ASSESSMENT OF WMATA'S AUTOMATIC FARE COLLECTION EQUIPMENT PERFORMANCE

JANUARY 1981
FINAL REPORT

Prepared for
U,S, DEPARTMENT OF TRANSPORTATION
URBAN MASS TRANSPORTATION ADMINISTRATION Office of Torhnnlogy Development and Deployment Office of Rail and Construction Technology Washington DC 20590

notice

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' namcs appear herein solely because they are considered essential to the object of this report.

1. Report No. UMTA-MA-06-0080-81-1	2. Government Accession No.		3. Recipient's Catoiog No.	
4. Trite ond Subrito WMATA'S AUTOMATIC FARE COLLECTIONASSESSMENT OF WMATA'SEQUIPMENT PERFORMANCEFINAL REPORT			5. Report Dore January 6. Performing Orgoni zo 722	81 on Code
7. Aurhar's) J. Heisler and R. Stevens		$\frac{\text { DEPARTMENT OF }}{\text { TRiNSPRRTATION }}$	8. Performing Organizotion Reoori Na . DOT-TS C-UMTA-80-42	
9. Parforming Organization Name ond Address Input Output Computer Services, Inc. 400 Totten Pond Road Waltham, MA 02154		णि 1983 LIBRARY	10. Work Unit No. (TRAIS)IMMON $/$ /RO73/Controct or Gront No.DOT-TSC- 1669	
12. Sponsoring Agency Nome ond Address U.S. Department of Transpor Urban Mass Transportation Office of Technology Develo Office of Rail and Construc Washingron C 20590	tation dministrati ment and D ion Techno	ion Deployment ology	13. Type of Repart ond Period Covered Final Report July 1980	
Under contract to:	Departmen arch and S sportation ridge MA	nt of Transporta Special Programs Systems Center 02142	dministration	
This report summarizes the findings of an assessment of the Washington Metropolitan Area Transit Authority's (WMATA) automatic fare collection (AFC) equipment performance. The primary purpose of this study was to quantitatively evaluate, via standard statistical tests, the reliability and availability performance of WMATA's AFC systems and subsystems. The specific objectives were - To conduct a reliability and availability analysis of WMATA's fare card vendors and their elements: ticket transports, coin acceptors and bill verifiers. - To develop and apply a data collection and analysis plan to measure the effectiveness of equipment improvements to the ticket transport, coin acceptor and bill verifier. - To estimate the impacts of AFC alternatives on system effectiveness.				
19. Socurity Clossif. (of this roport) Unclassified	20. Socurity Clossif. (of this poge) Unclassified		$\begin{gathered} \text { 21. No. of Poges } \\ 224 \end{gathered}$	22. Price

PREFACE

This study assesses the reliability and availability performance of the Washington Metropolitan Area Transit Authority's Automatic Fare Collection (AFC) equipment. Tne Transit Systems Branch of the Transportation Systems Center (U.S. DOT) supported this study as part of continuing research in the areas of automatic fare collection equipment performance and data base development. This report documents the findings of Input Output Computer Services, Inc. (IOCS) under contract number DOT-TSC-1669.

The research was performed and directed by J. Heisler. Charles Erdrich served as technical consultant for the study and reviewed study progress. S. Pozzi was the statistical consultant to the project; D. Mesnick and J. Morrissey were significant contributors to the study research. Joseph Koziol served as the contract technical monitor. The study also relied on the contributions of many who supplied performance data and information on WMATA's AFC system: Lloyd Johnson and Kichard Klein at WMATA, and G. Persinger, L. Williams, and W. Stallworth from Automated Services, Inc.
METRIC CONVERSIOM FACTORS

8ymded	What Youknem	Matiopy ty	Te Flout	Sprabet
	IENGTH			
\cdots	inches	-2. 5	centimbters	cm
H	Hoor	30	centimaters	cma
0	ymas	0.9	moleve	-
\cdots	ailes	18	bllomotere	1
	AREA			
m^{2}	sauere inches	0.4	saure castimater	cm^{2}
n^{2}	spues bot	0.00	aque moters	m^{2}
m^{7}	square yords	0.8	equere melars	${ }^{2}$
${ }^{1}$	equare mive	2.1	squme hilometere	$1{ }^{1}$
	cree	0.4	mecture:	ne
	MASS (waijh)			
as	aunce:	26	grane	e
b	pande	0.45	Aikgeame	40
	chert tone (2000 (b)	0.1	comes	1
	VOIUAHE			
149	Leaspoone	\leqslant	millititers	m
Treo	Lubleapocne	16	militiones	mi
$11 *$	lius eumeen	30	millititere	mol
6	cups	0.24	Hisere	1
p	pinte	0.41	${ }^{\text {libers }}$	1
41	9ume	0.85	bitee	1
اه80	gelloas	3.4	liters	1,
H^{3}	cubic leet	0.03	cubricmatur	m^{3}
vo	cubic yeode	-. 28	cobicemere	m^{3}
	TE1	ERATURE (ax		
*	Fehrention cempersture	3/9 lation eubrocting 13)	Calaina cenperstive	${ }^{*}$ c

table of contents

Page
Summary xiii

1. INTRODUCTION 1
l.l Background 1
l. 2 Study Purpose and Objectives 4
1.3 Study Approach 4
2. REIIABILITY AND AVAILABILITY AS MEASURES OF SYSTEM PERFORMANCE 7
2.1 Reliability and Availability Measures of wMATA's AFC Equipment and Elements 7
2.2 Existing Reliability and Availability Studies of WMATA's AFC Equipment 11
3. DATA COLLECTION AND REDUCTION 15
3.1 WMATA's 1978-1979 Surveys 15
3.21980 Retrofit Survey 21
4. ANALYSIS OF WMATA'S FARECARD VENDOR RELIABILITY AND AVAILABILITY, 1978-1979 25
4.l Overall Farecard Vendor Performance by Mezzanine 27
4.2 Overall Element Performance for Ticket Transports, Coin Acceptors and Bill Verifiers 38
4.3 Farecard Vendor-Specific: Overall and Element Performance 47
4.4 Summary 69
5. ANALYSIS OF RETROFIT ELEMENT PERFORMANCE 73
5.l 1978-1979 Retrofit Performance 73
5.21980 Retrofit Performance 76
5.2.l Overall Equipment Performance 77
5.2.2 Overall Element Performance 84
5.2.3 Equipment Specific: Overall and Element Performance 91
5.3 Summary 105
6. SYSTEM IMPACT ANALYSIS 109
6.1 System Failure and Average Down-Time Estimation 109
6.2 Impact of Improved Ticket Transport, Coin Acceptor and Bill Valiajator (Retrofit B) 116
6.3 Impact of $\$ 1$ and $\$ 5$ Fast Vendors 117
6.4 Impact of One- and Two-Ride Fast Vendors 119
6.5 Impact of Optimum AFC Equipment Performance 123
6.6 Summary 125

'table of contents (Cont.)

Page
APPENDIX 1 Data Collection Procedures and Sample Survey Forms 127
APPENDIX 2 Chi-Square Test for Equality of Proportions and Application of Chi-Square to AFC Data 135
APPENDIX 3 T-Test of Proportions and Apolication of T-Test to AFC Data 141
APPENDIX 4 Total and Element Monthly Reliability and Mean Transactions per Failure for Farecard vendors, 1978-1979 147
APPENDIX 595 Percent Confidence Intervals for $A E C$ Equipment Reliability and Availability Measures 189
APPENDIX 6 Report of New Technology 193

Figure		Page
1-1	WMATA MEZZANINE WITH AFC EQUIPMENT	2
3-1	SAMPLE SURVEY FORM	18
3-2	DADS PRINT-OUTS ATC FOR AFC EQUIPMENT	19
3-3	1980 RETROFIT SURVEY DATA COLLECTION SCHEDULE	23
4-1	WMATA SYSTEM MAP	26
4-2	MEAN TRANSACTIONS PER FAILURE FOR FARECARD VENDORS, 1978-1979, MEZZANINE AND TOTAL	28
4-3	MONTHLY MEAN TRANSACTIONS PER FAILURE FOR FARECARD VENDORS, 1978-1979	31
4-4	FARECARD VENDOR AVAILABILITY BY MEZZANINE, 1978-1979	33
4-5	MTBF BY MEZZANINE FOR FARECARD VENDORS, 1978-1979	37
4-6	MEAN TRANSACTIONS PER FAILURE FOR FARECARD VENDOR ELEMENTS, 1978-1979	40
4-7	DISTRIBUTION OF FARECARD VENDOR FAILURES: DUPONT CIRCLE AND BROOKLAND, 1978-1979	43
4-8	DISTRIBUTION OF FARECARD VENDOR FAILURES: SILVER SPRING AND FARRAGUT WEST, 17TH ST., 1978-1979	44
4-9	DISTRIBUTION OF FARECARD VENDOR FAILURES: FARRAGUT WEST, 18TH ST. AND ROSSLYN, 1978-1979	45
4-10	DISTRIBUTION OF TOTAL FARECARD VENDOR FAILURES, 1978-1979	46
5-1	COMPARISON OF MEAN TRANSACTIONS PER FAILURE FOR AFC EQUIPMENT: 1978-1979 SURVEY (PRE-RETROIFIT) AND 1980 SURVEY (RETROFITS A AND B)	79
5-2	COMPARISON OF AFC EQUIPMENT AVAILABILITIES: 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFITS A AND B)	81
5-3	COMPARISON OF MEAN TIME BETWEEN FAILURES (PEAKHOUR) FOR AFC EQUIPMENT: $1978-1979$ SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFITS A AND B)	83

LIST OF ILLUSTRATIONS (CONT.)

Figure Page
5-4 COMPARISON OF MEAN TRANSACTIONS PER FARECARD JAM FOR AFC EQUIPMENT: 1978-1979 SURVEY (PRE-RETKOFIT) AND 1980 SURVEY (RETROFITS A AND B) 88
5-5 COMPARISON OF MEAN NUMBER OF COINS INSERTED PER COIN JAM FOR FARECARD VENDORS AND ADD-FARES: 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFITS A AND B) 89
5-6 COMPARISON OF MEAN NUMBER OF BILLS INSERTED PER BILL JAM FOR FARECARD VENDORS AND ADD-FARES: 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFITS A AND B) 90
5-7 FARECARD VENDOR FAILURE DISTRIBUTION: ROSSLYN, 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFIT A) 93
5-8 FARECARD VENDOR FAILURE DISTRIBUTION: FARRAGUT WEST, 17TH STREET, 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFIT A) 94
5-9 FARECARD VENDOR FAILURE DISTRIBUTION: FARRAGUT WEST, 18TH STREET, 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFIT B) 95
6-1 PASSENGER FLOW DISTRIBUTION - WMATA 111
6-2 PASSENGER FLOW DISTRIBUTION FOR $\$ 1$ and $\$ 5$ FAST VENDORS - WMATA 120
6-3 PASSENGER FLOW DISTRIBUTION FOK ONE- AND TWO-RIDE FAST VENDORS 121
Table Page
2-1 CWD PERFORMANCE CRITERIA FOR WMATA'S AFC EQUIPMENT 12
3-1 SUMMARY OF RAW SURVEY DATA, 1978-1979 16
3-2 SUMMARY OF DADS DATA, 1978-1979 17
3-3 CLASSIFICATION OF AFC EQUIPMENT FAILURES 20
4-1 RELIABILITY AND MEAN TRANSACTIONS PER FAILURE FOR FARECARD VENDORS, 1978-1979, MEZZANINE AND TOTAL 27
4-2 MONTHLY MEAN TRANSACTIONS PER FAILURE FOR FARECARD VENDORS BY MEZZANINE, 1978-1979 30
4-3 FARECARD VENDOR AVAILABILITY BY MEZZANINE, 1978-19794-4 MONTHLY FARECARD VENDOR AVAILABILITIES BYMEZ2ANINE, 1978-197935
4-5 MEAN TIME BETWEEN FARECARD VENDOR FAILURES BY ME2ZANINE, 1978-1979 36
4-6 SUMMARY OF FARECARD VENDOR PERFORMANCE BY MEZZANINE, 1978-1979 38
4-7 RELIABILITY AND MEAN TRANSACTIONS PER FAILURE FOR FARECARD VENDOR ELEMENTS, 1978-1979 39
4-8 RELIABIALITY AND MEAN TRANSACTIONS PER FAILURE FOR FARECARD VENDOR ELEMENTS BY MEZZANINE, 1978-1979 41
4-9 MEAN TRANSACTIONS PER FAILURE FOR FARECARD VENDORS AND ELEMENTS BY MEZZANINE, 1978-1979 48
4-10 FARECARD VENDORS WITH RELIABILITIES SIGNIFICANTLY LESS (AT 95 PERCENT) THAN OVERALL MEAN 50
4-11 TOTAL AND ELEMENT MONTHLY RELIABILITIES AND MEAN TRANSACTIONS PER FAILURE: BROOKLAND, FARECARD VENDOR 31, 1978-1979 51
4-12 TOTAL AND ELEMENT MONTHLY RELIABILITIES AND MEAN TRANSACTIONS PER FAILURE: SILVER SPRING, FARECARD VENDOR 30, 1978-1979 52

```
LIST OF TABLES (Cont.)
```

Table Page
4-13 TOTAL AND ELEMENT MONTHLY RELIABILITIES AND MEAN TRANSACTIONS PER FAILURE: SILVER SPRING, FARECARD VENDOR 33, 1978-1979 53
4-14 TOTAL AND ELEMENT MONTHLY RELIABILITIES AND MEAN TRANSACTIONS PER FAILURE: SILVER SPRING, FARECAKD VENDOR 40, 1978-1979 54
4-15 TOTAL AND ELEMENT MONTHLY RELIABILITIES AND MEAN TRANSACTIONS PER FAILURE: FARRAGUT WEST - 17TH ST., FARECARD VENDOR 32, 1978-1979 55
4-16 TOTAL AND ELEMENT MONTHLY RELIABILITIES AND MEAN TRANSACTIONS PER FAILURE: FARRAGUT WEST - 17TH ST., FARECARD VENDOR 33, 1978 -1979 56
4-17 TOTAL AND ELEMENT MONTHLY RELIABILITIES AND MEAN TRANSACTIONS PER FAILURE: ROSSLYN, FARECARD VENDOR 39, 1978-1979 57
4-18 TOTAL AND ELEMENT MONTHLY RELIABILITIES AND MEAN TRANSACTIONS PER FAILURE: ROSSLYN, FARECARD VENDOR 41, 1978-1979 58
4-19 FARECARD VENDOR AVAILABILITIES, 1978-1979 61
4-20 DUPONT CIRCLE MONTHLY FARECARD VENDOR AVAILABILITIES, 1978-1979 63
4-21 BROOKLAND MONTHLY FARECARD VENDOR AVAILABILITIES, 1978-1979 63
4-22 SILVER SPRING MONTHLY் FARECARD VENDOR AVAILABILITIES, 1978-1979 64
4-23 FARRAGUT WEST, I7TH STREET, MONTHLY FARECARD VENDOR AVAILABILITIES, 1978-1979 65
4-24 FARRAGUT WEST, I7TH STREET, MONTHLY FARECARD VENDOR AVAILABILITIES, 1978-1979 65
4-25 ROSSLYN MONTHLY FARECARD VENDOR AVAILABILITIES, 1978-1979 66
4-26 MTBF, MEAN TRANSACTIONS PER FAILURE AND AVAILABILITY FOR TOTAL FARECARD VENDOR FAILURES, 1978-1979 70
Table Page
5-1 PRE- AND POST-RETROFIT MEAN TRANSACTIONS PER FARECARD JAM FOR FARECARD VENDORS, 1978-1979 74
5-2 RETROFIT VERSUS NON-RETROFIT FARECARD VENDORS: COMPARISON OF MEAN TRANSACTIONS PER FARECARD JAM, 1978-1979 75
5-3 COMPARISON OF MEAN TRANSACTIONS PER FAILURE FOR AFC EQUIPMENT: 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFITS A AND B) 78
5-4 COMPARISON OF AFC EQUIPMENT AVAILABILITIES: 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFITS A AND B) - TOTAL EQUIPMENT AVAILABILITY 80
5-5 COMPARISON OF MEAN TIME BETWEEN PEAK-HOUR FAILURES FOR AFC EQUIPMENT: 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFITS A AND B) - TOTAL EQUIPMENT 82 MBTF
5-6. COMPARISON OF MEAN TRANSACTIONS PER FARECARD JAM FOR AFC EQUIPMENT: 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFITS A AND B) - TICKET TRANSPORT RELIABILITY
5-7 COMPARISON OF MEAN NUMBER OF COINS INSERTED PEK COIN JAM FOR FARECARD VENDORS AND ADD-FARES: 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFITS A AND B) - COIN ACCEPTOR RELIABILITY 86
5-8 COMPARISON OF MEAN NUMBER OF BILLS INSERTED PER BILL JAM FOR FARECARD VENDORS AND ADD-FARES: 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFITS A AND B) - BILL VERIFIER RELIABILITY 87
5-9 COMPARISON OF PEAK AND OFF-PEAK MEAN TRANSACTIONS PER FAILURE FOR FARRAGUT WEST, l7TH STREET AND FARRAGUT WEST, 18TH STREET 1980: AFC EQUIPMENT AND ELEMENTS 92
5-10 DETAILED AFC EQUIPMENT RELIABILITIES: ROSSLYN, RETROFIT A, 1978-1979 AND FEBRUARY AND APKIL 1980 96
5-11 DETAILED AFC EQUIPMENT RELIABILITIES: FARRAGUT WEST, 17TH STREET, RETROFIT A, 1978-1979 AND FEBRUARY, MARCH AND APRIL 1980 97
5-12 DETAILED AFC EQUIPMENT RELIABILITIES: FARRAGUT WEST, $18 T H$ STREET, RETROFIT B, 1978-1979 AND FEBRUARY, MARCH AND APRIL 1980 98

```
LIST OF TABLES (Cont.)
```

Table		Page
5-13	DETAILED AFC EQUIPMENT AVAILABILITY FOR 1980 SURVEY (RETROFITS A AND B)	101
5-14	COMPARISON OF MTBF FOR AFC EQUIPMENT AT ROSSLYN: 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFIT A)	102
5-15	COMPARISON OF MTBF FOR AFC EQUIPMENT AT FARRAGUT WEST, $17 T H$ STREET: 1978-1979 SURVEY (PRERETROFIT) AND 1980 SURVEY (RETROFIT A)	103
5-16	COMPARISON OF MTBF FOR AFC EQUIPMENT AT FARRAGUT WEST, 18TH STREET: 1978-1979 SURVEY (PRERETROFIT AND 1980 SRUVEY (RETROFIT B)	104
6-1	RELIABILITIES FOR AFC EQUIPMENT AT FARRAGUT WEST, 18TH STREET, 1978-1979	113
6-2	RATIO OF SOFT TO HARD FAILURES AND AVERAGE DOWN TIME PER FAILURE, FARRAGUT WEST, l8TH STREET, 1978-1979	115
6-3	RELIABILITY AND ADT FOR ALL FAILURES, FARRAGUT WEST, 18TH ST., 1980	117
6-4	RELIABILITY AND ADT FOR $\$ 1$ and $\$ 5$ FAST VENDORS, FARRAGUT WEST, 18TH STREET, 1980	118
6-5	RELIABILITY AND ADT FOR ONE- AND TWO-RIDE FAST VENDORS, FARRAGUT WEST, 18TH STREET, 1980	122
6-6	RELIABILITY AND ADT FOR OPTIMUM PERFORMANCE OF CURRENT AFC SYSTEM, FARRAGUT WEST, 18TH STREET	124
6-7	COMPARISON OF AFC ALTERNATIVES: SYSTEM RELIABILITY AND ADT PER FAILURE, FARRAGUT WEST, 18TH STREET	126

The Washington Metropolitan Area Transit Authority (WMATA) has had an Automatic Fare Collection (AFC) system in operation since June 1977. The AFC system, comprised of entry/exit gates, farecard vendors and add-fares, initially encountered many operational set-backs due to unreliable equipment and an inadequate spare parts inventory. Equipment design problems were identified by WMATA in September 1977 and improvement programs directed toward improving AFC equipment reliability and availability have continued through 1980. The first set of improvements occurred in December 1978 and January 1979 and were directed toward the farecard ticket transport. Modifications were made to the hinges, rollers and printers of AFC equipment. The second improvement program occurred in February 1980 and involved two separate programs. Retrofit A incorporated further changes to the ticket transport while Retrofit B included modification to the ticket transport, coin acceptor and bill verifier.

In light of the problems associated with WMATA's AFC system, this study was commissioned to quantitatively evaluate the reliability and availability of WMATA's AFC system and subsystems. The study was conducted in three separate phases, each with its own objective. The first phase of the study focused on conducting a reliability and availability analysis of WMATA's farecard vendors and their elements (ticket transport, coin acceptor and bill verifier) based on data collected in 1978 and 1979. The second phase of the study was to develop and apply a data collection and analysis plan to measure the effectiveness of improvements (Retrofits A and B) to all AFC system equipment and their elements. The final phase of the study utilized data generated from the first two phases to estimate the impacts of AFC alternatives on system effectiveness.

This report is divided into six sections. The first section describes the study purpose and objectives and defines the approach used to conduct the study. Section 2 presents various measures of reliability and availability which were used in analyzing WMATA's AFC equipment; a data collection plan is presented in Section 3. The analysis of WMATA's farecard vendor performance is contained in Section 4 and is followed by the analysis of the retrofit improvement program (Section 5). The AFC alternatives impact analysis is presented in Section 6. The following paragraphs give a brief summary of the results of each of these three phases of the study.

ANALYSIS OF THE RELIABILITY AND AVAILABIIITY PERFORMANCE OF WMATA'S FARECARD VENDORS AND ELEMENTS

Data on transactions and failures obtained from approximately eight months of peak hour surveys at WMATA conducted in 1978-1979 were reduced and analyzed for farecard vendors and their elements. The results were combined to calculate reliability, availability, mean transactions per failure, and mean time between failures (MTBF). Statistical tests were employed to compare and rank farecard vendor and element performance.

The findings of the assessment of WMATA's farecard vendor performance may be summarized as follows:

1. Overall Farecard Vendor Performance by Mezzanine

The mean number of transactions per failure at each mezzanine ranged from 97 to 192 , with an overall mean of 120 transactions per failure. Two mezzanines, Silver Spring and Farragut West $17^{\text {th }}$ St., had reliabilities significantly lower than the system average. No monthly trend in reliabilities was identifiable. Availabilities ranged from 79.80 percent to 90.70 percent, with a system mean of

```
84.10 percent. Monthly variation in availability
``` within and among mezzanines followed no apparent trend. MTBF ranged from 1.60 to 3.30 hours, with a mean of 1.96 hours.

SUMMARY OF FARECARD VENDOR PERFORMANCE BY MEZZANINE, 1978-1979
\begin{tabular}{lccc}
\hline & \begin{tabular}{c}
MEAN \\
MRANSACTIONS \\
PER FAILURE
\end{tabular} & \begin{tabular}{c}
AVAILABILITY \\
\(\%\)
\end{tabular} & \begin{tabular}{c}
MTBF \\
(HOURS)
\end{tabular} \\
\hline DuPont Circle & 192 & 90.68 & 3.30 \\
Brookland & 120 & 81.46 & 2.13 \\
Silver Spring & 99 & 83.21 & 1.86 \\
Farragut West - 17th Street & 97 & 79.77 & 1.58 \\
Farragut West - 18th Street & 129 & 84.50 & 1.94 \\
Rosslyn & 128 & 84.08 & 1.88 \\
& 120 & 84.08 & 1.96 \\
\hline
\end{tabular}
2. Overall Element Performance

The coin acceptor element was significantly more reliable than both the ticket transport and the bill verifier. No significant difference was found between the reliabilities of the ticket transport and the bill verifier. Farecard jams comprised the greatest percentage (32 percent) of total failures. Bill jams accounted for 25 percent of the failures and coin jams, 18 percent. The remainder of the failures included hard failures (requiring a maintenance technician) - 14 percent, other soft failures 10 percent and failure to verify a farecard 1 percent.

MEAN
TRANSACTIONS PER FAILURE

PEKCENT OF TOTAL FAILURES
1. Ticket Transport 376
2. Coin Acceptor
3. Bill Verifier

844
358

32 - farecard jams
18 - coin jams
25 - bill jams
3. Farecard Vendor-Specific: Overall and Element Performance

Low overall reliabilities in specific farecard vendors were traceable to one or more low element reliabilities. Of the forty vendors examined, seven had significantly lower reliabilities when compared to the system average. Eighteen vendors had availabilities significantly less than the system mean. Of these eighteen, five of the vendors also had the lowest reliabilities. The major cause of the low vendor availabilities was the lack of an adequate supply of spare parts and the lengthy out-of-service periods.

FARECARD VENDORS WITH RELIABILITIES SIGNIFICANTLY LESS (AT 95 PERCENT CONFIDENCE LEVEL) THAN OVERALL MEAN
\begin{tabular}{|c|c|c|c|c|c|}
\hline MEZZANINE* & TOTAL FAILURES & FARECARD JAMS & \[
\begin{aligned}
& \text { COIN } \\
& \text { JAMS }
\end{aligned}
\] & \[
\begin{aligned}
& \text { BILL } \\
& \text { JAMS }
\end{aligned}
\] & HARD AND "OTHER" FAILURES \\
\hline Brookland & 31** & & 31 & & \\
\hline Silver Spring & \[
\begin{aligned}
& 33 \\
& 40
\end{aligned}
\] & 40 & \[
\begin{aligned}
& 33 \\
& 40 \\
& 30
\end{aligned}
\] & & 40 \\
\hline Farragut West 17 th St. & \[
\begin{aligned}
& 32 \\
& 33
\end{aligned}
\] & & & \[
\begin{aligned}
& 32 \\
& 33
\end{aligned}
\] & \\
\hline Rosslyn & \[
\begin{aligned}
& 39 \\
& 41
\end{aligned}
\] & \[
\begin{aligned}
& 39 \\
& 41
\end{aligned}
\] & & 41 & \\
\hline
\end{tabular}
*Dupont Circle and Farragut West l8th St. did not have any farecard vendors with significantly low reliabilities.
**Vendor number.
\begin{tabular}{|c|c|c|}
\hline LOCATION & VENDOR & AVAILABILITY \\
\hline \multirow[t]{5}{*}{Dupont Circle} & 30 & 99.25 \\
\hline & 31 & 90.94 \\
\hline & 32 & 81.28* \\
\hline & 38 & 95.14 \\
\hline & 39 & 86.80 \\
\hline \multirow[t]{4}{*}{Brookland} & 30 & 95.27 \\
\hline & \[
31
\] & \[
75.21 \text { * }
\] \\
\hline & 32 & 79.54 * \\
\hline & 33 & 75.80* \\
\hline \multirow[t]{9}{*}{Silver Spring} & 30 & 93.93 \\
\hline & 31 & 74.24* \\
\hline & 32 & 88.24 \\
\hline & 33 & 84.90 \\
\hline & 34 & 95.42 \\
\hline & 35 & 70.46 * \\
\hline & 36 & 95.76 \\
\hline & 40 & \[
59.04 \text { * }
\] \\
\hline & 41 & 81.67* \\
\hline \multirow[t]{6}{*}{Farragut West - 17th Street} & 30 & 92.71 \\
\hline & 31 & 88.06 \\
\hline & 32 & 87.16 \\
\hline & 33 & 73.71* \\
\hline & 34 & 71.22* \\
\hline & 35 & 65.74 * \\
\hline \multirow[t]{6}{*}{Farragut West - 18th Street} & & 77.24* \\
\hline & 31 & 93.36 \\
\hline & 32 & 74.78* \\
\hline & 33 & 74.86* \\
\hline & 34 & \[
89.41
\] \\
\hline & 35 & 88.75 \\
\hline \multirow[t]{10}{*}{Rosslyn} & 30 & 80.79* \\
\hline & 31 & 81.99* \\
\hline & 32 & 87.42 \\
\hline & 33 & 93.98 \\
\hline & 34 & 92.44 \\
\hline & 38 & 94.07 \\
\hline & 39 & 53.88 * \\
\hline & 40 & \[
88.11
\] \\
\hline & 41 & \[
66.61 *
\] \\
\hline & 42 & 95.48 \\
\hline
\end{tabular}

\footnotetext{
*Availability significantly (95 percent confidence level) below system mean.
}

Data were collected on the peak-hour reliability and availability performance of retrofit gates, farecard vendors, add-fare machines and their elements during February-April 1980. The data were then reduced and compared to the 1978-1979 survey data. Reliability and availability measures were statistically analyzed to determine the effectiveness of Retrofit A (improvements to the ticket transport) and Retrofit B (improvements to the ticket transport, bill verifier, and coin acceptor) in increasing \(A F C\) equipment performance.

The findings of the assessment of retrofit performance may be summarized as follows:
l. Overall Equipment Performance

Retrofit A - Significant improvements in the reliabilities of gates occurred; farecard vendors and add-fares experienced no significant changes. The availabilities of gates and farecard vendors were significantly improved although only gates met 95 percent availability.

Retrofit B - Significant improvements occurred in the reliabilities and availabilities of gates, farecard vendors and add-fares. All equipment achieved 95 percent operational availability. Retrofit B reliabilities showed significant improvements over Retrofit A and the availability of Retrofit B farecard vendors and add-fares was significantly better than that of Retrofit \(A\).

COMPARISON OF MEAN TRANSACTIONS PER FAILURE FOR AFC EQUIPMENT:
1978-1979 SuRVEY (Pre-Retrofit) AND 1980 SURNEY
(Retrofits A and B) - TOTAL EQUIPMEN'S RELIABILITY

MEAN TRANSACTIONS PER FAILURE \({ }^{1}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{AFC RQUI PMENT} & \multicolumn{9}{|c|}{MEAN TRANSACTIONS PER FAILUREl} \\
\hline & \multicolumn{5}{|c|}{RETROFIT A} & \multicolumn{4}{|c|}{RETROFIT B} \\
\hline & \[
\begin{gathered}
\text { PRE } \\
\text { RETROPIT }
\end{gathered}
\] & FEBRUARY & MARCH \({ }^{2}\) & APRIL & TOTAL & FEBRUARY & MARCH & APRIL & TOTAL \\
\hline Gates & 502 & 525 & 3.496** & 802*** & 712** & 1.596** & 4,865 = & 5,216** & 2,220** \\
\hline \multicolumn{10}{|l|}{Farecard} \\
\hline Add-fares & 96 & 72 & 53 & 142 & 84 & 132* & 313** & \(386 * *\) & 174** \\
\hline \multicolumn{10}{|c|}{Includes all hard and soft failures \({ }^{2}\) Farragut West. \(17^{\text {th }}\) st. only} \\
\hline \multicolumn{10}{|c|}{\begin{tabular}{l}
*Significant improvement over 1978-1979 at 95 percent confidence level \\
**Significant improvement over 1978-1979 at 99 percent confidence level
\end{tabular}} \\
\hline
\end{tabular}

COMPARISON OF AFC EQUIPMENT AVAILABILITIES: \(1978-1979\) SURVEY
(Pre-Recrofit) AND 1980 SURVEY (Recrofits A and B) -
TOTAL EQUIPMENT AVAILABILITY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{AFC EQUIPMENT} & \multicolumn{9}{|c|}{EQUIPMENT AVAILABILTY} \\
\hline & \multirow[b]{2}{*}{PRE RETROPIT} & \multicolumn{4}{|c|}{RETROPIT A} & \multicolumn{4}{|c|}{RETROPIT B} \\
\hline & & FESRUARY & MARCH \({ }^{1}\) & APRIL & TOTAL & FESRUARY & MARCH & APRIL & TOTAL \\
\hline Gates & 92.71 & 95.30** & 92.42 & 97.02** & 95.54** & 94.92** & 98.87** & 93.11 & 95.43** \\
\hline \multicolumn{10}{|l|}{Farecard} \\
\hline Add-fares & 96.17 & 91.31 & 94.17 & 96.23 & 93.33 & 98.08** & 99.49*** & 99.72** & 98.67** \\
\hline \multicolumn{10}{|c|}{\(l_{\text {parcague }}\) West, 17 th Sereet only} \\
\hline
\end{tabular}

Retrofit A - Gates and farecard vendors showed a significant increase in ticket transport reliability while add-fares showed a marked decrease. No significant improvements were found in the coin acceptor for farecard vendors; add-fares again showed a decrease in reliability. The bill verifier demonstrated an improvement in the farecard vendor and a significant improvement in the add-fares.

Retrofit B - Gates and farecard vendors demonstrated significant improvements in ticket transport reliability. Add-fares also had a marked increase in ticket transport reliability.

No significant improvements were found for the coin acceptor; add-fares experienced a decrease in coin acceptor reliability. The bill verifier demonstrated a significant improvement for farecard vendors and add-fares.

Retrofit \(B\) showed a significant increase in reliability over Retrofit A in the ticket transport for all equipment; there was no difference in Retrofit \(A\) and Retrofit \(B\) equipment performance for coin acceptors and bill verifiers.
3. Equipment Specific: Overall and Element Performance

\section*{Retrofit A}

Rosslyn - All farecard vendors experienced improvements in ticket transport reliability; all other AFC equipment showed inconsistent performance. With the exception of a few machines, all AFC equipment met 95 percent availability.

