'.

i r

Further shew that the function ^/r (x, a ; 2, c) can be written in the form

>K.r,a; r.c)^^!-"- 2 «,(.-) Z>**
~

' 6^
"

(xii).
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The algebraical formula expressing the property of interchange of argument and parameter

is to be obtained from the equation

+ ^ 22 [wi (.r) (»r{z)- <0r G^) <0i {z)] Ki , r (x).

Lastly, if L^. {z) denote the coefficient of t''/\k {k positive) in the expansion of the function

yj/- {.V, a; z, c) as a function of x in the neighbourhood of the place c, so that (Ex. iv. § 132)

L^{z)^B^ ((^,c)^) - J^o,i(2)Pi,„

where Pj, j, denotes a certain constant such that Pi,fr^. is iV;,^, prove, by equating to zero

the sum of the coefficients of the first negative powers of the infinitesimals in the expan-

sions of the function of |, \//' (^, « ; 2, c) D^ >/' (|, « ; x, c), at all places where negative

powers occur, that

p
D^ ^ {.V, a; z,c)-D,^{z,a; x, c)= 2 [coi {x) Z^ . {z) - a>i {z) U. [x)\ (A),

1=1

wherein, on the right, only functions Ly,{z) occur for which k is one of the p numbers

^ij ^2> •••> ^vi ^"^^ 'Oax\'t

^^AC™-^ 2 2 a)i(^)a),(2)(iVr,i+iyi,,.)=A>|'(-, «; .^, c)+ 2 a)i(.T)Zi.(j) (B)
;

i=lr=l i—\

thus an elementary integral of the third kind, permitting interchange of argument and
parameter, is obtained immediately from the function i//- {x, a; z, c) by integrating the

right hand of equation (B) in regard to x and z.

Prove also, that if

we have the formulae

<•''= 2 o,;(^)i/'-^/i^'« (XV)
i=l

^ = ^

^^((^' ^) I) - ^^((•^' •^) I) = ,!,[-^ (-) ^^ ^!^" ^^* '"

- -^ (^^) ^x Z>!^"^ A-- «] (xvii).

Z^r. viii. To calculate the integral (f^'^[ for the case (^= 2) where the fundamental

equation is

wherein /(^) is a sextic polynomial divisible by ^-c, which is expansible in the form

f{x) = A'^{x-c) + Q{x-cf+ R{x-cf+ ...,

we may use the equation (xi) of Ex. vii. When x, z are near the place c, putting

x= c + t^% z^c+ ti, y= At^+ ^ti^-\-..., s= At,+^ti+ ...,

prove that

D^ [{^>^)~Tf)~ ^x ( (^j x)
^/ ) = 72 (^i^

~ ^i) + cubes and higher powers of t^ and t^,
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and thence (see Ex. ii. § 132) that

„r ,. ,. ,. ,., R{x-z) dx dz

Also, when 2 is not a branch place, if c, be a place near to c, and the expansion of the

function ^r- {z, c^-— (cj, *) -r^ in powers of the infinitesimal at c, contain the terms

J/+ . + yt'-+ ... , so that

prove that

"""
2As{z-cf

,, 3^^2-0) U^+ ig(.-c)]+/'(--)-(---c)[^-^-^g(^-c)]-2/(.-)[2^^-|g(2-c)]
^^-

2A^s{z-cf '

substituting these results in the formula (xi) of Ex. vii., prove that

where /(.r, z) has the same signification as in Example v. The part within the brackets

{ } is of the form j/5 22a<, r«i(-T) w^C^), where ai,r=o.rii-

Obtain the same result by the formvda (B) of Ex. vii., using the form of ^ (.r, a ; z, c)

found in Ex. ii. § 132.

138. The formulae in §§ 133—136 enable us to express the form of a

canonical integral of the third kind, in the most general case ; and to

calculate the integral for any fundamental algebraic equation, when the

integi-al functions are known. But they have the disadvantage of presenting

the result in a form in which there enter ^; arbitrary places Cj, ... ,Cp. We
proceed now to shew how to fonnulate the theory in a more general way

;

though the results obtained are not so explicit as those previously given,

they are in some cases more suitable for purposes of calculation.

Let w^'", ... , u'^ denote any p linearly independent integrals of the first

kind ; denote jDz"^'
'^ by /x, (./). Let the matrix who.se (i, j)th element is

^lj{Ci) be denoted by /a, Ci, ...,Cp being the places used (§ 121) to define

the quantities g)i (a;), ...,<Up(a;). Let Vij denote the minor of the (i,j)th

element in the determinant of the matrix /i, divided by the determinant

of /i.; so that the matrix inverse * to /i is that whose (i, j)th element is i/j ,-.

Then we clearly have

o).- (.t) = I/,-,
1
/i, (a) + + I/.-, p/Ap (a;) (t = l, %...,p).

* Since u'*, ..., u' are linearly independent, and the places Cj, ...,Cp are independent

(see §§ 23, 121), the matrix m~' can alwaj's be formed.
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Let a denote any symmetrical matrix of p" quantities, a;,;, in which

aij = Uj^ i. Then we define p quantities by the p equations

Zx, a TT^, (* 1 tiv n , 1
Tjx, a si /„ x. a , ,

x, a\
' =v,,iR' + K,, ; Hf,' + ... + Vp, iH - 2 («;, 1

<A + . . . + a,-, pU ),

and call them fundamental integrals of the second kind associated with the

integrals z<^' ",.,., w^' ". For instance when fi.i(x) = a);(a)), v;j = unless

i=j, in which case Vi^i = l. Thus by taking a.ij = l{Aij + Aj^i), the

integrals K'^'"', ... , K'^''^ (p. 187. xiv.) are a fundamental system associated

with the set Ff'^ ...,V'
1 ' ' p

rx,a

It will be convenient in what follows to employ the notation of matrices

to express the determinant relations of which we avail ourselves *. We shall

therefore write the definition given above in the form

wherein L^' "' stands for the row of p quantities L^' " , ... , If' " , H'^' " stands

for the row ofp quantities H'^''^, ... , H^'"^, and V denotes the matrix obtained

by changing the rows of v into its columns, and is in fact equal to the

matrix denoted by /u.~\ so that we may also write

Z*'
** = fi-'H'''

" - 2au^' \ = fM-'K^' "" - 2a'u''' «,

where (§137)

h:.'; = k:;' + -1 i(A,,, + At,r)VlI

•X, a
Explicit forms of the integrals K^' have been given (§§ 134, 136).

Then, from the equations defining the integrals L'^' "', we have

P X a i* X a P ^ P X, a

XfjLi{z)Li' = % He', z Vj^ifii(z)-2 Z X a-r^iiUr fig{z),

= Z. (Oj{Z)Ilc. —2 2, Z ar^gUr /Jisi^),

3 = 1
' r=l s=l

= Jlg —ZZ Z ar,sUr fit {z) ',

and this is an important result. For, putting for z in turn any p independent

places, the p functions X^'"' are determined by this equation. Thus the

functions L^'"', ... , Z^' " do not depend upon the places Cj , Co, ..., Cp.

* See for instance Cayley,^ Collected Works, vol. ii. p. 475, and the Appendix II. to the present

volume, where other references are given.

B. 13
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Also, fi'om this equation we infer

dzD {z,x)
dt

-D. \a:,z)^^=D,H';'-D,Hr

= S [fH {x) D.lfi " - tii {z) DX' "] (17).
1=1

r. being any arbitrary place. Now it is immediately seen that if R^{x) , ...

,

Rj, (x) be any rational functions of x such that

I [f^ {x) D,L\ " - ^.- {z) D,L'-"]= i [fii {x)Ri (z) - f^ (z) Ri (x)],

1=1 i=l

then Ri(x) can only be a form of D^Li' , obtained from DxLi by altering

the values of the constant elements of the symmetrical matrix a. Hence

the equation (17) furnishes a method of calculating the integrals Li , when-

ever it is possible to put the left-hand side into the form of the right-hand

side.

The equation (17) shews that the expression

A((^.^)^)+.i /xK^)Axr,

is unaltered by the interchange of x and z. This expression is also

equal to

Dz
(
{x, z) -j\ + D,Hx' - 2 S 2 a,.. /t, {x) /x, {z)

and, therefore, to

p J)

r=l s = l

DgV^ - 2 S X ar,s f^r (x) Ma U)-

Hence, the formula (§ 134, ix.)

Hx.a r,x,a ^ x.aj-z,c f-i^, a o -C V x, a z, c

t = l r = l s = l

= Qz. c + i 2 X {Ar,s + A,^r)V^ V, - 2 2 2 ar, sKr Us
r=l «=1 r=l s=l

gives US a form of canonical integi-al of the third kind not depending upon

the places Ci,...,Cp, and immediately calculable when the forms of the

functions Z,' are found.

The formula

z =[{z,x)-{z,a)]-j-+ :i. fjLi(z)Li -1-2 2 Zar,sttr fi,(z)
at ^.1 ,.=1,^1

serves to express any integral of the second kind in terms of the integrals

A L„
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Ex. i. For the surface y'^=f{oo), where /(:?;) is a rational polynomial of order 2/J + 2,

the function

».>, r^ d ( V \ 1 r /'{$) 2/(1) 1

^^^'s{^-z)-di\y{^-x)J' 2^s\{^-x){^-z) (^-^)2(|-4'

wherein s^=f{z), i;2= /"(|), is a rational function of $ (without ?;). Prove by applying the

theorem, 2 l^Ri^) ^1 =0, (Ex. vi, § 137) that

a-(^-,
^)-3-(^, 2)=2 J(F-/?:)X,,,',,(^2^ 2.-^ 2-J'

where ^^ <?;' represent in turn every pair of unequal numbers from 0, 1, 2, ..., 2p, whose

sum is not greater than 2p, k' being greater than k, and the coefficients X are given by the

fact that

Hence, a set of integrals of the second kind associated with the integrals of the first kind

f'^xP-'^dx'f^ dx f^ xdx i^

.

Ja~y' Ja^' ' Ja. - . . . y
is given by

Z;'"= ^ 2 \k.x,i{ic+l-i)x\ (t=l,2, ...,p);

and a canonical integral of the third kind is given by

[^[''dzdxr2ys+ 2f{z)-irf{z){x-z), £ i i^^t^"*/, . i -.x tl

7a;c2s2y|_ {X-ZY f=i ;fc
= i J

This is equal to

/:/:

2ys+ 2 ^V[2Xji + X2i + 1(^+2)]
a2 a.r i=0

/;

2s 2y {x-zf '

which is clearly symmetric in x and z.

The value of x- (2, x) — ^ (:r, 2) used in this example is given by Abel, (Euvres ComplHes

(Christiania, 1881), Vol. i. p. 49.

/x d^;— is

« y

——-—*— dx ; and express these in the notation of Weierstrass's elliptic functions

when the fundamental equation is y'^ — ^x'^—g.^v-g^.

139. Suppose now that the integrals u^ ,...,Up are connected with

the normal integrals v-y' , ... , v^' by means of the equations

trifir^x) = \,., 1 fi, (a;) + +Xr,p0..p {x),

which, since ili{x) = ^-niDvi , are equivalent to

Ur =2{Xr,iVi + + \r,pVp ).

Then the periods of the integral w*' ", at the first p period loops, form the

rth row of a matrix, 2\, and the periods of the integral m^' " at the second

13—2
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p period loops form the rth row of a matrix 2Xt ; we shall write o) = \ and

fo' = Xt, so that o),, j=Xi,;. The two suffixes of the quantities o),- ^ will

prevent confusion between them and the differential coefficients tu, (./).

Let the periods of Z,* at the jth period loops of the first and second kind

be denoted by — -rjij and —27]'i^j respectively. The matrix whose ith row

consists of the quantities t/,-, ,, ... , rjip will be denoted by t] ; similarly the

matrix of the quantities ?/',•_ j will be denoted by rj'. The matrix of the

periods of the integrals .^f,'", ••• .
^/'" at the first period loops is zero; the

{i,j)ih element of the matrix at the second period loops is the jth period of

He' ", namely flj (c,). We shall denote this matrix by A.

By the definitions of the integrals Li' we therefore have

'2vi, j = 'i («i, if^ij + '+ «i, p <^p, j). (z, j = 1, 2, . .
. , p)

2ri'i^ j = 4 (a,-, 1 ft)/, >+...+ a,-, p tu'p,
_,)
- (i/j, ,• Hj (c,) + . . . + r/p, ,- H^ {Cp)),

and all these equations are contained in the equations

r) = 2aw,

71 = 2a<y' — ^v^ = 2a(o' — ^/i~^ A.

Now from the equations connecting fir (x) and n, (x), we obtain

iriflr (Ci) = \r,l^l (C,) + +Xr,p^p (C,),

wherein fir (c,) is the (t, r)th element of the matrix fi, and the right hand is

the ({, r)th element of the matrix AX ; hence we may put

Trifi — AX.

If then we denote the matrix \ti~'^^ by h, we have

2AX^ = 27rt/xA = ttiA = Atti,

and infer that 2X/j = 7rt, and thence that 2/iX = iri. Thus 2hQ)= Tn, 2A&)'=7rtT.

Also the integrals u^' ,..., Up ,..., Vi' , ... , Vp are connected by the

equation hu^- " = '2h\v^' " = ttiV' ".

140. The four equations

2//6) = TTi, 2/jci)' = TTiV, Tf = 2ao3, V = 2a&)' — h (A)

will prove to be of fundamental importance in the theory of the theta

functions. They express the periods rj, t) independently of the places

Ci, ... ,Cp, used in defining L; .

If beside the symmetrical matrix t, and the arbitrary symmetrical matrix

a, we suppose the matrix /^ which is in general unsymmetrical, to be
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arbitrarily given, the integrals 2/1' , ... , Up being then determined by the

equation hu"' * = ttvv^' "; the first equation, 2ha) = iri, gives rise to p^ equations

whereby the p^ quantities Wij are to be found, and similarly the other

equations give rise each to p^ equations determining respectively the quantities

w'i^j, Tji^j, v'ij- ^ut' thereby, the 4p- quantities thus involved are deter-

mined in terms of less than 4p^ given quantities. For the symmetrical

matrices a, r involve each only ^p(p + l) quantities, and the number of

given quantities is thus only p {p + 1) +p\ There are therefore, presumably,

4^2 _ [^2 +^ (p _,_ 1)]^ = 2p^ - p,

relations connecting the 4fp^ quantities cojj, (o'i^j, rjij, rj'ij; we can in fact

express these relations in various forms.

One of these forms is

0)7; = TJQ), co'rj' = rJQ) , rjai' — wt) = hiri = <o' rj — r)'a>, (B)

of which, for instance, the first equation is equivalent to the ^p{p — ^)

equations
p
S (cDr, (• 77r, j — Vr, i « r, j) = 0,
r=l

in which i = l, 2, ... , p, j =1, 2, ... , p, and i is not equal to j. The second

equation is similarly equivalent to ^p {p— 1) equations, and the third to p^

equations. The total number of relations thus obtained is therefore the

right number p"+p{p — l), In this form the equations are known as

Weierstrass's equations.

Another form in which the 2p- — p relations can be expressed is

to&)'=a)'«, 'ryn' = ''l'v>
o)'rj — (orj' = ^771 = 7]^' — 7)'(o (C)

These equations are distinguished from the equations (A) as Riemann's

equations.

141. The equations (B) and (C) are entirely equivalent ; either set can be deduced

from the equations (A) or from the other set. A natural way of obtaining the set (B) is

to use the equation (17). A natural way of obtaining the set (C) is to make use of the

Riemaun method of contour integration.

The equations (A) give, recalling that a— a, (o'= cot, t— t,

arf= 2aaa) , = /3, say, a symmetrical matrix,

wTj'= 2ma<o' — w/i= 2(ia(0T — ha = (iT— ^tti.

Hence ^<B'= ^<ar= ^r= /3r,

and because Mi'= ro),

arj'= T(or)' — Tlir — h nir,

and thus, as r^T= T^T, we have

forj-^^a, mri'= ri'(o', rju)' — Hr)'= ^ni= <o'rj —rj'a,
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which are the equations (B). And it should be noticed that these results are all derived

from the three <o'= o)t, ior) = li, W7'=^T — Atti, assuming only that )3 and t are symmetrical.

From the etjuations (B), putting uij—^, d)'?;'= y, so that ^ and y arc symmetrical

matrices, we obtain*

i7= («)~'^, 7' = y(a)')~', and thence w'(w)~'/3 — y («')"' ci) = ^»ri.

Hence, if o» 'a>'= K, so that a)<c = cD', a)' = Kw, «'(«)~' = ic, and »c
~

' = («') ~
' w, we have

ic/3 — y»c " ' = ^ ;ri, or jc/3»c — y= ^jnVf,

and therefore, as the matrices Jc/3k and y are symmetrical, so also is the matrix k ; and thua

o)~ 'a)'=«5'(c5)~ *, and therefore w^'= a}'<i,

which is one of the equations (C).

Further

and therefore ^'m = K(i-^ni=K^ — ^wi,

leading to «i7v'a)=;3K/3-^7ri/3,

and the right hand is a symmetrical matrix, and therefore equal to arj'rjui ; thus also

which is the second of the equations (C).

Finally {(o'rj — a>TJ')Q) = a)'T]u> — (»(«'»; - ^ni) — a'atj — oiU'r] -\-^ni<ii = {(o'a — (ii)w')»; + ^rrtft)

and thus

a'i] - cot)' =^^ni, = , therefore, »;w' — »;'«,

which is the third of equations (C).

We have deduced both the equations (B) and (C) from the equations (A). A similar

method can be used to deduce the equations (B) from the equations (C).

Other methods of obtaining the equations (B) and (C) are explained in the Examples

which follow (§ 142, Exx. ii—v).

142. Ex. i. Shew that the^ integrals given by the equation

where ti^j is the minor of Q>(o,) in the determinant of the matrix A (§ 139), divided by the

determinant of A, namely by the equation

are a set of fundamental integrals of the second kind associated with the set of integrals

of the first kind 27ruf' ", ... , 2invl' ", and are such that

=
J^

(o,i {X) D, Hi ' - a,i {z) D, Hi: ") =
J^

[c.^ (x) D, A'l " - «, {z) D^ ZJ ")

"* The determinant of the matrix w, = X, cannot vanish, because h'", ... w'" are linearly

independent. The determinant of the matrix t does not vanish, since otherwise we could deter-

mine an integral of the first kind with no periods at the period loops of the second kind

(cf. Forsyth, Theonj of Fnnctiom, § 231, p. i40).
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Prove that the function A'^'
'^ has only one period, namely at the tth period loop of the

second kind, and that this period is equal to 1. For the sets

_ . K, (i ^ , X, a .X, a .x,a
27nV^ , ..., ^TTlVp , Aj , ..., A^

,

we have in fact <o=7rt, (o' = niT, 77 =0, >j'=-^-

Shew that these values satisfy the equations (B) and (C).

Ex. ii. From Ex. i. we deduce

_ • ^ / X, a z,c z,c X, a, 1^ , x,a ^z,c z, c ,x, a.

27n2(v,- A, -V. A/ )= 2 («, Z. - u, L, ).

i=l 1=1

Hence, supposing x and z separately to pass, on the dissected Riemann surface, respec-

tively from one side to the other* of the rth period loop of the first kind, and from one

side to the other of the sth period loop of the first kind, we obtain, for the increment of

the right-hand side

— 42 (ci)i,r '7i,g-';i) I- Wi,g),
i = l

which is the {r, s)th element of the matrix —4{wr) — f)a>). For the functions on the left-

hand side the matrix iSrj-Tja) vanishes (Ex. i.). Hence the same is true for those on the

right hand.

Supposing X to pass from one side to the other of the rth period loops of the first kind,

and z from one side to the other of the sth period loop of the second kind, we similarly

prove that 57' — ijco' has the same value for the functions on the two sides of the equation,

and therefore, as we see by considering the functions on the left hand, has the value —^ni.

While, if both x and z pass from one side to the other of period loops of the second kind

we are able to infer <:i'r]'= r)'o)'.

We thus obtain Weierstrass's equations (B).

Ex. iii. If C7^' ",..., f/^' " be any integrals, the periods of C^^' " at the^th period loops

of the first and second kind be respectively ^i,,, d,,, and the matrices of these elements

be respectively denoted by (, f'
; and PF^'", ..., PF^-" be other integrals for which the

corresponding matrices are ^ and ^', prove that the integral / U^' " d Wp "
, taken positively

round all the period-loop-pairs has the value

p

»• = !

which is the (i,j)th. element of the matrix Ci'-C'i-

Ex. iv. If Ri (x) denote the rational function of x given by

P dc
Ri {x)= 2 I/,.

, i [(cv,x)-{Cr,a)']-^,

the function Z^' " -f /f^ (.??) is infinite only at Ci,...,Cp, and has the same periods

Z^' " , Denote this function by F"' °
.

* To that side for which the periods count positively (see the diagram, § 18).
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Prove that if the expansion of the integral T.^' " in the neighbourhood of the place c,

be written in the form

then

where .•!,.„ .1/,,, arc a-s detined in § 134, and are such that -l,.,+ i/i.,= J, ,+J/, ».

Hence shew that the .sum c.f the values of the integral [ J^'" rfF/"" taken round all

the places c,, ... , c^ is zero.

Kv. V. Infer from Exs. iii. and iv., by taking

(a) (/;•"= <•"= if;-", that a.5' = a,'5,

iff) ur=Yr, w^r"=<-, that,«'-,'«=A,^

(y) if " =Y^-'=W^''^ that rjrj'^n'r,.

These are Riemann's equations.

Kv. vi. If instead of the places c^, ..., Cj, and the matrix /x, we use a matrix dejiending

only on one 2)lace r, the /th row Ijeing formed with the elements Z>^''~' ni (c), ... ,
/>*'"'

MdC'-'X

we can similarly obtain a set L'^' "
, ... , Z'^^' " associated with the set m^' "

, ... , m'"'
"

.

Shew that the periods of Z,^' " , . .
.

, L^' " thus determined are independent of the posi-

tion of the place c.

Kv. vii. If the difterential coefficients Mi (-i')? ••• ? M;)('^")»
be those derived from a set of

p independent places b^, b.^, ... , bp, just as u^ (x), ... , <i>j,{x) are derived from c,, ... , Cp, so

that fii{bi) = \, /xj(6,.) = 0, prove that f,-,
i
= a),(ii) and that

,:
=^6,. -2(ai, w, +...+«;„«; )•

143. We conclude this chapter with some applications* of the functions

y}r(a;, a; 2, c), E(.t, 2) to the expression of functions which are single-valued

on the (undissected) Riemann surface. Such functions include, but are

more general than, rational functions, in that they may possess essential

singularities.

Consider first a single-valued function which is infinite only at one place

;

denote the ]AiK-c by m, and the function by F(a;).

dz . .

Since y^ (.v, « ; z, c) ,, is a rational function o( z, the integral

j
F{z) yfr (x, a ; z, c) £ dz, or JF{2)ylr (a;, a ; z, c) dt^,

taken round the edges of the ])eriod-pair-loops, has zero for its value. But
this integral is also equal to the stmi of its values taken round the place vi,

* Appell, Acta Math. i. pp. 10«», 132 (1882), Giinther, Crelle cix. p. 199 (1892).
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where F{z) is infinite, and the places x and a at which >^ (a;, a; z, c) is

infinite.

dz
Now, when i; is in the neighbourhood of the place m, since '>^{x,a\ z, c)l-^

is a rational function of z, we can put

CO jT

^{x,a\ z,c)= 2 -H^ D"" ylr(x,a; m, c),

where t^ is the infinitesimal at the place m.

Thus the integral I F(z)yjr{x, a; z, cjdtz, taken round the place m, gives

27ri S -j- Z)^ -^/r (a;, a ; m, c),

where ^^ is the value of the integral —; / ^^ i^ (z) dt^ taken round the

place m.

When z is in the neighbourhood of the place x, yp- (x, a; z, c) is infinite

like tg; , tx being the infinitesimal at the place x, and therefore, taken round

the place x, the integral

j
F(x)yfr (x, a; z, c) dtz

gives

liriFix).

Similarly round the place a, the integral gives — 2^1 F (a).

Hence the function F(x) can be expressed in the form

F(x) ^F{a)-l TzD^ ^Ir (x, a ; m, c),

r=0 li.
»»

the places a and c being arbitrary (but not in the neighbourhood of the

place m).

For example, when «= 0, >//• (.r a ; z, c)= - ( —
) , and

\x-z a-z)

^r = 2~"-
/
{^— I'^Y F{^) dz, the integral being taken round the place m.

A similar result can be obtained for the case of a single valued function with only ;i

finite number of essential singularities. When one of these singularities is only a pole,

say of order fi, the integral \t[^ F{z)dz, taken round this pole, will vanish when r^n, and

the corresponding series of functions i)*" y\r {.v, a ; m, c) will terminate.

wherein
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144. We can also obtain a generalization of Mittag Leffler's Theorem.

If Ci, Cj, ... be a series of distinct places, of infinite number, which converge*

to one place c, and /, (x), f. (.c), ... be a corresponding series of rational

functions, of which fi(x) is infinite only at the place c,-, then we can find a

single valued function F(x), with one essential singularity (at the place c),

which is otherwise infinite only at the places Ci, Co, ..., and in such a way

that the difference F{x) — /,• (x) is finite in the neighbourhood of the place c,:.

Since fi(x) is a rational function, infinite only at the place c,-, and

yjr (x, a ; 2, c) does not become infinite when z comes to c, we can put

/, (x) =fi (a) - X -: Dl ylr(x,a; c, , c). (A)

wherein a is an arbitrary place not in the neighbourhood of any of the

places Ci, Cj, ... , c, and X.,- is a finite positive integer, and Ar a. constant.

Also, when z is sufficiently near to c, and x is not near to c, we can put

^|r(x,a, z,c)= X
-I

[D^ f{ir,a; z, c)]^=c,

wherein tc is the infinitesimal at the place c. Thus also, when z is near to c,

D'^yfr{x,a- z,c)=i t^ Rj,{x), (B),

wherein Rjc (x) is a rational function, which is only infinite at the place c.

There are p values of k which do not enter on the right hand ; for it can

easily be seen that if ki, .... kp denote the orders of non-existent rational

functions infinite only at the place c, each of the functions

[DI'~^ yjr {x, a ; z, c)]2^c, , [-^f
"^

"^ i-^, a ;
z, c]^=c

vanishes identically. Let the neighbourhood of the place c, within which z

must lie in order that the expansions (B) may be valid, be denoted by ^f.

Of the places Ci, c^, ..., an infinite number will be within the region M;
let these be the places c«+i, C),+.., ...; then s will be finite and, when i > s,

we have
^

i-

Bl yp- {X, a ; Ci, c) = i. t^ R;^k{x),

wherein t,- is the value of tc, in the equation (B), when z is at c,. Hence also,

from the equation (A), wherein there are only a finite number of terms on

the right hand, we can put

fi(x)-f,(a)= i t-Si,k{^), (C),

wherein >S\_jk is a rational function, i > s, and x is not near to the place c.

* so that c is what we may call the focus of the series Cj, c,, ... (Haufungsstelle).
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It is the equation (C) which is the purpose of the utiKsation of the

function y{r(x, a; z, c) in the investigation. The functions Si^k{x) will be

infinite only at the place c. The series (C) are valid so long as x is outside

a certain neighbourhood of c. We may call this the region M'.

Let now Cg+i, e^+a, ... be any infinite series of real positive quantities, such

that the series

is convergent ; let fii be the smallest positive integer such that, for i > s, the

terms
*

k

taken fi-om the end of the convergent series (C), are, in modulus, less than e,-,

for all the positions of x outside M' ; then, defining a function gi{x), when
i > s, by the equation

we have, for i> s,

Thus the series

' k

k=

I
gi(x)

I
<€i.

S [fi(^)-fi(a)]+ S giix)

is absolutely and uniformly convergent for all positions of x not in the

neighbourhood of the places c, Cj, c^, ..., and represents a continuous single

valued function of w. When x is near to Cf, the function represented by the

series is infinite like fi (x).

The function is not unique ; if yjr (x) denote any single-valued function

which is infinite only at the place c, the addition of yjr (x) to the function

obtained will result in a function also having the general character required

in the enunciation of the theorem. As here determined the function

vanishes at the arbitrary place a ; but that is an immaterial condition.

For instance when p= 0, and the place m is at infinity, the places m^, m^, m^, ...,

being 0, 1, w, l + w, ..., p+qa>, ... , wherein « is a complex quantity and jo, q are any
rational integers, let the functions fi{x), /^{x), ... be x'^, {x-iy^, (^-a))""*, ...

,

{x-p-qm)-\ ....

Here ^{x^a; z, c)=
-{^J-^-

±-^=.'-^ +t^V^+ ...

when 2 is great enough and
| o-'l < 1 2 1, |

a
|
<

1 2 1.

Also

y^{x, a; nii, c)
x— TTii a — nii

_ 1 (.v-a x'^ — a? \

a— mi \ ml^ m^ '" )
'

when mi is great enough, and
|
.r

]
<

|
w,

| , |
a

|
< |

«ij
|

.
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Now the series

111 11
2 —5 =22

is convergent. Hence when x and a are not too great

•+... <fi,

where *< is a term of a convergent series of positive quantities. This equation holds for

all values of i except i=l, in which case ??ij= 0.

Hence we may write

and obtain the function

/ \ 1.1. x-a
x—nii a — Ttii m^

11 « yf^ _ ^ x—a 1
X a p=:_x q= - ^{ja - p - q<i> a-p-qu, (jo + ?co)2j'

which has the property required. This function is in fact equal, in the notation of

Weierstrass's elliptic functions, to f (a;| 1, «) — f (a| 1, «).

145. We can always specify a rational function of x which, beside being

infinite at the place c, is infinite at a place d like an expression of the form

namely, such a function is

- xj^D:^{x,a; Ci,c),

and this may be used in the investigation instead of the function/,- {x) —fi (a).

Hence, in the enunciation of the theorem of § 144, it is not necessary

that the expressions of the rational functions/i(a;) be known, or even that

there should exist rational functions infinite only at the places c,- in the

assigned way. All that is necessary is that the character of the infinity

of the function F, at the pole c,-, should be assigned.

Convei-sely, any single-valued function F whose singularities consist of

one es.sential singularity and an infinite number of distinct poles which

converge to the place of the essential singularity, can be represented by

a series of rational functions of a;, which beside the essential singularity have

each only one pole.

146. Let the places c,, Co, ..., c be as in § 144. We can construct a

single-valued function, having the places Cj, Co, ..., as zeros, of assigned

positive integral orders Xj, A-,, ..., which is infinite only at the place c, where

it has an essential singularity.
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For the function E {x, z) = ei'

is zero at the place z and infinite only at the place c. When z is near to c

we can put

Dz \ogE{x, z)= X y- [Dl ylr(x,a; z, c)]^^c,

r=Q [^

and therefore, when Ci is near to e, and x is not near to the place c, we

can put

WogE{x,Ci)= i t\Ri,k{x),

wherein Ri,k{^) is a rational function of x which is infinite only at the

place c, and ti has the same significance as in § 144.

Let the least value of * for which this equation is valid be denoted by

5+1, and, taking e«+i, e^^.., ... any positive quantities such that the series

fS+l + ^«+2 + • • • >

is convergent, let fii be the least number such that, for i > s,

<€i.

Then the series

S \i log E {x, Ci)+ X Xi log E {x, mi) - X U Ri, k («)
-t=i •(:=«+! V k=o '

consists of single-valued finite functions provided x is not near to any of

Ci, Ca, ..., c, and, by the condition as to the numbers /i^, is absolutely and

uniformly convergent.

Hence the product

il\E{x,c>)Y' n \\_E{x,c>)\^e~ty''''^^\
i=\ 'i=s+l i J

represents a single-valued function, which is infinite only at c where it has

an essential singularity, which is moreover zero only at the places Cj, Cj, ...

respectively to the orders Xj, Xj,

With the results obtained in §§ 144—146, the reader will compare the

well-known results for single-valued functions of one variable (Weierstrass,

Abhandlungen aus der Functionenlehre, Berlin, 1886, pp. 1—66, or Mathem.

Werke, Bd. ii. pp. 77, 189).

147. The following results possess the interest that they are given by Abel ; they

are related to the problems of this chapter. (Abel, CEuvres Complkes, Christiania, 1881,

vol. i. p. 46 and vol. ii. p. 46.)
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Ex. i. If (^(x) be a rational polynomial in x, =n (.r+ at)^t,

and / (a;) be a rational function of x, = Syti-*+ 2 —
,

then

] {x-z)4>iz)
^

I {z-x)<l>iz) ''^-fS^nj
^^^^

je()0(a).^ dx

en')-n')ih(x)
The theorem can be obtained most directly by noticing that if (a;, z) = ... _ .

then

(/'(A-).
(^(Z)

0(Z,z)^</,(:r, Z) = ^^ \i}i-x){Jl-z)^{X-z)(,X-xf

is a rational function of X. Denoting it by R {X) and applying the theorem

we obtain Abel's result.

Ex. ii. With the same notation, but supposing f{x) to be an integi-al polynomial,

prove that

j<i>{x, z)dx+jp^^ct>{x, z)dz = 22A,,, j'^^^jemct>{.v).x^dx,

wherein A^^k, is * certain constant, and >// (.r) is the product of all the .simple factoi-s of

This result may be obtained from the rational function

R(X)='ti^^4>{X,z)^<i>{x,X)

as in the last example.

Ex. iii. Obtain the theorem of Ex. ii. when /{x) = 0, and (.r)= [»/' (•')]"'• In the

result put 7)1= -h, and obtain the result of the example in § 138.

These results are extended by Abel to the ease of linear differential equa-

tions. Further development is given by Jacobi, Crelle xxxii. p. 194, and by

Fuchs, Crelle Ixxvi. p. 177.
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CHAPTER VIII.

Abel's Theorem; Abel's differential equations.

148. The present chapter is mainly concerned with that theorem with

which the subject of the present volume may be said to have begun. It will

be seen that with the ideas which have been analysed in the earlier part of

the book, the statement and proof of that theorem is a matter of great

simplicity.

The problem of the integration of a rational algebraical function (of a

single variable) leads to the introduction of a transcendental function, the

logarithm ; and the integral of any such rational fimction can be expressed

as a sum of rational functions and logarithms of rational functions. More
generally, an integral of the form

jdxR(x,y, 2/n ...,2/fc),

wherein x, y, y^, y^, ... are capable of rational expression in terms of a single

parameter, and R denotes any rational algebraic function, can be expressed

as a sum of rational functions of this parameter, and logarithms of rational

functions of the same. This includes the case of an integral of the form

I dxR (x, '^aa? -\-hx -\- c).

But an integral of the form

dx R {x, '^aaf + hoi? + cx^ + d^ + e)

cannot, in general, be expressed by means of rational or logarithmic functions

;

such integrals lead in fact to the introduction of other transcendental func-

tions than the logarithm, namely to elliptic functions ; and it appears that
the nearest approach to the simplicity of the case, in which the subject

of integration is a rational function, is to be sought in the relations which
exist for the sums of like elliptic integrals. For instance, we have the
equation

/,

^^ __ \^' dx .'•^^ dx _
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provided

x, (1 - fi^x.W) = ^i V(l-a:„0(l -/-^x.^) + .T, V(l-.r,'^)(l -/IX').

On further consideration, however, it is clear that this is not a complete

statement : and it is proper, beside the quantity w, to introduce a quantity y,

such that

y- - (l - or) {I - k'x') = 0,

and to regard y, for any value of a;, as equally capable either of the positive

or negative sign ; in fact by varying a: continuously from any value, through

one of the values x=±l, x=±t, and back to its original value, we can

suppose that y varies continuously from one sign to the other. Then the

theorem in question can be ^vritten thus

;

i(o,i) yi J (0,1) 2/2 i(o, 1) 2/3

where the limits specify the value of y as well as the value of x. The

theorem holds when, in the first two integrals the variables (x, y) are taken

through any continuous succession of simultaneous values, from the lower to

the upper limits, the variables in the last integral being, at every stage of

the integration, defined by the equations

2/3(1— k-x^x^f = y^y^ (1 + k^x^^x^") — x^x^ (1 — k'^x^x^) (1 — h^).

The quantity y is called an algebraical function of x ; and the notion thus

introduced is a fundamental one in the theorems to be considered ; its

complete establishment has been associated, in this volume, with a Riemann

surface.

In the case where y" = {\ — x^) {\ — k-x-) we have the general theorem

that, if R {x, y) be any rational function of x, y, the sum of any number, /«,

of similar integrals

r(x„ y.) /-(^m- Wm)

R{x,y)dx + + R{x,y)dx

can be expressed by rational functions of (xi, 3/1), ..., {Xm, ym), and logarithms

of such rational functions, with the addition of an integral

—
I

Ri^, y) dx.

Herein the lower limits (Oi, 61), ..,, (a^, hm) represent arbitrary pairs of

corresponding values of x and y, and the succession of values for the pairs

(ar,
, j/i), ..., (.T,„, y,„) is quite arbitrary ; but in the last integral Om+i, ym+i are

each rational functions of (a;i, y^), ..., {xm, ym), which must be properly deter-
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mined, and it is understood that the relations are preserved at all stages of

the integration, so that for example a^+i, &m+i are respectively taken to be

the same rational functions of (Oj, 61), ..., (a„j, 6^). The question of what

alteration is necessary in the enunciation when this convention is not

observed, is the question of the change in the value of an integral

R (cc, y) duo

when the path of integration is altered. This question is fully treated in the

consideration of the Riemann surface, with the help of what have been called

period loops.

149. Abel's theorem may be regarded as a generalization of the theorem

just stated, and may be enunciated as follows : Let y be the algebraical

function of x defined by an equation of the form

fiy, oc) = f' + A,7/'-' + + ^„ = 0,

wherein A^, ..., A^ are rational polynomials in w, and the left-hand side of

the equation is supposed incapable of resolution into the product of factors of

the same rational form ; let R (r, y) be any rational function of x and y ;

then the sum of any number, m, of similar integrals

I R{x,y)dx+ + 1 R{x, y) dx,

with arbitrary lower limits, is expressible by rational functions of {x^, y^), ...,

(^m, 2/m)> and logarithms of such rational functions, with the addition of the

sum of a certain number, k, of integrals,

— I R (x, y) dx - — I R(x, y) dx,

wherein ^,, ..., Zk are values of x, determinable from x^, y^, ..., x^n, Vm as the

roots of an algebraical equation whose coefficients are rational functions of

.Ti, 3/,, ..., x^n, y^n, and Sj, ..., s^ are the corresponding values of y, of which

any one, say Si, is determinable as a rational function of Zi, and x-^^y^, ...,

^m, y-ni' The relations thus determining {z^, s^), ..., {zjc, Sk) from {x^, y^), ...,

i^m, y-m) may be supposed to hold at all stages of the integration ; in

particular they determine the lower limits of the last k integrals from the

arbitrary lower limits of the first m integrals. The number k does not

depend upon m, nor upon the form of the rational function R {x, y) ; and in

general it does not depend upon the values of (xi, y^, ..., {x^n, .Vw)> but only

upon the fundamental equation which determines y in terms of x.

150. In this enunciation there is no indication of the way in which the

equations determining z^, s-^, ..., Zjc, s^ from x^,yi, ..., x^, y-m are to be found.

Let 6 {y, x) be an integral polynomial in x and y, wherein some or all of the

coefficients are regarded as variable. By continuous variation of these

B. 14
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coefficients the set of corresponding values of x and y which satisfy both

the equations f{y, a;) = 0, B (y, x) = 0, will also vary continuously. Then, if

m be the number of variable coefficients of 6 (y, x), and m + k the total

number of variable pairs (x, y) which satisfy both the equations f{y, x) = 0,

$(y^ x) = 0, the necessary relations between (a-,, y,), ..., (x^, ym), (^i, ^i). ••,

(zjc, St) are expressed by the fact that these pairs are the common solutions of

the equations /(?/, x) = 0, 6 (y, x) = 0. The polynomial 6 (y, x) may have any

form in which there enter m variable coefficients ; by substitution, in 6 (y, x),

of the VI pairs of values (x^, 3/,), ..., (xm, ym), we can determine these variable

coefficients as rational functions of x^, y^, ..., x^, y,n\ by elimination of y
between the equations 6 {y, x) = 0, f(y, x) = 0, we obtain an algebraic equa-

tion for X, breaking into two factors, P^ {x) P {x) = 0, one factor, Pq (x), not

depending on x^, y,, ..., Xm, ym, and vanishing for the values of x at the

fixed solutions of f{y,x) = 0, 6(y, x) = 0, which do not depend on Xj,yi,

..., Xy,i , y„i , the other factor, P (x), having the form

{x-x,) ...{x- Xm) (x^ + Rix^-' + ... + Pk),

where R^, ..., Rk are rational functions of x^, yi, ..., Xm, ym- Finally, from

the equations /(s,-, Zi) = 0, 0(Si, Zi) = we can determine Si rationally in

terms of ^j, x^, y^, ..., x,n, ym- As a matter of fact the rational functions of

a^i, 2/1, ... , x,n> ym, which appear on the right-hand side of the equation which

expresses Abel's theorem, are rational functions of the variable coefficients in

e{y,x).

151. When 6{y, x) is quite general save for the condition of having

certain fixed zeros satisfying f{y, x) = 0, the forms of {z^, Si), ..., (zjc, s^) as

functions of (x^, y^), ... , {xm,ym) are independent of the form of d{y, x). This

appears from the following enunciation of the theorem, which introduces

ideas that have been elaborated since Abel's time, and which we regard as the

final form—Let (ttj, 6j), ....(a^, i^,) be any places of the Riemann surface

whatever, such that sets coresidual therewith have a multiplicity q, and a

sequence Q — q =j) — t — I, where t -h 1 is the number of <^ polynomials

vanishing in the places (a^, bj), ..., (a^, bq); let (x^, y^), ..., (xg, y,) be q
arbitrary places determining a set coresidual with {a^, 61), ..., {a^, 6^), and

(2,, Si), ..., {Zp_r-i, Sp-T-i) be the sequent places of this set*; then, R (x, y)
being any rational function of {x, y), the sum

I R{x,y)dx-\- + 1 R{x,y)dx
J (a,, 6,1 J (a.,, b,)

is expressible by rational functions of (x^, y,), ..., (x^, y,,), and logarithms of

such rational functions, with the addition of a sum

—
I

R(x, y)dx— — I R(x, y) dx

* See Chap. \^. § 95.
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herein it is understood that the paths of integration are such that at every

stage the variables form a set coresidual with (a^, b^), ..., (a^, 6q).

The places (a^, b^), ...,{11.^, bo) may therefore be regarded as the poles, and

(^1, 2/1)' •••' (*''?' yg)' (^i' '^1)' •••' (%-T-i, Sp-T-i) as the zeros, of the same rational

function Z (x) ; if 6^ {y, x) denote the form of the polynomial 6 {y, x) when it

vanishes in (ui, b^), ..., (a^, 6q), and dn{y,x) denote its form when its zeros

are {x-y, y^), ..., {z^, s^), ..., the function Z {x) may be expressed in the form

d<i{y, x)/0y{y, x). If the polynomials ^1 (.y, x), Q>i{y, x) are not adjoint, the

function will be of the kind, hitherto regarded as special, which takes the

same value at all the places of the Riemann surface which correspond to a

multiple point of the plane curve represented by the equation f{y, a;)=0;

this fact does not affect the application of Abel's theorem to the case.

152. To prove the theorem thus enunciated, with the greatest possible

definiteness, we shew first that it may be reduced to two simple cases.

In the neighbourhood of any place of the Riemann surface, at which t is

the infinitesimal, we can express K (x, y)-T. in a series of positive and

negative powers of t, in which the number of negative powers is finite. Let

the expression at some place, ^, where negative powers actually enter, be

denoted by

then, if P^' ^ denote any elementary integral of the third kind, with infinities

at ^, 7, and £'^' '^ denote the differential coefficient of P^' ''

in regard to the

infinitesimal at ^, the places 7, c being arbitrary, the difference

I

wherein D^ denotes differentiation in regard to the infinitesimal at ^, is finite

at the place |. The number of places, ^, at which negative powers of t enter

in the expansion of R (x, y)-^- ,is finite ; dealing with each in turn we obtain

an expression of the form

J ^^
^^

R {X, y) dx -
I
[^.PJ-; + A,El' ' + A,I)^E^> ^ + + ^„ P^"^r '\

wherein 7, c are taken the same for every place ^ ; this is finite at all places

of the Riemann surface, except possibly the place 7. If t^ be the infinitesi-

mal at this place the function is there infinite like (S^i) log ty. But in fact

S^i is zero (Chap. II. § 17, P:x. (S); Chap. VII. § 137, Ex. vi.). Hence the

14—2
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function under consideration is nowhere infinite, and is therefore necessarily*

a linear aggregate of integials of the first kind, plus a constant. Hence

if u'^' ", ..., u^' " be a set of linearly independent integrals of the first kind, a

denoting the place (a, b), and C\, .... C^ be proper constants, we have

R(a:,y)dx=l{A, + A,Di+ + A,,I)'^"-')P^^'^ + Cy^'" + + Cj,u,

/:

The consideration of the sum

R (x, y) dx + +
j

R{x,y) dx.

x,a

P

fJ a

wherein a^, ..., o^ denote the places (ai, 61), ..., (a^, 6<^), and Xi, ..., Xq denote

the places {x,, y,), ..., (x^, yg), (z,, s^), ..., {zp-r-i, Sp-r-i), is thus reduced to

the consideration of the two sums

<•"' + +<^'^ (i=l,2,...,p.)

i.y ^ ^ (,y
•

£x. i. By the proposition here repeated from § 20, Chap. II., it follows that any

rational function can be written in the form

+ [{x, ir''-i0i(a:,y) + ...+(x, l)^-'-'<^„_,(x,y)]//(y)

where (cf. § 45, Chap. IV.)

(^, $X<t>o (^. y)+"2 (Pr {^, y)gr (I, ri)V(^-^)f' (y),
1

i; being the value of y at the place |.

Ex. ii. Prove also that any rational function with simple poles at $1, ^2> ••• '^^ ^
written in the form

Xj, X2,... being constants, and a denoting an arbitrary place (cf. § 130, Chap. VII.).

153. We shall prove, now, in regard to these two sums, under the

conventions that the upper limits are coresidual with the lower limits, and

that the Q paths of integration are such that at every stage the variables are

at places also coresidual with the lower limits, a convention under which the

paths of integration may quite well cross the period loops on the Riemann

surface, that the first sum is zero for all values of i, and the second equal to

\og Z {^) IZ {'y), Z{x) being the-f* rational function which has a^, ..., a^ as

poles and .r, , ..., x^^ hs zeros. The sense in which the logarithm is to be

understood will appear from the proof of the theorem. If we suppose the

lower limits arbitrarily assigned, the general function Z (x), of which these

* Forsyth, 'Theory of Functions, § 234.

t If two rational functions have the same poles and the same zeros their ratio is necessarily

a constant.
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places »!,..., ttg are the poles, will contain g -I- 1 arbitrary linear coefficients,

entering homogeneously, and the assignation of q of the zeros, say x-^, ..., oCq,

will determine the others, as explained.—The equations giving the determi-

nation will be such functions of or-i, •••> o,q as are identically satisfied by these

places, tti, ..., aq. Hence the general form of Abel's theorem is

2 R{x,y)dx = 'Z
'a ^

Z(^) A ^'(f)

= s AJogZ(^) + A._^^ +

where Z' (^) = D^Z (f) ; the term ^Aj, log Z (<y) = log Z (y) XA^ can be omitted

because l^A^ = (Chap. II. p. 20(8)). Herein Z (^) is a rational function of

154. In carrying out the proof we make at first a simplification—Let

Z{x), or Z, be the rational function having aj, ..., aq as simple poles and

Xi, ..., Xq as simple zeros, these places being supposed to be all different;

trace on the Riemann surface an arbitrary path joining aj to Xi, chosen so as

to avoid all places where dZ is zero to higher than the first order, and let fi

be the value of Z at any place of this path ; then there will be Q — 1 other

places at which Z has the same value yu, ; the paths traced by these Q — 1

places as fi varies from x to are the paths we assign for the Q— 1 integrals

following the first. The simultaneous positions thus defined for the variables

in the Q integrals are, for q > 1, not so general* as those allowed by the con-

vention that the simultaneous positions are coresidual with aj, ..., a^; but it

will be seen that the more general case is immediately deducible from the

particular one.

Consider now, for any value of fi, the rational function

1 dl

Z — fi dx'

I, = \R{x, y) dx, being any Abelian integral whatever. In accordance with

a theorem previously used (Chap. II. p. 20 (h) ; Chap. VII. § 187, Ex. vi.) the

sum of the coefficients of t~'^ in the expansions of {Z — fx)~^dlldt, in terms of

the infinitesimal t, at all places where negative powers of t occur, is equal to

zero. Of such places there are first the Q places where Z is equal to fi. We
shall suppose that dl/dt is finite at all these places ; then the sum of the

coefficients of t~^ at these places is

^ 1_ fdl\ _ fdl\ /dl\

dix/dt\dtJ' ydfiJi Xdix/q'

* Sets coresidual with two given coresidual sets have a multiplicity q; but sets equivalent

with two given coresidual sets have a variability expressible by one parameter only (cf. Chap. VI.

§§ 94-96).
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provided Z— fihe not zero to the second order at any of the places, that is,

provided dZ be not zero to higher than the first order. In accordance with

the convention made as to the paths of the variables in the integrals, we

suppose this condition to be satisfied.

Hence this sum is equal to the sum of the coefficients of t~^ in the

expansions of the function — (Z — fx)'^ dl/dt at all places, only, where dl/dt is

infinite: this result we may ^vrite in the form

\dfi/i \dfi,Q \dt Z — fji.Jt-i'

we may regard this equation ay a convenient way of stating Abel's theorem

for many purposes; and may suppose the case, in which an infinity of dljdt

coincides with a place at which Z = ^, to be included in this equation, the

left hand being restricted to all places at which Z = ^ and dljdt is not

infinite.

In this equation, in case I, = ii^.''^y be any integral of the first kind, the

right hand vanishes ; then, integrating in regard to /la from x to 0, we

obtain

w^'-^'H- +it^2.«2 = o. (A)

In case / be an integral of the third kind, = 7^' ^ say, and Z be not equal to

fjL cither at | or 7, the right hand is equal to

1^ 1

hence, integrating,

while, if the places at which the rational function Z {x) has the values fx, v be

respectively denoted by

•*'i ) ^ "^

'

and
a/, ,

we have

^\Z{^-ti Z{^l-jx\
-\Z{^)-vlZ{y)-v\

,aQ

= loir

For any Abelian integral we similarly have

j""''"''
^ +/''^''''« =

which is a complete statement of Abel's theorem.

dl Z{x)- fi'

dt ^^ Z{x)-v
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155. In the equation (B), and in the equation which follows it, the

significance of the logarithm is determined by the path of yu, in the integral

expression which defines the logarithm ; we may also define the logarithm by

considering the two sides of the equation as functions of ^.

There is no need to extend the equation (B) to the case where one of the

paths of integration on the left passes through either ^ or 7, since in that

case a corresponding infinite term enters on both sides of the equation.

But it is clear that the condition that no two of the upper limits x^, ... , a;^

should be coincident is immaterial, and may be removed. And if two (or

more) of the places at which Z takes any value, fi, should coincide, the

equations (A) and (B) can be formed each as the sum of two equations in

which the course of integration is respectively from Z = co to Z=
fj,

and from

Z= fi to Z = 0, and the final outcome can only be that the order in which the

upper limits x^, ... , Xq are associated with the lower limits a^, ..., aq may
undergo a change. But in the general case we may equally put, for example,

in equations (A), (B),

rx, rx2 rx2 fxt rx^ fx, rx2 fx,

dl+ dl,= dl+ dl+ dl+ dl,=
\
dl+ dl,

with proper conventions as to the paths ; hence the condition that dZ shall

not be zero to higher than the first order at any stage of the integration may
be discarded also, with a certain loss of definiteness. The most general form

of equation (A), when each of the Q paths of integration are arbitrary, is of

course

<"'''+ + u^'^'''« = iV/ia),-i + + Mp(Oi,p + M,'co'i,, + + Mp'(o'i,p, (C)

where coi^i, ..., w'i,^ are the periods of uf"" and M^, ..., Mp are rational

integers, independent of i. We shall subsequently see that this equation is

sufficient to prove that the places x-^, ..., Xq are coresidual with the set

tti, •••, aq.

If, in equation (B), we substitute for Z{x) any one of its rational

expressions, say* d^{x)l9i{x), we shall obtain

^^•v + + ^f,v -^^^^(|)/^7(7)'

where, now, d^ix), 6i(x) are any two polynomials, integral in x and y, of

which, beside common zeros, 62 i^) has x^, ..., Xq for zeros, and 6i{x) has

«!, ..., aq for zeros. If in this equation we suppose any of the coefficients in

02 (x) to vary infinitesimally in any way, such that the common zeros of 62 (x)

* (x) is, for shortness, put for what would more properly be denoted by 6 [y, x).
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and di{x) remaiu fixed, ^2(^') changing thereby into 02(a;) + Bd^(x), the places

./•, Vq changing thereby to x^ + dx^, ..., Xq + dxq, we shall obtain

which is slightly more general than any equation before given, in that the

places a;,4-rf^i, — Xf^-^-dx^, though coresidual with x^, ..., Xq, are not

necessarily such that the function 6n (x)/0^ (a-) has the same value at all of

them. This general equation is obtained by Abel in the course of his proof

of his theorem.

For any Abelian integral we have, similarly, the equation

which, also, may be regarded as a complete statement of Abel's theorem.

156. In equation (B) the logarithm of the right hand will disappear if

Z{^) — Z (y), namely if the infinities of the integral be places at which the

function Z (x) has the same value.

One case of this may be noticed ; if i/r {y, x) be an integral polynomial of

grade (/* - 1) o- + w - 3 (cf Chap. VI. §§ 86, 91), which is adjoint at all places

except those two, say A, A', which correspond to an ordinary double point of

the curve represented by the equation /(y, x) = 0, the integral

'~la f'{y)
^'

will be an integral of the third kind having A, A' as its infinities. Hence, if

in forming the function Z{x), =6.,{x)'di{x), the places A, A' have been

disregarded, so that the polynomials 6i{x), 6o(x) do not vanish in these

places, the function Z (x) will take the same value at A as at A', and

we shall obtain

7*""'
_). ^ y^'r^'j = Q^

Hence we obtain the result : if, in the formation of the integrals of the

first kind for a given fundamental curve, we overlook the existence of a

certain number, say 8, of double points, we shall obtain p + 8 integi-als, where

p is the true deficiency of the curve ; and these integrals will be linear

aggregates of the actual integrals of the first kind and of B integi-als of the

third kind. If in the formation of the rational functions also we overlook

the existence of these dtjuble points, Abel's theorem will have the same form

of equation for the p + 8 integrals as if they were integrals of the first kind

(cf ^ 83, 90, and Abel, (Euvres Comp., Christiania, 1881, Vol. I. p. 167).

For example, let «,, ..., Uq be arbitrary places in which t4-1 0-poly-

nomials vanish (Chap. VI. §§ 101, 93). Take q{=Q-p + T+l) arbitrary
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places Ci, ..., Cq, and so determine the set Ci, ... , Oq coresidnal with a^, ..., ciq.

A ratiunal function, ^{x), which has the places a^, ..., aq for poles and the

places Ci, ..., c<2 for zeros is quite determinate save for a constant multiplier.

Let Xi, ..., Xq be any set of places at which ^{x) has the same value, A say,

so that a'l, ... , Xq are the zeros of }^{x) — A\ then, as aj, ... , a^ are the poles

of ^{x) — A , we have

p:-:'+ +F:-::=\og^r^f^\^,c„C2 c,,c,
°^(c..) — J.

and as ^(d) = ^{Ci) = 0, the right hand is zero.

Hence, calling the places where a definite rational function has the same

value a set of level points for the function, we can make the statement—the

level points of a definite function satisfy the equations

^^'"^ dx, + + ^^^^ dXq=0,
dxi dxq

Ci, Co being any two of the zeros of the function.

In particular, when q = 1, the sets of level points are the most general

sets coresidual with the poles or zeros of the function. Hence, if Xi, ..., Xp+i

be any set of places coresidual with a fixed set Cj, Co, ..., c^+j, in which no

^-polynomials vanish, we have the equations

dx,
"^^^^ ^ dxp^,

axp^^-^y.

157. Ejc. i. We give an example of the application of Abel's theorem.

For the siirface associated with the equation

the integral

J y

is of the second kind, becoming infinite only at the (single) place a;= oo . Consider the

rational function

~y+^(^'' + 5o'*'^~^ + -" + ^o*"+A'

which, for general values of ^, ..., i/y, is of the (2^-|-l)th order, its zeros, for instance,

being given by

To evaluate the expression

/^ 1 \

\dt Z-J,)t-i
'

the place ,t'= oc being the only one to be considered, we put x= t~'-^ and obtain
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J__ J__ J-^

dl t^P^t^P-2^ -2
7ft
~ -7 'W '

•."..(l-ii/i^'- )

and therefore

dl I ^ -+l ^^ ~ ^^" ^

dt Z-n i-fit' - (i-nY t 1-M '

whereiu the coefficient of «~' is ^ {A - A^y) {l—(i)~-.

Hence, if .i\, ..., '-'2/1 + 1 l->e the zeros, and aj,..., tfjp + i
be the poles of Z, we have

Now the zeros of Z are zeros of the polynomial

>/+ U {x)= i/+ Ax-P+ B.vP-^ + +K.v + L= 0;

denoting the values of 7/ by >/i,...,i/,.„ + i,
and using F{.r) for i.v-x\) (^-I'p+i),

where (.«••,, ^i), ..., (.'-p + i, y„ + i)
arc any p+ l of the places

(.';i, ^i), ..., (^-jr + i, .'Ap + i),
we

have, from the jo+ 1 equations

>ji+ Axi"+ Bxi"-^ + + Kxi+ L= 0, (i = l, 2, , (;; + l)),

.fi^>i)~L;:i('^--*-i)^'(^-i)jx=- Li:i(-*''-'^o^'(-fi)Jx=o. L ^(^)Jr=«

and hence, if 61,6^,... be the values of y when .»;=«j, a.;, ..., and i'o(j;) = (.r— aj) ...

(.r-Up + i),
we have

If in the integral / the term .r'' be absent, the value obtained for the sura

1 1 + -\-J 3p+i ' -p+t

will be zero.

The reader will notice that for/>i=l, we (jbtain an equation from which the equation

-c(«,)-f(«.)-fw=if::;-:-|J|^

can Ije deduced, «,, m^j "3 being arguments whose .sum is zero; and that the algebraic

equation who.se roots are
.'"i, ..., '"ap + i

gives

/p + l i/. \2

which for p= \ becomes
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Ex. ii. If J', Z be any two rational functions, and u any integral of the first kind,

prove by the theorem

(1 du dx\ _
{Y-h){Z-c) dxdtjt-^'

that the sum of the values of {Y—b)~'^du/dZ, at all places where Z=c, added to the sum
of the values of {Z—c)~''- dujdY sJi all places where Y=b, is zero.

It is assumed that all the zeros of the functions Y-b, Z—c are of the first order.

Hence prove the equation

where a^, ..., a,j are the places at which Z{x)= v, x\, ..., Xq the places at which Z{x)= n,

and the suffix on the right hand indicates that the values of the expression in the brackets

are to be taken for the ?6 places of the surface at which x= b.

It is assumed that there ai'e no branch places for x= b.

Ex. iii. If
(f)

(x) be any integral polynomial in x, y^= {x, 1)2;, + 2, =f{-*^) ^^y, and M (x),

jV{x) be any two integral polynomials in x of which some coefficients are variable, and

f(x).M-^x)-lY^x) = K{x-Xi) (*'-A-g),

where A' is a constant or an integral polynomial whose coefficients do not depend upon

the variable coefficients in M{x), N {x), and yi,---,i/i2 be determined by the equations

^iM {x^ +N {xi) = Q, then, on the hypothesis that z is not one of the quantities jr^, ..., ^g,

and is not a root of/(A') = 0, prove that

p. {x) dx f^Q (^ (x) dx _ ±(^ N{z)^M{z)^m _
I {x-z)y^ ^} X^-^)y~ ^f{z)^ N{^)-M{z)^f^

''•^^'

where C is a constant, and R is the coefficient of - in the development of the function

^{^) . N{x)+ M{x)slm
{X - z) Jf (^a;)

^ N (x) - M{x)Jf(a;)

in descending powers of x ; herein the signs of 'Jf{x), >Jf{z) are arbitrary, but must be

used consistently.

Shew that the statement remains valid when f {x) is of order 2^*5+ 1 (in which case the

development from which r is chosen is to be regarded as a development in powers of six)
;

prove that r is zero when <;^ {x) is of order p, or of less order. Obtain the corresponding

theorem when z is a root of / {x) = 0.

Ex. iv. The result of Ex. iii. is given by Abel {CEuvres ConipL, Vol. i. p. 445), with a

direct proof. We explain now the nature of this proof, in the general case. Let/(y, x) —
be the fundamental equation, and let 6 {y, x) be a polynomial of which some of the

coefficients are variable ; if yj, ..., ?/,i be the /i conjugate roots of / (y, x) = Q corresponding

to any general value of .*•, the equation

r {x) = e {yi, x) e (2/2, ^) G (i/n, *')= 0,

gives the values of x at the finite zeros of the polynomial 6 (y, x). Suppose that the

left-hand side breaks into two factors Fq (x) and F (x), of which the former does not

contain any of the variable coefficients of 6 {y, x). Let ^ be a root of F{x)=0, and

r]i, . .
.

, r]n he the corresponding values of y ; then one or more of the places (^, >jj), ,
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(^, i7n) are zeros of 6 (y, x) ; tix attention upon one of these, and denote it by (^, r)). Then

if, by a slight change in the variable coefficients of 6 (y, .r)i whereby it becomes changed

into 6 (i/, .r) + 86 (y, .»), F (.r) become F {x) +8F {.r), the symbol 8 referring only to the

coefficients of 6 (i/, x), and ^ become ^+ rf|, we have the equations

» = i

where F' {$)=dF{^)/d^. Denote now by C (x) the rational function of a-, given by

U{x}= 2 e {i/i,x) e o/i_,, .'.) e (yi+„ x) e (y„, .».•) se cy*, a);
1=1

then if R {x, y) be any rational function of x and y, we have

U (^)
•^ (^. n) d^= - R (^, »;) j^ (t) F' (f)

'

where, on account of 6 (»;, |)= we can write

and

R (f i?^ f^ (^)= In (I, vi) ^ ('71, ^) ^ i*?.-!, f e^m.i,^) 6 (7„, ^) be (rji, i)
i= l

= (I), say,

(f> (^) being a rational function of | only. Taking the siun of the equations of this form,

for all the zeros of (y, x), we have

herein the siunmation on the right hand can be carried out, and the result written as the

perfect diflFereutial of a function of the variable coefficients of 6 (y, .r), in fact in the form

[i?(.r,y)^"8log5(y,x)]^.,,

as we have shewn.

For example, when

/(y, x)=i/^+ x^ - 3ai/x - 1, 6 (y, x) = i/-mx- n, we have Fq{x) = 1,

F{x)= x^+ {)7ix+ ny-3ax (nu-+ 7i) — l,

and

r

Now ^(^ ^^mbm^
I

^^(^0

and hence 2 -|^^ =[^ +'^H , = - 38 ('^^) ,

as is easily seen. From this we infer

^ p. ^J/dx mn-a (mn - a\ _ . x,j-x
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In this example it is easily seen that the integral is only infinite when x- is

infinite; putting x'=t~\ the equation / (?/, x) = gives y= -a)t'^-aa^+ At+ Bt^+ ,

where a)= l, or (-l + \/-3)/2; then \og6 {y, x) dljdt, =\og{y-m.x-n) [xyj
{y'^ - ax)'\

dxjdt, has (aw^+ n) ufil^cn + m) for coefficient of t~^, and we easily find

a-\-n aa)^+ ?i „ am-k-n 3 {a — mn)
\- 0) H o <M = 5 •m+ 1 m + o) m+o)'' wi^+ l

^^. V. If y, Z denote any two rational functions (in x and y), such that there is no

finite value of x for which both have infinities, and 2 {YZ) denote the sum of the n

conjugate values of YZ for any value of x, and [2 (YZ)\_._.^ denote the sum of the

coefficients of {x - a)~^ in the expansions of the rational function of :j?, 2
(
YZ), for all finite

values of x for which Y is infinite, and [2 (FZ)]^.j denote the coefficient of x~'^ in the

expansion of 2 (
YZ) in descending powers of x, it is easy (cf. § 162 below) to prove that

wherein, on the left hand, the dash indicates that the sum is to be taken only for the

finite places at which Z is infinite. Hence if / be any Abelian integral, =\R{x,y) dx,

we have

S log e (y, .));_^=[2 (^^8 log 6 (y, -))\_^-[^ (^^ log iy, -.)

(x-a)-i

Hence, if we assume that 6 (y, x) has no variable zeros at infinity, we can obtain

Abel's theorem in the form

wherein the summation on the left refers to all the zeros of d {y, x).

This is the form in which the result is given by Abel ((Euvres Compl., Christiania, 1881,

Vol. i. p. 159, and notes. Vol. ii. p. 296), the right hand being obtained by actual

evaluation of the summation which we have written, in the last example, in the form

n(^)^'(l)'

The reader is recommended to study Abel's paper* which, beside the theorem above,

contains two important enquiries
; first, as to the form necessary for the rational function

dl/dx, in order that the right-hand side of the equation of Abel's theorem may reduce to a
constant, next, as to the least number of the integrals in the equation of Abel's theorem
of which the upper limits may not be taken arbitrarily but must be taken as functions

of the other upper limits. Though the results have been incorporated in the theory here
given (§§ 156, 151, 95), Abel's investigation must ever have the deepest interest.

Ex. vi. Obtain the result of Ex. i. (§ 157) by the method explained in Ex. iv.

* Which was presented to the Academy of Sciences of Paris in Oct. 1826, and published by
the Academy in 1841 (Memoires par divers mvants, t. vii.). During this period many papers were
published in Crelle's Journal on Abel's theorem, by Abel, Minding, Jiirgensen, Broch, Riehelot,

Jacobi and Rosenhain. (See Crelle, 1—xxx. 1 have not examined all these papers with care.

Jiirgensen uses a method of fractional diffei'entiation.)
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Ex. vii. Prove that the sum of the vahies of the expression

U.v
J '

wherein v is any linear expression in the homogeneous coordinates x, y, z, U is any

integral polynomial of degree nj + n-3, t/ is the Jacobian of any two curves /=0, <^= 0,

of degrees n and m, and the line <=0, and the sum extends to all the common points

of/=0 and <^= 0, vanishes, multiple points of/=0, (^ = being disregarded.

Hence deduce Abel's theorem for integrals of the first kind.

(See Hamack, Alg. Diff. Math. Annal. t. ix. ; Cayley, Amer. Journ. Vol. v. p. 158;

Jacobi, theoremata nova algebraica, Crelle, t. xiv. The theorem is due to Jacobi ; for

geometrical applications, see also Humbert, LiouviU^s Journal (1885) Ser. iv. t. i. p. 347)*.

Ex. viii. For the surface

y'^= 4>{x)y\r{x), =f {x),

wherein <^ (.r), ^ (.r) are cubic polynomials in x, prove the equation

^i.'y"'''^^2y"'''^^l'.l'^^
j^g |[V<^(|)^(y)+ V0(y)V'(l)]/2 ^/(^)/(y)}=0,

wherein .r,, .r^, | and Hi,, wij* 7 ^^ core.sidual with the roots of
(f>

{x)=0, and |, y are the

places conjugate to | and y ; conjugate places being tho.se for which the values of .r are

the same.

158. When the places Xi,...,ccq are detennined as coresidual with

the fixed places a^, ... , uq, p — r—l of the places x^, ...,xq are fixed by

the assignation of the others. Hence the p \-\ relations, whicli fire given by

Abel's theorem,

1//""' + +i<>"'^ = 0,

^;';'+ +^r;'=iog[^(^)/^(7)],

cannot be independent. We prove now first of all that the last may

be regarded as a consequence of the other p equations. In fact, if x^, ... , Xq

and a^, ... , oq 6e any two sets of places, such that, for any paths of integration

,

uT'
"' + + u'''' "" = .!/;«,•, , + + il/pO),-,

J,
+ M/co'i^ ,4- + M'pto'i^p ,

(i = l,2, ...,p), wherein Mi' , ..., Wp' are any set of linearly independent

integrals of the first kind, eoii , ... , w'i^p are the periods of the integral ?/,'
, and

Ml, ..., M'p are rational integers independent of i, then there exists a rational

function having the places a^, ..., aq for poles and the places a\, ...,xqfoi'

zeros.

For \{ v{ , ..., Vp be the normal integrals of the first kind, so that we

have equations of the form,

X, a ^f X, a f-t X, a
Vi =Ci,iUi + + Ci^p Up ,

* Further algebraical consideration of Abel's theorem may be found in Clebsch-Lindemann-

Benoist, Leqom $ur la Geometrie (Paris 1883) Vol. iii. Geometrical applicatioid are given by

Humbert, LiouviUe's Journal, 1887, 1889, 1890 (Ser. iv. t. iii. v. vi.).
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wherein C\^, ..., Gj^p are constants, and therefore, also,

Ci, 1 (0},j + + Ci^p Q)pj = or 1, according as i =^j, or i =j,

and

we can deduce

4""' + +v?'''' = M, + M,'r,,, + +M'pTi,p.

Consider now the function

U!^'" + + n^''' -2n(M'vf+ +M' v"^'^)

Z{x) = e
"""' ''e-^'e

^11^ ^ P p '^

c being an arbitrary place.

Herein an integral, Xl^'^^,, suffers an increment 27ri when x makes a

circuit about the place x^ ; but this does not alter the value of Z (x). And

in fact Z{x) is a single-valued function of x; for the functions !!-'.*„. have

no periods at the first p period loops, while, if x describe a circuit equivalent

to crossing the i-th. period loop of the second kind, the function Z(x) is only

multiplied by the factor

2iri (v":'
'"' + + ^=*e

•
''e) - 27ri (Jf>;, , + + M>,. „)

e '

or e^^'^^i, whose value is unity.

Further the function Z (x) has no essential singularities ; for it has poles

at the places «!, ... , Uq, and is elsewhere finite.

Since the function has zeros at x-^, ...,Xq and not elsewhere, the state-

ment made above is justified.

Ex. i. It is impossible to find two places y, ^, such that each of the p integrals «? '>'

is

zero. For then there would exist a rational function, given by

having only one pole, at the place y. (Cf. § 6, Chap. I.) It is also impossible that the
equations

J^''=M^+M\Ti,^ + +M'j,Ti,j,,

wherein Mi, ..., Mp, M\, ..., M'p are rational integers independent of t, should be
simultaneously true.

Ex. ii. If p equations, of the form

vf'y'+vf'y^'==M,+M\r^,i+ +^nr.-,;,

exist, yi and yj are the poles of a rational function of the second order, and the surface is

hypereUiptic. (Chap. V. § 52.)
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159. In regard now to the equations

<""' + + '/'''"« = 0.

which express that the places a\,...,X(^ are coresidual with the places

tti, ... , (tQ, if T + 1 be the number of (^-polynomials which vanish in the places

(/,, ...,rtQ (Chap. VI. § 93), or (Chap. III. §§ 27, 37) the number of linearly

independent linear aggregates of the form

C,n,{x)+ + Cj,ay{x),

wherein C^,...,C.j, are constants, which vanish in these places, then,

Q—p-\-T + \ of the places x^,...,xq can be assumed arbitrarily, and the

equations are therefore equivalent to only p — T — \ equations, determining

the other places oi x-^, ...,Xq in terms of those assumed. This can be stated

also in another way : the p differential equations

S'^-+ +£''-«=»• <''=i>^ ?'

express that the places x^, ..., Xq are coresidual with the places x^ + dx^ , . .
.

,

Xq + cLxq ; if the places Xy, ...,Xq have quite general positions these equations

are independent ; if however t -I- 1 linearly independent linear aggregates, of

the form,

^.^- -^/£-*>.

wherein C,, ...,Cp are constants, vanish in the places .r,, ...,Xq, then the p
differential equations are linearly determinable from p — T—\ of them.

Ex. i. A rational function having .i\, ..., .I'j, as poles of the first order, and such that

X,, ..., Xp are the coefficients of the inverses of the infinitesimals in the expansion of

the function in the neighbourhood of these places, can be written in the form

-^<'- -^<:-'

the conditions that the periods be zero are then the p equations

Xi«.(-'i) + +XyQi(.ry)=0, {i=\, 2, ...,p).

But, if we take consecutive places coresidual with .<,,...,.*,,, and <,,..., /^, be the

corresponding values of the infinitesimals at .i\, ..., .r,^, we also have

Qi(.r,)ii + + Qi(.re)^e= 0;

tluis, if the first (/ ( = V — /' + t+ 1) of <,,..., ^^ be taken proportional t<i X,, ..., X,, we shall

have the equations

hi^i~ = ^y/Xy.

A'./', ii. When the set .r,, ..,, a-^,, beside being coresidual with Oj, ...,«„, has other

specialities of position, Abel's theorem may be incomi)etent to express them. For instance,

in the case of a Riemann surface whose equation represents a plane quartic curve with

two double points, there is one finite integral ; if a,, ..., a^ represent any 4 lollinear points,

and .«,, ...,.i'i represent any other 4 coUinear points, the equation of Abel's theorem is

w*" "' + ... + »''*• "=0;
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but this equation does not express the tioo relations which are necessary to ensure that

.r^, ...,A'4 are coUinear ; it expresses only that Xy^, x^, x^, x^ are on a conic, S, passing

through the double points, or that .^'^, .t'2, x^, x^ are the zeros, and a^, ...,a^ are the jioles

of the rational function SjLL^, where Z= is the line containing a^, ...,a^ and Lq= is

the line joining the double points,

160. From these results there follows the interesting conclusion that

the p simultaneous differential equations

^dx, + +^^^. = 0' (* = l,2,...,p),

have algebraical integrals, Q being > p, and ?/i , . .
.

, u^ being a set of p linearly

independent integrals of the first kind. The problem of determining these

integrals consists only in the expression of the fact that x^, ..,, Xq con-

stitute a set belonging to a lot of coresidual sets of places.

The most general lot will consist of the sets coresidual with Q arbitrary

fixed places a^, ...,aQ, in which no ^-polynomials vanish. But the lot does

not therefore depend on Q arbitrary constants ; for in place of the set

ft],— cIq we can equally well use a set Ai, ..., Aq, whereof^, =Q — p, places

have positions arbitrarily assigned beforehand ; in other words, all possible

lots of sets of Q places with multiplicity q can be regarded as derived from

fundamental sets of Q places in which q places are the same for all. A lot

depends therefore on Q — q, =p, arbitrary constants, and this number of

arbitrary constants should appear in the integrals of the equations (Chap. VI.

§96).

We may denote the Q arbitrary places, with which x\, ..., Xq are coresidual,

by Ai, ...,Aq, Ui, ...,ap, so that Ai,...,Ag are arbitrarily assigned before-

hand, in any way that is convenient, and the positions of «j, ...,a^j are the

arbitrary constants of the integration.

Then one way in which we can express the integrals of the equations is

as follows: form the rational function with poles, of the first order, in the

places iCi, ...,Xq, and determine the ratios of the ^ + 1 homogeneous arbitrary

coefficients entering therein, so that the function vanishes in A^, ..., Ag.

Then the function is determined save for an arbitrary multiplier, and

must vanish also in ftj, ...,«^. The expression of the fact that it does so

gives p equations, each containing one of a^, ..., ap as an arbitrary constant.

From these p equations we may suppose p of the places x^, ...,Xq, say

Xi,...,Xp, to be expressed in terms of a^,...,ap and Xp^i,...,XQ (and

Ai, ...,Aq). The resulting equations may be derived also by forming the

general rational function with its poles in a^, ...,ap, Aj, ...,Aq and eliminating

the arbitrary constants by the condition that this function vanishes in

^i. ^p+i, ^p+2, ••-,«§, i being in turn taken equal to 1, 2, ..., p.

B. 15
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For example, for Q=p + 1, if i/r (a;, a; z, Ci,..., Cp) denote the definite

rational function which has polos of the first order in the places z, d, ..., Cp,

the coefticient of the inverse of the infinitesimal at the place z being

taken = — 1, which function also vanishes at the place a (Chap. VII. § 122),

then a complete set of integrals is given by

ylr{a^,A; Xp^^, x^, ..., Xp) = 0= = V^(«p, A] a-p+,, a-,, ... , Xp),

and a complete set is also given by

yfr iXi,Xp+j; A, a-^, ..., Oy) = = =^ {Xp,Xp+,; A, a,,...,ap).

The first of these integrals is in fact the equation

c/wi dill

dxi ' dx^
'

diip dup

c?«i

dx,p+i

dUf

dx.

= 0,

dP_

dx„

dxi ' dx.2
'

dP dJP

wherein P = P^"'^j, and may be regarded as derived by elimination of

dxi,..., dxp^i from the p given differential equations and the differential of

the equation (§ 156)

' Oi, A '

which holds when (x^, ..., Xp^^), (c,, ..., Cp+,), and (A, a^ ..., tip) are coresidual

sets.

Ex. i. For p= l, the fundamental equation hemg t/-= (x, \)^= Xh'* + ..., .shew that the

differential equation

has the integral

Xi — a * .Tg —

a

where 6^= (a, 1)4. (Here the place A has been taken at infinity.)

Shew also that this integral expresses that the places (.Tj, y,), (x^, y^, (a, — b), are the

variable zeros of the polynomial -i/+p+qx-\x% when p and q are varied.

Ex. ii. For p= '2, the fundamental equation being 7/-= {x,\)(. = \'^.i^+ ..., using the

form of the function >/^ (.r, a ; z, c,, ..., 0,,) given in Ex. ii. § 132, Chai>. VII., and putting

the place A at infinity, obtain, for the differential equations

the intcCTal
Vi Vi Vz

'

Vi Vi Vi

Vi Vi +
,

y% -X,
{x^-a)F'[xy {x.,-a)F'{x.} {.v,-a) F' {x^) F (a)

wherein F{T)= {x-.7-^)(x-.r.,)(x-X:,), h-= {a, l)g, and the i)osition of the place {a, b) is
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the arbitrary constant of integration. By taking three positions of (a, b) we obtain a

system of complete integrals.

Shew that this integral is obtained by eliminating p, q, r from the equations which
express that the places {x^^y^, (''*^25 .'A)' (-^sj i^.O. («» ^) a-i'^ zeros of the polynomial
—y - \a? -\-px^+ qx+ r.

Ex. iii. For the case (^= 3) in which the fundamental equation is of the form

/ {^, ^)

=

(^, y)i + (^. y)z

+

(•^, y)2+ C'*^, y)i

=

o>

(.r, y)n being a homogeneous polynomial of the fourth degree with general coefficients, etc.,

prove that an integral of the equations

d.T, dxq dxr, dx, ^ x^dx-y
, ^ Vidx,

i,T N + -fT,\ + i/ /\ + 7^7^^ = 0, ih-\

+

etc. = 0, -Ji-^ + etc. = 0,

is given by

(2, 3, 4) C7-i + (3, 1, 4) U,,+ {\, 2, 4) U^-{\, 2, 3) U,^0,

where (2, 3, 4)= r.^^ x^ x^ etc..Xi
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('i, ••-, (Jp (i^"d At, ..., A^). By taking i = \, 2, ..., p we obtain a complete

system* of integrals.

Now instead of regarding the set A^, ..., A^^, Qi, ..., ap as the arbitrary

quantities of the integration, we may regard the set Ci,...,C« as the

arbitrary quantities, or, more accurately, we may regard the p quantities

upon which the lot of sets coresidual with G^ Cj^ depends, as the

arbitrary quantities. To this end, and under the hypothesis that no

^-polynomials vanish in the places Cj,..., Cji, imagine a set of places

B^, ..., Bji^p, hi,...,hp determined coresidual with G^,...,Gji, in which

Bi,..., Bjt^p have any convenient positions assigned beforehand, so that the

lot of sets coresidual with C,, ... , G^ depends upon the positions of b^, ..., bp.

Let a general adjoint polynomial with Q + R variable zeros be of the form

e = /li^ + /ti,^, + + fik^k,

wherein fjb,...,fik are arbitrary constants, and k is for shortness written for

Qj^B—p. Then an integral of the differential equations under con-

sideration is obtained by expressing that the places

XJi, ... , Jjji—p, Oi, ... , Op, Xi, Xp^i, Xp^o, ... , Xq

are zeros of the polynomial ; and a complete system of integrals is

obtained by putting i in turn equal to 1, % ...,p.

Similarly a complete set of integrals is obtained by expressing that

the places

X^, ... , Xp, Xp^i , . . . , Xq, 0; , XJ
J

, — , liii—p

are zeros of the polynomial 0, i being taken in turn equal to 1, 2, ...
,

jt).

In this enunciation there is no restriction as to the value of R, save that

it must not be less than p.

Ex. i. For the general surface of the form

/(y, .r)= (.r, ?/)4+ (.r, ^A+ {.r, ?/), + (.'•, ;y)i4-coii.stant=0,

a set of integrals of the equations

IfiVi)
'

is given by
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where /(6j, aj) = 0, /(j5, J) = 0, i=l, 2, 3, and the place {A, B) may be taken at any

convenient position.

Ex. ii. Taking as before Q=p+ \, and considering the hyperelliptic case, the funda-

mental equation being

f= {-^-, l)2p + 2= ^''^-'''^' + M«*'^^^' + '

we require a polynomial having yi-h^+ l variable zeros: such an one is

e=-y + X.f'^ + i + i^.6-i^ + 6rV-i + +H,

R being equal to p^ and we have

where F{x) = {x-x^) (.t'-.r„ + i), (,*;) = (.,;-6i) (.f-6j,).

An integral of the differential equations may be oljtained by eliminating F,G,...,H

from the equations expressing that the places

Oj, . . . , Op, A'j, -t'p + i

are zeros of the polynomial 6, oi- from the equations expressing that

.i'j , . . .
, Xp , Xj) ^. J

, j

are zeros of this polynomial, and a complete system (jf integrals, in either case, by taking

i in turn equal to 1, 2, ..., y*.

Or a complete system of p integrals may be obtained by eliminating F, G, ..., H from

the 2^+ 1 equations obtained by equating the coefficients of the same powers of .v on the

two sides of the equation.

We may of course also take in the form

-jj^-Exv^'^ + Fx"+ +H;

then It=j)-{-\, and the places B^, ..., B„^j, are not evanescent
;
[)utting the place B^ at

infinity we obtain E=\ as above.

Ex. iii. The integration in the previous example may be carried out in various ways.

By introducing again a set of fixed places «i, ..., a^, A, coresidual with x\, ..., Xp, *p+i,

we can draw a particular inference as to the forms of the coefficients F, G, ..., H. For if

U {x) denote Xx" +
1+Fxp +... + G, and Uq (x) denote what U (x) becomes when x^, ..., Xp + ^

take the positions a^, ..., a,,. A, the coefficients F, G, ..., H being then Fq, Gq, ..., H^,

and also FQ{x) = {x-a-^ {x-aj){x-A), then, because each of the polynomials

-y+ U (x), —y+U^{x) vanishes in the places &i,..., hp, the polynomial U{x)—Uq {x)

must divide by (^ {x), namely U (x)= Uq {x) + t (p (x), where t is a variable parameter
;

or, if we write
(f>

{x)=:xP+ tiXp~^ + + tp, ti, ..., tp being then regarded, instead of

bi, ,.., bp, as the arbitrary constants of the integration, we have

F=F„+ t, G= Go+ tt^, , H=H^ + tt,„

and the quantities G-t^ F,..., H-tp F are constants in the integration, being unaltered

when the places a-j, ..., Xp^^ come to «!,..., a^, ^. Hence we can formulate the following

result: let the p+ \ qiiantities F^, Gq,..., //q be determined so that the polynomial

—y+U^ (x) vanishes in the fixed places a^, ..., ap, A. Then denoting (x- a{),,.{x-ap)

(x — A) by Fq{x), the fraction

[f-U,^{^')]IF,{x)

is an integral polynomial; denote it by (ijl-2FqX) (xi'+ t^ x'^~^+ + tp), so that
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0o»^n •••>'/. i""*^ luiiquely determiued in terms of the places a, ,...,ap, J, and put

F (a-) for a''+ <i
0." - • + + <p . Then I'l , . .

.
, Xp + ^ arc the roots of the equation

and the set .r^ ..., Xp + i
varies with the value of i, which is the only variable quantity

in this equation. By equating the coefficients of the various |K)wers of a: in the

l>olynomial on the left-hand side of this equation to the coefficients in the polynomial

(pt - 2/^0 X) P{^\ ^^'c c^" express each of the symmetric functions

as rational quadratic functions of a variable parameter t, containing dehnite rational

functions of the variables at the places cti, ..., Op, A ; the place A may be given any

fixed ixjsition that is convenient ; the positions of the places Oj, ..., a^ are the arbitrary

constants of the integration.

£x. iv. By eliminating t between the p+ l equations obtained at the end of Ex. iii.

we obtain the complete system of p integrals. In particular any two of the quantities

/ij, h^, ... are connected Ijy a quadratic relation, and any three of them are connected by

a linear relation (Jacobi, Crelle, t. 32, p. 220).

Ejc. v. From the equation

we infer

r=l^ V '' r=l ^ v'*'-/

where hi= Xi + ...+Xp + i; hence if a be the value of :/; at a branch place of the surface,

we have from Ex. ii.

and if, herein, a be put in turn at any p of the branch places of the siu^'ace, the resulting

values of
<f>

(a) may be regarded as the arbitrary constants of the iutegi-ation, and the

resulting equations as a complete set of integrals ; and if X = 0, as we may always suppose

without lo.ss of generality (Chap. V.), we thus obtain the p integrals

(„.-..;,)...(,.-..;„„)[^JV^'y,^J=ft, (;=1, 2 ,^)

C'l, ..., C„ being the constants of integi'ation (Richelot, Crelle, xxiii. (1842), p. 369. In this

paper is also shewn how to obtain integrals by extension of Lagrange's method for the

case p— l. See Lagrange, Theory of Fuiictions, Chap. II., and Cayley, Elliptic FunctionSf

1876, p. 337).

Ex. vi. By compai-ing coefficients of x'^'' in the equation of Ex. ii., we obtain

p-{2\G + F'') = (^- 2\F) {ti - hi),

where /jj = .ri + ...+.r,, + ,
; hence prove that
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by Ex. ii. the right-hand side is a constant in the integration ; hence this equation is an

integral of the differential equations; in particular if X = 0, /li= 4, which is not a loss of

generality, we have the integral

^l+ ... + ^j, + l + — J 2 p' /j^\ '

where (7 is a constant ; this is a generalization of the equation, for jo= 1,

(cf. Ex. i. § 157).

Ex. vii. Shew that if the fundamental equation be

lf= {x, l)2P + 2= X2_^-2J^ + 2+ ^^.2p + l4. +Lx-\-M,

then another integral is

(Richelot, loc. cit.)

Ex. viii. If ao, aj be the values of x at two branch places of the surface, obtain the

equations

{cH-A):.....{ai-a^) / {a,- A) (ao-a,,) ^
"^^^'^

'

wherein the quantities A,,..,ap are the values of x at fixed places coresidual with

j-'i, ..., ^jj + i, Pi is an absolute constant, and /n is a parameter varying with the places

Xi,...,Xf,^.y. Take i in turn equal to 1, 2, ..., (^+ 1), and, eliminating fi, we obtain a

complete set of integrals. In particular if the left-hand side of this equation be denoted

by Gi we have such equations as

{Gi -\)pj pk {pj - Pk) + (^'j - 1 ) Pk pi {pk - Pi) + (<^'* - 1 ) Pi Pi (Pi - Pj) = 0.

(Weierstrass, Collected Works, Vol. i. p. 267.)

162. The proof of Abel's theorem which has been given in this chapter

can be extended to the case of an algebraical curve in space. Taking the

case of three dimensions, and denoting the coordinates by x, y, z, we shall

assume that for any finite value of x, say x = a, the curve is completely given

by a series of equations of the form

x = a^- ^i"''+i , « = a -h ^a'^'^+i

,

,x = (i^ tk"'^+^

,

y = PAQ , y = PAtd , ,y-Pk{tic) ,
(D)

z = Qi(ti) , 2 = Q^(t^) ,
,z = Qk{tk) ,

wherein lu^ + l, ... , Wk+1 are positive integers, ti,...,t}c are infinitesimals,

and Pi, Qi, ..., Pk, Qk> denote power series of integral powers of the variable,

with only a finite number of negative powers, which have a finite radius

of convergence. The values represented by any of these k columns, for all

values of the infinitesimal within the radius of convergence involved, are the

coordinates of all points of the curve which lie within the neighbourhood

of a single place (cf. | 3, Chap. I.) ; the sum

{wi + l) + {w^+l)+ + {Wh+l)
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is the same for ull values of x, and equal to n, the order of the curve. A

similar result holds for infinite values of x ; we have only to write - for x — a.

Wc assume further that any rational symmetric function of the n sets

of values for the pair (y, z), which are represented by the Cijuations (D), is a

rational function of x.

Then we can prove that if R (x, >j, z) be any rational function of ./•, y, z,

the sum of the coefficients of t~^ in the expression R {x, y, z)
, , at all the

k places of the curve represented by the e(iuations (D), is eciual to the

coefficient of in the rational function of a;,

X — a

U (x) = R {x, i/j, Zt) + R (x, y^, 2.2) + + R (x, yn, Zn).

(hOC

And further that the sum of the coefficients of t~^ in R {x, y, z) -j- at all

the places arising for x = 00 is ecpuxl to the coefficient of— in the expansion

of the same rational function of x, namely, equal to the coefficient of t~^ in

U (x) -j- , when x = -.

Hence, the theorem

^<^t -,=0,

which holds for any rational function, U (x), of a single variable (as may be

immediately proved by expressing the function in partial fractions in the

ordinary way), enables us to infer, in the case of the curve considered, that

also

By this theorem, applied to the case

we can prove that the number of poles of R {x, y, z) is ecjual to the number

of its zeros, and therefore also equal to the number of places where R (x, y, z)

has any assigned value /i,, a place being counted as r coincident zeros when

the expression, in R (x, y, z), of the appropriate values for x, y, z, in terms

of the infinitesimal, leads to a series in which the lowest power of t is V
\

similarly for the poles.
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Hence, if / be any integral ol' the form JR {u;, y, z) dx, we can apply

this theorem in the form

^dl 1

dtZ-fiJt-'
^'

Z being any rational fimction of i^;, y, z, and so obtain, as before (§§ 154, 155),

the theorem

^""-
+^"°'=(f£>|i'"8(^-4-

and if Z is of the form 6^ (^', >/, ^)/^i {^'> >/> ^)^ where d„, 0^ are integral poly-

nomials, we can put the right-hand side

dt ^ e, {x, y, z)

wherein x-^,...,^]^ are the places at which Z—0, or 6.2{x, y, z) = 0, and

«!,..., a^t are the places where Z=cc or 6^ {x, y, z) = 0, and the places

to be considered on the right hand are the infinities of dl/dt

The reader may also consult the investigation given by Forsyth, /^hil. Trims., 1883,

Part i. p. 337.

Take for example the curve which is the complete intersection of the cylinders

f= .v(l-.v)

For any tinite value of .<•, except .i'= or .*;=!, we have 4 places given by

t/= ± \/x ( 1 — .r), z= ± \/x.

For inhnite values of .*;, putting .i'= ,,, we have two places given by

.1 .1

=1 .=1^~
t

'

^~i!

For x= \, putting x= V + t", we have two places given by

y= it->r...
,

i/= it + ...
,

For .*,'= 0, [)uttiug .v= t'^, we have two places given by

y= t {I -^f' -...), ^=-t (I -It-' -...),

z=t
,

z=t

and, at ^ = 0, ^=0, i= 0, dx : dy : dz= it : 1 : 1 or =2)1 :- 1 : 1=0 : 1 : 1 or =0 :- 1 : 1

so that there is a double point with ,*- = 0, y= +i for tangents.

idx
Consider now 2 1—, from the intersections of z \- ax \-hy= ^ to those of z-\-a!x-\-h'y = ^.
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Put /= / — : then t-, = — j-> when .c is near to 0, hiu>, for one vahic,

J >/z at yzdt

^ 2<=?(H-i<H...),

a'

... . z + a'.v+ b'i/
, t+ a'f^+ b't{l-U^...) ,

l+b' '^\+h'
"^

'

while loir , =loc r,
—j—ri f-r,—r = loe , ,° z+ax+ h/ ^ t+ ai-+bt(l-^t\..) l+^i, "

1 + 6'

1+6 (l+6' l+b)
= log , . , +L-—,,-^ -rM +

and the contributiou to the sum ( -j- Ice "
' , ) , is 2 log v . •

\dt ^ z+ ax+ bi/J i-^ ^ l + b

If we take the other place at .v= we shall get, as the contribution to

(^ z+a^b'y\
\dt ° z+ a.v+byj t-^'

the quantity — 2 log
^
—^ .

Thus, on the whole we get, at .v=0,

_, n+b' l+b\
^^'s[T=b' I rrb)-

It is similarly seen that no contribution arises at the places x= 1, .r=Qo

.

Thus on the whole

[ dx^ ^ f dx2 _, n+b' l+b\

Now from the equations Zi + cuvj+byi = 0, :.^+ a.i:.^+ by.^= 0, wc find

and thus

I
—.-=: + / . =2 log 'J ^J

2v
1/ >_2—LJ + constant

J X 't/l-X J X is/l—X V .«'i ( 1 - .^2) - V A'2 ( 1 - -^'l)
— V '1'2+V -^'i

which is a result that can be directly verified.
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CHAPTEK IX.

Jacobi's inversion problem.

163. It is known what advance was made in the theory of elliptic

functions by the adoption of the idea, of Abel and Jacobi, that the value

of the integral of the first kind should be taken as independent variable, the

variables, x and y, belonging to the upper limit of this integral being regarded

as dependent. The question naturally arises whether it may not be equally

advantageous, if possible, to introduce a similar change of independent

variable in the higher cases. We have seen in the previous chapter that, if

iC^^"' , ... , li^'
* be any |) linearly independent integrals of the first kind, the

p equations

?ij""' + +w^^.«^=_itj'>+i>«^+i _ -?tj'^'"fi, (* = 1, 2, ..., p),

justify us in regarding the places Xi, ..., Xp as rationally determinable from

the arbitrary places ctj, ..., a,^, x^^^, ..., x^; hence is suggested the problem,

known as Jacobi's inversion problem *, which may be stated thus : if

Uj, ... , Up be arbitrary quantities, regarded as variable, and a^, ..., Up be

arbitrary fixed places, o^equired to deterinine the nature and the expression of

the dependence of the places x^, ..., Xp, which satisfy the p equations

<"'''+ ^'uf=^Ui, {i=l,2,...,p),

upon the quantities Ui, ..., Up. It is understood that the path of integration

from ar to Xr is to be taken the same in each of the p equations, and is not

restricted from crossing the period loops.

164. It is obvious first of all that if for any set of values C/j, ..., Up

there be one set of corresponding places x^, ..., Xp of such general positions

that no (^-polynomial (§ 101) vanishes in them, there cannot be another set

of places, Xi, ... , Xp', belonging to the same values of U^, ... , Up. For then

we should have
<''*' + + ttf'-*- = 0, {i = l,2,...,p),

* Jacobi, Crellc xiii. (1835), p. 55.
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and Lheiol'uie (§ 158, Chap. VIII.) there would exist a rational function

having a\, ..., Xp an poles and a;,', ..., Xp as zeros, which is contrary (§ 37,

Chap. III.) to the hypothesis that no </>-polyuomial vanishes m Xy, ..., Xp.

But a further result follows from the § referred to (§ 158, Chap. VIII.).

Let 2&),, I, ..., 2&),-, ^,, 2&)/, 1, ..., 2a)/, p denote the periods of <t*'", and

»<,, ..., nip, nil', •••> ^"/ denote any rational integers which are the same for

all values of i. On the hypothesis that the inversion problem is capable of

solution for all values of the (|uantitics Ui, ..., Up, suppose these quantities

to vary continuously from the values Ui, ..., Up to the values Kj, ..., Vp,

where

Vi = Ui + '2nt iQ),^ , + + 2>nj,(0i^
J,
+ 2 //*,'&),'

, + + '2mp(Oi\ ,,,

(t = l, 2, ...,p),
= (/,:+ 2n,-, say,

aud let ^^1, ..., Zp be the places such that

„,^-«. 4 ... + ,r.^''"''= Vr,

then it follows from § 158, that the places z^, ..., Zp are, in some order, the

same as the places Xi, ...,Xp. For this reason it is proper to write the

equations of the inversion problem in the form

«.^""' + + wf
•'''•=

Ui,

where the sign = indicates that the two sides of the congruence differ by a

(piantity of the form 2(1^. And further, if the set x^, ...,Xp be uni(|uely

determined by the values Ui, ..., Up, any symmetrical function of the values

of X, y at the places of this set, must be a single-valued function of

Ui, ..., Up. Denoting such a function by (f)(Ui, ..., Up), we have, therefore,

ci>iu, + 2n„ u, + 2n,,..., Up + 2np)^4>{U„..., Up).

The functions that arise are therefore such as are unaltered when the

p variables Ui, ..., Up are simultaneously increased by the same integral

multiples of any one of the 2p sets of quantities denoted by

"J, /">

2ft)/, ,, 2ft);, ,,..., 2<, ,. (r = l,2,...,p),

165. The sign = will often be employed in what follows, in the sense

explained above. There is one case in which it is absolutely necessary.

In what has preceded the paths of integration have not been restricted from

crossing the period loops. But it is often convenient, for the sake of

definiteness, to use only integrals for which this restriction is enforced. In

such case the problem expressed by the equations

w^'-^'-h + u'''''''''=Ui
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may be incapable of solution for some values of U-^, ..., Up. This can be

seen as follows : if both the sets of equations

it'''^^- +2tf''^^= Ui,

<''^' + + »f ""=f7, + 2n,.

were capable of solution, it would follow, by § 158, that the set z-^, ..., Zp is

the same as the set a\, ... , oCp. And thence, as the paths are restricted not

to cross the period loops, we should have

and thence

2ni = 2w,&),; 1 + + 2m^a>;, p + 2??ii'&)/, i + + 27?i/&)/, ^ = ;

but these equations are reducible to

mi + VhT;^ 1 + + mpV,; p=0,

and, therefore, there would exist a function, expressed by

27rt (m/vi " + + nipvl' ")

(where w*'", ...,v'^'"' are Riemann's elementary integrals of the first kind),

everywhere finite and without periods. Such a function must be a constant

;

thus the conclusion would involve that v^'"", ..., y*'"are not linearly inde-

pendent, which is untrue.

Hence when the paths of integration are restricted not to cross the period

loops, the equations of the inversion problem must be written

<""' + + <'""''^C^,;

in this case the integi-al sum on the left-hand side is not capable of assuming

all values; and the particular period which must be added to the right-hand

.side to make the two sides of the congruence equal is determined by the

solution of the problem.

166. Before passing to the proof that Jacobi's inversion problem does

admit of solution, another point should be referred to. It is not at first

.sight apparent why it is necessary to take p arguments, U^, ..., Up, and

p dependent places oc^, ...,a;p. It may be thought, perhaps, that a single

equation

wherein ?**• " is any definite integral of the first kind, suffices to determine the

place a; as a function of the argument U. We defer to a subsequent place

the enquiry whether this is true when the path of integration on the left

hand is not allowed to cross the period loops of the Riemann surface ; it is

obvious enough that in such a case all conceivable values of U would not arise.
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for instance U = cc would not arise, and the function of U obtained would

only be defined for restricted values of the argument. But it is possible

to see that when the path of integration is not limited, the place x cannot be

definitely determinate from U. For, then, putting a; =/( U), we must have

/( U+2n) =/( U), wherein

n = ?»i&)i + + v}j,Q)jj + wj/ft)/ + + trip tap,

Wj, ...,mp being arbitrary rational integers, and 2a)i, ..., 2Q)p' being the

periods of u^- **
; and it can be shewn, when p>\, that in general it is

possible to choose the integers ??ii, ..., nip so that H shall be within assigned

nearness of any prescribed arbitrary value whatever. Thus not only would

the function /(t/^) have infinitesimal periods, but any assigned value of this

function would arise for values of the argument lying within assigned near-

ness of any value whatever. We shall deal later with the possibility of the

existence of infinitesimal periods; for the present such functions are excluded

from consideration.

The arithmetical theorem referred to* may be described thus; if «i, a^

be any real quantities, the values assumed by the expression Nia^^ N»a»,

when Ni, N^ take all possible rational integer values independently of one

another, are in general infinite in number ; exception arises only in the case

when the ratio ajtu is rational ; and it is in general possible to find rational

integer values of iV, and N.. to make N^ai+NM. approach within assigned

nearness of any prescribed real quantity. Similarly if a„ a.., a,,, bi, h, 63 be

real quantities, of the expressions Niari + N2a2 + N3as, N^by+N^bo + Nsba,

where N^, N., iVs take all possible rational integer values independently

of one another, there are, in general, values which lie within assigned

nearness respectively to two arbitrarily assigned real quantities a, b. More

generally, if Oj, ..., a^, 61, ...,bk, , d, ..., Ck be any (k — 1) sets each of

k real quantities, and a,b,...,c be (^• — 1) arbitrary real quantities, it is

in general possible to find rational integers JVi, ..., Nk such that the (A;— 1)

quantities

N,a, + ¥ Nkttk-a, N,b, + + Nkhk-b,..., N,c, + +NkCk-c,

are all within assigned nearness of zero.

Hence it follows, taking k = 2p, that we can choose values of the integers

?n,, ..., nip', to make p — 1 of the quantities

Qr = niiQJr, 1 + + nipWr, p + m/ft)/, 1 + + nip (Or, p,

say n, , . .
.

, np_i , approach within assigned nearness of any (p—l) prescribed

values, and at the same time to make the real part of the remaining quantity

n^^ approach within assigned nearness of any prescribed value ; but the

imaginary part of Clp will thereby be determined. We cannot therefore

* Jacobi, loc. Hi. ; Hermite, CrfUe, lxxxviii. p. 10.
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expect to obtain an intelligible inversion by taking less than p new variables

£/i, U2, ... ; and it is manifest that we ought to use the same number of

dependent places oc^, cc.., On the other hand, the proof which has been

given that there can in general only be one set of places oc^, ...,oOp corre-

sponding to given values of Ui, ..., Up would not remain valid in case the

left-hand sides of the equations of the problem of inversion consisted of a

sum of more than p integrals ; for it is generally possible to construct a

rational function with p+ 1 assigned poles.

167. It follows from the argument here that when p > 1 an integral of the first kind,

yx.a^ is capable, for given positions of the extreme limits, .v, a, of the integration, of

assuming values within assigned nearness of any prescribed value whatever. Though not

directly connected with the subject here dealt with it is worth remark that it does not

thence follow that the integral is capable of assuming all possible values. For the values

represented by an expression of the form

m^ o)j + + mpcop+ m^d)^+ + mp'cop,

for all values of the integers wij, ..., m,,, m^', ..., mj/, form an enumerable aggregate

—

that is, they can be arranged in order and numbered - 00 , . .
.

, - 3, — 2, — 1, 0, 1, 2, 3, ... , 00

.

To prove this we may begin by proving that all values of the form 171^0}^ + 7)1.20)2 form

an enumerable aggregate ; the proof is identical with the proof that all rational fractions

form an enumerable aggregate ; and may then proceed to shew that all values of the form

wijWj+ mgWg+ Hiscos form an enumerable aggregate, and so on, step by step. Since then the

aggregate of all conceivable complex values is not an enumerable aggregate, the statement

made is justified.

The reader may consult Harkness and Morley, Theory of Functions, p. 280, Dini,

Theorie der Functionen einer reellen Orosse (German edition by Luroth and Schepp),

pp. 27, 191, Cantor, Acta Math. 11. pp. 363—371, Cantor, Crelle, lxxvii. p. 258, Rendiconti

del Circolo Mat. di Palermo, 1888, pp. 197, 135, 150, where also will be found a theorem

of Poincare's to the effect that no multiform analytical function exists whose values are not

enumerable.

168. Consider now* the equations

(A) <"'''+ +^c^-^-=Ui, {i=\,%...,^)

wherein, denoting the differential coefficient of w^'
'^ in regard to the infini-

tesimal at X by fXi (x), the fixed places a^, ..., a^ are supposed to be such that

the determinant of p rows and columns whose {i, ^')th element is fXj (a^) does

not vanish ; wherein also the jj paths of integration a-^lo x-^, ..., ap to Xp, are

to be the same in all the p equations, and are not restricted from crossing the

period loops.

When Xi, ..., Xp are respectively in the neighbourhoods of a^, ..., ap and

Ui, ..., Up are small, these equations can be written

f2
titii{a,)+~fjt,i'{ai)+. + +

t
^

tpH (dp) + ^ /tt/ (cip) + = Uu

* The argument of this section is derived from Weierstrass ; see the references given in

connection with § 170.
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wherein tr is the infinitesimal in the neighbourhood of the place o^, and ftr'(^)

is derived from /i^ (a) by differentiation. From these equations we obtain

tr=^'r,^U, + + ^,^fr^+C7;-'+ Uf'^+ {r = l,2,...,p),

where, if A denote the determinant whose (i, j)th. element is fij{ai), pij

denotes the minor of this element divided by A, and Z7^*^ denotes a homo-

geneous integral polynomial in U^, ..., Up of the ^•th degree. These series

will converge provided Uj, ..., Up he of sufficient, not unlimited, smallness.

Hence also, so long as the place Xr lies within a certain finite neighbourhood

of the place Cr, the values of the variables Xr, yr associated with this place,

which are expressible by convergent series of integral powers of tr, are

expressible by series of integral powers of U^, ..., Up which are convergent

for sufficiently small values of Ui, ..., Up.

Suppose that the values of U^, ..., Up are such that the places x^, ..., Xp

thus obtained are not such that the determinant whose (i, j)th element is

fij (xi) is zero ; then if Ui, ..., Up' be small quantities, it is similarly possible

to obtain p places .r,', . .
.

, Xp', lying respectively in the neighbourhoods of

a-,, ..., Xp, such that

<'••' + + <"'""= fV, (i = l,2,...,p);

by adding these equations to the former we therefore obtain

u. + + if]^^'"' = u,-+u;, {i = i,2,...,p).

Since all the series used have a finite range of convergence, we are thus

able, step by step, to obtain places a',, ..., Xp to satisfy the p equations

<""' + + <'•""= 6^-, (i = l,2,...,p),

for any finite values of the quantities Ui, ..., Up which can be reached from

the values 0, 0, . .
.

, without passing through any set of values for which

the conx'sponding positions of .Ti, ..., Xp render a certain determinant zero.

1G9. The method of continuation thus sketched has a certain interest;

but we can arrive at the required conclusion in a ditferent way. Let

Ui, ..., Up he any finite cjuantities ; and let in be a positive integer. When
m is large enough, the quantities Uijni, ..., Up/m are, in absolute value, as

small as we please. Hence there exist places z^, ..., Zp, lying respectively in

the neighbourhoods of the places a^, ...,ap, such that

u^^"
" + + u]"' ""=- Ui/m (1 = 1,2,..., p).

lu order then to obtain places a:,, ..., Xp, to satisfy the equations

<'•"' + + u'l'"'"'=Ui, {i = l,-2,...,p).
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it is only necessary to obtain places oc^, ..., ocp, such that

w^"'''+ +«J'^''"'+mwJ'"''' + + mv^'"'''' = 0, (i = l, 2, ...,p);

and it has been shewn (Chap. VIII. § 158), that these equations express only

that the set oi mp + p places formed of Zi, ..., Zp, each m times repeated and

the places x^, ..., Xp, are coresidual with the set of (m4- \)j) places formed of

Oj, ..., ap each (m+ 1) times repeated.

Now, when (m + l)jj places are not zeros of a </)-polynomial, we may

(Chap. VI.) arbitrarily assign all but p of the places of a set of (m + l)p

places which are coresidual with them ; and the other p places will be

algebraically and rationally determinable from the Tnp assigned places.

Hence with the general positions assigned to the places ai,...,ap, it

follows, if Z denote any rational function, that the values of Z at the places

x^, ..., Xp are the roots of an algebraical equation,

Zp + Zp-'R, + + Rp = 0,

whose coefficients Ri, ... , Rp are rationally determinable from the places

Zi, ..., Zp, and are therefore, by what has been shewn, expressible by series

of integral powers of Ui/m, ..., Up/m, which converge for sufficiently large

values of m. Thus the problem expressed by the equations

<""' + +u^'"'"'=Ui, {i=l,2,...,p),

is always capable of solution, for any finite values of C/j, ..., Up.

It has already been shewn (§ 164), that for general values of Ui, ..., Up

the set Xi,...,Xp obtained is necessarily unique; the same result follows

from the method of the present article. It is clear in § 164, in what way

exception can arise ; to see how a corresponding peculiarity may present

itself in the present article the reader may refer to the concluding result

of § 99 (Chap. VI.). (See also Chap. III. § 37, Ex. ii.)

In case the places cii, ..., ap in the equations (A) be such that the deter-

minant denoted by A vanishes, we may take places bi, ...,bp, for which

the corresponding determinant is not zero, and follow the argument of the

text for the equations

u.
I

in which Vi = Ui + w^- ^' + + lil'" \

We do not enter into the difficulty arising as to the solution of the in-

version problem expressed by the equations (A) in the case where Ui, ..., Up

have such values that x^, ...,Xp are zeros of a ^-polynomial. This point

is best cleared up by actual examination of the functions which are to

be obtained to express the solution of the problem (cf.* § 171, and

* See also Clebsch and Gordan, Abel. Fitnctnen., pp. 184, 186.

B. 16

+ +tl.' '^ = Vi,
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Props, xiii. and xv., Cor. iii., of Chap. X.). But it should be noticed that

the method of § 168 shews that a solution exists in all cases in which the

fixed places o^, ..., Gp do not make the determinant A vanish ; the peculiarity

in the special case is that instead of an unique solution Xi, ..., Wp, all the

x'""''^ sets coresidual with x^, ..., Xp are equally solutions, t+1 being the

number of linearly independent (^-polynomials which vanish in x^, ...,Xp.

This follows from ^ 154, 158.

170. We consider now how to form functions with which to express the

solution of the inversion problem.

Let i^' ** denote any elementary integral of the third kind, with infinities

at the arbitrary fixed places ^, 7. Then if a,, ..., Op, a?,, ..., ajp denote the

places occurring on the left hand in equation (A), it can be she^vn that the

function

^ ~^Ly "^
"^^f-y

is the logarithm of a single valued function of Ui, ..., Up, and that the

solution of the inversion problem can be expressed by this function ; and

further that, if /*> " denote any Abelian integral, the sum

T-a;,, a,
, ,

jXp, op

can also* be expressed by the function T.

It is clear that in this statement it is immaterial what integral of the

thii'd kind is adopted. For the difference between tAvo elementary integrals

of the third kind with infinities at ^, 7 is of the form

V*i + + VV +^'

where Xi, ..., \p, X may depend on f, 7 but are independent of x; hence

the difference between the two corresponding values of T is of the form

Xif/i + +Xyt/p+X;

and this is a single-valued function of U^, ..., Up.

For definiteness we may therefore suppose that P^' " denotes the integral

of the third kind obtained in Chap. IV. (§ 45. Also Chap. VII. § 134).

Then, firstly, when x^, ...,Xy are very near to a^, ..., a^, and U^, ..., Up

are small, T is given by

^_^
[u[{ai, ?)-(«. 7)]'|^+|<^r;+ |.

* The introduction of the function T is, I believe, due to Weierstrass. See Crelle, lii.

p. 285 (1856) and Mathem. JVerke (Berlin, 1894), i. p. 302. The other functions there used are

considered below in Chaps. XL, XIII.
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where U denotes the infinitesimal in the neighbourhood of the place aj, c

is an arbitrary place, and the notation is as in § 130, Chap. VII. It is

intended of course that neither of the places ^ or 7 is in the neighbourhood

of any of the places Oj, ..., a^. Now we have shewn that the infinitesimals

tri, ..., tp are expressible as convergent series in U^, ..., Up. Thus T is also

expressible as a convergent series in JJi, ..., Up when Ui, ..., Up are

sufficiently small,

Nextly, suppose the places a?i, ..., Wp are not near to the places ttj, ... , a^

;

determine, as in § 168, places to satisfy the equations

mJ"'*' + +u'.'"''' = -Ui/m,

w^""' + +v^'"'"'=Ui,

m being a large positive integer; then we shall also have (§ 158, Chap. VIII.)

P^,y + +^^,y +«K^?,y + + ^f,y ) = ^^S^J^y

where Z (w) denotes the rational function which has a pole of the (m + l)th

order at each of the places aj, ..., a^, and has a zero of the mth order at each

of the places 2^1, ..., Zp. The function Z (cc) has also a simple zero at each

of the places x^, ..., ccp, but this fact is not part of the definition of the

function.

This equation can be written in the form

wherein Tq denotes the sum

f. y f. y '

It follows by the proof just given that To is expressible as a series of

integral powers of the variables Ui/m, ..., Up/m, which converges for

sufficiently great values of m; and it is easy to see that the expression

Z{^)/Z(y) is also expressible by series of integral powers of Ui/m, ..., Up/m.

For let the most general rational function having a pole of the (m + l)th

order in each of aj , . .
.

, a^, be of the form

Z{x)=\Zi{x)+ + Xmp Z^np (*') + \

wherein Z-^{x), ..., Zmp(x) are definite functions, and X, Xj, ..., Xmp are

arbitrary constants. Then the expression of the fact that this function

vanishes to the mth order at each of the places z^, ..., Zp will consist of

mp equations determining Xj, ..., \rip rationally and symmetrically in terms

of the places z-^,, ..., Zp. Hence (by § 108) Xi, ... , X^^ are expressible as series

of integral powers of f/j/m, ..., Up/m. Hence Z{^)/Z{y) is expressible

by series of integral powers of UJm, ..., Up/m.

16—2
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Hence, for any finite values of Ui, ..., Up the function e^ is expressible

by series of integral powers oi U^, ..., Up. It is also obvious, from the

method of proof adopted, that the series obtained for any set of values of

Ux, ..., Up are independent of the range of values for Ui, ..., Up by which

the final values are reached from the initial set 0, 0, . .
. , ; so that the

function e'' is a single valued function of U^, ..,, Up. The function e^

reduces to unity for the initial set 0, 0, . .
. , 0.

171. An actual expression of the function e^, in terms of U^, ..., Up,

will be obtained in the next chapter (§ 187, Prop. xiii). We shew here that

if that expression be known, the solution of the inversion problem can

also be given in explicit terms. Let 11*' ** denote the normal elementary

integral of the third kind (Chap. II., § 14). Then if K denote the sum

^=n^''' + + n^'"'^,

it follows, as here, that e^ is a single valued function of U^, ..., Up, whose

expression is known when that of e^ is known, and conversely. Denote e^ by

V (Ui, ..., Up] ^,7). Let Z{x) denote any rational function whatever, its

poles being the places 7,, ..., 7^; and let the places at which Z (x) takes

an arbitrary value X be denoted by ^1, ..., ^t. Then, from the equation

(Chap. VIII., § 154),

<;:> + n::;:;=iogf|^. (^ = l,2,...,p).

we obtain *

V{U„...,U„ ^,,7.)... T (U,, ..., Up,
6.7i)-|-xr^(a,)]...[Z-Z(a^)]'

the left-hand side of this equation has, we have said, a well ascertained

expression, when the values of f/,, ..., Up. the function Z(cc), and the value

X, are all given ; hence, substituting for X in turn any j) independent

values, we can calculate the expression of any symmetrical function of the

quantities

ZM, ...,Z(xp),

and this will constitute the complete solution of the inversion problem.

It ha.s been shewn in § 152, Chap. VIII. that any Abelian integral Z^'*

can be written as a sum of elementary integials of the third kind and of

differential coefficients of such integrals, together with integrals of the first

kind. Hence, when the expression of F(i7,, ..., Up-, |, 7) is obtained, that

of the sum

can also be obtained.

* Clebsch u. Gordan, Aheh. Functionen, (1866), p. 175.
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172. The consideration of the function

n^''' + + n''/''"\

which is contained in this chapter is to be regarded as of a preliminary

character. It will appear in the next chapter that it is convenient to

consider this function as expressed in terms of another function, the theta

function. It is possible to build up the theta function in an d priori

manner, which is a generalization of that, depending on the equation

whereby, in the elliptic case, the a-function may be supposed derived from

the function g> (u). But this process is laborious, and furnishes only results

which are more easily evident d posteriori. For this reason we proceed now

immediately to the theta functions; formulae connecting these functions

with the algebraical integrals so far considered are given in chapters X. XI.

and XIV.
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CHAPTER X.

Riemann's theta functions. General theory.

173. The theta functions, which arc, certainly, the most important

elements of the theory of this volume, were first introduced by Jacobi in

the case of elliptic functions.* They enabled him to express his functions

sn u, en u, dn u, in the form of fractions having the same denominator, the zeros

of this denominator being the common poles of the functions sn u, en u, dn u.

The ratios of the theta functions, expressed as infinite products, were also

used by Abel f. For the case p = % similar functions were found by Gopel J,

who was led to his series by generalizing the form in which Hermite had

written the general exponent of Jacobi's series, and by Rosenhain §, who

first forms degenerate theta functions of two variables by multiplying to-

gether two theta functions of one variable, led thereto by the remark that

two integrals of the first kind which exist for jp = 2, become elliptic integrals

respectively of the first and third kind, when two branch places of the surface

for p = 2, coincide. Both Gopel and Rosenhain have in view the inversion

problem enunciated by Jacobi; their memoirs contain a large number of

the ideas that have since been applied to more general cases. In the form

in which the theta functions are considered in this chapter they were first

given, for any value of p, by Riemann]]. Functions which are quotients

of theta functions had been previously considered by Weierstrass, without

any mention of the theta series, for any hyperelliptic case IT. These functions

occur in the memoir of Rosenhain, for the case p = 2. It will be seen that

* Fundameuta Nova (1829) ; Ges. Werke (Berlin, 1881), Bd. i. See in partictdar, Dirichlet,

Gedachtnissrede auf Jacobi, loc. cit. Bd. i., p. 14, and Zur Geschichte der Abelschen Trans-

cendenten, loc. cit., Bd. ii., p. 516.

t (Euvres (Christiania, 1881), t. i. p. 343 (1827). See also Eisenstein, Crelle, xxxv. (1847),

p. 153, etc. The equation (b) p. 225, of Eisenstein's memoir, is effectively the equation

p(M) = 4p((0-J7»P(«)-f73-

I CreUe, xxxv. (1847), p. 277.

§ Mim. sav. etrang. xi. (1851), p. 361. The paper is dated 1846.

II
Crelle, Liv. (1857) ; Ges. Werke, p. 81.

H Crelle, xlvii. (1854); Crelle, lii. (1856); Ges. Werke, pp. 133, 297.
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the Riemann theta functions are not the most general form possible. The

subsequent development of the general theory is due largely to Weierstrass.

174. In the case p = l, the convergence of the series obtained by Jacobi

depends upon the use of two periods 2(o, 2co', for the integral of the first

kind, such that the ratio co'/o) has its imaginary part positive. Then the

quantity q= e " is, in absolute value, less than unity.

Now it is proved by Riemann that if we choose normal integrals of the

first kind v^' "',..., v""' "', so that w^'
"" has the periods ... 0, 1, 0, . .

. , t,., i, . .
. , Tr,p,

the imaginary part of the quadratic form

is positive* for all real values of the p variables Wj, ..., np. Hence for all

rational integer values of vij, ..., w^, positive or negative, the quantity e*"*

has its modulus less than unity. Thus, if we write t,._ g = p,-, s + */fr, s, Rr, s

and Kr,s being real, and (Xj, =bi + ici, ..., a^, =bp + iCp, be any p constant

quantities, the modulus of the general term of the ^-fold series

2 S ... 2 e<*i"'i+ +apnp+in<j>

M,= -oo 712=-00 7»p=— <»

wherein each of the indices ih, ..., Up takes every real integer value

independently of the other indices, is e~^, where

L=- (6i?ii + + bpUp) + IT (Kuni' + + 2«;i,2 ^1^2 + ),

= - (6i7ii + + bpHp) + -f , say,

where i/r is a real quadratic form in n^, ..., Up, which is essentially positive

for all the values oi rh, ...,np considered. When one (or more) of ?ii, ..., n^

is large, L will have the same sign as i/r, and will be positive ; and if //- be any

positive integer e^<>^ is greater than 1 + LJii, and therefore e'^ <\l+ -\
;

now the series whose general term is (l +-) will be convergent or not

according as the series whose general term is \|r-'^ is convergent or not, for

the ratio 1 + -
: i/r has the finite limit l//z for large values of n^, ...,np\

and the series whose general term is -v/r"'^ is convergent provided yu, be taken

* The proof is given in Forsyth, Theory of Functions, § 235. If w^ '*,... , w^' " denote a set of

integrals of the first kind such that ^z;'^'" has no periods at the h period loops except at K, and

has there the period 1, and <rr, i .... , cr^.p be the periods of w^' " at the a period loops, the quadratic

function

<r,ini-+ +2(ri2ni"2+

has its imaginary part negative.
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> ^p. (Jordan, Cuurs d!Analyse, Paris, 1893, vol, i., § 318.) Hence the

series whose general term is

is absohitely convergent.

In what follows we shall write 27riii,. in place ol" a^ and speak of «t, ,,., iip

as the arguments; wc shall denote hy un the quantity WiWi + +Up7ip,

and by rir the quadratic t,,/*i-+ 4- 2tio?«,?Jo+ Then the Riemann

theta function is defined by the equation

( it) = Vg2>rt"n+i7rT>i'

where the sign of summation indicates that each of the indices ??j, ...,np

is to take all positive and negative integral values (including zero),

independently of the others. By what has been proved it follows that (u)

is a single-valued, integral, analytical function of the arguments Ui, ..., Up.

The notatiou is borrowed from the theory of matrices (cf. Appendix ii.) ; t is regarded

as representing the symmetrical matrix whose (r, s)th element is t^, «, n as representing

a row, or column, letter, whose elements are Wj, ..., w^,, and v, similarly, as representing

such a letter with u^, ..., Up as its elements.

It is convenient, with © (m), to consider a slightly generalized function,

given by
(w

; q, q'), or © (u, q) = Se-'^"' ("+3'+*'^^ in+5V+air<g(n+7') .

herein q denotes the set of jj quantities q^, ...,qp, and q' denotes the set

of jj quantities q^, ..., qp, and, for instance, u {n + q) denotes the quantity

un + uq, namely

«i Wi + + Upiip + 2fi 5-1' + + Upq^,

and T (n + q'Y denotes rn" -\- iTuq + t(/'", namely

V p
(Tn«r+ ••• +2T,,2n,?io +.,.) + 2 S Z t^,s ^i^g/ + (tii9i''+ ... + 2x1,2^/(72' + ...).

s=l r=l

The quantities q^^, ..., qp, q^, ,.., qp constitute, in their aggi'egate, the

characteristic of the function © {u
; q) ; they may have any constant values

whatever; in the most common case they are each either or ^.

The quantities tj,,- are the periods of the Riemann normal integrals of the first kind at

the second set of period loops. It is clear however that any symmetrical matrix, o-, which

is such that for real values of k^, .... kp the quadratic form o-P has its imaginary part

positive, may be equally used instead of r, to form a convergent series of the same form as

the e series. And it is worth while to make this remark in order to point out that the

Riemann theta functions are not of as general a character as possible. For such a

symmetrical matrix cr contains \p{p+\) different quantities, while the periods r,.,, are

(Chap. I., § 7), functions of only 3/>-3 independent quantities. The difference ^{'p+ \)

-(3jo-3) = ^(p-2)(/j-3), vanishes for />= 2 orp= 3; for p= A it is equal to 1, and for

greiiter values of p is still greater. We shall afterwards be concerned with the more

general theta-function here suggested.
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The function (?t) is obviously a generalization of the theta functions used in the

theory of elliptic functions. One of these, for instance, is given by

2(0

and the four elliptic theta functions are in fact obtained by putting respectively q,q'= 0,^;

=hi-> =iO; =0,0.

175. There are some general properties of the theta functions, imme-

diately deducible from the definition given above, which it is desirable to

put down at once for purposes of reference. Unless the contrary is stated it

is always assumed in this chapter that the characteristic consists of half

integers; we may denote it by |ySi, ..., |-/3p, -g-ai, ".,^'Xp, or shortly, by

^/S, ^oi, where /3i, ..., yS^, Wi, ..., a^ are integers, in the most common case

either or 1. Further we use the abbreviation i^m.m', or sometimes only fl,«,

to denote the set of^ quantities

mi + Ti,,mi'+ + Ti,pmp, (i = l,2, ...,p),

wherein m^, ..., rrip, m-[, ..., nip are 2p constants. When these constants

are integers, the p quantities denoted by H^ are the periods of the p Riemann

normal integrals of the first kind when the upper limit of the integrals is taken

round a closed curve which is reducible to nii circuits of the period loop hi

(or THi crossings of the period loop aj) and to m/ circuits of the period

loop tti, i being equal to 1, 2, ...,p. (Cf the diagram Chap. II. p. 21.)

The general element of the set of p quantities denoted by H^, will also

sometimes be denoted by nii + Tim', tj denoting the row of quantities formed

by the iih. row of the matrix t. When m^, ...^nip are integers, the quantity

rni+ Tim is the period to be associated with the argument Ui.

Then we have the following formulae, (A), (B), (C), (D), (E)

:

(- ^^ ;
i/3, la) = e-'^' © {u ;

i/3, !«), (A).

Thus (u
; ^/3, ^a) is an odd or even function of the variables Ui, ..., Up

according as ySa, =l3i(Xi+ + ^pOLp, is an odd or even integer; in the

former case we say that the characteristic J/S, ^a is an odd characteristic, in

the latter case that it is an even characteristic.

The behaviour of the function (u) when proper simultaneous periods

are added to the arguments, is given by the formulae immediately following,

wherein r is any one of the numbers 1, 2, ...,p,

© (ii„ ...,iir + l, ...,up; 1/3, ia) = e"^«'- (u ;
lyS, la),

© (Wi + Ti, ^, U, + T,,r, ..•,Up + Tp^r; i/3, ^tt) = e-^'^ "V+K r)--iPr © (jt ; 1/3, ifl).

Both these are included in the equation

© {ll + n,^; i/8, ^a) = e-2Ttm'(w+iTm') +.Uma-m'P) (^ • ^J^l a)^ (B) .
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herein the quantities 7;ii, ..., yup, in^', ..., nip arc integers, M + n„j stands for

the p quantities such as «r + Wr + wi/T^, i + + '>npTr^p, and the notation

in the exponent on the right hand is that of the theory of matrices ; thus

for instance mrm denotes the expression

p
2 m/ (xr, , wti' + •^'^r,p mp),

and is the same as the expression denoted by rm'-.

Equation (B) shews that the partial differential coefficients, of the second

order, of the logarithm of ©(m
; ^y9, ^a), in regard to Wj, ..., Up, are functions

of iti, ..., Up, with 2p sets of simultaneous periods.

Equation (B) is included in another equation ; if each of /3', a denotes a

row of p integers, we have

to obtain equation (B) we have only to put yS/ = 2??i;., o^' = 2???^' iii equation

(C). If, in the same equation, we put /8' = — /S, a' = — a, we obtain

e(u-mp,a', i/3, ^ a) = e"'« <"-i~) (m ; 0, 0) = e'''- '"-i^»> (u)
;

from this we infer

^{u\ i^. ia) = e'"'-*"+^+*^''*0('« + ^n0,,), (D);

this is an important equation because it reduces a theta function with any

half-integer characteristic to the theta function of zero characteristic.

Finally, when each of 7?^, m' denotes a set of p integers, we have the

equation

(it 1^ + m, |a +m') = e--- (u
; ^/3, ^a), (E)

;

thus the addition of integers to the quantities ha docs not alter the theta

function 0(u; ^/8, ^a), and the addition of integers to the quantities ^^
can at most change the sign of the function. Hence all the theta functions

with half-integer characteristics are reducible to the 2^ theta functions which

arise when every element of the characteristic is either or ^.

176. We shall verify these equations in order in the most direct way. The method

consists in transforming the exponent of the general term of the series, and arranging the

terms in a new order. This process is legitimate, because, as we have proved, the series is

absolutely convergent.

(A) U in the general term

g27riu(n+ ia)+f.rT(n+ ia)^+tri^(n+id)

we change the signs of ?ii, ..., Up, the exponent becomes

iniic (- n-a+ ^a) + {irT {-n-a + ha) + Tr{^{- n — a+ ha)+ 2rri^Ti-\-ir)^a.
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Since a consists of integers we may write m for -«.-a, that is «iy= -(7i,. + ar), for

r=l, 2, ..., JO ; then, since /3 consists of integers, and therefore e'^'^''^^*=l, the general term

becomes

save for the factor e'^^^", this is of the same form as the general term in the original series,

the summation integers mj, ..., nip replacing n^, ..., yip. Thus the result is obvious.

(B) The exponent

27rt' (w+m+ Tin') {n -\-\a) + inr {n-\-\ a)^+ tt i/3 (% + ^ a),

wherein m+Tin' stands for a row, or column, of p quantities of which the general one is

m^.+ r,., 1 ??i/ + +Tr,p itip,

is equal to

27rt?* (n+ Ja)

+

ittt (n+ | a)^ + ni^ (?i+ ^ a) + ^irimn+ -nima+ ^irirm'n + nirm'a

=2nm{n+ m' +\a)+ virT{n+ m'+ ^af+ni^{7i-\-m' \-^a)-'2T:im' {u+ \Tm')

+ ni (ma - ??i'/3) + 2nimn.

Replacing e^^mw
^^^ j ^^^^ writing n for w+m', the equation (B) is obtained.

(C) By the work in (B), replacing m, m! by ^/3', \a respectively, we obtain

27^^(M^-^/3'^-|Ta')(^^^-ia) + ^7rr(%+ |a)2+ 7^^/3(%+ ^a)

+ hri {(i'a - a'/3) + niffn,

and this is immediately seen to be the same as

%nu{n+\a ->r\a) + i'iTT {n+ha +\a)->rni{P+ ff){n-lr\a' +^a)-7rta' (?i+|^+ |i3'+ Jra').

This proves the formula (C).

It is obvious that equations (D) are only particular cases of equation (C), and the

equation (E) is immediately obvious.

It follows from the equation (A) that the number of odd theta ftmctions contained in

the formula e(?i; ^i3, |a) is 2p-i (2^- 1), and therefore that the number of even functions

is 22p-2P-i(2P-l), or 2p-1(2p+1).

For the number of odd functions is the same as the number of sets of integers,

*"i> yi> •••> ^v>ypi each either or 1, for which

^j?/j+ + Xpyp=axi odd integer.

These sets consist, (i), of the solutions of the equation

0Ciyi + +^p_i3/p_i=an odd integer,

in number, say, /( p - 1), each combined with each of the three sets

K,3/p) = (0, 1), (1>0), (0,0),

together with, (ii), the solutions of the equation

^1^1+ +Xp-iyp-i= SM even integer,

in number 22^-2-/(^-1), each combined with the set

{^'p,yp)={h !)•

Thus
/•(^)= 3/(p-l) + 22p-2-/(p-l) = 22p-2 + 2/(^-1)

^22i'-2+2 {22'^-'*+2/(j9-2)} = etc.

= 22p-2-f 22p-3+ 22p-*+ + 2P+ 2?'~i/(l)

= 2P-i(2"-l).

Hence the number of even half periods is 2''~i (2'' + 1).
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177. Suppose now that e,, ..., Cp arc definite constants, that m denotes a

fixed place of the Riemaun surface, and a; denotes a variable place of the surface.

,,. . , .
. , x,m ,

X, m X, m
We consider ;> arguments given by Ur = Vr + Cr, where Vi , . .

.
, Vp are

the Rienuinn uornial integrals of the first kind. Then the function M (?/) is

a function of x. By equation (B) it satisfies the conditions

wherein k denotes a row, or column, of integers k^, ..., kp and ^' denotes

a row or column * of integers k/, ..., kp'. As a function of x, the function

{if- "* + e) cannot, clearly, become infinite, for the arguments v^' + Cr are

always finite ; but the function does vanish ; we proceed in fact to prove the

fundamental theorem

—

the function (•«*• "* + e) has always p zeros of the

first order or zeros whose aggregate multiplicity is p.

For brevity we denote Vy + er by Ur. When the arguments Wj, ...,u.p

are nearly equal to any finite values U^, ..., Up, the function (m) can

be represented by a series of positive integral powers of the diflferences

Ui— Uj, ...,Up- Up. Hence the zeros of the function ©(w), = ® (v^' "' + e),

are all of positive integral order. The sum of these orders of zero is there-

fore equal to the value of the integral

„—. [d log © (u) = J^.!i du,®s' {u)/(^ (u) = „-. Idx I (dus/dx) (©;(w)/©(m)),
ZttiJ ZiriJ 5=1 ZiriJ s=i

wherein the dash denotes a partial differentiation in regard to the argument

Ug, and the integral is to be taken round the complete boundary of the p-ply

connected surface on which the function is single-valued, namely round the p
closed curves formed by the sides of the period-pair-loops. (Cf. the diagram,

p. 21.)

©
' (ii) du

Now the values of ^ . . ~~ at two points which are opposite points on

a period-loop a^ are equal, and in the contour integration the corresponding

values of dx are equal and opposite. Hence the portions of the integral

arising from the two sides of a period-loop a,, destroy one another. The
©

' (u)
values of ^ . at two points which are opposite points on a period-loop hr

differ by — Irrri, or 0, according as s = r or not.

Hence the part of the integral which arises from the period-loop-pair

{cir, hr) is equal to — I dur, taken once positively round the left-hand side of

the loop hr, namely equal to — (— 1) = 1.

The whole value of the integral is, therefore, }) ; this is then the sum
of the orders of zero of the function © (i;*- '"

-I- e).

* The notation Wr + Tr A;' denotes the p arguments Ml + Tifc', ..., U/, + Tpk'.
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178. In regard to the position of the zeros of this function we are able

to make some statement. We consider first the case when there are p dis-

tinct zeros, each of the first order. It is convenient to dissect the Riemann

surface in such a way that the function log @ {v""' "^ + e) may be regarded as

single-valued on the dissected surface. Denoting the p zeros of © {v^- "* -F e)

by ^'i, ..., ^'^j we may suppose the dissection made by p closed curves such as

the one represented in Figure [2], so that a zero of © {v^' '^ + e) is associated

with every one of the period-loop-pairs. Then the surface is still ^-ply

connected, and log @ {u) is single-valued on the surface bounded by the

Fig. 2.

,+ 2 rr:f)~i

p closed curves such as the one in the figure. For we proved that a com-

plete circuit of the closed curve formed by the sides of the (a^, 6,.) period-

loop-pair, gives an increment of 27ri for the function log © (u) ; when the

surface is dissected as in the figure this increment of 27ri is again destroyed

in the circuit of the loop which encloses the point z,.. Any closed circuit

on the surface as now dissected is equivalent to an aggregate of repetitions of

such circuits as that in the figure ; thus if x be taken round any closed

circuit the value of log © (u) at the conclusion of that circuit will be the

same as at the beginning. From the formulae

©(Mi, ..., Vr + 1, ..., Up) = ®(u),

© (Wi +Tr,i, ..., Ur + T,., r , . . . , ^ip -\- Tr, p) = 6"""^ "V+=^r, r' © (u),

which we express by the statement that © (u) has the factors unity and
g-2« (m,+Jt^ ^) fQp i^jjg period loops a^. and br respectively, it follows that log©(w)

can, at most, have, for opposite points of a,., K, respectively, differences of

the form ^irigr, — 27ri(zt^ + ^r^^,.) ~ ^TriVi,., wherein g.,. and hr are integers.

The sides of the loops for which these increments occur are marked in the

figure, Ur denoting the value of v^' + e,- at the side opposite to that where
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the increment is marked ; thus Ur+ \Tr,r is the mean of the values, m, and

u^ ^ -Tr.r, which the integral Ur takes at the two sides of the loop hr.

Since log@(M) is now single-valued, the integral ^

—

.\\og®{u).du,,

taken round all the p closed curves constituting the boundary of the surface,

will have the value zero. Consider the value of this integral taken round the

single boundary in the figure. Let Ar denote the point where the loops

ar,br, and that round Zr, meet together. The contribution to the integral

arising from the two sides of a^ will be I grdv^' "*, this integral being taken

once positively round the left side of a^, from Ay back to Ar. This contri-

bution is equal to grTr, $- The contribution to the integral ^— . I log (u) du,

which arises from the two sides of the loop br is equal to

-
J

[Vr'
"* + er + ^Tr,r + /'r] dv^'

"*,

taken once positively round the left side of the curve hr, from Ar back to Ar ;

this is equal to

-
j (vl'

"^ + ^rr, r) dv's'
"" +{er+ hr)/r, s,

where /r_ g is equal to 1 when r = s, and is otherwise zero. Finally the part

of the integral ^ .

I
log ©(?/) <^Wsj which arises by the circuit of the loop

enclosing the point Zr, from Ar back to Ay, in the direction indicated by the

arrow head in the figure, is I dv''
*" where Ar denotes now a definite point on

J Ar

the boundary of the loop br- If we are careful to retain this signification we

may denote this integral by Vg''' ^ When we add the results thus obtained,

for the p boundary curves, taking r in turn equal to 1, 2, ..., p, we obtain

p_ V
hs+giTi,s + +gprp,s+ es= S

Zr,Ar
, f , X,m , s,

Jbr
dv.

wherein, on the right hand, the hr attached to the integi-al sign indicates

a circuit once positively round the left side of hr from Ar back to ^r ; and if

K\ denote the quantity defined by the equation

r = \J hr

dv.
X, m

which, beside the constants of the surface, depends only on the place w,

we have the result

K-\- gi'ri,t + -^gpTp,,-\-eg^-Vg' '-...-vT '' + A-g (s=l, 2, ...,p).
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179. Suppose now that places m,^, ..., nip are chosen to satisfy the

congruences

Vs + +Vs =h; (8 = 1,2, ...,p);

this is always possible (Chap. IX. §§ 168, 169) ; it is not necessary for our

purpose, to prove that only one set* of places mi, ...,mp, satisfies the con-

ditions ; these places, beside the fixed constants of the surface, depend only

on the place m. Then, by the equations just obtained, we have

es = -(vs + +v, )• {s=l,2, ...,p).

