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ABSTRACT 
 
 
 

Capturing and realizing the desired system-of-systems behavior in the traditional 

natural language development documents is a complex issue given that the legacy 

systems in a system-of-systems exhibit independent behaviors.  As a result of a 

development strategy of interconnecting systems, the emergent behavior of the system-

of-systems cannot be predicted.  In our consideration of dependable software for a 

system-of-systems, we used our case study of the Ballistic Missile Defense System to 

study the development of architectural views, distributed-system and real-time design 

considerations, components, contract interfaces, and the application of formal methods in 

system-of-systems specifications.  We developed a prototype of a battle manager and 

demonstrated a slice of the formal model of the battle manager. 

Given the technical contributions of this research, we conclude that it is possible 

to develop an architecture from which we can reason about the controlling software for a 

system-of-systems.  Furthermore, we can realize the controlling software for a system-of-

systems through the concepts of component-based software engineering.  Finally, we can 

apply formal methods in the design and development of the controlling software for a 

system-of-systems by specifying the requirements for the software components with 

assertions and employing a runtime-verification tool to verify the desired behavior as 

specified by the assertions. 

  



vi 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



vii 

TABLE OF CONTENTS 
 
 
 

I. INTRODUCTION........................................................................................................1 
A. BACKGROUND ..............................................................................................1 
B. SYSTEM-OF-SYSTEMS ENVIRONMENT ................................................2 
C. CONTROLLING SOFTWARE IN A SYSTEM-OF-SYSTEMS ...............4 
D. CONTRIBUTIONS OF THIS RESEARCH .................................................6 
E. OVERVIEW OF THE DISSERTATION......................................................7 

II. STATEMENT OF THE PROBLEM .......................................................................13 
A. INTRODUCTION..........................................................................................13 
B. CASE STUDY:  BALLISTIC MISSILE DEFENSE ..................................15 

1. Ballistic Missile Threats ....................................................................15 
2. Description of the Ballistic Missile Trajectory................................18 
3. Ballistic Missile Defense System .......................................................19 
4. Battle Manager...................................................................................20 

C. PROBLEM STATEMENT ...........................................................................20 

III. SIGNIFICANCE OF THE PROBLEM...................................................................23 
A. BACKGROUND ............................................................................................23 

1. Insufficient Requirements Specification and Verification .............23 
2. System-of-Systems Integration .........................................................23 
3. Specifications and Error-Handling Verification.............................24 
4. Logic Errors .......................................................................................25 

B. BATTLE-MANAGEMENT ISSUES...........................................................25 
1. Predictable System Behavior ............................................................25 
2. Distributed System Environment .....................................................26 
3. Real-Time System Considerations....................................................27 
4. Software Architecture .......................................................................27 
5. Safety Considerations ........................................................................28 

IV. ASSESSMENT OF PREVIOUS WORK.................................................................29 
A. BACKGROUND ............................................................................................29 
B. STATE OF SYSTEM-OF-SYSTEMS RESEARCH AND 

DEVELOPMENT ..........................................................................................29 
C. FINDINGS......................................................................................................38 
D. KEY TOPICS TO BE ADDRESSED...........................................................40 

V. RESEARCH ...............................................................................................................41 
A. RESEARCH QUESTIONS...........................................................................41 
B. RESEARCH STRATEGY ............................................................................41 
C. SCOPE ............................................................................................................43 
D. SUMMARY OF CONTRIBUTIONS FROM THIS RESEARCH............44 

VI. DEPENDABLE SYSTEM-OF-SYSTEMS..............................................................45 
A. TRUSTWORTHY AND DEPENDABLE SYSTEM-OF-SYSTEMS .......45 



viii 

B. CHALLENGES FOR DEVELOPING A DEPENDABLE SYSTEM-
OF-SYSTEMS................................................................................................46 

C. BATTLE MANAGER CONSIDERATIONS..............................................47 
1. Distributed System Design ................................................................48 
2. Real-Time Design...............................................................................48 
3. System-of-Systems Architecture.......................................................48 
4. Battle-Management Kernel...............................................................48 
5. Components and Interfaces ..............................................................49 
6. Development of Specifications ..........................................................49 

VII. DISTRIBUTED SYSTEM ENVIRONMENT.........................................................51 
A. BATTLE MANAGEMENT IN A DISTRIBUTED ENVIRONMENT ....51 
B. DISTRIBUTED SYSEM DEFINITION......................................................52 
C. BATTLE MANAGER CONSIDERATIONS..............................................53 
D. TECHNICAL CONTRIBUTION.................................................................60 

VIII. REAL-TIME ENVIRONMENT...............................................................................61 
A. BATTLE MANAGEMENT IN A REAL-TIME ENVIRONMENT.........61 
B. REAL-TIME SYSTEM DEFINITION........................................................61 
C. BATTLE-MANAGEMENT COMPUTATION DEADLINES..................62 
D. BATTLE MANAGER CONSIDERATIONS..............................................68 

1. Interaction With External Environment .........................................68 
2. Timing Constraints ............................................................................68 
3. Concurrency .......................................................................................69 
4. Predictability ......................................................................................70 

E. TECHNICAL CONTRIBUTION.................................................................70 

IX. SYSTEM-OF-SYSTEMS ARCHITECTURE ........................................................71 
A. ARCHITECTURE AND DESIGN...............................................................71 
B. BATTLE-MANAGER BEHAVIOR ............................................................74 

1. Introduction........................................................................................74 
2. Planning, Command and Control, Battle Management.................77 
3. Kill Chain............................................................................................79 

a. Observe-Orient-Decide-Act.....................................................79 
b. Detect-Control-Engage ...........................................................81 
c. Decide-Detect-Deliver-Assess .................................................82 
d. Find-Fix-Track-Target-Engage-Assess .................................83 
e. Detect-Identify-Locate-Track-Destroy ...................................83 
f. Detect-Track-Assign Weapon-Engage-Assess Kill ................84 

C. ARCHITECTURE.........................................................................................84 
1. System-of-Systems Considerations...................................................84 
2. BMDS Architecture ...........................................................................86 
3. Battle Manager Architecture ............................................................88 
4. Battle-Manager Interfaces ................................................................90 

a. C2 to Battle Manager..............................................................90 
b. Battle Manager to Weapon. ....................................................91 
c. Sensor to Battle Manager .......................................................92 

5. BMK Architecture .............................................................................92 



ix 

D. TECHNICAL CONTRIBUTION.................................................................94 

X. BATTLE-MANAGEMENT KERNEL....................................................................95 
A. BACKGROUND ............................................................................................95 
B. DEFINITION OF A KERNEL.....................................................................96 
C. BATTLE-MANAGEMENT KERNEL........................................................96 
D. LOGIC IN BMK ..........................................................................................101 

XI. BATTLE-MANAGER COMPONENTS ...............................................................103 
A. BATTLE-MANAGEMENT FRAMEWORK...........................................103 
B. DEFINITION OF COMPONENT .............................................................103 
C. BATTLE MANAGER CONSIDERATIONS............................................104 
D. COMPONENT ENGINEERING CONSIDERATIONS..........................105 

1. Component-Based Software Engineering......................................105 
2. Component Framework ..................................................................106 
3. Component Properties.....................................................................107 
4. Component Interfaces .....................................................................107 
5. Specifications ....................................................................................108 

E. CHALLENGES............................................................................................109 
1. Modeling ...........................................................................................109 
2. Specifications ....................................................................................110 
3. Trusted Components .......................................................................110 
4. Component Reuse Versus Component Salvaging.........................110 

F. BATTLE MANAGER .................................................................................110 
1. Modeling ...........................................................................................111 
2. Specifications ....................................................................................112 
3. Trusted Components .......................................................................114 
4. Component Reuse Versus Component Salvaging.........................115 

XII. SPECIFICATION OF THE BATTLE MANAGER ............................................117 
A. BACKGROUND ..........................................................................................117 
B. SPECIFICATION PROBLEM...................................................................117 
C. FORMAL SPECIFICATION OF THE BATTLE MANAGER..............118 

1. Formal Specifications ......................................................................119 
2. Model checking.................................................................................122 
3. Testing...............................................................................................124 

D. TECHNICAL CONTRIBUTION...............................................................129 

XIII. PROTOTYPE...........................................................................................................131 
A. INTRODUCTION........................................................................................131 
B. ASSERTIONS IN BMK SPECIFICATIONS ...........................................132 
C. BMK PROTOTPE ARCHITECTURE .....................................................133 
D. TRACK PROCESSING COMPONENT...................................................134 

1. Track Processing Component.........................................................136 
2. iDiscriminate ....................................................................................138 
3. Discrimination Computation ..........................................................139 
4. iCorrelate ..........................................................................................139 
5. Correlation........................................................................................140 
6. Kill Data Store..................................................................................141 



x 

7. Battlespace Representation Data Store..........................................141 
8. Suspect Track Data Store................................................................141 
9. Track Data Store..............................................................................141 

E. WEAPON ASSIGNMENT COMPONENT ..............................................141 
1. Weapon Assignment Processing .....................................................143 
2. iPrioritize ..........................................................................................144 
3. Track Prioritization Computation .................................................145 
4. iWeaponAssignment ........................................................................146 
5. Weapon Assignment Computation.................................................146 
6. PDAL Data Store .............................................................................147 
7. Prioritized Threats Data Store .......................................................147 
8. Weapon System Data Store.............................................................147 
9. Weapon H&S Data Store ................................................................147 
10. ROEs Data Store ..............................................................................147 
11. Track Engagement Data Store .......................................................147 

F. DISTRIBUTED BEHAVIOR COMPONPENT .......................................147 
1. Situational Awareness:  Kill Data Store ........................................149 
2. Situational Awareness:  Battlespace Representation Data Store 149 
3. Sensor Support RPC........................................................................149 
4. Situational Awareness:  Track Engagement Data Store ..............149 
5. Weapon Assignment RPC ...............................................................149 
6. Sensor Support RPC:  Suspect Track Data Store.........................149 

G. SAFETY COMPONENT ............................................................................149 
H. ANALYSIS OF PROTOTPE......................................................................155 

1. Availability........................................................................................155 
a. Track......................................................................................155 
b. Weapon Assignment..............................................................156 
c. Component Interfaces...........................................................157 
d. Findings and Conclusions ....................................................158 

2. Consistency .......................................................................................158 
a. Track......................................................................................158 
b. Weapon Assignment..............................................................158 
c. Component Interfaces...........................................................159 
d. Findings and Conclusions ....................................................159 

3. Correctness. ......................................................................................160 
a. Track......................................................................................160 
b. Weapon Assignment..............................................................160 
c. Component Interfaces...........................................................161 
d. Findings and Conclusions ....................................................162 

4. Reliability..........................................................................................162 
a. Track......................................................................................162 
b. Weapon Assignment..............................................................163 
c. Component Interfaces...........................................................163 
d. Findings and Conclusions ....................................................164 

5. Robustness ........................................................................................164 
a. Track......................................................................................164 



xi 

b. Weapon Assignment..............................................................165 
c. Component Interfaces...........................................................165 
d. Findings and Conclusions ....................................................166 

6. Safety.................................................................................................166 
a. Safety Component .................................................................167 
b. Findings and Conclusions ....................................................168 

7. Recoverability...................................................................................168 
a. Continuity of Operations:  Track Processing ......................168 
b. Continuity of Operations:  Weapon Assignment 

Processing..............................................................................169 
c. Findings and Conclusions ....................................................170 

I. TECHNICAL CONTRIBUTION...............................................................170 

XIV. DEMONSTRATION OF THE BMK ASSERTIONS ..........................................171 
A. INTRODUCTION........................................................................................171 
B. TRACK PROCESSING ..............................................................................171 
C. SAFETY COMPONENT ............................................................................173 
D. TECHNICAL CONTRIBUTIONS ............................................................190 

XV. CONCLUSIONS ......................................................................................................193 
A. TECHNICAL CONTRIBUTIONS ............................................................193 
B. PARNAS’ ISSUES .......................................................................................193 

1. Issue One...........................................................................................194 
a. Statement of the Issue ...........................................................194 
b. Contributions of this Research.............................................194 

2. Issue Two ..........................................................................................195 
a. Statement of the Issue ...........................................................195 
b. Contribution of this Research...............................................196 

3. Issue Three........................................................................................197 
a. Statement of the Issue ...........................................................197 
b. Contribution of this Research...............................................198 

4. Issue Four .........................................................................................199 
a. Statement of the Issue ...........................................................199 
b. Contribution of this Research...............................................200 

5. Issue Five...........................................................................................201 
a. Statement of the Issue ...........................................................201 
b. Contribution of this Research...............................................202 

6. Issue Six.............................................................................................204 
a. Statement of the Issue ...........................................................204 
b. Contribution of this Research...............................................204 

C. CONCLUSIONS ..........................................................................................206 

XVI. FUTURE RESEARCH RECOMMENDATIONS................................................209 
A. BACKGROUND ..........................................................................................209 
B. FUTURE RESEARCH RECOMMENDATIONS....................................209 

1. Safety Kernel for a System-of-Systems..........................................209 
2. System-of-Systems Operation in Multiple Configurations ..........209 



xii 

3. Trade-Offs of Assertions Left in System-of-Systems at Runtime 
Versus Assertions Used in Development........................................209 

4. Asserting Control in System-of-Systems........................................210 
5. Development Metrics for a System-of-Systems.............................210 
6. Properties of a Dependable System-of-Systems and Network-

Centric Warfare Solution................................................................210 
7. Distributed Considerations for a Dependable System-of-

Systems and Network-Centric Warfare Solution .........................210 
8. Real-Time In Distributed Environment.........................................211 
9. Interface Considerations For A Dependable System-Of-

Systems And Network-Centric Warfare Solution ........................211 
10. Testing Considerations For A Dependable System-Of-Systems 

And Network-Centric Warfare Solution .......................................211 

APPENDIX A. GLOSSARY......................................................................................213 

APPENDIX B. ACRONYMS....................................................................................225 

LIST OF REFERENCES....................................................................................................231 

INITIAL DISTRIBUTION LIST .......................................................................................239 
 
 
 
 



xiii 

LIST OF FIGURES 
 
 
 