COAPARISON OF MEAN TRANSACTIONS PER FARECARD JAM FOR AFC EQUIPMENT: 1978-1979 SURVEY (PRE-RETROFIT)
AND 1980 SURVEY (RETROFITS A AND B) - TICKET
TRANSPORT RELIABILITY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{AFC EQUIPMENT} & & & MEA & N transac & TIONS PER & FARECARD J & & & \\
\hline & \multirow[b]{2}{*}{PRE RETROPIT} & \multicolumn{4}{|c|}{RETROFIT A} & \multicolumn{4}{|c|}{RETROFIT B} \\
\hline & & FEBRUARY & MARCH \({ }^{1}\) & APRIL & TOTAL & FEBRUARY & MARC'H & APRIL & TOTAL \\
\hline Gates & 858 & 1.381** & 20,977/0** & 1.034 & 1.477** & 11.399** & 8,109** & 15,649** & 11.274** \\
\hline \multicolumn{10}{|l|}{Farecard} \\
\hline Vendors & 376 & 477 & 510 & 885** & 573** & 6,148** & 1.137** & 4.965** & 3,445** \\
\hline Add-fares & 552 & 143 & 79 & 243 & 154 & 833 & 939 & 772 & 872 \\
\hline \multicolumn{10}{|c|}{1 Parragut wear, \(17^{\text {th }} \mathrm{St}\). only} \\
\hline \multicolumn{10}{|c|}{**ignificant improvement over 1978-1979 at 99 percent contidence level} \\
\hline
\end{tabular}

COMPARISON OF MEAN NUMBER OF COINS INSERTED PER COIN JAM FOR FARECARD VENDORS AND ADD-FARES: 1978-1979 SURVEY
(PRE-RETROFIT) AND 1980 SURVEY (RETROFITS A AND B) -
COIN ACCEPTOR RELIABILITY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{AFC EQUIPMENT} & \multicolumn{9}{|c|}{MEAN NUMBER OF COINS INSERTED PER COIN JAM} \\
\hline & \multirow[b]{2}{*}{PRE RETROPIT} & \multicolumn{4}{|c|}{RETROFIT A} & \multicolumn{4}{|c|}{RETROEIT B} \\
\hline & & FEBRUARY & MARCH \({ }^{1}\) & APRIL \({ }^{1}\) & TOTAL & FEBRUARY & MARCH & APRIL & total \\
\hline \multicolumn{10}{|l|}{Farecard} \\
\hline Vendors & 844 & 1,062 & 734 & 2,893 & 1,058 & 1.125 & 956 & 871 & 1.027 \\
\hline Add-sares & 2.115 & 412 & 690 & 924 & 510 & 1.082 & 563 & 824/0* & 1.039 \\
\hline
\end{tabular}

Significant improvement on 1978-1979 at the 95 percent confidence level

COMPARISON OF MEAN NUMBER OF BILLS INSERTED PER BILL JAM FOR FARECARD VENDORS AND ADD-FARES: 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURNEY (RETROFITS A AND B) BILL VERIFIER RELIABILITY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{AFC EQUI PMENT} & & MEAN NUM & ER Of BIL & INSERTE & PER BIL & J AM & & & \\
\hline & \multirow[b]{2}{*}{PRE RETROFIT} & \multicolumn{4}{|c|}{RETROFIT A} & \multicolumn{4}{|c|}{RETROFIT B} \\
\hline & & FEBRUARY & MARCH \({ }^{2}\) & APRIL \({ }^{1}\) & TOTAL & FEERUARY & MARCH & APRIL & TOTAL \\
\hline \multicolumn{10}{|l|}{Farecard} \\
\hline vendors & 358 & 444 & 553 & 299 & 459 & 622*** & 305 & 971** & 572** \\
\hline Add-fares & 40 & 616** & 130/0*** & 203** & 474** & 311** & 281/0** & 432/0** & 454** \\
\hline \multicolumn{10}{|c|}{\({ }^{1}\) parragut West, 17 th St. only} \\
\hline \multicolumn{10}{|c|}{**Significant improvement over 1978-1979 at 99 percent confidence level} \\
\hline
\end{tabular}

Farragut West, l7th Street - Gates had significant improvements in ticket transport reliabilities; farecard vendors showed minor improvements. An availability of 95 percent was not met by a large portion of the equipment and farecard vendors were particularly inconsistent performers.

\section*{Retrofit B}

Farragut West, l8th Street - All gates and farecard vendors had an increase in ticket transport reliabilities, and all AFC equipment experienced an increase in total reliability. There was a decrease in the reliability of the coin acceptors; bill verifiers showed marked improvements. With the exception of one gate and one farecard vendor, all AFC equipment met 95 percent availability.
4. Analysis of peak and off-peak performance resulted in a wide disparity among data from which no conclusions could be made.

\section*{IMPACT OF FARE COLLECTION ALTERNATIVES}

Reliability measures for AFC equipment were combined with passenger flow distributions to provide an estimate of system reliability measured in terms of the probability of a successful transaction. The average down time (ADT) per failure system-wide (measure of maintainability) was estimated by weighting the ADT of hard and soft failures by the ratio of soft to hard failures. System reliability and maintainability were then compared at Farragut West, \(18^{\text {th }}\) St. for the following fare collection alternatives.
1. Improved ticket transport, coin acceptor and bill validator (Retrofit B);
2. \$1 and \$5 fast vendors;
3. One- or two-ride fast vendors; and
4. Current AFC system operating under optimal performance (10,000 transactions per failure and 95 percent availability).

The results of the comparison of alternatives showed that the highest system reliability and lowest maintainability could obviously be achieved at optimal performance. The \(\$ 1\) and \(\$ 5\) fast vendors had the second best system reliability, followed closely by one- and two-ride fast vendors. A more extensive analysis of the costs and benefits of the various alternatives is required to make any conclusive recommendations.

COMPARISON OF AFC ALTERNATIVES: SYSTEM RELIABILITY AND ADT PER FAILURE, FARRAGUT WEST, 18TH ST.
\begin{tabular}{lcc}
\hline & \begin{tabular}{c}
SYSTEM RELIABILITY- \\
FAILURES PER \\
10,000 TRANSACTIONS
\end{tabular} & \begin{tabular}{c}
ADT \\
FAILURER
\end{tabular} \\
\hline \(1978-1979\) System & 26 & 6.73 \\
Retrofit B & 12 & 12.53 \\
\(\$ 1\) and \$5 Fast Vendors \\
\begin{tabular}{l}
One- and Two-Ride Fast \\
Vendors
\end{tabular} & 10 & 12.85 \\
\begin{tabular}{l}
Optimum Performance of AFC \\
Equipment
\end{tabular} & 11 & 12.49 \\
\hline
\end{tabular}

\footnotetext{
\(l_{\text {Peak-Hour Minutes }}\)
\({ }^{2}\) Defined by The Performance Standard of 10,000 Transactions per Failure
}

This report summarizes the findings of an assessment of the reliability and availability performance of automatic fare collection (AFC) equipment at selected washington Metropolitan Area Transit Authority (WMATA) mezzanines.

\subsection*{1.1 BACKGROIJND}

WMATA's AFC system is a refined version of the Bay Area Rapid Transit (BART) second-generation AFC system. The equipment was designed by Cubic Western Data (CWD). The AFC system is composed of farecard vendors, add-fare machines, entry and exit gates, and a Data Acquisition and Display System (DADS) which monitors and controls the AFC equipment at each mezzanine. (See Figure l-1.)

The farecard vendors furnish farecards of any chosen value from \(\$ 0.45\) to \(\$ 20.00\) for cash or cash plus the trade-in value of a used farecard. Vendors at WMATA accept \(\$ 1\) and \(\$ 5\) bills, and nickles, dimes and quarters. The vendors also return up to \(\$ 4.95\) in change. The entry and exit gates separate the paid from the free area in a mezzanine, and they read, encode and verify information on the farecards. Exit gates also print the value remaining on a farecard so patrons have a record of the remaining value. Add-fare machines accept farecards, calculate the additional fare required to exit the system, and visually display the required amount to the patron. Similar to farecard vendors, they accept bills and coins. In addition, all WMATA add-fare machines will change \(\$ 1\) and \(\$ 5\) bills into quarters without an associated farecard.

A DADS system is located in each mezzanine and is electrically connected to each machine. The system accepts
\begin{tabular}{c}
SPO NO \\
\hline 1 \\
2 \\
3 \\
4 \\
5
\end{tabular}
\[
\begin{aligned}
& \text { Ferecsici Tencio: }
\end{aligned}
\]

> Stition Atendan
> Rlosik w/DADs
> 클 Gate
> Feqersfie Gate
MAME

Ead A Gate
Ead 3 Gate
프장 Gate
Serrice Grte

Fallitg

FIGURE 1-1. WMATA MEZZANINE WITH AFC EQUIPMENT
signals from equipment registers and malfunction/intrusion status sensors. Malfunctions are indicated on a display panel located in the kiosk which lights up and identifies both the machine number and the type of malfunction. The DADS system also provides accounting data for each machine in the form of a register printout. These printouts are available at any time on a machine-specific basis. DADS generates and transmits time signals to all gates to change fare calculations during off-peak hours. All AFC machines can be remotely put in or out of service by DADS, and entry and exit modes can be changed on gates.

WMATA's AFC system has been in operation since June 1977. Initially the \(A F C\) system encountered many set-backs including inadequate equipment quantities at high volume stations and unreliable equipment. Maintenance and operational inefficiencies such as coordinating maintenance tasks and maintaining an adequate parts inventory also contributed to early AFC problems. By September of 1977, CWD and WMATA had identified three general areas of equipment design problems: money handing equipment, farecard transports, and software. CWD undertook an \(A F C\) improvement program to increase the reliability and maintainability of the AFC equipment. WMATA reviewed AFC equipment performance and identified design objectives having the highest potential for improving equipment reliability and availability. Six objectives were given high priority:
1. Decrease farecard jams in all transports.
2. Increase bill validator performance and reliability.
3. Increase coin acceptor reliability.
4. Decrease the number of coin jams in the coin chute.
5. Improve faregate register reliability and accuracy.
6. Eliminate rejection of valid currency caused by timing between bill validator and bill escrow.

To monitor the improvement program, WMATA began a series of monthly peak-hour surveys. These surveys provided data on selected AFC equipment performance and usage from October 1978 to September 1979.

\subsection*{1.2 STUDY PURPOSE AND OBJECTIVES}

In light of the problems associated with WMATA's AFC system performance, the purpose of this study was to quantitatively evaluate via standard statistical tests the reliability and availability performance of WMATA's AFC system and subsystems. The specific objectives of the study were:
1. Conduct a reliability and availability analysis of WMATA's farecard vendors and their elements;
2. Develop and apply a data collection and analysis plan to measure the effectiveness of improvements (retrofits) to AFC system elements; and
3. Estimate the impacts of APC alternatives on system effectiveness.
1.3 STUDY APPROACH

To accomplish the study objectives, six steps were taken. First, existing reliability and availability studies of AFC equipment and literature on reliability engineering and quality control were surveyed. This survey helped establish and define
the reliability and availability measures to be utilized at WMATA. Second, raw data from WMATA's monthly surveys were obtained and Eailure and transaction data were reduced. Third, failure, transaction and operating time data were combined to calculate measures of reliability and availability. Fourth, statistical tests were utilized to compare farecard vendor and element performance, and to rank element reliabilities. The fifth step consisted of designing a data collection and analysis plan to measure retrofit performance, and reducing and comparing the post retrofit data to earlier WMATA survey results. Finally, the results of the reliability and availability analysis were utilized as inputs to estimate the impacts of automatic fare collection alternatives on system effectiveness.
2. RELIABILITY AND AVAILABILITY AS MEASURES OF SYSTEM PERFORMANCE

The performance of a specified function is the output of any given system. System effectiveness is a term used to describe the overall capability of a system to accomplish its intended function. Effectiveness encompasses system design, use, and maintenance as well as administrative and policy decisions that support system operation. Reliability and availability are two quantitative measures of performance which refer to the operational readiness of a system. Maintainability is another measure of the operational readiness of a system.

Literature and existing studies on reliability and availability provide confliciting interpretations of this terminology. As a result, many different quantitative measures or formulas for calculating reliability and availability exist. To ensure precise communication of the study results, this chapter will discuss and define reliability, availability and maintainability as applied to the analysis of WMATA's AFC system performance.

\subsection*{2.1 RELIABILITY AND AVAILABILITY MEASURES OF WMATA'S AFC EQUIPMENT AND ELEMENTS}

For the purposes of this study, reliability is defined as the probability that AFC equipment or their elements will successfully accomplish their functional tasks. For each type of \(A F C\) equipment, gates, farecard vendors, and add-fare machines, the functional task referred to is a successful transaction. A transaction for entry and exit gates occurs when a patron successfully uses a farecard to enter or exit the system. For farecard vendors, a transaction occurs when a
patron successfully purchases or adds additional value to a farecard. For add-fare machines, a transaction involves a successful purchase of additional value for a farecard.

A failure occurs when a machine or an element does not accomplish its functional task. By summing total transactions and total machine failures, reliability can be calculated for each type of AFC equipment:

\section*{\(R=\frac{\text { Total transactions - total failures }}{\text { Total transactions }}\)}

Transactions may be measured on a system, mezzanine, machine or element level. When reliability is expressed as a probability, it facilitates subsequent quantitative analysis. However, reliability measures may be converted to mean transactions per failure by utilizing the following formula:

Mean Transactions per Failure \(=\frac{1}{1-R}\)

Transactions for the elements of \(A F C\) equipment are measured in terms of the actual functional task of each element. A transaction for an element occurs each time an element is utilized. This allows for a determination of element reliability based on actual element usage as opposed to overall equipment usage. The elements examined in this study are:
1. Ticket transports - for gates, farecard vendors, and add-fares. The ticket transports are utilized in every successful transaction, so the total number of transactions per AFC machine is used to measure the number of times a ticket transport was utilized successfully.
2. Coin acceptors - for farecard vendors and add-fares. The coin acceptor is often utilized more than once in a successful transaction, (i.e., a patron inserts two quarters for one fare).* The total number of coins inserted into a machine measures the number of times the coin acceptor was utilized successfully.
3. Bill Validator - for farecard vendors and add-fares. To measure the number of times a bill valiaator was successfully utilized, the total number of \(\$ 1\) and \(\$ 5\) bills accepted by a machine was summed.

It is particularly useful to measure coin and bill reliabilities based on actual usage since these elements are purchased commercially, and performance specifications apply to the particular element as opposed to the AFC machine. Reliabilities may be calculated on an element level utilizing element transactions and failures. For WMATA this is possible because DADS records the number of bills and amount of change input to any farecard vendor or add-fare machine. An estimate of the number of coins input to any machine can be obtained by applying a coinage distribution to the amount. Reliabilities for each of the elements are calculated using the following formulas:
1. Ticket transport
\[
R=\frac{\text { Total transactions }- \text { total farecard jams }}{\text { Total transactions }}
\]

\footnotetext{
*For two sample survey periods at WMATA, the average number of coins per transaction was observed for farecard vendors only:
}

Farragut West, l7th St., Off-Peak: 1045-1245-2/26/80 Average Number of Coins per Transaction:- 2.66

Farragut West, 18th St., Peak: 1700-1830-2/26/80 Average Number of Coins per Transaction: 2.56
\(R=\frac{\text { Total coins acceoted* - total coin jams }}{\text { Total coins accepted }}\)
*where the coin distribution is as follows:
\begin{tabular}{ll}
quarters & \(=82\) percent \\
dimes & \(=12\) percent \\
nickels & \(=5\) percent \\
half-dollars & \(=1\) percent
\end{tabular}
3. Bill validator
\(R=\frac{\text { Total bills accepted - total bill jams }}{\text { Total bills accepted }}\)

Reliability measured in this manner assumes a situation dependent on use as opposed to time.**

Availability for the purpose of this study is defined as the probability that AFC equipment will be operating satisfactorily at any point in time. The total time considered includes operating time, active repair time, and logistic time (response time). Total operating time (combined survey period time) and repair and logistic time (combined duration of failures) are utilized to calculate availability.
\[
A=\frac{\text { Total operating time - total down time }}{\text { Total operating time }}
\]

\footnotetext{
*For two sample survey periods at WMATA, the average number of coins per transaction was observed for farecard vendors only:

Farragut West, 17th St., Off-Peak: 1045-1245-2/26/80 Average Number of Coins per Transaction: 2.66

Farragut West, 18th St.. Peak: 1700-1830 - 2/26/80 Average Number of Coins per Transaction: 2.56
**This assumption was tested by establishing a positive correlation between the number of transactions and number of failures occurring at each type of equipment. A linear regression was performed, and a \(T\)-test yielded 97 percent confidence of a positive correlation.
}

Down time is the amount of time an AFC machine was out of service due to all or some type of failures. Availability may be measured on a system, mezzanine, or machine level.

Mean time between failures (MTBF) is a performance measure (also used as a measure of reliability) which combines the number of failures with the operating time to estimate the relative time period between expected failures.
\[
\text { MTBF }=\frac{\text { Total operating time }}{\text { Total failures }}
\]

MTBF can be used as a measure of maintainability when it refers to the distribution of active repair times as opposed to failures. When MTBF is calculated based on the total number of failures, it provides useful information for maintenance personnel scheduling. However, it does not directly take into account the rate of machine usage, an important variable in AFC equipment performance due to its non-uniform utilization over time. MTBF may be calculated at a system, mezzanine, machine and element level.

Reliability is the probability that a failure will occur while availability is the probability that a machine will not be out of service due to a failure. MTBF provides an estimate of the relative time period between expected failures.

\subsection*{2.2 EXISTING RELIABILITY AND AVAILABILITY STUDIES OF WMATA'S AFC EQUIPMENT}

Three studies have examined the performance of WMATA's AFC equipment. Each focused on particular equipment and/or measures of reliability and availability. The first study was performed by CWD as part of its contractual agreement with WMATA. A detailed test plan was submitted in January of 1977 to cover a l2-month survey period, August 1977 to July 1978.

CWD's survey included 96 in-service AFC units apportioned among all of the AFC equipment types. Two measures of reliability and maintainability were employed to demonstrate compliance with AFC requirements: MTBF and mean time to repair (MTTR). The latter measure was calculated as follows:
\[
\text { MTTR }=\frac{\text { Total primary level* repair time }}{\dot{T o t a l} \text { failures }}
\]

The performance criteria established by CWD for its three types of AFC equipment are listed in Table 2-l.

TABLE 2-1. CWD PERFORMANCE CRITERIA FOR WMATA'S AFC EQUIPMENT
\begin{tabular}{|llll|}
\hline & \multicolumn{2}{c}{\begin{tabular}{l}
MTBF \\
EQUIPMENT TYPE
\end{tabular}} & \begin{tabular}{l}
MTTR \\
HOURS
\end{tabular} \\
\hline Gates & 720 & 36 & 0.5 \\
Farecard vendors & 920 & 46 & 0.5 \\
Add-fares & 744 & 37 & 0.5 \\
\hline
\end{tabular}

This set of criteria only includes hard failures which require repair by a maintenance person. All jams (fare card, coin, or bill) that may be cleared by a station attendant (soft failures) are excluded.

\footnotetext{
*Primary level repair time refers to repairs made at the "line" or mezzanine. It includes fault isolation, replacement of the defective unit, and retest; it does not include scheduled maintenance, coin, bill or card jam clearance or patron-induced failures. Also not included in primary level repair time are response time from the time of failure to the arrival at the mezzanine, delay time for procuring spare parts, and other time interruptions of the repair task.
}

The CwD survey and analysis measured only failures which required technical repair action. It assumed uniform usage of AFC equipment by utilizing only MTBE as a measure of reliability. In addition, MTTR measured active repair time only, not total out-of-service time for each failure, and MTTR was based on a 24 -hour operating day.

The second study consisted of a series of monthly AFC equipment performance studies conducted by WMATA. The WMATA surveys covered the time period October 1978 to September 1979. For two days a month, both a.m. and p.m. peak hours were surveyed. WmATA analyzed the data by mezzanine and equipment type (gates, farecard vendors and add-fares). Failures were itemized by type of failure: total jams, total farecard jams, total bill jams, total coin jams, and total money handing jams. Overall availability was also calculated by AFC equipment type.

The third study of WMATA's AFC equipment was part of a Fare Collection Overview Report by the Jet Propulsion Laboratory (JPL). JPL utilized WMATA's survey information to calculate total transactions per failure by failure type, (hard, soft, bill, coin and farecard jam) and by equipment type.

MTBF was also calculated on the assumption that peak hour transactions per unit time were uniform. Reliability was then derived based on an exponential distribution of failures.
\[
\begin{aligned}
R=\exp & (-t / \theta) \\
t & =24 \text { hours } \\
\theta & =\text { MTBF }
\end{aligned}
\]

The assumption that peak hour transactions per unit time are uniform is fairly accurate for vendors,* but questionable for entry and exit gates as some are reversible and the attendant can change the entry or exit mode.** However, this method of calculating reliability is one way to portray the probability of no failures occurring within a peak period; extrapolating to a 24 -hour period could be misleading since usage is not uniform throughout the day. This technique also assumes a specified rate of usage since operating time and failures (MTBF) are included. Reliability expressed in this form applies only to a specific usage situation.

The three previous studies measured slightly different aspects of WMATA's AFC equipment reliability, availability, and maintainability. This study attempts to standardize these measurements to analyze AFC equipment and element reliabilities in detail and determine the effectiveness of modifications on equipment reliabilities.

\footnotetext{
*Average transactions per peak hour were calculated on a machine-specific basis, and two statistical tests were utilized to test for machine differences. The Chi square test indicated discrepancies from the assumption of a uniform distribution. The Kolmogorov-Smirnov indicates a uniformity in machine usage.
**Average transactions per peak hour for individual entry and exit gates varied substantially.
}

To calculate measures of reliability and availability for WMATA's AFC equipment, two primary data sources were utilized: data collected at WMATA on AFC equipment failures and their duration, and DADS tapes containing transaction data for the survey periods. Three surveys provided failure data. Two surveys were conducted by WMATA and one was conducted jointly by IOCS and Automated Services Incorporated (ASI).

\subsection*{3.1 WMATA'S 1978-1979 SURVEYS}

The 1978-1979 surveys provided approximately eight months of peak hour data for six mezzanines, four of which were designated as baseline or primary survey mezzanines. Raw data sheets and copies of the DADS printouts were obtained from WMATA. Table 3-1 summarizes the failure data available for 1978-1979, and Table 3-2 summarizes the available DADS tapes. Some of the DADS tapes were unavailable for certain peak periods or for certain machines due to malfunctions in the DADS, illegible printouts, or incorrectly coded data. No attempt was made to estimate missing transactions since this would have involved estimating bill and coin transactions as well.

Transaction and failure data were reduced for all farecard vendors, and the results were combined to estimate reliability, availability, and transactions per failure. Failure data was manually recorded by vendor, failure type and duration for each mezzanine. Figure 3-1 shows a sample survey sheet. Transaction data were obtained for each vendor by calculating the differences between DADS printouts for the start and finish of each survey period. Figure \(3-2\) shows sample DADS printouts and explanation of the coding. Failures were classified as shown in Table 3-3, and applied to the appropriate element. The data
TABLE 3-1. SUMMARY OF RAW SURVEY DATA, 1978-1979
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{MEZZANINE} & \multirow[t]{2}{*}{NO.} & \multicolumn{3}{|l|}{1978} & \multicolumn{7}{|l|}{1979} \\
\hline & & ОСт. & NOV. & DEC. & JAN. & FEB. & MARCH & APRIL & MAY & JUNE & AUG. \\
\hline DuPont Circle (S) & 05 & & x & x & x & x & x & x & x & x & x \\
\hline Judiciary Sq. (E) & 23 & & & & & & X & & & & \\
\hline Brookland & 27 & x & x & X & x & X & X & X & X & X & X \\
\hline Silver Spring (S) & \(30^{*}\) & X & X & x & x & X & X & X & X & X & X \\
\hline Farragut West-E (17th) & \(38^{*}\) & X & X & X & X & X & x & X & X & X & Sept. \\
\hline Farragut West-W (18 \({ }^{\text {th }}\)) & 39* & x & X & X & X & X & X & X & X & X & X \\
\hline Rosslyn & 41* & X & X & X & X & X & X & X & X & X & X \\
\hline Pentagon & 43 & & & & & & & & X & & \\
\hline National Airport & 46 & & & & & & & & X & & \\
\hline Metro Center (S) & 52 & & & & & X & & & & & \\
\hline New Carrollton & 68 & & & X & & & & & & & \\
\hline
\end{tabular}
TABI．E 3－2．SUMMARY OF DADS DATA，1978－1979
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{7}{*}{\[
\stackrel{\sigma}{\sigma}
\]} & & \(\bigcirc\) & & \[
\begin{aligned}
& x \\
& \times \\
& x \\
& x
\end{aligned}
\] & & & & \[
\begin{aligned}
& x \\
& \times \\
& \times \\
& \times
\end{aligned}
\] & & & & \\
\hline & \[
\stackrel{\omega}{2}_{\stackrel{0}{2}<}^{\ll}
\] & & & \[
\begin{aligned}
& x \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \times \\
& \times \\
& \times \\
& \times
\end{aligned}
\] & \(\times\)
\(\times\)
\(\times\)
\(\times\)
¢ & \[
\begin{aligned}
& \times \\
& \times \\
& \times \\
& \times
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& \times \\
& \times \\
& \times \\
& x
\end{aligned}
\] & & & & \\
\hline & & \(\times\)
\(\times\)
\(\times\)
\(\times\)
\(\times\)
\(\times\) & & \[
\begin{aligned}
& x \\
& \times \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \times \\
& \times \\
& \times \\
& \times
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& \times \\
& 0 \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \times \\
& \times \\
& \times \\
& \times x
\end{aligned}
\] & \[
\begin{aligned}
& \times \\
& \times \\
& \times \\
& \times \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& x \\
& x \\
& x
\end{aligned}
\] & & & \\
\hline & & \(\times\)
\(\times\)
\(\times\)
\(\times\)
\(\times\) & & \[
\begin{aligned}
& x \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& x \\
& \times \\
& x
\end{aligned}
\] & \[
\begin{gathered}
0 \\
x \\
x \\
x
\end{gathered}
\] & \[
\begin{aligned}
& 0 \\
& \times \\
& \times \\
& \times
\end{aligned}
\] & \[
\begin{aligned}
& \times \\
& \times \\
& \times \\
& x
\end{aligned}
\] & & & & \\
\hline & & \(\times\)
\(\times\)
\(\times\)
\(\times\)
\(\times\)
\(\times\) & & \[
\begin{aligned}
& x \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \times \\
& \times \\
& \times \\
& \times \\
& \times
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& \times \\
& \times
\end{aligned}
\] & & \[
\begin{aligned}
& x \\
& \times \\
& \times \\
& x
\end{aligned}
\] & & \(\times\)
0
\(\times\)
0 & \[
\begin{aligned}
& \times \\
& \times \\
& \times \\
& \times \\
& x
\end{aligned}
\] & \\
\hline & & \(\times\)
\(\times\)
\(\times\)
\(\times\)
\(\times\)
\(\times\) & \[
\begin{aligned}
& x \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& \times \\
& \times \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \times \\
& \times \\
& \times \\
& \times \\
& \times
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& \times
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \times \\
& \times \\
& 0 \\
& 0
\end{aligned}
\] & & & & \\
\hline & & \(\times\)
\(\times\)
\(\times\)
\(\times\)
\(\times\)
\(\times\) & & \[
\begin{aligned}
& x \\
& \times \\
& \times \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \times \\
& \times \\
& \times \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \times \\
& \times \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \times \\
& \times \\
& \times \\
& \times \\
& x
\end{aligned}
\] & & & & \[
\begin{aligned}
& x \\
& x \\
& x \\
& x
\end{aligned}
\] \\
\hline \multirow{3}{*}{\[
\stackrel{\Phi}{\underset{\sigma}{\circ}}
\]} & & \(\times\)
\(\times\)
\(\times\)
\(\times\)
\(\times\) & & & \[
\begin{aligned}
& x \\
& \times \\
& \times \\
& \times \\
& \times
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& x \\
& x \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \times \\
& \times \\
& \times \\
& \times \\
& x
\end{aligned}
\] & & & & \\
\hline & & & & \[
\begin{aligned}
& \times \\
& \times \\
& \times \\
& \times
\end{aligned}
\] & & \(\times\) & & & & & & \\
\hline & & & & & \[
\begin{aligned}
& \times \\
& \times \\
& \times \\
& \times
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \times \\
& \times \\
& \times \\
& \times
\end{aligned}
\] & \[
\begin{aligned}
& \times \\
& \times \\
& \times \\
& \times
\end{aligned}
\] & & & & \\
\hline \multicolumn{2}{|r|}{2} & に & N & ～ & ＂ & ＊ & ＂ & ＊ & \(\stackrel{m}{ }\) & \(\stackrel{\circ}{*}\) & N & \(\stackrel{\otimes}{\odot}\) \\
\hline \multicolumn{2}{|r|}{} & & & & & & & & & & \[
\begin{aligned}
& \text { ज⿹勹巳 } \\
& \text { प. } \\
& \stackrel{\rightharpoonup}{む} \\
& U \\
& 0 \\
& \stackrel{y}{2}
\end{aligned}
\] & 厌 \\
\hline
\end{tabular}

\footnotetext{
Key，Blank or \(0=\) Not Auallable
＊－Avallable but illegible \(A=N M\)
\(P=P M\)
}
TIME \(\frac{21,5 \%}{1,11,1,0,1}\)
NARE Joll,1:....I
킨

METZANINE \(\frac{\text { frrererl }}{14--14}\)
DATA \(\frac{3-14-17}{}\)

1. Gate (Reversible Exit and Entry Modes) \#ll

0000002790 Patrons In
0001703095 Fare Extracted
0000000475 'B'
0000000308 'A'
0000000593 Zero Value Captured
0000004026 Patrons Out
0000004111 Mezzanine and Machine Number 0790161826 Year, Julian Date, Time
2. Farecard Vendor \#31

0000265325 \$ Change
0001035200 \$ Old Farecards
0000011200 \$ Bonus Paid
0008910600 \$ Amount Issued
\(0000214115 \quad \$\) Coins Accepted
0000000755 Farecards Not Verified
0000039097 Farecards Accepted
0000092519 Number of Successful Transactions
\(0000007366 \quad \$ 5\) Bills Accepted
\(0000067672 \quad \$ 1\) Bills Accepted
0000004131 Mezzanine and Machine Number
0790161827 Year, Julian ate, Time
3. Add-Fare \#50

0000052325 \$ Change
0000381720
0000685205
0000003883
0000007269
0000006724
0000004150
0790161828
\$ Coins Accepted
\$ Amount Issued \$5 Bills Accepted
\$1 Bills Accepted
Number of Successful Transactions Mezzanine and Machine Number Year, Julian Date, Time

FIGURE 3-2. DADS PRINT-OUTS ATC FOR AFC EQUIPMENT

\section*{\(J=\) Farecard Jam.}

This may occur in all types of equipment when the farecard is processed through the transport and encoded, read and verified.
\(c=\) Coin Jam.
This occurs in the farecard vendor and add-fare machines, usually due to a bent or foreign coin.
\(B=\) Bill Jam.
This occurs in the farecard vendor and add-fare machines, usually due to torn or crumpled bills.
\(V=\) Failure to Verify.
This occurs in the farecard vendors, gates, and add-fares when the machine cannot verify the value or other information coded on the farecard.
\(0=\) Out-of-Service
This classification covers many types of soft failures, including those that occur for no identifiable reason. This is used for all other soft failures.
\(\mathrm{H}=\) Hard Failures
This group includes machines that are out of service because they are awaiting parts. It applies when a machine is worked on by a maintenance person, or when a call for maintenance person occurs. It also applies to situations where a constant coin, ticket or bill jam occurs and the machine is put out-of-service by an attendant.
were grouped by vendor and mezzanine and combined to obtain monthly averages.

Generally, data were of good quality and a large sample was available for each mezzanine although peak period data were missing for some equipment. Some of the problems encountered in data reduction included: illegibility of survey sheets, non-uniform classification of failures, inadequate supplemental information to document all hard and "other" out-of-service failures, and missing DADS tapes or DADS tapes with illegible information. Future analyses of \(A F C\) equipment will require the elimination of these problems to ensure complete and consistent data documentation.
3.21980 RETROFIT SURVEY

The 1980 survey of WMATA's AFC equipment performance was directed at measuring the effectiveness of certain improvements in AFC elements. Since the summer of 1979, WMATA has been conducting a special program to improve the performance of:
1. Transport mechanisms
2. Printers
3. Bill validators
4. Coin acceptors
5. Farecards

WMATA, in conjunction with CWD, undertook two improvement projects designated as Retrofit A and Retrofit B:

Retrofit \(A\) - This retrofit involved changes to various components of the ticket transport to decrease the incidence of farecard jams. Three WMATA mezzanines received Retrofit \(A\) in January 1980:
- Farragut West (17th Street)
- Rosslyn
- Dupont Circle (South)

Retrofit \(B\) - This retrofit involved changes to the bill verifier, coin acceptor and ticket transport. These retrofits were designed to increase element reliability and reduce maintenance requirements. One WMATA mezzanine received Retrofit \(B\) in February 1980:
- Farragut West (18th Street)

Two mezzanines receiving Retrofit A, Farragut West l7th Street and Rosslyn, and the one receiving Retrofit B, Farragut West 18th Street, were selected for survey purposes. Figure 3-3 summarizes the data collection schedule.

The retrofit survey was structured to remedy a few of the data collection problems previously encountered. All DADS information was manually recorded on separate sheets as back-up to the DADS tapes. In addition, data collectors kept an activities log and recorded descriptive information on each failure and indicated who was responsible (maintenance technician or attendant) for clearing the Eailure. Appendix 1 contains sample survey forms and procedures. Post-retrofit data were reduced and reliability and availability measures were compared to 1978-1979 data for farecard vendors, and to a sample of data (January, February 1979) for gates and add-fares.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 2－ & \(=\) & 㫪 & & 者 \\
\hline & \％ & － & 交 & 管竐竞 & 官 \\
\hline & － & － & & & \\
\hline & 家 & ： & & & 部 \\
\hline & \％ & 2 & & & 喑 \\
\hline & 是 & － & 喑 & & 管 \\
\hline 是 & － & & & & \\
\hline \％ & 景。 & & & & \\
\hline & 回 & & & & \\
\hline & 管． & & 家 & & \\
\hline & 管－ & & & & \\
\hline & \(\bar{z}^{2}\) & & & & \\
\hline & \％ & & & 管家家亳 & \\
\hline \％ & －\({ }^{\text {a }}\) & & & & \\
\hline & 哭： & & & & \\
\hline & Ex & & 管就気 & & \\
\hline & \％ & Fs． & & & \\
\hline & d & 寊 & 嵒产 & 部 & \\
\hline
\end{tabular}

FIGTRE 3－3． 1980 IEEINOFIT SURNEY ONTA COLIDXTION SCIIVUIE：
4. ANALYSIS OF WMATA'S FARECARD VENDOR RELIABILITY AND AVAILABILITY - 1978-1979

The survey data were reduced and reliability and availability measures were analyzed at three levels of detail:
1. Overall farecard vendor performance by mezzanine;
2. Overall element performance for ticket transports, coin acceptors and bill verifiers; and
3. Farecard vendor-specific: overall and element performance.