Thus if we express the zero in the function © (v^' *" + e), it takes the form

@. X, m Zi, nil Zp, mp , , ,

(vs -Vs - -Vs -hs-T^g),

where gi, ..., g^, h^', ...,hp are certain integers, and this, by the fundamental

equation (B), § 175, is equal to

%{/;''' -vl""^'- -vT '''"),

save for the factor e-2«^'(.^'--.^"-«-
-.^p.-.- jr^,'). This factor does not

vanish or become infinite. Hence we have the result : It is possible, corre-

sponding to any place m, to choose p places, m^ ... , m^, whose position depends

only on the position of m, such that the zeros of the function,

f^x, m _ yZt,7ni_ _ yZp , mp\

regarded as a function of x, are the places z^, ..., Zp. This is a very funda-

mental result f.

It is to be noticed that the arguments expressed by -y*- "* - y^i' '"i—
. . . — v^''^

^'^

do not in fact depend on the place m. For the equations for m^, ..., nip,

corresponding to any arbitrary position of m, were

*»i,-^i , ,
mp, Ap

J $ f / x,m t ^ T x,a
Vs + +Vs =ks, = X (V^ +^Tr^r)dVs ,

a being an arbitrary place. If, instead of m, we take another place fi, we
shall, similarly, be required to determine places /ij, ..., /i^ by the equations

^;^^' + + vT^^ ks, = 2
j (Vr

'' + iT,.,,.)dwf ,
{s=l,2, ...,p);

r=l J br

* If two sets satisfy the conditions, these sets will be coresidual (Chap. VIII., § 158).

t Cf. Riemann, Ges. WerJce (1876), p. 125, (§ 22). The places nii, ... , nip are used by Clebsch

u. Gordan (Abel. Functionen, 1866), p. 195. In Riemann's arrangement the existence of the

solution of the inversion problem is not proved before the theta functions are introduced.
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thus

Ml . '"i MP. •*!> ^/w*. M73!. 1 ^/- M. >• / t n \C + +V7 =^ Vr dVs , = ^f,^rVr ,
{s = I, 2, ... , p),

r=\J br r=l

wherein fgr = ^ when r = s, and is otherwise zero, as we see by recalling

the significance of the br attached to the integral sign. Thus (Chap. VIII.,

§ 158), the places fii, ..., /ip, m are coresidual with the places nii, ..., nip, fi,

and the arguments
X, m z,, m, Zp, nip

Vs -Vs - -Vs

are congruent to arguments of the form

a:, M Zi.Mi sp.l^p
Vs -Vs - -Vs .

The fact that the places /ij, ...,/j,j,,m are coresidual with the places

mi, ..., vip, fi, which is expressed by the equations

Vs + +v7 ' + y/ =0, {s = l,2,...,p),

will also, in future, be often represented in the form

(fj^, ..., fip, m) = {mi, ...,mp, /i).

If the places Wj, ..., nip are not zeros of a (^-polynomial, this relation

determines /ij, ..., fip uniquely from the place /j,.

Ex. In case jo= l, prove that the relation determining tn^, ..., nip leads to

Hence the function e (V-'+ h + hr) vanishes for .v=z, as is otherwise obvious.

180. The deductions so far made, on the supposition that the p zeros of

the function @{if'^ + e) are distinct, are not essentially modified when this

is not so. Suppose the zeros to consist of a j^i-tuple zero at z^ , a jt);-tuple zero

at Zo, ..., and a jo;fc-tuple zero at Zk, so that jOj + +Ph=P- The surface

may be dissected into a simply connected surface as in Figure 3. The

function log © (t;*- '" + e) becomes a single-valued function of x on the

dissected surface
; and its differences, for the two sides of the various cuts,

are those given in the figure. To obtain these differences we remember

that log B (tr^' '" + e) increases by 27ri when x is taken completely round

the four sides of a pair of loops (a^, br). The mode of dissection of Fig. 3,

may of course also be used in the previous case when the zeros of B(t;*' "* + e)

are all of the first order.

The integral ^-. I \og^(v^'"' + e) cli\^'"*, taken along the single closed

boundary constituted by the sides of all the cuts, has the value zero. Its
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value is, however, in the case of Figure 3,

PiVs + +PkVs

+ <7i
I

dv^ '" - ^1 dv^s'
"" - (vi

'^ + ei + |ti,i) dv",'
"^ -{p-l)v:

J a., J bo J b.

"5) -"1

A„A,

+

, [ J x,m
J f , x,m /'/«.?», ,1 . J x,m

+ 9p dVs -llpj dVs - (Vp + Bp + ^Tp^p) dVs ,

•) Up J bp J bp

wherein the first row is that obtained by the sides of the cuts, from A^,

excluding the zeros z-^, ..., zj^, and the second row is that obtained from

the cuts «!, 6i, Ci, and so on. The suffix a^ to the first integral sign in

Fig. 3.

''^^-O %. '^Tp-'^ "^•::... ^^'(P-A "''''•-^^- :::::=='"'

the second row indicates that the integral is to be taken once positively round

the left side* of the cut a^, the suffix h^ indicates a similar path for the

cut 6i, and so on. If, as before, we put kg for the sum

- a r a;, OT
, 1

, , a;, J»

r=l •' br

we obtain, therefore, as the result of the integration, that the quantity

^.s + ^^iT,, 1 + + gpTs, p+Bs

* By the left side of a cut a^, or b^, is meant the side upon which the increments of log O («)

are marked in the figure. The general question of the effect of variation in the period cuts is

most conveniently postponed until the transformation of the theta functions has been considered.

B.

"

17
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is equal to

A;.-M"''- -i).e'' + (i>-l)'^'+(/>-2)t^^''^+ + vt-'-'

and this is immediately seen to be the same as

yt
_„M.'^._ _/..^«r,_/e.^P,+, _ _ /e. ^r.+r, _ _ /*• ^^

* S US S K

We thus obtain, of course, the same equations as before (§ 179), save that

^1 is here repeated p, times, ..., and zjc is repeated pt times. And

we can draw the inference that (v*> '" + e) can be written in the form

(y*- '" _ i;^"
'"> — _ ^i^*" '"'" — hg — Tgg), which, save for a finite non-vanish-

ing factor, is the same as @ (v*-"' -w^- "' - -^^P'"'"); the argument

X, m Zi, lit, ,,Zp, >np
V — V — v'"'

'"'' does not depend on the place in.

181. From the results of §§ 179, 180, we can draw an inference which

leads to most important developments in the theory of the theta functions.

For, from what is there obtained it follows that if z^, ..., Zp be any places

whatever, the function (2,*- '" - v^"
"*' - -t,^"-"^") has z„ ..., z^ for

zeros. Hence, putting Zp for x we infer that tlie function

vanishes identically for all positions of z^, ..., Zp-x. Putting

/2, , '"1 Zp-2, iHp-2 71X0,^1

s=V, + +V, -V,

for s= I, 2, ..., p, this is the same as the statement that the function

f) (v^'
'"'"^ + f) vanishes identically for all positions of .r and for all values

o^fi, •••>fp which can be expressed in the form arising here. When/i, •••.fp

are arbitrary tjuantities it is not in general possible to determine places

^1, ...,2p_2 to express yi, '..,fp in the form in question. Nevertheless the

case which presents itself reminds us that in the investigation of the zeros

of (v^- '"
-I- e) we have assumed that the function does not vanish identically,

and it is essential to observe that this is so for general values of gj, ..., Cp.

If, for a given position of x, the function (v*- '" -}- e) vanished identically for

all values of e,, ..., e^, the function (/') would vanish for all values of the

arguments rj, ..., r^. We assume* from the original definition of the theta

function, by means of a series, that this is not the case.

Further the function (v*- '"
-f- e) is by definition an analytical function of

each of the quantities gj, ..., e^ ; and if an analytical function do not vanish

* The series is a series of intefyral powers of the f]nantitieR »> '. . e
'"''''.
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for all values of its argument, there must exist a continuum of values of

the argument, of finite extent in two dimensions, within which the function

does not vanish*. Hence, for each of the quantities e^, ...,ep there is a

continuum of values of two dimensions, within which the function (?;*• '" + e)

does not vanish identically. And, by equation (B), § 175, this statement

remains true when the quantities e^, ...,ep are increased by any simultaneous

periods. Restricting ourselves then, first of all, to values of e^, ..., e^ lying

within these regions, there exist (Chap. IX. § 168) positions of ^'i, ... , 2-^ to

satisfy the congruences

e.^<""' + + <-'^, (s=l,2,...,p);

and, since to each set of positions of .s'l, ..., Zp, there corresponds only one set

of values for e^, ..., e^, the places z^, ..., Zp are also, each of them, variable

within a certain two-dimensionality. Hence, within certain two-dimensional

limits, there certainly exist arbitrary values of z^, ...,Zp such that the function

e(/'"' _^^.-™' _ -v^''^") does not vanish identically. For such

values, and the corresponding values of e^, ..., ep, the investigation so

far given holds good. And therefore, for such values, the function

e (v""" '"-?;'"'"- - /"-» '""->) vanishes identically. Since this function

is an analytical function of the placesf z^, ..., Zp_-i, and vanishes identically

for all positions of each of these places within a certain continuum of two

dimensions, it must vanish identically for all positions of these places.

Hence the theorem (F) holds without limitation, notwithstanding the

fact that for certain special forms of the quantities e,, ...,e^, the function

(v^' '"
-I- e) vanishes identically. The important part played by the theorem

(F) will be seen to justify this enquiry.

182. It is convenient now to deduce in order a series of propositions in

regard to the theta functions (§§ 182—188); and for purposes of reference

it is desirable to number them.

(I.) If ^1, ...,^p be p places which are zeros of one or more linearly

independent </)-polynomials, that is, of linearly independent linear aggi-egates

of the form \n,{x)-\- + \pnp(a;) (Chap. II. § 18, Chap. VI. § 101), then

the function

©(/'"_/>-'"•_ _-y^'"'«^)

vanishes identically for all positions of x.

For then, if t + 1 be the number of linearly independent (/)-polynomials

which vanish in the places ^i, ..., ^^j, we can, taking t + 1 arbitrary places

* E.g. a single-valued analytical function of an argument z, —x + iy, cannot vanish for all

rational values of x and y without vanishing identically.

t By an analytical function of a place 2 on a Riemann surface, is meant a function whose

values can be expressed by series of integral powers of the infinitesimal at the place.

17—2
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Zi, ..., Zj+i, determiue p—T—l places z^+i, ..., z^,, such that (^,, ..., Zy)

= (?., ..., Kp) (see Chap. VI. § 93, etc., and for the notation, § 179). Then the

argument

t;^'"'-vf""''- -vf'""", (6- = l,2, ...,p),

can be put in the form

H H «
'

save for integral multiples of the periods ; thus (§§ 179, 180) the theta

function vanishes when x is at any one of the perfectly arbitrary places

Zi, ..., Zj+i. Thus, since by hypothesis t+ 1 is at least equal to 1, the theta

function vanishes identically.

It follows from this proposition that if zJ, •.., 2p be the remaining zeros

of a 0-polynomial determined to vanish in each of z^, ...,Zp, and neither

X nor z^ be among z^y ... , Zp, then the zeros of the function

VD^V —V — —V ),

regarded as a function of z^, are the places x, z.! , ..., Zp.

From this Proposition and the results previously obtained, we can infer

that the function {v"'
"*-/"'"'- -v""'" '"") vanishes only (i) luhen x

coincides with one of the places z^, ..., Zp, or (ii) wlien Zi, ..., Zp are zeros of

a (^-polynomial.

(II.) Suppose a rational function exists, of order, Q, not greater than p,

and let T + 1 be the number of 0-polynomials vanishing in the poles of this

function. Take t + 1 arbitrary places

bi> •••> b7» -^i) •••> ^T+i—9>

wherein q= Q — p -\-r-\-\, and suppose z^, ..., z,^ to be a set of places core-

sidual with the poles of the rational function, of which, therefore, q are

arbitrary. Then the function

(d {v^ +r' ' + +r' ' — t; " ' —

vanishes identically.

For if we choose ^g+], ..., ^y such that (^i, ..., ^y) = (^i, ..., s'y), the

general argument of the theta function under consideration is congruent

to the argument

This value of the argument is a particular case of that occurring in

(F), § 181, the last ^—1 of the upper limits in (F) being put equal to the

lower limits. Hence the proposition follows from (F).
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(III.) Ifr denote such a set of arguments r^, ..., r^ that (^(r) = 0, and,

for the positions of z under consideration, the function © (v^' ^ + r) does not

vanish for all positions of x, then there are unique places z^, ..., ^^_i,

such that

r = v"'^' '"—/"'"'—,.. — v^^~^'
^"'^

In this statement of the proposition a further abbreviation is introduced

which will be constantly employed. The suffix indicating that the equation

stands as the representative of^ equations is omitted.

Before proceeding to the proof it may be remarked that if m', m(, ..., nip

be places such that (cf § 179)

{m, vii, ..., m^)= (m, m/, ..., irip)

and therefore, also,

^m; m _ ^m,', m, _ _ ^vij,', m,, _ q

then the equation

r = v"^"'
'« _ ^=" "'' _ _ y~j'-^' ™"->

is the same as the equation

r = v"'"'
'"' — v^' '

''*'' — — /*"'' '"'"''.

This proposition (III.) is in the nature of a converse to equation (F),

Since the function @ (v^- ^ -j- r) does not vanish identically, its zeros, Zi, ..., Zp,

are such that

V + r — V — V — — V ,

now we have

so that the zeros Zi, ..., Zp may be taken in any order ; since (r) vanishes,

z is one of the zeros of @ {v^^ ^ -'tr); hence, we may put Zp = z, and obtain

which is the form in question.

If the places Zi, ...,Zp_i in this equation are not unique, but, on the

contrary, there exists also an equation of the form

r = v"^''

'

'" — v^''
'"' — ...... — u^

" ' ' ' '"'' "

'

then, from the resulting equation
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\vc can (Chap, VIII. § 158) infer that there is an infinite number of sets of

places V, ..., ^Vi' '^^^ coresidual with the set 2i, ..., Zj,-^ ;
hence we can put

/. ^ + r= / "• - v'''
'"' - - /"-'• '""-'

-

V' '"";

wherein at least one of the places z/, ..., z'y_^ is entirely arbitrary. Then the

function («*• ^ + r) vanishes for an arbitrary position of x, that is, it

vanishes identically ; this is contrary to the hypothesis made.

It follows also that whenever it is possible to find places 2, , . .
. , 2^p_i to

stitisfy the inversion problem expressed by the p ecjuations

/'•'"+ + ?;->-'• ''"'-'=u,

the function % {v^'"
"" — u) vanishes ; conversely, when u is such that this

function vanishes we can solve the inversion problem referred to.

(IV.) When r is such that 0(r) vanishes, and ©(?;*'^ + r) does not,

for the values of z considered, vanish identically for all positions of x, the

zeros of ^ (v''' • + r), other than z, are independent of z and depend only on

the argument 7\

This is an immediate corollary from Proposition (III.) ; but it is of

sufficient importance to be stated separately.

(V.) If © (r) = 0, and B (?;*• ' + r) vanish identically for all positions

of X and z, but (v'^' ^ + v^'^ + r) do not vanish identically, in regard to x,

for the positions of z, ^, ^ considered, then it is possible to find places

Zi, ..., %_3 such that

^ _ ^mp, m _ ^z, , VI, _ _ ,yC,,-2, «i„-2 _ yl. m„-i^

and these places Zi, ..., Zp^^ are definite.

Under the hypotheses made, we can put

V +V +r^V —V — — V ,

wherein ^, , ..., Zp are the zeros of H (if- "^ + v^'^ + r); now z is clearly a zero
;

for the function H{v^'^+r) is of the same form as B(v*'^ + r), and vanishes

identically; and ^is also a zero; for, putting ^for^, the function 0(i;*>^+i;f'^+7')

becomes B {v^' ' + r), which also vanishes identically. Putting, therefore, ^, z

for 2p_i and Zp respectively, the result enunciated is obtained, the uniqueness

of the places z-i, ..., Zp_2 being inferred as in Proposition (III.).

We may state the theorem differently thus : If % {v^' ^ + r) vanish for

all positions of x and z, and © (v^^- ^ + t;f> ^ + r) do not in general vanish

identically, the equations

r = v"'"
'" — v^" '"' — — v'"'""

"*"* — v*''"''
'"'"'
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can be solved, and in the solution one of z-^, ..., Zp_^ may be taken arbitrarily,

and the others are thereby determined. Hence also we can find places

z^, ..., z'p_T^, other than z^, ..., Zp^j, such that

one of the places z^', ..., z'p_^ being arbitrary. Hence by the formula

Q-g=:p— T — 1, putting Q ='p—\, 5'=1, we infer t+1=2, so that a

^-polynomial vanishing in z^, ..., Zp^i can be made to vanish in the further

arbitrary place z. Thus, when (y*' ^ + r) vanishes identically, we can write

X, z , X, III z,, m, Zi)-\,mn-\ z, nin
V +r = V —V — —V' ^ —V

,

wherein the places z^, ..., Zp^i, z are zeros of a ^-polynomial (cf. Prop. I.).

(VI.) The propositions (III.) and (V.) can be generalized thus : If

@ (^*"^'
-I-

^'ifi'^'ij^r) be identically zero for all positions of the places

x^,z^, ...,Xq,z^, and the function ^ {v""'^ + v'''~' + + 1;"^"
^' + r) do not

vanish identically in regard to x, then places ^i, ..., ^p_i can be found to

satisfy the equations

r = v^'"'
'"' — y^'

'

"'' — — w^""''
'"""'

and, of these places, q are arbitrary, the others being thereby determined.

These arbitrary places, ^j, ..., ^q, say, must be such that the function

@ (/' ^
-I-
/" ^* + + w^" "' + r) does not vanish identically.

For as before we can put

^x, z ^ ^x,,^,
^ ^ v^'^^'^-r = /• '" - /" "" - - /"• '"",

wherein fi, . .
. , ^^ are the zeros of the function © (/' ^ + v''"

^' + . . . + v"""'
'"' + r).

It is clear that z is one zero of this function ; also putting 2^1 for x the function

becomes © (/" ^ + v^^'
^' + + v''"'

''" + r), which vanishes, by the hypothesis.

Thus the places z, z^, ..., Zq are all zeros of the function

@(/'2 + /"-'.+ +/^.~''» + r).

Putting then z-y, ..., Zq, z respectively for ^1, ..., ^q, ^p in the congruence

just written, it becomes

y^,z_^_yX„z,_^ +/^.^^ + y^..'"' + _^^^,,m,_^^f,+i,m,.>_^

^/.-i.'".-i^y^.'«.+ ,.= /.'«^

and this is the same as

replacing ^j, ..., a;^ by ^1, ..., ^^ we have the result stated.
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Hence also, we can tiud places ^,', ..., ^p-i, other than ^, , ..., ^p_,, such

that

v^'-^' + +/''"''^''"' = 0,

q of the places ^,', ..., ^'p_i being arbitrary. Therefore a (^-polynomial can

be chosen to vanish in fj
, . .

. , ^p_i and in q {= p — I — (,Q — q), when Q =p— 1)

other arbitrary places. Thus the argument

w"^'
' + /"*'

-I- + v^''~''
'""' + r,

for which the theta function vanishes identically, can be written in the form

wherein ^1, ...,2g_i, f,^, ..., ^p_i, z are zeros of ^ -I- 1 linearly independent

^-polynomials.

(VII.) If the function (v''" ''

+

-I-
/'" '' + r) be identically zero for

all positions of the places x^, Zi, Xo, z^, ... , Xq, Zq, and, for general positions of

a-i, z^, ..., Xq, Zq, the function (/'-}- Z"^'
-H -f-/"''+r) be not

identically zero, as a function of x, for proper positions of z, and be not

identically zero, as a function of z, for proper positions of x, then we can find

places fj, ..., ^p_i, of which q places are arbitrary, such that

r = y'""'™ — w^" '"' — _y^p-i'"'*->

and can also find places ^i, ..., ^p-i, of which q places are arbitrary, such

that

— r = u'""'
'" — y^" '"' — ... — v^"'^'

'""'.

This is obvious from the last proposition, if we notice that

@{v'' + v ''''' + H-v'"^'-/-)=0(f^''"' +«""'''+ -l-/"''+r).

We can hence infer that

and this is the .same (Chap. VIII. § 158) as the statement that the set of

2p places constituted by ^1, ..., ^p_^, ^1, ..., f^^j and the place m, repeated, is

coresidual with the set of 2p places constituted by the places vi^, ..., vip, each

repeated. This result we write (cf § 179) in the form

{m\ ^,, ...
, !;_,, ^,, ..., ^p_,) = (ml^ m:-, ..., vif).

(VIII.) We can now prove that if ^1, ..., ^j^, be arbitrary places, places

^u •••> ^p-i can be found such that

(m-, ^1 , . .
. , |p_i ,?,,..., ^p_,) = (Wli-, 7?l.-, . . . , 7/lp=).

Let r denote the set oip arguments given by



182] mi, m2, ..., nip. 265

^1, ..., ^y_i being quite arbitrary. Then, by theorem (F), (§ 181), the function

© (r) certainly vanishes. It may happen that also the function © {v^' ^ + r)

vanishes identically for all positions of x and z. It may further happen that

also the function O (?;'* ^ + v*'" ^' + r) vanishes identically for all positions of

oc, z, x-y, Zy. We assume* however that there is a finite value of q such that

the function © {v^'
' + y'^" ^' + + v*" ^ + r) does not vanish identically for

all positions of x, z, x^, z^, ..,, Xq, Zq. Then by Proposition VII. it follows

that we can find places fj, ..., ^p-i, such that

— r = w'"*"
'^ — w^"

'"' — — v^^~^'
"*""' •

comparing this with the equations defining the argument r, we can, as

in Proposition (VII.) infer that the congruence stated at the beginning of

this Proposition also holds.

(IX.) Hence follows a very important corollary. Taking any other

arbitrary places ^j', ..., ^'p-i, we can find places |^/, ..., ^'p-i such that

therefore the set ^1, ..., ^p-i, ^1, ...,^^_i is coresidual with the set fj', ...,^'p_i,

?/) •••? ^'ij-i- Now, of a set of 2^ — 2 places coresidual with a given set

we can in general take only jt) — 2 arbitrarily ; when, as here, we can take

p — 1 arbitrarily, each of the sets must be the zeros of a ^-polynomial

(Chap. VI. § 93). Thus the places ^1, ..., ^p_i, ^1, ..., ^^.j are zeros of a

^-polynomial.

Therefore, if a^, ..., a.2p-^ be the zeros of any (^-polynomial whatever,

that is, the zeros of the differential of any integral of the first kind, the

places yriy, ..., m^ are so derivedfrom the place m that we have

(m^ tti , . .
.

, aop_2) = (mj-, mi, ..., m/), (G)

;

in other words, if Cj, ...,Cp denote any independent places, the places m^, ..., mp
satisfy the equations

2 [/'' '

"'
-I- + v'"""'

''"1 = 2v"''
'"

4-
«""

'''

-f- w"^' "' 4- -f- v"^"-^'
''" + ?/="-"• '"

'- s S ' S ' S ' S
'

' s s '

for s= 1, 2, ..., p. Denoting the right hand, whose value is perfectly definite,

by As, and supposing g,, ..., gp, h^, ..., hp to denote proper integers, these

equations are the same as

C''' + + C''^= i-^.- + h {h-^g,T,,, + +gprs,p), (G'),

where s= 1, 2, ...,p.

* It will be seen in Proposition XIV. that if (v^- ^+ i;'»i > ^' + +v^'"'' + r) vanishes

identically, then all the partial differential coefficients of (u), in regard to Mj, ... , Vp, up to and
including those of the (5 + l)th order, also vanish for M = r.
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There arc however 2-^ sets of places //tj, ...,inp, corresponding to any

position of the place m, which satisfy the equation* (G). For in equations

(G') there are 2^ values possible for the right-hand side in which each

off/i, ... , Qp, 1h, ...,hp is either or 1, and aTiy two sets of values r/,, ..., gp,

h^, ..., hp and g/, ..., ffp, h^, ..., hp, such that ^,-,f// differ by an even integer,

and hi, h/ differ by an even integer, for i=l, 2, ...,p, lead to the same

positions for the places m^, ..., nip. (Chap. VIII. § 158.)

We have seen (§ 179) that the places ;/i,, ..., vip depend only on the place

m and on the mode of dissection of the Riemann surface. We are to see,

in what follows, that the 2^ solutions of the equation (G) are to be associated,

in an unique way, each wdth one of the 2-^ essentially distinct theta functions

with half integer characteristics.

183. The equation (G) can be interpreted geometrically. Take a non-

adjoint polynomial, A, of any grade /x, which has a zero of the second order

at the place m ; it will have iifi — 2 other zeros. Take an adjoint polynomial

i/r, of grade (?? — 1) a + n — S + fi, which vanishes in these other Ufi — 2 zeros

of A. Then (Chap. VI. § 92, Ex. ix.) yjr will be of the form \^p^o + A(f>,

where i/rj is a special form of yjr, \ is an arbitrary constant, and is a

general </)-polynomial. The polynomial yjr will have 2p zeros other than

those prescribed ; denote them hy k^, ..., k.>p. If <ji' be any 0-polynomial, with

a.1, ..., a2p-2 as zeros, we can form a rational function, given by (X.i/ro+A<^)/A<^',

whose poles are the places ai, ..., a^,-.., together with the place m repeated,

its zeros being the places ki, ..., ^2p. Hence (Chap. VI. § 96) we have

(77i", tti, . .
. , ttop-s) ^ ("^1 > kn, . .

. , kip-i , k^p),

and therefore, by equation (G),

{mi\ ... , liip-) = (/ci , /.-a, . .
.

, ky,^i , L_p) (G")

;

hence (Chap. VI. § 90) it is possible to take the polynomial yjr so that

its zeros ki, ..., ky, consist of p zeros each of the second order, and the

places vii, ..., vip are one of the sets of p places thus obtained.

There are 2*^ possible polynomials y\r which have the necessary character,

as we have already seen by considering the ecpiation (G') ; but, in fact,

a certain number of these are composite polynomials formed by the product

of the polynomial A and a <^-polynomial of which the 2p — 2 zeros consist of

^ - 1 zeros each repeated. To prove this it is sufficient to prove that there

exist such ^-polynomials having only p — \ zeros, each of the second order

;

for it is clear that if <E> denote such a polynomial, the product A^ is of gi'ade

* If for any set of values for (/j , . .
.

, (/,, , h^, ..., hp the equations (G') are capable of an infinity

of (coresidual) sets of solutions, the correct statement will be that there are 2^f lots of coresidual

sets, belonging to the place m, which satisfy the equation (G). The corresponding modification

m.iy be made in what follows.
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(n — l)a + n — 'S + fj,
and satisfies the conditions imposed on the polynomial yjr.

That there are such (^-polynomials ^ is immediately obvious algebraically.

If we form the equation giving the values of a; at the zeros of the general

<^-polynomial,

\<f>i + +\<f>p,

the 2) — 1 conditions that the left-hand side should be a perfect square, will

determine the necessary ratios Xj : X„ : ... : \p, and, in general, in only a

finite number of ways. (Cf. also Prop. XI. below.)

It is immediately seen, from equation (G"), that if nii, ..., mp be the

double zeros of one such polynomial yfr as described, and nii, ... , nip of

another, both sets being derived from the same place m, then

i;*"''-"^'-!- -h/'"'''"" = inp,„, (H)

where Xl^^ „ stands for p quantities such as

^s + ^^Ts,l+ -^o.p'r,,p,

«i. •••, Op, /3i, ..., /3p being integers.

We may give an example of the geometrical relation thus introduced, which is of great

importance. It will be sufficient to use only the usual geometiical phraseology.

Suppose the fundamental equation is of the form

C+{x, 7/)i -I- {x, y\+ {x, y)3+ (.r, y\ = 0,

representing a plane quartic curve {p= Z). Then if a straight line be drawn touching the

curve at a point ?«, it will intersect it again in 2 points A, B. Through these 2 points

A, B, 00 3 conies can be drawn ; of these conies there are a certain number which touch

the fundamental quartic in three points P, Q, R other than A and B. There are 2^^= 64

sets of three such points P, Q, R ; but of these some consist of the two points of contact

of double tangents of the quartic taken with the point m itself.

In fact there are (Salmon, Higher Plane Curves, Dublin, 1879, p. 213) 28, =2"-i(2p-1),

double tangents ; these do not depend at all on the point m ; there are therefore

36, =2P~i(2P+ l), proper sets of three points P, Q, R in which conies passing through

A and B touch the curve. One of these sets of three points is formed by the points

wij, »i2, m^. It has been proved that the numbers 2^" ^ (2" - 1),
2''"

' (2^-1-1) are respectively

the numbers of odd and even thcta functions of half integer characteristics (§ 176).

184. (X.) We have seen in Proposition (VIII.) (§ 182) that the places

vii, ..., nip are one set from 2'-^ sets of jj places all satisfying the same

equivalence (G). We are now to see the interpretation of the other 2^p — 1

solutions of this equation.

Let m/, ...,m/ be any set, other than mj, ...,mp, which satisfies the

congruence (G). Then, by equations (G'), we have

{v '
' + +v" ') = 0. {ti=l,2, ..., p),
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and therefore, if Up, a denote the set of /» quantities of which a general one is

given by

/8, + aiT«,, + +apTs,p, (s = l, 2 p),

where Oi, ..., a^,, /3i 0p are certain integers, wc have

mi', m, wip', wip . „
Vg + +Vg =^n^,a;

hence the function

e/ X, m ;, , »i| -,, , T/in' 1 o 1 \
(y -« - -V- "

; i/3, |a),

= e"^" (v^' •
"*' + +v'-'

'""' - /' "'
; i)9, fa).

= e'"'^-e(«-in^,„; i^,ia),
where

w« = ?^s + + Vg -V , {s = l,2, ..., p);

the function is therefore equal to

^^a-niaiu-ira) q ,s

by equation (C),§ 175; thus thefunction ® (v'"' '"-
v'' •'"'' - - u'"'"'"'

, l/S, fa)

vanishes when a; is at either^ of the places z^, ..., Zp.

We can similarly prove that

e (^,^.
'« _ y^. .

'».' _ _ y^''^ '""') = ^-iaiuHPHra) Q (_ ^ . ^^ ^3)

It has been remarked (§ 175) that there are effectively 2^ theta functions,

corresponding to the 2-^ sets of values of the integers a, /8 in which each

is either or 1. The present proposition enables us to associate each of

the functions with one of the solutions of the equivalence (G). When the

fimction (if' '"
; f/3, fa) does not vanish identically in respect to x, its

zeros are the places m^', ..., nip. Therefore, instead of the function & (u),

we may regard the function 0(«*; f/3, fa) as fundamental, and shall only be

led to the places m/, ... , nip', instead of Wi, ..., nip.

(XI.) The sets of places m/, . .
.

, nip' which are connected with the places

Ml, ..., nip hy means of the equations

<"' + +<"''• '""^fn..^, (H),

wherein a,, ..., a^, /3,, ..., yS^ denote in turn all the 2^ sets of values in which

each element is either or 1, may be divided into two categories, according

as the integer /3ar, = /Sia, + + ^pOip, is even or odd. We have remarked,

in Proposition (IX.), that they may be divided into two categories according

an they ai-e the zeros, of the second order, of a proper polynomial X-yfr^ + A<f>,

or consist of the p — I zeros, each of the second order, of a ^-polynomial

together with the place m. Wlien the fundamental Riemann surface is

perfectly general these tvjo methods of division of the 2-p sets entirely agree.

When /8a is odd, m^', ..., nip consist of the place m and the p - 1 zeros,

ea/ih of the second order, of a (^-polynomial. When /9a is even, m/, . .
.

, nip
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consist of the zeros, each of the second orde?-, of a proper polynomial \|r. In

the latter case we may speak of the places ?«/, . .
.

, m^' as a set of tangential

derivatives of the place m.

For by the equations (D), (A), (§ 175), we have

hence, when /3a is odd, e'^*"" (^II^^ a + ^^) is an odd function of u, and

must vanish when u is zero; since then 0(^12^ „) vanishes, there exist, by

Proposition (VII.), places Ui, ..., iip-i, such that

or

Hence (Chap. VIII. § 158) we have

(TO^ n^^, ..., n\_^) = {mi\ . . .
, m/),

so that, by equation (G), the places Wj , . .
.

, 7ip_i are the zeros of a (^-polynomial,

each being of the second order.

When /3a is even, the function e'"*" @ (2 ^^, a + w) is an even function, and

it is to be expected that it will not vanish for u = 0. This is generally the

case, but exception may arise when the fundamental Riemann surface is of

special character. We are thus led to make a distinction between the general

case, which, noticing that @ i^^p,a + u) is equal to e-'^iaiw+i^-irai @ ^^^ . |^^ i^,^^

may be described as that in which no even theta function vanishes for zero

values of the argument, and special cases in which one or more even theta

functions do vanish for zero values of the argument.

Suppose then, firstly, that no even theta function vanishes for zero values

of the argument. Then if 7i/, ..., w'p_i be places which, repeated, are the

zeros of a ^-polynomial, we have

(m-, nr, ..., w\_i) = (nil-, mi, . .
.

, m^")
;

hence the argument
nip, m _ M,', m, _ _ n'p-i, Wp-i

is a half-period, = — ^H^-, a', say. Thus, by the result (F), © (^H^y) is zero
;

therefore, by the hypothesis /3'a' is an odd integer. So that, in this case,

every odd half-period corresponds to a ^-polynomial of which all the zeros

are of the second order, and conversely.

Further, in this case it is immediately obvious that the places wi,, ..., mp
do not consist of the place m and the zeros of a ^-polynomial whose zeros are

of the second order ; for if Wj, ..., mp were the places ?ii, ..., w^_i, m, then, by

the result (F), the function ©(/"'*' + + v'"-''
''''-') would vanish for all

positions of ^,, ... , Zp^-^, and therefore © (0) would vanish.
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185. If, however, nextly, there be even theta functions which vanish

for zero values of the argument, it does not follow as above that every

(^-polynomial with double zeros corresponds to an odd half-period ; there

will still be such (^-polynomials corresponding to the 2p~^ (2^—1) odd half-

periods, but there will also be such ^-polynomials corresponding to even

half-periods.

For if fli, ..., Up, ySi, ..., ^j, be integers such that y8a is even, and

0(f/-l-|n^a) vanishes for w = 0, the first differential coefficients, in regard

to Wj, ...,Up, of the even function e'"»" (s)(?t-|- ^fl^^ „), being odd functions,

will vanish for n = 0. By an argument which, for convenience, is postponed

to Prop. XIV., it follows that then the function (-)(!>*• ^
-h ^O^, a) vanishes

identically for all positions of x and z. Therefore, by Prop. V., there is at

least a single infinity of places Zi, ..., Zp^^ satisfying the equations

1 r\ m,,,m z,,m, Zu-i, wiu-i— ^ilp^a = V " — y" ' — —v'^ '^
;

these equations are equivalent to

(r>^^ z,-, . .
.

, z-p_,) = {nh^, m.-, . .
.

, lUp-)
;

hence there is a single infinity of ^-polynomials with double zeros corre-

sponding to the even half-period ^H^, a, and their j!) — l zeros form coresidual

sets with multiplicity at least equal to 1.

By similar reasoning wc can prove another result*; the argument is

repeated in the example which follows ; if, for any set of values of the

integers /Sj, ..., /S^, a,, ..., a^^, it is possible to obtain more than one set of
places 72,, ..., ??p_, to satisfy the equations

1 r\ »i„ , w— ^ilp^a = V ' —V

then it is, of course, ptossible to obtain an infinite number of such sets. Let

00^ be the member of sets obtainable. Then ^a = q + l{mod. 2). And this

may be understood to include the general cases tvhen (i) for an even value

of ^OL, no solution of the congruence is possible (q = — 1), (ii), for an odd value

of ^OL, only a single solution is possible (q = 0).

As an exaini)le of the exceptional case here referred to, consider the hyperelliptic

surface ; and first suppose p= 3, the equation associated with the surface being

f= {.v-ai) (.^•-a8);

then we clearly have f j = 28 = 2'' " i (2" - 1 ) ^-polynomials, each of the form {x - a^ {x - a,),

of which the zeros are both of the second order. We have, however, also, a 0-polynomial,

of the form (.r-c)*, in which c is arbitrary, of which the zeros are both of the second

order ; denote these zeros by c and c ; then if ^flg „ be a proper half-period

-^Q^„ = 2;'"»-™ -/•"'' -/••'"-

* Weber, Math. Ann. xiii. p. 12.
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but, since, if e be any other place, the function (x — c)/(.T— e) is a rational function, it

follows that (c, c)= (e, e), and therefore that in the value just written for ^Qo „, c may

be replaced by e, and therefore, regarded as quite arbitrary. By the result (F), the

function (u) vanishes when u is replaced by ^Q^ ^, and therefore {v^'^-^Qq J, which

is equal to {v^'
"' - v"'

*"' — /* '"^ — /> "*3)^ vanishes when x is at c ; since c is arbitrary the

function (v*' ^ - |l2o ^) vanishes identically in regard to x, for all positions of z. If the

function Q{v^'^+ v^^'^^--kQ^ ^) vanished identically, it would, by Prop. VI., be possible,

in the equation

to choose both z^ and z.^ arbitrarily. As this is not the case, it follows, by Prop. XIV.
below, that the function Q{u+ ^Qa „), and its first, but not its second dififerential

coefficients, vanish for «= 0. Hence ^Qa „ is an even half-period. (See the tables for

the hyjjerelliptic case, given in the next chapter, §§ 204, 205.)

There is therefore, in the hyperelliptic case in which jo= 3, one even theta function

which vanishes for zero values of the argument.

In any hyperelliptic case in which p is odd, the equation associated with the surface

being

f= {x-ai) {x-a.^p + .^)

(^-polynomials with double zeros are given by

(i) the (
J
polynomials such as {x -Uj) {^~(^p-i)- As there is no arbitrary

place involved, the q of the theorem enunciated (§ 185) is zero, and the half-period given by

the equation

where n^^ ..., n^p-i are the zeros of the 0-polynomial under consideration, is consequently

odd.

o) polynomials such as {x— a{) {x-ap_^) {x-c)% wherein c is

arbitrary. Here 5'= 1 and ^a= (mod. 2).

r) polynomials such as (x-Uj) (.r — a^ _ 5) (.r - c)^ (.i' - e)2, for which

q = 2, ^a=l (mod. 2) ; and so on. And, finally,

the single polynomial of the form {x-Ci)^ {x-Cp-if, in which all of Cj, ..., Cp-i

are arbitrary ; in this case q= „ ,
/3a =^—^ (mod. 2).

On the whole there arise

(:rHV-> -.-ra-crD- ^
2p+ 2

2

^-polynomials corresponding to odd half-periods, according as jo= 1 or 3 (mod. 4).

Now in fact, when jo= 1 (mod. 4)

i + f^^^)
+ + f^t?)' =M(i+-*-P"H(i-^0'^^^'^+(i + «-)-''*'-'+(i-^r)2'^ +

2]^=i,
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is equal to

i/22p + 2+ 2P + 2cos^i^7r] or 22p-»-2P-» or 2p-'(2p-1),

while, when ^=3 (mod. 4)

crx'Th <T-r}'

is equal to M 22p + 2 _ 2p + 2 cos^^ irj , and therefore, also to 2^ " > (2" - 1 ).

Thus all the odd half-periods are accounted for. And there are

{T-IHV>
even half-periods which reduce the theta function to zero. This number is equal to

-^^^+ l)"^^2^-2''-*(2''-l)},

namely to 2''-i(2p + 1)- [ ^ j. This is the number of even theta functions which

vanish for zero values of the argument. It is easy to see that the same number is

obtained when p is even. For instance when p=4, there are 10 even theta functions

which vanish for zero values of the argument. They correspond to the 10 ^-polynomials

of the form {.v - c)- {.v - Uj), wherein c is arbitrary, and a^ is one of the 10 branch places.

There are therefore ( "
] even theta functions which do not vanish for zero values of

\ P J
the argument.

In regard to the places m^, ..., nip in the hyperelliptic case the following remark may
conveniently be made here. Suppose the place jn taken at the branch place a.,,, + ., ; using

the geometrical rule given in § 183, we may take for the polynomial A, of grade ft, the

polynomial x-a^p + ^y ^^ grade 1; its remaining ?i/x-2, =0, zeros, give no conditions for

the polynomial i//> of grade (7j-l)(r-|-w-3-f-M, =(2 - 1) /?-f-2 -3-|-l, =p. Since 0- + 1, the

dimension of y, is p+l, the only possible form f«ir yj^ is that of an integral polynomial

in .r of order p. This is to be chosen so that its 2p zeros consist of p repeated zeros.

When ^= 3, for example, it must, therefore, be of one of the forms (.r-ai)(.r-a,)(a:— aj),

(j:-a,) (.r-c)-, where c is arbitrary. It will be seen in the next chapter that the former

is the proper form.

186. Another matter* which connects the present theory with a subject afterwards

(Chap. XIII.) dealt with may be referred to here. Let hQ lie a half-periwl such that

the congruence

^Q= V'"'" '" -ir'" '"> - - |;2P->' '"''->

can be satisfied by oc « coresidual sets of places «,,..., 2p_i (as in Proposition VI.). Then
we have

{m'\ Zi^, ..., 22p_i)= (»?i2, ..., mp2),

.so that (Prop. IX.) r,, ..., 2p_i, each rejieated, are the zeros of a 0-polynomial ; denote

this polynomial by
(f>.

If z^', ..., /p., be another set, which, rei^eated, are the zeros of a

0-polynomial
<f>',

and are such that

iQ= ,.'"/'. '«_,.2.'. '". _ _ /p-i. '"p-i^

• Cf. Weber, Math. Annul, xiii. p. 3.5; Noethcr, Math. AnuaJ. xvii. 203.
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then we have

so that Zi, .,., Sp-i, Zi, ..., z'p-i are the zeros of a (^-polynomial; denote this polynomial

by il/.

The rational functions >///0, ^'/V' have the same poles, the places z^, ..., 2p_i, and

the same zeros, the places z^', . .
.

, 2'j) _ j . Therefore, absorbing a constant multiplier in yjr,

we have
,|.2= <^0', and

(i>'l<i>
= {y\rl<i>)\

and thus the function \/<l)'l(li may be regarded as a rational function if a proper sign

be always attached. The function has 2^, ..., Zp_i for poles and z^', ..., z'p_i for zeros.

Conversely any rational function having Sj, ..., 2p_i for poles can be written in this form.

For if 2i", ..., 2"p_i be the zeros of such a function, we have

v~'"'^' + 4-
/'"-'• ^^-^= 0,

and therefore, by the first equation of this §, also

LQ^y'>np,m_^t",m^ _ _^2"p-i,mp-i .

thus q of the zeros can be taken arbitrarily ; and if * be any (^-polynomial whose zeros

Cii ••• ) Cp-i ^^6 ^11 of the second order, and such that

ijj^^Wp, III_ ^,ii, mi _ _^f?)-i. '"p-i

we can put

where <^i, ..., 0, are particular polynomials such as
(f)'

or 4>, andX, Xj, ..., X, are constants.

In other words, corresponding to the 00 1 sets of solutions of the original equation of this

§, we have an equation of the form

V* = X\/^-f-Xi\/^i + + \'\/^q,

wherein proper signs are to be attached to the ratios of any two of the square roots, and

any two of the q + l polynomials (p, (f)^^,
..., cp^, are such that their product is the square of

a ^-pol^'nomial. There are therefore ^q{q + ^) linearly independent quadratic relations

connecting the (^-polynomials. (Cf. Chap. VI. §§ 110—112.)

For example in the hyperelliptic case in which p= S, the vanishing of an even theta

function corresponds to the existence of a (^-polynomial *= (a' — c)^, such that

\H= -c VT-f- s/.v^, = - c V^i + \/^3»

where (^i(^3, ={x)\ =<^.^.

Ex. i. Prove, for jo= 3, that if an even theta function vanishes for zero values of the

arguments the surface is necessarily hyperelliptic.

Ex. ii. Prove, for jd= 4, that if two even theta functions vanish for zero values of the

arguments the surface is necessarily hyperelliptic ; so that, then, eight other even theta

functions also vanish for zero values of the arguments. The number, 2, of conditions thus

necessary for the fundamental constants of the surface, in order that it be hyperelliptic, is

the same as the difference, 9 — 7, between the number, 3/? -3, of constants in the general

surface of deficiency 4, and the number, 2/>-l, of constants in the general hyperelliptic

surface of deficiency 4.

B. 18
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187. (XII.) It' r denote any arguments such that (/) = 0, and such

that S{if'^-\-r) does not vanish identically for all positions of u: and z,

the Riemann normal integral of the third kind can be expressed in the form

«• ^ ~ ^^
\j^ (t;^;> + r) / {if' ^ +>)_

'

For consider the function of x given by

- n*'| (v*' " + r) (t;^- P + r)

^ * (t-^^^TT-) {if' -+ r)

'

(a) it is single-valued on the Riemann surface dissected by the a and h

period loops

;

(y3) it does not vanish or become infinite, for the zeros of {if' ^ + ?'),

other than z, do not depend upon z (by Proposition IV.)

;

(7) it is unaffected by a circuit of any one of the period loops. At

a loop 0/ it has clearly (Equation B, § 17.5) the factor unity ; at a loop

hi it has the factor

-2T/r"'^ _2W(r='''' + r.- + ir,,
i)

2^ (r"^' ^+ ri + ir,- ^
e ' .e I ,e ^ i -

.
t/^

which is also unity. Thus the function is single-valued on the undissected

f>urface

;

(S) thus the function is independent of x ; and hence equal to the value

it has when the place x is at z, namely 1.

A particular case is obtained by taking

where z-^, ..., Zp-i are any places such that 0(2;*''+^") does not vanish

identically. Then by the result (F) the function (r) vanishes.

Hence we have

j^x.z^j^ 1- (/'^-^^-"'-

;
(«*•• "' _ /' '" - - -y^"-'- "'"-' - 2;^'

"^'')J

Another particular case, of great importance, is obtained by taking

r = ^njt, fc-, k, k' denoting respectively p integers k\, ..., kp, A'/, ..., kp, such

that kk' is odd, the assumption being made that the equations
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are not satisfied by more than one set of places ^i, ..., ^^_i (of. Props. III., V.).

Then the function @ (v^'^ + h flick-) does not vanish identically, and we have

(XIII.) Suppose k equal to or less than p ; consider the function given

by the product of

-lf'\ -lf'\ - -K'~B

and

(H) (^yx, in _ yP„ m, _ _ ^^^., m^ ^ ^.y/ @ ^^2,m _ ^0, , '"i _ _ '))Pk> »%• + 7-)
'

wherein r denotes arguments given by

r= — (v^''+^ '

'"*^+i 4- + v^''

'

'"'"),

and each of the sets a^, ..., oik, Jk+i, '•','yp, ^u ••, ^k, Jk+i, •,yp is such

that the functions involved do not vanish identically in regard to x.

This function is single-valued on the dissected Riemann surface, does not

become infinite or zero, and, for example, at the period loop 6; it has the factor

e^, where

L, =- 27ri (v"' '^'+ + ?rA ^k) - 27ri (#"' '« - -y-i
-

*«. - - -y^^. '"x)

+ 27ri (V' '" - v^'

'

"'' - - v^k' '"*),

is zero. Thus the function has the constant value, unity, which it has when

X is at z. Therefore

n:;:,. + - + nt^,, = iog
(i,a;, "I _ 2;«i > "*i —

. .
. — ?;«i. '"x _^yfc+i,»n*.+i _ . .

. _2;yp, m^^

(^(yx, in. _ -y?,, m, _ _^^ _ yP,,, m^ _^yt+i, »«<.+,_ _ . _^y„, Wp^

I
{v^' »* — v*' ' "*i — —v'^k' ™k — ijyfc+1 .

'%+! — — -yVjj >
"'>)"

/ (v^'
m _^^„m, _ —y?k> i^k — vyM> '"1+1 — —vyp' "'j')

the places jk+u ••,yp being arbitrarily chosen so that a^, ...,OLk, yk+i, •••> Jp

are not zeros of a (^-polynomial, and /Sj, ..., /Sjt, 7^+1, ••.,7^ ai'e not zeros of a

^-polynomial.

Thus, when k=p,we have the expression of the function considered in

§171, Chap, IX. in terms of theta functions. For the case where «!,..., a^-

are the zeros of a ^-polynomial, cf. Prop, XV. Cor. iii.

188. (XIV.) We return now to the consideration of the identical vanishing

of the function. We have proved (Prop. VII), that if 0(t;^"^'-l-

+ v'^'"^'' + r) be identically zero for all positions of x^, ...,Xq,Zi, ...,Zq, but
(^.a;, 2 + ^,j-,

, ?, + ^ y:c,,, z,, ^ ^^ ]3g ^q^ identically zero for all positions of

18—2
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X and z, then there exist oo i sets of places ^, ^p_i, and x 9 sets of places

fi, .... ^p-\, such that

and

Now, if in the equation 0(ir'"^' + + ir^^-^^ + r) = 0, we make a*,

approach to and coincide with Zq, we obtain

I 0/ C?;^'
^> + + i'^'-'- ^'-' + r) rii (e^) = 0,

»=i

wherein 0/00 is put for ^0(w), fl/(a^) for 27n D^vt '*, a being arbitrary;
Oct j

and this equation holds for all positions of a-j, ^'i, ..., Xq-i, Zq-i. Since, how-

ever, the quantities n, {z^, ... , Vlq (Zq) cannot be connected by any linear

equation w^hose coefficients are independent of Zq, we can thence infer that

the first differential coefficients of (u) vanish identically when u is of the

formv*" ^' + -|-i;*9-i.2«-i -f 7'. It follows then in the same way that the

second differential coefficients of (u) vanish identically when u has the

form IT*" ^1+ ^ ^a;,- 2, 2,-2 4- J., in particular all the first and second differ-

ential coefficients vanish when u = r. Proceeding thus we finally infer that

(u) and all its differential coefficients up to and including those of the 5th

order vanish when u = r.

We proceed now to shew conversely that when (u) and all its differential

coefficients up to and including those of the 5th order, vanish for u = r,

then 0(u*>'^' -H +v^<f^i+r) vanishes identically for all positions of

^i, Zx, X.,, Z2, ..., Xq, Zq. By what has just been shewn (r^. ^ + v*. -
^i 4.

-H v^' ^ + r) will not vanish identically unless the differential coefficients of

the {q + l)th order also vanish.

We begin with the case q='^. Suppose that {n), 0,' {u), ... , 0^' {ii), all

vanish for w = ?- ; we are to prove that {tf' ^ + r) vanishes identically for all

positions of x and z.

Let e, f be such arguments that 0(e) = O, 0(y)=O, but such that

0,'(e) are not all zero and ©/{/) are not all zero, and therefore 0(tr^'^ + e),

&{if'^+f) do not vanish identically; consider the function

(e + v'' O0(e -v^-')
_

firstly, it is rational in x and z ; for, considered as a function of x, it has,

at the period loop br, (Equation B, § 175) the factor
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whose value is unity ; and a similar statement holds when the expression is

considered as a function of z, for the expression is immediately seen to be

symmetrical in x and z ; secondly, regarded as a function of x, the expression

has 2(jj — 1) zeros, and the same number of poles, and these (Prop. IV.)

are independent of z. Similarly as a function of z it has 2 (^ — 1) zeros and

poles, independent of x ; therefore the expression can be written in the form

F{x)F{z), where F{x) denotes the definite rational function having the

proper zeros and poles, multiplied by a suitable constant factor, and F {z) is

the same rational function of z.

Putting, then, x to coincide with z, and extracting a square root, we infer

^^(0;)= +

l@/(e)ni(a.-)
t=i

|@/(/)a(^-)
i = l

where fli (x) = 27ri D^vf "'
, for a arbitrary, is the differential coefficient of an

integral of the first kind ; thence we have

@ {V-' ^ + e ) Q (v^- ^ - e

)

^ [S@/ (e ) fl, (x)] [S0/ (e ) fl, (z)]

@(v^,z+f)® (v^,
z -/) [2(H)/ (/) n, {x)\ \t%i if) n^ (z)]

'

In this equation suppose that e approaches indefinitely near to r, for which

(r) = 0, @/ (r) = 0. Then the right hand becomes infinitesimal, inde-

pendently of X and z. Therefore also the left hand becomes infinitesimal

independently of x and z ; and hence (w*^- ^ + r) vanishes identically, for

all positions of x and z.

We have thus proved the case of our general theorem in which g = 1.

The theorem is to be inferred for higher values of q by proving that if the

function © (v^' • ^' + + ?;=^"'-i' ^"'-i + r) vanish identically for all positions of

Xi, Zi, ... , x\n-i, z^a-i, and also the differential coefficients of 0(it), of order

m, vanish for u = r, then the function S{v^^'^' + +^a:m,2» + r) vanishes

identically. For instance if this were proved, it would follow, putting in = 2,

from what we have just proved, that also (d{v^'' ~' + v^^'^^ + r) vanished

identically, and so on.

As before let /be such that © (/) = 0, but all of 0/(/) are not zero ; so

that 0(t;^'^+/) does not vanish identically in regard to x and z. Let

e be such that 0(v^"^> + 4. yXm-i, z,„-i ^ g"^ vanishes identically for all

positions of x\, z^, ..., i»„i_i, Zm_-i , but such that the differential coefficients of

®{u) of the first order do not vanish identically for w = ?;^" '+... + y*"'-i' '"'-i 4- e;

so that the function (y*^i' ^1 + + i/^"" ^"' + e) does not vanish identically.

Consider the product of the expressions

u'(&{v^>^'''k+f ) © (v^,.< H-f ) n'© (w^"' ^* +/) © (w""' ^^ -/)
nn© {v^K^ ~v +/) © (y^-A. -V -/)

'
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wherein /(, k in the numerator denote in turn every pair of the numbers

1,2,..., 7)1, so that the numerator contains 4 . ^m {m - 1 ) + - = 2 {iii- — )n. + 1)

theta functions, and \, /u, in the denominator are each to take all the values

1, 2, ..., 771, so that there are 2m- theta functions in the denominator.

Firstly, this product is a rational function of each of the 2in places

a\, Zi, ..., x,,,, z„i. Consider for instance a;,; it is clear that if the product

be rational in a-j, it will be entirely rational. As a function of x^, the

product has at the period loop b,- a factor g—-"'''' where

k = 'Z M = l

and this expression is identically zero.

Secondly, considering the product as a rational function of a^, the

denominator is zero to the second order when x^ coincides with any one of

the m places Zi, ..., z,,, , and is otherwise zero at 2m (p — 1) places depending

on y only ; of these latter places 2{m — l){p—1) are also zeros of the

factors n'0(v^A'^*+/)0(i;^/.. =««.-/); there are then 2(j)-l) poles of the

function which depend on / only. The factors n'0 (^a- *<: +/) 0(tr^'" ^t -/)
have also the zeros w., ..., a;,„, each of the second order. The factors

@(qf>'^i + ... + if"' '
^"' + e) (v'^i . 2i + . . . -f if"^ ,

Z". _ e) have, by the hypothesis

as to e, the zeros Zi, z.,, ..., z,n, each of the second order, as well as 2(p — in)

other zeros depending on e only. On the whole then, regarded as a function

of a^i, the product has

for zeros, 2{p — m) zeros depending on e, as well as the zeros a'a, ..., a;,„,

each of the second order,

for poles, 2(p — I) poles depending on/;

the function is thus of order 2{p — l): and it is determined, save for a

factor independent of a\, by the assignation of its zeros and poles. It is

to be noticed that these do not depend on ^'i, ^o, ..., Zt,i.

It is easy now to see that the product, regarded as a function of z^,

depends on z.,, ..., z,„, e,f in just the same way as, regarded as a function

of a^i, it depends on sc.,, ..., a*,,,, e,f.

The expression is therefore of the form F{xi, x^, ..., x,„) F (z^, z.,, ..., z^n),

wherein F denotes a rational function of all the variables involved.

The form of F can be determined by supposing a;, , . .
.

, a;,,, to approach

indefinitely near to 2^1 , . .
.

, z,,, respectively ; then wc obtain

(d{v^" '> + ...+ v""'

'

^"' + e) = „ .t,ni ©,' {v^^ •'' + ... + y^'"-' • '"'-' + e) n,- {z,„),

where t,n i« the infinitesimal for the neighbourhood of the place z,n,

0/(v*"^i + 4- ^ar,,.-!, 2m-i^g)
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where t,n-i is the infinitesimal for the neighbourhood of the place z^-i, and

so on, and eventually,

f f t m v

^^^" n 2 0/(/)n<fe)

Similarly

nn@(/^' '/^+/) =ir©(/"' "'+/) («""' '' -/)

where li, h refers to all pairs of different numbers from among 1, 2, ..., m.

Therefore, dividing by a factor

(-)'" n'0" {v''^' h- +/) ©--^ {ifu . H -f)

which is common to numerator and denominator, and taking the square root,

we have

F(z„ ...,z,„) =
2...S e'i^,i^,...,i„Xe) n,{z,)n,{z.^ ... n,,{z,,)

lm= l 11 = 1

n
1^=1

2e/(/)a-(^,)
1=1

On the whole therefore we have the equation

@(^yX,,Z,^ J^yX,n,Z,nJ^g-^@^yXuZ,_^ ^ yX„,, Z,a _ g-^

n^@ (v'^'^' ^^- +/) @ (^^'" ^^ -/) n^@ {v'>^' 'k +/) {v'l^' -^ -/

)

'

nn@(/^'''^+/)e(/^' "'^ -/)

J^{x„ ...,x,n,e)^{z,, ...,z,n,e)

U^{x„f)U^(z„f)
1 1

where

^(^•,/)=l©/(/)n,(^),
1=1

^(x„...,X„„e)= i ... 2 @'^•„^„...,^,.(e)^n(*•l)..•^u.(^m).

Suppose now that ei is made to approach to Vi ; then the conditions we

have imposed for e are satisfied, and there is added the further condition

that the differential coefficients of order m, ©',-,, ,•„, ...,,:,„, also vanish. Hence

it follows that (v^^' -> + + v^'"" ••" + r) vanishes identically.

The whole theorem enunciated is thus demonstrated.
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(XV.) The remarkable investigation of Prop. XIV. is due to Rieraann
;

it is worth while to give a separate statement of one of the results obtained.

Using q instead of m — 1, we have proved that if the equations

e = y"'*' '" — i;^! '
'"i — — v^p-'i >

"'p-»

are satisfied by x 'i sets of places fi
, . .

. , ^p_i , so that also the equations

— e = V'"^V . »« — |;l. . "'i _ — |;f ;>-i. »W>-i

are satisfied by x '^ sets of places |,, ..., ^p_i, then their exists a rational

function, which has (i) for poles, the 2(p — 1) places <,, ..., tp-i, z^, ..., z^-i,

which satisfy the equations

f^qonpttn yti,mi ^
ytD-i,mp-i

/"^ ifnp, m yZt,m, ifp-\>
wip-i

/ being supposed such that these equations have one and only one set of

solutions, and has (ii) for zeros, the arbitrary places x^, ...,x^, each of the

second order, together with 2{p—\—q) places ^5+1, ..., ^p_i, ^5+1, ..., ^p-i,

satisfying the equations

o = 71W/)) '» ij^i 1
''^1 ... 'y^i ) '% y^7+ii "'ij+i y?;'-i> '"p-J

g = 7;"'»i "I y^K "*i 1)^11 '"h yf';+li '"«+l yip-i> "tp-l

and the function can be given in the form

^(x„ x^, ..., X,,, x,e)-¥^ {x,f),

the notation being that employed at the conclusion of Proposition (XIV.).

The expressions M', ^ occurring here have the zeros of certain ^-polynomials,

to which they are proportional.

Corollarij i. If we take p — 1 places f,, ..., t;i-i. ^o situated that only

one ^-polynomial vanishes in all of them, and define e by the equations

e = y'"''' '" t;^i> '"1 — y^i>-^' "^p-i

there will be no other set ^1, ..., ^p_i, satisfying these equations, or ^ = 0.

If ^1. •••> ^p-\ be the remaining zeros of the ^-polynomial which vanishes in

fi, ... , ^p_i , we have (Prop. IX.)

and therefore

— e = v"'"' '" — y^' • '"' — — yf''-' ' '"''-'

.

Similarly if ty, ..., fp_i be arbitrary places which are the zeros of only one

<^-polynomial, wc can put

/"= ri"'''' '" ll'i '
'"1 y'p-' I Wp-t

— /'= y"''" '" — t;'i . "'i — — y-^'p-i. '"(>-i.
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Then the rational function having t^, ..., tp-i, Zi, ,.., Zp^i for poles, and

^1, ..., ^^_i, ^1, ..., ^^_i for zeros is given by <i>(x, e)^^ {x, f). Thus the

^-polynomial which vanishes in ^i, ..., ^p-i, fi, ..., ^p-i is given by

1=1

where
(f>i

(x), ...,
<f)p

(x) are the (^-polynomials occurring in the dififerential

coefficients of Riemann's normal integi'als of the first kind.

Hence if ?ii, ..., Hp^i be places which, repeated, are all the zeros of a

^-polynomial, the form of this polynomial is known. Since, then, we have

(Prop. XI. p. 269)

we can write this polynomial

i@i'(^n)<f>i{xx
i= l

2^1 being an odd half-period.

If another ^-polynomial than this one vanished in n^, ...,np_i, there

would be other places 7ii, ..., n'p^^, such that

•A-H = y'"''' '" — ?;"" '"' — — y":;'-!" ^p-^

and therefore (Prop. VI.) the function @(v^>^-f-in) would vanish identi-

cally; in that case (Prop. XIV. p. 276) the coefficients @/(^fl) would vanish.

We can express the ^-polynomial in terms of any integrals of the

first kind; if Fi' , ..., F^' be any linearly independent integrals of

the first kind, expressible in terms of the Riemann normal integrals

Vi' , ...yVp by linear equations of the form

^t =^^,1^1 + + \i,pVp , {i = l,% ...,p),

and the function {u) be regarded as a function of Uy, ..., Up given by

Ui = \i^,Ui-{- -1- \i, pUp, (i=l,2, ..., p),

and, so regarded, be written ^ ( U), the 0-polynomial which has zeros of the

second order at Wj, ..., rip_i can be written

X%'{^U)y}ri{x),
i=l

where '^i (x), ..., yjrj, (x) are the ^-polynomials corresponding to Vi' ^\ ...
,

Vp'"\ and |-n denotes a set of simultaneous half-periods of the integrals

1^1
' , ••, Vp . If |-n stand for jj quantities of which a general one is

^ {ki + ^i't,-, 1 + + kpTi^ p), (i = l,2, ..., p),
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and &),_^., &)',.,
,s
be 2^/' (juantities given by

J|
= 2X;, , a>,, , + 2\/, , w,, , + + 2\,- ,, foj, ,, (i,s=l,2, ..., p),

T/, K
= 2\,-, , co'j, ,, -f 2\/, ., &)'..._ ,. + + 2X,;

J,
a)'j,_ ^,

where, in the first equation, we are to take 1 or according as i = s or i^s,

then in will stand forp quantities of which one is

A'l &),-, 1 + + />>&)/, j> + /t/ft)',-, 1 + + V^'. ?" (*' = 1> 2, . .
. , |)).

For example when the fundamental Riemann surface is that whose

equation may be interpreted as the etj nation of a plane quartic curve, every

double tangent is associated with an odd half-period and its equation may
be put into the form

a-van) + 7/V(in)-f-V(in) = o.

Cuvollavy ii. If the equations

e = u"*'''
'"'

if^ ' '"' — v^' '

'"^ — y^p-i' '"''•-1

can be satisfied with an arbitrary position of x^ and suitable positions of

Ki) •••> ^p-ii ^"d therefore, also, the equations

can be satisfied, then a (^-polynomial vanishing at x^ to the second order, and

otherwise vanishing in ^., ..., ^p-i, ^o, ..., ^p-i, is given by

i=l i=l

Ex. In the case of a plane quintic curve having two double points, this gives us the

equation of the straight hues joining these double points to an arbitrary point J.',, of the

curve.

Corollary iii. We have seen (Chap. VI. § 98) that any rational function

of which the multiplicity {q) is greater than the excess of the order of the

function over the deficiency of the surface, say, q = Q—p-\-T-\-\, can be

expressed as the quotient of two ^-polynomials. If the function have

?i, •••, Kq ^or zeros, and ^j, •.., ^y for poles, and the common zeros of the

0-polynomials expressing the function be z^, ,.., 2'^., where R =
'2,p

—
'2, — Q,

the function is in fact expressed by

l©/(e)a(^-)-se/(/)a(^-),
?=1 i=l

where (cf. § 03, Chap. VI.)

e=w' —V '— ...g _ ^'"r . '« _ ^/]. "'i _ _
_ /«-T' '"«-T _ ^,fi. '"/l-T+l _

_ _ _ _ ^f-j. '«)'-
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189. Before concluding this chapter it is convenient to introduce a

slightly more general function * than that so far considered ; we denote by

^ (u
; q, q'), or by ^ {u, q), the function

'^ (U ' Q n') =.'^g"''ii'^+^hu{n+q')+b{n+q')'^+2irrq{n+q'}

wherein the summation extends to all positive and negative integer values of

the 2? integers ?«i, ..., tip, a is any symmetrical matrix whatever ofp rows and

columns, h is any matrix whatever of p rows and columns, in general not

symmetrical, b is any symmetrical matrix whatever of p rows and columns,

such that the real part of the quadratic form 6?n^ is necessarily negative

for all real values of the quantities nh, ..., lUp, other than zero, and q, q

denote two sets, each of jp constant quantities, which constitute the character-

istic of the function. In the most general case the matrix b depends on

hP (P + 1) independent constants ; if however we put iirr for b, t being the

symmetrical matrix hitherto used, depending only on Sp — 3 constants, and

denote the p quantities hu by U, we shall obtain

^(w; q, q) = e''"''%{U; q, q').

We make consistent use of the notation of matrices (see Appendix ii.).

If u denote a row (or column) letter of p elements, and h denote any matrix

of jy rows and columns, then hu is a row letter ; we shall generally write

huv for hu.v; and we have liuv = hvii, where h is the matrix obtained from

]i by transposition of rows and columns. Further if k be any matrix oip rows

and columns, kit . kv = hkvu = khiiv. For the present every matrix denoted by

a single letter is a square matrix of p rows and columns.

Now let CO, ft)', 7], t] be any such matrices, and P, P' be row letters of

elements Pj, ..., P^, P/, ..., P/. Then, by the sum of the two row letters

ft)P + &)'P' we denote a row letter consisting of p elements, each being the

sum of an element of wP with the corresponding element of w'F'. This

row letter, with every element multiplied by 2, will be denoted by H^,

so that

flp = 2&)P + 2ft)'P'

;

in a similar way we define a row letter Qip elements by the equation

Rp = 27]P + 27)'P'

;

then u + Op will denote a row letter ofp elements, like u.

The equation we desire to prove, subject to proper relations connecting

ft), ft)', 7], 7}', is the following,

^ (u + Op, q) = e///'(«+iM-«P/''+2^' {Pq'-P'<i) e-imv,i ^ (^^^ p _,.
^)^ (L),

which is a generalization of some of the fundamental equations given for

e («,)•

* Schottky, Abrixs eincr Tlieorie tier AbeUchen Functionen run drci Variaheln, Leipzig, 1880.

The introduction of tlie matrix notation is sugfjested by Cayley, Math. Annul, (xvii.), p. 115.
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lu order that this equation may hold it is sufficient that the terms ou the

two sides of the equation, wliith contain the same values of the summation

letters n^, ..., Up, should be equal ; this will be so if

a{u + fl;.)- + 2h (u + Qj.) (n + q') + b (n + q'f + ^Triq {n + q)

= Hr {n + in,.) - -rriPP' - ^iriP'q + (Hi' + 2hu {n + q' + F) + 6 {/i + g' + P'f

+ 27ri(P + q){7i + q'+F);

picking out in this conditional equation respectively the terms involving

squares, first powers, and zero powers of »,, .,., Up, we require

b = b,

h (u + Clp) + hq + nriq = hu -\-b{q + F) + tti (P + q),

and

a (w + n^)- + 2A {u + n,,) q 4- bq^ + 1-iriqq' = Hp (u + ^Clp)- iriPP' - 2'rnFq

+ au' + 2hu iq' + F) + b (q + PJ + ^iri (P + q) {q' + F).

190. In working out these conditions it will be convenient at first to

neglect the fact that a and b are symmetrical matrices, in order to see how

far it is necessary.

The second of these conditions gives

hnp = iriP + bF,

and therefore gives the two conditions Jico = ^iri, hw = ^b, whereby w, w

are determined in terms of the matrices li, b. In particular when h = ni

and b = i7rT, as in the case of the function (^(m), we have 2(u = 1, 2a)' = r,

namely 2(u, 2&)' are the matrices of the periods of the Riemann normal

integrals of the first kind, respectively at the first kind, and at the second

kind of period loops.

The third condition gives

2aunp + aCl-p + 2hnpq' = Hp(u + ^ Qp)

- iriPP' - 2'rTiFq + 2huP' + b {2qP' + P'-') + 27ri {qP' + P*/' + PF),

that is

{2d£lp - Hp - 2hF) u + {aQp - ^ H,.) H;. - iriPP' - bF'

+ 2 {kflp - Trip - bF) q=0;

in order that this may be satisfied for all values of u^, ..., Up, we must have,

referring to the equation already obtained from the second condition,

lip = 2anp - 2hF,
and

(aHp - i^Hp) Hp = {nriP + bF) P'
;

from the first of these, by the e(iuation already obtained, we have

{a£lp -^Hp) n,. = hP'Q.,. = hn,.P' = {wiP + bF) F
;
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subtracting this from the second equation, there results

and in order that this may hold independently of the values assigned to

P, P' it is necessary that d = a, b = b; when this is so, these two equations

give, in addition to the one already obtained, only the equation

Hp=2anp-2TiP',
leading to

r} = 2a(o, 7] = 2a&)' — 2^,

which express the matrices t] and t] in terms of the matrices a and h. These

equations, with
AHp = TTiP + 6P',

or

hw = ^Tri, h(o' = ^b,

are all the conditions necessary, and they are clearly sufficient. When they

are satisfied we have

^(M + np,ry) = e^''(«)-2-'^'?^(w; q+P), (L),

where
Xp (v) = Hp {u + iOp) - iriPF.

Ex. Weierstrass's function au is given by

^«2+^"-"(n+i)+J77T(w+A)«+«(n+i)

where J is a certain constant.

The equations obtained express the 4/j- elements of the matrices to, &)', tj, rj'

in terms of the p' + p (p -\- 1) quantities occurring in the matrices a, h, b
;

there must therefore be 2p- — p relations connecting the quantities in to, a,

T), T] . The equations are in fact of precisely the same form as those already

obtained in § 140, Chap. VII., equation (A), and precisely as in § 141 it

follows that the necessary relations connecting o), &>', 77, r( may be expressed

by either of the equations (B), (C) of § 140. Using the notation of matrices

in greater detail we may express these relations in a still further way.

For

\ (Hp^Q - Hq^p) = (aHp - hP') n^ - (afiy - hP') Hp

= -hP'ng + hQ'np

= /iOp . Q' - h^Q . P'

= (tt^P + bP') q - (iriQ + bQ') P',

so that

Hp^Q - E^np = 27n {PQ' - P'Q)
;

this relation includes all the 2p^ — p necessary relations ; for it gives

(7,P + Ti'P') (coQ + co'Q') - {rjQ + rj'Q') {coP + co' P') = ^-rri (PQ' - P'Q),
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or (using the matrix relation already quoted in the form hii.k-v= likvu =khiiv)

{(JOT] — 7/0)) PQ -f {(or)' — V(^) P'Q + {(o'r) — 7)'co) PQ' + (co'r)' — rj'o)') P'Q'

= ^7ri{PQ'-P'Q),

and expressing that this equation holds for all values of P, Q, P', Q', we

obtain the "Weierstrassian equations ((B) § 140).

Similarly the Riemann equations ((C) § 140) are all expressed by

(2^'P + 2vQ) (2^P' + 2vQ') - (2wP -f 2rjQ) (2«'P' + 2^^)= 27n (PQ' - FQ).

Ex. i. If we substitute for the variables ?< in the ^ function linear functions of any p
new variables i\ with non-vanishing detenninant of transformation, and Lp be formed from

the new form of the ^ function, regarded as a function of v, just a.s Hp was formed from

the original function, prove that LpV — HpU, and that \p{u) remains imaltered.

Ex. ii. Prove that

\p {v + fl.„) + X.„ (?0 - 2TnM'P= \,_, {u + Q.v) + X.v (?0 - 2TriX'Q,

provided
M+r=x+Q.

The equation (L) is simplified when P, P' both consist of integers. For

if M, M' be rows of integers, it is easy (putting a new summation letter,

m, for n + M', in the exponent of the general term of ^ (m
;

q-\- M, q + M'),)

to verify that

^ (?; ;
q-\- M, q' + M') = e-^'^^'i ^{n; q, q').

Therefore, if???, m' consist of integers, we find

^ {U + n,„, q) = e*"'(«)
+2'r« {.«-? -"''9) ^ (li, ql

and in particular

where ^ (ii) is written for ^ (u ; 0, 0). The reader will compare the equations

obtained at the beginning of this chapter, where a = 0, t] = 0, t)' = — ^iri,

0, = ^, o)' =iT, fi;, = P + tP', H,. = - 27TiP', \r {„) = - 27nP' ('/ + iP + \rF)
- TrtPP'.

One equation, just used, deserves a separate statement ; we have

^ {u
; q + M) = e^^^^^'i ^ {u

; q),

where M stands for a row of integers il/,, .,., Mp, M/, ..., Afp.

191. Finally, to conclude these general explanations as to the function

^(m), we may enquire in what cases ^(n) can be an odd or even function.

When 111, m are rows of integers the general formula gives
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hence when ^ (ii, q) is odd, or is even, since \,n (— u) = \_,n (u), we have

^ (w - n,n, q) = e^-'"
(«)+2T'(i«3'-w''?) ^ (.u^ q) ;

therefore, by equation (L),

^ {ii + n^, q), = ^ (tt - n„„ q) .
eA2«(«-in„,,+4^»p«5'-m'5)^

while also, by the same equation,

^ (U + n,„„ q) = ^ (U, q) e^'" («) + 2«(m5'-m'9)_

Thus the expression

^am (W — ^ n,rt) + \_m (u) — \n {u) + ^Tvi (lUq — Vl'q)

must be an integral multiple of ^iri. This is immediately seen to require

only that 2 {7nq' — ?h'<7 — inm') be integral for all integral values of m, m'.

Hence the necessary and sufficient condition is that q and q' consist of half-

integers. In that case we prove as before that ^ (u, q) is odd or even

according as 4^^' is an odd or even integer.

192. In what follows in the present chapter we consider only the case in

which b = iiTT, r being the matrix of the periods of Riemann's normal

integrals at the second kind of period loops. And if «i' ,...,iip denote

any p linearly independent integrals of the first kind, such as used in |§ 138,

189, Chap. VII., the matrix h is here taken to be such that

27nv; =n;^iUi + +hi^pUp , {1 = 1,2, ...,p),

so that h is as in § 139, and

^ (ii=^' «, q) = e«"' @ (v'"' «, q),

where u = u'^' "•.

From the formula

^ {u + n„,) = e^-(«+in™)-«'«™' ^ (w),

wherein m, in denote rows of integers, we infer, using the abbreviation

that

%i {u + n^) - ^i (ii) = 2 (77;, 1 m^ + +V!,p '>^h + v'l, 1 ^^h + + v'i, V *'V) 5

particular cases of this formula are

f/ {U^ + 2&)i, ,., . .
.

, Up + 2&)^, ,.) = ^i (u) + 2r]i^ r,

Ci {u, + 2a,',, ,,..., Up + 2ay'.p, ,) = ?,- (u) + 2v'i, ,-.
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Thus if Us be the argument

Xp, >n,i

where j/i'", ...,v'l' are any p linearly independent integrals of the first

kind, and the matrix a here used in the definition of ^(^0 be the same as

that previously used (Chap. VII. § 138) in the definition of the integral

Lf, so that the matrices r), t] will be the same in both cases, then it

follows that the periods of the expression

regarded as a function of x, are zero.

193. And in fact, when the matrix a is thus chosen, there exists the

equation

— t,i {u^' '" - i(^' • ™' — - Jt^"' "'") + tt (^^"^ "^ - ^*'^" '"' ~ ~ '^'''" "^)

= ij' "* + 2 Vr^ i [{X,, X) - {Xr, o)] -~
,

wherein Vr, i denotes the minor of the element /x,- (xr) in the determinant

whose (?', i)th element is fiiix,.), divided by this determinant itself; thus

i/r^i depends on the places Xi, ..., Xp exactly as the quantity Vy, i (Chap. VII,

§ 138) depends on the places Ci, ..., Cp.

For we have just remarked that the two sides of this equation regarded as

functions of x have the same periods; the left-hand side is only infinite

at the places x^, ...,Xp\ if in Z"J'", which does not depend on the places

Ci, ..., Cp used in forming it (Chap. VII. § 138), we replace c,, ..., Cp by

Xi, ..., Xp, it takes the form

r.x, a -r^x, a n / X, a
^ ,

x, a.

Vi,r^xi + + l'p,i^x„ -2(a;, r"l + +ili,pl(p ),

and becomes infinite only at the places x^, ...,Xp. Hence the difference

of the two sides of the equation is a rational function with only p poles,

Xi, ..., Xp, having arbitrary positions. Such a function is a constant (Chap.

III. § 37, and Chap. VI.) ; and by putting x = a, we sec that this constant is

zero.

194. It will bo seen in the next chapter that in the hyperclliptic

case the equation of § 193 enables us to obtain a simple expression for

^. (^j(X, m —^(X,, 7/1, _ _ .^a;„, mp^
^j^ tcmis of algebraical integrals and rational

functions only. In the general case we can also obtain such an expression*
;

* See Clebsch und Gordan, Abels. Functnen. p. 171, Thomae, Crelle, lxxi. (1870), p. 214,

Thomae, Crelle, ci. (1887), p. 326, Stahl, Crelle, cxi. (1893), p. 98, and, for a solution on different

lines, see the latter part of chapter XIV. of the present volume.
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though not of very simple character (§ 196). In the course of deriving that

, expression we give another proof of the equation of § 193.

The function of x given by ^(w^'"*; |y8, \ol) will have p zeros, unless

^ {iv^' '" +-^1}^^ a) vanish identically (§§ 179, 180) ; we suppose this is not the

case. Denote these zeros by m/, ..,, mp. Then (Prop. X. § 184) the function

^ (w'^' '« — «^i
'
"'i'

—

_M«;)-»V; i/3, ^a) will vanish when x coincides with

a?i, Xo, ..., or Xp. Determining uii, ... , w^ so that

w'"! '
'»i' + + w'"p '

'"p = 1 n^, „

,

and supposing the exact value of the left-hand side to be ^ fi^_ a + ^^-, /<,

where k, h are integral, this function is equal to

^ (-lix, m _ ,j(X„ m,_ _ ^^Xp, m,, _ i n^_ ^ _ D^._
,^

;
i^. i a),

and this, by equation (L) is equal to

where u = u^' '" — -zt*' > "*i — — it^i" '"» — Ojk^ /j.

Therefore (§ 190) the expression

_ ^ {u^' "^ - M^.. >».' - - -u^P. "*p'; ^^, la)

' ~ ^ (m'^' "* - w*'" ^'' - - w^^' "^';
i/3, •!«)

^ (mm, m _ ^^Mi, mi' _ _ ^^M,., "V ;
ly3^ Ici)

'

is equal to

<^(^lix,m_^^x,,m,_ _ j^ajp, •mj,)
j ^ (x^x, m _ ^^,,m, _ ^utH^'^p'^

^ (2^, m _ u^,, w, _ _ x^Xp, mp^ / ^ (-J^M, w _ ^t*^,
. »»i _ —ul^P' '«?>)

'

we may write this in the form

^(V-r)/ ^(F-s)'

the expression is therefore equal to

(h) C^a;, 7n _ ^a;, , 9ft, _ _ yXp , 7n.,A I @ /^x, m _ ^/jli, m^ _ _ y/xp , mp\

6 @ (yH-, m _ yXi,m, _ _ ,fjXp, mp\ j (h) /-^m, m — ^^^i, »«i _ _ yt^" ''"p)
'

where
L, = a{U-ry -a{V- r)- -a{U-sy+a{V- s)\

is equal to

- 2aC7(r - s) + 2aF(r -s),
or

-2a{U-V){r-s\
that is

- ^au^' >^ {lu^^ '^> + + w^p- '^J^X

B. 19
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which denotes

r = l i.j

Hence, by Prop. XIII. § 187, supposing that the matrix o, here used, is the

same as that used in § 138, Chap. VII., and denoting the canonical integral

.x,a ^^^ X, a z, c

r=l»=l

which has ah-eady occurred (page 194), by Jizlc i
we have

Rl'S^. + +^x;r/xp=iog4J.

195. From the formula

^ jfr,(^r ^ (u'"' '" - ii""'

'

'"'- . . .
- it^"' '"'') / ^ (if" '

"' - «*' ' '"' - ... - W^' '"")

r=i
~ ^^ ^ (t<*' "* - ?t^" "*'-...- it^p- •'^p) / ^ (V • "* - W" "»' - . . . - W^' ™p)'

since

t=l

we obtain

where
f7 =tt*"'"> + +?<*p.'"p,

[/;, = ul^i . '«. 4- + H*"/" "^,

and therefore

r=l

Hence, differentiating,

2 1^; [{Xr, X) - (Xr, /.)] + Lf' = - Ki {U^' ^ - ^0 + ^Z ("'^^ '" " U),

where

?i(w) = ^iog^(iO;

but, from

(it^i = i)«r"'"'.^^,+ vDu'^''"'\dxj„

where dxi, ..., rfajp denote the infinitesimals at a^i, ..., Xp, we obtain

dxr ^ dXf

thus

_ ^. (U-. - - ^) + r,
(i.M. .. _ t^) = Z- - + 2^ i),.

.

[(^,. , -^) _ (^^, ^)]
-r

,

which is the equation of § 193.

dUr""'' dt
'
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196. From the equation

K'^M, + + K^^p = ^og^,

differentiating in regard to x, we obtain an equation which we write in

the form

I F^"
'' = I fzr (x) [r,.

(«- - - 1^) - r. (u^' '" - u,)i
r=l ?• = !

where U = u^^ -
'" + + «.^"

'
'^p, U,, = w^> ' '"' + + ^O^p '

'"'^.

Thus, if we take for fi^, ..., /Xp places determined from a; just as m^, ..., nip

are determined from m, so that

(m, fXi, ..., /j,p)
= {x, mi, ...,mp),

the arguments u^' "* — Uq will be = ; as the odd function ^^ (u) vanishes for

zero values of the argument, we therefore have (§ 192), writing flp for the

exact value of it*- "* - f/o

,

i;'"
''• + + Ft '"" = 2 /t, (^) [C,- (w^'

"^ - it^' '"' - -u'p' '"p) - (^p)J
r=l

= s /x,- (^) t,- (w=^' '»* - ?t^' ''«-...- i<^p '"i^ - rip)
r=l

= - S /ti, (.«) ^, {ii'" /^i + . . . + ir'p > '^p).

r = l

If in this equation we put x at ??i we derive

i^^""' + +i^,t'"^ = - S /x,(m)r,-(H^"'"'+ +w^;'.'H (M),
r = l

where ^i, ..., ^^ are arbitrary.

If however we put x in turn at j) independent places Ci, ..., Cp, and

denote the places determined from d, as Wi, ..., trip are determined from

m, by Ci, 1, ..., Cj_p, so that

(ci, nh, ..., nip) = {m, c,:, i , . .
.

, c,:, ^,),

we obtain jj equations of the form

Suppose then that «, a-'j, ..., ic^ are arbitrary independent places; for

z-i, ..., Zp put the places xi^-^, ..., xi^p determined by the congruence

\X, Xi^ 1 , . .
.

, Xi^ p) = (Ci, Xi) . . . , Xp) ,

then, if flq denote a certain period, — u^^' i' '^'i — ... — zt^*- p' ^'"^ is equal to

Hq + it^'
"* - w^i' "H _ _ -^j^P. "'P^ and we have

19—2
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therefore
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r = l

where Vr, ,• is the minor of /t» (Cr) iu the determinant whose (r, s)th element is

fig (Cr), divided by the determinant itself

In particular, when the differential coefficients /x, (x), ..., fip (x) are those

already denoted (§121, Chap. VII.) by o), (x), ...,(Oj, (x), and V ;' = coi{x)dt^,
J a

and the paths of integration are properly taken, we have*

^ 1 «\. / 1/^ ^' '" _ V"^i •
'"i _ _ f''" '"'•\ = P^'- 1 •

''•
1 ^ 4. f''*- p' '"•• "

log^CF^'^-F^^-'"'- _tH-"'^^^^. .'-., + ^Fll

197. A further result should be given. Let x, x^, ..., Xp be fixed

places. Take a variable place z, and thereby determine places Zi, ...,Zp,

functions of z, such that

(x, Zi, ..., Zp) = (z, a-i, ..., Xp).

Then from the formula

-^,(m^>'"-w^ U^<^) + ^i(j;'''"»-'?/^
— u'^v "»p)

= ij' " + 2 I/,, i [(^g, ^) - (z,, a)]
s=l

wherein z/«, ,• is formed with ^'j , . .
.

, ^p , we have, by differentiating in regard

to z and denoting — ^- ^,- {u) by ^{, j(m),

_i^,,(to[/x,(^)-/x,(.o^^- -f^i^'/il

= D, Z, +^S [{z,, z) - (.„ «)] ^^- ^2 ^- ^^ (., ,)

^dz. ((--)t)-<£.('-''> dt

dzg ^ T\ (, \d^t

dz s=i \ "^ /

where r= ?<^' "• - »^"'"' - _a^."»P, U = u"' "»-2<^.."»i - -j^^p."*?.

In this equation a is arbitrary. Let it now be put to coincide with z
;

hence

This form is used by Noether, Math. Anmd. xxxvii. (1890), p. 488.

i=i *=i
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i=l s=l i=\

= t fJii{k)D,lIi"+ Xa,,(^•)A {Zs, Z)

{Zs, z)

dzs

dt

dt

= D;
I

i^^.^ (k) Lf ^ +i^co, (k) [{z„ z) - {z, a)] ^j ,

where D/ means a differentiation taking no account of the fact that z^, ..., Zp

are functions of z,

= D^ J 2 ^li (k) Li -
"f {z, a \ k, z^, ...,Zp) + (k, z) - {k, a)

dk

di

^fc,c

= A WkRz',a- -^ (z, a; k, z„ ..., Zp)\,

in which form the expression is algebraically calculable when the integrals

i-''' are known (Chap. VII. § 138),

= D^ j r^' - -v/r (z, a ; k, z,, ...,Zp)- 2SSa,, , fi,- (/"') «

where c is an arbitrary place ; and this (cf. Ex. iv. § 125)

r ,

If now

= - W{z; k, Z^, ..., Zp)-2 % t ar,s/^r(z)fir(k).
r=ls=l

(k, z^, ..., Zp)=^{z,k-^, ..., kj,),

so that

JJ = yX, m _ .^fX, , m, _ _ yXp, mp ^ ^z, m _ ^^2, , m, _ _ ^Zp, Wp

= ^fk, m i^A;, , ni, ^kp , nip

and

then the formula is

i^x, Zi, ... , Zj,) — \Z, Xi, ... , Xp),

{^X, /?j , . . . , li'p) = {^fc, Xi, . .
.

, Xp),

-It
gj,:, j(lT).fii (k) fij (z)=W(z; k,z„ ...,Zp) + 2t t «,, , /x,- (z) fi, (k),

i j »• = ! s= l

= Wik; z,h,...,kp) + 2X iar,sfir{z)fis(k),
r=ls=l

by Ex. iv. § 125.
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By the congruences

the places js^, ...,Zp arc algebraically determinable from the places x, x^ Xp, z,

and therefore the function W {z\ k, Zi, ..., Zp) can be expressed by x, x^, ...,

Xp, k, z only. In fact we have

ylr(zi,x; z, x^, ... , Xp) = 0, ,y{r{Zp,x; z,Xi,..., Xj,) = 0.

The interest of the formula lies in the fact that the left-hand side is a

multiply periodic function of the arguments Ui, ..., Up.

A particular way of expressing the right-hand side in terms of x, .t\, ..., .Vj,, z, k is to

put down ^p{p + '^) linearly independent particular cases of this equation, in which the

right-hand side contains only x, x^, ..., Xp, 2, k, and then to solve for the ^p{p+^)
quantities ^i,y. Since <\r{z, a ; k, Zj^, ..., 2,,) vanishes when k= Zp, we clearly have, as one

particular case.

and therefore

i J

and there are p equations of this form, in which x^, ..., .Vp occur instead of .r,..

If we determine x^ , ..., .r',,_i by the congruences

yX,m_yXt, '"1 _ -ru^' '"'^ - Uc^P' ^'^ — u^i'< '"_ -u^'p-i' '"/-i_ji*> "V"!

so that .fj', ..., .^•'p_l are the other zeros of a ^-polynomial vanishing in x^, ..., a',,_,,

we can inferp — 1 other equations, of the form

2 2p,,(«^'"^-«^"""- -«--""')Mi(.r„)w(.r/)= i)x,i>.v/^:^'^
i j

^'-
.
«

where r=l, 2, ..., (p-l). Here the right-hand side does not depend upon the place x.

And we can obtain p such sets of equations.

We have then sufficient * equations. For the hyperelliptic case the final formula is

given below (§ 217, Chap. XL).

198. Ex. i. Verify the formula (N) for the case jo = 1.

Ex. ii. Prove that

' i i i

is a rational function of ;r, .rj, ..., .Vp.

Ex. iii. Prove that if

{x, Zi, ..., Zp)= (z, Xi, ..., .Vp) = {a, «!, ..., cip),

then

^(.r,a; z, .v^, ..., .r„) =rf -f r^" "' + ^r^J-'^".

Deduce the first formula of § 193 from the final formula of § 196.

• The function g>,_y((/), here employed, is remarked, for the hyperelliptic case, by Bolza,

Gottinger Nachrichten, 1894, p. 268.
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Ex. iv. Prove that if

$i=rji'«i + + rj'"*",

where a^ , . .
.

, a,, are arbitrary places, and

y _ T7*' "^ _ ]/^] • "'i_ _ 7^/>' '^/v— V '^'
'

"* — F^''
1

'

'"^ - - F*''
"

'
"*'',

* r j« r r r
'"

f

then

^|7 = " (^i ; Crt^i,\^ •••> ^i, vn

where W denotes the function used in Ex. iv. § 125 ; it follows therefore by that example,

that Jir = 5^ . Hence the function
OK,. K

j

QxdV^+ + QpdVj,

is a perfect differential ; it is in fact, by the final equation of § 196, practically equivalent

to the differential of the function log e ( F*'
'^ - F^' • '"' - - V"" '""). Thus the theory

of the Riemann theta functions can be built up from the theory of algebraical integrals.

Cf. Noether, Math. Annal. xxxvii. For the step to the expression of the function by the

theta series, see Clebsch and Gordan, Abelsche Functionen (Leipzig, 1866), pj). 190—195.

Ex. V. Prove that if

(m2, Xi, 1, ..., .ri,p, 2i, ..., 0p) = (Ci2, ^i^ .. , iV)
then

^loge(F^'"''-F'^i'"'i- _F^.''"^)=|(rJ.i'"i + + rj^'''').
' i

it
Ex. vi. Prove that

- I^i(.~)[fi(%*''^-M^'"'^'- _„^P."'^)_f. (««.'« _,/<.»"- -u""" •'"'•')]

1= 1

=:^^> «_ ^ (.y^ a ; 2, .^i, ..., Xp).

Ex. vii. If

T{x, a ; x^, ..., Xp)= {^\r{x, a; z, x-^^, ..., Xj,)-F^' %=x,

prove that

log ^ {u""-
'" - w^'

• '"' - - li*"' '"")

= A+AiZii'"+ +Apuf,''^+ / dxT{x, a ; x^, ..,, Xp),

where A, A^, ..., A^ are independent of .i,'.

Er. viii. Prove that

»•= ! )• = !

where a, c are arbitrary places and the notation is as in § 193.
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CHAPTER XL

The hyperelliptic case of Riemann's theta functions.

199. We have seen (Chap. Y.) that the hyperelliptic case* is a special

one, characterised by the existence of a rational function of the second

order. In virtue of this circumstance we are able to associate the theory

with a simple algebraical relation, which we may take to be of the form

2/2 = 4 (^. - ai) . . . (./• - Up) (x-c) ...(x- Cp+,).

We have seen moreover (Chap. X. § 185) that in the hyperelliptic ctxsc, when

p is gi'eater than 2, there are always even theta functions which vanish

for zero values of the argument. We may expect, therefore, that the investi-

gation of the relations connecting the Rieniann theta functions with the

algebraical functions will be comparatively simple, and funiish interesting

suggestions for the general case. It is also the fact that the grouping of

the characteristics of the theta functions, upon which much of the ultimate

theory of these functions depends, has been built up directly from the

hyperelliptic case.

It must be understood that the present chapter is mainly intended to

illustrate the general theory. For fuller information the reader is referred to

the papers quoted in the chapter, and to the subsequent chapters of the

present volume.

* For the subject-matter of this chapter, beside the memoirs of Eosenhain, Gcipel, and

Weierstrass, referred to in § 17.3, Chap. X., which deal with the hyperelliptic case, and general

memoirs on the theta functions, the reader may consult, Prym, Zur Thcoric der Functioncn

in einer zweiblattrigen Fliiche (Ziirich, 18GG) ; Prym, Neue Theorie der ultradUp. Funct.

(zweite Aus., Berlin, 1885); Schottky, Abriss einer Theorie der Abel. Functionen von drei

Variabeln (Leipzig, 1880), pp. 147—162 ; Neumann, Vorles. i'lber Riem. Theorie (Leipzig, 1884) ;

Thomae, Sammlung von Formeln icelche bei AnwendHnp der . . Eoscnhain'schen Functionen gebraucht

tcerden (Halle, 1870) ; Brioschi, Ann. d. Mat. t. x. (1880), and t. xiv. (1886) ; Thomae, Crelle, lxxi.

(1870), p. 201 ; Krause, Die TramJ'ormation der hyperellip. Funct. erster On/jiH/i// (Leipzig, 1886);

Forsyth, " Memoir on the theta functions," Phil. Trans., 1882 ; Forsyth, " On Abel's theorem,"

Phil. Trans., 1883 ; Cayley, "Memoir on the . . theta functions," Phil. Tran.^., 1880, and Crelle,

Bd. 83, 84, 85, 87, 88; Bolza, Gottinger Nachrichtcn 1894, p. 268. The addition equation is

considered in a dissertation by Hancock, Berlin, 181(4 (Bernstein). For further references see the

later chapters of this volume which deal with theta functions.
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200. Throughout this chapter we suppose the relative positions of the

branch places and period loops to be as in the annexed figure (4), the branch

place a being at infinity.

Fig. 4.

In the general case, in considering the zeros of the function ^ (w^' '" — e),

we were led to associate with the place m, other p places Wj, ..., nip, such

that ^(u^' '") has 7ni, ..., nip for its zeros (Chap. X, § 179). In this case we

shall always take m at the branch place a, that is at infinity. It can be

shewn that if b, b' denote any two of the branch places, the p integrals

Up are the p simultaneous constituents of a half-period, so that
b,b'

III

Ur = 7» 1 ft),-, 1 + + nipO),; p + nil (I)',., 1 + + nip'oo'r, p ,
{r = 1 , 2, . .

. , p),

wherein w?i, ..., iiip, ni-[, ..., nip are integers, independent of r\ this fact we

shall often denote by putting %'''''' = ^11. It can further be shewn that if,

b remaining any branch place, H is taken to be each of the other 2^+1 branch

places in turn, the 2p + 1 half-periods, tt^'
^'

, thus obtained, consist of p odd

half-periods, and p -{-X even half-periods. Thus if the branch places, b', for

which 11^'
^'

is an odd half-period be denoted by 6i, ..., bp, we have, necessarily,

^ (26*' ''i) = 0, . .
.

, '^ {xi}'' ^t>) = 0, and we may take, for the places m, nii, ..., nip,

the places b, by, ..., bp. In particular it can be shewn that, when for b the

branch place a is taken, and the branch places are situated as in the figure

(4), each of w*' **>, ..., n^' "'p is an odd half-period. We have therefore the

statement, which is here fundamental, the function ^(u^' * — u^^ '"'—... —u^i" "p)

has the places ii\, ..., scp as its zeros. It is assumed that the function

^ (u*' ") does not vanish identically. This assumption tvill be seen to be

justified.

For our present purpose it is sufficient to prove (i) that each of the

integrals u^'^' is a half-period, (ii) that each of the integrals u"' "', ..., u"'"p is

an odd half-period. In regard to (i) the general statement is as follows: Let

the period loops of the Riemann surface be projected on to the plane upon

which the Riemann surface is constructed, forming such a network as that

represented in the figure (4) ; denote the projection of the loop (a^) by (-4^),

and that of (br) by (J5,.), and suppose (Af), (Br) affected with arrow heads, as in
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the figure, whereby to define the left-hand side, and the right-hand side

;

finally let a continuous curve be drawn on the plane of projection, starting

from the projection of the branch place b' and ending in the projection of the

branch place b ; then if this curve cross the loop (Ar) tiir times from right to

left, so that lUr is cither -1-1 or —1, or 0, and cross the loop {B,) iiir times

from right to left, we have

6, i'

7?J,&),._
I -f- -f VlpWr, p + ?«/&)',, 1 + + mpw'r,p.

Thus, for instance, in accordance with this statement we should have

«^'
'

'^' = — ft)',. J , and w*""' = ft);.^ 1
— (Ur, 2, and it will be sufficient to prove

the first of these results ; the general proof is exactly similar. Now we can

piiss from Ci to Oi, on the Riemann surface, by a curve lying in the upper

Fig. 5.

sheet which goes first to a point P on the left-hand side of the loop (6,),

and thence, following a course coinciding roughly with the right-hand side of

the loop (tti), goes to the point P', opposite to P on the right-hand side of

(6,), and thence, from P', goes to a,. Thus we have

a,, c, P, r, „ , «,, r'

On the other hand we can pass from Cj to «, by a path lying entirely in the

lower sheet, and consisting of two portions, from Cj to P, and from P' to O],

lying just below the paths from c, to P and from P' to a,, which are in

the upper sheet. Thus we have a result which we may write in the form

«• = («,. )+{Ur ).

But, in fact, as the integral n*' " is of the form 1
-—-'^^ dec, and y has

different signs in the two sheets, we have

{iif. ) = - Wj. , and {Uf ) = — Ur
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Therefore, by addition of the equations wc have

Ur = — (O r, 1

3

which proves the statement made.

In regard now to the proof that w"' "'^, ..., ii"-'
"•" are all odd half-periods, we

clearly have, in accordance with the results just obtained,

U^' * = «;._ i
— (&);._ i+i + (o'r, i+i)

— — (&);._ p + ft)',., 2>) + (^'r, 1+ + &>'r, p),

which is equal to

(ft)',., 1 -I- ft)',., 2 + + ft)',-, i) + («r, i
— «r, i+1 - — &>r, p),

and if this be written in the form

m^(Or, 1+ + mpO),.^ p + m^w'r^ i + + m'pco'r, p

we obviously have m^tiii -\- -\- mnpiiip = 1.

Ex. i. We have stated that if b be any branch place there are p other branch places

hy,})^, ...,hp, such that u^' ^', m^' ^% ..., ?/^' ^p are odd half-periods, and that, if b' be any
branch place other than 6, 6j, ..., b^, u^'''''is an even half- period. Verify this statement in

case jo= 2, by calculating all the fifteen, =^6.5, integrals of the form «*»''', and prove that

when b is in turn taken at a, c, Cj, Cg, a^, ttg the corresponding pairs b^, K^ are respectively

{(hi ^h\ ("^D '''i\ (^'2> ^)> {'hi c), («2> «)' («i> «)•

Prove also that

«" " -1- ?<'''
'
"'

-f- w^-^
^2= 0.

r r r

Ex. ii. The reader will find it an advantage at this stage to calculate some of the

results of the second and fifth columns in the tables given below (§ 204).

201. Consider now the 2^ + 1 half-periods u^''"' wherein h is any of

the branch places other than a. From these we can form
( « ) half-

periods, of the form u^'' "• + u^'' ", wherein 6, b' are any two different branch

places, other than a, and
(

-^
j
half-periods of the form w^- " + u^'' « + u''"' "-,

where h, b', b" are any three different branch places other than a, and so

on, and finally we can form ( ^
j
half-periods by adding any

i^ of the

half-periods v!^' ". The number

^"^^r)- -rr
is equal to - 1 +i [(^ -M)2^+i]^^o, or to 2-^-1, and therefore equal to the

whole number of existent half-periods of which no two differ by a period, with
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the exclusion of the identically zero half-period ; we may say that this number

is equal to the number of iucongrueut half-periods, omitting the identically

zero half-period.

And in fact the 2-v — 1 half-periods thus obtained are themselves incon-

gruent. For otherwise we should have congruences of the form

l(l>i , a ^ j^tj , a ^ _|_ ,(6,., o = iiW, a ^ j^V> « -j- + j^V. «^

wherein any integral jt''«.« that occurs on both sides of the congruence may

be omitted. Since every one of these integrals is a half-period, and therefore

ifb^, « = _ uK, a^ we may put this congruence in the form

and here, since we are only considering the half-periods formed by sums of

p, or less, different periods, m cannot be greater than 2p. Now this con-

gruence is equivalent with the statement that there exists a rational function

having a for an ?/i-fold pole and having bi, ..., bm for zeros of the first order

(Chap. VIII. § 158). Since a is at infinity, such a function can be expressed

in the form (Chap. V. § 56)

(x, l), + i/{x, 1),,

and the number of its zeros is the greater of the integers 2r, 2p+l + s. Thus

the function under consideration would necessarily be expressible in the

form {x, l)r. But such a function, if zero at a branch place, would be

zero to the second order. Thus no such function exists.

On the other hand the rational function y is zero to the first order at each

of the branch places a^, ...,ap,Ci, ...,Cp,c, and is infinite at a to the {2p+ l)th

order ; hence we have the congruence

it«'>« + + ««;"«-|- 11''^'"+ + u''i"" + iiP^'^ = 0.

202. With the half-period of which one element is expressed by

?»i ft),., 1 -f- -h rn^Wr, 1, + iriyOi',.^ 1-1- + IllpWr, p,

we may associate the symbol

At, , A"o , . .
.

, kp

ki , k.,, ... , kp

wherein k^, equal to or 1, is the remainder when 7?tg is divided by 2. The
sum of two or more such symbols is then to be formed by adding the 2p
elements separately, and replacing the sum by the remainder on division
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by 2. Thus for instance, when p = 2, we should write (^-|)+(r^^)='^/^)•

If we call this symbol the characteristic-symbol, we have therefore proved,

in the previous article, that each of the 2-^ — 1 possible characteristic-symhols

othe?' than that one which has all its elements zero can he obtained as the sum

of not more than p chosen from 2p + l fundamental charactei'istic-symbols,

these 2p+ 1 fundamental chai'acteristic-symbols having as their sum the symbol

of which all the elements are zero. In the method here adopted p of the

fundamental symbols are associated witlt odd half-periods (namely those given

by u"-' "', ..., w^' */^), and the other p + 1 luith even half-periods. It is manifest

that this theorem for characteristic-symbols, though derived by consideration

of the hyperelliptic case, is true for all cases*. We may denote the funda-

mental symbols which correspond to the odd half-periods by the numbei's

1, 3, 5, ..., 2^ — 1, and those which correspond to the even half-periods

by the numbers 0, 2, 4, 6, ..., 2p, reserving the number 2p + l to represent

the symbol of which all the elements are zero. Then a symbol which is

formed by adding h of the fundamental symbols may be represented by

placing their representative numbers in sequence.

Thus for instance, for p = 2, Weierstrass has represented the symbols
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203. If in the half-period |n„,_ ,„-, of which au element is given by

i^m.tn' = WlWr, l
+ + "'p«»>r,|> + ^»l'<w'r, i + + m^(o'r,p,

we write hing = Mg + ^k^, ^ mj = Mg + ^k\', where Mg, J/,' denote integers,

and each of kg, kg' is either or 1, we have (cf. the formulae § 190, Chap. X.)

^ (" + i fim. >n) = ^(u; M + ^k, M' + i^k') e^,

where

X = [27; {M + ^k) + 27,' (J/' + \k')] [h + a, (J/+ ^k) + a>' (iV + P')]

-7rt(il/+p-)(^^'+P').

and therefore

^ {u • \k, 1 k') = e-^—-^^'^ (/< + in,,,, „,).

The function represented by either side of this equation will sometimes be

represented by ^ {u
|

^n,„, ,„') ; or if h n„,, „, = ^/^ • « + u^^ > " + + m^»> «, the

function will sometimes be represented by ^(?t|ii^""+ +it*»'''), or by

We have proved in the last chapter (§§ 184, 185) that every odd half-

period can be represented in the form

^n = «'"'" "* - 1("""*' - - u"/'-i '
"^-1,

and, when there are no even theta functions which vanish for zero values of

the argument, that every even half-period can be represented in the form

^fl' = U'<' "'• + -h «'V. "V
;

in the hyperelliptic case every odd half-period can be represented in the

form

I n = U^P' " — ?<"" <"' — — lOhy-i . «7'-i,

and every even half-period ^H', for Avhich ^(^O') does not vanish, can be

represented in the form

^n' = w^'>'''+ -\-\i^P'"v,

and (§ 182, Chap. X.) the zeros of the function ^{u^'^WVl) consist of the

place z and the places 7?i, ...,np, while the zeros of the function ^(u*>*|^n')

are the places bi, ...,bp. In case p = 2 there are no even theta functions

vanishing for zero values of the argument ; in case p = S there is one such

function (§ 185, Chap. X.), and the corresponding even half-period ^ fl" is

such that we can put
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wherein x^ is an arbitrary place and cc, is the place conjugate to x^. Since

then ^l^^' "-'- = — tt*'" "% this equation gives

^il" = u"'^' « — w"-2>«'

now, as in § 200, we easily find

^3 1^ / , / ,
f

, f \ n ft f

«r = — («r, 3 + « r, I + « r, 2 + &> r, 3); U"'
'

**> = ftJ,., j
— ft);-, o - ft) r, 2,

and therefore

^ n" = — O),., 1 + W,., 2 — «/•, 3 — («'», 1 + f^'r, 3)-

Thus the even theta function which vanishes for zero values of the

argument is that associated with the characteristic symbol ( i ^ -, )
•

In the same way for jj = 4, the 10 even theta functions which vanish for

zero values of the argument are (§ 185, Chap. X.) associated with even half-

periods given by

^n" = u^*' " — u'''
'^^ - u^" ''•',

where b is in turn each of the ten branch places.

204. The following table gives the results for p = 2. The reader is recommended

to verify the second and fifth colunms. The set of p equations represented by the

equation (^Q),.= mi<ar, i+ ??i2'"»-, 2 + ^'^I'^V, i+ "''2''"'r, 2 ^^ denoted by putting 512= 5 ( ^ ^

/. Six odd theta functions in the case p = 2.

Function
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//. Ten even tlteta functions in the case p = 2.

l-'unction
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205. Next we give the corresponding results for jt»= 3. Each half-period can be formed

as a sum of not more than 3 of the seven integrals ii}'' " (§ 202) ; the proper integrals

are indicated by the suffix letters employed to represent the function. We may also

associate the branch places witli tlie numbers 0, 1,2, 3, 4, 5, 6, say, in accordance with the

scheme

«!, «2) f's' ^i ^H ''21 <'.!

1, 3, 5, 0, 2, 4, 6;

then the functions ^i (m), B^{;u), ^r,{u) will be odd, and the functions 5o(«), ^.2{u\ $^{u),Sq{u)

will be even ; and every function will have a suffix formed of 1 or 2 or 3 of these numbers.

There is however another way in which the 64 characteristics can be associated with the

combinations of seven numbers, and one which has the advantage that all the seven

numbers and their 21 combinations of two are associated with odd functions, while all

the even functions except that in which the associated half-period is zero are associated

with their 35 combinations of three. It will be seen in a later chapter in how many ways

such a scheme is possible. One way is that in which the numbers

1, 2, 3, 4, 5, 6, 7

are associated respectively with the half-periods given by

M«i. a, Mf»2. «, M«3, a, ?{C, rt-|-«Co, rt-|-jfC3, ft^ ^<c, « + «C3, a-f ^(C,, «, %«, «-l-?/,Ci, «-f ?/C2, «,

llCiyU-^- uc, , a -}- 21C3 , a.

By § 201 the sum of these integrals is = 0. The numbers thus obtained are given in the second

column. Further every odd half-period can be represented by a sum ?{«3, « — u^u «i — mm2, a2,

and all the even half-periods except one as a sum m^i. ai + u^i, «2-f w^s. «3 ; the positions of

jij, n.2 or of 6j, b^, b^ are given in the fourth column.

/. 28 odd theta functions for p = ^.
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Table I. {continued.)

[205
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//. 36 even characteristics for p = 3.

807
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Table II. {continued).
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We can equally well choose seven fundamental odd characteristic-symbols, associated with

the integrals denoted by any one of the following sets :

c Cj , c 0-2, c C3, c a^a^, c ct^cci, c a^a.^, c^CgCs

CiC
,

Ci Co > Gy Co CiCC.1^/0
J

Ci(t"yCtt
,

CiCttd'tim C CnCo

C./)
, ^2 Cj

, '-'2^3? ''2^2^3' ''2^3^15 ^2^1*^2' ''''3^1

CgC ,
Cg C'j

,
C3C2, C^afft^il ^3%*^!) ''3^l'^2» ^^1^2

«1, «1«2> ''l^'.S) Cia2«3> C2a2«3, H^-^H^ <^«2«3

0^2

)

<^2^3 1 ^2^1 J
Cj^CtgOSj

,

C^d^f^i J <^3'^30^1

)

COtgCtj

Cto dnCt-l^ (XnCin^ C\Cl'\Cii}^ CnCttCf'Oj ^1^1^25 CCClCCtJ

The general theorem is—it is possible, corresponding to every even characteristic t, to

determine, in 8 ways, 7 odd characteristics a, ^, y, k, \, fx, u, such that the combinations

a, 13, y, K, X, /x, V, ea/3, ea/c, eX/i

constitute all the 28 odd characteristics, and the combinations

f, a^y, afcX, fiyK

constitute all the 36 even characteristics. In the cases above f = 0. The proof is given in

a subsequent chapter.

206. Consider now what are the zeros of the functions

^(tt), ^ («!«''""+ + it''*'"),

where hi, ... ,hk denote any k of the branch places other than a{k i^p), and ii

is given by

iir = ul''"' + 4-w?"''^ (r=l, 2, ...,j)),

the functions being regarded as functions of a'l.

The zeros of ^ {u) are the places z^, ..., z.^ determined by the congruence

11^1 . «! 4- -|- ii^p , ap = j^a;, , a _ ^^z, , re, _ _ ^Zp , ctp^

or, by*

tt^" " + it^'" *" + + u^P'^i> = 0.

Provided the places a,x^, ...,Xp be not the zeros of a ^-polynomial, that is,

provided none of the places x^, ...,x.p be at a, and there be no coincidence

expressible in the form Xi = Xj, the places z^, z^, ...,Zp cannot be coresidual

with anyj;> other places (Chap. VI. § 98, and Chap. III.) and therefore (Chap.

VIII. § 158) this congruence can only be satisfied when the places z^, ...,Zp

are the places

these are then the zeros of ^ (u), regarded as a function of iCj.

* The two places for which x has the same value, and y has the same value with opposite

signs, are frequently denoted by x and x.
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The zeros of ^ («{«''"'*+ + u^'"") are to be determined by the

congruence

w*i > «. 4- 4- u^i" «/' 4- u''' " 4- 4- a'''" « = it*i. » — w^i . ^i _ _ uz,,, op^

or, by

which we may write also

{zi,z., ...,Zp,a^-') = {hi, .... bk,x.„ ...,Xp);

in particular the zeros of ^(?<|w''''*) are the places b, x.,, ..., Xp.

207. Now, in fact, if the sum of the characteristics q^, ..., q^ differs from

the sum of the characteristics i\, ..., Vn by a characteristic consisting wholly

of integers, n being an integer not less than 2, then the quotient

^ ^(u; gi)^(M; q^) ^(m; gn)
•^^"^ ^(u; rO^(«; n) ^(u; r„)

is a periodic function of u.

For, by the formula (§ 190, Chap. X.)

^ {u 4- n,„
; q) = e^-^") +

-'"(""'' - "»'?) ^ (« ; 5),

where m denotes a row of integers, we have

/ (U 4- ilm) _ 27ri[»t(S(?'-Sr')-»t'(S7-2r)]

and if Iq — Ir, 2(/ — 2?", each consist of a row of integers the right-hand

side is equal to 1.

Hence, when the arguments, u, are as in § 206, the function f{ii) is a

rational function of the places x^, ...,Xp.

208. It follows therefore that the function

^- (it
I

It'''")

is a rational function of the places x^, ...,Xp. By what has been proved

in regard to the zeros of the numerator and denominator it has, as a function

of Xi, the zero b, of the second order, and is infinite at a, that is, at infinity,

also to the second order. Thus it is equal to M {b — Xi), where M does not

depend on Xy As the function is symmetrical in Xi, x.., ...,Xp, it must

therefore be equal to K{b — Xj) ... (b — Xp), where K is an absolute constant.

Therefore the function

W{b-x^)(b-X2)...(b-Xp) = -= ^ ' -' ^

may be interpreted as a single valued function of the places *',, ...,Xp,

on the Riemann surface, dissected by the 2p period loops. The values of

the function on the two sides of any period loop have a quotient which is

constant along that loop, and equal to + 1.
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The function has been considered by Rosenhain* Weierstrass t, RiemannJ and

Brioschi §. We shall denote the quotient 9 {u
\
v}>- «) / ^ (?<) by q^ (it). There are 2/3 + 1 such

functions, according to the position of h. Of these
q^^

(n), ..., q^^i'^) are odd functions,

and q (u), q (w), ..., q («) are even functions. The functions are clearly generalisations

of the functions \/'^= sn ?«, \/l -^= cn u, Vl — 'i'''''^=dn u, obtained from the consideration

of the integral

-/:

209. Consider next the function

^ (u\u^^' « + + u'"" *) ^^-' (u)
F =

^(W|tt^>«) ^(ltiM^t>«)

wherein b^, ..., hk are any k branch places other than a. We consider only

the cases k <p ^1. By what has been shewn, the function is rational in x^,

and if ^Tj, ..., ^^ denote the zeros of ^(?(|rt*"*+ +^*^''») the zeros of the

numerator, as here written, consist of the places

and the zeros of the denominator consist of the places

Oi, Do, ..., Ojc, X'l, ..., Xp.

Thus the rational function of x-^ has for zeros the places z^, ..., z^, a^~S

and, for poles, the places h^, ..., 6^, a;.., ....x^. It has already been otherwise

shewn that these two sets of jo + A; - 1 places are coresidual. Now any

rational function, of the place x, which has these poles, can (Chap. VI. § 89)

be written in the form

uy \-v{x — h^...{x— hk)

(x-b^) ... (x — bk) (x — X2)...(x — Xp)

'

wherein u, v are suitable integral polynomials in x, so chosen that the

numerator vanishes at the places x^, ..., Xp. The denominator, as here

written, vanishes to the second order at each of b^, ...,bk, and also vanishes

at the places x.,, x^, ..., Xp, Xp.

Let X, yL6 be the highest powers of x respectively in u and v. Then, in

order that this function may be zero at the place a, that is, at infinity, to the

order k— 1, it is necessary that the greater of the two numbers

2A. + 2^ + 1 - 2 (^ + A; - 1), 2/A + 2^^ - 2 (^j> + /j - 1)

* Mtimoires par divers savants, t. xi. (1851), pp. 361—468.

t By Weierstrass the function is multiplied by a certain constant factor and denoted by al(ri).

X In the general form enunciated, as a quotient of products of theta functions, Werke

(Leipzig, 1876), p. 134 (§ 27).

§ Annali di Mat. t. x. (1880), t. xiv. (188G).
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(wherein 2 (/) + /• — 1) is the order of infinity, at infinity, of" the denominator)

should be equal to — (^— 1). Since one of these numbers is odd and the

other even, they cannot be both equal to —{k— 1). Further in order that

the ratios of the \ + a* + 2 coefficients in u, v may be capable of being chosen

so that the numerator vanishes in the places x.,, ..., Xp, it is necessary that

\ + fjt + l should not be less than j9— 1. And, since a rational function

is entirely determined when its poles and all but p of its zeros are given,

these conditions should entirely detennine the function.

In fact we easily find from these conditions that the case 2\+ 2^^+ \>'1{/jl -fA-)

can only occur when k is even, and then X = ^^• — 1, /a =jy — 1 — ^A-, and

that the case 2\ + 2p + I < 2pL + 2k can only occur when k is odd, and then

\ = ^ {k — S), fjL = p — ^ {k + I ). In both cases \ + /i + 2 = jj.

By introducing the condition that the polynomial ui/ + v {x — b^) . . . {x- - bt)

should vanish in the places x.,, ..., Up we are able, save for a factor not

depending on x, y, to express this polynomial as the product of (a-— 6j) . . . {x—bk)

by a determinant of ^; rows and columns of which, for ?•> 1, the 7'th row is

formed with the elements

A A-l
x^yr Xf y^ yr m /^-i -.

wherein <j>(x) denotes (a;— 6,) ... (a; — 6^.), the first row being of the same
form with the omission of the suffixes.

Therefore, noticing that F is symmetrical in the places x^, ..., Xp, we
infer, denoting the product of the differences of x^, ...,Xp by A(a^, ..., Xp),

that

Ixry,. x^y, yr_ ^ m-i J

^(m|m*"«) ^(mIm"*.")
~

^{x^,...,Xp)

where G is an absolute constant, and the numerator denotes a determinant

in which the fii-st, second, ... rows contain, respectively, x^, x.., ...; and here

when k is even, X = ^k —I, fi=p — 1 — ^k

and when k is odd, X = ^(^ — 3 ),
/x = ;) — ^ (A -f 1 ).

210. By means of the algebraic expression which we have already

obtained for the quotients ^ (u u^- '');'^ (u), we arc now able to deduce an

algebraic expression for the quotients

since it has already been shewn that by taking k in turn equal to 1, 2, ...,p,

and taking all possible sets 6i, .... bt corre.sponding to any value of A', the

half- periods represented by »*<' + + u^'"^ consist of all possible half-

periods except that one which is identically zero, it follows that, in the
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hyperelliptic case, if u denote uf^' •
'*> + + u^i>

'
"'>\ and q denote in turn all

possible half-integer cha7-acteristics except the identically zero characteristic,

all the 2-^ — 1 ratios ^ {u ; q)/^(u) can be expressed algebraically in terms of

Xj, ..., Xp, by the formulae which have been given.

The simplest case is when k = 2 ; then we have X = 0, fj,
= p — 2, and

^ (mJ M^' « + M&2,<^)^(jt) _ I y,. ]_

where R {x) = {x — x^ (x— x„) ... (x — Xp), and C is an absolute constant.

Denoting the quotient ^ («|w^" * + u^^' ")/^ {u) by q^^^ i_^,
we have

where A^^n is an absolute constant; and there are ^9 (2^ + 1) such

functions.

When k = 3, we have \ = 0, iJi=p — 2, and, if qb^,b,,b3 denote the quotient

^ (w|m^. « + u''^' « + u^^' *)/^ (u), we obtain

<A, K .3 = B,,
, -.qb^qb/lb-^t^

(^7_60>,-6.)(-^.-&3) RTM '

where B^^ .,^ 3 is an absolute constant. It is however clear that

9b„b, _ 9b,^_b^ ^ (^^ _ ^^)
qh^b^

A^.qb,qb, Ay^qb.qb, ' ' B,,,qb^qb,qb,'

so that the functions with three suffixes are immediately expressible by those

with one and those with two suffixes.

More generally, the 2-p — 1 quotients ^ (1/ ; q)/^ (u), depending only on

the p places x^, ...,Xp, must be connected by 2-^ — ^ — 1 algebraical rela-

tions; and since (Chap. IX.) any argument can be expressed in the form

w^"'*' + -{-tv^p'^p, it follows that these may be regarded as relations

connecting Riemann theta functions of arbitrary argument. This statement

is true whether the surface be hyperelliptic or not.

Of such relations one simple and obvious one for the hyperelHptic case under con-

sideration may be mentioned at once. We clearly have

and therefore

^-^%j>, {u)\ (^0 +^' %.b, (n) 3b, («) +^^- \b, {(') %. (^0= 0.

^23 ^hl ^^12

It is proved below (§ 213) that A^^ : A%i : .1^2= (^2~^3) ih~h) (W~h)-

Other relations will be given for the casesjo= 2, p= 3. A set of relations connecting

the 5''s of single and double suffixes, for any value of ^5, is given by Weierstrass (Crelle lii.

Werke i. p. 336).
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211. Ex. i. Prove that the rational function having the places ^j, ..., .v,,, «', as poles,

and the branch place h as one zero, is given by

Z={h-x) (b-x^i^. ^

»Xr-b li'ix'r)'

where ^(|) = (^-.'') {$ — 'i'i) i$-'^'p)i '^'><^j i" the .siunniation, Xq, ^/^ are to be replaced

by X, y.

Prove that if u denote the argument

u = u'- " + ?t^' • "' + + iifv< ";•,

then

52(«) ' (l,-.r){b-x,) {b-x^y

where A is an absolute constant.

Prove for example, in the elliptic case, with Weierstrass's notiition, that

Ex. ii. If Zf denote the function Z when the branch place b^ is put in place of 6, and

R (br) denote {br— .r) {b^- .v{) (6,. -.r,,), and we put

S{u\u^^'''+ +u^''-'')3''-'^{u)

prove that

^A(.r, .fi, ..., x„),

where B i.s an absolute constiint, A (.r, .r,, ..., Xp) denotes the product of all the differences

of the (^+ 1) quantities x, x^, ..., x^, {Xr) = {xr— bi) ('^r-^*)> ^"fl ^^^ determinant is

one of jo+ 1 rows and columns in which, in the first row, .r„, ^q are to be replaced by x, y.

Prove that, when k is even, \—\{k-1). n^p-ii; and, when k is odd, X = ^(X'— 1),

fji=p-ii{k+l).

Ex. iii. Hence prove that the function —^-^ T.";" is a constant

multiple of

J'^rz:^) \:(^^,^, <-. -. ,f^ , <. <- >r, '
I

A (.r, .r,, ,.., .r„)

This formula is true when / = 1.

Ex. iv. A particular case is when k = 2. Then the function 5 {u\u^"'^-^-tJ'"'^)l B (u) is

a constant multiple of

V(6i-^) (61-^1) {b^-Xp)^/{b.^-x) (ftg-x,) (ftg-OTp) 2- I/r

t{.rr-b,){x,-b.;)R'ix,y

wherein /? (|)= (| - ^•) (|- a,) (| - x,).

Ex. V. Verify that the formula of Ex. iii. includes the formulae of the text (§ 210) ;

shew that when x is put at infinity the values of X, ^i in the determinant of § 209 are

projmrly obtained.
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£x. vi. Verify that the expression yjr{x, b; a, .Vj, ..,, Xp) of § 130, Chap. VII., takes

the form given for the function Z of Ex. i. when a is the place infinity.

Ex. vii. \if{x) denote the polynomial

X+XiA'+ X.,.r2+ +X2„ + 2.r23^ + 2,

prove that any rational integral polynomial, F{Xy z), which is symmetric in the two

variables x, z and of order^+ 1 in each of them, and satisfies the conditions

is of the form
F{x,z)^f{x,z) + {x-zf^{x,z),

where (cf p. 195), with Xo=X, X2,, + 3= 0,

P+\
f{x,z)= 2 xhi{2\,i + \2i^i{-i-+^)},

and
yf^

(x, z) is an integral polynomial, symmetric in .r, z, of order jo - 1 in each*.

In case ^= 2, and f{x) = {x-a^{x— a^{x— c){x-c-^){x — c^, prove that a form of

F{x, z) is given by

F {x, z) = {x- a^) [x - a^) (z -c)(z- Cj) (z - c^) + {z- a^) {z - a^ {x - c) (x - Cj) {x - c.).

Ex. viii. If for purposes of operation we introduce homogeneous variables and write

f{x)= \X2. +\X2. Xi + +X2;;+i.<2.fi +X2„ + 2-^'l '

prove that a form of F{x, z) is given by

where, after differentiation, x-^,'x,^, z^, z^ are to be replaced by x, 1, z, 1 respectively.

This is the same as that which in the ordinary symbolical notation for binary forms is

denoted by/ (.r, 2) = 2aa a^
,
/(^) ^^ing a^;

Ex. ix. Using the form of Ex. viii. for F{x,z), prove that if Cj, e.^, x, x^, ..., x,,

be any values of x, we have

^ ./^(-^r) ,^^ f{^\,^s) _ fjei) f{e,) f{e„ e,)

4 [G' {Xr.)r^^ G' {Xr) 0' (x,) [G' {e,)f
^ [G' {e,)Y

"^
G' (e,) G' (e^)

'

where G{^)= {^-e^){^-e.^(^^-x){^-x^ (|-a--p), and the double summation on the

left refers to every one of the \p{p + \) pairs of quantities chosen from x, x^^ ..., x^,.

Ex. X. Hence it foUowsf, when y'^^f{x), i/r^=f{.Vr), etc., and B{^) = {^-x) {$--Vi)...

ii-Xp), that

^'' ^'' L ("^"1- ^r) {e,- Xr) R'Jx,)] le, - e,f R (e,) {e,- e.J^ R (e.,) ^ {e, - e,f

is equal to

* It follows that the hyperelliptic canonical integral of the third kind obtained on page 195

can be changed into the most general canonical integral, Rf' "
(p. 194), in which the matrix a

has any value, by taking, instead of/(x, z), a suitable polynomial i<' {.r, z) satisfying the conditions

of Ex. vii.

t The result of this Example is given by Bol'/a, Gotting. Nachrichten, 189i, p. 268.
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where the summation refers to every pair from the ^)+l quantities x, .t\, ..., .r,,, and

f{x, z) denotes the si)ecial vahie of F{x, z) obtained in Ex. viii.

Ex. xi. It follows therefore by Ex. iv. that when h^ , b.^ are any branch places of the

surface associated with the equation y^-/(.r)= 0, there exists an equation of the form

whei-e C i-s an absolute constant, <J {^) = {i-b^){^-h.;){^-x){^-Xi) (^-.«v). a"^

„= „«, a
_|_

j^a;,
,
n

, ^ ^ ,(J,)
. «;. -phe importance of this result will api^ear below.

212. The formulae of §§ 208, 210 furnish a solution of the inversion

problem expressed by the p equations

•"i.ii , ,
a-,.,«,

W; + + «r'"" = «,-; (i= 1, 2, ..., jj).

For instance the solution is given by the '2p + 1 equations

from any p of these equations x^, ..., x^ can be expressed as single valued

functions of the arbitrary arguments u^, ..., Up.

And it is easy to determine the value of J.-. For let &i, ..., 6p, 6/, ...,bp

denote the finite bianch places other than b. As already remarked (§ 201)

we have
(c, Ci, ..., Cp) = {a, tti, ..., (/p)

and therefore

(6,61, ...,?>j,) = («, 6/, ..., bp).

Now we easily find by the formulae of § 190, Chap. X. that if P be a set

of '2p integers, Pi , . .
. , Pp, P/, . .

. , Pp,

^^w + ^np) ^{u',^P)''

hence, if «''> " = ^ ^i\ p- , and w„ = 11^' " + + ?A' ", we have, by the formula

under consideration, writing bi, ..., bp in place of ^i, ..., Xp, the equation

^^^^':^^p-Aib-b,)...(b-b,x

and, writing 6,', ..., 6/ in place of a;,, ..., Xp, we have

thus, by multiplication

e-niPi^ = A\b-b,)...(b- bp) {b - 6/) ... (6 - V).
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and hence
^^\v^'^) ^ {b-x,)(b-x,)...(b-Xp)

where/(a;) denotes {w — Oi) ... (x — a^) {x — c) {x — c^)...{x— Cp), and e'^^^^ = ± 1

according as u^'^ is an odd or even half-period.

The reader should deduce this result from the equation (§ 171, Chap. IX.)

by taking Z to be the rational function of the second order, x.

When u = ?<*' **+ ?<^' • "' + + ?<^'' • ''^, we deduce (see Ex. i. § 21 1

)

52 {u
I

M^«) ^ _^
{h-x){h-x,)...^h-x^) V

I _^y^^ 1_ -12

52 (?0
-

^ sl^^PP f (5)
Lr=o x^-h R (.r,.)J

'

where7?(^) = (^-.r)(^-.ri) (|-.r,).

If in particular we put b in turn at the places a^, ..., a^, write

P (x) = (a; — tti) . . . (.-r — a^) and Q (a;) = (a? - c) (;?; — Ci) ...{x — Cp), and use the

equation

(x-Xi) ...(x- Xp) ^ 1 , I (at - x^) ...(aj- Xp)
P(^) 1 {x-ai)P'{ai)

'

we can infer that x^, ..., Xp are the roots of the equation*

,r,'^V P'(aO a,: - -^W
where e^ is + 1 and is such that we have

^'i{^u\nai,a
) ^ {Clj-X

^ ) ... {qj - Xp)

^{u) ^' '^-P'{ai)Q{ai)

Another form of this equation for x^, ..., Xpis given below (§ 216), where

the equation determining yi from a\- is also given.

213. We can also obtain the constant factor in the algebraic expression of the

function 3 (?(|?<*" '*+m^^' «) 3 (?<)H-5 (« ?<^" ") 3 {u\it^'

'

'').

Let />j , h.j, denote any branch places, and choose z^, ..., Zp so that

U^""' + +,(^P'"j'+ m'''>'»= W^'>''' + +U^P' "P
;

then 0j, ..., Zp, a are the zeros of a rational function which vanishes in x^, ..., Xp, b^.

Such a function can be expressed in the form

y+ {x-b,){x, l)P-i

(•^-•^1) i^-Xp)

'

* Cf. Weierstrass, Math. Werke (Berlin, 1894), vol. r. p. 328.
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where (.r, iy~i is an integral jwlynomial in .r whose coefficients are to be chosen to satisfy

the p equations

-yi+ K-^)(-ri, l)"-' = 0, (i = l, 2, ...,p) ;

thus the function is

F{

where F{x)=^{x~.%\) ... {.v-Xp) ; and, if the coefficient of .r-'"-' in the equation associated

with the Riemann surface lie taken to be 4, we have

and therefore, putting b.^ for .r,

{b,-x,) (b.-x,)-^"' '^^L^•=l(•^i-&l)(•n-^'2) J'-'i-nU-

Now we have found, denoting ?t^""' + + 71^1" "f by u, and ?i^" "' + +u''" '*" by v,

the results

where ^t''-'
'' = ^0^ p.; hence we have

52 (^,) 52 (« I

M*^ •

") ~ L^ .=1 ('^i - ^1) i^i - ^2) ^'
(*.)J

'

which, by the formulae of § 190, is the same as

where f is a certain fourth root of unity.

Thus the method of this § not only reproduces the result of § 210, but determines the

constant factor.

Ex. Determine the constant factors in the formulae of §§ 208, 210, 211.

214. Beside such formulae as those so far developed, which express

products of theta functions algebraically, there are formulae which express

differential coefficients of theta functions algebraically ; as the second

differential coefficients of ^(w) in regard to the arguments «i, ..., Uj, are

periodic functions of these arguments, this was to be expected.

We have (§ 193, Chap. X.) obtained* the formula

= Li +2, vk, i [{Xk, x) - (a-k, fi)] ;

* Cf. also Thoniae, Crelle, lxxi., xciv.
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we denote by h,. the sum of the homogeneous products o{ x^, ..., Xp, r together,

without repetitions, and use the abbreviation

Xp-i {x; x„ ...,Xp) = xv-i - h,xP-i-^ + LxP-^-' - + (-)^-V^

;

further, for the p fundamental integrals i<f
'^,

. .
.

, ii'p
'*, we take the integrals

p dx p X dx [^ xP~^ dxp dx p
y J^ y

then it is immediately verified that

"'''-y^' Tjx;) / ~dt
'

where F (x) denotes (x — Xi) ... (x — Xp).

Thus, if fi, V denote the values of x and y at the place [x, we have, writing

a, tti, .,., ap for m, mj, ..., 77ip (§ 200),

— ^j(u*'" — W=^"*' - — u^p.O'p^J^ ^i(uf'^ _I(«M«. _ —u«p,ap^

- 7-'^''"
_i_ 1 f Xp-i(^k', ^1, '•-, Xp) \y_±yk yk + v'

_

ic=\ P yj^k) \Xii-X a;;fc-/i|

therefore, also, the function

'k=\ ^ (^'ifc) x-x^
is equal to

which is independent of the place x.

Now let R (t) denote (t — x){t— x^) ... (t — Xp), and use the abbreviation

given by the equation

yxp—i^ '^' ^1
' • • • ' ^p)

I
y^Xp—i v^i '

^'> ^2
>

• • •

»

Xp)
. , ypXp—i i^p >

''^» ^i > • • • > ^p—i

)

^=Jp—l \X, Xi, . . . , Xp)
]

then also

yiX,p—i—i \X\
? ^2) • • • I

Xp) yp

^

p_i_i {^Xp
; Xi, ... , Xp_i) f / \

F'{x,)
^ "^

F'{xp)
-Jp-i-,Kx,, ...,xp}.

IN OW "Xp—i \Xl J
X, X^, .,., Xp) %y—i V^l j ^'l ) X2, . . . , ^'p^

is equal to

[xr' - xr'~' (x + k) + x\~''\xh + k,)- + (- l)P-'xkp_i_,]

- [x^' - x^~'~^ (a;, + k,) + Xi~'~^ (xjc^ + h)- + (- iy'-^x,kp^i_i],
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wherein k,. denotes the sum of the homogeneous products of a\,, ..., a:^,

without repetitions, r together, and is therefore equal to

(X. -a-) [xr''~' - ^r'"% + + (-)''-•-V-.]
or to

Hence

Xp-i{xi; X, Xj, ...,Xp) ^ xp-i (a?i; a?i , a?2, ...,Xp) + iXi - ic)xp-i-A^y ^i» •". ^y)

R'(a\)
"

(x,-x)F'(x,)

Xp-i(a?i; Xi,Xi, ...,Xp) 1 Xj^i-i(a^i; ^-i, •••
. ^p)

"r(x,) x-x, F'{x,)

While, also,

R'i^r) kZi F'{xk) x-Xk'

Thus

/^_.- (x, X,,..., X,) = S^4P ___ __^^^ + /^,_, (.r„ ..., or,).

Therefore the expression

fi (W=*' « + «*'" + ... + U^P - "") + X/' " + I ' " + . . . I- X?" " - !/;>-,• ('^. -T,
,

. .
. ,

.Tp)

is equal to

^f (it^' « + M^' •«' + ...+ ii"^" •«") + Xr '"+••• + Xf' " - hfp-i (a, x„ ..., Xp).

In this equation the left-hand side is symmetrical in x, x^, ..., Xp, and the

right-hand side does not contain x. Hence the left-hand side is a constant

in regard to x, and, therefore, also in regard to .r,, ..., Xp. That is, the left-

hand side is an absolute constant, depending on the place fi. Denoting this

constant by — C we have

-t,-(tt^'« + u*'-'''-h + »^<"M = X^''' + />?"" + +LT'''

_ yXp-i{'^\ ^i> •••>^p) _ _ ypXp-ii^'p'y x,x,,...,Xp_,) ^
2R'{x) 2R'{Xp)

'

215. From this eijuation another important result can be deduced. It

is clear that the function

-ti(u^.« + "^"''' + + „-„<",>)- LT'"'- -I?'""

does not become infinite when x approaches the place a, that is, the place

infinity. If we express the value of this function by the equation just

obtained, it is immediately seen that the limit of

- VkXi^ii^k ; x,x^,...,Xp) . _ ykXp-i-A^k\ x^, ...,Xp)

2R'(xi) 2F'{xt)
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and that the expression

y^p—i y^'i "^i ' • • • > ^p)

2R' {x)

1 2
when expanded in powers of t by the substitutions x = -,y = -—^^ (1 + At- + . . .),

where J. is a certain constant, contains only odd powers of t. Hence the

limit when t is zero of the terms of the expansion of this expression other

than those containing negative powers of t, is absolute zero, and therefore,

does not depend on the places x^, ..., x^. The terms of the expansion which

contain negative powers of t are cancelled by terms arising from the integral

Li . Since this integral does not contain x^, ..., x^ we infer that the

difference

tx, IX _ yxp-i{x; Xi, ..., Xp)

2R (x)

has a limit independent of a?i, ,.., Xp, and, therefore, that

no additive constant being necessary because, as ^i (u) is an odd function,

both sides of the equation vanish when x^, ..., x^ are respectively at the

places Oj, ...,ap. As any argument can be written, save for periods, in the

form w*'" '*'+ ... +w*P''*>', this equation is theoretically sufficient to enable us to

express ^i(y) for any value of u.

Ex. i. It can easily be shewn (§ 200) that

,(C. « + mC,,«,4. + m''p'«p= 0.

Thus the final formula of § 214 immediately gives

Ex. ii. In case p= \ we infer from the formula just obtained, and from the final

formula of § 214, respectively, the results

where D is an absolute constant. Thus

This is practically equivalent with the well-known formula

The identification can be made complete by means of the facts (i) The Weierstrass

argument ii is equal to ?<"- % in our notation, so that ?/=-§)' (m), (ii) v^' '^i = w + w' — m, so

that fi(?<^'
''') = Ci(«^ +"'-«)=- ^1''''= -

I

^^-^', as we easily find when Zj'*^ is

J ax y
B. 21
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chosen as in § 138, Ex. i., (iii) dCu = -—
,

(iv) therefore d («''"')= -C"> 0) the branch

places q, Oj, c are chosen by "Weierstrass (in accordance with the formula ^1 + 62+ 63=0)

so that the limit of i(>u-—,, when u= 0, i:* 0. The eflfect of this is that the constant

D is zero.