Figure 1. Keep-Out Altitude in Kill Chain......................................................................63 
Figure 2. Shoot at Highest Percentage Shot Opportunity ...............................................64 
Figure 3. Shoot-Look-Shoot............................................................................................65 
Figure 4. Information Sources for Developing Specifications........................................76 
Figure 5. Reactive System Model ...................................................................................87 
Figure 6. External View of  BMDS Battle Manager.......................................................88 
Figure 7. Internal View of BMDS Battle Manager .........................................................90 
Figure 8. Class Diagram..................................................................................................93 
Figure 9. BMK Architecture ...........................................................................................93 
Figure 10. Messaging Example in a Distributed Battle-Management Network ...............99 
Figure 11. Component-Based Design Pattern .................................................................106 
Figure 12. Track Processing Component Interface to Discrimination Component ........112 
Figure 13. BMK Active Components and Data Stores ...................................................133 
Figure 14. Track Processing Component ........................................................................136 
Figure 15. Weapon Assignment Processing Component ................................................142 
Figure 16. BMK Distributed Behavior Component ........................................................148 
Figure 17. BMK Safety Component................................................................................152 
Figure 18. Track Processing:  Scenario 1........................................................................172 
Figure 19. Track Processing:  Scenario 2........................................................................173 
Figure 20. Safety Component:  Rule 1, Scenario 1 .........................................................175 
Figure 21. Safety Component:  Rule 1, Scenario 2 .........................................................176 
Figure 22. Safety Component:  Rule 1, Scenario 3 .........................................................177 
Figure 23. Safety Component:  Rule 2, Scenario 1 .........................................................179 
Figure 24. Safety Component:  Rule 2, Scenario 2 .........................................................180 
Figure 25. Safety Component:  Rule 2, Scenario 3 .........................................................181 
Figure 26. Safety Component:  Rule 3, Scenario 1 .........................................................183 
Figure 27. Safety Component:  Rule 3, Scenario 2 .........................................................184 
Figure 28. Safety Component:  Rule 3, Scenario 3 .........................................................185 
Figure 29. Safety Component:  Rule 3, Scenario 4 .........................................................186 
Figure 30. Safety Component:  Rule 4, Scenario 1 .........................................................188 
Figure 31. Safety Component:  Rule 4, Scenario 2 .........................................................189 
Figure 32. Safety Component:  Rule 4, Scenario 3 .........................................................190 
Figure 33. Technical Contributions of this Research that Address Parnas’ Issues .........194 

 
 
 
 
 
 
 



xiv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



xv 

LIST OF TABLES 
 
 
 

Table 1. Ballistic Missile Threat Flight Times * ...........................................................65 
Table 2. Battle-Management Response Times * ...........................................................67 
Table 3. Predicted Loss of life from Weapons of Mass Destruction .............................69 
Table 4. Summary of Kill Chains ..................................................................................85 
Table 5. Test Oracle for Assertion ...............................................................................129 

 



xvi 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



xvii

ACKNOWLEDGMENTS 

 

I would like to thank Professor Bret Michael, Professor Man-Tak Shing, Professor 

Doron Drusinsky, Professor Dan Boger, and Dr. Kevin Greaney for serving on my 

dissertation committee and providing me with wise counsel during the past four years.  

They worked tirelessly to help increase my understanding of software engineering.  I 

would like to offer additional gratitude and admiration to Professor Michael who helped 

shape my understanding of software development, engaged me in valuable discussions, 

and provided sage guidance.  He is a gifted educator and a talented researcher, and 

without peer in dedication and devotion to the responsibility of guiding students to 

greater academic achievements.  I would like to thank Dr. Kevin Greaney for introducing 

me to the oustanding software engineering program at the Naval Postgraduate School and 

encouraging me throughout my journey. 

I would like to thank Lieutenant Colonel Tom Cook who offered me numerous 

reviews of my dissertation material and keen insight into computer science.  I would like 

to thank General Robert Dehnert and Mr. Richard Ritter for their encouragement and 

support during the past two years of my work and research.  I would like to offer my 

thanks to Mr. Gerald Durbin who recruited me into Federal Service and mentored me 

throughout my career.  He continues to be a great inspiration to me.   

I would like to thank my mother and father who provided me with the inspiration 

to seek higher-level education through personal example and sacrifice.  I offer thanks to 

my daughter Kim and our two granddaughters – Kailie and Alayna.  They motivated me 

far beyond what they might imagine. 

Most of all, I would like to thank the greatest wife in the world to whom I am 

very happily married.  As is her giving and supporting nature, Trudy went “above and 

beyond” to ensure that the all was well on the home front, and made possible this 

doctoral journey. While this research and the challenges of my job motivate me to reach 

for higher goals, she inspires me to love life and to be a better man.  I love her dearly. 



xviii

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



xix 

EXECUTIVE SUMMARY 
 

 

Many of the systems that comprise a system-of-systems most likely existed first 

as legacy systems that operated as stand-alone capabilities in the operational world.  

These legacy systems were developed with specific sets of requirements and with specific 

system functionality in mind.  Additionally, just as we developed the legacy systems as 

independent developments, we are typically developing new systems that will become 

members of a system-of-systems under similar conditions.  That is, we are developing 

these systems as stand-alone capabilities with specific sets of requirements and with 

specific system functionality in mind.  

Typically, developers will connect these systems through some communication 

medium in the hope of achieving greater functionality, although this long-standing 

acquisition strategy does not necessarily result in the intended synergistic effect.  One can 

identify the systems that will form the system-of-systems, and then set out to bend, fold, 

spindle, and mutilate these systems in the fevered hope of producing a functional 

composition:  it is difficult to think about the system-of-systems as a single entity, which 

may explain why system developers sometimes mistakenly focus on modifying 

individual systems with little deliberation and consideration for the system as a whole. 

The control of a system-of-systems presents a tremendous challenge to software 

developers.  As developers interconnect a number of independent systems to form a 

system-of-systems, they should address the emergent properties for the control of a 

system-of-systems that cannot be predicted by analyzing each independent system. 

The following is a summary of the technical contributions of this research: 

1. Identification of distributed-system attributes for controlling 

software in a system-of-systems  

2. Identification of real-time attributes for real-time controlling 

software in a reactive system-of-systems 

3. Development of system-of-systems architecture views from 

system-of-systems view to component view in controlling software 



xx 

4. Use of kernel in controlling software for system-of-systems to 

shape dependable behavior of system-of-systems 

5. Reduction of software complexity from an exponential factor for a 

monolithic software program to a component-based construct in which the active 

components are decoupled by data stores 

6. Development of  assertions from collaboration diagrams 

7. Adaptation of CBSE by advanced use of assertions in interface 

contracts between components to assert protocols surrounding the components in reactive 

systems 

8. Demonstration that formal methods can be applied to large, 

complex system-of-systems developments 

The technical contributions of this research offer evidence that lead us to conclude 

the following about the questions posed for this research:   

1. It is possible to develop a system-of-systems architecture from 

which we can reason about the controlling software for a system-of-systems. 

2. We can realize the controlling software from a system-of-systems 

architecture through the concepts of component-based software engineering.   

3. We can apply formal methods in the design and development of 

the controlling software for a system-of-systems by specifying the requirements for the 

software components with assertions and employing a runtime verification tool to verify 

the desired behavior specified in the assertions.   

Additionally, this research addresses David Parnas’ challenges back in 1985 to the 

Department of Defense on the Strategic Defense Initiative (SDI).  Parnas’ six issues are 

summarized as follows: 

1. Discrimination of the threat objects from decoys and debris is a 

significant challenge. 



xxi 

2. Software developers cannot predict the behavior of the battle-

management software with confidence given the actual configuration of weapons, 

sensors, and battle managers are not known until the moment of battle. 

3. Software developers cannot test the battle-management software 

under realistic conditions. 

4. The duration of the defense engagement will be short.  It will not 

allow for either human intervention or debugging the software to overcome software 

faults at runtime. 

5. Battle-management software will have absolute real-time 

deadlines. 

6. Battle-management software must integrate numerous dynamic 

software systems to the extent that has never before been achieved. 
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I. INTRODUCTION  

A. BACKGROUND 
The annals of human conflict are replete with the terrible results of the traditional 

war strategy of attrition in which opposing forces attempt to inflict more casualties on the 

enemy than the enemy can sustain and maintain a viable military force.  This “mass-on-

mass” strategy resulted in staggering losses of life in countless wars.  For example, 

623,026 soldiers lost their lives in the four years of the U.S. Civil War.  At Antietam, the 

combined casualties of Union and Confederate forces totaled 26,134 soldiers on a single 

day of battle. [48]  The war of attrition concept was a costly strategy in terms of human 

life. 

During the past decade, the Department of Defense (DoD) shifted military tactics 

from the traditional war of attrition to a transformational concept of full-spectrum 

dominance: the ability of US forces, operating unilaterally or in combination with 

multinational and interagency partners, to defeat any adversary and control any situation 

across the full range of military operations.  In Joint Vision 2020 (JV 2020), the 

Chairman, Joint Chiefs of Staff included the following operational concepts that will 

support the achievement of full-spectrum dominance [23]: 

1. Dominant maneuver is the ability of joint forces to gain positional 

advantage with decisive speed and overwhelming operational tempo in the achievement of 

assigned military tasks.  

2. Focused logistics is the ability to provide the joint force with the right 

personnel, equipment, and supplies in the right place, at the right time, and in the right 

quantity, across the full range of military operations.  

3. Full dimensional protection is the ability of the joint force to protect its 

personnel and other assets required to decisively execute assigned tasks.  

4. Precision engagement is the ability of joint forces to locate, surveil, 

discern,  and  track  objectives  or targets;  select,  organize,  and  use the correct systems;  
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generate desired effects, assess results; and reengage with decisive speed and 

overwhelming operational tempo as required, throughout the full range of military 

operations. 

B. SYSTEM-OF-SYSTEMS ENVIRONMENT 
In recent times, systems-of-systems have exploded into the battlespace of the joint 

and coalition warfighters to meet the challenges that the Chairman identified in his vision 

of future warfare.  (N.B.:  For this research, we define a system-of-systems as an 

amalgamation of legacy systems and developing systems that provide an enhanced 

military capability greater than that of any of the individual systems within the system-of-

systems.)  The development community’s response in the U.S. Department of Defense to 

the rabid craving for more accurate information and more lethal functionality has been a 

less than sterling hobbling of various legacy systems and ongoing system developments 

through tightly coupled and lowly cohesive communication shackles. 

Many of the systems that comprise a system-of-systems most likely existed first 

as legacy systems that operated as stand-alone capabilities in the operational world.  

These legacy systems were developed with specific sets of requirements and with specific 

system functionality in mind.  Just as we developed the legacy systems as independent 

developments, we are typically developing new systems that will become members of a 

system-of-systems under similar conditions.  That is, we are developing these systems as 

stand-alone capabilities with specific sets of requirements and with specific system 

functionality in mind.  

Typically, developers will connect these systems through some communication 

medium in the hope of achieving greater functionality, although this long-standing 

development strategy does not necessarily result in the intended synergistic effect.  One 

can identify the systems that will form the system-of-systems, and then set out to bend, 

fold, spindle, and mutilate these systems in the fevered hope of producing a functional 

composition:  it is difficult to think about the system-of-systems as a single entity, which 

may explain why system developers sometimes mistakenly focus on modifying 

individual systems with limited deliberation and consideration for the system as a whole.  
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Our tools for reasoning about a system-of-systems typically consist of little more 

than a “sticks-and-circles” diagram.  The “circles” represent the various systems that 

comprise the system-of-systems while the “sticks” are means of information transfer, a 

messaging protocol, and, perhaps, a translator box to translate the messaging format from 

one system to another.  Armed with this sophomoric view of the system-of-systems, we 

attempt to analyze and design the system-of-systems through a trivial picture of the 

various systems as connected by a convoluted labyrinth of lines.  Unfortunately, sticks-

and-circles diagrams lack both a formal semantics and the richness needed to express the 

many dimensions of system behavior.   

Are the circles meant to represent systems, subsystems, modules, classes, objects, 

functions, hardware, or some other entity?  Are the sticks meant to represent data flow, 

triggers, synchronization, calls, inheritance, or something else? 

Far too frequently, we initiate detailed design and coding from reasoning about 

the sticks-and-circles diagrams.  During the development, we add new layers of features 

and functional enhancements to the system software without clear insight into the 

organization of the system software.  Inevitably, the basic organization of the software 

that seemed so reasonable at the beginning of the development process begins to break 

apart under the weight of the revisions made to the system software.  Sadly, the software 

development becomes another casualty to report in future studies as to why software 

developments are not successful. 

Traditionally, this methodology failed to achieve an interoperable and integrated 

system-of-systems with predictable, dependable behavior.  With each new failure, the 

system engineers attempted to “tighten up” the protocol standard; however, the system-

of-systems cannot be made to exhibit predictable, dependable behavior by increasing the 

level of detail in the interconnectivity standards.  As a result of the traditional system-of-

systems development effort, the end-state is a collection of systems that have a high 

degree of coupling with a realized protocol standard that only serves to significantly 

increase the system-of-systems software complexity. 
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As we have witnessed time and again, system-software critical interactions 

increase as the complexity of highly interconnected systems increases.  In the complex 

system-of-systems, these possible combinations are practically limitless.  System 

“unravelings” seem to have an intelligence of their own as they expose hidden 

connections, neutralize redundancies, and exploit chance circumstances for which no 

system engineer might plan.  A software fault at runtime in one module of the system-

software may coincide with the software fault of an entirely different module of the 

system-software.  This unforeseeable combination can cause cascading failures within the 

system-of-systems. 

C. CONTROLLING SOFTWARE IN A SYSTEM-OF-SYSTEMS1 
 The control of a system-of-systems presents a tremendous challenge to software 

developers.  As developers interconnect a number of independent systems to form a 

system-of-systems, they should address the emergent properties for the control of a 

system-of-systems that cannot be predicted by analyzing each independent system. [100]   

In [101] and [102], the authors maintain that the “…basic paradigm of control has 

not found its place as a first-class concept in software engineering.”  They offer a new 

paradigm that considers the software system as a plant and includes a “controller 

subsystem” for controlling the plant.  As suggested in [15], we offer the concept of 

developing the controlling software as a distinct control application for a system-of-

systems. 

We suggest that the battle-management software in the Ballistic Missile Defense 

System (BMDS) exemplifies the aforementioned difficulties and challenges of 

controlling software in a system-of-systems.  (N.B.:  The BMDS is a collection of 

independent missile defense systems that will be integrated into a system-of-systems.  

We describe the BMDS in detail in Chapter II as we use the BMDS as our case study in 

this research.) 

In his book “Software Fundamentals:  Collected Papers by David L. Parnas,” 

Parnas  outlines  six  major  characteristics  of  the  battle-management  software  in  the  

                                                 
1 The text of the statement of the problem is largely an extract from [10]. 
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Strategic Defense Initiative (SDI) program (known today as the BMDS). [61]  The 

following issues are as relevant today as during the time when Parnas published his 

observations: 

1. The battle-management software must identify, track, and direct weapons 

towards targets whose characteristics may not be known with certainty until the moment 

of battle.   The battle-management software must discriminate the threat objects from 

decoys and debris. 

2. The battle-management computing will be accomplished through a 

network of computers that are connected to sensors and weapons as well as other battle-

management computers.  The behavior of the battle-management software cannot be 

predicted with confidence given the actual configuration of weapons, sensors, and battle 

managers at the moment of battle. 

3. Developers cannot test the battle-management software under realistic 

conditions prior to actual use of the software. 