Six mezzanines were examined for a total of 40 farecard vendors. The mezzanines and number of farecard vendors at each are listed below.
\begin{tabular}{ll}
\hline MEZZANINE & \begin{tabular}{c}
NUMBER OF \\
FARECARD VENDORS
\end{tabular} \\
\hline 1. DuPont Circle (S) & 5 \\
2. Brookland & 4 \\
3. Silver Spring (S) & 9 \\
4. Farragut West l7th Street & 6 \\
5. Farragut West 18th Street & 6 \\
6. Rosslyn & 10 \\
\hline
\end{tabular}

The map of WMATA's system in Figure \(4-1\) shows the location of these mezzanines.

Proouced ey Whata Ottice of Public. Attaws
Contact Paul Willit-637-1047

LEGEND

FIGURE 4-1. WMATA SYSTEM MAP

Overall farecard vendor reliabilities were calculated by summing the total transactions and total failures (hard and soft) for each mezzanine. The mean number of transactions per failure and reliabilities are shown in Table 4-l for all mezzanines together and individually. Ninety-five percent confidence intervals are shown in parentheses in Table 4-l. Figure 4-2 presents transactions per failure in bar-chart form.

TABLE 4-1. RELIABILITY AND MEAN TRANSACTIONS PER FAILURE FOR FARECARD VENDORS, 1978-1979, MEZZANINE AND TOTAL
\begin{tabular}{|c|c|c|}
\hline MEZZANINE & RELIABILITY & \begin{tabular}{l}
MEAN \\
TRANSACTIONS PER FAILURE*
\end{tabular} \\
\hline DuPont Circle & \[
\begin{gathered}
0.9948 \\
(0.9938-0.9958)
\end{gathered}
\] & 192 \\
\hline Brookland & \[
\begin{gathered}
0.9917 \\
\left(0.9902^{-}-0.9932\right)
\end{gathered}
\] & 120 \\
\hline Silver Spring & \[
\begin{gathered}
0.9899 \\
(0.9888-0.9910)
\end{gathered}
\] & 99 \\
\hline Farragut West - l7th Street & \[
\begin{gathered}
0.9897 \\
\left(0.9883^{-0.9911)}\right.
\end{gathered}
\] & 97 \\
\hline Farragut West - l8th Street & \[
\begin{gathered}
0.9923 \\
(0.9911-0.9935)
\end{gathered}
\] & 129 \\
\hline Rosslyn & \[
\begin{gathered}
0.9922 \\
(0.9914-0.9930)
\end{gathered}
\] & 128 \\
\hline TOTAL & \[
\begin{gathered}
0.9917 \\
(0.9912-0.9922)
\end{gathered}
\] & 120 \\
\hline
\end{tabular}

\footnotetext{
*Includes all hard and soft failures.
()\(=95\) percent confidence interval.
}

FIGURE 4-2. MEAN TRANSACTIONS PER FAILURE FOR FARECARD VENDORS, 1978-1979, MEZZANINE AND TOTAL

Due to random variation, farecard vendors were expected to have different reliabilities. To determine whether the differences in reliabilities were due to chance or due to actual variations in vendor performance, a Chi-square test for equality of proportions was utilized. (See Appendix 2 for a discussion of this statistic.) At a 95 percent confidence level, the Chi-square test indicated that differences existed in mezzanine reliabilities for farecard vendors.

One of the difficulties of assessing AFC equipment reliability was the lack of performance specifications. CWD contractually agreed to provide AFC equipment that met certain MTBF and MTTR criteria. However, these criteria did not apply to soft failures. In the absence of performance criteria for the combined effect of hard and soft failures, one alternative was to compare individual mezzanine reliabilities to the overall system* average. This approach identified those mezzanines which had reliabilities significantly below (or above) the system average. A T-test of proportions was utilized to compare mezzanines to the average of the remaining five mezzanines. (See Appendix 3 for a discussion of this statistic.) When the T-test was applied to the mezzanines at a 95 percent confidence level, two mezzanines had reliabilities significantly below the average of the other mezzanines. These were Silver Spring and Farragut west \(17^{t h}\) Street. Section 4-2 contains an analysis of the types of failures occurring at the above-mentioned mezzanines.

Another method of assessing mezzanine farecard vendor reliabilities was to examine variations in vendor performance over time. System reliabilities were calculated on a monthly basis, and each mezzanine was compared to the monthly system average. Table 4-2 shows monthly mean transactions per failure

\footnotetext{
*System refers to all six mezzanines together.
}

TABLE 4-2. MONTHLY MEAN TRANSACTIONS PER FAILURE FOR FARECARD VENDORS BY MEZZANINE, 1978-1979
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MEZZANINE} & \multicolumn{3}{|c|}{1978} & \multicolumn{7}{|c|}{1979} \\
\hline & OCT. & NOV. & DEC. & JAN. & FEB. & MAR. & APR. & MAY & JUNE & AUG. \\
\hline Dupont & N/A & 98 & 80 & 534 & 1133 & 146 & 147 & 313 & N/A & 213 \\
\hline Brookland & N/A & 215 & N/A & 75 & 116 & 166 & N/A & 215 & 119 & 72 \\
\hline Silver Spring & 74 & N/A & 59 & 107 & 119 & 398 & 138 & 144 & 79 & \(N / A\) \\
\hline Farragut
17th St. & N/A & 120 & 114 & 96 & 79 & 70 & 107 & 140 & 84 & N/A \\
\hline Farragut l8th St. & 98 & N/A & 160 & 97 & 101 & 124 & 157 & 189 & 271 & N/A \\
\hline Rosslyn & 147 & N/A & 60 & 104 & 182 & 111 & 211 & 202 & 172 & N/A \\
\hline TOTAL & 104 & 126 & 77 & 107 & 148 & 130 & 163 & 185 & 118 & 102 \\
\hline
\end{tabular}

N/A = data not available
for each mezzanine and the system total. Figure 4-3 shows system-wide monthly mean transactions per failure in bar chart form.

As Table 4-2 shows, mean transactions per failure varied substantially on a monthly mezzanine basis. There was a general trend of increasing vendor reliability beginning in January l979. However, in June 1979, reliability decreased below the November 1978 level. Table 4-2 identifies the months which contributed to the low overall reliabilities of Silver Spring and Farragut West \(17^{\text {th }}\) Street.

Availability measures were calculated for all mezzanines on a total and monthly basis. Table 4-3 summarizes the overall availabilities for each mezzanine; 95 percent confidence intervals are shown in parentheses. Figure 4-4 shows availabilities in bar chart form.
 figure 4-3. monthly mean transactions per failure for farecard vendors
See Table 4-2 for a listing of the

TABLE 4-3. FARECARD VENDOR AVAILABILITY BY MEZZANINE, 1978-1979
\begin{tabular}{|c|c|}
\hline MEZZANINE & \begin{tabular}{l}
AVAILABILITY \\
(PERCENT)
\end{tabular} \\
\hline Dupont Circle & \[
\begin{gathered}
90.68 \\
(90.27-91.09)
\end{gathered}
\] \\
\hline Brookland & \[
\begin{gathered}
81.46 \\
(80.83-82.09)
\end{gathered}
\] \\
\hline Silver Spring & \[
\begin{gathered}
83.21 \\
(82.81-83.61)
\end{gathered}
\] \\
\hline Farragut West - l7th Street & \[
\begin{gathered}
79.77 \\
(79.22-80.32)
\end{gathered}
\] \\
\hline Farragut West - 18th Street & \[
\begin{gathered}
84.61 \\
(84.11-85.11)
\end{gathered}
\] \\
\hline Rosslyn & \[
\begin{gathered}
84.50 \\
(84.16-84.84)
\end{gathered}
\] \\
\hline TOTAL & \[
\begin{gathered}
84.08 \\
(83.90-84.26)
\end{gathered}
\] \\
\hline
\end{tabular}

Mezzanine

FIGURE 4-4. FARECARD VENDOR AVAILABIIITY BY MEZZANINE, 1978-1979

Brookland, Silver Spring and Farragut west \(17^{\text {th }}\) St. had availabilities below the overall system mean. Brookland had vendors out of service for the entire monthly survey period on three occasions, and Silver Spring and Farragut west \(17^{\text {th }}\) St. had vendors out of service for the entire monthly survey on five occasions. The lengthy duration of some of the hard failures due to unavailability of spare parts contributed to the low availabilities at the three above-mentioned mezzanines.

Table 4-4 shows monthly mezzanine and total availabilities for farecard vendors. As with reliability, large monthly variations exist within as well as among mezzanines. Availabilities ranged from 54.13 percent to over 99 percent, and there was no apparent trend over time.

MTBF was also calculated for all mezzanines for both hard only and hard and soft failures combined. MTBF was calculated for hard failures for purposes of comparison with CWD contractual requirements. Hard and soft failures were combined to estimate a MTBF for all vendor failures. Table 4-5 and Figure 4-5 show the results of the MTBF calculations.

Caution should be exercised in comparing CWD's contractual requirements with the observed survey data for two reasons: the CWD requirements are for a total operating day as opposed to only peak-hours, and the hard failures observed during the 1978-1979 WMATA survey include money handing failures which were not included in CWD's survey.

As shown in Table 4-6, when all three measures of farecard vendor performance were compared, the mezzanines with the lowest mean transactions per failure also had the lowest availabilities. On the other hand, mezzanines with the lowest

TABLE 4-4. MONTHLY FARECARD VENDOR AVAILABILITIES BY MEZZANINE, 1978-1979 (PERCENT)

TABLE 4-5. MEAN TIME* BETWEEN FARECARD VENDOR FAILURES BY MEZZANIME, 1978-1979
\begin{tabular}{|llll|}
\hline & \begin{tabular}{c}
ALL \\
MAILURES \\
MTBF
\end{tabular} & \begin{tabular}{c}
HARD \\
FAILURES \\
MTBF
\end{tabular} & \begin{tabular}{c}
CWD \\
MTBF \\
SPECS
\end{tabular} \\
\hline DuPont Circle & 3.30 & 19.05 & 920 \\
Brookland & 2.13 & 11.25 & 920 \\
Silver Spring & 1.86 & 35.37 & 920 \\
Farragut West - 17th Street & 1.58 & 13.75 & 920 \\
Farragut West 0 18th Street & 1.94 & 19.36 & 920 \\
Rosslyn & 1.88 & 23.46 & 920 \\
TOTAL & 1.96 & 19.80 & 920 \\
\hline
\end{tabular}
* Time in Peak Hours
\(\square=\) MTBF, Hard and Soft Failures
\(\square=\) MTBF, Hard Failures Only

TABLE 4-6. SUMMARY OF FARECARD VENDOR PERFORMANCE BY MEZZANINE, 1978-1979
\begin{tabular}{|lccc}
\hline \multicolumn{1}{|c}{\begin{tabular}{c}
MEAN \\
MRZZANINE \\
TRANSACTIONS \\
PERFAILURE
\end{tabular}} & AVAILABILITY & \begin{tabular}{c}
MTBF \\
(HOURS)
\end{tabular} \\
\hline DuPont Circle & 192 & 90.68 & 3.30 \\
Brookland & 120 & 81.46 & 2.13 \\
Silver Spring & 99 & 83.21 & 1.86 \\
Farragut West - 17th Street & 97 & 79.77 & 1.58 \\
Farragut West - 18th Street & 129 & 84.50 & 1.94 \\
Rosslyn & 128 & 84.08 & 1.88 \\
& 120 & 84.08 & 1.96 \\
\hline
\end{tabular}

MTBF did not always have the lowest availabilities or mean transactions per failure. This comparison of the different measures indicates that no one performance measure alone provides all the information for an assessment of overall performance.
4.2 OVERALL ELEMENT PERFORMANCE FOR TICKET TRANSPORTS, COIN ACCEPTORS AND BILL VERIFIERS.

Several steps were taken to examine element performance and to compare and rank elements in terms of reliability, . First, overall reliabilities for each element were calculated and statistically ranked. Table 4-7 shows overall reliabilities and mean transactions per failure for each element, and Figure 4-6 shows these calculations graphically.

TABLE 4-7. RELIABILITY AND MEAN TRANSACTIONS PER FAILURE FOR FARECARD VENDOR ELEMENTS, 1978-1979
\begin{tabular}{|c|c|c|}
\hline FARECARD VENDOR ELEMENT & RELIABILITY & \begin{tabular}{l}
MEAN \\
TRANSACTIONS PER FAILURE
\end{tabular} \\
\hline 1. Ticket Transport & \[
\begin{gathered}
0.9973 \\
\left(0.9970^{-0.9976)}\right.
\end{gathered}
\] & 376 \\
\hline 2. Coin Acceptor & \[
\begin{gathered}
0.9988 \\
(0.9986-0.9990)
\end{gathered}
\] & 844 \\
\hline 3. Bill Verifier & \[
\begin{gathered}
0.9972 \\
(0.9969-0.9975)
\end{gathered}
\] & 358 \\
\hline
\end{tabular}

A T-test of proportions was utilized to compare and rank the element reliabilities. At a 99 percent confidence level, the coin acceptor was significantly more reliable than both the ticket transport and the bill verifier. No significant difference was found between the reliabilities of ticket transports and bill verifiers. Table 4-8 summarizes the element reliabilities by mezzanine.

FIGURE 4-6. MEAN TRANSACTIONS PER FAILURE FOR FARECARD VENDOR ELEMENTS, 1978-1979

TABLE 4-8. RELIABILITY AND MEAN TRANSACTIONS PER FAILURE FOR FARECARD VENDOR ELEMENTS BY MEZZANINE, 1978-1979
\begin{tabular}{|c|c|c|}
\hline MEZZANINE/ELEMENT & RELIABILITY & MEAN TRANSACTIONS PER FAILURE \\
\hline \multicolumn{3}{|l|}{Dupont Circle} \\
\hline - Ticket Transport & 0.9977 & 437 \\
\hline - Coin Acceptor & 0.9994 & 1,717 \\
\hline - Bill Verifier & 0.9991 & 1,061 \\
\hline \multicolumn{3}{|l|}{Brookland} \\
\hline - Ticket Transport & 0.9983 & 580 \\
\hline - Coin Acceptor & 0.9978 & 462 \\
\hline - Bill Verifier & 0.9988 & 844 \\
\hline \multicolumn{3}{|l|}{Silver Spring} \\
\hline - Ticket Transport & 0.9983 & 580 \\
\hline - Coin Acceptor & 0.9978 & 462 \\
\hline - Bill Verifier & 0.9986 & 722 \\
\hline
\end{tabular}

Farragut West - l7th st.
\begin{tabular}{llr}
O Ticket Transport & 0.9977 & 430 \\
- Coin Acceptor & 0.9991 & 1.129 \\
- Bill Verifier & 0.9938 & 161
\end{tabular}

Farragut West - 18 th St .
\begin{tabular}{lrr}
O Ticket Transport & 0.9973 & 372 \\
O Coin Acceptor & 0.9992 & 1.250 \\
O Bill Verifier & 0.9968 & 312
\end{tabular}

Rosslyn
\begin{tabular}{llr}
\(\circ\) Ticket Transport & 0.9972 & 363 \\
O Coin Acceptor & 0.9992 & 1.250 \\
- Bill Verifier & 0.9967 & 301
\end{tabular}

When the element reliabilities were examined by mezzanine, the coin acceptors consistently displayed the highest reliabilities at all mezzanines; the ticket transports had better reliabilities than the bill verifiers at three mezzanines while at the other three, the opposite was true. As previously mentioned, element reliabilities and mean transactions per failure were calculated on the basis of actual element usage. One alternative to examine element performance was to calculate the distribution of total failures. The pie charts in Figures 4-7 through 4-10 show each type of failure as a percentage of the total failures at each mezzanine and the total system.

On an individual mezzanine basis, farecard jams comprised the greatest percentage of total failures at four mezzanines; bill and coin jams were each the most numerous at one mezzanine. For the total system, fare card jams (32 percent) were the most frequent, followed by bill jams (25 percent) and coin jams (l8 percent). The failure distribution indicates that while farecard jams are more numerous than bill jams, when the jams are normalized to usage, the impact on patrons (in terms of failures) is only slightly greater for farecard than for bill jams.

FIGURE 4-7. DISTRIBUTION OF FARECARD VENDOR FAILURES
Silver Spring 1978-1979
Farecard Vendor Failures

FIGURE 4-8. DISTRIBUTION OF FARECARD VENDOR FAILURES
Rosslyn 1978-1979
Farecard Vendor Failures

Figure 4-9. DIStribution of farecard vendor failures
\(\overline{6 L 6 T-8 L 6 T ~ T e 70.4 ~}\)

figure 4-10. Distribution of total farecard vendor failures, 1978-1979

Reliability and availability measures were calculated for the forty farecard vendors individually. Reliabilities were also calculated on a monthly basis for each vendor and each element. T-tests of proportions were employed to identify farecard vendors with reliabilities significantly below the system average. Table 4-9 summarizes mean transactions per failure for vendors and elements.

As Table 4-9 shows, mean transactions per failure vary greatly among vendors for total and element reliabilities. Overall, mean transactions per failure ranged from 54 (vendor 40, Silver Spring), to 320 (vendor 31 at Farragut West \(18^{\text {th }}\) St.). Coin transactions per failure had the greatest range, from 185 (vendor 40, Silver Spring) to 6,036 (vendor 31 , Farragut West \(18^{\text {th }}\)). Bill jams had the second largest range, from 104 to 4,295 bill transactions per failure (vendor 32 , Farragut \(17^{\text {th }}\) and vendor 32 , Silver Spring), while transactions per farecard jam ranged from 130 (vendor 40, Silver Spring) to l,758 (vendor 42, Rosslyn).

When a T-test of proportions was utilized to test and compare overall and element reliabilities, certain vendors exhibited low reliabilities in more than one element. Table 4-10 summarizes the results of the T-tests. The vendors listed in each column displayed reliabilities significantly below (at 95 percent confidence) the overall mean for all vendors.

As Table 4-10 shows, low overall reliabilities (total failures) for the vendors are traceable to one or more low element reliabilities. To determine if the vendors identified in Table 4-9 consistently had low reliabilities over time, reliabilities were examined on a monthly basis for all vendors and elements. (Appendix 4 contains monthly data on all 40 farecard vendors.) Tables 4-11 to 4-18 summarize monthly

TABLE 4-9. MEAN TRANSACTIONS PER FAILURE FOR FARECARD VENDORS AND ELEMENTS BY MEZZANINE, 1978-1979
\begin{tabular}{|c|c|c|c|c|}
\hline VENDOR & \begin{tabular}{l}
MEAN \\
TRANSACTIONS PER \\
FARECARD JAM
\end{tabular} & MEAN NUMBER OF COINS INSERTED PER COIN JAM & MEAN NUMBER OF BILLS INSERTED ?ER BILL JAM & \begin{tabular}{l}
MEAN \\
TRANSACTIONS PER FAIIURE
\end{tabular} \\
\hline \multicolumn{5}{|c|}{Dupont Circle} \\
\hline 30 & 168 & 1,306 & 655 & 119 \\
\hline 31 & 477 & 2,031 & 975 & 136 \\
\hline 32 & 424 & 2,121 & 809 & 189 \\
\hline 38 & 778 & 1,430 & 913 & 287 \\
\hline 39 & 851 & 2,223 & 2,743 & 266 \\
\hline Total & 437 & 1,717 & 1,061 & 192 \\
\hline \multicolumn{5}{|c|}{Brookland} \\
\hline 30 & 569 & 876 & 2,722 & 175 \\
\hline 31 & 326 & 264 & 302 & 70 \\
\hline 32 & 870 & 445 & 490 & 116 \\
\hline 33 & 982 & 496 & 1,946 & 164 \\
\hline Total & 580 & 462 & 844 & 120 \\
\hline \multicolumn{5}{|c|}{Silver Spring} \\
\hline 30 & 325 & 222 & 739 & 86 \\
\hline 31 & 338 & 621 & 405 & 95 \\
\hline 32 & 188 & 368 & 4.295 & 94 \\
\hline 33 & 294 & 285 & 939 & 82 \\
\hline 34 & 999 & 2,158 & 716 & 161 \\
\hline 35 & 301 & 405 & 562 & 116 \\
\hline 36 & 272 & 913 & 387 & 109 \\
\hline 40 & 130 & 185 & 1,329 & 54 \\
\hline 41 & 283 & 577 & 880 & 101 \\
\hline Total & 294 & 435 & 722 & 99 \\
\hline
\end{tabular}

TABLE 4-9. (Cont.)
\begin{tabular}{|c|c|c|c|c|}
\hline VENDOR & \begin{tabular}{l}
MEAN \\
TRANSACTIONS PER FARECARD JAM
\end{tabular} & MEAN NUMBER OF COINS INSERTED PER COIN JAM & MEAN NUMBER OF BILLS INSERTED PER BILL JAM & \begin{tabular}{l}
MEAN \\
TRANSACTIONS PER \\
FAILURE
\end{tabular} \\
\hline \multicolumn{5}{|c|}{Farragut West - 17th Street} \\
\hline 30 & 528 & 2,241 & 225 & 141 \\
\hline 31 & 415 & 1,369 & 199 & 101 \\
\hline 32 & 293 & 2,302 & 104 & 64 \\
\hline 33 & 243 & 462 & 135 & 76 \\
\hline 34 & 1,307 & 875 & 195 & 131 \\
\hline 35 & 687 & 1,425 & 159 & 106 \\
\hline Total & 430 & 1,129 & 161 & 97 \\
\hline \multicolumn{5}{|c|}{Farragut West - 18th Street} \\
\hline 30 & 202 & 1,611 & 793 & 108 \\
\hline 31 & 640 & 6,036 & 1,333 & 320 \\
\hline 32 & 268 & 1,241 & 236 & 104 \\
\hline 33 & 311 & 418 & 151 & 72 \\
\hline 34 & 811 & 1,501 & 182 & 135 \\
\hline 35 & 554 & 1,372 & 282 & 177 \\
\hline Total & 372 & 1,250 & 312 & 129 \\
\hline \multicolumn{5}{|c|}{Rosslyn} \\
\hline 30 & 369 & 739 & 269 & 133 \\
\hline 31 & 497 & 987 & 428 & 139 \\
\hline 32 & 229 & 2,269 & 231 & 102 \\
\hline 33 & 600 & 1.237 & 233 & 141 \\
\hline 34 & 486 & 1,427 & 1,164 & 175 \\
\hline 38 & 739 & 1.179 & 249 & 167 \\
\hline 39 & 114 & 1,457 & 147 & 74 \\
\hline 40 & 394 & 1,665 & 551 & 167 \\
\hline 41 & 147 & 1,371 & 128 & 60 \\
\hline 42 & 1,758 & 941 & 406 & 147 \\
\hline Total & 363 & 1,250 & 301 & 128 \\
\hline
\end{tabular}

TABLE 4-10. FARECARD VENDORS WITH RELIABILITIES SIGNIFICANTLY LESS (AT 95 PERCENT) THAN OVERALL MEAN
\begin{tabular}{|c|c|c|c|c|c|}
\hline MEZZANINE* & TOTAL FAILURES & FARECARD JAMS & \[
\begin{aligned}
& \text { COIN } \\
& \text { JAMS }
\end{aligned}
\] & \begin{tabular}{l}
BILL \\
JAMS
\end{tabular} & HARD AND "OTHER" FAILURES \\
\hline Brookland & 31** & & 31 & & \\
\hline Silver Spring & \[
\begin{aligned}
& 33 \\
& 40
\end{aligned}
\] & 40 & \[
\begin{aligned}
& 33 \\
& 40 \\
& 30
\end{aligned}
\] & & 40 \\
\hline Farragut West \(17{ }^{\text {th }}\) St. & \[
\begin{aligned}
& 32 \\
& 33
\end{aligned}
\] & & & \[
\begin{aligned}
& 32 \\
& 33
\end{aligned}
\] & \\
\hline Rosslyn & \[
\begin{aligned}
& 39 \\
& 41
\end{aligned}
\] & \[
\begin{aligned}
& 39 \\
& 41
\end{aligned}
\] & & 41 & \\
\hline
\end{tabular}
*Dupont Circle and Farragut West l8th St. did not have any farecard vendors with significantly low reliabilities.
**Vendor number
TABLE 4-11. TUTAL AND ELEMENT MONTHLY RELIABILITIES AND MEAN TRANSAC'TIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & C/C & R & B/B & R & T/O & R & T/T \\
\hline November & 1.00 & 581/0 & 0.9986 & 714 & 0.9970 & 335 & 0.9983 & 581 & 0.9948 & 194 \\
\hline January & 0.9916 & 120 & 0.9988 & 853 & 1.00 & 369/0 & 0.9983 & 598 & 0.9916 & 85 \\
\hline February & 0.9962 & 261 & 0.9973 & 368 & 0.9968 & 312 & 0.9962 & 261 & 0.9866 & 75 \\
\hline March & 1.00 & 516/0 & 0.9986 & 722 & 0.9878 & 82 & 0.9981 & 516 & 0.9884 & 86 \\
\hline May & & & & & Out of & vice & & & & \\
\hline June & 0.9973 & 373 & 0.9948 & 192 & 1.00 & 204/0 & 0.9839 & 62 & 0.9732 & 37 \\
\hline August & 0.9971 & 348 & 0.9802 & 50 & 1.00 & 264/0 & 0.9971 & 348 & 0.9741 & 39 \\
\hline Total & 0.9969 & 326 & 0.9962 & 264 & 0.9967 & 302 & 0.9959 & 245 & 0.9857. & 70 \\
\hline
\end{tabular}

\footnotetext{
\(T / J=\underline{T o t a l}\) Transactions
\(C / C=\) Total Coins Inserted
Total Coin Jams
\(B / \mathbf{B}=\) Total Bills Inserted
Total Bill Jams
}
\(\frac{\text { Successes }}{\text { Transactions }}\)
\(\mathrm{R}=\) Reliability \(=\)
\(\frac{\text { Total Transactions }}{\text { Total "Other" Failures }}\)
Total Transactions
Total Jams and "Other"
Failures
\(T / O=\)
\(T / T=\)
TABLE 4-12. TOTAL AND ELEMENT MON'THLY RELIABILITIES AND MEAN TRANSACTIONS PER FAILURE: SILVER SPRING, FARECARD VENDOR 30, 1978-1979
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & C/C & R & B/B & R & T/O & R & T/T \\
\hline October & 0.9912 & 114 & 0.9785 & 47 & 0.9965 & 288 & 0.9965 & 286 & 0.9615 & 26 \\
\hline December & 0.9982 & 559 & 0.9968 & 310 & 1.00 & 543/0 & 0.9982 & 559 & 0.9928 & 140 \\
\hline January & 0.9986 & 736 & 1.00 & 831/0 & 1.00 & 707/0 & 0.9986 & 736 & 0.9973 & 368 \\
\hline February & 0.9971 & 351 & 1.00 & 854/0 & 1.00 & 655/0 & 1.00 & 702/0 & 0.9971 & 351 \\
\hline March & 1.00 & 808/0 & 0.9978 & 449 & 0.9974 & 381 & 1.00 & 808/0 & 0.9950 & 202 \\
\hline April & 0.9970 & 335 & 1.00 & 338/0 & 1.00 & 321/0 & 1.00 & 335/0 & 0.9970 & 335 \\
\hline May & 0.9945 & 181 & 0.9946 & 184 & 0.9963 & 268 & 0.9926 & 136 & 0.9779 & 45 \\
\hline June & 0.9966 & 296 & 0.9927 & 136 & 1.00 & 333/0 & 0.9966 & 296 & 0.9831 & 59 \\
\hline Total & 0.9969 & 325 & 0.9955 & 222 & 0.9986 & 739 & 0.9980 & 506 & 0.9886 & 86 \\
\hline
\end{tabular}

\footnotetext{
\(\frac{\text { Total Transactions }}{\text { Total "Other" Failures }}\)
\(T / T=\) Total Transactions
Total Jams and "Other"
T/O \(=\)
}
Failures

\(\frac{\text { Successes }}{\text { Transactions }}\)
\(\mathrm{R}=\) Reliability \(=\)
R

\footnotetext{
\(T / J=\) Total Transactions
\(C / C=\) Total Coins Inserted
\(B / B=\) Total Bills Inserted
Total Bill Jams
}
TABLE 4-13. TOTAL AND ELEMEN'T MONTHLY RELIABILITIES AND MEAN TRANSACTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Potal} \\
\hline & R & T/J & R & C/C & R & B/B & R & T/O & R & T/T \\
\hline October & & & & & -Out of & rvice- & & & & \\
\hline December & 0.9908 & 108 & 0.9886 & 75 & 1.00 & 434/0 & 0.9945 & 180 & 0.9723 & 36 \\
\hline January & 0.9957 & 235 & 1.00 & 608/0 & 1.00 & 400/0 & 0.9979 & 470 & 0.9936 & 157 \\
\hline February & 0.9935 & 155 & 1.00 & 428/0 & 0.9956 & 230 & 0.9903 & 104 & 0.9806 & 52 \\
\hline March & 1.00 & 189/0 & 1.00 & 307/0 & 1.00 & 154/0 & 1.00 & 189/0 & 1.00 & 189/0 \\
\hline April & 1.00 & 308/0 & 1.00 & 337/0 & 1.00 & 310/0 & 0.9968 & 308 & 0.9968 & 308 \\
\hline May & 1.00 & 592/0 & 1.00 & 392/0 & 0.9967 & 300 & 1.00 & 592/0 & 0.9966 & 296 \\
\hline June & 0.9981 & 534 & 0.9924 & 133 & 1.00 & 690/0 & 0.9925 & 134 & 0.9831 & 59 \\
\hline Total & 0.9966 & 294 & 0.9965 & 285 & 0.9989 & 939 & 0.9959 & 245 & 0.9878 & 82 \\
\hline
\end{tabular}
\[
\begin{aligned}
\mathrm{T} / \mathrm{O}= & \frac{\text { Total Transactions }}{\text { Total "Other" Failures }} \\
\mathrm{T} / \mathrm{T}= & \frac{\text { Total Transactions }}{\text { Total Jams and "Other" }} \\
\mathrm{Failures} & =\text { Reliability }=\frac{\text { Successes }}{\text { Transactions }}
\end{aligned}
\]
\(T / J=\frac{\text { Total Transactions }}{\text { Total Farecard Jams }}\)
\(C / C=\frac{\text { Total Coins Inserted }}{\text { Total Coin Jams }}\)
\(B / B=\frac{\text { Total Bills Inserted }}{\text { Total Bill Jams }}\)
TABLE 4-14. TOTAL AND ELEMENT MONTHLY RELIABILITIES AND MEAN TRANSACTIONS

\footnotetext{
\(T / O=\) Total Transactions
Total "Other" Failures
\(T / T=\) Total Transactions
Total Jams and "Other"
Failures
Successes
Transactions
\(\mathrm{R}=\) Reliability \(=\)
uccesses
\(R=\) Reliability
\(T / J=\frac{\text { Total Transactions }}{\text { Total Farecard Jams }}\)
\(C / C=\frac{\text { Total Coins Inserted }}{\text { Total Coin Jams }}\)
\(B / B=\frac{\text { Total Bills Inserted }}{\text { Total Bill Jams }}\)
}
TABLE 4-15. TOTAL AND ELEMENT MONTHLY RELIABILITIES AND MEAN TRANSACTIONS PER FAILURE: FARRAGUT WEST - 17TH ST., FARECARD VENDOR 32, 1978-1979

TABLE 4-16. TOTAL AND ELEMENT MONTHLY RELIABILITIES AND MEAN TRANSACTIONS PER FAILURE:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & C/C & R & B/B & R & T/O & R & T/T \\
\hline November & 0.9968 & 310 & 1.00 & 189/0 & 0.9905 & 105 & 0.9978 & 465 & 0.9882 & 84 \\
\hline December & 0.9907 & 108 & 0.9988 & 820 & 0.9911 & 113 & 1.00 & 650/0 & 0.9831 & 59 \\
\hline January & 0.9967 & 305 & 0.9946 & 187 & 0.9885 & 87 & 0.9984 & 609 & 0.9803 & 51 \\
\hline February & 0.9970 & 332 & 1.00 & 375/0 & 0.9834 & 60 & 1.00 & 332/0 & 0.9849 & 66 \\
\hline March & 1.00 & 492/0 & 0.9979 & 477 & 1.00 & 403/0 & 1.00 & 492/0 & 0.9980 & 492 \\
\hline April & 0.9779 & 45 & 1.00 & 109/0 & 0.9929 & 142 & 0.9779 & 45 & 0.9485 & 19 \\
\hline May & 1.00 & 494/0 & 0.9981 & 517 & 1.00 & 403/0 & 1.00 & 494/0 & 0.9980 & 494 \\
\hline \multicolumn{11}{|l|}{June Out} \\
\hline Total & 0.9959 & 243 & 0.9978 & 462 & 0.9926 & 135 & 0.9984 & 607 & 0.9868 & 76 \\
\hline
\end{tabular}

\footnotetext{
\(\frac{\text { Total Transactions }}{\text { Total "Other" Failures }}\)
Total Transactions
Total Jams and "Other"
Failures
\(T / O=\)
\(T / T=\)
Fa
\(\frac{\text { Successes }}{\text { Transactions }}\)
\(R=\operatorname{Reliability}=\)
\(T / J=\frac{\text { Total Transactions }}{\text { Total Farecard Jams }}\)
\(C / C=\frac{\text { Total Coins Inserted }}{\text { Total Coin Jams }}\)
\(B / B=\frac{\text { Total Bills Inserted }}{\text { Total Bill Jams }}\)
}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/C & R & B/B & R & T/O & R & T/T \\
\hline October & 0.9993 & 1411 & 0.9981 & 520/0 & 0.9890 & 91 & 1.00 & 1411/0 & 0.9950 & 202 \\
\hline December & 0.8333 & 6 & 1.00 & 96/0 & 1.00 & 45/0 & 0.9833 & 60 & 0.7833 & 5 \\
\hline January & 0.9597 & 25 & 1.00 & 118/0 & 1.00 & 87/0 & 0.9919 & 124 & 0.9516 & 21 \\
\hline \multicolumn{11}{|l|}{February Data} \\
\hline March & 1.00 & 130/0 & 1.00 & 216/0 & 1.00 & 86/0 & 0.9923 & 130 & 0.9923 & 130 \\
\hline April & 0.9977 & 434 & 1.00 & 507/0 & 0.9954 & 219 & 1.00 & 434/0 & 0.9954 & 217 \\
\hline \multicolumn{11}{|l|}{\begin{tabular}{l}
May
\(\qquad\) \\
Out o
\end{tabular}} \\
\hline \multicolumn{11}{|l|}{June} \\
\hline Total & 0.9912 & 114 & 0.9993 & 1457 & 0.9933 & 147 & 0.9986 & 720 & 0.9866 & 74 \\
\hline \multicolumn{2}{|l|}{\(T / J=\) Total Transactions} & \(\frac{\text { tions }}{\text { d Jams }}\) & & & \multicolumn{6}{|l|}{T/O \(=\) Total Transactions} \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & & & \multicolumn{3}{|l|}{Total Jams and "Other" Failures} & & & \\
\hline \multicolumn{3}{|l|}{\(B / B=\underline{\text { Total Bills Inserted }}\)} & & & \multicolumn{2}{|l|}{\(\mathrm{R}=\) Reliability} & & & & \\
\hline
\end{tabular}
TABLE 4-18. TOTAL AND ELEMENT MONTHLY RELIABILITIES AND MEAN TRANSACTIONS PER FAILURE:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/c & R & B/B & R & 'r/O & R & T/T \\
\hline October & 0.9947 & 187 & 1.00 & 416/0 & 1.00 & 283/0 & 1.00 & 374/0 & 0.9947 & . 187 \\
\hline December & 0.9813 & 54 & 1.00 & 145/0 & 0.9880 & 84 & 0.9626 & 27 & 0.9346 & 15 \\
\hline January & 0.9971 & 351 & 1.00 & 348/0 & 0.9934 & 153 & 1.00 & 351/0 & 0.9915 & 117 \\
\hline February & 1.00 & 467/0 & 1.00 & 566/0 & 0.9941 & 170 & 1.00 & 467/0 & 0.9957 & 234 \\
\hline March & 0.9701 & 36 & 1.00 & 411/0 & 0.9885 & 87 & 0.9970 & 335 & 0.9582 & 24 \\
\hline Apr \(i 1\) & 1.00 & 461/0 & . 1.00 & 492/0 & 0.9874 & 80 & 1.00 & 461/0 & 0.9870 & 92 \\
\hline May & 1.00 & 113/0 & 0.9972 & 182 & No Tran & tions & 0.9823 & 57 & 0.9646 & 28 \\
\hline June & & & & & Out of & vice & & & & \\
\hline rotal & 0.9932 & 147 & 0.9993 & 1371 & 0.9922 & 128 & 0.9968 & 315 & 0.9832 & 60 \\
\hline
\end{tabular}

\footnotetext{
\(T / J=\) Total Transactions
Total Farecard Jams
\(C / C=\) Total Coins Inserted
Total Coin Jams
\(B / B=\) Total Bills Inserted
Total Bill Jams
}
reliability data for the farecard vendors identified in Table 4-10. The monthly analysis provided the following information:
1. Brookland:

Farecard Vendor 31 - Coin acceptor reliabilities were low in June and August.
2. Silver Soring:

Farecard Vendor 31 - Coin acceptor reliabilities were low in October, May and June.