Ex. iii. For jj= 2 we have

2(.r-.ri)(a--a-2) 2 (x^

-

t) (.rj- .rj) 2(x2-.i-)(-r2--^i) *

- C2 (»'*' " + ?<*"" + 'iC'" "')= ^2' '^ + '^2*" " + ^r"
"

y\ ^0,
2(.r-.ri)(ar-.r2) 2 (or^ - a-) (jr^ - Xj) 2(jr2-^)(^2--^'i)

and

where with a suitable determination of the matrix a which occurs in the definition of the

integrals L^: *^ and in the function 3 (m), we may take (§ 138, Ex. i. Chap. VII.)

For any values of jd we obtain

-Cp(m*>''''+ +«^'*'0=^p"'''+
+^?''^=-!r\|,/J*—

*"•

Ex. iv, "We have (§ 210) obtained 2?p - 1 formulae of the form

3(i/i ?/-"'" + + t^'°)_y

where Z is an algebraical function, and the arguments ?<i, ..., u^, are given by

« = M^"«> + +M=^-'^;

the int^rals being taken a.s in § 214, these equations lead to

Hence we have

For instance, when >(=1, and Z is a constant multiple of VC^i— •'"i) (^1 — -J"?)* ^e

obtain

A. ON A A,^_ •^ ,.
\p-ikXr\ Xy, ...,Xp) 1

so that

-C.(«l«*''')=Zf" + + Zji'.«»'-J^2/^^[xp-.-i(.rr; .ri, ....-rp)

^ _^r Xp-iCj'r; b,Xi, ...,.rp
)
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By means of the formula

Ciiu+^Qp, p') = r]i, 1 Pi + +Vi, p Pp+ v'i, 1 A' +n'i, P PJ+ Ci («l|Qp. P'))

which is easily obtained from the formulae of § 190, we can infer that the formula just

obtained is in accordance with the final formula of § 214,

Ex. V. We have seen (§ 185, Chap. X.) that in the hyperelliptic case there are (
j

even theta functions which do not vanish ; and the corresponding half-periods are con-

gruent to expressions of the form

It may be shewn in fact that these half-periods are obtained by taking for a\ , . .
.

, .r,, the

( -^
J
possible sets of p branch places that can be chosen from «!, ..., a^, c, c^, ..., Cp.

Hence it follows from the formula of the text (p. 321) that if ^Qk be any even half-period

corresponding to a non-vanishing theta function, we have

This formula generalises the well-known elliptic function formula expressed by C<» = '7-

To explain the notation a particular case may be given ; we have

f,K,., 0,,,,, ..., 0,,,, ,)='?<•, r, or f.
(,,".• + l.«r)._=_X;'- + 1'""

and

fi(w'l,r, <tf'2,l-> -M (^'p,r)=f]'i,r, «!* fi
('**'''' '*'') =-Z^'''"''.

Thus each of the 2p^ quantities t/,, ,., j;'i,
,. can be expressed as f-functions of half-

periods.

Ex. vi. The formula of the text (p. 321) is equivalent to

_f.(^(ar.,a,^
-J-

«=«'P.«P)=Z^' >«'-!- +L'^P'''P-^§. ^^,
'

k=l ^'^i +

1

where

«,= ?/>'«> + +w^J"''^.

For example when jo= 2

216. It is easy to prove, as remarked in Ex. iii. § 215, that if

U = u^i . «i -1- + ;/%' «P,

and the matrix a (§ 138, Chap. VII.) be determined so that the integrals

ij''* have the value found in § 138, Ex. i., then

P. rkOcPdx

k=lJ a.

Therefore, if - o* Cr (u) be denoted by g),., i (m), we have
OUi

21—2
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and thus, as follows from the defiuition of the arguments u,

where F (x) denotes (x — Xi) ... {x — Xp).

Whence, if x be any argument whatever,

»=i

p
xl 2 X'-^Xp-i('''k\ ^1, •••. ^p)

}J~' |>p. .• ("), = \^.. 2^
-^ jr^

= iX.^+a 2̂
a;fi^(^l

but we have

Thus

Cx {x - xu) F' (a>)

'

.^ a;*"' Pp. i (m) p 2 ar^ pp,f(«)

Thus, if we suppose Xo^^^i = 4, the values of x^, ..., a-p satisfying the

inversion problem expressed by the equations

u = u^^' "' 4- + ll^P' "t

are the roots of the equation

F{x) = xP-xP-'^p^p(^u)-xi^-'^p^p_,{u)- -|)p.i(«) = 0.

In other words, if the sum of the homogeneous products of ?• dimensions,

without repetitions, of the quantities x^, ..., Xp be denoted by hr, we have

Further, from the equation

3a?fc ^ ykXp-iJ^k] art Xp)

d>u F'(x,)

putting J) for i, we infer that

because F(xk) = 0. Thus, if we use the abbreviation

dF(x)
'^^"^^"" ?^ = '^''~'P/'-P.P^") + ^'^'^p.p.p->(")+ +Pp.p.j(«)

we obtain
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These equations constitute a complete solution of the inversion problem.

In the g)-functions the matrix a is as in § 138, Ex. i., and the integrals of the

first kind are as in § 214.

We have previously (§ 212) shewn that x^, ...,x^ are determinable from

'p such equations as

^^(»|^«i'«) ^ _^
(g,: - a-'i) . . . (a^ - a^y) ^ (a^ -x^ ... (aj - Wp)

^^{u) - V-P>7)Q(a3 '"
f^i

''^'^"

Thus we have p equations of the form

^'
—

W(u)~ ^ ^' ~ "* ^^'- ^ ^'-^^ ~ "*
^'^^' ^-' ^^^^

~ ~ ^•^^' ^
^^^•

^A'. i. For j9 = 1 we have

This is equivalent to the equation which is commonly written in the form

sn^ (% V gj — 63)

i/'f. ii. For jo = 2 we have

Ml
^2(^)

=V- «1^2. 2 C«) - S'^2. 1 («),

M
_g2(^) -«2^-«2g>2.2(-'0-g^2.lW-

We may denote the left-hand sides of these equations respectively by \i.yq^, M2?2^-

Ex. iii. Prove that, with /xi?i^= «i^- «i^2, 2 («) -^1, 2 («)> etc., /xi= ± V -/'
(«i), we have

= ^22 («) ^12 (^*') - ^12 (?0 &>22 (
«') + («1+ «2) [^«>12 (^0 " g>12 (?«')]+ «1«2 [^"^22 («) " ^•^22 («')]•

Ex. iv. Prove that

^*-. V. If, with P (.1-) to denote {x-a-^ {x- «„), we put

y ^ f'>=l P(X) dX^ fXp PJ^ dX

prove that

9X^ "^BFp- S^-

^o;. vi. With the same notation, shew that if

then

9(r_ («f-.r].) (aj-Xp)

9^- P'K)
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The arguments \\, ..., V^ are those used by Weierstrass {Math. Werke, Bd. i. Berlin,

1894, p. 297). The result of Ex. iv. is necessary to compare his results with those here

obtiiined. The equation ^r= V'(-*V) is given by Weierstrass. The relation of Ex. vi.

is given by Hancock {Eine Form dcs Additiomtheorem u. «. ic. Diss. Berlin, 1894,

Bernstein).

With these arguments we have

E.r. vii. Prove from the formula

- (i (
«*• " + «) + f.

(«'^' "" + U) = ^r *"+
J^

h; i [(.'.-il-,
.'-) - {'k, m)]^ ,

where

u= u-'^''^' + + w^'"''",

that the function

dnr^'l F{x)
'"='

J F{x)

is independent of the place .v. Here c is an arbitrary place and F{x) = {x - .f,) {x - Xp).

Ex. viii. U B^" denote the integral n"' " - 222ai, .• w^ " «f", obtained in § 138, and

F*^^ " denote £> If' ", prove that in the hyperelliptic case, with the matrix a determined as

in Ex. i. § 138, when the place a is at infinity,

Hence, when X.,,,^i = 4, .shew that the equation obtained in § 215 (p. 321) is deducible

from the equation (Chap. X. § 196)

F'"'"' + + /^A""'i'=_ 2 u^(»i)Cr ('**"'"' + + irP'"'p).

E.v. ix. We can also express the function
f,, («+ «') ~ f;>('') ~ fp(^)> which is clearly a

periodic function of the arguments ?/, v, in an algebraical form, and in a way which

generalizes the formula of Jacobi's elliptic functions given by

Z{ii) +Z(v)-Z(u+ v)= i:'' snusn r sn (w + <')-

For if we take places .'•, , ... , f^, such that

U= tf*"'*' + 4-(4-^yOp

i;= M^""' + + it^p><»/>

-u- r= ?t^" "' + + it^'" °i',

the.se 3p places will be the zeros of a rational function which has «i, ..., Op as poles, each

to the third order. This function is expressible in the form {My + yP)jF^, where P
denotes (a: - a i) (x-Op), M is an integral polynomial in x of order jo- 1, and -iV is an

integral polynomial in x of order p. Denoting this function by Z, we have
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by § 154, Chap. VIII., where /=X^' ^= Wp^^ / ^ . Writing Z in the form
y

(^.rP-i + )y-v{xP-\- )P
pi '

and taking X2p + i
= 4, we find the vahie of the integral K to be - 2^4.

But from the equation

mP-^M''q={x-x^) {x-x,^{x-z^) {x-z,:) (x-Ci) {>--Q,

where Q= {x-c){x — Cj) {x- c^), we have, putting a^ for .*•,

Piqi^i= 2 \/-Q {Ui) {Aa^!-^ + ...), (z = l, 2, ...,p),

where pi= ^{ai -x^) (ttj

-

x,), qi=\/{ih-h) («i

-

^jOj ^i= V(«i-Q («i - fp)

;

solving these equations for A we eventually have*

jS'x X. Obtain, for /»= 2, the corresponding expression for fj
(?t) + f i

( <') - fi
{u + i').

^d;. xi. Denoting — by Cj, the equation
^(«i)v-^(«i)

Cp i'ii) + fj. («') - Cp («+ «') = 2 CiPiqiVii
i=\

gives

-i^P, rW + ^P. <• (^)= 2 Ci\2>\ qi-piq\ '] tjr„ (r=l, 2, ..., p),
i=l

where pi denotes^ \/{ai — x-^) (a; - Xp). It has been shewn that pi is a single valued

function of u and it may be denoted by pi {u). Similarly arj is a single valued function

of u + v, being equal to pi{ — u—v). The equation here obtained enables us therefore to

express pi{u+v) in terms of Pi(u), pi{v), and the difierential coefficients of these; for

we have obtained sufficient equations to express ^,,, ,. (u), ^,,, ,. (v) in terms of the functions

Pi (^)) Pi (*^)- -^ developed result is obtained below in the case p = 2, in a more elementary

way.

217. We have obtained in the last chapter (§ 197) the equation

Xt^ij {lu^^ '« - w^- "^. - - u'p' '>h>)
p,i {a;) fXi (w,,) = D^D^^,R%%'

i 3.

Hence, adopting that determination of the matrix a, occurring in the

integrals i^'^ and the function ^(^0 (§ 192, Chap. X.), which gives the

particular forms for Xf '^ obtained in § 138, Ex. i., we have in the hyperellip-

tic case

i j '

** 4 (a? X,-)'

p+i
where f(x, z)= X x^z'' [2X2; + ^21+1 (^ + 2)]. This equation is, however, in-

* This equation, with the integrals L^' " on the left-hand side, is given by Forsyth, Phil.

Trans. 1883, Part i.
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dependent of the particular matrix a adopted. For suppose, instead of the

particular integral

Jy. y k=i

we take

k=l

where C,, k = Ct, ,• ; then (§ 138) this is equivalent to replacing the particular

matrix a by a-\- hC, where C is an arbitrary symmetrical matrix, and we

have the following resulting changes (p. 315)

B^'c (p. 194) becomes changed to R^c - --(7,_ii(,' u,^ , so that,

f{x, z) (p. 195) becomes changed iof{x, 2') - 4 {x — z)- ^ICi^ jtA-'~^^*~S

^(u) (§ 189) becomes multiplied by gi^"",

and thus ti(") is increased by C,-, i?ti + + C,-,^?;^, and instead of f>i,j(«0

we have p,-, j («) — C,-, j.

Since now u*- " + «*«' "* = li^" " + u*' "s we have \p {p + 1) equations of the

form

where u = ?/^' "+"*""' + +?<'^""^', ?- = 0, 1, ..., j:), and 6" = 0, 1, ..., p.

Hence, if gj, e, denote any quantities we obtain by calculation

here the matrix a is ai'bitrary, the polynomial /(^r, Xg) being correspond-

ingly chosen, and

— i ~ 1 ? — 1

Suppose now that f{x,z)=f{x,z) + 4i(x — z)-'E'^AijXr Xg , where
i i

f{x, z) is the form obtained in Ex. viii. §211; then we obtain

and by Ex. x. § 211 this is equal to

UUe)R(e)\^ y^ T_^_/L^)-^(^L

f{e.)R{er) M,e,)
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and therefore

i i
_ (ei - X,.) {e. - Xr) R' {x>)_

f{er) R (e^) f{e.)R{e.) ^ f{e„ e,)

4 (e, - e,y R (e,) 4 (e, - e,)^ R (e,) 4 {e^ - e.f

'

This is a very general formula* ; in it the matrix a is arbitrary.

It follows from Ex. xi. § 211 that if 6i, b. be any branch places, we have

%lip,,{u)h h, =^^^-^^ + E ^^^
,

where E is a certain constant (cf. §§ 213, 212). This equation is also inde-

pendent of the determination of the matrix a.

By solving ^p(p + ^) equations of this form, wherein bi, 62 are in turn

taken to be every pair chosen from any ^ + 1 branch places, we can express

X^ipij {u) eC ei as a linear function of ^pijJ + 1) squared theta quotients,
i J

61, 62 being any quantities whatever.
1) —

1

By putting 63 at a, that is at infinity (first dividing by 6^ ), and putting

X also at a, this becomes the formula already obtained (§ 216)

Ex: i. When^= l, taking the fundamental equation to be

the expression
p+i

f{x,z), = 2 A-^i»[2X2i+ X.2i + i(.i'+ i)], = -2f/s-ff2{x+z)+4xz{x+ z),

and
2ys-f{x,z) _ 2ys-{y''+ s^)^A{x'--z^){x-z)

^ _ ,
(y-s\^

4(a--2)2 A{x-zf ^^ "^yx-z) '

if 82= 423-^2^-^3.

Therefore, by the formula at the middle of page 328, taking the matrix a to have the

particular determination of § 138, Ex. i.,

i^,,,{u'''"'+ u'=^'"'^)=-{e,-x){e,-x,){e,-x){e,-x^)- ^'' '"'

{x-ey) Gp- 63) {x\ - e,) {x\ - 1'2)

this is a well-known result.

Ex. ii. When p = % we easily find

R{e^)R (62) _ (x- Ci) (x - 62) 1

G' (Xr) G' (x,) {x- X,) {x- Xs) (x,. - XsY

It is given by Bolza, G'dttinger Nachrichten, 1894, p. 268.
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and thiis the expression

^1. 1 («) + («1 +«•.) ^1. 2 («) + eiCj ^2. 2 (?0

is equal to

_ (g-ei)(.f-ea) 2yiy2-/(-^'i» -^a) _ (-fi-gi) (-^1-^2) %y2-/(-y» •^'2)

(x-a'i) (x-a'j) 4(j:i-A'2)2 (^1 - a;) (^1 - ^2) 4(.r-X2)''^

(.r2- x) (.Vj - a-i) 4 (a;- .r,)^

Herein the matrix a is i^erfcctly general. Adopting the particular determination of

§ 138, Ex. i., we have, since the term in f{x',z) of highest degree in x is X.^,,+ j.r'''^'i'', ='^jfiz\

say, by putting the place x at a, that is at infinity, the result

where «

=

m^" "' + «*-
'
"-.

£".1-. iii. Prove, for jl> = 2, when the matrix a is as in § 138, Ex. i., that

+ i^-?./+37^?^,+Vs(«,+<'«)-(«.+<'!)«.''».

where e,, e, are any quantities, u= u^^' ^^^u^i' "^^ and /ij, /LI2 are as in § 216 (cf. § 213).

Ex. iv. From the formula, forp= 2 (§§ 217, 216, 213),

g>n («) + ^:2(«) . («l + «2) + ^22(«)- «l«2=^^ ?12H^^ii^2>

where «!, a., are the branch places as before denoted, infer (§ 216, Ex. iii.) that

^u(«)-&>n0O + ^12(«)|>22(«0-&>120Og>22(«)= ;7^[?12''^-?V-?l'?^^^
"1 ~ **2

Prove also that, for any value of «, and any position of x,

^„ («'. « + iO - &>,i («) + <en
(«^' " + ") ^22 («) - ^22 {u-' " + «) ^,2 {u)= 0.

Ex. V. If 61, ,.., tp + i
be any (p + 1) branch places, and Cj, ^2 any quantities whatever,

andX(A-) = (.r~6i) (-I'-^p+i), i/ (.r)= (.«;- gj) (.r-e^) (•«'- ^) (-I'-^p + i),
prove that

where the matrix a has a perfectly general value, ?•, s consist of every pair of difterent

numbers from the numbers 1, 2, ..., (/>+ 1), and ii',., « ^ire constants.

218. We conclude this chapter with some further details in regard to

the case |) = 2, which will furnish a useful introduction to the problems of

future chapters of the present volume. We have in case ^J = 1 such a formula

as that expressed by the equation

a (u -\- u') a (u — u) . ,. , .

\r-(«)V(u')--*'<")-P<">'

we investigate now, in case p=2, corresponding formulae for the functions
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by division of the results we obtain a formula expressing the theta quotient

^(tt+u'|M^'<*)-T-^(M + "') by theta quotients of the arguments u, ii ; this formula

may be called the addition equation for the theta quotient ^ {u u^' '')-=- ^ {u).

Though we shall in a future chapter obtain the result in another way, it will

be -found that a certain interest attaches to the mode of proof employed here.

Determine the places x^, x.^, x-[, Xo so that

then, in order to find where the function ^ (i<^i'<»i + w*^2.«2 4-
i^a;,', «, ^ j^x./, a^^

vanishes, regarded as a function of ajj, we are to put

or (a, x^, Xi, X.2, z^, z.) = («^^ (^2^)
;

thus the places z^, z^ are positions of ^1 for which the determinant

V = 2/1

P(x,)' Fix,)
x\, 1

P{x,)' P{x,)
, x.2 , i

P(^/)' F{x,')
/\ } '^'1 J ^

^23/2 2/2

/\ > '^2 }
A

p{x,y P(x,y

wherein P (x) denotes (x — a^) {x — a^), vanishes. By considerations analogous

to those of § 209 we therefore find, V denoting the determinant derived

from V by changing the sign of 3//, y^,

'^(u + u')'^{io-u')
= A

VVP (x,) P {x.2) P (x,') P (x.;)

^2 (u) ^2 (u')
""

(x, - x.2)- (x/ - x^y {x^ - X,') {x, - X2) (x^ - X,') {x^ - X2')
'

where A is an absolute constant.

Now, if ?;^= ?/j/P (.t"j), etc., we liiid by expansion and multiplication,

VV = i^in-i

+

iiVif ('''i
-

-^'i)^ (-^'i'
- * 2')^ - [iviVi + ri'2n-i) (-^'i'

-
-^'i) ^-l - •^2)

- im^i + '72'7i') (•*'/ - ''"2) U'i - -^'lif-i

and, if a= {x^ - .v-^) {x.^ - x.,), ^= {x{ - x.^) {x.^ - x{), a - /3= {xj' - x.^) {x^ - x.^) , this leads to

J:^= ('?i' - VP) ('?2-^ - m") a -W - Vi") ('72^ - VP) /3 -^ ('71 - '72)^ ('7/ - '72')^ 5

but, putting y2=4P (^x) Q {x), = 4 (.r - cij) {x- a.^ {x - c) (x - c{) {x - C2), we have

^^^^^^[('7r-72'-^)('72^-'7i'^)«-('7i^-
P{X,)P{X^P{X,^P{X^)

^^^, _ ^,,^ ^^, _ ^,,
^
^ _ ^^^, _ ^^„^ ^^, _ ^,.2^ ^^

16

{X\-X2){.
_____ rQxjPx^j-Qx

_ QxiPx\'-Q.i\'Px\ QX2PX2' - Qx^'Px^l

Xi — x\ x^ — X2 J
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and this expression is equal to

16 ["(?«,. (^aj+^^ai- A-,) (a,-a2)(«i-.tV)(«i--^2')

+ p^ (a2 -
-^'i) («2- •^2) («2 - -'"i') («2 - -'V)] >

as may bo proved in various ways ; now we have proved (§§ 208, 212, 213) that

^rt, - .1-,) (a, - .v^) = ± \l-P'{ax)Q{a,) j,2, (a.^ - x^) (a. - x^) = ± V - ^' ("2) ^ K) ?2'

and

\A-i--W ai-«2 ?l''?2"'^'

where ^,= 3 («i?t«- «)-^5 (u), '/2
= 3(w|tt''- «)^5 (m), </,. ,= 5 0<|;i''" «+ w"^' ")^5(«) ; thus

J_
^Qt+ M') 3 («-?<') ^ VVP {x^) P {Xj) P (a-/) P (^V)

1«n n fl ^'«l 2 '2 ^'«2^2.'21 ifi
i^'K)-P'(«2)^«l<^«2^ 2^ 2

=i6$ai$«,[_i - p^^?i^?i '-p,^^ qi2.
^J-

16
^^r^^)2 ?i2 ?'i2

,

where however we have assumed that the sign to be attached to the quotient

{a^-x^){a^-x.^)^^J-P'{a^)Q{a^)q^^

is the same for the places .r/, x^ as for the places x^, x^ . The product si - P' {a.^ Q (a,)

\/-P'(rtj) ^(«i) is, of course, here equal to - P' (aj) Q (ctj). Now,

P'(«i)= (Oi-a,)=-P'(a2);

thus we obtain

^•^00 ^'(^0
= 1 + (/r(/i'' + f?2'(?/' + q^q'12^

the value of the constant multiplier, ^-, = [^ (0)]-, being determined by

putting u' = 0, in which case g/, q/, q'l, 2 all vanish.

If in this formula we write v= ic + u"'" '^+ ^(,"""' in place of u, we obtain, from the

formulae

Jl2(it+ W«"* + M«-"«), =f/x2(«'),
^^W '

52 (til
««"«+««'•«) ?12''(«)'

which are ea«y to verify from the formulae of § 190, Chap. X. and the table of

characteristics given in this chapter, that

and therefore

BK3{ic-\-u')B{u-xc') „ , ., 2 ,,. 2 '2
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where 5 («) denotes 5 (w
]

-?("" '* + it*^' "). But we can use the result of Ex. iv. § 217, to give

the right-hand side a still further form, namely

"
' [^n («) + <enW + ^12 (^0 g>22W - ^12 («') ^22 (^0]-

Ml/*2

Further if %"" '"-i-m""' '''=^I2,h, m', where m, m' consist of integers each either or 1,

we find, by adding |0„(,,n' to u and u' and utilising the fact (§ 190) that

X,„ {tc+ u') = 2Xa,„ (?t) -I- 2XA„i («')5

that

-
'Sf-X'^ "^^ „™- "«'(')-«'„ (..)+«>. (^) &«M - «). (..-) f., (»),

^'' (if) .&'= {U) "l ~ "2

where v= u+ ^Q^„^ „,,,
y'= M' + ^i2„j^ „,,. It should be noticed that

iPi, i {'») = -
g^^;:^^.

log 5 (w
; hn, ^m') ; hence

this formula can be expressed so as to involve only a single function in the

form

^VlU, (T (U + V) (7 ill — V) , s , . , . , . , ^

a,-ci • a^{ti)a\v) ^ ^" ^''^ ~ ^" ^''^ "^ ^^^ ^''^ ^^'^ ^''^ ~ ^^^ ^'^ ^-^^^ ^'*^

where o- (;/) denotes ^ ( w U- (
j j

, and ^i, j (w) = — ^

—

~ log o- («). In

Weierstrass's corresponding formula for ^ = 1, the function a- {u) is de-

termined so that (T (u)/u = 1 when u = 0. To introduce the corresponding

conditions here would carry us further into detail. (See §§ 212, 213.)

Ex. Prove that if % denote any one of the branch places c, Cj, Cg, a = (a2-a^),

^= (rtg - ffi), y = («!

-

a.^), Pi = («!

-

Xi) (aj

-

x^), etc., P/ = («i

-

x^) {a^ - x.{), etc., and

j^S ^1 ^2 "I 1

L(^l-«l)('^l-«3) (^2 - «l) (-=^2 - «3)J •*^2--=^l'

5=r j/i yi 1 _i_
L(-*'l- «2) (^l - «3) (-^2 - «2) (^'2 - «3)J -^^2 " ^1

'

with similar notation for A', B', then the determinant A can be exjiressed in the form

P{x,)P{x,) P{x^)P{x^)
where

y2X=J^'(PlP3' + P3A') + ^^'(A^3'+ ^3A')-^^'(yaP3+ y/3P3' + PiP3'+ P2'P3)

In this form A can be immediately expressed in terms of theta quotients.

219. Consider, nextly, the function
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This is not a periodic function of u, u . Thus we take in the first place

the function

Put
^(m)^(m|h«"«)^(m')^(m'|u«>'»)'

then, as functions of Xi, the zeros of ^ (u), ^ (u u"" ") respectively are a, J\

and a^, Jv., the zeros of ^(« + u\u'^^' ") are found in the usual way to be zeros

of a rational function of the fifth order having a-r, «/ as poles, and iPo. ^i> ^Z

as zeros; such a function of .r, is Aj/P (,/i), where P(^i) = (d*i — Ui) {xi — a«) and

A,= 77, (j-i -f/i), X,-, a-i, 1
'

7]. (x. - f/i), a-.,- , x.2,1

17.,' (x/ — a^), X.,'-, X2, 1

wherein t;, = y^fP{xy), etc. ; the zeros of ^(i< - ?/), as a function of x^, are

similarly zeros of a function of the sixth order having a^^, a^ as poles and

a, x«, Xrl, X.2 for its other zeros : such a function of a'l is ^IP{x^, where
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as a function oi a^, and putting it into partial fractions in the ordinary way, we find that

it is equal to

+^^3^' ^-"^ -""'
^

^-^^-"^^
(.^^'-.r,) (.r,'-.<)

'

using then the identities

- {x.^ - a^) {x^ - x^) = {x.^ - X2) (Xi' - «3) - {xi' - .^2) (x^' - Us),

(.^2 - as) (^1' - .^2') = (a-/ - *-2) (^2' - %) - (•'^2' - •^2) (-^i'
- «3)j

we are able to give the same expression the form

" ^ - ^^ (.r^ - A2) (^2 A'2) •^-••'^'2 * '-^
^ - ^'

.«;i
-.T2

where |?;j2_ ^.^^ _ ^^) ^^^ _ q,^) (^^^
_ q;.)^ g^^^ . t}^^g

|-»;i'2 (x^' - a{) {x^ - x^y^+ ii/a'^ (^V - "i) {x{ - ^'2)2 -
J;;2^ (.^2 - rti) K' - x^f

= - («2 - «4) («2 - «5) (^1' - -^2')^
(-^l'

- •'«'2) ('^2'- •*'2) C^l - "2) 0^2 " ^s) r^TT^
^2 /'2

+ «-^ ('^l' - -^2) (^2'- •'«^2) {(•<- «2) (-^'V - «3) (**l' - «4) ('^l' - %)
P2

+ (.^1' - 02) (.^1' - (Xg)« - «4) (x.{ - a,.)}

.

Now we have, by expansion,

^ = ('7l'?2+ '?l''72') (•*'l--*'2) (•<-^2') + ('7l'?l' + '72'72') (^l'-*'l)(-^2'--^'2)

- ('?! V2'+ '72 Vl') ('< - ^^2) ('^'2' -
•*''l).

Aj =
7;i (.^1 - a^) (^1' - x.^) {x^- x^ (a-/ - x^) - r]^ (^3 - "i) (-^i'

-
'^x) v'^2

-
-'^i) i^h' - '^-2')

+m (-^'x'
- «x) (•< - -^l) (^2' - *'2) (-^1 - ^2) - ^2 {^^2 - «l) (*'x'

- *'l) (•*'/ - -^2) (-^'l
-

-^'i)-

and in the product AA there will be two kinds of terms

(i) - r){ri^ (tji - /?,) y (a'x - x-i) {x;+x.{ - 2«i),

where -y denotes {x^ — x-^{x{ — x.^{x2 —x-^){x.{ -x.^ there being four terms of this kind

obtainable from this by the interchange of the suffixes 1 and 2, and the interchange of

dashed and xindashed letters,

(ii) i;i {x.{ - x\) (.r/ - ^,) (^'i
- x^) {;;i'2

(,^^' _ ^^^ (^jp^ _ ^^)2+ ^^'2 (_y^' _ ^^) (_^^' _ _^g2

-'72'^(-*'2-"l)(-<--^2')^\

there being three other terms similarly derivable from this one.

Consider now the expression

(«2 - ^4) («2 - «5) iPnPaPl'+P'nPsPl) +i^l2^2PV45+/l2^2>23^45»

and, of this, consider only the terms

(«2 - «4) («2 - (^&)Pl3P3Pl +Pl2P2P'23p'i5 >
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»P> Pi P\ P\ (^ _^ \(r.> _r'\^ '^
' ^ - '^

by substitution of the values for p^^ etc., and arrangement, we immediately find that these

terms are equal to

71' 72' (71 -'/j)

1(„ ^ w^ « ^« « ' '/l (^'1 - «2) (^2- «3) - V2 (^2- «2) (-^1 - «3)— 3V"2~"4A"2~"o//'l/'l ^ _^
•-I

•t'2

+ (-^'l'
- «4) (-^'l'

- «o) (•^•/ - «2) (-^'2' - «3)} ;

this expression, as we see by utilising an identity which was developed at the commence-

ment of the investigation, is equal to

-
hPi PiWP'P .

''^''^^^?^''^^^^. (.r/+.r,'- 2«i)+
1

—

,, .p-'^Cf'f' ,, , ,
K,>if\f\i'il'i {X]_-x^(x^-x\{f^ ' ^ ^' ^{x^-x^^{x(-x.lf{x{-x^{x{-x^

where K denotes

'71 ['?/ ^ (^i' - «i) (-^s' - •^2)^+ '72'
^ (•<- «i) (•'«^i'

- •'^2) - ^i (^2 - ai) (-^i' - ^2')'']

- '72 [72' -
(•^2' - «i) (^1' -

•'''i)"^+ 7i'^ C^i' - «i) (-^2' - -^i) -^i i-h - ai) (•^1' - •^2')^]-

Comparing this form with the terms occurring in the expansion for AAj, we obtain the

result

P\P{PtPP~^^\
\
(^j - x^^ {x( - x{f {x( - x^ {x( - x.^ (A'a' - x^ {x{ - x^

= (ag- 04) («2- %) ( i^l3 P3 /^l' +P'uPzPx) +P12P2 P'23^'45 +^'l2;'2>23P4o •

Now we have (§§ 216, 213, 212) the formulae pi^=Hiqi^ -^^^2= ± (''«-«>) ^2' ^^'®

?» ?; Pi PJ
shall therefore put pj = .J/ij,, Pi,j = -^\j</i,j ; hence by the formula (p. 334) the quotient

S {u+ tt'
I

m"'-^ (« - «')

is a certain constant multiple of the function

(«2 - «4) («2- «;-.) ^A ^3^^3 (?1393?l' +?'l3?3'?l) + ^ri^V^gj iV^^ifj (?12S'2S^23?'4f.+ ?'l2?2'?23?45)-

Also we have i/i^= /Xj-, N\j= ±fiifLfl{ai-aj), where fxi— ±'^ -f (af) when i = l or 2,

and Hi=±\f' {<ii) when z= 3, 4, 5. Hence it is easy to prove that the fourth powers

of the quantities («2 - «4) («2 ~ "5) ^h^^^n^ ^\i^2z^^it,^i ^''"^ equal.

Hence we have

. ^(m + w'Iu«"«)^(u-m')
, , , , , , / , ,

-^ —~~^ (^y^2 (j7)
= ^ Kqnq-6qi + 5- isS-s 51) + q^q^q^^q « + </ 1..<?-. ^23^45,

where J. is a certain constant, and e a certain fourth root of unity. The
value of e is determined by a subsequent formula.

220. The equation just obtained (§ 219) taken with a previous formula

gives the result

^ ^ (w + w' i w^'^) ^ e (gisgsg/ + q'nq^q^) + qviq^q'-^ qa, + q'^q^'q-i^^q^ r.

^ {u + It')

'

1+
(i^-q,^"-

+ ryAy,'- + q,.?q,^'-
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and limiting ourselves to one case, we may now take the places a^, a^, a^ to

be, respectively, Cj, c,, c, and introduce Weierstrass's theta functions;

defining* the ten even functions ^5(1*), ^osC'O^ •••' ^osO') to he respectively

identical with the functions ^(m), ^ac('0. •••> ^^caiiu), and the six odd functions

%., (u), ...,% (w) to be resjjectively the negatives of thefunctions ^aa, (^0. •••> ^cc, (u),

the right-hand side of the equation is equivalent to

e (^5^02^ 01^ 12 "t" -Js ^ 02 -^01 -^12/ "1" •^04 -^24 'J 14-^3 ">" -^ 04^ 24 '^14'J3
.

'Js" 'JS ' "• 'J 02 -^ 02" I 'J 24 -^ 24" I '^04"'^ 04

here ^ denotes ^(?0> ^' denotes '^(u'), and G is an absolute constant.

This equation may be called the addition formula for the function q^, and is

one of a set which are the generalisation to the case p = 2 of such formulae

as that arising for p = 1 in the form

. ,, snucnu' dnu' + snu' cuudnu
sn {u + u)=———rj j-„

—
r-, •

1 — k^ sn- II sn- u

By interchanging the suffixes 1 and 2 we obtain an analogous expression

for ^(u + u'\u^''"')^^{u + u'); if in this expression we add the half-period

?*"'•" to u we obtain an expression for the function ^{u +u'\u"'""' + u"'-''"')

-T-^(u + u'\u"''' '*); and if this be multiplied by the expression just developed

for the function '^(ii+u'\ii"'>''^)^^ {u + u) we obtain an expression for

^(u + u\u^'>"' + u'^''''^)-T-^(u + u'),Sindit can be shewn that the form obtained

can be reduced to have the same denominator as in the expression here

developed at length. The formulae are however particular cases of results

obtained in subsequent chapters, and will not be further developed here.

For that development such results as those contained in the following

examples are necessary; these results are generalisations of such formulae

as sn (u + K) = en i^/dn u which occur in the case p = \.

Ex. Prove, if ^i («) = 5(«jw'''' ")4-5 («), qi,j{u)= B{u\u"''"'+ u"J''')^^{u\ etc., that

(see the table ^ 204, and the formulae Chap. X. § 190)

^,(«+^.«-> '» + ..«-«) =
.*-

fi-g
'/l2 I ""J

and obtain the complete set of formulae.

221. In case p=^1 there are five quotients of the form ^(«-|«''' "') ^^{u),

and ten of the form ^(m|m*"" + u*^.")-^ ^(j^), wherein h, h^, K denote any

finite branch places. Since the arguments u may be written in the form
yx,,a,j^^fX.,,a^^ the fifteen quotients are connected by thirteen algebraic

relations. In virtue of the algebraic expression of these fifteen quotients,

they may be studied independently of the theta functions. We therefore

give below some examples of the equations connecting them.

* Konigsberger, Crelle, lxiv. (1865), p. 22. In the letter notation (§ 204) the reduced charac-

teristic symbols are such (§ 203) that each of k„ k\ is positive, or zero, and less than 2. In

Weierstrass's notation the reduced symbols have the elements k', positive, or zero, and the elements
k, negative, or zero.

B. 22
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^.r. i. There is oiio relation, known aa Gopel's biquadratic relation, which is of

imi>ortance in itself, in view of developments that have arisen from it, and is of some

historical interest.

^'~ 5(u) ' ^".."^ Sju) ' '^c,,c- 3{u)

1x5 three finictions whase suffixes, together, involve all the five finite branch places. Then

these three functions satisfy a biquailratic relation, which, if the functions be regarded as

Cartesian coordinates in a space of three dimensions, represents a quartic surface with

sixteen nodal points.

In fact, if jo„ denote V(« - ^i) (« - ^2)) ^^^^ Pi, i
^'^•^ote the function

we have

2

A{x,-x,f

where 6, , h.^, e, , e^ , e^ are the finite branch places in any order ; and if this be denoted by

4(.r,-.r,)2 '

it is immediately obvious that \//- (.r, x)= 2i/^, =2/(.r), say, and ^ ^{.r, z) = "^7- ; thus

there is (§ 211, Ex. vii.) an equation of the form

where /(.r,, x.^ is a certain .symmetrical expression of frequent occurrence (cf § 217), the

same whatever branch places 6, , h.^ may be, and A , B, are such that yj/ (x^ , x^) vanishes

when for x^, x^ are put any one of the four pairs of values (fcj, b.^), {e.^, e^), (e^, Cj), (Cj, «._,) ;

therefore the difference between any two expressions such as jo^ . , formed for diflferent

pairs of finite branch places, is expres.sible in the form Lx^x.^+ JI {Xi + .v.^) + iV ; thus there

must lie an equation of the form

where X, /x, v, p are independent of the places x^, x.^.

Similarly

pL <.,
= ^>«., a.+'^K. c+^'pI+ P-

But also it can be verified that

Pa,.a,Pc„crPa„c,Pa,.c=-(^2-^i)(^'l-C2)Pc^ =''Pc, say;

thus we have

\.^pI., „, + M^c.. c.+ ^P>PWpl,.a+P-'pl, c+'''p]+ P'\ = [Pa,,a,Pc.
,
c,--i^cP,

and when the expressions
/'„__ „^, etc., are replaced by the functions q^ ^ , etc. (§ 210), this

is the biquadratic relation in question. This proof is practically that given by Gopel
{Crelle, xxxv. 1M47, p. 291).



221]
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there are therefore four kinds of terms in the product according to the evenness or

oddness of the two integers H, + ni,, )j,+ m.^. Consider only one kind, namely when

;ji + »j,, 74 + W2 are both even, respectively equal to 2.V,, 'IX.^, say; then L is equal to

^2v^ (X, + i) + 2r2X+ r„ (.V,+i)- + 2r,, (.V, + i) .Vj+r^^V

+ 2.V1 + I ;

if now we put -' -*= i/',, -^-^--^^M^, we have

7l^=^\+^f^, M,=.Vi-j/,, 7l.;,=^'.,+^f,, m,=yo -.]/.,;

thus, to any assigned values of the integers Tj, 3\,, J/,, J/^ there correspond integers

rij, 74, »«!, m.^ such that tij + zh,, »2+ "i2 ^^^ both even ; therefore, as

-2iric, (A', + i) +2n-i>jiV5+i»T„ (A'i+J)'+2t)rT,.> (A^,+i)i\rj + iffT„AV

a term of the series 3 ii- ; i ( -^ ) ) 5 that is, of 5oj (i'), and

is a term of the series sfo; ^ (^) ' *^^* ^' **^ ^a (*')' ^^^ e*'^"^'+^' = - 1 ,
it follows that

the terms of e^,^ ( V) which are of the kind under consideration consist of all the terms of

the product — Sj.^oi (^')> ^^ ~<^1/- It can similarly be seen that the three other sorts of

terms, when n^ + ttii is even and n^+ m.^ odd, when n^+vi^ is odd and n.^+ m.^ odd or even,

are, in their aggregate the terms of the sum bx+dz-ct.

We can also, in a similar way, prove the equations

60362363 (r)e„(r) +0062002 (r)e,(r)=e„eo,e,(r)e:«(n,

803*=2{ac- bd), e.a^= 2 (ad+ be), e^^= 2{ab- cd), Go,- = 2 {ub + cd),

eo«=a2-62-c2+(f'2^ ei2-= a^-b- + c^-d^,

6(0 denoting Q^ (0), etc.

Hence the equation of the quartic surface is obtainable in the form

^2{ac-bd)(ad+bc){c,d, -a, -b) (d, -c, -6, a)

+ V(o*-6«-c*+cP)(a6-ccO(6, -a,d, -c){a,h,c,d)

=^'^{a*-b^+<^-d^){ab+ cd){b, -a, -d, c) (a, b, -c, -d).

A relation of this form is rationalised by Cayley in Crelle^s Journal, lxxxiii. (1877),

p. 215. The form obtained is shewn by Borchardt, Crelle, lxxxiii. ('1877), p. 239, to be the
same as that obtained by GoiHjl. See also Kummer, Berlin. Monats. 1864, p. 246, and
Berlin. Abhaiul. 1866, p. 64 ; Cayley, Crelle, lxxxiv., xciv. ; and Humbert, Liouville, 4"" Ser.,

t IX. (1893); Schottky, Crelle, cv. pp. 233, 269; Wirtinger, Untersuchungen Uber Theta-

functionen (Leipzig, 1895).

The rationalised form of the equation, from which the presence of the sixteen nodes is

obvious, is obtained in chapter XV. of the present volume.
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Ex. V. Obtain the following relations, connecting the ratios of the values of the even
theta functions for zero values of the arguments when p= 2. They may be obtained from
the relations (§ 212)

ib - X,) {b - x^) = ± sle^'iPPj^) 52 {u
\
u^' ") ^ 5^ (u)

by substituting special values for x^ and x,^.

c c, Ci rt,c, OiCi ajc, OzCi ca^ ca^

= (ci - C2) (C2 - c) (c - Ci) . («i - ^2) : Cwi - tta) («2 - c) (c - a-i) . (cj - Cg)

: (ai-a2)(a2-Ci)(ci-«i).(c2-c) : ("i - ^2)K - ^2) ('2 - «i) • (^i
- c)

: (c2-c)(c-ai)(ai-C2).(Ci-a2)
: (c - Ci) (Cj - aj (aj - c) . (cg - a2)

: (c-C2)(c2-a2)K-c).(ci-ai) : {c - c^) {c^- a^) {a,^- c) . {c.^~ a^)

: (ci-C2)(c2-a2)(«2-Ci).(«i-c) : (ci-C2)(c2-«i) («i-Ci). (aa-c)-

Infer that

We have proved (§§ 210, 213) that

\/«2 - <^i ^ai (^0 -^fliC, (?*) + Vci - «! 5^3 («) ^a,c. (m)+ V^i - «2 ^c, («) 5a, a^ (w) =

and we have in fact, as follows from formulae developed subsequently, the equation

Ex. vi. Obtain formulae to express the ratios of the differential coefficients of the odd

theta functions for zero values of the arguments.

Ex. vii. Prove that

wherein b^, b^ are any two finite branch places, and e is a certain fourth root of unity.

This result can be obtained in various ways ; one way is as follows : Writing

u= u^""'' + ^i''"^% u+ u^"^= v, and v= u^"^' + u^^'^\ we find, by the formula 5(M + Qp)

= e^^^''^9{u; P), that

^.^.
^^..^;...>-°) ,,.„.,,,_,,..„,.,,_,,„,,

and, by the formula expressing ^ («"'"*- u""' '
"*> - - xo^'p ' '"j') - d {^t"'

'" - ?*="'
'

'"' -

- ?t^J" *"p) by integrals and rational functions, the right-hand side is equal to

_ 1 ^1 - ^2 r ^1 ^2 _ 1
^Z,-Z, i(z, - b,) {Z, - 62) {Z, - b,) (Z, - &2)J

'

where Sj, Sj are the values of y, x respectively at the place 2j, and s.,, z.,__ at the place z.^.

This rational function of ^j, z.^, is however (§ 210) a certain constant multiple of

5 (i?|«^" '*+ ?t*^' '*)/5 (-y), and hence the result can immediately be deduced.

One case of the relation, when 61, b^ are the places ftj, a2J i-'* expressible by Weierstrass's

notation in the form

^5 («) 9^ -504 («) -V («) 9— -^s (") = f Va, - a2 ^02 (m) ^24 (i<),
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and it is interesting, using results which belong to the later part of this volume, to

compare this with other methods of proof. "We have*

S^9,^^ (n + r) 3, (u - v) = ^^ («) 3„ («) 5^ (v) So (o) + 9^ («) 5,3 (m) 9^2 (v) 9.^ (v)

+h (") ^M (V) ^4 («)^ («)+ ^2 (") ^13 C*') 5o2 («) 9^ («),

where 5^, 5o denote 9^{0), 9„{0), and the bar denotes an odd function; if, herein, the

arguments i\, v., Ihj taken very small, we may write 9 {u + r)=9 (u) + (^i^ + ^'2 a~ ) ^ (")•

Thus we obtain, eventually, remembering that the odd functions, and the first differential

coefficients of the even functions, vanish for zero values of the argiunents,

^6 («) 5'04 («) - %i (») ^'6 («) = Y^"* ^* ('*) ^« («) +^0^502 ('0 ^24 ("),

where 5'(«)=^^7 ^("). 9 = 9 {0), 9'= 9'i0).

Thus, by the formula of this example, putting u = 0, we infer that

or 9'^y^= 0, and the result of the general formula agrees with the formula of this example.

In the cases p>2 we have even theta functions vanishing for zero values of the

argument ; here we have one of the differential coefficients of an odd function vanishing

for zero values of the argument.

A^ote. Be.side the references given in this chapter there is a paper by Bolza,

American Journal, xvii. 11 (1895), "On the fii-st and second derivatives of hyper-

elliptic o--functions " (see Acta Math. xx. (Feb. 1896), p. 1 : "Zur Lehre von den hyi)er-

clliptischen Integralen, von Paul Epstein"), which was overlooked till the chai)ter wa.s

completed. The fundamental formula of Klein, vitilised by Bolza, is developed, in

what appeared to be its proper place, in chapter XIV. of the present volume. See also

Wiltheiss, Crelle, xcix. p. 247, 3/at/i. Annal. xxxi. p. 417; Brioschi, Rend. d. Ace. dei

Lincei, (Rome), 1886, p. 199; and further, Konigsbergcr, Crelle, Lxv. (1866), p. 342;

Frobenius, Crelle, L.XXXIX. (1880), p. 206.

To the note on p. 301 should be added the references ; Prym, Zur Theorie dcr

Functnen. in einer zwcibldtt. FUiche (Ziirich, 1866), p. 12; Konigsbergcr, Crelle, LXIV. p. 20.

To the note on p. 296 should be added ; Harkncss and Morley, Theory of Functions,

chapter viii., on double theta functions. In connection with § 205, notations for theta

functions of three variables are given by Caylcy and Borchardt, Crelle, Lxxxvii. (1878).

* Krauac, lltjpciflliptintlic Fuiiftioncn, p. 44; Konigsbergcr, Crelle, lxiv. p. 28.
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CHAPTER XII.

A PARTICULAR FORM OF FUNDAMENTAL SURFACE.

222. Jacobi's inversion theorem, and the resulting theta functions, with

which we have been concerned in the three preceding chapters, may be

regarded as introducing a method for the change of the independent variables

upon which the fundamental algebraic equation, and the functions associated

therewith, depend. The theta functions, once obtained, may be considered

independently of the fundamental algebraic equation, and as introductory to

the general theory of multiply-periodic functions of several variables ; the

theory is resumed from this point of view in chapter XV., and the reader

who wishes may pass at once to that chapter. But there are several further

matters of which it is proper to give some account here. The present chapter

deals with a particular case of a theory which is historically a development*

of the theory of this volume ; it is shewn that on a surface which is in many

ways simpler than a Riemann surface, functions can be constructed entirely

analogous to the functions existing on a Riemann surface. The suggestion is

that there exists a conformal representation of a Riemann surface upon such

a surface as that here considered, which would then furnish an effective

change of the independent variables of the Riemann surface. We do not

however at present undertake the justification of that suggestion, nor do

we assume any familiarity with the general theory referred to. The present

particular case has the historical interest that in it a function has arisen,

which we may call the Schottky-Klein prime function, which is of great

importance for any Riemann surface.

223. Let a, /3, 7, 8 be any quantities whatever, whereof three are

definitely assigned, and the fourth thence determined by the relation

olB — ^y=l. Let ^,
^' be two corresponding complex variables associated

together by the relation ^' = {a^ + ^)/(y^+ S). This relation can be put into

the form

* Referred to by Riemann himself, Ges. Werke (Leipzig, 1876), p. 413.
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wherein p. is real, and B, A are the roots of the quadratic equation

^ = (o^ + /9) (7^ + 8), distinguished from one another by the condition that

/4 shall be less than unity. In all the linear substitutions which occur in

this chapter it is assumed that B, A are not equal, and that /x is not equal to

unity. We introduce now the ordinary representation of complex quantities

by the points of a plane. Let the points A, B be marked as in the figure (6),

Fig. 6.

and a point C be taken between A, B in such a way that 1 > ACjC'B > fi,

but otherwise arbitrarily; then the locus of a point P such that AP/PB
= AC'/C'B is a circle. Take now a point C also between A and B, such that

CB'AC= fiC'B AC, and mark the circle which is the locus of a point P'

for which FBjAF =CBjAC ; since FBjAP' is less than unity, this circle

will lie entirely without the other circle. If now any circle through the

points A, B cut the first circle, which we shall call the circle C, in the points

P, Q, and cut the second circle, C, in Pj and Qj , P and Pj being on the same

side of AB, we have angle AP,B = angle APB, and P,B/AP, = fiPB/AP
]

therefore, if the point P be f, and the point P, be ^1, we have

^.-B_ ^-B
^,-A-^^-A'

the argument of P vanishing when P is at the end of the diameter of the

C circle remote from C, and varying from to 27r as P describes the circle

C in a clockwise direction ; if then we pass along the circle C in a counter

clockwise direction to a point F such that the sum of the necessary positive

rotation of the line BP^ about B into the position BP', and the necessary

negative rotation of the line APi about A into the position AP', is k, and f
be the point P', we have

^-B . ^,-P i^^-B

Thus the transformation under consideration transforms any point ^ on

the circle C into a point on the circle C. If ^ denote any point within C



224] IN CONNECTION WITH 2p CIRCLES. 345

the modulus of {^ - B)/(^ — A) is greater than when ^ is on the circumference

of G', and the transformed point ^' is without the circle C, though not

necessarily without the circle C". If ^ denote any point without G' the

transformed point is within the circle G.

224. Suppose * now we have given p such transformations as have been

described, depending therefore on Sp given complex quantities, whereof 3 can

be given arbitrary values by a suitable transformation z' = (Pz + Q)/(Rz + 8)

applied to the whole plane ; denote the general one by

^ = i- , g ' wherein ajS; - ^iji = 1

,

(i = l, 2, ..., p),

or also by

the quantities corresponding to A, B, /m, a being denoted by Ai, Bi, ni, ai;

construct as here a pair of circles corresponding to each substitution, and

assume that the constants are such that, of the 2p circles obtained, each is

exterior to all the others ; let the region exterior to all the circles be denoted

by 8, and the region derivable therefrom by the substitution ^^ be denoted

by %S.

If the whole plane exterior to the circle Gi be subjected to the trans-

formation ^i, the circle (7/ will be transformed into Gi, the circle Gi itself

will be transformed into a circle interior to Gi, which we denote by '^iGi, and

the other 2p — 2 circles which lie in a space bounded by Gi and 0/ will be

transformed into circles lying in the region bounded by "^iGi and Gi, and,

corresponding to the region >Si, exterior to all the 2^ circles, we shall have a

region %S also bounded by 2p circles. But suppose that before we thus

transform the whole plane by the transformation ^i, we had transformed

the whole plane by another transformation ^j and so obtained, within Gj,

a region ^jS bounded by 2p circles, of which Gj is one. Then, in the

subsequent transformation, ^i, all the 2^3 — 1 circles lying within Gj will be

transformed, along with Gj, into 2jj — 1 other circles lying in a region, %^jS,

bounded by the circle %Gj. They will therefore be transformed into circles

lying within ^iGj—they cannot lie without this circle, namely in ^iS, because

^iS is the picture of a space, S, whose only boundaries are the 2^j funda-

mental circles Cj, (7/, ..., Cp, Gp. Proceeding in the manner thus indicated

we shall obtain by induction the result enunciated in the following statement,

wherein ^j is the inverse transformation to ^j, and transforms the circle Gi

into Gi : Let all possible multiples ofpowers o/^i, ^i , ..., ^^, ^^ beformed,

and the corresponding regions, obtained by applying to S the transformations

* The subject-matter of this section is given by Schottky, Crelle, ci. (1887), p. 227, and

by Burnside, Proc. London Math. Soc. xxiii. (1891), p. 49.
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coi-responding to all such products of powers, be marked out. In any such

product the trans/ormution jirst to be applied is that one which stands to the

riijht. Let m be any one such product, of theform

''^= ^:^^/^^
formed by

+ ', + + '*' =^^

factors, and let ^ be any transformation other than the inverse of^k, so that

m^k isformed by the product ofh+ 1, not h - I, factors. Then the region mS
entirely surrounds the region m'^S.

Thus, the region ^,<S' entirely surrounds the space %^jS, and the latter

surrounds ^.•^'S, or '^i'^/^kS ; but ^,-S is surrounded by ^/^r'^Sf or S. The

reader may gain further clearness on this point by consulting the figure (7),

wherein, for economy of space, rectangles are drawn in place of circles, and

the case of only two fundamental substitutions, ^,
<f>,

is taken.

The consequence of the previous result is

—

The group of substitutions

consisting of the products of positive and negative poiuers of ^i, . .
. , % gives

7'ise to a single covering of the whole plane, every point being as nearly reached

as we desire, by taking a sufficient number of factors, and no point being

reached by tiuo substitutions.

225. There are in fact certain points which are not reached as trans-

formations of points of S, by taking the product of any finite number of

substitutions. For instance the substitution ^j"* is

and thus when m is increased indefinitely ^' approaches indefinitely near to

Bi , whatever be the position of ^ ; but Bi is not reached for any finite value

of m. In general the result of any infinite series of successive substitutions,

K = a^7 . .
.

, applied to the region S, is, by what has been proved, a region

lying within a»S', in fact lying within a^S, nay more, lying within a^jS, and

so on—namely is a region which may be regarded as a point ; denoting it by

K, the substitution K transforms every point of the region S and in fact

every other point of the plane into the same point K ; and transforms the

point K into itself. There will similarly be a point K' arising by the same

infinite series of substitutions taken in the reverse order.

Such points are called the singular points of the group. There is an

infinite number of them ; but two of them for which the corresponding

})roducts of the symbols ^ agree to a sufficient number of the left-hand

factors are practically indistinguishable ; none of them lie within regions that

are obtained from iS' with a finite number of substitutions. The most

important of these singular points are those for which the corresponding
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series of substitutions is periodic ; of these the most obvious are those formed

by indefinite repetition of one of the fundamental substitutions ; we have

already introduced the notation

to represent the results of such substitutions.

226. If ^, <fi be any two substitutions given respectively by

wherein a8 — ^y =! = AD — BC, the compound substitution ^^ is given by

a iA^+B) + l3(C^+D) jaA + 0C) ^ + jaB + /3D)
r= y{A^+B) + 8(C^+D) (yA + BC)^+ {yB + BD)

'

and if this be represented by ^' = (a'^+ ^')l{y'^+ B'), we have, in the ordinary

notation of matrices

{a' y8' ) = ( a ^ ) ( A B ),

\

y B'
\ \ y b\ \

G D
\

and a'B' — ^'y = (aS — ,^7) {AD — BC) = 1. We suppose all possible substitu-

tions arising by products of positive and negative powers of the fundamental

substitutions ^i, ..., ^^ to be formed, and denote any general substitution by
^' = (a^+ ^)/(y^+ 8), wherein, by the hypothesis in regard to the funda-

mental substitutions, aB — ^y = l. We may suppose all the substitutions

thus arising to be arranged in order, there being first the identical substitution

^' = {^+ 0)/(0 . ^+ 1), then the 2p substitutions whose products contain one

factor, ^i or ^i~\ then the 2p {2p — 1) substitutions whose products are of

one of the forms ^i^j, ^i%~S ^r^^j, %~^'^f^, in which the two substitutions

must not be inverse, containing two factors, then the 2p {2p— iy substitutions

whose products contain three factors, and so on. So arranged consider the

series

2 (mod 7)~^

wherein A; is a real positive quantity, and the series extends to every sub-

stitution of the group except the identical substitution. Since the inverse

substitution to ^' = (a^+ ^)/(y^+ B) is ^={B^' - ^)/(- y^' + a), each set of

2p{2p — iy^~^ terms corresponding to products of n substitutions will contain

each of its terms twice over.

Let now @,i denote a substitution formed by the product of 7i factors,

and @,i+i = @„^i, where ^^ denotes any one of the primary 2p substitutions

^i,'^i , ..., ^p, ^p other than the inverse of the substitution whose symbol

stands at the right hand of the symbol ©„, so that 0,i+i is formed with n+l
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factors; then by the formula just set down 7„+i = 7«ai+ Sn7o where, if

%, or r'=(a,-?+ A)/(7.?+S.). be put in the form (^ - 5,)/(C' " ^O
= pi(^-Bi){^-Ai), we have

a,-, ^;, yi, ^i

respectively equal to

Bipi^-Aip i _ AiBi (|o7*

-

ph pi -pi _ ^iPi ' - Bip'i
.

Bi -A; ' Bi- A; ' Bc-Ai' Bi - Ai
'

the signification of p] is not determined when the corresponding pair of

circles is given ; but we have supposed that the values of a;, ^,-, 7,-, hi are

given, and thereby the value of p} . By these formulae we have

7»HM _ _j Bi + 8n/yn _ J
Aj + Bn/yn

Herein the modulus of pi may be either fii or /i.r\ according as ^,- is one

of ^1, ..., % or one of ^r\ ..., ^^^ ; the modulus of pi is accordingly either

less or greater than unity. If now ©„=... i/r^^~\ where ^^ is one of the

2p fundamental substitutions ^1, ...,^p , and therefore @J =^r^~^^lr~\..,

the region @^^»S' lies entirely within the region ^,.>S' (§ 224) or coincides with

it; wherefore the point ®n^ (x), or — Bn/yn> lies within the circle C^ when

^r is one of ^,, ..., ^p, and lies within the circle 0/ when ^,- is one of

^f^, ...,^p^; thus the points Bi and — S„/7„ can only lie within the same

one of the 2p fundamental circles C,, ..., C^ when r=i and ^r is one of

^, , ...,^j,; and the points A; and — 8,1/7,1 can only lie within the same one of

the 2;j fundamental circles C\, .,., 6'/ when r=i and % is one of ^i~\ ...,^p\

Now, if the modulus of pi be less than unity, and r=i, ^r must be one

of ^f , ..., ^p , namely must be ^T^, since otherwise 0,i^i would consist

of n — \ factors, and not n + 1 factors ; in that case therefore B^ + —
7n

is not of infinitely small modulus ; if, however, the modulus of pi be

greater than unity, and r = i, % must be ^i, namely one of ^,, ..., ^p, and
in that case the modulus of ^ ,• + B,Jyn is not infinitely small. Thus, according

as 'pi\^\, we may put

I
Ih + K/yn\>\,

I
Ai + K/yn^>K

where X is a positive real quantity which is certainly not less than the

distance of Bi, Ai, respectively, from the nearest point of the circle within
which - hnhn lies.
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It follows from this that we have

mod (yn+ihn) > o-, or mod {y~ljy;,^) < -
,

where cr is a positive finite quantity, for which an arbitrary lower limit may

be assigned independent of the substitutions of which ©„ is compounded, and

independent o{ n, provided the modidi fi^, ..., fiphe supposed suficiently small,

and the p pairs of circles he sufficiently distantfrom one another.

Ex. Prove, in § 223, that if €' be chosen so that C'C is as great as possible

and the circles are both of radius d \/ix/{l - fj.),
where d is the length of AB.

We suppose the necessary conditions to be satisfied ; then if 70 be the

least of the p quantities mod [(yur^e'^'^i - /x^e-'^O/C^i — -^i)]- and k be posi-

tive, the series 1 mod 7"^ is less than

7n *" 2;, + M%^l) + M2Epl)= +

and therefore certainly convergent if o-'^ > 2^j — 1 , which, as shewn above, may

be supposed, fii, ..., fip being sufficiently small.

227. Hence we can draw the following inference: Let a^, ..., a-p be

assigned quantities, called multipliers, each of modulus unity, associated

respectively with the p fundamental substitutions ^1, ..., ^^ ; with any

compound substitution ^1''^/^..., let the compound quantity o-i*' cr/2 , . . be

associated: let f{x) denote any uniform function of x with only a finite

number of separated infinities; let r = («^+ /3)/(7t+ ^) denote any sub-

stitution of the group, and a be the multiplier associated with this

substitution : then the series, extending to all the substitutions of the group,

converges absolutely and uniformly * for all positions of ^ other than (i) the

singular points of the group, and the points ^= — 8/7, namely the points

derivable from ^= 00 by the substitutions of the group, including the point

^=00 itself, (ii) the infinities of /(f) and the points thence derived by the

substitutions of the group. The series represents therefore a well-defined

continuous function of ^ for all the values of f other than the excepted ones.

The function will have poles at the poles of fiX) and the points thence

derived by the substitutions of the group ; it may have essential singularities

at the singular points of the group and at the essential singularities of

/(K + /5)/(7r + S)).

* In regard to f ; for the convergence was obtained independently of the value of f.
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Denote this function by F(^) ; if ^o denote any assigned substitution

of the group, and ^ denote all the substitutions of the group in turn, it is

clear that ^^o denotes all the substitutions of the group in tuni including the

identical substitution ; recognising this fact, and denoting the multiplier

associated with ^o by o-o, we immediately find

^(^o(r))=o-o-U7o?+So)*i^(D.

or, the function is multiplied by the factor 0-0-^70^+ ^o)*-' when the variable

^ is transformed by the substitution, ^or of the group. Thence also, if G (^
denote a similar function to F{^), formed with the same value of k and

a different function f{^), the ratio F{^)IG{^) remains entirely unaltered

when the variable is transformed by the substitutions of the group. In order

to point out the significance of this result we introduce a representation

whereof the full justification is subsequent to the present investigation.

Let a Riemann surface be taken, on which the 2p period loops are cut ; let

the circumference of the circle CV of the ^ plane be associated with one side

of the period loop (6,) of the second kind, and the circumference of the ciicle

C/ with the other side of this loop ; let an arbitrary curve which we shall

call the i-th. barrier be drawn in the ^ plane from an arbitrary point P
of the circle 0/ to the corresponding point P' of the circle Cj, and let the

two sides of this curve be associated with the two sides of the period loop

(a,) of the Riemann surface. Then the function F{^jG{^), which has the

same value at any two near points on opposite sides of the barrier, and

has the same value at any point Q of the circle 0/ as at the corresponding

point Q' of the circle C,-, will correspond to a function uniform on the

undissected Riemann surface. In this representation the whole of the

Riemann surface corresponds to the region S ; any region ^,*Si corresponds to

a repetition of the Riemann surfjice ; thus if the only essential singularities

of F{^jG(^) be at the singular points of the gi'oup, none of which are

within S, F {^)IG (f) corresponds to a rational function on the Riemann

surface. It will appear that the correspondence thus indicated extends to

the integrals of rational functions ; of such integrals not all the values can

be represented on the dissected Riemann surface, while on the undissected

surface they are not uniform ; for instance, of an integral of the first kind,

«,-, the values w,-, 2/, + 2a), ,., «i + 2<«)'f_ ;., ?/,• + 2a)v, r + 2a)',-, ^ may be repre-

sented, but in that case not the value ?^- + 4a),-, r ; in view of this fact the

repetition of the Riemann surface associated with the regions derived from

S by the substitutions of the group is of especial interest

—

ive are able to

represent more of the values of the integral in the ^ plane than on the

Riemann surface. These remarks will be clearer after what follows.

228. In what follows we consider only a simple case of the function

F{^, that in which the multipliers o-j, ..., o-p are all unity, k = 2, and

/(^) = l/(^— a), a being a point which, for the sake of definiteness, we
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suppose to be in the region S. We denote by ^,: = '^i (0 = (°'i^ + A)/(7i?+ ^d

all the substitutions of the group, in turn, and call ^i the analogue of ^ by

the substitution in question. The function

has essential singularities at the singular points of the group, and has poles

at the places ^=a, ^=oo and at the analogues of these places. Let the

points 00 , a be joined by an arbitrary barrier lying in S, and the analogues of

this barrier be drawn in the other regions. Then the integral of this

uniformly convergent series, from an arbitrary point ^, namely, the series

is competent to represent a function of ^ which can only deviate from uniformity

when f describes a contour enclosing more of the points a and its analogues

than of the points oo and its analogues ; this is prevented by the barriers.

Thus the function is uniform over the whole ^ plane; it is infinite at ^=a

like log(^— a), and at ^=oo like —^og(-r],a,s we see by considering the

term of the series corresponding to the identical substitution ; its value on

one side of the barrier aao is ^iri greater than on the other side ; it has

analogous properties in the analogues of the points a, oo , and the barrier aoo
;

further, if ^n = ^n(^) be any of the fundamental substitutions ^,, ..., ^p,

n^«'f_n^'^ = s log%^^ = Slog 1^^^^:^ + Slog ^^—" -Slog 1^-:^,

where ^in is obtained from ^ by the substitution ^i%i ; since the first and

last of these sums contain the same terms, we have

a, 00 a, 00 a, !»

and the right-hand side is independent of ^, being equal to n^»'J; in order

to prove this in another way, and obtain at the same time a result which

will subsequently be useful, we introduce an abbreviated notation ; denote

the substitution ^,. simply by the letter ?-; then if j be in turn every sub-

stitution of the group whose product symbol has not a positive or negative

power of the substitution n at its right-hand end, all the substitutions of the

group have the symbol jn^, h being in turn equal to all positive and negative

integers (including zero) ; hence

S [log {^in - a) - log {^i - a)], = 2 S [log (^j„a + 1 - a) - log {^jnh - a)],

i J h

is equal to

B. 23
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where iV = «*, M = n-' ; but, in fact. |, is i^,., and f„ is ^„; thus ri^^"'j is

independent off; and if we introduce the definition

where ^n is one of the p fundamental substitutions, and, as before, j denotes

all the substitutions whose product symbols have not a power of n at the

right-hand end, we have

a,

«

a, X a, « »

Ex. If for abbreviation we put

^tt = 2a,log

prove that

pin-i- Lj^i'^ 1 - O-n pf, .

c being an arbitrary ix)int.

a, X (r„ «. "= a,x

f.f

o, od'

229. Introduce now the function n „, b defined by the equation

then, because a cross ratio of four quantities is unaltered by the same linear

transformation applied to all the variables, we have also

ntl = 2iog = s_Slog

where r, denoting %, =%~\ becomes in turn every substitution of the group.

Thus we have

TT^-f n"-'-' TT^"'^ TT^'f o • "• *

where

a,b ft h 1 . ,
,

Vn .
=V^-V,„ =

cy
--log

a-^^(^„) 6-^,(^„)J' 27ri "•*'

j denoting as before every substitution whose product symbol has not a

positive or negative power of n at the right-hand end and f being arbitrary

;

hence also

vt
° = ,V nl'J = .y. V log (?/"

- ? ^" -_i5) = i_
. s log

(f-|«
, kr f)

,

27n 4- " 27n ,• V f ,• - ? , f,-
- «/ / 27ri ;. ^ Vctr - fn cbr-V

where ?•, = i~\ denotes every substitution of the gi'oup.
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There are essentially only p such functions v^ , according as ^„ denotes

^1, ^2, •••) ^p\ for, taking the expression given last but one, and putting

n = st, that is, ^,i = ^s^t, we have

where r} = ^t, so that
i,a i,a C,a,

and in particular, when st is the identical substitution, as we see by the

formula itself,

= V, + V,-i
;

thus, if r denote ^I'^a' . . . ^ ^'
. .

. , we obtain

Vr =KVi + +7\'pVj, + ,

so that all the functions v^ are expressible as linear functions of Vi , . . ., Vp .

230. It follows from the formula

that the function v^ is never infinite save at the singular points of the

group. But it is not an uniform function of f; for let ^ describe the circum-

ference of the circle C,i in a counter clockwise direction ; then, by the factor

^—Bn,v.,l increases by unity; and no other increase arises; for, when the

region within the circle On, constituted by ^nS and regions of the* form

%i^8, contains a point ^j(Bn), the product representing the substitution j has

a positive power of ^,i as its left-hand factor, and in that case the region

contains also the point ^j(An). Similarly if ^ describe the circle (7,/ in a

clockwise direction, v^'^ increases by unity. But if ^ describe the circum-

ference of any other of the 2p circles, no increase arises in the value of

Vn
"', for the existence of a point ^j (Sn) in such a circle involves the existence

also of a point ^j (^n)-

It follows therefore that the function can be made uniform in the region

S by drawing the barrier, before described, from an arbitrary point P of G^' to

the corresponding point F' of C„. Then Vn
* is greater by unity on one side

of this barrier than on the other side. Further if in denote any one of

the substitutions "^i, ..., ^p, we have

n n n n n im'^

* Where
<f>
denotes a product of substitutions in which S^~* is not the left-hand factor.

23—2
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where f is arbitrary; thus as nJ'^;J= H^;'/^, the difference is also indepen-

dent of ^, and we have, introducing a symbol for this constant difference,

It follows therefore that if the p barriers, connecting the pairs of circles

C„', On, and their analogues for all the substitutions, be drawn in the

interioi-s of the circles, the functions Vi'", ....
4*" ^^^ uniform in the region aS',

and in all the regions derivable therefrom by the substitutions of the group.

The behaviour of the functions rf ", ...,
4'* ^^ ^^® region S is therefore

entirely analogous to that of the Riemann normal integrals upon a Riemann

surface, the correspondence of the pair of circumferences On, On and the two

sides of the barrier FT, to the two sides of the period loops (6„), (an), on the

Riemann surface, being complete. And the regions within the circles

C\, ..., Cp enable us to represent, in an uniform manner, all the values of the

integrals which would arise on the Riemann surface if the period loops (b,,)

were not present. Thus the ^ plane has greater powers of representation

than the Riemann surface. Further it follows, by what has preceded, that

the integral HdX i« entirely analogous to the Riemann normal elementary

integral of the third kind which has been denoted by the same symbol in

considering the Riemann surface. On the Riemann surface the period loops

{ttn) are not wanted for this function, which appears as a particular case of a

more general canonical integral having symmetrical behaviour in regard to

the first and second kinds of period loops ; but the loops (bn) are necessary
;

they render the function uniform by preventing the introduction of all the

values of which the function is capable. In the ^ plane, however*, the

function is uniform for all values of ^, and the regions interior to the circles

enable us to represent all the values of which the function is susceptible.

Thus the introduction of Riemann 's normal integrals appears a more natural

process in the case of the ^ plane than in the case of the Riemann surface

itself.

231. We may obtain a product expression lor t,j, ,„ directly from the

formula

-^-^jiBn)
j
U-^j(An)~

.
1

'liri j

'^^•^n=^-_.^\og

let Ic denote in turn every substitution whose product symbol neither has a

power of ^m at its left-hand end nor a power of ^„ at its right-hand end
;

thus we may write ^^ = ^,7, ^a, or, for abbreviation, j = in~^k ; and for every

substitution k, the substitution j has all the forms derivable by giving to h

all positive and negative integral values including zero, except that, when k

• Barriers being drawn to connect the infinities of the function.



232] OF THE THIRD AND FIRST KINDS. 357

is the identical substitution, if m = n, h can only have the one value zero;

then applying ^/^ to every quantity of the cross ratio under the logarithm

sign, we have

_ V log.
f ĵ-^m — -t>n

I
^j-lm — -^

1

'^Tri k,h V Kk-'lmh — Bn I ^k-lnt^ — -^ti J
'

and therefore, if m be not equal to n,

while when m = ?;, separating away the term for which k is the identical

substitution,

Tr,

1
, f^n-Bnl Cn-An\

^ 1 ^,, f^^\Bn)-Bni%\Bn)-An
-\ ; 2, log '

2'7ri k " V^^~'(^«)-BJ% {An) - ^,

where S' denotes that the identical substitution, ^^ = 1, is not included

thus

T„, «, = ;^—. log {iJine^"^) + ^^. S' log An~^s \Bn) I An— Js {A n)j2'7ri 27ri

where s denotes every substitution of the group other than the identical

substitution, not beginning or ending with a power of ^„, and excluding

every substitution of which the inverse has already occurred.

These formulae, like that for v„ ", are not definite unless the barriers (§ 227)

are drawn.

232. Ex. i. If ?;„'
^ = ?«„ + 1?('„ , ?<„, iia,i being the real and imaginary parts of v,,' , prove,

as in the case of a Riemann surface, by taking the integral I u dw round the p closed

curves each formed by the circumferences of a pair of circles and the two sides of the

barrier joining them, that the imaginary part of N-^t-^^ + + ^N-^N^t-^^+ i^ positive,

iVj, ..., Np being any real quantities and tL + iw=N^r^'^ + +N v^^"'. Prove also the

result Tm, jt=Tn, «i by contour integration.

Ex. ii. Prove that the function of f expressed by

has analogous properties to Riemann's normal elementary integral of the second kind.

Ex. iii. Prove that

" ' da

rf'/= (y,a+ S,)^rf'^

where aj= (ai«+/3i)/(yia+ Sj).
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E.r. iv. With the notation

[232

prove that

* {z, Cn) - * (^, = 2.ri
^^

<; " = * (^, |„) - * (-, I),

where $ is an arbitrary ix)int, and hence prove that if 2, e,, ..., c,,, ^ be any arbitrary

points, and ^, = 5, {$), ..., |p--9p(|), the function of C expressed by

*(o,,C), *(^na *(^i,^i), •-, *(^i. I;>)
1

*{Cv, 0, * ('V> I). * ('•;" ^1)' •••' * (''»" ^p)

1 , 1 , 1 , ..., 1

is unchanged by the substitutions of the group, and has simple poles at 2, c,, ... , 0^,, and

their analogues, and a simple zero at ^, and its analogues. Thus the function is similar to

the function >/^(.r, o; 2, c, , ..., Cp) of § 122, and every function whicli is unchanged by the

substitutions of the gi-oup can be expressed by means of it.

As a function of 2, the function is infinite at 2= |, 2= ^, beside being infinite at 2=00
,

and its analogues; when (ai2+ ^,)/(yi2 + S,) is put for 2, the function becomes multiplied

by (yi' + 5«)"- This last circumstance clearly corresponds with the fact (§ 123) that

^{x, a ; z, Ci, . .
.
, Cp) is not a rational function of 2, but a rational function multiplied by

dz

dt
(of. Ex. iii.)

Ex. V. Prove that

Ex. vi. In case jo= l, we have

(a, - B)l{a, -A)= {^e^f (a - B)!{a - A ).

where

Putting, for abbreviation, q = e
''"_\/

/it' ", and

prove, by applying the fundamental transformation once, that

1 C-A I
a-

A

S «.

and shew that e {() is a multiple of the Jacobian theta function e (i'^' ", y ; ^, ^).

CB I C'B
Ex. vii. Taking two circles as in figure 6 (§ 223), let C"BlAC'= a and r-p ap'~>^ »

take an arbitrary real quantity w, and a pure imaginary quantity w' = — log /x, and let
lit
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P(m) denote Weierstrass's elliptic function of u with 2<b, Sa' as periods. Then prove,

if a, c denote points outside both the circles, a' denote the inverse point of a in regard to

either one of the circles, and P, Q be arbitrary real quantities,

(a) that the function

Lr«i (C-By la-B c-B-\ ,.r<o, a-B /c-B-\\-^

is unaltered by the substitution {^' — B)/{^' — A) = fi{^-B)/{^-A), and has poles of the

first order, outside both the circles, only at the points C=a, f =c.

(/3) that the function,

P+iQ
,

P-iQ

— Ina
o- a'— A<£'-ti:i]-^fe>--LrJ]^fe>--:^^f]-4£'--"-^"

is real on the circumference of each circle, and, outside both the circles, has a pole of the

first order only at the point f= a. The arbitraries P, Q can be used to prescribe the

residue at this pole.

Ex. viii. Prove that any two uniform fvuictions of ( having no discontinuities except

poles, which are unaltered by the substitutions of the group, are connected by an algebraic

relation (cf. § 235) ; and that, if these two be properly chosen, any other uniform function

of f having no discontinuities except poles, which is unaltered by the substitutions of the

group, can be expressed rationally in terms of them. The development of the theory on

these lines is identical with the theory of rational functions on a Riemann surface, but

is simpler on account of the absence of branch places. Thus for instance we have a

theory of fundamental integral functions, an integral function being one which is only

infinite in the poles of an arbitrarily chosen function x. And we can form a function such

as S {.V, z) (§ 124, Chap. VII.) ; but the essential part of that function is much more

simply provided by the fimction, ar (f, y), investigated in the following article.

233. The preceding investigations are sufficient to explain the analogy

between the present theory and that of a Riemann surface. We come now

to the result which is the main purpose of this chapter. In the equation

where {^, y/zi, Ci] denotes a cross ratio, let the point z approach indefinitely

near to ^, and the point c approach indefinitely near to 7; then separating

away the term belonging to the identical substitution, and associating with

the term belonging to any other substitution that belonging to the inverse

substitution, we have, after applying a linear transformation to every element

of the cross ratio arising from the inverse substitution

n^' <^ = Ino- (^-^)(c-7)
. vino- ^^' ~ ^^ ^^^ ~ ^^ ^^ ~J'^ (o - Ji)

where S' denotes that, in the summation, of terms arising by a substitution
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and its inverse, only one is to be taken, and the identical substitution is

excluded. Thus we have*

= (f-7)n'lf,7/7,-, W.
i

where 11' has a similar signification to X' and {^, 7/7,, ^i] denotes a cross

ratio. Consider now the expression

^(r.7). =(r-7)n'i^,7/7o r.i;

it hiis clearly the following properties—it represents a perfectly definite

function of f and 7, single-valued on the whole ^-plane ; it depends only on

two variables, and -or (f, 7) = — •bj (7, f) ; as a function of ^ it is infinite, save

for the singular points of the group, only at ^= 00 , and not at the analogues

of ^= X ; it vanishes only at ^ = 7 and the analogues of this point, and

limitf^^'nr (f, y)/(^ — 7) = 1. Thus the function may be expected to generalise

the irreducible factor of the form x — a, in the case of rational functions, and

the factor a (u — a) in the case of elliptic functions, and to serve as a prime

function for the functions of f now under consideration (cf. also Chap. VII.

§ 129 and Chaps. XIII. and XIV.). It should be noticed that the value of

w (^, 7) does not depend upon the choice we make in the product between

any substitution and its inverse ; this follows by applying the substitution

^^"^ to every element of any factor.

234. We enquire now as to the behaviour of the function «t(^, 7) under

the substitutions of the group. It will be proved that

^(?.7) ^ ^ 7.^+S. '

where (— l)^", (— !)''» are certain + signs to be explained.

This result can be obtained, save for a sign, from the definition of w (^, 7),

as a limit, from the function l\,[l; but since, for our purpose, it is essential

to avoid any such ambiguity, and because we wish to regard the function

cr(f, 7) as fundamental, we adopt the longer method of dealing directly with

the product (^- 7) 11'
{f, 7/7,-, fj-j. We imagine the barriers, each connecting

a pair of circles, which are necessary to render the functions v\
i.a i.a

V,

• This function occurs in Schottky, Crelle, ci. (1887), p. 242 (at the top of the page). See
also p. 2.53, at the toj). The function is modified, for a Ilieraann surface, by Klein, Math. Aiinal.

XXXVI. (1890), p. 13. The modified function occurs also, in particular cases, in a paper by
Pick, Math. Annal. xxix., and in Klein, Math. Anmtl. xxxii. (1888), p. 367. For p = l, the

theta function wan of course expressed in factors by Jacob!. The function employed by Ritter,

Math. Annal. xi.iv. (p. 291), has a somewhat different character.
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uniform, to be drawn; then the quantities Tn,m, '^n.n given in § 231, and

defined by v„"'' , v/' are definite; so therefore is also e'^'V^ and the quan-

tity e'^^''«.», which is equal to

/iie^*"'n'
A,,-{Bn)sl An~{An)s

where s denotes a substitution, other than the identical substitution, not

beginning or ending with a power of ^,i, and excluding the inverse of a

substitution which has already occurred. This formula raises the question

whether Kn, which we take positive, is to be regarded as less than 27r or not,

since otherwise the sign of e^'*" is not definite. But in fact, as it arises in

this formula, from y,f"'^, logyu,,i + zV„ is the value of log i^, ^ ri—^^M when

^' has reached ^n from f by a path which does not cross the harriers. Thus Kn

is perfectly definite when the barriers are drawn, and the sign of the

quantity

yLi^ e^»'" n'
5. - {Bn)s / Bn - {An)s

j^n — {Bn)s
I

-a-n — {a.n)s

is perfectly definite and independent of the barriers. We denote it by

(— 1)^"~\ The annexed figure illustrates two ways of drawing a barrier

PP'. In the first case Kn is less than 27r, In the second case ^' must pass

Fig. 8.

once round the point B, and Kn is greater than 27r. When Kn is thus

determined, the expression by means of Kn of the p'^ which occurs in

the formulae connecting a„, I3n, jn, ^n and An, Bn, pn, for instance in the

formula p„ = (l -|-|o„)/(a„ + S„), is also definite; it may be /3„ = /*„e^**» or

pn = — f^ne'^^^'K We shall put p'^ = (— l)''«/i^jei'*». If the whole investigation

had been commenced with a different sign for each of «„, /3,i, jn, S»i. hn would

have become /?„ — 1, but ^„, depending only on the circles and the barrier,

would have the same value.

We have

^{^n, y) ^ ^n - 7
Yl'

^tn - 7 7i ~ t

^(?. 7) ?-7 i

^i-^
^i-y ' yi-^ ' ^in-W



362 BEHAVIOUR OF THIS FUNCTION [234

where i denotes in turn all substitutions which with their inverses give the

whole gi'oup, except the identical substitution ; thus i denotes all substitutions

n^ for \= 1, 2, 3, ..., X , as well as all substitutions n'^sii'', where s has the

significance just explained and h, k take all positive and negative integer

values including zero. Therefore

«; (^n, 7) ^ ?" - 7
I
J ^nA+1 - 7 yn>^ - ^n ?«^ " ?

^ ( ?, 7^ C - 7 A t«^ - 7 " 7"^ - ^
' ^"^+1 - C»

y-r ^»»*#)i* + i ~" 7 7/i''K»'
~iyj}: A'*^»*

""_'

= ??Lrjy n ^"^^^"'y n ^"^ ~ ^ n '^^^" C»^+^-t
?-7 A tn^-7 A?«A+l-tA 7n^ - ?

"

^n*+» - ?n

II
(^nVs — 7 (-^wXtfts— ^ j-| 7/t^^/t*^

~ ^n SnA»»*+jj-f

/i, « (-4 «)«''* — 7 {Bn)nh — ^ h, s, k 7«''*"*' " ? f/i''A7i*+ 1
- tn

'

the transformation of the second part of the product being precisely as in the

first part,

^^. -7 ^n-7 |«^^?j|7- ?»i-^ ?M-^H-A

t - 7 '

?/i - 7 ' ^u- ? A 7 - ?« -^ ' ^n - ^«i-^

TT (-">t)nfto ~ 7 (-^ »i )»J*x ~ ^ n '^
""

^-—^*-^ nt-^ ^n~ ^n- *« -j n - A

= -^"-7 ^. - ^ 7 - ^ ^"_^ "'^" n ^^")"''''_~ /y (^ ")«''»• -

1

sjcj — (-4 „)„ - *,. - , ^„ — ( Z?„),j _ t^ _ 1

'

since h and — /; have the same range of signification we may replace —k by /*,

in the last form, and obtain, by a rearrangement of the second product,

^ (tn. 7) _ _ iin -7 tn ^ ^n
jj ^^(^nV. 7 " {Bn)nhs

|-r 7 ~ \Bn)n^»-\ Kn — \A-ii),iks-\
,

8,hy — {A n)nh>, - 1 ^„ — ( J5„),iA^. - 1

'

but, from the fonuula

n 27rt^ ^^-'^j(A„)-y-^j(B,)'

whore j can have the forms ?As, ;t^s-^ or bo the identical substitution,
we have

?-^ « 7 - i^„ A. * t -(^n)nA« 7 - {BnUs s, h K-{A „)„fc,- ,

" y - (Bn)nht-\
'
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therefore

and hence

^(^n,j)J^-^^«' + -i-n,n_^n-A,,^ ^^„ ^_ ,,,

CT

now from the formula (^n~ B,,)/(^,- A„) = p^i^- B„)l(^- A,,), and the

values of a„, ^„, 7„, S^ given in § 226, we immediately find

(r- ^«)/(r« - ^h) = [^-A„ - p, (^- B,,mBn - An\

InK+K = [p:- (r- A,,) - pt (r- 5,,)]/(A. - A,,)
;

thus, as pi = (— 1)''"/*! e-'*", we have

a- A,,)/(^,, - An) = (•- 1A/.J ei-« {raK+ K) ;

hence, finally

-2,r/(t.f'^4-ir„,,.)

where (— l/»e '"''». ng'*n is independent of how the barriers are drawn, and

(— l)''"7,i, (— 1)''"S„ are independent of the signs attached to 7,^ and hn.

235. The function -S7(^, 7), whose properties have thus been deduced

immediately from its expression as an infinite product, supposed to be

convergent, may be regarded as fundamental. Thus, as can be imme-

diately verified, the integral 11^;^ is expressible by ct(^, 7), in the form

^' ^ * CT {Z, 7) VT (^, C)

and thence the integrals Vtl"* arise, by the definition v^"^ = -x
—

.^^/y , and

thence, also, integrals with algebraic infinities, by the definition

(cf. Ex. ii, § 232). Further, if F (^) denote any uniform function of ^ whose

value is unaltered by the substitutions of the group, which has no discontinui-

ties except poles, it is easy to prove, by contour integration, as in the case of
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a Riemann surface, (i) That F{^) must be somewhere infinite in the region S,

(ii) That F{^) takes any assigned value as many times within *S' as the sum

of its orders of infinity within S, (iii) That if Oj, ...,«* be the poles and

fSi, ..., ^k the zeros of i-'^^) within S. and the barriei-s be supposed drawn,

vj""' + +vf'°*= m;+ /»,'t,,,+ + ?Vt.-,,,, (1 = 1, ...,p),

where m,, .... m^, m,', ..., m/ ="*-' definite integers. Thence it is easy to

shew that the ratio

^^^:/ ^(r, a,) ^(r.«t)

is a constant for all values of ^. And replacing some of /3,, ..., a;t in this

expression by suitable analogues, the exponential factor may be absorbed.

Kr. In the elliptic Ccose where there is one fundamental substitution (C - B)/{C- '^) =

p{(-B)/{C- A), we have {d - B)/{Ci - A)= f>' (f- B)l{C-A\ and thence putting «, v, resi)ec-

tively for the integrals v^, i^, so that e^^''=iC-B)l{C-A), e^'''"= {y- D)l{y- A), we

iumuxliately find

^-y. ^-^ 1 - 2p' cos 27r (« - y) +p^' ._ ^B-A sin tt (« - y)

i^^. y-f," (1-p')^ >
i ? 2i .sinTrwsinTTv'

and hence

/?-J sin7r(«-v) V, 1 - 2p* cos 2ff ( ?< - y)+ p^'

^(C,y) = -2j sin 7r« sin",r7' ,?, {\ - p'f

which* putting e''"'=p*, is equal to

^^^^"e-2'J" («-")'„
[2a, («-/•); 2a,, 20,7-] ^siuTTM sin TTi',

4<a>

where o, is an arliitrary quantity, and

,a. = -2-2^-2^j_-„-^,.

230. The further development of the theory of functions in the ^ plane

may be carried out on the lines already followed in the case of the Riemann

.surface. We limit ourselves to some indications in regard to matters bearing

on the main object of this chii])ter.

The excess of the number of zeros over the number of poles, in any

region, of a function of ^, f{^), which is uniform and without essential

.siugularitios within that region, is of course ecpial to the integral

2^.Wlog/(f),

* See, for instance, Halpben, Fonct. KlUpt. (Paris, 188G), vol. i. p. 400.
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taken round the boundary of the region. If we consider, for example, the

function D.n{X), = dvt^jdi^, which is nowhere infinite, in the region *S^, the

number of its zeros within the region S is

-fv(jv)_nn:(i)'

Lan(rr) n„(^)j

where the dash denotes a differentiation in regard to ^, and the sign of

summation means that the integral is taken round the circles C'/, ..., Gp, in

a counter-clockwise direction. Since 0,i {^r) = (y,-^+ ^r)' ^n (^), the value is

1
I [ 2d^

r

or 2ji9 ; thus as n,i (^) vanishes to the second order at ^= oo in virtue of the

denominator di^, we may say that dv,l ^ has 2p — 2 zeros in the region S, in

general distinct from ^ = x> . The function ^n{^) vanishes in every analogue

of these 2p — 2 places, but does not vanish in the analogues of ^= go .

The theory of the theta functions, constructed from the integrals v,l , and

their periods t,i_,„, will subsist, and, as in the case of the Riemann surface

there will, corresponding to an arbitrary point m, which we take in the

region S, be points in^, ..,, vip in the region S, such that the zeros of the

function @ (y^.'"- - y^" "* — — yip,m,,^ Q^j,Q ^\^Q places ^i, ..., ^j,. And
corresponding to any odd half period, 1^0^,.,', there will be places Ui, ..., w^^_i,

in the region S, which, repeated, constitute the zero of a differential dv^' y, and

satisfy the equations typified by

^ rises' = ^''"'J"
'"" — V'^" '"' — — ?;"P - 1

'
">P

-

1.

The values of the quantities e'"^'^»-" and the positions of nii, ...,mp may
vary when the barriers which are necessary to define the periods Tn,ni are

changed.

But it is one of the main results of the representation now under

consideration that a particular theta function is derivable immediately from

the function ot (^, 7); and hence, as is shewn in chapter XIV., that

any theta function can be so derived. Let v denote the integral whose

differential vanishes to the second order in each of the places Ui, ...,Wp_i.

Consider the expression wdv/d^ in the region 8. It has no infinities and it is

single-valued in the neighbourhood of its zeros, as follows from the fact that

the p zeros of dv/d^ are all of the second order. Hence if the region S be

made simply connected by drawing the 2^ barriers, and joining the p pairs of

circles by p -1 further barriers (ci), . . . , (c^-i), of which (c,) joins the circumfer-

ence Cr to the circumference Cr+i, ^/dvjd^ will be uniform in the region 8 so

long as ^ does not cross any of the barriers. For the change in the value of

^dvjd^ when ^ is taken round any closed circuit may then be obtained by
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considering the equivalent circuits enclosing the zeros. But in fact the

barriei-s (c,), ..., (Cp-i) are uiniecossary ; to see this it is sufficient to see that

any circuit in the region S which entirely surrounds a pair of circles, such

as C,', Ci, encloses an even number of the infinities of dvjd^ which are at the

singular points of the gi'oup. Since these infinities are among the logarithmic

zeros and pules of vf^, ..., Vp, whereof w is a linear function, the proof

reipiired is included in the proof that any one of the functions Vi , ..., Vp is

unaltered when taken round a circuit entirely surrounding a pair of the

circles, such as C,', C,. Thus when the barriers which render the functions

vf^, ..., Vp^ uniform are drawn, the function \UivUl^ \f^ entirely definite within

the region S, save for an arbitrary constant multiplier, provided the sign of

the function be given for some one point in the region S. And, this being

done, if 7 be any point, the function ./ -tz\/ 1 is independent of this sign.

This function, with a certain constant multiplier, which will be afterwards

assigned, may be denoted by yfr (^).

2.S7. We proceed now to prove the equation

where s'v
'^ = Si'v^

' ^ + + .s,/?'^,' ^, and A is constant, independent of ^ and

7. It is clear fii^st of all that the two sides of this equation have the same

poles and zeros in the region S. For 0(y^+^n«_g') vanishes to the first

order at the places 7, ?«,, ..., «^,_,, and ^/^(t) vanishes to the first order at

7Jj, ..., »p_i, X, while CT (f, 7) vanishes to the first order at ^=7, and is

infinite to the first order at ^= x *. Thus the quotient of the two sides of the

equation has no infinities within the region S. Further the square of this

(piotient is uniform within the region >S, independently of the barriei"s ; for

this statement holds of each of the fixctors

And, if ^ be replaced by ^„, the square of the quotient of the two sides of the

equation becomes (cf. § 175, Chap. X.) multiplied by the factor

which is equal to unity. Now-f- a function of ^, which is unaltered by the

substitutions of the group, and is uniform within the region S, and has no

* At the analogues of f=x neither ar(f, 7) nor Ij f (f) becomes infinite.

t If U+iV be the function, the integral jUdV, taken round the 2p fundamental circles is

expressible as a surface integral over S wliose elements are positive or zero. In the ca.se

considered the former integral vanishes.
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infinities, must, like a rational function on a Riemann surface, be a constant.

Since the square root of a constant is also a constant the proof of the equation

is complete.

From it we infer (i) that

and (ii) that the values of \fr (^) on the two sides of a barrier have a quotient

of the form (— iy». The constant factor to be attached to '</r(^) may be

chosen so that A = l. For this it is sufficient to take for the integral v the

expression

v= i ©/(in,,,)4'',

where &/ (u) = d@(ii)ldui. Then (cf § 188, p. 281) the right-hand side,

when ^ is near to y, is equal to J. (f — 7) + ..., while the left-hand side has

the value (f — 7) -t-

238. The developments of an equation analogous to that just obtained,

which will be given in Chap. XIV. in connection with the functions there

discussed, render it unnecessary for us to pursue the matter further here.

The following forms an interesting example of theta functions, of another kind.

Suppose that the quantities fx^, ...,fXp are small enough to ensure (cf § 226)

the convergence of the series

wherein fx, denotes an arbitrary place within the region 8, and i denotes a

summation extending to every substitution of the group. It will appear that

this function is definite in all cases in which the function ct (^, fx) is definite.

The function is immediately seen to verify the equations

^ {Kn, /i) = (7n?+ K) ^ (^, /^), ^ {^, H-n) = {^nV- + K) ^ (?, /*),

1
and X (fi,, ^) = S

__ V 1

Cr - ?'i

where r denotes the substitution inverse to that denoted by {. Thus

\{^,,m)^-X (/., 0-

The function has one pole in the region >S', namely at fi, and no other

infinities, and if the series be uniformly convergent near ^ = go , as we assume,
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the function vanishes to the first order at ^= 20 . The excess of the number

of its zeros over the number of its poles in S, which is given by

1. S f
27ri n=lJ

d^,

where the dash denotes a differentiation in regard to f, and the integrals are

taken counter-clockwise round the circles CV, ..., C/, namely by

1 /^ f dK

is equal to ^;. Thus the function has p zeros in S other than f = 00 ;
denote

these hy fj^, ..., fip. Within any region ^„>S' the function has the analogue of

fi for a pole, and the analogues of fi^, ..., fip for zeros ; it does not vanish at

the analogue of ^ = x . This result may be verified also by investigating

similarly the excess of the number of zeros over the number of poles in any

such region ; the result is found to be ^) — 1.

Consider the ratio

where v is any linear function of v/ , ..., Vp ; let ^1, ..., ^2p—2 denote the

zeros of dv. Then f{^) is uniform within the region *Si, and is unaltered by

the substitutions of the group. It has poles /jr, ^1, ..., ^2^-2, and no other

infinities in »S', and has zeros /if, ..., fip-, the square of a symbol being written

to denote a zero or pole of the second order. Thus wc have, precisely as for

the case of rational functions on a Riemann surface,

2C'' + Vu''" + 4^"^' + +i',S-3.%-. + 42.-2.%-i^0, (/x=l,2,...,;;),

or (§ 179, p. 256),

iH'-, ^i, , ^^p-i)^ (/Aj-, .... fip"),

and therefore, if iiii, ..., jhj, denote tlie points in S, derivable from fi (§ 236),

such that ^ (v —v'" '"' - —y^"- ''''>) vanishes in ^=a;i, ..., ^ = a;p, we
have (§ 182, p. 265).

{fir, ..., fMjr) = (?/ti-, . .
.

, Wp').

When the barriers are drawn, let

C'"" + 4-C" = H^-i + /M'T.,. + +kp'r<,p), (i-l,2,...,2)),

^'1. •••, ^p, ^1', •••) ^V being integers.

Now consider the product \(f, /m) ct (^, /a). It lias no poles, in ^S, and its

zeros are yu., /j,p. It is an uniform function of ^, and, subjected to one of

the fundamental substitutions of the group it takes the factor
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Hence the function

F(i:)= Mlii*) ^ (?' /*) girik'v<' 1^

wherein h'v '
'^ denotes ki'vi

'* + + kp'Vp '^, and ft denotes the jj quantities

ki + k^Ti^i + +kpTi^p, has, within S, no zeros or poles, and is such that,

for a fundamental substitution,

(cf. § 175, Chap. X.); thus, as in the previous article, F{^) is a constant

thus, also, gn + hn —hi is an even integer, = 2^„, say, and we have

where P denotes the p quantities ^i + Ai + Aj/ri^i + +kpTi^p, and A is

independent of ^. But, if ^ describe the circumference On, the left-hand side

is unchanged, and the right-hand side obtains the factor e~^'''''K Thus the

integers A:/, . .
.

, kp' are all even
;
put k/ = ^2H/ ; then, as

(/ •'-i+!!:-rH')= e'""'
{"' ' - '-^') - "^''" & [^'

'

-^)

.

where the notation is that of § 175, Chap. X., we have

wherein B is independent of ^, and therefore, since the interchange of ^, fi

leaves both sides unaltered, B is also independent of fi. The value of B may

be expressed by putting ^=/i; thence we obtain, finally,

X (^, /x) ^ (r, /a) = @ (/• '^ - i^ - P)/@ (i^r + lA).

This equation may be regarded as equivalent to 2^ equations. For if in

one of the p fundamental substitutions %^= {(Xr^ + I3r) I {jr^+ ^r), we consider

the signs of a^, /3,., 7,., S,. all reversed, the function X (^, /j,), which involves the

first powers of these quantities, will take a different value. The function

sr (^, fi), the p fundamental circles, and the integrals /' " and their periods

Tn,m, and therefore the integers g^, ..., gp, will remain unchanged, if the

barriers remain unaltered. But the integer h,. will be increased by unity.

If, on the other hand, the coefficients a, jS, 7, 8 remaining unaltered,

one of the barriers be drawn differently, the left-hand side of the equation

remains unaltered; on the right-hand one of Aj, ..., hp will be increased by

an integer, say, for example, h,. increased by unity, and therefore each of

Ti,r, •> 'Tp,r also increased by unity. Putting u for v'^ — ^g - ^i, and

B. 24
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neglecting integral increments of u, the exponent of the general term of the

theta series is increased, save for integral multiples of 'I-rri, by

which is an even multiple of tti, so that the general term is unchanged.

Kr. i. Prove that the function X (f, /x) can be written in the form

where the sign of summation refers to all the substitutions of the group, other than

the identical substitution, with the condition that when any substitution occurs its inverse

must not occur, and U, f,•
| m, u,} denotes j / j^— .

Ex. ii. Tn case p = \, where the fundamental substitution is

{C-B)l{C-A)=p{C-B)l{(-A),

putting ^2"^"= !X-B)I{C-A), e^^" ==(^-B)

:

(/x- ^ ),
prove that

B-A shiTTJu-v) > . i
sin^nju-v)

^ ^~
'2i smTTiiHinTTv'

'^'^•'""''^'"^ l-2p'cos27r(u-r)+p2<'

and hence

2tsin7r«sinTrt' F g 4(-l)*Vt'(l+p*)8in^ff(M-i>)"|

^^f''*^-(5-^)sin7r(w-r)L .=1 1 - 2p< cos 27r (?<- v)+ p^' J"

When k=0 this becomes*

410) sin nil sin irr 0-3 [ia {u — v)]

(5-^)770-3(0) o- [2a) (tt-t;)]
'

where the sigma functions are formed with 2a), 2o)t as periods, a> being an arbitrary

quantity. Thus (§ 235, Ex.)

x^(C,;x)A(f,p,-.
^^^^^

-
^^^^^

- ^^^^ ,

where the symbol S^ is as in Halphen, Fond. Ellip. (Paris, 1886), Vol. i. pp. 260, 252.

This agrees with the general result ; in putting p' = e"""' we have taken g= \; and, as

.«*tated, h is here taken zero.

When h = 1 we similarly find

\(t \ ^»« sin TTU sin Try 0-3 [2a) (w - ?;+ ^)] g.,.- (w - f)au,m;-
(5_j)^o.3(„) o-[2a,"(tt-V)]

and hence

=f (Ci M)^(f, p) = e"'^'""'"~*'''-'2''"^"~*')*^3[2«(w-':+i)] ^ e{u-v)
0-3 (o)) ' e (0)

also in agreement with the general formula. In these formulae Q{u) denotes the series

2«^"'*'*+''""*=l+2^cos(2»r«)+ 22<co8(4fft0+ Vcos(67r«) + ,

where q = e^^''.

• Of. Halplieii, Fotict. FAlip. (Paris, 1886), Vol. i. p. 422.
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Ex. iii. Denoting

where the summations include all substitutions of the group except the identical sub-

stitution, respectively by «,»,„, v„i, m prove that, when f is near to /*,

t-M

Ex. XV. If 2, s be two single-valued functions of (, without essential singularities,

which are unaltered by the substitutions of the group, the algebraic * relation connecting

z and s may be associated with a Riemann surface, whereon f is an infinitely valued

function ; and if z, s be properly chosen, any single-valued function of ^ without essential

singularities, which is unaltered by the substitutions of the group, is a rational function on

the Riemann surface. But if

where C'=;^j ^^c, we immediately find that the value Z={a(+fj) /{y^+8) gives

{Z,z} = {C,z};

I /dzY
therefore, as {f, z}, = -{z, C} [-ji^j > ^^ ^ single-valued function of f without essential

singularities, and is unaltered by the substitutions of the group, we have

{C, z} = 2liz, s),

where / denotes a rational function. Therefore, if V denote an arbitrary function, and

d ( dC\
P=^ — -j- log {Y'^-j:]i Y and (Y are the solutions of the equation

d^l

di

T ^dY V ^ , ^ ,dP~\
F=0,

\dz
and if Y be chosen so that Y"^ -r- is a rational function on the Riemann surface, the

coefficients in this equation will also be rational functions. Thus for instance we may

fdz
take for Y the function */ -rj., in which case P=0, or we may take for }' the function

V' (0) = sj 'J} -q-
•> considered in § 236, which is uniform on the ^ plane when the barriers

d dv d^Y
are drawn, in which case P= --^ \og-j-, and the equation takes the form —p^ + E.Y=0,

where ^ is a rational function, or again we may take for Y the uniform function of

C, X iC, m)) considered in § 238 f.

* Ex. viii. § 232.

t Cf. Riemann, Ges. Werhe (Leipzig, 1876), p. 416, p. 415; Schottky, Crelle, lxxxiii. (1877),

p. 336 £f.

24—2
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Ex. V. If, as in Ex. iv., we suppose a Rietnann surftice constnicted such that to

every point ( of the ( plane there corresiwnds a place {z, s) of the Riemanu surface, and

in particular to the jwint (=$ there corresponds the place (.r, y), and if /?, S be functions

of ^ defined by the expansions

^iog=^(c,i)=-rl7+^+(---^)^+ , ^^=i-h''ic-ir+

prove that

and that R, S are rational functions of .r and y.

Ex. vi. The last two examples suggest a problem of capital impoi-tance—given any

Riemann surface, to find a function f, which will efiect a conformal representation of the

siuface to such a f-region as that here discussed. This problem may be regarded as that

of finding a suitable form for the rational fimction I (z, s). The reader may consult

Schottk\', Crelle, Lxxxiii. (1877), p. 336, and Crelle, ci. (1887), p. 268, and Poincare,

Acta Mathematica, iv. (1884), p. 224, and Bulletin de la Soc. Math, de France, t. xi. (18 May,

1883), p. 112. In the elliptic case, taking

where |> denotes Weierstrass's function with 1 and r as periods, it is easy to prove that

a/ -t^ and f a/ -71. are the solutions of the equation
dC ^ V rff

dz
{4.^-g,z-g,) ^+{Gz' - hg,) ^+,r^ J'==0.

239. There is one case of the theory which may be referred to in

conclusion. Take p circles Cj, ..., Cp, exterior to one another, which are all

cut at right angles by another circle ; take a further circle G cutting this

orthogonal cii'cle at right angles; invert the circles Cj, C.., ... in regard to

C. We shall obtain j) circles C/, (7/, ..., Cp also cutting the orthogonal

circle at right angles. The case referred to is that in which the circles

Ci, C/, ..., Cp, Cp' are the fundamental circles and the angles k^, ..., Kp are

all zero, so that, if ^„ denote one of the p fundamental substitutions, the

corresponding points ^, ^„^ lie on a circle through A^ and B„. We may
suppose that the circles C^, ..., Cp are all interior to the circle C. It can be

shewn by elementary geometry that An, Bn are inverse points in regard to

the circle G as well as in regard to the circle Gn, and further that if co denote

the process of inversion in regard to the circle G and Wn that of inversion in

regard to (7„, the fundamental substitution ^„ is &)„&), so that a)^„a) =^,7\ or

uf^n = ^n <w- Hence if the points of intersection of the circles 0, Gn be

called cin, bn, the points of intersection of 0, Gn be called o„, bn, and the

points of intersection of 0, G be called a, b, it may be shewn without much
difficulty that

a.o,
i'„ = l\u r .

v; " = ^ + Q„ , V,: = i + /?, (»,'•= 1 , 2, .... jj ; 7? 4= r),
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where P„, ,-, Qn, R are integers, and the integrations are along the perimeters

of the several circles. Hence it follows that the uniform functions of ^

2n " 211
'^

expressed by e '^r'^r, e «> '^ are unaltered by the substitutions of the group.

Denote them, respectively, by x^ (^) and a; (^). Each of them has a single

pole of the second order, and a single zero of the second order, and therefore,

as in the case of rational functions on a hyperelliptic Riemann surface, we

have, absorbing a constant factor in x,. (^), an equation of the form

.ox _ x(^)-x (ar)

But it follows also that the function

n^'^l + n^'^ + + n^'''A

is unaltered by the substitutions of the group. Hence we have*, writing

y, X for y (^), x (^), etc.,

\x — x (rti)l \x —X (a„)l
y -xx,...xp-x^^_^^^^^^

[^-^(6^)]-

Thus the special case under consideration corresponds to a hyperelliptic

Riemann surface ; and, for example, the equations v^J"
" = ^ + Qw, etc., cor-

respond to part of the results obtained in \ 200, Chap. XI. It is manifest

that the theory is capable of great development. The reader may consult

Weber, Oottinger Nackrichten, 1886, "Ein Beitrag zu Poincare's Theorie,

u. s. w.," also, Burnside, Proc. London Math. Soc. xxiii. (1892), p. 283, and

Poincare, Acta Math. in. p. 80 and Acta Math. iv. p. 294 (1884); also

Schottky, Grelle, cvi. (1890), p. 199. For the general theory of automorphic

functions references are given by Forsyth, Theory of Functions (1893),

p. 619. The particular case considered in this chapter is intended only

to illustrate general ideas. From the point of view of the theory of this

volume. Chapter XIV. may be regarded as an introduction to the theory

of automorphic functions (cf. Klein, Math. Annalen, xxi. (1883), p. 141, and

Ritter, Math. Annalen, XLiv. (1894), p. 261).

* The function x here employed is not identical in case p^l with the z of Ex. vi. § 238.
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CHAPTER XIIL

Ox Radical Functions.

240. The reader is ali-eady familiar with the fact that if sn a represent

the ordinary Jacobian elliptic function, the square root of 1 - sn- a may be

treated as a single-valued function of u. Such a property is possessed by

other square roots. Thus for instance we have*

V(l — sn «) (1 — k sn u)

TTtt
l-2r/«sin^+r/-"'
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been led to the consideration of functions of the form V(c -w^) ...(c- Xp),

which are expressible by theta functions with arguments u, =?<,'«i'«> +
\-ii^P'<^i\ These functions are not only single-valued functions of the

arguments u, but, when the Riemann surface, is dissected in the ordinary

way, also of every one of the places x^,...,Xp. In fact the square root Vc - x

is a single-valued function of the place x because, c being a branch place,

x—c vanishes to the second order at the place, and the point at infinity

being a branch place, x-ch there infinite to the second order. The values

of the square root Vc^a; on the two sides of any period loop will have a

ratio, constant along that loop, which is equal to + 1.

241. More generally it may be proved, for any Riemann surface, that if

Z be a rational function such that each of its zeros and poles is of the m\h

order, the mth. root, VZ, is a single-valued function of position on the

dissected surface, with factors at the period loops which are mih. roots of

unity. And it is easy to prove this in another way by obtaining an ex-

pression for such a function. For let ofj, ... , a^. be the distinct poles of Z, and

/3i, ..., /9,. its distinct zeros, so that the function is of order mr. Let 11^; ,. be

the normal elementary integral of the third kind and Vi' , ...,v^ the normal

integrals of the first kind. Then when the paths are restricted not to cross

the period loops we have* equations

m(v^"' + -F i;^'""'-) = ki + kin, 1 + + kpTi,p, {i = 1, 2, ...,p),

wherein k^, ...,kp, A;/, ..., V are certain integers independent of i. Hence

the expression

m[n^''' + +n^''^ ]-2Hky,'"'- -2,riV<'"

wherein a is an arbitrary fixed place, represents the rational function Z, save

for an arbitrary constant ; and we have

„,/— , II ' + +II„ C'l '^l + +*P'^/, I

VZ=Ae ^•"' ^'•'"'- '"

where ^ is a certain constant. This expression defines V^ on the dissected

surface as a single-valued function of position. More accurately it defines

one branch oiVZ, the other m- 1 branches being obtained by multiplying

A by mih. roots of unity. So defined, the function VZ is affected, at the

period loop a^, with a factor e~"^ ', and, at the period loop a.{, with the

factor e"*
''.

242. We have, in chapters X., XI., been concerned with other functions,

namely the theta functions which also have the property of being single-

Chap. VIII. § 155.
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valued on the dissected Riemann surface, but affected with a factor for each

period loop. They are also simpler than rational functions, in that they do

not possess poles. It is therefore of interest to express such functions as

\/Z by means of theta functions; and the expression has an importance

arising from the fi\ct that the theory of the theta functions may be established

independently of the theory of the algebraic integrals. To explain this

mode of representation consider the quotient

where the numerator and denominator contain the same number of factors,

^(u, q) denotes the function (Chap. X. § 189) given by

q, r, ..., Q, R, ... denote any characteristics, and e,f....,E,F,... denote any

arguments.

Then by the formula (§ 190)

^ (u + n,,
; q) = e^M «')+2ir/,j/5'-j/'9, ^ (y .

fjj^

where M, M' denote integers, we have -^ {a + flj^) /yjr{u) = e'-, whore L is

\„ (u -e) + \^(u-f)+ - X^{u - E) -X^^(u-F)-

+ 'IttLM (q' + r'

+

-(/ - R -...)- 27r{M' (q + r + -Q-R-...),

namely, is

-^v(e+/+ - E - F - ...) ^^TriM iq' + r + -Q'-R'-...)

-277ul/'(ry+r + -Q-R-...).
Thus if

and

e, + /', + =Ei-\-Fi +

qi +ri + -(Qi +Ri +...) = ^A',-, (i = l,'2, ...,p),

q( + r/ + - {Q: + R: + ...) = -Ki\
in

where A",, A',' are integers and m is an integer, it follows, for integral values

of J/, M', that

[>/r(jf + fij,)/Vr(u)]«=l.

If now we take b = {ttt, as in § 192, and put m^'« for ti, ^{u-e; q)
becomes a single-valued function of x whose zeros are (§§ 190 (L), 179) the
places Xi, ..., Xp, given by

e — n^ = u*' •
"' + + w^' °^,
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where a^, ..., cip are j) places determined from the place a, just as in § 179

the places ??ii, ..., m^, were determined from the place m; hence, in this case,

yjr (u) is the mth root of a rational function, having for zeros places

OC^, ,.,, Xp, Zi, . .. , Zp, . .
.

,

each m times repeated, and for poles places

A-i, ..., Ap, Zii, ..., Zp, ...,

each m times repeated, these places being subject only to the conditions

expressed by the equations

w*" ^1 + -^r'U^P' ^p + ^^••^1 + +«^p' ^p + = Ha' A", (A).m '

In this representation we have obtained a function of which the number

of 711 times repeated zeros is a multiple of p, and also the number of m times

repeated poles is a multiple of p. It is easy however to remove this restric-

tion by supposing a certain number of the places Xi, ..., Xp, z^, ..., Zp to

coincide with places of the set Xj , ..., Xp, Z^, ..., Zp,

243. A rational function on the Riemann surface is characterised by the

facts that it is a single-valued function of position, such that itself and its

inverse have no infinities but poles, which has, moreover, the same value

at the two sides of any period loop. The functions we have described may
clearly be regarded as generalisations of the rational functions, the one new

property being that the values of the function at the two sides of any period

loop have a ratio, constant along that loop, which is a root of unity. For

these functions there holds a theorem, expressed by the equations (A) above,

which may be regarded as a generalisation of Abel's theorem for integrals

of the first kind ; and, when the poles of such a function are given, the

number of zeros that can be arbitrarily assigned is the same as for a rational

function having the same poles, being in general all but p of them ; this

follows from the theory of the solution of Jacobi's inversion problem

(Chap. IX. ; cf also §§ 37, 93). It will be seen in the course of the following

chapter that we can also consider functions of a still more general kind,

having constant factors at the period loops which are not roots of unity, and

possessing, beside poles, also essential singularities ; such functions may be

called /ac^on'aZ functions. The particular functions so far considered may be

called radical functions ; it is proper to consider them first, in some detail, on

account of their geometrical interpretation and because they furnish a

convenient method of expressing the solution of several problems connected

with Jacobi's inversion problem.

244. The most important of the radical functions are those which are

square roots of rational functions, and in view of the general theory developed

in the next chapter it will be sufficient to confine ourselves to these functions.
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In dealing with these we shall adopt the invariant representation by means

of 0-pol\Tiomials, which has already been described*. An integi-al poljTiomial

of the rth degree in the p fundamental (^-polynomials, <^i, ..., (f>p,
will be

denoted by O""', or "^*''', when its 2r(p — l) zeros are subject to no condition.

When all the zeros are of the second order, and fall therefore, in general, at

?•(/)- 1) distinct places, the polynomial will be denoted by Z*" or F""* ; we

havef already been concerned with such polynomials, Z<'*, of the first degree

in
<f>^,

..., (pp.

It is to be shewn now that the square root VZ""' can properly be associated

with a certain characteristic of 2p half-integers; and for this purpose it is

convenient to utilise the places ?«,, ..., nip, arising from an arbitrary place m,

which have already^ occurred in the theory of the theta functions. These

places are§ such that if a non-adjoint polynomial. A, of grade /i, be taken to

vanish to the second order at 7n, there is an adjoint polynomial, -»/r, of grade

{n — 1) a + n — S + /M, vanishing in the remaining n/M — 2 zeros of A, whose

other zeros consist of the places nii, ..., vip, each repeated. Take now any

^-polynomial, ^o> vanishing to the first order at m, and let its other zeros be

^1, ..., A^-i] and take a poljTiomial $<3' vanishing to the second order in

each of ^1, .... ^0^,3; then ^''' willH contain o(p-l) -2{2p -S), =p + l,

linearly independent terms, and will have Q (p - 1) - 2 {2p - S), = 2p, further

zeros. Let X"* be any (^-polynomial of which all the zeros are of the second

order. Consider the most general rational function, of order 2p, whose poles

consist of the place m, this being a pole of the second order, and of the zeros

of X^K This function will contain 2p-p + l,=p + 1, linearly independent

terms and can be expressed in either of the forms (^^^\l(f)o-X'^\ -v^/AX"', where

yjr is any polynomial of grade (n — l)a + n — S + p which vanishes in the

Hfi — 2 zeros of A other than ??i. Since nowH -v/r can be chosen, = i/r, so that

the zeros of this function are the places ??ij, ..., m^, each repeated, it follows

that <!>"' can be equally chosen so that this is the case. So chosen it may be

denoted by A''^'. Thus tJie places m^, ..., lUp arise as the remaining zeros of a

form A*'' {luith 'S {p — \), =p + 2p — '^, zeros, each of the second order), luhose

other 2;) — 3 separate zeros are zeros of an arbitrary
(f>-

polynomial, (f>o,
which

vanishes once at the place m.

If now «T, ..., ??^_i be the places which, repeated, are the zeros of A"', it

follows, since m, 7i,, ..., iip-i, each repeated, are the poles, and 77ii, ...,mp,

each repeated, are the zeros of a rational function, A'*7</>o^'^*^*> that, upon the

dissected surface, we have

vl""'" -vT' ' - _^J»i'-i.»»P-i^ _ ^^^.. ^^.^'.^.^^_,. ^{.^'^.^^-^^

* Chap. VI. § 110 ff., and the references there given, and Klein, Math. Aiimd. xxxvi. p. 38.

+ Chap. X. § IftS, p. 281. X Chap. X. § 179.

§ Chap. X. § 183, Chap. VI. § 92, Ex. ix.

II
Chap. VI. § 111. H Chap. X. § 183.
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where ki, ..., kp, ki , ..., kp are certain integers. Hence, as in § 241, it

immediately follows that the rational function X'^'/^o'-X^'^*, save for a constant

factor, is the square of the function

n + + 11 +11 +in(k-,v' + +k„v \

p Wi.Wi mp-i,np-i iiip, m ^ i i ' >' ij )

and therefore that the expression VX^'/*/>o^^*^' may be regarded as a single-

valued function on the dissected Riemann surface, whose values on the two

sides of any period loop have a ratio constant along that loop. These constant

ratios are equal to e'""^v' and e-""'*r for the rth loop of the first and second kind

respectively. When the places m^, ..., 77ip are regarded as given, these

equations associate with the form VX'^' a definite characteristic

!/• i/- -I-/-

'

1 Z-
'

2 " I ) • • • 5 2 "^P ' 2 "• 1 > • • • ' ^"'P •

Also, if F'^' be any polynomial which, beside vanishing to the second

order in A^, ..., J.2^-3, vanishes to the second order in places m/, ..., Wp
,

j^(3)y'j^(3) jg g^ Tatloual functlon, and we have equations of the form

mi', III, »«;/, lllp
1 /-, -. / / X

Vi + +Vi =i(Xi + Xi T,-,i -}- +'^pri,p),

,_ ,, 11^"'" + + nf.''; -7rt(Xi'T,i+ +X„'t,„)

where \i, ..., \p are integers, J. is a constant, and the paths of integration

are limited to the dissected Riemann surface. These equations associate

VF*'" with the characteristic ^\, ..., ^\p, ^X/, ..., |Xp'.

And, as in § 184, Chap. X., we infer that every odd characteristic is

associated with a polynomial* X'^', and every even characteristic with a

jjolynomial F'^', which has A^, ..., J-ap-s for zeros of the second order; and it

may happen that the polynomial F'^' corresponding to an even characteristic

has the form ^o^F'^*, in which case the places nii , ..., mp consist of the place

m and the zeros of a form F'^'

.

245. Let now X*-""''^* be any polynomial whose zeros consist of

(2i; \-V){p — 1) places, z-^, z^, ..., each repeated ; let ^0 be as before, vanishing

in m, Ai, ..., A^ps, and X''* be as before, vanishing to the second order in

Ai, ..., A^-3, TOi, ..., rup. Then if <!>'''' be any (^-polynomial whose zeros

are Ci, C2, ..., the function

^^2X(2.+l)/[<l)(.')pX(3)

* Or in particular cases with a lot of such polynomials, giving rise to coresidual sets of

places.
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isarational function of order 2(2 1/+ 1)(7)- 1) + 2, whose zeros are m,z^,z.., ...,

and whose poles consist of the phices m^ nip, and the zeros of ^SJ*"', each

repeated. Hence as before </>oVA'<-''+*7*^"''^'^"' ^^ a single-vahied function on

the dissected surface, and the form VX"^"-*"'' is associated with a characteristic

|</i, ..., \qp, ^(ji i9p'> such that, on the dissected surface,

Vi + + Vi ' +Vi + =^{qi + qiTi,i + ^(Ip'^i.ph

and if, instead of ^X"', we had used any other polynomial ^"'', the character-

istic could, by Abel's theorem, only be affected by the addition of integers.

Suppose now that F'^/^+i* is another polynomial, and take a polynomial ^''"

;

then if the characteristic of the function <^y y>^»/"^"^»VZ^ differ from that

of ^o^-^"^"*"**/*^*"' '^-X''^' only by integers, we have when x^, 0:2, ... denote the

zeros of \/F<-'"+^), and di, d«, ... denote the zeros of '^*'^*, the equation

X,, m, Xi>,m,, a;,)+i,d|
. 1 / .

'
, , ' \

Vi + + Vi +Vi + = h{qi + qiTi,, + +qpri,p)

+ Mi + M.'Ti, , + + ilZ/r^, i,

where M^, ..., Mp, M^" , ..., Mp denote integers; by adding this to the last

equation we infer* that <^,2\/Z(2''+i>\/7<'''+'>/<I>('')'^('^) A'W is a rational function.

Hence •!•, since there exists a rational function of the form (f)o-X^^yX^'^\ we

infer, when Vjf '^*'"*''\ V^'C^/^+i* Juive characteristics differing only by integers,

there exists a form <I)<'*+''+i* luhose zeros are the separate zeros of VJC '"'+" and

VF''-^+", and we have \/X(^h-i)VF^m+i) =$<.'+m+i).

Hence, all possible forms \/F<=^+^', \vith the same value of ^, whose

characteristics, save for integers, are the same, are expressible in the form

0'^+"+''/'^^*'""^^'. where <I)('^+''+i» is a polynomial of the degree indicated,

which vanishes once in the zeros of VX<-''+^'. All such forms Vy'^^^+i' are

therefore expressible by such equations as

where -J
Yf^'^^^, ..., ^J^^'J^^J) are special polynomials, and Xj, ..., Xo^i^^d are

constants. The assignation of 2/i (jj - 1) - 1, = (2/i -i-l) {p — l)—p^ zeros of

VF'»^+i' will determine the constants X,, •••, ^-.^ip-v, and therefore determine
the remaining p zeros. When /^ = there may be a reduction in the number
of zeros determined by the others.

It follows also that the zeros of any form VF'-'"+'» are the remaining zeros

of a polynomial <I>''^+'" which vanishes in the zeros of a form VZ'" having

• Chap. VIII. § 158. t Chap. VI. § 112.
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the same characteristic as \/F<2'"+^', or a characteristic differing from that of

^^(2^+1) Qjjiy \yy integcrs. When the characteristic of VZ<'' is odd, and

VZ<^ = <I)<i> VXw, we may take <I><'^+-* to be of the form ^''*+^> ^<^>.

It can be similarly shewn that if Z*^'*' be a polynomial of even degree, 2/j,,

in the fundamental (^-polynomials, of which all the zeros are of the second

order, and ^^'z^' be any polynomial of degree /i, the quotient V'Z'^'"'/*!)''"' may

be interpreted as a single-valued function on the dissected surface, and the

form '\/X<-''* may be associated with a certain characteristic of half-integers.

Further the zeros of VX'-'"' are the remaining zeros of a form <|)<'^+i) which

vanishes in the zeros of a form VX*-* of the same* characteristic as VZ*^'*'.

Also if VZ*^*, VF'^' be two forms whose (odd) characteristics have a sum

differing from the characteristic of VZ*-' by integers, the ratio VX'^'/VXWF*^*

is a rational function ; and if we determine (p — 1) pairs of odd characteristics,

such that the sum of each pair is, save for integers, equal to the character-

istic of VZ*-*, and VZj"', VFj*^*, VZa'^*, VFg*^', ..., represent the corresponding

forms, there exists an equation of the form

Vz^' = x/zpFiVxyzfF^'-^ + x^-1 VzpTi^i.

As a matter of fact every characteristic, except the zero characteristic, can,

save for integers, be written as the sum of two odd characteristics in

2P-^{2P-^- 1) ways.

246. In illustration of these principles we consider briefly the geometrical

theory of a general plane quartic curve for which p = S. We may suppose

the equation expressed homogeneously by the coordinates Xi, x.^, x^ and take

the fundamental ^-polynomials to be ^i=^i, <^o=a?2, (ps^x^. There are

then 2^-^ (2^-1) = 28 double tangents, Z<'>, of fixed position. There are

2^, = 64, systems of cubic curves, Z'^', each touching in six points. Of these

six points of contact of a cubic, Z<^', of prescribed characteristic, three may be

arbitrarily taken ; and we have in fact

Vz(^ = X, Vz/^' -f- \o Vz/» + X3 VzT' + >-4 Vz/>,

where Xj, Xo, X., X^ are constants, and vZi'^', VZj'^', ..., are special forms of

the assigned characteristic. The points of contact of all cubics Z<^' of given

odd characteristic are obtainable by drawing variable conies through the

points of contact of the double tangent, D, associated with that odd

characteristic. Let flo be a certain one of these conies and let Xq denote the

corresponding contact-cubic ; then the rational function X^BjCl^ has, clearly,

no poles, and must be a constant, and therefore, absorbing the constant, we
infer that the equation of the fundamental quartic can be written

4ZoX>-Oo2 = 0.

* Or a characteristic differing from that of \ X^^'^' by integers.
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Throe of the conies through the points of contact of D are x^D = 0, x.D = 0,

u\D=Q\ the correspoudiug forms of X'^' are x^-D, x.?D, x^-D. Hence all

contact cubics of the same characteristic as ^/D are included in the formula

or

where P = XiX^ + \^'.2 + ^s^'a, ^1, ^2. ^ being constants ; the conic through the

points of contact of D which passes through the points of contact of X"" is

given In- H = 2 ^DX^^\ or 11 = 'IPD + fio ; aiid the fundamental quartic can

equally be written

^X'^D- n^ = 4 {X, + OoP + DP^ D-{n,+ 2PDy = 0.

If then we introduce space coordinates X, Y, Z, T given by

X =x-^, F = X.,, Z=x.j, T= — '^Xo/JJ,

so that the general form of VZ"" with the same characteristic as \/D is given

by _ _
VZ<=" = Vi) (\,Z + \,Y + \,Z- T),

we have

4Zo(Z, Y, Z) D (Z, Y, Z) = no^X, Y, Z),

2TD (Z, F, Z) + Ho (Z, F, Z) = 0,

where Xq (Z, F, Z) is the result of substituting in Z,,, for x^, x^, X3,

respectively Z, F, ^, etc. ; by these equations the fundamental quartic is

related to a curve of the sixth order in space of three dimensions, given

by the intersection of the quadric surface

2TI)(X, Y,Z) + no{X, Y,Z) =

and the quartic cone

4Zo (Z, Y, Z) D (Z, F, Z) = fio^ (Z, F, Z)
;

the curve lies also on the cubic surface

T^Z) (Z, F, if) + TH, (Z, F, Z) + Zo (Z, F, ^) = 0,

which can also be written

{T-PfD(X, Y,Z)-[-(T-P)n(X, Y,Z) + X^'^(X,Y,Z) = 0,

where P denotes \,Z + \2F+ X^Z, n = 2PD + n„ and Z»=" = DP' + n^P + Zo,

as above.

It can be immediately shewn (i) that the enveloping cone of the cubic

surface just obtained, whose vertex is the point Z = = F= ^, is the quartic

cone whose intersection with the plane ^ = gives the fundamental quartic

curve, (ii) that the tangent plane of the cubic surface at the point
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X = = Y= Z is the plane I){X, Y,Z) = 0, (iii) that the planes joining

the point X = = Y= Z to the 27 straight lines of the cubic surface

intersect the plane T=0 in the 27 double tangents of the fundamental

quartic other than D, (iv) that the fundamental quartic curve may be

considered as arising by the intersection of an arbitrary plane with the

quartic cone of contact which can be drawn to an arbitrary cubic surface

from an arbitrary point of the surface.

Thus the theory of the bitangents is reducible to the theory of the right

lines lying on a cubic surface. Further development must be sought in geo-

metrical treatises. Cf Geiser, Math. Annal Bd. i. p. 129, Crelle Lxxil. (1870);

also Frahm, Math. Annal. vii. and Toeplitz, Math. Annal. xi.; Salmon, Higher

Plane Curves (1879), p. 231, note ; Klein, Math. Annal. xxxvi. p. 51.

247. We have shewn that there are 28 double tangents each associated

with one of the odd characteristics ; the association depends upon the mode
of dissection of the fundamental Riemann surface. We have stated moreover

(§ 205, Chap. XI.), in anticipation of a result which is to be proved later, that

there are 8 . 36 = 288 ways in which all possible characteristics can be repre-

sented by combinations of one, two, or three of seven fundamental odd

characteristics. These fundamental characteristics can be denoted by the

numbers 1, 2, 3, 4, 5, 6, 7, and in what follows we shall, for the sake of

definiteness, suppose them to be either the characteristics so denoted in the

table given § 205, or one of the seven sets whose letter notation is given at

the conclusion of § 205. Thus the sum of these seven characteristics is the

characteristic, which, save for integers, has all its elements zero ; or, as we
may say, the sum of these characteristics is zero.

A double tangent whose characteristic is denoted by the number i will be

represented by the equation Mi = 0. A combination of two numbers also

represents an odd characteristic (§ 205, Chap. XI.), so that there will also be

21 double tangents whose equations are of such forms as «,• ^ = 0. The three

products '^UiiUs, ^uMsi, \f11311-^2 will be radical forms, such as have been denoted

by VX*'^', each with the characteristic 123. Hence if suitable numerical

multipliers be absorbed in u^, u.^, we have (§ 245) an identity of the forms

this must then be a form into which the equation of the fundamental quartic

curve can be put. Further, each of the six forms

V».tti2, V'lisMjs, VW4M14, ^/Uathi, '^'IHUu, "Ju-ilhl

has the same characteristic, denoted by the symbol 1. Thus, if suitable

numerical multipliers be absorbed in u.,, u^, the equation of the quartic can

also be given in the form
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If therefore

we have

(/ - 0) (/+ <^) = 4M2«,2 («3l*i3 - W4W14).

Now if/— ^ wore divisible by w,, and /+ divisible by ti^2, the common
point of the tangents «., = 0, u^o = would make /= 0, and therefore be upon

the fundamental quartic, /- = ^uMjUsiii^o
',
this is impossible when the quartic

is perfectly general. Hence, without loss of generality, we may take

f-4>= 2\U.AI^.,

2

\ being a certain constant, and therefore

«4«U = "3»13 - V*+ '^'^h^h.:, = "3''l3 — ^ ("2^31 + Ua^hi — Uil(23) + '^^VoUi-i.

Therefore, when the six tangents Wi, u^, U3, u.j3, t/ji, u^^ are given, the tangents

Ui, w,4 can be found by expressing the condition that the right-hand side

should be a product of linear factors ; as the right-hand is a quadric function

of the coordinates this will lead to a sextic equation in X, having the roots

\ = 0,X= 00; if the other roots be substituted in turn on the right-hand, we
shall obtain in turn four pairs of double tangents ; these are in fact («4, Uu),

(^'51 Wis), (Kg, Wjg), (uy, «i7). We use the equation obtained however in a

different way; by a similar proof we clearly obtain the three equations

«4"l4 = «3"l3 - ^1 («j"31 + «3«12 " IflU^a) + A.i^?/2«ia,

71^11^ — ll^U.^^ - X2 (Wg^^i, -t- Mi«23 — «2«3l) + X^U^U^, (B)

U^ll^ = ?<2«32 — \ ("1^23 4- lM(3i — U3U12) + Xa^iti M31,

and hence

«4
(^^ + ^ j

= W23 ( X2W3 + r j + «i
(
^ + ^3w,i - 22

from this we infer that the common point of the tangents n^, u^ either lies on

«o3 or on \2W3-|--? = 0; as the fundamental quartic may be written in the
X3

form V^i<4M3, + ^JBu.^u^ + '^Cii^Uy^ = 0, it follows that if Wj, W4, M23 intersect,

they intersect on the quartic, which is impossible. Hence 1*4 must pass

through the intersection of Wjand X^m^ + r-" = ; now we may assume that

the tangents zt,, u.^, u^ are not concurrent, since else, as follows from the

equation \/u^u^ -f- VmjWj, + V«st<,2 = 0, they would intersect upon the quartic

;

thus H4 may be expressed linearly by k,, u.,, u.„ and we may put

1 / V ^

«4 = «, «, + (/,«, + a,,i(^ = a, «, + 7-( X.,«, -h , -
)

,

/'A
" ' X3/
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and so obtain \2 = h^as, Xg = 1/^1 as, hi being a certain constant; then the

equation under consideration becomes

/W24 ^'34^ 7 / \ .
^^21 , ^ a \

W4
( T- + Y" )

= '^-^a'^'l (W4 - OlMi) + «! I — + X3?(3i - 2u^j
,

or

% r^ + V^
~ '^1^23j = Wl {-^ + ^3«31 - 27/03 - aJhlU^ ,

SO that, if ki denote a proper constant,

A2 A,3 /^i

We can similarly obtain the equations

— hu. = — + — — /10M31 (2 + fto/io),

-k,u, = '^ + '^-h,u,,(2 + a.J,,),
cii a.2

where J^, h^, k.^, k^ are proper constants ; therefore, as ^u^, u^i, n^ are not

concurrent tangents, since else they would intersect on the fundamental

quartic, we infer, by comparing the right-hand sides in these three equations,

and hence, k^ = k. = h, = k, say, and 1 + 2Ai<fi + (h'Jh" = ^ o^" '^1
=

>

ft]

-
ft, '

"* a.>

'

Thus

or

7
"-23

,
"'31 ,

«i ft., a.i

^^3 _^
^i ^ ^^2 + ^. ^a^u, + a,n, + «3^.3) = 0. (C)

fti a, cu

Further we obtained the equation

t<24 Ms-l 7 "-"l ,,

thus we have

W24 U-H lio3 , iio. Wj, Un. , ttu
,

'2io4 W12 7

T;^+Tf^+— = A;a]i(i, ^ + ^'+ — = A:aoW2, Y" +ir + TT = ^"^^'2'
A2 A-s ftj A,3 Aj ftg '^i '^a "-s

B. 25



386 THE CASE OF THE BITANGENTS [247

and therefore, as X.^ = - \ \.^ = - -- , and similarly Xj =—~
, we have, by

III Cln U-3

the equation (C),

a., (/,

J/.J4 =— +k- {it-, U^ + (/., «,).

-11^ =^ + k ( f/i w, + a..u.,).

But if we put

lis = 6i Wi + ku. + hsUs, 2ia = CiUi + c.,n. + C3W3, «7 = d^v^ + d.u. + dsU-j,

we have also three other equations such as (C), differing from (C) in the

substitution respectively of the coefficients b^, b.,, 63, Ci, c.,, C3 and di, d.2, ds in

place of Oi, a^, a^, and of three constants, say I, m, n, in place of A:. As the

tangents u^, u^, u- are not concurrent (for the fundamental quartic can be

written in a form V'?/5?/j5 + Vi/gW^g + V»-Wi7 = 0) we may use these three last

equations to determine u^^, M31, u^o in terms of v^, u.,, ^h; the expressions

obtained must satisfy the equation (C). Thus there exist, with suitable

values of the multipliers A, B, C, D, the six equations

A Ti c n— + r + - + T = 0, Akai + Blb^ + Cinc^ + Dnd, = 0,
a, 61 Ci rf,

A B C D— +r + -+-r = 0, Aka. + Blk + Cmc. + Dnd.. = 0,
«2 62 C2 a,

- -

A B C D— + 5- + - + 3 = 0, Akxhi + Blb:i + CmCi + Dnd^ = 0.
fla O3 C3 6(3

From these equations the ratios of the constants k, I, m, n are determinable;

suppose the values obtained to be written pk', pi', pin', pn', where p is undeter-

mined, and k'y I', m, n' are definite ; then, if we put a, for o,- sfk', ^i for

biyl', yi for dvm', S,- for djS^n', v-^t for u^a/p, ^'31 for Usi/p, and v^^ for u-12/p, the

equations obtained consist of

(i) four of the form

'!^+'!^ + '>!}:^ + a,u, + a..u. + a,u, = (C)
a, flo <^3

in which there occur in turn the sets of coefficients (a^, a., 03), (/3i, /S., /Sa),

(71. 72 > 73). (^1. ^2, S3) ; from any three of these v^y Vji, Vi^ may be expressed in

terms of u^, v^, 113;

(ii) four sets of the form

"a «i 03 Otj Oi as

where v,, = ?t,,/p Vk', v^ = u.Jp \/k', v^^ = u^/p VE
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It will be recalled that in the course of the analysis the absolute values,

and not merely the ratios of the coefficients in i^, u^, u^, u^, u^, u^, u-j, have

been definitely fixed. Thus when these seven bitangents are given the

values of a^, a^, as, b^, b.,, b^, etc. are definite ; therefore the equations of the

15 bitangents %.;, Vji, v^,, Vi4,'y24, ^34, are now determined from the seven

given ones in an unique manner, and there is an unique quartic curve

expressed by

VmiV23 + '^U-zVsi + VW3W12 = 0,

which has the seven given lines as bitangents.

It remains now to determine the remaining six double tangents whose

characteristics are denoted by

45, 46, 47, 56, 57, 67.

If the characteristics 1, 2, 3, 4, 5, 6, 7 be taken in the order 1, 4, 5, 2, 3, 6, 7

it is clear that as we have determined the double tangents u.23, Uzi, U12 in

terms of u^, u.^, ih, so we can determine tiie tangents Ui^, u^i, ti^^ in terms

of Ui, Ui, u^. Thus the tangent u^ can be found by substitutions in the

foregoing work. For the actual deduction the reader is referred* to the

original memoir, Riemann, Ges. Werke (Leipzig, 1876), p. 471, or Weber,

Theorie der Abel'schen Fmictionen vom Geschlecht 3 (Berlin, 1876), pp. 98—100.