4. The duration of the defense engagement will be short:  it will not allow for 

either human intervention or debugging the software to overcome software faults at 

runtime. 

5. The battle-management software will have absolute real-time deadlines for 

the computation that will consist of periodic processes to include detecting and 

identifying potential threat missiles, assigning a weapon to engage the threat missile, and 

providing an assessment of the interceptor-threat missile engagement.  Because of the 

unpredictability of the computational requirements of each process, developers cannot 

predict the required resources for computation. 

6. The missile defense system will include a large variety of sensors, 

weapons, and battle-management components for which all will be large, complex 

software systems.  The suite of weapons and sensors will increase in number as the 

development progresses.  The characteristics of these future weapons and sensors are not 

well defined and will likely remain fluid for many years.  Additionally, all weapons and 

sensors will be subject to change independently of each other.  As such, the battle-
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management software must integrate numerous dynamic software systems to the extent 

that has never before been achieved.  

D. CONTRIBUTIONS OF THIS RESEARCH 
The following is a summary of the technical contributions of this research: 

1. Identification of distributed-system attributes for controlling software in a 

system-of-systems  

2. Identification of real-time attributes for real-time controlling software in a 

reactive system-of-systems 

3. Development of system-of-systems architecture views from system-of-

systems view to component view in controlling software 

4. Use of kernel in controlling software for system-of-systems to shape 

dependable behavior of system-of-systems 

5. Reduction of software complexity from an exponential factor for a 

monolithic software program to a component-based construct in which the active 

components are decoupled by data stores 

6. Development of  assertions from collaboration diagrams 

7. Adaptation of CBSE by advanced use of assertions in interface contracts 

between components to assert protocols surrounding the components in reactive systems 

8. Demonstration that formal methods can be applied to large, complex 

system-of-systems developments 

The technical contributions of this research offer evidence that lead us to conclude 

the following about the questions posed for this research:   

1. It is possible to develop a system-of-systems architecture from which we 

can reason about the controlling software for a system-of-systems. 

2. We can realize the controlling software from a system-of-systems 

architecture through the concepts of component-based software engineering.   
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3. We can apply formal methods in the design and development of the 

controlling software for a system-of-systems by specifying the requirements for the 

software components with assertions and employing a runtime verification tool to verify 

the desired behavior specified in the assertions.   

Additionally, this research addresses each of the aforementioned challenges 

highlighted by Parnas regarding the Strategic Defense Initiative (SDI).  (N.B.:  President 

Ronald Reagan tasked the SDI Organization (SDIO) to develop the SDI which was 

colloquially known as Star Wars.  SDIO later become the Ballistic Missile Defense 

Organization (BMDO).  In January 2002, Secretary of Defense Donald Rumsfeld 

elevated BMDO to agency status and renamed BMDO as the Missile Defense Agency 

(MDA).  SDI is currently known as the BMDS which contains both the former National 

Missile Defense (NMD) system and the Theater Ballistic Missile Defense (TBMD) 

systems.) 

E. OVERVIEW OF THE DISSERTATION 
In Chapter II, we reference Parnas’ six issues and discuss the difficulty involved 

in the design and development of a system-of-systems.  Parnas’ six issues are 

summarized as follows: 

1. Discrimination of the threat objects from decoys and debris is a significant 

challenge. 

2. Software developers cannot predict the behavior of the battle-management 

software with confidence given the actual configuration of weapons, sensors, and battle 

managers are not known until the moment of battle. 

3. Software developers cannot test the battle-management software under 

realistic conditions. 

4. The duration of the defense engagement will be short.  It will not allow for 

either human intervention or debugging the software to overcome software faults at 

runtime. 

5. Battle-management software will have absolute real-time deadlines. 

6. Battle-management software must integrate numerous dynamic software 

systems to the extent that has never before been achieved. 
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In Chapter III, we provide examples of system-of-systems that failed in operations 

– two of the examples reflect the loss of life as a result of unknown emergent behavior in 

the system-of-systems. 

In Chapter IV, we assess the previous research and developments of systems-of-

systems.  Based upon our assessment of previous research and developments of system-

of-systems, the key topics to be addressed are as follows: 

1. Although there would seem to be a global trend towards composing 

systems-of-systems, there appears to be a significant void in both research activities and 

the engineering practices for the development of a system-of-systems.   

2. The architecture of the system-of-systems seems to be a critical issue for 

the developer of a system-of-systems.  A suitable architecture may be a valuable first step 

in the successful design and development of a system-of-systems. 

3. A component-based structure could be one characteristic of successful 

system-of-system developments.  With components, we might consider techniques in 

which we can isolate the behavior of a given component from all others with the 

objective of isolating faults within the component. 

4. Formal methods and model checking could be useful in the design and 

development of a system-of-systems.  It seems as if previous research considered the 

entire system-of-systems rather than decomposing the system-of-systems into 

components for which formal methods and model checking could provide value.   

In Chapter V, we pose the following research questions: 

1. Is it possible to develop a system-of-systems architecture from which we 

can reason about the controlling software for a system-of-systems?   

2. Can we realize the controlling software from a system-of-systems 

architecture through the concepts of component-based software engineering? 

3. Can we apply formal methods in the design and development of the 

controlling software for a system-of-systems by specifying the requirements for the 

software components with assertions and employing a runtime verification tool to verify 

the desired behavior specified in the assertions? 
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In Chapter VI, we define a dependable system and a trustworthy system as 

follows: 

A dependable system is one that provides the appropriate levels of correctness 

and robustness in accomplishing its mission while demonstrating the appropriate levels of 

availability, consistency, reliability, safety, and recoverability. 

A trustworthy system is one that provides the appropriate levels of correctness 

and robustness in accomplishing its mission while demonstrating the appropriate levels of 

availability, consistency, reliability, safety, and recoverability to the degree that justifies 

a user’s confidence that the system will behave as expected. 

We discuss specific dependability issues in the development of specifications, 

interfaces, battle-management kernel (BMK), distributed systems, and real-time systems. 

In Chapter VII, we briefly discuss the distributed-system issues of the battle 

manager; however, we propose that this be a future research topic. 

In Chapter VIII, we briefly discuss the real-time issues of the battle manager; 

however, we propose that this be a future research topic. 

In Chapter IX, we offer several architectural views of the battle manager and 

propose the following architectural principles for the battle manager: 

1. With the knowledge of the short timelines to conduct battle management 

for missile defense, it is not prudent to realize the battle-manager capability in a 

centralized fashion; that is, it is not reasonable to expect such a system to be positioned 

within the United States and require the system to direct the engagements of all possible 

ballistic missiles from all parts of the globe.  As such, we will consider a distributed-

system construct for the BMDS Battle Manager.  The distributed battle manager must be 

able to communicate with all the sensors and all the weapons systems in the BMDS; 

however, the distributed battle manager should be transparent from the perspective of the 

sensors and weapons connected to it. 

2. We anticipate that the BMDS Battle Manager will continually experience 

modifications and upgrades to its applications.  As such, it would be useful to isolate the 
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software that will change little over time from the software that will change more 

frequently.  We will employ the concept of component-based engineering to design and 

develop the BMDS Battle Manager.     

3. We will develop the software that realizes the basic functions of the battle 

manager as a kernel given that this software should experience limited modifications over 

time.  We will add a software application to the kernel that controls the distributed 

processing in the battle manager.     

4. We have defined an architecture for the battle manager that could provide 

flexibility for decisions in the detailed design.  The architecture that we have defined for 

the battle manager could allow the incorporation of design details for dependable 

software, distributed systems, real-time software, software kernels, and software 

components. 

In Chapter X, we propose the use of a BMK that consists of the set of software 

components that are necessary to provide correct real-time execution of battle-

management tasks in a system-of-systems context, both in nominal and degraded modes 

of system operation.  We propose that the BMK should exhibit the following 

characteristics: 

1. The BMK has absolute priority.  That is, no other component can interrupt 

the kernel from accomplishing its work. 

2. System parameters and external events are measurable and observable by 

the BMK.  When presented with measurements for a given set of parameters and external 

events, the BMK will exhibit correct system behavior.  (N.B.:  We define correct as the 

reaching of the desired state given the previous state is presented with a given set of 

inputs.) 

3. Detection of errors will be through the use of assertions.  The BMK will 

direct non-kernel software components for the recovery of observed errors such as 

violation of pre-conditions, post-conditions, and invariants. 
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In Chapter XI, we propose that we develop the software that contains the basic 

functions of battle management as a set of components in the BMK given that this 

software should experience limited modifications over time.  We propose to develop 

other component software that contains the algorithms required to perform the 

computations of the BMDS Battle Manager. 

In Chapter XII, we assert that our current development techniques are failing to 

support system developers in producing systems with predictable behavior.  Almost 

exclusively, acquisition organizations rely on exhaustive testing prior to fielding the 

completed product to assess system behavior. Rather than discovering system behavior at 

the end of the development phase, developers might apply techniques that support the 

design and realization of desired system behavior from the earliest phases of concept 

development and requirements development. 

The application of formal methods for specification and verification is a technique 

for consideration by developers of system-of-systems.  Formal methods can complement 

traditional techniques such as testing and can help developers improve the degree of 

trustworthiness in defense acquisitions.   

For the battle manager, we will use assertions to specify the desired behavior.  

While assertions alone will not ensure dependable software, the use of assertions can 

increase the level of dependability of a system. 

In Chapter XIII, we develop a prototype that contains natural language assertions 

to specify specific behavior for the track processing and weapon-system assignment in 

the BMK.  Additionally, we develop safety policies for the battle manager and proposed 

natural language assertions to monitor the safety policies in the BMK.  Finally, we 

identify specific distributed behavior and offer natural language assertions to specify the 

desired distributed behavior among BMKs in the system-of-systems. 

In Chapter XIV, we demonstrate a slice of the BMK as we transform several 

natural language assertions to temporal logic assertions and run those assertions through a 

model checker to determine whether we achieved the desired behavior. 
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In Chapter XV, we outline the technical contributions of this research and present 

a matrix of the contributions against Parnas’ six issues for SDI. 

In Chapter XVI, we offer future research topics for the subject of systems-of-

systems. 
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II. STATEMENT OF THE PROBLEM  

A. INTRODUCTION 
In the crusade for acquisition reform, the tendency in specifications is to 

document the “thou shalts” of specific system functions, design to the “thou shalts” with 

modifications to accommodate the development, and field a system that little resembles 

the collective “thou shalts” and, more importantly contains limited user utility.  The 

Department of Defense has realized limited success in attempting to capture the desired 

system behavior in natural language requirements documentation (e.g., Operational 

Requirements Documents (ORDs), System Requirements Specifications (SRSs), and 

Interface Requirements Specifications (IRSs)) and achieve the documented behavior in 

the fielded systems. [49]  In [50], Leffingwell and Widrig discuss the impacts of 

insufficient and incomplete system specifications. 

The system-of-systems problem is one of designing and implementing the degree 

of desired system behavior by somehow connecting legacy systems.  (N.B.:  For this 

research, we define system behavior as the collective responses of a system as it reacts to 

stimuli such as sensory information, a clock, or a received transaction.)  Capturing the 

desired system-of-systems behavior in the traditional natural language documents is a 

complex issue given that the legacy systems in the system-of-systems have a combination 

of existing known and unknown system behaviors.  Typically, the system-of-systems 

specification is reduced to a table of information exchange requirements (IERs) that 

define the messaging that passes from one system to another. 

As a result of a system-of-systems development strategy of interconnecting 

systems while concentrating the development efforts on messaging and protocols, the 

operational system-of-systems frequently demonstrate undesired system behaviors.  

Although the system-of-systems may require safety considerations, system architects and 

system designers can experience a significant degree of difficulty in testing for the safety-

critical features and certifying a system-of-systems as being safe.  (N.B.:  For this 

research, we define safety as the property of avoiding a catastrophic outcome given a 

system fails to operate correctly.)  Additionally, the user is frequently irritated at the 
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undesirable distributed-system behaviors that a system-of-systems may exhibit such as 

halted processes without recovery and disparate versions of same-source data. 

While a primary concern of a system-of-systems is the exhibited system behavior, 

the financial costs for incorrectly and insufficiently specified systems is staggering.  

System-specification errors will be the source of seventy percent of the system rework 

costs.  Given that rework costs are typically 30% to 50% of a program budget, the 

correction of system-specification errors can cost 25% to 40% of an entire program 

budget. [50] 

Increasingly, software concerns are overtaking hardware concerns in systems 

engineering.  From numerous lessons-learned from failed developments, it would appear 

that the following statements are becoming development truths [50]: 

Software – not hardware – determines the degree of achieved success in the 

fielded capabilities of our systems. 

Software – not hardware – consumes the majority of costs for system 

development. 

Software – not hardware – is on the critical path of every development and 

ultimately determines when and if a system is fielded. 

Software – not hardware – is the entity changed most often in the acquisition 

lifecycle of a system to meet the changing needs of the warfighters. 

Our journey to achieve the desired system behavior in a system-of-systems has no 

end in sight.  The development community continues to fail in delivering the critical 

functionality required by the warfighters in our system-of-systems.  The development 

community continues to fail in capturing and achieving the desired system behavior, and 

the development community continues to invest a significant amount of the program 

budget in system rework to correct specification deficiencies.   

Unfortunately, we seem to accept these facts and are resigned to repeat the errors 

of our predecessors.  We continue on with the same bad practices of the past.  As the old 

adage goes:  we do not plan to fail - we just fail to plan.  
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B. CASE STUDY:  BALLISTIC MISSILE DEFENSE 
  To help us understand the proposed concepts for developing dependable 

software for a system-of-systems environment, we will use the BMDS as a case study in 

this research.  We offer that the BMDS exemplifies other systems-of-systems as the 

BMDS is an amalgamation of numerous independent systems.  Although we will 

describe the research with respect to the BMDS, the statement of the problem, proposed 

concepts, and conclusions of this research is representative of other system-of-systems 

environments for which a dependable system-of-systems-level software is required.  

Within a sensor-to-shooter system-of-systems, battle managers hold the 

controlling software.  The legacy systems in the system-of-systems include sensors that 

detect and track a threat object, and weapon systems that compute firing solutions and 

engage the threat object. 

We find the importance of battle management within the concept of precision 

engagement.  (N.B.: For this research, we define battle management as the decisions and 

actions executed in direct response to the activities of enemy forces in support of the 

Joint Chiefs of Staff’s concept of precision engagement. [18])  Battle managers must 

rapidly make decisions to counter both enemy actions and force movements.  Battle 

managers must correctly cope with the fog-of-war conditions that are ever-present during 

the prosecution of the war.  The success or failure of the battle-management functions 

will determine the success or failure of joint forces with respect to the achievement of 

their assigned objectives.  [30] 

1. Ballistic Missile Threats 
With respect to ballistic missile threats, the current trend is increased distance for 

ballistic missile flight which requires greater velocities of future threats.  Additionally, 

the proliferation of ballistic missiles is worldwide as noted by the Director of Central 

Intelligence in his testimony before the Senate Select Committee on Intelligence. [76]  

Excerpts from his testimony are as presented below: 

“North Korea also continues to advance its missile programs.  North Korea is 

nearly self-sufficient in ballistic missiles, and has continued procurement of raw materials 

and components for its extensive ballistic missile programs from various foreign sources.  
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The North also has demonstrated a willingness to sell complete systems and components 

that have enabled other states to acquire longer-range capabilities and a basis for 

domestic development efforts earlier than would otherwise have been possible.” 