Farecard Vendor 40 - Ticket transport reliabilities were low in December, coin acceptor reliabilities were low in January and March, and "other" failures were high in December and January. In addition, vendor 40 was out of service during the months of April, May and June.
3. Farragut West - 17th Street

Farecard Vendor 32 - Bill validator reliabilities were low in January, March, May and June.

Farecard Vendor 33 - Bill validator reliabilities were low in November, January and February.
4. Rosslyn

Farecard Vendor 39 - Ticket transport reliabilities were low in December and January, and vendor was out of service in May and June.

Farecard Vendor 41 - Ticket transport reliabilities were low in December and March, bill validator reliabilities were low in December, March and April, and the vendor was out of service in June.

Availability measures were calculated for each farecard vendor on a total and monthly basis. Table 4-19 shows availabilities for all vendors. A T-test of proportions was utilized to identify vendors with availabilities significantly below the system mean.

As Table 4-19 shows, 12 of the 40 vendors had availabilities significantly below the system mean. Vendor availabilities ranged from a low of 53.88 percent to almost 100 percent (vendor 30 at DuPont Circle). To determine if the vendors identified in Table \(4-19\) had consistently low availabilities over time, availabilities were examined on a monthly basis as shown in Tables 4-20 to 4-25. The monthly data yielded the following information:

\section*{1. Dupont Circle}

Farecard vendor 32 had a very low availability in November (36.67 percent), due to a broken bill validator and unavailable spare parts. Vendor 32 also had a low availability in December (70.75 percent) because the vendor was being repaired, and April was low due to problems with verifying farecards.

\section*{2. Brookland}

Farecard vendor 31 was out-of-service during the May survey period due to unavailable spare parts. It also had a low availability in June due to a broken coin vault.

TABLE 4-19. FARECARD VENDOR AVAILABILITIES, 1978-1979
\begin{tabular}{|c|c|c|}
\hline LOCATION & VENDOR & AVAILABILITY \\
\hline \multirow[t]{5}{*}{Dupont Circle} & 30 & 99.25 \\
\hline & 31 & 90.94 \\
\hline & 32 & 81.28* \\
\hline & 38 & 95.14 \\
\hline & 39 & 86.80 \\
\hline \multirow[t]{4}{*}{Brookland} & 30 & 95.27 \\
\hline & 31 & 75.21* \\
\hline & 32 & \(79.54 *\) \\
\hline & 33 & 75.80* \\
\hline \multirow[t]{9}{*}{Silver Spring} & 30 & 93.93 \\
\hline & 31 & \(74.24 *\) \\
\hline & 32 & 88.24 \\
\hline & 33 & 84.90 \\
\hline & 34 & 95.42 \\
\hline & 35 & 70.46* \\
\hline & 36 & 95.76 \\
\hline & 40 & 59.04 * \\
\hline & 41 & 81.67* \\
\hline \multirow[t]{6}{*}{Farragut West - l7th Street} & 30 & 92.71 \\
\hline & 31 & 88.06 \\
\hline & 32 & 87.16 \\
\hline & 33 & 73.71* \\
\hline & 34 & 71.22* \\
\hline & 35 & 65.74* \\
\hline \multirow[t]{6}{*}{Farragut West - 18 th Street} & 30 & 77.24* \\
\hline & 31 & 93.36 \\
\hline & 32 & 74.78 * \\
\hline & 33 & 74.86 * \\
\hline & 34 & 89.41 \\
\hline & 35 & 88.75 \\
\hline
\end{tabular}

\footnotetext{
*Availability significantly (95 percent confidence) below system mean.
}

TABLE 4-19. (Cont.)
\begin{tabular}{|ccc|}
\hline & LOCATION & VENDOR \\
& AVAILABILITY \\
\hline \multirow{2}{*}{ Rosslyn } & 30 & \(80.79 *\) \\
& 31 & \(81.99^{*}\) \\
& 32 & 87.42 \\
& 33 & 93.98 \\
& 34 & 92.44 \\
& 38 & 94.07 \\
& 39 & \(53.88^{*}\) \\
& 40 & 88.11 \\
& 41 & \(66.61 *\) \\
& 42 & 95.48 \\
& & \\
\hline
\end{tabular}
*Availability significantly (95 percent confidence) below system mean.

TABLE 4-20. DUPONT CIRCLE MONTHLY FARECARD VENDOR AVAILABILITIES, 1978-1979
\begin{tabular}{|lccccc|}
\hline & \multicolumn{5}{c|}{ VENDOR } \\
\cline { 2 - 6 } MONTH & 30 & 31 & 32 & 38 & 39 \\
\hline November & 98.00 & 99.75 & 36.67 & 99.33 & 92.25 \\
December & 97.94 & 98.12 & 70.75 & 88.60 & 35.79 \\
January & 100.0 & 54.92 & 98.47 & 100.0 & 100.0 \\
February & 100.0 & 99.49 & 100.0 & 98.46 & 100.0 \\
March & 99.44 & 80.46 & 93.06 & 99.81 & 99.81 \\
April & 99.81 & 95.00 & 73.06 & 100.0 & 98.70 \\
May & 99.55 & 100.0 & 99.78 & 100.0 & 100.0 \\
August & 100.0 & 100.0 & 100.0 & 69.13 & 69.66 \\
TOTAL & 99.25 & 90.94 & 81.28 & 95.14 & 86.80 \\
\hline
\end{tabular}

TABLE 4-21. BROOKLAND MONTHLY FARECARD VENDOR AVAILABILITIES, 1978-1979
\begin{tabular}{|lcccc|}
\hline & \multicolumn{4}{c|}{ VENDOR } \\
\cline { 2 - 5 } & \multicolumn{4}{c|}{31} \\
MONTH & 30 & 31 & 32 & 33 \\
\hline November & 91.32 & 89.82 & 0.0 & 94.47 \\
January & 98.85 & 97.79 & 99.23 & 74.33 \\
February & 81.98 & 97.71 & 99.58 & 74.27 \\
March & 99.81 & 98.52 & 96.48 & 98.89 \\
May & 99.62 & 0.0 & 91.01 & 87.95 \\
June & 97.31 & 44.81 & 99.35 & 0.0 \\
August & 97.04 & 95.93 & 78.89 & 99.81 \\
TOTAL & 95.27 & 75.21 & 79.54 & 75.80 \\
\hline
\end{tabular}
table 4-22. SILVER SPRING MONTHLY FARECARD VENDOR AVAILABILITIES, 1978-1979
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{9}{|l|}{Vendor} \\
\hline & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 40 & 41 \\
\hline October & 89.77 & 81.56 & 98.60 & 100.0 & 94.93 & 98.43 & 99.65 & 91.26 & 67.66 \\
\hline December & 98.15 & 99.63 & 95.28 & 88.70 & 98.80 & 93.70 & 98.33 & 89.72 & 43.70 \\
\hline January & 98.70 & 49.91 & 99.54 & 72.59 & 100.0 & 0.0 & 90.65 & 92.87 & 89.35 \\
\hline February & 99.44 & 99.81 & 100.0 & 43.70 & 88.70 & 95.19 & 83.52 & N/A & 86.67 \\
\hline March & 96.11 & 0.0 & 99.44 & 100.0 & 99.07 & N/A & 100.0 & 99.26 & 100.0 \\
\hline April & 97.78 & 95.56 & 47.78 & 90.37 & 98.89 & N/A & 99.26 & 0.0 & 99.63 \\
\hline May & 77.76 & 100.0 & 63.06 & 98.98 & 94.07 & 98.02 & 99.59 & 0.0 & 97.35 \\
\hline June & 94.81 & 80.39 & 78.53 & 88.14 & 89.61 & 97.84 & 97.06 & 0.0 & 80.20 \\
\hline Total & 93.93 & 74.24 & 88.24 & 84.90 & 95.42 & 70.46 & 95.76 & 59.04 & 81.67 \\
\hline
\end{tabular}
\(N / A=\) Not Available

TABLE 4-23. FARRAGUT WEST, 17TH STREET MONTHLY FARECARD VENDOR AVAILABILITIES, 1978-1979
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MONTH} & \multicolumn{6}{|c|}{VENDOR} \\
\hline & 30 & 31 & 32 & 33 & 34 & 35 \\
\hline November & 98.43 & 97.22 & 79.44 & 94.26 & 0.0 & 0.0 \\
\hline December & 75.83 & 97.59 & 92.87 & 90.65 & 95.09 & 88.06 \\
\hline January & 95.36 & 61.29 & 89.01 & 93.15 & 85.08 & 99.29 \\
\hline February & 93.70 & 76.67 & 95.74 & 76.67 & 0.0 & 69.63 \\
\hline March & 99.52 & 93.90 & 89.73 & 99.61 & 99.81 & 100.00 \\
\hline April & 81.48 & 88.33 & 87.04 & 32.96 & 100.00 & 0.0 \\
\hline May & 98.87 & 93.98 & 93.05 & 99.81 & 95.11 & 84.00 \\
\hline June & 97.04 & 91.02 & 77.87 & 0.0 & 87.96 & 95.19 \\
\hline TOTAL & 92.71 & 88.06 & 87.16 & 73.71 & 71.22 & 65.74 \\
\hline
\end{tabular}

TABLE 4-24. FARRAGUT WEST, 18TH STREET MONTHLY FARECARD VENDOR AVAILABILITIES, 1978-1979
\begin{tabular}{|lcccccc|}
\hline & \multicolumn{6}{c|}{ VENDOR } \\
\cline { 2 - 7 } & MONTH & 30 & 31 & 32 & 33 & 34 \\
\hline October & 94.98 & 98.86 & 91.32 & 61.42 & 96.80 & 96.35 \\
December & 98.27 & 99.73 & 95.87 & 88.00 & 97.60 & 94.40 \\
January & 93.27 & 98.54 & 93.27 & 92.11 & 94.74 & 96.78 \\
February & 15.20 & 99.81 & 56.85 & 0.0 & 94.37 & 58.54 \\
March & 94.66 & 99.24 & 0.0 & N/A & N/A & N/A \\
April & 99.12 & 50.75 & 0.0 & 98.74 & 67.21 & 97.74 \\
May & 93.52 & 97.78 & 98.89 & 1.00 & 74.07 & 84.26 \\
June & 64.17 & 99.67 & 99.17 & 94.67 & 100.0 & 100.0 \\
TOTAL & 77.24 & 93.36 & 74.78 & 74.86 & 89.41 & 88.75 \\
\hline
\end{tabular}
\(N / A=\) Not Available
42
99.92
99.18
98.18
55.60
99.83
99.65
95.69
93.13
95.48
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{9}{|l|}{Vendor} \\
\hline & 30 & 31 & 32 & 33 & 34 & 38 & 39 & 40 & 41 \\
\hline October & 0.0 & 89.22 & 61.68 & 98.12 & 77.70 & 97.88 & 99.18 & 99.43 & 99.67 \\
\hline December & 86.49 & 43.66 & 93.99 & 78.58 & 84.35 & 96.62 & 69.85 & 77.43 & 71.83 \\
\hline January & 94.30 & 97.11 & 97.26 & 86.78 & 93.69 & 76.72 & 63.87 & 99.47 & 64.59 \\
\hline February & 98.13 & 85.45 & 95.90 & 98.51 & 96.64 & 76.49 & No Data & 0.0 & 98.13 \\
\hline March & 98.60 & 98.34 & 89.86 & 98.25 & 99.74 & 99.21 & 99.62 & 99.21 & 85.31 \\
\hline April & 99.12 & 83.36 & 91.29 & 97.36 & 97.36 & 98.86 & 98.66 & 98.77 & 98.94 \\
\hline May & 97.13 & 91.20 & 99.12 & 99.38 & 98.86 & 97.71 & 0.0 & 82.22 & 38.73 \\
\hline June & 84.51 & 66.90 & 89.96 & 98.42 & 94.01 & 98.94 & 0.0 & 98.42 & 0.0 \\
\hline Total & 80.79 & 81.99 & 87.42 & 93.98 & 92.44 & 94.07 & 53.88 & 88.11 & 66.61 \\
\hline
\end{tabular}

Farecard vendor 32 was out of service in November due to a broken coin acceptor and printer.

Farecard vendor 33 was out of service in June due to unavailable spare parts, and it had low availabilities during January and February due to coin and farecard problems respectively.
3. Silver Soring

Farecard vendor 31 was out of service during the March survey due to unavailable spare parts, and it had a low reliability (49.91) in January due to a broken bill validator.

Farecard vendor 35 was out of service in January due to unavailable spare parts.

Farecard vendor 40 was out of service in April, May and June (no reason listed on survey sheets).

Farecard vendor 41 had low availabilities in October (67.66 percent) and December (43.70 percent) due to lengthy out-of-service periods (no reason given on survey sheets).
4. Farragut West 17 th street

Farecard vendor 33 was out of service in June (no reason listed on survey sheets) and it had a low availability in April (32.96 percent) due to a lengthy out-of-service period (no reason given on survey sheets).

Farecard vendor 34 was out of service in November and February (no reason listed on survey sheets).

Farecard vendor 35 was out of service during the November survey due to a full money container, and out of service in April (no reason listed on survey sheet).

\section*{5. Farraqut West - 18th Street}

Farecard vendor 30 had a low availability in February (15.20 percent) due to constant farecard jams, and a low availability in June due to unavailable spare parts.

Farecard vendor 32 was out of service in March and April due to unavailable spare parts, and it had a low availability in February due to the combined effect of bill jams and failures to verify tickets.

Farecard vendor 33 was out of service in February due to unavailable spare parts, and it had a low availability in October (61.42 percent) due to problems with the bill transport and unavailable spare parts.

\section*{6. Rosslyn}

Farecard vendor 30 was out of service in October (no reason given on survey sheets).

Farecard vendor 31 had low availabilities in December (43.66 percent) and in June (66.90 percent) due to numerous out-of-service periods (no reason listed on survey sheets).

Farecard vendor 39 was out of service in May and June due to constant farecard jams and unavailable parts.

Farecard vendor 41 was out of service in June due to a broken bill validator. It also had low availabilities in January and May due to numerous jams and out-of-service periods.

The detailed monthly analysis of availability indicates that a substantial portion of the vendors' down time (out-of-service time) resulted from unavailable spare parts. Other lengthy out-of-service periods were not documented on the survey sheets, so it is difficult to isolate other major causes of down time. Soft failures such as ticket, coin and bill jams averaged a little over 8 minutes each while hard failures averaged over 116 minutes each. Availability for the vendors could be increased substantially if the average down time per hard failure could be reduced.

The final measure examined for the analysis of farecard vendor performance was MTBE. Table 4-26 shows MTBE for all vendors for the total number of failures. The mean number of transactions per failure and availabilities are also shown in Table 4-26 for purposes of comparison.

\subsection*{4.4 SUMMARY}

The findings of the assessment of wMATA's farecard vendor performance may be summarized as follows:
1. Overall Farecard Vendor Performance by Mezzanine

The mean number of transactions per failure at each mezzanine ranged from 97 to 192, with an overall mean of 120 transactions per failure. Two mezzanines, Silver

TABLE 4-26. MTBF, MEAN TRANSACTIONS PER FAILURE AND AVAILABILITY FOR TOTAL FARECARD VENDOR FAILURES, 1978-1979
\begin{tabular}{|c|c|c|c|c|}
\hline LOCATION & VENDOR & T/F & A & MTBF \\
\hline \multirow[t]{5}{*}{Dupont Circle} & 30 & 119 & 99.3 & 2.7 \\
\hline & 31 & 136 & 90.9 & 3.1 \\
\hline & 32 & 189 & 81.3 & 3.6 \\
\hline & 38 & 287 & 95.1 & 3.4 \\
\hline & 39 & 266 & 86.8 & 4.1 \\
\hline \multirow[t]{4}{*}{Brookland} & 30 & 175 & 95.3 & 2.0 \\
\hline & 31 & 70 & 75.2 & 1.3 \\
\hline & 32 & 116 & 79.5 & 1.8 \\
\hline & 33 & 164 & 75.8 & 2.9 \\
\hline \multirow[t]{9}{*}{Silver Spring} & 30 & 86 & 93.9 & 1.2 \\
\hline & 31 & 95 & 74.2 & 2.1 \\
\hline & 32 & 94 & 88.2 & 1.5 \\
\hline & 33 & 82 & 84.9 & 1.9 \\
\hline & 34 & 161 & 95.4 & 2.0 \\
\hline & 35 & 116 & 70.5 & 1.9 \\
\hline & 36 & 109 & 95.8 & 2.2 \\
\hline & 40 & 54 & 59.0 & 2.4 \\
\hline & 41 & 101 & 81.7 & 2.4 \\
\hline \multirow[t]{6}{*}{Farragut West - 17 th Street} & 30 & 141 & 92.7 & 1.9 \\
\hline & 31 & 101 & 88.1 & 1.7 \\
\hline & 32 & 64 & 87.2 & 1.2 \\
\hline & 33 & 76 & 73.7 & 1.2 \\
\hline & 34 & 131 & 71.2 & 1.9 \\
\hline & 35 & 106 & 65.7 & 2.2 \\
\hline \multirow[t]{6}{*}{Farragut West - 18th Street} & 30 & 108 & 77.2 & 1.8 \\
\hline & 31 & 320 & 93.4 & 4.0 \\
\hline & 32 & 104 & 74.8 & 1.6 \\
\hline & 33 & 72 & 74.9 & 1.4 \\
\hline & 34 & 135 & 89.4 & 2.2 \\
\hline & 35 & 177 & 88.8 & 2.2 \\
\hline
\end{tabular}
```

TABLE 4-26. (Cont.)

```
\begin{tabular}{|ccccc|}
\hline & LOCATION & VENDOR & T/F & A \\
\hline ROSSIYn & & 30 & 133 & 80.8 \\
& & 31 & 139 & 82.0 \\
\hline
\end{tabular}
\(T / F=\) Mean Transactions per Failure \(A=A v a i l a b i l i t y\)

Spring and Farragut West \(17^{\text {th }}\) St. had reliabilities significantly lower than the system average. No monthly trend in reliabilities was identifiable. Availabilities ranged from 79.8 percent to 90.7 percent, with a system mean of 84.1 percent. Monthly variation in availability within and among mezzanines followed no apparent trend.

\section*{Overall Element Performance}

The coin acceptor element was significantly more reliable than both the ticket transport and the bill verifier. No significant difference was found between the reliabilities of the ticket transport and the bill verifier. On an individual mezzanine basis, farecard jams comprised the greatest percentage of total failures at four mezzanines; bill and coin jams were each the most numerous at one mezzanine. Overall, farecard jams (32 percent) were most numerous, followed by bill jams (25 percent) and coin jams (18 percent).
3. Farecard Vendor-Specific: Overall and Element Performance

Low overall reliabilities in specific farecard vendors were traceable to one or more low element reliabilities. Of the forty vendors examined, seven had significantly low (compared to the system average) reliabilities. Eighteen vendors had availabilities significantly less than the system mean. Of these eighteen, five of the vendors also had the lowest reliabilities. The major cause of the low vendor availabilities was the lack of an adequate supply of spare parts, and the lengthy out-of-service periods which were not attributed to a specific element on the survey sheets.

As part of CWD's AFC improvement program, a series of improvements (retrofits) to elements of the AFC equipment were implemented. The first group of retrofits was installed in December 1978 and January 1979. These initial improvements were directed at the ticket transport and they involved a series of modifications to the hinges, rollers and printers. A second group of retrofits was installed in February 1980. This group consisted of two types of retrofits: Retrofit \(A\), changes to the ticket transport, and Retrofit \(B\), changes to the ticket transport, coin acceptor and bill validator. This chapter assesses the effectiveness of the retrofits in improving AFC equipment performance.

\subsection*{5.1 1978-1979 RETROEIT PERFORMANCE}

Retrofit ticket transports were installed at seven mezzanines in selected farecard vendors. The mezzanines and vendors tested for performance improvements are listed below.
1. Dupont Circle - Vendors 30 to 32,38 and 39.
2. Farragut west, \(17^{\text {th }}\) St. - Vendors 31 and 32.
3. Farragut West, \(18^{\text {th }}\) St. - Vendors 33 to 35.
4. Rosslyn - Vendors 30 to 34,38 and 39.

To assess the performance of the retrofit ticket transports, a statistical analysis was performed in two ways. First, pre- and post-reftrofit reliabilities (i.e., all months before and all months after) were calculated and compared.

Table 5-1 shows mean transactions per farecard jam for all months before and after the retrofits.

Pre- and post-retrofit reliabilities were compared by utilizing a \(T\)-test of proportions to determine if increases in reliabilities were significant. As Table 5-1 shows, only vendors at Rosslyn showed statistically significant improvements

TABLE 5-1. PRE- AND POST-RETROFIT MEAN TRANSACTIONS PER FARECARD JAM FOR FARECARD VENDORS, 1978-1979
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{LOCATION} & & \multicolumn{2}{|l|}{MEAN TRANSACTIONS PER FARECARD JAM} \\
\hline & VENDOR & PRERETROFIT & \[
\begin{gathered}
\text { POST- } \\
\text { RETROFIT }
\end{gathered}
\] \\
\hline \multirow[t]{5}{*}{Dupont Circle} & 30 & 92 & 119 \\
\hline & 31 & 270 & 345 \\
\hline & 32 & 294 & 476 \\
\hline & 38 & 333 & 1,000 \\
\hline & 39 & 769 & 909 \\
\hline \multirow[t]{2}{*}{Farragut West - 17 th Street} & & & 909 \\
\hline & \[
32
\] & \[
250
\] & 345 \\
\hline \multirow[t]{3}{*}{Farragut West - 18 th Street} & 33 & 303 & 313 \\
\hline & 34 & 500 & 1,111 \\
\hline & 35 & 357 & 1,111 \\
\hline \multirow[t]{7}{*}{Rosslyn} & 30 & 81 & 1,000** \\
\hline & 31 & 200 & 769** \\
\hline & 32 & 121 & 313* \\
\hline & 33 & 143 & 588** \\
\hline & 34 & 122 & 2,500** \\
\hline & 38 & 714 & 769 \\
\hline & 39 & 82 & 667** \\
\hline
\end{tabular}
*Significant Improvement over Pre-Retrofit at 95 Percent Confidence Level.
**Significant Improvement over Pre-Retrofit at 99 percent Confidence Level.
in the mean number of transactions per farecard jam. While all vendors in the test sample showed improvements in reliaoility, only improvements in vendor reliabilities at Rosslyn can be attributed to the retrofits.

The second method of examining retrofit vendor performance was to compare retrofit to non-retrofit farecard vendors at each mezzanine. Table 5-2 shows the results of the retrofit versus non-retrofit comparison. Dupont Circle had no non-retrofit vendors.

TABLE 5-2. RETROFIT VERSUS NON-RETROFIT FARECARD VENDORS: COMPARISON OF MEAN TRANSACTIONS PER FARECARD JAM, 1978-1979
\begin{tabular}{|ccc|}
\hline & \multicolumn{2}{c|}{\begin{tabular}{c}
MEAN TRANSACTIONS \\
PER FARECARD JAM
\end{tabular}} \\
\cline { 3 - 4 } & NOCATION & NON-RETROEIT \\
RETROFIT \\
\hline Farragut West - 17th Street & 625 & 500 \\
Farragut West - 18th Street & 294 & \(667 *\) \\
Rosslyn & 357 & \(558 *\) \\
\hline
\end{tabular}
*Significant at 95 Percent Confidence Level

A T-test of proportions was utilized to determine if the improvements were significant. As Table 5-2 shows, the Rosslyn and Farragut West - 18 th Street mezzanines demonstrated improvements that were significant at the 95 percent level. At the Farragut West -17 th Street mezzanine, non-retrofit vendors had higher reliabilities than the retrofit vendors. Ove:all, reliabilities increased due to the retrofits, but they did not display consistent results.

\subsection*{5.2 1980 RETROFIT PERFORMANCE}

The 1980 retrofit performance data for Farragut West, \(17^{\text {th }}\) St. (A), Rosslyn (A) and Farragut West l8th St. (B) were analyzed at three levels of detail: l) overall equipment performance for gates, farecard vendors and add-fares; 2) overall element performance for ticket transports, coin acceptors and bill validators; and 3) equipment specific: overall and element performance. To determine if Retrofits \(A\) and B produced significant improvements in AFC equipment performance, pre- and post-retrofit data were compared. For farecard vendors, the 1978-1979 system data were compared with 1980 performance measures, and for gates and add-fares, a two-month sample of the 1978-1979 data (January and February) was utilized for comparison purposes.

The 1980 performance data were divided into three groups:
1. Data on \(A F C\) equipment performance covering the last week of February and the first week of March, 1980. This set of data covers the time period immediately following the installation of the retrofits and it is referred to as February retrofit data.
2. Performance data for the remainder of March 1980 for Farragut west, \(17^{\text {th }}\) St. (A), and Farragut West, \(18^{\text {th }}\) St. (B). The data are referred to as March retrofit data.
3. Performance data for the month of April for all three previously-mentioned retrofit mezzanines are referred to as April retrofit data.

The retrofit performance data were utilized to identify and quantify relative improvements in WMATA's AFC equipment performance (reliability and availability), to compare peak versus off-peak performance and to develop a failure distribution analysis.

Reliability, measured in mean number of transactions per failure, is shown in Table 5-3 for all gates, vendors, and add-fares. February, March and April data are shown individually and together for Retrofits \(A\) and \(B\). Figure 5-1 shows mean transactions per failure graphically; Retrofit \(A\) and Retrofit B data are grouped together for the three-month survey period (February through April 1980). Asterisks on the transactions in Table 5-3 indicate statistically significant improvements over the 1978-1979 equipment reliabilities. Table 5-4 shows AFC equipment availability expressed as a percentage of total survey operating time. Figure 5-2 shows the percentages graphically. Confidence intervals for reliabilities and availabilities are contained in Appendix 5.

The reliability and availability of equipment with Retrofit \(B\) significantly increased over 1978-1979. Retrofit A equipment experienced a significant improvement in gate reliability, while farecard vendors had a slight increase and add-fares had a decrease in reliability from 1978-1979.

Availability for Retrofit A equipment increased significantly for gates and farecard vendors; add-fares showed a decrease in availability. All of the Retrofit \(B\) equipment achieved a 95 percent availability requirement while only gates for Retrofit A met this availability. The reliability and availability of all Retrofit \(B\) equipment was significantly better than that of Retrofit A equipment.

Table 5-5 shows mean time between failures (MTBF) for all AFC equipment; Figure 5-3 presents this data graphically. All AFC equipment with Retrofit \(B\) experienced significant improvements in MTBF, with gates having the greatest increase. For AFC equipment with Retrofit \(A\), gates and add-fares experienced significant improvement in MTBF for Retrofit \(A\), while farecard vendors showed a decrease. Retrofit \(B\) showed a significant increase in MTBF over Retrofit \(A\).
table 5-3. COMPARISON OF MEAN TRANSACTIONS PER FAILURE FOR AFC EQUIPMENT: 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY
(RETROFITS A AND B) - TOTAL EQUIPMENT RELIABILITY
TG\&OTIVA ygd SNOIJOYSN甘女L NYGW
\({ }^{1}\) Includes all hard and soft failures
\({ }^{2}\) Farragut West, \(17^{\text {th }}\) St. only
*Significant improvement over 1978-1979 at 95 percent confidence level *Significant improvement over 1978-1979 at 99 percent confidence level

FIGURE 5-1. COMPARISON OF MEAN TRANSACSIONS PER FAILURE FOR AFC EQUIPMENT: 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFTTS A \& B)
\(\square\) PRE-RETROFIT

RETROFIT A
TABLE 5-4. COMPARISON OF AFC EQUIPMENT AVAILABILITIES: 1978-1979 SURVEY (PRELAL EQUIPRT) AND 1980 SURVEY (RETROFITS A AND B) total equipment availability
EQUIPMENT AVAILABILTY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{4}{|l|}{RETROFIT A} & \multicolumn{4}{|l|}{RETROFIT B} \\
\hline EQUIPMENT & Retrofit & February & MARCH \({ }^{1}\) & APRIL & TOTAL & FEbruary & MARCH & APRIL & TOTAL \\
\hline Gates & 92.71 & 95.30** & 92.42 & 97.02** & 95.54** & 94.92** & 98.87** & 93.11 & 95.43** \\
\hline \multicolumn{10}{|l|}{Farecard} \\
\hline Vendors & 84.08 & 89.22** & 92.07** & 94.82** & 91.61** & 97.51** & 96.32** & 98.02** & 97.61** \\
\hline Add-fares & 96.17 & 91.31 & 94.17 & 96.23 & 93.33 & 98.08** & 99.49** & 99.72** & 98.67** \\
\hline
\end{tabular}
1Parragut West, 17 th Street only

\(\square\) PRE-RETROFIT
** Retroeit a
8emsorit
RETROEIT 8
TABLE 5-5. COMPARISON OF MEAN TIME BETWEEN PEAK-HOUR FAILURES FOR AFC EQUIPMENT:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{AFC EQUIPMENT} & \multicolumn{9}{|l|}{mean timel between failures} \\
\hline & \multicolumn{5}{|l|}{RETROFIT A} & \multicolumn{4}{|l|}{RETROFIT B} \\
\hline & \[
\begin{gathered}
\text { PRE- } \\
\text { RETROFIT }
\end{gathered}
\] & FEBRUARY & MARCH \({ }^{2}\) & APRIL & TOTAL & FEBRUARY & MARCH & APRIL & TOTAL \\
\hline Gates & 1.12 & 1.72 & 7.58 & 2.62** & 2.19** & 3.13 & 9.10 & 8.75** & 4.17** \\
\hline \begin{tabular}{l}
Farecard \\
Vendors
\end{tabular} & 1.96 & 1.49 & 1.39 & \(2.63^{* *}\) & 1.74 & 3.04 & 2.17 & 2.81** & 2.79** \\
\hline Add-fares & 1.47 & 1.41 & 1.45 & 2.31** & 1.62** & 2.23 & 4.33 & 7.50** & 2.91** \\
\hline
\end{tabular}
\(l_{\text {Time }}\) in peak hours
2 Farragut West, 17 th Street only
**Significant improvement over 1978-1979 at 99 percent confidence level

PRE-RETROFTM

RETROFIT: A

RETROFIT B

To measure the effectiveness of retrofit element performance, reliability measures were calculated in terms of actual element usage and compared to pre-retrofit performance measures. Tables 5-6 through 5-8 show mean transactions per failure for the elements, and Figures 5-4 through 5-6 show the reliabilities graphically.