Putting a^u^ = x, aoj(., = ij, a.,U3 = z, v.j,/ci^ = ^, v.^la.. = 7], v^./as= ^, /3.i/ai=Ai,

<Yi/a.i = Bi, 8i/ai = Gi(i=l, 2, 3), the quartic has the form

and the 28 double tangents are given by the following scheme, where the

number representing the characteristic is prefixed to each

(l)a;=0, (2)2/ = 0, (3)^=0, (23)^ = 0, (31)7^ = 0, (12)^=0,

(4) x + y+z^O, (5) A,x + Ao^y+AsZ^O, (6) B,x + B.,y + B.,z = 0,

(7) C,x + C,y + Csz = 0,

(14) ^ + y + 2 = 0, (24) 7j+z + x = 0, (34) ^ + x + y = 0,

(15) -^ + A.Aj + AsZ = 0, (25) ^+^3^ + ^1^=0, (25) f + A,x + A,y = 0,
Ai A2 -«-3

(16) |- + 5,y + £3^ = 0, {2Q) ^-\-B,z + B,x=0, (S6) ^ + B,x + B,y = 0,

(17) ^+G,y + Gsz^0, (21) ^ + Gsz+G,x = 0, (S7)
^^
+ G,x + G,y = 0,

* For the theory of the plane quartic curve reference may be made to geometrical treatises

;

developments in connection with the theta functions are given by Schottky, Crelle, cv. (1889),

Frobenius, Crelle, xcix. (1885) and ibid. cm. (1887) ; see also Cayley, Crelle, xciv. and Kohn,

Crelle, cvii. (1890), where references to the geometrical literature will be found.

25—2
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(To) -
^ +-^ + ^ =0^""^ \-B,B,l-B,B,l-B,B, '

^^^"^ B,{l-B,B,)'^B,{l-BM'^B,{l-B,B,) ^'

^'^^^
1 - c,C3

"^
1 - G,c,

"^
1 - G.ar^'

^^^'>
G, (1 - 0,0,)'^ C,{\ - C,C\) '^G,{1- C,C,r^'

Here the six quantities x, y, z, ^, r], ^ are connected by the equations

f+~+f+A,x + A.a/ + A,z = 0,

^^^l+^^ + B,a: + B,i, + B,z = 0,
^^^

^ + ^ + ^ + G,x+ G.,y + G^z = 0.

Conversely, if we take arbitrary constants A-^, A^, A-^, B^, B.,, B^, whose

number, 6, is, when p = 3, equal to Sp — 3, namely equal to the number
of absolute constants upon which a Riemann surface depends when p = S,

and, by the first three of the equations (D) determine f, ij, ^ in terms of the

arbitrary lines x, y, z, the last of the equations (D) will determine Cj, G^, G^

save for a sign which is the same for all ; then it can be directly verified

algebraically that the 28 lines here given are double tangents of the quartic

curve Va;| + Vy^ + 'Jz^= 0.

248. Before leaving this matter we desire to point out further the

connection between the two representations of the tangents which have been

given. Comparing the two equations of the fundamental (juartic curve

expressed by the equations (§§ 246, 247)

fio' = 4A^i), (.r^ + y/7; - ^^)- = 4^7;a:y,

and putting, in accordance therewith,

Jj{x,, x,,X3) = ^, i 1„ (Xi , .r, ,Xs) = z^- x^ - yr], X^ {x, , x^ , x^) = xyr)

and (cf. p. 382) replacing the fourth coordinate T by T + w, where
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u is an arbitrary linear function of x, y, z or x^, x^, x^, the equation of the

cubic surface

becomes

r^l +T{z};- *f - 2/7; + 2itf) + li"^ + u (2^ -yv- x^) + xyv = 0,

or

(T+ uy^ + (T+ It) (z^ - x^ - yv) + xyTj = 0,

which will be found to be the same as

{T-\-t(,){T+2i-x-z){T + u-x-0-(T+u-x){T+ti + y)(T + u + v) = 0.

Write now

V = u — X — z, w = u — X — ^, It' = u — X, v' = u +y, w' = u+ t)',

then we obtain the result, easy to verify, that if u, v, tv, w', v', w' be arbitrary

linear functions of the homogeneous space coordinates X, F, Z, and T be

the fourth coordinate, the tangent cone to the cubic surface*

(7^+^/.)(r + 'y)(T+w)-(2'+O(2' + ^/)(^+w') = (i)

from the vertex X = = Y= Z can be written in the form

V(P - F) (u -itT) + V(w - i/) (u - w') + ^/{ii' - v) (u - w) = 0,

where P — P' = u + v + w — u' — v' — w' ; we have in fact

X = U— u', y =V' — U, Z = u' — V, 7] =iv' — u, ^ = u' — w,

^^=-(x + y + z + r} + ^),=P-P'.

Now the 27 lines on the cubic surface (i) can be easily obtained "f^; and

thence the forms obtained in § 247, for the bitangents of the quartic, can be

otherwise established.

249. £J.v. i. Prove that when the sum of the characteristics of three bitangents of the

quartic is an even characteristic, their points of contact do not lie upon a conic.

By enumerating the constants we infer that it is possible to describe a plane quartic

curve having seven arbitrary lines as double tangents. By the investigation of § 247

it follows that only one such quartic can be described when the condition is introduced

that no three of the tangents shall have their points of contact upon a conic. By the

theory here developed it follows that for a given quartic such a set of seven bitangents can

be selected in 8 . 36 = 288 ways.

Bx: ii. We have given an expression for the general radical form v -^'*^* of any given

odd characteristic. Prove that a radical form \/X(^) whose characteristic is even, denoted,

suppose, by the index 123, can be written in the foi-m

* Any cubic surface can be brought into this form, Salmon, Solid Geometry (1882), § 53B.

t See Frost, Solid Geometry (188(5), § 537. The three last equations (D) of § 247 are deducible

from the equations occurring in Frost. The three equations correspond to the three roots of the

cubic equation used by Frost.
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where X, Xj, X,, Xj are constants, and ?<,, ?/;, denote double tangents of the characteristics

denoted by the suffixes, as in § 247.

Ex. iii. If {\q, \q'), {\r, \r') denote any two odd characteristics of half-integers,

express the quotient

algebraically, whcn/>= 3.

Ex. iv. Obtain an expressic^n of the quotient of any two radical forms V-V'', V 5'''^',

of assigned characteristics and known zeros, by means of thct^i functions, ju being equal to 3.

250. Noether has given* an expression for the solution of the inversion

problem in the general case in terms of radical forms, which is of importance

as being capable of great generalization.

Using the places in^, ..., iiip, associated as in Chap. X. with an arbitrary

place m, and supposing them, each repeated, to be the remaining zeros of a

form A' '", which vanishes to the second order in each of the places A^, ..., A^p^^

in which an arbitrary ^-polynomial,
(f)„,

which vanishes in m, further vanishes,

as in § 244, let VF'^' be any radical form, and O"' any (^-polynomial whose

zeros are Oj, ..., ao^-j. Then (§ 241) the consideration of the rational function

<^o'r<"/[^<"]='Z<*» leads to the equations

[vT'''+v?-"' + -i-/^--">--Hr,^-«^'-]-[t,r"-t^5""'- -i;;"'""]

= - i(o-t + o"i't,-, , + + a-pTi^ p),

wherein the places

X-[, . . . , ^2p_3 , Ci , . . . , Cj)

are the zeros of VF'**, all of o-i, ..., a-p, a/, ..., a-p are integers, and z is an

arbitrary place; and, as follows from these equations, the places x^, ...,a;.>p_3

may be arbitrarily assigned, the places Ci, ..., Cp and the form VF**' being

determinate, respectively, from these equations and the equation

^^^•^Tv^^)
"""' "-.«,,., + He,. ,«,

+ + II,,.,,
„„

+ 7n[(TiVi + + a-pVp ],

wherein the place a is arbitrary. Hence if we speak of

as the characteristic of V F'", it follows, if V-^'" be another radical form with

the characteristic

(i^i. ••, ^pp, hPi> •••- hPp)
and the zeros

iVi, . .
. , X.qj^^

> ^1 ) • • • > (f'p

,

• Math. Annul, xxviii. (1887), p. 354, "Zum Umkebrproblem in der Theorie der Abel'schen
Functionen."
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that the quotient '^Y^^^I\fZ^, which is equal to

391

Ae ''"'^'

,
T-ra;, a , r/ I ,-, x, a

, .11 1^ x, a-.

wherein ^ is a quantity independent oi x, is (§ 187, Chap. X.) also equal to

Ge

where C is a quantity independent of x\ but by the equations here given

this is the same as

Ce

Til /\ X, a , ,11 n X, a,^
'Ti [K -

Pi ) 1^1 + + {<rp -P;,)Vj,' ]

@ (^a;, a2i)-2 + -ya^i . "i + -f ^«2p-3> «2p-3 + |I2^)

where ^fl<^ denotes p such quantities as | (o-j + a-iTi^ i + + a^'ri^p) ; thus,

if we put
^ _ ^a;, a2p-2 _|_ ^aij , «, ^ _j_ yX2i)-3, f»2i>-3

and recall the formula (§ 175)

we infer that

where jE' is a quantity independent of x.

Now in fact (| 245) the general radical form v F'^', of assigned charac-

teristic (^o-, l^cr'), is given by

Ai'^-Ti + + Aop-a ^ -« 2^; - 2 >

/ (3) / (3)

where "^ Yi ,
...,'^ Y'ip- 2 are special forms of this characteristic, and X-i , . .

.
, Xo^_o

are constants. If we introduce the condition that VF*^' vanishes at the

places Xi, ...,x.ip-s we infer that vF'^' is equal to F^g. (x, Xj, ,.., X2P-3), where
(3)F is independent of x and A^. (x, Xi, ..., x^p_3) denotes the determinant

^Y?^ (x), ^FgU^

^Yf(xi), ,^Yl^_,(xi)

in which i is to be taken in turn equal to 1, 2, ..., 2^;? — 3. Hence we have

(3)

(3) — '

Ap {x, x„ ..., x^_s) @ {v
; ^p, ^p)
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where, from the symmetry in regard to the places x, x^, ..., a?,.j,_3, G is

independent* of the position of any of these phxees, and v is given by

To apply this ecjnation to the solution of the inversion problem expressed

by p such e(]uations as
?;*•''>+ + v^i"'^i'^ U,

where yu,, ..., fi,, denote p arbitrary given places, we suppose the positions of

the places .7-^,+,, ..., a'.j,,-., to be given ; then instead of A^{x, a-,, ... , a^op-j) we

have an expression of the form

where v 1 1 (a-), ..., ^Fp+iO'c) denote forms VF*^' (x) vanishing in the given

places Xp+i, ..., Xy,_3, and J.,, ..., -^;,+i are unknown constants. Since the

arguments u are given, the arguments v are of the form v^'^'^p^'^ + w, where w
is known. If then in the equation

A^ yf^ (./")+ + A,^, n/ F^^i {x) ^ %{v- l<T,^a')

B,'Jzi'\x)+ +5p+y<ii(^) e{v] ^p,^p')

we determine the unknown ratios ^i : A., : : A^+i : Bi : : Bp+j

by the substitution of 2j9 + 1 different positions for the place x, this equation

itself will determine the places Xi, ..., Xj,. They arc, in fact, the zeros of

either of the forms

A,^Yi''"(^)+ + Ap^,-Jy^U^),

B,^z!'\x)+ +Bp^,^Z^;U{x)

other than the given zeros Xp^i, ..., x^_3. If the first of these forms be

multiplied by an arbitrary form VF'**(a;), of characteristic (^o-, ^o-'), the

places Xi, ... , Xp are given as the zeros of a rational function of the form

^1^1 (^)+ +Ap+,%iy(x),

of which 4j) — G zeros are known, consisting, namely, of the places Xp+i, ..., x^^s

and the zeros of VF*^' (x).

In regard to this result the reader may consult Weber, Theorie dei- AbeVschcn Functio-

nen vom GeschleclU 3 (Berlin, 1876), p. 157, the pai)er of Noethcr {Math. Annal. xxviii.)

filrciuly referred to, and, for a solution in which the radical forms are ?rtth roots of I'ational

functions, Stahl, Crelle, Lxxxix. (1880), p. 179, and Crelle, cxi. (1893), p. 104. It will be

seen in the following chapter that the results may be deduced from another result of

a simpler character (§ 274).

251. The theory of radical functions has far-reaching geometrical applications to

problems of the contact of curves. See, for instance, Clebsch, Crelle, LXili. (1864), p. 189,

For the theory of the solution of the final algebraic equations see Clebsch and Gordan,

AheUsche Functnen. (Leipzig, 1866), Chap. X. Die Theilung ; Jordan, Traite' dcs Svh-

stitntions (Paris, 1870), p. 354, etc.; and now (Aug. 1896), for the bitangents in case jt) = 3,

Weber, Lchrbuch ikr AUjcbra (Braim.schweig, 1896), ii. p. 380.

* For the detenniimtion of G see Noether, Math. Amuil. xxviii. (1887), p. 3G8, and Klein,

Math. Annal. xxxvi. (1890), pp. 73, 74.
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CHAPTER XIV.

Factorial Functions.

252. The present chapter is concerned* with a generah'sation of the

theory of rational functions and their integrals. As in that case, it is conve-

nient to consider the integrals and the functions together from the first. In

order, therefore, that the reader may be better able to follow the course of

the argument, it is desirable to explain, briefly, at starting, the results

obtained. All the functions and integrals considered have certain fixed

singularities, at places f denoted hy Ci, ..., c^. A function or integral which

has no infinities except at these fixed singularities is described as everywhere

finite. The functions of this theory which replace the rational functions of

the simpler theory have, beside the fixed singularities, no infinities except

poles. But the functions differ from rational functions in that their values

are not the same at the two sides of any period loop ; these values have a

ratio, described as the facto?; which is constant along the loop ; and a system

of functions is characterised by the values of its factors. We consider two

sets of factors, and, correspondingly, two sets of factorial functions, those of

the primary system and those of the associated system ; their relations are

quite reciprocal. We have then a circumstance to which the theory of

rational functions offers no parallel ; there may he everywhere finite factorial

functions\. The number of such functions of the primary system which are

linearly independent is denoted by a -\-\\ the number of the associated

system by cr + 1. As in the case of algebraical integrals, we may have every-

where finite factorial integrals. The number of such integrals of the primary

system which are linearly independent is denoted by ct, that of the associated

system by sx'. The factorial integrals of the primary system are not integrals

of factorial functions of that system ; they are chosen so that the values u, u'

* The subject of the present chapter has been considered by Prym, Crelle, lxx. (1869), p. 354;

Appell, Acta Mathematica, xiii. (1890); Bitter, 3Iath. Annal. xliv. (1894), pp. 261—374. In

these papers other references will be found. See also Hurwitz, Math. Annal. xli. (1893), p. 434,

and, for a related theory, not considered in the present chapter, Hurwitz, Math. Annal. xxxix.

(1891), p. 1. For the latter part of the chapter see the references given in §§ 273, 274, 279.

+ In particular the theory includes the case when k — 0, and no such places enter.

X This statement is made in view of the comparison instituted between the development of

the theory of rational functions and that of factorial functions. The factorial functions have

(unless k = 0) fixed infinities.
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of such an intrgial on the two siilcs oi" a period loop arc connected by an

equation of the form u' = Mu + fi, where /* is a constant and J\I is the foctor of

the primary system of factorial functions which is associated with that period

loop. The primary and associated systems are so related that if i^ be a

factorial function of cither system, and G' a factorial integral of the other

system, FdG'jdx is a rational function without assigned singularities. In the

ciise of the rational functions, the smallest number of arbitrary assigned poles

for which a function can always be constructed is jj + 1. In the present

theoi-y, as has been said, it may be possible to construct factorial functions of

the primary system without poles ; but when that is impossible, or a' + 1 = 0,

the smallest number of arbitrary poles for which a factorial function of the

primary system can always be constructed is tsr' + 1. Similarly when

o" + 1 = 0, the smallest number of arbitrary poles for which a factorial func-

tion of the associated system can always be constructed is -bt -f- 1. Of the

two numbers cr + 1, tr' + l, at least one is always zero, except in one case,

when they are both unity. When a +\ is > 0, the everywhere finite fac-

torial functions of the primary system can be expressed linearly in terms of

the everywhere finite factorial integrals of the same system. We can also

construct factorial integrals of the primary system, which, beside the fixed

singularities, have assigned poles; the least number of poles of arbitrary

position for which this can be done is o- 4- 2. And we can construct factorial

integi-als of the primary system which have arbitrary logarithmic infinities

;

the lejist number of such infinities of arbitrary position is a + 2. For the

associated system of factors the corresponding numbers are a' + 2.

It will be found that all the formulae of the general theory are not imme-

diately applicable to the ordinary theory of rational functions and their

integrals. The exceptions, and the reasons for them, are pointed out in

footnotes.

The deduction of these results occupies §§ 253—267 of this chapter. The

section of the chapter which occupies §§ 271—278, deals, by examples, with

the connection of the present theory with the theory of the Riemann theta

functions. With a more detailed theory of factorial functions this section

would be capable of very great development. The concluding section of the

chapter deals very briefly with the identification of the present theory with

the theory of autcjinorphic functions.

253, Let Cj, ..., Cfc be arbitrary fixed places of the Riemann surface,

which we suppo.se to be finite places and not branch places. In all the

investigati<jns of this chapter these places are to be the same. They may be

called the essential singularities of the systems of factorial functions. We
require the surface to be dissected so that the places Ci, ..., Ck are excluded

and the surface becomes simply connected. This may be effected in a manner

analogous to that adopted in § 180, the places Ci, ..., Ck occurring instead of
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Zi, ...,Z]i. But it is more convenient, in view of one development of the

theory, to suppose the loops of § ISO to be deformed until the cuts* between

the pairs of period loops become of infinitesimal length. Then the dissection

will be such as that represented in figure 9 ; and this dissection is sufficiently

Fig. 9.

well represented by figure 10. We call the sides of the loops (a^), (6,.), upon

which the letters a,., h,. are placed, the left-hand sides of these loops, and by
the left-hand sides of the cuts (71), ..., {<yj^), to the places d, ..., c^, we mean

the sides which are on the left when we pass from A to Ci , .., Ck respec-

tively. The consideration of the effect of an alteration in these conventions

is postponed till the theory of the transformation of the theta functions

has been considered.

§181.

These cuts are those generally denoted by Cj, ..., Cp.j. Cf. Forsyth, Theory of Functions,
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254, In connection with the surface thus dissected we take now a series

of 2p + k quantities

^1, •••, ^k, l'\, ••, fip' !Ji' •> i/p'

which we call the fundamental constants; we suppose no one of X,, ..., Xk to

be a positive or negative integer, or zero; but we suppose \i + ... +Xfc to be

an integer, or zero ; and we consider functions

(1) which are uniform on the suiface thus dissected, and have, thereon,

no infinities except poles,

(2) whose value on the left-hand side of the period loop (rr,) is

g-2ir.Aj times the value on the right-hand side ; whose value on the left-hand

side of the period loop (6,) is e-""'* times the value on the right-hand side,

(3) which*, in the neighbourhood of the place c,-, are expressible in the

form t~^'<^i, where t is the infinitesimal at Ci and <^; is uniform, finite, and not

zero in the neighbourhood of the place c,-,

(4) which, therefore, have a value on the left-hand side of the cut 7^

which is e"-"^'*; times the value on the right-hand side.

Let «!, ..., a„, ^1, •••, l^y be any places; consider the expression

x,a x,ax,a x.a x,a x, a k x, a

f^ ^e"p., m + • + n^.v. '» - n«,. »•
- •• -

"«.„. "» - 2'^' t(^ + ^^i)^'i + • + C'l'+^^p) '> ] - .2 x<nc,,,„

wherein A is independent of the place x,

N-M=X\i, (i),

i = l

2\ being an integer (or zero), tn is an arbitrary place, and //, , . .
.

, Up are

integers. It is clear that this expression represents a function which is

uniform on the dissected surface, which has poles at the places otj, ..., olm, and

zeros at the places /3i, ..., /3jvr, and that in the neighbourhood of the place Ci

this function has the character re([Lured. For the period loop {(li) the

function has the factor e-2f'('H+'H^i) = g-a^Vii
j^g desired; for the period loop

(6,) the function has the factor e-"'^', where

K = ^. + ... + /-'"-z;«..-_..._y"'"'"- V(/,, + i/,)T,.,- I X,/-'",
r-\ r=l

and this fact<jr is eijual to e'-"'-''* if only

01, m fi... m a,,m a,,, m ^, . ic , m

r = l

r = p
= gi+Gi+ X {K + H,)T,,i, (ii).

Gi being an integer.
r=l

* It is intended, as already stated, that the places Cj, ..., ct should be in the finite part of the

surface and should not be briinch places.



255] THE TWO SYSTEMS OF FACTORS. 897

It follows therefore that, subject to the conditions (i) and (ii), such a

function as has been described certainly exists.

Conversely it can be immediately proved that any such function must be

capable of being expressed in the form here given, and that the conditions

(i), (ii) are necessary.

Unless the contrary be expressly stated, we suppose the quantities

\i,...,\fc, h^,...,hp, gi,...,gp always the same, and express this fact by

calling the functions under consideration factorial functions of the 'primary

system. The quantities e~"'^^\ ..., e~-"^'', g-^'^^^i, ..., g-'^'^'^p,
e^'"'"-'\ ..., e-'"^^' are

called the factors. It will be convenient to consider with these functions

other functions of the same general character but with a different system of

fundamental constants,

^1 . • • • . ^ky hi, ..., hp', g(, . .
. , gp ^

connected with the original constants by the equations

Xi + V+1=0, /ii + /i/ = 0, ^i+(7/ = 0;

these functions will be said to he, functions of the associated system. The fac-

tors associated therewith are the inverses of the factors of the primary system.

255. As has been remarked, the rational functions on the Riemann
surface are a particular case of the factorial functions, arising when the

factors are unity and no such places as Cj, ..., ca; are introduced. From this

point of view the condition (i), which can be obtained as the condition that

/'
d log/, taken round the complete boundary of the dissected surface, is zero,

is a generalisation of the fact that the number of zeros and poles of a rational

function is the same, and the condition (ii) expresses a theorem generalising

Abel's theorem for integrals of the first kind.

Now Riemann's theory of rational functions is subsequent to the theory

of the integrals ; these arise as functions which are uniform on the dissected

Riemann surface, but differ on the sides of a period loop by additive

constants. In what follows we consider the theory in the same order, and
enquire first of all as to the existence of functions whose differential coefficients

are factorial functions. For the sake of clearness such functions will be
called /ac^oWa^ integi^als ; and it will appear that just as rational functions

are expressible by Riemann integrals of the second kind, so factorial functions

are expressible by certain factorial integrals, provided the fundamental con-

stants of these latter are suitably chosen. We define then a factorial integral

of the primary system, H, as a function such that dHjdx is a factorial

function with the fundamental constants

Xi+ 1, ..., \fc4- 1, K,...,hp, gi,...,gp;
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thus dHjdx has the same factors as the factorial functions of the primary

system, but near the place c,, dHjdx is of the form i"*^"^'' <^,-, where 0,- is

uniform, finite and not zero in the neighbourhood of a. Similarly we define

a factorial integral of the jissociated system, H', to be such that dH'/dx

is a factorial function with the fundamental constants

\,'+ I, ..., Xi.'+ 1, //,', .... hj', 7,', ...,/7/,

or

-\,,...,-\t, -hi, ..., -Jij„ -fJx,.-.,-[lp\

thus, if/ be any factorial function of the primary^ system, f dH'/dx is a

rational function on the Riemann surface, for which the places Ci, ..., c^

are not in any way special. And similarly, if/' be any factorial function

of the associated .system, and H any factorial integral of the primary

system, /' dHjdx is a rational function.

The values of a factorial integral of the primary system, H, at the two

sides of any period loop are connected by an equation of the form

H = fMH + n,

where /x is one of the factors e'-'^^^'^, e'^'^'-, and H is a quantity which is

constant along the particular period loop. Near d, H is of the form

^;+r^'</)i+Cilog«,

where ^,- is a constant, <^i is uniform, finite, and, in general, not zero in the

neighbourhood of Cu and C'f is a constant, which is zero unless \/ + 1 be a

positive integer (other than zero), and may be zero even when X.,- 4- 1 is a

positive integer. After a circuit round Cj, H will be changed into

H = Ai + e--^'^i t-^i
(f>i + 2-7riCi + d log t

;

thus, wlien C'j = 0,

H = He-^'^^i + ^,- (1 - e-'^^^i),

and when C'j is not zero, and, therefore, X; + 1 is a positive integer,

H=H + 2'rriCi;

in either ca-se we have

H = yH+r,

where y = e~^'*», and F is constant along the cut (7,),

Thus, in addition to the fundamental factors of the system, there arise,

for every factorial integral, 2p + k new constants, 2j3 of them such as that

here denoted by fl and k of them such as that denoted by V. It will be

seen subsequently that these are not all independent.
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As has been stated we exclude from consideration the case in which any-

one of X.^, ..., X;i; is an integer, or zero. Thus the constants C'f will not enter;

neither will the corresponding constants for the associated system.

256. Consider now the problem of finding factorial integrals of the

primary system luhich shall be everywiiere finite. Here, as elsewhere, when

we speak of the infinities or zeros of a function, we mean those which are not

at the places Ci, ..., c^, or which fall at these places in addition to the poles

or zeros which are prescribed to fall there.

If V be such a factorial integral, dVjdx is only infinite when dx is zero

of the second order, namely 2p — 2 + 2n times, at the branch places of the

surface. And dV/dx is zero at x= cc , 2n times*. Thus, if N denote the num-

ber of zeros of dV/dx which are not due to the denominator dx, or, as we may-

say (cf § 21) the number of zeros of dV, we have by the condition (i) § 254,

!c

N+2n = 2p-2 + 2/1 + 2 (Xi + l),

1=1

so that the number of zeros of c^F is 2p — 2 + % (Xi + 1).

Now let f denote a factorial function with the primary system of

factors, but with behaviour at Ci like ^-'^i+i'
^j, where <^,: is uniform, finite,

and not zero at d. Then, if an everywhere finite factorial integral V
exists at all, Z, =f~^dVldx, will be a rational function on the Riemann

surface, infinite at the (say N^ zeros of /o> and 2n-\-2p—2 times at the

branch places of the surface, and zero at the (say Mo) poles of f, and 2n

times at a; = 00 (beside being zero at the zeros of dV). Conversely a rational

function Z satisfying these conditions will be such that I Zfdx is a function V.

Thus the number of existent functions V ivhich are linearly independent is at

least
k

No + 2n^2p-2-{2n-\-Mo)-p+\, =p-l+ 2 (A-^+l),

pi^ovided this be positive. We are therefore sure, when this is the case, that

functions V do exist. To find the exact number, let V^ be one such ; then

if V be any other, dVjdVQ is a rational function with poles in the

2j) — 2 + 2(X+l) zeros of dV^] and conversely if i^ be a rational function

whose poles are the zeros oi dV^, the integral {RdV^ is a function V. Thus-f-

the number offunctions V, when any exist, is (§ 37, Chap. III.)

CT, =p-l + '2.(\ + l) + (T+l,

* These numbers may be modified by the existence of a branch place at infinity. But their

difference remains the same.

t For the ordinary case of rational functions cr + 1, as here defined, is equal to unity, and,

therefore, omitting the term S (X + 1), we have aT=p.
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where o- + 1 is the number of linearly independent differentials dv, of ordinary

integrals of the tirst kind, which vanish in the 2j9 — 2 + 2 (X, + 1) zeros of the

differential dV^ of any such function Fj. Since dV/dVo is a rational

function, the number of differentials dv vanishing in the zeros of dV,, is the

same as the number vanishing in the zeros of dV. Since dv h.is 2p — 2 zeros,

o- + 1 vanishes when S (X + 1) > 0.

^.r. For the hy|M;relliptic sxirface

the factorial integrals, V, having the same factors at the period loops as the root function

v(j:— a) (x—b), and no other factors, are given by

lJ(x-a){x-b) {x, l)p_2 —

and 7s=p - 1. Here ^-= ; there are no places q, ... , c^.

257. The number o- + 1 is of great importance ; when it is greater

than zero, which requires S(\ + l) to be negative or zero, there are o- + 1

factorial functions of the associated system which are nowhere infinite.

For if V be an everywhere finite factorial integral of the primary system,

and di\, ..., f??v+i represent the linearly independent differentials of integrals

of the first kind which vanish in the zeros of dV, the functions

dVi dVtr+i

dV' "''~dV '

whose behaviour at a place c,- is like that of ._^y+^^ 4>i, where </>, is uniform,

finite and not zero in the neighbourhood of c,-, namely of t~^i^i, are clearly

factorial functions of the associated system, without poles. Convei-sely if K'
denote an everj^where-finite factorial function of the associated system, the

integral \K'dV is the integral of a rational function, and does not anywhere

become infinite. Denoting it by v, dv vanishes at the 2;> — 2 + S (X + 1)
*

zeros of dV as well as at the + S \{, = - S (\ + 1), zeros of K' (cf the

condition (i), § 254). Thus, to every factorial integral V we obtain o- + 1

functions K' ; and since, when o- + 1 > 0, the quotient of two differentials

dV, dVa can* be expressed by the quotient of two differentials dv, dvo, we
cannot thus obtain more than a + I functions K' ; while, conversely, to every

function K' we obtain a differential dv which vanishes in the zeros of any
assigned function V; and, as before, we cannot obtain any others by taking,

instead of V, another factorial integral F^.

* Cf. Chap. VI. § 98.
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258. The existence of these everywhere finite factorial functions, K', of

the associated system can also be investigated d priori from the fundamental

equations (i) and (ii) (§ 254). These give, in this case,

k

?;.' +...+V.-" =- X (\, + l)vr' -(g^+Gi)-Ti,^(Jh + H,)-
r=l

- Ti, p (hp + Hp), (iii)

k

and N=- 2 (Xr+ 1),
r=l

where G^j, ..., Gp, Hi, ..., Hp are integers.

Hence no functions K' exist unless 2 (X- + 1) be a negative integer or be

zero ; we consider these possibilities separately.

When S (X + 1) = 0, it is necessary, for the existence of such functions,

that the fundamental constants satisfy the conditions

X (X,. + l)v.'""'+^f+/jiT,-,i+ +/ipT,:,p = 0, {i=l, 2, ...,p)\

conversely, when these conditions are fulfilled, taking suitable integers

Hi, ..., Hp, it is clear that the function

I (V+l)n^'l, + 27rt(/ti + Hi)<'''+ +2iri{hj, + Hp)vl'''

wherein A is an arbitrary constant, and a, m are arbitrary places, is an

everywhere finite factorial function of the associated system, and it can be

immediately seen that every such function is a constant multiple of ^o- If

then we denote the number of functions K' by 2 + 1 (to be immediately

identified with a + l), we have, in this case, 2 + 1 = 1; and there are p

functions V, given by V= IEq dv, where dv is in turn the differential of

every one of the linearly independent integrals of the first kind ; it is easy to

see that every function V can be thus expressed. Thus, in the zeros of a

differential dV there vanishes one differential dv, so that o-+ 1 = 1. Hence

o- + 1 = 2 + 1, and the formula OT=p-l + 2(X. + l) + cr + l is verified.

When 2(\ + l) is negative and numerically greater than zero, and the

equations (iii) have any solutions, let t denote the number of linearly in-

dependent differentials dv which vanish in the places of one and therefore of

every set, /8i, ..., /3^,, which satisfies these equations; then* the number of

sets which satisfy these equations is oo «-?+*, where s = — 2(X + 1); thus the

quotient of two functions K' is a rational function with 2 + 1, =s—p-ht + l

arbitrary constants, one of these being additive. This is then the number of

linearly independent functions K'. If K' be one of these functions, and

* Cf. § 158, Chap. VIII. ; § 95, Chap. VI.

B. 26
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dVi, ..., dvt denote tlie differentials vanishing in the zeros of A"', it is clear

that the functions
tdi't fdvt

JK""']K'
are finite factorial integrals of the primary system, that is, are functions V

;

conversely if Fbe any finite factorial integral of the primary system, JK'dV

is an iutegi-al, v, of the first kind such that dv vanishes in the zeros of K'.

Hence the number t, which expresses the number of differentials dv which

vanish in the zeros of K', is equal to the number, ct, of functions V. But we

have proved that gt =p -l + t{X+l)+ <T+ l, and, above, that t=p -1 -.s+ S+ 1.

Hence 0-+1 =S + 1.

Thus we have the results*: The number, o- + l, of everywhere finite

factorial functions, K' , of the associated system is equal to the number of

differentials dv which vanish in the 2p-2 + ^{X + l) zeros of any differential

dV; hence (§ 21, Chap. II.) o- + 1 is less than p, unless 2 (X. + 1) = - (2;? - 2).

Also, when a + l>0,the number, -sr, of everywhere finite factorial integrals,

V, of the primary system, is equal to the mimber of differentials dv which

vanish in the s, =-%{\+ 1), zeros of any function K'. The argument by

which this last result is obtained does not hold whenf cr + 1 = 0. When

o" + 1 > 0, it follows that us is not greater tlian p)-

Similarly when s ,
= - S (X' + 1), = Sx, = - s - ^^ is > 0, we can prove, by

considering the primary system, that there are o-'+l everywhere finite

factorial functions K of the primary system, where o-' + l is the number of

differentials dv vanishing in the 2j9 - 2 - 2X, =2p-2-\-s-\- k. zeros of any

differential dV ; and that, when o-'+l >0, the number •cr', of everywhere

finite factorial integrals, V, of the associated system is equal to the number

of differentials dv vanishing in the s' zeros of any function K. Hence

a' + I =0 when s > 0, and, then, no functions K exist. When s = we have

seen that there may or may not be functions K' ; but there cannot be func-

tions K unless k = 0, since otherwise 2p — 2 + s + k > 2p — 2. And then the

existence of functions K depends on the condition whether the fundamental

constants be such that

1 _ ^ - 27ri [(;ii + //,) t'" " + +(/'„ + H„) IV "]

is a function of the primary system or not, H^, ..., Hp being suitable integers,

namely whether there exist relations of the form

gi + Gi4-0h + H,)Ti,, + +(hj, + Hj,)Ti,p = 0, (i = l, 2, ...,p),

* Which hold for the ordinary case of rational functions, <t+ 1 being then unity.

+ In the case of the factorial functions which are square roots of rational functions of which

all the poles and zeros are of the second order, so that the places c,, ... , c^ are not present, and

the numbers g, h are half integers, we have 'n:=p- 1, (7 + 1=0.
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where G^, ..., Gp are integers. In such case E^ is a finite factorial function

of the associated system.

On the whole then the theory breaks up into four cases (i) cr + 1 = 0,

0-' + 1 = 0, (ii) o- + 1 > 0, 0-' + 1 = 0, (iii) o- + 1 = 0, o-' + 1 > 0, (iv) o- + 1 = 1,

cr' + 1 = 1. Of these the cases (ii) and (iii) are reciprocal.

259. One remark remains to be made in this connection. When
c- + 1 > there are everywhere finite functions, K' , of the associated system,

given (§ 257) by
dvi dv2 dva+i

dV' dV' ' ~dV'

these have, at any one of the places Cj, ..., Ck, a behaviour represented by

that of t^^'cf) ; hence the differential coefficients of these functions satisfy all

the conditions whereby the differential coefficients, dV/dcc, of the everywhere

finite factorial integrals of the associated system, are defined. Therefore* the

functions K' are expressible linearly in terms of the functions Vi, ..., F'^'

by equations of the form

K/, =^, =X,-,,F/+ +Xi,^'V'^'+\ {i = l,2, ...,(cr + l)),

where the coefficients, \;j, \ are constants.

Hence also the difference -sr' — {a + I) is not negative. This is also

obvious otherwise. For when cr + 1 > 0, — S (X + 1), = s, is zero or positive,

and o- + 1 > p (§ 258), and, therefore, ot' - a, =p — (a + 1) + a' + I + k -\- s,

can only be as small as zero when k = = s, and a+l=p; these are in-

compatible.

Similarly, when cr' + 1 > 0, the everywhere finite factorial functions of the

original system are linear functions of the factorial integrals Fj, ..., F^-.

It follows
-f-

therefore that of the ct periods of the functions Fj, ..., F^,

at any definite period loop, only -or — (cr' + l) can be regarded as linearly

independent; in fact, o-' + 1 of the functions V,, ..., F^ may be replaced

by linear functions of the remaining ot - (cr' + 1), and of the functions

260. A factorial integral is such that its values at the two sides of a period loop of

the first kind are connected by an equation of the form u' = fjiiU + Qi, its values at the two

sides of a period loop of the second kind are connected by an equation of the form

u'=fiiti+ Q'i, and its vahies at the two sides of a loop (yi) are connected by an equation

of the form u'= yiU + Ti, where| ri= Ai{l-yi). Of the 2p+ k periods flj, Q'l, Tj thus

* It is clearly assumed that K'i is not a constant ; thus the reasoning does not apply to the

ordinary case of rational functions.

t In the ordinary case of rational functions this number or - (a + 1) must be replaced by ^j.

See the preceding note.

+ § 255. The case where one oi\, ...,\k is zero or an integer is excluded.

26—2
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arising, two at least can be immediately excluded. For it is possible, by subtracting one

of the constrtnta J,, ... , At from the factorial integral, to render one of the periods

Tj, ..., Ft zero; and by following the values of the factorial integral, which is single-

valued on the dissected sm-face, once completely round the sides of the loops, we find, in

\Trtue of yiYj ... yi=l, that

2 [Q.(i-,xi')-Qi'(i-M.)]=ri+yir2+viy^r3+ ... +yiy2.-yt-iri.
1=1

Thus there are certainly not more than 2p — 2 + k- linearly independent periods of a

factorial integral

Suppose now that l' is an}- everywhere finite factorial integral of the original system,

and Vi is any one of the corresponding integrals of the associated system. The integral

/ Vd Vi, taken once completely round the boundary of the surface which is constituted by

the sides of the period loops, is equal to zero. By expressing this fact we obtain an

equation which is linear in the periods of V and linear in the j)eriods of ly. By taking i

in turn equal to 1, 2, ... , or', we thus obtain a;' linear equations for the periods of V,

wherein the coefficients are the periods of \\', ... , V'.^>. As remarked above these coeffi-

cients are themselvas connected by <r+ 1 linear equations ; so that we thus obtain at most

C7' — ((T-l-l) linearly independent linear equations for the j^riods of V. If these are inde-

pendent of one another and independent of the two reductions mentioned above, it follows

that the 2p+ k periods of V are linearly expressible by only

2jo-2+k-[x!T'-{<r+l)]

periods, at most. Now we have

or =:p-i+2(X+l) + (r+l,

^'=p-l-2i\) + (T'+ l,

and therefore

aj+ zij'= 2p-2+l- + ar+ l+(T'+\,
so that

2p - 2 + 1- -[-uj'- {(r+ l)] = 'u: - {a +\).

Thas ar-(o-'-f-l) is the number of periods of a function V which appear to be linearly

independent; and, taking account of the existence of the functions K^, ..,, Ka'+i, this is

the same as the number of indei>endent linear combinations of the functions \\, ... , F-g^,

which are periodic*. But the conclusions of this article require more careful considera-

tion in particular cases ; it is not shewn that the linear equations obtained are always

indej>endent, nor that they are the only equations obtainable.

Ex. i. Obtain the lineo-linear relation connecting the periods of the everywhere finite

factorial integrals V, I", of the primary and associated system, which is obtained by

expressing that the contour integral / Vd V vanishes.

B.r. ii. In the case of the ordinary Riemann integrals of the first kind, the relation

2 [Qi(i-M<')-Qi'(i-w)]= ri-Kyir,-i-y,y,,r3-i-...-i-yiyo...yi_irt
1=1

is identically satisfied, and further i=0. Thus the reasoning of the text does not holdt.

• We can therefore form linear combinations of the periodic functions T', for which the inde-

pendent periods shall be 1, 0, ..., 0; 0, 1, ..., 0; etc., as in the ordinary case.

+ In that case the numbers or' — (<r + l), 2p- 2 + k, are to be replaced respectively hy p and 2p.

See the note t of § 259.
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261. We enquire now how many arbitrary constants enter into the

expression of a factorial function of the primary system which has M
poles of assigned position.

Supposing one such function to exist, denote it by F^; then the ratio F/F^,

of any other such function to F, Fq, is. a rational function with poles at the

zeros of F^f ; conversely if R be any rational function with poles at the zeros

of Ff), FqR is a factorial function of the primary system with poles at the

assigned poles of i^^o- The function R contains

N-p+l+h+1
arbitrary constants, one of them additive, where N is the number of zeros of

k

Fq, so thatN=M + 1 X^, and h + 1 is the number of differentials dv vanish-
r=l

ing in the zeros of Fg.

But in fact the number of differentials dv vanishing in the zeros of F^ is

the same as the number of differentials dV vanishing in the poles of ^o, V'

being any everywhere finite factorial integral of the associated system.

For if dv vanish in the zeros of F^, the integral jdv/Fo is clearly a factorial

integral, V, of the associated system without infinities, and such that dV
vanishes in the poles of Fq ; conversely if V be any factorial integral of the

associated system such that dV vanishes in the poles of Fq, the integral

JFadV is an integral of the first kind, v, such that dv vanishes in the zeros

Ofi^o.

Thus, the number of arbitrary constants in a factorial function of the

primary system, luith M given arbitrary poles, is

k

M+ X Xr-p+l+h + l, =N-p + l+h+l, =M-nT' + h + l + a' +1,
r=l

where N is the number of zeros of the function, and h + 1 the number of

differentials dV vanishing in the M poles*.

In particular, putting M=0, h + 1 =•57' (cf. § 258), we have the formula,

already obtained,
k

o-'+l = S X^ -jJ + 1 +ot'.
r=l

We can of course also obtain these results by considering the fundamental

equations (i) and (ii), § 254.

262. Hence we can determine the smallest value of M for which a

factorial function of the primary system with M given poles always exists.

* Counting the additive constant in the expression of a rational function, the last formula

holds in the ordinary case.
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When A/=t!T -t- I it is not possible to determine a function V, of the

form
V' = A,V,'+ +^^'FV.

wherein A^, ..., A^' are constants, to vanish in M arbitrary places ; and

therefore /t4-l=0. Thus a factorial function of the primary system with

tsr' + 1 arbitrary poles will contain, in accordance with the formula of the

last Article,
k

ct' + 1+ S Xr-p-^l, =o-' + 2,
r=t

arbitrary constants.

When a-'+l =0, this number is 1, and the factorial function is entirely

determined save for an arbitrary constant multiplier. Hence we infer that

when 0-' 4- 1 = the smallest value of i/ is sr' + 1.

We consider in the next Article how to form the factorial function in ques-

tion from other functions of the system. Of the existence of such a function

we can be sure d priori by the formulae (i) (ii) of § 254. Such a function

will have xY= tn-' + 1 + -X, =p, zeros. They can be determined to satisfy the

equations (ii). Then an expression of the function is given by the general

formula of § 254.

When a' + I > 0, there are tr' + 1 everywhere finite factorial functions

Ki, ..., K^^i, of tlie primary system, and the general factorial function with

tsr' + 1 poles is of the form

F+X1K1+ +\^'+iK^'+i,

where X-i, ..., X^'+i are constants, and F is any factorial function with the

assigned poles. In this case also there exist no factorial functions with

arbitrary poles less than zj' + 1 in number ; the attempt to obtain such

functions leads* always to a linear aggregate of Ki, ..., -K'o-'+i.

263. Suppose that cr' -|- 1 = ; we consider the construction of the

factorial ' function of the primary system with u' + 1 arbitrary poles.

Firstly let cr + 1 > 0, so that there are a+1 everywhere finite functions,

K', of the associated system, and cr+1 differentials dv vanish in the
Ic k

2p — 2+ 2 (\^ + l) zeros of any differential dV. Hence 5, = — S (\;.-f-l),
r=l r=l

is greater than zero or equal to zero. We take first the case when s > 0.

Then r^' = p — I — 2£ X,.=^; — 1 ^-.s^-^', and it is possible to determine a
r = l

rational function with poles at ny' + l=p + s + k arbitrary places. This

function contams s + Jc-\- 1 arbitrary constants, one of these being additive.

It can therefore be chosen to vanish at the places Ci, ..., c^, and will then

* For M -xs' - r, we shall have h + l — r, and, therefore, JJ -sr' + h + l + ff' + l = <r' + 1.
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contain at least, and in general, a + 1 arbitrary constants. Taking now any

everywhere finite factorial function K' of the associated system, let the

rational function be further chosen to vanish in the s zeros of K'
;
then the

rational function is, in general, entirely determined save for an arbitrary

constant multiplier. Denote the rational function thus obtained by R.

Then RjK' is a factorial function of the primary system with the ot' + 1

assigned poles, and is the function we desired to construct. And since the

ratio of two functions K' is a rational function, it is immaterial what function

K' is utilised to construct the function required.

This reasoning applies also to the case in which cr + 1 > 0, s = 0, unless

also A; = 0. Consider then the case in which cr + 1 > 0, « = and k = 0.

There is (§ 258) only one function K', of the form

27r/ [(/(I + Hi) I'l'
"+ + (hj, + Hj,) v; "]

E,, = Ae

or cr + 1 = 1 ; and Eq-^ is a function of the primary system without poles.

Thus ct' + 1 = 1, and the case does not fall under that now being considered,

for which c' + 1 = 0. The value of ot' is p, and the factorial function with

ot' + 1 arbitrary poles is of the form (F + 0)Eo, where F+C is the general

rational function with the given poles.

. Nextiy, let o- + 1 = 0, as well as o-' + 1 = 0. Then there exist no functions

K' and the previous argument is inapplicable. But, provided ct' + 1 <|: 2, we

can apply another method, which could equally have been applied when

o- + 1 > 0. For if P be the factorial function of the primary system with

ct' + 1 assigned poles, and V be one of the ct' factorial integrals of the

dV .

associated system, and v be any integral of the first kind, P -y is a rational

function whose poles are at the ct' + 1 poles of P and at the 2p - 2 zeros of

dv. Conversely, if R be any rational function with poles at the.'^e places

jdV
(cf § 37, Ex. ii. Chap. III.), and zeros at the 2p-2-lX zeros of dV, R ^--

is the factorial function required. It contains at least

^'+l + 2p-2-p + l-{2p-2-l\), = 'i,

arbitrary constant multiplier.

In case ct' + 1 < 2, so that tjt' = 0, %X = p - I, there are no functions V,

and we may fall back upon the fundamental equations of § 254. In this case

the least number of poles is 1.

264. Consider now the possibility of forming a factorial integral of the

primary system whose only infinities are poles. We shew that it is possible

to form such an integral with a + 2 arbitrary poles, and with no smaller

number.
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Suppose G to be such a factorial iutegral, with o- + 2 poles, and, under the

hv})othesis or > 0, let V be an everywhere tinite factorial integral, also of the

primary system. Then dG/dV is a rational function, with poles at the

2^-2 + S(X+l) zeros of dV, and poles at the poles of G; near a pole

of G, say c, the form of dG/dV is given by

^J^=c(j^ + A + Bt + ...]^DcV.

where t is the infinitesimal for the neighbourhood of the place c, the

quantities C, A, B are constants, and DcV denotes a differentiation in regard

to the infinitesimal ; this is the same as

dG
dV = ^

1 1 Dc'V , , . , £ •. 1 .
1 =-rrT + terms which are finite when t

t- t D,V

where E = — CjDcV. Thus dG/dV is infinite at a pole of G like a constant

multiple of

I r\T^'"^ Bc^V x,a

Y = ^ci c ~
J) Y ^<' '

a being an arbitrary place.

Conversely if R denote a rational function which is infinite to the first

order at the zeros of dV, and infinite in the a + 2 assigned poles of G like

functions of the form of yjr, JRdV will be such a factorial integral as desired.

Now R is of the form (§ 20, Chap. II.)

A+A,r:r+ +^.rr+Ak.itr-§^4^r' +

+ 5o D,
D V

po;, a _ ^(7-+2 T-<^, a

D,
-r

wherein a is an arbitrary place, gj , . .
.

, e, denote the zeros of dV, x^, ..., x^+z

denote the assigned poles of G, and A, A^, ..., Ar, B^, ..., B^^., are constants;

the period of R, in this form, at a general period loop of the second kind, is

given by

^.n,(e,)+ +ArCLi{er)-vB,

+ B„

D,ni(x,)-^^^^ni{.t;) +

D. 2^t (a'a+2) -
2)

' Y^i (^o-+2)

^o-+2

where fi, (./;), ...,np{x) are as in § 18, Chaj). II., and this must vanish for

i = \. 2, ..., ;x Now (§ 258) in the places e^, ..., e^ there vanish ct + 1 linear

functions of H, (x), ..., Clp (x). Thus, from the conditions expressing that the

periods of R are zero, we infer o- + 1 linear equations involving only the

constants B^, ..., B„+2, which, since the places Xi, ..., x^^^ are arbitrary, may
be assumed to be independent. From these a+l equations we can obtain
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the ratios Bi-.B^: '• B^^.,. There remain then, of the p equations

expressing that the periods of R are zero, p — (a + 1) independent equations

containing effectively r + 1 unknown constants. Thus the number of the

constants A-^, ..., A^, B^, ..., 5o.+o left arbitrary is r+ 1 —p + cr + 1, which is

equal to 2p — 2 + S(X + 1) + 1 — ;? + o" + 1 or or, and the total number of

arbitrary constants in jR is ct + 1. Thus we infer that, on the whole, G is of

the form*
[G] + G,V, + ^G^V^^-C,

where [G^] is a special function with the o-+ 2 assigned poles, multiplied by

an arbitrary constant, and G^, ..., G^, G are arbitrary constants. And this

result shews that o- + 2 is the least number of poles that can be assigned for

0. The argument applies to the case when o- + 1 = provided that -cr > 0.

The proof just given supposes ot > ; but this is not indispensable.

Let fo be a factorial function with the primary system of multipliers but

with a behaviour at the places Ci like ^~'^+^'0j_ where ^i is uniform, finite

and not zero in the neighbourhood of d. Then if, instead of \RdV, we

consider an integral JRfodv, wherein dv is the differential of any Riemann

integral of the first kind, and R is a rational function which vanishes in the

(say if) poles of /„, and may become infinite in the zeros of dv and the

(say iV) zeros of /o, we shall obtain the same results. It is necessary to

take N>1 (cf. § 37,' Ex. ii. Chap. III.).

265. Another method, holding whether ct = or not, provided a + 1 > 0,

may be indicated. Let K'{x) be one of the everywhere finite factorial func-

tions of the associated system. Consider the function of os,

^^//n.
d[rr+^n::;],

a, c, 7 being any places and A a constant ; when x is in the neighbourhood

of the place c it is of the form

i_,Dif'W 1 A
f^ t

dt,
K\c) L K\c)

where t is the infinitesimal in the neighbourhood of the place c, and terms
which will lead only to positive powers of t under the integral sign are

omitted ; this is the same as

K'{c)}\t

1 DK\c)
j\dt

* In the ordinary case of rational functions, where V is replaced by a Riemann normal inte-

gral V, the coefficients of /?,,... , B^+2, in the expression for the general period of R, vanish for

one value of i, namely when V=Vi. Thus o- + l( = l) pole is sufficient to enable us to construct

the factorial integral ; it is the ordinary integral of the second kind.
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. . ,. . ,., 11
hence if .-1 be DK\c),K'{c), the function -v/r is inhnite at c like - j^^.-

A
At the place 7 the function >/r is infinite like - .., log t^, where ty is

the infinitesimal in the neighbourhood of the place 7.

Putting now J/^'" = I^'" + j^,\ ^'c,y> consider the function

where a, 7 are arbitrary places and A^,..., A^^.^, Bi,..., Bp are constants,

subject to the conditions

(i) that

A,D^M%%+ + ^,_oi>,J/^;"^.^., + 5in,(a:)+ + Bp^p{x)

vanishes at each of the - 2 (A, + 1) zeros of K'{x),

(ii) that

^' K'C^-^ +^'^+^
K'ix^.,)

-^'

the fii"st condition ensures that G(x) is finite at the zeros of K'{x), the

pecond condition ensures that G{x) is finite at the place 7. If we suppose*

^'i' ,•••» Vjir to be those integrals of the first kind whose diflferentials

vanish at the zeros of K'{x) (§ 25(S), the conditions (i) Nvill involve only the

constants Ai,..., A^+o, Bz^+i, •••, B^, and if these conditions be independent

these a + 2 + {p — sy) coefficients will thereby be reduced to

thus, if the condition (ii) be independent of the conditions (i), the number

of constants finally remaining is«r + 2 — 1 = ct + 1, and the form of G(x) is

[G] + C,V, + + C^V^ + C
as before.

Ex. Prove that, when s, = - 2 (X + 1 ), is ix)sitive, we have

A" (X) [/>,,<•;+ ... +/>,/::;] = /^,{/r'(.r)[i1;^+ ... +r^;^]}.

266. The factorial integral of the primary system with 0-4-2 arbitrary

poles can be simplified. If x^, ..., x^^^ be the poles, its most general form

may be represented by

EG(x„...,x,+,) + E,V, + +E^V^ + C,

• This is to simplify the explanation. In general it is w linear combinations of the normal
integrals, whose differentials vanish in the zeros of K'{x). The reduction corresponding to that of

the text is then obtained by takiug w linear combinations of the conditions (i).
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where E, E^, ..., E^, C are arbitrary constants. Near a place Cj, one of" the

singular places of the factorial system, the integral will have a form

represented by Ai + t~^'(f); we may simplify the integral by subtracting

from it the constant A^; the consequence is that the additive period

belonging to the loop (71) is zero ; further thei'e is one other linear relation

connecting the additive periods of the integral, which is obtainable by

following the value of the integral once round the boundary of the dissected

surface (cf § 260). Thus the number of periods of the integral is at

most 2^ — 2 + k. We suppose the additive periods of the functions

G (x^, ..., ^v+2)j ^ij •••= ^ar, at the loop (71), to be similarly reduced to zero;

then the constant G is zero. The linear aggregate E^V^ + + E^V^
may be replaced by an aggregate of the non-periodic functions A' , . .

.
, K^+i

,

and TCT — (o-'+l) of the integrals Fj,..., V^, so that the integral under

consideration takes the form

EG(a;„..., ^^+2) +G,V, + ... i- Cnr-(<r'+i) l^z^-(<r'+i) + F.K, + ... + F^'+i Ky+u

where Gi, ..., Cot-(<^'4-i), F^,..., i'V'+i are constants. We can therefore, pre-

sumably, determine the constants (7i,..., Ga; - {^' -^\) , so that cr — (o-' -f 1) of

the additive periods of the integral vanish. The integral will then have

2^ — 2 -f ^' — (tJ7 — o-' — 1), = tzr' — (cr -h 1), periods remaining, together with one

period which is a linear function of them. A particular case* is that of

Riemann's normal integral of the second kind, for which there are }) periods.

As in that case we suppose here that the pe7'iod loops for which the additive

periods of the factorial integral shall he reduced to zero are agreed upon before-

hand. We thus obtain a function

F. G,{w„...,a-^+.) + F,K, + + F^'+J{y+i,

wherein F, F^^, ... , F^+i are arbitrary constants, and Gi(ii\. ..., a;^+.i) has

additive periods only at •bt' — (cr -1- 1 ) prescribed period loops, beside a period

which is a linear function of these. We may therefore further assign cr' -f-

1

zeros of the integral and choose F so that the integral is infinite at x^

like the negative inverse of the infinitesimal. When the integral is so

determined we shall denote it by T(xi, sc.^, ..., oc^+2)- The assigned zeros are

to be taken once for all, say at ai, ... , a^+j.

267. The factorial function of the primary system with ot' -f 1 assigned

arbitrary poles can be expressed in terms of the factorial integral of the

primary system with a- + 2 assigned poles. Let £Ci, ..., ^^07+1 be the assigned

poles of the factorial function. Then we may choose the constants C'l, ...,

G-uj'-„, so that the •or' — (0- + 1) linearly independent periods of the aggregate

are all zeros. The result is a factorial function with x^, ..., x^'+i as poles,

* Of tlie result. The reasoning must be amended by the substitution of p, 2p for -oj' - {cr + 1)

and 2p-2 + k respectively. Cf. the note t of § 260.
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which vanishes in the places ai,...,a^+i. Or, taking arbitrarv places

rf,, .... da^t we may choose the constants L\, ... , E^-+i so that the sr' — {a + 1)

linearly independent periods of the aggregate

E,r(a\, d-,, .... d^+,)-\-E,r(x^,d^ d„+,)+ ... + E^+^T (x^'+,,di, ...,d„+,)

are all zero, and at the same time the aggregate does not become in-

finite at dj, ...,f?a+i- Then the addition, to the result, of an aggregate

F^K^+ + i^„+i7io'+i, wherein F^, ..., ^^'+1 are arbitrary constants, leads

to the most general form of the factorial function with Xy, ..., ar-j^+i as poles.

For the sake of definiteness we denote by -^{x) z, U, ..., t.^-) the factorial

function with poles of the first order at z,U, ...,t-s}', which is chosen so that

it becomes infinite at z like the negative inverse of the infinitesimal, and

vanishes at the places a^, ..., a„+i. A more precise notation would be*

\jr{x,ai,..., «a'+i ; 2,ti, ..., t^'). This function contains no arbitrary constants.

Denoting this function now, temporarily, by >/r, and any everywhere

finite factorial integral of the inverse system by V, the value of the integral

j-^dV , taken round the boundary of the dissected surface formed by the

sides of the period loops, is equal to the sum of its values round the poles

of i/r. Since -y^dVldx is a rational function the value of the iutegi-al taken

round the boundary is zero. Near a pole of y\r, at which t is the infinitesimal,

the integral will have the form

/ 4 + 5 + tt

+

[{DV') + t{lT-V') + ]dt,

where D denotes a differentiation. Thus the value obtained by taking the

integral round this pole is A (DV). If then the values of A at the poles

Fi, ..., Fq^ be denoted by A^, ...,A^', we have, remembering that the

value of ^ at 2 is — 1, the tu' equations

AADV;), + + A^.(DV,%^ ={DV,'%
,

A{DV'^\ + + ^^-(i)FVW = (i)FV)z,

where Fj', ..., V'^' are the ct' everywhere finite factorial integrals of the

associated system, (DF,'),. denotes the differential coefficient of F/ at t,., and

(DVi)^ denotes the differential coefficient at z. Thus, if (Or{x) denote, here,

the linear aggregate of the form

E^{JJV,%+ + ^^.(i)FV)x,

wherein the constants Ei, ... , E^' are chosen so that a)r(U = 1 and o)r{tg) =
when tg is any one of the places t,, ..., t^' other than t^, we have Ar = (Or(z)'

Hence we infer by the previous article (§ 266) that yfr{x; z,t^, ..., t^-) is

equal to

T{z,d^,...,d„+,)-w,{z) V{t^, d,, ...,d„+,)- - (o^'{z)r {t^',d,, ...,dc+i),

• Cf. § 122, Chap. VII. etc.
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where d^, ..., d„+i are arbitrary places. For these two functions are infinite

at the places z,ti, ..., t^' in the same way and both vanish at the places

As in the case of the rational functions, the function '>^{x\ z, t^, ..., t^')

may be regarded as fundamental, and developments analogous to those given

on pages 181, 189 of the present volume may be investigated. We limit

ourselves to the expression of any factorial function of the primary system by

means of it. The most general factorial function with poles of the first

order at the places Zi, ..., z^ may be expressed in the form

Ai^{x; z^, U, ...,t^')-\- -vAM-^^ix; z^, t^, ..., t^') + BJ{, +

where A^, ..., A,^, B^, ..., -Bg-'+j are constants. The condition that the

function represented by this expression may not be infinite at tr is

^ift),,(^i)+ \-A,,a>,{z^)=0;

in case the ot' equations of this form, for r = 1, 2, ..., sr', be linearly indepen-

dent, the factorial function contains ilf+ c' + 1 — ct' arbitrary constants;

but if there be h + 1 linearly independent aggregates of difi'erentials, of the

form
C,dV; + + Cw'dV''u,',

which vanish in the M assigned poles, then the equations of the form

^i&), (2-1) + + A„03^ {z^) =

are equivalent to only cr' — (/t + 1) equations, and the number of arbitrary

constants in the expression of the factorial function is if + o-' + 1 — ot' + /i + 1,

in accordance with § 261.

Ex. i. Prove that a factorial integral of the primary system can be constructed with

logarithmic infinities only in (r + 2 places, but with no smaller number.

Ex. ii. If the factorial integral O (a'j, .r.2, ... , .r^ + g) become infinite of the place Xi like

—
, where t is the infinitesimal at .^j, prove, by considering the contour integral I GdK^.\

where A',.' is one of the tr+ l everywhere finite factorial functions of the associated system,

and G denotes O {x-^^, x^, .„ , x^^^, the o-+ 1 equations

"2 BiDK;{Xi) = 0,

D denoting a differentiation. From these equations the ratio of the residues R^, Ro, ...,

R(r + 2 "^^^^ ^^ expressed.

268. The theory of this chapter covers so many cases that any detailed

exhibition of examples of its application would occupy a great space. We
limit ourselves to examining the case p = 0, for which explicit expressions can

be given, and, very biiefly, two other cases (|§ 268

—

270).
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Consider the case ja = 0. A = 3, there being three singnlar places such as

have so far in this chapter been denoted by c,, Co, ..., but which we shall

here denote by a, /9, 7, the associated numbers* being Xi = — 3/2, Xo = — 3/2,

Xj = — 2. At these places the factorial functions of the associated system

behave, respectively, like t~^<f>i, t~^<f)i, t~^(f>3, and the difference between the

number of zeros and poles of such a function is -lV — M' = — 2(X + 1)= 2.

Thus there exist factorial functions of the associated system with no

poles and two zeros. By the general formula of § 254, replacing 11^'^ by

loer I
'

I , the general form of such a function is found to be
^\x-yi a-yj "

and involves three arbitrary constants, so that cr + 1 = 3. In what follows

K' {x) will be used to denote the special function \l{x — 'y){x — a)^{x — ^)^.

The difference between the number of zeros and poles of factorial functions

of the primary system is N—M — — h\ hence M=0 is not possible, and
0-' + 1 = 0. Further

•CT , =jj - 1 + S (X + 1) + o- + 1, = - 1 - 2 + 3 = 0,

rn', =p-\ -Sk + a' + \ , = - 1 + 5 =4.,

and the factorial function of the primary system with fewest poles has

ct'+ 1 = 5 poles, as also follows from the formula N — M = — 5. This function

is clearlv given by

P(^)_ {x-a)Hx-fi)^{x-yy
{x-x^){x-x.){x-X3){x-x^){x-x^)'

Putting

^{x) = {x - d) {x - /3) {x - 7), f{x) = {x - ./•,) {x - a-o) {x - x^) {x - X,) {x - x^),

4> {x) = DK' {x)iK' {x) = - [{x - 7)-' 4- i (.r - a)-' + ^ (.r - ;8)-'],

and putting X,- = >/r (^,)//"'(ar,), where i is in turn equal to 1, 2, 3, 4, 5 and

/' (x) denotes the differential coefficient of f{x), it is immediately clear that

P{x) is infinite at x^ like Xi/(.r — ./•,) A"' (.7,) It can be verified that

S X, = 0, Z X, X, = 1 , :i ./•, Xi <p (./;, ) = 0, i .r,-X, <^ (.v, ) = - 2, ^ \, {x, ) = 0,111 1 1

and these give

2 X, [1 + x,<^ix,)] - 0, i X, [2,r, + .r,-'</. {x,)] = 0.
1 1

The factorial integral G, of the primary system, with cr + 2 = 4 poles,

''"• ^' '7. ?. is (§ '1Gb) given by

* It was for convenience of exposition that, in the general tlieoiT, the case in which any of the

namberfl \, , . X^ are integers, was excluded.
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where the sign of summation refers to r, |, ij, ^ and the constants A^, A^,

As, J.4 are to be chosen so that (i) the expression

A.cj, (t) + A,<l> (^) + Ascfy (v) + A,<j, (0

is zero, this being necessary in order that G (r, ^, rj, ^) may not become

infinite at the place c, and (ii) the expression

2^1,

vanishes to the fourth order when x is infinite ; the expression always

vanishes to the second order when x is infinite ; the additional conditions are

required because K {x) is zero to the second order when x is infinite.

Taking account of condition (i), we find, by expanding in powers of - , that

the condition (ii) is equivalent to the two

S ^1 [1 + T<^ (t)] =0, ^A, [2t + T-^c^ (t)] = 0.

1 1

Thus, introducing the values of A-^, ..., A^ into the expression for

^ (''"> ^' ^> K)> we find, by proper choice of a multiplicative constant,

1
, </> (t)

K' {x) DG (t. I 77, = (a {v\ (D ....(1),
{x — ry X — t'

\+t4>{t),

2t + T-0 (t),

in which the second, third and fourth columns differ from the first only in

the substitution, respectively, of ^, 77, ^ in place of r.

The factorial integral G{r, ^, 7], ^) thus determined can in fact be

expressed without an integral sigu. For we immediately verify that

(x — t)- X — r
I
dx {x - y) \/(x — a) (^ — /3)

is equal, save for an additive constant, to

\/(x - a) (x - yS) + 1 + T<fi (t) + ^ [x -y - ^{<x + 13)} <f>
(t)

+ 2t + T^cf> (t) -ly + ^(a + l3)\{l+Tct> (t)) + jiY (a + /3) - i [^~^J^
cf> (t)

X log i^x - " + ^ + ^{x-a){x-0)\^

(t - 7) </) (t) + 1 + i (t - 7) ( +
V(t - a) (t - IS)

X log

T — a. T — fij

\/{x - /3) (t - a) + V(^ - a) (t - /3j

\lx—r
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and, by the definition of
<f)

(a-), the coefficient of the logarithm in the last line

of this expression is zero ; if we substitute these values in the expression

found for G (r, ^, t], f) we obviously have

Cr(r,lrj,^) = \^(x-a){a'-0)
7 — T

. (a (v), (0 + constant,... (2),

</>(t), . , . ,

1 + t</>(t), . , .
,

2t + t^<^(t), . , . .

where the second, third and fourth columns of the determinant differ from

the first only in the substitution, in place of r, respectively of ^, 77, ^. We
proceed now' to prove that this determinant is a certain constant multiple of

{x - a) (a- — /9) {x — fM)/(.i: — t) (x — ^){x — rj) {x — ^), where fi is determined by1111+ i.4- +
2W-«"^7-/3/'y-fM y-T 7-^ 7-7; 7-f 2V7-a y-^

If we introduce constants, A, B, C, A', B', C, depending only on a, /3, 7,

defined by the identities

Cx- +Bx +A =-——{x -^){x- 7),

2

4, /

Gx- + B'x + A'= . ^-(a; - 7) a; -

we can immediately verify that

A<f> {x) +B[\+ xct> (x)] + a [2x + x'-f^ {x)] = - ^^^

,

X — a

A'<f> (x) + B' [1 + .r0 (,.)] + C [2x + x^4> (.r)] = -
^^_\^J^_^^

,

and hence that

7-T
X - T

+ [A + (.'• - cf) A'] (j> (t) + [B f (.r - a) B'] [1 + t</) (t)]

thus

+ [G + (x-a)C'][
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now it is clear from the equation (2) that G (r, ^, rj, ^)/V(a; - ol){x — 0) is of

the form {x, IJs/ios — t) (a? — ^) (x —r)){x— ^), where (x, 1% denotes an integral

cubic polynomial; and since 1/K'(x) vanishes when x = <y, it follows from

the equation (1) that the differential coefficient of G{t, ^,7], ^) vanishes

when X = <y. Hence we have

^(^'^'^'^^-L(.-r){x-^)ix-,)ix-J)+^'

where fi is such that the differential coefficient of this expression vanishes

when x = y, and has therefore the value already specified, X is a constant

whose value can be obtained from the equation (3) by calculation, and M
is a constant which we have not assigned. In the neighbourhood of the

place a, G (r, ^, tj, ^) has the form M + L(x — df [\ + fjb{x — a) + v {x — a)" + ...],

and similarly in the neighbourhood of the place /8. In the neighbourhood

of the place <y, G (t, ^, tj, ^) has the form

K+ix- y)" [X' + fi' (x -y) + v (x - yf + ],

where iV is a constant, generally different from M.

In the general case of a factorial integral for p=0, /•=.3, the behaviour of the integral

at a, ^, y is that of three expressions of the form

A+{x-a)-^{P+Q{x-a)+ ...], i?+ (.r-j3)-'* [P'-f (?' (.r-/3)+ ...],

C+(,r-y)-[P"+r(.r-y)-f ...],

provided no one of X + 1, /n + l, i^+l be a positive integer; herein one of the constants

A, B, C may be taken arbitrarily and the others are thereby determined. The factorial

integral becomes a factorial function only in the case when all of A , B, G are zero.

We have seen that the factorial function of the primary system with

fewest poles has 5 poles ; let them be at r, Ti, |, t;, ^; then, taking G (t, ^, 77, ^)

in the form just found, the factorial function can be expressed in the form

F {x) = CG (t, ^, V, + Gfi (T„ I V, + D,

when the constants C, Gi, D are suitably chosen.

For clearly D can be chosen so that the function P {x) divides identically

by {x — of {x — ^f. It is then only necessary to choose the ratio G : C^,

if possible, so that the function P (x) divides identically by (x — 7)-. This

requires only that

x — r X — Ti ' {x — T) (X — Ti)

where p is a constant, or that the expression

C{x-fi) (x - T,) + C'l {x - t) {x - /A,)

B. 27
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divide by (x - y)". Thus 6*
: C, = - (7 - t) (7 - /i,) : (7 - /^) (7 - Ti)> '^"t^

2y -/i-Ti ^ 2y - fj^-T

(y-/x)(y-T,) (y- fxMy-r)'
or

Jl L = J ^ •

7 — ^ 7 — T 7 — /U-i 7~'^i'

this condition is satisfied ; both these expressions are by definition equal to

1 ,H-i-. + -L-ar_l,+ 1

y- ^ y — T] y—t, '•^\7— a 7 — ^

From the theoretical point of view it is however better to proceed as

follows—Let the poles of P(.r) be at a;,, ..., a-j. Then P(.'') can be expressed

in the form

P (.r) = C,G {x,
, I V, + CM (a-,, lv,0+ + C\G (a-,, ^ v, + G,

the constants C, G^, G.,, ..., G5 being suitably chosen. This equation requires,

by equation (1),

K' (x) DP = tCr \r^. + 7^^ A (I. V> D
r).

0, E, F, G

kG,cf>{a'r), (^(1), <t>{v), <t>(0

2C, [1 + a:,4 (a-,)l 1 + !</> (D, 1+V<}>{V), 1 + ^<t>(0
1

wherein A (^, rj, ^) is the minor, in the determinant occurring in equation (1),

of the first element of the first row, and E = (a; — ^)~- + (j) {^) (.v — ^)~\

F={x- T))~- + (f>
(rj) {x - r))-' ,G = {x- 0~' +

(t> (0 (^ - 0~' If now we take

C, , .... 65 so that

lGr<i> (X,) = 0, 26', [1 + Xr(l> (Xr)] = 0, ICr [2Xr + Xr'
<f>

(Xr)] = 0,
1 1 1

this leads to

A(f ^^ ^^ ^ ^*^^ ^^'" ^-' ^2, Xi) + G,DG (x„ x„, Xs, x^),

and the .solution can be completed as before.

There are ct' = 4 everywhere finite factorial integrals of the associated

system : if V be one of these, then by definition, is a factorial function
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which has at a the form {x — a.)~^(f>, and similarly at yS, and has at 7 the

form (cc — y)~^^. Further dV'/dx is zero to the second order at oc = y:

.

Hence we have

Ux— a)- (x —
F' =

{x, \\dx

{x - af (x - /3)--f (x - 7)2

and dV has 2p - 2 -t\ = - 2 -\- 5 = S zeros.

Thus V can be written in the form

,^, „ , dx Lx"- + Mx + N
V = K \ , TT-r- TiTT-, C +

{x - a)i {x — ^)i (x — 7) (x — 7) {x — a)^ (x — /3)^

'

= FK' (x) + MK,' (x) + LK: {x) + RV:,

where N, M, L, R are constants, K' {x), K( {x), K.^ {x) are particular, linearly

independent, everywhere finite factorial functions of the associated system,

and Fo' is a particular everywhere finite factorial integral of the associated

system.

Ex. i. In case of a factorial system given by p= 0, k= 2,\= -
f, X2= -§, prove that

o-4-l=2, o-'+ l=0, i<r=:0, 07'= 2
;
prove that the factorial function of the primary system

with fewest poles is P {x)~{x-a)^ {x - ff)^l{x - x^) (x-x.^) (x-x^) ; obtain the form of the

factorial integral of the second kind of the primary system with fewest poles, and prove

that it can be expressed in the form AP(x) + B ; and shew that the everywhere finite fac-

torial integrals of the associated system are expressible in the form {Ax+ B)/\'{x— a) {x— fi),

their initial form beins

^„^
/• {Ax+B)dx

J (x-af(x-8f{x-af{.

Ex. ii. When we take p= and k, =2%+ 2, places q, ..., 0.2,^+2, and each Xr=— a,

prove that the original and the associated systems coincide, that o-+ 1 = o-' + 1 = 0, aj—Lu'= n,

that the everywhere finite factorial integrals, and the integral with one pole are respec-

tively

where f {'(') = {-v-Ci) {x- 0^,1 + 2)- The factorial function with fewest poles is

v/(.^')/(.r, l)n + i ; express this in the form

^UTx. [[JM^^+^IM']J^+ [(^^-^..-Fconstant,

Qi, ... , a,i + i
being the zeros of (,r, l),i + x,

and determine the 2?i-t-l coefl&cients on the right-

hand side.

269. One of the simplest applications of the theory of this chapter is to

the case of the root functions already considered in the last chapter ; such a

function can be expressed in the form e"^, where

p.

f = n;;.\ + + n;;;«^,- 27rr s On + Hd v-
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where /9, /9.y ^^'^ t-he zeros, a,, ..., a.y ^^^ poles, A,- is a rational numerical

fraction, Hi is an integer, and 7 is an arbitrary place. The singular places,

c,, ...,ct are entirely absent. The zeros and poles satisfy the equations

expressed by

/'•"' + +A'"- =^+G + T(//+^),

where (r,, ..., Gp are integers; and since, if 7)i be the least common denomi-

nator of the 2p numbers g, h, the ??ith power of the function is a rational

function, there is no function of the system which is everywhere finite,

and the same is true of the associated system. Hence a + l=0 = a-' + \,

'GT = is'=p—l: thus the function of the system with fewest poles has

p poles, and every function of the system can be expressed as a linear

aggregate of such functions (§ 267. Cf. § 245, Chap. XIII.).

Ej: i. Prove that when the immbers g, h are any half-integers, the everywhere finite

integrals of the system ai-e expressible in the form

where c is an arbitrary integral of the first kind, (^ is the corresponding 0-polyuomial,

and *,, *( are ^-ixilynoniials with p-\ zeros each of the second order (cf. § 245,

Chap. XIII.). It is in fact possible to represent any half-integer char;u;teristic as the

sum of two odd half-iuteger characteristics in 2''~- (2''~i-
1) ways.

Ex. ii. In the hyperelliptic case, when the numbers g, h are any half-integers, prove

that the function of the system with -n:' + \ =p poles is given by

ju f
^ + 2 y< I

\uylr{.v) 1 «i(.r-.r,)>/.'(.r,)J
'

where the places {.i\y yj), ... are the [Ktles in question,

ylr (.r) = {x - .r,) . . . (.r - .fp), ^' (.«•)= dyj/^ {^•)/(i.i', u = {x- a) {x - b),

and a, b are two suitably chosen branch places*, and ?<,= (^i-a) (.rj— 6). Shew that in

the elliptic case this leads to the function
"^^^"^

, e-il"-").
a{u- r)

270. In the case in which the factors at the period loops are any

constants, the places Cj, ...,Ck being still absent, it remains true that the

number of zeros of any function of the system is equal to the number of

poles ; but here there may be an everywhere finite function of the system,

and there will be such a function provided

.7. + T,-,, h,+ +Ti^jJ,j, = -[G,+Ti,, H,+ + r!,j,Hj,l {i=l,2, .-..p)

in which (r,, ..., H^ are integers, the function being, in that case, expressed by

A^ = e-2W2:{/t.-f//.)r^'\

* For the association of the proper pair of branch places a, b with the given values of the

nnmbers j/, h, compare Chap. XL § 208, Chap. XIIL § 245, and the remark at the conclusion of

Ex. i.
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then E~^ is an everywhere finite function of the associated system, and

(7 4- 1 = 0-' + 1 = 1, CT = ct' = /), It is not necessary to consider this case, for

it is clear that every function of the system is of the form ER, R being a

rational function.

When <7 + l = cr' + l=0 we have ct = p — 1 = sr'. Then every function

of the system can be expressed linearly by means of functions of the system

having
jp

poles. If a;,, ..., ic^ be the poles of such a function and z-^, ..., Zp the

zeros, and the relations connecting these be given by

2fi'^i+ +v2,uxn = g + Q + r(h + H).

There is beside the expression originally given, a very convenient way of

expressing such a function, whose correctness is immediately verifiable,

namely
%{-u-g-0-rh-TH ) ^,^j,, ,,

wherein

and m, m^, ..., vip are related as in § 179, Chap. X. Omitting a constant

factor this is the same as

since the difference between the values of the logarithm of (f>{u) at the two

sides of any period loop is independent of u, and of x, it follows that

^ log
(f)

(v) is a rational function of x, and that ^ log (u) is a periodic

function with 2p sets of simultaneous periods ; thus the function
(f)

(ii)

satisfies linear equations of the form

where R, R;, are rational functions of x, and 2p-ply periodic functions of a

given* by
r)2

l\og4,(„) Lg7.log .#.(«)

Ex. The 2/> constants a, X can be chosen so thiit

satisfies the equations <^ {>t+ 2a)) = A(f){u), {u+ 2<o') = A'(f) (u), where A, A' each represents

p given constants, and the notation is as in § 189, Chap. X.

* Cf. Halphen, Fond. Ellipt., Prem. Part. (Paris 1886), p. 235, and Forsyth, Theonj of Func-

tions, pp. 275, 285, for the case p = l. By farther development of the results given in Chap. XI.

of this vokime, and in the present chapter, it is clearly possible to formulate the corresponding

analytical results for greater values of p.
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271. Wo have seen (§ 201) that the nuiuber of tirbitraiv constants

entering into the expression of a factorial function of the primary system

with given poles is N—p+l+h + 1, =R say, where N is the number of

zeros of the function, and // + 1 is the number of linearly independent

differentials, dv, of integrals of the first kind, which vanish in the zeros

of the function. When li + I vanishes the assigning of the poles of the

function, and oi R - I of the zeros determines the other N—R + 1, = p,

zeros ; in any case the jissigning of the poles and of 72 — 1 of the zeros

determines the other N—R + \, =p — {]i-\-\), of the zeros. Denote the

poles by flj , . .
.

, a ,/ and the assigned zeros by /3i , . .
. , yS;._i ; then the remaining

zeros )8y; , . .
. , /3 y are determined by the congruences

P.. a
Vi + + Vi' t , ... (

,

- 2 XrV[' " - {f/i + A, T/, , + . . . + //;,T,-,p)

= -(»?'" + + »?-").

a being an arbitrary place. Now, let the form of the factorial function when

the poles ai*e given be
C,F,{x) + + Gj,Fj,(x),

where C\, ..., Cj^ are arbitrary constants, and /^i(a), ..., Fj{(x) are lineai-ly

independent ; then, when the zeros /3i, ...,ySj;_i are assigned, the function is a

constant multiple of the definite function

A(^)= F.(^), ,Fj,{a;)

^i(A), ,FA^,)

FAI3u-^), ,Fj,(^j,.,)

the zeros of this function, other than yS,, ..., /3^-i, are perfectly definite, and

are determined by the congruences put down. Let H denote the quantities

given by

Hi= % \.v-''' + (j; + J,^Ti^i + +fipri,p;

take any places 71, ..., yh+i, of assigned position, and take a place ni and ^j

dependent places 7?i,, ..., vip defined as in § 179, Chap. X., and consider the

function of x

©/ X, m Yi.'"i Y. ,
. wi,

, , , S,, a , , fi .,<! fit 111, ,.
{V —V — —y'li+V A+l _|- ^T" _)_ ^(fii-V — 1) ' /.+2 _

—V' • —V " —

if the function does not vanish identically, its zeros, x^, ..., Xp, are (§ 179,

Chap. X.) given by the congruences denoted by

Vii '"1 — V
y^+i. "';.+! + /'•"+ + /''-••"_«"•

- V -H = -v' — V
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or, what is the same thing, by

/'•'^+ +/«-»'«_„«•«_ -v'^-'^-H

now, from what has been said, it follows, comparing these congruences with

those connecting the poles and zeros of A {x), that if Xi, ..., x^^.^ be taken at

7i, ..., yh+i, these congruences determine Xh+2, ..-, oCp uniquely as the places

0R, •••. ^N- Thus the zeros of the theta function are the places 71, ..., 7/^+1

together with the zeros, other than /S^, .,., /3p,-i, of the function A (x).

We suppose now M to be as great as p — I, = 7' + 2^ — 1, say ; as in § 184,

p. 269, we take n^, ..., 7i^_i to be the zeros of a ^-polynomial of which all the

zeros are of the second order, so that

q,mp, in ^.?ii , m, y'lp-ij '>np-i

is an odd half-period, equal to ^Clg,
s'
say ; and we take the poles ar+i, ..., cc,, at

Ui, ..., np_i. Further*, in this article, we denote

8 (v^- ^
-f- ^Hg, s') e'^'^'"'''^' by \ {x, z),

so that (§ 175, Chap. X.) X{x, z) is also equal to e-i^vis+jr*', @(^.t, 2. i^^ i^')^

The function \ {x, 5) must not be confounded with the function \ (^, fi) of § 288.

Then in fact, denoting the arguments of the theta function by V, we

have the following important formula,

r h+\ k

A (x) n \ {x, Uj) n X {x, yj) n [\ {x, Cj)f^

^-,.Hh-wvs (V) = A -^ -^ '— —

,

ri X (x, I3j)

i=i

where ^ is a quantity independent of x. In order to prove this it is

sufficient to shew (i) that the right-hand side represents a single-valued

function of x on the Riemann surface dissected by the 2p period loops,

(ii) that the right-hand side has no j)oles and has only the zeros of @(F),

and (iii) that the two sides of the equation have the same factor for every one

of the 2p period loops.

Now the function A, (x, z) has no poles ; its zeros are the place z, and the

places «i, ..., ?ip_i. The places n^, ..., np-i occur on the right hand

(a) as poles, each once in A (a-), each {R — \) times in the product

nx(^;, ^^);
i=i

(/3) as zeros, each r times in 11 \ (x, a), /^ + 1 times in II X {x, 7;), and

* For the introduction of the function \ (.c, 2) see, beside the references given in chapter XIII.

(§ 250), also Clebsch u. Gordan, Abel. Functnen. pp. 251—256, and Riemann, Math. Werke (1876),

p. 134.
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* *

2 \j times in II [\ {x, Cj)]*> ; thus these places occur as zeros, on the right

hand,
^/ _ (y, _ 1) + /, + 1 + SX, -Ji, =X-ji + l-\-h + l- li,

times, that is, not at all.

Thus the expression on the right hand may be interpreted as a single-

valued function on the Riemann surface dissected by the 2p period loops

—

for we have seen that the places n^, ..., «_^i do not really occur, and the

multiplicity, at Cj, in the value of such a factor as [X{x, C;)]'^> is cancelled by

the assigned character of the factorial functions F{x) occumng in A(.7).

Nextly, the zeros of the denominator of the right-hand side, other than at

»,, ,.., ??p_i, are zeros of A (x), and the poles of A (a;), other than n^, ..., «p_i,
)•

are zeros of the product 11 X{a; Oj), so that the right-hand side remains

finite. The only remaining zeros of the right-hand side consist of 7,, ..., yh+i

and the zeros of A (x) beside /81, ..., /8/j_i ; and we have proved that these are

the zeros of ( V). It remains then finally to examine the factors of the

two sides of the equation at the period loops. The factors of the left-hand

side at the I'-th period loops respectively of the first and second kind are

(see § 175, Chap. X.)

-27ri (/jj- As/)
and e

-2iri 2 (/i/x- A*V) V, i-2'r/ (r^+ir,,
i)

M = l J

the factor of the right-hand side at the i-th period loop of the first kind is

e*, where
k

i/r = - 27riJi; + vrris;' + {Ji + 1) ttw,' + iris;' 2 X; - (7? - 1) 7m/

;

7=1

A-

now 11 = X — 2) + 1 +li +i — i' + ^ Xj -\- h + 1: thus i/r = — Stt///,- -I- Tris/, and

e"/* = g-.-^'iAi-i*,
»^ QY the factors of the two sides of the equation to be proved, at

the i-th period loop of the first kind, are the same. Since the factor of

X (x, z) at the i-th period loop of the second kind is e'^ where

/u, = - 'liri [Vi' ' + ^Si + ^A'i't,-, 1 -I- . . . 4- 6-',;T,_ ^,
-\- It,-,

,] + iri (6','t,-, 1 -f- . . . + 6>t,-_
^,),

= - 27rt {lu
^ + \Si + ^T,-, ,),

it folhnvs that the factor of the right-hand side at the /-th period looji of the

second kind is e^ where

^ = ^iriffi — 27ri

h+\ ^-1
^ Vi ' + 2 Vi ^ -I- 2 XjVi •> - 2 v/ '

.j-i i=i j=i J=i

— iri

= 92TT »'//,• — iri is; 4- T,-, ,) — 27ri

r + /i + 1 -I- 2 X;

A + l „ . A-

2. Vi ' + ^ Vi
^^ + 2 Xj?.'; ' - 2 iv

Lj-1 ;=i j=l

71" +1

2
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now we have

y. = ^^' - _ ^y.'
'

- _
. . . _ ,f

+1. -.+> + ^^. -V . . . + /r" " - C '""^^ - ... - ^!'
""

a,, a o„> « «i>* Hi,-!, a ^ ^ (•)',« 7 ;

-Vi -...-Vi' -vi -...-Vi -ZXjVi -gi-niTi,i- ...-lipTi^j,,

and

^ {si + 6\Ti^ 1 + . . . + Vt,:, p) = i;'"'- '" - y"> • '"' - ... - v""-'' '""-'

;

thus

Vi - i (Si 4- 6-/t,; 1 + . . . + S^ T,-, j,) = Vi' +Vi' + ...+ Vi
""^^ + V,; + . . . + t^i"

'

-Vi -...-Vi -ZXjVi -fji- Ih'Ti,!- • -lipTi^p-,

J = l

further

= - Vi +{h+l)Vi -(R- l)vi + rvi + 2 XjV,- ;

hence

j= l j= l j= l

+ S XjVi'
•» - ^Ti - /iiT,-_ 1

- ... - A^T,-, ^,
7 = 1

or

i> ^.»,-
. 'v' ^.y,-

, 4 . *•.<-•• V ^.^
2 (/v - |-Sm') Tm, i + l^i = -

gi + ist + S Vi'
" + S v/ ^> + X ^v/' '> - S V-' ,

/oi=i ./ = ! i = i 7=1 /=i

and thence the identity of the factors taken by the two sides of the equation

to be proved, at the i-th period loop of the second kind, is manifest.

And before passing on it is necessary to point out that if the functions

X {x, z) be everywhere replaced by - -~—^^ , and A {x) be replaced by y^^ {x),

yfr being any quantity whatever, the value of the right-hand side of the

equation is unaltered. For there are R factors A, (x, z) occurring in the

numerator of the right-hand side of the equation beside A {x), and 72—1
factors \{x, z) occurring in the denominator of the right-hand side of the

equation. In particular y^ may be a function of x.

272. We can now state the following result: Let a, «!, ..., a,, be any

assigned places; let tii, n^, ..., ?i^_i be the zeros of a 0-polynomial, or of

a differential, dv, of the first kind, of which all the zeros are of the second

order, and

Vi -Vi -...-Vi =l(si + Si'Ti^,+ ...+Sj,'Ti^p), {l^l,2,...,p),

in, m,, ..., nip being such places as in § 179, Chap. X.; let /t-1-1 be the

number of linearly independent differentials, dv, which vanish in the zeros of

a factorial function of the primary system having aj, ..., a,., n^, ..., iip^i as
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poles, or the number of ditioivutials dV, of everywliere finite factorial

integrals of the associated system, which vanish in the places n^, ..., np_i,

k

a,, ..., oir', let 7,, ..., 7A+1 be any assigned places; denote r+ 2 \j + /t + 1

bv R, and let* a-j, ..., Jj. be any assigned places; let the general factorial

function of the primary system having a,, ..., a,., »i, ..., Kp_i as poles be

C,F,{a:)+ + Cj:Fj,{a;),

wherein (7,, ..., Cjt are constants, and let

A(x„...,xj,)= F,(.v,), ,Fj,{x,) ylr(a:A...,ylr{xj,),

1

F,{x,), ,F„{a;,)

F^{a'^), ,Fj,{a;j,)

where yfr (.r) denotes any function whatever ; let

„ £ x.,a S, a, a '*±^ y.,a t, . c.,a
Ui= 2 IV - 2 Vi'' - 2 tV' - 2 \jV ,

j=l j=l j=l j=l

which is independent of a, and let the row of j) quantities

Oi - h^i + (/'i
- iO T,-, 1 + + (/*;, - Up) T,-, p

be denoted -f- by u —U + r{h—U')] then if, modifying the definition of

X (jr, z), we put

we have

Q^-^,H-i,;\:u-iy-y)-rih-hs;2 S[U-(g -^s) -t(}i - hs')]

A(Xi,X2, ...,Xji)

nn x(^,-,a';)

R ( r h+\ k
)n \ n X(a;,- a;) D X (a-,- 7^) O [X(av Cj)Yi\

,

wherein (7 is a quantity independent of a^i, ..., Xji, which may depend on

Ci, ..., Ci, oil, ..., a,., 7i, ..., 7,,+i.

273. The formula just obtained is of great generality; before passing

to examples of its application it is desirable to explain the origin of a certain

function which may be used in place of the unassigned function yjr (x).

We have (§ 187, p. 274), in the notation of § 272,

n^' ' = locr
Q(^- ^+iQ..»')Q(^'' + in^ s)

.

'• -' "^ (i^> ^ + ^n,. ,0 e (^'. * + in., .)

'

if the zeros df the rational function of x, (x — x)l(x — z), be denoted by

* These replace the j-j , /3, , ..
. , /3/....1 of § 271.

t bo that r=L-(i/- ^«)-r(/i-i/).
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io, Xi, ..., Xn_-^, n being the number of sheets of the fundamental Riemann

surface, and the poles of the same function be denoted hy z, z^, ..., Zn-x, we

have, by Abel's theorem.

n: +
„*•', z' ri^,

2'
, fX -X Z - X

= log
(a;'

-

X) {z -z)% iv^' ^+ ^n,, .') @0^^+in^«'_)

now let the places x, z' approach respectively indefinitely near to the places

X, z which, firstly, we suppose to be finite places and not branch places ; then

the right-hand side of the equation just obtained becomes

log

where
_- (x - zf X(cc)X{z)

X {x) = 1 0, (i n,, ,0 . Dw •
• \ X (^) = i 0, (^ a. ,.) . Dv

»=1 1=1

z, a
i >

D denoting a differentiation, and a denoting an arbitrary place ; but we have

(Chap. X. § 175)

(v^' ^ - ifi,, ,.) = e'^V^'Vi.^. ^0 (^^x, z ^ 1
^^^ ^,) = _ g2,.iV«^- % (^, 2 + in,_ ,.)

;

thus, on the whole, when the square roots are properly interpreted, we

obtain

\1Tl\.x'=x, z'=z \J -{x- x){z'-z)e ""'' = ©(w'''" + ia,6')-e'^"'''"''

'^X(x)X{z)

Air"- + +in-"'-

When the places x, z are finite branch places we obtain a similar result.

Denote the infinitesimals at these places by t, t^, and, when x', z' are near to

X, z, respectively, suppose x! = x-\- V-"^^, z' = z + ti' ; then from the equation

given by Abel's theorem we obtain, if 7 denote an arbitrary place,

r=l
^xr,y-^0gt

n-i.

+ X u: + 2 n^;,, - log t,

X, z

11
)=1

(C+ l M', + 1

+ 2 n X', z'

y,sr

= - log (r)- log (^r) -flog
t t

l-{x-zy' tt^X{x)X{z)

where X {x), X {z) are of the same form as before, save that the differentia-

tions Dvi , Dv~' , are to be performed in regard to the infinitesimals t, ti.

If the limit of the first member of this equation, as x, z' respectively

approach to x, z, be denoted by L, we therefore have

' -^ ^X{x)X{z)
z) e^^. (ii)
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The equations (i), (ii) are very noticeable ; there is no position of x for

which the expression (j-*- " + i fi,, ,) . e"^ '^'WZ (x) X (z) is infinite, and thei'e

is only one position of x, namely when x is at z, for which the expression

vanishes: for (§ 188, p. 281) the expression VZ (a;) vanishes, to the first

order, only when x is at one of the places n^, ..., ;ip_i, and (y*- ^ + |n«,g')

vanishes only when x is at one of the places z, », >ip-i] there is no

position of ./• for which VA' (.r) is infinite. Putting

or, ix, z) =—^^
-.—:^-^

,

we have further CTi (.7-, z) — — w^ (z, x), and if t denote the infinitesimal near

to z, we have, as x approaches to z, limit^^i [wi (a-, z)/t]=l. For every

position of x and z on the dissected Riemann surface ztj (x, z) has a perfectly

determinate value, save for an ambiguity of sign, and, as follows from

the equations (i), (ii), this value is independent of the characteristic

{\s, U).

There are various ways of dealing with the ambiguity in sign of the

function 07, {x, z). For instance, let ^ (./) be any ^-polynomial vanishing in

an arbitrary place m, and in the places A-y, ..., -4op_3 (cf. § 244, Chap. XIIL),

and let Z {x) be that polynomial of the third degree in the p fundamental

linearly independent (^-polynomials which vanishes to the second order in

Ai, ..., A.yp_3 and in the places m^, ..., Mp. Further let ^{x) be that

</>-polynomial which vanishes to the second order in the places ?ii, ..., /(^,_i.

Then we have shewn (§ 244) that the ratio \'Z{x)lj>{x)^<^{x), save for an

initial determination of sign for an arbitrary position of x, is single-valued on

the dissected Riemann surface ; hence instead of the function Wi {x, z) we

may use the function

E,{x,z) =
<ji(x)<f)(z)

' V4> (a;) O (^)

which has the properties
;

(i) on the dissected Riemann surface it is a single-

valued function of x and of z, (ii) E^ (x, z) = — E^ (z, x), (iii) as a function of x

it has, beside the fixed zeros 7n, , ..., 7^^, only the zero given by x = z, and it

has no infinities beside the fixed infinity given by x = m, where it is infinite

to the firet order. At the r-th period loops respectively of the fii-st and

second kind it has the factors

I
g-2T'('V' -l-^T,,,.)^

But there can be no doubt, in view of the considerations advanced in

chapter XII. of the present volume, as to the way in which the ambiguity of

the sign of tsr, (x, z) ought to be dealt with. Suppose that the Riemann
surface now under con.sideration has arisen from the consideration of the
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functions there considered (§ 227) which are unaltered by the linear substitu-

tions of the group. Let the places in the region S of the ^ plane which

correspond to the places x, z, x , z of the Riemann surface be denoted by

^, ?, I', ^- Then by comparing the equation obtained in chapter XII. (§ 234),

with the equation here obtained,

and noticing that X (.r), -^^ agree in being differential coefficients of an

integral of the first kind, which vanish to the second order at n^, ..., n^-^,

we deduce the equation

r:(^,^)/A/|.| = -(|,?);

now we have shewn that ^(1, ^) is a single-valued function of | and ^; and

any one of the infinite number of values of |, which correspond to any value

of X, has a continuous and definite variation as x varies in a continuous way;

hence it is possible, dividing OTj {x, z) by the factor A/ j^ • j^ >
which by

itself is of ambiguous sign, to destroy the original ambiguity while retaining

the essential character of the function OTj (x, z). The modified function is

infinitely many-valued, but each branch is separable from the others by a

conformal representation. Thus the question of the ambiguity in the sign of

•57i (x, z) is subsequent to the enquiry as to the function ^ which will conform-

ably represent the Riemann surface upon a single ^ plane in a manner

analogous to that contemplated in chapter XII. §§ 227, 230*.

In what follows however we do not need to enter into the question of the

sign of OTi (x, z). It has been shewn in the preceding article that the final

formula obtained is independent of the form taken for the function there

denoted by t/t {x). It is therefore permissible, for any position of x, to take

for it the expression VZ {x), with any assigned sign, without attempting to

give a law for the continuous variation of this expression. The advantage is

in the greater simplicity of OTj {x, z) ; for example, when x is at any one

* Klein has proposed to deal with the function vs^ {x, z) by means of homogeneous variables.

The reader may compare Math. Annal. xxxvi. (1890) p. 12, and Bitter, Math. Aiinal. xliv. (1894)

pp. 274—284. In the theory of automorphic functions the necessity for homogeneous variables

is well established. Cf. § 279 of the present chapter. For the theory of the function zcr^ (.r, z) in

the hyperelliptic case see Klein, and Burkhardt, Math. Annal. xxxii. (1888).
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of the places «,, ..., w^^,, the fiinction \(j, z), us defined in § 271, vanishes

independently of z; but this is not the case for t!Ji(.r, z).

Ex. i. Prove that

= or, (.r, o) ST, (--, « •

JSlr. ii. Prove that any rational fimction of which the poles are at n,, ... , «.„ and the

zeros at ^, , ... , j3j^, Ci\n be put into the form

gi JJ-, ^i) • i:i-:J^i (-^JJ**) g^i"i'
" + +V?

"

OTiCr, oi) ari(.r, ttj,)

where X, , . .
.

, X,, are constants, and a is a fixed place.

In what follows, as no misunderstanding is to be apprehended, we shall

omit the suffix in the expression -ar^ {x, z), and denote it by -bt (x, z). The
function tar (^, ^) of chapter XII. does not recur in this chapter.

274. As an application of the formula of § 272 we take the case of the

root form VX'^' (a;)/<!> {x)\/X {x), where X'^* {x) is a cubic polynomial of the

differential coefficients of the integrals of the first kind, having 3 (;; — 1) zeros,

each of the second order (cf § 244, Chap. XIII.). Then the poles «!,,.., Or are

the 2/) — 2 zeros of any given polynomial ^ (a), which is linear in the

differential coefficients of integi-als of the first kind. Thus r=2p — 2,

/i + 1 = 0, i^, = ?• + A + 1 + 2 X; = 2;; - 2 + + = 2p - 2 ; U =^i' v^y-j, and,
1 1

taking for the function >/r {x), the expression ^/X(x), the formula becomes

•Jxfoc,) . -Jx^Um
I

2p-'2 2p-2

J Y(3) /^ X 7y(3) /^ X n n CT (.?•;, a)VA^ {X.2p_i} . V^ip^ .,(^.r2p-2) -^1 ;^|
^

^,J-^..^..p
'^^^. ,^^y^-^j,^^.^^ ^(^2p-2)

i<j 1=1

Herein 4>(ic) is a given polynomial with zeros at a,, ..., a-.y_2, and the forms

vXj '(a;), ..., "^Xfp_^{x) are any set of linearly independent forms, derived

as in § 245, Chap. XIII., and having {—gi,..., — lh,...,-hp) for characteristic.

From this formula* that of § 250, Chap. XIII. is immediately obtainable.

The result is clearly capable of extension to the case of a function

• Cf. Weber, Theorie der Abel'schen Functionen vom Geschlecht 3, Berlin, 1876, § 24, p. loG;

Noether, Math. Annal. xxvm. (1887), p. 367; Klein, Math. Atmal. xxxvi. (1890), p. 40. For the

introduction of (^-polynomials as homogeneous variables cf. §§ 110—114. Chap. VI. of the present

volume. See also Stahl, Crelle, cxi. (1893), p. 106; Pick, Math. Ainxil. xxix. " Zur Theorie der

Ahel'scheu Functionen."
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275. A general application of the formula of | 272 to the case of rational

functions may be made by taking Ui, ..., a.,, to be any places whatever, r

being greater than ^ — 1. Then A + 1=0 and R = r\ and if the general

rational function with poles in ttj, ..., a,., n^, ..., iip^-^ be

A^F, {x)+ + A,_,F,.-^ {x) + A,.,

where A^, ..., A^ are constants, and we take for the function -^ {x) the

expression \/X {x), and modify the constant C which depends in general upon

«!, ..., or,., Ave obtain the result (cf. § 175, Chap. X.)

1 1

F,{x,), ...,F,-,(x,), 1
I

F,(x,),...,F,-,(x,),l

r r

n IT -57 (X;, ttj)

'=''-''
'

^X{x,)...X{x,)X{ci,)...X{oL,).

n uy(xi,Xj) n zT{ai,aj)

276. This formula includes many particular cases*. We proceed to

obtain a more special formula, deduced directly from the result of § 272.

Let ai, .... a,.= ?ii, .,., ?i^_i. Then the everywhere finite factorial integrals

of the associated system are the ordinary integrals of the first kind,

and the number, /i + l, of dV which vanish in the places Wj, ..., a,.,

Wi, ..., w^_i, that is, which vanish to the second order in the places

111, •••, np-i, is 1. The number R, = r* + 2 X.j + A + 1, =}) .1 + + 1, =p. The
j

general function having the poles n-i-, ...,m-^_i is F{x) = (^(x)IX (x), where

X (x) is the expression employed in § 273, and <I> (*•) denotes the differential

coefficient of the general integral of the first kind. Further

p p-i p-i
U =%'ifj'"' — 2 v'^-i' « — -yY' «, = 2 'tfi' "^' + ifI" "^

,

1 1 1

7 being an arbitrary place. Hence

U -^s- I Ts' = t ifi^ '"^j - vy' "S = V say,
1

and

is equal (§ 175, Chap. X.) to

giris'iV+as, s')-2nis'{V-\-hTS') @ / y \ _ g-7ris'(F+S) @ / Y), = — e~'''i^«' ( V),

since ss is an odd integer. Therefore taking for the function yjr (x) the

expression VX (x), X (x, z) is it {x, z), and

^{X„ ...,Xp)= ^, {x,\ . , % {x,) ^'^X{x,)...X{Xp),

* Cf. Klein, Math. Annul, xxxvi. p. 38.
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where <I> (x), ...,%{x) denote dvl' "/dt, ..., dvp "/dt. Thus on the whole

nn ^(.r,,^-)'=^
'<y

where C is a quantity which, beside the fixed constants of the surfjice, depends
only on the place y. Let us denote the expression

nrj^i, »i), , CT (a;,-, ??j,_i)

which clearly has no zeros or poles, by fi (x;) ; then we proceed to shew that

in fact C=Afi{y), where J. is a quantity depending only on the fixed

constants of the surface, so that we shall have the formula

^g-,r,-6' r (h) / |r . ^1 (a^t.) • % U''p) M (-^1 ),-••. M (-c.,,) w (.r, .7), . .
. ,

-57 (./y, 7 )

^ ' i, J = 1, ...,/)

n n cr (xi, Xj) /i (7)
'<i

where

1

In this formula 7 only occurs in the factors

/i(7)

herein the factor VJT (7) occurs once in the denominator of each of vr{xi, 7),

and p times as a denominator in /x (7) ; thus this factor does not occur at all.

In determining the factoi-s of "^, as a function of 7, it will therefore be suffi-

cient to omit this factor. Thus the factor of ^ at tiie i-th period loop of the

first kind is e'"V(p-^-i) ^^ g;r,v
p^^ ^-^^^ ^_^^ period loop of the second kind the

factor of (v^ .
^

-I- ^ n,, «-) e'^'"'"''' ' is e " 2'^' ^' '+ ^ ^<. ^ " ""''<
, and therefore the

factor of ^ is

e- it/*, - 27r/ (i)^' *^ + r''"
="' + +r,«;'-i' «^p-i + jr,-

,),

Consider now the expression

at the t-tli period loop of the first kind, this function, regarded as depending

upon 7, has the factoi- e"^^ ; at the z-th period loop of the second kind it has

the factor

^-'•(r,,«', + +r,,.y-27r/(r>'"'-r^-"''- - r^.- "^P + J,, ,) .
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but since

-r^i {si + Ti, 1 s'l + + Ti, ^ s'p) = 27ri {V^^ '^ - -y'*" '»*' - - V'"-'' '""-0>

it follows that

-rri (t,-, 1 .s''i + + t;, ^, s'^) - 27ri (?;T' "* - v*. >
'» - - v*p- '"p)

is equal to

- irisi - 27ri (vV' «=?' + v«i > ^' + + i;^p-i' ""-^
;

thus, changing 7 into x, we have proved that the function of oc

. , , X, in X, , m, Xn , w'oX
gTTts (y ' -Z) " '- -V "' ') ^ (^x,m _yx^,m^ _ _ ^a^p, w'^A

has the same factors at the period loop as the function, of x, given by

tsj- (a?, a'l) -sj {x, Xp)//jb (x)
;

it is clear that these functions have the same zeros, and no poles.

Hence the formula set down is completely established*.

277. We pass now to the particular case of the formula of § 272 which

arises when the fundamental Riemann surface is hyperelliptic, and associated

with the equation

f = 4!{x'P+"+
).

Then the places n^, ..., 7ip_i are branch places. We suppose also that /jl + 1

of the places a^, ... , a,, are branch places, say the place for which x = di, ...,

d^+i, and that yu. + 1 of the places x^, ...,x,, are branch places, say those

at which « = 61, ..,, 6^+1. It is assumed that the branch places Wi, ...,

iip^^ , di, ..., c^^+i , bi, ..., bfj,+i are different from one another. We put

r — (fx, + 1) = v; then the determinant of the functions Fi{xj), (§ 272),

regarded as a function of iri, is a rational function with poles in ?ii, ... , ?i^_i,

«!, ..., a^, di, ..., d^+i and zero in x^, ..., x^, hi, ..., 6^+1. Provided v is not

less than fi, such a function is of the form

(xi-n^)...(xy-np_i)(xi-di)...{Xi-d^+i)(xi-b,)...(x,-b^+i)(xi,l)^-i-^,+yi{xi,l\_-^+^

{xi-n,)...{xi-np_i){xi-di)...{x^-d^+i){xi-ai)...(xi-a^)

where the degrees of (x^, l)^_i_^, (x^, l)„_i-|-^ are determined by the condition

that the function is not to become infinite when x^ is infinite. When v = fi,

the terms (x^, l)^_i_^ are to be absent. When v < fi, the conditions assigned

do not determine the function ; we shall suppose v W fM. The 2i/ — 1 ratios

of the coefficients in the numerator are to be determined by the conditions

that the numerator vanishes in X2,...,x^, and in the places conjugatei*

* See the references given in the note *, § 274, and in particular Klein, Math. Annal. xxxvi.

p. 39.

t The place conjugate to (x, y) is {x, -y)

B. 28
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to Oi, ..., a^. Hence, save for a factor independent of x^, the determinant

of the functions i', (xj) is given by

V>H^)
(j^-ni)...(^i-rfi)...(^i-ai)-.-

V./r(a-0, xT'^" ^f^^), ..., \/<t>{x,)

a^r"" '^^ (^.>. • • •
.

'^^(^-^>
<"''''

'^<l> (^.). -> '^<f>M

wherein yfr (x) = (x - n^) ...{x - n^i) (a; - (^) ... (a: - d^+i) {x-hi)...{x- b^+i),

<f>
(x) = y-/ylr (x), and the determinant has 2v rows and columns ; denoting

this determinant by D^^^, the determinant of the functions Fi{Xj) (§ 272) is

therefore equal to

1

*' * t=i (xi - ai) . . . (^i - a^) "^(^i - Wi) . . . (xi - np_i)

/{xi-b,)...(xi-b,

y (a:i-d,)...(xi-d,

Hence, from § 272, taking -^{x) = \\x - 7/1) ...{x- ??p_i), so that a- (a;, ^^) will

denote

0(i;*.^+^n«,g')e'^'^'^

we have

\/{x - ni) ... (a; - w^^i) (0 - Wi) . . . (^ - ??p_i)

'

O0|2v^i-«<+''2Vi-''.-; ^s, i5'

V V

where C is independent of a^i, ..., x^.

Now, if 6, d be any two branch places, and a an assigned branch place,

«r(ar,rf) (i;*-''; ^s, -^s') eCi-*'"-?;^'"; ^s, ^s')

and hence, if

m (a-, 6) H (i;*. ^ ^5, ^s') (i;*. « - tf- «; ^5, ^s')
•

d,a
Vi' =i(^.- +Si't.-.i + +V'^«-.i')' (t = l, 2, ...,J9),

6. a

where /9i, ..., /9p', Sj, ..., hp are integers, we have (§ 175, Chap. X.)

i^(a:,6) ^^ e[j;-.-;H«-/SXi(*'-/S')]'
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where A is independent of x. Thus the expression

•nr (a;, 6) V X — d'

which clearly has no poles or zeros, is such that its factors at the period loops

are all ±1. The square of this function is therefore a constant, and the

expression itself is a constant.

Therefore if

|ii+l ,7. ;,.

Z V. = i (cTi + O-i T^, 1 + + a-p Ti,p),

where o-j, ..., o-^ are integers, it follows that the function

e-w(.-.-<^.+ +r;^-M n '^n ^^^^^ hjrzh
i=i j=i -57 {xi, bj) V a^i — c?j

is independent of i»i, ..., a?^. Further

© (m - io- - ircr'
; |s, ^s) = ^e«-'« @ [ti ;

i (s - o-), l (s - a')]

by § 175, Chap. X. Thus on the whole we have

C© Si;^-»S i{s - a), ^{s - a')

V V I i,j= 'l, ...,v V V i,j= \,...,v

= 2)^,^ n n OT (iCj, «;)/ n 'ST{xi,xj)iiii{xi-aj) n tzr (of^, a^),

where (7 is independent of a^i, ...,x^. Hence we can infer that (7 is in fact

independent also of «!, ..., a„. For when the sets x-^, ..., a-v, ol^, ..., a^ are

interchanged, i)^, ^ is multiplied by (— )''^"*'''"'^ = (— l)*^, and, since iir {x, z)

= — zr (z, x), this is also the factor by which the whole right-hand side is

multiplied. The theta function on the left-hand side is also multiplied

by + 1. Thus the square of the ratio of the right-hand side to the theta

function on the left is unaltered by the interchange of the set iCj , ..., x^ with

the set «!, ..., a^. Thus C'^ is independent of x-^, ..., x„ and unaltered when

iCi, ..., x^ are changed into tti, ..., a„. Hence C is an absolute constant.

It follows that the characteristic ^{s — a), ^{s' — a-'), and the theta

functions, are even or odd according as jj, is even or odd.

In the notation of § 200, Chap. XI., the half-periods \^s,^ are given by

^rtg^g' = vV«— ?;«..«! — —iin,p-i, ap-i-

hence, if the half-periods given by

be denoted by \Cl, the half-periods associated with the characteristic

^{s — a), \{s' — a') are congruent to expressions given by

28—2
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while yjf, which is of degree p + 1 + 2fi, is equal to

(x - ?j.) ...(x- iij^y) (x - 6i) . . . (x - 6^+i) (x-d,) ... {x

-

rf^+,);

by means of the formula (§ 201, Chap. XL)

v""" + -I-
yflv. « + t;c.

.
« + + ?/^v « + 2;<^> « = 0,

the half-periods associated with the characteristic ^(s - a), ^(s' — a-') can be

reduced to be congruent to expressions denoted by

where d, ..., Cp_n^+i are given by

(f>
= 4{x-e,) (x- e^+i-o^);

also, in taking all possible odd half-periods ^Clg^g', all possible sets of jj — 1

of the branch places will arise for the set ?/i, ..., ?iy_i. Hence it follows that

the formula obtained includes as many results as there are ways of resolving

(^. l)jp+2 into two factors ^p+i-,^, i/r^^.j+o^, of orders p4-l — 2/i, p + 1 + 2/i,

and (§ 201) that all possible half-integer characteristics arise, each associated

with such a resolution. We have in fact, corresponding to /a = 0, 1, 2, ...,

E i^—^—
j

, a number of resolutions given by

*?;.V(?::.>(?:i)- =-
It has been shewn (§ 273) that the expression ct (x, z) may be derived,

by proceeding to a limit, from the integral Ila'c- Hence the formula that

has been obtained furnishes a definition of the theta function in terms

of the algebraic functions and their integrals, and has been considered from

this point of view by Klein, to whom it is due. After the investigation

given above it is sufficient to refer* the reader, for further development, to

Klein, Math. Annal. XXXII. (1888), p. 351, and to the papers there quoted.

Ex. i. Prove tluit the function 6 [?< ; h{s-(r), H-^' ""')] vanishes to the ftXh. order for

zero values of the arguments.

Ex. ii. In the notation of § 200, Chap. XL, prove, from tlie result here obtained, that

each of the simis

2 V «'
, 2 V' , vi + 2 v^ , V' + 2 V'

1=1 1=1 1=1 j=i

represents an odd half-period ; liere Cj is any one of the places c,c^, ... , Cp, ai is any one of

the places a,, ... , a,,, a, \» any one of the places a^, ... , a,,, and r is an arbitrary integer

• See also Brill, Crelle, i.xv. (1866), p. 273; and the paper of Bolza, American Journal, vol.

XVII., referred to § 221, note, where Klein's formula is fundamental.

By means of the rule investigated on page 298, of the present volume, the characteristic

h (••* - ")! h {"' - <^') can be immediately calculated from the formula here (p. 436) given for it. Cf.,

also, Burkhardt, Math. Annal. xxxii., p. 426; Thompson, American Journal, xv. (1893), p. 91.
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whose least value is zero, and whose greatest value is given by the condition that i cannot

be greater than p+ \. Pi-ove also that each of the sums

4)'+l 4r 4r+2 4»'4-lZ c-,a _ Ci,a aj,a
, Z c,;a a^.a

, J^ ci,a

represents an even half-peiiod. For a more general result cf. the examples of § 303 (Chap.

XVIL).

Ex. iii. By taking i/=p+ l,/i= 0, and the j^laces b, d so that ^Q^, j-^w''''', finally

putting Wj, ... , «p_i, h, d iov ay, ... , a,,, Op + j, obtain, from the formula, the result

e(y'^'"+^i'"i + +vfp'''p
) _ J^fJx) ct(j;, a) z-a v

{x-Xi){z-ai) -if^'^^^.

e (v^.«+ ?;^,. «. + + v^'p' «p)
~

^!^f{z) ra- {z, a) x - a i=i {x - a^) [z - Xi)
^ '' '

'

where n*^'
^ reiilaces log — ,

' '

,
—j^—-. , vl/' ix) = (x-a)... (x — «„), and the branch places

^i'«i
"= 73 {x, ai) -uj {z, Xi)' ^ ^

'

a, a^, ... , tti, are, as in § 203, Chap. XL, such that the theta function in the nimaerator of

the left-hand side vanishes as a function of x at the places |j, ..., |j,, conjugate to

x^, ... , Xp] and verify the result d prioi-i. By the substitution

{x-Xi){z-ai) -n*''^ n*'^
; [) {e xi,ai= e U,ai

this formula can be further simplified. Deduce the results

xz x,z ,
QU,^'(^-v'>'^''^i- _^%Ma;,) e (/>«_/.,«>_ _/;»«M

Yi -J- -t-n — [qct ^ ^ '- —;^
.'

^x, s '^Xi Idxj
. 1

p^'' 2 9^ / dxp
'^ / »v ^ a;, duil dt xp duil dt '

where !t= w^'>
•

'*'

+

-fv^"' "", Zi{u) = ^^ log e {ti), and ^S... are as in § 123, Chap. VII.

These results have already been given (Chap. X.).

278. It is immediately proved, by the formula (§ 187)

jjx, y _ © {v^> ^ + in,, ,-) {vy' « + IIVO

that the general expression of a factorial function given in § 254 can be

written in the form

0(y^'^i + i^s,,s')e

X, y M

vis'v^"

1

0(^;^-'^i + ^n,,,')e.wh'v''''iY'

And, by the use of the expression -sr (,/•, z), this may be put into the form

I'
, „, x,y N Mr n -1 ^ ~

g - 27ri S {hi + Hi) V, YI^ (x, /3i) n CT (^, ai) n CT (.f, Ci)
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Ex. i. lu the hyiwrelliptic case associated with au equation of the form

j/2= (.r, l)2p + 2.

if X denote the place conjugate to the place .r, it follows from the formula of § 273 that

uj (.r, z) = {x— z) e- x.z,

unless X or z is a branch place.

£x. ii. In the hyperelliptic case, if I; /tj, ... , kp denote branch places, and

<f>{x)= {x-k){x-l;)...ix-l-p)

and the equation associated with the surface be y^= f{x), where /(.r) = <^ (a-) >//• (x), and if

we tiike places .i-, Xj, ... , .r^, «, z^y ... , Zp, such that

<'•'•+ +v^'"'"'^v^\^;''^+ +/''•*"=.J•^
{i=\,2,...,p),

then it is easily seen that the rational function having x, ^^ , . .
.

, Xp as zeros and z, z^, ..., Zp

as poles, can be put into the form [y(^(j^)+y</>(.r')]-^[y'^(^) + «0(-O]) where x',y' are the

variables and s is the value ofy at the place z. Hence prove, by Abel's theorem, that

hull -^jwm+^LlmB-e'^K'z^ -^K^J
2 sf/{x)f{z)

Ex. iii. Suppose now that a, Oj, ..., Op are the branch places used in chapter XL
(§ 200), so that

^'^ + +!!'•' e(ir''°-tr^"°'- -v'h'"P)e(v^'<'-v''>'''i- -y^'°P)
'^'"^''

~e(jr'''»-i7^'>'''- _^.«p) e(v^>''-2;^"<''- _i;^.«p)'

and 8upix>se further that ^Q,= ^{s+ts'), is an even half-period such that

z;*"<'' + + i/'P'°P = v''''' + ^Q, v*"«'-|- -|-tr^i""p=ir''« + ^Q,

and z;^""| + +v^'"p= /'''+^Q,

then deduce that

e(iQ)
-=^(-^-.--)

2{x-z)<i/f{x)f{z)

The results of examples i, ii, iii are given by Klein.

Ex. iv. Prove that, if 2, C> ^i, ... , Cp be arbitrary places, and -y, , ...
, yp be such that

the places C> 7i> ••• > V;) are coresidual with the places z,Cy,...,c,„ then

^(.'•, f ;
^-, o„ .... cp)= "\"'9,

,

°>-'--'^ '''^^--
rar (a:, 2) or (f, s)

hence deduce, by means of the result given in Ex. iv., page 174, that

e'^KU.^ ^<.y)
vZ)fi/r(f,a; 2, Cj, ...,Cp)

where a is an arbitrary place.

279. The theory of the present chapter may be considered from another
point of view. We have already seen, in chapter XII., that the theory of

rational functions and their integrals may be derived with a fundamental
surface consisting of a portion of a single plane bounded by circles, and the
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change of independent variables involved justified itself by suggesting an

important function, ct (^, 7). We explain now*, as briefly as possible, a more

general case, in which the singular points, Ci, ..., Ck, of this chapter, are

brought into evidence.

Suppose that a function ^ exists whereby the Riemann surface, dissected

as in § 253, can be conformally represented upon the inside of a closed

curvilinear polygon, in the plane of ^, whose sides are arcs of circles*f-; to the

four sides, (a^), (a/), (6^), (6/), of a period-pair-loop are to correspond four sides

of the polygon, to the two sides of a cut (7) are to correspond two sides of

the polygon ; the polygon will therefore have 2 (2p -\- k) sides.

Fig. 11.

Then it is easily seen that if C be the value of ^ at the angular point G of

the polygon, which corresponds to one of the singular points Cj, ..., C;i; on the

Riemann surface, and D be the value of ^ at the other intersection
:|: of the

circular arcs which contain the sides of the polygon meeting in C, we can

pass from one of these sides to the other by a substitution of the form

where 27r// is the angle G of the polygon, {I being supposed an integer other

than zero) ; as we pass from a point ^of one of these sides to the corresponding

point of the other side, the argument of the function [(^- G)/(^ — D)Y increases

by 27r ;
if therefore t be the infinitesimal at the corresponding singular point on

1

the Riemann surface, we may write, for small values of t, {^—G)l{^ — D) = t^

,

1 1

so that ^-C=t^ (G-D){l-t')-K Further if ^,
^' be corresponding points

* Klein, Blath. Annal. xxi. (1883), "Neue Beitrage zur Riemann'schen Functionentheorie "

;

Ritter, Math. Annal. xli. (1893), p. 4; Ritter, Math. Annal. xliv. (1894), p. 342.

t See Forsyth, Theory of Functions, chapter XXII., Poinear^, Acta Math. vols, i.—v. We may
suppose that the polygon is such as gives rise to single-valued automorphic functions.

X Supposed to be outside the curvilinear polygon.
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on the sides of the polygon which meet in C, we have for small values of t,

dX =
]
{C - D) /'

"'
dt, f/r = \{G-D) ti~^ e'^'

^^"'^
dt, or di^'idi; = e"^'

^'^ "'^

\

ultimately, the factor omitted being a power series in i' or {^ — C)/{^ — D),

whose first term is unity.

We shall suppose now that the numbers \, ..., \k of this chapter are

given by X,- = — ??i,7^,-, where nii, li are positive integers. Then a function

whose behaviour near ci is that of an expression of the form t~^ <^, will, near

Ci, behave like (f— Ci)"^i<f), that is, will vanish a certain integral number of

times. Further, for a purpose to be afterwards explained, we shall adjoin to

the ^• .singular points Ci, ..., Cjc, m others, e^, ..., Cm, for each of which the

numbers X, are the same and equal to — e, so that, if t be the infinitesimal

at any one of the places e^, ..., e,„, the factorial functions considered behave

like t*(f> at this place. These additional singular points, like the old, are

supposed to be taken out from the surface by means of cuts (ej), ..., (€,„);

and it is supposed that the corresponding curves in the curvilinear polygon

of the ^-plane are also cuts passing to the interior of the polygon, as in the

figure, so that at the point E^ of the f-planc which corresponds to the place gj

of the Riemann surface, ^ is of the form ^ = E^-\- t(f>, where is finite and not

zero for small values of t, t being the infinitesimal at ei.

Factorial functions having these new singular points as well as the

original singular points will be denoted by a bar placed over the top.

Let dv denote the differential of an ordinary Riemann integral of the

first kind which has ^ - 1 zeros of the second order, at the places

7?i, ..., »p_i. Consider the function

„ dv - i 2 ( 1 - - ) wi , - 2 n„
.
c+ .£- 2 n^ . c

where a, c are arbitrary places, and p is determined so that Z., is not

infinite at the place c, or

ki'-iy '"-'=<''

this function is nowhere infinite on the Riemann surface ; it vanishes to the

fii-st order only at ^= oo
; for each of the cuts (ej), ..., (e„,) it has a factor

e^" ; at a singular point a it is expressible as a power series in t^ , or

(?— G)/(^ — ^), whose first term is unity. The values of Z2 at the two sides

of a period loop are such that Z.'/Z^ = '^d^/d^' ; but since these two sides

correspond, on the ^-plane, to arcs of circles which can be transformed into

one another by a substitution of the form ^' = (ci^+ l3)/(y^ + B), wherein we
suppose a8 - ySy = 1, it follows that Z^'/Z^ = y^+S. If then we also introduce
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the function Z^, = t^Z.^, we have for the two sides of a period loop, equations of

the form

Z^ = 7^1 + hZ,, Z; = aZ, + ^Z,.

Consider now a function

f = Klzl
where ^ is a factorial function with the k + m singular points, and R=%nelp.

1

At a singular point ci, or Ci, its behaviour is that of a power series in t^ or

(^— C)/(^ — D), multiplied by (^—Ciy^i; at a singular point ei, or Ei, its

behaviour is that of a power series in the infinitesimal t multiplied by

p

or unity ; at a period loop it is multiplied by a factor of the form /j, (y^+ 8)~^,

where /j, is the factor of K. The function has therefore the properties of

functions expressible by series of the form *

wherein the notation is, that ^i = {ai^+ ^i)/{yi^+ Bi) is one of the finite

number of substitutions whereby the sides of the curvilinear polygon are

related in pairs and R(^i) is a rational function of ^i. The equation

connecting the values /', /, of the function /, at the two sides of a period

loop, may be put into the form

^ (yZ,+JZff = f.Z!f;

and we may regard Z2 f, or K, as a homogeneous form in the variables

Zi, Z2, of dimension R.

The difference between the number of zeros and poles of such a factorial

function K is (§ 254)

X.,-(-^)-«„,=s(-™')-i,i., = s(-|)-^(,-l)-i«2(l4),

adding the proper corrections for the zeros of the automorphic form K at

the angular points 0^, ...,Ck (Forsyth, Theory of Functions, p. 645) we have,

for the excess of the number of zeros of the automorphic form over the

number of poles

2X + V-'--^ 2p-2 + k + m + l- i':i-j-+m + l

2p-'2 + q-:i^
^_R

2

where q=k + ni + 1, 2 - = S 7- + m + 1.

fi Li

We may identify this result with a known formula for automorphic

* Forsyth, Theonj of Functions, p. 642. The quantity R is, in Forsyth, taken equal to - 2>ii.
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functions Forsyth, Theory of Functions, p. 648 ; if in the formula

«i
[

;j — 1 — S -) , there given, we substitute, by the formula of p. 608, § 293,

n = 2iV — I + q, we obtain jn 1 2X— 2 + q — 'S -] ; for each of the angular

points Cj, ..., Ci is a cycle by itself, each of the points Ei, ..., E,n is a cycle

by itself, and the remaining angular points together constitute one C3'cle

(cf. Forsyth, p. 596); tl)e sum of the angles at the first k cycles is 27rS^,

the sum of the angles at the second in cycles is 27rm, the sum of the angles

at the other cycle is 27r*.

There is a way in which the adjoint system of singular points e,, ..., Cm

may be eliminated from consideration. Imagine a continuously varying

quantity, d\, which is zero to the first order at Ci, ..., «„ and is never infinite,

and put ^1 = xx^ ; the expression Kx.r^ may then be regarded as a homo-

geneous form in x^, x^ on the Riemaun surface, without singular points at

Bi, ..., Cm', and instead of the function Z.^ we may introduce the form

__p.

^2 = Z.yX.^ '^"'
, which is then without factor for the cuts (ci), ..., (f,„), or, as we

may say, is in\hranched at the places e^, ..., e,„ ; and may also put fi= ffg-

Thus, (i), a factorial function, considered on the f-plane, is a homogeneous

automorphic form, (ii), introducing homogeneous variables on the Riemann

surface, the consideration of fiictorial functions may be replaced by the con-

sideration of homogeneous factorial forms.

Ex. Shew that the form

1 n*'«-i(ii*'''+ +n^'" )+2X,,.*'%^''=
P{x,z)=x';f{z)e ''" '" *'•" '-'' iJ

'•'
» ^ ,

where a, c are arbitrary places and X,-,y are constants, is unbranched at e^, ... , e^, that it

has no pole.s, and vanishes only at the place z. Here /{z) is to be chosen so that, when x
approaches z, the ratio of P (x, z) to the infinitesimal at z is unity. At the f-th period

loop of the second kind the function has a factor (

—

)" where

i/=2Wr + '^^^',-j)-2^' (.;•'•+ + .-•<')+ 2 X,., .;;•%,.,,

5^2 - q denoting the number of circuits, made in passing from one side of the period loop to

the other, of x^ about .r2=0 other than those for which x encloses places e^, ... , e„,, and r

denoting the number of circuits t of x about z.

* The formula is given by Ritter, Math. Annal. xliv. p. 360 (at the top), the quantity there

denoted by q being here -hp. We do not enter into the conditions that the automorphic form
be single-valued.

t The reader will compare the formula given by Ritter, Math. Annal. xliv. p. 291. It may be

desirable to call attention to the fact that the notation <r + 1, o-'-i- 1, as here used, does not coincide

with that used by Ritter. The quantities denoted by him by <r, a' may, in a sense, be said to

correspond respectively to those denoted here, for the factorial system including the singular

points e,, ..., e^, by (t' + 1 and w'.
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CHAPTER XV.

Relations connecting products of theta functions—Introductory.

280. As preparatory to the general theory of multiply-periodic functions

of several variables, and on account of the intrinsic interest of the subject, the

study of the algebraic relations connecting the theta functions is of great

importance. The multiplicity and the complexity of these relations render

any adequate account of them a matter of difficulty ; in this volume the plan

adopted is as follows :—In the present chapter are given some preliminary

general results frequently used in what follows, with some examples of their

application. The following Chapter (XVI.) gives an account of a general

method of obtaining theta relations by actual multiplication of the infinite

series. In Chapter XVII. a remarkable theory of groups of half-integer

characteristics, elaborated by Frobenius, is explained, with some of the theta

relations that result ; from these the reader will perceive that the theory is of

great generality and capable of enormous development. References to the

literature, which deals mostly with the case of half-integer characteristics, are

given at the beginning of Chapter XVII.

281. Let (f>{iii, ...,Up) be a single-valued function of p independent

variables u^, ...,Vp, such that, if Oj, ..., a^ be a set of finite values for

Ml, ...,Up respectively, the value of (p{ih, ..., Up), for any set of finite values

of Ui, ...,Up, is expressible by a converging series of ascending integral

positive powers of Uy-a^, U2 — a2, ...,Up — Up. Such a function is an integral

analytical function. Suppose further that <f>(ui, ..., Up) has for each of its

arguments, independently of the others, the period unity, so that if m be any
integer, we have, for a = 1, 2, ...,p, the equation

(ji(Ui, ...,Ua + m, . .
.

, I6p) =
<f)

(Uy, . .
.

, Up).

Then* the function cf){uy, ..., w^) can be expressed by an infinite series of

the form
00 CO

2 S An^ ^^^g2«(«,n,+ ...+M^jM^

«!=-«; 7ip= — CO

* For the nomenclature and another proof of the theorem, see Weierstrass, Abhandlungen
aus tier Functionenlehre (Berlin, 1886), p. 159, etc.
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wherein n^, ..., iip are integers, each taking, independently of the others, all

positive and negative values, and An np is independent of w,, ..., Up.

Let the variables iii Up be represented, in the ordinary way, each by

the real points of an infinite plane. Put oc^ = e^""*^' , . .
. , ccp = e^"^^" ; then to

the finite part of the ?Aa-plane (a=l, ...,i>) corresponds the portion of an

a^a-plane lying between a circle Fa of indefinitely great but finite radius Ra,

whose centre is at Xa = 0, and a circle ya of indefinitely small but not zero

radius ?•„, whose centre is at Xa = 0. The annulus between these circles may
be denoted by Ta. Let «„ be a value for x^ represented by a point in the

annulus Ta] describe a circle (Aa) with centre at cia, which does not cut the

circle 7a ; then for values of Xa represented by points in the aiuuilus T^ which

are within the circle (Ag,), "« niay be represented by a series of integral

positive powers of 0Ca — ((a', and by the ordinary method of continuation, the

values of w^ for all points within the annulus T^ may be successively re-

presented by such series; the most general value of i/a, for any value of a^a, is

of the form Xa + m, where m is an integer. Thus, in virtue of the definition,

<f>{Ui, ..., lip) is a single-valued, and analytical, function of the variables

Xi, ...,Wp, which is finite and continuous for values represented by points

within the annuli T^, ... ,Tp and upon the boundaries of these. So considered,

denote it by t/t (.Tj, ... , Xp).

Take now the integral

1 [l [ yjrit,, ...,tp)
dti ... dtp,

(27rty JJ"'J{ty- x^) ...{tp- Xp)

wherein Xi,...,Xp are definite values such as are represented by points

respectively within the annuli Ti, ..., Tp] let its value be formed in two

ways

;

(i) let the variable ta be taken counter-clockwise round the circum-

ference Fa and clockwise round the circumference 7a (a = 1, ..., p)\ when ta is

upon the circumference Fa put

2 h
A. L Xa Xn -^ X„

= T+-i+i +
ta-Xa ta ta ta K = ta""

when ta is upon the circumference 7a put

JL fl.^'^ .4. \-_ 2 -^•
ta-Xa ^Xa Xa Xa ' K^-'^ta

then the integral is equal to
h. k

-^.. ...U {(„... ,tp)U(dZa ^ ,\-dZa 2 ,^. ,

where dZa represents an element dta taken counter-clockwise along the

circumference Fa, and dZa represents an element dta taken clockwise along
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the circumference 7a ; since the component series are uniformly and absolutely

convergent, this is the same as

til np

where for ^ the course of integration is a single complete circuit coincident

with Fa when ??.« is positive or zero, and a single complete circuit coincident

with ja when ??„ is negative, the directions in both cases being counter-

clockwise ; thus we obtain, as the value of the integral,

Jl,,= -00 W,,= — 00

where

and the course of integration for to. may be taken to be any circumference

concentric with Fa and 7a, not lying outside the region enclosed by them

;

(ii) let the variable to. be taken round a small circle, of radius p^,

whose centre is at the point representing a;„ (a = 1, ..., n); putting

we obtain, as the value of the integral, yfr (x^, ,.., x^,).

The values of the integral obtained in these two ways are equal*; thus

we have
00 00

«!= -00 np= —CO

where

^M, n„= •• e-2.i(vM<,+ ... + ,;,«„)
<^(^,,^^ __^ jg^j,^ _, flu^

Jo Jo

By the nature of the proof this series is absolutely, and for all finite

values of u-^, ..., v^, uniformly convergent. If Ua = Va + iWa (a = 1, ..., p), and

M be an upper limit to the value of the modulus of ^(mj, ..., Vp) for assigned

finite upper limits of Wj, ..., Wp, given suppose by
|

w^
|

^ Wa, we have

where iVa =
|

n^
|-

Ex. i. Prove that

Ex. ii. In the notation of § 174, Chap. X.,

•'0 •'0

* Cf., for instance, Forsyth, Theory of Functions, p. 47. Tlie reader may also find it of

interest to compare Kronecker, Vorlesungen liber Inteyrale (Leipzig, 1894), p. 177, and
Pringsheim, Math. Annal. xlvii. (189G), p. 121, ff.
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282. Further it is useful to remark that the series obtained in § 281 is

necessarily unique ; in other words there can exist no relation of the form

ni=— 00 np=-ix)

valid for all values of a\, ..., Xp which are given, in the notation of § 281, by
r. <|a:,|< R^, unless each of A„^^ ...,„p be zero. For multiplying this equation

by a?! '
... a^p

"''
da.\ ... dxp, and integrating in regard to x^, round a circle,

centre at Xa = 0, of radius lyiug between i\ and Rg,, (a= 1, ...,p), we obtain

(27r0^^„,...;.„„ = 0.

An important corollary can be deduced. We have remarked (§ 175,

Chap. X.) on the existence of 2^ theta functions with half-integer character-

istics
;

it is obvious now that these functions are not connected by any linear

equation in which the coefficients are independent of the arguments. For an

equation

2 (7„, jfc,
2 ... 2 e-^""»+i*8)+^<'i+i*8)'+iTi78(«+i*«) =0,

«=1 n, = — 00 Hp=-oo

where the notation is as in § 174, Chap. X., and kg, gg denote rows of p
quantities each either or 1, can be put into the form

2 ... 2 ^.v,....,.v/''"''<^''^''+-+^'"'^''' =0,
JV, = - » Np=-<x)

where liriU-^, ..., ^iriUp are the quantities denoted by hu, A^^ x^ is

given by

where the summation includes 2^ terms, and iVj, ..., Np take the values

arising, by the various values of n and k'g, for the quantities 2.n-\-kg\ it is clear

that the aggregate of the values taken b}' 2ii + kg when n denotes a row of p
unrestricted integers, and kg a row of quantities each restricted to be either

or 1, is that of a row of unrestricted integers.

Hence by the result obtained above it follows that -<4^v, s,,=^^, ^or all

values of n and kg. Therefore, if \ denote a row of arbitrarily chosen

quantities, each either or 1, we have

g-6(n+JA:«|2+tirA(n+Jfcg) J — V T, , ^iX^/s+A) (n+iifc^) _ A .

adding the 2p equations of this form in which the elements of n are each

either or 1, the value of kg being the same for all, we have

2 C^,,t,e**''*»'^*+*' [1 + e''^'^'] ... [1 + e''^'^"],

9'

where ^i, ..., fip are the elements of the row letter /x given by ^i = gg-\-\]

the product (1 + e'""'"') ... (1 + e''^'*'') is zero unless all of /Xj, ..., fip are even,



284] WITH HALF-INTEGER CHARACTERISTICS, 447

that is, unless every element of gg is equal to the corresponding element of \.

Hence we infer that C^ j^.^
= ; and therefore, as \ is arbitrary, that all the 2^^

coefficients C^^^.^g are zero.

Similarly the r^ possible theta functions whose characteristics are rth

parts of unity are linearly independent.

283. Another* proof that the 2-^ theta functions with half-integer

characteristics are linearly independent may conveniently be given here : we
have (§ 190), if m and q be integral,

and therefore if k be integral and Q' = q -\- k'
, Q = q + k,

Therefore a relation

I' C,^(w; ^qs) =
s=l

leads to

S (7, e-^
<'«««'-'"'«»' ^ (it

; ^qs) = 0,
s = l

where Qg = qs + k, Qg = 5/ + k' ; in this equation let (m, m') take in turn all

the 2^P possible values in which each element of m and m' is either or 1

;

then as

•^gTriimQa'-m'Qg)^ = [1 -f g'"'^*''']
. . . [1 + e'^''<Q8')p] [1 -f- e~^'^^^^'>'] ... [1 + g-'^'^s'p]

is zero unless every one of the elements (Q/)i, ..., (Qs)p is an even integer,

that is, unless qg = k, qg'= k', we have

2 S (7,e'«"(»"««'-"^'«») ^ {u ;
ig,) = 22?'C;k^ {u

;
\k) = ;

m s=\

thus, for any arbitrary characteristic {k, k'), C^ = 0. Thus all the coefficients

in the assumed relation are zero.

284. We suppose now that we have four matrices &>, to', r], rj', each ofp
rows and columns, which satisfy the conditions, (i) that the determinant of co

is not zero, (ii) that the matrix co~^(o' is symmetrical, (iii) that, for real values

of Wi, ..., Tip, the quadratic form co~^(o'n^ has its imaginary part positive •[•,

(iv) that the matrix r)co~^ is symmetrical, (v) that rj' = r}(o~^(o' — ^7rioi~^ ; then

the relations (B) of § 140, Chap. VII., are satisfied ; we put a = ^770)"^

h = ^Tri(o~^, b = Tria)~^(o' , so that (cf Chap. X., § 190)

7) = 2aQ}, rj' = 2aa>' — h, ho) = ^tti, Jlco' = ^b
;

* Frobenius, Crelle, lxxxix. (1880), p. 200.

t Which requires that the imaginary part of the matrix w~'w' has not a vanishing de-

terminant.
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as in § 190 we use the abbreviation

X,„ (u) = H,n{u + ^n,,,) - -nimm,
where

Hm = 277;?i + 2.'r)'m', n,„ = 2a)?u + 2w'm'.