“North Korea has maintained a unilateral long-range missile launch moratorium 

since 1999, but could end that with little or no warning.  The multiple-stage Taepo Dong-

2—capable of reaching the United States with a nuclear weapon-sized payload—may be 

ready for flight-testing.” 

“Finally, Iran's missile program is both a regional threat and a proliferation 

concern.  Iran's ballistic missile inventory is among the largest in the Middle East and 

includes the 1300-km range Shahab-3 medium-range ballistic missile (MRBM) as well as 

a few hundred short-range ballistic missiles (SRBMs).  Iran has announced production of 

the Shahab-3 and publicly acknowledged development of follow-on versions.  During 

2003, Iran continued R&D on its longer-range ballistic missile programs, and publicly 

reiterated its intention to develop space launch vehicles (SLVs)—and SLVs contain most 

of the key building blocks for an intercontinental ballistic missile (ICBM).  Iran could 

begin flight-testing these systems in the mid- to latter-part of the decade.” 

“Iran also appears willing to supply missile-related technology to countries of 

concern and publicly advertises its artillery rockets and related technologies, including 

guidance instruments and missile propellants.” 

“China continues an aggressive missile modernization program that will improve 

its ability to conduct a wide range of military options against Taiwan supported by both 

cruise and ballistic missiles.  Expected technical improvements will give Beijing a more 

accurate and lethal missile force.  China is also moving on with its first generation of 

mobile strategic missiles.”  

“Although Beijing has taken steps to improve ballistic missile related export 

controls, Chinese firms continue to be a leading source of relevant technology and 

continue to work with other countries on ballistic missile-related projects.”  
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“South Asian ballistic missile development continues apace.  Both India and 

Pakistan are pressing ahead with development and testing of longer-range ballistic 

missiles and are inducting additional SRBMs into missile units.  Both countries are 

testing missiles that will enable them to deliver nuclear warheads to greater distances.”  

“Last year Syria continued to seek help from abroad to establish a solid-propellant 

rocket motor development and production capability.  Syria's liquid-propellant ballistic 

missile program continued to depend on essential foreign equipment and assistance, 

primarily from North Korean entities.  Syria is developing longer-range missile 

programs, such as a Scud D and possibly other variants, with assistance from North 

Korea and Iran.” 

“Many countries remain interested in developing or acquiring land-attack cruise 

missiles, which are almost always significantly more accurate than ballistic missiles and 

complicate missile defense systems.  Unmanned aerial vehicles are also of growing 

concern.” 

“To conclude my comments on proliferation, I'll briefly run through some WMD 

programs I have not yet discussed, beginning with Syria.” 

“Syria is an NPT signatory with full-scope IAEA safeguards and has a nuclear 

research center at Dayr Al Hajar.  Russia and Syria have continued their long-standing 

agreements on cooperation regarding nuclear energy, although specific assistance has not 

yet materialized.  Broader access to foreign expertise provides opportunities to expand its 

indigenous capabilities and we are closely monitoring Syrian nuclear intentions.  

Meanwhile, Damascus has an active CW development and testing program that relies on 

foreign suppliers for key controlled chemicals suitable for producing CW.” 

“Finally, we remain alert to the vulnerability of Russian WMD materials and 

technology to theft or diversion.  We are also concerned by the continued eagerness of 

Russia's cash-strapped defense, biotechnology, chemical, aerospace, and nuclear 
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industries to raise funds via exports and transfers—which makes Russian expertise an 

attractive target for countries and groups seeking WMD and missile-related assistance.”  

2. Description of the Ballistic Missile Trajectory 
All ballistic missiles share a common, fundamental element - they follow a 

ballistic trajectory that includes three phases.  These phases are the boost phase, the 

midcourse phase, and the terminal phase.   

The boost phase is the portion of a missile's flight in which it is thrusting to gain 

the acceleration needed to reach its target.  This phase usually lasts 50 seconds for a 1000 

kilometer ballistic missile threat and 75 seconds for a 3000 kilometer ballistic missile 

threat.  During the boost phase the rocket is climbing against the earth's gravity and either 

exiting the earth's atmosphere, or in the case of shorter-range missiles, only reaching the 

fringes of outer space.   

Once the missile has completed firing its propulsion system, it begins the longest 

part of its flight, which is known as the mid-course phase.  During this phase the missile 

is coasting, or freefalling towards it target.  This phase can be as short as 6 minutes for a 

1000 kilometer ballistic missile threat and as long as 11 minutes for a 3000 kilometer 

ballistic missile threat.    Most missiles that leave the atmosphere shed their rocket motors 

by this time in order to increase the range that the missile's weapon (i.e., warhead) can 

travel.  For medium and long-range missiles this phase occurs outside the earth's 

atmosphere.   

The final phase of a missile's flight is the terminal phase which is flight space in 

which the ballistic missile threat reenters the Earth’s atmosphere during which the 

atmosphere begins to measurably impact the velocity and flight characteristics of the 

ballistic missile threat.  For this research, we will consider 32 kilometers above sea level 

as the point of reentry into Earth’s atmosphere.  During this phase the ballistic missile's 

warhead reenters the Earth's atmosphere at incredible speeds.  For example, a 3000 

kilometer ballistic missile threat has a velocity of 3.85 kilometers per second at an 

altitude of 10 kilometers.  This phase last approximately 16 seconds for a 1000 kilometer 

ballistic missile threat and approximately 10 seconds for a 3000 kilometer ballistic 

missile threat. [55]  (N.B.:  We offer the flight times for missiles in the three phases as a 
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point of reference rather than absolute values.  [55] offers a detailed analysis of flight 

times for various missile types and atmospheric conditions.)  

3. Ballistic Missile Defense System 
DoD plans to acquire a layered ballistic missile defense to defend the forces and 

territories of the United States, its Allies, and friends against all classes of ballistic 

missile threats.  The Ballistic Missile Defense (BMD) program will pursue a broad range 

of activities in order to develop and evaluate technologies for the integration of land, sea, 

air, and space-based platforms to counter ballistic missiles in all phases of their flight.  In 

parallel, sensor suites and battle management and command and control will be 

developed to form the backbone of the BMDS.  The Missile Defense Agency2 (MDA) 

will accomplish this mission by developing a layered defense that employs 

complementary sensors and weapons to engage threat targets in the boost, midcourse, and 

terminal phases of flight, and incrementally deploying that capability.   

There are advantages and challenges to set up engagement opportunities against a 

threat missile in each of the three phases of flight.  The capability to defend against an 

attacking missile in each of these phases is called a layered defense, and it may be 

expected to increase the chances that the missile and its payload will be destroyed.  By 

attacking the missile in all phases of flight, we exploit opportunities that could increase 

the advantage of the defense.  A capability to intercept a missile in the boost phase, for 

example, can destroy a missile regardless of its range or intended aim-point and provide a 

global coverage capability.  A midcourse intercept capability can provide wide coverage 

of a region or regions, while a terminal defense reduces the protection coverage 

considerably to a localized area.  As we add shot opportunities in the midcourse and 

terminal phases of flight to boost phase opportunities, we increase the probability for a 

successful intercept of the ballistic missile threat.   

Improving the odds of interception becomes critical when ballistic missiles carry 

weapons of mass destruction.  When possible, for the global coverage and protection 

against lethal payloads, a capability to intercept a missile near its launch point is always 
                                                 

2 MDA is the US agency within the Department of Defene that is responsible for leading the design 
and development of the BMDS.  MDA evolved from the former Ballistic Missile Defense Organization 
which evolved from the former Strategic Defense Initiative Organization. 
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preferable to attempting to intercept that same missile closer to its target.  To minimize 

the negative fallout effects from weapons of mass destruction, we expect terminal 

defense systems to engage a ballistic missile threat at a minimum altitude of 15 

kilometers above a defended asset.  For those mid-course systems that engage ballistic 

missile threats beyond the discernable impacts of Earth’s atmosphere, we expect mid-

course systems to engage a ballistic missile threat at a minimum altitude of 83 kilometers 

above a defended asset.  [55]  

4. Battle Manager 
The battle managers must direct the activities in the battlespace.  Typically, 

multiple engagements occur concurrently in the battlespace.  Oftentimes, the activities for 

killing a threat object at such a high operations tempo (OPTEMPO) that humans can 

experience great difficulty in maintaining situational awareness of the entire battlespace.  

(N.B.:  For this research, we define operations tempo as the rate of military actions or 

missions.  Additionally, we define situational awareness as the perception of available 

facts, comprehension of the facts in relation to the individual’s expert knowledge, and 

projecting how the situation is likely to develop in the future.) 

The challenge will be to develop the battle manager as a dependable system 

within the capabilities and constraints of the system-of-systems.  (N.B.:  For this 

research, we define a dependable system as one that demonstrates the appropriate levels 

of availability, reliability, safety, and recoverability to the degree that justifies a user’s 

confidence that the system will behave as expected.) 

C. PROBLEM STATEMENT 
The six issues identified by Parnas are not unique to the BMDS Battle Manager.  

With limited tailoring, these six issues could extend to controlling software in any 

system-of-systems.  

Referencing Parnas’ six issues for the battle manager, we propose that a problem 

in the acquisition community is defining, developing, and building a controller in a 

system-of-systems environment that is available for operations at any time, operates 

correctly at all times, traps system faults and returns to operations without impacting the 
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mission of the BMDS, and performs its missions in such a way that no unintended harm 

to people and protected assets will come from its operations.  

This is the problem that we will address in this research. 
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III. SIGNIFICANCE OF THE PROBLEM  

A. BACKGROUND 
A system-of-systems development raises a multitude of issues that are beyond the 

development of a single system such as the system behavior of the system-of-systems as 

well as each system within the system-of-systems.  In defense acquisitions, the control of 

a system-of-systems is typically left to humans via voice or assigned sector 

responsibilities in the battlespace (i.e., a predetermined, physical division of the 

battlespace in the military operations for each system in the system-of-systems).  As 

examples to the potential impact of our current inability to confidently predict system 

behavior and our continued failings in system-of-systems developments, the following 

anecdotes are offered:  

1. Insufficient Requirements Specification and Verification 
US Central Command (CENTCOM) forces deployed six PATRIOT batteries in 

the Dhahran area of operations during the Persian Gulf War of 1991.  Of those six 

PATRIOT batteries, CENTCOM forces assigned Alpha Battery the mission of protecting 

the Dhahran air base.  Alpha Battery had been in continuous operations for over one 

hundred hours on February 25, 1991.  Iraqi forces launched a Scud missile at the Dhahran 

air base that Alpha Battery failed to track and intercept.  The Scud missile impacted at an 

US Army barracks and killed twenty-eight US soldiers.  Subsequent investigations into 

this catastrophe revealed that PATRIOT could not perform sustained operations beyond 

twenty continuous hours as potential targets would fall outside the range gate – an 

electronic detection system within the PATRIOT radar that calculates the area in the field 

of regard where PATRIOT should next look for the threat missile.  At one hundred hours 

of continuous operation, the shift in the range gate would be 687 meters so the PATRIOT 

could not detect, track, and destroy incoming ballistic missiles.  [35][62]  

2. System-of-Systems Integration 
In December of 2001, a 2000-pound, Joint Direct Attach Munitions (JDAM) 

bomb killed three U.S. Special Forces airmen and five Afghan soldiers, and wounded 

nineteen other military personnel.  The root cause of this friendly-fire incident was the 
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inadvertent passing of the coordinates of the US air controller’s own position to the 

bomber.   While the air controller had correctly passed the latitude and longitude target 

coordinates to a US Navy F/A-18 minutes prior to the friendly-fire incident, the US Air 

Force B-52 bomber crew required a second calculation in “degrees decimal.”  The air 

controller complied with the request and stored the coordinates in the GPS receiver.  At 

that moment, the GPS’ battery expired and the air controller replaced it with a fresh 

battery.  Apparently unbeknownst to the air controller, the GPS receiver re-initialized and   

displayed its coordinates (as programmed into the GPS software) which the air controller 

passed to the bomber crew. The JDAM struck at those coordinates with deadly precision.  

[53] [77] Included with the ground-aided precision strike conclusions and 

recommendations in [77], the author recommended an interface between relay-coordinate 

systems and weapons vice the human handling of target coordinates.  What was not 

mentioned was the insufficient integration of independently-acquired systems into a 

larger system-of-systems.   

3. Specifications and Error-Handling Verification 
From a study of 387 software errors discovered during the integration and testing 

phase of the Voyager and Galileo spacecraft, Robyn Lutz observed that the safety-related, 

functional faults exhibited by Voyager could be categorized as follows:  50% as 

behavioral faults, 31% as conditional faults, and 19% as operating faults.  For Galileo, the 

safety-related, functional faults could be categorized as follows:  38% as behavioral 

faults, 18% as conditional faults, and 44% as operating faults. (N.B.:  The author offered 

the following definitions:  behavioral faults – “incorrect behavior, not conforming to 

requirements”, conditional faults – “incorrect condition or limit value”, and operating 

faults – “omission or unnecessary operations.”)  The author concluded that the primary 

cause of safety-related, functional faults (62% on Voyager and 79% on Galileo) was due 

to requirements that had not been identified by the developers.  Included with the 

author’s six recommendations to software developers were the use of formal methods in 

the specification of requirements and the inclusion of appropriate software responses to 

unexpected conditions and values.  [54]  
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4. Logic Errors 
Delores Wallace and Richard Kuhn analyzed software faults from 342 medical 

systems and determined that 43% of the software faults were logic-related errors such as 

incorrect logic in requirement specification, unexpected behavior of multiple conditions 

occurring simultaneously, and improper limits.  Additionally, Wallace and Kuhn 

attributed 24% of the software faults to calculation errors to include incorrect limits and 

ranges as well as implementation of mathematical expressions. [81]  Among the 

recommendations, the authors suggested that software engineers should consider formal 

methods for highly complex systems with emphasis on pre- and post-conditions as well 

as the interaction of system functions and unforeseeable combinations that can cause 

cascading failures within the system-of-systems. 

B. BATTLE-MANAGEMENT ISSUES 

1. Predictable System Behavior 
Given that the interconnected battle-management solutions in the system-of-

systems environment are separately designed and developed on various operating 

platforms in different languages, predicting battle-management behavior of the system-

of-systems is not possible.  As a rule, battle management is still executed at the system 

level rather than the desired system-of-systems level.   