Retrofit \(A\) produced significant improvements in the reliability of ticket transports for gates and farecard vendors; add-fares showed a marked decrease in reliability. Retrofit \(B\) produced significant reliability improvements for gates and farecard vendors, but only marked increase for add-fares. All Retrofit \(B\) equipment showed significant improvement over Retrofit A.

No coin acceptors (Retrofit \(A\) or B) exhibited any significant improvements in reliability. Retrofit A farecard vendors produced reliabilities better than pre-retrofit and Retrofit \(B\) farecard vendors. Add-fare reliabilities were markedly lower than pre-retrofit, but Retrofit \(B\) did show an increase over Retrofit \(A\). There was no statistical difference in performance between the retrofits.

Bill verifier reliabilities for Retrofit \(B\) increased significantly for farecard vendors and add-fares; Retrofit A produced significant increase only for add-fares. Statistical analysis of Retrofit \(A\) and Retrofit \(B\) data indicated that there was no difference in the bill verifier performance of either retrofit program.

Overall, significant improvements to the elements were only demonstrated in the ticket transport reliabilities; coin and bill elements did not produce conclusive performance improvements. Statistical analysis indicates that Retrofit B performed better than Retrofit \(A\) for the Ticket transport, but there was no difference between the retrofit programs for the coin acceptor or bill verifier.
TABLE 5-6. COMPARISON OF MEAN TRANSACTIONS PER FARECARD JAM FOR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{AFC EQUIPMENT} & \multicolumn{9}{|l|}{mean transactions per farecard jam} \\
\hline & \multicolumn{5}{|l|}{Retrofit a} & \multicolumn{4}{|l|}{RETROFIT B} \\
\hline & RETROFIT & February & MARCH \({ }^{\text {l }}\) & APRIL & TOTAL & FEBRUARY & MARCH & APRIL & TOTAL \\
\hline Gates & 858 & 1.381** & 20,977/0** & 1,034 & 1,477** & 11,399** & 8,109** & 15,649** & 11,274** \\
\hline Farecard & & & & & & & & & \\
\hline vendors & 376 & 477 & 510 & 885** & 573** & 6,148** & 1,137** & 4,965** & 3,445** \\
\hline Add-fares & 552 & 143 & 79 & 243 & 154 & 833 & 939 & 772 & 872 \\
\hline
\end{tabular}
\(\mathrm{l}_{\text {Farragut West, }} 17^{\text {th }}\) St. only
**Significant improvement over 1978-1979 at 99 percent confidence level
TABLE 5-7. COMPARISON OF MEAN NUMBER OF COINS INSERTED PER COIN JAM COIN ACCEPTOR RELIABILITY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{AFC EQUIPMENT} & \multicolumn{9}{|l|}{mean number of coins inserted per coin jam} \\
\hline & \multicolumn{5}{|l|}{retrofit a} & \multicolumn{4}{|l|}{Retrofir b} \\
\hline & \[
\begin{gathered}
\text { PRE - } \\
\text { RETROFIT }
\end{gathered}
\] & february & MARCH \({ }^{1}\) & APRIL \({ }^{1}\) & total & FEBRUARY & MARCH & APRIL & total \\
\hline \begin{tabular}{l}
Farecard \\
Vendors
\end{tabular} & 844 & 1,062 & 734 & 2,893 & 1,058 & 1,125 & 956 & 871 & 1,027 \\
\hline Add-fares & 2,115 & 412 & 690 & 924 & 510 & 1,082 & 563 & 824/0* & 1,039 \\
\hline
\end{tabular}
\(1_{\text {Farragut West, }} 17\) th St. only
*Significant improvement on 1978-1979 at the 95 percent confidence level
table 5-8. Comparison of mean number of billis inserted er bill jam FOR FARECARD VENDORS AND ADD-FARES: 1978-1979 SURVEY bill verifier reliability
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{AFC EQUI PMENT} & \multicolumn{9}{|l|}{mean number of bills inserted per bill jam} \\
\hline & \multicolumn{5}{|l|}{REtrofit a} & \multicolumn{4}{|l|}{Retrofit b} \\
\hline & RETROFIT & FEBRUARY & MARCH \({ }^{1}\) & APRIL \({ }^{1}\) & TOTAL & FEBRUARY & MARCH & APRIL & total \\
\hline Farecard Vendors & 358 & 444 & 553 & 299 & 459 & 622** & 305 & 971** & 572** \\
\hline Add-fares & 40 & 616** & 130/0** & 203** & 474** & 311** & 281/0** & 432/0** & 454** \\
\hline
\end{tabular}
**Significant improvement over 1978-1979 at 99 percent confidence level

EIGURE 5-5. COMPARISON OF MEAN NUMBER OF COINS INSERTED DER COIN JAM FOR EARECARD VENDORS AND ADD-FARES: 1978-1979 SURVEY (PRE-RETRORIT) AND 1980 SURVEY (RETROFITS A AND B)

\(\square\)
PRE-RETROFIE
\(\square\) RETROPIT B
RETROFI: A

FIGURE 5-6. COMPARISON OF MEAN NUMBER OF BIITUS INSERTED PER BILL JAM FOR FARECARD VENDORS AND ADD-FARES: 2978-1979 SURVEY (PRE-RETROEIT) AND 1980 SURVEY (RETROFITS A E B)

PRE-RETROFI:

RETROEIT A

RETROEIT 8

Reliability data were collected during off-peak periods and compared to peak period data. Table 5-9 summarizes the results of this comparison and indicates a wide disparity among the data. Therefore, it is not possible to draw conclusions about peak or off-peak performance.

Another alternative for examining element performance is to calculate the distribution of total failures. The pie charts in Figures 5-7 through 5-9 show each type of failure for farecard vendors as a percentage of the total transactions at each mezzanine. The 1978-1979 data are also presented for purposes of comparison.

At Rosslyn (Retrofit A) farecard jams were reduced from 35 percent to 8 percent of the total failures; coin jams increased dramatically, bill jams increased slightly, and hard and other soft failures decreased slightly. At Farragut West, 17th Street (Retrofit A) farecard jams increased to 30 percent of the total failures. Coin jams and soft failures also increased, while bill jams decreased substantially. The effect of Retrofit A on the performance of farecard vendors was not consistent.

Farragut West, l8th Street (Retrofit B) farecard jams decreased substantially to only 8 percent of the failures. Coin and bill jams increased significantly while all other failures (hard and soft) remained the same. The only element that appeared to be effected by Retrofit \(B\) was the ticket transport.

\subsection*{5.2.3 Equipment Specific: Overall and Element Performance}

All machines at each retrofit mezzanine were examined to identify the magnitude and location of changes in AFC equipment performance including ticket transport, bill verifier and coin acceptor elements. Tables 5-10 through 5-12 show the results for each mezzanine. The tables are divided into two comparisons:

TABLE 5-9. COMPARISON OF PEAK AND OFF-PEAK MEAN TRANSACTIONS PER FAILURE FOR FARRAGUT WEST, \(17 T H\) STREET, AND FARRAGUT WEST, 18TH STREET, 1980: AFC EQUIPMENT AND ELEMENTS

MEAN TRANSACTIONS PER FAILURE

FARRAGUT WEST FARRAGUT WEST
17TH ST. (A) 18TH ST. (B)
PEAK OFF-PEAK PEAK OFF-PEAK

Gates
Farecard Jams
1,392
4,743
11,399
6,597
Total Failures
553
1,186
1,596
347

\section*{Farecard Vendors}

Farecard Jams
Coin Jams
Bill Jams
1,343 440
Total Failures
94
1,348/0
257
81
6,148
1,365/0
1,125 1,711
622
279
1.035/0

1,365

\section*{Add-Fares}

Farecard Jams
108
141/0
883
\(240 / 0\)
Coin Jams
428
Bill Jams
Total Failures
338 54

195/0
1,082
319
34/0
311
49/0
\(0 \quad 132\)
48

Total Transactions \(=21,957\)
Ruy and aprile, 1980
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{AFC pquipment} & \multicolumn{2}{|l|}{Hean Transactions Farecard Jam} & & \multicolumn{3}{|l|}{Hean Mumber of Coins inserted Per Coin Jam} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Mean Mumber of Bllls \\
Inserted Per Bill Jam
\end{tabular}} & \multicolumn{3}{|l|}{Mean Transactions Per fallure} \\
\hline & PreRetrofit & February PostRetrofit & \begin{tabular}{l}
April \\
PoatRetrofit
\end{tabular} & \[
\begin{gathered}
\text { Pre- } \\
\text { Retrofit }
\end{gathered}
\] & February postRetrofit & \[
\begin{aligned}
& \text { Apritiz } \\
& \text { Post- } \\
& \text { Retrofit }
\end{aligned}
\] & Frenetrofit & February postRetrofit & \[
\begin{gathered}
\text { Apri12 }{ }^{2} \\
\text { Post- } \\
\text { Retrofit }
\end{gathered}
\] & \[
\begin{gathered}
\text { Pre- } \\
\text { Retrofit }
\end{gathered}
\] & \begin{tabular}{l}
February \\
PostRetrofit
\end{tabular} & \begin{tabular}{l}
Agril \\
PostRetrofit
\end{tabular} \\
\hline \multicolumn{13}{|l|}{Gates} \\
\hline 10 & 4,372 & 1.470/0 & 747 & & & & & & & 2.186 & 1.470/0 & 373 \\
\hline 11 & 1,972 & 2,582 & 927 & & & & & & & 1.479 & 861 & 927 \\
\hline 12 & 580 & 991 & 1,647 & & & & & & & 515 & 248 & 1.647 \\
\hline 13 & 1,742 & 1,039 & 136 & & & & & & & 697 & 520 & 136 \\
\hline 14 & 4.693 & 819 & 968 & & & & & & & 1.173 & 819 & 968 \\
\hline 15 & 200 & 86 & 405 & & & & & & & 170 & 86 & 405 \\
\hline 18 & 2,035 & 3,474 & 2,664 & & & & & & & 1.526 & 217 & 2.664 \\
\hline 19 & 696 & 2,141/0 & 2.282 & & & & & & & 440 & 1.071 & 1.141 \\
\hline 20 & 1.455 & 744 & 3,058/0 & & & & & & & 970 & 372 & 3,058/0 \\
\hline 21 & 459 & 5.437 & 238 & & & & & & & 408 & 5.431 & 220 \\
\hline 22 & 2,260 & 1.259 & 2,493 & & & & & & & 1.291 & 472 & 1.246 \\
\hline Average & 940 & 1,365 & 772 & & & & & & & 656 & 491 & 664 \\
\hline \multicolumn{13}{|l|}{Vendors} \\
\hline \[
31
\] & N/A & N/A & 1.108/0 & N/A & N/A & & N/A & N/A & & N/A & N/A & 277 \\
\hline 32 & 227 & 1.203/0 & 1,017/0 & 2.269 & 1.043 & & 231 & 837 & & 103 & 241 & 203 \\
\hline 33 & 313 & 966 & 1,193/0 & 1.237 & 922/0 & & 223 & 640 & & 116 & 322 & 1.19 3/0 \\
\hline 34 & 476 & 1.074/0 & 40\%0 & 1.427 & 615 & & 1.164 & 244 & & 189 & 153 & 13 \\
\hline 38 & 714 & 529 & 478\% & 1.179 & 461 & & 249 & 344 & & 167 & 76 & 80 \\
\hline \[
39
\] & 114 & 530 & 455 & 1.457 & 1,378 & & 147 & & & 51 & 88 & 455 \\
\hline \[
40
\] & 400 & 268 & 313/0 & 1,665 & 675 & & 551 & 379/0 & & 154 & 178 & 313/0 \\
\hline 41 & N/A & N/A & 276/0 & N/A & N/A & & N/A & N/A & & N/A & N/A & 216/0 \\
\hline Average & 350 & 1.612 & 4,878 & 1.228 & 829 & & 296 & 450 & & 134 & 156 & 257 \\
\hline \multicolumn{13}{|l|}{Md-Fares} \\
\hline 50 & 254 & 521 & 177 & 1.316/0 & 673 & & 27 & 128 & & 53 & 174 & \\
\hline 51 & 1.289 & 147 & 576/0 & 1.334 & 814 & & 96 & 150/0 & & 215 & 84 & 576/0 \\
\hline Average & 461 & 222 & 465 & 2,650 & 744 & & 46 & 278 & & 92 & 111 & 233 \\
\hline
\end{tabular}

\footnotetext{
March data not avallable
\({ }^{2}\) DADS printer control board out of service; no coin or bill counts
}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{Mean Transacthows ted Farecard sam} & \multicolumn{4}{|l|}{Hean Mindief of culun Insertent Per Culn Jam} & \multicolumn{4}{|l|}{Meatr thimber of litlio lugerted ler IHII Jam} & \multicolumn{4}{|l|}{H:Ant Trinsatilnwn lef fallutiol} \\
\hline AFP Biplymat & irehetrofle & Felorwary mostHetrofte & Harcil NostMetcofie & \begin{tabular}{l}
Abril \\
pontHetrofle
\end{tabular} & \[
\begin{gathered}
\text { Pie- } \\
\text { Retrofle }
\end{gathered}
\] & February fustRetrofle & March Pustnetrofle & Apilit NobeRetcolie & Prehetrolle & Felisuray luetRetrolte & Harch PristHetrolit & npil tortHectotle & \[
\begin{gathered}
\text { rie- } \\
\text { metrofite }
\end{gathered}
\] & Frbrinaty lust Petiofit & \[
\begin{aligned}
& \text { Harcil } \\
& \text { mest- } \\
& \text { netrorit }
\end{aligned}
\] & Aprill mestlietroily \\
\hline \multicolumn{17}{|l|}{Catea} \\
\hline 10 & 927 & 465 & 2,682/0 & 2,952/0 & & & & & & & & & 464 & 220 & 1.341 & 2,462/0 \\
\hline 11 & 519 & 691 & 4.246/0 & 2,407/0 & & & & & & & & & 146 & 346 & 4.246/0 & 2.407 \\
\hline 12 & 6.61 & 4.567 & 1.340/0 & 2,160 & & & & & & & & & 578 & 35.1 & 1.310 & 2.160 \\
\hline 13 & 384 & 5.119 & 1,944/0 & 503 & & , & & & & & & & 241 & 1,024 & 1,944/0 & 135 \\
\hline 14 & 460 & 785 & 1.366/0 & 1.3A6 & & & & & & & & & 532 & 561 & 1,366 & 1,786 \\
\hline 15 & 582 & 3.572 & 6.069/0 & 733/0 & & & & & & & & & 466 & 2.301 & 6,069 & 317 \\
\hline 16 & 509 & 5,028 & 3, 3 30/0 & 3.086 & & & & & & & & & 3 H 2 & 2,514 & 1,130 & 3.0166 \\
\hline Average & 604 & 1.392 & 20.917/0 & 2.015 & & & & & & & & & 421 & '51 & 3.496 & 1.740 \\
\hline \multicolumn{17}{|l|}{Vembore} \\
\hline 3n & 526 & 350 & 145 & 379 & 2.241 & 1.443 & 378 & 480/0 & 225 & 562 & 108 & 294 & 131 & 100 & 12 & 126 \\
\hline 63 & 417 & 147 & 415/0 & 97 & 1.369 & 519 & 614 & 441/0 & 199 & 233 & 34/0 & 329 & 81 & 51 & 104 & 73 \\
\hline \(\checkmark 32\) & 294 & 744 & 455/0 & 317 & 2. 302 & 1.888/0 & 652 & 482/0 & 104 & 544 & 291/0 & 206/11 & 65 & 124 & 228 & 11 \\
\hline \(\cdots\) & 244 & 1.143/0 & \(538 / 0\) & 447 & 462 & 458 & 906 & 539/0 & 135 & 225 & 426/0 & 115 & 70 & 76 & 53 m & 112 \\
\hline 34 & 1.250 & 395 & 606/0 & 432 & 075 & 2,8u0/0 & 402 & 584 & 195 & 871/0 & 411 & 319 & 109 & 198 & 152 & 144 \\
\hline 15 & 667 & 14) & 190 & 336/0 & 1.425 & 3.511 & 1,019/0 & 364/0 & 159 & 822 & 521 & 295 & \(0]\) & 96 & \(9{ }^{9}\) & 160 \\
\hline Averaye & 4 \({ }^{\text {u }}\) & 29月 & 510 & 367 & 1.129 & 1.343 & 734 & 2.893 & 161 & 440 & 531 & 299 & 97 & 94 & 109 & 171 \\
\hline \multicolumn{17}{|l|}{Mll-Fares} \\
\hline 50 & 110 & 61 & 56 & 91 & 201 & 311 & 296 & 454 & So & 47/0 & 40\% & 76 & 70 & 21 & 11 & 61 \\
\hline 51 & 206 & \(14 \%\) & 125 & 406 & 342\% & 546/0 & 394/0 & 470/0 & 16 & 247/0 & 82\% & 121/0 & 57 & 911 & \(\theta 1\) & 207 \\
\hline nueraye & 298 & 104 & 79 & 154 & 372 & 428 & 690 & 924 & 43 & 318/0 & \(130 \%\) & 2113 & 66 & 54 & 53 & 96 \\
\hline
\end{tabular}
trallure - all fallimea, baril ami mott.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{AFC Binliment} & \multicolumn{4}{|l|}{Masn Tiansactlons pert Farecard Jaa} & \multicolumn{4}{|l|}{Muan themer as Cobion Insertell par Coln Jan} & \multicolumn{5}{|l|}{Heat momer of ollie Hererted Pur Bhll lam} & \multicolumn{3}{|l|}{Mhesu Ti ansact lomn ver fablure \({ }^{\text {l }}\)} \\
\hline & Fec－ Retrofte & \begin{tabular}{l}
Felorwayy \\
post－ \\
Meteofit
\end{tabular} & Marcth pust－ Detrufle & Ayr It bost－ netrolit & Pre－ Retrofle & Febevary م品－ Reteofle & Haecli funt－ Meteoflt & Aprit tuat－ Aetrolite & \begin{tabular}{l}
Pre－ \\
Retrotit
\end{tabular} & Febenary Nest Retruile & Harcin puat－ Retrofle & Apil tuat－ Hetrofle & Pre－ Retrofit & Falsewary mot－ Rotrofite & \begin{tabular}{l}
Marche \\
Nist Hetecolle
\end{tabular} & All 11 Prost－ Relioflt \\
\hline \multicolumn{17}{|l|}{Gates} \\
\hline 10 & 689 & 4，964 & 4．005／0 & 5．010\％ & & & & & & & & & 689 & 1．354 & 4．005／6 & S．817 \\
\hline 11 & 1.239 & 15.403 & 4．195／0 & 5，910／0 & & & & & & & & & 929 & 1.711 & 1．195／8 & 5．974／4 \\
\hline 12 & 921 & 7．476／0 & 2，745／0 & 1，98） & & & & & & & & & A11 & 1.476 & 2．785／0 & 1．255 \\
\hline 13 & 513 & 1．316／0 & 3，503 & 2，170／0 & & & & & & & & & 511 & 1．316／0 & 1.194 & 2，170 \\
\hline 18 & 4．503 & 5，642 & 2．329／0 & 3，915／0 & & & & & & & & & 2.292 & 2.257 & 2，128／11 & 3，914 \\
\hline 19 & 1.672 & 16．448／0 & 4．462／0 & 6，519\％ & & & & & & & & & 1．254 & 16.448 & 4．162／0 & \(6.574 / 0\) \\
\hline 20 & 1.250 & 2，987 & 1.405 & 3，002／0 & & & & & & & & & 1，2 2 & 260 & 1.405 & 3，0月2／0 \\
\hline Aves arpo & 950 & 11.399 & －109 & 15，649 & & & & & & & & & 064 & 1.596 & 4，465 & 5.216 \\
\hline \multicolumn{17}{|l|}{Wemptas} \\
\hline 3 & 204 & 2．161／0 & 4.076 & 102／0 & 1.667 & 1.310 & 513 & 953／0 & 769 & 102 & 464／0 & \(650 / 0\) & 189 & 210 & 4日） & 日月 2／0 \\
\hline 11 & 625 & 2．163／0 & 221 & 160 & 5.000 & 760 & 491 & 498 & 1.250 & 385 & 109 & 590 & 323 & 218 & 49 & 110 \\
\hline \(\infty \quad 12\) & 270 & 2，500／0 & \(630 / 0\) & 314／0 & 1.250 & 3． 201 & 644 & 925 & 230 & 601 & 250 & 213 & 96 & 500 & 210 & 159 \\
\hline 11 & 313 & 1．370／6 & 639／0 & 084／0 & 417 & －67 & 740 & 1．115／6 & 152 & 1.070 & 500／0 & 649／0 & 69 & 341 & 619 & 日B4／0 \\
\hline 31 & 769 & 1．247\％ & 569／0 & －19／0 & 1.429 & 1．561／0 & 309／0 & 993 & 182 & －66\％ & 2115 & 6 24／0 & 121 & 1．247／0 & 284 & \({ }^{89}\) \\
\hline 15 & 556 & 1.308 & 614 & 900／0 & 1.429 & 115 & 019／0 & 310 & 246 & 442 & 447 & 691／0 & 179 & 163 & 322 & 100 \\
\hline morspre & 112 & 6.140 & 1，131 & 4.965 & 1.278 & 1．125 & 951 & 071 & 312 & 622 & 345 & 971 & 129 & 219 & 189 & 110 \\
\hline \multicolumn{17}{|l|}{ndit Feren} \\
\hline \(50^{\circ}\) & 711 & 60） & \(470 / 0\) & 426 & 1．034\％ & 1.700 & 571／0 & 431／0 & 26 & 473 & 148／0 & 201／0 & 96 & 137 & 470／0 & 426 \\
\hline 31 & 171／0 & 1．203 & 169 & 346／0 & 1．009／0 & 274 & 210 & 301／0 & 52 & 204 & 131／0 & 225／0 & 185 & 120 & 156 & 146 \\
\hline merame & 1，512 & 081 & 919 & 112 & 2，0 15／0 & 1，082 & 56） & －24／0 & 34 & 31 & 201／0 & \(432 / 0\) & 126 & 112 & 113 & 336 \\
\hline
\end{tabular}
Iratline e all eablures，hard amb solt．
pre-retrofit versus monthly post-retrofit (February, March and April 1980). The following equipment specific observations are made for each mezzanine:

\section*{1. Retrofit \(A\)}

Rosslyn:

> gates - six out of eleven gates had increases for ticket transport and total reliability.
> farecard vendors - all farecard vendors had increases in ticket transport reliability, and four had increases in total reliability. Coin acceptor and bill verifier reliability could not be assessed due to a malfunction of the DADS printer control board.
add-fares - one of the two add-fares had an increase in total reliability.

Farragut West, \(17^{\text {th }}\) Street:
gates - all gates demonstrated increased ticket transport reliability; total reliability increased for all gates but was somewhat inconsistent in April.
> farecard vendors - ticket transport reliability showed consistent increases in only two machines; five machines demonstrated consistent improvements for the coin acceptor with only one machine encountering a failure in April; the bill verifier produced reliability increases; only four machines demonstrated consistent improvements in total reliability.
add-fares - the only consistent improvements occurred in coin acceptor reliability; one machine demonstrated improvements in total reliability.

\section*{2. Retrofit B}

Farragut West, \(18^{\text {th }}\) Street:
> qates - all gates demonstrated consistent ticket transport and total reliability improvements, with six gates showing no farecard jams in April.
> farecard vendors - all six farecard vendors had increased ticket transport reliability over the three-month period. These farecard vendors exhibited decreases in coin acceptor reliability and inconsistency with the remaining machines. Bill verifier reliability decreased for two machines, but demonstrated consistent increases for four other farecard vendors. Total reliability increased for five machines, but one machine showed a consistent decrease in total reliability.

add-fares - increase in bill verifier and total reliability was demonstrated by both add-fares; ticket transport and coin acceptor reliabilities were consistent with pre-retrofit data.

Table 5-13 shows availability measures for each mezzanine. Tables 5-14 through 5-16 show MTBF for all equipment by mezzanine. Most AFC equipment was achieving 95 percent availability at all mezzanines except for the farecard vendors at Farragut West, l7th Street, which show reduced availabilities for April 1980. One gate at Farragut West, l8th Street demonstrated an availability of only 53 percent due to a broken part which had to be ordered. Overall, availabilities appear to
TABLE 5-13. DFPAILED AFC EQJIPMFNT AVAILABILI'T \({ }^{1}\) FOR 1980 SIJFNEY (RIFTHOFITS A ANI) (I)

\footnotetext{
\(1_{\text {Avallability }}=\) Total Operating Time - Total Down Time Total operatim Time

2March data not avallable.
\(3^{3}\) machine placed out of service; part had to be ordered.
}

TABLE 5-14. COMPARISON OF MTBF FOR AFC EQUIPMENT AT ROSSLYN: 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFIT A)

ltime in Peak-Hours
\(N / A=\) No Data Available

TABLE 5-15. COMPARISON OF MTBF FOR AEC EQUIPMENT AT FARRAGUT WEST 17TH STREET: 1978-1979 SURVEY (PRE-RETROFIT) AND 1980 SURVEY (RETROFIT A)

\(l_{\text {Time }}\) in peak hours

\title{
TABLE 5-16. COMPARISON OF MTBF FOR AFC EQUIPMENT AT FARRAGTJT WEST 18TH STREET: 1978-1979 SIJRVEY (PRE-RETROEIT) AND 1980 SIJRVEY (RETROEIT B)
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & & \multicolumn{7}{|c|}{MEAN TIME BETWEEN FAILIRES (MTBF)l} \\
\hline & & \multirow[b]{2}{*}{PRE-RETROFIT} & \multicolumn{6}{|c|}{RETROEIT B} \\
\hline & & & & EEBRUARY & & MARCH & & APRIL \\
\hline \multirow[t]{6}{*}{Gates:} & 10 & 0.98 & \multirow{5}{*}{No} & 2.03 & \multirow[t]{2}{*}{No} & Failures & \multirow{4}{*}{No} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 7.50 \\
& \text { Failures } \\
& 2.50
\end{aligned}
\]} \\
\hline & 11 & 1.60 & & 2.48 & & Failures & & \\
\hline & 12 & 1.16 & & Failures & & 2.17 & & \\
\hline & 18 & 6.38 & & 4.47 & No & Failures & & 7.50 \\
\hline & 19 & 3.19 & & 22.33 & No & Failures & No & Failures \\
\hline & 20 & 2.55 & & 0.97 & & 3.25 & No & Failures \\
\hline \multirow[t]{6}{*}{Vendors:} & 30 & 1.75 & \multirow{6}{*}{No} & 2.79 & \multicolumn{2}{|r|}{6.50} & No & Failures \\
\hline & 31 & 4.00 & & 2.03 & & 0.72 & & 1.07 \\
\hline & 32 & 1.55 & & 4.47 & & 2.17 & & 1.50 \\
\hline & 33 & 1.38 & & 5.58 & & 6.50 & No & Failures \\
\hline & 34 & 2.24 & & Failures & & 3.25 & & 7.50 \\
\hline & 35 & 2.15 & & 1.40 & & 3.25 & & 2.50 \\
\hline \multirow[t]{2}{*}{Add-Fares} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 50 \\
& 51
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1.60 \\
& 3.19
\end{aligned}
\]} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 2.23 \\
& 2.23
\end{aligned}
\]}} & \multirow[t]{2}{*}{No} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Failures } \\
& 2.17
\end{aligned}
\]} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 7.50 \\
& 7.50
\end{aligned}
\]}} \\
\hline & & & & & & & & \\
\hline
\end{tabular}
ltime in peak hours
be increasing due to the retrofit programs and greater Eamiliarity with corrective action procedures, but greater consistencies in availability are still required for improved performance.

Mean time between failures (MTBF) appears to show increases at all mezzanines. While the increases are not at a consistent rate, many of them are quite substantial over the pre-retrofit condition.

\subsection*{5.3 SUMMARY}

The findings of the 1980 retrofit performance analysis may be summarized as follows:
1. Overall Equipment Performance

Retrofit A - Significant improvements occurred in gate reliabilities; farecard vendors experienced some improvements while add-fares showed a slight decrease in reliability. The availabilities of gates and farecard vendors were significantly improved although only gates achieved 95 percent availability. Add-fares demonstrated a decrease over the pre-retrofit availability. Mean time between failures increased significantly for gates and add-fares but decreased slightly for farecard vendors.

Retrofit B - Significant improvements occurred in the reliabilities and availabilities of gates, farecard vendors and add-fares. Gates achieved a reliability of 2,220 transactions per failure which was a fourfold increase in the pre-retrofit condition. All equipment achieved an availability over 95 percent and showed a significant increase in mean time between failures.

Retrofit A - Gates and farecard vendors showed a significant increase in ticket transport reliability. There were no significant improvements in coin acceptor reliability, but the bill verifier did demonstrate a significant improvement for add-fares.

Retrofit B - Gates and farecard vendors demonstrated significant improvements in ticket transport reliability. Add-fares also had a marked increase in ticket transport reliability.

No significant improvements were found for the coin acceptor and add-fares did not perform as well as the pre-retrofit equipment. The bill verifier demonstrated a significant improvement for add-fares and farecard vendors.
3. Equipment Specific: Overall and Element Performance

\section*{Retrofit A}

Rosslyn - All farecard vendors and half of the gates experienced improvements in ticket transport reliability; all other AFC equipment showed inconsistent performance. With the exception of a few machines, most of the AFC equipment met 95 percent availability.

Farragut West, l7th Street - All gates had significant improvements in ticket transport reliabilities; farecard vendors showed minor improvements. An availability of 95 percent was not met by a large portion of the equipment; farecard vendors were particularly inconsistent in this performance area.

Farragut West, l8th Street - All gates and farecard vendors had increased ticket transport reliabilities, and all AFC equipment experienced an increase in total reliability. There were no significant or consistent improvements in the coin acceptors; blll verifiers showed marked improvements. With the exception of one gate and one farecard vendor, all AFC equipment achieved 95 percent availability.

Reliability and availability measures have been utilized in this report to estimate \(A F C\) equipment performance, and to determine if changes to equipment elements have improved AFC equipment performance. Another useful application of reliability measures is to combine them with passenger flow distributions to provide an estimate of system reliability. Alternative system reliabilities can then be compared, and the impact of improvements to some or all of the AFC equipment can be quantified on a system-wide basis. This chapter examines and compares the impact of the following fare collection alternatives on system failures and maintainability:
I. Improved ticket transport, coin acceptor and bill validator (Retrofit B);
2. \(\$ 1\) and \(\$ 5\) fast vendors;
3. One- or two-ride fast vendors; and
4. Current \(A F C\) system operating under optimum performance (at least 10,000 transactions per failure and 95 percent availability).

\subsection*{5.1 System Failure and Average Down-Time Estimation}

Another study* has developed methods for estimating the expected failures per 1,000 passengers and the probability of a passenger encountering a delay. The latter system measure utilized the group availability, or the probability that less than two of a certain type of machine would be simultaneously

\footnotetext{
*JPL, "Fare Collection Alternatives," Draft Interim Report, Contract NAS-7100, DOT AT-80015, January 1980.
}
out of service. Delay in this particular model was not quantified, and the group availability assumed a specified equipment quantity at each station. Another method for estimating system failures is to combine the reliabilities of AFC equipment with passenger flow distributions. This method estimates the probability that a passenger will encounter a failure somewhere in the AFC system.

Passenger flow distributions were determined by a survey conducted by WMATA. Figure \(6-1\) shows passenger flows through a typical WMATA mezzanine. For passengers to successfully enter and exit the system four alternatives are available, two each for entry and exit:

\section*{Entry}
\(a=\) passenger enters system, utilizes a farecard vendor to purchase a farecard, and then proceeds to the entry gate.
\(b=\) passenger enters the system, already possesses \(a\) farecard and goes directly to the entry gate.

Exit
\(c=\) passenger attempts to exit through an exit gate, does not have enough remaining stored value on the farecard, and must utilize an add-fare vendor and then return to the exit gate.
\(d=\) passenger exits through an exit gate

Passengers may enter and exit a system utilizing any combination of the above-mentioned alternatives.

FIGURE 6-1. PASSENGER FLOW DISTRIBUTION - WMATA*
Report, Contract NAS-7100, DOT AT-80015, January 1980.

To estimate the probability of a passenger encountering a failure, the following formula was used:
\[
\begin{equation*}
P(\text { failure })=\frac{P(a) W_{a}+P(b) W_{b}+P(c) W_{c}+P(d) W_{d}}{W_{a}+W_{b}+W_{c}+W_{d}} . \tag{1}
\end{equation*}
\]
where:
```

P = probability
P(a) = [P(farecard vendor failure)][P(entry gate failure)] +
[P(farecard vendor Eailure)][P(entry gate success)] +
[P(farecard vendor success)][P(entry gate failure)]
P(b) = P(entry gate failure)
P(C) = [P(exit gate failure)][P(add-fare Eailure)] +
[P(exit gate failure)][P(add-fare success)] +
[P(exit gate success)][P(add-fare failure)]
P(d) = P(exit gate failure)
Wa
gates (0.33)
W
Wc}= percent of patrons using exit gates and add-fare
(0.07)
W}\mp@subsup{W}{d}{}= percent of patrons using exit gates only (1.00

```

This formula produces an estimate of the probability of encountering a failure system-wide.