We have shewn (§ 190) that a theta function ^ {u, q) satisfies the

equation

^ {U + n,a, q) = e*".(«) + 2^i(«.// -,«'<?) ^ (^^^ ^^)^

m and 7u' each denoting a row of integers; it follows therefore that, when

m, m each denotes a row of integers, the product of ?• theta functions,

n(»)=^('', 5'")^(w, ?'") ^0/, 5"-'),

satisfies the equation

n (<f + fi,„) = e'A„(,<)+2^-(mQ'-»n<2) n {u),

wherein Qi, Q/ are, for i=l, 2, ,.., p, the sums of the corresponding com-

ponents of the characteristics denoted by 5-'", ..., ^"'.

Conversely*, Q, Q' denoting any assigned rows of |) real rational

quantities, we proceed to obtain the most general form of single-valued,

integral, and analytical function, 11 (u), which, for all integral values of

VI and m', satisfies the equation just set down. We suppose r to be an

integer, which we afterwards take positive. Under the assigned conditions

for the matrices w, to', rj, rj', such a function will be called a theta function

of order r, vrith the associated constants 2a), 2a)', 2r], 2r)', and the charactenstic

(Q, Q')-

Denoting the function 3(«; Q), of § 189, either by B{u; 2a), 2a)', 2^, 2f;'; Q, C/) or

3fu; a, b, h; (^, (/), the function S{u; 2a)//', 2a)', 2i;, 2rq'
; Q, Q'/r) is a theta function of

the first order with the a.ssociated constants 2a)/r, 2a)', 2>j, 2rT)', and (Q, Q'/r) for charac-

teristic ; increasing u by 2a)m + 2a>'m', where m, m' are integral, the function is multiplied

by a factor which characterises it also as a theta function of order r, with the associated

constants 2a), 2a)', 2t], 2r]' and {Q, (/) for characteristic. We have, also,

5(«; ra, rb, rk) = 3(u; ^, 2a)', 2»;, 2rT,'\ = 3 (ric ; 2a), 2ro)' ; ^, 2^=3(^1; -, //, wA,

where the omitted characteristic is the same for each.

Let k[ be the least positive integer such that kiQi' is an integer, =/,-, say
;

denote the matrix of p rows and columns, of which every element is zero

except those in the diagonal, which, in order, are ky, k.,, ..., kp, by k; the

inverse matrix k~^ is obtained from this by replacing k^, ... respectively by

* Hermite, Compt. Rend. t. xl. (1855), and a letter from Brioschi to Hermite, ibid. t. xlvii.

Schottky, Abrixs einer Theorie der AheVnchen Functione.n von drei Variaheln (Leipzig, 1880), p. 5.

The investigation of § 284 is analogous to that of Clebsch and Gordan, Abel. Funct., pp. 190, fif.

The investigation of § 285 is analogous to that given by Schottky. Cf. Konigsberger, Crelle, lxiv.

(1865), p. 28.
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1/ki , ... ; in place of the arguments u introduce arguments v determined by
tlie p equations

hi, 1 Ml + + hi^pUp = kiVi, (-i =^ 1 , • • • , p),

which we write hu = kv ; then, by the equations hco = ^iri, ho)' = ^b, it follows

that the increments of the arguments v when the arguments u are increased

by the quantities constituting the p rows of a period fl.,n, are given by the j)

rows of Um defined by
k U^n = Trim + bin

;

we shall denote the right-hand side of this equation by T,,^ ; thus

Um — k~^T^n = 7rik~'^m + k~'^bm.

Now we have
2

and, since* the matrix a is symmetrical, and H^ = ^a^m — '^hvi , this is

equal to

2an^w + aif,n = ^a^m {u + ^^m) = (^m + ^hm') (u + ^il,,,)

and therefore equal to

\n ('*) + TTimm' + 2hum' + hCl„im'
or

\n (u) + irimm + 2kvm' + T„jm'

;

thus, by the definition equation for the function IT (u), we have

g—ra(^t,+nm}^ Yi (u -\- n ) = e~^"''"'^ n (?<) .
g—'["*''*'»'+2(*«+iYm)«i']+27n(»«.Q'—w'Q) .

therefore, i( Q(v) denote e'"'^''' U (u),

Q (v + U ) = (v) g-»'['"'»»»*'+2(*;«+2Y„i)»n.']+27ri(»n.Q'—»?i'Q) .

now let lit = 0, and 7)1 = ks, where s denotes a row of integers .Sj , . .
.

, Sp] then

mQ' = ksQ' = k^s^Qj'

+

+ kpSpQp' = skQ' , = sf, is also a row of integers;

and Urn = 7rik~hn + k~'^bm' = iris ; thus we have

Q (y + iris) = Q (v),

or, what is the same thing, the function Q(v) is periodic for each of the

arguments Vj, ..., Vn, separately, the period being iri; it follows then (§ 281)

that the function is expressible as an infinite series of terms of the form

C^n.,n2, ....npe-*'*'^'"'"
•••+"j'^»>, where rij, ..., np are summation letters, each of

which, independently of the others, takes all integral values from — x to

+ 00, and the coefficients Cn^,...,np are independent of v^, ..., Vn- This we
denote by putting

Q (v) = e-'-««- n (u) = SCne-"'^.

To this relation, for the purpose of obtaining the values of the coefficients

* By a fundamental matrix equation, if
fj,

be any matrix of j^ rows and columns, and n, r be

row letters oi j) elements, fj, uv = ]l v u.

B. 29
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Cn, we apply the equation, obtained above, which expresses the ratio to

Q (r) of Q (t; + U„,) or Q (v + A-T,„) ; thence we have

SQ gi(iH-i(->V«)n _ rV(7 g2i»1 g-r[irimm'+2(l:tH-iY«)m']+2irr(niQ'-«i'Q) .

n <

in this equation, corresponding to a term of the left-hand side given by the

summation letter n, consider the term of the right-hand side for which the

summation letter s is such that

Si = «,• + rlciml, {i=\,2, ...,p);

thus s=n + rkm', and 2viSi = Ivoii 4- 2rkiVim{, or Ivs = Ivn + Irkviii ; hence

we obtain

SQ g2(r+i-»Ym)»» — r^(7 . e-"*]
g-»"('r"n»n»'+Ymni')+27ri(mQ'—m'Q) .

n n

therefore, equating coefficients of products of the same powei-s of the

quantities e^''', . .
.

, eF'^p, we have

P — n r>2jfc-'Y,„n+r(inmw'+Ymin')—2in(7nQ'—m'Q)

and this equation holds for all values of the integers denoted by n, m, m.

By taking the particular case of this equation in which the integers m'

are all zero we infer that the quantity

—
. ^•-^T,„7^ - mQ\ =— k'^ (irim) n - niQ', = 2 mglj-n,- qA

must be an integer for all integral values of the numbers mg and Ug ; therefore

the only values of the integers ?i which occur are those for which the

numbei-s {n^ -kgQg')/kg are integers; thus, by the definition of ^g, we may put

n=/+kN, N denoting a row of integers, and/= kQ'.

With this value we have

k'^T^n - k-^ (irim) n = k~^ (bin') n = I'-^i {bin') = k~^n . bin'

= (^-'/-h iV) . bm' = (Q + X) . hn = bm' (Q' + N)
;

hence, as m(^ = k~bim — niN, the equation connecting Cn and Cn+rtm' becomes

e^rmm- bging equal to unity because r is an integer, and bm'(^ = iQ'm = bQ'in
;

therefore

--fc(m> + .V)» , -^by' „^. .

Tq being ttiQ + bQ', or
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thus, if the right-hand side of this equation be denoted by D^, we have, for

every integral value of m , Dn-^-tiw = D^ ; therefore every quantity D is equal

to a quantity D for which the suffix is a row of positive integers (which may
be zero) each less than the numerical value of the integer r. If then p be

the numerical value of r, the series breaks up into a sum of p^ series; let D^
be the coefficient, in one of these series, in which the integers yu, are less than

p ; then the values of the integers iV occurring in this series are given by

N = p. + rM, M being a row of integers, which, as appears from the work,

may be any between — go and oo
; and the general term of Q (v) is

1,
:(bN"-+2YfjN)+2k(Q'+N) V

for k . (Q' + N)v = kv (Q' + N)^ kv (Q' + N) = hu (Q' + iV) ; thus the general

term is

now, as Tq = iriQ + bQ', and 6 is a symmetrical matrix, the quantity

r6(ilf +
^J

+ 2T,(i/+
^.)

is immediately seen to be equal to

therefore the general term of IT (it), or e*''*''" Q (v), with the coefficient D^, is

e<l'+x^ where

t = rail? + trim (m + '^-A + rb(M +^^J + 2«Q (# + •?- '*)
,

and this is the general term of the function

e-'"f->^'%{u;Q,^).

where ^ denotes a theta function differing only from that before represented

(§ 189, Chap. X.) by '^, in the change of the matrices a, b, h respectively into

ra, rb, rh ; the condition for the convergence of the series ^ requires that ?•

be positive ; thus p = r; recalling the formulae

hnp = 7riP + bP', },Hp = a^i.-hP',

we see, as already remarked on p. 448, that, instead of

29—2
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the quantities to be associated with the function ^ are

-
, (O , 7], VT]

,

r

with this notation then we may write, as the necessary form of the function

wherein K^, = D^e
'^'

'* » is an unspecified constant coeflScient, /x denotes

a row of p integers each less than the positive integer r, and the summation

extends to the ?* terms that arise by giving to (m all its possible values.

From this investigation an important corollary can be drawn ; if a single-

valued integral analytical function satisfying the definition equation of the

function 11 (u) (p. 448), in which r is a positive integer and the quantities

Q, Q' are rational real quantities, be called a theta function of the rth order

with characteristic (Q, Q'), then* any 7*4-1 tJieta functions of the rth order,

having the same associated quantities 1w, 2(o', 2r], 2rj' and the same charac-

teristic, or characteristics diffei-ing from one another hy integers, are connected

by a linear equation or by more than one linear equation, wherein the

coefficients are independent of the arguments u^ , ..., u^; and therefore any

of the functions can be expressed linearly by means of the otJier rP functions,

provided these latter are not themselves linearly connected.

For the determining equation satisfied by 11 (u) is still satisfied if, in

place of the characteristic (Q, Q'), we put (Q + N, Q' + N'), N and N' each

denoting a row of j^ integers ; and if

fi + N' = V (mod. r), say fi, + N' = v + rJJ

,

we have (§ 190, Chap. X.)

a („ ; Q + s. «l+f±'') = a (« ; (3 + A^ "^'^ " + £')

and therefore

where }J„= K^e'"^ r
; and the aggregate of the rP values of is the

O' 4-

same as that of the values of .

r

Thus any 7-^ + 1 theta functions of the 7'th order, with the same charac-

teristic, or characteristics differing only by integers, and associated with the

• The theorem is attributed to Hermite : cf. C'onipt. Itendus, t. xl. (1855), p. 428.
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same quantities 2ft), 2ft)', 2?;, 2?;', are all expressible as linear functions of

the same r^ quantities ^{u; Q, ] with coefficients independent of

Ui, ..., Up. Hence the theorem follows as enunciated.

Ex. i. Prove that the r^ functions S; (u
; Q, ^—— j are linearly independent (§ 282).

Ev. ii. The function S (u+ a
; Q) 3 {u — a

; Q) is a, theta function of order 2 with

(2Q, 2Q') as characteristic. Hence, if 2^ + 1 values for the argument a be taken, the

resulting functions are connected by a linear relation.

For example, when ji;= 1, we have the equation

o-'^ (a) a (m -b) a- {u+ b)- a^ (b) a- {u -a) a (u + a)=- a'^ (u) . a (a-b) a {a+ b).

Ex. iii. The function 5 (r», Q) is a theta function of order r'- with {rQ, rQ') as

characteristic. Prove that if ^ denote a theta function with the associated constants

CO, r^(o', — , T]', in place of w, co', rj, rj' respectively, then we have the equations

where the summation letters /x, v are row letters of p elements all less than r, and each

summation contains 7->' terms.

Ex. iv. The product of k theta functions, with different characteristics,

5(M + ?i(i); QW) 5(?< +mW; §W)

is a theta function of order k for which the quantities

k _ k k k -\

2 Q'''''l-2r]' 2 ui'% 2
<i?'('')

+ 2^ 2 w('-) ,

_r=l

enter as characteristic. Thus a simple case is when m(i) + ... + wW = 0.

For^= l a linear equation connects the five functions

4 4 4 4

n <T{u+Ui), n (T (u + Ui + co), II o-(?< + Mj+ a)'), n o-(« + «i + co + co'),

i=l i=l 1=1 i=I

^(2« + 'il+"2+ ^3+ '*4

Ex. V. Any (jo+ 2) theta functions of order r, for which the characteristic and the

associated constants co, o', rj, rj' are the same, are connected by an equation of the form

P=0, where P is an integral homogeneous polynomial in the theta functions. For the

number of terms in such a polynomial, of degree JV, is greater than (^Vr)P, when JV is taken

great enough. That such an equation does not generally hold for {p + l} theta functions

may be proved by the consideration of particular cases.

285. The following, though partly based on the investigation already

given, affords an instructive view of the theorem of § 284.

Slightly modifying a notation previously used, we define a quantity,

depending on the fundamental matrices co, co', rj, t) , by the equation

\ (w ; P,P) = Hp {u + IHp) - iriPP'

= {l-qP + 2v'P') {U + Q)P + ft)'P') - TriPP',
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where P, P' each denotes a row of j9 arbitrary quantities. The corresponding

quantity arising when, in place of tw, a>', tj, tj' we take other matrices o)<

o>''", rj''\ 17'*" may be denoted by \"' {n ; P, P'). With this notation, and iin

case
.ni ,,/(i) „(i) -,'(1)

are respectively

-
, 60 , V > ^V

r

where r is an arbitrary positive integer, we have the following identity

r\ u +—^ s; Jy, m

= XW [u + ni' ; k, 0] + X'" [u ; m, m'] - X*" [u ;
&•, 0] - iirim'k,

where s, iV, ?u, in, k each denotes a row of p arbitrary quantities subject to

the relation

s + rX = m + k
;

this the reader can easily verify ; it is a corollary from the result of Ex. ii.,

§190.

Let the abbreviation R (u
; /) be defined by the equation

R{ii;/) = le-'"' («+'-')-^--^r n (11 + 2a)
^^ ,

wherein it denotes a row of p positive integers each less than r, and the

summation extends to all the 7'P values of k thus arising, / is a row of p
arbitrary' quantities, and U (u) denotes any theta function of order r.

Consider now the value of i^ (u + HJ,' ; /) ; by definition we have

n M + 2a)^' + n!,? = n(u + 26)^^' + 2a)W);

therefore, if m + k = s (mod. 7-), say m + k = s + rN, we have, by the defin-

ition equation (§ 284) satisfied by !!(«),

n \u + 2a) - + n'„''l = n [u + 2a)'i's + 2(oN+ 2(o'm']

= U(u + 2a)f'»s)
e'-*{«+2»'"«: ^^ »«l+2'' (A'<2'-m'<?)^

where (Q, Q') is the characteristic of 11 («), and hence

R(u + ni;.' ; /) = Se*n (u + 2a)»'5),

8

in which

v(i) ,..-,. . r . ^ ,., ^y ,-1 ^ -^k
>|r = - X'>' [u + n'J.' ; k, 0] + r\ [u + 2a)'" 5 ; X, m] - 'lirif- + liri (XQ' - m'Q)

;
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by the identity quoted at the beginning of this Article, ^|r can also be put

into the form

yjr = \<i' [u ; m, vi] - \w [u ; 5, 0] - 2'7rim'k - ^-rrif- + 27ri {NQ' - m'Q),

- X<'» [u ; m, m'] - X^ [u ; s, 0] - 27r{7/il' - ^Trim'Q + 2'7riN(Q' -f)

in the definition equation for IT {ii), the letters m, m denote integers ; and
k has been taken to denote integers ; if further / be chosen so that Q' —f is

a row of integers, we have, since, by definition, N denotes a row of integers,

s

Hence R(u; f) satisfies a determining equation of precisely the same
form as that satisfied by IT {u), the only change being in the substitution of

-
, a)', 77, VT)' respectively for «, &>', r], 77' ; so* considered R{u] f) is a theta

function of the first order with iQ, -\ as characteristic; putting, in ac-

cordance with the definition of / above, f= Q' + /x, where /* is a row of p
integers, we therefore have, by § 284,

R{u;Q'i-^) = K^,^, ^{u-Q,^) ,
= K^.^, ^ {,'it ;^,h, rh ;

^V
') ,

(p. 448) where Kq+^ is a quantity independent of ti, and §r is the same theta

function as that previously so denoted (§ 284), having, in place of the usual

matrices a, b, h, respectively ra, rh, rh.

Remarking now that the series

^ - 2TTt

te ",

wherein fi denotes a row of jp integers (including zero), each less than r, and
the summation extends to all the r^ terms thus arising, is equal to r* when
the

J)
integers denoted by k are all zero, and is otherwise zero, we infer that

the sum

which, by the definition of R {u, /), putting f=Q' + /ji,is equal to

1 y [ -A™(«,; /r, 0)-27riQ'^ „ / . ^ k\ ,-. -.;.,.,-^^

rP
z, e r 11

[
u -\- 2co - \ ze

k i \ rj
1^

* -R ('f
; /) niay also be regarded as a theta function of order r, with the associated constants

2w, 2w', 2r], 2rj' and characteristic (Q, /).



456 EXAMPLES OF THE APPLICATION [285

is, iu fact, equal to 11 (ii). Hence as before we have the equation

Q' + H'''U(u) = lK^^,^(^u; Q,^^^)

286. Ex. i. Suppose that m is an even half-integer characteristic, and that

"i, «2, ««

are s, = 2^', half-integer characteristics such that the characteristic formed by adding the

three characteristics m, o,, Uj is always odd, when i is not equal to j. Thus when m
is an integral, or zero, characteristic, the condition is that the characteristic formed by

adding two diflerent characteristics o,, a^ may be odd. The characteristic whose elements

are formed by the addition of the elements of two characteristics a, h may be denoted by

a + h; when the elements of a + 6 are reduced, by the subtraction of integers, to being less

than unity and positive (or zero), the reduced characteristic may be denoted by ab.

For instance when />= 2, if a, /3, y denote any three odd characteristics, so that* the

characteristic a^y is even, and if /x be any characteristic whatever, characteristics satis-

fying the required conditions are given by taking ;«, a-^, a.,, a^, a^ respectively equal to

aiSy, /x, fi^y, fxya, /xn/i ; in either case a characteristic mUiaj is one of the three a, 0, y and is

therefore odd.

When jo = 3, corresponding to any even characteristic m, we can in 8 ways take seven

other characteristics q, /3, y, k, X, ix, v, such that the combinations a, /3, y, k, X, fi, v, mafi,

moK, mXfi constitute all the 28 existent odd characteristics ; this is proved in chapter

XVII. ; examples have already been given, on page 309. Hence characteristics satisfying

the conditions here required are given by taking

m, Ui^a^, 03, ..., Og

resi^ectively equal to

m, m, a, ^, ...,./.

Now, by § 284, every 2''
-I- 1 theta fiuictions of the second order, with the same periods

and the same characteristic, are connected by a linear equation. Hence, if ^, q, r denote

arbitrary half-integer characteristics, and i\ w be arbitrary arguments, there exists an

equation of the form

A^{iL-\-w\ q)3{ic-w, r)= 2 A^S[2t+ v;
((J + r-/j-aj^)]B[u- v; {p+ cijj],

wherein A, A^ are independent of u ; for each of the functions involved is of the second

order, as a function of u, and of characteristic q + r.

We determine the coefl&cients A^ by adding a half period to the argument u ; for u

put 2t-}-Q„,_a _p; then by the formula

5 {u + Q,., q) = e^ '": 'P' -'^"'^''J 3 (w ; P+q),

where

Xiu; /')=Hp{ic-\-iQr)-nir/''y

noticing, what is easy to verify, that

\{u + v; P) +\{u-v; P)-\{u + te; P)-\{u-w; P)=0

= -7nF[q + r-p-a^-\-p + a^-q-rl

* As the reader may verify from the table of § 204 ; a proof occurs in Cliap. XVII.
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we obtain

AS[u+ w; (771 -aj-p + q)]S[u-iv; (m-aj-p + r)]

s

= 2 A.S [u + V
;
{m - Uj -Uj^ + q+ r — 2jo)] ^\u-v; {m - a.j + a^)].

But since m - Uj + a^ (which, save for integers, is the characteristic maja^ is an odd

characteristic when^;' is not the same as X, we can hence infer, putting ii= v, that

AJA =S[v+iv;{m-a^-p +q)p[v-w;{m-a^-p+ r)]j3 [2 v ;
{m -2a^+q + r- 2p)] 3 [0 ; m].

Hence the form of the relation is entirely determined. The result can be put into

various different shapes according to need. Denoting the characteristic m + q + r

momentarily by k, so that k consists of two rows, each of p half-integers, and similarly

denoting the characteristic ct^+p momentarily by a^, and using the formula for integral M,

3 {re; q+M) = e^'''^'i'3{u; q\
we have

5 [2*;; (m-2a;^-|-?+ r-2^)]= e~^"'"^*'3(2y; k);

we shall denote the right-hand side of this equation by

^-4^i(ax+i>)0H'+ 9' + r')5 [-2;, . („,+ j + ,.^] ;

hence the final equation can be put into the form

5[M-t-w; q\3\ii-w; »-]5[2w; (m 4- ? -I- r)] 5 [0 ; hi]

= 2 e'*"'(''^+^')("^'+«'+'''>5[M4-i;; (?-fr-jo-aj] ^ [zi- y ; (/^-haj]
A.= l

3\y-^w; {Tin-a^-p-\-q)\3\y-w\ {m-a^-p-\-r)\

It may be remarked that, with the notation of Chap. XI., if 6i, ..., 6p be any finite

branch places, and A,, denote the characteristic associated with the half-period w^•' ", and

we take for the characteristics a^, ..., «« the 2^ characteristics A, AA^ ... A^, formed by

adding an arbitrary half-integer characteristic A to the combinations of not more than p
of the characteristics J^, ..., ^,„ and take for the characteristic m the characteristic

associated with the half-period ?t''i '".-{-... -}-tt^p'"p, then each of the hyperelliptic functions

5(0; ma^a^} vanishes (§ 206), though the characteristic maiaj is not necessarily odd.

Hence the formula here obtained holds for any hyperelliptic case when m^a-^, •••,««> have

the specified values.

Ex. ii. When p = 2, denoting three odd characteristics by a, /3, y, we can in Ex. i. take

p, q, r, m, ffj, a.^, a^ a^

respectively equal to

«/3y, q, 0, a/3y, 0, ^y, ya, a/3,

wherein denotes the characteristic of which all the elements are zero, and /3y denotes

the reduced characteristic obtained* by adding the characteristics (i and y. Then the

general formula of Ex. i. becomes, putting v= and retaining the notation m for the

characteristic a/3y,

B{u-\-w; q)S{u-w; 0)5(0; q + 7n)3{0; m)

4

= 2 e*'^'K + '»K'»' + 9')5(;«; q - m - cik) S {it ; 7n + a^)9{w; q-a^)3{w; ax).

\=l

* So that all the elements of )3y are zero or positive and less than unity.
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Ex-, iii. As one application of the formula of Ex. ii. we put

^=Kio)-»=K!o)-^=Ku)'-Ko;)'

K'»)' "'"KP' "''KP' "»°*(n)' "'-Km)'
hence we tind, companng the table of § 204, and using the formula

where J/,
=(''f/*^').

consists of integers, f=(^'-'^':Y and Mf=Mj;\M.j;, that*

5(M + ?f'; <?)=--9„2(« + w), 5(tt-w; O)= 55(it-?60, ^(0; <? + »0= -^i-i W, -9(0; w) = 5oi(0),

3(?t;5'-7n-ai)= 5i2(w),-9(M;7n+ ai)= 5oi((<),'9(i<';g-«i)= -^o^C ?<-')> 9('"'; «i)= -^a («»),

5(«;g' — 7n-a2)=: ^^{u\^{ii;m-Va.^=^ -^^4^u),^{io;q-a.^= Sm(w),S{w;a.^)=: Si-Jiw),

S{u\q-m- a^) = B^lu), 3 {ti ; m+ Wg) = -3^{u),S{w;q- a^) = S^ (w), S {w ; a^)= 3n{ w),

S{ic;q-m-ai)= -Sn{^t),S(^l;m+ a^)= -3^ {u),3(io•,q-a^)= 3(yi{iv),3{w;ai)= -3.,^{^v),

all the factors of the form e*T»{ax + '»)('»' + <r') being equal to 1 ; by substitution of these

results we therefore obtain

where ^12 denotes 5i2(m), etc., and 5^2 denotes 3f).^{w), etc.; this agrees with the formula

of §§ 219^ 220 (Chap. XI.).

Ex. iv. By putting in the formula of Ex. ii. respectively

obtain the result

which is in agreement with the results of §§ 219, 220.

Dividing the result of Ex. iii. by that of Ex. iv. we obtain an addition formula for the

theta quotient -902 (m)/-?^ (w), whereby 3Q2{'i<'+ iv)/3^{u+ 2c) is expressed by theta quotients

with the arguments u and w.

E.V. V. The formula of Ex. ii. may be used in different ways to obtain an expression

for the product 3{u->rw; q) 3{u— w; 0). It is sufficient that the characteristics m and

g+m be even and that the three odd characteristics a, /3, y have the sum m. Thus,

starting with a given characteristic q, we express it, save for a characteristic of integers,

as the sum of two even characteristics, m and q-\-m, which (unless q be zero) is possible

in three wayst, and then express m as the sum of three odd characteristics, a, /3, y,

which is possible in two waysX; then§ we take «i= 0, a.^= ^y, a^ = ya, a^ = a^. Taking

* In Weierstrasa's reduced characteristic symbol the upper row of elements is positive, and

the lower row negative ; of. §§ 203, 204, and p. 337, foot-note.

t This is obvious from the table of § 204, or by using the two-letter notation ; for instance

the symbol {<i\ani^{tiic) + (a.f) = (a-f^) + [ii./^= (a^c.^ +{c-f-2)-

X For example, {ac) = {a^a) + {a^a) + {c^c.^ = {a-^a.^ + [c-^c) -^ (cc.^). See the final equation of § 201.

The six odd characteristics form a set which is a particular case of sets considered in

chapter XVII.

§ Moreover we may increase m and w by the same half-period. But the additions of the half-

periods P, P + fiq lead to the same result ; and, when q is one of a, /3, 7, the same result is

obtained by the addition of P-\-Ujn and of F + il„^ + Uq.
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Hio)^Hoo)"^Hio)^Hio)^Hoo)^Hii) + Hoi)'

putting m=5
(nn ) '

^^ ^^^ ^^^®

»=Ko;)- ^==k;j)- -Kn)-
Hence obtain the result

^02 \^+ W) ^a (?* — '<') -512 (0) -^ol (^) ~ -^12 -^01 •^02-^5+ '^04'^24'^14'^3+ "^4 "^IS -'23 -^03+ '^34 '^I ^'l^QI

where, on the right hand, ^12 denotes 9i2(«i), etc., and 5^2 denotes \2.{^o\ etc. Comparing
this result with the result of Ex. iii., namely

^02 ('*+ ^") ^5 ('* ~ '*^) "^12 (*-*) -^Ol (^) = ^12'^01 -^02 -^5+ -^02 °5 -^12 -^01 + "^04 ^^24 ^3-^14 + "^3 -^14 -^04 -^24)

we deduce the remarkable identity

^4 («) ^13 ('0 ^23 C^') ^3 (^^') +-»1 (")% ('^) ^ («') ^2 {10)

= ^02 (^*) ^5 («) ^12 (^^) ^01 (^^) +-33 (^) ^14 («) ^04 (^^) ^24 ('^),

wherein «, w are arbitrary arguments ; this is one of a set of formulae obtained by

Caspary, to which future reference will be made.

Ex. vi. By taking in Ex. v. the characteristics g, m to be respectively

^Vioj' Hoi/'

and resolving m into the sum a+/3+ y in the two ways

^Q<M^' *(:;i.4(::)+i?0-4C)+iG"

respectively, obtain the formulae

"o2 \U-'rW) Jj (24— W) -1/0(0) •J2(0) = ~'5'^02-^2'^0+ '^0'^2'^02-"5 ~ ^4^13'^24-^04 ""
'^04"^24'^13'^4>

^02 (^+ ^) 'J'6 ('* ~ ''f') -J/o (^) ^2 (^) ~ ^0'^2-''02-^5 ~ •''24~'o4'^4"^13 ~ "^14 "^3 "^03 "^23+ '^34'^1'^01"^12>

and the identity

^'34 '^l "^01 ^12+ "^4 •^13 -"24 ^^04~ "^b "^02 "^0 ''^2+ '^14 "^3 ^^03 "^23 •

Putting in this equation to = 0, we obtain a formula quoted without proof on page 340.

Ex. vii. Obtain the two formulae for 5^2 (m+ w) B-^{u — w) which arise, similarly to

those in Exs. v. vi., by taking for 711 the characteristic i ( ^ ) > the characteristic q being

unaltered.

Ex. viii. Obtain the formulae, for jo= 2,

B,,{n+ w)^.^{u-^v)a:'^{0) = ^l^^+ Si[^^^-a:l^-^l^.^,

^23 \U+ W) ^5 {U — W) Sr, (0) ^23 (0; = 95523-95523+ •9i-&04-9l -904 ~ •53'^2'^3-^2 ~ -^13 "^r^ -^13 -^12

>

where the notation is as in Ex. v.

For tables of such formulae the reader may consult Konigsberger, Crelle, Lxiv. (1865),

p. 28, and ibid., Lxv. (1866), p. 340. Extensive tables are given by Rosenhain, 3fem. par
divers Savants, (Paris, 1851), t. xi., p. 443; Cayley, Fhil. Trans. (London, 1881),

Vol. 171, pp. 948, 964 ; Forsyth, PhU. Trails. (London, 1883), Vol. 173, p. 834.
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Ex. ix. We proceed now to apply the fornnilca of Ex. i. to the case p= S ; taking the

argument r= 0, the characteristics/), r both zero, and the characteristics m, Oj, Qjj » <^8

to be respectively m, m, a, )3, , f, where a, /3, y, k, X, fx, v are seven characteristics

such that the combinations a, /S, y, k, \, fi, v, ma^, muK, mXfj. are all odd characteristics,

m being an even chciracteristic, and removing the negative signs in the characteristics by

such steps'"' as

S{-w; m-aA-p) = 3{io; a\+p-7n)= 3{w; aA+/)+ wi — 2w)

= g- 4n-ini(a';^ + p' + m') 3 (
j^ . Oa +^0+ w)

= e - <""»(/'' + «A) 5 («;;/) + «A+ wi),

the formula becomes t

3{u + io; q)S{u-w; 0)5(0; q+ m)S{0; in)

8

^ 2 e-4'f'(''««A + «'''A)5(ii; f/ + aA)5(w; «a)5;,?<^; 5'+ w + aA)5(w; in+ uj,).

A=l

In order that the left-hand side of this equation may not vanish, the characteristic

q+ m must be even; now it can be shewn that every characteristic (q), except the zero

characteristic, can be resolved into the sum of two even characteristics (m and q+ m)

in ten ways, and that, to every even characteristic (m) there are 8 ways of forming such

a set as a, /3, y, k, X, fx, v (cf. p. 309, Chap. XL). Hence, for any characteristic q there

are various ways of forming such an expression of 3{u-\-w; q)S(u—w; 0) in terms

of theta functions of u and w ; moreover by the addition of the same half-period to u

and w, the form of the right-hand side is altered, while the left-hand side remains

effectively imaltered. In all cases in which q is even we may obtain a formula by

taking 7n = 0.

j&lr. X. Taking, in Ex. ix., the characteristics q, m both zero, prove in the notation

of § 205, when a, ^, , v are the characteristics there associated with the sufl&xes

1, 2, , 7, that

S{u+ a-)3{u-ic)3-^= 2 3i^ (11)3^10).
1=0

Prove also, taking m= 0, q= \ ( ^^^ ) , that 3^z^ {tt -f w) 3{u- w) 3^^ 3 is equal to

3 {u) 3 (w) 3,^ («) 3,^ M+3,{ic) 3, {iv) 5^ («) 3,, {w) + 3, {u) 3, (w) 3^{u) 3^ (w)

+ \{u)3,{w)3^{u)3^{w)

- 3j (U) 3j (W) 5,23 («) ^123 i^) - ^1 («) ^1 ('") ^237 («) ^237 («-) " ^2 («) ^2M ^317 («) ^317M
- 33(11) 3,{v^3^^{u)3^.^{w),

where 3, 3^:^ denote respectively 3 (0), 3^-,^ (0).

Hence we immediately obtain an expres.sion for 3i^{ii+ ie)j3{u + w) in terms of theta

quotients 3i (m)/5 («), 3i (w)/5 (w).

E.r. xi. The formula of Ex. i. can by change of notation be put into a more symmetrical

form which has theoretical significance. As before let vi be any half-integer even

characteristic, and let a,, , a, be s, =2'*, half-integer characteristics such that every

• Wherein the notation is that the characteristic p is written M i ^'-i ' »
) and »' denotes the

\P1PiP3f
row (p,', p./, P2') ; and Rimilarly for the characteristics m, a\.

t This formula is given by Weber, Theorie der AheVschen Functionen vom Geschlecht 3

(Berlin, 1B76), p. 3H.
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combination maiaj, in which i is not equal to j, is an odd characteristic ; let /, g, h be

arbitrary half-integer characteristics ; let J denote the matrix of substitution given by

,A=|(-1 111),
1-111
1 1-1 1

111-1
and from the arbitrary arguments u, v, w determine other arguments U, V, W, T by the

reciprocal linear equations

{L\, Vi, W„ Ti) = J{Ui, Vi, Wi, 0), (^•= l, 2, , p),

or, as we may write them,

{U, V, W, T) = J{u,v, w,0);

further determine the new characteristics F, G, ff, K by means of equations of the

form

{F,G,H,K)=^J{f,g,h,m),

noticing that there are 2/> such sets of four equations, one for every set of corresponding

elements of the characteristics
;

then deduce from the equation of Ex. i. that

5(0; m)S{u\ f)^{i}; g) S {w; h)

A=l

= J e^««A'«'5(f/; F~aJS{V; G-a^)${W; H-aJ^{T; K+aJ.
A= l

Putting m = 0, we derive the formula

S{0; 0)S{v + w; g+ h)S{tv+ u; h+f)^{;u + v;f+g)
•2"

= 2 ^{u + v-'rw; f-\-g+ h-\-a^ ^{ii; f-a^ B{v, g — a.)S{w, h-a^),
A=l

wherein u, v, w are any arguments and /, g, h are any half-integer characteristics.

Ex. xii. Deduce from Ex. i. that when ^= 2 there are twenty sets of four theta

functions, three of them odd and one even, such that the square of any theta function can

be expressed linearly by the squares of these four.

287. The number, r^, of terms in the expansion of 11 {u) may be

expected to reduce in particular cases by the vanishing of some coefficients

on the right-hand side. We proceed to shew* that this is the case, for

instance, when 11 (w) is either au odd function, or an even function of the

arguments u. We prove first that a necessary condition for this is that the

characteristic {Q, Q) consist of half-integers.

For, if n (— u) = ell (u), where e is -f 1 or - 1, the equation

n (?i -f- n„,) = e^-^-f") +2«(mQ'-«'(2) n (u)

gives

ell (- U - n,n) = e'-^'n{u)+2niimq-in'Q) ^n (- u),

* Schottky, Ahriss einer Theorie tier AbeVschen Functioneii von drci Variaheln (Leipzfg, 1880).
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while, the left-haud side of this equation is, by the same fundamental

equation, equal to

fgrA-M(-t4)-2iri(mQ'-m'g) H (— m)
"

hence, for all values of the integers m, m, the expression

r [\n (") - >-« (- ")] + 47rt (7;iQ' - m'Q)

must be an integral multiple of ^iri ; since, however,

K, (") = S,„ (u + ^n^) - TTimm = \_,„ (- u),

this requires that 2 (mQ' — m'Q) be an integer ; thus 2Q, 2Q' are necessarily

integers.

Suppose now that Q, Q' are half-integers ; denote them by q, q ; and

suppose that IT («() = ell (— ?<), where e is +1 or —1. Then from the

equation

U(u) = lK,'^(^u:q,^y

since, for any characteristic, ^ («, q) = ^ {— u, — q), we obtain

n (u) = en (- u) = elK.'b I- u
; q, ^-^j = elK^'t (" ;

- q, - ^^')

= .SA^^[.;,-2,.^-^^:-^i±^;

where i/ is a row of positive integers, each less than r, so chosen that

v = -{/jL + 2q'), (mod. ?•)
;

thus the aggregate of the values of i/ is the same as the aggregate of the

values of fi; therefore, by the formula (§ 100), ^ (u
; q + M, q' + M')

_ gsmj/^^
^^^

.

q^ g'^^ wherein M, M' are integei-s, we have

S/Ca („ ; q, '-p) = n (,,) = ,lK,e-*"-% („ ; <,. '^/)

comparing these two forms for Tl (u) we see that in the formula

U(u) = 2K\^(u; q,^"^'^

the values of
fj,

that arise may be divided into two sets
;

(i) those for which

2fi + 2q =0 (mod. r) ; for such terms the value of /' defined by the previously

written congruence is equal to fi, and the transformation effected with the

help of the congruence only reproduces the term to which it is applied ; thus,

for (ill such values of fi which occur, e " is equal to e
;

(ii) those terms
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for which 2/x + 2^' ^ (mod. r) ; for such terms K^ = eK^e ^ . Hence

on the whole 11 (w) can be put into the form

27f,a (u
; 5, '^^)+ tK^ k {•' ; 9. '^'j + ^"""^ S (» ; ?, ^')|

.

where the first summation extends to those vahies of /* for which

2fi + 2q' = (mod. r), and the second summation extends to half those values

of fi for which 2/a + 2^'' ^ (mod. r). The single term

cf> (u, ^) = ^ {^a q,
^'i-') + ee-^--""? ^ [u

; q,
^+ ^'j

,

which can also be written in the form

r

is even or odd according as 11 {li) is even or odd ; and this is also true for the

term ^(u\ q, \ arising when 2yu. ->r2q =Q (mod. r).

Hence if x be the number of values of fi, incongruent for modulus r,

which satisfy the congruence 2yu, + 2g' = (mod. r), and y be the number of

these solutions for which also the condition e '^ = e is satisfied, the

number of undetermined coefficients in H {u) is reduced to, at most,

288. We proceed now to find x and 3/ ; we notice that y vanishes when

X vanishes, for the terms whose number is y are chosen from among possible

terms whose number is x. The result is that luhen r is even and the

characteristic (q, q) is integer or zero, and H (— u) = eW (u), the number of

terms in U (u) is ^ 7-^ + 2'^~^ e ; tuhile, when r is odd, or when r is even and

the half-integer characte^-istic (q, q) does not consist wholly of integers, or

zeros, the number of terms in H (w) is ^ r^ + i [1 ~ (~X] ee*'"^'^'-

Suppose r is even ; then the congruence 2/jl + 2q' ^0 (mod. /•) is satisfied

r .

by taking /u, = 31 - — q', and in no other way, M denoting a row of p arbitrary

integers. Thus unless q' consists of integers, x is zero, and therefore, as

remarked above, y is zero, and the number of terms in H {u) is ^7'P. While,

when q' is integral, the incongruent values for fju (modulus r) are obtained by

taking the incongruent values for 3/ for modulus 2, in number 2^ ; in that

case x=2P; the condition e
" > = e is the same as e-2T*'7i'/= ^ | when q is

integral, this is satisfied by all the 2^ values of M, or by no values of M,
according as e is + 1 or is — 1 ; in both cases y = 2^'~' (1 + e) ; when q is not
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integral, ;; - I of the elements of M can be taken arbitrarily and the con-

dition e-2'n'v-»/ = e determines the other element, so that ^ = 2^-^ Thus,

when /• is even, we have

(1) when q, q are both rows of integers (including zero), a- = 2^,

y = 2'^\l +e), and the number of terms in II (u) is

2^-' (1 + e) + ^ {r^ - 2^) = i '"^ + ^~' e.

j\s stated, there being ^rP -\- 2^"^ terms when 11 (u) is an even function, and

^jp — 2p-^ terms when IT (u) is an odd function
;

(2) when q' is integral, and q is not integral, x = 2^, y = 2^^S and there-

fore the number of terms in 11 («) is

2^-»
-f- \ {rP - 2^) = rv,

in accordance with the result stated
;

(3) when q' is not integral, both x and y are zero, and the number of

terms is \ rP, also agreeing with the given formula.

Suppose now that r is odd, then the equation

rM-lq . M-2q'
2fi + zq = rJl, or /x = ^

—

—
,
= mteger + ^—^

,

wherein M is a row of integers, requires M to have the form 2q' + 2N, where

N is a row of integers, and therefore

=^2r '=^^+n'-.^)
this equation, since fi consists of positive integers all less than r, determines

the value of N uniquely ; hence x = 1. The condition

e
* = e, or e- ''^''/Y + v) = ^^ ^r g-^-^'M' = e

determines y = 1 or y = according as ee*"^'^' = -h 1 or = — 1 ; hence the

number of terms in 11 (w) is

l+^(rP-l), or i(rP-l),

according as ee*^'' = -I- 1 or — 1 ; this agrees with the given result when r is

odd, the number of terms being always one of the numbers ^{vp ± 1).

289. It follows from the investigation just given that if we take pro-

ducts of theta functions, forming odd or even theta functions of order r, with

the same half-integer characteristic (q, q), and associated with the same

constants 2(u, 2&)', 2r}, 2t)', then when r is even, the number of these which

are linearly independent is, at most, | ?* + 2^"^ e when the characteristic is

integral or zero, and is otherwise ^ rP
; while, when ?• is odd, the number

which are linearly independent is, at most, i (rP+ee*'*'^'^'), e being + 1 accord-

ing as the products are even or odd functions.
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Ex. i. In case jo= 2 there are six odd characteristics, and the sum of any three of

them is even* as the reader can easily verify by the table of page 303. Let a, ^, y, S, e, f

denote the odd characteristics, in any order, and let a/3y denote the characteristic formed

by adding the characteristics a, /3, y. Then the i^roduct

n (tt) = S («, a) 5 (m, /3) ^ {u, y) ^ (m, a^y)

is an odd theta function of the fourth order with integral characteristic. Hence this

product can be written in the form

n(«) = 2.4^^(^«;0, ^),

where /x has the 4^ values arising by giving to each of the two elements of /x, independently

of the other, the values 0, 1, 2, 3. Changing the sign of « we have

n(«)=-2J^5(^-«; 0,^), =-^A^B_{u;0, -^), = -2J^5 (t<; 0, ^ -^) ,

where v is chosen so that

/x + j/= (mod. 4).

This congruence gives 16 values of v corresponding to the 16 values of ^; of these

there are 4 values for which ii= v and 2y.-=0 (mod. 4) ; these are the values

^= (0,0), (0,2), (2,0), (2,2),

greater values for the elements of /n being excluded by the condition that these elements

must be less than 4. We have by the formula (§ 190) ^ {u
; g+ i/ ) = gSTriiv/g' ^ (-^^^^

U{u)=-^A^^U; 0,0;

comparing this with the original formula for n (w), we see that

Av'= — Aft.^

so that the terms in the original formula for n(?<) for which v=fi are absent, and the

remaining twelve terms may be arranged as six terms in the form

U{u) = ^aJ\J:{u; 0,^-5 (.*; 0,-^ =2^^[s(t^; O,^-^^-^; 0,^],

where the summation extends to the following values of /x,

;x= (0, 1), (1,0), (1,1), (1,2), (1,3), (2,3);

these values may be interchanged respectively with

;x= (0,3), (3,0), (3,3), (3,2), (3,1), (2,1),

if a proper corresponding change be made in the coefficients A,i.

The number 6 is that obtained from the formula ^rP+ 2P~ie, by putting r=4,

e=-l, p= 2.

Ex. ii. In case p= 2, denoting the odd characteristics by a, j8, y, S, e, f, and the sum
of two of them, say a and ^, by a/3, and so on, each of the four products

5 (m, a) 5 («, afC), 5 {u, ^) S («, /3eC), ^ {u, y) 5 (u, yef), S {u, 8) S (u, 8^0,

or, in Weierstrass's notation, if a, ^, y, 8, e, f be taken in the order in which they occur in

the table of page 303, each of the products

^02 (^) ^34 (^0, -^24 (^*) ^03 (^0, "^04 («) ^23 ('0> "^l («) ^5 (^0,

* This is a particular case of a result obtained in chapter XVII.

B. 30



466 gopel's biquadratic relation. [289

is an odd theta function of order 2, and of characteristic diflering only by integers

from the characteristic denoted by *(, or, in the arrangement here taken, i (j^j ; t^us

any three of these products are connected by a linear equation whose coefficients do not

depend upon u.

Similarly each of the products

3 {u, ait) B (u, a8C), S («, /SSf) S («, /380. ^ (», y»0 ^ («, yH\ » («, 5 (», C),

or, in Weierstrass's notation, if a, ^, y, 5, f, f be taken in the order in which they occiu*

in the table of p. 303, each of the products

5h(«)^4(«), KWSo(u), S,2(«)32(«), 5,3(«)53(u),

is an even theta function of order 2, and of characteristic difiering only by integers

from the characteristic denoted by cf, or, in the arrangement here taken, i ( ,
,
) ; thus

any three of these products are connected by a linear equation whose coefficients do not

depend upon u.

Ex. iii. For p=2 the number of linearly independent even theta functions of the

fourth order and of integral characteristic is ^4'^+ 2= 10. If q, r be any half-integer

characteristics, it follows that any eleven functions of the form ^-(m, j)5-(k, r) are

connected by a linear equation. Taking now, with Weiei"strass's notation, the four

functions*
t= B^{ii\ .r=534(u), .y= ^i2(M), 2= -9o(").

it follows that there exists an identical equation

in which the eleven coefficients Jo> > -^2 ^^^ independent of xi.

The characteristics of the theta functions B^{u\ B^{u), Byi{u\ B^{vi) may be taken,

respectively, to be (cf. § 220, Chap. XI.)

hence, by the formulae (§ 190)

3(m-Qp; y)=e^''^«>-2'^^9 5(M; j + P), 5(«; y + J/')= e'-'^'^^'''5(w; q\

wherein M denotes a row of integers, we obtain

5^ (u + Qp) = e^(«) 334 («)> K (« + Q;.) = e*^^"^ ^5 («)> 5i2(« + Q;.) = e*"^"^ ^0 («).

5o(M + Qp) = e^*'<'*>5i2(tt);

hence the substitution of M + Qp for u in the identity replaces t, .r, y, 2 respectively by

T, <, z, y. Comparing the new form with the original form we infer that

Jo= J„ ^l2= ^3, G, = G.,, //, = //,.

Similarly the substitution of w + Q, for ?< replaces t, x, y, 2 respectively by y, z, ^, :r

;

making this change, and then comparing the old form with the derived form, we infer

that

* Which are all even and such that the square of every other theta function is a linear

function of the squares of these functions. It can be proved that these functions are not

connected by any quadratic relation.
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Thus the identity is of the form

Taking now the three characteristics

//n /2'\ ^ /O, \\ (g{, g^\ ^ A, 0\ (k^, h^\ _ A, h\

V/i, h) Vo, o; ' Ui, 9'J Vo, o) ' \h„ hj Vo, o) '

and adding to the argument u, in turn, the half-periods i2/, fl^, fl^ and then putting ?t = 0,

we obtain the three equations

where 5* denotes 5*(0), etc., and the notation is Weierstrass's, as in § 220. By these

equations the constants F, G, H are determined in terms of zero values of the theta

functions. The value of C can then be determined by putting w= in the identity

itself.

Thiis we may regard the equation as known ; it coincides with that considered

in Exx. i. and iv. § 221, Chap. XL, and represents a quartic surface with sixteen nodes.

With the assumption of certain relations connecting the zero values of the theta functions,

proved by formulae occiu-ring later (Chap. XVII. § 317, Ex. iv.), we can express the

coefficients in the equation in terms of the four constants ^5(0), 534(0), 5i2(0), 5o(0).

We have in fact, if these constants be respectively denoted by d, a, b, c

^oi + ^2 = ^' + «*-^*-«*' 5* + 5^3 = #-a* + 6*-cS 5*3 + 5*4 = c;*-a*-6* + c4,

^01-^2 =d'^cfi-b'^c' , 5^5^3 =c^262_c2^2 ^ ^2^52^ =d?c^-aW;

hence the identity under consideration can be put into the form

where the n denotes the product of the four factors obtained by giving to each of ej , f

2

both the values +1 and —1. The quartic surface represented by this equation can be

immediately proved to have a node at each of the sixteen points which are obtainable

from the four,

{d, a, b, c), {d, a, -b, - c), (d, —a,b, - c), {d, -a, —b, c),

by writing respectively, in place of d, a, b, c,

(i) {d, a, b, c), (ii) {a, d, c, b), (iii) (6, c, d, a), (iv) (c, b, a, d).

Ex. iv. We have in Ex. iii. obtained a relation connecting the functions

^5 (^0> -^34 (^0) -^12 («)> -^o (^0

;

in Ex. iv. § 221 we have obtained the corresponding relation connecting the functions

•^5(«). ^oi(«)> ^4(«)» ^23(«);

and in Ex. i. § 221 we have explained how to obtain the corresponding relation connecting

the functions

^5(«)» •^23(«)» »04(^). ^l(w)-

30—2
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There are* in fact sixty sets of four functions among which such a relation holds ; and

these sixty sets break up into fifteen lots each consisting of four sets of four functions,

such that in every lot all the sixteen theta functions occur, and such that in every lot one

of the sets of four consists wholly of even functions while each of the three other sets

consists of two odd functions and two even functions. This can be seen as follows : using

the letter notation for the sixteen functions, as in § 204, and the derived letter notation

for the fifteen ratios of which the denominator is 3 (u), as at the top of page 338, it is

immediately obvious, as on page 338, that any four ratios of the form

in trhich the letters ir, I, ;t, , l^, k^ coiistitute in some order the letters Oj, Oj* '^> ^v ^2> *™
connected by a relation of the form in question. Now such a set of four ratios can be

formed in fifteen ways ; there are firstly six such sets in which all the ratios are even

functions of w, obtainable from the set

by permuting the three letters c, c^, c^ among themselves in all possible ways ; and neitly

nine such sets in which two of the ratios are odd functions, obtainable from the set

' ?C' ?0, , Oj' ^c,, ft,

by taking instead of the pair a^a^ each of the three pairst 0^02, aa^, aa.^, and instead of

the pair €^02 each of the three pairs C1C2, ccj, cc^. Since (§ 204) the letter notation for an

odd function consists always of two as or two c-s, and for an even function consists of

one a and one c, the number of odd and even functions will remain unaltered. Further

from each of these fifteen sets we can obtain three other sets of four ratios by the addition

of half-periods to the argument u, in such a way that all the sixteen theta functions

enter into each lot of sets. The fifteen lots obtained may all be represented by

the scheme
1,
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have m= 2P~i odd half-integer characteristics ^.j, ..., J,„, and another half-iuteger charac-

teristic P, not (integral or) zero, such that the characteristics* A^P, ..., A^P, obtained

by adding P to each of A-^, ..., A^, are also oddt; svippose further that A is an even

half-integer characteristic, and that ^P is also an even characteristic, and that the theta

functions S {u ; A), 3 {u ; AP) do not vanish for zero values of the argument. Then, by

§ 288 the 2P~i + 1 following theta functions of order 2,

d{u; A)3{u; AP), S {u ; A{)S{u; A,P), ..., S {u; AJ3{ic; A„,P),

which are all even functions with a characteristic differing only by integers from the

characteristic P, are connected by a linear equation with coefficients independent of u.

But in fact, if we put w= 0, all these functions vanish except the first. Hence we infer

that the coefficient of the first function is zero, and that in fact the other 2p~i functions are

themselves connected by a linear equation.

Ex. vi. In illustration of the case considered in Ex. v. we take the following :—When
JO= 3, it is possible;}:, if P be any characteristic whatever, to determine six odd characteristics

Aj^, ..., Ag, whose sum is zero, such that the characteristics JjP, ..., ^gPare also odd, and

such that all the combinations of three of these, denoted by AiAjAjc, AiAjA^P, are even.

By the previous example there exists an equation

X5 (m ; Ai) S {u ; A^P)

=\iSiu; Ai)S{u; AiP)+-K^3{u ; A2)Siu; A^PJ+X^Siic ; A^) 3 {u ; A^P),

wherein X, Xj, Xg, X3 are independent of u. Adding to u any half-period fig, this equation

becomes

U {u ; AiQ) S (u ; AiPQ)

= \ieiS{u; AiQ)S(u; A^PQ) +1,,^$ {u ; A^Q)S{2c; A^PQ) + \,t,9 (ic ; A,Q)S{u; A^PQ),

where fi(i=l, 2, 3) is a certain square root of unity depending on the characteristics

A^, Ai, P, Q, whose value is determined in the following example. Taking in particular

for Qq the half-period associated with the characteristic A^A^, so that the characteristics

A^PQ, A^PQ become respectively the odd characteristics A^P, A^P, and putting u= 0,

we infer

X^(0; A,A^A,)»{0; A,A^A^P) = \,,,'3{0 ; A,A,A,)S{0; A,A,,A,P),

where f/ is the particular value of fj when Q is A^A^. This equation determines the ratio

of Xi to X ; similarly the ratios Xg : X and X3 : X are determinable.

Ex. vii. If I r, I J be half-integer characteristics whose elements are either or ^, and

^k=^rq be their reduced sum, with elements either or ^, prove § that

K = ra+ 9a- ^^a9a ' K'=< + 9a'
" 2^„Va'' {a=l, 2, ... , p),

and thence, by the formulae (§ 190)

5(w-fOp; ?)= e^<'''-P'-2-i^'5 5(M; P+q), S{u; q +M) = e^'''^^''' 3 {u
; q),

* A characteristic formed by adding two characteristics A, P is denoted by A + P. Its

reduced value, in which each of its elements is or ^, is denoted by AP.

t It is proved in chapter XVII. that, when p>2, the characteristic P may be arbitrarily

taken, and the characteristics A^, ... , A^ thence determined in a finite number of ways,

X This is proved in chapter XVII.

§ Schottky, Crelle, cii. (1888), pp. 308, 318.
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where M is integral, prove that

If Ar, iff, J^y be any reduced characteristics, infer that

where
P

f = e »=l

£U-. viii. If ^Ii, A.2, A3, J4 denote four odd characteristics, for p= 2, and B denote an

even characteristic, the J2p+ 2''~i + 1 = 5 theta functions, of order 2 and zero (or integral)

characteristic, S'^{ti; B), B^{u; A^, ,.., 3'^{u; ^4) are, by § 288, connected by a linear

equation. As in Ex. v. we hence infer an equation of the form

\3-'[u; Ai) = \SHu', Aj)+ \S-^{u; A^) + \^3-^u; J3);

adding to m the half-period associated with the characteristic ^12-43, and putting u— 0, we

deduce by Ex. vii. that

Xg-VA:,'a. 52 (0 . J^J2'43) = X,t>^''''' 52 (0 ; A.A.^A^),

where J._,-^= i^'i> Ai = ^ai, A^ = ^a^. Hence we obtain an equation which we may write

in the form

^2(0; A,A^A,)3^u; -l4) = (;|';'j')5'(0; A^A,A,)SHu; A,)

+ (j'j;)52(0; A,A,A,)SHu; ^2) + (j^j'j)
^' (0; A,A,A,)9^{u; A,),

where ("//) denotes a certain square root of unity. Such a relation holds between every

four of the odd theta functions.

If A^, ..., Aq be the odd characteristics, and Q be any other characteristic, the six

characteristics A^Q, ..., AqQ are said to form a Rosenhain hexad. It follows that the

squares of every four theta functions of the same hexad are connected by a linear relation.
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CHAPTER XVI.

A DIRECT METHOD OF OBTAINING THE EQUATIONS CONNECTING ^-PRODUCTS.

290. The result given as Ex. xi. of § 286, in the last chapter, is a

particular case of certain equations which may be obtained by actually

multiplying together the theta series and arranging the product in a

different way. We give in this chapter three examples of this method, of

which the last includes the most general case possible. The first two furnish

an introduction to the method and are useful for comparison with the

general theorem. The theorems of this chapter do not require the charac-

teristics to be half-integers.

291. Lemma. If 6 be a symmetrical matrix of p^ elements, U, V, u, v,

A, B, f, g, q, r,f', g', q', r, M, N, s, t', m, n be columns, each of p elements,

subject to the equations

11 I- m = ^N + s', q' 4- r' =/', q + r=f, U+V=2u = A,

-n + m=2M + t', -q' + r' ^ g', -q + r=g, - U+ V^2v = B,

then

2U{n + q) + b{n+ q'f 4- ^iriq (n + q') + 2V{m + r') + h {m + r')- + 27rtV (vi + r')

= 24 (^ + 1+/') + 2i (i, + £l|/')' + 2„y [m . i^/')

+ tB(M + *-+/) + 2b [m +'^)V 2«<, [m + *' ±i)
.

This the reader can easily verify.

Suppose now that the elements of s and t' are each either or 1, and

that n and m take, independently, all possible positive and negative integer

values. To any pair of values, the equations n + m, = 2N + s', —n + m = 2M -\-
1'

give a corresponding pair of values for integers iV^ and M, and a pair of

values for s' and t'. Since 2m = 2N -'r 2M -\-s' + t', s' + t' is even, and there-

fore, since each element of s' and t' is < 2, s' must be equal to t'. Hence by

means of the 2P possible values for s, the pairs {n, m) are divisible into 2fi

sets, each characterised by a certain value of s'. Conversely to any assignable
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integer value for each of the pair (iY, M) and any assigned value of s (< 2)

corresponds by the equations n=N—M, m = N+3f + s' a definite pair of

integer columns n, m.

Hence, b being such a matrix that, for real x, hoc^ has its real part negative,

r2g2£/'<n+9'|+6(n+9'l«+airi9(n+g')ir2g2r(m+r')+6(m+r')'+2»n>(m+)-')1

n m

= 2

M

thus, if ^(2/; \), or "^lu; M, denote 2e^(«+V)+&(n+A')H2^x(n+A')^
^(^^^ X) or

^ ^/
; ] denote 2;e*«<'»+^')+26(n+AV+2T.:A(n+V)^ ^ve have

t{u-v\ q)'k{u + v; r) = S^ u\.
^(s'+(?' + 7-'y

5" +r
^ w;

i(5' -(?' + /)

- 9' + *'

where the equation on the right contains 2^ terms corresponding to all

values of s', which is a column of p integers each either or 1 ; all other

quantities involved are quite unrestricted.

Therefore if a be a symmetrical matrix of p^ elements and h any matrix

of p- elements, we deduce, replacing u by hu, and v by hv, and multiplying

both sides by e^^'+a"-, the result

^ {u -v; q)^(u + v; r) = 1% U^' + q+rJ
q-Vr X W-q' + r')-

— q + r

where e' denotes all possible 2^ columns of p elements, each either or 1,

and ^1 differs from ^ only by having 2a, 2h, 26 instead of a, h, h in the

exponent ; thus we may write, more fully,

^ [u-v-^'
<1

2&), 2cd'\ _ / r 2&), 2a)'

277, 27;'

u;W + q' + r) <o, 2q)''

q-\-r
I

2i7, 4?;'
u;

^(e' — (/'+ r') ft), 2&)'

— q-'t-r
I 2?;, 477'_

Ex. i. When the characteristics q, r arc equal half-integer characteristics, say

the equation is

multiplying this equation by e'^'"", when n denotes a definite row of integers, each either
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or 1, and adding the equations obtained by ascribing to a all the 2^ possible sets of values

in which each element of a is either or 1, we obtain

for we have

2guia(.'+n) ^ g [1 +e'^i<%+"i)].

Ex. ii. Deduce from Ex. i. that when jo= l, the ratio of the two functions

s^u+b; i(J)]^[«-^; iQ]+^5[«+6; i(i)]^[«-^>; *(i)],

is independent of u.

Ex. iii. Prove that the 2^' functions Si(u;
f.

"
) , obtained by varying «', are not

connected by any linear equation with coefficients independent of u.

Ex. iv. Prove that if a, a be integral,

From this set of equations we can obtain the linear relation connecting the squares of

2^+1 (or less) assigned theta functions with half-integer coefficients.

Ex. V. Using the notation \\i,j\ for the matrix in which the ./-th element of the i-ih.

row is Xj,j-, prove that if Wj, ..., u,., v^, ..., v^ be 2.2^ arguments, and h\ )
'^"7 ^^^^^

integer characteristic,

and, denoting the determinant of the matrix on the left hand by {vi, Vj} and the determi-

nant of the second matrix on the right hand by {v}, deduce that

where A is the sum of the p elements of the row letter a. When the characteristic | f j

is odd, {ui, Uj} is a skew symmetrical determinant whose square root is* expressible

rationally in terms of the constituents ^\ui+ Uj; ^( j \^\ ui-uj ; ^( j . For

instance when p= l, we obtain, with a proper sign for the square root, the equation of

three terms t.

Since any 2p -|- 1 functions of the form 5 m -1- v^s ; ^ (
"

] U M^ - v^
; i (

°
)

are connected

by a linear equation with coefficients independent of u, it follows that if Mj, ..., u^,

V,, ..., v^he any 2m arguments, m being greater than 2", the determinant of m rows and

columns, whose (?', ^)th element is 5 Uj+ t^y
; i ("

)
-9 «t-^'j ; i

( )
>
vanishes identi-

cally. When i[) is odd and m is even, for example equal to 2^-1-2, this determinant is

* Scott, Theory of determinants (Cambridge, 1880), p. 71.

+ Halphen, Fonet. Ellip. (Paris, 1886), t. i. p. 187.
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a skew symmetrical determinant whose square root may be expressed rationally in terms of

the functions S Uj + Vy
; M "

) H "i~''j> H" ) * '^^^ result obtained may be written

wherein* the determinant {w,, Vj} has m rows and columns, ??i being even and greater than

2''. When m is odd the determinant {ui, Vj} itself vanishes.

A proof that for general values of tlie arguments the corresponding determinant

{Ui, Vj}, of 2p rows and columns, does not identically vanish is given by Frobenius, Crelle,

xcvi. (1884), p. 102.

A more general formula for the product of two theta functions is given below

Ex. ii. § 292.

292. We proceed now to another formula, for the product of four theta

functions. Let J denote the substitution

H-1 1 1 1).1-11111-11111-1
and Jrs be the element of the matrix which is in the ?'-th row and the 5-th

4

column ; then 2 /,> J.s = or 1, according as r 4=s, or r = s (r, s = 1, 2, 3, 4).
i= l

Let Wi, ii2, Us, Ui denote four columns, each of p quantities; written down

together they will form a matrix of 4 columns and p rows. Let Ui, U^, U^,

Ui be four other such columns, such that the j-th row of the first matrix

(j = 1, 2, ..., p) is associated with the ^-th row of the second by the equation

((u,)j, (u,)j, in,)j, {Ui)j) = J({ U,)j, ( U.^j, ( U,)j, ( Ui)j).

Let Vi, V2, V3, Vi and Fj, F„, V3, V^ be two other similarly associated sets,

each of four columns of p elements. Then if h be any matrix whatever, of j^

rows and columns, we have

AwjVi + hu2V2 + hi(sVs + hViVi = h Ui V^ -\- h U., V^ + h U;^ V-i + hUiV^]

this is quite easy to prove : an elementary direct verification is obtained by

selecting on the left the term hjk{ui)k{Vi)j + hjk(u2)k{v2)j+hjk(u3),c(v3)j+hjk{Ui)k{Viy

= hjk i^ [J,, ( U,)k + J^. ( f/.), + Jrs ( U,)k + Jn ( Ui)k] [Jn ( V,)j + /,, ( K),.

= hik\{^J\,){U,)k{y^)j^{^JnJr.)[{UMV.)j+{U,)k{V,\] + }

r r

= hjk {( U,)k ( V,)j + ( U2)k ( V,)^ + ( U,)k ( V,\ + ( Ui)k ( Vi\],

and this is the corresponding element oihU^ Fj + hU^V.^ + hUsVa +hU'iVi.

* The theorem was given by Weierstrass, Sitztmijghcr. der Berlin. Ak. 1882 (i.—xxvi., p. 506),

with the suggestion that the theory of the theta functions may be a priori deducible therefrom, as

is the case whenj)=l (Halphen, Fonct. Ellip. (Paris (1886)), t. i. p. 188). See also Caspary,

Crelle, xcvi. (1884), and ibid, xcvii. (1884), and Frobenius, Crelle, xcvi. (1884), pp. 101, 103.
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Now we have

^ {'ih, qi) ^ («2, (h) ^ (%, qs) ^ (ik, qd

—
2)

0'S.au,fi+2'Xhtir{n,.+qr')+'^b{nr+qr')^+2ni:Zq,.(nr+q,-')

111 > % ) >*3 > '>h

In the exponent here there are four sets each of four columns of p quantities

namely the sets

Uf, lly, 5'»-> q r )

we suppose each of these transformed by the substitution J. Hence the

exponent becomes

V Q^aUr-+2%hUr (iVr+<2r')+26(-;V,.+Q/)2+27rt2Q,.(AV+Q'r)

Ni,N„Ns,N,

wherein the summation extends to all values of N'rj given by

Nrj = i (ny + n.2j + risj + n,j - 2??^^),

for which all of w,.j are integers.

All the values Nrj will not be integral. But since iV,.,- — Ngj = Ugj - n^j the

fractional parts of N^j, N^j, N^j, N^j will be the same, = ^ e/, say, (e^' = or 1).

Let nirj be the integral part of Nyj. We arrange the terms of the right hand
into 2^ classes according to the 2^ values of e/. Then since

mrj = i (wy + «2j + n-ij + n^j - 2nrj) - ^e/,

every term of the left-hand product, arising from a certain set of values of

the 4p integers 7i,.j, gives rise to a definite term of the transformed product on

the right with a definite value for e/, while, since

7irj = I (my + 7ny + niaj + m^j - 2mrj) + ^ e/,

every assignable set of values of the 4p integers mrj and value for e/ (which

would correspond to a definite term of the transformed product) will arise,

from a certain term on the right, provided only the values assigned for m^j be

such that ^ (my + rtiy + my + m^j + e/) is integral.

Now we can specify an expression involving the quantities

f^j' =h (^"ij + ^hj + nisi + '>^hj + e/),

which is 1 or according as /x = (/ij, /Zg, ..., f^p) is a column of integers or

not. In fact if 6 = (ei, ..., e^) be a column of quantities each either or 1—

•

so that 6 is capable of 2^ values—the expression

— Se^'^'^'^ = ^ (Se'^'^*^-'^') . . . (te^^'^f'^p) =_ (i + e^^m.) (i + e27ri>,^
. . . (1 + e^^^t^p)

has this property; for when /j.^, ...
,

/j.^ are not integers they are half-

integers.
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Hence if the series ^ ^gwi'(m,+ni,+m3+nu+,') j^g attached as factor to every

terra of the transformed product on the right we may suppose the summation

to extend to all integral values of mrj,/or every value of e.

Then the transformed product is

1 3

Z^ r

where

pr=^e+Qr, pr' = ^€' + Qr',

SO that

Thus we have

^(Wi, gO^K, g'j)^(i/3, ?3)^(?/4, ?4)

f^..Q.+ i(0]-

This very general formula obviously includes the formula of Ex. xi., § 286,

Chap. XV. It is clear moreover that a similar investigation can be made for

the product of any number, h, of theta-functions, provided only we know of a

matrix J, of h rows and columns, which will transform the exponent of the

general term of the product into the exponent of the general term of the sum
of other products.

It is for this more general case that the next Article is elaborated.

It is not necessary for either case that the characteristics q^, q^, ... should

consist of half-integers.

Ex. i. If J be a half-integer characteristic, = Q, say, and we use the abbreviation

(», V, w,t; Q) = S (M
; Q) S {V

; Q) S {w
; Q)S{t; Q),

we have

<p{u+ a,u-a,v+ b, v-b, $) = ^ 2 e'"'"' 4i[u + b, u-b, v+ a, v-a; Q+ h(\)\y

where the summation on the right hand extends to all possible 2-p half-integer character-

istics i (
j ;

putting Q + ^r \ = R, so that R also becomes all 2-'' half-integer character-

istics, this is the same as

e'^^^^<f>{u + a,u-a,v+ b,v-b; (?) = 4; 2e"''*2'
^1 +'^ I^R'

(«-|-6, ?f-6, t--|-a, v-a ; R),
^ R

where,

if <?= *("'), ^=*(^)' *^®" l^l = ««'» \R\=^^\ \Q,R\=a^-a'p.
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By adding, or subtracting, to this the formula derived from it by interchange of v and

a, we obtain a formula in which only even or odd characteristics R occur on the right hand.

Thus, for j9= l, we derive the equation of three terms.

Ex. ii. If a, P, y, 8 be integers such that ay is positive and /3S is negative, p = aS-^y,

and r be the absolute value of p, prove that

e(u; ayrl^) 6^; -^Sr|^)= 2^e(u8-Vy; pySr
|

''^'') e(^-U^+ Va; - pa/3r
|

"^''^

where e[u; t *
)
denotes the theta function in which the exponent of the general term is

2Triu (n + e') + iTTT {n+ e'f+ 27rte {n+ e'),

and n, V are row letters of f elements, all positive (or zero) and less than r, subject to the

condition that (8/i - /3j')/p, {av - y/x)/p are integral, while e, /, g, h are row letters of p
elements which are all positive (or zero) and less than r.

Ex. iii. Taking, in Ex. ii., u, /3, y, S respectively equal to 1, 1, 1, -k, we find

^=v<lc-\-\, k being positive. Hence, taking X'= 3, prove the formula (Konigsberger,

Crelle, lxiv. (1865), p. 24), of which each side contains 2^ terms,

.e(»;
,jj:)

e(,.; 3.i|:')=..--e(o; r\\) e(2.;
^\l),

s, s' being rows of ^ quantities each either or 1.

293. We proceed now to obtain a formula* for the product of any

number, k, of theta functions.

We shall be concerned with two matrices X, x, each of p rows and k

columns ; the original matrix, written with capital letters, is to be trans-

formed into the new matrix by a substitution different for each of the

p rows ; for the J-th row this substitution is of the form

herein Vj is a positive integer; (Oj is a matrix of k rows and columns,

consisting of integers ; the determinant formed by the elements of this

matrix is supposed other than zero, and denoted by fXj; bearing in mind

that throughout this Article the values of r are 1, 2, ..., k and the values of j

are 1, 2, ...,p, we may write the substitution in the form

'j

The substitution formed with the first minors of the determinant of (Oj will

be denoted by Clj ; that formed from Q,j by a transposition of its rows and

columns will be denoted by Hj, Then the substitution inverse to - coj is

-^ fljl denoting the former substitution by \j, the latter is Xf'^.

* Prym und Rrazer, Neue Grundlagen...der allgemeinen thetafunetionen, Leipzig, 1892.
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If for any value of j a set of k integers, Prj, be known such that the k

quantities

rj

are integers, then it is clear that an infinite number of such sets can be

derived ; we have only to increase the integers Pr,j by integral multiples of

/A;. But the number of such sets in which each of Prj is positive (including

zero) and less than the absolute value of /*,- is clearly finite, since each

element has only a finite number of possible values. We shall denote this

number by Sj and call it the number of normal solutions of the conditions

T- —
— flj ( Pr, j) = integral

;

H
it is the same as the number of sets of k integers, positive (or zero) and less

than the absolute value of ixj, which can be represented in the form '>^j(pr,j),

for integral values of the elements p,.j.

The k theta functions to be multiplied together are at first taken to be

those given by

Sr = Se2^-^''-+^'-^V (r = 1, . .
.

, Ar),

wherein Br is such a symmetrical matrix that, for real values of the p
quantities X, the real part of the quadratic form denoted (§ 174, Chap. X.) by

BrX- is negative. The p elements of the row-letters Vr, iV^ are denoted by

Vrj, Xrj{j = 1, ...,p). The substitutions Xj are supposed to be such that
k

the equations (Xrj) = Xj(xrj) transform the sum X BrX,- into a sum

k

2 brXr', in which the matrices 6,. are symmetrical and have the property that
r = l

for real Xr the real part of 6;^,.^ is negative.

Taking now quantities irirj, iv, ,• determined by

(nirj) = V' (Nrj) = p njiXrj), (Vrj) = X^ ( F,. ,) = ^ a>,(F,,,),

k k k

the expressions S BrN/, X Nr Vr are respectively transformed to S hrrOr^
r=\ r=\ r=l

and

i \ {mr, j) ( Vr, j) =i\j{ Vr, ,) (v/i,, ,) = 2 VrMr I

i=l 7=1 r=\

If

hence the product IT©;, is transformed into !£ e'~'''''"'""^r
'"^', where the

'•=1 Ni Sk

quantities irirj have every set of values such that the quantities \j{mrj) take

all the integral values, Nrj, of the original product.
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As in the two cases previously considered in this chapter, we seek now to

associate integers with the quantities m^^j. Let (Prj) be any normal solution

of the conditions

^ Hj (P,.j) = integral, = (p,, j), say

;

H
put, for every value of j,

iN^j)-{P,.j) = f.j(M,.j) + {E\,j), (r = l, ..., k)

wherein (M^/j) consists of integers, and (J^'rj) consists of positive integers

(including zero), of which each is less than the absolute value of /jLj. For an

assigned set (P,., j) this is possible in one way ; then

(m,j) = ^ n, {K,j) = (p,.j) + rjHj (M,j) + J ft, (E',j)

= (n,j)+ - (e',,^), say,

rj
where

(nrj) = (Prj) + rjTij (M^j), (e',,,) = r.O,- (Kj) ;

by this means there is associated with (N^j), corresponding to an assigned

set (Pr,j\ a definite set of integers (w^.j). and a definite set {E\.j). We do

not thus obtain every possible set of integers for (?i^, j), for we have

^ ^J (n.; j) = ^ O^J {Pr, j) + f^j {Mr, j) = (P.,
./) + f^J

(M,, jX
'j 'j

so that the values of n,.j which arise are such that \j('n,.j) are integers.

Conversely let {nj.,j) be any assigned integers such that Xj (??,., j) are

integers
;
put

wherein the quantities M^j are integers, and the quantities P^j are positive

integers (or zero), which are all less than the absolute value of /ij ; this is

possible in one way; then taking any set of assigned integers (E'^j), which

are all positive (or zero) and less than the absolute value of /Xj, we can define

a set of integers N,., j by the equations, wherein \j~^ (Pr, j) = integral,

(N,,j) = {E\,j) + (P,.j) + ^j (Mrj) = (E',,j) + A,. (n,.j).

Thus, from any set of integers (N^j), arising with a term e~
'^

'

''
' of

k

the product 11 0^, we can, by association with a definite normal solution

(Pr,j) of the conditions \j~^{Prj) = integral, obtain a definite set (E'j.j), and

a definite set (%,j) such that \j(n,.j) are integers. And conversely, from any

set of integers (n,.j) which are such that Xj{nj.j) are integral, we can, by

association with a definite set (E\.j), obtain a definite normal solution (Prj)

and a definite set (iV^.j).
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k

It follows therefore that if the product IT 0^ be \vritten down Si...Sp times,
r = l

a term e' bemg associated in turn with every one ot the Si ... Sp

normal solutions of the p conditions \j~^ (P,) = integral, then there will arise,

once with every assigned set (E'rj), every possible set ("rj) for which Xj(nr,j)

are integers.

We introduce now a factor which has the value 1 or according as the

integers (nyj) satisfy the conditions \,- (rv, j) = integral, or not. Take k in-

tegers (Er.j), which are positive (or zero), and less than i-j
;
put

then

j= l r=l fj \ H'j ' ) T ~j j j

= l,(Nrj)(Er,j) = XrEr,
j

and this is integral when Nf is integral, that is, for all the values (nrj) which

actually occur; in fact the quantities iV^j defined by

{Nrj) = \j{7nr,j) = I
WjUj+'-^l = - O^j (nrj) + (E'rj) = Xj («..,) + (A\j)

are integral or not according as Xj (rirj) are integers or not.

Hence, for a given set Urj, and a given set E\j, the sum

E E r,j Er,j

wherein the summation extends to all positive (and zero) integer values of

{E^^j) less than r,, is equal to ri ... r)^ when {N^j) are all integral, and other-

wise contains a factor of the form

(g2-t>>.V,.>_ l)/(g2«.Vr.> _ 1),

which is zero because r,- {N^j) is certainly integral. Hence if we denote

R having the values 7*1, ..., Vp, then we can write

1 ^ 2in2 4«r(nr+-) , ^-rZe rR \ >*/=l,orO,
-.rpY E

according as \; (rj,.j) are all integers or not.

If then every term of the transformed series, in which, so far, only those

values of n^j arise for which \,(n^_ j) are integers, be multiplied by this factor,

(r, ...rp)*
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and the transformed series be completed by the introduction of terms of the

same general form as those which naturally arise in this way, so that now all

possible integer values of (rirj) are taken in, the value of the transformed

series will be unaltered. In other words we have

r r ^i- • -Spij'i. . .Vp) N^^ ..., Nk,E',E r

n,E,E r

wherein all possible integer values of (^i,., j) arise on the right ; thus the right-

hand side is equal to

E\E r \ ^rl-ti I

and this is the desired form of the transformed product. For con-

venience we recapitulate the notations ; E^ , E^ each denote a column of

^ integers, positive or zero, such that E\.^j <\y^}V ^r,j < ^*j
; (^V, j) = '^j^j i^'rj)')

(crj) = aj{E,.j); Sj is the number of sets of integral solutions, positive or

zero, each less than |/u.j|, of the conditions /u,j~^rjn,(P,._ ,)= integral

;

{Vr, j) = rf^ (Oj (Vrj) ; the function ©^ is a theta function in which the ordinary

matrices a, b, h (§ 189) are respectively 0, 6,., 1 ; by linear transformation of

the variables of the form V^ = h^Wr, and, in case the matrices Wj be suitable,

multiplication by an exponential e*" , these particularities in the form of

the theta functions may be removed.

The number of sets (E^j) is (ri...rp)*^; the number of sets (E'^j) is

|/Xi* . . . fip^
I

; the product of these numbers is the number of theta-products on

the right-hand side of the equation.

Bx. i. We test this formula by applying it to the case already discussed where toj is

an orthogonal substitution given by

«, = (-! 1 1 !),=&) say,

1-111
11-11
111-1

which is independent of^, r,= 2, br= b, k= 4; then /ij= — 16, Erj<2, E'rj<lG, and

' ^'^' R ^^'•''^ "^ ^^ i^r,j), - f'r,j= i« i-^'rj) ',

thence -d^u - Df2>>=-^2,;~-^i,j = i"^6g'**l> 6^*^-5 ^^ ^^^^ ^^® fractional part of -n*r,y is in-

dependent of ?•
: similarly the fractional part of - (e'rj) is independent of r and we may

write ~{f'r,j) = {^e'j + L^,j, if'j + -^2,i) •••> if'>+ ^4.i) wherein 2Lrj + e'j<l6. By the formula

B. 31
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3 {v, q + JY) = 6^'"'''^ S (v, q), when X is iutegral, we kuow that e^ ( i'r ;
*

,^,) is imlepeudent

of the integi-al part of f'r/ft. Hence the (16)*''= 21"'' tenus on the right-hand side of the

geneml formuhv, which, for a specified vahie of iu {£^r,j)y correspond to all the values of

ia)(/:'V,y), reduce to 2>' terms, in which, since {E'rj) = },a){h('j+ Lij, ..., h('j + L^j), all

values of «'(<2) arise. Hence there is a factor 2^'^'' and instead of the summation in

regard to E, £' we have a summation in regard to E, f', the right hand being in fact

C .
2'-''' 2 ne

and containing 2*p terms.

V^'IUe,j))

Now put ^{Ei,j+E2.j + Esj + E,,j)= itj + Mj,

Mj l)eing integral ; then the factor of a general term of the expanded right-hand product

which contains the quantities iw {Er,,) is

where

and

while

so that

k;^i= E,,i+ E.,,j + E^,j^-E^,j-2E,,j=
,i + 2{Mi-E,,i),

^'
""

./•

-
J

'

227rtXv,J•?^r,>= 7rl22f,•M,.,^• (mod. 2), =7rif . 2«r>
jr Jr

'

>

jjg2ini*r(n,.+i€') _rjjg2jrije;?l,.+if')-j g-mee'.

therefore the right-hand product consists only of terms of the form ne (v,., \^
) U

'^'"•

Hence the 2*'' terms arising, for a specified value of e', for all the values of Er^j, reduce to

2^ terms, and there is a fm-ther factor 2^''—the right hand being

C.218P 2 rne('iv,|'') e""'"',

where

C=(s,...s^)-i(;-,. ..;•,,)-*=(«,. ..s,,)-*2-'"'= s-"2-"'.

To determine the value of C we must know the ninuber (.s) of positive integral

solutions, ttich less than 16, of the conditions ^w (.r) = integral, =(j/) say, namely of the

conditions, .Vi + .V2+ .r.i+ .t\= 2{.x,.+ >/r). Now of these any positive values of .)\, .rj, .fg, :r4

(<16) are admissible for which .r1-t-.r2-f-.r3-f.r4 is even. They must therefore either be

all even, possible in 8* ways, or two even, possible in 6.8^. 8- ways, or all odd, possible in

8* ways. Hence s= 8 . 8*= 2>». Hence C= l/2i'^" 2*"= l/2»»" and therefore C.2^»p=— .

Making now in the formula thus obtained, which is

ne ( i;, 0) = ^, 2^e-^'' ne [^v, h
('J]

:

the .substitution V^ = hC,., we have Vr = ^{]\ + V., + V^ + V^ - 2 1',.) = /"<,•> where

n,=:k{U^+i\+l\+i\-2U;); and if we multiply the left hand by c«f^>'+«^»*+«^''+«^A

which is equal to e««r+««.'+««3^««.', we obtain

n5(r„0) = l2e-'''"n^[»,,iQ ,
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Therefore if Q^, Q^, Q^, Qi denote any characteristics, and, as formerly, Qq denote the

period-part corresponding to Q^, we have

nS{U,., Qr) = ne-^^^'" ^'-^SiUr+QQ , o) = nc-^(^'-' ^''> n3{U,+QQ , o),

r r
'^

r r
^

ofwhich the first factor is easily shewn to be He ~ ''^^ ^'^'
'

^'^
, if (g-j , §'2 , ^j , g'4) = ^ w ( §i , §2 j §3 » $4) i

r

thus

which is exactly the formula previously obtained (§ 292).

Ex. ii. More generally let X = - wy be any matrix such that the linear equations

(X,.) = X(.tv)give

^,'+ +AV= »K.V+ +•%'),

wherein wi is independent of .rj, ..., x\ ; then, since, by a property of all linear substitutions,

the equations
(
Y^)= X («/,-) lead to

we have also*

^'»a4;+ + ^'^aTr^ia|+ +-^^a4,'

^"1 A'l + + 3'jtZj= ?« (?/i .x'l + +yit.^fc).

Hence, if h be any matrix of jo rows and columns and

(A',,,) = XGiv,y). 0'= 1, "',P\
we have

AZj Fi + AZ2 F2+ . . . + hXk Yk = 2 A,-,
j
2 A',., ^ F,, f

=m 2 A^, j 2.c,. yv/,., ;=m {hx^T/^ + ... + hxk^,,),

i,.) r i,j r

where A'l, x\, etc. now denote rows oip quantities.

Thus any orthogonal substitution furnishes a case of our theorem. Taking a case

where

!,= !, rj= r, o>j= a>, n= ±r^, E,.^j < r, E',.^j < |/i| <
we have

r, ill

so that the new characteristics will be r-th pai-ts of integers.

Suppose now, in particular, that the substitution is

{X^,...,X,,...X^)=\{2-k 2 2 ){x^,...,Xr,...,Xj,\

i
2 2-k 2

2-k

* Therefore mxy = XY:^\x .\ij = \\xij, so that \\= m; hence the determinant formed with the

elements of X has one of the values >/?;i*^.

31—2
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which gives

and
A\ + + At = .ri + +.rt, A\- A\= x.^-.Vi, etc.

The previous example is a particular case, namely when ^-= 4. In what follows we

may suppose i- odd so that rj= k. When k is even ?y may be taken= ^^. The work is

arranged to apply to either case.

The fractional parts of - («V >) being independent of the suffix r—because

- f
'i . J

- - *'>.} = E'i, i - ^\, h etc.,

—we may put -(f'r,j)= (- f/ + -^i,j> ••> ~<j' + -^*.>)> *^"d "^^7 therefore write

ne(.v.
;;/;;)

in the form ne(.,.;>j).

(]./+A-.,)-J"(-eV,y)=J"(^V„)

shews that all values of -e/(<l) do arise. Hence for a given value of (Br.j) there are,

instead of
\

fi''P= i-'^-p terms given by the general formula, only r^, and the factor r<**~^>''

divides out.

The values of -^(fr.j) given by the general formula are in number \r\^, corresponding

to all the values of {Ef^j). As before the fractional part of -^ {(r,j) is independent of r. Let

ne

The equation

J.(ii',.; + + A*,y)=|+^Vy,

where > <l ; then

i(.,.,)= ^.a,(^,.,) = 0(AY> + +^..y)-^,,,)E(^|,^,...),(mod. 1).

The factor in the general term of the expanded product on the right hand which

contains ty^j is

„ 2n-t - € An . + -(.)
K=Un.e r r,,"- r,i r j'

,

J r

Now

2 - fr, >= 2 (Er, >) = (j+ kMj ;

r ' r

therefore, as r is >t or a factor of k,

ne '^
••''^ ' =e ' ' r=e r

r

and

2-*r.>%.>= 2 j^(Ei,j+ +Ek,j)-Er,j \7lr,j

r2e ~| 2= 2 -^ +2Mj-Erj \7lr^j = j_2f/)lr,j{mod. 1).
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Hence the factor above is

2m —
e ^ '

T^ \„ 2wi^ (n +-) —

i

A= ne k \ r r/ \e
'-r

and the general term of the right hand is

Since ^(fr,j) = (^+ 2Mj-F^^j^ we may suppose all values of (j<k to arise. Hence

instead of 7*p we have k" and a factor ?^/^p divides out.

To evaluate the factor (rj ... rp)-i (Sj ...s,,)-'^, =C, say, we must enquire how many

positive solutions exist of the conditions

^ (^1+ +x^)-^r= integral,

namely, how many solutions of the conditions

j(.ri + +^i.) = integral,

exist, for which each of ^j, ,.., x^.<i* ; let s be this number ; then C=s-Pr-^, and

k
where f'<r, e <k, the number of terms on the right being {rk)P. For values of «>- we

may utilise the equation S{v, q+ N)= e^'"^^'^' ^{v, q). For example, when ^= r= 3 there

are S^p terms, corresponding to characteristics (o/o ) • When ^= 4, r=2, the character-

istics -r- = o will, eflFectively, repeat themselves. We can reduce the number of terms from

« \q^^ '%) =1 and so the formula reduces to8" or I^P to 22p. We shall thus get factors

that already found.

Ex. iii. Apply the formula of the last example to the orthogonal case given by (»y= w,

(A; F, Z, T, U, V) = \u>{x, y, z, t, ic, V),

0)= (
1 1

1 1

1 -1

-1 1

which lead to /x= 64 and

X J^Y +Z +T +17 +V =x +7/ +2 +t +u +v

Z-T=x-y, U-V=z-t, X-r=u-v,

X+Y=x+y, Z+T= z+ t, U+V= u+v.
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CHAPTER XVII.

Theta relations associated with certain groups of characteristics.

294. For the theta relations now to be considered*, the theory of the

groups of characteristics upon which they are founded, is a necessary

preliminary. This theory is therefore developed at some length. When the

contrary is not expressly stated the characteristics considered in this

chapter are half-integer characteristics-f- ; a characteristic

^q^, 92, ..., qp

is denoted by a single capital letter, say Q. The characteristic of which all

the elements are zero is denoted simply by 0. If R denote another charac-

teristic of half-integers, the symbol Q + R denotes the characteristic, S = ^s,

* The present chapter follows the papers of Frobenius, Crelle, lxxxix. (1880), p. 185, Crelle,

xcvi. (1884), p. 81. The case of characteristics consisting of ji-th parts of integers is considered

by Braunmiihl, Math. Annul, xxxvii. (1890), p. 61 (and il/at/t. Annul, xxxii. (1888), where the

case n = 3 is under consideration).

To the literature dealing with theta relations the following references may be given : Prym,

Untersiichungen iiber die IHeinann'sche Thetaformtl (Leipzig, 1882) ; Prym u. Krazer, Acta Math.

III. (1883) ; Krazer, Muth. Annul, xxii. (1883) ; Prym u. Krazer, Neuc Grundlaijen einer Theorie

der ullgemcinen Thetafunctionen (Leipzig, 1892), where the method, explained in the previous

chapter, of multiplying together the theta series, is fundamental: Noether, Math. Annul, xiv.

(1879), xvi. (1880), where groups of half-integer characteristics are considered, the former paper

dealing with the case p-^, the latter with any value of p; Caspary, Crelle, xciv. (1883), xcvi.

(1884), xcvii. (1884) ; Stahl, Crelle, lxxxviii. (1879) ; Poincar^, Liouville, 1895 ; beside the books

of Weber and Schottky, for the case p = 3, already referred to (§§ 247, 199), and the book of

Krause for the case p = 2, referred to § 199, to which a bibliography is appended. References to

the literature of the theory of the transformation of theta functions are given in chapter XX.
In the papers of Schottky, in Crelle, cii. and onwards, and the papers of Frobenius, in

Crelle, xcvii. and onwards, and in Humbert and Wirtinger (loc. cit. Ex. iv. p. 340), will be found

many results of interest, directed to much larger generalizations ; the reader may consult Weier-

strass, Berlin. Munatsber., Dec. 1809, and Crelle, lxxxix. (1880), and subsequent chapters of the

present volume.

t References are given throughout, in footnotes, to the case where the characteristics are n-th

parts of integers. In these footnotes a capital letter, Q, denotes a characteristic whose elements

are of the form q'Jn, or of the form qjn, ql , q^ being integers, which in the ' reduced ' case are

positive (or zero) and less than n. The abbreviations of the text are then immediately extended

to this case, n replacing 2.
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whose elements s/, Si are given by s{ = q/ -\- V;' , Si = qi + ri. The charac-

teristic, ^t, wherein i/= s/, ti = Si (mod. 2) and each of t^, ...,tp is either

or 1, is denoted by QR. Unless the contrary is stated it is intended in

any characteristic, ^q, that each of the elements q/, qi is either or 1. If

^q, \r, ^k be any characteristics, we use the following abbreviations

I Q i

= 59' = ^1 ^i' + + ^i^^/' \Q^^\ = (f'
- (p' = s (f/^n-

-
qi n),

\Q,R,K\ = \R,K\ + \K,Q\ + \Q,R\, (j^ = e^^i' = e--(9.''-.+ - +'/'i>'p)

;

further we say that two characteristics are congruent when their elements

differ only by integers, and use for this relation the sign =. In this sense

the sum of two characteristics is congruent to their ditference. And we

say that two characteristics Q, R are syzygetic or azygetic according as

\Q, -R
I

= or = 1 (mod. 2), and that three characteristics P, Q, R are

syzygetic or azygetic according as
|

P, Q, i^
|

= or = 1 (mod. 2).

Ex. Prove that the 2/)+ l characteristics arising in § 202 associated with the half

periods u"' "', u"'' "', ^i"" "-, ..., u"" ^^', ?("' " are azygetic in i)airs. Fvirther that if any four of

these characteristics, A, B, C, D, be replaced by the four, BCD, CAD, ABB, ABC, the

statement remains true ; and deduce that every two of the characteristics 1, 2, ..., 7 of

§ 205 are azygetic.

295. A preliminary lemma of which frequent application will be made

may be given at once. Let fij, i, ..., Oj, „, ..., a,, i, •••, «r, »i be integers, such

that the r linear forms

Ui = a,; liTi + + a,-, nOSn, (*" = 1, % •, r),

are linearly independent (mod. 2) for indeterminate values of x^, ...,Xn',

then if aj, ..., a,, be arbitrary integers, the r congruences

Ui = ai, ... , Ur = a,-, (mod. 2),

have 2"~^ sets of solutions* in which each of a?i, ...,«« is either or 1. For

consider the sum

1 t [ 1 + e^'
' ^' -«')] . . . [ 1 + e'^*

( ^'- "'•>].

•^ a;,, ..., «•«

wherein the 2" terras are obtained by ascribing to a;i, ..., x^ every one of the

possible sets of values in which each of a^j, ..., x^ is either or 1. A term in

which x-i, ..., Xn have a set of values which constitutes a solution of the

proposed congruences, has the value unity. A term in which Xi, ...,Xndo

not constitute such a solution will vanish ; for one at least of its factors will

vanish. Hence the sum of this series gives the desired number of sets of

* When the forms U^, ..., U, are linearly independent mod. m, the number of incongruent

sets of solutions is hi"~'". In working with modulus m we use w= « w , instead of e'^ ; and instead

of a factor 1 + e" '""' we use a factor 1 + /li + m'"+ ••• +/u"~i, where /x, = w '""'.



488 PROOF OF A LEMMA. [295

solutions of the congruences. Now the general term of the series is typified

by such a term as

i_ V.'ri(t'',-rt,)+»rt(i7j-«.i)+ ... + tri(£/^-a^)

— X

where /it may be 0, or 1, or ..., or j); and this is equal to

Or ^ -^
>

^ X

where

Ci = ih,i+ +«^,i, {i= 1, 2, ..., n),

and, therefore, equal to

1^
g-«(a,+ ...+a^)

^ ^ ^ ^„.,_^
^ J _^ ^„,.,,^^

. . . (1 + e-'^'-)
;

now, when fi>0, one at least of the quantities Ci, ..., c„ must be = 1 (mod. 2),

since otherwise the sum of the forms Ui, ..., Z7^ is = (mod. 2), contrary to

the hypothesis that the r forms Ui, ..., Ur are independent (mod. 2); hence

the only terms of the summations which do not vanish are those arising for

/A = 0, and the sum of the series is

Is 1Or ^ • '

^ X

or 2"-^.

Ex. i. If, of all 2^P half-integer characteristics, ^q, the number of even characteristics

be denoted by g, and h be the number of odd characteristics, prove by the method here

followed that ^r- A, which is equal to Se'"''^, is equal to 2p. This equation, with g+ h= 2^,

determine the known nimibers* (7= 2p~i (2^+ 1), /i = 2P~i (2"- 1).

Ex. ii. If ^a denote any half-integer characteristic other than zero, and hq become in

turn all the 2^ characteristics, the sum 2e'^*'^' Ql = 2e'^''(«9'-a'^) vanishes. For it is equal to

(l+e'^.)(l+eT«a.) (l+e-««'') (i+c-^^V)^

and if ^a be other than zero, one at least of these factors vanishes. On the other hand it

is obvious that 2e" '

"• ^ I = 2^p.

We may deduce the result from the lemma of the text. For by what is there proved
there are 2^p-^ characteristics for which \A, Q\ = (mod. 2) and an equal number for

which \A, Q\ = l.

296. We proceed now to obtain a group of characteristics which are

such that every two are syzygetic.

Let Pi be any characteristic other than zero ; it can be taken in 2^—1
ways.

Let P^ be any characteristic other than zero and other than Pj, such that

I

P„ P^
I

= (mod. 2);

• Among the n!^ inconRruent characteristics which are 7!-th parts of integers, there are
„r-i (r,p + „ - 1) for which \Q\ = (mod. n), and nP"' (nf> - 1) for which \Q\ = r (mod. n), when r

is not divisible by n.
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by the previous lemma (§ 295), P^ can be taken in 2^~^— 2 ways; also by

the definition, if P^P^ be the reduced sum* of Pi, P^,

1
P„ P,P,

I

=
I
A, PJ +

I
A, P,

I

= (mod. 2).

Let P3 be any characteristic, other than one of the four 0, Pi, P^, P1P2,

such that the two congruences are satisfied

IP3, Pi| = 0, |P3,P,| = 0,(mod. 2);

then P3 can be chosen in 2^^"^ — 2^ ways ; also, by the definition,

I

P3, P,P,
I

=
I

P3, Pi
I

+
I

P3, P.
I

= 0, (mod. 2),

and

I

P3, P3P1 1 = 0, etc.

Let P4 be any characteristic, other than the 2^ characteristics

V( -^l> -t'^2} -^3> ^\^2j -^2-^3> -^3-^lJ ^l-t^2^3)

which is such that

I

P„ Pi
I

= 0,
I

P„ P.
I

= 0,
I

P4, P3 1 = 0, (mod. 2) ;

then P4 can be chosen in 2^^~^ — 2^ ways, and we have

I

P,P3, P4 1
=

I

P., P4
1 +

I

P3, P.
I

= 0, (mod. 2), etc.,

and

I

P1P.P3, P4
1
=

I
A, P4

1 +
I

P., P.
1
+

I

Pa, P4 N 0, (mod. 2).

Proceeding thus we shall obtain a group of 2*' characteristics,

formed by the sums of r fundamental characteristics, and such that every

two are syzygetic. The r-th of the fundamental characteristics can be

chosen in 2^p-^+i — 2''~^ = 2''-i (2"^~^+^ — 1) ways; thus we may suppose r as

great as p, but not greater. Such a group will be denoted by a single

letter, (P) ; the r fundamental characteristics. Pi, P2, P3, ..., may be called

the basis of the group. We have shewn that they can be chosen in

(2^ — 1) (2^P-^ - 2) (2^-2 — 2^) . . .
(2"P-''+^ — 2'-^)/lr,

or
(22P— 1)(2^--- l)(22^-*-l)... (2-^-^''+2_ l)2^>'^'''~'^y\r

ways. But all these ways will not give a different group ; any r linearly

independent characteristics of the group may be regarded as forming a basis

of the group. For instance instead of the basis

P P P
we may take, as basis,

P P P P

wherein P1P2 is taken instead of P, ; then Pi will arise by the combination

* So that the elements of P1P3 are each either or ^.
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of PiP-i and /\. Hence, the number of ways in which, for a given group, a

basis of 7- characteristics, P/, . .
.

, P/, may be selected is

(2'- - 1 )
(2'- - 2) ... (2'- - 2'-»)/|r,

for the fii-st of them, P,', may be chosen, other than 0, in 2'' — 1 ways ; then

P/, other than and P,', in 2*" — 2 ways ; then P3 may be chosen, other than

0, P/, P,', Pi Pa, in 2'' — 2- ways, and so on, and the order in which they are

selected is immaterial.

Hence on the whole the number of different groups, of the form

0,P„P. PiP,, ...,P,P,P,,...

of 2'' characteristics, in which every two characteristics of the group are

syzygetic*, is

(29' — l)(2'*-2_ X) (2"^P-^+2 — 1)
(2'-^ i)(2'-^ - 1) (2 - ly ^

Such a group may be called a Gopel group of 2'' characteristics. The
name is often limited to the case when r=p, such groups having been

considered by Gopel for the case j9 = 2 (cf. § 221, Ex. i.).

297. We now form a set of 2'' characteristics by adding an arbitrary

characteristic A to each of the characteristics of the gi-oup (P) just obtained
;

let P, Q, R be three characteristics of the group, and A', A", A'", the three

corresponding characteristics of the resulting set ; then

\A',A",A"'\ = ^AP,AQ,AR\ = \P,Q,R\=\Q,R\ + \R,P\ + \P,Q\,(mod.2),

as is immediately verifiable from the definition of the symbols; thus the

resulting set is such that every three of its characteristics are syzygetic, that

is, satisfy the condition

\A',A",A"'\ = 0, (mod. 2);

this set is not a group, in the sense so far employed ; we may choose ?- + 1

fundamental characteristics A, A^, ..., A^., respectively equal to A, ^P,,
AP^j ..., APr, and these will be said to constitute the basis of the system;

but the 2'' characteristics of the system are formed from them by taking only

combinations which involve an odd number of the characteristics of the basis.

The characteristics of the basis are not necessarily independent ; there may,
for instance, exist the relation A + AP^ = AP., or A = P^P^. But there can

be no relation connecting an even number of the characteristics of the basis

;

for such a relation would involve a relation connecting the set, Pj, Pj, ..., P^,

of the group before considered, and such a relation was expressly excluded.

Hence it follows that there is at most one relation connecting an odd number

• When the characteristics are H-th parts of integers, the number of such syzygetic groups is

(n«P- 1) ... (h2p-2^ - 1) divided by («'•- 1) ... (n - 1).
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of the characteristics of the basis ; for two such relations added together

would give a relation connecting an even number.

Conversely if A, A^, ..., Ar be any r+1 characteristics, whereof no

even number are connected by a relation, such that every three of them

satisfy the relation

I

A', A", A'"
I

= 0, (mod. 2),

we can, taking P^^A^A, obtain r independent characteristics Pj, ..., P,., of

which every two are syzygetic, and hence, can form such a group (P) of 2''

pairwise syzygetic characteristics as previously discussed. The aggregate of

the combinations of an odd number of the characteristics A, A^, ..., A^ may

be called a Gopel system* of characteristics. It is such that there exists no

relation connecting an even number of the characteristics which compose the

system, and every three of the 2'' characteristics of the system satisfy the

conditions

I

A', A", A'" = 0, (mod. 2).

We shall denote the Gopel system by (AF).

To pass from a definite group, (P), of 2*" pairwise syzygetic characteristics

to a Gopel system, the characteristic A may be taken to be any one of the

2^ characteristics. But if it be taken to be any one of the characteristics of

the group (P), we shall obtain, for the Gopel system, only the group (P) ; and

more generally, if P denote in turn every one of the characteristics of the

group (P), and A be any assigned characteristic, each of the 2'" characteristics

AP leads, from the group (P), to the same Gopel system. Hence, from a

given group (P) we obtain only 2~^~'' Gopel systems. Hence the number of

Gopel systems is equal to

(2'-l)(2'--l)...(2-l) •

We shall say that two characteristics, whose difference is a characteristic of

the group (P), are congruent, mod. (P). Thus there exist only 2-^~*'

characteristics which are incougruent to one another, mod. (P).

It is to be noticed that the ^^p~^ Gopel systems derived from a given

group (P) have no characteristic in common; for if Pj, Pg denote character-

istics of the group, and A^, A^ denote two values of the characteristic A, a

congruence J-jPi = ^oPa would give A^^A^P^P.^, which is contrary to the

hypothesis that A-^ and A^^ are incongruent, mod. (P). Thus the Gopel

systems derivable from a given group (P) constitute a division of the 2^

possible characteristics into 2-^~'" systems, each of 2'' characteristics. We can

however divide the 2-^ characteristics into 2^^"*' systems based upon any

group (Q) of 2'' characteristics ; it is not necessary that the characteristics of

the group {Q) be syzygetic in pairs.

• By Frobenius, the name Gopel system is limited to the case when r=p.
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Ex. For p= % r= 2, the number of groups {P) given by the formula is 15. And the

number of Goi>el systems derivable from each is 4. We have shewn in Example iv.,

§ 289, Chap. XV., how to form the 15 groups, and shewn how to form the systems

belonging to each one. The condition that two characteristics /*, ^ be syzygetic is equiva-

lent to
I

PQ
\
= \P\-\-\Q\ (mod. 2), or in words, two characteristics are syzygetic when their

sum is even or odd according as they themselves are of the same or of different character.

It is immediately seen that the 15 groups given in § 289, Ex. iv., satisfy this condition.

The four systems derivable from any group were st<ited to consist of one system in which

all the characteristics are even and of three systems in which two are even and two odd.

We proceed to a generalization of this result.

298. Of the l^^" Gopel systems derivable from one group (P), there is a

certain definite number of systems consisting wholly of odd characteristics,

and a certain number consisting wholly of even characteristics*. We shall

prove in fact that when p>r there are 2"^^ (2' + 1) of the systems which

consist wholly of even characteristics, a being p — r; these may then be

described as even systems; and there are 2"^"' (2"^ — 1) systems which may be

described as odd systems, consisting wholly of odd characteristics. When p = r,

there is one even system, and no odd system. In every one of the 22'' (2''— 1)

Gopel systems in which all the characteristics are not of the same character,

there are as many odd characteristics as even characteristics.

For, if Pi, ..., Pr be the basis of the group (P), a characteristic A which

is such that the characteristics A, AP^, ..., APr are all either even or odd,

must satisfy the congruences

I

ZP:
I

=
I

ZPJ = =
! Z

!,
(mod. 2)

which are equivalent to

\X,Pi\ = \Pi\, (i = l, 2, ...,r),

as is immediately obvious. Since, when
|
X, Pj

]

=
|
Pi |, and \X, Pj

|
=

|
Pj

|,

|Z,PiP,|^|Z,Pi| + |Z,P,| = |X,Pi| + |X,P,| + |Pi,P,|

^IP1I + IP,I + IP1,P,I^'P1P,I,

etc., it follows that these r congruences are sufficient, as well as necessary.

These congruences have (§ 295) 2-'p~'' solutions. If A be any solution, each

of the 2'' characteristics forming the Gopel system (AP) is also a solution

;

for it follows immediately from the definition, if P, Q denote any two

characteristics of the group, that

|^PQ| = |^| + |P| + |Q| + |^,P| + |^,Q| + |P,Q|

= |^| + 2|Pl + 2|Q| + |P,Qi

= 1^1,

because
\

P, Q |

= 0. Hence the 2^^p~^ solutions of the congruences consist of

* This result holds for characteristics which are n-th parts of integers, provided the group (P)

consist of cliaracteristics in which either the upper line, or the lower line, of elements, are zeros.
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2w-rl2^ = 2^-2r characteristics A, and the characteristics derivable therefrom

by addition of the characteristics, other than 0, of the group (P) ; namely

they consist of the characteristics constituting 2^^"*'* Gopel systems, these

systems being all derived from the group (P). In a notation already

introduced, the congruences have 2^~^'' solutions which are incongruent

(mod. (P)).

Ex. If S be any characteristic which is syzygetic with every characteristic of the

group (P), without necessarily belonging to that group, prove that the 2^p-^^ characteristics

SA are incongruent (mod. P), and constitute a set precisely like the set formed by the

characteristics A.

299. Put now a = p — r, and consider, of the 2^'^ Gopel systems just

derived, each consisting wholly either of odd or of even characteristics,

how many there are which consist wholly of odd characteristics and how

many which consist wholly of even characteristics. Let h be the number of

odd systems, and g the number of even systems. Then we have, beside the

equation

g + h = 2"^,

also

R

wherein Pj, ..., Py are the basis of the group (P), and R is in turn every one

of the 2-^ possible characteristics. For, noticing that the congruence

I

RP
I

=
I

P
I

is the same as
|
P, P |

=
|

P
|

, it is evident that the element of

the summation on the right-hand side has a zero factor when P is a

characteristic for which all of P, PPi, ..., MPr are not of the same

character, either even or odd, and that it is equal to 2~^e'"'-^' when

these characteristics are all of the same character ; while, corresponding

to any value of P, say R = A, for which all of P, RP^, ..., RPr are of

the same character, there arise, on the right hand, 2*" values of P, the

elements of the Gopel set {AP), for which the same is true.

Now if we multiply out the right-hand side we obtain

R -< 1» 21 ••• R

wherein 2 denotes a summation extending to every set of yu. of the
p,, A, ...

characteristics Pi, ..., P^, and /u. is to have every value from 1 to r; but

we have, since Pj, P^, ... , are syzygetic in pairs,

\R\ + \R,P,\ + + \R,P^\ = \RP,...P^\ + \P,\^ -f-lP^I,

and therefore

^Qm\R\->rni\R,P^\-\-...+Tti\R,P^\-ni\P^\-...-ni\P^\ _ 5]gn-il iJP,...P^ 1
_ ^gTilSI

R R S

where 8,=RPi ... P^, will, as P becomes all 2-^ characteristics in turn.
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also bocome all characteristics in turn; also Se"^' = Se''''^' is immediately
R s

seen to be 2^ ; it is in fact the difference between the whole number of even

and odd characteristics contained in the 2* characteristics. Hence

'2^(g-h) = '2^'
r(r — I)

l-\-r+ ^
^,

' + + 1 = 2^[{l+U-y]r=, = ^^',

and therefore g — h = 2^"'' = 2'.

This equation, with g + Ji = 2-'^, when a > 0, determines g = 2"^"' (2"^ + 1)

and h = 2'^' (2' — 1), and when o- = determines ^ = 1, /< = 0.

These results will be compared with the numbers 2^^ (2^+1), 2^*"' (2^' - 1),

of the even and odd characteristics, which make up the 2* possible character-

istics.

If Pi denote every characteristic of the group (P) in turn, and P,„ denote

one characteristic of the bases P,, ..., Pr, and M be such a characteristic that

the 2'' characteristics RPi are not all of the same character, at least one of

the r quantities R, P^ + 1 P,„ is = 1 (mod. 2), and therefore the product

n {1 +e'r« i'.«;+-.iiJ, P-nlj

in=l

is zero. But, in virtue of the congruences,

1
P,P,

i

= |P,
1
+ 1 P,l, \R.Pi\ + \R,Pj\ = \R,PiPj\,

this product is equal to

2 gwilP,\ +m\R, Pi. QY g-ni Ri V g»riiiJP,l_

1=1
'

.=1

Now e" '

^^'
' is 1 or — 1 according as RPi is an even or odd characteristic.

Hence the system of 2'' characteristics RP, contains as many odd as even

characteristics, and therefore 2''~^ of each, unless all its characteristics be of

the same character.

300. The 2^ Gopel systems thus obtained, each of which consists wholly

of characteristics having the same character, either even or odd, have a

further analogy with the 2^ single characteristics. We have shewn (§ 202,

Chap. XI.) tiiat the 2'^' characteristics can all be formed as sums of not more

than j) of 2]) + 1 fundamental characteristics, w^hose sum is the zero character-

istic; we proceed to shew that from the 2-'^ Gopel systems we can choose

2(7 + 1 fundamental systems having a similar property for these 2^ systems.

Let the s = 2.-" Gopel systems be represented by

(.^,P), ...,(..1.P),

the first of them, in a previous notation, consisting of A^ and all characteristics

which are congruent to A^ for the modulus (P), and similarly with the others.

Then we prove that it is possible, from A^, ..., J.» to choose 2a- + 1 character-
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istics, which we may denote by A^, ..., ^acr+i, S'lch that every three of them,

say A', A", A"', satisfy the condition

^', .1", ^"'i = l, (mod. 2);

but it is necessary to notice that, if P be any characteristic of the group (P),

I

A'P, A", A'" \,
=

I

A', A", A'"
\

+ \P,A"\ + \P, A'"
\,

is =
I

A', A", A'"
I

; for
I

P, ^"
I,
=

I

P
I,

is also =
|

P, A'"
|

; hence, if B', B", B'"

be any three characteristics chosen respectively from the systems {A'P),

(A"P), (A'"P), the condition
]

A', A", A'"
\

= 1 will involve also
|

B', B", B'"
|

= 1

;

hence we may state our theorem by saying that it is possible, from the
2"^'^ Gopel systems, to choose 2o- + 1 systems, whereof ever}' three are azygetic.

Before proving the theorem it is convenient to prove a lemma ; if P be

any characteristic not contained in the group (P), in other words not

= (mod. (P)), and R become in turn all the 2'^'^ characteristics Ai, ..., Ag,

then*
2e^i\R,B\ = Q
R

For let a characteristic be chosen to satisfy the ?' + 1 congruences

I

X, P
I

= 1,
I

X, Pi
I

= 0, ...,
I

Z, P^
I

= 0, (mod. 2),

and, corresponding to any characteristic R which is one of A^, ..., A^, and

therefore satisfies the r congruences \R, Pi\ =
\
Pi\, take a characteristic

S = RX; then

i^,P|-|P,Pl = |X,P| = l,and \S,Pi\ = \RX,Pi\~\R,Pi\ + \X,Pi\ = \Pi\,

because
|
X, Pi |

= ; hence the characteristics A^, ..., Ag can be divided into

pairs, such as R and ;S^, which satisfy the equation g'^i i -s'. ^ I = — e^i
\R, b\^ This

provesf that Se'"''^"^' = 0.

R

We now prove the theorem enunciated. Let the characteristic A^ be

chosen arbitrarily from the s characteristics A^, ..., Ag] this is possible in

2^ ways. Let Ao be chosen, also from among Ai, ...,As, other than Ai]

this is possible in 2-'^ — 1 ways. Then Ag must be one of the characteristics

Ai, ...,As, other than A-^,A2, and;}: must satisfy the congruence
|
Ai,A2,X

|

=1.

The number of characteristics satisfying these conditions is equal to

* We have proved an analogous particular proposition, that if B be not the zero characteristic,

and R be in turn all the 2-p characteristics, Se"' '

^' "^
' = (§ 295, Ex. ii.).

R

t If i? be all the 2«p characteristics in turn, Se'^' '

"• "^
' = 2^^. If P be one of the group (P),

R

and R be one oi A^, ... , A„ so that \R,P\ = \P\,we have 2e"' ^' ''^
' = «''* '-^^ 2-<'.

«

+ We do not exclude the possibility ^3= ^1^3. Since \A-^,A.2, AiA^\ = \Ai, A^], it is a

possibihty only if \A^, ^^l^l.
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wherein R is in turn equal to all the characteristics A^, ..., Ag. For a term

of this series, in which B satisfies the conditions for ^3, is equal to unity*,

while for other values of R the terms vanish. Now, since |^i, A^, R\

=
I

R, A1A2 \-\-\Ai, Ail, ^^^ series is equal to

R

the characteristic A^A^ cannot be one of the group (P), for if A^A^ = P, then

A2 = A^P, which is contrary to the hypothesis that Ai, ..., Ag are incon-

gruent for the modulus (P); hence by the lemma just proved the sum of the

series is 2^^'^^, and .4 3 can be chosen in 2^~^ ways.

We consider next in how many ways A^ can be chosen ; it must be one of

^1, ..., Ag other than ^1, A^, A3 and must satisfy the congruences

lA„A„X\ = l, \A,,A3,X\ = 1,

which, in virtue of the congruence \Ai,A^,A3\ = l, and the identity

I

A^, A3, X
\
+ \

A3, A^, A
I

+
I

Ai, Ai, Jl
I

=
I

Ai, Az, A3
\,

involve also
|
A2, A3, X

j

= 1. The number of characteristics which satisfy

these conditions is equal to

2-22(1 -e«l^..^s.'fn)(i -e^i\A,,A„R\y

R
or

2-'<T-2 _ 2-2 5|g"-i|-4i. A., R\ _ 2-2 5^gTtM,, A3, R\ _^ 2""22g'"l^i, Ai, R\+wi\Ai, A3, B\

R R R

where R is in turn equal to every one oi A^, ..., Ag] hence, in virtue of the

lemma proved, using the equations,

I

^1, Ai,R\ = \A^,Ai\-\-\ R, A^Ai |,

I

^1, Ai,R\-\-\A„A3,R\ = \A„Ai\ + \A,,A3\-^\ AJ.., R |,

the number of solutions obtained is 2^'^""^. But we have

\AiA2A3,A-i^,A2\ = \A-^,Ai\ + \AiA2A3,A-i^A2\ = \Ai,A2\-\-\A3,AiAi\=\Ai,A2,A3\'=\,

so that ^1-42-43 also satisfies the conditions.

Now it is to be noticed that, for an odd number of characteristics

i?i, ..., Boje+i, the condition that every three be azygetic excludes the

possibility of the existence of any relation connecting an even number of

these characteristics, and for an even number of characteristics £i, ...,Bjj(,

the condition that every three be azygetic excludes the possibility of the

existence of any relation connecting an even number except the relation

B1B2 . . . Bik = 0. For, B being any one of P,, . .
.

, P^fc+i other than Pj, . .
.

, B^m,

we have, as is easy to verify,

1
BiB^... B^tm-i, B-im, P

I

=
I

Pi. Bitn, P
|
+

|

Pj, B^, P
j
+ ... +

|
P2w-a> B^x, B |,

* It is immediately seen that \A, B, i?
|

= 0.



300] WHEREOF EVERY THREE ARE AZYGETIC. 497

SO that the left hand is = 1 ; therefore, as
|
B.2m, B^m, -B

|

= 0, we cannot have

B.2m = BiB2 ... B.^m-i- This holds for all values of m not greater than k, and

proves the statement.

Hence, 2a + 1 being greater than 4, we cannot have Ai = A-^A.^-^^, for we

are determining an odd number, 2o-+l, of characteristics. On the whole,

then, J.4 can be chosen in 22"^"^ — 1 ways.

To find the number of ways in which A^ can be chosen we consider the

congruences
\A„A.2,X\^\ 1^1,43.^1 = 1, \A„A,,X\ = \,

which include such congruences as \A,2,Az, X
|

= 1, 1^2,-44, X| = l, etc.

The characteristic A^ must be one of A^, ..., Ag, other than A^, A^, A^, A^;

the condition that A^ be not the sum of any three of A^, A^, A^, A^ is

included in these conditions. The number of ways in which A^ can be

chosen is therefore

2~*2 (1 — e''^l^i>^2>-'^l)(l — gT^l^i.^a. -Rl)(l _ gTi|^,,^4, J2|\

where B, is in turn equal to every one of ^i, ... , A^ ; making use of the fact

that AiAsAsAi is not =0, we find the number of ways to be 2^''"^

Proceeding in this way, we find that a characteristic A^m+i can be chosen

in a number of ways equal to the sum of a series of the form

2-(2m-i)2 n — e'^ilAi.A^, Rnn_ gm\A„A3,R\l .,.[1 —g'riUi, A2m,R\'j^

R

and therefore in 22°'~(2ift-i) ways, and that a characteristic Aim can be chosen

in 22'^-<2»«-2) - 1 ways, the value A2m = A^A2 ... A^m-i being excluded. In

particular A.^^ can be chosen in 2^ — 1 ways, and A^a+i in 2 ways.

To the 2o-+l characteristics thus determined it is convenient* to add

the characteristic 420-+2 = A^A^ . . . Ai^+i ; if Ai, Aj be any two of ^i, . .
. , A^^^i

we have

I

-"2<r+2> Ai, Aj
I

=
I

Ai, Aj, Ai
I

+ +
I

Ai, Aj, A2,r+i
\

— A,

the expressions
|
Ai, Aj, Ai |, |

At, Aj, Aj
\

being both zero. We have then

the result : From the 2-°' characteristics Ai, ..., Ag it is possible to choose a

set Ai, ..., A2cr+2, such that every three of them satisfy the condition

I

A', A", A'"
1

= 1,

in

22<r (2-v _ 1) 22<^-i (22<^-2 - 1) ... (2^ - 1) 2 _ 2:""^"'' {2'"' - 1) (2-'^-^ - 1) ... (2^- 1)

[2q- + 2 ~ |2g- + 2

ways ; there exists no relation connecting an even number of the characteristics

A^, ..., -i42o-+2 except the prescribed condition that their sum is zero ; since the

sum of two relations each connecting an odd number is a relation connecting

* In the particular case of § 202, Chap. XL, ^2o-+2 i^ zero.

B. 32
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an even number, there can be at most* only one independent relation con-

necting an odd number of the characteristics A^, ..., A^+«. And, as before

remarked, to every one of the characteristics A^, ..., A^^^ is associated a

Gupel system of 2'' characteristics.

301. The 2-* systems {A-^P), ..., (AgP), which have been considered,

were obtained by limiting our attention to one group (P) of 2'' pairwise

syzygetic characteristics. We are now to limit our attention still further to

the sets ^4,, ..., A^^+^i just obtained satisfying the condition that every three

are azygetic.

If to any one of the characteristics A^, ..., -lo^^+o, say A^, we add the

characteristic X, the conditions that the resulting characteristic may still

be a characteristic of the set A^, ..., Ag, are (§ 298) the r congruences

i

XAjc, -P.- =
i
Pi :, in which i= 1, ..., r ; in virtue of the conditions

j At, Pi
\

=
I

P.-
1

, these are equivalent to the r congruences
|
X, Pi \

= 0, which are

independent of k ; these latter congruences have 2^"'' solutions, but from

any solution we can obtain 2'' others by adding to it all the characteristics of

the group (P). There are therefore 2^5»-2'- = 2-'^ congruences X, incongruent

A\-ith respect to the modulus (P), each of which
-f-,

added to the setA^, ...,-4 2,^+2.

will give rise to a set Aj,', ..., A'o^^+o, also belonging to A^, ..., Ag. Further

I

Ai, Aj, AjI
I

=
I

XAi, XAj, XAt .
=

|
Ai, Aj, ^^ [

= 1 ; and any relation con-

necting an even number of the characteristics .4/, ..., A'2^+2. gives a relation

connecting the corresponding characteristics of A^, ..,, ^2<r+2- Thus the

2^ sets derivable fiom A^, ..., A^j^^ have the same properties as the set

Ai, ...
,
A.2„j^2-

Hence all the sets A^, ..., A^^^ can be derived from

2<^'(2^-l)(2^<r-2_i
) ...(2^-i )

j2o- + 2
'

root sets by adding any one of the 2^ characteristics X to each characteristic

of the root set.

302. Fixing attention upon one of these root sets, and selecting

arbitrarily 2o- -|- 1 of its characteristics, which shall be those denoted by
Ai, ..., A2a+^, we proceed to shew that of the 2-<^ characteristics X, there is

just one such that the characteristics XA^, ..., XA^^^, derived from

-4,, ..., ^2<r+i, have all the same character, either even or odd. The
conditions for this are

\XA,\~\XA,^^ ^-V^2.+,i>
* If the characteristic of which ail the elements, except the ?-th element of the first line, are

zero, be denoted by £/, and Ei denote the characteristic in which all the elements are zero

except the z'-th element of the second line, every possible characteristic is clearly a linear aggre-

gate of £j', ... , Ep, £,, ..., Ep. Thus when <r has its greatest value, =p, there is certainly one
relation, at least, connecting any 2<r + 1 characteristics.

+ It is only in ca.se all the characteristics of the group (P) are even that the values of A" can
be the characteristics .fl, , ..., Ag.
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which are equivalent to the 2o- congruences

I

X, A,Ai \^\A,\-\-\Ai\, (i = 2, 3, . .
. ,

(2cr + 1))

;

if X be a solution of these congruences, and P be any characteristic of the

group (P), we have

I

XP, A,Ai
I

=
I

X, A,Ai
I

+
I

P, ^1 1 +
I

P, ^i
I

=
I ^1 1 +

I

^i
I

+ 2
I

P I,

so that XP is also a solution; since the other congruences satisfied by X
were in number r, and similarly, associated with any solution, there were 2**

other solutions congruent to one another in regard to the group (P), it

follows that the total number of characteristics X satisfying all the

conditions is
2-^-^---^-''=

1. Thus, as stated, from any 2a- + 1 characteristics,

J.1, ..., ^3,^+1, of a root set, we can derive one set of 2o- + l characteristics

A-^, ..., -42<r+i, which are all of the same character, their values being of the

form Ai = XAi.

Starting from the same root set, and selecting, in place of A^, ..., A^^i,

another set of 2a +1 characteristics, say Ao, ...,^2.7+2, we can similarly

derive a set of the form
X Ao, ..., X -A20-4-2,

consisting of 2o- + 1 characteristics of the same character. The question

arises whether this can be the same set as A^, ..., A.a+i- The answer is in

the negative. For if the set X'A^, ..., X'^2a+2 be in some order the same as

the set XA^, ..., X^2<7+i, or the set XX' A.^, ..., XX'A^^^^ the same as the

set -4i, . .
.

, -42^+1, it follows by addition that XX'Ai = A2a+2 or XX' = -4i ^.3^+2-

Thence the set A,A.A.^+„^, ^1^3^2.7+2, •••, ^1^2^+1 ^2<r+2, ^1 is the same as

Ai, A,, ..., ^2<r+i, or we have 2cr equations of the form AiAiA2a+2^ Aj, in

which i=2, ..,, 2a + l, j = 2, ..., 2a- + 1. Since there is no relation con-

necting an even number of the characteristics A^, ..., A^ij^^ except the one

expressing that their sum is 0, these equations are impossible*.

Similarly the question may arise whether such a set as A^, ..., A^^-^-i, of

2o- + 1 characteristics of the same character, azygetic in threes, subject to no

relation connecting an even number, and incongruent for modulus (P), can

arise from two different root sets. The answer is again in the negative.

For if Ai, ..., A^a+i, and B^, ..., Pocr+i be two sets taken from different root

sets, the 2a- + 1 conditions XAi = X'Bi, for i = l, ..., 2o-+l, to which by

addition may be added X^2<r+2 = ^'-52^+2) shew that the set Pj, ..., P2<r+2 is

derivable from the set A^, ..., J-ga+a by addition of the characteristic XX' to

every constituent. This is contrary to the definition of root sets. Conversely

if J./, ..., ^'2<r+2 be any one of the 2^°' sets which are derivable from the root

set A^, ..., ^2<r+2 by equations of the form A{ = ZAi, the set of 2a + 1

* To the sets ij, ..., A„^+^ and X'A.^, ..., X'^2o-+2 ^^ may adjoin respectively their respective

sums. The two sets of 2(7 + 2 characteristics thus obtained are not necessarily the same. When

ff is odd they cannot be the same, as will appear below (§ 303).

32—2
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characteristics of the same character, say A(y ..., A'-^^+i, which are derivable

from A^', ..., A'sa+i by equations of the form A/ =X'Al, will also be derived

from Ai, ..., ^2<r+i by the equations At = XAi, in which X = X'Z.

On the whole then it follows that there are

2<r» (2''^ - 1) (2^'^'' - 1) ... (2' - 1)

|2o-+l

different sets, ^i, ..., -4.^+1, of 2o-+l characteristics of the same character,

azygetic in threes, subject to no relation connecting an even number, and

incongruent for the modulus (P).

Of the characteristics A^, ..., A.2t,+i there can be formed

(2a + 1,1) + (2a- + 1, 3) + . .. + (2(7 + 1, 2o- + 1) = 2^-

combinations*, each consisting of an odd number; and, since there is no

relation connecting an even number of A^, ...,A..a+i, no two of these com-

binations can be equal. These combinations all belong to the characteristics

Ai, ..., Ag, satisfying the r congruences
\

X, Pi\ = \ Pi\', for

I

A,A, ... Z^_„ Pi\ = \A„Pi\ + ... + 1 1^_„ Pi\ =
\
Pi |.

And no two of them are congruent in regard to the modulus (P) ; for a

relation of the form

-^1 • • • -"2*:—1 — Aj^Afn+i • • • Ajn+iin-L,

wherein P is a characteristic of the group (P), would lead to a relation of the

form A.,p = A^A^ ... A^_-iP, and thence give
\
Ai . . . A.ip_^P , A.p, -^ap+i j

= 0,

whereas

I

^1 ... 2lop_ii , A.>p, ^2p+i
I

=
I

-"1 ••• -^ap—1, Anp, A^p-^-i
I

+
I

A.2p, -t
I

+
I

A.2p^iy P
I

= 1^1 ... Aop-i, Aop, -^ap+i
I

=
I

Ai, A^p, A^p+i
I

+ . .. + 1 A.2P-1, A.2p, A.,p^i
I

= 1.

Thus the 2^°' combinations, each consisting of an odd number of the

characteristics Aj, ..., A-^^+i, are in fact the characteristics A^, ..., Ag. We*f*

call the set Ai, ...,^2^+1 '^fundamental set. We may associate therewith

the characteristic ^0.^+2 = -4, ... ^..,^+1, which is azygetic with every two of the

set -4j, ..., -42<r+i ; the case in which it has the same character as these will

appear in the next article. And it should be remarked that the argument
establishes, foi- the_22' Gopel systems (AJ^), ..., (A^P), the existence of

fundamental sets, (A^P), ..., (A.^^+^P), which are Gopel systems, by the odd

combinations of the constituents of which, the constituents of the systems

(A^P), ..., (AgP) can be represented.

* Where [n, k) denotes n (h -!)...(«- fc+ l)/fc 1

+ By Frobenius the term Fundamental Set is applied to any 2(r + 2 characteristics (incon-

gruent mod. (P)) of which every three are azygetic.
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303. The characteristics A^, ..., A.^a+i have been derived to have the

same character. We proceed to shew now, in conclusion, that this character

is the same for every one of the possible fundamental sets, and depends only

on 0-. Let ( - j
be the usual sign which is + 1 or — 1 according as o- is a

quadratic residue of 4 or not, in other words, ( -
j
= 1 when cr is = 1 or

= (mod. 4), and
( y j

= — 1 when o- is = 2 or = 3 (mod. 4) ; then the character

of the sets Ai, ...,^2<r+i is (t) » that is, A^, ...,^2<r+i are even when
( ^ j

= + 1

and are otherwise odd, and the character of the sum ^2^+2 = ^41 ...^2<7+i is

e'^*' ( -
J

. Or, we may say

when a-=l (mod. 4), A^, ..., ^2(r+i are even, ^aa+j is odd

;

when a = 0, Ai, ..., A.2a+i are even, ^2(r+2 is even,

when cr = 2 (mod. 4), A^, ..., A^^+i are odd, A2^+„ is odd

;

when a = S, Ai, ..., Ai^+i are odd, A^^+i is even.

For if -4i, ..., A^„+i be all of character e we have

I

A,A,...A^+,
I

=
I 2i I

+ ... +
I
Xfc+i \

+ ^\Ai, Aj
I,

where Ai, Aj consist of every pair from A^, ..., -^ojt+i ; also

{^k-\)^\AuAj\ = ^\AuAj,An\,

where Ai, Aj, Ah consist of every triad from A^, ..., ^2^:4-1; hence, since

l^i, Aj, Ah\ = l, and, as is easily seen, n{n — l){n— 2)1^1 is even or odd

according as n is of the form 4m + 1 or 4m + 3, it follows that %\Ai,Aj\ is

even or odd according as 2A; + 1 is of the form ^m + 1 or 4m + 3 ; therefore

A-i^A^ ... Aok+i has the character e or — e according as 2A; + 1=1 or

= 3 (mod. 4). Thus the number of combinations of an odd number from

A-i, ..., ^2<r+i which have the character e is

(20-+1, l) + (2(r + l, 5) + (2o-+l, 9) + ...

= ^ {(1 + a;)2<^+i - (1 - xf"^^ + i{l- ixf"-^"- -i{l + ixY''-^%^^

= 22'-i + 2''-^ sin ^-~- TT

;

4

this number is 22<^~' + 2<^~^ when o- = or a = 1 (mod. 4) ; otherwise it is

22<^-i — 2<^-i
; now we have shewn (| 298) that the characteristics A^, ..., Ag

contain respectively 2-"^"^ + 2'^~i, 2-'^~i — 2"^"! even and odd characteristics, and

(I 302) that every one of A-^, ..., Ag can be formed as an odd combina-

tion from Ai, ...,^2(r+i; hence e = + l when o- = or cr = l (mod. 4), and
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othenWse 6=— 1 ; this agrees with the statement made. Further, by the same

argument A^A^ ... Ay,^^ has the character e or — e according as 2o- + 1 = 1

or = 3 (mod. 4) ; and this leads to the statement made for A^r+i-

The reader will find it convenient to remember that the combinations,

from the fundamental set A^, ..., A-^^^i, consisting of 1, 5, 9, 13, ... of them,

are all of the si\me character, and the combinations consisting of 3, 7, 11, ...

are all of the opposite character.

Ex. If Ai, ..., Aop + i
be half-integer characteristics azygetic in pairs, and S be the

sum of the odd ones of these, prove that a characteristic formed by adding *S to a sum of

any p+ r characteristics of these is even when r=0 or =1 (mod. 4), and odd when r= 2 or

= 3 (mod. 4). (Stahl, Crelle, lxxxviii. (1879), p. 273.)

304. It is desirable now to frame a connected statement of the results

thus obtained. It is possible, in

(2-* - 1) (2=5'-2 - 1) . . .
(2-^=^'-+2 - 1)/(2'- - 1)

(2'--' - 1) . . . (2 - 1)

ways, to form a group,

0,P„P„ ...,P,P„...,P,P,P„...

of 2'' characteristics, consisting uf the combinations of r independent charac-

teristics Pi, .,., Pr, such that every two characteristics P, P' of the group

are syzygetic, that is, satisfy the congruence
|
P, P'

|
= 0, (mod. 2). Such a

group is denoted by (P), and two characteristics whose difference is a

characteristic of the gi*oup are said to be congruent for the modulus (P).

From such a group (P), by adding the same characteristic A to each

constituent, we form a system, which we call a Gopel system, consisting of

the combinations of an odd number of 7'4- 1 characteristics A, AP^, ..., APr,
among an even number of which there exists no relation ; this system is such

that every three of its constituents, say L, M, N, satisfy the congruence

\L, M, N\ = 0, or, as we say, are syzygetic. Such a Gopel system is

represented by {AP).

It is shewn that by taking 2-'^-'' different values of A and retaining the

same group (P), we can thus divide the 2^ possible characteristics into
22p-r Gopel systems. Among these 2^^?'"^ Gopel systems there are 2^"^"^

systems of which all the elements have the same character. Putting

2/) — 2?' = 2a- we shew further that 2''~^(2'4-l) of these Gopel systems

consist wholly of even characteristics, and that 2'~^(2' — 1) of them consist

wholly of odd characteristics. Putting 5 = 2^ we denote the 2^ Gopel

systems which have a distinct character by {A^P), ..., {AgP)\ and, still

retaining the same group (P), we proceed to consider how to represent these

2^^ systems by means of 2o- -I- 1 fundamental systems.

It appears then that from the characteristics A^, ..., Ag we can choose

2o- + l characteristics A^, ..., A^a+i in

2<r'(2^_ 1)(2=—=- 1) ... (2^_ 1)/ 20--I-

1
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ways, such that every three of them are azygetic, and all have the same

character; this character is not at our disposal but is that of f- j ; the sum

of Ai, ..., ^2<T+i, denoted by An^+2, has the character ^''''^i-j] Then all the

combinations of 1, 5, 9, ... of A^, ..., A2„+i have the character f-j, and all

the combinations of 3, 7, 11, ... have the opposite character. These combi-

nations in their aggregate are the characteristics A^, ,.., Ag. The charac-

teristics Ai, ..., -420-+1 are, like Ai, ..., Ag, incongruent for the modulus (P).

To each of them, say Ai, corresponds a Gopel system {AiP), to any con-

stituent of which statements may be applied analogous to those made for Ai

itself.

The characteristic ^o^+j is s^^ch that every three of the set A^, ..., A^^^^

are azygetic. This set is in fact derived, as one of 2o- + 2 such, from a set of

2a- + 2 characteristics, here called a root set, which satisfies the condition

that every three of its constituents are azygetic without satisfjdng the

condition that 2o- + 1 of them are of the same character. There are

2<-=(22'--l) ...(2"-l)/| 2(r4- 2

such root sets. It is not possible, from any root set, to obtain another by

adding the same characteristic to each constituent of the former set.

The root sets are not the most general possible sets of 2o- + 2 charac-

teristics of which every three are azygetic. Of such sets there are

2-'+-^'^{2-'<^-l)...(2'-l)/\2a+2,

but they break up into batches of 2'-'^, each derivable from a root set by the

addition of a proper characteristic to all the constituents of the root set.

305. As examples of the foregoing theory we consider now the cases cr= 0, a-= l, a= 2,

a— p. When o-= 0, the number of Gopel gi'oups of 2" pairwise syzygetic characteristics is

(2"-|-l)(2P-i + l) (2 + 1);

from any such group we can, by the addition of the same chai'acteristic to each of its

constituents obtain one Gopel system consisting wholly of characteristics of the same even

character. These results have already been obtained in case p= 2 (§ 289, Ex. iv.),

and, as in that particular case, the 2^-1 other systems obtainable from the Gopel group

by the addition of the same characteristic to each constituent, contain as many odd

characteristics as even characteristics.

When o-=l, we can, from any Gopel group of 2''"i pairwise syzygetic characteristics,

obtain 4 Gopel systems, three of them consisting of 2''-i even characteristics and one of
2"-i odd characteristics. The cliaracteristics of the latter (odd) system are obtainable as

the sums of three characteristics taken one from each of the three even systems.

When o-= 2, the number of fundamental sets A^, ..., Zg is

2^(2*-
1) (22-1)
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each of them has the character ( j ) , or is odd, and their siun, A^y is odd. Among the

2^=16 characteristics -J,, .... A, there are 2^~^-2'"^ or 6 odd characteristics; these

clearly consist of the characteristics A^, ..., A^; the six fundamental sets are obtained by

Delecting each of A.^, ..., A^ in turn. Among the characteristics Jj, ..., A, there are 10

even characteristics, obtainable by combining A^, ..., A, in threes. And, to each of the

characteristics J,, ..., ^1, corresjx>nds a Gopel .system of 2''= 2p~"^= 2''~2 characteristics,

for the constituents of which similar statements may be made.

Of the cases for which tr = 2, the case p= '2, is the simplest. After what has been .said

in Chap. XI., and elsewhere, we can leave that case aside here. For p = Z the G6i)el

systems consist of two characteristics ; adopting, for instance, as the group (P), the pair

(000\ /000\
non) ' M inn) ' *'^® condition for the characteristics .1,, ..., J„ namely

|
X, Pj

|
=

|
Pj |,

reduces to the condition that the first element of the upper row of the characteristic

symbol of X shall be zero ; hence the 16 characteristics J,, ..., A, may be taken to be

-In ' ) » ^^i^re i (
' '

) represents in turn all the characteristic symbols for p= 2.