Another factor that contributes to the challenge involved in predicting battle-

management behavior is the development practices currently employed in DoD.  The 

increased pressure to rapidly move product into the operational battlespace tends to 

channel program managers into focusing on achieving functionality as quickly as 

possible.  As such, the development community responds with a hurried and oftentimes 

inadequate design phase, and follows with an intense period of coding.  In the rush to 

rapidly develop a product, one can fall into the trap of exclusively seeking some level of 

achieved capability while ignoring the behavior of the software. 

Defense acquisition organizations typically develop a system-of-systems by 

interconnecting multiple processors with a defined communications medium.  Rather 

than focusing on shaping the behavior of the system-of-systems, the focus of the 

interconnectivity scheme is the exchange of messages that follow a prescribed protocol 
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standard.  The interpretation of the messages and the resultant actions are left to the 

individual acquirers of the various systems; however, the protocol standards oftentimes 

include limited behavior rules such as the rule for determining which system should 

report a track in a tactical data-link network.  Also, the protocol standards do not include 

requirements for handling runtime faults other than error-checking of transmitted 

messages (e.g., parity checks, Hamming codes, cyclic redundancy checks).  Thus, 

handling runtime faults is left to the developers of the individual systems in the system-

of-systems. 

Because each system in the system-of-systems develops the implementation of the 

interconnectivity standard independent of the other systems, there is no guarantee that all 

the implementations will result in consistent behavior by the system-of-systems.  As 

such, the warfighters cannot predict the reactive behavior of the system-of-systems to 

external events. 

Given the short duration of the BMD fight, the warfighters cannot accept the risk 

of inconsistent behavior and undesired outcomes.  The serious nature of the consequences 

of missed engagements drives the requirement for correct, predictable behavior in the 

system-of-systems as well as the ability to handle all system faults during runtime.  

Additionally, the system-of-systems must be able react immediately to external events so 

it must be available for use twenty-four hours of every day.  

2. Distributed System Environment 
It is true that any fool can interconnect a set of computers by following given 

standards for messaging protocols and physical connections; however, it takes deliberate, 

knowledgeable engineering to achieve the desired system behavior in a system-of-

systems.  Typically, Defense acquisition organizations concentrate on the functionality of 

individual system applications while giving limited attention to the principles of 

distributed system theory.  As a result, the developers may find that the system-of-

systems has a fragile dependency on absolute timing synchronization for system-of-

systems computations.  Additionally, the developers may learn that the heterogeneity of  
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the systems in the system-of-systems results in a significant level of difficulty in 

integration with respect to continued consistent behavior through independent system 

software releases.   

In operations, the warfighters may experience a high level of confusion and 

frustration as a result of the inconsistent outcomes of various battle-management 

computations.  Without deliberate engineering efforts to handle out-of-tolerance latencies 

or non-functioning communication mediums, the warfighters will not be able to 

distinguish the continued wait for the termination of a computation from the result of a 

slow process or that of a failed processor.  Subsequently, the defense of the battlespace 

may suffer the consequences of missed engagement opportunities.  

3. Real-Time System Considerations 
C2 systems are usually non-real-time systems.  As such, C2 systems typically 

depend on synchronous messaging schemes for operations.  Traditionally, weapon 

systems are real-time systems.  Thus, required message synchronization between a non-

real-time C2 system and a real-time weapon might cause an inadvertent interrupt of a 

real-time process that could result in deadlock and race conditions.  If interrupts are 

disabled during critical-section processing, then the interrupt for message synchronization 

will be missed and the message could be lost.  Lost messages could result in missed 

engagement opportunities in the battlespace. 

A computation that is late may result in late or missed engagement opportunities.  

The kill chain has definitive deadlines which must be met by the BMDS or the 

warfighters cannot successfully defeat ballistic missile attacks.  If we are to match the 

performance of the weapon systems and avoid the negative impact of forcing 

synchronization of the battle manager with the weapon system for messaging, then we 

should develop the battle manager as real-time software.  

4. Software Architecture 
The software architecture can impact one’s ability to understand and modify the 

software. [31]  If the software maintenance team does not understand the design and 

behavior of a system, then adding additional features or improving the characteristics 

(e.g., performance, correctness, robustness) of the software may be difficult.  If the 
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executable code was compiled as a single, monolithic software program, then the 

software maintenance team may experience a significant level of effort in providing new 

features in the software as the team may require that the operational system be taken 

offline so that the old software version can be downloaded and the new software version 

can be uploaded.  

5. Safety Considerations 
One safety consideration is the interconnectivity construct in the system-of-

systems.  Because the development focus is frequently on correct message transmission 

and receipt, there is no viable means of ensuring safety at the system-of-systems level.  

As such, an erroneous output in a given system can be quickly propagated throughout the 

system-of-systems with potentially catastrophic results.  For example, the inadvertent 

typing of a manned space vehicle as a ballistic missile threat by a sensor could result in 

the inappropriate destruction of the manned space vehicle by a weapon in the BMDS. 

A second safety consideration is the potential situation in which two processes 

have simultaneous access to a critical section during runtime.  (N.B.:  We define the 

critical section to be a shared resource in which multiple processes may access during 

runtime.)  The software of the critical section must execute without interruption; 

otherwise, the system software could experience deadlock and race conditions.  A 

deadlock condition can occur if a process waits indefinitely for conditions that will never 

be satisfied.  For deadlock to occur, all of the following four conditions must be true:  (1) 

processes claim exclusive control of shared resources, (2) processes hold shared 

resources while waiting for other shared resources to be released, (3) processes cannot be 

directed to release shared resources, and (4) a circular waiting condition exists for the 

release of shared resources. [30]   A race condition can occur if the final result of a 

computation that requires access to a critical section is executed by two or more 

processes, and the final result of the computation depends on the order in which those 

processes execute. For example, if two processes (PA and PB) write different values VA 

and VB to the same variable in a critical section, then the final value of the variable is 

determined by the order in which PA and PB execute.  
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IV. ASSESSMENT OF PREVIOUS WORK  

A. BACKGROUND 
So far we have argued the case that developers have experienced limited success 

in designing, developing, and delivering a dependable system-of-systems.  We presented 

two examples in which military system-of-systems exhibited unknown behaviors which 

resulted in the loss of American and allied lives.  At this point in the dissertation, we 

review the literature on system-of-systems development to provide some insight into the 

root causes of systems-of-systems development failures.  We would like to assess the 

proposed solutions and potentially offer solutions that could address the shortcomings in 

a system-of-systems development. 

B. STATE OF SYSTEM-OF-SYSTEMS RESEARCH AND DEVELOPMENT 
In July 2004, the Potomac Institute for Policy Studies hosted a series of 

discussions of issues concerning systems-of-systems. [83]  The group noted that 

traditional system engineering is based on the assumption that engineers can build a 

system if provided a complete set of requirements.  They note that the defining of 

requirements for a system-of-systems may be an intractable problem because the 

complete operational concepts on how a system-of-systems might be employed can never 

be completely known at the requirements elicitation phase.  They state that the Federal 

Aviation Administration attempted five times to build a completely new system from the 

ground up and was not successful in any of the attempts.  The group asserted that 

systems-of-systems are open systems in the sense that a system-of-systems does not have 

fixed and stable boundaries.  The group noted that emergent behavior in a system-of-

systems is a critical concern and further noted that tools do not exist for developers to 

deal with the emergent behavior of the components within an individual system and the 

system-of-systems as a single entity.  The group offered the Unified Modeling Language 

(UML) as a possible tool for developers to handle the emergent behavior of a system-of-

systems. 

Mark Greaves, Victoria Stavridou-Coleman, and Robert Laddaga noted in [99] 

the following:  “It is well known that building dependable software systems for dynamic 
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environments is difficult.  It is also well known that building large-scale distributed 

software systems is difficult.  The relatively few attempts to combine these two tasks 

confirm that successfully building large-scale distributed systems with predictable 

properties is exceptionally difficult.” 

The authors observe that the increasing demand for systems-of-systems will 

require engineers and computer scientists to design, develop, and deliver highly flexible 

and dependable systems-of-systems that exhibit highly predictable behavior.  

Furthermore, they note that the traditional techniques for designing and developing 

dependable software will be “difficult or impossible to employ” in a system-of-systems 

environment. 

In [84], Dennis Smith, Edwin Morris, and David Carney discuss the issues 

associated with the development of a system-of-systems that include incomplete 

requirements, unexpected interactions, and unshared assumptions.  The authors claim that 

“strict specification of standards” is not sufficient for achieving the desired level of 

interoperability in a system-of-systems as the various developers of the individual 

systems can interpret specifications differently.  The authors further note that achieving 

and maintaining interoperability among the systems is difficult due to the inherent 

complexity of the individual systems, and the number of potential interactions between 

and among systems.  According to the authors, the technical innovations in software 

engineering have not fruitfully addressed the system-of-systems development problems.  

They cite an example in the United States automobile supply chain in which inadequate 

interoperability among complex systems costs one billion dollars each year. 

Smith, Morris, and Carney claim that traditional software engineer state-of-the-

practice assumes a complete and precise understanding of the system in development.  

They state that integrators of the independent systems hold different assumptions and 

beliefs about the system-of-systems than that of the developers of the individual systems.  

As such, system-of-systems developments can fail due to conflicting and incomplete 

information.  They cite emergent properties of the system-of-systems pose the greatest 

challenge to developers for predicting dependable system-of-systems. 
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The authors offer that developers require new approaches to establish and 

maintain interoperability in a system-of-systems.  These new approaches include: (1) 

assess proposed requirements and architectural changes to the system-of-systems as well 

as each individual system, (2) develop a system-of-systems architecture that minimizes 

the impact of change, and (3) verify proposed interoperability solutions prior to fielding 

the system-of-systems. 

Robert Schaefer offers in [100] that developers of systems-of-systems face 

significantly more complex integration issues than developers of single systems.  He 

asserts that “[i]mproving the development process is not enough” and “[l]anguage and 

tools are not enough.”  According to Schaefer, the current set of system integration tools 

“… do not yet fill the needs for debugging large systems.”  He claims that placing 

additional controls over the development process for a system-of-systems may not prove 

to be more cost effective than developing a system-of-systems architecture.  Schaefer 

notes that independent systems may exhibit the desired behavior; however, when the 

independent systems are integrated into a system-of-systems, system faults can occur 

“…irrespective of good architecture and design practices.”  He contends that middleware 

is “…both a breach in the [system interface] firewall that can propagate faults and a 

critical weak link when the middleware software itself fails.”  Furthermore, he states that 

a system build from a number of components will be only as dependable is its weakest 

serial component.  That is, the component with the “poorest fault handling capabilities” 

will determine the level of dependability in the system-of-systems.  Schaefer holds that 

advances in systems architecture may be the key to successful integration of the 

independent systems in a system-of-systems. 

Cliff Jones and Brian Randell wrote in [85] that it is “…easy to bemoan the fact 

that computer systems are less dependable than one might want, but it is essential to 

understand that large networked computer systems are among the most complex things 

that the human race has created.”   They further noted that “…present trends and 

predictions  indicate  that  huge,  even  globally-distributed, networked computer systems,  
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perhaps involving everything from super-computers and large server ‘farms’ to myriads 

of small mobile computers and tiny embedded devices, are likely to become highly 

pervasive.” 

The authors cited the following as examples of the costs of undependable 

systems: 

1. “The average cost per hour of computer system downtime across 30 

domains such as banking, manufacturing, retail, health insurances, securities, 

reservations, etc. has recently been estimated at nearly $950,000 by the US Association 

of Contingency Planners. 

2. The French Insurer’s Association has estimated that the yearly cost of 

computer failures is [approximately $2,000,000,000] of which slightly more than half is 

due to deliberately induced faults, for example, by hackers and corrupt insiders. 

3. The Standish Group’s ‘Chaos Chronicles’ report for 2003 analyzed over 

13,000 IT projects and estimated that nearly 70 percent either failed completely or were 

‘challenged’ that is although completed and operational, exceeded their budget and time 

estimates and had less functionality than originally specified.  This led to their estimate 

that in 2002 the US ‘wasted’ $55 billion in cancelled and over-run IT projects compared 

with a total IT spend of $255 billion.” 

Jones and Randell report that the European Commission’s Accompanying 

Measure on System Dependability Overall Dependability Roadmap 2003 estimates that 

“…for large and complex computer systems, namely those involving 1-100 [million] 

lines of code, current development techniques…can at best produce systems that achieve 

a level of reliability in the range of 10 to 100 failures per year.” 

The authors claim that current formal methods and tools are not “readily 

applicable” to large and complex systems.  They do state that formal methods can play a 

significant role in the development of large systems; however, they believe that the state-

of-the-practice may limit formal methods to “small, highly-critical areas.” 
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John Knight discussed computing system dependability in [86], in which he states  

“It is important that computer engineers, software engineers, project managers, and users 

understand the major elements of current technology in the field of dependability, yet this 

material tends to be unfamiliar to researchers and practitioners alike.”  According to 

Knight, the “…trick to dependable design is to make sure that failed components within a 

system do not lead to system failure.”  He points to the specification of system 

requirements as the Achilles’ heel of software developments.  He notes that while 

verification techniques such as formal methods and model checking are available, 

software developers depend on testing as the dominant approach for verification.  Knight 

observes that testing “remains problematic” in that “…it is impossible to execute a 

sufficient number of tests to permit a statistical assessment of extreme dependability….” 

A wealth of literature exists that suggests the use of formal methods can benefit 

software developers in the verification of requirements.  Likewise, there is a significant 

amount of literature in which attempts are made to debunk the purported myths 

surrounding the use of formal methods.  [5][42][60][79]  Bob Lang from the Software 

Engineering Institute (SEI) offers the following observation: 

“Formal methods have long offered the promise of ensuring high quality software 

using mathematical rigor.  The director’s message in the Spring 2001 issue of news@sei 

points to one article suggesting that 40 to 50 percent of programs contain nontrivial 

defects.  Formal methods represent a clear attempt to address such concerns.  However, 

applying traditional formal methods to a complete system design requires a significant 

investment – from learning a difficult technology to applying it in all phases of the 

development effort.”  [47] 

As a result, while there have been successful developments that employed formal 

methods, software developers have not embraced and employed formal methods in the 

development of large, complex systems. In [8], the authors describe several research 

projects in which researchers working for the National Aeronautics and Space 

Administration (NASA) are applying formal methods.   
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Charles Keating et al. noted in [87] that the challenge to engineers of developing 

and integrating large, complex systems.  They observe that system-of-systems 

engineering is “…emerging as an attempt to address integrating complex meta-systems.  

However, [system-of-systems engineering] is in the embryonic stages of development 

and lacks consistent focus.”  Furthermore, the authors claim that system-of-systems 

engineering is being largely addressed as an information technology issue with the 

general objective of “getting everything to work together.”  Additionally, they assert that 

the current state of system-of-systems literature that could support practicing engineers is 

a “…fragmented collection of seemingly disparate perspectives on the associated 

phenomena.” 