To estimate the probability of encountering a failure at a baseline or existing system configuration station, the data in

Table 6-1 were utilized. Farragut West, l8th St. was utilized as a test station throughout this chapter because it received Retrofit \(B\), and the system impact of this Retrofit could be tested (improvements to the ticket transport, coin acceptor and bill verifier).

TABLE 6-1. RELIABILITIES FOR AFC EQUIPMENT AT FARRAGUT WEST, 18TH STREET, 1978-1979
\begin{tabular}{|lll|}
\hline EQUIPMENT & RELIABILITY & UNRELIABILITY \\
\hline Entry Gates & 0.9995 & 0.0005 \\
Farecard Vendors & 0.9923 & 0.0077 \\
Exit Gates & 0.9983 & 0.0017 \\
Add-Fares & 0.9921 & 0.0079 \\
\hline
\end{tabular}

Applying the formula to the data results in:
\[
\begin{aligned}
P(a)= & {[(0.0077)(0.0005)+(0.0077)(0.9995)} \\
& +(0.9923)(0.0005)]
\end{aligned}
\]
\(P(a)=0.0082\)
\(P(b)=0.0005\)
\(P(c)=[(0.0017)(0.0079)+(0.0017)(0.9921)\) \(+(0.9983)(0.0079)]\)
\(P(c)=0.0096\)
\(P(d)=0.0017\)
\[
\begin{aligned}
& W_{a}=0.33 \\
& W_{b}=0.67 \\
& W_{c}=0.07 \\
& W_{d}=1.00
\end{aligned}
\]
\(P(E)=\frac{(0.0082)(0.33)+(0.0005)(0.67)+(0.0096)(0.07)+(0.0017)(1.00)}{0.33+0.67+0.07+1.00}\)
\(P(f)=0.0026\), or system reliability \(=0.9974\),
or 26 passengers in 10,000 will experience some type of AFC equipment failure. The formula was also applied to data in which the average reliabilities of all gates, vendors and add-fares had been weighted by the number of transactions. The weighted average reliabilities were then utilized to calculate the probability of a system failure, and the result was 0.0029 , or a system reliability of 0.9971.

To calculate the average down time per failure system-wide, (measure of maintainability) a similar prediction method was utilized. For each type of AFC equipment, the number of hard and soft failures and the average down time per failure were calculated. An average down time (ADT) per failure was determined for each type of \(A F C\) equipment by weighting the \(A D T\) of hard and soft failures by the ratio of soft to hard failures. Table 6-2 summarizes this data for Farragut West, 18th St., 1978-1979.

TABLE 6-2. RATIO OF SOFT TO HARD FAILURES AND AVERAGE DOWN TIME PER FAILURE, FARRAGUT WEST, 18TH STREET, 1978-1979
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{EQUIPMENT} & \multicolumn{2}{|l|}{SOFT FAILURES} & \multicolumn{2}{|l|}{HARD FAILURES} & ADT* \\
\hline & NUMBER & ADT* & NUMBER & ADT* & ALL FAILURES \\
\hline Gates & 54 & 1.3 & 1 & 118 & 3.42 \\
\hline Vendors & 153 & 8.2 & 17 & 116.5 & 19.03 \\
\hline Add-Fares & 12 & 4.8* & 0** & N/A & 4.8 \\
\hline
\end{tabular}
*ADT in Peak-Hour Minutes
**No Hard Failures Occurred During Sample Period, January and February, 1979.

The average down time per system failure was calculated as follows:
\[
\begin{equation*}
A D T=\frac{\left(A D T_{a}\right)\left(W_{a}\right)+\left(A D T_{b}\right)\left(W_{b}\right)+\left(A D T_{c}\right)\left(W_{c}\right)+\left(A D T_{a}\right)\left(W_{d}\right)}{W_{a}+W_{b}+W_{c}+W_{d}} \tag{2}
\end{equation*}
\]
where:
\[
\begin{aligned}
A D T \\
a
\end{aligned} \quad A T D_{d}=\begin{aligned}
& \text { average down time per failure for combinations } \\
& \\
& \text { of different AFC equipment }
\end{aligned}
\]
\[
\begin{aligned}
& a=\text { farecard vendor, entry gates } \\
& b=e n t r y \text { gates } \\
& c=\text { exit gates, add-fared, exit gates } \\
& d=\text { exit gates }
\end{aligned}
\]
\[
\begin{aligned}
A D T= & \frac{(3.42+19.03)(0.33)+(3.42)(0.67)}{0.33+0.67+0.07+1.00} \\
& +\frac{(3.42+4.8+3.42)(0.07)+(3.42)(1.00)}{0.33+0.67+0.07+1.00} \\
A D T= & \frac{7.41+2.29+0.81+3.42}{2.07}
\end{aligned}
\]
\(A D T=6.73\) minutes

The average down time per failure, given the distribution of hard and soft failures and the usage rate of each group of machines is 6.73 minutes. To calculate the average delay to passengers encountering failures requires a complex model containing information on passenger flows, equipment quantities, and queues at the \(A F C\) equipment. This type of system model is outside the scope of this study.
5.2 IMPACT OF IMPROVED TICRET TRANSPORT, COIN ACCEPTOR AND BILL VALIDATOR (RETROEIT B)

To determine if a reduction in the number of passengers experiencing failures would occur due to improvements in the AFC equipment, 1980 post-retrofit data were utilized to calculate the probability of a system failure (equation (1)). The data for these calculations are contained in Table 6-3.

Applying the data to the formula results in:
\[
\begin{aligned}
P(f)= & \frac{(0.0042)(0.33)+(0.0004)(0.67)+(0.0061)(0.07)}{0.33+0.67+0.07+1.00} \\
& +\frac{(0.0004)(1.00)}{0.33+0.67+0.07+1.00} \\
P(f)= & 0.0012, \text { or system reliability }=0.9988
\end{aligned}
\]
\begin{tabular}{|lllc|}
\hline AFC EQIITPMENT & RELIABILITY & UNRELIABILITY \begin{tabular}{c}
ADT IN MINUTES \\
ALL EAILJRES
\end{tabular} \\
\hline Entry Gates & 0.9996 & 0.0004 & 11.43 \\
Farecard Vendors & 0.9962 & 0.0038 & 4.01 \\
Exit Gates & 0.9996 & 0.0004 & 11.43 \\
Add-Fares & 0.9943 & 0.0057 & 2.32 \\
\hline
\end{tabular}

The results of the system reliability calculation show that 12 passengers out of 10,000 will experience some type of AFC equipment failure. By utilizing the 1980 data for failure down times, the average down time per system failure was calculated as follows:
\[
\begin{aligned}
A D T= & \frac{(11.43+4.01)(0.33)+(11.43)(0.67)}{0.33+0.67+0.07+1.00} \\
& +\frac{(11.43+2.32+11.43)(0.07)+(11.43)(1.00)}{0.33+0.67+0.07+1.00}
\end{aligned}
\]
\[
A D T=12.53
\]

The average down time (12.53 minutes) per system failure is greater with the retrofit equipment than without, but the system reliability has improved from 0.9971 to 0.9988.
6.3 IMPACT OF \$1 AND \$5 FAST VENDORS

One alternative considered for the WMATA AFC system was the implementation of \(\$ 1\) and \(\$ 5\) fast vendors. These vendors would
sell pre-encoded farecards at the two price levels. If this alternative were implemented, the passenger flow distribution would change slightly (based on results of JPL analysis). According to the JPL report, 74 percent of the passengers would enter the system and proceed directly to the entry gates, 5 percent would utilize the existing farecard vendors, and 21 percent would utilize the fast vendors due to their increased reliability. In addition, the fast vendors would increase in the use of add-fares to 12 percent. To estimate the reliability of the fast vendors, the bill verifier reliability was used. Since many of the coin and ticket transport problems will be eliminated, the bill verifier element reliability provided a logical estimate. A new ADT per failure for fast vendors was also calculated based on the average down time per bill jam. Table 6-4 summarizes the data used for the fast-vendor system analysis. The data in Table 6-4 are a combination of the 1980 retrofit data and the estimated performance data for fast vendors.

TABLE 6-4. RELIABILITY AND ADT FOR \(\$ 1\) AND \(\$ 5\) EAST VENDORS, EARRAGIT WEST, 18TH STREET, 1980
\begin{tabular}{|llll|}
\hline AEC EQUIPMENT & RELIABILITY & IJNRELIABILITY & ADT IN MINUTES \\
\hline Entry Gates & 0.9996 & 0.0004 & 11.43 \\
Earecard \\
Vendors & 0.9962 & 0.0038 & 4.01 \\
\$I and \$5 \\
Fast Vendors & 0.9983 & 0.0017 & 5.50 \\
Exit Gates & 0.9996 & 0.0004 & 11.43 \\
Add-Fares & 0.9943 & 0.0057 & 2.32 \\
\hline
\end{tabular}

Figure 6-2 shows the new passenger flow distribution for the \(\$ 1\) and \(\$ 5\) fast vendor alternative. Applying the data to the formula results in:
\[
\begin{aligned}
P(E)= & (0.0042)(0.05)+(0.0021)(0.21)+(0.0004)(0.74) \\
& +\frac{(0.0061)(0.12)+(0.0004)(1.00)}{0.05+0.21+0.74+0.12+1.00} \\
P(E)= & 0.0010, \text { or system reliability }=0.9990
\end{aligned}
\]

The results of the failure calculation show that 10 passengers out of 10,000 will experience a failure in the AFC equipment.

The new ADT for \(\$ 1\) and \(\$ 5\) fast vendors was utilized along with the new passenger flow distribution to calculate the average down time per system failure:
\[
\begin{aligned}
\mathrm{ADT}= & (11.43+4.01)(0.05)+(11.43+5.50)(0.21)+(11.43)(0.74) \\
& +\frac{(11.43+2.32+11.43)(0.12)+(11.43)(1.00)}{0.05+0.21+0.74+0.12+1.00}
\end{aligned}
\]
\(A D T=12.85\)

The \(\$ 1\) and \(\$ 5\) fast vendors reduced the number of passengers encountering a failure, but increased the average down time for AFC equipment failures.

\subsection*{6.4 IMPACT OF ONE- AND TWO-RIDE FAST VENDORS}

Another alternative for AFC equipment is one- and two-ride fast vendors. These vendors would sell one- and two-ride tickets for an exact fare, and bill changers would be installed to supplement the vendors. Passenger flow distributions would be altered as shown in Figure 6-3. If a fast vendor accepts bills
*JPL, "Fare Collection Alternatives," Draft Interim
Report, Contract NAS-7100, DOT AT-80015, January 1980.

FIGURE 6-3. PASSENGER FLOW DISTRIBUTION FOR ONE-AND TWO-RIDE FAST VENDORS
*JPL, "Fare Collection Alternatives," Draft Interim
Report, Contract NAS-7100, DOT AT-80015, January 1980.
and coins, then the reliability of the vendor would approximate a normal vendor without farecard jams, (i.e., fewer farecard jams would occur as the tickets would be pre-encoded with a certain value). An estimate of one- and two-ride fast vendor reliability was derived by utilizing total transactions and total failures minus farecard jams. ADT was estimated to be the same as normal farecard vendors since farecard jams have roughly the same average duration as bill and coin jams. Table 6-5 summarizes the performance data utilized to calculate system reliability.

TABLE 6-5. RELIABILITY AND ADT FOR ONE- AND TWO-RIDE FAST VENDORS, EARRAGUT WEST, 18TH STREET, 1980
\begin{tabular}{|lccc|}
\hline AFC EQUIPMENT & RELIABILITY & IJNRELIABILITY & ADT IN MINUTES \\
\hline \begin{tabular}{llll}
Entry Gates & 0.9996 & 0.0004 & 11.43 \\
\begin{tabular}{l}
Farecard \\
Vendors \\
One- and Two- \\
Ride Fast \\
Vendors
\end{tabular} & 0.9962 & 0.0038 & 4.01 \\
Bill Changer & 0.9965 & 0.0035 & 4.01 \\
Exit Gates & 0.9996 & 0.0005 & \(5.50 * *\) \\
Add-Fares & 0.9943 & 0.0004 & 11.43 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
*Estimate from JPL Report
*Estimated from average down time per bill jam for Farecard Vendors
}

Apolying the data to the formula:
\[
\begin{aligned}
P(f)= & (0.0042)(0.05)+(0.0039)(0.20)+(0.0044)(0.01) \\
& +(0.0004)(0.74) \\
& +\frac{(0.0061)(0.08)+(0.0004)(1.00)}{0.05+0.20+0.01+0.74+0.08+1.00}
\end{aligned}
\]
```

P(f) = 0.00ll or system reliability = 0.9989

```

The results of the failure calculation indicate that 11 out of 10,000 passengers will encounter a failure.

The ADT for the bill changer and the new passenger flow distribution were utilized to calculate the average down time per system failure:
\[
\begin{aligned}
A D T= & (11.43+4.01)(0.05)+(11.43+4.01)(0.20) \\
& +(11.43+4.01+5.50)(0.01) \\
& +\frac{(11.43)(0.74)+(11.43+2.32+11.43)(0.08)+(11.43)(1.00)}{0.05+0.20+0.01+0.74+0.08+1.00}
\end{aligned}
\]
\[
A D T=12.49
\]

The ADT is less than that of \(\$ 1\) and \(\$ 5\) fast vendors and approximately the same as Retrofit \(B\) alone.

\subsection*{6.5 IMPACT OF OPTIMUM AFC EQUIPMENT PEREORMANCE}

A Einal alternative was to test the current system configuration assuming optimal performance of the equipment. For this study, optimal performance standards were defined as at least 10,000 transactions per farecard jam, or a reliability of 0.9999. If all AFC equipment met this performance level (i.e.,

10,000 transactions per failure), then the current system may have an overall reliability greater than or equal to other alternatives. To test this alternative, all AFC equipment was assigned a reliability of 0.9999. In addition, all AFC equipment was assigned the lowest of the ADT's utilized for the alternatives. The original passenger distribution flow was also utilized (Figure 6-1). Table 6-6 summarizes the data utilized to calculate system reliability.

TABLE 6-6. RELIABILITY AND ADT FOR OPTIMIJM PEREORMANCE OF CIJRRENT AFC SYSTEM, FARRAGIJT WEST, 18TH STREET
\begin{tabular}{|llll|}
\hline AFC EQIJIPMENT & RELIABILITY & UNRELIABILITY & \begin{tabular}{c}
ADT IN MINIJTES \\
ALI FAILIJRES
\end{tabular} \\
\hline Entry Gates & 0.9999 & 0.0001 & 3.42 \\
Vendors & 0.9999 & 0.0001 & 4.01 \\
Exit Gates & 0.9999 & 0.0001 & 3.42 \\
Add-Fares & 0.9999 & 0.0001 & 2.32 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { Apolying the data to the equation results in: } \\
& \begin{aligned}
P(f)= & \frac{(0.0002)(0.33)+(0.0001)(0.67)+(0.0002)(0.07)}{0.33+0.67+0.07+1.00} \\
& +\frac{(0.0001)(1.00)}{0.33+0.67+0.07+1.00}
\end{aligned} \\
& P(f)=0.0001, \text { or system reliability }=0.9999
\end{aligned}
\]

The average down time per failure was calculated as follows:
\[
\begin{aligned}
A D T= & \frac{(3.42+4.01)(0.33)+(3.42)(0.67)}{0.33+0.67+0.07+1.00} \\
& +\frac{(3.42+2.32+3.42)(0.07)+(3.42)(1.00)}{0.33+0.67+0.07+1.00}
\end{aligned}
\]
\[
A D T=4.25 \text { minutes }
\]

\subsection*{6.6 SIJMMARY}

If all AFC equipment had reliabilities of 0.9999 , the current system would also have the same overall reliability. The average down time per failure was estimated according to past observable down times, so the low overall ADT may be achievable.

When all four alternatives were compared (Table 6-7), the current system operating under optimal performance (at least 10,000 transactions per failure) had the best system reliability and ADT per failure. The \(\$ 1\) and \(\$ 5\) fast vendors had the second best system reliability, followed closely by the one- and tworide vendors. Overall, a more extensive analysis of the costs and benefits of the various alternatives is needed before any conclusive recommendations can be made.

TABLE 6-7. COMPARISON OF AFC ALTERNATIVES: SYSTEM RELIABILITY AND ADT PER FAILURE, FARRAGUT WEST, \(18 T H\) STREET
\begin{tabular}{|lcc|}
\hline & \begin{tabular}{c}
SYSTEM RELIABILITY \\
FAILURES PER \\
ALTERNATIVE
\end{tabular} & \begin{tabular}{c}
ADT* PER \\
FAILURE
\end{tabular} \\
\hline 10,000 TRANSACTIONS & \\
Retrofit B & 26 & 6.73 \\
\$1 and \$5 Fast Vendors \\
\begin{tabular}{l}
One- and Two-Ride Fast \\
Vendors
\end{tabular} & 12 & 12.53 \\
\begin{tabular}{l}
Optimum Performance of AFC \\
Equipment
\end{tabular} & 10 & 12.85 \\
\hline
\end{tabular}
*Time in Minutes

\section*{APPENDIX 1}

\section*{DATA COLLECTION PROCEDURES AND SAMPLE SURVEY FORMS}

\section*{Pre-Data Collection}
1) Arrive at mezzanine one-half hour prior to scheduled data collection. Utilize this time to manually record transaction data for each machine. Be sure to bring a flashlight. Utilize the attached DADS form to record the information.
2) Record Entry (E) or Exit (X) mode for each faregate.
3) Record date of survey on data collection form.

\section*{Start}
1) Activate DADS printer to obtain first reading.
2) Record begin time of survey on data collection form.
3) Collect data.
- Remarks - TYy to obtain information on all H and 0 failure classifications.
- AWPS = machine out-of-service due to awaiting parts.

Finish
1) Activate DADS printer to obtain second reading.
2) Record final DADS time and machine status for each machine.
3) Record final DADS time on data collection form.
4) Manually record transaction data for each machine. Utilize the same DADS form.
5) Collect DADS tapes.
DADS FORM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\text { 总 }=
\] & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline 嵒景 & & & & & & & & & & & \\
\hline 早 & & & & & & & & & & & \\
\hline \％ & & & & & ｜ 230 & & & & & & \\
\hline
\end{tabular}

SAMPLEE SURVEY SIIEET

 11!, cansknat 5令

 - Tailuse lo renily - neturned lo. servire - ons 4.30 - lech_ callet -liratena locr

 4 * vintsy
\(\qquad\)

92

 v-fallure to varify 2 \(=1 x=\) Koy, 4 w Hill Jaw

\section*{SAMPLE OF DADS TAPES}

\section*{ADDFARE (50)}

0000216435 0000154150 0000408850 0000001455 0000002032 0000002830 0000005060 6763661430

0000005049 0763661430

0000005013
0763661429
REV GATE (12)
0000000369
0000460430 0000000195 0000006243 0000000086 0000006447 0000005012 0763661429

EXIT GATE (11)
0000006520 0001285250 0000000167 0000000177 0000000195 0000003242 0000005011 0763661429

0000005610 0763661429
\$ Change
\$ Coins Accepted
\$ Amount Issued
\$5 Bills Issued
\$1 Bills Accepted Successful Transactions

0000005031
0763661429
VENDOR (30)
0000077415 0001172475 0000192225 0001662770 0000697085 0000000293 0000031702 0000025253 0000008646 0000089901 0000005830 0763661429

0000005021 0763661429

ENTRY GATE (20)
0000000000
0000000000
0000000000
0000000000
0000000000
0000002528
0000005020
0763661429
\$ Change
\$ Old Farecards
\$ Bonus Paid
\$ Amount Issued
\$ Coins Accepted
Farecards Not Verified
Farecards Accepted
No. Successful Transactions
\$5 Bills Accepted
\$1 Bills Accepted

Patrons In

\section*{APPENDIX 2}
```

CHI-SQUARE TEST FOR EQUALITY OF PROPORTIONS
AND APPLICATION OF CHI-SQUARE TO AFC DATA

```

\section*{Chi-Square Test for Equality of Proportions}

Suppose we have \(K\) vendors, each with its overall and. element reliabilities. Due to random variations, the vendors and their elements are expected to have different reliabilities. The Chi-Square Statistic measures whether these differences are attributable to chance, or whether these differences actually represent vendors with different performance characteristics (ie., some vendors may perform better or worse than others).

This Chi-Square Test helps to determine whether the vendors essentially have equal reliabilities or whether some perform better than others.

\section*{Application}

Let \(n_{i}=\) total number of transactions of the th vendor

\(R_{i}=\frac{x_{i}}{n_{i}}\) reliability of the \(i^{\text {th }}\) vendor
\(R=\frac{\sum x_{i}}{\sum n_{i}}\) overall reliability of the system
\(k=\) total number of vendors
\[
\begin{aligned}
I= & \sum_{i=1}^{k} \frac{\left(x_{i}-n_{i} R\right)^{2}}{n_{i} R(l-R)} \text { has a Chi-square distribution with } \\
& k-2 \text { degrees of freedom. }
\end{aligned}
\]

The statistic \(\bar{f}\) tests the following:

All vendors have equal reliabilities versus some have different reliabilities.

If f S a table \(\mathrm{x}^{2}\)-value, we accept the hypothesis of equal reliabilities, otherwise we say that some vendors have different reliabilities.
1. Application of chi-square to overall farecard vendor reliability by mezzanine:

MEZ ZANINE
DuPont Circle
Brookland
Silver Spring
Farragut - l7th Street
Farragut - l8th Street
Rosslyn
\begin{tabular}{ccc}
\(n_{i}\) & \(\underline{x_{i}}\) & \(\underline{\text { I }}\) \\
18,806 & 18,708 & 21.80 \\
13,912 & 13,796 & 0.0025 \\
30,257 & 29,952 & 11.65 \\
21,078 & 20,861 & 10.20 \\
21,957 & 21,787 & 0.8294 \\
47,973 & 47,598 & \(\underline{1.3602}\)
\end{tabular}
\(=45.84\)
\(R=0.9917\)
\(K-2\) degrees of freedom \(=4\)

Chi-square for 4 degrees of freedom at 95 percent confidence \(=9.488\)
\(45.84>9.488\), therefore, the mezzanines have different vendor reliabilities

\section*{APPENDIX 3}

T-TEST OF PROPORTIONS AND APPLICATION OF T-TEST TO AFC DATA

\section*{The T-Test of Proportions}

A particular application of the \(T\)-test is to determine whether \(a\) vendor (or element in the vendor) exhibits a reliability of a specified minimum value (see equation (l) for derivation of minimum value). The T-test measures whether a vendor is unacceptable or acceptable with respect to its reliability. Thus, this T-test establishes a minimum acceptable reliability for each vendor based on its volume of use and an overall system reliability, and it compares the vendor reliability with the minimum expected reliability.
(1) Derivation of Minimum Acceptable Reliability

Let \(X_{i}=\) number of successful transactions by the \(i\) th vendor \(n_{i}=\) number of transactions by the \(i\) th vendor

Then \(R_{i}=\frac{x_{i}}{n_{i}}=\) reliability of the \(i{ }^{\text {th }}\) vendor.

Let \(R=\) overall reliability of the system.

Thus the \(i\) th vendor has an acceptable reliability at the 95 percent level if:
\[
R_{i} \geq R-1.645 \sqrt{\frac{R_{i}\left(1-R_{i}\right)}{n_{i}}}
\]

Another application of the \(T\)-test is to test whether retrofits improve vendor reliabilities. The \(T\)-test determines if increases (if any) in reliabilities from retrofitting are due to chance or due to improvements in vendor performance. The application of this test is that of the two-sample t-test for
proportions. A minimum increase in reliability due to retrofitting is determined, and if the actual increase is greater than the minimum increase, the retrofitting significantly improves the reliability of a vendor.
(2) Derivation of minimum increase

Let \(R_{R}=\) retrofit reliability
\[
\begin{aligned}
& R_{N}=\text { pre-retrofit reliability } \\
& n_{R}=\text { total number of transactions involving retrofitting } \\
& n_{N}=\text { total number of transactions before retrofitting }
\end{aligned}
\]

At the 95 percent level, retrofitting improves reliabilities if
\[
R_{R}-R_{N} \geq 1.645 N \sqrt{\frac{R_{R}\left(1-R_{R}\right)}{n_{R}}+\frac{R_{N}\left(1-R_{N}\right)}{n_{N}}}
\]
at the 99 percent level,
\[
R_{R}-R_{N} \geq 2.331 \sqrt{\frac{R_{R}\left(1-\cdot R_{R}\right)}{n_{R}}+\frac{R_{N}\left(1-R_{N}\right)}{n_{N}}}
\]
1) Application of t-test to overall farecard vendor reliability by mezzanine.
\[
R=0.9917
\]

MEZZANINE
Dupont Circle
\begin{tabular}{ll}
\multicolumn{1}{l}{\(R_{i}\)} & \(\underline{R_{i}^{*}}\) \\
0.9948 & 0.9908 \\
0.9917 & 0.9904 \\
\(0.9989 *\) & 0.9908 \\
\(0.9897 *\) & 0.9906 \\
0.9923 & 0.9909 \\
0.9922 & 0.9910
\end{tabular}
*less than expected \(R\) given the sample size at the mezzanine

\section*{APPENDIX 4}

TOTAL AND ELEMENT MONTHLY RELIABILITY AND MEAN TRANSACTIONS PER FAILURE FOR FARECARD VENDORS, 1978-1979
Mezzanine: Dupont 1978-1979 Vendor:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & \[
\mathrm{T} / \mathrm{J}
\] & R & c/C & R & B/B & R & T/O & R & T/T \\
\hline November & 0.9861 & 72 & 0.9959 & 242 & 0.9959 & 245 & 0.9972 & 360 & 0.9750 & 40 \\
\hline December & 0.9914 & 116 & 0.9983 & 581 & 1.00 & \(331 / 0\) & 1.00 & 463/0 & 0.9892 & 93 \\
\hline January & 1.00 & 385/0 & 1.00 & 487/0 & 1.00 & 215/0 & 1.00 & 385/0 & 1.00 & 385/0 \\
\hline February & 1.00 & 513/0 & 1.00 & 870/0 & 1.00 & 291/0 & 1.00 & 513 & 1.00 & 513/0 \\
\hline March & 0.9947 & 189 & 1.00 & 474/0 & 0.9962 & 263 & 1.00 & 378 & 0.9921 & 126 \\
\hline April & 1.00 & 167/0 & 1.00 & 292/0 & 0.9896 & 96 & 1.00 & 167/0 & 0.9940 & 167 \\
\hline May & 0.9779 & 45 & 1.00 & 371/0 & 1.00 & 216/0 & 1.00 & 272/0 & 0.9779 & 45 \\
\hline August & 1.00 & 314/0 & 1.00 & 360/0 & 1.00 & 309/0 & 1.00 & \(314 / 0\) & 1.00 & 314/0 \\
\hline Total & 0.9940 & 168 & 0.9992 & 1306 & 0.9985 & 655 & 0.9996 & 2852 & 0.9916 & 119 \\
\hline
\end{tabular}

\footnotetext{
\(T / J=\frac{\text { Total Transactions }}{\text { Total Tareard Jams }}\)
Total Farecard Jams
\(C / C=\) Total Coins Inserted
Total Coin Jams
\(B / B=\) Total Bills Inserted
Total Bill Jams
}
\(\begin{aligned} & T / O= \frac{\text { Total Transactions }}{\text { Total "Other" Failures }} \\ & T / T= \frac{\text { Total Transactions }}{\text { Total Jams and "Other" }} \\ & \text { Failures }\end{aligned}\)
Transactions
Mezzanine: Dupont 1978-1979
Vendor: 31
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/C & R & \(B / B\) & R & T/O & R & T/T \\
\hline November & 1.00 & 446/0 & 0.9982 & 543 & 0.9970 & 329 & 1.00 & 446/0 & 0.9955 & 223 \\
\hline December & 0.9919 & 124 & 1.00 & 509 & 1.00 & 250 & 0.9946 & 186 & 0.9866 & 74 \\
\hline January & 1.00 & 209/0 & 1.00 & 203/0 & 1.00 & 145/0 & 0.9856 & 70 & 0.9856 & 70 \\
\hline February & 0.9986 & 736 & 1.00 & 1028 & 1.00 & 450 & 1.00 & 736/0 & 0.9986 & 736 \\
\hline March & 0.9959 & 244 & 0.9981 & 529 & 1.00 & 155/0 & 0.9836 & 61 & 0.9754 & 41 \\
\hline April & 0.9952 & 209 & 1.00 & 382/0 & 1.00 & 139/0 & 0.9904 & 105 & 0.9856 & 70 \\
\hline May & 1.00 & 338/0 & 1.00 & 452/0 & 1.00 & 257/0 & 1.00 & 338/0 & 1.00 & 338/0 \\
\hline August & 1.00 & 308/0 & 1.00 & 417/0 & 0.9955 & 224 & 1.00 & 308 & 0.9968 & 308 \\
\hline Total & 0.9979 & 477 & 0.9995 & 2031 & 0.9990 & 975 & 0.9962 & 260 & 0.9927 & 136 \\
\hline
\end{tabular}

\footnotetext{
\(\begin{aligned} & O= \frac{\text { Total Transactions }}{\text { Total "Other" Failures }} \\ & T= \frac{\text { Total Transactions }}{\text { Total Jams and "Other" }} \\ & \text { Failures } \\ & R= \text { Reliability }=\text { Successes }\end{aligned}\)
Transactions
\(R=\) Reliability \(=\)
\(\mathrm{T} / \mathrm{O}=\)
\(T / T=\)
\(\begin{aligned} & O=\frac{\text { Total Transactions }}{\text { Total "Other" Failures }} \\ & T= \text { Total Transactions } \\ & \begin{array}{l}\text { Total Jams and "Other" } \\ \text { Failures }\end{array}\end{aligned}\)
Successes
}

\footnotetext{
\(T / J=\) Total Transactions
Total Farecard Jams
\(c / C=\) Total Coins Inserted
Total Coin Jams
\(B / B=\) Total Bills Inserted
}
Mezzanine: Dupont 1978-1979
Vendor: 32
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/C & R & B/B & R & T/O & R & T/T \\
\hline November & 1.00 & 132/0 & 1.00 & 139/0 & 1.00 & 107/0 & 0.9848 & 66 & 0.9848 & 66 \\
\hline December & 0.9957 & 232 & 0.9982 & 562 & 0.9970 & 336 & 0.9978 & 463 & 0.9892 & 93 \\
\hline January & 1.00 & 568/0 & 1.00 & 699/0 & 1.00 & 373/0 & 0.9982 & 568 & 0.9982 & 568 \\
\hline February & 1.00 & 840/0 & 1.00 & 986/0 & 1.00 & 606/0 & 1.00 & 840/0 & 1.00 & 840/0 \\
\hline March & 0.9909 & 110 & 1.00 & 635/0 & 0.9967 & 299 & 1.00 & 439/0 & 0.9886 & 88 \\
\hline April & 0.9955 & 223 & 0.9955 & 220 & 0.9946 & 184 & 0.9955 & 223 & 0.9821 & 56 \\
\hline May & 0.9976 & 417 & 1.00 & 465/0 & 1.00 & 322/0 & 1.00 & 417/0 & 0.9976 & 417 \\
\hline August & 1.00 & 311/0 & 1.00 & 536/0 & 1.00 & 200/0 & 1.00 & 311/0 & 1.00 & 311/0 \\
\hline Total & 0.9976 & 424 & 0.9995 & 2121 & 0.9988 & 809 & 0.9985 & 679 & 0.9947 & 189 \\
\hline \multicolumn{3}{|l|}{Total Farecard Jams} & & & \multicolumn{3}{|l|}{\(T / O=\) Total Transactions} & & & \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & & & \multicolumn{4}{|l|}{Total Jams and "Other" Failures} & & \\
\hline \multicolumn{3}{|l|}{\[
B / B=\text { Total Bills Inserted }
\]} & & & \multicolumn{4}{|l|}{\(R=\) Reliability \(=\underline{\text { Successes }}\)} & & \\
\hline
\end{tabular}
Mezzanine: Dupont 1978-1979
Vendor:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/c & R & B/B & R & T/O & R & T/T \\
\hline November & 0.9987 & 788 & 0.9979 & 318 & 1.00 & 560/0 & 1.00 & 788/0 & 0.9949 & 197 \\
\hline December & 0.9945 & 181 & 0.9981 & 521 & 1.00 & 367/0 & 0.9982 & 544 & 0.9890 & 91 \\
\hline January & 1.00 & 425/0 & 1.00 & 577/0 & 1.00 & 297/0 & 1.00 & 425/0 & 1.00 & 425/0 \\
\hline February & 0.9986 & 738 & 0.9997 & 3150 & 1.00 & 947/0 & 1.00 & 1476/0 & 0.9980 & 492 \\
\hline March & 0.9985 & 650 & 1.00 & 936/0 & 1.00 & 432/0 & 1.00 & \(t\) ? & , & 650 \\
\hline April & 1.00 & 561/0 & 1.00 & 674/0 & 1.00 & 376/0 & 1.00 & 561/0 & 1.00 & 561/0 \\
\hline May & 1.00 & 714/0 & 1.00 & 838/0 & 1.00 & 468/0 & 1.00 & 714/0 & 1.00 & 714/0 \\
\hline August & 1.00 & 286/0 & 1.00 & 409/0 & 0.9805 & 51 & 1.00 & 286/0 & 0.9825 & 57 \\
\hline Total & 0.9987 & 778 & 0.9993 & 1430 & 0.9989 & 913 & 0.9996 & 2722 & 0.9965 & 287 \\
\hline \multicolumn{3}{|l|}{\(T / J=\) Total Transactions} & & & \multicolumn{3}{|l|}{\(\mathrm{T} / \mathrm{O}=\) Total Transactions} & & & \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & & & \[
T / T=
\] & \multicolumn{2}{|l|}{Total Jams and "Other" Failures} & & & \\
\hline \multicolumn{3}{|l|}{\[
B / B=\text { Total Bills Inserted }
\]} & & & \multicolumn{4}{|l|}{\(\mathrm{R}=\) Reliability \(=\frac{\text { Successes }}{\text { Trasat }}\)} & & \\
\hline
\end{tabular}
Mezzanine: Dupont 1978-1979
Mezzanine:
Vendor:

Mezzanine: Brookland 1978-1979 Vendor: 30
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/c & R & в/в & R & T/O & R & T/T \\
\hline November & 0.9984 & 612 & 1.00 & 745/0 & 1.00 & 430/0 & 0.9967 & 306 & 0.9951 & 204 \\
\hline January & 1.00 & 359/0 & 0.9947 & 190 & 1.00 & 238/0 & 0.9889 & 90 & 0.9777 & 45 \\
\hline February & 0.9980 & 502 & 1.00 & 606/0 & 1.00 & 343/0 & 0.9940 & 167 & 0.9920 & 126 \\
\hline March & 0.9977 & 440 & 1.00 & 592/0 & 1.00 & 281/0 & 1.00 & 44/0 & 0.9977 & 440 \\
\hline May & 1.00 & 916/0 & 1.00 & 1047/0 & 1.00 & 631/0 & 0.9989 & 916 & 0.9989 & 916 \\
\hline June & 0.9958 & 236 & 0.9993 & 1508 & 1.00 & 782/0 & 0.9992 & 1181 & 0.9941 & 169 \\
\hline August & 1.00 & 539/0 & 0.9977 & 437 & 1.00 & 317/0 & 1.00 & 539/0 & 0.9963 & 270 \\
\hline Total & 0.9982 & 569 & 0.9989 & 876 & 1.00 & 2722/0 & 0.9976 & 414 & 0.9943 & 175 \\
\hline \multicolumn{3}{|l|}{\(T / J=\) Total Transactions} & & & \multicolumn{3}{|l|}{T/O \(=\) Total Transactions} & & & \\
\hline \multicolumn{3}{|l|}{Total Farecard Jams} & & & \multicolumn{4}{|l|}{Total "Other \({ }^{\text {c Failures }}\)} & & \\
\hline \multicolumn{3}{|l|}{\(\mathrm{c} / \mathrm{C}=\) Total Coins Inserted} & & & \multicolumn{4}{|l|}{\(T / T=\frac{\text { Total Transactions }}{}\)} & & \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & & & \multicolumn{4}{|l|}{Total Jams and "Other" Failures} & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(\mathrm{B} / \mathrm{B}=\frac{\text { Total Bills Inserted }}{\text { Total Bill Jams }}\)}} & & & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\(\mathrm{R}=\) Reliability \(=\frac{\text { Successes }}{\text { Transactions }}\)}} & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}
Mezzanine: Brookland 1978-1979 Vendor: 31

Mezzanine: Brookland 1978-1979 Vendor:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline Month & R & T/J & R & C/C & R & B/B & R & T/O & R & T/T \\
\hline November & & & & & Out of & rvice & & & & \\
\hline January & 1.00 & 517/0 & 0.9969 & 320 & 1.00 & 339/0 & 0.9981 & 517 & 0.9942 & 172 \\
\hline February & 1.00 & 571/0 & 0.9988 & 817 & 1.00 & 346/0 & 1.00 & 571/0 & 0.9982 & 571 \\
\hline March & 1.00 & \(333 / 0\) & 0.9977 & 441 & 1.00 & \(2.10 / 0\) & 0.9970 & 333 & 0.9940 & 167 \\
\hline May & 0.9986 & 737 & 0.9985 & 658 & 0.9944 & 180 & 0.9946 & 184 & 0.9878 & 82 \\
\hline June & 0.9988 & 834 & 0.9994 & 1614 & 0.9974 & 387 & 1.00 & 834/0 & 0.9964 & 278 \\
\hline August & 0.9959 & 244 & 0.9903 & 103 & 0.9968 & 317 & 0.9918 & 122 & 0.9754 & 41 \\
\hline Total & 0.9989 & 870 & 0.9978 & 445 & 0.9980 & 490 & 0.9971 & 348 & 0.914 & 116 \\
\hline
\end{tabular}

\footnotetext{
\(T / J=\) Total fransactions
Total Farecard Jams
\(C / C=\) Total Coins Inserted
'Total Coin Jams
\(B / B=\) Total Bills Inserted
} \(\frac{\text { Successes }}{\text { Transactions }}\)
ctions
Failures
"Other"
Successe
T/O =
,
\(T / T=\)
Failures
\(R=\) Reliability \(=\)
Mezzanine: Brookland 1978-1979
Vendor:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & C/C & R & B/B & R & T/O & R & T/T \\
\hline November & 0.9987 & 745 & 0.9977 & 430 & 1.00 & 530/0 & 1.00 & 745/0 & 0.9960 & 248 \\
\hline January & 1.00 & 323/0 & 0.9915 & 118 & 1.00 & 198/0 & 0.9938 & 162 & 0.9814 & 54 \\
\hline February & 0.9932 & 148 & 1.00 & 186/0 & 1.00 & 97/0 & 0.9865 & 74 & 0.9797 & 49 \\
\hline March & 0.9981 & 533 & 1.00 & 782/0 & 1.00 & 328/0 & 0.9981 & 533 & 0.9962 & 267 \\
\hline May & 1.00 & 708/0 & 1.00 & 971/0 & 1.00 & 476/0 & 0.9986 & 708 & 0.9986 & 708 \\
\hline June & & & & & Out & rvice & & & & \\
\hline August & 1.00 & 488/0 & 0.9971 & 349 & 1.00 & 317/0 & 0.9980 & 488 & 0.9939 & 163 \\
\hline Total & 0.9990 & 982 & 0.9980 & 496 & 1.00 & 1946/0 & 0.9976 & 421 & 0.9939 & 164 \\
\hline \multicolumn{3}{|l|}{\(T / J=\) Total Transactions} & & & \multicolumn{3}{|l|}{\(T / O=\) Total Transactions} & & & \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & & & \(T / T\) & \begin{tabular}{l}
otal Tr \\
al Jam lures
\end{tabular} & \begin{tabular}{l}
actions \\
"Othe
\end{tabular} & & & \\
\hline \[
B / B=T 0
\] & Total Bill & Jams & \multicolumn{2}{|l|}{} & \multicolumn{4}{|l|}{\(\mathrm{R}=\) Reliability \(=\frac{\text { Successes }}{\text { Stansactions }}\)} & & \\
\hline
\end{tabular}
Mezzanine: Silver Spring 1978-1979 Vendor: 30
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & C/C & R & B/B & R & T/O & R & T/T \\
\hline October & 0.9912 & 114 & 0.9785 & 47 & 0.9965 & 288 & 0.9965 & 286 & 0.9615 & 26 \\
\hline December & 0.9982 & 559 & 0.9968 & 310 & 1.00 & 543/0 & 0.9982 & 559 & 0.9928 & 140 \\
\hline January & 0.9986 & 736 & 1.00 & 831/0 & 1.00 & 707/0 & 0.9986 & 736 & 0.9973 & 368 \\
\hline February & 0.9971 & 351 & 1.00 & 854/0 & 1.00 & 655/0 & 1.00 & 702/0 & 0.9971 & 351 \\
\hline March & 1.00 & 808/0 & 0.9978 & 449 & 0.9974 & 381 & 1.00 & 808/0 & 0.9950 & 202 \\
\hline April & 0.9970 & 335 & 1.00 & \(338 / 0\) & 1.00 & 321/0 & 1.00 & 335/0 & 0.9970 & 335 \\
\hline May & 0.9945 & 181 & 0.9946 & 184 & 0.9963 & 268 & 0.9926 & 136 & 0.9779 & 45 \\
\hline June & 0.9966 & 296 & 0.9927 & 136 & 1.00 & 333/0 & 0.9966 & 296 & 0.9831 & 59 \\
\hline Total & 0.9969 & 325 & 0.9955 & 222 & 0.9986 & 739 & 0.9980 & 506 & 0.9886 & 86 \\
\hline
\end{tabular}

\footnotetext{
\(T / O=\) rotal Transactions
Total "Other" Failures
\(T / T=\) Total Transactions Total Jams and "Other"

Failures
\(R=\) Reliability \(=\) Successes Transactions
}

\footnotetext{
\(T / J=\) Total Transactions
Total Farecard Jams
\(c / C=\) Total Coins Inserted
Total Coin Jams
\(B / B=\) Total Bills Inserted
Total Bill Jams
}
Mezzanine: Silver Spring 1978-1979 Vendor: 31
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/c & R & B/B & R & T/O & R & T/T \\
\hline October & 1.00 & 660/0 & 0.9933 & 150 & 0.9918 & 122 & 0.9985 & 660 & 0.9833 & 60 \\
\hline December & 0.9957 & 231 & 1.00 & 183/0 & 0.9957 & 232 & 1.00 & 231/0 & 0.9913 & 116 \\
\hline January & 1.00 & 361/0 & 0.9973 & 373 & 1.00 & 343/0 & 0.9945 & 181 & 0.9917 & 120 \\
\hline February & 1.00 & 309/0 & 1.00 & 480/0 & 1.00 & 231/0 & 0.9968 & 309 & 0.9968 & 309 \\
\hline March & & & & & Out of & rvice & & & & \\
\hline April & 1.00 & 188/0 & 1.00 & 324/0 & 0.9934 & 152 & 0.9894 & 94 & 0.9840 & 63 \\
\hline May & 1.00 & 871/0 & 1.00 & 1092/0 & 1.00 & 824/0 & 1.00 & \(871 / 0\) & 1.00 & 871/0 \\
\hline June & 0.9812 & 53 & 1.00 & 525/0 & 1.00 & 443/0 & 0.9906 & 106 & 0.9718 & 35 \\
\hline Total & 0.9970 & 338 & 0.9984 & 621 & 0.9975 & 405 & 0.9967 & 305 & 0.9895 & 95 \\
\hline \multicolumn{3}{|l|}{\(T / J=\) Total Transactions} & & & \multicolumn{3}{|l|}{T/O \(=\) Total Transactions} & & & \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & & & \[
T / T=
\] & tal Tr al Jams ures & \begin{tabular}{l}
ctions \\
"Other
\end{tabular} & & & * \\
\hline \[
B / B=
\] & \[
\frac{\text { al Bills }}{\text { Total } \mathrm{Bi}}
\] & \begin{tabular}{l}
nserted \\
Jams
\end{tabular} & & & \[
\mathrm{R}=
\] & iabil & Transactions & ons & & \\
\hline
\end{tabular}
Mezzanine: Silver Spring 1978-1979 Vendor:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & C/C & R & B/B & R & T/O & R & T/T \\
\hline October & 0.9981 & 530 & 0.9984 & 633 & 1.00 & 482/0 & 1.00 & 530/0 & 0.9962 & 265 \\
\hline December & 1.00 & 577/0 & 0.9925 & 134 & 0.9982 & 553 & 0.9948 & 192 & 0.9844 & 64 \\
\hline January & 0.9982 & 549 & 0.9976 & 421 & 1.00 & 607/0 & 0.9982 & 549 & 0.9964 & 183 \\
\hline February & 1.00 & 557/0 & 1.00 & 414/0 & 1.00 & 523/0 & 1.00 & 557/0 & 1.00 & 557/0 \\
\hline March & 1.00 & 669/0 & 0.9978 & 465 & 1.00 & 696/0 & 1.00 & 669/0 & 0.9985 & 669 \\
\hline April & 0.9709 & 34 & 0.9868 & 76 & 1.00 & 100/0 & 0.9903 & 103 & 0.9515 & 21 \\
\hline May & 0.9865 & 74 & 0.9985 & 662 & 1.00 & 611/0 & 0.9983 & 594 & 0.9832 & 59 \\
\hline June & 0.9864 & 74 & 0.9986 & 706 & 1.00 & 723/0 & 0.9932 & 148 & 0.9783 & 46 \\
\hline Total & 0.9947 & 188 & 0.9973 & 368 & 0.9998 & 4295 & 0.9975 & 392 & 0.9893 & 94 \\
\hline
\end{tabular}

\footnotetext{
Total Transactions
Total "Other" Failures
\(T / T=\frac{\text { Total Transactions }}{}\)
Total Jams and "Other" Failures
\(\frac{\text { Successes }}{\text { Transactions }}\)
\(T / O=\)
\(T / T=\)
\(\mathrm{R}=\) Reliability \(=\)
}
\(T / J=\frac{\text { Total Transactions }}{\text { Total Farecard Jams }}\)
\(C / C=\frac{\text { Total Coins Inserted }}{\text { Total Coin Jams }}\)
\(B / B=\) Total Bills Inserted
Total Bill Jams
Mezzanine: Silver Spring 1978-1979
Vendor: 33

Mezzanine: Silver Spring 1978-1979 Vendor: 34
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Ticket & ansport & Coin A & eptor & Bill & idator & & & & \\
\hline Month & R & T/J & R & c/C & R & B/B & R & T/O & R & T/T \\
\hline October & 0.9961 & 259 & 0.9978 & 460 & 0.9970 & 332 & 0.9949 & 195 & 0.9859 & 71 \\
\hline December & 0.9984 & 623 & 1.00 & 744/0 & 0.9981 & 531 & 0.9968 & 312 & 0.9936 & 156 \\
\hline January & 1.00 & 570/0 & 1.00 & 930/0 & 1.00 & 398/0 & 1.00 & 570/0 & 1.00 & 570/0 \\
\hline February & 1.00 & 523/0 & 1.00 & 719/0 & 0.9952 & 207 & 0.9885 & 87 & 0.9847 & 65 \\
\hline March & 0.9987 & 787 & 1.00 & 1080/0 & 1.00 & 710/0 & 1.00 & 787/0 & 0.9987 & 787 \\
\hline April & 1.00 & 370/0 & 1.00 & 416/0 & 1.00 & 333/0 & 0.9973 & 370 & 0.9973 & 370 \\
\hline May & 1.00 & 431/0 & 1.00 & 591/0 & 1.00 & 363/0 & 0.9977 & 431 & 0.9977 & 431 \\
\hline June & 1.00 & 914/0 & 0.9991 & 1074 & 0.9989 & 886 & 0.9967 & 305 & 0.9945 & 183 \\
\hline Total & 0.9990 & 999 & 0.9995 & 2158 & 0.9986 & 716 & 0.9968 & 294 & 0.9938 & 161 \\
\hline
\end{tabular}

\footnotetext{
\(\frac{\text { Successes }}{\text { Iransactions }}\)
\(R=\) Reliability \(=\)
\[
\begin{aligned}
& \mathrm{T} / \mathrm{O}= \frac{\text { Total Transactions }}{\text { Total "Other" Failures }} \\
& \mathrm{T} / \mathrm{P}= \frac{\text { Total Transactions }}{\text { Total Jams and "Other" }} \\
& \text { Failures }
\end{aligned}
\]
suoṫวesurit.
}
\(T / J=\frac{\text { Total Transactions }}{\text { Total Farecard Jams }}\)
\(C / C=\frac{\text { Total Coins Inserted }}{\text { Total Coin Jams }}\)
\(B / B=\frac{\text { Total Bills Inserted }}{}\)
Total Bill Jams
Mezzanine: Silver Spring 1978-1979
Vendor: 35
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/C & R & B/B & R & r/o & R & T/T \\
\hline October & 0.9955 & 224 & 0.9973 & 375 & 0.9967 & 302 & 1.00 & 672/0 & 0.9896 & 96 \\
\hline December & 0.9911 & 112 & 0.9980 & 511 & 1.00 & 530/0 & 0.9929 & 141 & 0.9822 & 56 \\
\hline January & & & & & Out of S & rvice & & & & \\
\hline February & 0.9962 & 264 & 0.9982 & 569 & 0.9973 & 377 & 1.00 & 527/0 & 0.9924 & 132 \\
\hline March & & & & & No DADS & ta & & & & \\
\hline April & & & & & No DADS & ta & & & & \\
\hline May & 1.00 & 537/0 & 1.00 & 274/0 & 0.9966 & 299 & 1.00 & 537/0 & 0.9963 & 269 \\
\hline June & 1.00 & 716/0 & 0.9959 & 243 & 1.00 & 703/0 & 1.00 & 716/0 & 0.9958 & 239 \\
\hline Total & 0.9967 & 301 & 0.9975 & 405 & 0.9982 & 562 & 0.9987 & 754 & 0.9914 & 116 \\
\hline \multicolumn{3}{|l|}{\[
T / J=\text { Total Transactions }
\]} & & & \multicolumn{3}{|l|}{\[
T / O=\text { Total Transactions }
\]} & & & \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & & & \multicolumn{4}{|l|}{Total Jams and "Other" Failures} & & \\
\hline \multicolumn{3}{|l|}{\(B / B=\frac{\text { Total Bills Inserted }}{\text { Total Bill Jams }}\)} & & & \multicolumn{4}{|l|}{\(\mathrm{R}=\) Reliability \(=\underline{\text { Successes }}\)} & & \\
\hline
\end{tabular}
Mezzanine: Silver Spring 1978-1979
Vendor: 36
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/C & R & B/B & R & T/O & R & T/T \\
\hline October & 0.9944 & 180 & 1.00 & 419/0 & 1.00 & 355/0 & 1.00 & 359/0 & 0.9944 & 180 \\
\hline December & 0.9922 & 129 & 0.9981 & 539 & 0.9969 & 327 & 0.9948 & 193 & 0.9819 & 55 \\
\hline January & 0.9919 & 124 & 0.9963 & 269 & 0.9929 & 142 & 0.9973 & 371 & 0.9784 & 46 \\
\hline February & 0.9926 & 136 & 0.9972 & 354 & 0.9936 & 156 & 0.9975 & 408 & 0.9828 & 58 \\
\hline March & 1.00 & 522/0 & 1.00 & 733/0 & 1.00 & 466/0 & 1.00 & 522/0 & 1.00 & 522/0 \\
\hline April & 0.9959 & 247 & 1.00 & 281/0 & 1.00 & 244/0 & 1.00 & 247/0 & 0.9959 & 247 \\
\hline May & 1.00 & 727/0 & 1.00 & 1121/0 & 0.9967 & 306 & 0.9972 & 364 & 0.9945 & 182 \\
\hline June & 1.00 & 239/0 & 0.9983 & 578 & 1.00 & 114/0 & 1.00 & 239/0 & 0.9958 & 239 \\
\hline Total & 0.9963 & 272 & 0.9989 & 913 & 0.9974 & 387 & 0.9982 & 543 & 0.9908 & 109 \\
\hline
\end{tabular}

\footnotetext{
\(\begin{aligned} T / O= & \frac{\text { Total Transactions }}{\text { Total "Other" Failures }} \\ T / T= & \frac{\text { Total Transactions }}{\text { Total Jams and "Other" }} \\ R= & \text { Reilures }\end{aligned}\)
\(\begin{aligned} T / O= & \frac{\text { Total Transactions }}{\text { Total "Other" Failures }} \\ T / T= & \frac{\text { Total Transactions }}{\text { Total Jams and "Other" }} \\ R= & \text { Railures }\end{aligned}\)
\(\begin{aligned} T / O= & \frac{\text { Total Transactions }}{\text { Total "Other" Failures }} \\ T / T= & \frac{\text { Total Transactions }}{\text { Total Jams and "Other" }} \\ R= & \text { Railures }\end{aligned}\)
\(\begin{aligned} T / O= & \frac{\text { Total Transactions }}{\text { Total "Other" Failures }} \\ T / T= & \frac{\text { Total Transactions }}{\text { Total Jams and "Other" }} \\ R= & \text { Railures }\end{aligned}\)
\(\begin{aligned} & T / O= \frac{\text { Total Transactions }}{\text { Total "Other" Failures }} \\ & T / T= \frac{\text { Total Transactions }}{\text { Total Jams and "Other" }} \\ & R= \text { Railures } \\ & R=\end{aligned}\)
}
\(T / J=\frac{\text { Total Transactions }}{\text { Total Farecard Jams }}\)
\(C / C=\frac{\text { Total Coins Inserted }}{\text { Total Coin Jams }}\)
\(B / B=\frac{\text { Total Bills Inserted }}{\text { Total Bill Jams }}\)
Mezzanine: Silver Spring 1978-1979 Vendor: 40
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & C/C & R & B/B & R & T/O & R & T/T \\
\hline October & 1.00 & 444/0 & 1.00 & 517/0 & 1.00 & 450/0 & 0.9977 & 444 & 0.9977 & 444 \\
\hline December & 0.9667 & 30 & 1.00 & 320/0 & 1.00 & 276/0 & 0.9926 & 135 & 0.9593 & 25 \\
\hline January & 0.9974 & 383 & 0.9838 & 62 & 0.9976 & 411 & 0.9948 & 192 & 0.9739 & 38 \\
\hline February & & & & & No DADS & ta & & & & \\
\hline March & 1.00 & 206/0 & 0.9926 & 136 & 1.00 & 192/0 & 1.00 & 206/0 & 0.9903 & 103 \\
\hline April & & & & & Out of & vice & & & & \\
\hline May & & & & & Out of & vice & & & & \\
\hline June & & & & & Out of & vice & & & & \\
\hline Total & 0.9923 & 130 & 0.9946 & 185 & 0.9992 & 1329 & 0.9962 & 261 & 0.9816 & 54 \\
\hline \multicolumn{3}{|l|}{\[
T / J=\text { Total Transactions }
\]} & \multicolumn{2}{|l|}{} & \multicolumn{3}{|l|}{\[
T / O=\text { Total Transactions }
\]} & & & \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & & & \[
\mathrm{T} / \mathrm{T}=
\] & tal Tr l Jams ures & \begin{tabular}{l}
actions \\
"Other
\end{tabular} & & & \\
\hline \multicolumn{3}{|l|}{\(\mathrm{B} / \mathrm{B}=\frac{\text { Total Bills Inserted }}{\text { Total Bill Jams }}\)} & & & \multicolumn{4}{|l|}{\(\mathrm{R}=\) Reliability \(=\) Successes} & & \\
\hline
\end{tabular}
Mezzanine: Silver Spring 1978-1979 Vendor: 41
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/c & R & в/в & R & т/O & R & T/'T \\
\hline October & 1.00 & 444/0 & 1.00 & 451/0 & 0.9969 & 327 & 0.9932 & 148 & 0.9910 & 111 \\
\hline December & 0.9885 & 87 & 0.9952 & 210 & 0.9972 & 363 & 0.9971 & 349 & 0.9771 & 44 \\
\hline January & 1.00 & 299/0 & 0.9977 & 435 & 0.9963 & 270 & 0.9866 & 75 & 0.9799 & 50 \\
\hline February & & & & & No DADS & ta & & & & \\
\hline March & 1.00 & 248/0 & 1.00 & 303/0 & 1.00 & 245/0 & 1.00 & 248/0 & 1.00 & 248/0 \\
\hline April & 0.9958 & 240 & 1.00 & 240/0 & 1.00 & 254/0 & 1.00 & 240/0 & 0.9958 & 240 \\
\hline May & 0.9950 & 202 & 1.00 & 812/0 & 1.00 & 573.0 & 1.00 & 605/0 & 0.9950 & 202 \\
\hline June & 0.9969 & 323 & 0.9963 & 268 & 1.00 & 608.0 & 0.9984 & 645 & 0.9907 & 108 \\
\hline Total & 0.9965 & 283 & 0.9983 & 577 & 0.9989 & 880 & 0.9968 & 314 & 0.9901 & 101 \\
\hline \multicolumn{3}{|l|}{\[
T / J=\text { Total Transactions }
\]} & & & \multicolumn{3}{|l|}{\[
T / O=\text { Total Transactions }
\]} & & & \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & & & \multicolumn{4}{|l|}{Total Jams and "Other" Failures} & & \\
\hline \multicolumn{3}{|l|}{\[
\mathrm{B} / \mathrm{B}=\text { Total Bills Inserted }
\]} & & & \multicolumn{4}{|l|}{\(\mathrm{R}=\) Reliability \(=\frac{\text { Successes }}{\text { Transactions }}\)} & & \\
\hline
\end{tabular}
Mezzanine: Farragut West - 17th Street 1978-1979
Vendor:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Ticket & ansport & Coin & eptor & Bill V & idator & & & & \\
\hline Month & R & T/J & R & c/c & R & B/B & R & T/O & R & T/'T \\
\hline November & 0.9978 & 460 & 0.9990 & 1050 & 0.9985 & 666 & 1.00 & 920/0 & 0.9957 & 230 \\
\hline December & 1.00 & 473/0 & 1.00 & 561/0 & 0.9912 & 114 & 0.9958 & 237 & 0.9894 & 95 \\
\hline January & 0.9940 & 168 & 1.00 & 625/0 & 1.00 & 539/0 & 0.9980 & 505 & 0.9921 & 126 \\
\hline February & 0.9975 & 397 & 1.00 & 408/0 & 0.9940 & 168 & 1.00 & 397/0 & 0.9924 & 132 \\
\hline March & 1.00 & 324/0 & 1.00 & 345/0 & 0.9880 & 84 & 1.00 & 324/0 & 0.9907 & 108 \\
\hline April & 1.00 & 399/0 & 1.00 & 448/0 & 0.9895 & 95 & 0.9975 & 399 & 0.9900 & 100 \\
\hline May & 0.9966 & 294 & 1.00 & 79/0 & 0.9958 & 237 & 1.00 & 294 & 0.9932 & 147 \\
\hline June & 0.9989 & 915 & 0.9989 & 965 & 0.9972 & 361 & 0.9989 & 915 & 0.9945 & 183 \\
\hline Total & 0.9981 & 528 & 0.9996 & 2241 & 0.9956 & 225 & 0.9988 & 845 & 0.9929 & 141 \\
\hline \multicolumn{3}{|l|}{\[
T / J=\text { Total Transactions }
\]} & & & \multicolumn{3}{|l|}{\[
T / O=\text { Total Transactions }
\]} & & & \\
\hline \multicolumn{3}{|l|}{\[
C / C=\frac{\text { Total Coins Inserted }}{\text { Total Coin Tams }}
\]} & & & \multicolumn{4}{|l|}{Failures} & & \\
\hline \multicolumn{3}{|l|}{\[
B / B=\frac{\text { Total Bills Inserted }}{\text { Total Bill Jams }}
\]} & & & \multicolumn{4}{|l|}{\(\mathrm{R}=\) Reliability \(=\frac{\text { Successes }}{\text { Transactions }}\)} & & \\
\hline
\end{tabular}
Mezzanine: Farragut West - 17th Street 1978-1979 Vendor: 31
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & C/C & R & B/B & R & T/O & R & T/T \\
\hline November & 0.9981 & 539 & 1.00 & N/A & 1.00 & 505/0 & 1.00 & 539/0 & 0.9981 & 539 \\
\hline December & 0.9968 & 316 & N/A & N/A & 1.00 & 404/0 & 1.00 & 631/0 & 0.9968 & 316 \\
\hline January & 0.9917 & 120 & 1.00 & 327/0 & 1.00 & 299/0 & 0.9972 & 360 & 0.9889 & 90 \\
\hline February & 0.9947 & 188 & 1.00 & 304/0 & 0.9802 & 51 & 1.00 & 188/0 & 0.9840 & 63 \\
\hline March & 1.00 & 308/0 & 1.00 & 301/0 & 0.9917 & 120 & 0.9740 & 39 & 0.9675 & 31. \\
\hline April & 1.00 & 293/0 & 0.9976 & 423 & 0.9897 & 97 & 1.00 & 293/0 & 0.9898 & 98 \\
\hline May & 1.00 & 329/0 & 1.00 & 448/0 & 0.9956 & 225 & 0.9970 & 329 & 0.9939 & 165 \\
\hline June & 0.9985 & 675 & 1.00 & 935/0 & 0.9881 & 84 & 0.9970 & 338 & 0.9881 & 84 \\
\hline Total & 0.9976 & 415 & 0.9993 & 1369 & 0.9950 & 199 & 0.9964 & 277 & 0.9901 & 101 \\
\hline \multicolumn{2}{|l|}{\(T / J=\) Total Transactions} & \(\frac{\text { ions }}{\text { Jams }}\) & & & \multicolumn{4}{|l|}{\(T / O=\frac{\text { Total Transactions }}{\text { (O) }}\)} & \(N / A=N o t\) & ilable \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & & & \[
T / T=
\] & \begin{tabular}{l}
tal Tr \\
l Jains lures
\end{tabular} & \begin{tabular}{l}
actions \\
"Othe
\end{tabular} & & & \\
\hline \multicolumn{3}{|l|}{\(B / B=\) Total Bills Inserted} & & & \multicolumn{4}{|l|}{\(\mathrm{R}=\) Reliability \(=\) Successes} & & \\
\hline
\end{tabular}
Mezzanine: Farragut West - 17th Street 1978-1979
Vendor:

Mezzanine: Farragut West - 17th Street 1978-1979 Vendor:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & C/C & R & B/B & R & T/O & R & T/T \\
\hline November & 0.9968 & 310 & 1.00 & 189/0 & 0.9905 & 105 & 0.9978 & 465 & 0.9882 & 84 \\
\hline December & 0.9907 & 108 & 0.9988 & 820 & 0.9911 & 113 & 1.00 & 650/0 & 0.9831 & 59 \\
\hline January & 0.9967 & 305 & 0.9946 & 187 & 0.9885 & 87 & 0.9984 & 609 & 0.9803 & 51 \\
\hline February & 0.9970 & 332 & 1.00 & 375/0 & 0.9834 & 60 & 1.00 & 332/0 & 0.9849 & 66 \\
\hline March & 1.00 & 492/0 & 0.9979 & 477 & 1.00 & 403/0 & 1.00 & 492/0 & 0.9980 & 492 \\
\hline April & 0.9779 & 45 & 1.00 & 109/0 & 0.9929 & 142 & 0.9779 & 45 & 0.9485 & 19 \\
\hline May & 1.00 & 494/0 & 0.9981 & 517 & 1.00 & 403/0 & 1.00 & 494/0 & 0.9980 & 494 \\
\hline June & & & & & \multicolumn{2}{|l|}{Out of Service} & & & & \\
\hline Total & 0.9959 & 243 & 0.9978 & 462 & 0.9926 & 135 & 0.9984 & 607 & 0.9868 & 76 \\
\hline
\end{tabular}

\footnotetext{
\(T / O=\) Total Transactions
Total "Other" Failures
\(T / T=\) Total Transactions
Total Jams and "Other"
Failures
Successes
Transactions
\(R=\) Reliability \(=\)
\(T / J=\frac{\text { Total Transactions }}{\text { Total Farecard Jains }}\)
\(C / C=\frac{\text { Total Coins Inserted }}{\text { Total Coin Jams }}\)
\(B / B=\frac{\text { Total Bills Inserted }}{\text { Total Bill Jams }}\)
}
Mezzanine: Farragut West - 17th Street 1978-1979 Vendor: 34
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & C/C & R & B/B & R & T/O & R & T/T \\
\hline November & & & & & Out of & rvice & & & & \\
\hline December & 1.00 & 794/0 & 0.9981 & 983 & 0.9964 & 279 & 0.9975 & 397 & 0.9937 & 159 \\
\hline January & 1.00 & 632/0 & 1.00 & 738/0 & 0.9887 & 89 & 0.9968 & 316 & 0.9889 & 90 \\
\hline February & & & & & Out of & rvice & & & & \\
\hline March & 1.00 & 524/0 & 0.9980 & 510 & 1.00 & 431/0 & 1.00 & 524/0 & 0.9981 & 524 \\
\hline April & 1.00 & 565/0 & 1.00 & 692/0 & 1.00 & 383/0 & 1.00 & 565/0 & 1.00 & 565/0 \\
\hline May & 1.00 & 544/0 & 1.00 & 636/0 & 1.00 & 404/0 & 0.9982 & 544 & 0.9982 & 544 \\
\hline June & 0.9965 & 288 & 0.9963 & 272 & 0.9887 & 89 & 0.9977 & 432 & 0.9815 & 54 \\
\hline Total & 0.9992 & 1307 & 0.9989 & 875 & 0.9949 & 195 & 0.9982 & 560 & 0.9924 & 131 \\
\hline \multicolumn{3}{|l|}{\[
T / J=\text { Total Transactions }
\]} & & & \multicolumn{3}{|l|}{\(T / O=\) Total Transactions} & & & \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & & & \multicolumn{2}{|l|}{\[
T / T=\frac{\text { Total Transactions }}{\text { Total Jams and "Other }}
\]} & \begin{tabular}{l}
ctions \\
"Other
\end{tabular} & & & \\
\hline \multicolumn{3}{|l|}{\[
\mathrm{B} / \mathrm{B}=\text { Total Bills Inserted }
\]} & & & \multicolumn{3}{|l|}{\(\mathrm{R}=\) Reliability \(=\) Succes} & ons & & \\
\hline
\end{tabular}
Mezzanine: Farragut West - 17th Street 1978-1979
Vendor:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/C & R & B/B & R & T/O & R & T/T \\
\hline November & & & & & Out of & rvice & & & & \\
\hline December & 0.9957 & 231 & 1.00 & 562/0 & 1.00 & 293/0 & 0.9935 & 154 & 0.9892 & 92 \\
\hline January & 1.00 & 942/0 & 1.00 & 1221/0 & 0.9953 & 212 & 1.00 & 942/0 & 0.9968 & 314 \\
\hline February & 0.9953 & 213 & 1.00 & 289/0 & 0.9779 & 45 & 0.9953 & 213 & 0.9765 & 43 \\
\hline March & 0.9952 & 208 & 1.00 & 589/0 & \({ }^{1} 0.7500\) & 4 & 0.9952 & 208/0 & 0.9856 & 69 \\
\hline April & & & & & Out of & rvice & & & & \\
\hline May & 1.00 & 72/0 & 1.00 & 420/0 & 1.00 & 138/0 & 0.9722 & 36 & 0.9722 & 36 \\
\hline June & 1.00 & 850/0 & 0.9975 & 398 & 0.9945 & 180 & 0.9976 & 425 & 0.9906 & 106 \\
\hline Total & 0.9985 & 687 & 0.9993 & 1425 & 0.9937 & 159 & 0.9971 & 343 & 0.9905 & 106 \\
\hline \multicolumn{3}{|l|}{\[
T / J=\frac{\text { Total Transactions }}{\text { Total Farecard Jams }}
\]} & & & \multicolumn{3}{|l|}{\[
T / O=\frac{\text { Total Transactions }}{\text { Total "Other" Failures }}
\]} & & & \\
\hline \multicolumn{3}{|l|}{\(\mathrm{C} / \mathrm{C}=\frac{\text { Total Coins Inserted }}{\text { detal }}\)} & & & \multicolumn{4}{|l|}{Total Jams and "Other" Failures} & & \\
\hline \multicolumn{3}{|l|}{\[
\mathrm{B} / \mathrm{B}=\frac{\text { Total Bills Inserted }}{\text { Total Bill Jams }}
\]} & & & \multicolumn{4}{|l|}{\(\mathrm{R}=\) Reliability \(=\frac{\text { Successes }}{\text { Transactions }}\)} & & \\
\hline
\end{tabular}
Mezzanine: Farragut West - 18th Street 1978-1979
Vendor:

Mezzanine: Farragut West - l8th Street 1978-1979 Vendor: 31
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & C/C & R & B/B & R & T/O & R & T/T \\
\hline October & 0.9984 & 640 & 1.00 & \(869 / 0\) & 0.9978 & 450 & 1.00 & 640/0 & 0.9969 & 320 \\
\hline December & 0.9985 & 646 & 1.00 & \(902 / 0\) & 1.00 & \(446 / 0\) & 1.00 & 646/0 & 0.9985 & 646 \\
\hline January & 1.00 & 512/0 & 1.00 & 512/0 & 0.9954 & 217 & 1.00 & 512/0 & 0.9961 & 256 \\
\hline February & 0.9990 & 996 & 1.00 & 1491/0 & 1.00 & \(576 / 0\) & 1.00 & \(996 / 0\) & 0.9990 & 996 \\
\hline March & 0.9958 & 236 & 1.00 & \(371 / 0\) & 1.00 & 122/0 & 1.00 & \(236 / 0\) & 0.9958 & 236 \\
\hline April & 1.00 & 220/0 & 1.00 & 297/0 & 1.00 & 297/0 & 0.9909 & 70 & 0.9909 & 110 \\
\hline May & 0.9952 & 207 & 0.9988 & 861 & 1.00 & 402/0 & 1.00 & \(621 / 0\) & 0.9936 & 155 \\
\hline June & 1.00 & 609/0 & 1.00 & \(633 / 0\) & 1.00 & 479/0 & 0.9984 & 609 & 0.9984 & 609 \\
\hline Total & 0.9984 & 640 & 0.9998 & 6036 & 0.9992 & 1333 & 0.9993 & 1493 & 0.9969 & 320 \\
\hline \multicolumn{3}{|l|}{\(T / J=\) Total Transactions} & & & \multirow[t]{2}{*}{\(\mathrm{T} / \mathrm{O}=\)} & \multicolumn{2}{|l|}{Total Transactions} & & & \\
\hline & 1 Farec & Jams & & & & al "Ot & Failure & & & \\
\hline \multicolumn{3}{|l|}{\(C / C=\) Total Coins Inserted} & & & \multirow[t]{2}{*}{T/T \(=\)} & \multicolumn{2}{|l|}{Total Transactions} & & & \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & \multicolumn{5}{|l|}{Total Jams and "Other"} & & & \\
\hline \multicolumn{3}{|l|}{\(B / B=\) Total Bills Inserted} & \multicolumn{6}{|l|}{\(R=\) Reliability} & & \\
\hline
\end{tabular}
Mezzanine: Farragut West - 18th Street 1978-1979
Vendor:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/c & R & B/B & R & T/O & R & T/T \\
\hline October & 0.9936 & 156 & 0.9990 & 995 & 0.9961 & 258 & 0.9987 & 782 & 0.9885 & 87 \\
\hline December & 0.9952 & 208 & 1.00 & 857/0 & 1.00 & 404/0 & 0.9952 & 208 & 0.9904 & 104 \\
\hline January & 0.9922 & 128 & 0.9983 & 606 & 0.9952 & 207 & 1.00 & 511/0 & 0.9863 & 73 \\
\hline February & 0.9988 & 808 & 0.9992 & 1328 & 0.9900 & 100 & 0.9963 & 269 & 0.9876 & 81 \\
\hline March & & & & & Out of & vice & & & & \\
\hline April & & & & & Out of & vice & & & & \\
\hline May & 0.9980 & 495 & 1.00 & 668/0 & 0.9969 & 322 & 1.00 & 495/0 & 0.9960 & 248 \\
\hline June & 1.00 & 538/0 & 0.9980 & 508 & 0.9978 & 445 & 1.00 & 538/0 & 0.9963 & 269 \\
\hline Total & 0.9963 & 268 & 0.9992 & 1241 & 0.9958 & 236 & 0.9981 & 537 & 0.9904 & 104 \\
\hline \multicolumn{3}{|l|}{\(T / J=\) Total Transactions} & & & \[
\mathrm{T} / \mathrm{O}=
\] & \multicolumn{2}{|l|}{T/O \(=\) Total Transactions} & & & \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & & & \[
\mathbf{T} / \mathbf{T}=
\] & \begin{tabular}{l}
tal Tr \\
1 Jams ures
\end{tabular} & \begin{tabular}{l}
ctions \\
"Other
\end{tabular} & & & \\
\hline \multicolumn{3}{|l|}{\[
B / B=\text { Total Bills Inserted }
\]} & & & \multicolumn{2}{|l|}{\(\mathrm{R}=\) Reliability} & & & & \\
\hline
\end{tabular}
Mezzanine: Farragut West - 18th Street 1978-1979 Vendor:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline Month & R & T/J & - R & C/C & R & B/B & R & 'T/O & R & \(T / T\) \\
\hline October & 0.9969 & 326 & 0.9978 & 458 & 0.9720 & 36 & 0.9939 & 163 & 0.9693 & 33 \\
\hline December & 0.9943 & 174 & 0.9983 & 572 & 0.9850 & 67 & 0.9924 & 131 & 0.9732 & 37 \\
\hline January & 1.00 & \(381 / 0\) & 0.9880 & 84 & 0.9968 & 311 & 0.9948 & 191 & 0.9790 & 48 \\
\hline February & & & & & \multicolumn{2}{|l|}{Out of Service} & & & & \\
\hline March & & & & Data & DADS Tap & Illeg & & & & \\
\hline April & 0.9979 & 478 & 0.9986 & 715 & 1.00 & \(326 / 0\) & 0.9979 & 478 & 0.9937 & 159 \\
\hline May & 1.00 & \(631 / 0\) & 1.00 & \(767 / 0\) & 1.00 & \(432 / 0\) & 1.00 & 631/0 & 1.00 & \(631 / 0\) \\
\hline June & 0.9913 & 115 & 1.00 & \(413 / 0\) & 1.00 & 283/0 & 1.00 & 460/0 & 0.9913 & 115 \\
\hline Total & 0.9968 & 311 & 0.9976 & 418 & 0.9934 & 151 & 0.9968 & 311 & 0.9861 & 72 \\
\hline
\end{tabular}

\footnotetext{
\(\begin{aligned} & T / O= \frac{\text { Total Transactions }}{\text { Total "Other" Failures }} \\ & T / T= \frac{\text { Total Transactions }}{\text { Total Jams and "Other" }} \\ & R= \text { Relilures } \\ & R\end{aligned}\)
}

\footnotetext{
\(T / J=\) Total Transactions
Total Farecard Jams
\(C / C=\) Total Coins Inserted
rotal Coin Jams
\(B / B=\) Total Bills Inserted
Total Bill Jams
}
Mezzanine: Farragut West - 18th Street 1978-1979
Vendor:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & C/C & R & B/B & R & T/O & R & T/T \\
\hline October & 1.00 & 97/0 & 1.00 & 172/0 & 1.00 & 90/0 & 0.9897 & 97 & 0.9897 & 97 \\
\hline December & 0.9973 & 365 & 1.00 & 964/0 & 0.9980 & 501 & 0.9986 & 729 & 0.9945 & 182 \\
\hline January & 1.00 & 155/0 & 0.9978 & 451 & 0.9714 & 35 & 1.00 & 155/0 & 0.9871 & 78 \\
\hline February & 0.9978 & 445 & 0.9979 & 474 & 0.9949 & 197 & 1.00 & 889/0 & 0.9921 & 127 \\
\hline March & & & & Data & DADS Tap & Unread & & & & \\
\hline April & 1.00 & 377/0 & 0.9978 & 450 & 0.9962 & 264 & 0.9947 & 189 & 0.9894 & 94 \\
\hline May & 1.00 & 586/0 & 1.00 & 869/0 & 0.9883 & 86 & 0.9966 & 293 & 0.9898 & 98 \\
\hline June & 1.00 & 412/0 & 1.00 & 1282/0 & - & - & 1.00 & 412/0 & 1.00 & 412/0 \\
\hline Total & 0.9988 & 811 & 0.9993 & 1501 & 0.9945 & 182 & 0.9982 & 541 & 0.9926 & 135 \\
\hline \multicolumn{3}{|l|}{\(T / J=\) Total Transactions} & & & \multicolumn{3}{|l|}{\(\mathrm{T} / \mathrm{O}=\) Total Transactions} & & & \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & & & \multicolumn{4}{|l|}{Total Jams and "Other" Failures} & & \\
\hline \multicolumn{3}{|l|}{\[
B / B=\text { Total Bills Inserted }
\]} & & & \multicolumn{2}{|l|}{\(\mathrm{R}=\) Reliability} & & & & \\
\hline
\end{tabular}
Mezzanine: Farragut West - 18th Street 1978-1979 Vendor: 35
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/c & R & B/B & R & T/O & R & T/T \\
\hline October & 0.9977 & 433 & 0.9981 & 533 & 0.9929 & 140 & 1.00 & 865/0 & 0.9908 & 108 \\
\hline December & 0.9973 & 365 & 1.00 & 952/0 & 1.00 & 459/0 & 1.00 & 729/0 & 0.9973 & 365 \\
\hline January & 0.9965 & 289 & 1.00 & 645/0 & 0.9907 & 108 & 1.00 & 578/0 & 0.9913 & 116 \\
\hline February & 0.9983 & 576 & 0.9986 & 713 & 0.9951 & 203 & 0.9983 & 576 & 0.9913 & 115 \\
\hline March & & & & Data & DADS Tap & Illeg & & & & \\
\hline April & 1.00 & 560/0 & 0.9986 & 717 & 1.00 & 390/0 & 1.00 & 560/0 & 0.9982 & 560 \\
\hline May & 0.9979 & 470 & 1.00 & 657/0 & 0.9967 & 304 & 0.9957 & 235 & 0.9915 & 118 \\
\hline June & 1.00 & 656/0 & 1.00 & 739/0 & 1.00 & 382/0 & 1.00 & 656/0 & 1.00 & 656/0 \\
\hline Total & 0.9982 & 554 & 0.9993 & 1372 & 0.9965 & 282 & 0.9993 & 1478 & 0.9944 & 177 \\
\hline
\end{tabular}

\footnotetext{
Total Transactions
Total "Other" Failures
Total Transactions
Total Jams and "Other"
Failures
\(R=\) Reliability
} Vendor: 35

\footnotetext{
\(T / J=\) Total Transactions
Total Farecard Jams
\(C / C=\) Total Coins Inserted
Total Coin Jams
\(B / B=\) Total Bills Inserted
Total Bill Jams
}
Mezzanine: Rosslyn 1978-1979 Vendor: 30
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline Month & R & T/J & R & c/C & R & B/B & R & T/O & R & T/T \\
\hline October & & & & & Out of & rvice & & & & \\
\hline December & 0.9878 & 82 & 0.9989 & 944 & 0.9981 & 513 & 1.00 & 737/0 & 0.9851 & 67 \\
\hline January & 0.9985 & 675 & 0.9953 & 215 & 0.9960 & 251 & 0.9985 & 675 & 0.9881 & 84 \\
\hline February & 1.00 & 390/0 & 0.9981 & 519 & 0.9969 & 322 & 1.00 & 390/0 & 0.9949 & 195 \\
\hline March & 0.9961 & 254 & 1.00 & 482/0 & 0.9968 & 311 & 1.00 & 508/0 & 0.9941 & 169 \\
\hline April & 1.00 & 883/0 & 0.9980 & 497 & 0.9984 & 639 & 1.00 & 883/0 & 0.9966 & 294 \\
\hline May & 1.00 & 700/0 & 1.00 & 831/0 & 0.9980 & 505 & 0.9986 & 700 & 0.9971 & 350 \\
\hline June & 0.9989 & 903 & 1.00 & 903/0 & 0.9915 & 118 & 1.00 & 903/0 & 0.9922 & 129 \\
\hline Total & 0.9973 & 369 & 0.9986 & 739 & 0.9963 & 269 & 0.9996 & 2398 & 0.9925 & 133 \\
\hline \multicolumn{3}{|l|}{\(T / J=\) Total Transactions} & & & \multicolumn{3}{|l|}{\(\mathrm{T} / \mathrm{O}=\frac{\text { Total }}{\text { Transactions }}\)} & & & \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & & & \[
T / T=
\] & \multicolumn{3}{|l|}{Failures} & & \\
\hline \multicolumn{3}{|l|}{\(B / B=\underline{\text { Total Bills Inserted }}\)} & & & \multicolumn{4}{|l|}{\(\mathrm{R}=\) Reliability} & & \\
\hline
\end{tabular}
Mezzanine: Rosslyn 1978-1979 Vendor: 31 ,

Mezzanine: Rosslyn 1978-1979
Vendor:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/C & R & B/B & R & T/O & R & T/T \\
\hline October & 0.9944 & 178 & 0.9993 & 1409 & 0.9978 & 452 & 0.9972 & 357 & 0.9888 & 89 \\
\hline December & 0.9890 & 91 & 0.9990 & 997 & 0.9981 & 515 & 0.9973 & 365 & 0.9835 & 61 \\
\hline January & 0.9990 & 990 & 0.9992 & 1195 & 0.9871 & 348 & 1.00 & 990/0 & 0.9960 & 248 \\
\hline February & 0.9938 & 163 & 1.00 & 400/0 & 0.9895 & 95 & 1.00 & 325/0 & 0.9877 & 81 \\
\hline March & 0.9931 & 146 & 1.00 & 148/0 & 0.9880 & 84 & 0.9945 & 182 & 0.9808 & 52 \\
\hline April & 0.9990 & 980 & 1.00 & 1195/0 & 0.9956 & 226 & 0.9969 & 327 & 0.9929 & 140 \\
\hline May & 0.9963 & 268 & 0.9993 & 1375 & 0.9938 & 162 & 1.00 & 1070/0 & 0.9925 & 134 \\
\hline June & 0.9966 & 294 & 1.00 & 1387/0 & 1.00 & 706/0 & 0.9966 & 294 & 0.9932 & 147 \\
\hline Total & 0.9956 & 229 & 0.9996 & 2269 & 0.9957 & 231 & 0.9994 & 458 & 0.9902 & 102 \\
\hline
\end{tabular}
\(T / O=\frac{\text { Total Transactions }}{\text { Total "Other" Failures }}\)
\(T / T=\frac{\text { Total Transactions }}{\text { Total Jams and "Other" }}\)

\footnotetext{
\(r / J=\) Total Transactions
\(C / C=\begin{array}{r}\text { Total Farecard Jams } \\ \end{array}\)
Total Coin Jams
\(B / B=\) Total Bills Inserted
Total Bill Jams
}
Mezzanine: Rosslyn 1978-1979 Vendor: 33
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/C & R & B/B & R & T/O & R & T/T \\
\hline October & 0.9991 & 1144 & 1.00 & 1483/0 & 0.9960 & 251 & 0.9974 & 381 & 0.9939 & 163 \\
\hline December & 0.9838 & 361 & 1.00 & 975/0 & 1.00 & 498/0 & 0.9945 & 181 & 0.9917 & 120 \\
\hline January & 0.9920 & 125 & 0.9982 & 557 & 0.9978 & 460 & 1.00 & 751/0 & 0.9880 & 83 \\
\hline February & 1.00 & 578/0 & 1.00 & 687/0 & 0.9949 & 197 & 0.9983 & 578 & 0.9948 & 193 \\
\hline March & 0.9980 & 491 & 0.9982 & 564 & 0.9965 & 287 & 0.9980 & 491 & 0.9919 & 123 \\
\hline April & 1.00 & 871/0 & 0.9978 & 459 & 0.9952 & 208 & 0.9989 & 871 & 0.9931 & 145 \\
\hline May & 1.00 & 707/0 & 1.00 & 1101/0 & 0.9923 & 131 & 1.00 & 707/0 & 0.9958 & 236 \\
\hline June & 1.00 & 847/0 & 0.9992 & 1291 & 0.9902 & 102 & 1.00 & 847/0 & 0.9941 & 169 \\
\hline Total & 0.9983 & 600 & 0.9992 & 1237 & 0.9956 & 223 & 0.9983 & 600 & 0.9929 & 141 \\
\hline
\end{tabular}

\footnotetext{
\(\begin{aligned} & T / O=\frac{\text { Total Transactions }}{\text { Total "Other" Failures }} \\ & T / \Gamma=\frac{\text { Total Transactions }}{\text { Total Jams and "Other" }} \\ & \text { Failures } \\ & R=\text { Reliability }\end{aligned}\)
}
Mezzanine: Rosslyn 1978-1979
Vendor:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & C/C & R & B/B & R & T/O & R & T/T \\
\hline October & 0.9922 & 129 & 0.9969 & 328 & 1.00 & 328/0 & 1.00 & 514/0 & 0.9883 & 86 \\
\hline December & 0.9916 & 119 & 0.9982 & 570 & 1.00 & 679/0 & 0.9916 & 119 & 0.9811 & 53 \\
\hline January & 1.00 & 755/0 & 1.00 & 921/0 & 0.9980 & 493 & 0.9974 & 378 & 0.9960 & 252 \\
\hline February & 0.9981 & 521 & 1.00 & 703/0 & 1.00 & 326/0 & 1.00 & 521/0 & 0.9981 & 521 \\
\hline March & 1.00 & 1041/0 & 1.00 & 1308/0 & 0.9985 & 664 & 0.9990 & 1041 & 0.9981 & 521 \\
\hline April & 1.00 & 904/0 & 1.00 & 1128/0 & 1.00 & 576/0 & 1.00 & 904/0 & 1.00 & 904/0 \\
\hline May & 1.00 & 1149/0 & 0.9993 & 1397 & 1.00 & 789/0 & 0.9983 & 575 & 0.9974 & 383 \\
\hline June & 0.9990 & 972 & 0.9992 & 1311 & 0.9975 & 401 & 0.9979 & 486 & 0.9938 & 162 \\
\hline Total & 0.9979 & 486 & 0.9993 & 1427 & 0.9991 & 1164 & 0.9978 & 454 & 0.9943 & 175 \\
\hline \[
T / J=\frac{\operatorname{Tot}}{T O t}
\] & \[
\frac{\text { al Trans }}{\text { al Farec }}
\] & \[
\frac{\text { ctions }}{\text { d Jams }}
\] & & & \multicolumn{3}{|l|}{\(T / O=\) Total Transactions} & & & \\
\hline \multicolumn{2}{|l|}{\(C / C=\frac{\text { Total Coins Inserted }}{\text { Total Coin Jams }}\)} & Total Coin Jams & & & \(T / T=\frac{}{T}\) & \begin{tabular}{l}
otal Tr \\
al Jams lures
\end{tabular} & \begin{tabular}{l}
ctions \\
"Other
\end{tabular} & & & \\
\hline \multicolumn{3}{|l|}{\(B / B=\) Total Bills Inserted} & & & \multicolumn{2}{|l|}{R = Reliability} & & & & \\
\hline
\end{tabular}
Mezzanine: Rosslyn 1978-1979 Vendor: 38
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/C & R & B/B & R & T/O & R & T/T \\
\hline October & 0.9983 & 579 & 1.00 & 598/0 & 0.9978 & 445 & 1.00 & 579/0 & 0.9965 & 290 \\
\hline December & 0.9988 & 861 & 0.9980 & 505 & 0.9925 & 134 & 0.9988 & 861 & 0.9895 & 96 \\
\hline January & 0.9953 & 213 & 0.9982 & 555 & 0.9799 & 50 & 1.00 & 213/0 & 0.9765 & 43 \\
\hline February & 0.9942 & 174 & 0.9953 & 214 & 1.00 & 315/0 & 0.9971 & 347 & 0.9885 & 87 \\
\hline March & 1.00 & 648/0 & 1.00 & \(801 / 0\) & 0.9934 & 152 & 1.00 & 648/0 & 0.9954 & 216 \\
\hline April & 1.00 & 537 & 1.00 & 600/0 & 0.9974 & 389 & 0.9981 & 1537 & 0.9963 & 269 \\
\hline May & 0.9990 & 1029 & 1.00 & 952/0 & 0.9974 & 387 & 1.00 & 1029/0 & 0.9971 & 343 \\
\hline June & 0.9990 & 958 & 0.9991 & 1164 & 0.9987 & 791 & 1.00 & 958/0 & 0.9969 & 319 \\
\hline Total & 0.9986 & 739 & 0.9992 & 1179 & 0.9960 & 249 & 0.9994 & 1724 & 0.9940 & 167 \\
\hline \multicolumn{3}{|l|}{Total Farecard Jams} & & & \(\mathrm{T} / \mathrm{O}=\) & \multicolumn{2}{|l|}{T/O \(=\) Total Transactions} & & & \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & & & \(T / T=\) & tal Tr 1 Jams ures & \begin{tabular}{l}
ctions \\
"Othe
\end{tabular} & & & \\
\hline \[
\mathrm{B} / \mathrm{B}=\mathrm{TO}
\] & \[
\frac{\text { al Bills }}{\text { Total } \mathrm{Bi}}
\] & \[
\frac{\text { Inserted }}{1 \text { Jams }}
\] & & & \multicolumn{2}{|l|}{\(\mathrm{R}=\) Reliability} & & & & \\
\hline
\end{tabular}
Mezzanine: Rosslyn 1978-1979
Vendor: 39
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & C/C & R & B/B & R & T/O & R & T/T \\
\hline October & 0.9993 & 1411 & 0.9981 & 520/0 & 0.9890 & 91 & 1.00 & 1411/0 & 0.9950 & 202 \\
\hline December & 0.8333 & 6 & 1.00 & 96/0 & 1.00 & 45/0 & 0.9833 & 60 & 0.7833 & 5 \\
\hline January & 0.9597 & 25 & 1.00 & 118/0 & 1.00 & 87/0 & 0.9919 & 124 & 0.9516 & 21 \\
\hline February & & & & & \multicolumn{6}{|l|}{Data Unavailable} \\
\hline March & 1.00 & 130/0 & 1.00 & 216/0 & 1.00 & 86/0 & 0.9923 & 130 & 0.9923 & 130 \\
\hline April & 0.9977 & 434 & 1.00 & 507/0 & 0.9954 & 219 & 1.00 & 434/0 & 0.9954 & 217 \\
\hline May & & & & & \multicolumn{6}{|l|}{Out of Service} \\
\hline June & & & & & \multicolumn{6}{|l|}{Out of Service} \\
\hline Total & 0.9912 & 114 & 0.9993 & 1457 & 0.9933 & 147 & 0.9986 & 720 & 0.9866 & 74 \\
\hline
\end{tabular}

\footnotetext{
Total Transactions
Total "Other" Failures
Total Transactions
Total Jams and "Other"
T/O =
\(T / T=\)
Failures
\(\mathrm{R}=\) Reliability
}
Mezzanine: Rosslyn 1978-1979
Vendor:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/c & R & B/B & R & T/O & R & T/T \\
\hline October & 0.9983 & 606 & 1.00 & 750/0 & 1.00 & 435/0 & 0.9983 & 606 & 0.9967 & 303 \\
\hline December & 0.9924 & 133 & 1.00 & 483/0 & 1.00 & 298/0 & 0.9950 & 199 & 0.9874 & 80 \\
\hline January & 1.00 & 647 & 0.9987 & 253 & 0.9979 & 470 & 1.00 & 647/0 & 0.9938 & 162 \\
\hline February & & & & & Out of & rvice & & & & \\
\hline March & 0.9981 & 541 & 1.00 & 667/0 & 0.9974 & 385 & 0.9945 & 180 & 0.9908 & 108 \\
\hline April & 0.9981 & 543 & 1.00 & 625/0 & 0.9975 & 408 & 1.00 & 543/0 & 0.9963 & 272 \\
\hline May & 0.9973 & 368 & 1.00 & 672/0 & 0.9966 & 299 & 1.00 & 736/0 & 0.9946 & 184 \\
\hline June & 0.9965 & 288 & 1.00 & 1041/0 & 0.9986 & 715 & 1.00 & 863/0 & 0.9954 & 216 \\
\hline Total & 0.9975 & 394 & 0.9994 & 1665 & 0.9982 & 551 & 0.9986 & 722 & 0.9940 & 167 \\
\hline \multicolumn{3}{|l|}{\[
T / J=\text { Total Transactions }
\]} & & & \multicolumn{3}{|l|}{T/O \(=\) Trotal Transactions} & & & \\
\hline \multicolumn{3}{|l|}{Total Coin Jams} & & & \multicolumn{4}{|l|}{Total Jams and "Other" Failures} & & \\
\hline \multicolumn{3}{|l|}{\(B / B=\) Total Bills Inserted} & & & \multicolumn{2}{|l|}{\(\mathrm{R}=\) Reliability} & & & & \\
\hline
\end{tabular}
Mezzanine: Rosslyn 1978-1979
Vendor: 41
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Month} & \multicolumn{2}{|l|}{Ticket Transport} & \multicolumn{2}{|l|}{Coin Acceptor} & \multicolumn{2}{|l|}{Bill Validator} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Total} \\
\hline & R & T/J & R & c/c & R & B/B & R & T/O & R & T/T \\
\hline October & 0.9947 & 187 & 1.00 & 416/0 & 1.00 & 283/0 & 1.00 & 374/0 & 0.9947 & 187 \\
\hline December & 0.9813 & 54 & 1.00 & 145/0 & 0.9880 & 84 & 0.9626 & 27 & 0.9346 & 15 \\
\hline January & 0.9971 & 351 & 1.00 & 348/0 & 0.9934 & 153 & 1.00 & 351/0 & 0.9915 & 117 \\
\hline February & 1.00 & 467/0 & 1.00 & 566/0 & 0.9941 & 170 & 1.00 & 467/0 & 0.9957 & 234 \\
\hline March & 0.9701 & 36 & 1.00 & 411/0 & 0.9885 & 87 & 0.9970 & 335 & 0.9582 & 24 \\
\hline April & 1.00 & 461/0 & 1.00 & 492/0 & 0.9874 & 80 & 1.00 & 461/0 & 0.9870 & 92 \\
\hline May & 1.00 & 113/0 & 0.9972 & 182 & No Tran & ctions & 0.9823 & 57 & 0.9646 & 28 \\
\hline June & & & & & Out of & rvice & & & & \\
\hline Total & 0.9932 & 147 & 0.9993 & 1371 & 0.9922 & 128 & 0.9968 & 315 & 0.9832 & 60 \\
\hline
\end{tabular}

\footnotetext{
\(\begin{aligned} T / O & =\frac{\text { Total Transactions }}{\text { Total "Other" Failures }} \\ T / T & =\frac{\text { Total Transactions }}{\begin{array}{l}\text { Total Jans and "Other" } \\ \text { Failures }\end{array}} \\ R= & \text { Reliability }\end{aligned}\)
}
Mezzanine: Rosslyn 1978-1979
Vendor: 42
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Ticket & ansport & Coin \({ }^{\text {A }}\) & eptor & Bill & dator & & & & \\
\hline Month & R & T/J & R & c/c & R & B/B & R & T/O & R & T/T \\
\hline October & 1.00 & 319/0 & 1.00 & 358/0 & 1.00 & 247/0 & 0.9969 & 319 & 0.9969 & 319 \\
\hline December & 1.00 & 588/0 & 1.00 & 689/0 & 0.9956 & 229 & 1.00 & 588/0 & 0.9966 & 294 \\
\hline January & 1.00 & 397/0 & 0.9886 & 88 & 0.9939 & 166 & 0.9950 & 199 & 0.9798 & 50 \\
\hline February & 1.00 & 121/0 & 1.00 & 135/0 & 1.00 & 94/0 & 0.9917 & 121 & 0.9917 & 121 \\
\hline March & 1.00 & 379/0 & 1.00 & 434/0 & 1.00 & 299/0 & 0.9974 & 379 & 0.9974 & 379 \\
\hline April & 1.00 & 303/0 & 1.00 & 329/0 & 1.00 & 228/0 & 0.9967 & 303 & 0.9967 & 303 \\
\hline May & 0.9968 & 319 & 1.00 & 564/0 & 0.9981 & 538 & 0.9984 & 638 & 0.9937 & 160 \\
\hline June & 1.00 & 770/0 & 1.00 & 902/0 & 0.9983 & 323 & 0.9948 & 193 & 0.9922 & 128 \\
\hline Total & 0.9994 & 1758 & 0.9989 & 941 & 0.9975 & 406 & 0.9969 & 320 & 0.9932 & 147 \\
\hline \multicolumn{3}{|l|}{\[
T / J=\text { Total Transactions }
\]} & & & \multicolumn{3}{|l|}{Total Transactions} & & & \\
\hline \multicolumn{3}{|l|}{\[
C / C=\text { Total Coins Inserted }
\]} & & & \multicolumn{3}{|l|}{Total Jams and "Other" Failures} & & & \\
\hline \multicolumn{3}{|l|}{\(B / B=\frac{\text { Total Bills Inserted }}{\text { Total Bill Jans }}\)} & & & \multicolumn{2}{|l|}{\(\mathrm{R}=\) Reliability} & & & & \\
\hline
\end{tabular}

\section*{APPENDIX 5}

95 PERCENT CONFIDENCE INTERVALS FOR AFC EQUIPMENT RELIABILITY AND AVAILABILITY MEASURES
\begin{tabular}{|c|c|c|c|}
\hline & 1978-1979 & Retrofit A & Retrofit B \\
\hline Gates & \[
\begin{gathered}
0.9978-0.9982 \\
(0.9980)
\end{gathered}
\] & \[
\begin{gathered}
0.9984-0.9988 \\
(0.9986)
\end{gathered}
\] & \[
\begin{gathered}
0.9995-0.9997 \\
(0.9996)
\end{gathered}
\] \\
\hline Vendors & \[
\begin{gathered}
0.9912-0.9922 \\
(0.9917)
\end{gathered}
\] & \[
\begin{gathered}
0.9913-0.9937 \\
(0.9925)
\end{gathered}
\] & \[
\begin{gathered}
0.9954-0.9970 \\
(0.9962)
\end{gathered}
\] \\
\hline Add-Fares & \[
\begin{gathered}
0.9866-0.9926 \\
(0.9896)
\end{gathered}
\] & \[
\begin{gathered}
0.9849-0.9913 \\
(0.9881)
\end{gathered}
\] & \[
\begin{gathered}
0.9921-0.9965 \\
(0.9943)
\end{gathered}
\] \\
\hline
\end{tabular}

FARECARD RELIABILITY
\begin{tabular}{lccc}
Gates & \(0.9986-0.9990\) & \(0.9992-0.9994\) & \(0.9995-0.9995\) \\
& \((0.9980)\) & \((0.9993)\) & \((0.9999)\) \\
Vendors & \(0.9985-0.9989\) & \(0.9976-0.9988\) & \(0.9995-0.9999\) \\
& \((0.9987)\) & \((0.9982)\) & \((0.9997)\) \\
Add-Fares & \(0.9978-0.9986\) & \(0.9911-0.9959\) & \(0.9979-0.9999\) \\
& \((0.9982)\) & \((0.9935)\) & \((0.9989)\)
\end{tabular}

\section*{COIN RELIABILITY}
\begin{tabular}{cccc}
Vendors & \(0.9986-0.9990\) & \(0.9988-0.9994\) & \(0.9986-0.9994\) \\
& \((0.9988)\) & \((0.9991)\) & \((0.9990)\) \\
Add-Fares & \(0.9990-1.0000\) & \(0.9966-0.9994\) & \(0.9981-0.9999\) \\
& \((0.9995)\) & \((0.9980)\) & \((0.9990)\)
\end{tabular}

\section*{BILL RELIABILITY}
\begin{tabular}{cccc}
Vendors & \begin{tabular}{c}
\(0.9988-0.9992\) \\
\((0.9990)\)
\end{tabular} & \(0.9970-0.9986\) & \(0.9977-0.9989\) \\
Add-Fares & \(0.9951-0.9978)\) & \((0.9983)\) \\
& \((0.9753)\) & \(0.9958-1.0000\) & \(0.9959-0.9997\) \\
& \((0.9979)\) & \((0.9978)\)
\end{tabular}

\section*{AVAILABILITY}

\section*{1978-1979}

Gates

Vendors

Add-Fares
\(92.34-93.08\) (92.71)
\(83.90-84.26\) (84.08)
95.58 - 96.76 (96.17)

\section*{Retrofit \(A\)}
\(0.9527-0.9581\)
(0.9554)
0.9118 - 0.9204 (0.9161)
\(0.9265-0.9401\) (0.9333)

\section*{Retrofit B}
\(0.9510-0.9576\) (0.9543)
\(0.9735-0.9787\) (0.9761)
\(0.9833-0.9901\) (0.9867)

APPENDIX 6
REPORT OF NEW TECHNOLOGY

\section*{REPORT OF NEW TECHNOLOGY}

The work performed under this contract has assisted the Washington Metropolitan Area Transit Authority in evaluating their automatic fare collection equipment and for the first time has led to the use of standardized measures of reliability and availability for evaluating automatic fare collection equipment. The use of these standardized measures will be applied to other rail rapid transit properties in an attempt to develop an industry wide data base on fare collection equipment performance.
```