Taking next the ca.se (r= 3, there are 8= 2-"= QA Gopel systems, {AP), each consisting

wholly either of odd characteristics or of even characteristics, there being 2<^~^ (2*' - 1), = 28,

odd systems, and 36 even systems. From the representatives, Jj, ..., J,, of these systems,

which are incongruent mod. (P), we can choose a fundamental set of 7 characteristics

A^, ..., A^ in

29 (26-1) (2^-1) (2^-1)

Pt
> — iioo,

ways; A^, ..., A-j will be odd, and their sum, 2g, will be even; for (jj = (|)=-l,

e'^(TJ = l- The set Jj, ..., Jy, ^g is, in accordance with the theory, derived from one

of 288/(2o-+ 2), =36, root sets A^,^.., A^ (§ 301), by equations of the form Ai=XAi, in

which X is so chosen that Jj, ..., A.j are of the same character ; from this root set we can
similarly derive 8 fimdamental sets of seven odd characteristics, according as it is J g or is

one of Jj, ..., J7 which is left aside. Now the fact is, that, in whichever of the eight

ways we pass from the root set to the seven fundamental odd characteristics, the sum of

these seven fundamental characteristics is the same. We see this immediately in an
indirect way. Let A^, ..., Ayhe& fundamental set of odd characteristics derived from the
root_se^ Ay, ..., A^hj_ thj equations Ai = XAi; putting 2g= Ji... 2., consider the set

/Ig, A^A^A^, ..., A^A^A^, Ai, derived from A^, ..., 2g by adding A^A^ to each ; in the first

place it consists of one even characteristic, 2g, and seven odd characteristics ; for

llg^i^.NMsl + Mil + Mil +Ms.^i.AI^Ms.^i.^iNl. (mod. 2),

because J,, ..., Jg are azygetic in threes ; in the next place

1^8) -^1. ^8^1^il = l ^8. ^n ^i\ = h
so that_every_three of its constituents are azygetic. Hence the characteristics JgJj Jj*

..., A^A^A-,, Ay, which, as easy to see, are not congruent to Jj, ..., A-, mod. (P), form,

equally with A^, ..., A.,, a fundamental .set, whose .sum is likewise Jg ; they are derived

from J,, ..., A^ by adding A^A^X to each of these. There are clearly six other such

fundamental sets, derived from J,, ..., Jg by adding resi)ectively A^A^X, ..., A^AjX.
Hence to each of the 36 root sets there corresponds a certain even characteristic and to

each of these even characteristi&s there correspond 8 fundamental sets. We can now shew
further that the even characteristics, thus associated each with one of the 36 root sets, are
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in fact the 36 possible* even characteristics of the set A^, ..., As- This again we shew
indirectly by shewing how to form the remaining 7 . 36 fundamental systems from the

system A^, ..., A.^. The seven characteristics A^A.^A^, A^A^A^, A^A^A^, A^, A^, Aq, A^,

are in fact incongruent mod. (P), they are all odd, have for sum A1A2A2, which is even,

and are azygetic in threes ; for A^A2A^is a, combination of five oi A^, ..., Aj, and

M4.^5> 3'8-3'2^3NM8> ^4' ^5! + Ma. ^4) ^5!+ M.S. ^i^ ^1,1 = '^^ M4. ^5. ^6N 1.

II4, A^AiA2,Af,AiA3\ = \AsAiAi,A2,As\ = l, llglglgjlglali, Zg-S'iIgNMiMzMsN,!.
(the modulus in each case being 2) ; hence these seven characteristics form a fundamental

system. There are 35 sets of three characteristics, such as ^j, A 2, A^, derivable from the

seven A^, ..., A^ ; each of these corresponds to such a fundamental system as that just

explained ; and each of these fundamental systems is associated with seven other funda-

mental systems, derived from it by the process whereby the set Ai, AiA^A2, ..., AiA^Aj
is derived from A^, ..., Aj.

When <T=2), a Gopel system consists of one characteristic only ; we can, iu

2P2(22P_1)(22P-2_1) (22-l)/)2p+l

ways, determine a set of 2p+ l characteristics, all of character (^J , of which every three

are azygetic ; their sum will be of character e'^*^ f

-^ j
; all the possible 2^p characteristics

can be represented as combinations of an odd number of these.

306. We pass now to some applications of the foregoing theory to the

theta functions. The results obtained are based upon the consideration of the

theta function of the second order defined by

where ^g- is a half-integer characteristic ; as theta function of the second

order this function has zero characteristic ; the addition of any integers to

the elements of the characteristic ^q does not affect the value of the function.

By means of the formulae (§ 190, Chap. X.),

^Ot + a; lq + N) = e^^^i''^(u + a; Iq),

wherein N denotes a row of integers and \{u\ s) = Hs{u + ^D.s) — '7riss', we
immediately find

«^(i^ + in,,a; lq)==e'^^»-^i^^{^<l>{u,a; ^kq),

where ^kq denotes the sum of the characteristics ^k, ^q; to save the repeti-

tion of the ^, this equation will in future be written in the form (cf. § 294)

4>(u + n„a;Q) = e2^(« ^ ^)

(^) cf> (it, a; KQ);

when the contrary is not stated capital letters will denote half-integer

characteristics, and KQ will denote the reduced sum of the characteristics

K, Q, having for each of its elements either or |^.

* Thus, wheni>= 3= (7, the resylt quoted in § 205, Chap. XL, is justified.
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We sliall be concerned with groups of 2'' pairwise syzygetic characteristictj,

such as have been called Gopel groups, and denoted by (P) ; corresponding

to the r characteristics P,, ..., Pr from which such a group is formed, we

introduce r fourth roots of unity, denoted by ej, ..., e^, which are such that

^ 2 _ piri I i», I f - — P""' i ^,-

the signs of these symbols are, at starting, arbitrary, but are to be the same

throughout unless the contrary be stated. Since the characteristics of the

group (P) satisfy the conditions

|P,,P,|^0, (mod.2),
(pj)

=
(p;).

we may, without ambiguity, associate with the compound characteristics of

the group the 2'' — 7* symbols defined by

eo=l, e,-,;=e,e^(p'),sothate-j = e-i'^ii+-i^yi, e,, ,• = 1,

and e^ = e,-, ,y
= e.-e,;; f p/) > ^tc.

Consider now the function* defined by

^(u,a- ^) = S(^') .,</>(», a; AP^),

where A is an arbitrary half-integer characteristic, and Pi denotes in turn all

the 2'' characteristics of the group (P). Adding to it a half-period H/.^,

corresponding to a characteristic P^ of the group (P), we obtain

<^{u + Hp^, a; A) =
^ (^') (J^j e.e^^'" • ^'

<f>
(u, a ; APiP,)

;

if then P/, = P.Pj;, or P, = PhPk, we have

now, as Pi becomes in turn all the characteristics of the group (P), P^ , = PjPk,

also becomes all the characteristics of the group, in general in a different

order ; thus we have

(p {u -t- fi/.^., a ; A) = eifce-''''*i+2A"'; r-,) $ („,, „ ; A),

= e-le2Am;rj. <J)(^^^ ^j. A).

* If preferred the sign
(

,' ) . whose value is ± 1, may be absorbed in e^ . But there is a cer-

tain convenience in writing it explicitly.
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If 2CIm be any period, we immediately find

^{u + 2nM, a; A) = e^^*"' ^^^> ^ (u, a ;
A).

Thus, \{u; Pk) being a linear function of the arguments u^, ..., Up, the

function ^ (u, a; A) is a theta function of the second order with zero

characteristic, having the additional propert}^ that all the partial differential

coefficients of its logarithm, of the second order, have the 2'' sets of simul-

taneous periods denoted by the symbols Qp^..

Ex. i. If /S' be a half-integer characteristic which is syzygetic with every characteristic

of the group (P), prove that

4. (w+ Q,, a ; A) = <?^^''-' *'
(^)

* («, a ; AS)

and

Ejc. ii. If Ptc be any characteristic of the group (P), prove that

* («, a
;
AP^) = (^2) 'k^ * ^^'' " '

^)-

E:v. iii. When, as in Ex. i., S is syzygetic with every characteristic of the group (/'),

shew that
e^i\SP,\ ^ („,^ a ; AF,) * {v, h ; ^lPfc)= e'''

''^'' * («, a ; .1) * (v, 6 ; .-1).

Conversely it can be shewn that if a theta function of the second order

with zero characteristic, II (w), which, therefore, satisfies the equation

for integral m, be further such that for each of the two half-periods associated

with the characteristics ^m = P,^m = Q, there exists an equation of the form

n {u

+

inj = e^+>'.«.+-+>'p«p n (a),

where fx, Vi, ..., Vp are independent of u, then the characteristics P, Q must

be syzygetic. Putting vu = ViUi+ +VpUp,we infer from the equation

just written that

11 (u + a,«) = e^+Mw+jnm) n (a + ifl,,,) = e2^+2''«+^''n- n (u)

;

comparing this with the equation

n (u + n,„) = e2A>u(") n (w) = e2//,„(w+in,„)-27r,:m,«' n (u)

we infer that v = Hm, fi^kiri + ^HniO.^^ — 'rrimm, where k is integral, and

hence

307. In accordance with these indications, let Q (u) denote an analytical

integral function of the arguments Ui, ..., Up which satisfies the equations

for every integral w and every half-integer characteristic Pk of the group (P).
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We may regaid the group {P) as consisting of part of a group of 2^^

pairwise syzygetic characteristics formed by all the combinations of the

constituents of the group (P) with the constituents of another pairwise

syzygetic group (R) of 2*^'' characteristics. Then the 2^ characteristics of

the compound gi-oup are obtainable in the form PiRj, wherein P, has the 2*"

values of the group (P), and Rj has the 2^"'' values of the group (R). Since

every 2^+1 theta functions of the second order and the same characteristic

are connected by a linear equation, we have

GQ(u)=%Cij<f>{u,a; P^Rj),

where C, Gij are independent of u and are not all zero*. Hence, adding to

u the half-period Qp^^, we have

and therefore, as ete'^'^k' = e-\

CQ (u) = 2 Cij
(^]j ) e,4> (u,a; PiP.Rj)

;

forming this equation for each of the 2'' values of Pk, and adding the results,

we have

2^CQiu)= S C,-.,(/* )6,</,(u,a; PiP^Rj);
i,j,k K-Li-tlj/

herein put P^ = PiPu, so that as, for any value of i, P^ becomes in turn all

the characteristics of the group (P), the characteristic Ph also becomes all the

characteristics in turn, in general in a different order ; then

and, therefore,

2'-CQ(w) = 2S6,
j h \_i

Ph'

f
C'.-,,-6.-Q e-i^i'J Qy{u,a; P,Rj),

j h K-tCj/

where

and thus

2''CQ{xL) = tGj^{u,a; Rj).

i

Now the 2P~'' functions *t>(u, a: Rj) are not in general connected by any

linear relation with coefficients independent of u ; for such a relation would

be of the form

'EHi'^iu + a; AQi)^{u-a; AQi) = 0,

* It is proved below (§ .308) that the functions <p (u, a ; P,-7?j) are linearly independent, so

that, in fact, C is not zero.
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wherein Hi is independent of u, and Qi becomes, in turn, all the constituents

of a group {Q) of 2^ pairwise syzygetic characteristics, and we shall prove (in

§ 308) that such a relation is impossible for general values of the arguments

a. Hence, all theta functions of the second order, with zero cJiaracteristic,

which satisfy the equation

Q(U + np^) = e;fce-^l^fcl+ 2A(«; P^) Q (^)

for every half-integer characteristic Pk of the group (P), are representahle

linearly by 2^~'", = 2°", of them, ivith coefficients independent of u. We have

shewn that the functions <l> (u, a; A), defined by the equation

^ (u, a; A) = t (^) ei% {u + a; APi) ^ (m - a ; APi),

where the summation includes 2*" terms, are a particular case of such theta

functions.

308. Suppose there exists a relation of the form

i

where the summation extends to all the 2p characteristics Qi of a Gopel group (Q), and ff^

is independent of ?*. Putting for m, u+ Qq^, where Qa is a characteristic of the group (Q),

we obtain

(^u+ a; AQiQa)9{u + b; AQiQa) = 0;Mt:)H^
hence, if fi, ..., fp are fourth roots of unity associated with a basis Qj^, ..., Qp of the group

(Q), as before, and this equation be multiplied by ta, and the equations of this form

obtained by taking Qa to be, in turn, all the 2^ characteristics of the group {Q), be added

together, we have

22ffi(^")(aS{u+ a; AQiQa) S {u+ b; AQiQa) = 0;

now let Qj=QaQii then for any value of i, as Qa becomes all the characteristics of the

group (§), Qj will become all those characteristics ; therefore, substituting

we have

^)2,jS{u + a; AQj)3{u+ b; AQj) = 0;2Hi
i

hence one at least of the expressions

2fjS{u+ a; A Qj) S{u + b; A Qj), 2,Ifi(T\
.i i

must vanish.

Here fj, eg, ••• have any one of 2^^ possible sets of values. The expression S^ief^ cannot
i

vanish for every one of these sets ; for, multiplying by tj^, we have then

SZT, ©'-•^
where fj,^, like tj, becomes in turn the symbol associated with every characteristic of the

group, and there are 2^ eqviations of this form; adding these equations we infer -^ = 0,

and, therefore, as^ is arbitrary, we infer that all the coefficients are zero.
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Hence it follows that there is at least one of the 2^' sets of values for t^, to, ..., for

which
2ti3iu+ a; AQj)3{ti+ b; A Qj)= 0.

When the arguments u + a, u + b are independent, this is impossible; for putting

n+a—C, u-\-b= V, tliis is an equation connecting the 2'' functions 3{U; AQj) in which

the coefficients are independent of U (cf. §§ 282, 283, Chap. XV.).

When the arguments 7i + a, u+ b are not independent, this equation is not impossible.

For instance, if ft= -e*"'*^*', it is easy to verify that

€^iS{u + QQ^; QkQ,)S{u; QkQt)= - ^h^ {^' + Qq,; <?/.)5(»; Qh)

and hence the equation does hold when .1=0, « = Qy^, b= 0, ej.= - e'""
'

^*
'
, for all

the values of «,, ..., ft-,, n + i, •••> <p- For any values of the arguments u + a, u + b

we infer from the reasoning here given that if the functions 5 (w + a ; AQi)${u + b; AQi)

are connecteil by a linciir equation with coefficients, //;, independent of ?/, then (i) they

are connected by at least one equation

2€iS{u+ a; AQi)${u+ b; AQi) = 0,
i

for one of the 2f sets of values of the quantities ej, e.,, ..., and (ii) similarly, since the 2p

functions 3 {u+a; AQi)3{u+ b; AQi) do not all vanish identically, that the coefficients

are connected by at least one equation

309. The result of § 307 is of great generality ; we proceed to give

examples of its application (§§ 309—313). The simplest, as well as the most

important, case is that in which cr = 0, r=^j, and to that we give most

attention (§§ 309—311).

When <r = 0, any two of the functions ^(u, a; A) are connected by a

linear equation, in which the coefficients are independent of u. If v, a, b be

any arguments, and A, B any half-integer characteristics, introducing the

symbol e to put in evidence the fact that ^{u, a; A) is formed with one

of 2^ possible selections for the symbols ej, ... , e^, and so writing <i> (ii, a ; A, e)

for ^(u,a; A), we therefore have the fundamental equation

(i>(u,v;A,e) = — r~-,
—

r~~D—^

^ '
^ (p{a, b; B, e)

By adding the 2^ equations of this form* which arise by giving all the

possible sets of values to the fourth roots of unity e,, ..., e^, bearing in mind

that every symbol e,-, except e„, = 1, occurs as often with the positive as with

the negative sign, we obtain

^{u + v] A)'^(u-v: A) = ll.{^^ei'^(v + v; APi)'^(u-v; APi)

_^ ^{u,h; B,€)^ (a, v ; A, e)

T ^{a,b;B,e)

* Wherein it is assumed that a, h have not such special values that any one of the 2'' quanti-

ties <P(a,b; Ii,f) vanishes. Cf. § 308.

2p<
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whereby the function cf) {u, v; A) is expressed in terms of ^' functions

^ (u, h ; B, e).

By taking, in the formula

^(u,v; A, e) O (a, 6 ; 5, e) = O (w, b ; B, e) ^ (a, v ;
A, e),

= S 2
(^^) (^^) 6,6; <^ (7/,, 6 ; BPd <l>{a,v; APj),

all the 2^ possible sets of values for ei, ..., e^, and adding the results, we

obtain

2
(J^)

e-- 1 ^i I

<^ (li, w ; APi) <}> (a, b ; BPi)

increasing u and 6 each by the half-period Qji, we have

taking R to be all the possible 2-^ half-integer characteristics in turn, and

adding the resulting equations we deduce*, putting C = AB,

2P(j)(u, b; AC)(f)(a,v; A)

'RPA= 2-^2 2 r^'] e- 1 ^^.
I </> (u, V RAPi) ct> (a, b ;

RA PiC)

= 2 (^^] e-i^«i
<^ (u, v; 8)(f>(a,h; SO),

where A, C are arbitrary half-integer characteristics, and S becomes all 2^^

possible half-integer characteristics in turn ; for (Ex. ii. § 295), 2e''^i^' -^i' = 2^'P

It

when Pi = 0, and is otherwise zero, while, for any definite characteristic APi,

as R becomes all possible characteristics, so does RAPi. The formula can be

simplified by adding the half-period flc to the argument b; the result is

obtainable directly by taking C= in the formula written.

This agrees with a result previously obtained (§ 292, Chap. XVI.) ; for a

generalisation of it, see below, § 314.

* This equation has been called the Riemann theta formula. Cf. Prym, Untersuchvii(]en iiher

die Riemann'»clie Thctnformcl, Leipzig, 1882.
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310. The formula just obtained may be regarded as a particulai- case of another which

is immediately deducible therefrom. Let (A') be a group of 2** characteristics formed by

taking all the combinations of ,x independent characteristics A'j, ..., Ky.; if J be any

characteristic whatever, we have

2eTi|J, ffl^^l^gTiiA A'.lj
___

(j^g7riiJ./i:^|^^2'*, or 0,

K

according as i.l, A'j|sO (for i=\, ..., /x), or not; hence, putting C'=0 in the formula

of § 309, and replacing the A of that fonnula by A'i, we deduce

2P-M2e'^'l^^»l<^(«, i; A'i)<t>{a,v; A',) = 2-'^ 2 e"''-^^'*' Se-^'^i^' <^ («, i'; S)<t>{a,b; S),

where S becomes all 2-'" characteristics,

2**

= 2 '^2e
.-i\A\ + ni\S\^^n!\AS,K^\^^^^^,

5) </)(«, 6 ; S)
j=l

(2''' \
2 e'"''^' ^•'

)
<t>

{u, v; AR)(t> (a, b ; Alt),
1=1 /

where R becomes all 2^ characteristics,

= 2~V*'^'2'*2e'""l^^l<^(?t, v; AR)(f>{a,b; AR),
R

where R extends to all the 2^^"'* characteristics for which
\
R, Ki\ = 0, ...,\R, K^\ = Q.

Putting tt + Q^, rt + Q^ for u, a respectively, and replacing AB by C, we obtain

t=i

= e 2 e J (j>[u,v; CLj) <p [a, b ; CLj)

;

here (K) is any group of 2** characteristics, (Z) is an adjoint group of 2^^"** characteristics

defined by the conditions
\
L, K\=0 (mod. 2), and B, C are arbitrary half-integer

characteristics. The formula of the previous Article is obtained by taking ^= 0. The

formula of the present Article may be regarded as a particular case of that given below

in § 315.

311. The function (f>{u, v; A) is unaffected by the addition of integers

to the half-integer characteristic A ; we may therefore suppose that in the

functions (f>(u, v; APi) which have frequently occurred in the preceding

Articles, the characteristic AP, is reduced, all its elements being either or ^.

In the applications which now immediately follow (§ 311) it is convenient, to

avoid the explicit appearance of certain fourth roots of unity (cf. Ex. vii.,

p. 4G9), not to use reduced characteristics. Two, or more, characteristics

which are to be added without reduction will be placed with a comma between

them ; thus A, Pi denotes A + Pi. The characteristics Pf are still supposed

reduced.

Taking the formula (§ 309)

« ex / ^xcx/ A^ ^^{u,h\ A',€)^(a,v; A,€)
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where A' replaces the 5 of § 309, suppose a = b, and put, for

u — b, a + v, a — v, u + v, u — v, a + h, a ~ h, u + b,

respectively,

U, V, W, U+V, U+W, F+Tf, 0, CT+F+Tf;

then we obtain

2^^(C/^+F; A)'^{U+ W- A)

? ^ (^')©'''-^^^^^^^^' ^''^^^^(^' ^''^^)^(^' ^'^^o^c^; ^'^i)

adding to F and W respectively the half-periods H^,, H^y this becomes

2^[f7, F; A,B] [U, W; A, C\

1 2 v„jijU,i[U, F, F; ^', B, G, P,] [f^; J/, P,] [F; ^, P, P,] [F; A, G, P,]

= S
S r,5, [F, F; ^', P, C, P,] [0; ^', P,]

wherein [U, F; ^, P] denotes "^[U+V- A+B], etc., /i^ = (^ eu vi =
(^^^^

e^,

etc., and, if P = | (^ J
, C = -^

(

'^

J
, P^ = i f ^M , then f,-, j, s^t are fourth roots of

unity given by U^j = e-5'^^'<^'+v'' ('?»+'?/, 5^ = e-s'^^'^'+V'^K

In connexion with this formula several results may be deduced.

(a) Putting F = - F, ^ + P = /f, ^ + C = P, ^' = P, the formula gives

an expression of ^ [?7 + F; K'\^\JJ—V \ P] in terms of the quantities

^\JJ; KPi\, ^ [F; KP,], ^[U; DP,], ^[F; DPi], ^[0; /fP,], ^[0; PPJ;

the expression contains in the denominator only the constants ^ [0 ; KPi\,

^ [0; DPi\; it has been shewn (§ 299) that not all the characteristics KPi,

DPi can be odd.

Putting further K = 0, we obtain an expression of '^[U+V; 0]

"^[U-V; P] in terms of

^[U; Pi\, ^[F; Pi], ^[U; DP,], ^[F; DP,], ^[0; P,], ^[0; DP,].

Dividing the former resulb by the latter we obtain an expression for

^[P+ F; K]I'^[U+ F; 0] in terms of theta functions of t^and Fwith the

characteristics DP,, KP,, P,, the coefficients being combinations of ^ [0 ; PJ,
^ [0 ; PPJ, ^ [0 ; KPi] with numerical quantities. In this expression the

characteristic D is arbitrary ; it may for instance be taken to be zero.

B. 33
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The formulae are very remarkable ; replacing, on the right hand, e,-e"'^> ^»'

by e,, as is clearly allowable, and taking i) = 0, they are both included in the

following formula (cf. Ex. viii. § 317)

2^^[m+i;; 7ir]^[«-i;; 0]

~T :ie.e-i'^9a^(0; ir + Pa)^(0; P,)
a

where K = ^( .] , Pa = ^l ) , and the summation in regard to a extends to

all the 2p characteristics, Pa. , of the group (P).

It is assumed that the characteristic K is such that the denominator on

the right hand does not vanish for any one of the 2^ sets of values for the

quantities €„. For instance the case when K is one of the characteristics of

the group (P), other than zero, is excluded (cf. § 308).

Ex. i. For p = l, if P denote any one of the half-integer characteristics other than

zero,

where 3 (u), 3p (u) denote 3 (ti ; 0), 3 {u ; P), etc.

Ex. ii. By putting, in casej9= 2,

^-K")' ^-Kol). A=Ku)'
deduce from the formula of the text that

43,,{0)3,,{0)3,,{u+ u')3du-u')= 2 [iCiCi^ -C2B+ iCiC+D][A' - iC,B' -(,(' -iCiCi^l,

wherein Ci= ±1) ^2= ±1) ^"^

A =3, («) \, {u), B= 3, {u) 3,^ («), 0=3^ (u) 3^ («), = 3^, (n) 3,, (u),

A', B', C", D denoting the same functions of the arguments «'.

Hence obtain the formula given at the bottom of page 457 of this volume.

(y8) Putting B=G,V= ^y = 0, ^ ' = ^ , we obtain

22/^/i,^-., \JJ; A, B, B, P.] [tT; APi] [0 ; A, B, Pjf

^ ' ' ^ T X^^,[0; A,B,B,P,][0,A,P,]
k

which shews that the square of any theta function is expressible as a linear

function of the squares of the theta functions with the characteristics forming

the Gopel system {AP). We omit the proof that these 2^ squares,

^•{U\ APi), are not in general connected* by any linear relation in which

the coefficients are independent of U.

* Cf. the concludinR remark of § 308, § 291, Ex. iv. and § 283.
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Ex. For p= 2 obtain the formula

(^2 -4) ^03 (^0 =4 ^2 ^0 (^0 + ^14 ^014 (^') -44 ^12 («) -4 ^2 ^5 («)>

where ^.^.— ^t (0)) etc.

(7) There is however a biquadratic relation connecting the functions

^ (it ; AP^ provided 'p be greater than 1. In the formula (§ 309)

= Xe-i^'i^(it + 6; A,F-:)'h{u-h; A,F,)'h{ci\v\ A,Fi)'^{a-v; A, Pi),

i

supposing the characteristic A to be chosen so that all the characteristics

APi are even, as is possible (§ 299) by taking A suitably, substitute for

u + v, u-v, a+ h, a — b,ii + b, u — b, a + v, a—v

respectively

u + u + w, li-v, a + 6 + w, a — b, u + b + iv, u - b, a + v+tv, a — v;

then, putting a = 6 = 0, we have

te^i\Pi\^(0- A,Pi)'^{w; A,Pi)'^(u-v; A, Pi)'^{u + v + iv; A, P^)

= Xe^^Pi^'^{u; A,Pi)^(v; A,Pi)'^{u + w; A,Pi)'^{v + w; A, Pi);
i

herein put w = Op,, v = u + Up.,, where Pi, P2 are two of the characteristics

belonging to the basis Pj, ..., Pp of the group (P) ; then we obtain

l(^f;y-'^Pi^^{0;A,Pi)'^(0;A,P,,Pi)^(0;A,P,,Pi)X^u;A,P,,P,,Pi)

= S(^]fje-i^^i^O^; A,Pi)^{u; ^,A,P,)^(w; A,P,,Pi)^iu; A,P„P„Pi).

Now every characteristic of the gi'oup (P) can be given in one of the forms

Qs, QsPi, QsP'2, QsPiP-i, where Q^ becomes in turn all the characteristics of

a group (Q) of 2^~- characteristics
;
putting

^{w, Qs)

^'^'y^i\Qs\^{u;A,Q,)'^{a;A,P,,Qs)'^iu;A,P,,Q,)'^{u;A,P,,P,,Qs),

we immediately find

t (^ ; Qs) = f ('' ; Qs, po = 1 0* ; Qs> P-^ = t ('^
; Q.. A. A)

;

hence the equation just obtained can be written

where R,n has the four values 0, Pj, Pa, Pi + Pa-

Again, if in the formula (§ 309)
^ (u, b: A, e) <!>(«, w; A, e)

33—2
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we add to u the half period Hp , we obtain, after putting w = v, a = 6 = 0, the

result

^{2u. A,F,)^{0, A,I,)-^ Ui76, ^(0,0; A, e)

^ /PA ^ 1 ^(11,0; A,e)

UyTe*<I>(0,0; A,e)'
where

^(u,0; .4,e) = s(^)6.-^^(M;^P,); 4>(0, 0; ^, e) = S (^'j 6.-^(0; ^P.)-

By substitution of the value of '^(2i<; A, P^) given by this formula, in

the formula above, there results the biquadratic relation* connecting the

functions ^(«; A Pi).

(8) As an indication of another set of formulae, which are interesting as

direct generalizations of the formulae for the elliptic function ^{u), the

following may also be given. Let

where Xi, ...,\pare undetermined quantities, S^ (y) = ^' (v), S^(y)=^"(y),

and let

^{v; A) = -8nog^(v; A) = -[^{v; A)^"{v; A)-^'^v; A)]^^"-{v; A);

then, differentiating the formula

2P^{u + i,A)^{u i,A)-^
4>(a,6; A,e)

twice in regard to v, and afterwards putting v = and b = 0, we obtain

wherein
^^"^^>=F^^^^'

^ /P.U
^^[2)eI^'ia;APj)^ia;APj)

'^\A J
^^' 7p\

T\A

= ?'*^
2e,^(a; AP,) '

k

the 2P quantities C,- being independent of u and of a. By this formula the

function ^(w; .4) is expressed linearly by the squares of 21" theta quotients

(cf Chap. XL §217).

* Frobenius, Crelle, lxxxix. (1880), p. 204. The general Gopel biquadratic relation has also

been obtained algebraically (for Riemann theta functions) by Brioschi, Arvial. d. Mat., 2» Ser.,

t. X. (1880-1882).
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312. These propositions (§§ 309—311) are corollaries from the fact that

the functions ^ {u, a; A, e) are linearly expressible by 2p~^ of them ; we

have considered the case r =p at great length, on account of its importance.

Passing now to the case r = p — 1, there is a linear relation connecting

any three of the functions

2J'-i /P.\
$ (u, a- A,€)= X

( J^j
€i^ (u + a ; AP,^ ^(u-a ; ^P,;)-

There is one case in which we can immediately determine the coefficients in

this relation ; we have o- = jd — r = 1 ,
2-'^ = 4 ; there are thus four character-

istics A, whereof three a.re even and one odd, which are such that all the

2^~^ characteristics (AP) are of the same character. Taking the single case

in which these are all odd, we have

^ (u, a; A, €) = — ^ (a, u ; A, e), and ^ (a, a ; ^, e) = ;

hence, if, in the existing relation

X^ (h, a; A,e) + ^l<^ (u, b; A, e) + v(p (u, c ; ^, e) = 0,

wherein \, fi, v are independent of u, we put u = a, we infer

fi : v = (p{c, a; A, e) : ^(a,h; A, e);

thus the relation is

^ (6, c ; A, e) $ (u, a ; A, e) + <i? (c, a; A,e)(i> (u, h; A, e)

+ (i>(a,b; A, e)'ii(n,c; A, e) = 0,

or

where

f {i, j) = ^ (w + a ; APi) ^ (u - a
;
AP;) ^ (6 + c ; APj) ^ (6 - c ; APj)

+ ^{u+b; APi)'^{u-b; APi)'^(c+a- APj)'^{c-a- APj)

+ ^(it+c; APij'^iu-c; APi)'^{a + b; APj)'^{a-b; APj).

Adding together all the equations thus obtainable, by taking all the 2^^~^

possible sets of values for the fourth roots of unity ej, ..., ep_i, we obtain

2j)-i

1=1

For instance, when p= l, this is the so-called equation of three terms, from which all

relations connecting the eUiptic functions can be derived. When p= 2, it is an equation

of six terms and there are fifteen such equations, all expi-essed by

2 S{u+ a; A)S{u-a ; A) S{b + c; A) S{b-c ; A)
a, b, c

^_^ni\AB\
2 S(u + a; B)${u-a; B)S{b+ c;B)^{b-c;B),

a, b, c

A and B being any two odd characteristics*.

* Of. Frobenius, Crelle, xovi. (1884), p. 107.
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313. Taking next the case r = p — 2, every 2-4-1, or 5, functions

4>(?A, a; A, e) are connected by a linear relation. In this case there are

sixteen characteiistics A such that all the 2p~- characteristics (AP) are of

the same chai*acter, six of them being odd. Denoting the six odd character-

istics in any order by ^j, ..., A^, and an even characteristic by ..rl, there is an

equation of the form

X,4>(m, a; A^, €) + \!^{u, a; A., e) + X^^ {ii, a : A3, e)

= 4) (u, a ; A^, e) + \<I> (u, a ; ^, e)

;

putting herein u = u, this equation reduces to \^(a,a; A,€) = 0, so that

\ = 0. The other coefficients can also be determined ; for, if C = A2A3, we
have (§ 306, Ex. i.),

4> (u + n,., a; A,e) = e^^-' O (^^^j $ («, a ; AA^A^, e)
;

putting therefore for u, in the equation above, the value a + 12^., where

C= ^2^3, and recalling (§ 303) that ^.,^..^3, A^A.A^ are even characteristics,

we infer

\
{^f^')

^ (a, a ;
A.A^A^, e) = (^j^j <P(a,a', A.A^A^, e).

Proceeding similarly with the characteristics AiA^, A^A. in turn, instead of

A2A3, we finally obtain

(^'^')^(«. a; A,A,A3)^(K,a; A,) +
(^^'

J^^(a,a; A,A3A,)<P(u, a; A.)

/ 4. A \

"^U'il/ ^^'"' ^^^J^2)^(w, a; A3) = ^{a,a; A,A^A3)^(h, a; A,),

where, for greater brevity, the e is omitted in the sign of the function <I>

(cf. Ex. viii., § 289).

Ex. For p= 2, deduce the result

53,5j, (2iO 5^ (M + V) \^ {U - V) - 5oA3 (2i') ^24 (« + ^) ^24 (« - i') +^23^23 (2l') 3^ (u+ v) S^tiu- v)

= ^,^,{2v)^^i^t+ v)S^{u-v),

where 534= 334(0), etc. When i'= this is an equatiou connecting the squares of S^iiu),

314. The results of §§ 309, 310 are capable of a generalization, obtainable by a reiMJti-

tion of the argument there employed.

A group of 2* pairwise syzygetic characteristics may be considered as arising by the

composition of two such groui)s. Take /•, = ?•+ «, characteristics /*,, ..., 1%, Qy, ..., ^,,

every two of which are syzygetic ; form the groups

(P)=o,/\,...,i\, i\r.,,...,i\i\i\,...

{Q)=o, Q^, ..., Q„ ^AVi, •-, <AW.f3. •••

respectively of 2'' and 2' characteribtics ; the 2'"^' combinations Itij= PiQj form a group

{/{} of 2'" + ' pairwise syzygetic characteristics; for distinctness the fourth roots of unity
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associated respectively with I\, ..., Pr,Qi, ..., Qs, may be denoted by fj, ..., f,., fj, ..., f, ;

then with Pi,ii, Qjj^, Ri,i will be associated the respective quantities

thus if A be any characteristic

Therefore, using the symbol ^ for a sum extending to the whole group (PQ),

^{u,a; A,E)= 2 {^'^\ E^^j 5 (m + « ; ARi,,) B{u-a; AR^j)

where * denotes a sum extending to the 2'" terms corresponding to the characteristics of

the group (P).

By the theorem of § 307 the functions obtainable from ^ (u, a ; A, E) by taking

different values of a and A, and the same group {PQ), are linearly expressible by

2p-r-8=2<^-» of them, if <T=p — r, with coefficients independent of ii. The 2^ functions

<{> (?<, a ; J^y, e), obtained by varying a and Qj, are themselves expressible by 2°" of them.

Thus, taking r-^s=p, or s= o-, we have

^{u,v; A, E)^{a, h ; A, E) = ^{u,b; A, E)<ir{a,v; A, E)

or

2
{^1^

(^'i) GCi*K v ;
.i§y, .)*(«, & ; ^Qh^

taking for Ci, •••, fs all the possible 2» values, and adding the 2" equations of this form,

we obtain

2« 28

2e'^i|<2jl4.(M, ?;; yl $,-,«)* (a, 6 ; ^(^y, €) = 2 e'^^'l^-'' * K 6 ; .-1$,, e) * («, i'
;
AQj,^).

.7=1 ./=1

Suppose now that A^, ..., A^ are the 22"^ characteristics satisfying the r relations

\X,Pi\ = \Pi\, (mod. 2), and let C^= AiA„, ; then j C„„ Pi\=0 ;
hence, by the formulae of

§ 306, Ex. i., adding the half period flc^ to u and b, and dividing by the factor e''*"^w ^',

we have
2<^

2 e"^i c-.^e, I ^ ^^^^ ^ . ^^.^^^^^ ^-j * («, 6 ; ^c,„$„
J=l

Ji e""'
'
'^> '

"-"'
'

^'- ^>
' * (M, 6 ; .1 Qj, * («, v

;
AQj,e);

taking, here, all the 22°' values of C,„ in turn, and adding the equations, noticing that

is zero because Qj is not a characteristic of the group (/'), except for the special value

Qj=0, when its value is 2'^"^
(§ 300), we derive the formula

2^-^ $ («, b; .1, f ) * (rt, V ; .1, 6) = 2 2 e" ' ^'»'^>
' <I> (?<, i' ; ^'l C„,Qj, e) * (a, 6

;
AC^,Qj, 6) ;
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now, as already remarkefl (§ 298, Ex.), if a characteristic S which is syzygetic with

every characteristic of the group {P) be added to each of the 2'^'^ characteristics A^, ..., A^^

the result is another set of 2-'^ characteristics .sixtisfying the same congruences,
|
X, ^M = 1

1\\ ,

as the set A^, ..., A^, and incongruent mod. (/') ; thus, taking a fixed value of y, we have

C,nQj=CnPi, where, as C„, takes its 2^' values, C„ also takes the same values in another

order, and Pi varies with m. Hence (Ex. iii. § 306) we have

e''l <^m«>l *(«, v; AC„,Qj, e)* («,6; AC„,Qj, = «"'^"'^'
' * («> v; AC^P^,.) f{a,b; AC^Pi, .),

and

'2Vl^„.0>l4,(«, ^. AC,„Qj, .)*(«, b; AC„,Qj, .)
m=l

= 2e'^l^'»'*(«,i»; J(7„.,e) *(«,/.; JC„.,0,

and therefore, finally, dividing by a ftictor 2*^ (there being 2*^ characteristics in (§)), we

have

2'^*(», 6; J, 6)*(a, v; A, e)= 2 e'"''^'^'"' * (li, i;; AAiA„„ e) * («, 6; J.liJ„„ f).

m=l

When a-=j3, this becomes the formula of § 309. We infer that the functions

* (m, a; A, e) are connected by the same relations as the functions of the form

S {u+ a; A) S {u — a; A) when the number of variables (in the latter functions) is a.

Ex. Prove that, with the notation of the text,

' ^
f

•<ir{a,b; A,E)

315. The formula of the last Article is capable of a further generalization. Let (R) be

a group of 2»* characteristics, formed with /fj, ..., Ji^x, as basis, which satisfy the conditions

\R,P,\ = 0,...,\Ii,Pr\ = 0.

Thus (P) is a sub-group of (R) ; the group (R) consists of (/'), together with groups (RP),

whereof the characteristics R form a group of 2'*"'' characteristics, whose constituents are

incongruent for the modulus (P). The ba.sis of this sub-group of 2'^"'' characteristics will

be denoted by R^, ..., R^-,-- The total nimiber of characteristics satisfying the prescribed

conditions is 2-''"''; thus fi:^2p-r, and, when n<2p-r the given conditions are not

enough to ensure that a characteristic belongs to the group (R).

Then, if i^, G^ be arbitrary characteristics, and Ri become in turn all the characteristics

of a group of 2'^"'' characteristics of the group (R) which are incongruent mod. (P), we

have

2"- '^^'2
V'' '

^^^'
' * (m, 6 ; GRi, * (a, v ; GRi, e)

I—

I

where Cm=-^i-^m- Since \Ri, P\ = 0, the constituents of the set RiOm, where 7^^ is a fixed

characteristic and m = l, 2, ..., 2-'^, are in some order congruent (mod. (P)) to the con-

stituents of the set 6',,, ; hence (§ 306, Ex. iii.) the series is equal to

2'-/y'^"'>'l-^^^'l+'^''''^'^"''*(M,
i;; 6'C„.,0*(«,&; O'C^,,),

m=\ i—X

= 2'--'^ 2 e'"-|^<?l+'^ICml( 2 e''''-^^^"'"^'')*(«,i;; OCr„, ,) <i> {a,b; 6-'C e)

;
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2.""'"

now 2 e" ' » is zero, xmless \L, A!j|sO (mod. 2) for every characteristic ifj, iii which
i=l

case its vakxe is 2*^ ~ '' ; thus the series is equal to

where *S',„ satisfies the conditions involved in
|
aS'„j, Ri\=.0, FGCm=S,n, namely the con-

ditioiis

\S„„ R,\^0, ..., |>S;„, 72^-,.
1
= 0, \FGS„„ F,\ = 0, ...,\FGS„„ P,| = 0;

the number of characteristics satisfying these fi conditions is
2'^^"'^

; the number of these

which are incongruent for the modulus (P) is 2^P~^~^'= 2-'^'^^~''^.

Suppose now that \FG', Pj| = 0, ..., \FG, jP^| = 0; then the characteristics *S'„j con-

stitute a group satisfying the conditions
| S,ii, B\ = 0, where R becomes in turn all the 2^

characteristics of the group (R). The group (^S') of the characteristics S^ may be obtained

by combining the characteristics of the group (P) with the characteristics of a gi'oup of

2
"'"'* *' characteristics which also satisfy these conditions and are incongruent for the

modulus (P)
;
putting fi= r + p, we have therefore*

!= 1

In this equation each of Ri, S^ represents the characteristics, respectively of the

groups (R), (*S'), which are incongruent mod. (P). But it is easy to see (§ 306, Ex. iii.)

that we may also regard Ri, <S'„i as becoming equal to all the characteristics, respectively,

of the groups (R), (S).

316, We have shewn in Chap. XV. (§ 286, Ex. i.) that a certain addition

formula can be obtained for the cases p= 1,2, 3 by the application of one

rule. We give now a generalization of that rule, which furnishes results for

any value of ^.

Suppose that among the 2'^"^ characteristics A^, A^, ..., A/^ which, for any
Gbpel system (P) of 2'' characteristics, satisfy the conditions

ZPI — iPI IVPI— IPi

we have ^• + 1 = 2°"+ 1 characteristics B^, ..., B^,, B, of which B is even, which

are such that, when i is not equal to j, BBiBj is an odd characteristic ; as

follows from § 302 of this chapter, and § 286, Ex. i., Chap. XV., this is

certainly possible when o- = 1, or 2, or 3 ; and, since

\BB,B^, F\^\B,P\ + \Bi,P\ + \Bj,P\-^\P\,

* The formula is given by Frobenius, Crelle, xcvi. p. 95, being there obtained from the

formula of § 310, which is a particular case of it. The formula is generalised by Braunmiihl to

theta functions whose characteristics are n-th parts of integers in Math. Annal. xxxvii. (1890),

p. 98. The formula includes previous formulae of this chapter.
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the characteristics BBiBj will be aniuug the set A^, ..., A^, so that all

characteristics congruent to BBiBj (mod. (P)) are also odd. Then by § 307

there exists an equation of the form*

k

A.4>(m, c; B,e)= 1 X,„0(?<, a ; 5,„, e),

?n = l

wherein the coefficients X, A.,, ..., \^, are independent of u. Put in this

equation u = a + Qjm ; then we infer (§ 306, Ex. i.)

X<I> (a, c ; 5,-, e) = X,-^ (a, a ; -S, e)
;

hence we have

(p{a,a; i?, e) <!>(«, c ; B,e)= S e-^l-B^ml ^(a, c; 5^, e) <!>(?/, a; 5,,., e),

m = l

which is the formula in question
*f*.

Adding the 2'' equations obtainable from this formula by taking the

different sets of values for the fourth roots of unity e^, ..., e^., there results

2'' 2"' if

1=1 m=l 1 = 1

where

A/r„ (5P.) = ^ (0 ; 5P,) ^ (2a ; 5P,) ^ (« + c ; PP,) ^ (;/ - c ; PP,),

>/r(P„.P,)=^(a+c; P,„P,)^(a-c; P;;.P.)^(^^ + a ; P„,P,) ^ (w - a ; BJ?,).

Herein we may replace the arguments

2a, w + c, w — c, a-\-c, a — c, ii + a, u — a

respectively by

U, V, W, ^(U+ V- W), ^{U- V+ W), ^{U+ V+ W), u- U+ V+ W),

and thence, in case j^ = 2, or p = 3, obtain the formula of Ex. xi., § 286,

Chap. XV.

Or we may put a = 0, and so obtain

a*"

2e-i/'i^(0; PP,)^(ii + c; BPi)^(u-c: BPi)
1=1

Hl = l 1=1

Other developments are clearly possible, as in § 286, Chap. XV.

Ex. When <r=l there are three even G6\)&\ systems, and one odd; let {DP), (BiP),
(ZJjP) be the three even Groijel systems; then we have

*(«,«; B, f)*{u,c; B, ()

= e''l*^'l*(c/, c; Z?,,6)*(K, a; ^,, O + e"'^^'' * (o, c; ^2, ,) * (w, a ; i^2, c),

* We may, if we wish, take, instead of the characteristic B on the left hand, any characteristic

A such that \A, P,! = IP,I, (i= l,..., 2'').

t For similar results, cf. Frobenius, Crelle, lxxxix. (1880), pp. 219, 220, and Noether, Math.
Annul. XVI. (1880), p. 327.
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where O («, a ; B, f) consists of 2''"^ terms ; for instance when p= 1 we obtain

5(0; B)S{2a; B)d(u + c; B)S(u-c; B)

= e''''^^''5(a+ c; B^)^{a-c; Bi)S{u+ a; B{)S{u-a; B{)

+ e''^l-^^^l5(a + c; B^)S{a-c; B.^)^{u+ a; B^)^{u-a; B.^.

317. Ex: i. If P be a fixed characteristic and 'ir{u; A) denote the function

&{u; A):^{u; A + P), prove that

^^'(« + 0^; J) = e^'^^l^l+2^(«'^>^I'(«; A),

and

^(«+ i2y; J)/^1>(M + I2<^; ^) = (^^)^(»; ^^ + 0/^(«; ^+§).

therefore

Hence, if ^i, ..., B/c, Bhe ^•+ l = 2''~i + l characteristics each satisfying the condition

\ JC, P\ = \P\, such that, when i is not equal to y, BB^Bj is odd, we have (§ 307) an

equation
2P-1

X^(«; A)^ 2 X„,^I'0<; i?J,

where ^ is any other even characteristic such that
\
A, P\ =

\
P \; putting u= Q.ji+ ^B , we

obtain

x(f^i)^(0; A + B + B>) = \i^{0; B+ 2Bi) = \,(^^^^ (0; B);

2P-1 /BB \ / P\
^(0; i?)^(.; ^) = ^2^(^£j UJ^^°' ^+^+ ^-)^(«; ^-).

£!r. ii. Obtain applications of the formula of Ex. i. when jo= 2, 3, 4 ; in these cases

(T, =j) — l, =1, 2, 3 respectively, so that we know how to choose the characteristics

Bi, ...,Bk,B (Ex. i., § 286, Chap. XV., and § 302 of this Chap.).

Ex. ill. From the formula (§ 309)

»{u+ b; A)S{ic-bi A)S{a+ v; A)S{a-v; A)

by putting a+Q,p for a, and b= v=0, we deduce

52 {u; A) 3-' {a ; A P) = 2 -i' 2 e""'
I
^^

' (j'^ 5'^ {u ; K) S'^ (a ; PR),

where A, P are any half-integer characteristics and R becomes all the 2^^' half-integer

characteristics in turn
;
putting RP for R we also have, from this equation,

52 (tt ; ^ ) ^2 ( a ; .1 /') = 2 - " 2 e'^ I ^^
1 (^^ e'^^' ^'^^'^h^u; RP) S'^ {a R)

therefore

[l+e-^M,-P|+''i|^:]52(0; J)52(0; AP)

= 2-"2e"^I^^I^^^Vl-fe"^l^l+'^^l^--P|]52(0; R)3^0; PR).

The values of R may be divided into two sets, according as \R, P\ + \P\ = \ (mod. 2),

or = ; for the values of the former set the corresponding terms vanish ; the values of R
for which \R, P

|

+
!

P
|

= (mod. 2) may be either odd or even ; for the odd values the

zero values of the corresponding theta functions are zero ; there remain then (§ 299) only

2 _
2^-2(21^-14-1) terms on the right hand corresponding to values of R which satisfy the
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conditions \ R\ =
\
BP\ = (mod. 2); these values are divisible into pairs denoted by

R= E,R= EP; for such values i + e" ^. ^ 1+"'
1

^
! = 2, and

thus, provided \A, P\ + \P\ = (mod. 2),

y(; J)S2(; JP) = 2-(''-»)2e'"l^^ (Q52(. E)BH; EP), (i),

wherein 5-(; J) denotes B-{0; A\ etc., and, on the right hand there are 2p--'(2p-i + 1)

terms corresponding to values of E for which \E\ =
\

EP
,
= (mod. 2), only one of the two

values, Ey EP, satisfying these conditions being taken.

Puttinc P=0, u = a, in the second equation of this example, we deduce in order

SHu; J) = 2-P2e"''^^'5*(«; B); 3*{u; JP) = 2-"2e"' -^^^i 5* («; R);

so that, by addition,

3*(w; J)+ e"'^'-^'5*(»; J/^ = 2-"2e'*'^^'[l+e'*''^l+"'^'
-^'J^^ (;<; R);

thus, as before,

B*{; J)+e'^''^"^'5^(; ^P) = 2-U'-i)2e'"'^'^' {5*
( ; ^) + e'^'^' ^'5^

( ; ^/% (ii).

.fix. iv. Taking ^= 2, let (/*)=0, P^, Po, PiP* be a Goi>el group of even charac-

teristics*; let B^, jBj, B^B^ be such characteristics (§ 297) that the Gopel systems

(P), (B^P), {B.yP), {B^B^P) constitute all the sixteen characteristics; each of the systems

{BiP)j (B^P), {B^BoP) contains two odd characteristics and two even characteristics.

Then, in the formulae (i), (ii) of Ex. iii., if P denote any one of the three characteristics

Pj, P,, P,P2, the conditions for the characteristics E are
|

E, P\ = \P\ = 0, \

£"1 = 0; the

2. 2p~2(2p~i+ 1), =6, solutions of these conditions must consist of 0, Q, B and P, QP, BP,

where Q is defined by the condition that the characteristics 0, Q, P, QP constitute the

group (P), and 5 is a certain even characteristic chosen from one of the systems {B^P),

{B^P), (B^B^P). Hence, when P=Pi, we may, without loss of generality, take for the

2p-2(2p-i + 1) = 3 values of E which give rise to different terms in the series (i), (ii), the

values 0, P.,, B^ ; similarly, when P=P.^, we have, for the values of E, E=0, P,, B^; and

when P=PiP.2, E=0, Pj, B^B^; taking .4 to be respectively t P,, By, B^B^ in these

cases, we obtain the six equations

(^jJ)bH; o)SH; A)+«'^'''^'''''(^"^},j^-(; A)^-'(; A^2)-5-(; B,)r-{; B,P,)=0,

B*{; o)+3*(; PO+e'^'^'^^'L^M; P^+^Hi ^'2n)]-[5M; ^i)+^*(; ^iA)]=o,

Q^H; 0)5^(; P,)+e'^"^'''''(5^],J5^'(; A)5-(; AA)-^-(; B,)r-{; B,P,)=o,

OH;o)+B\; P2)+.'^'''»»'''i[^*(; A)+5'(; A^2)]-[5*(; ^2)+^*(; b,p,)]=o,

-r-i; AZ?,)5-(; B,B,P,P,) = 0,

5*(i o)+5*(; PiP2)+e"''^"^''''' L^M; A)+5M; A)]-[5M; ^1^2)+^^; ^i^2A^2)]=o,

* There are six such groups (Ex. iv. § 289).

t "We easily find
| B,B,Pi 1

=
' BiB.P, =- B^B., . Thus the case when B^B^ is odd is

included by writing B^P^ in place of i^j.
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wherein e"* I ^i ^2U g'^? I £3 ^i I =. e"* I ^' ^^ ^' = - 1 . These formulae express the zero vahies of

all the even theta functions in terms of the four^(; 0), ^(; Pj), S{; P^), ^(; AA)-
Thus for instance they can be expressed in terms of ^5, ^34, ^^g) ^oJ the equations have

been given in Ex. iii., § 289, Chap. XV.

Ex. v. We have in Chap. XVI. (§ 291) obtained the formula

where e' represents a set of jo integers, each either or 1, and has therefore 2*" values.

Suppose now that q, r represent the same half-integer characteristic, =J( )+i(;. )»

= C+K^j say; then we immediately find

where e'c' denotes the row of p integers, each either or 1, which are given by {€'c')i=€i+Ci

(mod. 2) ; herein the factor e^^''"' S^ \ v; ~^
is independent of k^. For K^ we take now, in

turn, the constituents

0, A'l, A'a, ..-, Kp, K^Iu, ..., K^K^K^, ...

of a Gopel set of 2^ characteristics, in which

/O, 0, 0, ...\ _, /O, 0, 0, ...\ _, /O, ..., 0, 0\
.

^i-Hi,o,o, ...j' ^^-^-no, 1,0,
...;'•••' ^^^-Ho,...,o,i;'

then denoting S [u+ v ; CKJB[u -v; CK^] by [CAJ, we obtain 2^ equations which are all

included in the equation

wherein s= 2p, ej', ..., ej represent the difierent values of «', and J is a matrix wherein the

^-th element of the a-th row is Sj ?« ;
"

,^

The 2P various values of e'^c', for an assigned value of c', are, in general in a different

order, the same as the various values of e'g ; we may supi)ose the order of the columns of

J" to be so altered that the various values of t'^c' become the values of e'^ in an assigned

order, the order of the elements e'^*«c' ^Ji;; - ^^
L •••, e'"'"'^' Sj v;-^^ being correspond-

ingly altered. When this is done the matrix J is independent of the characteristic C.

Now it is possible to choose 2'' characteristics C, say Cj, ..., C^ such that the Gopel

systems (C'jA) give, together, all the 2^ possible characteristics ; then the 2^' equations

obtainable from that just written by replacing C in turn by L\, ..., C^, are all included,

using the notation of matrices, in the one equation*

I II L ''a J M L ''^^ J

I

wherein ('^ denotes a row of p integers, each either or 1 , and has 2" values. In each

matrix the element written down is the /3-th element of the a-th row.

* We can obviously obtain a more general equation by taking 2-p different sets of arguments,

the general element of the matrix on the left hand being S^ [!<**' -f-t;*^' ; CaKp]^[ii^'^^ -v*^' ; CaKp].

Cf. Chap. XV. § 291, Ex. v., and Caspary, Crelle, xcvi. (1884), pp. 182, 324; Frobenius, Crelle,

xcvi. (1884), p. 100. Also Weierstrass, Sltzungsber. (lev Ak. d. JViss. zu Berlin, 1882, i.—xxvi.

p. 506.
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E.r. vi. If in Ex. v., /) = 2, and the group (A') consists of the characteristics

while the characteri.stics (' consist of

[:U7

^ \m) ' ^ (ooj '
^ (oo) '

- voo)

'

and the values of ^ are, in order,

(0,0), (0,1), (1,0), (1,1),

shew that the sixteen equations expressetl by the final equation of Ex. v. are equivalent to

«! ) ( /3l> -^4> ^3> ^2 )

^2> ^3' ^4' ~^l

^4) ^11 -^2> ^3

-«3» "4> "n «2

"UJ' UJ' LooJ' LiiJ

\ LooJ' "LiiJ' UJ' UJ

"LioJ'~LoiJ' "LnJ' LooJ

wherein, on the left hand, denotes 5 u + v; ^ I , ,
) p ?« - r

; i ( , , ) >
etc., and on

the right hand,

„=..[». i(P], .=3.[.. 4(P], .=<.<; iQ], .=4'. *(«)]•

/3j, /S^, ^3, /S^ being respectively the same theta functions with the argument v.

Now if J, B denote respectively the first and second matrices on the right hand, the

linear equations

(yi. 3/2. ^3. y\) = -^ (•''l. •'2. -^S.
'''\\

(•''U -^2. -^S. •n)= ^(2l. ^2. %. ^4)

are immediately seen to lead to the results

yi'+y2'+y3'+y4'=(«l'+ «2'+ «3'+ 0(-^l'+ -*'2H.r32+.rA
X^^+ X^^ + X^'+ .r,2= (^,2+ ^^2+ ^^2 + ^^2) ( -j2+ -.^2+ ,2 j^ -^2) .

hence if the^'-th element of the j'-th row of the compound matrix AB, which is the matrix

on the left-hand side of the equation, be denoted by y- ., we have

2 7?,= 2y2^, 2 y. ,.y. ^= 0, (r=J=.*, r, s=\, 2, 3, 4),
1=1 ' 1=1 ' 1=1 ' '

and these equations lead to
4 4 4

Denoting
,

, L ,^, > by [ajcj
, ["icj , etc., as in the table of § 204, and inter-

changing the second and third rows of the matrix on the left-hand side, we may express

the result by saying that the matrix

( KC2], [«iCi], -[«i^] , K] )

[a^cj, -[a2<^i], [«2C]
,

[rtj

-[^2] . bl] . W , [«1«2]

-K] . -M . -[Ci<^2], [0]

gives an orthogonal linear substitution of four variables*.

• An algebraic proof may be given ; cf. Bricsclii, Ann. d. Mat. xiv.
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Ex. vii. Deduce from § 309 that

a

where P^, P^ are characteristics of a Gopel group (P), of 2^ characteristics. Infer that, if
n be an^ positive integer, mid APi be an even characteristic, S{7iv; A Pi) is expressible as an
integral polynomial of order n"^ in the '2P functions ^{v ; AP ).

Ex. viii. If A'= I
L' V P„ =M ^ "V deduce from § 309, putting

a= b=u- U=v— F=-^Qj.,

that

^{U+V,U-V)^{Q,0) = ^{lT,U)x{V, -V),
where

X («, ^)= 2.„ e - ^'*''^- 5 {u ; K+ P„) ^ {v P„).
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CHAPTER XVIII.

Transformation of Periods, especially Linear Transformation.

318. In the foregoing portion* of the present volume, the fundamental

algebraic equation has been studied with the help of a Riemann surface.

Much of the definiteness of the theory depends upon the adoption of a

specitic mode of dissecting the surface by means of period loops ; for instance

this is the case for the normal integrals, and their periods, and consequently

also for the theta functions, which were defined in terms of the periods

Tij of the normal integrals of the first kind; it is also the case for the

places ')ih,...,7np of § 179 (Chap. X.), upon which the theory of the

vanishing of the theta functions depends. The question then arises ; if we

adopt a different set of period loops as fundamental, how is the theory

modified, and, in particular, what is the relation between the new theta

functions obtained, and the original functions ? We have given a geometrical

method (§ 183, Chap. X.) of determining the places nii, ..., nip from the

place in, from which it appears that they cannot have more than a finite

number of positions when m is given, and coresidual places are reckoned

equivalent; the enquiry then suggests itself; can they take all these possible

positions by a suitable choice of period loops, or is one of these essentially

different from the others ? The answers to such questions as these are to be

sought from the theory of the present chapter.

There is another enquiry, not directly related to the Riemann surface,

but arising in connexion with the analytical theory of the theta functions.

Taking p independent variables Uj, ..., itp, and associating with them, in

accordance with the suggestion of §§ 138—140 (cf § 284), the matrices

2(0, 2a)', 2r], 2r) , we are thence able, with the help of the resulting equations

2hco = TTi, 2hQ)' = b, T} = 2a(o, rj' = 2a(i)' — h

,

to formulate a theta function. But it is manifest that this procedure makes

an unsymmetrical use of the columns of periods arising respectively fi-om

the matrices &) and co' ; and it becomes a problem to enquire whether this

* References to tlie literature dealing with transformation are given at the beginning of

Chap. XX.
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want of symmetry can be removed ; and more generally to enquire what

general linear functions of the original 2p columns of periods, with integral

coefficients, can be formed to replace the original columns of periods ; and, if

theta functions be formed with the new periods, as with the original ones,

to investigate the expression of the new theta functions in terms of the

original ones.

So far as the theta functions are concerned, it will appear that the

theory of the transformation of periods, and of characteristics, includes the

consideration of the effect of a modification of the period loops of a Riemann

surface; for that reason we give in this chapter the fundamental equations

for the transformation of the periods and characteristic of a theta function,

when the coefficients of transformation are integers ; but the main object

of this chapter is to deal with the transformation of the period loops on a

Riemann surface. The analytical theory of the expression of the transformed

theta functions in terms of the original functions is considered in the two

following chapters.

In virtue of the algebraical representation which is possible for quotients

of Riemann theta functions (as exemplified in Chap. XI.), the theory of

the expression of the transformed theta functions in terms of the original

functions, includes a theory of the algebraical transformation of the funda-

mental algebraical equation associated with a Riemann surface ; it is known

what success was achieved by Jacobi, from this point of view, in the case of

elliptic functions ; and some of the earliest contributions to the general

theory of transformation of theta functions approach the matter from that

side*. We deal briefly with particular results of this algebraical theory in

Chap. XXII.

319. Take any undissected Riemann surface associated with a funda-

mental algebraic equation of deficiency p. The most general set of 2p

period loops may be constructed as follows :

Draw on the surface any closed curve whatever, not intersecting itself,

which is such that if the surface were cut along this curve it would not be

divided into two pieces ; of the two possible directions in which this curve

can be described, choose either, and call it the positive direction ; call the

side of the curve which is on the left hand when the curve is described

positively, the left side ; this curve is the period loop {A^ ; starting now

from any point on the left side of {A^), a curve can be drawn on the surface,

which, without cutting itself, or the curve {A-^), and without dividing the

surface, ends at the point of the curve {A^ at which it began, but on the

right side of {A^ ; this is the loop (^i), and the direction in which it has

* See, in particular, Richelot, Crelle, xvi. (1837), De transformatione...integralium Abelian-

orum primi ordinis ; in the papers of Konigsberger, Crelle, lxiv., lxv., lxvii., some of the

algebraical results of Richelot are obtained by means of the transformation of theta functions.

B. 34
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been described is its positive direction ; its left side is that on the left hand

in the positive description of it. The period associated with the loop (^i),

of any Abelian integral, is the constant whereby the value of the integral

on the left side of (Aj) exceeds the value on the right side, and is equal to

the value obtained by taking the integral along the loop {B^) in the negative

direction, from the end of the loop (i?i) to its beginning. The period

associated with the loop (5,) is similarly the excess of the value of the

integral on the left side of the loop (Bi) over its value on the right side, and

may be obtained by taking the integral round the loop (Ai) in the positive

direction, from the right side of the loop (By) to the left side. These periods

may be denoted respectively by flj and H/.

320. It is useful further to remark that there is no CMsential reason why what we have

called the loops (Aj), {B^) should not be called respectively the loops [^J and \_A{\. If

this be done, and the positive direction of the (original) loop (5j) be preserved, the

convention as to the relation of the directions of the loops [J J, \_B^ will necessitate a

reversal of the convention as to the positive direction of the (original) loop {A-^). If the

periods associated with the (new) loops [Jj], [5J be respectively denoted by [Q] and [Q'],

we have, therefore, the equations

[I2J = Q', [Q']=-i2.

These equations represent a process—of interchange of the loops {A^, {B{}, with retention

of the direction of (Bj)—which may be repeated. The repetition gives equations which we
may denote by

{Q} = [Q']=-Q, {Q'}= -[Q]=-Q',

and the two processes are together equivalent to reversing the direction of loop (.4j), and

(therefore) of the loop (5^). The convention that the loop (Bj) shall begin from the left

side of the loop (Aj) is not necessary for the purpose of the dissection of the surface into a

simply connected surface ; but it affords a convenient way of specifying the necessary

condition for the convergence of the series defining the theta functions.

321. The pair of loops (^i), (B^) being drawn, the successive pairs

(A^), (B2), . .
. ,

(Ap), (Bp) are then to be drawn in accordance with precisely

similar conventions—the additional convention being made that neither

loop of any pair is to cross any one of the previously drawn loops. If

the Riemann surface be cut along these 2p loops it will become a p-p\y

connected surface, with p closed boundary curves. It may be further

dissected into a simply connected surface by means of (p— 1) further cuts

(C,), ..., (Cp_i), taken so as to reduce the boundary to one continuous closed

curve.

Upon the /J-ply connected surface formed by cutting the original surface

along the loops (^,), (B^), ..., {Ap), (Bp), the Riemann integrals of the first

and second kind are single-valued. In particular if W^, ..., Wp be a set of

linearly independent integrals of the first kind defined by the conditions

that the periods of If,, at the loops (^j), ..., (Ap) are all zero, except that at
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(Ar), which is 1, and if t,.,s be the period of Wr at the loop (Bg), the imaginary

part of the quadratic form

TnWi^ + + 2T12W1W2 + + TppTll

is necessarily positive* for real values of v^, ..., Hp. This statement remains

true v\^hen, for each of the p pairs, the loops (Ar), (Br) are interchanged,

with e.g. the retention of the direction of (B^) and a consequent change in the

sign of the period associated with (Ar), as explained above (§ 320) ; if the

loops (A,-), (Br) be interchanged without the change in the sign of the period

associated with (Ar), the imaginary part of the corresponding quadratic

form is negative •!•.

322. In addition now to such a general system of period loops as has

been described, imagine another system of loops, which for distinctness we
shall call the original system ; the loops of the original system may be

denoted by (Ur), (b^) and the periods of any integral, U{, associated therewith,

by 2a)i^r, 2o)'i^r', the general system of period loops is denoted by (Ar), (Br),

and the periods associated therewith by [2ft)i^,.], [2co',:_r]- For the values of

the integral m;, the circuit of the loop (Br), in the negative direction, from

the right to the left side of the loop (A^), is equivalent to a certain number,

say J to Uj^r, of circuits of the loop (bj) in the negative direction, together

with a certain number, say 0L'j,r, of circuits of the loop (aj) in the positive

direction (r,j=l,2,...,p); hence we have

p

[«i,r] = S (coijaj, > + (o'i,jCLj^ ,), (r = 1, 2, ..., p);

similarly we have equations which we write in the form

p
[co'i^ r] = S (m, j^j, > + o}\; j^'j, r), (r = l,2,...,p),

the interpretation of the integers ^j^ ,., /3'j^ ,. being similar to that of the

integers Oj^ ,., a\ ,..

Thus, if Ui, ..., Up denote p linearly independent integrals of the first

kind, and the matrices of their periods for the original system of period

loops be denoted by 2<u, 2ft)', and for the general system of period loops by

[2ft)], [2ft)'], we have

[ft)] = ft)a + ft)'a', [ft)'] = ft)/? + ftj'yS',

where a, a', /3, yS' denote matrices whose elements are integers.

* And not zero, since n{iV-^^+ ...+npWp cannot be a constant. Cf. for instance, Neumann,
Riemann's Theorie der AbeVschen Integrale (Leipzig, 1884), p. 247, or Forsyth, Theory of

Functions (1893), p. 447. (Eiemann, WerUe, 1876, p. 124.)

t As previously remarked, p. 247, note.

J A circuit of {hj) in the positive direction furnishing a contribution of - 1 to a^, ,.

84—2
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If Li, ..., Lp he a. set of p integrals of the second kind associated with

?/,, ..., Up, as in § 138, Chap. VII., and satisfpng, therefore, the condition

i [D, «r " i),4' " - D,u- 'D,LT "] =A
1=1

and the period matrices of Zi, ..., Zp at the original and general period

loops be denoted respectively by — 2?;, — 2r)' and — [2?;], — [2r]'], we have,

similarly, for the same values of a, a, (3, /3',

[V] = 77a + 77'a', [7;'] = 77/3 + 7/'^'.

We have used the notation Op for the row of P quantities 2coP + 2q)'P',

where P, P' each denotes a row of p quantities ; we extend this notation to

the matrix 2(oa + 2(o'a', where a, a each denotes a matrix of p rows and

columns, and denote this matrix by Q„ ; similarly we denote the matrix

2t)ci + 2r{oL by H^ ; then the four equations just obtained may be written

i2i^-\=0.^, [2a,'] = n,, [277] = ir„ [27/'] = iZ^. (I.)

Noticing now that the matrices [2a)], [2a,'], [2?;], [2?;'] must satisfy the

relations obtained in § 140, we have

l-Ki = [n] [a,'] - [^] [7;'] = i{HA - i^aH,)

= (dlj + a'v') {co^ + co'^') - (a« + a'w') {r}/3 + v'^')

= a (tJco — wrj) /3 + a' (^'o, — w'rf) /S + a (^o,' — wt)') /3' + a (rj'co' — (Ot)') ^

in virtue of the relations satisfied by the matrices 2a,, 2a,', 277, 2ij' ; and

similarly

= [v] [^] - [S] [v] = i (^a-O. - nMa) = (aa' - a'a)^7ri,

and _
= [v] W] - [S'] W] = { {S,n, - n,H,) = (yS^' - ^'^) ^7n

;

thus we have

a^'-a'0 = l=^'a-^a, aa'-a'a = 0, ^/3' - ^'^ = 0, (XL)

namely, the matrices a, /9, a', yS' satisfy relations precisely similar to those

respectively satisfied by the matrices a,, a,', 77, 77', the ^tti which occurs

for the latter case being, in the case of the matrices a, /3, a, ^', replaced

by — 1 ; therefore also, as in § 141, the relations satisfied by a, /9, a, /3' can be

given in the form

a/8'-/Sa' = l=^'a-a'/9, a;3-y8S = 0, o'/3' - yS'a = 0. (III.)

lu virtue of these equations, if

'<'.)

denote the matrix of 2/» rows and columns formed with the elements of the matrices a, /3,

a, /3', we have (of., for notation, Appendix ii.)

/a, /3\ / ^', -^\/a^'-^a', /3d-ai3\ /I 0\
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and therefore

and the original periods can be expressed in terms of the general periods in the form

0)= [»] ^' — [ca'] a, <o'= — [o)] j3 + [co'] 5,

If denote the matrix of p rows and columns whereof every element is zero, and

1 denote the matrix of p rows and columns whereof every element is zero except those in

the diagonal, which are all equal to 1, and if e denote the matrix of 2p rows and columns

given by

.=(J; -J). ....=(-; _«)=-,

then it is immediately proved that the relations (II.), (HI-) are respectively equivalent to

the two equations

JeJ=€, t/ei/=f,

where

r_fa, a'\
_

and it will be noticed that the equations (III.) are obtained from the equations (II.) by

changing the elements of J into the corresponding elements of J.

It follows* from the equation J(J=e that the determinant of the matrix J is equal to

+ 1 or to - 1. It will subsequently (§ 333) appear that the determinant is equal to +1.

124

-6

JEx. Verify, for the case p= 2, that the matrices

/ 4, -20\ ._/-29,
""V 4, ij' ^"1-28,

, /-3, 20\ / 22, -124\
«=(^_8, -iJ' ^=[ 56, 43;

satisfy the conditions (III.) (Weber, Crelle, Lxxiv. (1872), p. 72).

323. It is often convenient, simultaneously with the change of period

loops which has been described, to make a linear transformation of the

fundamental integrals of the first kind, Ui, ..., Up. Suppose that we intro-

duce, in place of Wj, ...,Up, other ^ integrals Wi, ..., Wp, such that

Ui = Mi^-^Wi + +Mi^pWp, (i= 1, 2, ..., p),

or, as we .shall write it, m = Mw, M being a matrix whose elements are

constants and of which the determinant is not zero. We enquire then what

are the integrals of the second kind associated with Wi, ..., Wp. We have

(§ 138) denoted Dui by fii{x), and the matrix of the quantities i^iicj) by ya;

* For another proof of the relations (II.), (HI.) of the text, the reader may compare Thomae,

Crelle, lxxv. (1873), p. 224. A proof directly on the lines followed here may of course be

constructed with the employment only of Riemann's normal elementary integrals of the first

and second kind. Cf. § 142.
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denote now, also, Dw'l'
" by p, (x), and the matrix of the quantities pi (Cj) by p ;

then we immediately find /x = pM, and the equation (§ 138)

gives

ML''- « = p-'H""' « - 2MaMw='' «

;

thus the integi-als of the second kind associated with Wi, ...,Wp are the p
integrals given by ML''' ", and, corresponding to the matrix a for the

integrals L^' , ..., Lp , we have, for the integrals ML"' *, the matrix

a = MaM. If 2u, 2v' denote the matrices of the periods of the integrals w,

and — 2^, — 2^' denote the matrices of the periods of the integrals ML''^, so

that (§139)

f=2au, ^ = 2ai;'-^p-^A,

we therefore have w = Mv, oo' = Mv and

^ = 2MaMv = Mv, ^' = 2MaMv-^Mfi-'A = Mv'; (IV.)

it is immediately apparent from these equations that the matrices v, v, ^,
^'

satisfy the equations of § 140,

vv — v'ii = 0, ^^' — ^'^ =0, v't — v^' = ^7ri = ^v — ^'v.

324. Tlie preceding Articles have sufficiently shewn how the equations

of transformation of the periods arise by the consideration of the Abelian

integrals. It is of importance to see that equations of the same character,

but of more general significance, arise in connexion with the analytical

theory of the theta functions.

Let <u, <u', 7), 7] be any four matrices of p rows and columns satisfying

the conditions (i) that the determinant of (a does not vanish, (ii) that a)~^a>'

is a symmetrical matrix, (iii) that the quadratic form vr^w'n'^ has its

imaginary part positive when ?ij, ...,?ip are real, (iv) that 'qar'^ is a sym-

metrical matrix, (v) that t) =r](£r'^(o' — \'niw~'^. The conditions (i), (ii), (iv),

(v) are equivalent to equations of the form of (B) and (C), § 140, and,

taking matrices a, b, h such that a = ^r]a>~^, h = i^iriwr^, b = ttico^^co', or

2hco = TTi, 2h(o' = b, r) = 2aa), rj' = 2aa)' — h, the condition (iii) ensures the

existence of the function defined by

wherein Q, Q' are any constants (cf. § 174).

Introduce now two other matrices [co], [&>'], also of p rows and columns,

defined by the equations

[oj] = wa + co'ci, = ^Ha, say, [co'] = (w/9 + cy'/3', = ^fl^j, say,

where a, a, /3, /3', are matrices of p rows and columns whose elements are
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integers*, it being supposed i^ that the determinant of the matrix [&>] does

not vanish ; and introduce p other variables Wj , . . . , tUp defined by

Ui= Mi^iW^+ +Mi^pWp, {i=l, 2, ...,p)

or u = Mw, where 31 is a matrix of constants, whose determinant does not

vanish; let the simultaneous increments of w^, ..., Wp when u^, ...,Up are

simultaneously increased by the constituents of the j-th. column of [co] be

denoted by Vjj, ..., Vpj, and the simultaneous increments of w^, ..., Wp

when Ui, ...,Up are simultaneously increased by the elements of the j-th

column of [&)'] be denoted by v\j, ..., v'p^y, then we have the equations

2ilfu = 2 [to] = n„ , ^Mv = 2 [tw'] = n^s , where v, v denote the matrices of

which respectively the {i, j) elements are Vi^j and v'lj.

The function ^(w; q) is a function of lu^, ..., Wp\ we proceed now to

investigate whether it is possible to choose the matrices a, a', y8, /S' and the

matrix M, so that the function may be regarded as a theta function in

Wi, ..., Wp of order r (cf Chap. XV. § 284).

Let the arguments Wj , ... , Wp be simultaneously increased by the con-

stituents of the j-th column of the matrix 2v; thereby u^, ...,Up will be

increased by the constituents of the 7-th column of the matrix [2oi], and,

since a, a, /3, /3' consist of integers, the function ^ (u
; q ) will (Chap. X.

§ 190) be multiplied by a factor e^j where

Lj = (H^y^^ [u + ^ (a„)'i'] - iri (a)'i) (a')(i) + 27ri [(a)'-'"> Q' - (a')'-'' Q],

(a)'-?' denoting the row of p elements forming the J-th column of the matrix

a, and (Ha)'-", (^a)'-" denoting, similarly, the ;-th columns of the matrices

2(ooc + 2co'a, 2'r]a + 2r)'a' respectively ; this expression Lj, is linear in Wi, ..,,Wp,

and can be put into the form

Lj = r{2^,j, ..., 2^^,j)[(w,, ..., Wp) + (v^j, ..., Vpj)] + 27riKj,

where (wj, ..., Wp) denotes the row letter whose elements are Wj, .,., Wp, and

similarly (vi,j, ..., Vpj) is the row letter formed by the elements of the j-th

column of the matrix v, 7' is a positive integer which is provisionally

arbitrary, K/ and 2^i^j, ..., 2^pj are properly chosen constants, and

(2^ij, ..., 2^p^j) is the row letter formed of the last of these. Similarly, if

the arguments Wi, ...,Wphe simultaneously increased by 2v\j, ..., 2u'pj, the

function ^ (m
; ^) takes a factor e^'^, where

L/ = (ir^)O) [u-\-^ (n^)o)] - iri i^y^^ (/S')'^'' + 27ri m'i^ Q' - i/sy^^ q],

and, with the same value of r, this can be put into the form

L- =r{2^\j, , 2^'pj)[{wi, , Wp)-{-(v\j, , Vpj)]-27riKj,

* The case when a, o', /3, /3' are not integers is briefly considered in chapter XX.

t We have wiu~^[u] = Tria + ba' ; we suppose that the determinant of Tria + ba,' does not

vanish.
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where Kj, ^\,j, ..., ^'pj are properly chosen constants. In these equations

we suppose^* to be taken in turn equal to I, 2, ..., p.

Comparing the two forms of Lj we have

(H^yj-^Mw, or M{H^yJ^w, = r{2^,j, ..., 2^pj){w„ ...,Wp),

so that the (i,j)th. element of the matrix 3///, is 2;-f,j; hence if ^,
^' denote

respectively the matrices of the quantities ^ij and ^'ij, we have

MHa = 2rr, MH^ = 2r^'
;

(V.)

from these we deduce, in virtue of the equations 2Mv = Q^, 2Mv' = fl^,

i^Han,=^^Ha-2Mv=2r^v, h_H^n^ = ^^^. 2.1/v'= 2<u',

and therefore, in particular, comparing the {j, J)th elements on the two sides

of these equations,

where, as before, (u)'-" is the row letter formed by the elements of the J-th

column of the matrix u, etc.; therefore the only remaining conditions

necessary for the identification of the two forms of Lj and LJ, are

k; = («)••'' Q'

-

(«')''' Q-h («)'^' («')'^'> - Kj = (/3)
'•• Q'

-

W^' Q -

i

W^' W^',

and the ^; pairs of equations of this fonii are included in the two

K' = aQ' -a'Q-^d (da'), -K = ^Q - ^'Q - ^d(m, (VI)

where K', K are row letters of^ elements and d {da.'), d{fi^) are respectively

the row letters of p elements constituted by the diagonal elements of the

matrices da', y8y8'.

The equations (VI.) arise by identifying the two forms of Lj and Z/; it is

eflfectively sufficient to identify the two forms of e^j and eV; thus it is

sufficient to regard the equations (VI.) as congruences, to the modulus 1.

We now impose upon the matrices v, v
, ^,

^' the conditions

^t; - or= = i'v' - v^', ru - v^' = ^iri, (VII.)

which, as will be proved immediately, are equivalent to certain conditions

for the matrices a, y9, a', yS'; then, denoting ^ (?< ; |) by 0(wi, ....lUp) or

0(w), it can be verified* that the 2p equations

(f>(...,Wr+2vr,j,...) = eh<f>{tv),<f>{...,Wr+2v'r,i,...) = eh-<ji{tv),{j=l,...,p),

where Lj, Lj' have the specified forms, lead to the equation

<f>
{w + 2vni + 2v'm) = eri^m+iCm') (w+vm+v'm't-nrimm'+^imK'-m'K) ^ r^^;\

wherein m, m are row letters consisting of any p integers ; and this is the

* The verilication is included in a more general piece of work which occurs in Chap. XIX.
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characteristic equation for a theta function of order r with the associated

constants 2y, 2u', 2^, 2f' (§ 284, p. 448).

The equations (VII.) are equivalent to conditions for the matrices v, v,

^, ^', entirely analogous to the conditions (ii), (iv), (v) of § 324 for the

matrices to, at', rj, i). The condition analogous to (i) of § 324, namely that the

determinant of the matrix v do not vanish, is involved in the hypothesis

that the determinant of Trta + 6a' do not vanish. It will be proved below

(§ 325) that the remaining condition involved in the definition of a theta

function, viz. that the quadratic form y~^i;V has its imaginary part positive

for real values of ?ii, ..., n^,, is a consequence of the corresponding condition

for the matrices w, on'. We consider first the conditions for the equations

(VII.).

In virtue of equations (V.), the equations (VII.) require

ESif^ - ^Jlf, = 2HJlv' - 2€MHii = 4r (^v' - €^') = ^r-ni,

and, similarly,

^„n„ - ^Ma = 0, H^^^ - n^Hp = ;

but

i (S^ap - nMp), = {arj + a'v) (a>y8 + a)'/3') - (aai + a'cb') (77/S + v'^'l

= a {rj(o — mr}) /3 + a (tjco' — wt/') /3' + a (rj'o) — w'r}) /3 + a' (rj'co' — o)'r}') yS',

and this, by the equations (B), § 140, is equal to

i7rt(a/3'-a'/3);

thus

oy8'-ay8 = /8'a-/8a' = r, (VIII.)

and, similarly, _ _
oa'-a'a = 0, /9/3' - /9';8 =

;

and as before (§ 322) these three equations can be replaced by the three

a;9 = /Sa, oi'^' = /3'a', ay8' - /3a' = r = /3 a - a'/8, (IX.)

the relations satisfied by the matrices a, /3, a, /3' respectively being similar to

those satisfied hy to, &>', tj, rj', with the change of the ^iri, which occurs in the

latter case, into — r.

The number r which occurs in these equations is called the order of the

transformation ; when it is equal to 1 the transformation is called a linear

transformation.

Ex. i. Prove that, with matrices of 2p rows and Zp columns,

(a ^\( B' -B\_^,n 0\_/a a'W ^' -a'\

and

The determinant of the matrix will be subsequently proved to be +?*.
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Ex. ii. Prove that the equations (V.) of § 324 are equivaleut to

/M \ /2u 2v'\ ^ /2« 2ft)'\ fa ^\

Ex. iii. If X, y, .r,, i/^ be auy row letters oi p elements, and A', Y, A'l, Tj be other

such row letters, such that

('^'^^ =
U^'j^^'^)'«^ Y=a'x^^y, y, = ax,+ffy„

then the equations (VIII.) are the conditions for the self-transformation of the bilinear

form x>/i — .rjy, which is expressed by the equation

AT,-A\r=rixy,-x,y).

325. Conversely when the matrices a, a, /3, /3' satisfy the equations

(VIII.), the function ^ (a
; ^ ) satisfies the determining equation for a theta

function in w^, ..., Wp, of order r, with the characteristic (K, K'), and with

the associated constants 1v, 2v', 2^, 2^'; and in virtue of the equations (VII.),

the determinant of v not vanishing, matrices a, b, h, of which the first two

are symmetrical, can be taken such that

a = ^^v~^, h = ^7r{v~\ b = 7riv~'^v';

we proceed now to shew* that the real part of the quadratic form hn^ is

negative for real values of ??i, ,.., Up, r being positive, as was supposed.

The quantity, or matrix, obtainable from any complex quantity, or

matrix of complex quantities, by changing the sign of the imaginary part

of that quantity, or of the imaginary parts of every constituent of that

matrix, will be denoted by the suffix ; and a similar notation will be used

for row letters ; further the symmetrical matrices &>"' «', i;~^ v will be denoted

respectively by r and r, so that h = irir, b = Trir ; also t, t' will be written,

respectively, in the forms Tj + zV.,, r/ + iTn, where Tj, To, Tj', tJ are matrices

of real quantities. Then, putting

X = vMro~^x, and therefore Xq = VoMo(do~^Xo,

where x', x denote rows of p complex quantities, and Xq, x^ the roAvs of the

corresponding conjugate complex quantities, and recalling that

t' = f' = vv~\ (i)~^Mu = a + ra, (o~^Mv' = /3 + t/3',

we have _ _ _ _
t'x'Xq = t'vMw~^X . VfiM(,W(,~^X^ — v'M(0~^X . VoMqW^^Xo

= (yS + /8't) x .(a + fiVo) Xo ;

and, if x = Xi + ix^, Xq = x\ — ixo, where Xi, x^ are real, this is equal to

(^ + /8'ti 4- i^'r.j) (^1 + ix.) . (a 4- a'r, — iar.) (x^ — ix^

or

[;8P + y9'P' + iim + ^'Q')] [aP + aP' - i (aQ + a'Q')],

* Hermite, Compt. Bendus, xh. (1855), Weber, Ann. d. Mat., Ser. 2, t. ix. (1878—9).



326] SIMPLEST FORM OF THE LINEAR TRANSFORMATION. 539

where P, P', Q, Q' are row letters of^ real quantities given by

P = a?i, P'=TiXi-T^.2, Q = x„, Q' = Tia^a + Taa?!,

so that

PQ'-P'Q = T,{x,' + xi);

thus the coefficient of i in r'x'x^ is

(aP + a'F) {M + yS'Q') - (/8P + yS'P') {aQ + a'Q'),

which, in virtue of the equations (IX.), is equal to r {PQ — P'Q) or

rxj {x^ + xf) ; thus the coefficient of i in r'x'x^ is equal to the coefficient

of i in rrxxn. Since x' may be regarded as arbitrarily assigned this proves

that the imaginary part of t'x'xq is necessarily positive ; and this includes

the proposition we desired to establish.

Ex. Prove that the equation obtained is equivalent to

326. Of the general formulae thus obtained for the transformation of

theta functions, the case of a linear transformation, for which r = 1, is of

great importance ; and we limit ourselves mainly to that case in the

following parts of this chapter. We have shewn that a theta function of the

first order, with assigned characteristic and associated constants, is unique,

save for a factor independent of the argument ; we have therefore, for r = 1,

as a result of the theory here given, the equation

^{u; 2a,, 2a)', 27?, 2,;'; «') = ^^(?^; 2u, 2u', 2^, 2^; J)-

We suppose a, /S, a, /S' to be any arbitrarily assigned matrices of integers

satisfying the equations (VIII.) or (IX.); then there remains a certain

redundancy of disposable quantities ; we may for instance suppose «, oo' ,7], n]

and M to be given, and choose u, v
, ^, ^' in accordance with these equations

;

or we may suppose o), o)', v, ^ and ^' to be prescribed and use these equations

to determine M, v', 77 and ?;'. It is convenient to specify the results in two

cases. We replace u, w respectively by U, W.

(i) 2a) = 1, 2a)' = r , rj = a, i) = ar — iri, h = iri, b = ttit,

2i/ = 1, 2u' = t', f = 0, ^' = — 7ri , a = , h = 7ri , b = mr,

U = MW, if = a + Ta', (a + ra') t' = /3 + t/3',

so that, as immediately follows from equations (IX.),

(a + ra') {^'- r'a') = r = (/3'- a'r') (a + SV), U={a + to!) W,W = ^ i^'-r'a') U,

and, because rj' = r)T — m and ^ = 0,

a = 7] = iria! (a + tol')-^ =" ~T °^'
i^' ~ ''"'«)»

from which we get
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aU' = '^ a' (y8' - t a') U- = Tria'WU = iria {a + ra) W.

These equations satisfy the necessary conditions, and lead, when r = 1, to

g^T..w,TO0(jj.^.
J)
= ^r-)(ir;T'; J), (X.)

where A is independent of Ui, ..., Up, and the characteristic {K, K') is deter-

mined from (Q, Q') by the equations (§ 324)

K = dQ' - d'Q - Ul (aa). - K = ^Q' - yS'Q - Ul 0^).

The appearance of the exponential factor outside the G-function, in equation (X.),

would of itself be sufficient reason for using, as we have done, the 5-fuuction, in place of

the e-function, in all general algebraic investigations*.

If in § 324 we put

we easily find

Tria (a+ ra) W'^= \Tfu)-hlr~\r(v~ he-

;

thus (§ 189, p. 283) equation (X.) includes the initial equation of this Article.

In general the function occurring on the left side of equation (X.) is

a theta function in W of order r with associated constants 2u -\, '2v' = t',

2^=0, 2^'=-'27n, and characteristic {K, K').

(ii) A particular case of (i), when the matrix a! consists of zeros, is given

by the formulae

2co = 1, 2a)' = T , 77 = 0, T] = — rri, a = 0, h = tti, b = ttit
,

2v = 1, 2v' =t', ^ =0, ^' = - 7ri, a = 0, h = 7ri, b = TrtV,

U = aW, t' = a-' (/9 + TyS'), r =
j^

(ar' - y8) a,

Q^)=(of.-.)-"»--^=^«--

Then the function 0(i7; t; Q) or [aTT; i(aT' - /?) o; Q] is a theta

function in W, of order r, with associated constants 2v = 1, 2f ' = r', 2if=0,

2 ^' = — 27ni, and characteristic {K, K') given by

K' = a(/, -K = BQ' - ra-H2 - ^d (ry9a->).

and, in particular, when r=l we have

where A is independent of Z7, , ..,, Up.

• Cf. § 189 (Chap. X.); and for the case ^ = 1, Cayley, Liouville, x. (1845), or Collected

WorU, Vol. I., p. 156 (1889).
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327. It is clear that the results just obtained, for the linear trans-

formation of theta functions, contain the answer to the enquiry as to the

changes in the Riemann theta functions which arise in virtue of a change in

the fundamental system of period loops. Before considering the results in

further detail, it is desirable to be in possession of certain results as to the

transformation of the characteristics of the theta function, which we now
give ; the reader who desires may omit the demonstrations, noticing only the

results, and proceed at once to § 332. We retain the general value r for the

order of the transformation, though the applications of greatest importance

are those for which r = \.

As before let d{<y) denote the row of p quantities constituted by the

diagonal elements of any matrix y of p rows and columns ; in all cases here

arising 7 is a symmetrical matrix ; then we have

a d 0^') + ^d (da') = rd(a ^ ), ^'d (ayS) + ^d {a'0) = rd (/9/S')

_ _ _ (mod. 2)
ad (y8/3') + ^'d {da') = rd (a'/9'), d'd (a/9) + dd {a'/3') = rd (fia)

and

d{da')d(m = (r+l)Xd{^a)^(r + l)td{^'a)
_ _ _ (mod. 2),

d{a/3)d (a'yg') = (r + 1) 2d {aj3') = (r + 1) td (ySa )

so that, when r = 1 or is any odd integer,

d (aa) . d (^/3') = d (a^) . d (a'^') = (mod. 2).

The last result contains the statement that the linear transformation of

the zero theta-characteristic is always an even characteristic.

For the equations

^'a-a'B = r, aB= l3a,

give

ai3^'a-/3aa'3= ra^,

and therefore

^^'z^ - aay''= rc^x^,

where x is any row letter of p integers, and z= ax, y= ^x; but if y be a symmetrical

matrix of integers and t be any row letter of ^ integers yt"^, =y^^-^-\-.^.-\-'iy-^^\t^-\-..., is

— 711^1^+ ••• + "ypp^p^ ^"^ therefore =yii^i+...+ypp^p, or =d{y) .t, for modulus 2 ; hence

d (^^') z-d (da) y^rd {off) x (mod. 2)

or
\ad{^^')-\-^d{aa!)-rd{a^)'\x=0 (mod. 2);

and as this is true for any row letter of integers, x, the first of the given equations follows

at once. The second of the equations also follows from /3'a — a'^= r, in the same way, and

the third and fourth follow similarly from j8'a— ^a'=r.

To prove the fifth equation, we have, since ^'d — a'^ = r,

^^'aa'= j8a'j8a' + r^a'

or
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where 6= ^/3', a = aa', c= ^a' ; hence, equating the sums of the diagonal elements on the two

sides of the equation, we have

p P V p p
2 2 6,, > «y. , = 2 2 c,, y c,.

i+ r 2 c<, i

;

J=l i=l j=l 1=1 1=1

therefore, as, unless i=j, bijaj^i^bj^iatj, because a, b are symmetrical matrices, and as

we obtain

p p p
2 ai,ibij= 2 (c\. + /-Ci,i) = (»•+ !) 2 e,-,,-.

<=1 i=l 1=1

The sixth equation is obtained in a similar way, starting from ffa — ^a'= r.

Of the results thus derived we make, now, application to the case when r is odd, limiting

ourselves to the case when the characteristic {Q, Q') consists of half-integers ; we put then

Q= \<j, Q' = h9'} '^^ ^^^^^ ?' !?' 6tich consist of jd integers ; then K, K' are also half-integers,

respectively equal to \k, \k' , say, where

l'= aq'-a'q-d {aa'), - k= Bq' -^'q - d {Bfi').

In most cases of these formulae, it is convenient to regard them as congruences, to

modulus 2. This is equivalent to neglecting additive integral characteristics.

From these equations we derive immediately, in virtue of the equations of the present

Article

g= Oil-+ 13^ + c^ (a(9), q'= a'k + ^'k' + d {a'$') (mod. 2)

and
qq'= kk' (mod. 2).

Further if n, y! be row letters oip integers, and

v=a^i' -a'fjL-d (da), - i'= ^/x' - ^'/i - d (^/3')>

we find, also in virtue of the equations of the present Article,

ku' - k'v= qfi - q'ti+ (/x'+ q') d (a^) + {y.-\-q)d (a'0'), (mod. 2) ;

therefore, if also

0-'= ap - d'p — d (aa), — o"= ^p' — 0'p - d (^/3')>

we have

kp - k'v + va — v'(T + (rk' — a'k= qp,' — q'n + pp' — p'p + pq' — p'q (mod. 2).

Denoting the half-integer characteristics ^[ ) , 2\^) > ^l ]
by^, -B, (7,

and the characteristics ^ (,) , ^
[ j , ^

[ )
, which we call the transformed

characteristics, by A', F, C, we have therefore the results (§ 294)

\A\ = \A'\, \A,B,C\ = \A',B',C'\, (mod. 2)

or, in words, t?? a linear transformation of a theta function with half-integer

characteristic, and in any transformation of odd order, an odd (or even)

characteristic transforrns into an odd (or even) characteristic, and three

syzygetic {or azygetic) characteristics transform into three syzygetic (or

azygetic) characteristics.

Of these the first result is immediately obvious when r=\ from the equation of

transformation (§ 326), by changing ?» into - w.
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Hence also it is obvious that if A be an even characteristic for which

^(0; A) vanishes, then the transformed characteristic A' is also an even

characteristic for which the transformed function ^ (0 ; A') vanishes.

328. If in the formula of linear transformation of theta functions with

half-integer characteristic, which we may write

^ . 1 c^ = ^^ w; ^

we replace u by u + ^^m = u + com + (o'm', where m, m' denote rows of

integers, and, therefore, since o} =M (v^' — vol), w =M (— v^ + v'a), (cf. Ex. i.,

§ 324), replace w; by w + uw + v'n' , where

w' = am' — a'm, — n = ^m' — ^'m,

we obtain (§ 189, formula (L))

^ /q +171

^ \q + m
= A"^ w

k-\-n

where A' is independent of u^, ..., Up, and k' + 71', k + n are obtainable from

c[ + m', q +m by the same formulae whereby k', k are obtained from q', q,

namely

k' + ni = a (q' + m') — a! {q-'t m) — d (doi),

-(k + m)=^ iq' + m') -^'(q + m) - d (^^')

;

these formulae are different from those whereby 71', n are obtained from

m', TO ; for this reason it is sometimes convenient to speak of ^ ( "
] as a theta

characteristic, and of as a period characteristic ; as it arises here the

diflference lies in the formulae of transformation ; but other differences will

appear subsequently ; these differences are mainly consequences of the

obvious fact that, when half-integer characteristics which differ by integer

characteristics are regarded as identical, the sum of any odd number of

theta characteristics is transformed as a theta characteristic, while the

sum of any even number of theta characteristics is transformed as a

period characteristic. In other words, a period characteristic is to be
regarded as the (sum or) difference of two theta characteristics.

It will appear for instance that the characteristics associated in §§ 244, 245,

Chap. XIII. with radical functions of the form JX <-''+^' are to be regarded as

theta characteristics—and the characteristics associated in § 245 with radical

functions of the form JX^'^i^\ which are defined as sums of characteristics

associated with functions yX<"'+^', are to be regarded as period characteristics.
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We may r^ard the distiuction* thas explained somewhat difterently, by taking as the

fundamental formula of lineiir transformation tliat which expresses Slu; i M j
in terms

of s\ ic+ ^Qr-, i(,j \, where

r' = d{aa'), r = d{^^),

and _ _ _

l' = f+d{aa') = aq'-aq, -1= - k+ d {0^)= ^q' - ^'q.

In the following pages we shall always understand by ' characteristic,' a

theta characteristic ; when it is necessary to call attention to the fact that a

characteristic is a period characteristic this will be done.

329. It is clear that the formula of linear transformation of a theta

function with any half-integer characteristic is obtainable from the particular

case

^(iO = ^^ -*(::)

where r' = d (oa), r = d (^/9'). by the addition of half periods to the argu-

ments. It is therefore of interest to shew that matrices a, /3, a, ^ can be

chosen, satisfying the equations

oy8 = ySa, a'^' = /9 a', a^' - /9a' = 1

,

equal to any even half-integer

characteristic.

Any even half-integer characteristic, being denoted by

1 (^\ •••'^p

\ft'l ...Kp

we may, momentarily, call
(
/ I the i-th column of the characteristic ; then

the columns may be of four sorts,

• 0' dh (1).

but the number of columns of the last sort must be even ; we build now a

matrix

• Theta characteristics have also been named eipentliche Charakteristiken and Primcharak-

teristiken ; they consist of 2»'-'(2p-1) odd and 2''"' (•2'' + l) even characteristics. The period

characteristics have been called firuppencharakteristiken and Elementarcharakteristiken or

sometimes relative Charakteristiken. For them the distinction of odd and even is unimportant

—

while the distinction between the zero characteristic—which cannot be written as the sum of two

different theta characteristics—and the remaining 2-'' - 1 characteristics, is of great importance.

The distinction between theta characteristics and period characteristics has been insisted

on by Noether, in connection with the theory of radical forms—Cf Noether, Math. Annal.

xxviii. (1887), p. 373, Klein, Math. Annal. xxxvi. (1890), p. 36, Schottky, Crelle, cii. (1888),

p. 308. The distinction is in fact observed in the Abel'sche Functionen of Clebsch and Gordan,

in the manner indicated in the text.
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of 2p rows and columns by the following rule*—Corresponding to a column

of the characteristic of the first sort, say the i-th column, we take oii^i=^'i^ ,
= ]

,

but take every other element of the i-t\\ row and i-th. column of a and ^\
and every element of the i-th. row and i-th column of /3 and ol to be zero

;

corresponding to a column of the characteristic of the second sort, say the

j-th column, we take °^j, j = 13'
j, j = oi'jj ^ 1 , but take every other element of

the j-th row and j-ih column of a, /3', a, and every element of the j-th row

and column of /3, to be zero ; corresponding to a column of the characteristic

of the third sort, say the m-th column, we take oim,m = Aw,?« = ^'m,m= 1, but

take every other element of the ^H-th row and column of ol, j3, ^' and every

element of the m-th row and column of a to be zero ; corresponding to a pair

of columns of the characteristic of the fourth sort, say the p-th and o--th, we
take ap^p = ^p,p = ^'p,p = l, tter. <r

= «'
<r, a = /3'<r, ^ = 1 , a<r.p = l, /3p, ,,

= - 1, a'<r, p = 1

,

^'p^ ^ = — 1, and take every other element of the p-th row and column and of

the o--th row and column, of each of the four matrices a, a', /3, /8', to be zero.

Then it can be shewn that the matrix thus obtained satisfies all the

necessary conditions and gives k' = d (««'), k = d (ySyS').

Consider for instance the case p— 5, and the characteristic

, /O 1 1 1\

* \0 1 1 ly '

the matrix formed by the rules from this characteristic is

1
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Ex. For the hyperelliptic case, when /)= 3, the i)eriod loops being taken as in § 200,

the theta-function whose characteristic is ^ (, , ,) vanishes for zero arguments (§ 203)

;

prove that the transformation given by

a= ( 10 0), ^=(-l 0), «'= (0 0-l),

10 0-10
1 0-1-10 1

is a linear transformation and gives an equation of the form

/3'= ( 1 1 ),

10

1

5[«; *(1 1 l)]
= ^i^['^;o]'

where J is independent of u^, ..., «p.

330. We have proved (§ 327) that if three half-integer theta character-

istics be syzygetic (or azygetic) the characteristics arising from them by any

linear transformation are also syzygetic (or azygetic). It follows therefore

that a Gopel system of 2'' characteristics, syzygetic in threes (§ 297, Chap.

XVII.), transforms into such a Gopel system. Also the 2-^ Gopel systems of

§ 298, having a definite character, that of being all odd or all even, transform

into systems having the same character. And the 2cr + 1 fundamental Gopel

systems (§ 300), which satisfy the condition that any three characteristics

chosen from different systems of these are azygetic, transform into such

systems ; moreover since the linear transformation of a characteristic which

is the sum of an odd number of other characteristics is the sum of the

transformations of these characteristics, the transformations of these 2o- +

1

systems possess the property belonging to the original systems, that all the

2^ Gopel systems having a definite character are representable by the

combinations of an odd number of them. It follows therefore that the

theta relations obtained in Chap. XVII., based on the properties of the

Gopel systems, persist after any linear transformation.

331. But questions are then immediately suggested, such as these : "What are the

simplest Gopel systems from which all others are obtainable* by linear transformation ?

Is it possible to derive the 2^' Gopel systems of § 298, ha\ing a definite character, by

linear transformation, from systems based upon the 2'^' characteristics obtainable by taking

all possible half-integer characteristics in which p-a- columns consist of zeros? Are the

fundamental sets of 2/) + 1 three-wise azygetic characteristics, by the odd combinations of

which all the 2-^ half-integer characteristics can be represented (§ 300), all derivable by

linear transformation from one such set ?

We deal here only with the answer to the last question—and prove the following

result: Let Z>, Z>j, ..., i>2p + i
be any 2/)-|-2 half-integer characteristics, such that, for i<j,

* An obvious Gopel proup of 2/' charactpristics is formed by all the characteristics in which

the upper row of elements are all zeros, and the lower row of elements each =0 or ^.
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1= 1, ..., 2^, J=2, ..., 2p + l, we have \D, Bi, -0>| = 1 ; then it is possible to choose a half-

integer characteristic E, and a linear transformation^ such that the characteristics

ED, ED-^, ..., ED2P + 1

transform into

0, Aj, ..., Agp + i,

where Xj, ..., X2P + 1
^'''^ certain characteristics to be specified, of ivhich {by § 327) every two are

azygetic. It will follow that if D', D{, ... , -0'2p + i
be any other set of 2p+ 2 characteristics

of which every three are azygetic, a characteristic E', and a linear transformation, can be

found such that, with a proper characteristic E, the set ED, ED^ , . .
.

, ED^p + ^ transforms

into E'D, E'D{, ..., E'D'^p^^. It will be shewn that the characteristics Xj, ,..,\2p+i

can be written down by means of the hyperelliptic half-periods denoted (§ 200) by ?t*' "',

ua,a,^ ya,e^^
..., m"'**^, ti**' " ; it has akeady been remarked (§ 294, Ex.) that the charac-

teristics associated with these half-periods are azygetic in pairs. The proof which is to be

given establishes an interesting connexion between the conditions for a linear transforma-

tion and the investigation of § 300, Chap. XVII.

Taking an Abelian matrix,

for which

aa'-a'a= 0, ^/3'-^'/3= 0, a/3'-a'/3=l,

define characteristics of integers by means of the equations

\cii,r) ^2,r} •••> Q'p,!-/ \Pl,r) P2,»> •••) P ihr/

where a's^r is the r-th element of the s-th row of the matrix a, etc. and r= 1, 2, ..., p; tAen

the symbol which, in accordance with the notation of § 294, Chap. XVII., we define by the

equation

I -^rj -^8l = ''i,rP !,«+••• +%,»'Pp,8~'' \,rPi,s~ •'•~ f^p, rPp,si

is the (r, s)-th element of the matrix a^-a'^, and may be denoted by (a/3' -a'^),.,s', thus

the conditions for the matrices a, a, /3, ^' are equivalent to the jo {2p — l) equations

\Ar,Br\ = l, \Ar,Bs\ = 0, \Ar,A,\=0,
\

B„ B,\ = 0, {r^s, r,s = l,2, ...,p),

whereof the first gives jo conditions, the second ^(p-1) conditions, and the third and

fourth each ^p{p — l) conditions. It is convenient also to notice, what are corollaries

from these, the equations

\B„Ar\=-\Ar,B,\ = 0, \Br,Ar\=-\A,.,B,\=-l, \Br,A;\=-\A;,Br\ = \A,,B,\ = l.

Consider now the 2p+ l characteristics, of integers, given by

«i> ^i> «i'V2> «i'M2> ai'V2'V3> <^ibi^2%hj •••) (^iW-'-K-ih^ ai\...ap'bp,

whereof the first 2p are pairs of the type

for r= l, 2, ...,p, and ai'b^a^ means the sum, without reduction, of the characteristics a/,

61, Og) and so in general. The sum of these characteristics is a characteristic consisting

wholly of even integers. If these characteristics be denoted, in order, hy c^, c.2, ..., c^p + y,

it immediately follows, from the fundamental equations connecting a^, ...,bp, that

35—2
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Thus the (2jd+ 1) half-integer characteristics derivable from c,, c^, ..., Cjp + i, namely

C, = ^,, ..., C'2p + i
= i<^2P+u ^^ azygetic in pairs.

Conversely let Z), Z),, ..., Z>2p + i
be any half-integer characteristics such that, for i<j,

1 = 1, ..., 2/>, j= 2, ..., 2/) + l, we have
|
D, Di, Dj\ = l, so that (§ 300, p. 496) there exi.st

connecting them only two relations (i) that their sum is a characteristic of integers, and

(ii) a relation connecting an otld number of them ;
putting Cj=Z>'Z), (j'=1, ..., 2p), where

iy= —D,-we obtain a set of independent characteristics Cy, ..., C^p, such that for i<j.,

i^.^i='. i^.t::t'>
taking C2p^i= C\'C.,C3'Ci...C%^p-iC2p, where C'.,,^i= -Cor-i, we have also the 2jj equa-

tions

Km, <^2P + ll = l, (7n= l, 2, ...,2^).

Thus putting t\ = hci, ..., C2p + i
= i^2P + i>

^^ ^^^ obtain an Abelian matrix by means of

the equations, previously given,

C2r-, = Oi'ftl...aV-l*r-l«>-, C2r= «i'ii . .. aV-i^^-l ^'i <^2P + I = «l'N • "V^P'

the j'-th column of this matrix consisting of the elements of the lower and upper rows of

the integer characteristic a^ or 6^, according as i<p + l or i>p. We proceed now to find

the result of applying the linear transformation, given by this Abelian matrix, to the

half-integer characteristics C^, ..., C'gp + j.

The equations for the transformation of the characteristic hi ) to the characteristic

^Q, which are (§324, VI.),

are equivalent, in the notation here employed, to

^•i'
= Mi,e|-[c?(aa')]i, -h^\Bi,Q\-id{fiff)l, (1=1,2, ...,H

where Ai=\ai, Q=\q; taking

§= ^j'6j...aV_i6r-i«r, =iai'&i...«')-i&,--i&r> ^^^ =^i'6i . .. ttp'tp,

in turn, we immediately find that the transformations of the characteristics Cgr-i, C'gr,

Cop + i,
are given, omitting integer characteristics, by

/c£(aa')\ ,/11...100...0\ /c?(da')\
,
,/11...110...0\ (d{aa')\^,(\\...\\

^\d{^^))^^\\\...\\Q...O)' ^V(fO/3');'^-Vll...l00...0;' ^-\d{^^))^^\\\...\)'

or, say, by

respectively.

Now let the characteristics

K")(:r'<i)(:r"' KiyQcy-'iGr'QQ""'--^:)'
be respectively denoted by

Aj, A2, ..., Aji--!, A2r, ..., A2P + ];

then we have proved that the half-integer characteristic DDi transforms, save for an

integer characteri-stic, into \i+\( \ where r=d{^ff), r'=d{aa') ; since the transforma-
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tion of the sum of two characteristics is the sum of their transformations added to hi

and since the characteristic J( ], where s' = d{a'^'), s= d{a^), transforms into the zero

characteristic (§ 327), it follows that the transformation of the characteristic |( )+i)Z)j

is the characteristic X; ; hence, putting £J=^ ( j+D, and omitting integer characteristics,

the characteristics

ED, ED^, ..., ED^p^y
transform, respectively, into

0, Xj, ..., X2P + 1

;

and this is the result we desired to prove.

The number of matrices of integers, of the form

V/37'
in which aa' — a'a= 0, ^/5' — ^'/3= 0, a/3'-a'/3= l, is infinite; but it follows from the

investigation just given that if all the elements of these matrices be replaced by their

smallest positive residues for modulus 2, the number of different matrices then arising is

finite, being equal to the number of sets of 2jt)+ 1 half-integer characteristics, with integral

sum, of which every two characteristics are azygetic. As in § 300, Chap. XVI I., this

number is

(22p_l)22p-i(22i'-2_i)22p-3 (22-1)2 ;

we may call this the number of incongruent Abelian matrices, for modulus 2. Similarly

the number* of incongruent Abelian matrices for modulus n is

(%2p-l)722i'-i(n2J'-2-l)n2p-3 {n^-\)n.

Ex. By adding suitable integers to the characteristics denoted by 1, 2, 3, 4, 5, 6, 7 in

the table of § 205, for p= 3, we obtain respectively

/_10 0\ /-1-10\ ^/-\-\l\ :/-10 1\

*V-i 0;' *V -1 0;' n 1;' H 1 1^'

,/0 0-l\ ,/0 1 -1\ ,/0 1 0\

^Vi -1/' -VI 1 oj' ^\\ \ i)'

denoting these respectively by C^, Cg, ..., C^, we find, for i<j, that

\Ci,Cj\ = l, (.= 1, ...,6;i= 2, ...,7).

The equations of the text

give

a,.= CjC2 (^ir-Z^ 2>'-2''2'— 1> ^i-
—

'-l'?2 ''2i'-3'^ 2c-2^2i''

and therefore, in this case, we find

1 0\ /-I 1\ /O -1
'i~V-i ooy ''-^-V-i 1 ly '"^•''"Voo -ly

^i=("J:lo)' ^-^^{~\\\)^ ^3=(o}~J)^

* Another proof is given by Jordan, Traite des Sxibstitutions (Paris, 1870), p. 176.



550 TRANSFORMATION OF AZYGETIC SYSTEMS. [331

hence the Uuear .substitution, of the text, for transforming the fundamental set of

characteristics C^, ..., C-, is

( _ 1 _ 1 ct 0-1 )

10-121
1 -1 I

-1
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are the characteristics which arise in § 200, Chap. XI. as associated with the half-periods

ya,cr^ ya,,ar^ ^^a, c
respectively. The characteristics 2,, ..., Sgp + i

satisfy the p{2p-\)
conditions

| 2^, 2j |

= T, for i<j.

332. We proceed now to shew how any linear transformation may be

regarded as the result of certain very simple linear transformations performed

in succession. As a corollary from the investigation we shall be able to infer

that every linear transformation may be associated with a change in the

method of taking the period loops on a Riemann surface ; we have already

proved the converse result, that every change in the period loops is associated

with matrices, a, a', /8, /3', belonging to a linear substitution (§ 322).

It is convenient to give first the fundamental equations for a composition

of two transformations of any order. It has been shewn (§ 324) that the

equations for the transformation of a theta function of the first order, in the

arguments u, with characteristic (Q, Q') and associated constants 2(0, 2<u',

21], 21) , to a theta function of order r, in the arguments w, where u = Mw,

with characteristic {K, K') and associated constants 2v, 2v', 2f, 2^', are

K' = ciQ' - a'Q - \d (aa'), -K = ^Q'- ^'Q - \d (,8/3'),

M, \ /2u, 2v'\

.0, rM-')\2t 2^T
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from this equation we find as before that the matrix Ai, given by

Va 7 + /3 7 , a 8 + yS 87 \a,
, /3,7

•'

satisfies the equation AjeA, = ;-.?e. Similarly from the two sets of equations

transforming the characteristics, by making use of the equations

d (oifl/) = 7^ (da) + yd {^j3') + rd (77'),

d i^Si) = Id {di') + I'd (y8/3') + rd (88'), (mod. 2),

which can be proved by the methods of § 327, we immediately find

Q/ = d.Q' - d.'Q - hd (d,a;), -Q, =M - ^iQ - ^d (Mi), (mod. 2).

Hence any transformation of order rs may be regarded as compounded of

two transformations, of which the first transforms a theta-function of the

first order into a theta function of the r-th order, and the second transforms

it further into a theta function of order rs.

It follows therefore that the most general transformation may be con-

sidered as the result of successive transformations of prime order. It is

convenient to remember that the matrix of integers, Aj, associated with

the compound transformation, is equal to AV, the matrix A, associated

with the transformation which is first carried out, being the left-hand

factor.

One important case should be referred to. The matrix

-K-? i)
is easily seen to be that of a transformation of order r

;
putting it in place of V, the final

equations for the compound transformation Vi rnay be taken to be

Ui = ru, 2a), = 2ci), 2a)i'= 2Q)',
2;;i

= 2;;, 2»;i'
= 27;'.

The transformation rA-i is called supplemetUary to A (cf. Chap. XVII., § 317, Ex. vii.).

333. Limiting ourselves now to the case of linear transformation, let

Ajc (^ = 2, 3, . .
. , p) denote the matrix of 2p rows and columns indicated by

Ak=^(^lk, ),

where /** has unities in the diagonal except in the first and k-th. places, in

which there are zeros, and has elsewhere zeros, except in the k-ih. place of

the first row, and the ^-th place of the first column, where there are unities

;

let B denote the matrix of 2p rows and columns indicated by
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B = {0 -1
),

1

1

1

1

1

1

1

which has unities in the diagonal, except in the first and (p + l)-th places,

where there are zeros, and has elsewhere zeros except in the (p + l)-th place

of the first row, where there is —1, and the (^ + l)-th place of the first

column, where there is + 1 ; let C denote the matrix of 2p rows and columns

indicated by
C=( 1 -1

),

which has unities everywhere in the diagonal and has elsewhere zeros,

except in the (p + l)-th place of the first row, where it has — 1 ; let Z) denote

the matrix of 2p rows and columns indicated by

D = (l 0-1
1

).

which has unities everywhere in the diagonal and has elsewhere zeros, except

in the (p + 2)-th place of the first row and the (p + l)-th place of the second

row, in each of which there is — 1. It is easy to see that each of these

matrices satisfies the conditions (IX.) of § 324, for r = 1.

Then it can be proved that every matrix of 2p rows and columns of

integers,

'a, /3\
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for which afi = ^a, a'^' =fi'a, a^' — ^a = 1, can be written* as a product of

positive integral powers of the (p + 2) matrices A^, ..., Ap, B, C, D. The

proof of this statement is given in the Appendix (II) to this volume.

We shall therefore obtain a better understanding of the changes effected

by a linear transformation by considering these transformations in turn. We
have seen that any linear transformation may be considered as made up of

two processes, (i) the change of the fundamental system of periods, effected

by the equations

[o)] = (oa + ca'a', [«'] = (u/9 + &)'/3',

[77] = i;a + 77'a', [77'] = 7779+ rj'^',

(ii) the change of the arguments, effected by the equation u = Mw, and

leading to _
[w] = Mv, [fo']=^Mv', K=M[vl r=^[V];

of these we consider here the first process. Applying the equationsf

[w] = coa + co'a', [&>'] = a)/3 + u)'^',

respectively for the transformations A^, B, G, D, we obtain the following results

:

For the matrix {A^) we have

[a)r,i] = <Ur.ifc, [G>r,A:] = 'r,i. [wV,i] = &)'r,*, [<y'r,*] = <«'r,i, (r = 1, 2, . .
. , p) ;

or, in words, if 2a)^,i, 2&)V,i be called the i-th. pair of periods for the argument

Ur, the change efifected by the substitution Aj^ is an interchange of the first

and k-t\i pairs of periods—no other change whatever being made.

When we are dealing with p quantities, the interchange of the first and k-th. of these

quantities can be eftected by a conqjosition of the two processes (i) an interchange of the

first and second, (ii) a cyclical change whereby the second becomes the first, the third

become-s the second, ..., thejo-th becomes the (/»-l)-th, and the first becomes the jo-th.

Such a cyclical change is easily seen to be eftected by the matrix

1

1

10

1

1

* Other sets of elementary matrices, by the multiplication of which any Abelian matrix can

be formed, can easily be chosen. One other obvious set consists of the matrices obtained by

interchanging the rows and columns of the matrices A,,, B, C, D.

+ We may state the meaning of the matrices A,,, Ii, C, D somewhat differently in accordance

with the property remarked in Ex. iii., § .324.
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which verifies the equations (IX.) § 324, for ?•=!. Hence the matrices J^, ..., Ap can

each be represented by a product of positive powers of the matrices E and A 2- Thereby

the {p + 2) elementary matrices A 2, ..., Ap, B, C, D can be replaced by only 5 matrices E,

A„ B, C, D*.

Considering next the matrix B we obtain

[ft),. 1] = co'r, 1 , [oi'r, 1] = — «r, 1 , [«»r, i] = «<>/•, i , W r, i]
= o'r, i, { •

'

n
'"

] y\i= 2, ..., pj

so that this transformation has the effect of interchanging cor^i and ft)V 1,

changing the sign of one of them ; no other change is introduced.

The matrix G gives the equation

Wr,l]=(o'r,l — f»r,l, (r=l, 2, ...,p),

but makes no other change.

The matrix D makes only the chauges expressed by the equations

[f^ r,i] = <W r,i ~ <Wr,2> [(^ r,2] = <W r,2 ~ ^r,i-

In applying these transformations to the case of the theta functions we
notice immediately that A^, G and D all belong to the case considered in

§ 326 (ii), in which the matrix a = 0.

Thus in the case of the transformation Ak we have

where w differs from u only in the interchange of u^ and Uk, r differs from t

only in the interchange of the suffixes 1 and k in the constituents rr,s of the

matrix t, and K, K' differ from Q, Q only in the interchange of the first and

k-th. elements both in Q and Q'. Thus in this case the constant A is equal

to 1.

In the case of the matrix (C), the equations of § 326 (2) give

%{u-t\%) = A%{w; t'IJ),
where

u^w, t'=t save that t'i_i=Ti,i— 1, and .ff"'=Q', iL'=Q save that iri= Qi+Q/—|^;

now the general term of the left-hand side, or

g2«M(n+ Q')+iTT (n+ Q,'f+%TnQ{n+ Q')

is equal to

g27riw(n+X'')+i7rT' (ft+A'')2+«7r (Wi+ Q,')2+2jriJ5:(ji+jr')-2i7r (Qi'-^) (Mi + Q,')

_g-t7r(Q,'2-Q,') Q%iTiw (.n+ K')+iirT' {n+K'f+2niK (n+K') .

thus in the case of the transformation (G) the constant A is equal to

e-w(Qi'^Q.')
; when Q/ is a half-integer, this is an eighth root of unity.

* See Krazer, Ann. d. Mat., Ser. 11., t. xii. (1884). The number of elementary matrices is

stated by Burkhardt to be further reducible to 3, or, in case p = 2, to 2; Gotting. Nachrichten,

1890, p. 381.



556 DETERMINATION OF THE CONSTANT FACTOR [333

In the case of the matrix (D), the equations of § 32G (ii) lead to

where u = to, r' = t save that t'i,., = Tj _o — 1, t'o^i = To,i — 1, and K' = Q', K = Q
save that iTj = Q, + Q./, Kn = Q. + Q/ ; now we have

g2)riK (»+Q') + in-T(rt+Q')2+2iriQ(n + Q') _ g2irr («,«..- Q/Q.') g2»riit' {M+iT') +/»rT' (n+ A'')2+2TriA'(7»+ A'') •

thus, in the case of the matrix (D) the constant A is equal to e-2f»Q.'Qi'.

We consider now the transformation {B)—which falls under that con-

sidered in (i) § 326. In this case Tria {a. -\- tol) wr is equal to ttiVi,! W'^^ and

the equation (a + ra') t' = /S 4- t/3' leads to the equations

'''1,1—
^l'^\,\j

''"
l,r — '''l,/-/'''!,!) ''";•, f.

— '^C, S '^1,1- "^1,8/ '^1,1}

or, the equivalent equations (r, s = 2, 3, ..., j)),

11 ' III / I'll.

also ?/i
= Ti,i'?i'i, t/,. = Ti_,. 1^1 + w,., SO that Wi = — t',,iWi, ?y,. = w,. — t',_,.Wi, and

Tj 1 w,'- = - t'i,i it,- ; further we find

K' = Q' save that K^' — — Q^, and K =Q save that if] = Q/

;

with these values we have the equation

e-ir„,wr- (^u r\^) = A@ {iv ; r'
\

^').

334. To determine the constant A in the final equation of the last

Article we proceed as follows* :—We have

(i) f
e2«m«>^^ = o or 1,

Jo

according as m is an integer other than zero, or is zero

;

(ii) if a be a positive real quantity other than zero, and /3, 7, 8 be real

quantities,

J -00 V a- t/3

where for the square root is to be taken that value of which the real part is

positivef

;

* For indications of another method consult Clebsch u. Gordan, Ahel. Funct., § 90; Thomae,

Crelle, lxxv. (1873), p. 224.

t By the symbol ^n, where /t is any constant quantity, is to be understood that square root

whose real part is positive, or, if the real part be zero, tliat square root whose imaginary

part is positive.
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(iii) with the relations connecting u, w and t, t' given in the previous

Article,

un = (iv)i)i + (ti, 1 vii + + Ti, ^ ?tp) Wi

,

where {wn)i^ denotes w.ih + + lUpn^;

(iv) the series representing the function © (w, r') is uniformly con-

vergent for all finite values of Wi, ..., Wp, and therefore, between finite limits,

the integral of the function is the sum of the integrals of its terms.

Therefore, taking the case when {^') and therefore (^'') are Q), and

integrating the equation

e«r„ 1
w,2 (ji • t) = Jlo® (w ; t'),

in regard to Wi, ... , Wp, each from to 1, we have

Ml = -00 n^, , njiJ {) Jo

where, on the right hand, the integral is zero except for n,> = 0, ..., np = 0;

thus
00 n

Ml = - 00 Jo
1 w-+2n-tVi, 1 riiWi+jVTi, i

n^-
^^jfj

00 rl
_ ^ I gWi, 1 (Wi+»li)2 ^^^

«X= -ao J

g7rtVi,ia;2^^,

.

hence since the real part of ttiti^i is negative (§ 174), we have

V —TTlTi^i V Ti_i
'

where the square root is to be taken of which the real part is positive.

Hence

e«Ti, 1 wi2 (^^
. ^) ^ /J_ (^ .

t')^

and from this equation, by increasing w by K + t'K' , we deduce that

gTriT,, 1 Wi^

* '^1,1

Hence, when the decomposition of any linear transformation into trans-

formations of the form A^, B, G, D is known, the value of the constant

factor. A, can be determined.

335. But, save for an eighth root of unity, we can immediately specify the vahie in

the general case ; for when Q, Q' are zero, the value of the constant A has been found to

be unity for each of the transformations A^., C, D, and for the transformation B to have a



558 THE CONSTANT FACTOR FOR ANY LINEAR TRANSFORMATION. [335

value which is in fact equal to \/i!\M\, \M\ denoting the determinant of the matrix M.

Hence for a transformation which can be put into the form

(^,^,)=...^'•^...l^..z>^..z^^..c^...l^..

if the values of the matrix M for these component transformations be respectively

.Ml\..\...\...M['...\...\

the value of the constant A, when Q, Q are zero, for the complete transformation, will be

''W]kT W\~k)'^
'

but if the complete transformation give u —Mw, we have J/=...J/2J/i... ; thus, for any

transformation we have the formula

.....w,„=e(„,.).-^e[»,.|i(:)],

where M=a-\-Ta', u=Mw, and t is an eighth root of unity, r, / being as in § 328, p. 544.

Putting 2wM, 2v\o for ?<, m>, as in § 326, this equation is the same as

-^ 5 (« ; 2a,, 2a,', 2^, 2,') = -^^^^ 5 \xo ; 2v, 2v', 2^, 2^'
| k iC)\

where |o,| is the determinant of the matrix a,, etc.

Of such composite transformations there is one which is of some importance, that,

namely, for which

so that

[«r. i]= o'r, i , [«',
, ,] =-ar,i; (/*, I= 1, 2, . . . , f).

Then

M=T, tt'= — \, u= Tiv, nia {a + Ta')'W'= 7rirw'^= niiiw= —TTiTU^.

We may suppose this transformation obtained from the formula given above for the

simple transformation -fi—thus—Apply first the transformation B which interchanges

»r, 1 ) «'r, 1 with a certain change of sign of one of them ; then apply the transformation

A2BA2 which eflfects a similar change for the pair a)r,2, <»'r,2 J
^-^^en the transformation

A^BAj, and so on. Thence we eventually obtain the formula

where

' _ _ ^1.2 " _ '
""

2. 2 ~ '"2. 2 ~
> ^3. 3~^3.3~

'^l. 1

and, save for an eighth root of unity,

/T IJ' / iT = 1

V n., Vr'2.2 V r"3.,- VM'
where \t\ is the determinant of the matrix t.
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The result can also be obtained immediately, and the constant obtained by an integra-

tion as in the simple case of the transformation B ; we thus hud, for the value of the

coustant here denoted by JT /-..., the integral*

Ex. i. Prove that another way of expressing the value of this integral is

hi S tan~i \. . _

where, if the matrix t be written p+ icr, |rro| is the determinant of the matrix p^+ o-''^,

which is equal to the square of the modulus of the determinant of the matrix r, also

Xj, ..., \p are the (real) roots of the determinantal equation
|
p — Xo- 1 =0, and tan~i X^ lies

between - 7r/2 and 7r/2. Of the fourth root the positive real value is to be taken.

Ex. ii. For the case jt>= l, the constant for any linear transformation is given by

„T^ia! (a + to! )w"

—
J
e 4 or Z i\Ja I -

)

M =

' ^ "^[a+Ca-lXa'-D]

according as a or d is odd ; where d is positive, and

as —as= aa., j _ -r- ^' I *

^s'-^'s= ^^\
~^ " V a'(a+Va.')'

336. Returning now to consider the theory more particularly in con-

nexion with the Riemann surface, we prove first that every linear trans-

formation of periods such as

[«] = (o(x+ w'a, [&)'] = (o^ + &)'/3',

where

a^-^a = 0, a'^' - I3'a' = 0, a^'-^a! = \,

can be effected by a change in the manner in which the period loops are

taken. For this it is sufficient to prove that each of the four elementary

types of transformation, Ak, B, C, D, from which, as we have seen, every

such transformation can be constructed, can itself be effected by a change in

the period loops.

The change of periods due to substitutions A^ can clearly be effected

without drawing the period loops differently, by merely numbering them

* Weber has given a determination of the constant A for a general linear transformation by
means of such an integral, and thence, by means of multiple-Gaussian series. See Crelle, lxxiv.

(1872), pp. 57 and 69.
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differently—attaching the nmnbcrs 1, k to the period-loop-pairs which were

formerly numbered k and 1. No further remark is therefore necessary in

regard to this case.

The substitution B, which makes only the change given by

[6),._ ,] = ft)',.,
1 , [(O'r, i]

= — Oi,;
1

,

can be effected, as in § 320, by regarding the loop (61) as an [a^] loop, with

retention of its positive direction ; thus the direction of the (old) loop (tti),

which now becomes the [6j] loop, will be altered ; the change is shewn by

comparing the figure of § 18 (p. 21) with the annexed figure (13).

,03rji

Fig. 13.

The change, due to the substitution C, which is given by

[6)',.,l]
= &)'^,i -&),.,!,

is to be effected by drawing the loop [cij] in such a way that a circuit of it

(which gives rise to the value [2a)',.,J for the integral u,.) is equivalent to a

circuit of the original loop (oj) taken with a circuit of the loop (61) from the

positive to the negative side of the original loop (aj).

This may be effected by taking the loop [aj as in the annexed figure (14)

(cf. § 331).

¥10. 14.

For the transformation D the only change introduced is that given by

[&)',.,i] = co',.,i — <y,-,2, [«'<•, 2] = fw')-,2 - f»M>

and this is effected by drawing the loops [aj, [a.,], so that a circuit of
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[«i] is equivalent to a circuit of the (original) loop (cij) together with a

circuit of (62), in a certain direction, and similarly for [ag]. This may be

done as in the annexed diagram (Fig. 15).

Fig. 15.

For instance the new loop [a^] in this diagram (Fig. 15) is a deformation of a loop

which may be drawn as here (Fig. 16)

;

Fig. 16.

since the integrand of the Abelian integral w^ is single-valued on the Eiemann surface,

independently of the loops, the doubled portion from L to M is self-destructive ; and

a circuit of this new loop [og] gives co'r, 2 - <<>r, 1 > as desired.

Hence the general transformation can be effected by a composition of the

changes here given. It is immediately seen, for any of the linear transform-

ations of I 326, that if the arguments there denoted by C/j, ..., Up he a set

of normal integrals of the first kind for the original system of period loops,

then Wi, ..., Wp are a normal set for the new loops associated with the

transformation.

837. Coming next to the question of how the theory of the vanishing of

the Riemann theta function, which has been given in Chap. X., is modified

B. 36
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by the adoption of a ditfereut series of period loops, we prove first that when

a change is made equivalent to the linear transformation

[eo] = &)2 -f- o)'a', [o)'] = &)/3 + o)'/9',

the places m^, ..., nip of § 179, Chap. X., derived from any place m, upon

which the theory of the vanishing of the theta function depends, become

changed into places m^, ..., nip which satisfy the p equations

uf'
"" + ... + <- ""• = i [d (ay8)], + h T,-

,
[d (a'yS')], + . . . + i r,. ^ [tZ {a'^')l,

(i=l,...,p),

wherein u^, ..., Up denote the normal integrals of the first kind for the

original system of period loops.

For let Wi, ..., iVp be the normal integrals of the first kind for the new

period loops, and let uii, ..., vip be the places derived from the place m, in

connexion with the new system of period loops, just as m^, ...,mp were

derived from the original system. In the equation of transformation

giria' ia+To.') Ilfl ^

put

u : T
\d{a^J = A,^{w; t'),

10 = 10^'''^ — ic^t>>'h' _ ^ _ _ _ 2fr*P'"*'p,

so that the right-hand side of the equation vanishes when cc is at any one of

the places nii, ..., nip' ; then we also have

U = W^'"* — w^i'»»i' — ... — ?<*p.'V
;

hence the function

l(X,m_ ^f^x^.m,' _ ^_^fXp,mp.^ ^
\d{<l'^)

id(ay8)J

vanishes when x is at any one of the places x^, , .
.

, Xp\ therefore, by a

proposition previously given (Chap. X., § 184 (X.)), the places m^, ..., nip

satisfy the equivalence stated above.

It is easy to see that this equivalence may be stated in the form

^-.'. ""+...+ wf^'
"•" = H^imi + ir',- ,

[d (fia')], + . . . + ir', p [d (aa')]„

(i = l,2, ...,p).

It may be noticed also that, of the elementary transformations associated

with the matrices Ai^, B, C, D, of § 333, only the transformation associated

with the matrix C gives rise to a change in the places Wj, ..., nip-, for each

of the others the characteristic [\d{a^), \d{'x^')] vanishes.

338. From the investigation of § 329 it follows, by interchanging the

rows and columns of the matrix of transformation, that a linear trans-
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formation can be taken for which the characteristic [^d(a^), ld{a'^')]

represents any specified even characteristic; thus all the 2^-1(2^^ + 1) sets*,

7ni', ..., nip, which arise by taking the characteristic ^ f^
j
in the equivalence

?<"''' '"' + + n:^'p' '«p = ^n^, ^'

to be in turn all the even characteristics, can arise for the places wi^', . .
. , mp.

In particular, if |n^_ ^' be an even half-period for which (^H^, ^') vanishes,

we may obtain for ??i/, . .
.

, nip a set consisting of the place m and p-1
places ??/, ..., n'p-i, in which 71/, ..., np_i are one set of a co-residual lot of

sets of places in each of which a ^-polynomial vanishes to the second order

(cf. Chap. X., § 185).

£x. If in the hyperelliptic case, with p= 3, the period loops be altered from those

adopted in Chap. XL, in a manner equivalent to the Hnear transformation given in the

Example of § 329, the function 6 (w ; r'), defined by means of the new loops, will vanish

for w = 0; and the places m/, m^, m^, arising from the place a (§ 203, Chap. XL), as

mj, ..., TOp arise from m in § 179, Chap. X., will consist t of the place a itself and two

arbitrary conjugate places, z and z.

339. We have, on page 379 of the present volume, explained a method

of attaching characteristics to root forms VZ<i>, VF'^' ; we enquire now how

these characteristics are modified when the period loops are changed. It will

be sufficient to consider the case of VW; the case of VZ*^' arises (§ 244) by

taking <^o VX^ in place of V F<^. Altering the notation of § 244, slightly, to

make it uniform with that of this chapter, the results there obtained are as

follows ; the form X^^^ is a polynomial of the third degree in the fundamental

^-polynomials, which vanishes to the second order in each of the places

A^, ..., A.p^z, Wi, ..., nip, where J.i, ..., A^p-^ are, with the place m, the

zeros of a ^-polynomial </)o; the form F'^* is a polynomial, also of the third

degree in the fundamental (^-polynomials, which vanishes to the second order

in each of the places A^, ..., -^g^-s, yu-i, ..., /^^ ; if

where Mj, ..., Up are the Riemann normal integrals of the first kind, the

characteristic associated with the form F'=" is that denoted by ^ f j ;
and:]:

it may be defined by the fact that the function Vl^/VZ*^', which is single-

valued on the dissected Riemann surface, takes the factors (— 1)^/, (— I)'*

respectively at the t-th period loops of the first and second kind.

Take now another set of period loops ; let w/, . .
.

, m/ be the places

* Or lot of sets, when the equivalence has not an unique solution,

t Cf. the concluding remark of § 185.

X Integer characteristics being omitted.

36—2
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which, for these loops, arise as w^l, ..., Dip arise for the original set of period

loops; let Z'=" be the form which, for the new loops, has the same character

as has the fomi A'^*" for the original loops, so that Z^^> vanishes to the second

order in each of A^, ..., ^jp-s, W. •••, '^np \ then from the equivalences

(§ 337)

(t = l, ...,p),

where w;,, ..., Wp are the normal integrals of the first kind, it follows, as in

§ 244, that the function s/Z^^^ f^/X^^^ is single-valued on the Riemann surface

dissected by the new system of period loops, and at the 7'-th new loops,

respectively of the first and second kind, has the factors

g - iri [d {ia'} ]r gxri [d Ififi') Jr_

The equations of transformation,

[a>] = coa + (o'a, [to'] = co^ + co'/3',

of which one particular equation is that given by

[f^n,r] = <yn,iai,r+ +«», />«?,<• + Co' „,i<i'i,r + + <^' n, p<^'p,r, («, V = l
, ...,p),

express the fact (cf § o22) that a negative circuit of the new loop [br] is

equivalent to a;,, negative circuits of the original loop (6,) and a',_, positive

circuits of the original loop (ai) ; thus a function which has the factors e"^'/,

e""^! at the t-th original loops, will at the ?'-th new loop [a^.] have the factor

g-niir'^ where Z/ is an integer which is given by

- 1/ = i [- q/ oii, ,. + qi a'i, .], (mod. 2)

;

i = l

thus the factors of VF**'/VX® at the new period loops are given by e" ""''',

e*^, where I, I' are rows of integers such that

r = aq' - aq, -l = ^q'- ^'q, (mod. 2).

Therefore the factors of Vl^/VZi=^= (V1^/VZ<»')/(VZ'<»'/VZ^'), at the

new period loops, are given by e~'^^, e'"*, where

k' = dq' -aq-d (da), -k = ^q' - ^'q - d (/8/3'), (mod. 2)

;

now the characteristic associated with VF'" con-esponding to the original

system of period loops may be defined by the factors of VT^^'/VX'^' at those

loops; similarly the characteristic which belongs to VF'^' for the new system

of loops is defined by the factors of y/Y^'>/'^Z^^\ and is therefore i ( .
)

; the

equations just obtained prove therefore that the characteristic associated with

VF'" is transformed precisely as a theta characteristic.
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The same result may be obtained thus ; the p equations of the form

<"'"' + .
..+<'"'"''= H?i + 9inM+ ...+?pn-,A (^= l, ...,p\

are immediately seen, by means of the equation (a +ra') {ff - r'd') = 1 to lead to p equations

expressible by

subtracting from these the equations

^of'
'^' + ...+wf' "'"^:^ [dm%+yi,ddi^a)l + ...+ir\,[diaa')l, (.= 1, ..., p),

we obtain equations from which (as in § 244) the chai'acteristic of \/T(^'>, for the new

loops, is immediately deducible.

Similar reasoning applies obviously to the characteristics of the forms

^jj^(2i/+i) considered on page 380 (§ 245). But the characteristic for a form

\/X<2'^> (p. 381), which is obtained by consideration of the single-valued

function V'X<^'^^/<I>''^'—into which the form VX*'*', depending on the places

mi, ..., nip, does not enter—is transformed in accordance with the equations

^•' = aq' - aq, -k = ^q'- ^'q, (mod. 2),

and may be described as a period-characteristic, as in § 328.

340. Having thus investigated the dependence of the characteristics

assigned to radical forms upon the method of dissection of the Riemann

surface, it is proper to explain, somewhat further, how these characteristics

may be actually specified for a given radical form. The case of a form

VX"''^* differs essentially from that of a form VX<'"'+i'. When the zeros of a

form VX*^'*' are known, and the Riemann surface is given with a specified

system of period loops, the factors of a function \/X*-'^'/4>''^> at these loops

may be determined by following the value of the function over the surface,

noticing the places at which the values of the function branch—which places

are in general only the fixed branch places of the Riemann surface ; the

process is analogous to that whereby, in the case of elliptic functions, the

values of Vg? (tt + 2(i)i) — ej/V^ (ii) — e^, V^ {u + 2co.i) — ej^^ (u) — e^ may be

determined, by following the values of \/f (u) — e^ over the parallelogram of

periods. But it is a different problem to ascertain the factors of the function

a/F'^'/VX"*' at the period loops, because the form VX'*' depends upon the

places nil, •••> "^^^p, and we have given no elementary method of determining

these places ; the geometrical interpretation of these places which is given in

§ 183 (Chap. X.), and the algebraic process resulting therefrom, does not

distinguish them from other sets of places satisfying the same conditions

;

the distinction in fact, as follows fi-om § 338, cannot be made algebraically

unless the period loops are given by algebraical equations. Nevertheless we
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may determine the characteristic of a form F">, and the places wij, ..., iiij,,

by the following considerations*:—It is easily proved, by an argument like

that of § 245 (Chap. XIII.), that if there be a form VA''^* having the same

characteristic as VF<", there exists an equation of the form VX*'' VF<" = <I><'>

;

and conversely, if ^ + 1 linearly independent polynomials, of the second

degree in the p fundamental ^-polynomials, vanish in the zeros of VT^'^ and
^-' denote the sum of these g + 1 polynomials, each multiplied by an

arbitrary constant, that we have an equa;tion VF**' VF''' = ^^', where VF"' is

a linear aggregate of 5- + 1 radical forms like VZ'^^ all having the same

characteristic as VF'^'; in general, since a form ^'-' can contain at most

3 (j3 — 1) linearly independent terms (§ 111, Chap. VI.), and the number of

zeros of VF"' is 3 (jj - 1), we have q + \=Q\ in any case the value of g'+ 1

is capable of an algebraic determination, being the number of forms <I>'-'

which vanish in assigned places. Now the number of linearly independent

forms VA'^* with the same characteristic is even or odd according as the

characteristic is even or odd (§§ 185, 186, Chap. X.) ; hence, without deter-

mining the characteristic of VF'*' we can beforehand ascertain whether it is

even or odd by finding whether g' + 1 is even or odd. Suppose now that

yxi, ..., fip and /i/, ..., /x/ are two sets of places such that

(m^ Ai, ..., A.p_3) = (/Ai-, . .
. , fip") = {fir, ..., fMp''),

m being an arbitrary place, and m, A^, ..., A2P-3 being the zeros of any

^-polynomial ^oj so that /Ltj, ...,fip and /Lt^', ...,ftp'are two sets arbitrarily

selected from 2-p sets which can be determined geometrically as in § 183,

Chap. X. (cf § 244, Chap. XIII.) ; let F=" vanish to the second order in each

of /*!, ...,fip, Ai, .,., Ay,^3 and Fi^^* vanish to the second order in each of

fh'> ', H'p, Ai, ..,, .^ap-sl by following the values of the single-valued

function VFj'*7'^i^*^' on the Riemann surface, we can determine its factors at

the period loops; at the r-th period loops of the first and second kind let

these factors be (-1)*'', (—1)*'- respectively; then if ^(^i, ..., qp) and

^ (Qi, •, Qp) be respectively the characteristics of VF'*' and VFj'^', which we
wish to determine, we have (§ 244)

k,' = Qr - q,', kr = Qr - q,-, (mod. 2).