Goran Mustapic et al. list seven system-of-systems developments that were 

successful albeit perhaps not on the scale of large, global system-of-systems 

developments. [88] The authors focused on the software architecture aspects of these 

developments.  These systems will all experience system evolution as requirements are 

expressed and new technologies are introduced.  What seemed to be common in the 

successful programs was a component-based structure in a layered architecture.  

Additionally, the trend in the architecture seemed to be isolating the controller from other 

parts of the system.  Finally, another trend that seemed to be a factor in the success of 

these efforts is that the development and integration of the system-of-systems was within 

a single company.  This is not the conventional situation for a system-of-systems in 

which the independent systems are typically designed and developed independently of 

the system-of-systems.  The authors noted that potential difficulties could arise if the 

architecture can no longer support new requirements and technologies; however, they 

believe that the architecture techniques described could be applicable to large, complex 

systems-of-systems. 

Mark Maier observes in [89] that system-of-systems should be a different class of 

development than a single system due to the independence of the individual systems in a 

system-of-systems and the emergent behavior of a system-of-systems.  Maier states that a 

system-of-systems is defined by its communication standards.  He cites Integrated Air 

Defense as a system-of-systems as well as the Internet and intelligent transportion 
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systems (e.g., advanced traveler information services and advanced traffic control 

systems).  He believes that the greatest opportunity to develop a system-of-systems is at 

the interfaces which are where he sees the greatest dangers in the development of a 

system-of-systems.  According to Maier, if the individual systems in a system-of-systems 

are operationally and managerially independent, then the work of the architect is at the 

system-of-systems interfaces.  For example, if an architect separates the sensors and 

weapons as independent systems, then the integrated air defense system is the battle 

management network.  He offers that communications is the primary enabling technology 

for a system-of-systems.  Maier states his belief that successful information exchange is 

the key to a successfully functioning system-of-systems.  He supports the concept of 

better communication standards to improve the degree of success in system-of-systems 

development. 

David Fisher and Dennis Smith stated the following in [90]:  “Most systems of 

systems use their component systems in ways that were neither intended nor anticipated.  

Assumptions that were reasonable and appropriate for individual component systems 

become sources of errors and malfunction within system-of-systems.”  They state that the 

effect of emergent properties in a system-of-systems is potentially the greatest 

development risk in a system-of-systems given that developers cannot predict the 

dependability of the system-of-systems before fielding. 

Fisher and Smith further note that unbounded system-of-systems are the typical 

products of the military and commercial applications with challenging requirements.  

They offer that unbounded systems exhibit emergent behavior that cannot be predicted in 

advance by developers.  Furthermore, they state that the techniques used to develop 

dependability in closed, tightly coupled, and completely defined systems will not produce 

the same level of dependability in unbounded systems. 

The authors note that developers have typically employed such interoperability 

methods as enforcing a single, central control on the system-of-systems, imposing 

stronger standards, and demanding increased coordination mechanisms.  Fisher and 

Smith state that these methods become less effective as the complexity and degree of 

distributed computing increases in a system-of-systems.  As a result, a system-of-systems 
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can experience an increase of system faults and user errors.  Furthermore, they state that 

the frequency of accidents in systems-of-systems increases with the degree of coupling of 

the components, degree of a central control, overly specified requirements, and “broadly 

imposed” interface standards.  They recommend that loose coupling of components 

should be an objective of the developers of systems-of-systems. 

Donna Rhodes and Daniel Hastings state in [91] that “…classical Systems 

Engineering is not well suited to dealing with the global and social-technical aspects of 

the 21st century engineering systems….”  They believe that classical system engineering 

practices should be adapted and expanded to address the engineering and development of 

highly complex systems.  Furthermore, Rhodes and Hastings believe that Systems 

Engineering will experience a “significant evolution” given the increasing complexity of 

technology globalization of users as well as emerging systems models such as network-

centric structures and system-of-systems developments. 

In [92], Pin Chen and Jun Han state that immaturity of the development practices 

and increasing complexity of a system-of-systems drive the need to develop new 

approaches for developing such systems.  The authors claim that the individual systems 

must be compatible within the system-of-systems architecture to realize an effective 

system-of-systems.  They offer that developers must find solutions for identified 

architectural gaps which signify non-compatible systems. 

Ivy Hooks proposes in [93] that basic requirements principles are more essential 

for the development of a system-of-systems than for a single system.  The basic 

requirements principles include developing the operational concept for the entire life-

cycle of the system-of-systems and identify verification methods for each requirement.  

She further states that standards may be the key to developing an effective system-of-

systems.  Finally, she offers that each system in the system-of-systems must develop 

defensive and self-healing requirements to protect itself from undesired behavior at its 

interface to the system-of-systems. 

Andrew Sage claims in [94] that risk and conflict thrive in the system-of-systems 

development environment due to the conflict of individual system goals and system-of-
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systems goals.  He states that developers can observe the behavior of a system-of-

systems; however, the interplay of individual systems cannot be considered by the study 

of individual systems.  Furthermore, Sage claims that emergent behavior evolves from 

the interaction of many systems but it cannot be predicted from the knowledge of the 

individual systems. 

In [95], Joseph Kasser offers that the development of a system-of-systems is not 

as complex as others may believe.  His premise is that a system-of-systems development 

is ad hoc and uncontrolled.  He offers that centralizing the program management 

activities of all the systems within the system-of-systems will lead to a successful 

development. 

In May of 2003, the Schools of Engineering at Purdue University identified the 

concept of system-of-systems as a focused research area. [96]  The objective of this 

focused research was to develop new techniques to support the development of a system-

of-systems.  In the paper that describes this effort, William Crossley noted that the ability 

of the individual systems to operate independently within a system-of-systems increases 

complexity above the level of complexity of a single system.  He notes that developers 

have a significant challenge in optimizing performance of a system-of-systems without 

creating computational bottlenecks and eliminating conflicting commands from the 

controller of the system-of-systems.  Crossley states that approaches required for 

predicting dependability in a system-of-systems may not be available to developers.  He 

further notes that the optimized control of a system-of-systems may compete for 

resources against individual systems in the system-of-systems.  He concludes his paper 

with the recommendation for a significant amount of research to solve the system-of-

systems development problems. 

In May 2004, Eliot Christian, who was representing the Federal Geographic Data 

Committee of the United States Geological Survey, presented a briefing to the Industry 

Workshop on Global Earth Observation System of Systems (GEOSS) that described the 

proposed architecture of GEOSS. [97]  The architectural team proposed a distributed 

system-of-systems that would include an observation component, data processing and 

archiving component, and a data exchange and dissemination component.  The 
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architectural team proposed that interface specifications focus upon how the components 

interoperated with each other.  They believed the means to achieve this level of 

interoperability was a set of open, international standards.  The architectural team 

identified UML, XML, Web Services Definition language (WSDL), and Common Object 

Request Broker Architecture (CORBA) as means to realize the interfaces of components.  

The architectural team proposes that GEOSS will be assured of verifiable, scalable, and 

interoperable interfaces by imposing standard service definitions on interface 

interoperability specifications on components within a complex system or discrete 

systems within the system-of-systems. 

Craig Stoudt offers in [98] that the air traffic control system will transform 

“…from a ground-based, centralized, loosely integrated system to a space-based, 

decentralized, tightly integrated system-of-systems.”  According to the author, 

decentralized systems tend to be “inefficient and lead to conflict.”  He points out that the 

advantages of decentralized systems are increased dependability as compared to a 

centralized system.  As other authors stated, the emergent behavior of a system-of-

systems can reflect the desired behavior as well as unpredicted and undesired behavior. 

C. FINDINGS 
1. The increasing demand for systems-of-systems will require engineers and 

computer scientists to design, develop, and deliver highly flexible and dependable 

systems-of-systems that exhibit highly predictable behavior.   

2. Building large, complex system-of-systems that exhibits predictable 

behavior and is dependable is among the most complex endeavors of the human race. 

3. Classical systems engineering techniques may not be well suited to 

dealing with the design and development of system-of-systems. 

4. The body of knowledge on developing a system-of-systems seems to be 

limited. 

5. System-of-systems development seems to be ad hoc and unstructured due 

to programmatic shortcomings as well as architecture and verification issues in a system-

of-systems. 
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6. Developers require new engineering skills and tools to support the 

development of a dependable system-of-systems that exhibits predictable behavior. 

7. It is important that computer engineers, software engineers, project 

managers, and users understand the major elements of current technology in the field of 

dependability, yet this material tends to be unfamiliar to researchers and practitioners 

alike.   

8. Developers require new approaches to establish and maintain 

interoperability in a system-of-systems.  These new approaches should include: (1) assess 

proposed requirements and architectural changes to the system-of-systems as well as each 

individual system, (2) develop a system-of-systems architecture that minimizes the 

impact of change, and (3) verify proposed interoperability solutions prior to fielding the 

system-of-systems. 

9. The emergent properties in a system-of-systems may be the greatest 

development risk given that developers cannot predict the dependability of the system-of-

systems before delivering it to the users. 

10. The ability of the individual systems to operate independently within a 

system-of-systems increases complexity above the level of complexity of a single system.  

System-of-systems developers have a significant challenge in optimizing performance of 

a system-of-systems without creating computational bottlenecks and eliminating 

conflicting commands from the controller of the system-of-systems. 

11. The increasing detail in the specification of standards will not be sufficient 

for achieving the desired level of interoperability in a system-of-systems as the various 

developers of the individual systems can interpret specifications differently.  Achieving 

and maintaining interoperability among the systems in a system-of-systems is difficult 

due to the inherent complexity of the individual systems, and the number of potential 

interactions between systems. 

12. The specification and verification of system requirements in a system-of-

systems may be the Achilles’ heel of software developments.  Although verification 
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techniques such as formal methods and model checking are available, software 

developers depend on testing as the dominant approach for verification. 

13. A component-based structure in a layered architecture could be a 

successful technique in the development of a system-of-systems. 

14. Formal methods may have a significant role in the design and 

development of a system-of-systems; however, current formal methods and tools may 

need to be extended to support the development of large, complex system-of-systems.  

D. KEY TOPICS TO BE ADDRESSED 
Although there would seem to be a global trend towards composing systems-of-

systems, there appears to be a significant void in both research activities and the 

engineering practices for the development of a system-of-systems.  Esteemed researchers 

from the Massachusetts Institute for Technology and the Purdue University have 

expressed this observation.  The Purdue University has established a focused research 

area in the engineering of a system-of-systems with the objective of filling the void. 

The architecture of the system-of-systems seems to be a critical issue for the 

developer of a system-of-systems.  A suitable architecture may be a valuable first step in 

the successful design and development of a system-of-systems. 

A component-based structure could be one characteristic of successful system-of-

systems developments.  With components, we might consider techniques in which we can 

isolate the behavior of a given component from all others with the objective of isolating 

faults within the component. 

Formal methods could be useful in the design and development of a system-of-

systems.  It seems as if previous research considered the entire system-of-systems rather 

than decomposing the system-of-systems into components for which formal methods and 

model checking could provide value.  We might consider techniques in which we can 

isolate state behavior to reduce the number of reachable states in the components. 
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V. RESEARCH  

A. RESEARCH QUESTIONS 
We believe that it is possible to develop globally distributed, real-time controlling 

software for a system-of-systems that exhibits highly predictable system-software 

behavior.  We make the assumption that it is impractical to realize a significant level of 

changes in legacy software of the independent systems within a system-of-systems.  To a 

lesser degree, this assumption could hold true for systems that are currently under 

development.  If these assumptions hold true, software engineers can design and develop 

controlling software for a system-of-systems that exhibits a high level of trustworthiness.   

We pose the following questions that we will address in this research: 

1. Is it possible to develop a system-of-systems architecture from which we 

can reason about the controlling software for a system-of-systems?   

2. Can we realize the controlling software from a system-of-systems 

architecture through the concepts of component-based software engineering? 

3. Can we apply formal methods in the design and development of the 

controlling software for a system-of-systems by specifying the requirements for the 

software components with assertions and employing a runtime verification tool to verify 

the desired behavior specified in the assertions? 

B. RESEARCH STRATEGY 
In the assessment of previous work in the area of system-of-systems, there is a 

recognized void in the software engineering body of knowledge for the design and 

development of a system-of-systems.  This research extends the body of knowledge in the 

design and development of systems-of-systems by proposing innovative architectural and 

software development practices.   

In the key topics to be addressed, we highlighted several suggestions that others 

proposed could increase the effectiveness and dependability of fielded systems-of-

systems.  We developed an architectural framework that ranged from the summary view 

of our case study for a system-of-systems to the component framework in the BMK.  We 
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offered a systematic method to develop natural language assertions from a collaboration 

diagram for the specification of the BMK components.  We demonstrated the method for 

a slice of the BMK by transforming natural language assertions into temporal assertions 

that we demonstrated on a runtime verification tool. 

To address research question V.A.1, we expanded the key topic area from Chapter 

IV in which the proposal was made that a suitable architecture could be a valuable first 

step in the successful design and development of a system-of-systems.  We developed 

architectural views of the system-of-systems to include a framework for the controlling 

software in the BMDS.  We treated weapon systems as being comprised of components 

rather than a single entity. In addition, we treated sensors as a component.  We identified 

a controlling component for this system-of-systems that we refer to as the battle manager.    

In the battle-manager framework, we identified a BMK that is the controlling 

software in the battle manager.  The BMK connects to software components used for 

calculations in battle-management as well as the interfaces to external components of 

systems such as sensors, C2, and weapons.  The objective of this framework is to show a 

design of a battle manager as an integration of various components rather than a single 

software application.  [9] 

While the design of the system-of-systems might require other views and 

additional details, we demonstrated that it is possible to create a set of architectural views 

that represents the independent systems in a system-of-systems and identifies controlling 

software for the system-of-systems.  Furthermore, we established that it is possible to 

create a set of architectural views for the controlling software that identify the 

functionality of the controlling software in terms of its components.   

Using our case study of the BMDS, we identified desired dependability properties 

for the system-of-systems.  Additionally, we identified design considerations for the 

distributed properties of a system-of-systems.  Finally, we identified design 

considerations for the real-time nature of the BMDS. 

To address research question V.A.2, we expanded the key topic area that a 

component-based structure could be one characteristic of successful system-of-system 
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developments.  We separated computational work from behavioral work through the 

specification of passive and active components, with data stores employed between active 

components to isolate state behavior and potential software faults in any given active 

component from all other active components.    We provided examples of the work as 

well as the thought process to develop the work.  

To address research question V.A.3, we expanded the key topic that formal 

methods could be useful in the design and development of a system-of-systems.  Recall 

that previous research seemed to consider applying formal methods across the entire 

system-of-systems as a single entity rather than decomposing the system-of-systems into 

components for which formal methods and model checking could provide value.   