Take now, in turn, for /i,', ..., /Xp, all the possible 2^ sets which, as in § 183,

are geometrically determinable from the place m; and, for the same form

VF'»>, determine the 2'^' characteristics of all the functions 'J Y^'^^ j \/
Y^^'^ arising

* Noether, Jahrenbericht tier Deutschen Mathetnatiker Vereinigung, Bd. iii. (1894), p. 494,

where the reference is to Fuchs, Crelle, lxxiii. (1871) ; cf. Prym, Zur Theorie der Functionen in

einer zweibldttrigen Flikhe (Zurich, 1866).
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by the change of the forms VF/^'; then there exists one, and only one,

characteristic, ^(
j

, satisfying the condition that the characteristic

i +4

is even when VFj'^' has an even characteristic and odd when VFi'^^ has an odd

characteristic ; for, clearly, the characteristic ^ ( ^
j

is a value for ^ (
]
which

satisfies the condition, and if |^
(

1 were another possible value for ^ (
1

we should have

(k + a) (^•' + a') = (k + q) (k + q) (mod. 2),

or

k {<t' - q') + k' {cT-q) = qq' - aa'

/k'\
for all the 2-^' possible values of ^ i ,

j
; and this is impossible (Chap. XVII.,

§295).

'

^ _
Hence we have the following rule:

—

Investigate the factors of V Fj'^*/V F'"'

for an arbitrary/ form VF'*' and all 2^ forms VFj'-^'; corresponding to each

form VFi'^' determine, by the method explained in the earlier part of this

Article, whether its characteristic is even or odd ; then, denoting the factors of

any function ^Y^^^
I
"^Y^^^ respectively at the first and second kinds of period

loops by quantities of theform (— 1)*', (— 1)^, determine the characteristic if ) >

satisfying the condition that the characteristic |- ( , ]
is, for every form

JY-^^\ even or odd according as the characteristic of thatform, VF/^', is even or

odd ; then ^ (" \is the characteristic of the form VF'^'; this being determined

the characteristic of everyform VF/^^ is known; the particularform \fY-^^^ for
which the characteristic, thus arising, is actually zero, is the form previously

denoted by VX'^^

—

namely theform vanishing in the places m^, ..., m^ which are

to be associated (as in § 179, Chap. X.) luith the particular system of period

loops of the Riemann surface which has been adopted.

Thus the method determines the places m^, ...,mp and determines the

characteristic of every form VF'^^; the characteristic of any other form
^yojiz+i)

jg then algebraically determinable by the theorems of § 245 (p. 380).

341. For the hyperelliptic case we have shewn, in Chap. XL, how to

express the ratios of the 2'^p Riemann theta functions with half-integer

characteristics by means of algebraic functions ; the necessary modification
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of these formulae when the period loops are taken otherwise than in

Chap. XI., follows immediately from the results of this chapter. If the

change in the period loops be that leading to the linear transformation

which is associated with the Abelian matrix formed with the integer

matrices a, /9, a', ^, we have (§ 324)

where

^[«;i(J)]=4^.[»;i(*')],

k' = oLq -aq-d (aa'), - h = fiq - /3'q - d (y9/3').

If now, considering as sufficient example the formula of § 208 (Chap. XI.), we

have

^r"- 5'i"m+ ••• +<lp(^>;p + qi(0'r,i + ... +qpO'r,p,

then we have

b.a
lU^ = ^U,.,i + ... 4- lpVr,p + h'v'r^i + . . . + lp'Vr,p,

where
l' = aq; -a'q = h' +d{aoi'), - I =^ ^q' - /3'q =- k + d(/3^');

therefore, if the characteristic h (d (yS^S'), d (aa')) be denoted by fx, the function

-.[»;i(j[:)_ is a constant multiple of ^j ^'*W ; and we may

denote the latter function by ^i[iu av''-^ + fx]. Thus the formula of § 208 is

equivalent to

where C is independent of the arguments Wj, ..., lUp, and, as in § 206,

Wr = rf"''' + . . . + WXp, ap
(r = 1,2, ...,;;).

Similar remarks apply to the formula of §§ 209, 210. It follows from

§ 337 that the characteristic /it is that associated with the half-periods

10 + . . . + w ntp. Op

where t/j/, . .
.

, vip are the places which, for the new system of period loops,

play the part of the places vii, ..., nip of § 179, Chap. X. It has already

(§ 337) been noticed that for the elementary linear substitutions Ak, B, D the

characteristic /i is zero.

342. In case the roots Ci, «!, Cj, a^, ..., c, in the equation associated with

the hyperelliptic case

y^ = ^ {x — c^) {x — ai) {x — C2) {x — a^) ...{x - Cp) {x — ap){x — c),

be real and in ascending order of magnitude, we may usefully modify the

notation of § 200, Chap. XI. Denote these roots, in order, by h,p, 6^p_,, ...,ho,
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so that 621, b^i^i are respectively Cp^i+i, ftp-i+i and bo is c, and interchange

the period loops (ai), (bi), with retention of the direction of (bi), as in the

figure annexed (Fig. 17).

Fig. 17.

Then if U^' ", ..., U^' "' are linearly independent integrals of the first kind,

such that dU'''"'ldx = '<^rly, where i/r,. is an integral polynomial in x, of degree

p — 1 at most, with only real coefficients, the half-periods

are respectively real and purely imaginary, so that [&)',, i] is also purely

imaginary ; if now w^' ", . .
.

, w*''
"^ be the normal integrals, so that

[^, = [2w,,i]Wi+ ... + [2(Or,p\lUp, Wr = L,.,iU^+ ...+L,.,pUp,

then the second set of periods of tv^' "', ..., tu^' ", which are given by

r'r.i = L,.^i [2&)'i,,-] + ...+Lr.,p [2ft)'p, i], (r, s = 1, 2, . .
. , jy),

are also purely imaginary* ; forming with these the theta function (w ; t'),

the theta function of Chap. XI. is given (§ 335) by

where K, K' are obtainable from Q, Q' respectively by reversing the order

of the p elements, and A is the constant VzyAj ViAj/A^ ViAj/Aj . .
.

, in which
A = Ti,i, A2 = Ti_ 1X2^2 — t\2, etc. We find immediately that

Cr*;-.« = -[a,,,,]-. ..-K,] +[<,], f^^^ = -[a,,,,^.,]-...-K,] + [a,V,,-].

(* = 0, 1, ...,p), and may hence associate with b^^i, b.^ the respective odd and
even characteristics

i...-i;~^ vo vo; V-

1

* The quantities t,-, , of Chap. XI. (of which the matrix is given in terms of the r',, , of § 342
by tt'= - 1) are also purely imaginary when fj, aj, ..., Cp, a^, c are real and in ascending order
of magnitude.
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and may denote the theta functions with these chai*acteristics respectively by

B^,., (lu: t'), ^jiiiv; t'); if 6^, bi, 6,„, ..., be any of the places b^p, ..., 6o, not

more than p in number, and if, with >• 9, < 2, > qi < 2, we have

^6*.« ^ ^bua ^ = _
^^

|-^, J -•-qp Kp] + qi K.,i] + ... + 5/ [<o',,j,l

then the function whose characteristic is ^ ( ^
) may be denoted by

0fc,/,.«...(w;T').

This function is equal to, or equal to the negative of, the function with

characteristic ^ ( )
, according as the characteristic is even or odd.

We have thus a number notation for the 2^ half-integer characteristics*,

equally whether the surface be hyperelliptic or not ; this notation is under-

stood to be that of Weierstrass (Kbnig:-berger, Crelle, LXiv. (1865), p. 20).

For the numerical definition of the half-periods, which are given by the rule

at the bottom of p. 297, precise conventions are necessary as to the allocation

of the signs of the single valued functions \^x — b,- on the Riemann surface

(cf. Chap. XXII.).

In the hyi^relliptic ca.se p= 2, the characteristics of the theta functions gi%'en in the

table of § 204 are supposed to consist of ix)sitive elements less than unity ; when $,, Q2,

Q{, Qo ^^re each either or ^, the formula of the present article gives

the number notations for the transformed characteristics are then immediately given by

the table of § 204. The result is that the numbers

02, 24, 04, 1, 1.3, 3, 5, 23, 12, 2, 01, 0, 14, 4, 34, 03

are respectively replaced by

3, 1, 13, 24, 04, 02, 5, 0, 4, 2, 34, 23, 14, 12, 01, 03.

• For convenience in the comparison of results in the analytical theory of theta functions, it

appears better to regard it as a notation for the characteristics rather than for the functions.
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CHAPTER XIX.

On systems of periods and on general Jacobian functions.

343. The present chapter contains a brief account of some general ideas

which it is desirable to have in mind in dealing with theta functions in

general and more especially in dealing with the theory of transformation.

Starting with the theta functions it is possible to build up functions

of p variables which have 2p sets of simultaneous periods—as for instance

by forming quotients of integral polynomials of theta functions (Chap. XI.,

§ 207), or by taking the second differential coefficients of the logarithm of

a single theta function (Chap. XL, § 216, Chap. XVII., § 311 (S)). Thereby

is suggested, as a matter for enquiry, along with other questions belonging to

the general theory of functions of several independent variables, the question

whether every such multiply-periodic function can be expressed by means of

theta functions*. Leaving aside this general theory, we consider in this

chapter, in the barest outline, (i) the theory of the periods of an analytical

multiply-periodic function, (ii) the expression of the most general single

valued analytical integral function of which the second logarithmic dif-

ferential coefficients are periodic functions.

344. If an uniform analytical function of p independent complex

variables lij, ..., Up be such that, for every set of values of u^, ..., Up, it

is unaltered by the addition, respectively to Ui,.,.,Up, of the constants

Pi, ..., Pp, then Pj, ..., Pp are said to constitute a period column for the

function. Such a column will be denoted by a single letter, P, and Pjt will

denote any one of Pj, ..., P^. It is clear that if each of P, Q, R, ... be

period columns for the function, and \, fi, v, ... be any definite integers,

independent of k, then the column of quantities XPk + fjiQk + J^Rk + •• is

also a period column for the function ; we shall denote this column by

XP -I- fjiQ + vR + . .
.

, and say that it is a linear function of the columns

P, Q, R, ..., the coefficients \, fi, v, ..., in this case, but not necessarily

* Cf. Weierstiass, Crelle, Lxxxix. (1880), p. 8.
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always, being integers. The real parts of the new column are the same

linear functions of the real parts of the component columns, as also are the

imaginary parts. More generally, when the p quantities XPt + fiQk + vRk + • • •

are zero for the same values of X, ^, i/, . . . , we say that the columns P,Q,R,...

are connected by a linear equation ; it must be noticed, for the sake of

definiteuess, that it does not thence follow that, for instance, P is a linear

function of the other columns, unless it is known that X is not zero.

It is clear moreover that any 2j9 + 1, or more, columns of periods are

connected by at least one linear equation with real coefficients (that is, an

equation for each of the p positions in the column

—

p equations in all, with

the same coefficients) ; for, in order to such an equation, the separation of

real and imaginary gives 1p linear equations to be satisfied by the 2/? + 1

real coefficients ; allowing possible zero values for coefficients these equations

can always be satisfied.

For instance the periods Q — Q^ + iQ,.^, m^ai + iat.^, a)'= a)i' + ('«/, are connected by an

equation

in which however, if wjWj' — o)2<«)i'
= 0, also t = Q.

Thus, for any periodic function, there exists a least number, r, of period

columns, with r lying between 1 and '2p + 1, which are themselves not

connected by any linear equation with real coefficients, but are such that

every other period column is a linear function of these columns with real

finite coefficients. Denoting such a set* of r period columns by P<^', ... , P**"',

and denoting any other period column by Q, we have therefore the p
equations

Q';'=x,p';' + + \rPV, {k=i,2,...,p),

wherein Xj , . .
.

, X^. are independent of k, and are real and not infinite. It is

the purpose of what\ follou's to shew, in the case of an uniform analytical

function of the independent complex variables u^, ..., Up, (I.) that unless the

function can be expressed in terms of less than p variables which are linear

functions of the arguments Uj, ...,«p, the coefficients Xj, ...,X;. are rational

numbers, (II.) that, X,, ....X^ being rational numbers, sets of r columns of

periods exist in terms of which every existing peHod column can be linearly

expressed ivith integral coefficients.

Two lemmas are employed which may be enunciated thus:

—

(a) If an uniform analytical function of the variables u^, ..., u^ have a

column of infinitesimal periods, it is expressible as a function of less than

p variables which are linear functions of u^, ..., Up. And conversely, if such

• It will appear that the nnmber of such sets is infinite ; it is the number r which is unique,

t These propositions are given by Weierstrass. Ahhandlungen am der Fnnctionenlehre

(Berlin, 1886), p. 165 (or Berlin. MouaUber. 1876).
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uniform analytical function of u^, ..., iip be expressible as a function of less

than p variables which are linear functions of Uj, ..., Up, it has columns of

infinitesimal periods.

(/y) Of periods of an uniform analytical function of the variables

u^,...,Up, which does not possess any columns of infinitesimal periods,

there is only a finite number of columns of which every period is finite.

345. To prove the first part of lemma (a) it is sufficient to prove that

when the function /(iti, ..., Up) is not expressible as a function of less than

p linear functions of «i, ..., Up, then it has Jiot any columns of infinitesimal

periods.

We define as an ordinary set of values of the variables u^, ...,Up a set

w/, . .
.

, Up, such that, for absolute values of the differences u-^ — u-i, ... ,Up — Up'

which are within sufficient (not vanishing) nearness to zero, the function,

f{ui, ..., Up), can be represented by a converging series of positive integral

powers of these differences—the possibility of such representation being the

distinguishing mark of an analytical function ; other sets of values of the

variables are distinguished as singular sets of values*.

Then if the function be not expressible by less than p linear functions of

u^, ..., Up, there can exist no set of constants Ci, ..., Cp such that the

function

OUi Clip

vanishes for all ordinary sets of values of the variables; for this would
require / to be a function of the ^ — 1 variables du^ — CiUi {i=2, ..., p).

Hence there exist sets of ordinary values such that not all the differential

coefficients dfjdui, ...,df/dup are zero; let u^ , ...,ul be such an ordinary

set of values; for all values of u-^, ...,Up in the immediate neighbourhoods

respectively of Mj , . . . , Up , the statement remains true that not all the partial

differential coefficients are zero.

Then, similarly, the determinants of two rows and columns formed from

the array

¥ ¥ ¥
9wi ' 81*2 '

*"'
dup

do not all vanish for every ordinary set of values of the variables; let

u^
, ... , Up be an ordinary set for which they do not vanish ; for all values of

* The ordinary sets of values constitute a continuum of 2p dimensions, which is necessarily

limited ; the limiting sets of values are the singular sets. Cf. Weierstrass, Crelle, lxxxix.

(1880), p. 3.
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Mt, ..., Up in the immediate neighbourhoods respectively of v^' , ..., u^ , the

statement remains true that not all these determinants are zero.

Proceeding step by step in the way thus indicated we infer that there exist

sets of ordinary values of the variables, (w, , ..., Up ), ..., («i^, ..., «p ), such

that the determinant, A, of p rows and columns in which the ^-th element of

the r-th row is d/{u[\ ..., ?v ')/??'?, does not vanish; and since these are

ordinary sets of values of the arguments, this determinant will remain

different from zero if (for r=l, .-., p) the set u[ , ..., Up be replaced

by i\\ ..., Vp\ where v^' is a value in the immediate neighbourhood of

(r)

This fact is however inconsistent with the existence of a column of

infinitesimal periods. For \i H^, ..., Hp be such a column, of which the

constituents are not all zero, we have

=/(«;-' + IT, , . .
. ,
<' + Hp) -/{liT, .... uj-'), (r =l,...,p),

where 6i, ..., dp are quantities whose absolute values are i^l, and the

bracket indicates that, after forming df/du^, we are (for m=l, ..., p) to

substitute t/„^ + O^H^n for iil^ ; these p equations, by elimination of H^, ... , Hp
give zero as the value of a determinant which is obtainable from A by slight

changes of the sets u[ , ..., u^ ; we have seen above that such a determinant

is not zero.

To prove the converse part of lemma (a) we may proceed as follows.

Suppose that the function is expressible by tn arguments v^, ..., v„, given by

wherein m < p. The conditions that Vj , . .
.

, t'„, remain unaltered when

Ui, ...,Up are replaced respectively by iii + tQi, ..., Up + tQp are satisfied by

taking Q, , . .
. , Qp so that

ak,iQi + +ak,pQp = 0, (k=l, ..., m),

and since m <p these conditions can be satisfied by finite values of Qi, ...,Qp

which are not all zero. The additions of the quantities tQi,...,tQp to

«/], ..., Up, not altering Vi, ..., i',„, will not alter the value of the function/.

Hence by supposing t taken infinitesimally small, the function has a column

of infinitesimal periods.

346. As to lemma (0), let Pk = Pk + ^o'k be one period of any column of

periods, (^ = 1, ..., p), wherein pt, o-^ are real, so that, in accordance with the

condition that the function has no column of infinitesimal periods, there
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is an assignable real positive quantity e such that not all the 2p quantities

pjc, o-jfc are less than e. Then if Hk, Vk be 2p specified positive integers,

there is at most one column of periods satisfying the conditions

f^k€:^\pk\<(/^k+'i-)e, Pke:^\ak\<{vk+l)€, (k=l, ...,p);

wherein \pk\, [ckl are the numerical values of p^, ak', for if p;fc' + tcr;fc' were

one period of another column also satisfying these conditions, the quantities

Pk — Pk + 'i {<^k
— o'k) would form a period column wherein every one of the

2p quantities pk — pky <^k — ^k was numerically less than e.

Hence, since, if g be any assigned real positive quantity, there is only a

finite number of sets of 2p positive integers p/c, vj^ such that each of the

2p quantities /i^e, r](e is within the limits {—g, g), it follows that there

is only a finite number of columns of periods P}c = pk + io-^, such that each of

pjc, ajc is numerically less than g. And this is the meaning of the lemma.

347. We return now to the expression (§ 344) of the most general

period column of the function /by real linear functions of r period columns,

of finite periods, in the form

Q = XiP<" + +X,P"-';

here the suffix is omitted, and we make the hypothesis that the function

is not expressible by fewer than p linear combinations of u^, ..., Up.

Consider, first, the period columns Q from which Xj = X3 = ... = X,. =
and < Xj :|> 1. Since there are no columns of infinitesimal periods, there

is a lower limit to the values of Xi corresponding to existing period columns

Q satisfying these conditions ; and since there is only a finite number of

period columns of wholly finite periods, there is an existing period for which

Xi is equal to this lower limit. Let Xj^i be this least value of Xj, and Q'^*

be the corresponding period column Q.

Consider, next, the period columns Q for which X3 = X4 = . . . = X,. = 0,

and 0:|»Xi:^l, < Xg :|> 1. As before there are period columns of this

character in which X2 has a least value, which we denote by Xo, o. If there

exist several corresponding values of Xi , let Xj, 2 denote one of these, and

denote X,,oPw + Xa.^P*'' by Q^'K

In general consider the period columns of the form

XiPw + +X,«P<'«>, (m :fvr),

wherein

0:^X1 :|>1, , :|> X,«_i :^ 1, 0<X,„>1.

Since there are no infinitesimal periods, there is a lower limit to the values

of \m corresponding to existing period columns satisfying these conditions

;

since there is only a finite number of period columns of wholly finite periods,

there is at least one existing column Q for which X„i is equal to this lower
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limit; denote this value of X,„ by X,„.m, a»*i denote by \i,,„, .,., X,„-j,m values

arising in an actual period column Q""' given by

there may exist more than one period column in which the coefficient of

P*™' isX^,,,,.

Thus, taking m = l, 2, .... r, we obtain r period columns Q'", ..., Q^'K

In terms of these any period column Q, = XiP'" + ... +X^P"'', in which

Xj, .... Xr are real, can be uniquely written in the form

wherein Nj, ..., Nr are integers, and fi^, ..., fir are real quantities which are

zero or positive and respectively less than Xi,i, ..., X^.^;.. For, putting X^ into

the form Nr'K,r + f^r) ^^here N,. is an integer and fir, if not zero, is positive

and less than X;. ,., we have

Q = XiP'" + ...+X,P>^'

= x/P'^' + ... + x',_iP"-^' + iV,Q"-» +/i,P'^',

where
Xj = Xi — uS rXi r) . .. , X r-\ = Xf—i — i\ rX,-_i,r 5

and herein the column Q' = X/P^
' + ... + XVi-P*^"^ can quite similarly be

expressed in the form

Q = X/'P'i' + . . . + X",_oP"-=' + iV.-iQ*'-^' + Mr-iP*''-",

and so on.

But now, if iViQ'i' + ... + i^^Q""' +Mi-P'" + ... +/ir-P"'' be a period column,

it follows, as Nj, ..., Nr are integers, that also /iiP'^* + ... + fJt-rP^''^ is a period

column; and this in fact is only possible when each of /Xi, ,.., /X;. is zero.

For, by our definition of Q *"', the coefficient fir is zero ; then, by the definition

of Q"""^', the coefficient fir-i is zero ; and so on.

On the whole we have the proposition (II., § 344)

—

if

Q""' =X,,,„P'>' + ... 4-X,„,,„P"»», (??i = l, ..., r),

he that real linear combination of the first m columns from P'", ..., P""' in

which the m-th coeffi^cient X,„_ ,„ has the least existing value greater than zero

and not greater than unity, or he one such comhination for ivhich X,„ „, satisfies

the same condition, then every period column is expressible as a linear combina-

tion of the colunuis Q'", ..., Q""' with integral coefiicients.

It should be noticed that (/^), ..., ^') are not connected by any linear equation with

real coefficients, or the same would be true of /^'), ..., P^^K And it should be borne

in mind that the expression of any period column by means of integral coefficients,

in terms of Q^^\ ..., (j^^\ is a consequence of the fact that the function /{u^, ..., Up)

has only a limited number of period columns which consist wholly of finite periods.

Conversely the period columns, of finite periods, obtainable with such integral coefficients,

are limited in number.
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Another result (I., § 344) is thence obvious

—

The coefficients in the linear

expression of any period column in terms of P<^', ,.., P**' are rational

numbers.

For by the demonstration of the last result it follows that the period

columns P<^', ..., P**"' can be expressed with integral coefficients in terms of

Qw,
..., Q**-' in the form

pim, ^ ivr';'"Q(i) + . . . + J\r(,""Q(r)^ {m=l, ...,r);

from these equations, since the columns P<'', ..., P**"* are not connected by

any linear relation with real coefficients, the columns Q<^', ,.., Q"' can be

expressed as linear combinations of P'^*, ..., P***' with only rational numbers
as coefficients; hence any linear combinations of Q<^', ..., Qc' with integral

coefficients is a linear combination of P<^', ..., Pc' with rational-number

coefficients.

It needs scarcely* to be remarked that the set of period columns

Q<^', ..., Q'*"', in terms of which any other column can be expressed with

integral coefficients, is not the only set having this property.

348. We consider briefly the application of the foregoing theory to the case of uniform

analytical functions of a single variable which do not possess any infinitesimal periods. It

will be sufficient to take the case when the function has two periods which have not a real

ratio ; this is equivalent to excluding singly periodic functions.

If 2a)i , 2(02 be two periods of the function, whose ratio is not real, and 20 be any other

period, it is possible to find two real quantities Xj, Xg such that

i2 = Xia)j+X2<B2>

then of periods of the form 2Xi&)i, in which 0<Xi::|>l, of which form periods do exist, 2&)i

itself being one, there is one in which Xi has a least value, other than zero—as follows

because the function has only a finite number of finite periods. Denote this least value

by /xi, and put Qy = fiiai. Of periods of the form 2X100^ + 2X2(02 in which 0;j>Xi :^1, 0<X2^1,
there is a finite number, and therefore one, in which X2 has the least value arising, say fx^;

let one of the corresponding values of Xj be X
;
put 122= ^<"i + M2'^2- Then any period

2Q = 2X16)1 + 2X2CO2 is of the form 2^iQi + 2i\^2Q2+ 21/16)1+ 21/20)2, where v^, V2 are (zero or)

positive and respectively less than fi^ and fi2i ^^d ^1, #2 ^^'^ integers, such that X2= iV2A'2+ "2 >

\^ —N^= N^yi^ + v^. But the existence of a period i2-2iViQi-2iV2Q2= 2j/ia)i + 2i/2<<)2 with

i/i</xi, »'2</x2 is contrary to the definition of ^^ and fi^, unless v^ and V2 be both zero.

Hence every period is expressible in the form

Q= 2iViQi + 2^72^2 >

where i\^i, ^^2 ^'"^ integers.

In other words, a uniform analytical function of a single variable without infinitesimal

periods cannot he more than doubly periodic t.

* For the argument compare Weierstrass (1. c, § 344), Jacobi, Ges. Werke, t. ii., p. 27,

Hermite, Crelle, xl. (1850), p. 310, Riemann, Crelle, lxxi. (1859) or Werke (1876), p. 276. See

also E[ronecker, "Die Peiiodensysteme von Functionen reeller Variabeln," Sitzungsher. der

Berl. Akad., 1884, (Jun. bis Dec), p. 1071.

+ Cf. Forsyth, Theory of Functions (1893), §§ 108, 107. It follows from these Articles, in

this order, that any three periods of a uniform function of one variable can be expressed, with

B. 37
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It follows also that every period is expressible by 2o),, 2a)2 with only rational-number

coefficients.

349. Ex. i. If r quantitie.s be connected by k homogeneous linear equations with

integral coefficients (r>X-), it is pcssible to find r-k other quantities, themselves expressible

as linear functions of the r quantities with integral coefficients, in terms of which the r

quantities can be linearly expressed with integral coefficients.

Ex. ii. If P<'>, ... , P('') be r columns of reiil quantities, e^ich containing r-\ constituents,

a column ^yiP<')+ ...-|-Tr/^'"> can be formed, in which N^, ..., Nr are integers, whose r- 1

constituents are within assigned nearness of any r-1 assigned real quantities (cf.

Chap. IX., § 166, and Clebsch u. Gordan, Abels. Funct., p. 135).

Ex. iii. An miiform analytical function of p variables, having r period columns PO,

..., /^'), each of jo constituents, and having a further period column expressible in the

form XiP<') + ...-f-Xr/^'"), wherein X,, ..., X^ are real, will ueces.sarily have a column of

infinitesimal periods if even one of the coefficients Xj, ..., X^ be irrational.

From this result, taken with Ex. i., another demonstration of the proposition of the

text (§ 347) can be obtained. The result is itself a corollary from the reasoning of the

text.

Ex. iv. If ?<j'", ...,
«^'" be linearly independent integrals of the first kind, on a

Riemann surface, and the periods, 2a)r,«, '^(^'r.a, of the integral m^' " be written p,.,»+ i«^r.8j

p',..«+ iVr,«, shew that the vanishing of the determinant of 2p rows and columns which is

denoted by

Pr, 1> •••) Pr, 7)) Pr, 1) •••> Pr,p

""r, 1 > • • • ) ^r, IJ> ^ r,\i • • )
O" r, p

would involve* the equation

(i^i - liV,) w^' "+ . . . + (J/p - iNp) M^' "= constant,

where J/j, X^^ ..., J/p, Np are the minors of the elements of the first column of this

determinant and are supposed not all zero.

The vanishing of this determinant is the condition that the period columns of the

integrals should be connected by a homogeneous linear relation with real coefficients.

350. The argument of the text has important bearings on the theory of the Inversion

Problem discussed in Chap. IX. The functions by which the solution of that problem is

expressed have 2p columns of periods in terms of which all other period columns can be

expressed linearly with integral coefficients ; these 2p columns are not connected by any

linear equation with integral coefficients (§ 165), and, therefore, are not connected by any

linear equation with real coefficients.

It has been remarked (§ 174, Chap. X.) that the Riemann theta functions whereby the

2/)-fold periodic functions expressing the solution of the Inversion Problem can be built

up, are not the most general theta functions possible. The same is therefore presumably

true of the 2p-fold periodic functions themselves. Weierstrass has stated a theorem t

integral coeflScients, in terms of two periods. These two periods, and any fourth period of the

function, can, in their turn, be expressed integrally by two other periods—and so on. The
reasoning of the text shews that when the function has no infinitesimal periods, the successive

processes are finite in number, and every period can be expressed, with integral coeflicients,

in terms of two periods.

Forsyth, Theory of Functions (1893), p. 440, Cor. ii.

t Berlin, Munatgber. Dec. 2, 1869, Crelle, lxxxix. (1880). For an application to integrals

of radical functions, Cf. Wirtiuger, Untersuchungen iiber ThetaJ'unctioncn (Leipzig, 18'J5), p. 77.
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whereby it appears that the most general 2p-fold periodic functions that are possible can

be supposed to arise in the solution of a generalised Inversion Problem ; this Invei'sion

Problem differs from that of Jacobi in that the solution involves multiform periodic

functions*; the theorems of the text possess therefore an interest, so far as they

hold, in the case of such multiform functions. The reader is referred to Weierstrass,

Ahhandlungen aus der Functionenlehre (Berlin, 1886), p. 177, and to Casorati, Acta

Mathematical t. viii. (1886).

351. We pass now to a brief account of a different theory which is

necessary to make clear the position occupied by the theory of theta

functions. Considering, a 'priori, uniform integral analytical functions

which, like the theta functions, are such that their partial logarithmic

differential coefficients of the second order are periodic functions, we in-

vestigate certain relations which must necessarily hold among the periods,

and we prove that all such functions can be expressed by means of theta

functions.

Suppose that to the p variables u-^ , . .
.

, w^ there correspond <j columns of

quantities a[''(t = l, ...,j9,j = l, ...,cr) and a columns of quantities U^—
according to the scheme

(1)

a'r
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case is a generalisation of a theta function ; it will be distinguished by the

name of a Jacobian function ; but, for example, it may be a theta function,

for which, when a- < 2p, the columns a'J' are a- of the 2p columns of quasi-

periods, 2aj'-".

A consequence of the two suppositions is that in the matrix of a-

columns and 2p rows, of which the (2i-l)th and 2i-th rows are formed

respectively by the real and imaginary parts of the row a'/', ...,a^f\ not

every determinant of a rows and columns can vanish. For if with a arbitrary

real variables x^,...,x„ we form 2p linear functions, the (2i - l)th and

2i-th of these having for coefficients the (2i-l)th and 2i-th rows of the

matrix of a columns and 2p rows just described, the condition that every

determinant from this matrix with a rows and columns should vanish, is

that all these 2p linear functions should be expressible as linear functions of

at most <r — 1 of them. Now it is possible to choose rational integer values

of Xi,...,x^ to make all of these a — l linear functions infinitesimally

small*; they cannot be made simultaneously zero since the a columns of

periods are independent. Therefore every one of the 2p linear functions

would be infinitesimally small for the same integer values of Xi, ..., x„.

Thus there would exist a column of infinitesimal quantities expressible in

the form a-itt'^' + ... + x^^'^K Now it will be shewn to be a consequence of

the coexistence of equations (I.) that also an equation of the form (I.) exists

when a'J^ is replaced by an expression x^a^^^ + ... + x„a''^\ wherein x^, ...,x„

are integers. This however is contrary to our second supposition above.

Hence also the matrix of a columns and 2p rows, wherein the (2t — l)th

and 2i-th rows consist of a|", ...,aY^ and the quantities which are the

conjugate complexes of these respectively, is such that not every determinant

of a rows and columns formed therefrom is zero.

And also, by the slightest modification of the argument, a cannot be

> 2p. The case when o- is equal to 2p is of especial importance ; in fact

the case a < 2p can be reduced to thisf case.

352. Consider now the equations (I.). We proceed to shew that in

order that they should be consistent with the condition that ^ {u) is an

uniform function, it is necessary, if a, b denote the matrices of p rows and a

columns which occur in the scheme of § 351, that the matrix of a rows and

columns:|:, expressed by
ab — ba, (A),

should be a skew symmetrical one of which each element is a rational

Chap. IX., § 166.

+ When a = 2p, the hypothesis of no infinitesimal periods is a consequence of the other

conditions (of. § 345).

* The notation already used for square matrices can be extended to rectangular matrices.

See, for example, Appendix ii., at the end of this volume (§ 406).
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integer. Denote it by k, so that kaa = 0, k^^ = — k^a- But further also we

shew that it is necessary, if x denote a column of a- quantities and Xi denote

the column whose elements are the conjugate complexes of those of x, that

for all values, other than zero, satisfying the p equations

aa; = 0, (B),

the expression ikxx^ should be positive. We shew that ikxx^ cannot be zero

unless, beside ax, also axi be zero : a condition only fulfilled by putting each

of the elements of a; = (as follows because the a columns of periods are

independent and there are no infinitesimal periods). The condition (B) is in

general inoperative when a <p + 1.

353. Before giving the proof it may be well to illustrate these results by shewing that

they hold for the particular case of the theta functions for which (cf. § 284, Chap. XV.)

(T= 2/», a=|2o), 2co'|, 2Trib= \2r), 2r]'\,

and therefore

ax= 2a)X+2(o'X'= Qx, bx=^—.Hx,

where JT is a column of « quantities, X' a column of » quantities, and x=\ „, . Let
I
-^

I

\y I

y = , where, similarly, each of Fand F' is a column oip quantities ; then*

XT' - X'Y= —

.

{HxQy- Hy^x) = ay .hx-ax .by= {ab - ba) xy=kxy,

but
i.p i.-.p i...p

XY —X 1= 2 [Xfij — Xj 1 j\= ^ {^iyi + p — Xj + ])yj)= ^ lfi-^p,^•^^y^ + p^^(j,j+p^'j+p^jh
h j i, J h J

where ej^^ j= +1= — e^^^^p and ei,j= when i~j is not equal to/> ; thus we may write

kxy=XY' — X'Y= exy,

namely, the matrix k is in the case of the theta functions the matrix e, of 2p rows and

columns, which has already been employed (Chap. XVIII., § 322).

It can be similarly shewn that in the case of theta functions of order r, k— re.

Next if a, b, h denote the matrices occurring in the exponents of the exponential in the

theta series, we havet
hQ.x=^TriX+hX',

namely h..ax= iriX-'rhX'. Hence the equations ax= give X= .hX'. If X^, X{

denote the conjugate complexes of X, X' we have therefore Xi= —:\Xi'.

RenceikxXi=uxxi = t{XXj; - X'X\)= --[hX'Xi'+\Xj;X']= - -(b+bi)^'^/, since

b=b and bi= bi. Thus if b= c-fid, bj= c-id, the quantity —cX'Xi is positive unless

each element of X' is zero, namely, the real part of hX'X^' is negative for all values of X'
(except zero). If X'—m+ i7i, b {in^ + ii^) is equal to hm"^ +h)i^ ; and the condition that this

be negative is just the condition that the theta series converge.

* For the notation see Appendix ii.

t Chap. X. § 190, Chap. vii. § 140.
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354. Passing from this case to the proof of equations (A), (B) of § 352,

we have, from equation (I.),

^ 27rj6'»[H + oi-' + id'"] + 2irJc'i' + 2iri¥^*[H + i«'-'] + 2ir/c<2» j /^a

^g2«-jt6<i' + 6'2'][it + ian' + i«i'^'] + 2Ti[c'" + c'2i]gi,,^^^^^^

where Xi2 = 7ri [6"'a'-' - 6'-^a'"], = - L^i. Since the left-hand side of the

equation is symmetrical in regard to Oj and a.,, e-^" must be =e^', and

hence LiJiri is a rational integer, = Ajji say, such that A'j, = — k.^.

Obviously, in ^•io = a'^'6'-' -a'-' 6'^', the part a'^'6<*' is formed by compound-

ing the first column of the matrix a (of a columns and p rows) with the

second column of the matrix b. Similarly with a<-'6*^'. Namely Avj is the

(1, 2)th element of k = ab — ha. Since similar reasoning holds for every

element, it follows that the matrix k is a skew symmetrical matrix of

integers. Conversely, if this be so, it is easy to prove by successive steps

the equation

<f>
(u -\- a'^> vh + «'' m.2 + ... + a""^ m^)l<}> (m)

_ 27ri [?>'" m^ +... + 6"^' Wa] ["» + ""'" "'' '^"'^ a^''!ni_zl + 2iri (c'" m^ + ...+ c«^i m^) + iriL
.jj

.

where

L= S kc^pmaiup,
a= l, ..., <7

P = 2, .... <r

and vii, ..., Ilia are integers; this equation may be represented* by

r am~\ o < ^
2iribm\ W + -75- +27r(CHi + 7rj' 2i ^a|3"'a'"/3

^ (w -I- ((?n) =
(f>

(u) e L ^ J

In fact, assuming the equation (II.) to be true for one set vh, ..., ni^, we

have, by the equations (I.),

</) [u + am + a'^'] = e2W6(»[„ + a»t + ia<"] + 2,r/c<»
^ (^^ _,. ^j,^)^

a<|3

_ g27ril>m[H + ia;/i] + 27ri6'ii[it + «w + |ai"] + 27ricm+ 27rici" + iri S k^pin^mp A /,A

a</3
_g27ri[6»j + t('i'][« + ia?» + iai'i] + 27rt [cHH-c<"] + 7rt S k^pin^iiip + inR A) /n\

* For the notation sec Appendix 11.—or thus

—

Im . M = 2 [/>,!»«, + + bj„m„] itj

i

= (26,iJtj) wj, + + (26,a«,) »(„
t i

= (Sbl''",) m, + + (-Zh^^^i,) m„
i i

= 6<"mi.u+ +6',«^) Wl„ . u

,
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where R is equal to 6'^'
. am — bm . a'^', namely equal to

S6f [4^m, + . . . + a^\n,] - t [6]'^ m,+ ...+
6J"'

7/i,] aj'^ = A;,im, + . . . + AvlW^,,

so that

a<j3

= k^im^ + . . . + KiVi^ + hy{ni{rn.2 + . . . + k\„mim„ + k^^m.:{inz + . . . + k^_„in^m„ + . .
.

,

= 2 {k^iiiu + . . . + k„^m„) + ^'i2 (^'h + 1) m« -\- ... -\-k^„ {m, + 1) m^ + k^^v^m^ + . . . ;

hence

where

therefore

[mi, ..., mj] = [m^ + 1, lyh, ..., m^]
;

(^ [?i + a7?i J
= e a</3 '^ '^ 9 ('0-

Similarly we can take the case (/)(u + am - a<^'), noticing that equation

(I.) can be written

where v = ii + a^^K

355. The theorem (A) is thus proved. The theorem (B) is of a different

character, and may be made to depend on the fact that a one-valued

function of a single complex variable cannot remain finite for all values of

the variable.

Consider the expression

L{^) = e--'^^^^
<''+^'*^' -2"'"^

cf>{v + a^),

wherein ^j, ..., ^^ are real quantities.

Then L{^ + m)/L(^), wherein mi, ..., m^ are rational integers, is equal

to 6'^'^"*^ + '^^ 2 k^^m^vip^
g^g immediately follows from equation (I.), and is

therefore a quantity whose modulus is unity. Now when ^j , . .
. , ^„ are each

between and 1 and v is finite, L (^) is finite. Its modulus is therefore

finite for all real values of ^ ; let G' be an upper limit to the modulus of L (^) ;

G can be determined by considering values of | between and 1. Let now

Xi, ...,x„ be such that ax = 0, and let x-^ denote the column of quantities

which are the conjugate complexes of the elements of the column x. Put

^ = X + Xi, so that a^ = ax^.

Then
(/) (w + axi) ^(f)(v + a^) = e^t^i. af +2^i(c+6t;) 1 1 (|)^

wherein an upper limit of the modulus of L (^) is a positive quantity G whose

value may be taken large enough to be unaffected by replacing x by any



= iTT^kij \xj {x^)i - Xi {x^j\ = iirlkij = 2i'rr^kiji

584 PROOF OF THE LIMITATIONS. [355

other solution of a;E = ; it is necessary in fact only to consider the modulus

of L {^) when ^ is between and 1.

We have

h^ . a^ = h {x + x^ . a {x -\- x^) = hx . ax^ + bx^ . ax^

= bx . axi — bx^ . ax + bx^ . axi = Jcxx^ + abx^,

(c + bv) f , =w{x-\- x^), say, = \ux + Wj^i + (w — lu^) x^,

where w^c-^-bv, therefore

this equation is the same as

g-iVjte.»-2« (w-M-,) z, ^ (v + ax^ = e^K,

where

has the same modulus as L (^), less than G, and where

p = iirkxxi

Vi + izi, i/i-izi

= ^.TT^kij {yjZi — yiZj) = 27rkyz, is a real quantity (a; being equal to y + iz).

Now if X be any solution of the equations ax = 0, then fi^x is also a

solution, fi being any arbitrary complex quantity and /Aj its conjugate

complex. Replace x throughout by fi^x, and therefore | by iJr^x + fix^. Then
the equation just written becomes

K having also its modulus < G.

Herein the left side, if not independent of /x, is, for definite constant

values of v and x, a one-valued continuous (analytical) function of /i, which is

finite for all finite values of fi. Hence it must be infinite for infinite values

of /i. Hence p must be positive, viz., values of x such that ax=0 are such

that the real quantity ikxx^ is necessarily positive provided only the ex-

pression

is not independent of fx.

Now if this expression be independent of /x, it is equal to <j> (y), the value

obtained when /* = 0, and therefore

0(W)

here the left side is a function of v provided ax^ be not zero; when ax^

is zero its value is unity ; we take these possibilities in turn

:

(i) Suppose first ax^ is not zero,
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then

{w — Wj) x-^ = (bv — h^Vi) x^^hxi.v — h^x-^ . v^

must, like the left side, be a function of v and therefore a linear function, say

^r—. (Bv + G), so that

(f){v + ixax^ = ^ {v) e^f^H5ff/.+c^^ where A — iifahx^
;

hence ixax^ represents a column of periods* for the function ^ {v)—and this

for arbitrary values of fi.

In this case however </> {v) would be capable of a column of infinitesimal

periods, contrary to our hypothesis.

Hence p must be positive for values of x such that ax = 0, ax^ 4= 0.

(ii) But in fact as there are o- columns of independent periods we cannot

simultaneously have ax = 0, ax^ = 0. For the last is equivalent to aiX = ;

and ax = 0, a^x = 0, together, involve that every determinant of a rows and

columns in the matrix

infinitesimal periods (§ 351).

Hence ikxxi is necessarily positive for values of x, other than zero,

satisfying ax = 0; and this is the theorem (B).

Remark i. From the existence of two matrices a, b of p rows and <r columns, for

which db — ba is a skew symmetrical matrix of integers k such that ikxx^ is positive

for values of x other than zero satisfying ax= 0, can be inferred that in the matrix

a

is zero—and thence involve the existence of

of (T columns and 2p rows, I , not every determinant of o- rows and columns can
"1

1

vanish—and also that the a- columns of quantities which form the matrix a are inde-

pendent, namely that we cannot have the p equations ttj, xW + . . . + ajo-^'*^'= satisfied

by rational integers x<^), ..., xM. For then, also, a^x^O, since x=Xi.

Remark ii. In the matrix k, if o- be not less than p, all determinants of 2 (o- -p) rows

and columns cannot be zero. In the matrix a, not all determinants of ^a or J(o-+ l) rows

and columns can be zero. In particular when cr= 2p, for the matrix k, the determinant is

not zero ; for the matrix a, not all determinants ofp rows and columns can be zero.

Let I, r] be columns each of o- quantities. Then the coexistence of the 3 sets of

equations

a^=0, aiv= 0, |(^+ ,;) =

is inconsistent with the conditions (A) and (B) (§ 352), except for zero values of | and r].

The second of them obviously gives also arji = 0.

For from these equations we infer that krj^^= «| . btj^ - b^ . arji is zero, and also

and therefore also krjiT] is zero. But by condition (B) the vanishing of kyjitj when, as here,

ar)i = 0, enables us to infer 77=0.

* We use the word period for the quantities aU) occurring in our original equation (I.).
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Similarly

=^-(^i+'?i)-^-(«';i-^|-^'7i-«^)

is zero when k (| + i,,)= 0, 0171 = 0, a|= 0. Thence by condition (B), since o|= 0, | is zero.

Suppose now that the number of the p linear functions rt| which are linearly inde-

pendent is «/, so that all determinants of (v+l) rows and columns of the matrix a are zero,

but not all determinants of v rows and columns ; and that the number of the o- linear

functions k^ which are linearly independent is 2k*, so that in the matrix k all determinants

of 2k + 1 rows and columns vanish, but not all of 2k rows and columns. Then we can

choose 2v+ 2k linearly independent linc;ir functions from the 2p + a- functions a|, a^r),

k{^+ tj). If this number, 2v+ 2Ky of independent functions, were less than the number 2a-

of variables $, tj, the chosen independent functions could be made to vanish simultaneously

for other than zero values of the variables, and then all the linear functions dependent on

these must also vanish.

Hence
2v + 2k 5 2(r or v + k> a-.

Now
v<p, 2K<a; hence v>^a; 2kW 2{cr-p).

Remark iii. It follows from (ii) that if ^-=0, then v= (t and a-=p. Also that a function

ofp variables which is everywhere finite, continuous and one-valued for finite values of the

vaiiables and has no infinitesimal periods cannot be properly periodic (without exponential

factors) for more than p columns of independent periods ; in every set of o- indeiJendent

l)eriods of such a function the determinants of a rows and columns are not all zero. The

proof is left to the reader.

Remark iv. When (T= 2p we can put a= \2a), 2J\, wherein the square matrix 2a) is

chosen so that its determinant is not zero. When we write a=
|
2a), 2<a'

|
we shall always

suppose this done.

356. Ex. i. Prove that the exponential of any quadric function of u^, ..., «p is a

Jacobian function of the kind here considered, for which the matrix k is zero.

Ex. ii. Prove that the product of any two or more Jacobian functions, 0, with the

same number of variables and the same value for o-, is a function of the same character,

and that the matrix k of the product is the sum of the matrices k of the separate factors.

Ex. iii. If (^ be considered as a function of other variables v than ?<, obtained from

them by linear equations of the form u= fx+ cv {fx being any column oip quantities, and c

any matrix of p rows and columns), prove that the matrix k of the function (p, regarded

as a function of v, is unaltered.

Obtain the transformed values of a, b, c and bm{u + ^am) + an. (Cf. Ex. i., § 190,

Chap. X.)

Ex. iv. If instead of the periods a we use a' = a(/, where cf is a matrix of integers with

a- rows and columns, prove that (u + a'm) is of the form e^-ib'ni(u+ha'm)+2nicm
^(^^^^^ ^^^

that kf=gkg ; and also that kxy becomes changed to kfafi/ by the linear equations x=g3f,

y=gy'. In such case the form k'jfy' is said to be contained in kxy. When the relation is

reciprocal, or 5r-= l, the forms are .said to be equivalent. Thus to any function </> there

corresponds a class of equivalent forms k. (Cf. Chap. XVIII., § 324, Ex. i.)

Examples iii. and iv. contain an important result which may briefly be summarised by

* That the number must be even is a known proposition, Frobenius, Crelle, lxxxii. (1877),

p. 2\2.
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saying that for Jacobian functions, qua Jacobian functions, there is no theory of transfor-

mation of periods such as arises for the theta functions. A transformed theta function is

a Jacobian fmiction ; the equations of Chap. XVIII. (§ 324) are those which are necessary

in order that, for this Jacobian function, the matrix k should be the matrix e, or re

(cf. § 353).

Ex. V. If yl be a matrix of 2p rows and cr columns of which the first p rows are the

rows of a and the second p rows those of h, prove that

A-eA=k:
In fact if ^= Ax, ^'= Ax', then

kx'x= ax . bx' — ax' . bx= 2 [|j
^'j +p- 4'

^j + p] = f^$'

= fAx . Ax'=A(A . x'x.

Hence also when cr= 2/' the determinant of A is the square root of the determinant of /•,

which in that case, being a skew symmetrical determinant of even order, is a perfect

square.

Ex. vi. Shew that when (r = 2p and with the notation a= |2a), 2a)' |, 2TTib= \2r}, 2?;'|,

that

T-j 2 _ _ _ , - ,

AfA=-—; a>r] — T] CO, arj —tj a>

&)'?; — »/&), corj—rjai

the notation being an abbreviated one for a matrix of 2p rows and columns. Thus in the

case when k= €, the equation of Ex. v. expresses the Weierstrass equations for the periods

(Chap. VII., § 140).

Ex. vii. In the case of the theta functions we shewed (§ 140, and p. 533) that the

relations connecting the periods could be written in two different ways, one of which was

associated with the name of Weierstrass, the other with that of Riemann. We can give a

corresponding transformation of the equations (A), (B) (§ 352) in this case, provided (r==2p,

the determinant of the matrix k not being zero.

As to the equation (A), writing it in the equivalent form given in Ex. v., we

immediately deduce _
Ak-iA=e, (A'),

which is the transformation of equation (A).

As to the equation (B), let x he a, column of (r=2jo arbitrary quantities, and determine

the column z, of a-= 2p elements, so that the 2p equations expressed by az= 0, bz=x, are

satisfied. Then

thus
dx=dbz= (db — ba)z= kz, =fi, say; so that k~^fji=z, k~^fjLy= Zi;

ikzz^= i((lb — ba) zz^= i {az-^^ .bz-az.bzj) = iaz^ . bz= iaz^x— idxz^ = ifiz^

= ik ~ 1 /xi/i= ik~K(iX\ . dx= iak ~ ^ d^x^x
;

therefore, the form
^ak~'^d^x^x (B'),

is positive for all values of the column .r, other than zero. This is the transformed form

of equations (B).

Ex. viii. When a= \2a>, 2a>' \, 6= -. 1 2»;, 217'
|

, o-= 2|j, we have
2ni

— 4 (coco' — co'co), ; (<a^' — CO'7)

-.(;;'« -^05'), -J^M-ri'fl)\

eA =
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Hence when k=t, the equation (A') of Ex. vii., equivalent to AfA=-f, expresses the

Riemann equations for the periods (Chap. VII., § 140). In the same case the equation

(B'), of Ex. vii., expresses that

V=l K, A = l

is negative for all values of .r other than zero.

Ex. ix. When jt)= l, the two conditions (B), (B'), or

i«ara;i= positive for a.r= 0, ia*ai:r,^= negative for arbitrary x,

become, for a= \2<o, 2a)' |, if the elements of x be denoted by x and x', and the conjugate

imaginaries by Xi, x^, respectively,

i (wwi)""' (cow/ - a)'a)i) x'x^= positive, i (coico' - ww/) xx^^= negative,

and if a) = p4-io-, <Oi = p-ia, a)' = p' + ia-', (Oi' = p' -icr', these conditions are equivalent to

pa' — p'(T>0,

and express that the real part of iw'/w is negative.

357. Suppose now that a = 2p; we proceed (§ 359) to consider how to

express the Jacobian function. Two arithmetical results, (i) and (ii), will be

utilised, and these may be stated at once : (i) if k be a skew symmetrical

matrix whose elements are integers, luith 2p rows and columns, and e have the

signification previously attached to it, it is possible to find a matrix g, of 1p

rows and columns, luhose elements are integers, such that* k = geg. For

instance when p = 1, we can find a matrix such that

g^^gn - Ong-n g^iOi^. - g^g^.

g-^.gu - gngn g^igii - gng-^

namely, such that ki., = g.^g-^^^ — gng-n] for this we can in fact take g^, g^

arbitrarily. In general the 4^^ integers contained in g are to satisfy

p {2p — 1) conditions.

Ex. i. If a be a matrix of integers, of jo rows and columns, and X be an integer, and

^=1 0, -Xa

|Xa,

g may have either of the two following forms

k,, =
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Ex. ii. If /x be any matrix of integers, with 2p rows and columns, such that Jiefi= e

(cf. § 322, Chap. XVIIL), we have, if k=geff, also k= gii-^eii-'^g, and instead of g we may

take the matrix n~^g.

(ii) If ^ be a given matrix of integers, of 2p rows and columns, and .r be

a column of 2p elements, the conditions, for x, that the 2p elements gx

should be prescribed integers cannot always be satisfied, however the elements

of oc (which are necessarily rational numerical fractions) are chosen. If for

any rational values of cc, integral or not, gw be a row of integers, and we put

x = y + L, where y has all its elements positive (or zero) and less than unity,

and i is a row of integers (including zero), then gx =gy + gL = gy + M,

where i/ is a row of integers ; in this case the row gx will be said to be con-

gruent to gy for modulus g. The result to be utilised* is, that tJie number

of incorigruent rows gx, namely, the number of integers which can be 7'epre-

sented in the form gx while each element of x is zero or positive and less than

unity, is finite. It is in fact equal to the absolute value of the determinant of

g. For instance when g is gn gn 1

there are g^g^^ - g^.g-r, integer pairs

g^i g-i2
I

which can be written gnXi + gi^x^, g2i^\-\- g^fi^-i, foi' (rational) values of x-^, x^

less than unity. The reader may verify, for instance, that when g =

the 9 ways are given (cf p. 637, Footnote) by
1 2
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variation of z = -^, as M changes, approaches to that of a continuous quan-

tity, and the number of its values, being the same as the number of values

of M, is

.{Ndz,)...{Ndz„\
II-

where Zi, ..., z„ vary from zero to all values which give to x, in the equations

gx = z, a value less than unity. Now this integral is

Since this is equal to tN'', it follows that t is equal to \g\, as was stated.

358. Supposing then that the matrix g, with 2^ rows and columns each

consisting of integers, has been determined so that h = ab — ba = geg, we

consider the expression of the Jacobian function when a- = 2p. The deter-

minant of k not being zero, the determinant of g is not zero.

Put K = ag~'^, so that if is a matrix of p rows and 2p columns, and

a = Kg; put similarly b= Lg; also, take a row of 2p quantities denoted by

C, such that c = gG + h [g], where c is the parameter (§ 351) of the Jacobian

function, and [g] is a row of 2p quantities of which one element is

K=p

[5']a= - 5'«,a5'p+'C,a. (« = 1, . . . , 2^) ;

K = l

take X, x', X, X', rows of 'Up quantities such that

X = gx, X'=gx, so that ax = Kgx = KX, hx = LX, ax' = KX\ bx=LX';

then as _ _
kx'x, = ax . bx' — ax . bx, = (KL — LK) X'X,

is also equal to

gegx'x = egx . gx = eX'X,

we have _ _
KL-LK==e, (C),

so that

KxLx — Kx'Lx = {KL — LK) x'x — ex'x = S (x;Xi+p — xj Xj+p)
;

i.J

further, a^ ik-xx^ is positive for ax = 0, we have

ieXXi = positive when KX = 0, (D)

;

thus, if A denote the matrix , we have, from the equation (C),

AeA = -AeA = e, (E),

and, if 2 be a row of p arbitrary quantities, and X be a row of 2p quantities
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such that KX=0, LX = z, so that Kz = KLX = {KL -LK) X = eX, and

therefore eKz = - X, K^z^ = eXi, we have

iK^eKzz^ = positive, for arbitrary z other than zero, (F)

;

for

iK^eKzZi = — iKiXzi = — iKiZiX = — ieX^X = ieXX^.

If we now change the notation by writing K= |2o), 2a)' |, ^iriL = |2?7, 27)' \,

and introduce the matrices a, b, h ofp rows and columns defined by

a= ^rjoi"^, h = ^TTico^^, b = 7ri(o~^Q)',

it being assumed, in accordance with Remark iv. (§ 355) that the determinant

of the matrix w is not zero, then the equation (E) shews (cf. Ex. viii., § 356)

that the matrices a, b are symmetrical, and that rj' = ')]co~^co' — ^7rico~^, so that

we can also write

7] = 2a&), 7)' = 2sL(o' — h', 2h&) = iri, 2h&)' = b
;

also, by actual expansion,

iKicK = 4z&)i [a)i ^ &)/ — 5'w '] w = tWi [bi + b] &) = tWi [bj + b] oj

TT TT

2 _ .= <WiC&), if b = c + id
;

TT

thus

- 2 _
iK^eKzZi = ctit, where t = QiZ, z and t being rows of jp arbitrary quantities

;

TT

and therefore, by the equation (F), for real values of Wj, ..., np other than

zero, the quadratic form b?i- has its real part essentially negative.

Hence we can define a theta function by the equation

'^ ( U-
'^

] = 'S^^1^^+^^'"'(.^+y')+^
{n+y'y'-2niy(n+y')

wherein j, j are rows of p quantities given by C = (7', 7), that is, Or = 7/,

Gp+r = 7r, for r < jO + 1. Denoting this function by ^ {u ; C) and taking /j. for

a row of 2p integers, the function is immediately seen (§ 190, Chap. X.) to

satisfy the equation

^ (u + Kf. C) = t'^^ (" + ^'^^) + '"''^'^ + "^1 '-' ^^^^^ ^ {u • C),

which is the definition equation for a Jacobian function of periods K, L and

parameter (7, for which the matrix k is e.

Further, if /i be a matrix of integers with 2]) rows and columns, such that

]lefi = €, and (Ex. ii., § 357) we replace g by /J>~^g, the matrices K, L are

replaced by Kfj, and Lfi. Thus instead of the theta function '^(u; C)

we obtain a linear transformation of this theta function (cf. § 822, Chap.

XVIIL).
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359. Proceeding further to obtain the expression for the general value

of the Jacobian function
<f>,

let
<f>

(ic ; v) denote

d)(u + Kv) e'"^"^^" ("+ i'^'') -'I'iCy+iirinn'

where Vi = ni, v!+p = 7ii', for i<p + l. Then, since a = Kj, and therefore

aN = KgN, we have

4>{u-{- aN, v) = 4> (u + KgX. v) = <f>(u + Kfi, v), (1),

where fi denotes the row gN, so that aN=Kfi, N being a column of 2p
integers and therefore fi a column of integers ; thus (f>{u + aN, v) is equal to

</> (U + aN + Kv) e--"'^" («+A>+iAV) -2«nC.+»nn«' ^ ^^ {^^^ ^ Xj,^ qR^

where

R = l-rrihNiu +Kv^-l aN) + ItticN + iri "s K^N^N^
- 2'TriLv (u + K/jl + Uvv) - ^TTiCv + irinn',

by the properties of (^, N being a column of integers ; thus ^ (u + aN, v) is

equal to

Now hN = LgN = L/j,, therefore

bN . Kv — Lv . K/j, = (KL — LK) fiv = efiv = nin' — m'n,

where /i.,- = iiii, /i-j+p = ?«,', etc. for i<p-\- 1. If then we take v, as well as fi,

to consist of integers, it will follow that

</>(« + aiY, !.) = </) (U,
j,).e2Wfc.V(«+ia.V) + 2,r/cN+^r2 A-^.V,xV^^

and therefore that

4>{u + aN) ^ (f>
{u + aN,v) ^ ^2W6.V(k + KV) + 2WcX+w"2^-,^^,2^^

<t> (") </> (2', v)

Next

<f>
(u, fl + v) =

(f)
(w + Kfl + Kv) e~-*' •^M+i"') (u |-JJP^+Jjri.)-2iri (CM+CW+n-ilm+m') in+n') Z^),

and this

= <f>(u + Kfl, v) e^^,

where

^f = 27riLv (u +Kfi + U^v) + iiriCv - -ninn' - ^iri (Lfx, + Lv) (u + ^Kfi + ^Kv)
- 27rt (Cfi + Cv) + iri {m + m) (n + 7i')

;

therefore

<^ {u, fi + v)

^ ^ttriLiL {\Kv)—iriLv (JAf»)+irimm'+7rim»'—rri im+m') {n+n')
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of which the exponent of the right side is

iri \{KL — LK) fiv — vin — m'n] = iri \r)in' — m'n — (mn' + m'n)] = — ^irim'n,

so that, since /i, v consist of integers, the right side is unity.

Hence we have

(f>
{U, fM + v)

It is to be carefully noticed that this equation does not require fi = (mod. g).
a<j3

We suppose now that /i=0 (mod. g). Then cN+^ S ka.^Na.N^ = fjb—^mm'

(mod. unity) and L^i = bN, K/j, = aJSf, as will be proved immediately (§ 360)

;

thus

(j) (u)
(f)

(u, v)
(f)

(u, fji+v)

and therefore (^ {u, fA, + v) = cf) {u, v) for integer values v and any integer

values fi that can be written in the form gN, for integer N \ namely 4>{u, v)

is unaltered by adding to v any set of integers congruent to zero for the

matrix modulus g.

The set of
| ^ |

integers gr, wherein r has all rational fractional values less

than unity will now be denoted by v, each value of v denoting a column of

2p integers—in particular r = corresponds to a set of integers = jx (mod. g).

And v shall denote a special one of the sets of integers which are similarly a

representative incongruent system for the transposed matrix modulus g, such

that v =gr', the quantities r being a set of fractions less than 1. With the

assigned values for v, let

V

then

-^ {u + K\) = Se-'^'^"''"
<f>

{ii +K\, v) = Se-'^'''"'" e-""'^^
(nHK^)+27riC\-niii'

^ (^,^ \-\-v)
V V

for any set of integers \, as has been shewn (X being such that, for

* < ^ + 1, \i = li, Xi+p = li).

If now v + X = p, so that p also describes, with v, a set of integers

incongruent in regard to modulus g, those for which the necessary fractions

s, in p— gs, are > 1 being replaced, by the theorem proved *, by others for

which the necessary fractions are < 1, so that the range of values for p is

precisely that for v, then we have

yjr {u + K\) = 2;e-2'^"''''+2'^^''''^
e^TriXA Hi+iK\)+27TiCK-7nii' ^ ^-^^^ p^^

V

^ QiTTir'K+iniLX (w+iA'A) +-2nC>^—nUl' ^g—27rirV Jj A^^ j^\

V

—. Q2mr'K+2T!iL\ {u+iK\)+2niCK—niU' yh.(u)^

* That (u, v) is unaltered when to v is added a column =0 (mod. g).

B. 38
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Hence, by the result of § 284, Chap. XV., we have

the theta function depending on the a, b, h derived in this chapter (§ 358).

Now let v describe a set of incongi'uent values for the modulus g ; then

%A^'^ {u, C + r') = If (u) = 1 Se-^*-'"
<f>

(u, v)
;

v' v v'

and since v = gr, we have v'r = gr'r = grr = vr' ; thus

v' v' v'

this sum can be evaluated

:

when i^ = (mod. g^, or the numbers r are zero, its value is equal to the

number of iucongruent columns for modulus g, =\g\- Since k = geg, we

have \k\ = ('g\)-, so that \g\ = J\k\.

when V ^0 (mod. g), so that some oi r^, ..., r^ are fractional, its value is

zero, as is easy to prove (see below, § 360).

Hence lue have the following fundamental equation:

'J\k\<\>{u) = tA,''^{u, C-^v'),
v'

which was the expression sought.

Thus between \^\k, + 1 functions ivith the same penods and parameters

there exists a homogeneous linear relation with constant coefficients*.

Ex. i. Prove that a product of n functions (^ is a function (^ for which \/\k\ is changed

into n^ '\/\k\. In fact the periods are »a, rib.

Ex. ii. Prove that the number of homogeneous products of n factors selected from

/)-h2 functions <^ of the same periods and parameters is greater than nf \/\k\ when n

is large enough. And infer that there exists a homogeneous polynomial relation con-

necting any p + 2 functions </> of the same periods and parameters. (Cf Chap. XV., § 284,

Ex. v.)

360. We now prove the two results assumed.

(a) If /x = (mod. g) or fi = gN, where N are integers, then

ciV+ i 2 kapNaJ^fs = CfJ- - hmm (mod. unity).

For
2;. _ p

y y = \ A.= l

P P P P
= 1 gya"^ [^ykg\p + €y^K+pg\+p,p] + 2 gy+p,a 2 [ey+p,A5'A,0 + ey+p^ K+pgK+p,p]
y=\ A=l y=l A=l

P P. P.
f= ~ ^ 9y,<^9y+P.P + ^ 9y+P,<^9y,P = ^ yy+P,<i9y.P ~ 9y,<^9y+P,Pi

y=\ Y-l y=l

P
— 2 [9y+p,<^9y.^ ~ 9y,<^9y+p,p\ ''

• Weierstrass, Berl. Monatsber., 1869; Frobenius, Crelle, xcvn. (1884); Picard, Poincar^,

Compt. Rendus, xcvii. (1883), p. 1284.
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therefore

a</3 p a<j3

V = l

p a<p
= 2 1 [gy+p^^Na.gy,pNp+gy^aN'a.gy+p,pNp], (mod. 2).

v=i

=
^ I

S gy+p,a]^\ . gy.pNp + S 9y,pN^.gy+p,aNar

= ix^gy^p,.Na.gy,f,Np, (mod. 2),

y = l

where the 2S indicates that the summation extends to every pair a, /3

except those for which a = ^ ; thus

o</3 p 2p

X KpNaNp + 22 gy+p,aJSfa . gy,aN^
y = l a = l

P

v=i

p
= % fly. fiy+p = mm', (mod. 2)

;

y= l

therefore, since ^Na^ = ^iV'a (mod. unity), and therefore

p

I 2 gy+p,aN, . ^fy.aiV^a = ^ [^^J -^,

we have

cN + ^"1^ K^N^N^ = cF + imm' -h[g]N= [gC + ^[g]] N + ^mm' - ^[g] N,

(mod. 1),

= gN . C + ^mm' = fiC + ^mmf = C/j, — ^mm', as required.

(6) If rj, , r2p be any set of rational fractions all less than unity

and not all zero and such that the row gr = v consists of integers, and

{v\, , v'<i^, = v', be every integer row in turn which can be represented in

the form gr' for values of r' less than unity, then

V (Q-'^TirCy'i _ /g - 27r?>2y'2 /g - 27rir2pVjp

v'

is zero. Since, as remarked (§ 359), the sum can also be written

2 (g-STTfcAr', ^Q-2niv^py-'2p^

r'

wherein z/j, ..., v^p are integers, the sum is unaffected by the addition of any

integers to any one or more of the representants r'l, ..., r\p, namely it has

the same value for all sets, v , of incongruent columns (for the modulus g).

If to each of any set of incongruent columns v we add the column

(0, ..., 0, \i, 0, ..,,0), all of whose elements are zero except that occupying

the I'-th place, which is an integer, we shall obtain another set of in-

congruent columns.

38—2
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Suppose then in the above sum ?v is fractional. Add to every one of

the incongruent sets v the cohmin (0, 0, ..., 1, 0, ..., 0), of which every

element except the I'-th is zero. In the summation everything is unaffected

except the powers of e'-"'''*, which are multiplied by e"^'''''*. Hence the

sum is unaffected when riiultiplied by e"'^""**, and must therefore be zero.

We put down the figiu'es for a simple case given by

P=h 9=\

then gr= {-i)\ + 5r.2, ri + 2r2) and the equations gr = v give

4?'! + 6^2= I'll . /3/'i = Sfj - 5i/2

?-i + 2/-2=
»/2J 13^2=41/2- Vi ;

thus the values of )\, r^ and v-^, v^ are given by the table

4 51

1 2 '

^n ^2



361] OF A JACOBIAN FUNCTION. 597

the conditions cib — ba = k, and geg = k, if a = {a, a), h = (6, 6'), become

ah' - a'b = - 3, g^^g.^ - g^g^. = - 3
;

taking for instance

9 =
4 5

1 2!'

we have, \i x = {x, x), x^ = (x^, x^), and ax + a'x = 0, the equation

ikxxi = Si (xxi — x'xi) = ~ {a'a^ — aai) = (a/3' — a'/3),
aa. aa-.

where « = a + t'/S, a = a! + i/3'. Thus, beside ah' — ah = — 3, we must have

a/8' > a'/3. The quantities a, h, a , h' are otherwise arbitrary.

The equations a = Kg, h = Lg give (a, a') = (iK + K', 5K + 2K') ; there-

fore

SK =2a -a , 3Z = 26 - 6'
,

SK' = 4a' - 5a, 3i' = 46' - 56

;

further the equation c = gC + ^ [g] gives

(c, c) =

so that

4 1

5 2

(C, C") + 1 (4, 10) = (46' +G'+2, 56' + 26' + 5),

3a=2c-c'+l, 36' = 4c' - 5c - 10.

Also, from K =
\
2co, 2(o'

\

, 27riL =
| 2?;, 277'

|

, with

a = / , h = J', b = 2ha,',

we obtain

a = TTi (26 - 6')/(2a - a), b = 7n'(4a' - 5a)/(2a - a'), h = 37ri/(2a - a').

If then ^ (it ;
6') denote the theta function, with characteristic

given by

C
-C'J'

^ (u • C) = 2e^'''^+^'^*^(**"'"^^"''^('*+^)''"^'''^' (**+^^

then the Jacobian function, with a, 6 as periods, and c as parameter, is given

by

3(/)(?o = S^.'^("; c + 7''),

v'

where, in the three terms of the right hand, /•' is in turn equal to (

n/s\ /2/3\

V2/3; ' [l/n)
•

The function (/> (u) may in fact be considered as a theta function of the

third order ; its various expressions, obtainable by taking different forms for

the matrix g, are transformations of one another, in the sense of Chap. XVIII.

and XX.
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362. The theory of the expression of a Jacobian function which has

been given is for the case when cr = 2p. Suppose a < 2p, and that we have

two matrices a, b, each of p rows and cr columns, such that ab — ba, = k, is a

skew symmetrical matrix of integers, for which iLvxi is a positive form for

all values satisfying ax = 0, other than those for which also a^x = 0, or x = 0;

then it is possible* to determine other 2p — a columns of quantities, and

thence to construct matrices, A, B, of 2p columns (whereof the first a

columns are those of a, 6), such that AB — BA = K is a, skew symmetrical

matrix of integers for which iKxx^ is positive when Ax = {), except when

a;= or A^x = 0.

There will then correspond to the set A, B a function <i>, involving ^\K\

arbitrary coefficients, such that, for integral n,

/IS/ , ,1 \ 2KiBn{u + ^An) + 2iriCn+ 2 A'a,/3 Kanp ^f.
- v

^{2i + An) = e ^ ^ ' a</3 '^9{u).

The function ^{u), which is subject only to the condition that

(f)(u + an) = e ^ ^ ' a</3 <P(u),

is then obtained by regarding
<f>

(w) as a particular case of ^ (u), in which

the added columns in A, B are arbitrary except that they must be such that

the necessary conditions for A, B are satisfied.

For further development the reader should consult Frobenius, Crelle,

xcvii. (1884), pp. 16, 188, and Crelle, cv. (1889), p. 35.

* Frobenius, Crelle, xcvii. (1884), p. 24.
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CHAPTER XX.

Transformation of Theta Functions.

363. It has been shewn in Chapter XVIII. that a theta function of the

first order, in the arguments u, with characteristic (Q, Q'), say ^ {u, Q), may
be regarded as a theta function of the r-th order in the arguments w, with

characteristic (K, K'), provided certain relations, (I), (II), of § 322, p. 532, are

satisfied. Let this theta function in w be denoted by II {w, K). We confine

ourselves in this chapter, unless the contrary be stated, to the case when-

(Q. Q') is a half-integer characteristic. Then the function ^ {u, Q) is odd or

even ; therefore, since u = Mw, the function 11 (w, K) is an odd or even

function of the arguments w. Now we have shewn, in Chap. XV. (§ 287),

that every such odd, or even, theta function of order r, is expressible as a

linear function of functions of the form

>^r{w; K,K' + n) = '^ rw; 2v, 2rv', 2^/r, 2^
A(K' + fi,)lr

K

+ €^ - rw ; 2u, 1rv\ l^jr, 2^
Mk' + fi)lr

K

where e is +1, according as the function is even or odd. The most important

result of the present chapter is that the functions i/r;. {w ; K, K' 4- /i) which

occur can be expressed as integral polynomials of the r-th degree in 2P theta

functions ^fw; ^v, 2i/', 2^, 2^' j, whose characteristics are those of a

Gopel system of half-integer characteristics (Chap. XVIL, § 297) ; the earlier

part (§§ 364—370) of the chapter is devoted to proving this theorem.

The theory is different according as r is odd or even. When r is odd,

€ is e«i«i, and we have shewn (§ 827 Chap. XVIII.) that, for odd values of r,

I
Q I

=
I

iT
I

,
(mod. 2) ; the theory deals then only with functions

y^Tr {10 ; K,K' + /.)
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in which e = e'^^^K When r is even, €, though still equal to e'*!^!, may or

may not be equal to e" ' -^^
', according to the integer matrix which determines

the transformation ; but in this case, also, the value of e in the functions

'^ri'iv; K, K' + fi) which occur is determinate.

The proof of the theorem is furnished by obtaining actual expressions for

the functions yjfr{w, K, K' + fi) as integral polynomials of the r-th degree in

the 2^ functions ^ (w ; 2v, 2v\ 2f, 2^'
j J

; the coefficients arising in these

pol}'nomials are theta functions whose arguments are r-th parts of periods,

of the form {2vi7i + 2v'm')/r. The completion of the theory of the trans-

formation requires that these coefficients should be expressed in terms of

constants depending on theta functions with half integer characteristics

(§ 373).

Further the theory requires that the coefficients in the expression of the

function 11 (w ; K) by the functions -^..(w; K, i?"' -f- /a) should be assigned

iu general. In simple cases this is often an easy matter. The general case

is reduced to simpler cases by regarding the general transformation of the r-th

order as arising from certain standard transformations for which there is no

difficulty as to the coefficients, by the juxtaposition of linear transformations

<§§ 371-2)*.

364. It follows from § 332, Chap. XVIII. that any transformation may
be obtained by composition of transformations for which the order r is a

prime number. It is therefore sufficient theoretically to consider the two

cases when r = 2, and when r is an odd prime number. We begin with the

former case, and shew that the transformed theta function can be expressed

as a quadric polynomial in 2^ theta functions belonging to a special Gopel

system. A more general expression is given later (§ 370).

* For the transformation of theta functions, and of Abelian functions, the follo\s-ing may be

consulted. Jacobi, Crelle, viii. (1832), p. 416 ; Eichelot, CrelU, xn. (1834), p. 181, and Crellc,

XVI. (1837), p. 221 ; Eosenhain, Crelle, xl. (1850), p. 338, and Mem. par divers Savants, t. xi.

(1851), pp. 396, 402 ; Hermite, Liouville, Ser. 2, t. in. (1858), p. 26, and Comptes Rendus, t. xl.

(1855); Konigsberger, Crelle, lxiv. (1865), p. 17, Crelle, lxv. (1866), p. 335, Crelle, lxvii. (1867),

p. 58 ; Weber, 'Crelle, Lxxrv. (1872), p. 69, and Anmli di Mat. Ser. 2, t. rx. (1878) ; Thomae,

Ztschr. f. Math. u. Phys., t. xiL (1867), and Crelle, lxxv. (1872), p. 224 ; Kronecker, Berlin.

Monatsher., 1880, pp. 686, 854 ; H. J. S. Smith, Report on the Theory of Numbers, British Associa-

tion Reports, 1865, Part vi., § 125 (cf. Weber, Acta Math., vi. (1885), p. 342; Weber, EUiptische

Functionen (1891), p. 103; Dirichlet, in Riemann's IVerke (1876), p. 438; Cauchy, Liouville, v.

(1841), and Exer. di Math., ii., p. 118; Gauss, Werke (1863), t. n., p. 11 (1808), etc.; Kronecker,

Berlin. Sitzungsber. 1883 ; Frobenius, Crelle. lxxxix. (1880), p. 40, Crelle, xcvii. (1884), pp. 16,

188, Crelle, cv. (1889), p. 35 ; Wiltheiss, Crelle, xcvi. (1884), p. 21 ; the books of Krause, Die

Transformation der Hyperelliptischen Functionen (1886), (and the bibliography there given),

Theorie der Doppeltperiodischen Functionen (1895) ; Prym u. Krazer, Neue Grundlagen einer

Theorie der allgemeinen Thetafunctionen (1892), Zweiter Teil. See also references given in

Chap. XXI., of the present volume, and in Appendix ii.
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By means of the equations u = Mw, a function ^ iu; 2(0, 2ft)', 2r], 2r)'

with half-integer characteristic (
''

]
, becomes a theta function in lu,

n (tv ; K, K'), of order 2, with the associated constants 2v, 2v', 2^, 2^' and

the characteristic (K, K'), where (§ 324, Chap. XVIII.)

2Mv =- 2(oOL + 2ft)V, 2Mv' = 2a)/3 -f- 2co'^', 2M (rja + rj'a') = 4^,

2J^(^/3 + 7;'/3') = 4r, K'=aQ'-a'Q-^d{a.a'), - K = 0Q' - ^'Q-^d(^^'),

and

aa' = a'a, y8/3' = ^S'A SyS' - a'/3 = yS'a - /9a' = 2

;

this theta function in lu, U (iv ; K, K'), can by § 287, p. 463, be expressed as

a linear aggregate of terms of the form

y{r,(io; K,K' + fM) = '^ no ; 2v, 2rv, 2^/r, 2^
J(/ir' + ya)/r

K

+ e^ - rw ; 2v, 2rv', 2^/r, 2^'
K

r being equal to 2 ; here e, = e^T^QQ'^ jg 4. i according as the original function,

that is, according as the function U. (w; K, K'), is even or odd. For brevity

we put IV = 2vW, vT=v, and denoting by @ (Tf, r') the series Xe^^^^n+inr'n^

^

we consider the function

^r(W;K,K' + ^) = @ ;^.,v|(^'+/^)/r
K + 6® — rW: rr'

(K'+ fl)/7-

K

which is equal to e-j'"^" ^'"'^i/r,. (w; K, K' + /x). Throughout the chapter the

symbols ^ ( w ) , @ ( W ] denote respectively

w ; 2u, 2v, 2^, 2^ 0(r; /
;f).

re

Taking the final formula of § 291, p. 472, replacing ft), to', t), rj', (^

spectively by u, u', ^, ^', if
) , if ) + ( ^ > multiplying both sides of the

equation by e^wC^-^'-a)^ where /a is a row of integers each either or 1, and

adding the 2P equations obtainable by giving a all values in which each of its

elements is or 1, we obtain
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•^giTia(^-K') V-U; t' j(:')lerr..:.U(:').(f

_ Vgn-ia(.' + M ;^0
2^.,,.li(.'+A-'V

2U- 2t'|^^^''^^"'^'''^
'

A'

and hence, replacing V, U respectively by W, 0,

2J'0
A'

e 0; 2x1^^^+'^'' +
°'')"

_ 2;g«-ia0x- E') (^ If:
^'|k:T •^-iO-C'

This may be regarded as the fundamental equation for quadric transformation
;

we consider various cases of it.

(i) When {K, K') is the zero characteristic we obtain

2F: 2t' = 2~^2!e'"*''0= W- r i(«')l/0ro;2r'ji<'^;«''

the right-hand side being independent of a', which for simplicity may be

put = 0.

We can infer that in any quadric transformation, luhen the transformed

function has zero chai^acteristic, it can he expressed as a linear aggregate of the

2P squares ^^ (w\^ i ]] , in luhich a' is an arbitrary roiu of integers {each

or 1) and a has all possible values in which its elements are either or 1.

(ii) When K' = 0, K = ^n is not zero, we obtain

© 2W'''K) 0; 2T'ii
i>+ a

= 2~^2e'''"'^(l + e'"'»''^+<''')0 F;.:i(^ W; t'
« + n

where on the right side only 2^~^ terms are to be taken in the summation in

regard to a, two values of a whose difiference is a row of elements congruent

(mod. 2) to the elements of n not being both admitted. When |( j
is an

even characteristic we may put a' = ; when i( is an odd characteristic we

may put a' = fi.

In this case, as before, only 2^ theta functions enter on the right hand,

and their characteristics form a special Gopel system.

The cases (i) and (ii) give the transformation of any theta function when

the matrix, of 2^ rows and columns, associated with the transformation* is

For tlie notation, cf. Chap. XVIII., §§ 322, 324.
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( )
. It can be shewn that by adjunction of linear, transformations every

quadric transformation is reducible to this case (cf. § 415 below) ; so that

theoretically no further formulae are required. As it may often be a matter

of difficulty to obtain the linear transformations necessary to reduce any given

quadric transformation to this one, it is proper to give the formulae for the

functions

K^^(F; K,K' + iJi) = % 2W: 2t' + 60 -2Tf ; 2t'
K J'

by this means the problem is reduced to finding the coefficients in the

expression of any theta function in w, of the second order, in terms of

functions ^^i^', K, K' + fi) (see § 372 below). Hence we add the following

case.

(iii) When K' is not zero, we deduce, by changing the sign of W in the

fundamental formula, the equation

i(/x + /r' + a')"
2^©

K0; 2t' ^,{W- K,K' + fi)

W; T :) © W: \ +

where, putting K=lk, K' = ^k' , we have (7„ = 1 + 6e'^*(^'+«'»+'^'''^^'. When e is

+ 1, there are 2^-^ values of a for which ah' = k (^•' + a') + 1 (§ 295, Chap. X VII.)

;

for these values (7„ = ; when 6 = - 1, there are 2^"^ values of a for which

ok' = k (^' + a!) ; for these values Go. = 0. In either case it follows that the

right side of the equation contains only 2^"^ terms, and contains only 2^

theta functions whose characteristics are a special Gopel system.

It is easy to see that the results of cases (ii) and (iii) can be summarised

as follows : when the characteristic {K, K') is not zero the transformed function

is a linear aggregate of 2^~^ pi-oducts of theform ^ [w ; A,Fi\ ^ [w ; A,K, P,:]

wherein the 2^"^ characteristics Pi are of the form ^ f \ , K={
j

, and

A, K are such that* e'^ii jf i + 7ri u, zi ^ ^

These results are in accordance with § 288, Chap. XV. ; there being
2^""^ (1 + e) linearly independent theta functions of the second order with

zero characteristic and of character e, namely 2^ such even functions and no

odd functions, and there being 2^"^ linearly independent theta functions of

the second order with characteristic other than zero.

365. Ex. i. When p = \, the results of case (i), if we put Qg^i^W ; r') for

e PT ; r'i M _^ ) , as is usual, are

000 (2 Pf; 2r') =„
e^(TF;r') + e^i(Tf;r') el{W; r')Wn{W; r')

2600 (2/) 2010 (2r')

For the notation, see Chap. XVII., § 294.
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and

. o.r . . Q^(^> r)-eU W; r') _ el{W; r')-eU^V; r)

e,o (2 •» ; 2r )
-

2^^^ ^2^,j-
-

^^^ ^^^,^

where e (2t') denotes Q (0 ; 2r'). If then we introduce the notations

^=^1^, v^'=14?v!' vx=«'^S':i' vx'=l4Q.
eoo(2T') ^ 000 (2r') ^ 000 (r) OooCt)'

r-_ 1 e„(2Tr; 2r') r-_ /^ e,o(2njjr0 /r ^fiy Qpoi^^^; 2r' )

^•^-VI-eo,(2TF;2r')' ^^- V /• Oo'l^W; 20' ^'"^ eoA2Tr; 2r')'

we find by multiplying the equations above that

and therefore that
X-^ + X'- = l,

so that also

X-H /•'- = 1;

while, comparing the two forms for ©yo(2 ^'^; 2r'), putting 11'= 0, we obtain

,. X / 1-X' • X 2\/I-

further the equations for Goo (2 H'; 2t') and Gio(2 IT; 2t') give the results

from which we find

"7^ 1 - ^, f= 1 - X-| ; thus also .y= 1 - .r, i= 1 - /l-2.>;.

jfilr. ii. The equations of case (ii), also for p= l, give

Goi(2)f,2r)-
^-^2^^,^

, G„(2l>,2r)- ^-^^ .

From these we have by di^^sion

while from these and the results of Ex. 1, we find

\/y= [l-(H-X')|] Vr^, \/: = [l-(l-X')^]Vl~X2|-

Ex. iii. When p=\, by considering the change in the value of the fiuiction

when w is increased by a period, we immediately find that it is a theta function in ic of

the second order with characteristic i I
^^

) ; hence by the result of case (iii) above, the

function is a constant multiple of ^io{tc) Sooi^); determining the constant by putting

ic=0, we obtain the equation

eoo('-')e,o(r')[G'u(ir; r')Go,(ir; r')-e',y[W; T)e,,{W; r')]

= e'„ (r) Go, (r ) G,o ( W; t') Q^^ ( TT; r'),
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d^

which is immediately seen to be equivalent to

eu(^')eoo(^') ^r^ p _^^^^^^^^^^__
©01 ('') eio (r) j \/4^ ( 1 - ^) ( 1 - \2^)

•

[We may obtain the theta relation, here deduced, from the addition formula of Ex. i.,

§ 286, p. 457 ; taking therein m= \{ _ ^
j, a^= \ ( _j) > «2= i ( _i)»

'>'}=% (1=\\^ >

•=_p= ^ , we immediately derive

^10 (w) ^00 (^0 ^n (2^) \x (0) = ^00 (^) ^lo (^) [^oi ('«" ^) ^n («+ ^') " -^oi («+ ")K (^< - ^)] 5

if, for small values of v, this equation be expanded in powers of v, and the coefficients of v

on the two sides be put equal, there results the equation in question.]

Ex. iv. By differentiating the second result of Ex. ii., putting 17=0, and putting

Tr=0 in the first result of the same example and in the second value for ©oo(2 W ; 2t') in

Ex. i., we obtain

e'n(2rO ^ e'„(0

©00 (2r') 001 (27-') 010 (2r') 600 (r') Goi (t') Ojo (r)

'

so that the second of these functions is unaltered by replacing t by 2"t', 11 being as large

as we please. Hence we immediately find from the series for the functions, by putting

t' = 00 , that each of these fractions is equal to tt. Hence if the integral occurring in the

last example be denoted by J we have J"=7re^ (r) W. In precisely the same way we find

/=27re^(2T') TF, where I is an integral differing only from J by the substitution of x for ^

and ^ for \. Hence

///=2e^(2r')/e'^(r'),=l+X',

as follows from the first result of Ex. 1.

From these results we are justified in writing the formula of Ex. ii. in the form

.n fn ^V\ 1-^-^~\ (l+X')sn(J,X)cn(J,X) .sn[^(l+X)J,
r+X'J= dn(^,X) '

and this is Landen's first transformation for Elliptic functions.

Ex. V. The preceding examples deal, in the case jo= 1, with the quadric transformation

associated with the matrix
(

p. , )
• Prove when p = \ that for any matrix of quadric

transformation the transformed theta function is expressible linearly in terms of one or

more of the eight functions

00= 901 (217; 2r'), 0i = 0ii(2>F; 2r'),= 000 (2 If ; 2r'), 02= 010 (2 W; 2r'),

0,= 0(2IF; 2/^/^)+ 0(2TF; ^r\-'^^\ 0^= 0(2 TF; 2.'| ^/^)- 0(2TF; 2.'|-1/^)
,

0^= 0(2 TF; 2r'| }/^)+^•0 (2TF; 2r' j"
J^^),

0^= 0(2 TF; 2r'
|

}/^)-^•0(2 TF; 2r'|- J|^)
.

Prove in particular that the fimctions arising for the transformation associated with

the matrix \^a\ ^'^^ expressed as follows :

eoo(W^; k')=0+02, 0oi(TF; ir')=0-02, ©lo ("'; iO=e4> ©11(^5 ^')=-^e5;
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and that the functions arising for the transformation associated with the matrix (q o) ^"^

expressed as follows

:

Obtain from the formulae of the text the expressions of the functions e^, e^, Oq, 6, of

the form

e,=C\e^{W)e,,{W), e,=C,eoi{W)e,,C(n e,=C,eorOr)e,o{W\ e,=C,eoo{W)e,,{W),

where C^, C^, Cg, C-, are constants.

Ex. vi. The i-eason why the matrices
(q j). (02)' (o 2)

^^^ selected in Ex. v. will

appear subsequently (§ 415) ; the matrix (go) o^^'^*^ ^^^ transformation which is supple-

mentary to that given by
(
^ ,

)
; it gives results leading to the equation

sn [(1 +^-) w, 2 \lki (1 +X-)]= (1 +k) sn (m, k)l\\-\-k sn^ (w, k)]
;

by combination of these results with those for the matrix
( q , )

^'^ obtain the multiplica-

tion formula

011 (2 Tf; T')= ^eii(TF; r')eoi(Tr; r')eio(Tr; T)e^{W; r),

where ^ is a constant (cf. Ex. vii., § 317, Chap. XVII. and § 332, Chap. XYIIL).

The matrix associated with any quadric transformation can be put into the form

where Q, Q' are matrices of linear transformations ; for instance we have

with the corresponding equations

U=tW^, "', = 21^2, ^r2=-r.,Tr3; r,= -l'r. t,= t,% t^= -\'r,,

from which we have, for instance,

-nil'' I— -nil/i I-

QioiW,; ^s) = e,,{U; r) = e r ^ '-e^^iW,; r,)= e r ^ - e^, (2 TT^ ; 2r,)

= e ^ EOoo ( ^^2 ; '2) ©01 ( ^^2 ; '2) = ^©00 ( ^3 •> rs) 010 (
W^

;
T3),

{E, F being constants) whereby the transformation formula for 01^ (
W^

; ^3) is obtained

from those for 0io(2 W; 2t'), with the help of those arising for linear transformation.

366. We pass now to the case when the order of transformation is any

odd number, dealing Avith the matter in a general way. Simplifications that

can theoretically be always introduced by means of linear transformations are

considered later (§ 372).
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We first investigate a general formula* whereby the function

^ rw\ 2v, 2ru', 2t/r, 2^'
K

can be expressed in terms of products of functions with associated constants

Iv, 2v', 2^, 2f', We shall then afterwards employ the formulae developed in

Chap. XVII., to express these products in the required form.

Let a, a' be two matrices each of p rows and m columns, whose constitu-

ents are any constants ; let the j-th columns of these be denoted respectively

by o-'-'' and a'^J\ so that the values of j are 1, 2, ..., m; let T^ denote the

matrix 2v(t+ 2v'a', which has p rows and m columns, and let the ?*-th column

of this matrix, which is given by 2i»o-''^* + 2i»'o-''-^', be denoted by T,,. ; also,

K, K' being rows of any p real rational elements, let T^-, Zjj- denote the

rows 2vK -^ 2v'K', 2^K + 2^'K' ; and use the abbreviation

vt{w; K, K') = Zk (w + 4Tjf) - iriKK'

;

finally, let s = (s<'', ,.., s<'"*) be a column of m integers whose squares have

the sum r, so that

J

then, using always ^ (w) for ^ (iv ; 2v, 2v', 2^, 2^'), the function

U{w) = e'
'"^ ^'^

'

^/'' ^'1'^ n ^ sO) La + Tk_1^\ +rU)

is, in w, a theta function of order r luith associated constants 2v, 2v', 2^, 2^' and

characteristic {K, K').

For when the arguments w are increased by the elements of the row T^',

where N, N' are rows ofp integers, the function

Tk-T„s\
^ s'-" [w + + T(J)

is multiplied by a factor e^^j , where t/t^ is equal to

Tk-T.s
s^i^

-irilNs^^^ilN's^i)],

T,s
+ |T^ - iriNN'\ + Z^T'^' s'^-'

;

,(i)

[2^Ns^^^ + 2^'iV's'^'»]

that is

the sum of the m values of i/r^ is given by

m
2 '^j = r [Zn (w + iT^) - iriNN'] + Z/tjc - Z^yTaS + Z^T^s

= rCT(w; N, N') + Z/Tk;

* Konigsberger, Crelle, lxiv. (1865), p. 28. See Rosenhain, Crelle, xl. (1850), p. 338, and

M^m. par divers Savants, t. xi. (1851), p. 402.
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also, when w is increased by Tjs-, the function — ria [w ; Kjr, K'jr) is increased

by — Za-T.v : thus the complete resulting factor of IT {lu) is

^rw(w; N, N') + Z,T^.- Z^.T,^

of which (§ 190, p. 285) the exponent is equal to

ri,T {w ; N, N') + 27ri {NK' - N'K)
;

thus (§ 284, p. 448) 11 {w) is a theta function in iv, of the ?'-th order with

{K, K') as characteristic.

Therefore (§ 284, p. 452) we have an equation

n(w) = S^^^ riv; 2u, -Ivv, i^/r, 2^
,

(A'' + /i)/r

where /x is a row of p integers each positive (including zero) and less than r,

and the coefficients A^ are independent of w. The coefficients A^ are inde-

pendent of K, K', as we see immediately by first proving the equation which

arises from this equation by putting K and K' zero, and then, in that equation,

replacing w by lu + 2vKr + 'Iv'K'/r.

In this equation, replace K by K + Ii, where Ji is a row of p integers, each

positive (including zero) and less than r ; then, using the equation previously

written (§ 190, p. 286), for integral M, in the form

^{u; 5 + il/) = e2-''Vv'^(«; q\

we find

^-rw [w (A'+ h)lr, A"/;-] - 2,r/ (K' + e) hjr g ^ S'-" ilU + ;
) + T,

= l.A^e^^'^''-'^f'l''^ riu ; 2v, 2rv, 2^/r, 2^
,\0^'' + f^)!r

where e is taken to be any row of p integers each positive (or zero) and less

than r ; ascribing now to h all the possible r^' values, and using the fact that

?-i^ 2 e2'^'('^- ')/'/'•=!, or 0,
h

according as /x — e = or ^ 0, (mod. r), we infer, by addition, the equation

0^^ \rw ; 2v, 2rv', 2^/r, 2?'
I

^^^' + '^V'-)!

s'j^[,o + ^±tlA^'''] + r['

where
^|r = -rny [w

;
(K + h)/r, K'jr] - 2^ (A" + At) hjr,

and CV, = r^A^,, is independent of w and of the characteristic {K, K').
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367. We put down now two cases of this very general formula :

—

(a) if each of the matrices cr, o-' consist of zeros, and each of the m
integers s<^', ..., «•'"• be unity, so that m = r, we obtain

„\{K'+tJ.)lr

K
C^^ riv ; 2v, 2rv', 2^/r, 2f

'

_ V - rzcT [w
;
(K + h)lr, K '/?•] - Ini {K' + fi) hjr ^y. W +

2vh + Tk

In using this equation we shall make the simplification which arises by

putting w = 2v W, v~^v = t', and

n

then the equation can be transformed without loss of generality, by means of

the relations connecting the matrices v, v
, ^,

^' (cf. § 284, p. 447), to the form

(J Q-2nlK'iW+lT'Klr-]-2niKK'lr ^ IrW; VT

h

W -\ ; T (I)

where G^ is independent of W and of K and K'.

This equation is of frequent application in this chapter ; it is of a different

character from the multiplication formula given Chap. XVII., § 317, Ex. vii.,

whereby the function %{rW, r') was expressed by functions ®{W, r) with

different characteristics but the same period, r'.

Ex. \. When /•= 2, ^= 2, we have

Ex. ii. If X, II, h be rows of jo integers each less than r, prove that the ratio

is independent of TF.

(yS) if the matrix a' consist of zeros, and if each of the m integers

s'^', ..., s*"** be unity, so that m = r, and if the matrix a, of p rows and r

columns, have, for the constituents of every one of its rows, the elements

0,
2 q 1

?' r r

then the matrix T^ will have, for the constituents of its i-th row, the

elements

r

B. 39

r r
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where H, is the sum of the elements of the V-th row of the matrix 2v,

so that

also the i-th of the p elements denoted by - T„s will be

r
+
(r-l)n/ r-1

2r
' a-,

and therefore the i-th of the elements of T^''' - - T„s will beJ) 1

r-1
r zr

Thus, denoting the row (Hi, ..., fl^) by fl, the theorem is

C.^ rw, 2v, 2rv', 2^/r, 2^

= Se-^ n ^

I

A' J

r 2r r•m; +

where yjr has the same value as in § 366. And as before this result can be

written without loss of generality in the form

Q g-27riA"[jr+iTA'7r]-2»riA'A"/r © ,,!,.„'
;('-•'+_/')'"

= 2e-2'">^/'' <^ ( U +
h + K + r'K'

(")

where U = W — (i— l)/2r and, for any value of u,

<t>(zi) = @(u; t')0('w+^-; t') H ('^ + '-^ ; t')
;

the number of different terms on the right side of this equation is rv~^
;

for if in be a positive integer less than r, the two values of h expressed by

h = {hj, .... hp) and h = (Ji:', ..., hp), in which h^' = hi + m, ..., hp =hp + m,

(mod. r), give the same value for
<f>
(U -\ ;

Ex. i. For/> = 2, r= 2, we obtain

j&lr. ii. For /)= 2, r= 3, we obtain, omitting the period t' on the right side,

hc,e{zw; 3r')=e{W„ w,)e{W,-}i, w,-^)e{W,+^, w,+^)

+ e(ir, + i, ir,-i)e(Tr,-i, Tr,)e(Tr,, w,+i).
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368. We consider now the expression of the function

611

^,(Tr; K,K' + tJi) = (d
,^.,,.!(A"+^)/--

K + 60
I K

in terms of functions @ F; t' , in the case when r is odd. We

suppose as before {K, K') to be a half-integer characteristic, and we suppose
g_g7ri|A'i^ so that e is + 1 according as the characteristic {K, K') is even or

odd*. It follows from § 327, Chap. XVIIL, if {K, K') has arisen by trans-

formation of order r from a characteristic {Q, Q'), that e is also equal to e'^* '

<«? I

and is + 1 according as the function is even or odd.

It is immediately seen that equation (T) (§ 367) can be put into the form

A" r-1 ,^.,"1 I- / ,,/ , \/ -

"
-^ (H) W:

= ze
^ (-'+?)' 6'- W +

h-(r-l)(K + T'K') K'

from this equation by changing the sign of W, we deduce the result

.r-l
^J^i-K' iK-ir- 1, .'A72]

^^ |.^ .

j^^ j^, ^ ^^

h

• \^'+r) " Jg-27ri 0—1) A" (r (H)>- W+ K
K

_|_g27ri(r-l) A"jr0i- W-a

where we have replaced ee-4TiVA'A" _ ^g-wViAi^
y^y unity, and a denotes the

expression [/i — (r — \){K-\-t'K')\I7% which is an 7'-th part of a period. We
proceed to shew that the function

Q--2.in(r-l)K'W ^r W+a K
K

^ g277i()—1) A'TF@r W- K'

K

can be expressed as an integral polynomial of the r-th degree in 2^ functions

%''\W; r'\APi^, where APi are tJie characteristics of any Gopel system of

half-integer characteristics whereof (K, K') is one characteristic.

From the formula of § 311, p. 513, putting G = 0, A' = A, B = P ^\l^\
,

and replacing U, V, W, ( .') e,-,
(
Jjej respectively by W, a, h, e,;, Cj we

obtain, if P„ = iC^"V

Thus, when 2(Ii' + n) = rin, m being integral.

K'+ii.

as in § 287, Chap. XV., and

^,.(IF; K, K' + ix) reduces to 29 frir, rr' "^ 1

39—2
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2^0(ir+o; A + P)e{W + b; A)

= S _X («. fe
;

-P. fl S6,e-^"V'?, @(W+ a+b; A+P + Pa)eOV: A+ PJ,
. X(a + o, 0; P, e) a

where

X{u,v; P, e)=Se.e-i'^«-0(u; ^+P+P«)0[i'; ^+P.];
a

the function xO^> ^-' ^' ^' ^) ^^Y ^^ immediately shewn to be unaltered by

the addition of an integral characteristic to the characteristic Pa of one of its

terms ; we may therefore suppose all these characteristics to be reduced

characteristics, each element being or ^.

Hence we get

2PeHW + a; ^) = S^.^^^,^:£6.0(Tr+2a; ^+P.)0(ir; A + P.),

and hence 2^0»(TF+a; A) is equal to

2Fl26a0(TF;^+Pa)SF,2e^'e-i'^'?a'9^0(F+3a;^ + P„+P^)0(T^;^^-P^),

where

rr ^ X («' «
•>
Q> ^) D- ^ y(2o, g; P„ Q .

^^
Xi'2a, 0;0,e)' ' ^ (3«, ; P„,e')'

proceeding in this way we obtain 2'''"^'^ 0''(Tr+ a ; A)

= in,ieaH,^e,... s F,_,x(Tr+m, F; p<., + ...+Pa._,; ^.-O. (Hi)
«1 «1 «2 <^2 %_l

where each of Pa^, P^,, ••• becomes in turn all the characteristics of the

group (P), and ej, e^, ... relate respectively to the groups described by

Pa,, Pa,, •••, and further

H,n = X ['««. « ; Pa,+ ...+ Pa„_^, fm] - X [(»' + 1) «, : Pa^+ ...+ P„_^, 6„],

(m=l, .. ,r-l),

0,„ = e.y»0 ( IF ; ^ + P„J, X,„ = - iTTZ (q'a^ + ...+ q'a^J q,^,

(m"=l, ...,r-2).

The equation (III) expresses 0'' ( 11' + a ; A) as an integral polynomial

which is of the (r — l)th degree in functions ( TF; A + Pa), whose charac-

teristics belong to the Gopel system (AP), and is of the first degree in

functions [ TF + ra ; A + Pa]. But it does not thence follow when a is an

r-th part of a period, that 0''(TF + a; A) can be expressed as an integral

pol3niomial of the r-th degree in functions 0[TF; A+Pa]; for instance

if the Gopel system be taken to be one of which all the characteristics are

even (§ 299, Chap. XVII.), it is not the case that the function 0='(TF-|-^),
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which is neither odd nor even, or the function &\W + g) — ©^(TT— ^), which

is odd, can be expressed as an integral polynomial of the third degree in the

functions of this Gopel system ; differential coefficients of these functions

will enter into the expression. The reason is found in the fact noticed in

§ 308, p. 510 ; the denommator of Hr-i may vanish.

Noticing however, when P is any characteristic of the Gopel group

(P), that ;^(-i6, -v; p, e) = e'^^'^i+'^*l^"Pix(''' "; P' ^)> ^^ ^^^t the co-

efficients Hm are unaltered by change of the sign of a, and putting the

/K'\
characteristic -4 = f „

j
, we infer, from the equation (III), that

2ir-i)P [e-2'ri(r-i)ii:'ir@r (If ^.

^

; A) + e''^'^'-'^^'^®'- (W ~ a; A)]

is equal to

tH,t 2ir,_i[e-^-"-^>^''^X(Tf-f-ra, W; P,er-^)

+ e^'^^<'-i>'^''^%(Tf-m, Tf ; P, e,_,)],

where P denotes P„ + . . . + Pa
,

; and it can be shewn that when a becomes

equal to \Ji — (r — 1) (K + r'K')]/r, the limit of the expression

if it is not a quadratic polynomial in functions ©(W; APa), is zero. The

consequence of this will be that ^^ [ ^^ ; K, K' + /jl] is expressible as a

polynomial involving only the functions © ( W; APa)-

For the fundamental formula of § 309, p. 510, immediately gives*, for

any values of a, h,

y^(W+a, W + b; P, e)x{a + h, 0; P, e) = x{a, b; P, e)x(W + a + b, W; P, e\

and hence, replacing e,._i simply by e, the expression U is equal to

Se^e-i-is'Sa |e-2-*c-i) A"Tre ( If 4. « ; ^ + P,) © [F + (r - 1) a ; ^ + P + Pa]
a

4.g2H(r-i)ii:'TF@(|f_^. ^+p„)@[F-(r-l)a; A+P^-P,]],

where P,=^y-\, is used for Pa^-\- + P<^r-i ^"^^ €1, e.,... for (e,._i)i,

(e,._i)2,— Replacing ra in this expression by the period h — {r-l){K+T'K'),

and omitting an exponential factor depending only on r, h, K, K' and P, it

becomes

X^^e-i-Y?a{©[F + a; A -^ Pa]%[W - a; A+P + P,]

+ @[Tf-a; A-vPa'l^lW + a; A + P + P^]],

* We take the case when the characteristics B, A of § 309 are equal. It is immediately

obvious from the equation here given that in the expressions here denoted by H^„ the value of the

half-integer characteristic A is immaterial.
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A being as before taken = (^') and ^. = e.e'"t*-<'-^'-^^'?'«+'""-'>^'9«; and this

is immediately shewn to be the same as

(l + ?,> (p)
e-*«l^l) Srae-*^'-® {W+a; A+ 1\) (W - a

; ^ + P + P.),

where e^. is the fourth root of unity associated with the characteristic P of

the Gopel group (P), which is to be taken equal to 1 in case P = 0. Thus

the expression vanishes when ^/>= — e*"'^ ( p) • Hence, in order to prove

that when the expression U is not a quadratic pol}'nomial in functions

(IF; APa), it is zero, it is sufficient to prove that the only case in which

U is not such a quadratic polynomial is when ^y- = - e*"^' '

^
'

( p ]
•

Now the denominator of Hr_^ is

2e„e-i-V9a [r« ; ^ + P + P.] [0 ; .4 + P.],
a

where P still denotes Pa, + ... +Pa,_., and e^ has the set of values of e^-oi

save for a non-vanishing exponential factor this is equal to

2?a©M0; AP^),
a

^A'
or (l + ^r (p)

e-i"^ I ^l) ll^pe-^'^^P [0 ; ^1 + P + P^] [0 ; ^ + P^],

according as P = or not, where, in the second form, P^ is to describe a

group of 2P~^ characteristics such that the combination of this group with

the group (0, P) gives the Gopel group (P). We shall assume that, when

fp is not equal to — e^ '''

( p ) » neither of these expressions vanishes for

general values of the periods t'.

Since the function "^ri^'j K, K' + fi) is certainly finite, we do not

examine the finiteness of the coefficients H,n when m is less than r — 1,

these coefficients being independent of W ; further, in a Gopel system {AP),

any one of the characteristics AP^ may be taken as the characteristic A
;

the change being only equivalent to adding the characteristic Pa to each

characteristic of the group (P); hence (§ 327, Chap. XVIII.), our investigation

gives the following result :

—

Let any 2^ functions ^[u ; 1(o, 2&)', 2?;, ^t) \

j

,

whose {half-integer) cJiaracteinstics form a G<">pel system, syzygetic in threes, he

transformed by any transformation of odd order; let (AP) be the Gopel

system formed by the transformed characteristics f ) ; then every one of the
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original functions is an integral polynomial of 07'der r in the 2^ functions*

^ (w ; 2v, 2v', 2f, 2^'
|

AP) : as follows from § 288, Chap. XV., the number of

terms in the poljniomial is at most, and in general, ^(r^+ 1).

For the cases p = 1, 2, 3, and for any hyperelliptic case, it is not necessary

to use the addition formula developed in Chap. XVIII. We may use instead

the addition formula of § 286, Chap. XV. It is however then further to be

shewn that only 2^ theta functions enter in the final formula. For the case

p=S the reader may consult Weber, Aim. d. Mat. 2'' Ser., t. ix. (1878),

p. 126.

369. We give an example of the application of the method here followed.

Suppose p= l, r= 3, and that the transformation is that associated with the matrix

L A ; then (§ 324, Chap. XVIJI.) taking l/=3, the fmiction

5[«; 2a>, 2a,', 2^, 2v'|l(_^)J,

or 5oi(m), is equal to Soi{Sio; 2v, 6v', 2^/3, 2^') or ie^''"
" '"'

^I>3 ( TF ; -| , 0). Now we have,

with a= (/^+ l)/3,

h

also e^j ( Tr+ a) is equal to

if we take the Gopel system to be ^ f
J

, | f j , so that /\ = | (

J
, this is equal to

,^
eoi(«)+^ieio(«)

^ ^ Op, (2a) 001 (g) + 6i'eio (2a) e^o (a)

^,eoi(2a)eoi+ fieio(2a)eio
''^

\' eoi(3a)eoi+ 6i'eio(3a)eio "

^2

,12 eoi (^) + ^ieioH
/ j,M 3 eio (2a) e,

,
(a) - zV/Oqi (2a) Q,, (a)

^ , Ooi (2a) Goi + .1 Oio (2a) e^o ^ ^" ^ %' O^o (3a) Ooi - ?;ei' Q,^ (3a) e,o
'

'

where Q^^ denotes Gqi (0), etc., and

E,=e,,{W+2a)e,,{W)+ ./eio(Tf+3a)eio(n

^i= eio( W^+3a) eoi( Tf)-iVeoi( ]r+3a) Q,,{W).

Now, in accordance with the general rules, the denominator of the fraction

010 (2a) 001 (a) - ie^ Q^^ (2a) Oiq (a)

0io(3a)0oi-iV©oi(3«)©io

vanishes when ^^^ -gW ^-^A e'^*t'i-2A'jfA'+Ti2/i:'g,^ namely, as
(^^J^'^

=i f J')
= J, when

fi'= -le^^C^+l), and a= (A+ l)/3 ; in fact, putting a= (/i + l+.'t')/3,

©10 (3a) 001 - iVi' 001 (3a) 0io= e" C'+i)
O^, (*) ©ox - iei' ©oi (^) ©lo,

* The expression of the transformed theta function in terms of 2" = 4 theta functions is given

by Hermite, Compt. Reyidus, t. xl. (1855), for the case f= 2. For the general hyperelliptic case

of. Konigsberger, Crelle, lxiv. (1865), p. 32.
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for small values of .r, when /e,'= e"^''"''^\ because the difterential coefi&cients of the even

functions, being odd functions, vanish for zero argument ; thus the denominator of the

fraction vanishes to the second order. We find similarly, for iV/= e"^'
^''
'^^\a = \{h+l+ x),

that the numerator of this fraction is equal to

...•.«.[e,("±l)e..("J')-e-,.('i±->..("y)].,.

in the same case also we find that the expression E^ is equal to

^H ih+i)
[e<^^ ( „^) e^^ (

„') _ e'^j (
w) e,o (

W)] x,

while the expression 610 ( H'- 3a) Go, ( W)- it^'Boi ( H'- 3a) Gjo ( W) is equal to the negative

of this. Thus the function ej, ( W+ a) can be expressed by the functions Gjo ( W), Gqi (
W),

and their differential coefi&cients of the first order ; but the function Q^j ( ir+«) + G^j ( W-a)

c<in be expressed by the functions Gjq ( W), Gqi ( W) only.

In the function G^j ( Tr+a) + Goj ( ^''-«) ^^e part

Qjo (2a) Got (a) - u/Gqi (2a) Gip (a) ^,

,, Gio(3a)Goi-tV©oi(3«)©io
'

furnishes only the single term for which ;>/= -e" (''+^\ namely,

4,.i (/« + !) V -^^ ^ ^ ^
Goi ( W) G,o ( W).

Ex. i. Prove that the final result is that ^Cf^Soi (u) is equal to

K(^)e:,+G:,(i)G!jK+G;/^^«'^^^^"'^"'«^^^^>«^'«'^^^

- [e?o a) ©01 - ej, (i) el] s,, {w) ai^ («.)}

^e!o^'.)©o,a)[e,o(^)eo, + G„,(i)Gj ^ ^___^ ^^ ^_^_^ ^ ^ ^3

[©oi(^)©oi+©io(i)e'o]©oie,o

where G^i, Gjq denote G,,, (0) and Gj^ (0) respectively,

^oi(«')^io('^') + Poi('^).

Ex. ii. Prove that

eo, {W-D G,o ( Tr+ i)
- G.o ( ir- •) e,, ( Tr+ i)

e',o(i)©oi(i)-©oi(i)®io(i) -

= 2
"ft" ^ '

" [©o: (
»') e.o ( "') - G,o (

W) G„, ( W)].

*'io*'oi~*'oi*'io

370. General formulae for the quadric transformation are also obtainable.

The results are different, as has been seen, according as the characteristic

(K, K') of the transformed function is zero (including integral) or not. The
results are as follows :

—

When {K, K') is zero, the transformed function can be expressed as a

linear aggregate of the 2^ functions ^-{w\A, Pi), whose characteristics are

those of any Gbpel system.
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When {K, K') is not zero, the transformed function can be expressed as a

linear aggregate of the 2*"^ products ^{w\A, Pi) ^ (w
|

A, K, Pi), in which

the characteristics Pi are those of any Gopel group whereof the charac-

teristic K, = {K, K'), is one constituent, and ^ is a characteristic such that

\A,K\ = \K\,ov\A, K\ = \K\-\-l (mod. 2), according as the function to be

expressed is even or odd*.

When {K, K') is zero, the equation (I), § 367, putting K = K' = fji = 0,

and then increasing W by ^fir, where /a is a row of quantities each either

or 1, gives

C®(2W; 2t'
' ^/^] = ^e-^ii^'^®' (w+^h; r' ^^^^^ :

hence, from the fundamental formula of § 309 (p. 510), writing therein

v = 0,u=W+a,b = a = h/2, ^ = ^ (^)
, P, = ^ (^^') , and Q^ e-'^^/e. = ^.,

we obtain

2PCe(2W; 2t'
fi/2\

;

S
P.

..-H'^,@^(0;T'ii(^) + P;
^^

7 l^i®' (0 ; t'
I
APi)

^^'' Kyv ,T\ Jir,),

where C is independent of fi. It is assumed that the sum S^i0-(O ; t'
|
APi)

i

is different from zero for each of the 2^ sets of values of the fourth roots ^i.

This formula suffices to express any theta function of the second order with

zero characteristic.

When {K, K') is other than zero, by putting in the equation (I), § 367,

7- = 2, /i=0, adding ^r'h' to W, where h' is a row of quantities each either

or 1, and then changing the sign of W, we obtain

Ce-^^'^K+v^') ^., (F ; K, K' + h') = S [e'-i'^"'^®' ( Tf + a) 4- ee-2-^vir@2 (^ _
^^)j^

h

where \= K + k, \' = K' + h', and G is the same constant as before, indepen-

dent of W, K, K', h', and a=\\ + ^t'A,', the period t being omitted on the

right side. Hence, taking the fundamental formula of § 309 (p. 510), putting

therein w = 0, u= W-\-a, h=a, A=(), B=A, and then writing a=h\+^T'X'+^x,
where a; is a row of p equal quantities, we find, provided

|

K, Pi |
= 0, (mod. 2),

* When (K, K') is zero, the function is necessarily even (§ 288, p. 463), and therefore |iir|=
|(?l.

We have seen (§ 327, Chap. XVIII.) that this is always true when r is odd. When r is 2, it is not

always so, as is obvious by considering the transformation, for p = l, in which a = 2, /3= 0, a' = 0,

/3' = 1, and(Q, Q') = (4, i); then we find (^, ^') = (i, 1); thus|(3| = l, |ii:| = 2.
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and e = e'iiA-| + WM.A-i^ ^hat 2pG^. {W K, K' -^ h') is equal to the limit,

when X vanishes, of the expression

^nK'(K+ir'K') Ve-inM'2£-^2er<e-'"'^"'ie ( ir ; a , P.) ['b{W + x\A,K,Pi)

where ^,- = iJ)
e"(Vr'^'^i' e,-, and

^^" *

Sr.e-^'^''<0 (^ ;^1, A^ P,) (0 ; ^, P,)
'

It can easily be proved (of. § 308, p. 510) that the denominator of E^

vanishes, for x = 0, for the 2^~^ sets of values of the fourth roots ^,- in which

the fourth root corresponding to the characteristic K of the gi'oup (P) has

the value —
(
jA gWI a'I^ a^^j that the corresponding expressions

[7^=£'^:ir,e—^'"^eCF; A, Pi)[&{W+ x\A, K, Pi)^-®{W -x\A, K, P,)]

have the limit zero ; the summation S is therefore to be taken only to extend

to the 2^^ sets of values in which this fourth root =+
( rr) e*'''^l. It may

however happen that the denominator of E^ vanishes for other sets of values

of the fourth roots ^,-, when x=Q. We assume that for such sets of values

the sum raultiplpng E^ in the expression U^ does not vanish for x=0; by

recurring to the proof of the formula of § 308, it is immediately seen that

this is equivalent to assuming that the expression

S6,0^(r; p.)
t

is not zero for genei'al values of the arguments U for any set of values of the

fourth roots e,- (cf (/3), p. 514). That being so, the value of E^ when its

denominator vanishes for x = 0, can always be obtained from the limiting

expression given, by expanding its numerator and denominator in powers

of X.

Ex. Applying the formula of this page for the case jd= 1 to the function

e„(2Tr; 2r')= i*8(ir; -i, 1),

for which (iT, K')= {- ^, 0) and /«'= !, we immediately find that the Gopel system in terms

of which the function can be expressed is (^-1, J/',), where A =\
( J

, P^ = K=^ i
J

; we

are to exclude the value of the expression U^ in which f i
= ~

(V ) = 1 ! *'he vahie of E, for

f , = - 1 is easily found to be
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of which both numerator and denominator vanish for ^-= 0. The final result of the

formula is

Ce„(2TF; 2r')=- 4910(1; Oeio(i; r')e^^{W; T')e,^{W; O/e^ (0 ; r') e,„ (0 ; r').

Prove this result, and also

(7e,i(2Tf; 2r')= 2e^(i; r')e^(TF; r')e^^iW; r')/e^(0; r') O^^ (0 ; r'),

and (cf. § 365) obtain the formulae

©10 (i ; 'O ©lo (i >
-"') = - 1 ©10 (0

;
^') ©L ^i ;

^'),

ei,a; r')=ie^(0; T')eoi(0; r')[e^(0; r')+e;;,(0; r')],

e^(0; 2.') = iK,(0;r') + e;;,(0:r')],

C=\/2[e^(0;r') + e;^i(0; r')].

371. The preceding investigations of this chapter enable us to specify in

all cases the form of the function ^ [u; 2co, 2&)', 2r), 1r\ or ^ hi

when expressed in terms of functions ^ ( ?/; ; 1v, 2v\ 2^, 2^' i

^ j
or ^ (?y ^ j

.

In many particular cases it is convenient to start from this form and

determine the coefficients in the expression by particular methods. But it

is proper to give a geoeral method. For this purpose we should consider

two stages, (i) the determination of the coefficients in the expression of the

function ^
(

'<
j

'

)
by means of functions a/^,. (w ; K, K' + /Lt), (ii) the determi-

nation of the coefficients in the expression of the functions ylr,.{w ; K, K' + fi)

by means of functions '^ ( w ! ] . The preceding formulae of this chapter

enable us to give a complete determination of the latter coefficients in a

particular form, namely, in terms of theta functions whose arguments are

fractional parts of the periods 2v, 2v' ; but this is by no means to be regarded

as the final form.

372. Dealing first with the coefficients in the expression of the function

^ (u )
by functions yfrritu; K, K' + fj,),

there is one case in which no

difficulty arises, namely, when the transformation is that associated with the

matrix
(f^

-. ) ; then ^ ( w i j is equal to ^ (rtv ; 2u, 2rv', 2^//-, 2^' {
j

,

the row K' being in fact equal to rQ', namely '^ {u\ ''_

]
is ^ylrr{w; K, K').
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Now it cau be shewn*, that it fir be the matrix associated with any

transformation of order r, and ?• be a prime number, or a number without

square factors, then linear transformations, n, fl', can be determined such

that nr= ^ if. 1
) ^ • Hence, in cases in which the matrices fl, H' have been

calculated, it is sufficient, first to carry out the transformation il upon the

given function ^iu\ ); then to use the formulae for the transformation

I I
, whereby the original function appears as an integi-al polynomial of

order ?• in 2^ theta functions ; and finally to apply the transformation fl' to

these 2^ theta functions. All cases in which the order of transfonnation is

not a prime number may be reduced to successive transformations of prime

order (§ 332, Chap. XVIII.).

We can how^ever make a statement of greater practical use, as follows. It

is shewn in the Appendix II. (§§ 415, 416) that the matrix associated with

any transformation of order r can be put into the form ^
(

„. j
, where Q

is the matrix of a linear transformation, and that, in whichever of the possible

Avays this is done, the determinant of the matrix B' is the same for all. In

all cases in which this has been done the required coefficients are given by

the equation

--L^(«; 2a,. 2a,', 2;;, 2^' ^'

^

v|g)| q J

V|if||v||£'| ^ 1^
, . >

b,
,

s ^.

wherein, (Q, Q') being a half-integer characteristic, e is an eighth root of unity,

u=Mw, \M is the detenninant of the matrix M, etc., /x is in turn every

row of integers each positive (or zero) and less than r, which satisfies the

condition that the p quantities - B'fi are integral, and, finally, 7 denotes the

symmetrical matrix BB\ while d denotes the row^ of integers formed by the

diagonal elements of 7. It is shewn in the Appendix II., that the resulting

range of values for /i is independent of how the original matrix is resolved

into the form in question. For any specified form of the linear transformation

n the value of e can be calculated (as in Chap. XVIII., §§ 333—4); if eo

* Cf. Appendix II.; and for details in regard to the case jj = 3, Weber, Ann. d. Mat., Ser. 2*,

t. IX. (1878—9). We have shewn (Chap. XVIII., § 324, Ex. i.) that the determinant of the

matrix of transformation is i rP. From the result quoted here it follows that that determinant

is +)*.
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denote its value when the characteristic (Q, Q') is zero, its value for any other

characteristic is given by

where n = r,'^,j, and Q/ = pQ'-pQ-^d (pp), - Q^ =a Q' -a'Q-^d {aa').

To prove this formula, we have first (§ 335, Chap. XVIII.), if li = (^, ,

,

\p cr J

the equation

= ^(w; 2&), 2&)', 27?, 27/'

Vlo) QJ Vl Jfi
I I

&)i

^(wi; 2a,,,2ft)/, 2771, 27;/

where u = M^Ui, M^coi = cop + (o'p, etc. Writing u^ = 2&)iC7i, tw/ = &)iTi, we

have

Qi
^(w,; 2ft)i, 2a>/, 2771, 27//

Q^^^^h.o.^
«.^(S)(f7^; ^^

<2i

and the equations u-^^M^w, M2v = o3^A, M^v = w^B + wiB', give, if w = 2i;Tr,

u' = vr\ and in virtue of AB' = r, the equations Ui = AW, rr^ = At'A — BA,
while, by the equation 7'^= Tlfj^i-^, we find 'q-iw'^u^ = r^v~'^iu-. Now it is

immediately seen that the exponent of the general term of @ [
^"1 ; Tj

gives

27ri C/jW + iTTT^n" = 2'TrirW nn + -j + Trirr' (m+-] + irid
(
7/i + -

J

— ITT (<ynv + awi) — I'TTiB— m ~ 7/1-,

wherein 7 = BB', and d denotes the row of diagonal elements of 7, and m, p,

are obtained by putting An = rm + p,, m being a row of integers, and /i a row

of integers each less than r and positive (including zero) ; this equation is

equivalent to ti — B'm = - B'p, ; corresponding to every 72 it determines an

unique m and an unique p, for which —;- is integral ; corresponding to any

assigned p. for which —;— is integral, and an assigned m, the equation

determines an unique n. Since then 77/1'^ + c^tti is an even integer, and, for

the terms which occur, B—- m is an integer, we have
r

niduL Tti o- —— — —„ vu.^

rW ; rr'
p,lr

d/2

Increasing, in this equation, Ui by Qi + TjQi', we hence deduce

®{U,- r. rW; rr'
(K' + p)/r

K
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where K' = AQ,\ - K = BQ,' - B'Q,- ^d {BB'), so that {K, K') is the

characteristic of the final theta fuuction of w. Siuce now the matrix

MvB' = M.AIjvB' = M.co^AB' = rM.o),, and therefore |iT/
1

[

u
|

j

5'
,
= ?'^' jil/,

[

[w,
[

,

we have, by multiplying the last obtained equation by e*'''"'
">- = giriv-iw^

^ ^he

formula which was given above.

Ex. i. When jD= l, the transformation associated with the matrix
(^^ o) gives rise to

the function 6 ( IF
; Jt') ; we have

e ( ir
; J r')= e (3 W ; 3r') +e(s W ; 3r'

j
^^^) + 6

(^3
If ; 3r'

|

"
^^^^ .

Other simple examples have already occurred for the quadric transformations (§ 365).

E.V. ii. Prove when p= 2, by considering the transformation of order r (r odd) for

which

e Ui - fiK.^, ri(o ; - (rii - 2/xri,.+ /I'-r.,. - 2X), 2ri2 " 2m'-22 » >''"22]

that

i(r-l) -?!LS»u
= ix/.(0, 0)+ 2 e »• >/.(«, -?im).

n = \

where V' («i , "2) denotes e (ru ; rr
"''^' "^^

j + 9 (ru ; ?y I

~ "^' '

'

~ "^'
' j . (Wiltheiss,

Crelle, xcvi. (1884), pp. 21, 22.)

373. In regard now to the question of the coefficients which enter in the

expression of the functions -^r (w ; K, K' + /i) by means of functions ^{io\
j

,

the problem that arises is that of the determination of these coefficients in

terms of given constants, as for instance the zero values of the original theta

functions. The theory of this determination must be omitted from the

present volume. In the case when the order of the transformation is odd

these coefficients arise in this chapter expressed in terms of theta functions,

^(
; 2v, 2u', 2^, 2^'j , whose arguments are r-th parts of the

periods 2v, 2v. By means of two supplementary transformations, A, rA~^,

(as indicated § 332, Chap. XVIII.), or by means of the formulae of Chap. XVII.

(as indicated in Ex. vii., § 317, Chap. XVII.), we can obtain equations for

functions ^ (i^iu ; 2v, 2v', 2^, 2^') as integral polynomials of degree ?•- in

functions ^(w; 2v, 2v', 2^, 2^'). By means of these equations the functions

^ ( ^ ; 2v, 2v', 2^,
2^'

J are determined in terms of functions

^ (0 ; 2v, 2v', 2f, 2^') ; or this determination may arise by elimination from

the original equations of transformation, without use of the multiplication

equations. There remains then further the theory of the relations connecting

the functions ^(0; 2v, 2v', 2^, 2^') and the functions ^(0; 2(o, 2a)', 27/, 2r]'),

which is itself a matter of complexity.
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For the ca.sejt»=I, the reader may consult, for instance, Weber, Elliptische Functionen

(Braunschweig, 1891), Krause, Theorie der doppeltperiodischen Fthnctionen (Erster Band,

Leipzig, 1895). For the case jt) = 2, Krause, Hyperelliptische Functionen (Leipzig, 1886),

Konigsberger, Crelle, lxiv., lxv., lxvii. For the form of the general results, the chapter,

Die Theilung, of Clebsch vi. Gordan, AheVsche Functionen (Leipzig, 1866), which deals with

the theta functions arising on a Riemaun surface, may be consulted. For the hyper-

elliptic case, see also Jordan, Traite' dcs Substitutions (Paris, 1870), p. 365, and Burkhardt,

Math. Annal. xxxv., xxxvi., xxxvrii. (1890— 1).

In particular cases, knowing the form of the expression of the functions

3 (u ; 2co, 2a)', 2r), 2r,')

in terms of functions $ (w ; 2v, 2v', 2^, 2^'), we are able to determine the coefficients by the

substitution of half-periods coupled with expansion of the functions in powers of the

arguments. See, for instance, the book of Krause {Hyperelliptische Functionen) and

Konigsberger, as above.

Ex. i. In case p= 2, r= 3, the function 65(3 IF, 3t') is a cubic polynomial of the

functions 65 (
W, t), 634 (

W, t'), Oj ( IF, r'), e^.^ ( TF, /), of which the characteristics are

respectively iM
^j, h(^^ _ J, if _/ _A ^\_{ q) >

^^^^^ ^^"^^ ^ ^^1^^^ system.

The only products of these functions which are theta functions of the third order and of

zero characteristic are those contained in the equation

e, (3 IF, 3r') = Acl>l+ Bcl>^cf>l+ Ccl^^cpl + i)<^^0„2^+ ^(^3^(^,(^,2

'

where (^5= 05( IF, t'), etc. ; this equation contains the right number ^ (?•''+ 1 ) = 5 of terms

on the right side. Putting instead of the arguments TF^, TFj respectively

we obtain in turn

e,,(3TF, 3r')= A4>l^+ B<i>,,^l+ Cct>,,c\>l+D4>^,<i>\+Eci>^<t>,<t>,,.

e, (3TF, 3r')= -^(^.^ -B<i>^4,l^+ C4>^ 4^1 +D<I>^4?^^ + E<I>.^J>^,

0,3 (3 TF, Zr')= -A^l^-B4>J>\+ C4>^^cl>l^+D^J\+ E4>.<f>^4>^,

whereby the Gopel system of functions 65 (3 TF, 3r'), 634 (3 W, 3r'), e^ (3 IF, 3r'), 602 (3 IF, .3t')

is expressed by means of the Gopel system ^5, ^34, (^j, (^02-

From the first two equations, by putting the arguments zero, we obtain

®5®5 ~ ®34®34 jj^ ^3465-^5^34

e5©34 (©*-<)'

where 65= 65(0 ; 3r'), etc., and 95= 65(0 ; r'), etc. ; by the addition of other even half-

periods to the arguments, for instance, those associated with the characteristics

Ho', 0)' Ho', 0)' H-i!o)'

we can obtain expressions for C, D, E ; these substitutions give respectively

©23 (3 TF
; 3r')= A^\, - Bci>^^<i>\^+ C^,^<1>1 - i)<^23^03+^KK^oz^

e, (3TF; 3r')=Act>l - B^^<t>l - C4>^4>1 + Dct>,4>l- ^4>,<l>iAz^

6,3(3 TF; 3r') = A<pl + B<p^^cj^f^ +Ccf^,M +i)0,30;;-l-^0o «^2 <^oi;
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putting herein W=0 we obtain in succession the vahies of D, C and £, expressed in terms

of the constants previously used, e.;, 634, 65, 634 and the constants ©23, §4, ej,, 623, 803,

©4. ©14. ©12. ©0' ©2) ©01- Thus the zero vahies of each of the ten even functions e{W; t')

enter in the expression of the coefficients A, B, C, D, E ; there remains then the question

of the expression of the zero vahies of tJic ten even functions in terras of four indeixjiident

quantities (cf. Ex. iv., § 317, Chap. XVII.), and the question of the relations connecting

the constants 65, 634, etc., and the constants e^, 0,4, etc. (cf. the following example).

Ex. ii. Denoting 601 (0 ; 3r') 601 (0 ; r) by Coj, etc., shew that when ^= 2 the result of

Ex. iii., § 292 (p. 477) gives the equations

^ 01
"^^ ^ 2 ~ ^5 "^ ^34 ~ '

12 ~ ^0

'

^'4 + ^03 =^b~ ^34+ ^12 ~ ^0)

^23+^14=^6~^34~ ^12+^0.

these being the only equations derivable from that result. By these equations, in virtue of

the relations connecting the ten constants 6 (0 ; r'), and the relations connecting the ten

constiints (0 ; 3r'), (foi" the various even characteristics), the three ratios

834(0; 30/05(0,30, 012(0; 3t')/05(O; 3t'), 0o(O; 3r')/05(O; 3r')

are determinable in terms of the three

034 (0 ; r')/05 (0 ; r'), ©12 (0, r')/05 (0 ; r'), 0o (0 ; r')/05 (0 ; r').

By addition of these equations we obtain

^01 + C'2+ (^4+ C'os+ C 23+ C'i4+ C34+ (7i2+ Cq= 3C5

.

Obtain similarly from the result of Ex. iii., § 292, for any value of jo, the equation

20 [O; 3r'|iQ]0[o; r' | *('')]= (2"- 1) 0(0 ; 3r') (0 ; r'),

where the summation on the left extends to all even characteristics except the zero

characteristic ; for instance, when j5= 1, this is the equation

80, (0 ; 3r') 801 (0 ; r') + 8,0 (0 ; 3r') 810 (0 ; t') = 800 (0 ; 3r') 800 (0 ; t'),

namely (cf. Ex. i., § 365 of this chapter) it is the modular equation for transformation of

the third order which is generally written in the form (Cayley. Elliptic Functions, 1876,

p. 188), _

As here in the case jo = 2, so for any value of p, we obtain, from the result of Ex. iii.,

§ 292, 2''- 1 modular equations for the cubic transformation.

Ex. iii. From the formula of § 364 we obtain modular equations for the quadric

transformation, in the form

2.e[o; 2/ lj(^')]e[o; 2,'li('-;')]=..-"e[o; /'i(;)]e[o; /|i(/;,)],

where s is a row of p quantities each either or 1, so that the right side contains 2^ terms,

and ky kf, tl are any rows of jo quantities each either or 1.

374. In the fundamental equations of transformation we have considered

only the case when the matrices a, a', /3, /3' are matrices of integers ; the

analytical theory can be formulated in a more general way, as follows ; the

argument is an application of the results of Chap. XIX.
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Suppose we have the relations expressed (cf. Ex. ii., § 324, Chap. XVIII.)

by

( M, ) ( 2y, 2u' ) = ( 2(0, 2a)' ) ( a
, ^ ),

I

, rM-' I

I
2^, 2^ 277, ^v' \ !

«', /3'
\

where r is a positive rational number, M is any matrix of j;; rows and columns,

whose determinant does not vanish, a, /S, a', /9' are matrices of p rows and

columns whose elements are rational numbers not necessarily integers, &>, &>',

ri, T] are matrices of p rows and columns satisfying the equations (B), | 140

(Chap. VII.), and v, v
, ^,

^' are similar matrices satisfying similar conditions

;

then, as necessarily follows, the matrices a, ^, a.', ^' satisfy the relation

(viii) of § 324 (Chap. XVIII.).

If now X, y be any matrices of p rows and columns, the relations supposed

are immediately seen to be equivalent to

{ M, ) ( 2vx, 2v'y ) = ( 2«, 2a)' ) ( ax, ^y );

I

, rM-^
I I

2^x, 2^'y
j

\l'r], It) \\ ol'x, /S'y \

we suppose that x, y are such matrices of integers that ax, ^y, ax, ^'y are

matrices of integers, and, at the same time, such that rx is a mati^ix of integers

;

such matrices x, y can be determined in an infinite number of ways.

Let u, w be two rows oi jp arguments connected by the equations u = Mw
;

when the arguments w are simultaneously increased by the elements of the

row of quantities denoted by 'i.vxm + Iv'ym! , in which m, m are rows of p
integers, the arguments u are increased by the elements of the row 2a)r? + 2a)'w',

where n = axm + &yni , n = a'xm + ^'ym' are rows of integers. The resulting

factor of the function ^ {u ; 2a), 2a)', 27;, Irj') is e^, where, if H^ = 277a + 27;'a',

etc., (cf. (v), § 324, Chap. XVIII.), R is given by

R — Hn (ti + -^ftn) — 7rin7i

= {HaScm + H^ym') {Mw + Mvxm + Mv'yni) — irinn'

= (MHaXm + MH^yni) (w + vxm + v'ym') — irinn

= r (2!^xm + 2^'ym') (w + vxm + v'ym') — irinn
;

now, since ^'a = r + l3a', and because ax, ^y, a'x, /3'y, rx are matrices of

integers, we have

nn = xa'axm^ + {y^a'x + y^'ax) mm' + y^'^ym''^

=fm -\-f'm! + ryxmm' (mod. 2),

where /, /' denote respectively the rows of integers formed by the diagonal

elements of the symmetrical matrices jUd'ax, y^'^y (cf § 327, Chap. XVIII.).

Thus, if we denote ^ {u ; 2a), 2a)', 2r), 2r]') by ^ {w), we have

^ (w + 2vxm + 2v'l/7n) = e»*(2f«»i+2?'2/»w')(M'+va;7n+«'?/w')+7ri(/?n+/'m')+»ri(-ri/a:)mw' J, /^^y

B. 40
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Further if a, h denote the matrices of 'Up columns and p rows, given

respectively by
a = (2ux, 2v'y), ^-rrih = (2r^a.-, 2r^'y),

we have

\^ {ah - ha) = {xv ){^x, l;'y) -{xl ) {vx, v'y)

I ^ ^'
I \y?\

= ( x{v^-lv)x, x(v^' -^v')y )

I

y{v^-fv)x, y{v'i;'-iv)y
\

= h'7ri( 0, -xy );

\

yx,
I

so that ah — ha = Jx, say, is a skew symmetrical matrix of integers given by

ah — ha = k = ( ,
— rxy ),

I

ryx,
I

and we have

S ka pmaiUfi' = 2 {—rxtj)a. ptiiaVip' = — ryxmiii'
,

(a, /3 = 1, ..., p).

Finally, let \, fj,
be rows of p quantities, the rows of conjugate complex

quantities being denoted by \i, /j-i, and let X, /x be taken so that the row of

(juautities a(X, fi) consists of zeros, or

a (k, fi) = 2vx\ + 2uy/j, — 0,

so that x\ = — r'^y/i, where* t' = v~'^v', is a symmetrical matrix, = />' + io', say,

p and a being matrices of real quantities ; then by

x\x = - Ti'3//Ai = - (p' - ia) ?//ii,

we have

ih (X, yu.) (Xl ,
/i,) = - ?r {^'y^i, - yx\) (X,, /Xj) = - ir {yx\n. - yxXfi^)

= '^ry {r.'yfi.fi - r'yfifi,) = iry [{p - ia') - {p + ia')] yn-ii^

= 2ry(r'y/jL/jLT^ = 2ra'vvi

,

in which v = yp-, Vi = yfjL^; as in § 325, Chap. XVIII., since r is positive, the

form ra'vi'i is necessarily positive except for zero values of fi.

On the whole, comparing formula (II), § 354, Chap. XIX., the function

<^(w) satisfies the conditions of §§ 351—2, Chap. XIX., necessary for a

Jacobian function of lu in which the periods and characteristic are given !" by

a={2vx,2v'y), 2irih = {2r^x,2r^'y), c = {\f,\f').

• The determinant of the matrix v is supposed other than zero, as in Chap. XVIII., § 324.

+ In § 351, Chap. XIX., the row letters have a elements ; in the present case a is equal to 2p,

and it is convenient to represent the corresponding row letters by two constituents, each of p
elements ; and similarly for the matrices of 2p columns and p rows.
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To this function we now apply the result of § 359, Chap. XIX., in order to

express it by theta functions of w. The condition for the matrix of integers

there denoted by g, namely geg = k, is satisfied by ^ = f _ '

) , for

{ rx, ) { 0, -\
) { rx, ) = { rx, ) { , -y ) = { , -rxy );

\ , y \
\

1, \ \ , y \ \
, y

\
\

7'x, \
\

ryx,
j

hence, with the notation of § 358, Chap. XIX.,

K=ag-^ = {2vx, 2v'y)( -x-\ ]=(2vlr, 2v'),

27riL = 2'7ribg-' = {2r^x, 2r^'y)(-x-\ ] = (2^, 2r^').

Hence, as our final result, by § 359, Chap. XIX., the function
(f)

(w), or

^ (u ; 2(1), 2(o', 277, 2r}'), can be expressed as a sum of constant multiples of

functions* ^ {iv ; 2i;/r, 2v', 2^, 2^') with different characteristics, the number of

such term,s being at most y\K\ = rP\x\ \y\, ivhei^e \x\, \y\ denote the

determinants of the matrices x, y. This is an extension of the result

obtained when the matrices a, /3, a', ^' are formed with integers ; as in that

case there will be a reduction in the number of terms, from rP\x\ \y\, owing

to the fact that the function <^ (w) is even. A similar result holds whatever

be the characteristic of the function ^ (u ; 2ft), 2(w', 277, 2?;'). The generalisa-

tion is obtained quite differently by Prym and Krazer, Neue Grundlagen

einer Theorie der allgemeinen Thetafunctionen (Leipzig, 1892), Zweiter Theil,

which should be consulted.

Ex. Denoting by E the matrix of p rows and columns of which the elements are zero,

other than those in the diagonal, which are each unity, and taking for the matrices a, /3,

a, /3' respectively - E, 0, 0, — E, where m, n are integers without common factor, we have

the formula

fn n^ ms n\
' ^ g

\m m^ I nrlmj

wherein r, s are rows of jo positive integers, in which every element of r is or numerically

less than m, and every element of s is or numerically less than n. This formula includes

that of § 284, Ex. iii. (Chap. XV.) ; it is a particular case of a formula given by Prym and

Krazer (loc. cit., p. V7).

To obtain a verification—the general term of the right side is e^ , where

40—2
That is, functions .9 {rw, 2v, 2rv', 2f/r, 2f') ; cf. § 284, p. 448.
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hence 2c* = unless NIm is integral ; when Njm is integral, =M, say, then 'S.e^ = m^e^

,

r r

where

<f)
= 27riuK+ iTrrK^,

K, =nM+s, obtaining all integral values when M takes all integral values and s takes all

integral values (including zero) which are numerically less than n.

375. The theory of the transformation of theta functions may be said to

have arisen in the problem of the algebraical transformation of the hyper-

elliptic theta quotients considered in Chap. XI. of this volume. To practically

utilise the results of this chapter for that problem it is necessary to adopt

conventions sufficient to determine the constant factors occurring in the

algebraic expression of these theta quotients (cf. §§ 212, 213), and to define

the arguments of the theta functions in an algebraical way. The reader is

referred* to the forthcoming volumes of Weierstrass's lectures.

It has already (§ 174, p. 248) been remarked that when p>S the most

general theta function cannot be regarded as arising from a Riemann

surface ; for the algebraical problems then arising the reader is referred

to the recent papers of Schottky and Frobenius {Crelle, cii. (1888), and

following) and to the book of Wirtinger, Untersuchungen ilber Thetafunctionen

(Leipzig, 1895).

* Of. Rosenhain, Metti. p. divers Savants, xi. (1851), p. 41G ff. ; Konigsberger, Crelle, lxiv.

(1865), etc.
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CHAPTER XXL

Complex Multiplication of Theta Functions. Correspondence of

Points on a Riemann Surface.

376. In the present chapter some account is given of two theories ; the

former is a particular case of the theory of transformation of theta functions

;

the latter is intimately related with the theory of transformation of Riemann
theta functions. Not much more of the results of these theories is given

than is necessary to classify the references which are given to the literature.

377. In the transformation of the function @ {u ; r), to a function of the

arguments w, with period r (§ 324, Chap. XVI II.), the following equations

have arisen

u = Mw, M=a + ra', Mr = ^ + r/S'
;

there* are cases, for special values of t, in which t' is equal to t. We
investigate necessary conditions for this to be so ; and we prove, under a

certain hypothesis, that they are sufficient. The results are stated in terms

of the matrix of integers associated with the transformation ; we do not enter

into the investigation of the values of t to which the results lead. We limit

ourselves throughout to the function © {u ; r) ; the change to the function

^ (w ; 2&), 2&)', 277, 2rj') can easily be made.

Suppose that, corresponding to a matrix A =
[ , j

, of 2^ rows and

columns, for which

ayS = /3a, a^' = l3'd\ a^' - /3a' = r = yS'a - a'A

where r is a positive integer, there exists a matrix t satisfying the equation

(a + tol') t = /3 + T/3',

which is such that, for real values of Wj, ..., 7ip, the imaginary part of the

quadratic form rn^ is positive.

* References to the literature for the case jj= 1 are given below (§ 383). For higher values of

p, see Kronecker, Berlin. MonaUher. 1866, p. 597, or Werke, Bd. i. (Leipzig, 1895), p. 146

;

Weber, Ann. d. Mat., Ser. 2, t. ix. (1878—9), p. 140; Frobenius, Crelle, xcv. (1883), p. 281,

where other references are given; Wiltheiss, Bestimmung Abelscher Funktionen mit zwei

Argumenten u. s. w. Habilitationsschrift, Halle, 1881 (E. Karras), and Math. Annul, xxvi.

(1886), p. 130.
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In that case, as follows from Chap. XX., the function © [(a + ra') w ; t],

when multiplied by a certain exponential of the form e^""", is expressible as an

integral polynomial of the ?'-th degree in 2^ functions &[iv\ t] ; on this

account we say that there exists a complex multiplication*, or a special

transformation, belonging to the matrix A. The equation (a + Ta')T = y8+Ty8'

is equivalent to (/3' — ra) t = — ^ + ra: this arises from the supplementary

matrix _

\— a a

just as the former equation arises from A ; we put M =a + ra, N = ^' — ra
;

we denote by
j

A — \
|

the determinant of the matrix A — \E, where E is the

matrix unity of 2p rows and columns, and X, is a single quantity ; similarly we

denote hy M — X
\

the determinant of the matrix M — \E', where E' is the

matrix unity oip rows and columns.

Then we prove first, that when there exists such a complex multiplication,

to every root of the equation in \ of order p given hy M —\ =Q, there

corresponds a conjugate complex root of the equation lY— \, = 0; that the Ip

roots of the equation
j

A — \ =0 are constituted hy the roots of the two equations

\M-\\ = 0, \N -\ =0, or A-\ = M -\ X~\ ; and that all these

roots are of modulus sjr. Hence when r=l, they can be shewn to he all

roots of unity.

378. The equations of the general transformation, of order >; and its supplementary

transformation, namely

J[/= a + ra', J/r'= 3+r^', .V=3'-r'a', .VT=-^ + r'd,

give

{a + Ta)T'=^+ T^ ;

hence, if r= rj + 'V,, , where tj and tj are matrices of real quantities, and similarly r' = r/+ jVo',

we have by equating imaginary' parts

(a + Tia) Ta' = Tg (^ - aV/) ;

therefore the two matrices

J/7-2'= (a+ Ti a) To + iVoaVa', To -V= T.y O* — aVj') - iToaT.,'

are conjugate imagiuaries, =/+tg and /-i^r, say.

Now suppose t'= t ; then from

J/r,=/+ icf, T.^y=f- ig,

we have, if X be any single quantity, and J/q be the matrix whose elements arc the

conjugate complexes of the elements of M,

(J/o - X) r,=/- ig - \r,= r., (.V-X),

and hence, as
| r, |

is not zero,

J/o-XI = |.V-X|,

* The n&me principale Transfonnation has been used (Frobenias, Crelle, xct.).
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which shews that to any root of the equation ' J/-X
|

= thei-e corresponds a conjugate

complex root of the equation
|
/V- X

|

= 0. Further we have, if tq= ti — ir^,

n T\fa /3\ _ /M Mr \ _ /i/ \ A r \

\\ rj \a' 0'J
- Uo ^Voy

~
V mJ \l rj '

and writing this equation in the form

tA = lit,

where

^=(wo)' '^^(o.^o)'

it easily follows that the determinant of the matrix t is not zero, and that, if \ be any

single quantity, we have
^(A-X)=(/x-X)<,

so that

I

A-X|=|/ii-x|=| j/-x|
I

j/o-x|=;j/-x: |#-x .

Thus the roots of the equation
|
A — X ' = are constituted by the roots of the equations

|i/-X| = 0, \JV-\\ = 0.

Further, from a result previously obtained (Chap. XVIIL, § 325, Ex.), when, as

here, t'=t and 2a)= 1, 2v= I, we have

Mqt2M= rr^ or Mt^Mq= rr.^
;

also as, for real values of «j, ..., n^, the form t./'I^ is a positive form, it can be put into the

shape mj^H- + ''C) =Em'^, say, ^ being the matrix unity of p rows and columns, and

VI being a row of quantities given by m= Sn, where S is a matrix of real elements ; the

equation 7.^11^=E . Sn . Sn gives t2= >SES=>SS ; for distinctness we shall write

Iv = Kq=S being conjugate complex matrices. Take now a matrix R=KMK~^ ; then

thus if X be a root of
|
M—\ |=0, and therefore, as R — X =K{M—\)K~^, also a root of

I

R~\ i=0, and if z, =a;+ i^,he a. row of p quantities such that Ez=:Xz=E\z, where ^is
the matrix unity of p rows and columns, we have

IiRQZQZ= RqZ(j . Rz^ EKqZq . EXz^X\q . Ez^z

or

(XXo-r)^2o2=0-

Therefore as Ez^z, which is equal to 2 (j''',^ + j/„,)j is not zero, it follows that XXo = ''; in

other words, all the roots of the equations
1
M— X

j =0, |
A - X

|
=0, are of modulus sjr.

Suppose now that r= l, so that the roots of the equation
|
A — X

|

= are all of modulus

unity ; then we pi'ove for an equation

.r"+ ^.'f"-i + i?.p"-2 + +N=0,

of any order, wherein the coefficients ^I, B, ..., N are rational integers, and the coefficient

of the highest power of x is unity, that if all the roots be of modulus imity, they are also

roots of unity* ; so that, for instance, there is no root of the form e^^"^.

* Kronecker, Crelle, lui. (1857), p. 173 ; Werke, Bd. i. (1895), p. 103.
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Let the roots be e'", e'^, ..., so that

A= -(cosa+cos/3+ ...), 5=cos (a+ ^) + cos (a+'y) + ..., ...;

then A lies between - 71 and n, and B lies between ±hi{n-l), etc. ; hence there can only

be a finite ninnbcr, say I; of equations of the above form, whereof all the roots are roots of

unity. Thus, if .i\, ..., .<:„ be the roots of our equation, so that, for any positive integer n,

the roots of the equation

F^ (X) = {X - .x^^) (x - x^^)...{x - a.^) = 0,

are also roots of unity, it follows that, of the equations

Fi(.r) = 0, F,{x) = 0,..., F,,,{x) = 0,

there must be two at least which are identical. Hence, supposing F {x) = 0, F^{x)= to

be identical, we have n equations of the form

x^=x^^,
•'^2~*'r.2'

Choosing from these equations the cycle given by

u. V ^n V JJ. _
I'

X, — X * X — tA/ , • • **' „. — x^ ^
1 r,' r, »',' ' '«! I'

consisting, suppose, of a equations, we infer that

1 1

and, hence, that Xi is a {fx^— v°')-th root of unity.

Ex. Prove that, when M= a

+

to, Mt'=^+ t^\

(1 JV/3') = V0 J/o)vi To')'

and deduce* if A=
( ,

'
) and

that
AHA = rff'.

Hence, when t'= t, if z be a row of 2jo elements, and x = Az, we have

ffx^^^rffz"^,

which expresses a self-transformation of the quadratic form IIz'\ which has real coefficients.

Cf. Hermite, Compt. Rendus, xl. (1855), p. 785 ; Laguerre, Journ. de Vec. pol., t. xxv.,

cah. XLil. (1867), p. 215 ; Frobenius, Crelle, xcv. (1883), p. 285.

379. Conversely, let

\ol' /3'

be a matrix of integers of 2p rows and columns, such that

* Cf. Chap. XVUI. § 325, Ex.
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where r is a positive integer ; and suppose that the roots of the equation

I

A — X,
I

= are all complex and of modulus sjr. Under the special

hypothesis* that the roots of |

A — X,| = are all different, we prove now that

a matrix r can he determined such that (i) t is a sym^meti^ical matrix, (ii) for

real values of n^, ..., tip the imaginary part of the quadratic form rn^ is

positive, (iii) the equation

(a + ra') r = ^ + r^'

is satisfied. Thus every such matrix A gives rise to a complex multiplication.

380. We utilise the following lemma, of which we give the proof at once.—If A be a

matrix of n rows and columns, such that the determinant |/i+ \|, wherein X is a single

quantity, vanishes to the first order when X vanishes, and if x, y be rows of n quantities

other than zero, such that

hx= 0, hy=0,

then the quantity xy, =-^1^1 + +^nyn, is not zero.

Denoting the row x by |i, its elements being ^u, ..,, ^-^n, determine other n{n-\)
quantities ^i,j{i=2, ..., n; J=1., ..., n) such that the determinant || |

does not vanish
;

similarly, denoting y by rj^, determine n{n-l) further quantities rjij such that the

determinant
|
rj

\

does not vanish. Then consider the determinant of the matrix r] (h+X) | ;

the (r, 5)-th element of this matrix is

2 J/,.,
i 2 hij^sj + X 2 T],.^ jfg, i

= 2 |g,^- 2 /ii, j>7,., i+ X 2 »;,., j|,., j,
i j i :) i i

(t= l, ..., n ;
j=l, ..., n), and when r=l we have

2K jT]r, i=Kjni,i+ + ^*n, j ni, n= (%)i= 0,
i

while when s= l, we have

^hj^s,j= ^H. ill, 1 + +Kn^l, n= {h-1')i= ^ ;

i

thus the (1, l)-th element of this matrix is \xy, and every other element in the first row

and column has the factor X ; thus the determinant of the matrix is of the form X \^Axy -{-XB].

But the determinant of the matrix is equal to |A+ X| ||| I?;!, and therefore by hypothesis

vanishes only to the first order when X vanishes. Thus xy is not zero.

381. Suppose now that X, Xg, /i, fiQ, ... are the roots of the equation
|
A — X |=0, where

X and Xo, and /x and /^q, etc. are conjugate complexes. It is possible to find two rows x, x',

each of^ quantities, to satisfy the equations

ax-'r^x'= \x, a'x+^'x'= Xx', or, say, {A — X){x,x') = 0, (i),

and similarly two rows z, z', each of jo quantities, to satisfy the equations

az+ ^z'= ijiz, a'z+^'z'= fiz', (ii)
;

from equations (i), if o-o be the conjugate imaginary to or, etc., it follows, since XXo= r', that

aXQ + pXf^=-XQ, aX(^-\-^XQ=^~XQ,

and hence, in virtue of the relations satisfied by the matrices a, /3, a, ^', we have

^'.Tq - ^Xq = X.l'o , — a'o^o+ aXQ = \Xq
,

* For the general case, see Frobenius, Crelle, xcv. (1883).
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which belong to the supplementary matrix rA~^ just as the equations (i) belong to the

matrix A ; for our puri>ose however they are more conveniently stated by saying that

t=XQ, f=—XQ, satisfy the equations

(A-x)(^o=0;

hence ixti .i; x' satisfy the equations

(A-X)(.r,.r') = 0,

it follows from the lemma just proved, putting n— 2p, that tx+ t'x' is not zero ; in other

words the quantity

is not zero. Further from the equations (i), (ii) we infer

X// {xs! - jfz) ={ax+^) (a'z+ ^/) - {a'x + ^x') (as+ /3/) ;

and by the equations satisfied by the matrices a, /3, a', /S' this is easily found to be the

same as
{•Kix-r){xz'-3fz) = 0;

thus, tis the equation X/x = r would be the same as X = Xq , we have

x^ — 3fz=0.

Also we have

o^o+^V= Mo% > «'^o+^V= Mo ^o'

;

thus we deduce, as in the case just taken, that

(x^o-'")(-^V-'^^o)=0;

and hence as X/i(, - r, =/• (XV - 1), is not zero, we have

•.//l&Q 0(/ Zf\— \J,

If we put x=Xy + ix2, XQ—x^-ix.^., x =x^+ h:^, Xq'= Xi' -ii:^', the quantity

is seen to be a pure imaginary ; if in equations (i) X be replaced by Xq, the sign of xxq'—x'X(,

is changed, but the quantity is otherwise unaltered ; since then the equations (i) de-

termine only the ratios of the constituents of the rows x, a/, we may suppose the sign of

the imaginary part of X in equations (i), and the resulting values of the constituents of x and

of
J
to be so taken that

•VjI/q ~~ OG •*A "^ " £it
\

this we shall suppose to be done ; and we shall suppose that the conditions for the {p-V)

similar equations, such as

Z^^ 0^ Zn ^^ ~~ ^tj

are also satisfied. With this convention, let the constituents of x and a' be denoted by

?i, 1 ) • • • > Cl. >') C 1, 1 ) • • • > c 1, p >

similarly let the constituents of the rows z, z', which are taken corresponding t<j the root ^^,

be denoted by

62. 1» •••) Si!, ;/) 5 2, 1) •••) ?iP>

and so on for all the p roots X, /x, .... Then the equations xx^ — .v'Xff= — 2i, zzq — z'zq= - 2i,

etc., are all expressed by the statement that the diagonal elements of the matrix

lio'-fio

are each equal to - 2i. When r is not equal to s (r, «<jo-|-l), the (1, 2)-th element of this

matrix is

XZ0 — •^•Spi
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which we have shewn to be zero ; similarly every element of the matrix, other than a

diagonal element, is zero ; we may therefore write

Take now a row of jo quantities, t, and define the rows X, X' by the equations

X=-^t, X'=l't,
so that

then
- ^it,t= f^^t^t - $'lt,t = XXo' - X'X,

;

hence it follows that the determinant of the matrix ^' is not zero, since otherwise it would

be possible to determine t, with constituents other than zero, so that X'= 0, and therefore

also Xq'= ; as this would involve -2{tQt= 0, it is impossible.

382. If now the matrix r be determined from the equations

X + rx' = 0, z + Tz' = 0, ...,

where x, x are determined, as explained, from a proper vakie of X., etc., or,

what is the same thing, if t be defined by

then

ii'_i'l=^vf-rTr=r(T-T)r;

but the equations of the form xz — xz = are equivalent to

now, since the determinant
|

^'
j

does not vanish, a row of quantities t can be

determined so that X' = ^'t, for an arbitrary value of X' ; thus for this

arbitrary value we have
(t-t)X '•' = {),

and therefore

r — T,

or the matrix t is symmetrical.

Further, from the equation ^ + ^'t — 0, we have

^h' - rio = fTofo' - fr|o'= f (t„ - t) fo',

and hence, ii t = p + ia-, since ^|o' — |'|o = — 2z, we have

1 = |V|o', or tot = aXo'X',

where i is a row of any p quantities and X' = ^'t ; hence, since the determi-

nant
I I' I does not vanish, it follows, if X' be any row of p quantities, that

<tXqX' is positive; in particular when ?Ji, ..., tip are real, the imaginary part

of the quadratic form rii" is positive.

Finally from the equations

ax + ^x = Xx, ol'x H- ^'x = Xx,
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putting X = — Tx', we infer

(/9 - ax) u' = - \tx', {0 - olt) y = \x',

and therefore

T (/9' - olt) x +{^- aT) X = 0,

or

[/3 + T/3'-(a + Ta')T]j/ = 0,

and hence

[/9 4- r^' - (a + ra') t] f = 0,

from which, as
|

^' is not zero, we obtain

/9 + T/3' - (a + ra') r = 0.

We have therefore completely proved the theorem stated.

It may be noticed, as follows from the equation | + |'t = 0, that we may form a theta

function with associated constants given by

2co= 2f, 2o)'=-2^;

these will then satisfy the equations

co'o) — coa)'= 0, a)a>|) — CO &>Q= — 2?
;

the former equation always holds ; the matrix a can be determined so that the latter

holds, as is easy to see.

Ex. Prove that by cogredient linear substitutions of the form

u'= cu, w' = cio,

we can reduce the equations u=Mw to the form

where ^i, ..., Hp are the roots of \M—\ =0.

383. For an example we may take the ca.se p=l ; suppose that a, ^, a, ^' are such

integers that a^' - a'^= r, a positive integer, and that the roots of the equation

(a+ra')r= /3+ Ti3'

are imaginary ; if a'= 0, the condition that t should not be a rational fraction requires that

CAy-o-
where a^= r, and then the equation for t is satisfied by all values of t ; this case is that of

a multiplication by the rational number a, and we may omit it here ; when a is not zero

we have

2aV= - (a - ^') ± V(a +/3')2 - 4r,

and therefore (a+^')-<4r; this of itself is sufficient to ensure that the roots of the

equation

are unequal, conjugate imaginaries, of modulus Jr.
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If then r be any given positive integer and A be a positive or negative integer

numerically less than ^Jr, and a, a be any integers such that {a^- ha+ r)la' is integral,

= - /3, we obtain a special transformation corresponding to the matrix

for a value of t given by
\a' h — aj

h-2a .\/4r-A2
^

2a'
"^*

2
I
a' I"'

where
|
a' |

is the absolute value of a, and the square root is to be taken positively ; the

corresponding value of if is a+ ra. Hence by the results of Chap. XX., the function

eU{h±t^/4r-h^)tv; =^
J,

when multiplied by a certain exponential of the form e^^"", is expressible as an integral

w ; =r-7 with different character-
2a J

polynomial of order r in two functions

istics.

The expression for the elliptic functions is obtainable independently as in the general

case of transformation. When

Mv= <oa + a)'a', 3{v'= a>^+ co'^', a^'-a'^= r, ti= MiP,

if to any two integers 7n, m' we make correspond two integers 7i, n' and two integers k, k',

each positive (or zero) and less than r, by means of the equations

rn-vk-= mis' — ??i'/3, rn' + k'= - ma + m'a,

or the equivalent equations

m=^na+ n'^ + - (ak -\- jik'), m'= iia + n'{i' + - {a'k+ ^'k'),

then we immediately infer from the equation

g> {u) = ?( -'^ + 2 2' [(«+ 2mu> + 2m'u>') ~ "- - (2?«a) + 2»i'a)') " 2]^

m m'

by using n, n', instead of m, m', as summation letters, that

i/2^ {3hv
I

26), 2co') = ^ (w
I

2v, 2v') + 2 2' \,(,,+?5^LhM:|2„, 2,.)_p(?':^')],

wherein the summation refers to the r-l sets k, k' other than ^•= /-'=0, for which (§ 357,

p. 589) the congruences
ak+ ^k'= 0, a'k+ ^'k'= (mod. ?•)

are satisfied*

This formula is immediately applicable to the case when there is a complex multiplica-

tion ; we may then put

2a) = 2v=l, 2<o' = 2v'= T, fi'
= h-a, - ^= {a^-ha+ r)/a', T= {h- 2a ±i\lAr - h'^)l2a',

* When these congruences have a solution (/Cg, k^'), in which k^, kg have no common factor,

i.e. (Appendix ii., § 418) when a, a', ^, ^' have no common factor, the remaining solutions are of

the form (XA-q, XA;^'), where \<r; in that case taking integers x, x' such that k^x' - A-y'a; = l, it is

convenient to take 2i;A-„ + 2d'A„' and 2vx + 2v'x' as the periods of the functions ^ on the right side.
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and J/= (A ± I V4r - A*)/2, as above, where h^<-ir. The application of the resulting

equation is sufficiently exeniplitied by the case of r= 2 given below (Exx. ii., iii.).

In the particular case where r= \, the condition h^<4r shews that h can have only the

values or + 1 or - 1 ; in this case the values n, n' given by

m=na — n
,a^ — ha+ r

, , , > ,i \
; , wi =7i« +?i (rt— a)

2 z „

are integral when m and m' are integral; hence as -, |-(A-o)t= J/r, we
a

immediately find

o,= 6022't ?—-— =( —=-
) a,; ^3= 14022'^

—

—r-xr=( 7=^) Gz-

ThvLs when A=0 we have ^^=0, and if a, a be any integers such that {a^+ l)/a' is integral,

we have T = {±i-a)/a', the upper or lower sign being taken according as a is positive or

negative. In this case the function ^ (ti) satisfies the equation

where

gr = 60 2 2'
r

y-——.
. , .-u .^"

mn [m+ n{±l-a)la'f

^Mien h = \ we have 0^= 0, and if a, a' be any integers such that (0^-0 + l)/a' is

integral, we have t= (1 — 2a + i\^)/a' ; in this case

When /< = - 1 , we have ^2= 0> and, if (a^+ a+ 1 )/«' be integral, then r= ( - 1 - 2a+ 1 v3)/a

.

Ex. i. Denoting the general function ^u by ^(?i; g^, ffs),
it is easy to prove that the

arc of the lemniscate r-= a^ cos 26 is given by a-jr^= ip{s/a; 4, 0); when n is any prime

number of the form 4X-+ 1 the problem of dividing the perimeter of the curve into n equal

parts is reducible to the solution of an equation of order I-—when n is a prime number

of the form 2^+ 1, the problem can be .solved by the ruler and compass only. (Fagnano,

Produzioni Matematiche, (1716), Vol. 11.; Abel, (Euvres, 1881, t. I., p. 362, etc.) It is

also easy to prove that the arc of the curve r^ — a^ cos 3^ is given by a'^lr'^= ip{s'a ; 0, 4);

when n is a prime number of the form 6/- 4-1, the problem of dividing the i)erimeter of

this curve into n equal parts is reducible to the solution of an equation of order k (Kiepert,

Crelle, LXXiv. (1872), etc.). The.se facts are con.scquences of the linear special transforma-

tions of the theta functions connected with the curves.

Ex. ii. In ca.se r= 2, taking a= 4, a =9, h = 0, we have t=( — 4-|-i\^2)/9, and

-2^ii>/2.w) = ipiw) + ^(w+^-ip{r2).

By expanding this equation in powers of w, and equating the coefficients of v^, we
find easily that, if ^ (T/2)= e, then gi= ^e^, and g.y= -\e^\ hence we infer that by means
of the transformation

we obtjiin

]i \/8^- 151+ 7 }f \/8f-15^+ 7 ;« \/8.r3-15x+7'

which can be directly verified. It is manifest that when r=2, h=0, we are led to this

equation for all values of a and a'.
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Ex. iii. Prove that if m = \{h-\-i \/8 - h^), the substitution

„. 3m*-3 1

^
m'*+ 4 x-1

gives the equation

This includes all such equations obtainable when r=2. Complex multiplication arises

for the five cases h= 0, h= ±1, h= ±2.

Ex. iv. When r= 3 and jw= l, we see by considering the matrix

\a! ^j [l l) VO ij (l O) \0 s)

that the function el,^[(l+^ \/2)'M'; i\/2] is expressible as a cubic polynomial in the

functions Qo,i{w, i^/2), 61,1 ('^j i\/2). The actual form of this polynomial is calculable

by the formulae of Chap. XXI. (§§ 366, 372), by applying in order the linear substitutions

( n 1 ) '
( 1 n ) ^'^^ then the cubic transformation

(
p. r. ) • Hence deduce that k= \/2 - 1

and

sn[(l+^•\/2) TF] = (H-?V2)sn Jr[l-sn2 Tf/sn2y]/[l-X-2sn2 TF.sn^y],

where -y= 2 (/t - iK')jZ, K being (§ 365, Chap. XXI.) =7rG^, and iK'= rK.

For the complex multiplication of elliptic functions the following may be consulted :

Abel, (Euvres, t. i. (1881), p. 379 ; Jacobi, Werke, Bd. i., p. 491 ; Sohnke, Crelle, xvi.

(1837), p. 97 ; Jordan, Cours d'Analyse, t. 11. (1894), p. 531 ; Weber, Elliptische Funetionen

(1891), Dritter Theil ; Smith, Report on the Theory of Numbers, British Assoc. Eeports,

1865, Part vi. ; Hermite, The'orie des equations modidaires (1859); Kronecker, Berlin.

Sitzungsber. (1857, 1862, 1863, 1883, etc.), Crelle, lvii. (1860) ; Joubert, Compt. Rendus,

t. L. (1860), p. 774; Pick, Math. Annal. xxv., xxvi. ; Kiepert, 3fath. Annul, xxvi. (1886),

XXXII. (1888), XXXVII., XXXIX. ; Greenhill, Proc. Camb. Phil. Soc. iv., v. (1882—3), Q^^art.

Journal, xxil. (1887), Proc. Lond. Math. Soc. xix. (1888), xxi. (1890) ; Halphen, Liouville,

(1888); Weher, Ada Math. xi. (1887), Math. Annal. xxiii., xxxiii. (1889), XLiii. (1893);

Etc.

384. We come now to a different theory*, leading however in one phase

of it, to the fundamental equations which arise for the transformation of

theta functions, that namely of the correspondence of places on a Riemann
surface. The theory has a geometrical origin ; we shall therefore speak

either of a Riemann surface, or of the plane curve which may be supposed to

be represented by the equation associated with the Riemann surface, accord-

ing to convenience. The nature of the points under consideration may
be illustrated by a simple example. If at a point /» of a curve the tangent

be drawn, intersecting the curve again in z^, z^, ..., Zn-2, we may say that to

the point x, regarded as a variable point, there correspond the n— 2 points

* For references to the literature of the geometrical theory, see below, § 387, Ex. iv., p. 647.

The theory is considered from the point of view of the theory of functions by Hurwitz, Math.
Annal. xxviri. (1887), p. 561; Math. Annal. xxxii. (1888), p. 290; Math. Annal. xli. (1893),

p. 403. See also, Klein-Fricke, Modulfunctionen, Bd. 11. (Leipzig, 1892), p. 518, and Klein, Ueher

Riemann's Theorie (Leipzig, 1882), p. 67. For (1, 1) correspondence in particular see the re-

ferences given in § 393, p. 654,
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Zi, ..., Zn-i- To any point z of the curve, regarded as arising as one of a set

Zi, .... Zn-i, there will reciprocally correspond all the points, x^^, a:,, ..., x^^^,

which are points of contact of tangents drawn to the curve from z. Such a

correspondence is described as an {n — 2, in — 2) correspondence. A point of

the curve for which x coincides with one of the points ^i, .,., Zn_^ correspond-

ing to it, is called a coincidence ; such points are for instance the inflexions

of the curve.

In general an (r, s) correspondence on a Riemann surface involves that

any place x determines uniquely r places z-i,...,Zr, while any place z,

regarded as arising as one of a set z-^, ..., Zr, determines uniquely s places

Xi, ..., Xg. The investigation of the possible methods of this determination is

part of the problem.

385. Suppose such an (r, s) correspondence to exist; let the positions of

z that correspond to any variable position of x be denoted by ^i, ..., Zr, and

the positions of x that correspond to any variable position of z be denoted by

x^, ..., Xg] and denote by Ci, ..., Cr the positions of Zj, ..., Zr when .r is at the

particular place a, and by ai, ..., a« the positions of x^, ..., Xg when 2: is at

the particular place c ; denoting linearly independent Riemann normal inte-

grals of the first kind by Vj, ..., Vp, consider the sum

,
Zl . <-i

-f-

as a function of x ; since it is necessarily finite we clearly have equations of

the form

1 , X, a . -1 r X, a Zi, c, Zr, Cr / • 1 \

^WiM^'l + +-yii,pVp =Vi + +Vi , (t=l, ...,/>),

where il/,-,i, ...,Mip are constants. On the dissected surface the omitted

aggregate of periods of the integral t',- indicated by the sign = is self-deter-

minative ; if the paths of integration be not restricted from crossing the

period loops the sign = can be replaced by the sign of equality (cf

Chap. VIII. §§ 153, 158).

If now X describe the A;th period loop of the second kind, from the right

to the left side of the H\i period loop of the first kind, the places z^, ..., Zr

will describe corresponding curves and eventually resume, in some order, the

places they originally occupied ; since, on the dissected Riemann surface

y^""' ^ i.^."

'"' = 1^"'^' 4- v^"''- , we may suppose each of them actually to resume

its original position ; hence we have an equation

Mik = a,,t -I- T,-, , a',,t + + T,_p a pit

,

wherein a,-,i;, a',-,t, ... are integers; similarly by taking x round the Z*th period

loop of the first kind we obtain
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we have therefore 2p' equations expressible in the form

M=a + TOL', MT = ^ + rl3',

wherein a, a', ^, jB' are matrices of integers, ofp rows and columns.

Consider next, as a function of x, the integral

wherein z, c are, primarily, arbitrary positions, independent of oc, and ^z[,c,

is the Riemann normal integral of the third kind. The subject of integration

becomes infinite when any one of the places Zi, ..., z.,. coincides with z, or, in

other words, when z is among the places corresponding to x, and this happens

when X is at any one of the places x^, ...,Xg, which correspond to z; the

subject of integration similarly becomes infinite when x is at any one of the

places «!, ..., ttg, which correspond to the particular position of z denoted by c
;

it is assumed that c does not coincide with any one of the places Ci, ..., a,.

The sum of the values obtained when the integral is taken, in regard to x

round the infinities x^, ..,, Xg, ai, ..., a^, is, save for an additive aggregate*

of periods of the integral v^, equal to

This quantity is then equal to the value obtained when x is taken round

the period loops on the Riemann surface. Consider first, for the sake of

clearness, the contribution arising as x describes the ^th period loop of the

second kind ; if x described the left side of this period loop in the negative

direction, from the right to the left side of the A;th period loop of the first

kind, the aggregates of the paths described by z^, ..., z,. would, in the

notation just previously adopted, be equivalent to ax, ^• negative circuits of

the \th period loop of the second kind, and a\, k positive circuits of the Xth

period loop of the first kind (\ = 1, ..., p). In the actual contour integration

under consideration the description by x of the left side of the A;th period loop

of the second kind is to be in the positive direction ; hence the contribution

arising for the integral as x describes both sides of the A;th period loop of the

second kind is

p

similarly the contribution as x describes the sides of the kth period loop of

the first kind is
p

'

2'rriEm, k^ ^'\, k ^1' "

,

A = l

* Which vanishes when paths can be drawn on the dissected surface connecting a^, ...,ag

respectively to .Tj, ..., x^, so that simultaneous positions on these paths are simultaneous posi-

tions of a-i, ... , .T,. Cf. Chap. VIII. § 153 ; Chap. IX. § 165.

B. 41
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where £",„, * = unless m = k, and Em, m = 1- Taking therefore all the period

loops into consideration, that is, A- = 1, ..., p, we obtain

V P P P
a-,,n, x,,at -t^ -., z,c -^ i^ , z, e ^ -.y z, c

V,n + + r,„ =>:/3;,,„, «A - -^ -^ T,„,
fc 2 X, ifc Z^A =ZiV„,, xVa ,

\=l A=l\=l A=l

P
where N,„, a = /3 a, „, - S r,,,, ^ a\_ ^ ,

k=l

SO that i^OT, A is the (in, \)th element of the matrix

since the equations M = a + Ta, Mr = /3 + t/3' give

- y8 + ra = (^' - tS') t,

we have also

Nt = - ^ + TOi.

These equations express the sum v„l' '+... + v,n
' in terms of integrals v^

in a manner analogous to the expression originally taken for Vi"
' + ... + v,"

in terms of integrals v^' , the difference being the substitution, for the matrix

( , D/1 , of the matrix
( _, _ )

\0L pj \-aaJ

386. The theory of correspondence of points of a Riemann surface now

divides into two parts according as the equation, which arises by elimination,

either of the matrix M or the matrix iV, namely,

ra'r + ar — t/3' — ^ = 0,

is true independently of the matrix t, in virtue of special values for the

matrices a, /3, a', /3', or, on the other hand, is true for more general values of

these matrices, in vii-tue of a special value for the matrix t.

We take the first possibility first ; it is manifest that for any value of t

the equation is satisfied if

a = -yE, /3 = 0, a' = 0, /3' = - yE,

where <y is any single integer, and E is the matrix unity of p rows and

columns ; conversely, if the equations are to hold independently of the value

of T, we must have the n^ equations

1..J) ^ p p^

^ a'i, jTm,iT\,j=0, S a,n, i Ti_ a = S T^j^ j, a , ^m, A = 0, (??l, \ = 1 , . .
. , p),

i.j 1 = 1 i = l

and, for general values of t, these give

a'i,j = 0, or,„_„i=^'A,A, am,m- = ^\,\' = 0, /Q,„_A = 0, (in^7n', \^\'),

which are equivalent to the results taken above.
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With these vahies we have, as the particular forms of the general

equations of § 385,

Vi + + Vi + ^Vi = 0,

X,, a, Xs, as z, c ^ ,

.

-. s

'Om + ^Vm +7^m =0. (t, 7/1 = 1, . .
. , p).

Let the value on the dissected surface of the left side of the first of these

equivalences be

gi + 5'i' "^si + + 9'p'^i,P>

where
ffi, ..., gp, gi, •-., g'p are integers. Consider now the function

(f>(x,z; a,c) = e '^'"^ ^'•'^'- *'« ' -'p p >

^

wherein Zi, ..., z,. are the places corresponding to x, and Cj, ..., c,. their

positions when x is at a, and z, c are arbitrary places. In virtue of the

equations just obtained it is a rational function of z, and rational in the

place c (cf. Chap. VIII., § 158). Regarded as a function of x it is also

rational ; for the quotient of its values at the two sides of a period loop

of the second kind, which, by what has just been shewn, must be rational in

z, is, by the properties of the integral of the third kind, necessarily of the

form

g27rt (A'ji-i' " + + KpVp ")

where K^, ..., Kp are integers; this quotient, as a function of z, has no

infinities ; being a rational function of z, it is therefore a constant, and

therefore unity, since it reduces to unity when ^r is at c ; hence <f){x, z; a, c),

as a function of x, has no factors at the period loops ; as it can have no

infinities but poles it is therefore a rational function of x; it is similarly

rational in a. As a function of x it vanishes when one of ^j, .,., z^. coincides

with z, that is, when x coincides with one oi x^, .... Xg.

We have therefore the result. Associated tuith any (r, s) correspondence

ivhich can exist upon a perfectly general Rieniann surface, it is possible to

construct a function <p{x, z; a, c), rational in the variable places x, z and the

fixed places a, c, ivhich, regarded as a function of x vanishes to the first order

at the places x^, ..., x^, which correspond to z, and vanishes to order 7 (if 7 be

positive), at the place z ; tvhich, as a function of x, is infinite to the first order

when X coincides with any one of the places a^, ..., a« which correspond to c,

and is infinite to order 7 (7 being positive) luhen x is at c; which, as a function

of z, has similarly (for 7 positive) the zeros z^, ..., Zr, x"* and the poles

Ci, ..., Cr, ay. An analogous statement can be made when 7 is negative.

Ex. i. Some examples may be given to illustrate the form of this rational function.

On a plane cubic curve we do in fact obtain a (1, 4) correspondence, for which y=2,
by taking for the point ^j which corresponds to ;c, the point in which the tangent at

41—2
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X meets the curve a^in, and therefore, for the points j-,, .r,, .r,, .r^ which correspond to a,

the jxiints of contact of tangents to the curs'e drawn from z. The vaUie -y = 2 is obtained

from Abel's theorem, which clearly gives the equation

as representative of the fact that a straight line meets the cm^-e twice at x and once at 2,

.

Denote the equation of the curve in the ordinary symbolical way by ^,^=0 ; then the

equation Az^A,=0, for a fixed position of .r, represents the tangent at x ; and for a fixed

position of 2, represents the jxilar conic of the point z, which vanishes once in the points of

contact, .r^ j-.,, X3, .r^^ of tangents drawn from z and vanishes also twice at z, where it

touches the curve ; then consider the function

AMc.AM.'

when 2, a, c are fixed, this function of .r vanishes to the first order at x^, ^2, ^3, x^ and to

the second order at 2, and is infinite to the first order at the places a^^ a^, a^, a^ which

correspond to c, and infinite to the second order at c ; when 2, a, e are fixed, this function

of 2 vanishes to the first order at z^, and to the second order at x, and is infinite to the

first order at the place c,, which corresponds to a, and infinite to the second order at a.

Ex. ii. More generally for any plane curve of order 7i, and deficiency p, if to a point .r

we make correspond the r= ii — 2 points 2,, ..., 2„_2, in which the tangent at x meets the

curve again, and to a point 2 the s= 2n+ 2p — -i points of contact a"j, ..., x, of tangents

drawn to the curve from 2 (so that, for instance, when the curve has k cusps, k of the

points Xi, ..,, Xg will be the same for all positions of 2), we shall have an (r, s) corre-

spondence for which y= 2. If J ^" = be the equation of the curve, the function

A,-U,
A n-1 J J n-M '

regarded as a function of x, for fixed positions of 2, a, c (of which a and c are not to be

multiple ix)ints), has for zeros the places x^, ..., .r,, z-, for poles the places Cj, ..., a,, c^,

and regarded as a fimction of 2, has for zeros the places z^, ..., z^, x^, and for poles the

places Ci, ..., Cr, a\

Ex. iii. If from a point x a tangent be drawn to a plane curve, and the corresponding

points be the points other than the point of contact, in which the tangent meets the curve

again, we have

/••'^•-l- + 2-^-3' ''»-3+ 2/''''+ jr*'"= 0,

where 2* is the jxjint of contact of one of the tangents drawn from x, there being as many
such equations as tangents to the curve from x ; since the 2/i + 2jo — 4 i»oints 2' lie on the

first polar of x, it follows by Abel's theorem that

therefore

t^''^'^ + 1^'' "' -{-{^n+ ^p-K) v"' ''= 0,

80 that y= 2K + 2/)-8. As a function of 2 the function </> (.r, 2; a, c) has therefore the

(n— 3)(2n-|-2/3-4) zeros 2j, ..., z^, which correspond to x, as well as the zero x, of the

(2?i4-2/3-8)th order, and has as poles the places Cj, ..., c^, which correspond to a, as well

as the zero a, of the (2n -f 2p - 8)th order.

For instance for a plane quartic, there are 10 places corresponding to x, one for each of

the tangents that can be drawn from .r to the curve ; the function (f)(x, z ; a, c), as a
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function of 0, vanishes to the lirst order at each of these ten places, and vanishes to the

sixth order at x ; its infinities are the places similarly derived from the fixed position, a,

of X. We can build up this function in the manner suggested by the use already made of

Abel's theorem in the determination of the value of y ; for a fixed position oi x, let T{z) =
be the equation, in the variable 2, for the ten tangents to the quartic drawn from z ; let

P{z)=0 be the first polar of x ; the quotient

vanishes when z is at the places z^^, ..., z-^^, and vanishes when z is, &t x to order

10-2(2)= 6; let T(^{z), Pa{z) represent what T{z), P(z) become when x is at a ; then

the function of z

T{z)_ / T^
PHZ)I Pa^z)

has the same behaviour as has the function cf) {x, z ; a, c) as a function of z. From this

function, by multiplication by a factor involving x but independent of z, we can form a

symmetrical expression in x and z ; this will be the function (.r, z\ a, c). In fact,

denoting the equation of the quartic curve by Jj.*= 0, and expressing the fact that the line

joining the point x of the curve to the point ( not on the curve should touch the curve,

viz.^ by equating to zero the discriminant in X of {A^+ 'KA^Y — A.^, we obtain an equation

of the form

-1/ le, •*•"] = i^.^-^i? [9 {^^Mi? - IQA.Al .
A,U^],

which represents the tangents to the curve drawn from x. Replacing f by 2, a point on

the curve, so that A/= 0, we have, since AxA/= is the first polar of 07,

T{z)/P^{z) = 9{AM/r-lQA,A/.A,^Ar,
hence

9(A,UJ^Y-16A^A,KA/A,
(j) (x, z ; a, c)=

[9 {AMJ^f - 16J„^/ . Aa'A,] [9 {A^A^y - 16A,A,^ . AMc]

'

Ex. iv. If a (1, 1) correspondence exists, the rational function of x, denoted by

<}>{x, z ; a, c), is of order 7+ 1.

387. A problem of great geometrical interest is to determine the number
of positions oi x, in which x coincides with one of the places Zi, ..., z^, which

correspond to it. This is called the number of coincidences.

A simple way to determine this number is to consider the rational func-

tion of X obtained as the limit when z = x, of the ratio ^ {x, z; a, c)/(x — zy
;

putting

(l>{x; a, c) = lim [<^ {x, z ; a, c)/(x — z}-],

z=x

and bearing in mind that if t be the infinitesimal on the Riemann surface,

dx/dt vanishes to the first order at every finite branch place, and is infinite to

the second order at every infinite place of the surface, we immediately find

from the properties of the function (f)(x, z; a, c), on the hypothesis that none

of the branch places of the surface are at infinity, the following result ; the

rational function of x denoted by </> {x ; a, c) vanishes to the first order at

every place x of the surface at which x coincides with one of the places
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^, , ..., Zr which correspond to it, vanishes also to order 27 at each of the n

infinite places of the surface, and is infinite to order 7 at each of the branch

places of the surface and at each of the places a, c, while it is infinite to the

first order at each of the places c,, ..., Cr which correspond to a, and at each

of the places a^, ..., Og which correspond to c ; hence, denoting the number of

coincidences by C we have

C + 2ny = {2n + 2p - 2) 7 + 27 + ? + s,

so that*
C = r + s + 2py.

The same result is obtained when there are branch places at infinity.

The argument has assumed 7 to be positive ; a similar argument, when 7 is

negative, leads to the same result.

Ex. i. The number, i, of inflexions of a plane cui-ve of order n and deficiency p is

given (Ex. ii. § 386) by

i+h = n-2 + 2n + 2p-A + -ip = S{)i + 2p-2),

where A is the number of coincidences arising other than inflexions, as for instance at the

multiple points of the curve. In determining h it must be remembered that we have not

excluded the possibility of there being fixed }X)sitions of x which correspond to z for all

positions of z ; for instance in the case of a curve with cusps all these cusps have been

reckoned among the places x\, ..., x^ which correspond to z. Therefore for a curve with

K cusps, h will contain a term 2< ; for a curve with only 8 double points and «c cusps, the

formula is the well-known one

i—K= S (m — n),

where tn is the class of the curve, equal to n (;i — 1) - 28 - 3k.

£x. ii. Obtain the expression of the function {x ; a, c) determined by the limit

{A,-^AJ{x-zy.A^-^A,.Aa''-'A,U,,

where A:,''= O^A/'= A„»= A,\ (Cf. Ex. ii. § 386.)

Ex. iii. The numter of double tangents of a curve of order n and deficiency p may be

obtained from Ex. iii. § 386, if we notice that a double tangent, touching at P and Q, will

jirise both when F is a coincidence, and when ^ is a coincidence ; hence if t be the number

of double tangents, and h the number of coincidences not giving rise to double tangents,

we have
2T+ h = 2{n-3){2n + 2p-4) + 2p{2n+ 2p-8)= 4(T{(T+l)-Sp,

where (T= n+p — 3. For instance for a crn-ve with no singular points other than 8 double

points and k cusps, there will be a contribution to h equal to twice the number of those

improper double tangents which are constituted by the tangents to the curve from the

cusps and the lines joining the cusps in pairs. The number of tangents, t, from a cusp is

given (cf § 9, Chap. I., Ex.) by

t+ K-l = 2{n-2) + 2p-2, or t= 2n-5-K + 2p= n^-n-Z-28-3K.

There will not arise any such contribution corresponding to a double jwint, since the two

* This result was first given by Cayley ; see, for references, Ex. iv. below.
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points of the curve that there correspond are different places (of. § 2, Chap. I.) ; hence

we have

and therefore T= 2cr (a + I) - 4p - Kt - ^{k"^ - k)
;

substituting the values for o-, p and t, we find the ordinary formula equivalent to

T= 8+^{m — n) {m + 7i-9),

where m is the class of the curve.

Kv. iv. The points of contact of the double tangents of a quartic curve Jj.'* = lie

upon a ciu-ve whose equation is obtainable by determining the limit, when z= .v, of the

expression

For the result, cf. Dersch, Math. Annal. vii. (1874), p. 497.

For the general geometrical theory the reader will consult geometrical treatises ; the

following references may be given here ; Clebsch-Lindemann-Benoist, Legons sur la Geo-

me'trie (Paris, 1879—1883), t. i. p. 261, t. ii. p. 146, t. iii. p. 76 ; Chasles, Compt. Rendus,

t. LViii. (1864) ; Chasles, Compt. Rendus, t. Lxii. (1866), p. 584 ; Cayley, Compt. Rendus,

t. LXII. (1866), p. 586, and London Math. Soc. Proc. t. i. (1865—6), and Phil. Trans.

CLViil. (1868) (or Coll. Works, v. 542 ; vi. 9 ; vi. 263) ; Brill, Math. Annal. t. vi. (1873),

and t. VII. (1874). See also Lindemann, Crelle, Lxxxiv. (1878) ; Bobek, Sitzber. d. Wiener

Akad., xciii. (ii. Abth.), (1886), p. 899 ; Brill, Math. Aniial. xxxi. (1887), xxxvi. (1890)

;

Castelnuovo, Rend. Ace. d. Lincei, 1889 ; Zeuthen, Math. Annal. XL. (1892), and the

references there given.

Ex. V. If we use the equation (Chap. X. § 187)

nil _ e(z;^»^+|o)e(^"'''+^o)

e («;=^'<' +^Q) e («»'^+|o)

'

where Q is an odd half-period, equal to X + rX' say, X, X' being each rows of p integers, and

form the rational function of x and a,

R {x, a) = li77i^^^ ( - 1)> —i
, ; .

' ^-^

[2e',„ (IQ) . i)i;f^]y [29'^ (|i2) . D^^f
={~\)y ^ '^

,

[(i>{x, z; a, c)l{x-zy (a-cy]:c=z,a=^c

we have
1 1 ,^x, a

. ,
„x, a _ . , a;, a>

e(^.«+ 10)..->'-^'"= [/2(^-,«)fr62"^^"^"'''+
+ ^,,,,.-2.^,^;

)^

which is a generalisation of the equation (i), p. 427.

The function R{x, a) vanishes when x is at any one of the places Cj, ..., c^, which

correspond to a, and when x is at any one of the places a^, ..., «» which correspond to the

position a of the place c ; it vanishes also 2y times at each of the zeros of the function

e(v^'«-l-|i2). It is infinite C times, namely when x has any of the positions in which it

coincides with one of the places z^, ..., Zj. which correspond to it. In the particular case

of Ex. i. p. 427, the function R {x, a) is {x-a)^X{x), and the equation C=r+ s+ 2py

expresses that the number of branch places (where two places for which x is the same

coincide) is 2 (n- l) + 2p.

Ex. vi. Determine the periods of the function of x expressed by

j-fX, a , I r-jX, a
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where .,, ...,;, are the places corresponding to .f, and Cj, ..., tv are the places correspond-

ing to a.

Ex. vii. If there be upon the same Riemann surface two correspondences, an (r, s)

corresiMindence and an (r, s) correspondence, then to any place z will correspond, in virtue

of the first correspondence, the places .i\, ..., .r,, and to anyone of these latter, say.r^, will

correspond, in virtue of the second correspondence, say 2'*, i, .... 2'i,r ; conversely to any

place z will correspond, in virtue of the second correspondence, the places a-j, ..., x^, and

to any one of these latter, say .r,, will corres^wnd, in virtue of the first correspondence,

say 2i,i, ..., Zi^j.) ^^*e have therefore an {r's, rs) correspondence of the points (z, /). In

virtue of the equations

/*•»'''•.» + -l-i;^'-'-''^'-'+yir^''"' = 0, (1=1, ...,5'),

we have

1=1 j=l

Hence* we can make the inference. If upon the same Riemann surface there he txno

correspondences, an {r, s) correspondence ofplaces x, z, and an (r', a') correspondence ofplaces

of, /, then the number of common corresponding pairs of these two correspondences, for which

both X, x' coincide, and also z and z', is

r's+ rs' — 2yy'p.

388. We have so far considered only those correspondences "f"
which can

exist on any Riemann surface. We give now some resultsij: relating to

correspondences which can only exist on Riemann surfaces of special cha-

racter, more particularly (1, 1) correspondences.

We prove first that any (1, s) correspondence is associated with equations

which are identical in form with those which have arisen in considering the

special transformation of theta functions. For any such correspondence, in

which to any place x corresponds the single place z, and to any position of z

the places oc^, ..., cc^, we have shewn that we have the equations (i= 1, ...,p)

wj" * =iri,it;*' ° -f +i/,-_ pvl' ", M= a + TOL, Mr = /9 -I- t/9',

Vi + + Vi ^^i,iV + + ^i,pVp , 2s=^-ra, ^r = -^ + Ta,

hence

SVi = Mi^, 5 V, + +M-,p 2 Vp
»« = 1 w = 1

p
= X Mi^t (Nk,iv]''' + + Xk, pVp ")

k=l

Zz, c
J- z, e

• Provided the (r's, rs') correspondence is not an identity.

t Called by Hurwitz, Werthigkeit-correspoudenzen, 7 being the Werthigkeit.

t For other results, see Klein-Fricke, Modul/unctionen, Bd. 11. (Leipzig. 1892), pp. 540 ff.
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where Zj,,^ is the (i, m)th element of the matrix L, = MN. This matrix is

therefore equal to .9. Now

MNt = M{- ^ + ra ) = - (a + to!) yS + (/S + t^) a = - (a/8 _/3a)+T(/3 a - a'^ ),

which we may write in the form

MN = H + tB, MNt = - A+tH\

if now T = Ti4-iT2, where Tj, r^ are matrices of real quantities, it follows

by equating to zero the imaginary part in the equation

MN-s = H-s + tB = Q

that T2-B = 0; since for real values of rii, ..., n^ the quadratic form T^n^ is

necessarily positive, the determinant of the matrix Tj is not zero ; hence we

must have 5 = 0; hence also H = s and A —0 \ or

oi^ = ^oi, a'^'=^'a, a^' - /3a' = ^'d- a^ = s;

and these equations, with the equation (a + tcl') t = /S + tB', are identical

in form with those already discussed in this chapter (§§ 377, ff.).

We are able then as in the former case to deduce certain conditions

for the matrices a, yS, a!, yS', which in their general form necessarily involve

special values for the matrix t.

389. In particular, in order that a (1, 1) correspondence* may exist,

the roots of the equation
|

ilf — X| = must be conjugate imaginaries of the

roots of the equation |iV— X| = 0, must be all of modulus unity, and must

be roots of the equation
|
A — X,

|

= 0, where A =
( ,^,]- They must there-

fore be roots of unity. For the sake of definiteness we shall suppose p >\
and that A and r are such that the roots of

|

il/ — X
|

= are all different

;

this excludes the case already considered when A =
[

1, )
. Supposing

a (1, 1) correspondence to exist, for which this condition is satisfied, if in

the fundamental equations (t=l, ...,Jj)

Vi" = Mi^^vl''' + + Mi^pvl;"

,

we introduce other integrals of the first kind, say Ff'", ..., Vl''\ where

Fx, a X, a X, a

i
— Cjij 1 1*1 + + Ci^ p Vp

,

and therefore also

F2>
c :., c , ,

•;, c

i
=C,-, 1^1 + +Ci,pVt, ,

* The (1, 1) correspondence for the case ^' = 1 is considered in an elementary way in § 394.

The reader may prefer to consult that Article before reading the general investigation.
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then we can put the fundamental equations into the form

for this it is necessary that X, should be a root of the equation
|

il/ - X
j

= 0,

and that the p quantities c,-.i, ..., c,-,p should be determined from the

equations

under the prescribed conditions the determinant of the matrix c will be

different from zero.

Hence as Xi is a root of unity, it can be shewn, when p>l, that every

such (1, 1) correspondence is periodic, ivith a finite period ; that is, if the place

corresponding to x be z^, the place corresponding to the position z^, of x,

be z.i, the place corresponding to the position z.,, of x, be z^, and so

on, then after a finite number of stages one of the places z-^, z^_, Z3,...

coincides with x. In order to prove this, suppose that all the roots of the

equation
\

M — \\ = are ^'-th roots of unity ; then denoting the place

X by Zo and the place a by Co, the equations of the correspondence may

be written

dv:"'"=Xidvt"'\dv:"'''=\idvr''\ ,dv:"''=\dvr''"';

these give

dV!'''' = \-dV!°'''' = dV;'""'',

and therefore

Ci,i[dvi -dvi ]+ +Ci^p[dVp -dVp \^0;

hence on the dissected Riemann surface we have equations of the form

V^ -Vr =X,. + XiT^, 1+ -^XpTy^p, {r=l, ...,p),

where X^, ..., \p' are integers. Thus either Zh = Zo and c^. = Co, which is the

result we wish to obtain, or else there is a rational function expressed by

^-.x.a -nX-a n i\ I x,(i
,

. / X, a.

enz;.a-\,co-2-'(^i'^ + + ^p% ),

which is of the second order, having z^, Co as zeros and Zo, c^ as poles; now

a surface on which there is a rational function of the second order is

necessarily hyperelliptic (Chap, V. § 55)—but, on a hyperelliptic surface,

for which p >1, of the two poles of such a function either determines

the other, and of the two zeros either determines the other ; it is not

possible to construct such a function whereof, as here, one pole Ct is fixed,

and the other arbitrary and variable (§ 52).

Hence we must have z^. = Zq, and Ck = Cq, which proves the result

enunciated.

There is no need to introduce the integrals V in order to establish this result. It

is known (Cayley, Coll. IVorls, Vol. 11. p. 486) that if Xj, Xg, ... be the roots of the equation

\M-\\ = 0, the matrix M satisfies the equation (J/— Xj) (J/— X.J
= 0; when the roots
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Xj, X.2, ... are different ^-th roots of unity it can thence be inferred that the matrix M
satisfies the equation M^= \', then from the successive equations dv^^'''' = Ifdv^"'"",

^/2. ''2=Mdv^''''\ etc., we can infer do^'" "''^dv^'" "", and hence as before that z^=Zq, Ck=c^y

A proof of the periodicity of the (1, 1) correspondence, following different lines, and

not assuming that the roots of the equation |J/— X|=0 are different, is given by Hurwitz,

Math. Annal. xxxii. (1888), p. 295, for the cases when p>\. It will be seen below that

the cases ^= 0, p= \ possess characteristics not arising for higher values of ji? (§ 394).

390. Assuming the periodicity of the (1, 1) correspondence, we can

shew that all Riemann surfaces upon which a (1, 1) correspondence exists,

can be associated with an algebraic equation of particular form. As before

let k be the index of the periodicity, and let a = e^TJ/^:. \q^ ^^ ^ j^g ^^y

two rational functions on the surface, and let the values of S at the

successive places x, z^, Z2, ••-, ^k-i, ^ which arise by the correspondence be

denoted by S, Si, ..., S/.^^, S, and similarly for T ; then the values of the

functions

s = S+(o-'Si + +ft)-<*-i>>S,_i

t = T+ T,+ + n_,

at the place z,. are respectively

Sr = S,. + (o~^ Sr+i + + ft)~'^~^' S,.+k-i = co's, and t
;

hence it can be inferred (cf. Chap. I., § 4) that there exists a rational

relation connecting s^ and t. Conversely S and T can be chosen of such

generality that any given values of s and t arise only at one place of

the original Riemann surface. Thus the surface can be associated with

an equation of the form

(s\t) = 0,

wherein every power of s which enters is a multiple of k.

Such a surface is clearly capable of the periodic (1, 1) transformation

expressed by the equations

s' = cos, t' = t.

The following further remarkable results may be mentioned *

:

(a) The index of periodicity k cannot be greater than \0 {p — 1).

(/3) When k >^p — 2. the Riemann surface can be associated with an

equation of the form

S'^ = t^c, i^i _ Xf^ {t - cfK

(7) When ^ > 4p — 4, the Riemann surface can be associated with an

equation of the form

s^ = t^i{t- 1/2.

Herein ki, k^, k^ are positive integers less than k.

* Hurwitz, Math. Annal. xxxii. (1888), p. 294.
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391. We can deduce from § 389 that in the case of a (1, 1) correspond-

ence the number of coincidences is not greater than 2p -f- 2. In the case of

a hvperelliptic surface, when the correspondence is that in which conjugate

places— of the canonical surface of two sheets—are the corresponding pairs,

the coincidences are clearly the branch places, and their number is 'Ip + 2;

for all other (1, 1) correspondences on a h}^erelliptic surface, the number of

coincidences cannot be greater than 4.

For, when the surface is not hyperelliptic, let g denote a rational function

which is infinite only at one place Zo of the surface, to an order p + l
;
and

let g' be the value of the same function at the place z,, which corresponds

to Zo ; then the function g' — g is of order 2p + 2, being infinite to order

p + 1 at Zo a^id to order p + 1 at the place z_^ to which Zq corresponds ; now

every coincidence of the correspondence is clearly a zero of g' — g ; thus

the number of coincidences is not greater than 2p + 2. In the case of a

hyperelliptic surface

we may similarly consider the function x — x, of order 4 ;—unless the

correspondence be that given by y = — y, x = x, for which x —x i% identically

zero. We thus obtain the result that the number of coincidences cannot

be greater than 4, except for the (1,1) correspondence y' = — y, x = x.

It can be shewn for the most general possible (r, s) correspondence, associated with the

equations

V'^^'^ + +V^^'^= Mi,y^'''+ +^fi,pl%''', M=a + ra, Mt= ^+t^,

by equating the value obtained for the following integral, taken round the period loops,

/•

to the value obtained for the integral taken round the infinities of the subject of integra-

tion, that the number of coincidences is

C=r+ .--(a„ + + a^p+ /3'„-t- +^pp).

Since 0^ + +^'pp is the sum of the roots of the equation |A-X| = 0, it follows for a

(1, 1) corresix)udence, in which all the 2p roots of |A — X;=0 are roots of unity, that

C^2p+2. For any (r, s) correspondence belonging to a matrix A= ( ^
j

, the same

formula gives C=r+s-\-2py, as already found.

We have remarked (§ 386, Ex. iv.) for the case of a (1, 1) correspondence associated with

a matrix A of the form [J. )
, the existence of a rational fmictiou of order 1 +y. For

any such (1, 1) correspondence, if p be >1, y must be equal to +1 in order that the

number 1 + 1 +2/>y of coincidences may be ;^ 2/> + 2. Thus such a corresiwndence involves

the existence of a rational function of order 2, and involves therefore that the surface be

hyperelliptic. This is also obvious from the fact that such a correspondence is associated

with equations of the form

t;:''=+y«;f"=0, (t = l, ...,p);
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conversely, for y= l, equations of this form are known to hold for any hyperelliptic surface,

associated with the correspondence of the conjugate places of the surface. From the

considerations here given, it follows for p>l that for a (1, 1) correspondence the number

of coincidences can in no case be >2p+ 2.

392. In conclusion it is to be remarked that on any Riemann surface

for which ^ > 1, there cannot be an infinite number of (1, 1) correspondences.

For consider the places of the Riemann surface that can be the poles of

rational functions of order <{p+l) which have no other poles (§§ 28, 31,

34—36, Chap. III.). Denote these places momentarily as ^-places. As

such a (1, 1) correspondence is associated with a linear transformation of

integrals of the first kind, which does not affect the zeros of the de-

terminant A, of § 31, it follows that the place corresponding to a ^-place

must also be a ^-plaee. Now, when the surface is not hyperelliptic, every

f/-place cannot be a coincidence of the correspondence; for we have shewn

(Chap. III., § 36) that then the number of distinct ^-places is greater

than 2p + 2; and we have shewn in this chapter (§ 391) that the number

of coincidences in a (1, 1) correspondence, when p > I, can in no case

be >2p + 2. Therefore, when the surface is not hyperelliptic, a (1, 1)

correspondence must give rise to a permutation among the ^-places ; since

the number of such permutations is finite, the number of (1, 1) corre-

spondences must equally be finite. But the result is equally true for a

hyperelliptic surface; for we have shewn (§ 391) that for such a surface the

number of coincidences of a (1, 1) correspondence cannot be greater than 4,

except in the case of a particular one such correspondence ; since the

number of distinct ^-places is 2p + 2, every (1, 1) correspondence other than

this particular one must give rise to a permutation of these ^-places. As

the number of such permutations is finite, the number of (1, 1) corre-

spondences must equally be finite.

It is proved by Hurwitz* that the number of (1, 1) correspondences,

vfhen p >1, cannot be greater than 84(^9—1). In case p = 3, a surface is

known to exist having this number of (1, 1) correspondences i*.

393. The preceding proof§ (§ 392) is retained on account of its

ingenuity. It can however be replaced by a more elementary proof]: by

means of the remark that a (1, 1) correspondence upon a Riemann surface

can be represented by a rational, reversible transformation of the equation of

the surface into itself Let the equation of the surface be f{x,y) = 0;

let {z, s) be the place corresponding to {x, y) ; then z, s are each rational

functions of x and y such that f{z, s) = ; conversely x, y are each

* Math. Annal. xli. (1893), p. 424.

t Klein, Math. Annal. xiv. (1879), p. 428; Modulfunctionen, t. i., 1890, p. 701.

§ Hurwitz, 3Iath. Annal. xli. (1893), p. 406.

+ Weierstrass, Math. Werke, Bd. ii. (Berlin, 1895), p. 241.
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rational functions of z, s. To give a formal demonstration we may

proceed as follows ; supposing the number of sheets of the Riemann surface

to be n, let Zi, ..., Zn denote the places corresponding to the n places

xf\ ...,a-ll*' for which x = 0, and let z/, ...,/,» denote the n places corre-

sponding to the places a?!*', ..., a?!,"' for which x is infinite ; as a; is a rational

function on the surface we have, for suitable paths of integration (cf Chap.

VIII. § 154)

v^i'""' + + v^,.
.•^,. =0, (i=l,...,p);

i t

hence from the equations

we have

vf''' + + v'r"' = 0, {i=l,...,p);

there exists therefore (Chap. VIII., § 158) a rational function having the

places z^, ..., Znsm zeros, and the places z^', ..., z,,' as poles ; regarding this as

a function of z, s and denoting it by </> (z, s), it is clear therefore that x/(f) (z, s)

is a constant, which may be taken to be 1. Hence x = (f>(z, s), etc.

For the theorem that for p>l the number of (1, 1) correspondences is limited the

reader may consult, Schwarz, Crelle, lxxxvii. (1879), p. 139, or Gesamm. Math. Abhand.,

Bd. II. (Berlin, 1890), p. 285 ; Hettner, Gutting. Nachr. (1880), p. 386 ; Noether, Math.

Annal., xx. (1882), p. 59 ; Poincard, after Klein, Acta Math., vil. (1885) ; Klein, Ueber

Riemann's Theorie u. s. w. (Leipzig, 1882), p. 70 etc. ; Noether, Math. Aiuial, xxi. (1883),

p. 138 ; Weierstrass, Math. Werke, Bd. ii. (Berlin, 1895), p. 241 ; Hurwitz, Math. Annal.,

XLI. (1893), p. 406.

394. In regard to the (1, 1) correspondence for the case p= l, some remarks may be

made. The case^ = needs no consideration here ; any (1, 1) correspondence is expre-ssible

by an equation of the form
Att' + Bt-\-Ct' + D= Q;

thus there exists a triply infinite number of (1, 1) correspondences.

In case p= \, if there be a (1, 1) correspondence, whereby the variable place x

corres^wnds to of, and a, a' be simultaneous positions of x and x\ it is immediately

shewn, if v'' " denote the normal integral of the first kind, that there exists an equation of

the form

wherein ^ is a constant independent both of a and x. From this equation, by supposing x

to describe the period loops, we deduce equations of the form

/x = a + Ta', yLT— fi-'rT^', (l)>

where a, a', /S, ^' are integers. By supposing xf to describe the period loops we deduce

equations of the foiin

l=M(y+ '>'). T= ^(8+ r8'), (ii),

where y, y', 8, 8' are integers. The expression of these integers in terms of o, a', i3,
/3' is
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known from the general considerations of this chapter ; it is however interesting to

consider the equations independently. From the equations (ii) we deduce

8' - ry'= fi (yS'— y'8), 8 — ry= — Tyx (yS' — y'S) ;

if now yS'-y'S= 0, either y' and y are zero, which is inconsistent with 1 =/i (y+ ry'), or else

r is a rational fraction ; it is known that in that case the deficiency of the surface is not 1

but ; we may therefore exclude that case ; if yS' — y'S be not zero, we have

8' -Ty'
,

Ty-8
,

yo —y o yd —y o

hence, unless t be a rational fraction, we have

1 fl' Z^-a
yb' — y'S ' yS' — y'S ' yS' — y'S ' yS'— y'S

and therefore

l=(a/3'-a'^)(yS'-y'S);

thus a^' — a 13= yS' - y'S= + 1 or - 1 ; let e denote their common value ; then we deduce

S'= €a, y'= — a'e, y= ^'e, S= — /3e
;

by these the equations (ii) lead to

that is, to the equations (i).

Further, from the equations (i) we deduce in turn

rV+ r(a-/3')-/3 = 0, /a2-/x (a + ^') + e= 0,

so that jj, is a root of the equation

a-fi (3 1=0;

a f^'-fx \

now if a be zero, the first of equations (i) gives /x= a, and, therefore, as r cannot be

the rational fraction j3/(a — /3'), the second of equations (i) gives a= /3', /3= ; the equations

^=a= /3', a'= = O, a^-a^= e

give fi^=e, or, since fi, =a, is an integer, they require €= +1 and /i=+l or /x=— 1; the

equations corresponding to /x= + 1 and fi= —1 are

-ijx-.a'^yx.a and -«;^''«' + v^'«= 0;

these do belong to existing correspondences—of the kind considered in §§ 386, 387, the

coefficient y being ±1*. But they differ from the (1, 1) correspondences which are possible

whenp>l, in each containing an arbitrary parameter ;

if next, a be not zero, the equation for t gives

2ra' =-{a-l3')± \/(a+ /3')2 - 4f

,

so that, as r cannot be real, we must have

(a+ ^')2-4e<0,

* For instance, on a plane cubic curve, the former equation is that in which to a point of

argument u we make correspond the point of argument « + constant ; the line joining these two

points envelopes a curve of the sixth class, which in case the difference of arguments be a

half-period becomes the Cayleyan, doubled ; while the latter equation is that in which we

make correspond the two variable intersections of a variable straight line passing through a

fixed point of the cubic.
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and this shews that, in this case also, f = 1. Hence the equations are reduced to precisely

the same form as those already considered for the special transformation of theta functions

(§ 383) ; and the result is that the only special surftices, having p= \, for which there exists

a (1, 1) correspondence are those which may be associated with one of the two equations

f= 4.1-3 _ g^-^ y^= ^3fi-g^;

the former has the obvious (1, 1) correspondence given by .r'= -.r, y'^iy, the latter has

the obvious correspondence given by x'= e 3 .t-, y'=y ; the index of periodicity is 2 in the

former case and 3 in the latter case.

Ex. Consider the (1,2) correspondence on a surface for whicli /) = 1 in a similar way.

For the equation
y2= 8.r''-15.r+7

shew that a (1, 2) correspondence is given (cf. Ex. ii. § 383) by

c>f_ ^ 9 i^J2x'^-2x-l
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CHAPTER XXII.

Degenerate Abelian Integrals.

395. The present chapter contains references to parts of the existing

literature dealing with an interesting application of the theory of trans-

formation of theta functions.

It was remarked by Jacobi* for the case p = 2, that if the fundamental

algebraic equation be of the form

y"^ = x{cc — \){x — k){x — \) {x — kX),

an hyperelliptic integi-al of the first kind is reducible to elliptic integrals

;

in fact, putting ^ = x + kX/x, we immediately verify that

(x ± V/eX) dx _ d^

's/x (x - 1) (x - k) (x -X) (x - kX) ^/(^+2^kX)(^-1-kX)(^-k-X)

396. Suppose more generally that for any value of p there exists an

integral of the first kind

[/ = XjKi + + XpUp

,

wherein u^, ...,Up denote the normal integrals of the first kind, which is

reducible to the form
d^

k
-R(^) being a cubic polynomial in ^, such that ^ and ^R{0 ^I'e rational

functions on the original Riemann surface; then there exist p pairs of

equations of the form

\i = 6/Il-a/n', XiT,-,i+ +Xpri,p = -hiD. + aiil', {i=l,...,p),
.

wherein cii, hi, al , hi are integers; we may suppose O' to be chosen so that

the 2p integers

(X\ , • . • , Uip , tt'i I • • • > '^p

have no common factor and so that

ai&/ -I- tta^o' + + ctphp — ciihi — a2 h2 — — cip'hp = r,

* Crelle, viii. (1832), p. 416.

B. 42
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where r is a positive integer; we assume that r is not zero. Eliminating

the quantities \,, ...,\p, and putting w = 117^, we have the p equations

hi+ 6/t,-,i + ... +hp'Ti^y = o){ai + a,' T;^i+ ... + Vt;,^), (t = l, ...,p);

if therefore the matrix of integers, A = f ", ^J , of 2p rows and columns,

wherein the first column consists of the integers fij, ..., a^' in order, and the

(p + l)th column consists of the integers b^, ..., bp in order, be determined

to satisfy the conditions for a transformation of order r,

aa' = aa, y9/3'-y9'/3, a^'-a/3 = r,

(§ 420, Appendix II.), then it immediately follows from the equation for

the transformed period matrix t', namely

(a + Ttt') r' = ^ + TyS',

that t'h = ft), t'io = 0, ,.., r\p = 0; to see this it is sufficient to compare the

elements of the first columns of the two matrices /3 + t/3', (a + Ta')r'. In

other words, when there exists such a degenerate integral of the first kind as

here supposed, it is possible*, by a transformation of order r, to arrive at

periods t' for which the theta function ^ (tu, r' \q) is a product of an elliptic

theta function, in the variable w^, and a theta function of (p—l) variables,

IVo, ...,Wp.

397. It can however be shewn that in the same case it is possible by a

linear transformation to arrive at a period matrix r" for which

t"i3 = 0, t"i4 = 0, . .
.

, t'\p = 0,

while t"i.2i = 1/^', is a rational number. We shall suppose "f two rows x, x

,

each of p integers, to be determined satisfying the equations

ax — ax = 1, bx — b'x = 0,

such that the 2p elements of rx—b, rx —b' have unity as their greatest

common factor, a denoting the row a^, ..., Op, etc., and suppose (§ 420) a

matrix of integers, of 2/) rows and columns,

\j' 8') \a',rx'-b', ... x',...j

to be determined, satisfying the conditions for a linear transformation,

77' =7 7, 8h' =h'h, 78—78 = 1,

wherein the first column consists of the elements of a and a! , the second

column consists of the elements of rx — b and rx —b', and the (j;) + l)th

• This theorem is due to Weierstrass, see Konigsberger, Crelle, lxvii. (1867), p. 73 ; Kowal-
evski, Acta Math. iv. (1884), p. 395. See also Abel, (Euvres, t. i. (1881), p. 519.

t The proof that this is possible is given in Appendix II., § 419. It may be necessary, before-

hand, to make a linear transformation of the periods ti, Q'.
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column consists of the elements of os and x ;
the conditions for a linear trans-

formation, so far as they affect these three columns only, are

a {rx — h') — a (rx — h) = 0, ax — ax = 1, (ra; — h)x' - {rx —b')x = 0,

and these are satisfied in virtue of the equation ab' — a'b = r. Then the

equation for the transformed period matrix r", namely

(7 + T7') t" = S + tS',

leads to r'^g, 1 = 0, . ,
.

, t"^, 1 = if only the p equations

[7t, 1 + ('^7')*; 1] t"i, 1 + Wi, 2 + (t7'X-, 2] t"2,
1 = K 1 + {'^^\ 1

.

(*' = 1 , • • • , i^),

which are obtained by equating corresponding elements of the first columns

of the matrices h + rS', (7 + T7') r", are satisfied ; these p equations are

included in the single equation

t"i, 1 \a 4- Ta''\ + t"o, 1
[rx — b + r (rx — b')] = x + rx,

and are satisfied* by t"i,i = (0/7% t\i = 1/r ; for we have, as the fundamental

condition, the equation

a){a + Ttt') = b + rb'.

398. It follows therefore in case jj = 2 that the matrix r" has the form

hence it immediately follows that beside the integral of the first kind already

considered, which is expressible as an elliptic integral, there is another

having the same property. In virtue of the equations here obtained the first

integral having this property can be represented, after division by fl, in the

form

U={b' -rT'\,^a')u,

where u denotes the row of 2 integrals u^, Uo, ; consider now the integral

V = \rt' — ft' — rr''^^^ {rx — 6')] u,

where t! is a row of two elements, these being the constituents of the first

column of the matrix h' ; the periods of V at the first set of period loops are

given by the row of quantities

rt' — a — tt'o^o (rx' — b'),

* See Kowalevski, Acta Math. iv. (1884), p. 400 ; Picard, Bulletin de la Soc. Math, de France,

t. XI. (1882—3), p. 25, and Cowpt. Rendus, xcii. xciii. (1881); Poincare, Bulletin de la Soc. Math,

de France, t. xii. (1883—4), p. 124 j Poincar^, American Journal, vol. viii. (1886), p. 289.

42—2
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and are linear functions of the two quantities 1, rr'^a; the periods of Fat

the second set of period loops are given by

[t (rf - a')]i - rr\,[r (r^''' - b')]i, (i = 1, 2)

;

now the equation (7 + T7') t" = 8 + tS' gives

(7 + ry\, r\, + (y + Ty\, r\, = (S + tB\„ {i = 1, 2),

and hence we have

T*i,2 [a + Ta'] + t"2,2 [rx -b + r {rx - 6')] = t + rt'

,

where t is the row formed by the constituents of the first column of the

matrix h ; therefore, as t\^^ = 1/r, the periods of V at the second set of

period loops are expressible in the form

- {rt - a)i + rr".,^ {rx - h)i, {i=\, 2),

and these are also linear functions of the two quantities 1, rr"„^,,. Hence it

may be inferred that the integral V is reducible to an elliptic integral.

399. It has been shewn in the last chapter that for special values of the

periods t there exist transformations of the theta functions into theta func-

tions for which the transformed periods are equal to the original periods. It

can be shewn* that for the special case now under consideration such a

transformation holds. Suppose that a theta function ^, with period r, is

transformed, as described above, into a theta function <^, with period t , for

which t\,o=0= ... = r'lp, by a transformation associated with the matrix

t Q,)'i suppose further that there exists, associated with a matrix

H={ , ,j, a transformation whereby the theta function <^ is transformed

into another theta function with the same period t' ; then it is easy to prove

that there exists a corresponding transformation of the theta function ^
whereby it becomes changed into a theta function with the same period t,

namely the transformation is that associated with the matrix

(f 9\_(^ ^\ A mU ^ -^\.
\f 9') W/3VU' /^7V-a' a)'

to prove this it is only necessary to shew that the equations

(\ + t'\') t =fi + r'fju', {a + to!) t' = /S + ryS'

give the equation

(f+'^f')T=g + rg'.

* Wiltheiss, Math. Aiiual. xxvi. (18S6), p. 127.
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Hence it follows that in order to determine a transformation of the function

^ which leaves the period t unaltered, it is sufficient to determine a trans-

formation of the function which leaves the period t' unaltered; this

determination is facilitated by the special values of t'i,2, •••, t'i,p] and in

fact we immediately verify that the equation (X, + t'V) t' = /x + t'/m is satisfied

by taking V = yu, = and by taking each of X and fx' to be the matrix in

which every element is zero except the elements in the diagonal, each of

these elements being 1 except the first, which is — 1.

400. Thus for the case p = 2, supposing r = 2, the original function ^ is

transformed into a theta function with unaltered period r, by means of the

transformation of order 4 associated with the matrix,

a ^\ fm 0\
j
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and by means of the relations expressing the constants of the fundamental

algebraic equation in terms of the zero values of the even theta functions* it

can be shewn that this is equivalent to the condition that the fundamental

algebraic equation may be taken to be of the form

y" = X {x —\){x—k){x — \) (x — k\),

so that the case obtained by Jacobi is the only one possible for transformations

of the second order.

In the same case of p = 2, r = 2, the same result follows more easily from

the existence, deduced above, of a complex multiplication belonging to a

transformation of the first order. For it follows from this fact that the

algebraic equation can be taken in a form in which it can be transformed

into itself by a transformation in which the independent variable is trans-

formed by an equation of the form

and this leads-f to the form, for the fundamental algebraical equation,

which is immediately identified with the form above by putting

x = \/~^{z-\-l)l{z-l),

the quantities a, b, c being respectively

Similarly for jj =3, when the surface is not hyperelliptic, it can be .shewnj

from the relations connecting the theta functions when a theta function is the

product of an elliptic theta function and a theta function of two variables,

that the only cases in which an integral of the first kind can be reduced to

an elliptic integral are those in which the fundamental algebraic equation

can be taken to be of the form

y/x{Ax + By) + \/y{Gx + Dy) + '^l + Fx + Gy = 0.

The Riemann surface associated with this equation possesses a (1, 1) corre-

spondence given by the equations

^ = -xl{\^Fx+Gy), 'n
= -y/{l+Fx + Gy).

* Of. Ex. V. p. 341. By means of the substitution x = Cj + (aj - Cj)^, the branch places can be

taken at ^= 0, 1, k, X, /u, wherein, if Cj, Oj, Co, a^, c be real and in ascending order, 0, 1, k, \, /*

are in ascending order of magnitude. For complete formulae, when the theta functions are

regarded as primary, and the algebraic equation as derived, see Rosenhain, Mem. p. divers

Savants, xi. (1851), p. 416 fif.

+ Wiltheiss, Math. Annal. xxvi. (1886), p. 134.

X Kowalevski, Acta Math. iv. (1884), p. 403.
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Math. Soc. vol. xxiii. (1892), p. 173.
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Hermite, Ann. de la Soc. Scient. de Bruxelles, 1876, and Burkhardt, Math. Annal. xxxvi.

(1890), p. 410. For the case p= 2, and a transformation of the fourth order, see Bolza,

Ueher die Reduction hyperelliptischer Integrale u. s. w., Gotting. Dissertation (Berlin,

Schade, 1885), or Sitzungsher. der Naturforsch. Ges. zu Freiburg (1885). The paper of

Kowalevski {Acta Math, iv.) deals with the case of a transformation of the second order for

p = Z. See further the references given in this chapter, and Poincar^, Compt. Rendus,

t. xcix. (1884), p. 853 ; Biermann, Sitzungsher. der Wiener Akad. Bd. Lxxxvii. (ii. Abth.)

(1883), p. 983.
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APPENDIX I.

Ox Algebraic Curves in Space.

404. Given an algebraic curve (C) in space, let a point be found, not on the curve,

such that the number of chords of the curve that pass through is finite ; let the cui've

be projected from on to any arbitrary plane, into the plane curve (/), and referred to

homogeneous coordinates ^, tj, t in that plane, whose triangle of reference has such a

position that the curve does not pass through the angular point rj, and has no multiple

points on the line t= 0; let the curve (C) be referred to homogeneous coordinates |, j], (, t

of which the vertex f of the tetrahedron of reference is at 0. Putting x=^jt, y= ^/r,

z= C!t, it is sufficient to think of .r, y, 2 as Cartesian coordinates, the point being at

infinity. Thus the plane curve (/) is such that y is not infinite for any finite value of x,

and its equation is of the form /(y, .r)=y"' + Jiy'"~i+ +J,„= 0, where A^,,..,A,n

are integral polynomials in x ; the curve (C) is then of order m; we define its deficiency

to be the deficiency of (/) ; to any point (.r, y) of (/) corresponds in general only one

point {x, y, z) of (C), and, on the curve (C), z is not infinite for any finite values of .r, y.

Now Isii f {i/) = df {y, x)fdy ; let (^ be an integral polynomial in x and y, so chosen

that at every finite point of (/) at which f'{y)= 0, say at x=a, y= h, the ratio

{x-a.)<pif' (y) vanishes to the first order at least ; let a=n {.v-a) contain a simple factor

corresponding to every finite value of x for which /' {y) = 0; let y^, ...,y,n be the values

of y which, on the cvu-ve (/), belong to a general value of .r, so that to each pair (x, y^
there belongs, on the curve (C), only one value of z ; considering the summation

^ (c-yi) (c-y„.)

i=i c-yi "L;"0/)i=''i'

where c is an arbitrary quantity, we immediately prove, as in § 89, Chap. YL, that it

has a value of the form
a (C"'-1 i^i + C'»"2 ?^2 + + 2'm).

where Uj,...,m„, are integral polynomials in .r; putting yi for c, after division by a, we
therefore infer that z can be represented in the form

2= ^14),

where 0, >//• are integral jwlynomials in x and y, whereof </> is arbitrary, save for the

conditions for the fractions {x - a) (f>l/' (y). This is Cayley^s monoidal expression of a

curve in space with the adjunction of the theorem, described by Cayley as the capital

theorem of Halphen, relating to the arbitrariness of (Cayley, Collect. Worls, Vol. v. 1892,

p. 614).
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It appears therefore that a cvirve in space may be regarded as ai'ising as an

interpretation of the relations connecting three rational functions on a Riemann siu-face

;

and, within a finite neighbourhood of any point of the curve in space, the coordinates

of the points of the curve may be given by series of integral powers of a single quantity t,

this being the quantity we have called the infinitesimal for a Riemann surface; to

represent the whole curve only a finite number of different infinitesimals is necessary.

More generally the representation by means of automorphic functions holds equally well

for curves in space. And the theory of Abelian integrals can be developed for a curve

in space precisely as for a plane curve, or can be deduced from the latter case; the

identity of the deficiency for the curve in space and the plane curve may be regarded as

a corollary. Also we can deduce the theorem that, of the intersections with a curve in

space of a variable surface, not all can be arbitrarily assigned, the number of those whose

positions are determined by the others being, for a surface of sufficiently high order, equal

to the deficiency of the curve.

Ex. If through JO - 1 of the generators of a quadric surface, of the same system, a

surface of order jo+ 1 be drawn, the remaining curve of intersection is representable by

two equations of the form

where (.r, 1)2;) + 2 is an integral polynomial in x of order 2/9 + 2, and ?ij, u^ are respectively

linear and quadric polynomials in x and y.

For the development of the theory consult, especially, Noether, Ahh. der Akad. zu

Berlin vom Jahre 1882, pp. 1 to 120 ; Halphen, Journ. £cole Polyt., Cah. lii. (1882),

pp. 1—200; Valentiner, Acta Math., t. 11. (1883), pp. 136—230. See also, Schubert,

Math. Annal. xxvi. (1885); Castelnuovo, Rendiconti della R. Accad. dei Lincei, 1889;

Hilbert, Math. Annal., xxxvi. (1890).
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APPENDIX 11.

On Matrices*.

405. A SET of n quantities

(Xj, ..., Xn)

is often denoted by a single letter .r, which is then called a row letter, or a column letter.

By the sum (or difference) of two such rows, of the same number of elements, is then

meant the row whose elements are the sums (or differences) of the corresponding elements

of the constituent rows. If m be a single quantity, the row letter mx denotes the row

whose elements are mx-^, ..., mx^. If .r, y be rows, each of n quantities, the symbol xy

denotes the quantity x^^+ + .r,^„.

406. The set of n equations denoted by

'^'i= «t.ili + + ai,p^p, (i= l,
, «)

where n may be greater or leas than p, can be represented in the foiTu .r= a|, where a
denotes a rectangular block of np quantities, consisting of n rows each of p quantities,

the r-th quantity of the i-th row being a^,.. Such a block of quantities is called a

TTuitrix ; we call a^, , the (t, r)th element of the matrix. The svmi (or diflFerence) of two

matrices, of the same number of rows and columns, is the matrix formed by adding (or

subtracting') the corresponding elements of the component matrices. Two matrices are

equal only when all their elements are equal ; a matrix vanishes only when all its

elements are zero. If ^j, . .
. , ^p be expressible by m quantities A'j , . .

.
, X,n by the equations

kr= br,i''^l + + hr,mXm, {r=\, 2,
,
jo),

so that ^= bX, where 6 is a matrix of/) rows and in columns, then we have

''«= ^i,i'^'i + + Cj,„,A'„„ (i= l, , n),

or .r=cA', where

, , /i= l, ,»\
'^^*=«'-i^'- + +«.-.p^.-

(,^1, ,„J.

* The literature of the theory of matrices, or, under a slightly different aspect, the theory of

bilinear forms, is very wide. The following references may be given : Cayley, Phil. Trans. 1858,

or Collected Works, vol. ii. (1889), p. 475 ; Cayley, Crelle, l. (1855) ; Hermite, Crelle, xlvii.

(1854) ; Christoffel, Crelle, lxiii. (1864) and lxviii. (1868) ; Kronecker, Crelle, lxviii. (1868) or

Gesam. Werke, Bd. i. (1895), p. 143 ; Schlafli, Crelle, lxv. (1866) ; Hermite, Crelle, lxxviii.

(1874) ; Rosanes, Crelle, lxxx. (1875) ; Bachmann, Crelle, lxxvi. (1873) ; Kronecker, Bert.

Monatsber., 1874; Stickelberger, Crelle, lxxxvi. (1879); Frobenius, Crelle, lxxsiv. (1878),

Lxxxvi. (1879), Lxxxviii. (1880) ; H. J. S. Smith, Phil. Trans., CLi. (1861), also, Proc. Lond. Math.

Soc, 1873, pp. 236, 241 ; Laguerre, J. d. Vec. Poly.,t. xxv., cab. xlii. (1867), p. 215 ; Stickelberger,

Progr. poly. Schule, Ziirich, 1877; Weierstrass, Berl. Monats. 1858, 1868; Bi'ioschi, Liouville,

XIX. (1854) ; Jordan, Compt. Rendus, 1>*71, p. 787, and Liouville, 1874, p. 35 ; Darboux, Liouville,

1874, p. 347.
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Ci, 3 being the (i, s)th element of a matrix of n rows and m columns ; it arises from the

equations x= a^, ^= bX, whereof the result may be written x= abX; hence we may
formulate the rule : A matrix a ma^ be multiplied into another matrix b provided the

number of coluiniis of a be the same as the number of rows of b ; the (i, s)th element of the

resulting matrix is the result of multiplying, in accordance with the rule given above, the

i-th roto of a by the s-th column of h. Thus, for multiplication, matrices are not generally

commutative, but, as is easy to see, they are associative.

The matrix whose {i, s)th element is Cg^i, where Cg^i is the {s, /)th element of any

matrix c of n rows and m columns, is called the transposed matrix of c, and may be

denoted by c ; it has m rows and n columns, and, briefly, is obtained by interchanging the

rows and columns of c. The matrix which is the transposed of a product of matrices is

obtained by taking the factor matrices in the reverse order, each transposed ; for example,

if a, b, c be matrices,

abc=cba.

407. The matrices which most commonly occur are square matrices, having an equal

number of rows and columns. With such a matrix is associated a determinant, whose

elements are the elements of the matrix. When the determinant of a matrix, a, of p rows

and columns, does not vanish, the p linear equations expressed by x= a^ enable us to

represent the quantities ii, ...,$pin terms oi x\, ..., Xp ; the result is written ^= a-^x, and
a~^ is called the inverse matrix of a ; the (i, ?')th element of a~i is the minor of a^ ^ in

the determinant of the matrix a, divided by this determinant itself. The inverse of a

product of square matrices is obtained by taking the inverses of the factor matrices in

reverse order ; for example, if a, b, c be square matrices, of the same number of rows and
columns, for each of which the determinant is not zero, we have

(a6c)-i= c-i&-ia-i.

The inverse of the transposed of a matrix is the transposed of its inverse ; thus

The determinant of a matrix a being represented by
|
a

|

, we clearly have
|
a6

|

=
|
a

|

\b\.

408. Finally, the following results are of frequent application in this volume : (i) If a
be a matrix of % rows and p columns, and ^ a row of p quantities, the symbol a| denotes

a row of n quantities ; if 77 be a row of n quantities, the product of these two rows, or

i<^i)in)j is denoted by a^rj. When n=p this must be distinguished from the matrix
which would be denoted by a . ^rj—this latter never occurs. We have then

n p
a$r]= '2 2ai^,.$,.T}i,

and this is called a bilinear form ; we also clearly have the noticeable equation

a$ri = arj^
;

(ii) if 6 be a matrix of n rows and q columns, the product of the two rows a|, br}, wherein 77

is now a row of q quantities, is given by either (ba) ^rj or (ab) r]^, so that we have

a^.br) = ba^T) = dbr)^.

The result of multiplying any square matrix, of p rows and columns, by the matrix E,

of p rows and columns, wherein all the elements are zero except the diagonal elements,

which are each unity, is to leave the multiplied matrix unaltered. For this reason the

matrix E is often denoted simply by 1, and called the matrix unity of p rows and
columns.
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409. Ex. i. If a bilinear form axy, whereiu x, y are rows of p quantities, and a is a

square matrix of p rows and column.s, be transformed into itself by the linear substitution

X— li^, y = iSr), where R, ^ are matrices oip rows and columns, then ali^ . Sr)= a^j] ; hence

SaR= a.

Ex. ii. If h be an arbitrary matrix of jo rows and columns, such that the determinants

of the matrices a ±h do not vanish, and the determinant of the matrix a do not vanish,

prove that
(a + /e)a~' {a-h)=a-ha~^ h = {a — k) a~ ^ {a + h)

;

hence shew that if

R=::a-^{a-h){a+ h)-^a, S=a {a - hy^ {a+ h) a'

\

the substitutions x= R^, y= Si) transform ax-y into a^rj.

For a substitution in which R= S see Cayley, Collected Works, vol. ii. p. 505. Cf. also

Taber, Amer. Journ., vol. xvi. (1894) and Froc. Lond. Math. Soc, vol. xxvi. (1895).

Ex. iii. The matrices, of two rows and columns,

give E^= E, J'^= -E ; and the determinant of the matrix

vanishes, for real values of .f, y, only when .i — 0, y = 0.

Ex. iv. The matrices, of four rows and columns,

(010 Ov / OlOv
-10 ,

J
J 00 1 , j^^

-1 / V -1 /

1 ^0-100
give j^^=J2^=j^^=-e, j-Ji=-JzJ2=Ji, JiJi= -JiJz=J2y JiJ2= -J2Ji=J3^ JiJtJz=-^-

Hence these matrices obey the laws of the fundamental unities of the quaternion

analysis. Further the determinant of the matrix

— x^ — X2

which is equal to (x'^+ .v^^+x^^+x^^)'^, vanishes, for real values of x, x\, X2, o-g, only when

each of X, Xj, x^y x^ is zero. (Frobenius, Crelle, lxxxiv. (1878), p. 62.)

410. In the course of this volume we are often concerned with matrices of 2p rows

and 2p columns. Such a matrix may be represented in the form

6N

k: .)•

wherein a, b, c, d are square matrices with p rows and columns ; if fi be another such

matrix given by

'^=W d')
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the {i, r)th element of the product /i'/x, when i and r are both less than ^ + 1 is

^'i, 1 '^1, r+ +<^'i,p (^p,r+ ^'i, 1 "^1, r+ + ^'i,p <^p,rj

and this is the sum of the (r, r)th elements of the matrices a'a, h'c ; similarly when i and r

are not both less than jo+ 1 : hence we may write

/a' h'\ fa h\ _ /a'a+ h'c , a'b + h'd\

\c' d'J \c d) ~ \c'a-\-d'c, c'b + d'dj'

the law of formation for the product matrix being the same as if a, b, c, d, a', b', c', d' were

single quantities.

Kt. Denoting the matrices (^ , ) , (, ~^) respectively by 1 and 7, the matrices of

Ex. iv. can be denoted by

a 0\ . /-/0\ . / 1\ •

f
^ -A

\-j or1
•h=[ Q, J2-

1\ .

411. We proceed now to prove the proposition* assumed in § 333, Chap. XVIII.

Retaining the definitions of the matrices A^, B, C, D there given, and denoting

Ajc~^, B~^, C'~i, Z)-i respectively by 0^., h, c, d, we find

and

b= { 1

1

1

1

-1

1

1

1

ak= Ak, so that ^^^= 1,

), c= { 1 1

1

1

1

1

1

1

1

1 10
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be formed ; the resulting matrices will differ from A in respects which are specified in the

following statements

:

(i) a* interchanges the first and ^*-th columns (of A), and, at the same time, the

(p + l)th and (p+ k)ih columns (l<^<jo+ l). For the sake of uniformity we introduce

also Cj, =1.

(ii) b interchanges the first and (/i + l)th columns, at the same time changing the

signs of the elements of the new first column.

(iii) c adds the first column to the (jo+ l)th.

(iv) d adds the first and second columns respectively to the {p + 2)ih and

the (ji>+ l)th.

Hence we have these results : if the matrices denoted by the following symbols be

placed at the right side of any matrix A, of 2p rows and columns, so that the matrix

A acts upon them, the results mentioned will accrue :

—

lic
= aifi^a,iy changes the signs of the ^--th and {p+ k)th columns (of A),

tic
= aicba,i, interchanges the ^--th and {p+ k)th. columns (of A), giving the new ^--th

column an opposite sign to that it had before its change of place,

^i= aj6%i, interchanges the ^-th and {p+ k)th columns, giving the new {p+ k)th.

column a changed sign.

mic=aib^cb-aic, adds the I'-th coliunn to the {p+ k)th.

m\=aicb^cbcb^a)c= a]cb^c~^b-afc, subtracts the ^-th column from the {p + l-)th.

n^.z=aicb^cbcaic= aicbc~^b^a)c, adds the {p+k)th column to the /r-th.

n'ii= a)cb^cba^, subtracts the {p + l:)th column from the ^--th.

gr,i— <^r(^iO,^'^^dba.^aga,fif, subtracts the s-th column from the r-th, and, at the same

time, adds the {p + r)th. column to the (/;+ 5)th.

g'r,i= <^rC'"f'fi-^db^o,^fL<f.r^ adds the s-th column to the ?--th, and, at the same time,

subtracts the (jo+ r)th from the (p+s)th column,

/r, «= ^«5'r, /«> adds the (/; + /')th and (jo-l-s)th columns respectively to the s-th and

'/•-th columns.

f'r,a= h^r,^aj subti'acts the {p+ r)t]i and (jo-i-s)th columns respectively from the s-th

and r-th columns.

To this list we add the matrix a^, whose effect has been described, and the matrix 6^^

which changes the sign both of the first and of the (^-M)th columns; then it is to be

shewn that a product, P, of positive integral powers of these matrices, can be chosen such

that, if A be any Abelian matrix of integers, given by

U)- where afi= ^d, a'^'=ffa, a/3'-^d' = l,

the i)roduct aP is the matrix unity—of which every element is zero except those in the

diagonal, each of which is 1. Hence it will follow that ft=P~^ ; n.amely that every such

Abelian matrix can be written as a product of positive integral powers of the matrices

A)c, B, C, D. Up to a certain point of the proof we shall suppose the matrix A to be

that for a transformation of any order, ;•.

In the matrices a^, a,., a,, each of k, r, s is to be <j5+l ; and in general each of

/•, r, s is >1 ; but for the sake of uniformity it is convenient, as already stated, to

introduce a matrix aj = 1 ; then each of /•, r, s may have any positive value less than /? 4-1.
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412. Of the matrix A we consider first the first row, and of this row we begin with

the ^-th and 2p-th. elements, a^^p, ^j, p ; if the numerically greater of these elements be

not a positive integer, use the matrix Ip to make it positive*—form, that is, the product

Alp. Then, let y be the greater, and 8 the less of these two elements; if 8 is positive,

use the matrix 7n'p or the matrix n'p, as many times as possible, to subtract from y the

greatest possible multiple t of 8 (i.e. if v be the matrix upon which we are operating, =A
or =Alp, form one of the products v{m'pY, v {n'p)') ; if S is negative, use nip or Up to add
to y the greatest possible multiple of S ; so that, in either case, the remainder, y,
from -y, is numerically less than 8 and positive. Now, by the matrix Ip, take the element

8 to be positive f ; then again, by application of rrip or tip or m'p or n'p replace 5 by a

positive quantity numerically less than y. Let this process alternately acting on the

remainder from y and S, be continued until either y or 8 is replaced by zero. Then use

the matrix tp or t'p to put this zero element at the 2jD-th place of the first row of the

matrix. A', which, after all these changes, replaces A.

Let a similar process of alternate reduction and transposition be applied to A', until

the (1, 2/»-l)th element of the resulting matrix is zero. And so on. Eventually we
arrive, in continuing the operation, at a matrix instead of A, in which there is a zero in

each of the places formerly occupied ^J (^i,i, j/^i,
p-

Now apply the processes given by b"^, Ip, g^^p, gp^^, and eventually a^, if necessary, to

reduce the {I, p)th. element to zero. Then the processes V^, ip-i, gi,p-i, gp-i,i, «p_i, as

far as necessary, to reduce the (1, ^-l)th element to zero; and so on, till the places,

which in the original matrix were occupied by ai,2, ..., a^^p, are all filled by zeros.

Consider now the second row of the modified matrix. Beginning with the (2, ^)th and

(2, 2p)th. elements, use the specified processes to replace the latter by a zero. Next
replace, similarly, the (2, 2jo-l)th element by a zero; and so on, finally replacing the

(2, jo + 2)th element by a zero. The necessary processes will not affect the fact that all

the elements in the first row, except the (1, l)th element, are zero. Next reduce the

elements occupying the (2, ^)th, ..., (2, 3)th places to zero.

Proceeding thus we eventually have (i) the (r, s+p)th. element zero, for every r<p and
every s<p, in which s>r, (ii) the (r, s)th element zero, for every r<p and every s<p, in

which s>r. In other words the matrix has a form which may be represented, taking jo= 4,

by the matrix p,

P= ( n
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for greater generality supposed primarily to be associated with a transformatiou of order r,

the value r=l being introduced later, the determinant of the matrix is ±rP (§ 324, Ex. i.)

and is not zero ; hence comparing in turn the 1st, 2nd, ..., rows of the matrices a^ and /3d

we deduce that in the matrix p the elements ^2i> ^su ^32 ^ ... of the matrix /iJ which are on

the left side of the diagonal tire also zero ; thus, in p, every element of the matrix ^ is zero.

Apply now to the matrix p the relation

a^'-/3d'= r,

which in this case reduces to aff= r. Then it is immediately found that the elements of

the matrix /3' which are on the left side of the diagonal are also zero—and also that

«n^'n = = app^'pp= r.

The resvdting form of the matrix p may then be shortly represented by

If now to the matrix a- we apply the processes given by the matrices g^^ 2^^ ^1,1 ^"*i ^2»

we may suppose a^j numerically less than a^i, and ao-j positive ; if then we apply the

processes given by the matrices g^^ 3 or ^r'j ^ and l^, and the processes given by the matrices

9%z 0^5^2.3 *^^ ^3' ^^^ ^^^y suppose 03,, Q32 niunerically less than 033, and may suppose 033

to be positive. Proceeding thus we may eventually suppose all the elements of any row of

the matrix a which are to the left of its diagonal to be less than the diagonal elements of

that row—and may suppose that all the elements of the diagonal of the matrix a are

ix)sitive ; this involves that the diagonal elements of ^ are positive, and in particular

when r is a prime number involves that these elements are each 1 or r.

Further we may reduce the elements of the matrix a which are in the diagonal of

a', and those which are to the left of this diagonal, by means of the diagonal elements of

the matrix ^. We begin with the elements of the last row of a'; by means of the

processes given by the matrices iip or n'p we may suppose a',,,, to be numerically less than

^pp ; by means of the processes given by the matrices fp,p-\ or /'p,p-i we may suppose

"p. p-i to be numerically less than fi^p^p ; in general by means of the processes given by

/p,, or /'p,, we may suppose a'p,, to be numerically less than /^^p. Similarly by the

processes given by np_j or n'p_y we may suppose a'p _i,p_i numerically less than j3'p_i, p_i,

and by the processes /p _ j,
, or/'p_i,g, where s<p-\, we may suppose a'p_i,g numerically

less than /a'p-,, p_i. The general result is that in every row of the matrix d we may
suppose the diagonal element, and the elements to the left of the diagonal, to be all

numerically less than the diagonal element of the same row of the matrix /S*.

413. If then we take the case when r= 1 we have the result that it is possible to form

a product Q of the jo + 2 matrices a^, h, c, d, such that the product AQ has a form which

may be represented, taking jo= 3, by

),
AQ =

(
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diagonal, are zero. Applying then the condition a^'= l, we find that the elements of the

matrix /3' to the right of its diagonal are also zero, so that /3'= a= l. Then finally, applying

the condition a'^'= /3'a', equivalent to a'= d\ we have a'= 0. Thus the reduced matrix is

the matrix unity of 2p rows and columns, and A, =Q~\ is expressed as a p)'odtcct of

positive integral powers of the p+ 2 matrices A^, B, C, D, as desired. Since the determinant

of each of the matrices Aj^, B, C, Z) is +1, the determinant of the linear matrix A is also

+ 1.

414. In the particular case p= \ the only matrices of the p + 2 matrices Ajc, B, C, B
which are not nugatory are the two matrices B and C ; we denote these here by U and V
and put further

then we immediately verify the facts denoted by the following table

{^,V) i-n,^) {-i,-v) I iv, -I) {^,v+^) {^,v-i) i^-v,!) {Hv, v)

of which, for example, the first entry means that if A= (

°, ^, J
be any matrix of 2 rows

and columns, and we form the product Au, then the columns ^, rj of the matrix A are

interchanged, and at the same time the sign of the new first column is changed ; we have

in fact

hence it is immediately shewn, as in the more general case, that every matrix A= ( , p, ) >

for which the integers a, /3, q', /3' satisfy the relation a/3'-a'i3= l, can be expressed as a

product of positive integral powers of the two matrices

415. Combining the final result for the decomposition of a linear Abelian matrix with

the results obtained for any Abelian matrix of order r we arrive at the following statement,

whereof the parts other than the one which has been formally proved may be deduced from

that one, or established independently : let A= ( , 'l, j
be any Abelian matrix of order r

;

then it is possible to find a linear matrix Q expressible as a product of positive integral

powers of the (^+ 2) matrices Aje, B, C, B, which will enable us to write A= AiQ, where Af

is an Abelian matrix of order r having any one, arbitrarily chosen, of the four forms repre-

sentable by

^'<h^)' ^A^^)' -"KSJ- ^-(^°)^

and it is also possible to choose the linear matrix i2 to put A into the form A = SlAi, where

Aj is also any one, arbitrarily chosen, of these same four forms. It follows that the deter-

minant of the matrix A is +7'P. In virtue of the equations aii^'ii— r{i=l, ...,p), which

hold for any one of the matrices Aj, A2, A3, A4, and the inequalities which may also be

supposed to hold among the other elements, as exemplified, § 412, for the case of Ai, it is easy

to find the number of different existing reduced matrices of any one of these forms. For

instance when p— 2, the number when r is a prime number is l+r+ r^+ r^; for p= 3, and r

B. 43
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a prime number, it is l+r+ r^+ 2r^+ r*+ r^ + r^; for details the reader may consult Hermite,

Campi. Rendus, t. XL. (1855), p. 253, Wiltheiss, Crdle, xcvi. (1884), pp. 21, 22, and the

book of Krause, Die Transformation der Hyperdliptischen Functionen (Leipzig, 18S6),

which deal with the case p= 2; for the case/»= 3, see Weber, Annali di Mat. Ser. 2*, t. ix.

(1878), p. 139, where also the reduction to the form A=Q (q ,
) Q', in which Q, Q' are

linear matrices, is considered. Cf. also Gauss, Disq. Arith., § 213 ; Eisenstein, Crelle, xxvin.

(1844), p. 327; Hermite, Crelle, xl., p. 264, xli. (1851), p. 192; Smith, Phil. Trails, cll

(1861), Arts. 13, 14.

416. Considering (cf. § 372) any reduction, of the form

where
( , ,

) is a linear matrix, we prove that however this reduction be effected, (i) the

determinant of the matrix B' is the same, save for sign, (ii) if /x be a row of p positive

integers each less than r (including zero), the rows determined by the condition,

- 5 '/t= integral, are the same. For any other reduction of this kind, say A= Q'A'o, must

be such that

-C':')(-;i)->e^-)(oi').
where i^, ^ j

is a linear matrix ; the condition that the matrix a of the matrix A'o should

vanish, namely p'A=0, requires (since
|
J| |5'| = r'' and therefore

|
J|, the determinant of

A, is not zero) that j9'= ; thus the reduction A= Q'A'o can be written

/a /3\ /p?', -py + o-A (pA,pB+ qB'\

\a' ^'J \p'q', -p'q+ a'pj • \0 , c[B' )'

Now p<^= 1 ; therefore
|

?'
|

= ± 1 ; thus
|
<iB'\= ± 1

5'
|
, which proves the first result. Also,

if ;i be a row of integers such that -B'\i.\s,s, row of integers, —m say, then - g^jS'/x, =q'yn,

is also a row of integers ; while if -q'B'n be a row of integers, =n say, then -p^B'yL,

which is equal to -B'fi,ia equal to pn, and is also a row of integers ; since q'B' is the

matrix which, for the reduction A=Q'A'o, occupies the same place as that occupied, for the

reduction A=S1Aq, by the matrix B', the second result is also proved.

417. Considering any rectangular matrix whose constituents are integers, if aU the

determinants of (^+1) rows and columns formed from this matrix are zero, but not all

determinants of I rows and columns, the matrix is said to be of rank I. The following

theorem is often of use, and is referred to § 397, Chap. XXII. ; In order that a system of

sirrndtaneous not-homogeneoxts linear eqttations, with integer coefficients, should he capable

of being satisfied by integer values of the variables, it is necessary and sufficient that the

rank I of, and the greatest common divisor of all determinants of order I which can be

formed from, the matrix of the coefficients of the variables in these equations, should be

unaltered when to this raatrLc is added the column formed by the constant terms in these

equations. For the proof the reader may be referred to H. J. S. Smith, Phil. Trans. CLi.

(1861), Art. 11, and to Frobenius, Crelle, Lxxxvi. (1879), pp. 171—2.

418. Consider a matrix of «+l columns and ?i+l or more rows, whose constituents

are integers, of which the general row is denoted by

a< h ki,li,ei;
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let A be the greatest common divisor of the determinants formed from this matrix with

n+ l rows and columns ; let A' be the greatest common divisor of the determinants

formed from this matrix with n rows and columns ; then, since every determinant of the

{n + l)th order may be written as a linear aggregate of determinants of the ?i-th order,

the quotient A/A' is integral, =31, say. Then the 7i+l or more simultaneotis linear

congruences

U'i=aiX+ bi7/+ +kiZ+lit + eiU=0 (mod. M)

havejust A incongruent sets of solutions, and have a solution whose constituents have unity as

their highest common divisor. Frobenius, Crelle, Lxxxvi. (1879), p. 193.

Also, if in the m linearforms (m<= or >7i+ l)

Ui= aiX+bii/+ +kiZ+ lit+ eiU, (i= l, ...,m),

the greatest common divisor of the m{n+ l) coefficients he uyiity, it is possible to determhie

integer values of x,y, ..., t, u, such that the m forms have tmity as their greatest common
divisor; in particular, when ?i=I, if the 2m numbers ai, b^ have unity as their greatest

common divisor, and the ^i{m — \) determinants a^bj — ajhi be not all zero, it is possible to

4nd an integer x so that the m forms aiX+bi have unity as their greatest common divisor.

Frobenius, loc. cit., p. 156.

419. The theorem of § 418 includes the theorem of § 357, p. 589 ; it also includes the

simple result stated § 383, p. 637, note. It also justifies the assumption made in § 397,

that the periods Q, Q' may be taken so that the simultaneous equations ax' — a'x=l,

bx' — b'x=0 can be solved in integers in such a way that the 2p elements rx-b, rx'-b'

have unity as their greatest common divisor ; assuming that r is not zero so that the

p {2p— 1) determinants a^bj-ajbi, a^bj' — ajbi, albj -ajb-, are not all zero, and that Q' has

been taken so that the 2/3 integers a^, ..., a^, a{, ..., a^ have no common divisor other

than unity, the necessary and sufficient condition for the solution of the equations

aod — a'x= 1, bxf -b'x=0 is (§ 417) that the greatest common divisor, say M, of the p {2p - 1)

binary determinants spoken of should divide each of the 2p integers b^, ..., bp ; if this

condition is not already satisfied we may proceed as follows : find two coprime integers

(§ 418) which satisfy the 2p congruences

Xbi + fiai =0, \bi+ fiai= (mod. M), (^^l) •••,p),

and thence two integers p, <r such that Xcr-/ip = l
;
put 0/=Xi2'+)tiQ, i2j = pQ'+ o-fi,

Bi= bi\ + aifi, Ai^bip + aicr, Bi=bi'X + ai'fj., Ai=bi'p + aia; then

6jii

-

aiQ'= BiQ^

-

-4jQ/, b/Q - aiQ,'= BiQi — ^/Q/,

and the greatest common divisor of the p{2p— l) binary determinants AiBj-AjBi,

AiBj'-A/Bi, Ai'B/ -A/Bi, which is equal to M, divides the 2p integers B^, ..., Bp';

thus M is the greatest common divisor of these 2p integers; next put Q2= ^^ij Q2'= ^i'>

hi=Bi/M, hi=Bi'/M, ai= Ai, a.i'= Ai ; then the greatest common divisor of th.ep{2p- 1)

binary determinants ajb^- - a^bj, etc., is unity, and this is also the greatest common divisor

of the 2p integers bj, ..., bp'. Now let {x, x') be any solution of the equations aj/ -&'x=l,

b.r'-b'.?;=0, so that (rx— h, rx'— h') is a solution of the equations a^' — a'^= 0, b|'-b'^= 0;

let (^, ^') be an independent solution of these latter equations (Smith, Phil. Trans., CLI.

(1861), Art. 4) so that the p{2p — l) binary determinants Xi^j-Xj^i, etc., are not all zero,

so chosen that the 2p elements |i, 1/ have unity as their highest common divisor ; then if

h be any integer, the 2p elements Xi+h^i, ^/+ h^/ form a solution of the equations

Six' — a,'x= l, b^'-b'a;=0; let h be chosen so that the 2p elements rXi-hi+ hi-^i,

rXi -hi +hr^i have no common factor greaier than unity (§ 418). Putting X=x+ h^,
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X'=jf+h^', the first column of the matrix in § 397 will consist of the elements of (a, a'),

the (p+l)th column will consist of the elements of (b, b'), the second column will

consist of the elements of rA'-b, rX' -h' ; and since these latter have unity as their

greatest common factor, it is possible to construct the {p + 2)th and all other columns

of this matrix (§ 420).

420. A theorem is assumed in § 396, which has an interest of its own—7j^ of an

Abelian matrix of order r there be given the constituents of the first r columns, and also the

constituents of the {p+ l)th, ..., {p + r)th columns {r<p), it is always possible to determine

the remaining 2{p-r) columns. For a general enunciation the reader may refer to

Frobenius, Crelle, Lxxxix. (1880), p. 40. We explain the method here by a particular case

;

supiwse that of an Abelian matrix of order r, for jo= 3, there be given the first and (p+ l)th

columns ; denote the matrix by

(axtbyu);
I

a' a/ t' b' y" u'
\

the elements of the given columns will satisfy the relation ab' -a'b= r ; it is required to

determine in order the second, the fifth, the third and the sixth columns ; the relations

arising from the equations

aa'-aa= 0, ^/3'-^'/3= 0, a^-a'^= r

so far as they aflfect these columns respectively, are as follows :

ax' — a'x=0\ . ay-a'y= 0] at'-a't= 0"

'-b'x= 0j
^'^'

ba/-b'x= 0} ^ '' 6y'-6'y=OV (ii), bf-b't=
xy' -x'y= r] xlf-x't=

yt!-i/t=Q}

(iii),

au' — a'u= 0\

bu' — b'u=
xu' — x'u=
yu' — y'^c=
tu! - t!u = r)

\ (iv);

now let (.r, si) be a solution of equations (i) in which the 2jo constituents have no common
factor other than unity ; determine 2 rows of p elements |, ^ such that .r^' —y^= l, and

denote a^ - a'^ by A and b^ - b'^ by B ; then it is immediately verified that the values

y= r^-{Ab-Ba), y'= r^' -{Ab' - Ba'),

satisfy equations (ii) ; next let {t, f) be a solution of equations (iii) in which the 2p
constituents have no common factor other than unity ; determine 2 rows of p elements,

V, v\ such that tv —€v= \, and denote av —a'v, bv' — b'v, xv' — x'v, yv' — y'v respectively by
A, B, X, V ; then it is immediately verified that the values

u=rv-{Ab-Ba)-{Xy- Vx), u'= rv' - {A b' - Ba') - {Xy" - Taf)

satisfy the equations (iv).
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Liiroth 239

Malet 663

Mathews 165

Minding 221

Mittag.Lefflcr 202

Morley 2, 10, 14, 15, 16, 21, 24, 25, 79, 101,

124, 239, 342

Netto 20, 90

Neumann 14, 17, 169, 296, 531

Noethcr 12, 29, 32, 124, 131, 134, 137, 142,

145, 149, 156, 165, 168, 180, 272, 292,

295, 390, 392, 430, 486, 522, 544, 566,

654, 665

Picard 14, 165, 594, 659

Pick 360, 430, 639

Pliicker 124, 165

Poincari' 239, 372, 373, 439, 486, 594, 654,

659, 663

Pringsheim 445

Prijni 2, 296, 342, 392, 477, 486, 511, 566,

600, 627

Richelot 221, 230, 529, 600, 663

Riemann 1, 2, 6, 9, 13, 45, 47, 77, 113, 115,

246, 248, 255, 296, 343, 397, 409, 628

Bitter 360, 373, 392, 429, 439, 442

Eoch 29

Eosanes 666

Eosenhain 221, 222, 246, 311, 459, 600, 6U7,

628, 662

Salmon 5, 6, 7, 11, 39, 117, 124, 136, 144,

159, 165, 267, 383, 389

Schepp 239

SchUiJli 666

Schottky 32, 101, 283, 296, 340, 343, 345,

360, 371, 372, 373, 387, 448, 461, 469,

486, 544, 628

Schubert 665

Schwarz 14, 654

Scott 473

Smith 12, 600, 639, 666, 674, 675

Sohnke 639

Stahl 288, 301, 392, 430, 486, 502

Stickelbcrgcr 666

Stolz 2

Sylvester 136

Taber 668

Thomae 288, 296, 318, 533, 536, 600

Thompson 436

Toeplitz 383

Valentin 101

Valentiner 124, 165, 665

Voss 137

Weber 8, 56, 270,

460, 486, 533,

629, 639, 674

Weierstrass 32, 93,

205, 231, 239,

326, 339, 443,

572, 573, 577,

658, 666

White 165

Wiltheiss 342, 600,

Wirtinger 340, 486,

Zeuthen 647

272, 373, 387, 392, 430,

538, 559, 600, 615, 620,

99, 101, 177, 195, 197,

242, 246, 301, 311, 317,

474, 486, 525, 570, 571,

579, 594, 628, 653, 654,

629, 660, 662, 674
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TABLE OF SOME FUNCTIONAL SYMBOLS.

Riemann's normal elementary integrals

of first kind, generaUy, i^j'", ... , ?;^' ", p. 15. For periods, p. 16,

of second kind, T^'"; periods of, fi^, ... , ftp, or fij {2), ..., ftp (2), pp. 15, 21,

ofthirdkind, n"^'", p. 15.

Integral, rational, functions, gi, or gi [x, y), or gi (y, x), pp. 55, 61.

.^-polynomials, special functions, numerators of differential coefficients of integrals of the first

kind, 0j, ..., <Pn-i, P- 61. Also (p^, ..., (pp, p. 146.

Elementary integral of third kind, Pf'", p. 68. (Canonical integral), Q^'^', p. 185. (Canonical

integral), J?^'^'^'', p. 194.

Integrals of second kind, associated with given system of integrals of first kind, I/^'", p- 193;

periods of, 196. Also H"'"^, p. 182, and i?^-", p. 291, are used for integrals of second kind.

\f/(x, a; z, Cj, ..., Cp), pp. 77, 171, 177. This is called Weierstrass's fundamental rational

function.

\p(x,a; z, c), pp. 174, 175, 178, 200.

E(x, z), pp. 171, 178 (Prime function).

E {x, z), pp. 176, 178, 205 (Prime function).

Matrices, see Appendix 11., p. 666.

e (m, T ; Q, Q') or fu, t\^\ or oful ^\ or {u
; Q, Q')

_2g27rm(rt+Q')+i7rT(«+(2')-+27ri(2(n+Q') „_ 248.

S{u; Q, Q') or :^(u\
^'\ = -2e^u''+'^hu(n+Q')+b(H+Qr+-lniQ(n+Q')^

p_ 233.

ft(w) = g^.log^(«), p. 287.

^i, j (") = - ^^. log ^(M), p. 292. See also p. 516.

Wi(x) (Differential coefficient of integral of first kind), p. 169. Also ^^ (.c), p. 192.

^,.,., p. 192. ?i,,-,p. 288.

W{x,z; Ci, ..., Cp), p. 174.

cr (f, 7), P- 360 (Prime function). But for w (x, z), see pp. 430, 428.

X (f, /x), P- 367.

\Q\,\Q,R\, f2),p.487.

4> (m, a ; A), p. 509.

<p (m), a Jacobian function, p. 579, ff.

V',.(w; £", K' + fx), ^^(Tr; iT, A" + /x), p. 601.
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Abellan functions, 236, 600, see Inversion ; in-

tegrals, see Integrals ; matrix, 6G9.

Abel's theorem, 207, fit.; statement of, 210,

214 ;
proof of, 213 ; number of inde-

pendent equations given by, 222 ff.

;

for radical functions, 377 ; for factorial

functions, 397 ; for curves in space,

231; Abel's proof of, 219, 220; con-

verse of, 222.

Abel's differential equations, 225, ff.

Addition equation for hj-perelliptic theta func-

tions, deduced algebraically, 331, ff.

;

for theta functions in general, 457

—

461, 472, 476, 481, 513, 521.

Adjoint polynomial (or curve), definition of,

121 ; number of terms in, 128 ; ex-

pression of rational function by, 127
;

see Integrals, Sets, Lots.

Argument and parameter, interchange of, 16,

185, 187, 189, 191, 194, 206.

Associated : Forms associated with fundamental

integral functions, 62 ; integrals of

second kind associated with integrals

of the first kind, 193, 195, 198, 532

;

associated system of factorial func-

tions, 397

Automorphic functions, simple case of, 352, ff.;

connection with factorial functions,

439, ff.

Azygetic characteristics, 487, 497 ; transforma-

tion of, 542, 547 ; see Characteristics.

Bacharach's modification of Cayley's theorem

for plane curves, 141.

Biquadratic, see Gdpel.

Birational transformation of a Riemauu sur-

face : does not affect the theory, 3, 7

;

number of invariants in, 9, 144, 148,

150; of plane curves, 11 ; by ^-poly-

nomials, 142—152 ; for hyperelliptic

surface, 152, 85; when p = l, or 0,

153 ; of surface into itself, 653. See

Invariants, and Curves.

Bitangents of a plane curve, 381—390; 644, 646.

Branch places, see Places.

Canonical equation for a Eiemann surface, 83,

91, 103, 143, 145, 152; curve discussed

by Klein, 159 ; integral of the third

kind, 168, 185, 189, 194, 195.

Cayley's theorem for plane curves, 141.

Characteristics: of a theta function, number

of odd and even, 251; expression of

any half-integer characteristic by

means of a fundamental system, 301,

487, 500, 502 ; Weirstrass's number

notation for, 570, 337, 303 ; tables of

half-integer characteristics for ]) = 2,

p = S, 303, 305; syzj'getic, azygetic,

487; period characteristics and theta

characteristics, 543, 564; of radical

functions, 380, 564 ; Gopel groups

and systems of, 489, 490, 494, ff.
;

general theory of, 486, ff. ; transform-

ation of, 536, 542, 547, 564, 568.

Coincidences of a correspondence, 645.

Column and row. See Matrices.

Column of periods, 571.

Complex multiplication of theta functions,

629, ff., 639, 660.

Composition of transformations of theta func-

tions, 551.

Condition of dimensions, 49.

Conformal representation, 343, 356, 372.

Congruence, meanings of sign of, 236, 256, 261,

264, 487.

Constants, invariant in rational transformation,

9, 88, 144, 148, 150 ; in linear trans-

formation of theta functions, 555

—

559 ; in any transformation of theta

functions, 620, 622.

Contact curves, see Curves, and Radical.
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Convergence of an automorphic series, 350;

of transformed theta function, 538.

Coresidual sets of places on a Riemann surface,

135, ff., 213; are equivalent sets, 136;

enter in statement of Abel's theorem,

210.

Correspondence of Riemann surfaces, 3, ff.

,

81, 639, 642, 647, 648, 649, 654, 662.

Covariant, see Invariant.

Cubic surface associated with a plane quartic

curve, 382, 389.

Curves : as alternative interpretation of fun-

damental algebraic equation, 11 ; in-

flexions of a plane quartic in con-

nection with the gap theorem, 36

;

generalisation, 40 ; inflexions and

bitangents in connection with theory

of correspondence, 644, 646; bitangents

of a plane quartic curve, 384; adjoint

curves, 121, 129 ; coresidual and

equivalent sets upon, 134—136 ; trans-

formation of, see Birational, In-

variants, and Constants ; correspon-

dence of, see Correspondence ; special

sets upon, 146, ff.; contact curves,

381 ; general form of Pliicker's equa-

tions for, 124 ; Weierstrass's canon-

ical equation for, 93, 103 ; Cayley's

theorem for, 141 ; curves in space, 157,

160, ff. , 166, 664; Abel's theorem for,

231.

Cusps, 11, 114.

Deficiency of a Riemann surface, 7, 55, 60.

Defining relation for theta functions, 443.

Definition equation of theta functions of general

order, 448.

Degenerate Abelian integrals, 657.

Dependence of the poles of a rational function,

27.

Differential equations of inversion problem,

225, ff. ; of theta functions, see Ad-

denda (p. xx).

Differentials of integrals of first kind, 25, 62,

67, 127, 169.

Dimension of an integral function, 48, ff., 55

;

condition of dimensions, 49.

Discriminant of a fundamental set of integral

functions, 74, 101, 124.

Dissection of the Riemann surface, 26, 529,

253, 257, 569, 297, 550, 560.

Double points of a Riemann surface (or curve),

1, 2, 3, 11, 114 ; tangents of a plane

curve, 644, 646.

B.

Elementary integrals, see Integrals.

Equivalence, meanings of sign of, 236, 256,

261, 264, 487.

Equivalent sets of places on a Riemann sur-

face, 134, S., 136, 213.

Essential factor of the discriminant, 60, 74, 124.

Existence theorems, algebraically deducible,

78 ; references, 14.

Expression of any rational function, 77, 176,

212 ; of fundamental integral func-

tions, 105, ff. ; of half-integer charac-

teristic by means of a fundamental

system, 301, 487, 500, 502.

Factorial functions, 392, ff.; definition of, 396;

which are everywhere finite, 399; ex-

pressed by factorial integrals, 403

;

expressed by fundamental factorial

function, 413; with fewest poles, 406;

used to express theta functions, 423,

426 ; connection with automorphic

functions, 439, ff.

Factorial integrals, 398 ; which are everywhere

finite, 399 ; fundamental, having only

poles, 408 ; simplified form of that

integral, 411 ; expression of factorial

function by means of that integral,

412.

Function, automorphic, 352, ff., 439, ff.; fac-

torial, see Factorial ; integral, see

Rational, and Transcendental ; ^func-

tion, 292, 324, 333, 516
;
prime, 172,

177, 205, also 360, 363, 428 ; radical,

374, 390, 565 ; rational, see Rational

;

Theta, see Theta functions, and

Transformation ; I fimction, 287, 292,

320 ; see Fundamental rational.

Fundamental algebraical equation, 10, 113.

Fundamental rational function, Weierstrass's,

171, 175, 177, 178, ff., 182.

Fundamental set for the expression of rational

integral functions, 48, ff., 55, 56, 57,

105, ff.

Fundamental system of theta characteristics,

301, 487, 500, 502.

Gap theorem, 32, 34, 93, 174.

Geometrical investigations, 113 ; see Curves.

Gopel biquadratic relation, 338—340; 465—
468 ; see Addenda (p. xx).

Gopel group and system, see Characteristics.

Grade, of a polynomial, 120.

Group, Gopel, see Characteristics.

44
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Hensel's determination of fundamental integral

functions, 105, ff.

Homogeneous variables, 118, 441.

HomograpMc behaviour of differentials of in-

tegrals of first kind, 26.

Hyperelliptic surfaces, 80, ff., 152, 153, 373

;

see Tbeta functions and Transforma-

tion.

Independence of the poles of a rational func-

tion, 27; of the 2^p theta functions

with half-integer characteristics, 44G,

447 ; See Linearly.

Index of a place on a Riemann surface, 122,

123, 124; at the infinite place of

Weierstrass's canonical surface, 129.

Infinitesimal on a Riemann surface, 1, 2, 3.

Infinitesimal periods, 238, 573.

Infinities of rational function, 27, ff.; see

Residue.

Infinity, the places at iufinitj' on a Riemann

surface, algebraic treatment of, 118.

Infiexlons of a plane curve, 36, 40, 646.

Integrals, degenerate, 657 ; factorial, see Fac-

torial; Riemann's, normal elementary,

15 ; all derivable from integral of third

kind, 22 ; algebraic expression of, 65,

ff., 127, 131, 163, 185, 189, 194;

hyperelliptic, 195 ; formulae connect-

ing with logarithmic differential coeffi-

cients of theta functions, 289, 290,320.

Integral functions, see Rational and Transcen-

dental.

Interchange of argument and parameter, 10,

185, 187, 189, 191, 194, 206; of period

loops, see Transformation.

Invariants in biratioual transformation : the

number p, 7; the 3^-3 moduli, 9,

144, 148, 150; the ratios of 0-poly-

nomials, 26, 158; the contact (p-

polynomials, 281, 427; the f/places,

38, 653; for transformation of the

dependent variable, 74, 124.

Inversion theorem, Jacobi's, 235, ff., 270;

solution of, 239, 242, 244, 275; by

radical functions, 390; in the hyper-

elliptic case, 317, 324.

Jacobi's inversion theorem, see Inversion.

Jacobian functions, their periods, are generali-

sation of theta functions, 579—588;

their expression by theta functions,

588—594 ; there exists a homogeneous
polynomial relation connecting any

p + 2 Jacobian functions of same

periods and parameter, 594.

Klein, prime form, 360, 427, 430, 438.

Laurent's theorem, for^ variables, 444.

Left side of period loop, 529.

Linearly independent ^-products of order /u,

154 ; columns of periods, 575 ; theta

functions, 446, 447; Jacobian func-

tions, 594.

Linear transformation, see Transformation.

Loops, period loops on a Riemann surface, 21,

529.

Lots, of .sets of places on an algebraic curve,

or Riemann surface, 135.

Matrices, 248, 283, 580, 666, 669.

Mittag-Lefller's theorem for uniform function

on a Riemann surface, 202.

Moduli, of the algebraic equation, are 3j> - 3 in

number, 9, 144, 148, 150; for the

hyperelliptic equation, 88.

Moduli of periodicity, see Periods.

Multiplication, complex, of theta functions,

629, ff. ; by an integer, for theta

functions, 527.

Multiply-periodic, 236 ; see Inversion.

Noether's (Kraus's) <^-curve in space, 156, 157.

Normal equation for a Riemann surface, 83,

91, 103, 143, 145, 152.

Normal integrals (Riemann's) see Integrals.

Nimiber of independent products of fi (p-poly-

nomials, 154; of odd and even theta

functions, 251 ; of theta functions of

general order, 452, 463; of Jacobian

functions, 594.

Order of small quantity on a Riemann surface, 2;

of a theta function, 448.

P Function, 292, 824, 388, 516.

Parameter, interchange of argument and para-

meter, see Interchange.

Parameters, in the algebraic equation, see

Constants.

Period loop, see Loops.

Period characteristics, see Characteristics.

Periodicity of a (1, 1) correspondence, 650.

Periods of Riemann's integrals, 16, 21 ; Rie-

mann's and Weierstrass's relations for

the periods of integrals of the first

kind, and of associated integrals of

the second kind, 197, 285, 581, 587;
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rule for half-periods on a hyperelliptic

surface, 297 ; for integrals of second

kind, 323 ; of factorial integrals, 404

;

linear transformation of periods, 532

;

general transformation, 536, 538

;

general theory of systems of periods,

571, ff., 579, ff. ; of degenerate inte-

grals, 657.

Ficard's theorem (Weierstrass's), 658.

Places, of a Kiemann surface, 1, 2, 3 ; brancli

places, 7, 9, 46, 74, 122, 297, 569;

where a rational function is infinite,

to order less than p + l, 38, 41, 90,

653;

the places vi^, ..., vij,, 255; their geo-

metrical interpretation, 265, 266 ; after

linear transformation, 562 ; deter-

mination of, for a Eiemann surface

with assigned period loops, 567 ; for a

hyperelliptic surface, 297, 503.

Plucker's equations, generalised form of, 123,

124 ; for curves in space, 160.

Poles, see Infinities.

Polynomial, grade of, 120 ; algebraic treat-

ment of, 120; adjoint, 121, 128;

^-polynomials, 141 ; transformation

of fundamental equation by 0-polyno-

mials, 142, 154 ; expression of rational

functions, and algebraic integrals by

means of adjoint polynomials, 156

;

see Curves.

Positive direction of period loop, 529.

Primary and associated systems of factorial

functions, 397.

Prime function (or form), see Function.

Product expression of uniform transcendental

function with single essential singu-

larity, 205.

Quartic. Double tangents of plane quartic

curve, 381—390, 647.

Quotients of theta functions, 310, 311, 390,

426, 516.

Radical function, see Function.

Rational function, of order 1, only exists when

p= 0,8; is an uniform function on the

Riemann surface whose only infinities

are poles, 27 ; infinities of, Riemann-

Roch theorem, Weierstrass's gap theo-

rem, 27, ff.; special, 25, 137; of order

p, 38, 137; integral function, 47, ff.,

55, 91, ff. ; of the second order, 80, ff.

;

fundamental integral rational func-

tions, algebraic determination of, 105,

ff. ; algebraic expression of, by adjoint

polynomials, 125, ff., 156 ; Weier-

strass's fundamental, 171, 175, 177,

178, ff., 182 ; expressed by Riemann's

integrals, 24, 212 ; expressed by Weier-

strass's function, 176.

Reciprocal sets of zeros of adjoint polynomials,

134.

Residual sets of places, 135.

Residue, fundamental residue theorem, 232,

189, 20.

Reversible transformation, see Birational.

Riemann-Roch theorem, 44, 133 ; for factorial

functions, 405.

Riemaim and Weierstrass's period relations,

197, 285, 581, 587.

Right side of period loop, 529.

Row and column, see Matrices

Schottky- Klein prime form and function, 360,

427, 430, 433.

Sequence, theorem of, 114, 161, 165.

Sequent sets of places, 135.

Sets of places on a Riemann surface or algebraic

curve, 135. See Special.

Sign of equivalence and congruence, 236, 256,

261, 264, 487.

Special correspondences on a Riemann surface,

648.

Special rational functions, 25, 62, 137.

Special sets of zeros of adjoint polynomials,

134, 147.

Special transformation of a theta function,

629, ff. , 639, 660.

Strength of assigned zeros, as determinators of

a polynomial, 133.

Supplementary transformations of a theta

function, 552.

System, Gopel, see Characteristics.

Syzygetic characteristics, 487, 542.

Tables of Characteristics, 303, 305.

Tangents, double, of a plane curve, by the

principle of correspondence, 644, 646.

Theta functions

:

Riemann's theta functions, 246, ff. ; con-

vergence of, 247; determination of,

from periodicity, 444 ;
period proper-

ties of, 249; number of odd and even,

251, 446; zeros of, 252, 255, 258, 567;

identical vanishing of, 258, 271, 276,

303; hyperelliptic, 296, ff.; algebraic

expression of quotients of, 310, 311,
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a90, 426 ; addition theorem for hj-per-

elliptic, 332, 337; algebraic expression

for hyperelliptic, 435 ; algebraic ex-

pression of first logarithmic derivatives

of, 288, 290, 320; algebraic expression

of second logarithmic derivatives of,

293, 324, 329, 333 ; solution of inver-

sion problem by means of, 275, 324,

390, 420, fif. ; lliemanu's functions not

the most general, 248, 628.

General theta function of first order, 283,

444
;
period relations, 2a5, 197, 581,

587; second logarithmic derivatives

of, 516; addition theorems for, 457,

472, 481, 513, 521; Gopel relation for,

in case p=2, see Gopel; expression

of Jacobian functions by means of,

594.

Theta functions of second and higher order,

448 ; expression of, number of linearly

independent, 452, 463; of order 2, of

special kind, 509, 510 ; every p + 2

theta functions of same order, periods,

and characteristic, connected by a

homogeneous polynomial relation, 453.

Transformation of theta functions, see

Transformation ; characteristics of

theta functions, see Characteristics

;

complex multiplication of theta func-

tions, 629, ff., 639, 660; theta func-

tions expressed by factorial functions

and simpler theta functions, 426;

particular cases, 430, ff. ; hj'perelliptic

case, 433.

Transcendental uniform function, 200 ; Mittag-

LetHer's theorem for, 202; expressed

in prime factors, 205 ; application of

Laurent's theorem when the function

is integral, 444.

Transformation

of the algebraic equation (or Eiemann
surface), 3, 143, 145, 151, 152, 654,

655 ; see Birational

;

of theta functions, 535; linear trans-

formation, 539; constants in, 554

—

559; for hyperelliptic case, 568; of

second order, 603, 617; for any odd

order, general theorem, 614; con-

stants in, 620, 622; when coefficients

not integers, 625 ; supplementary

transformations, 552 ; composition of,

551; special transformations, 629,

630, 660;

of periods, 528, 534, 539, 551. 553, 555,

559, 568;

of characteristics, see Characteristics.

Uniform, see Rational, and Transcendental.

Vanishing of theta function, 253, 258, 271 ff.,

276, 303.

Variables, homogeneous, 118, 429, 441

Weierstrass's gap theorem, 32, 34, 93, 174;

special places which are the poles of

rational functions of order less than

p + l, 34, ff. ; canonical surface (or

equation), 90, ff., 98; fundamental

rational function, 171, 175, 177, 178,

182, 189; period relations, 197, ff.,

285, 581, 587; rule for characteristics

of hj'perelliptic theta functions, 569 ;

theorem for degenerate integrals, 658.

Zeros, generalised zeros of a polynomial, 121;

zeros of Riemann theta function,

252.

Zeta function, 287, 292, 320. ,
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