In this research, we decoupled each active component from all other active 

components through the use of data stores.  The objective of this design technique was to 

isolate the effects of state behavior to a single active component.  As a result, we reduced 

the number of reachable states in the controlling software as compared to realizing the 

battle-manager functionality in a monolithic program in which each component might 

have direct, synchronous messaging among other components. 

We developed natural language assertions to define the desired behavior of the 

active components in the battle manager.  We assessed the role of natural language 

assertions to define the dependability properties identified for this research:  availability, 

correctness, consistency, reliability, robustness, safety, and recoverability.  To 

demonstrate the feasibility of applying formal methods to a system-of-systems as 

outlined in this research, we developed a working model of a slice of the BMK by 

transforming the natural language assertions into temporal assertions and exercising the 

temporal assertions in a runtime verification tool; this demonstrated how formal methods 

can be applied to the design and development of controlling software for a system-of-

systems. 

C. SCOPE 
Our research addresses Parnas’ six issues with the exception of the discrimination 

problem.  We extended the suggestions for the design and development of a system-of-

systems by the development of architectural views and a framework for the controlling 



 44

software.  We applied formal methods to the BMK to demonstrate that formal methods 

can play a significant role in the design and development of a system-of-systems.  

Finally, we demonstrated a slice of the BMK by transforming several natural language 

assertions into temporal assertions, and demonstrating the utility of the temporal 

assertions by running the assertions in a runtime verification tool. 

D. SUMMARY OF CONTRIBUTIONS FROM THIS RESEARCH 
This research extends the software engineering body of knowledge for the design, 

development, and fielding of large, complex systems-of-systems as follows: 

1. Identification of distributed-system attributes for controlling software in a 

system-of-systems 

2. Identification of real-time attributes for real-time controlling software in a 

reactive system-of-systems 

3. Development of system-of-systems architecture views from system-of-

systems view to component view in controlling software 

4. Use of kernel in the controlling software of systems-of-systems to shape 

the behavior of such systems to be dependable 

5. Reduction of software complexity from an exponential factor for a 

monolithic software program to a component-based construct in which the active 

components are decoupled by data stores 

6. Development of  assertions from collaboration diagrams 

7. Adapting component-based software engineering by advanced use of 

assertions in interface contracts between components to assert protocols surrounding the 

components in reactive systems 

8. Providing evidence that formal methods can be applied to large, complex 

system-of-systems developments 



 45

VI. DEPENDABLE SYSTEM-OF-SYSTEMS  

A. TRUSTWORTHY AND DEPENDABLE SYSTEM-OF-SYSTEMS 
In general, we do not have the luxury of beginning a system-of-systems 

development from scratch.  We must work with the systems at hand that are in 

development and in operational use.  We cannot begin anew so we must find other 

methods to apply to this common development situation. 

Widely accepted definitions of a trustworthy and dependable system do not seem 

to exist.  Indeed, authors seem to blur the lines of definition in discussions of the 

properties of trustworthiness, dependability, reliability, and fault tolerance.  In [73] Neil 

Storey defines dependability as the “…a property of a system that justifies placing one’s 

reliance on it.”  Andrew Tanenbaum and Maarten van Steen discuss dependability with 

respect to fault tolerance and offer availability, reliability, safety, and recoverability as 

key requirements for a dependable system. [75]  Ivica Crnkovic and Magnus Larsson 

state that trustworthiness indicates “… a user’s confidence that the system will behave as 

expected.” [15]   

Whereas many descriptions of dependable and trustworthy systems can be found, 

we will blend the above descriptions of dependable and trustworthy for this research as 

follows: 

A dependable system is one that provides the appropriate levels of 

correctness and robustness in accomplishing its mission while demonstrating the 

appropriate levels of availability, consistency, reliability, safety, and 

recoverability. 

A trustworthy system is one that provides the appropriate levels of 

correctness and robustness in accomplishing its mission while demonstrating the 

appropriate levels of availability, consistency, reliability, safety, and 

recoverability to the degree that justifies a user’s confidence that the system will 

behave as expected. 
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With respect to dependable and trustworthy systems, we define the following 

properties in the context of a dependable system-of-systems: 

Availability:  The probability that a system is operating correctly and is ready to 

perform its desired functions. 

Consistency:  The property that invariants will always hold true in the system. 

Correctness:  A characteristic of a system that precisely exhibits predictable 

behavior at all times as defined by the system specifications.   

Reliability:  The property that a system can operate continuously without 

experiencing a failure. 

Robustness:  A characteristic of a system that is failure and fault tolerant.  

Safety:  The property of avoiding a catastrophic outcome given a system fails to 

operate correctly. 

Recoverability:  The ease for which a failed system can be restored to operational 

use. 

(N.B.:  Other properties can be used to describe a dependable system; however, 

we selected the above seven properties as these seven properties may be a minimum set 

of properties for a dependable system-of-systems.  Other properties such as security 

might be enhanced by the techniques offered by this research (e.g., a security 

component); however, for the scope of the research to be manageable, we will focus on 

the above seven properties.)  

B. CHALLENGES FOR DEVELOPING A DEPENDABLE SYSTEM-OF-
SYSTEMS 
We must find new development methods for producing a dependable system-of-

systems that exhibits predictable behavior and fault tolerance during runtime.  As 

suggested in the assessment of previous research in the system-of-systems, our current 

development techniques fail to support system developers in producing systems with 

predictable behavior.  Almost exclusively, developers rely on testing prior to fielding the 

completed product to assess system behavior. Rather than discovering system behavior at 

the end of the development phase, developers might apply techniques that support the 
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design and realization of desired system behavior from the earliest phases of concept 

development and requirements development. 

In ballistic missile defense, the warfighter must have confidence that the BMDS 

will correctly complete the kill chain in its operational environment regardless of the 

conditions in the operational environment.  That is, the BMDS must be a trustworthy 

system. [57]  Otherwise, the BMDS could engage non-threat objects such as satellites and 

manned spacecrafts.  Other impacts of not realizing a trustworthy BMDS could be failure 

to launch at real threat objects that could result in tremendous loss of life in the U.S. from 

delivered weapons of mass destruction. 

In the battle-management operations of the BMDS, the computations for 

discrimination, correlation, weapon assignment, and kill assessment must be correct and 

robust.  That is, the BMDS Battle Manager should demonstrate correctness in that it does 

the right thing all the time and it is available all the time to engage potential threat 

ballistic missiles.  Additionally, the BMDS should demonstrate robustness in that it 

handles unexpected states in a manner that minimizes performance degradation, data 

corruption, and incorrect output.  

C. BATTLE MANAGER CONSIDERATIONS 
In the BMDS, the battle manager contains the controlling software.  A sensor will 

detect external signals (i.e., external stimuli) and process this information to send to the 

battle manager that will make decisions based upon the input from the sensor and send 

control data to a weapon for execution of tasks.  As the controller in the BMDS, the battle 

manager must be a trustworthy and dependable system within the system-of-systems; that 

is, the battle manager must execute and complete its functions correctly and robustly.   

The battle manager must ensure that the kill chain is correctly executed in the 

BMDS.  In all likelihood, a ballistic missile attack will involve multiple missiles so that 

the battle manager will be controlling the engagements on multiple, concurrent kill 

chains.  The battle-management software must provide a degree of trustworthiness that is 

commensurate with the critical functions of battle management.  Software system failures 

could result in massive civilian casualties. 
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In our consideration of dependable software in the battle manager, we should 

consider the development of specifications, interfaces, BMK, distributed system design, 

and real-time design.  Our seven properties  of a dependable system apply to each of 

these areas; however, each area has unique considerations that we should consider as 

follows:  

1. Distributed System Design 
The behavior of the system-of-systems with respect to distributed system behavior 

is equally as important as the functionality designed into the applications.  The 

correctness of the computations in the system-of-systems applications is dependent on the 

supporting distributed-system implementation.  We will discuss distributed systems in 

depth in Chapter VII.  

2. Real-Time Design 
If the battlespace imposes deadlines that the system-of-systems must meet, then 

one should consider developing the system-of-systems as a real-time system.  We should 

ensure that the battle manager produces its results of computation to meet the deadlines in 

the kill chain.  This will involve the consideration of concurrency of kill-chain activities 

as well as establishing computational priorities of the kill-chain activities.  We will 

discuss real-time systems as applicable to the battle manager in Chapter VIII.  

3. System-of-Systems Architecture 
As suggested in the findings of the assessment of previous work, an architecture 

could be a key contributor towards the successful development of a system-of-systems.  

We will develop architectural views of the system-of-systems and discuss the framework 

of the controlling software in Chapter IX.   

4. Battle-Management Kernel 
The BMK must coordinate the work of the battle manager (not to be confused 

with the scheduling of work by the real-time operating system).  The BMK must assign 

the appropriate sensor support to a weapon when assigning that weapon to engage on an 

assigned track.  The BMK must monitor each engagement through its conclusion.  The 

BMK must control the access of shared resources (i.e., weapons and sensors) to ensure 

that two or more processes do not attempt to concurrently manipulate variables and 

parameters in the shared resources.  Finally, the BMK must ensure that the applications 
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appropriately handled runtime faults.  While the discussion on developing formal 

specifications and testing the formal specifications to determine the level of correctness 

and robustness in the evolving software is applicable to the development of the software 

in the kernel, we will discuss the BMK in depth in Chapter X.  

5. Components and Interfaces 
Given the component-based approach that we proposed, the interfaces between 

the BMK and the components must provide the required services for each interface while 

appropriately constraining the input and output parameters of each component.  We will 

discuss components and contract interfaces in Chapter XI. 

6. Development of Specifications 
Recall that our definition of a dependable system included seven properties:  

availability, correctness, consistency, robustness, reliability, safety, and recoverability.  If 

we desire the battle manager to exhibit the appropriate levels of these properties, then we 

should specify what an appropriate level would be for each property.  We will discuss 

developing and testing the formal specifications to determine the level of achievement of 

the seven dependability properties for the battle manager in Chapter XII.  
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VII. DISTRIBUTED SYSTEM ENVIRONMENT  

A. BATTLE MANAGEMENT IN A DISTRIBUTED ENVIRONMENT 
We reviewed the battle-management issues that David Parnas identified from his 

assessment of the Strategic Defense Initiative. [61]  Among those issues, Parnas offered 

that battle-management computing will be accomplished through a network of computers 

that are connected to sensors and weapons as well as other battle-management computers.  

Given that a single sensor cannot view the entire battlespace, the future direction in 

defense acquisition is to connect the available sensors into a network from which 

warfighters can obtain information for the entire battlespace of interest.  Given that a 

single weapon cannot engage all potential threats in the battlespace, DoD development 

organizations are attempting to connect the available weapons into a network from which 

warfighters can assign the appropriate weapon to an identified threat in the battlespace of 

interest.   

To control these resources, warfighters require a battle manager that performs 

computations on received sensory information and makes assignments of weapons to 

threats in a coordinated fashion; that is, warfighters require a hierarchical and 

coordinating authority to direct the engagements of identified threats in their battlespace.  

Since the battlespace area can be as large as the entire globe such as the case for ballistic 

missile defense, a single authority (i.e., centralized battle manager) may not provide a 

timely and effective battle-management solution.  Not only do warfighters require a 

coordinated solution for the sensors and weapons, warfighters require a coordinated 

solution for the various battle managers in the battlespace. 

For these reasons, battle-management solutions will require a distributed system 

that connects battle managers, sensors, and weapons.  Indeed, the vision of network-

centric warfare is to join sensors, weapons, and C4I systems for integrated warfare. 

[25][33][45][72][80]   

In the past, system developers have attempted to connect defense systems through 

data links that have served only to interconnect heterogeneous systems in accordance 
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with complex protocol standards, but have not achieve DoD’s goals for system-of-

systems integration. [9]  The result of these interconnections is a hobbling of disparate 

systems that produce a system-of-systems with significantly limited dependability as 

defined in [75]. 

Since the network-centric concept implies a distributed system, we should 

consider the issues associated with distributed systems with respect to battle 

management.  For a battle-management distributed system, we should be very precise in 

our definitions and assumptions in the development of such a system lest we design our 

battle manager with inappropriate properties. 

B. DISTRIBUTED SYSEM DEFINITION 
It can be easy to connect a number of computers together with a given means of 

communications; however, it is significantly harder to cause the software in that gang of 

interconnected computers to perform and behave as desired.  Leslie Lamport offered the 

following observation as a result of a continuing problem in a distributed system:  “A 

distributed system is one in which the failure of a computer you didn't even know existed 

can render your own computer unusable.”  Lamport’s observation seems to be 

characteristic of defense systems-of-systems.  Far too often, defense acquisition 

organizations equate connecting together a group of computers as effectively engineering 

a distributed system.  Before we define what we require in a distributed system for a 

battle manager, we should define precisely what we mean by a distributed system.   

Many definitions exist to describe a distributed system.  Vijay Garg defines 

distributed systems in [36] “…as those computer systems that contain multiple processors 

connected by a communication network.”  Andrew Tanenbaum and Maarten van Steen 

define a distributed system in [75] as “…a collection of independent computers that 

appears to its users as a single coherent system.”  James Michael defines a distributed 

system in [58] as “…any aggregation of automation that manages and mitigates the 

conflicts and incompatibilities of a problem domain by generating an abstraction of the 

domain.”   

For this research, we define a distributed system as a system that has multiple 

processors that are connected by a communications structure.  We will not include any 
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desired characteristics of a distributed system in the definition given that the properties of 

an operational distributed system may include undesired behaviors; however, the system 

is a distributed system nonetheless.  

C. BATTLE MANAGER CONSIDERATIONS 
Key characteristics of a battle manager within a system-of-systems might include 

the following:  (1) a distributed network, (2) an operational battlespace that includes land, 

sea, air, and space, (3) capability to address multiple targets that can threaten a specific 

theater of operations or region of the world, (4) management of concurrent battlespace 

activities, (5) automated decision making regarding the release or hold of lethal weapons, 

and (6) stringent requirements for high levels of dependability of the systems that provide 

BMD capabilities due to the fact that the encountered threats will consist of weapons of 

mass destruction.   

The system-of-systems in a given battlespace might include a large variety of 

sensors, weapons, and battle-management components that will all be large, complex 

software systems.  The suite of weapons and sensors will most likely increase in number 

during the acquisition lifecycle of the system-of-systems.  The characteristics of these 

future weapons and sensors are not well defined and will likely remain fluid for many 

years. [61]   

We can divide the battle-manager functionality into three major pieces:  birth-to-

death tracking, weapon assignment, and kill assessment.  In the birth-to-death tracking, 

the battle manager considers the first detection reports of one or more sensors, and – 

through embedded logic – decides which reported objects are threat ballistic missiles by 

assessing incoming sensor information.  After the birth-to-death tracking has identified a 

threat object, the weapon-assignment feature will pair an available weapon with known 

health and status to that threat object for the purposes of engagement.  Following the 

engagement opportunity, the battle manager will assess incoming information to 

determine whether the interceptor negated the threat object.  If not true, then the battle 

manager must assign a weapon to re-engage with the threat object. 

For this research, we will consider three hypothetical battle managers in a 

hierarchical structure:  Theater Battle Manager, Regional Battle Manager, and Homeland 
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Defense Battle Manager.  Homeland defense can have precedence over Regional and 

Regional can have precedence over Theater.  We will assume the following statements 

are true for the notional battle managers in our case study:   

· Information sources may be global.   

· Computations must be completed without depending on other battle 

managers.   

· Peripheral components (e.g., C2) can impact the computation.   

· Threat objects may be observed at more than one battle manager.   

· A sensor may be associated with multiple battle managers – all of which 

can request services from that sensor, but only one battle manager’s request can be 

fulfilled at any given time.   

· A weapon may be associated with multiple battle managers – all of which 

can request engagements from that weapon, but only one battle manager’s request can be 

fulfilled at any given time.   

· Only one weapon will be assigned at any point in time to a single threat 

object.  That is, there will not be a situation in which two or more weapons are 

simultaneously assigned to engage a single threat object. 

· Each battle manager may have different sensors and weapons associated 

with it.  These configurations are dynamic in that additional sensors and weapons may be 

added to the control of a battle manager.  Conversely, sensors and weapons may be lost to 

the control of a battle manager. 

· Battle managers may be isolated from other battle managers due to 

communications failures or the loss of a battle manager in battle.  Each battle manager 

must have the capability to continue operations as well as assume operational control of a 

lost battle manager’s battlespace.     

· Legacy systems within the system-of-systems are not easily modified due 

to political, funding, and technical reasons.  Solutions for a battle manager should not 

assume significant modifications to legacy systems. 
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· The timelines for engagements are measured in a handful of minutes.  As 

such, the response to external events must be timely. 

The battle managers will form a distributed system into which the BMD 

peripheral components will interface.  As is characteristic of a distributed system, the 

battle managers in the network will not operate from a shared clock as it is difficult to 

precisely synchronize the clocks of various processors in a distributed system given that 

some measure of variable latency is inherent in communications.  Additionally, detecting 

failures is difficult in an asynchronous distributed system given that a process cannot 

easily determine the difference between a slow processor and a halted processor.  Finally, 

all memory will be local to a battle manager and it will not be shared by other battle 

managers as it is difficult for any one processor in the distributed system to determine the 

global state of the system. 

Timing is a very important issue in the battle-management problem – especially in 

the birth-to-death tracking feature.  Consider the problem of correlating received track 

data from multiple sensors that have overlapping coverage in the battlespace.   The ability 

of a battle manager to correlate received track data depends on (1) achieving and 

maintaining a geodetic reference, (2) removing individual sensor bias, and (3) accuracy 

of the timestamp embedded in the track data.  (N.B.:  Geodetic referencing and sensor 

bias are not issues for this research.)   

Consider developing a track-correlation algorithm which did not require that the 

synchronized timestamps of tracks from different sensors.  Given that a track’s position 

in the battlespace is relative to time, it is not fathomable to correlate tracks from different 

sensors that do not have synchronized timing.  This must be a requirement for the sensors 

that provide track data to the BMDS battle managers.   

As such, the current solution for this problem is to use the Global Positioning 

System (GPS); however, this design solution places a high dependency on the 

performance, accuracy, and dependability of GPS.  Additionally, the latency errors in 

GPS transmission and internal sensor time stamping must be bounded, and considered in 

the correlation algorithms of the battle manager.  While GPS-transmission latency is 
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understood, it is difficult to know how a sensor applies timestamp within its track 

processing; that is, the application of a timestamp to track data is not standardized across 

all sensors.  One sensor may apply the timestamp as the last step prior to transmission to 

the battle manager.  Another sensor may apply the timestamp as first observed by the 

sensor.  

We should consider the ability to detect failures in the distributed system to 

satisfy the seven dependability properties that we previously identified.  A crashed battle 

manager is not easily distinguishable by another battle manager without careful design of 

a failure-detection solution in the distributed system.  Without a failure-detection 

solution, a battle manager may wait forever for a message to arrive from a failed or lost 

battle manager.  We should consider the incorporation of redundancy methods to handle 

battle-management failures.  For example, we could employ error-correction coding 

techniques to correct a designed number of transmission errors in a message.  We could 

employ a time-out scheme that allow a battle manager to wait for a specified time before 

resending a message to another battle manager.  We could turn to physical redundancy of 

either software or hardware to increase the opportunities for successful operations.  We 

could design each battle manager to raise an exception when that battle manager 

determines that another battle manager has failed.  For such an exception, software 

engineers should develop an appropriate error-handling technique to overcome a failed 

battle manager. 

A battle manager will be aware of its local state but not the state of other battle 

managers.  While this characteristic is appropriate for the majority of battle-management 

functions, it is not satisfactory for continuity of operations given the failure or loss of 

another battle manager.  In the event of a failure or loss of a battle manager, another 

battle manager must assume the responsibilities of the lost battle manager without 

interruption of battle-management services.   

To solve the problem from a failed or lost battle manager, we can employ an 

election algorithm to designate the coordinator in the battle-manager distributed network.  

If a battle manager is determined to be lost (e.g., failure to receive a health and status 

message from a battle manager), the coordinator would designate the control of the lost 
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battle manager’s responsibilities to another battle manager until the original battle 

manager rejoins the distributed network. 

The implementation of an election algorithm addresses another problem among 

battle managers which is access to the critical section of a distributed system.  For the 

battle managers, we will consider the critical section to be the sensors and weapons of the 

BMDS.  Recall that a sensor can only fulfill sensor tasking requests from a single battle 

manager at any given time.  This is also true of a weapon.  The problem is one of mutual 

exclusion.  The solution to the mutual exclusion problem must satisfy the properties of 

safety (i.e., two processes cannot have simultaneous access to the critical section), 

liveness (i.e., every request to access the critical section should be granted eventually), 

and fairness (i.e., requests to access the critical section should be granted in the order that 

these requests are made). 

For safety reasons, it is not desirable to have the situation in which multiple battle 

managers are attempting to direct a sensor’s resource-management software.  

Additionally, it is not desirable to have the situation in which multiple battle mangers are 

attempting to simultaneously direct a weapons launcher at multiple targets.  These two 

situations could generate outcomes that are unpredictable and potentially hazardous to 

allied forces and assets. 

For liveness reasons, it is desirable to have each battle manager eventually access 

the critical section as requested.  Given that a sensor has redirected its field of regard to 

satisfy the request by one battle manager, it is not desirable to break that access until the 

original request is fulfilled.  The battle-manager should have the ability to direct the 

second battle manager’s request to another sensor of equal ability to satisfy the request.  

This situation is true for multiple battle managers’ request to a weapon. 

For fairness reasons, it is desirable to grant requests in the order that the battle 

managers generate the requests to access the critical section.  Each battle manager has an 

essential mission to perform so each request must be granted fairly to achieve maximum 

ballistic missile defense. 
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There are numerous algorithms that provide mutual exclusion in the critical 

section.  There are pros and cons for each algorithm.  For this research, we will consider a 

centralized algorithm, a distributed algorithm, and a token-ring algorithm. 

In the centralized algorithm, each battle manager would request access to the 

critical section from the coordinator.  If the coordinator determines that access is 

available, then the requesting battle manager would be granted access to the critical 

section.  If another battle manager currently has access to the critical section, then the 

coordinator cannot grant access to the requesting battle manager; however, the 

coordinator queues the request for when the occupying battle manager vacates the critical 

section.  This centralized algorithm satisfies the safety, liveness, and fairness properties.  

Only one battle manager can gain access to the critical section at any given time.  All 

requests will eventually be fulfilled.  Requests are satisfied in the order each request is 

made.  The downside to this algorithm is that the coordinator becomes a single point of 

failure in the battle-management network.  If the coordinator crashes, then the battle-

management may go down.  Additionally, the coordinator could become a bottleneck in 

the battle-management network. 

In the token-ring algorithm, a token is passed from battle manager to battle 

manager in a prescribed pattern of token passing.  This token must be held by a battle 

manager to access the critical section.  If a battle manager receives a token, it checks to 

see whether it desires to enter the critical section.  If so, the battle manager accesses the 

critical section and performs its work.  After it leaves the critical section, the battle 

manager passes the token on to another battle manager.  If not, then the battle manager 

passes the token on to another battle manager.  The token continues to circulate in the 

prescribed pattern until a battle manager desires to access the critical section.  The 

distributed algorithm satisfies the safety and liveness properties; however, it does not 

satisfy the fairness property as previously defined.  Only one battle manager can gain 

access to the critical section at any given time.  All requests will eventually be fulfilled.  

Requests are satisfied as the token becomes available.  Every battle manager will have 

access to the token during every token-passing circuit on the network.  Access is fairly 

granted but requests are not granted with respect to the time the request is made.  The 
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downside of this algorithm is that the detection of a lost token on the network is difficult 

in which to distinguish from the situation in which the token is being used by any given 

battle manager on the network.  Additionally, if a battle manager fails or is lost, the 

prescribed pattern of token passing is interrupted. 

In the distributed algorithm, a battle manager constructs a message that indicates 

the name of the critical section that it wants to access.  This message is sent to all other 

battle managers.  When another battle manager receives the access-request message, it 

will perform one of the following three actions based upon its current state: 

1. If the battle manager is not in the requested critical section and does not 

want to enter the requested critical section, it will send an “OK” message back to the 

requesting battle manager. 

2. If the battle manager is in the critical section, it will queue the request for 

access. 

3. If the battle manager is not in the requested critical section but wants to do 

so, it will compare the timestamp on the requesting message to the timestamp on its own 

request message.  The battle manager honors the message with the older timestamp.  If 

the received message has an older timestamp, then the battle manager sends an “OK” 

message to the requesting battle manager.  If the received message has a younger 

timestamp, then the battle manager queues the request message and waits for action on its 

access request. 

The distributed algorithm can satisfy the safety, liveness, and fairness properties 

for the BMDS Battle Manager.  Only one battle manager can gain access to the critical 

section at any given time.  All requests will eventually be fulfilled.  Requests are satisfied 

in the order each request is made.  The downside of this algorithm is that each battle 

manager on the network is a potential point of failure; that is, if a battle manager is lost or 

failed, it will not respond to access requests from other battle managers.  Consequently, 

this “silence” will be interpreted as a denial of access by battle managers that have  
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submitted access requests to the critical section.  Additionally, every battle manager in 

the network is a potential bottleneck given the number of messages generated for each 

access request. 

D. TECHNICAL CONTRIBUTION 
For the first technical contribution in this research, we identified distributed 

system attributes for developing the controlling software in a system-of-systems.  The 

design of distributed systems is not a trivial problem.  It involves the consideration of 

issues that may not be typically considered in single-node system.  In the design of a 

distributed system, we should recognize that synchronized clocks, detection of failures, 

and awareness of global state are difficult to accomplish in distributed systems.  Also, we 

should uphold the properties of safety, liveness, and fairness in the consideration of 

mutual exclusion solutions for the access to the critical section. 
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VIII. REAL-TIME ENVIRONMENT  

A. BATTLE MANAGEMENT IN A REAL-TIME ENVIRONMENT 
The battle-management system will be a reactive system.  That is, the battle-

management system behavior will be characterized with respect to its response to 

external events in the operating environment.  As Parnas noted in [61], the battle-

management software must identify, track, and direct weapons towards targets whose 

characteristics may not be known with certainty until the moment of battle.   The battle-

management software must discriminate the threat objects from decoys and debris.  

Given that the battle-management system may be processing information on up to 

thousands of objects as in the ballistic missile defense battlespace [13], we will require 

the battle-management system to concurrently process a significant number of tasks. 

Parnas further noted that the battle-management software will have absolute real-

time deadlines for the computation that will consist of periodic processes to include 

detecting and identifying potential threat missiles, assigning a weapon to engage the 

threat missile, and providing an assessment of the interceptor-threat missile engagement.  

Because of the unpredictability of the computational requirements of each process, 

developers cannot predict the required resources for computation. [61]  We must develop 

an approach that bounds the computational requirements for the battle-management 

system. 

B. REAL-TIME SYSTEM DEFINITION 
Engineers and designers oftentimes equate “real time” with “real fast.”  This 

misperception has permeated the thinking of system engineers as they discuss “near-real-

time systems” that exhibit “near-real-time performance.”  This thinking may have 

originated in the business-systems world from the concept of “near-real-time 

transactions” which is intended to mean somewhat fast transactions.  Regardless of the 

origin, the phrases “near-real-time” and “real-time” can be found in system specifications 

to describe the desired performance conditions of fast and very fast, respectively. 

There does not seem to be a universally accepted definition for a real-time 

system; however, many common themes seem to permeate from the offered definitions.  
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In [30], Bruce Douglass defines a real-time system as “…one that has performance 

deadlines on its computations and actions.”  Hassan Gomaa states in [41] that “…real-

time systems are concurrent systems with timing constraints.”  In [52], Jane Liu suggests 

that “… a real-time system is required to complete its work and deliver its services on a 

timely basis.” 

Real-time systems are frequently reactive systems in that real-time systems are 

event-driven and must respond immediately to stimuli from an external environment in 

which the real-time system exists.  (N.B.:  For this research, we define a reactive system 

as a system for which its behavior is primarily caused by reactions to external events as 

opposed to being internally generated stimuli. [30])  This external environment is 

typically non-human and involves input data from mechanical processes or alarm 

conditions.  From sensory input data, real-time systems commonly make control 

decisions that are without human intervention. [41]   

For this research, we define a real-time system as one for which producing correct 

computations as a result of an external event is equally as critical as meeting the 

performance deadlines for those computations.  

C. BATTLE-MANAGEMENT COMPUTATION DEADLINES 
We identify the hard deadline for the battle manager in the context of the kill 

chain.  Recall the five functions of the kill chain:  Detect, Track, Assign Weapon, 

Engage, and Assess Kill.  Along the kill chain is a point called keep-out altitude which 

we define as follows:  The keep-out altitude for ballistic missile defense is the lowest 

altitude above an area on the surface of the Earth for which an engagement must occur to 

minimize the ground effects of debris from the engagement.  The issue is that the debris 

from the resultant engagement will fall back to Earth, and it may contain nuclear, 

chemical, or biological agents that can negatively impact humans and assets in the 

volume of the debris fallout.  The keep-out altitude is noted in Figure 1. 
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Figure 1.   Keep-Out Altitude in Kill Chain   

 

 

 

 

 

 

 

 

 

 

Note that the keep-out altitude drives the deadlines in the battle manager.  

Considering the fly-out time of the interceptor and the velocity of the ballistic missile, the 

interceptor must be released in advance of the ballistic missile descending to the keep-out 

altitude.  (N.B.:  For this research, we define fly-out time as the time difference from the 

time of launch of the interceptor to the time of engagement of the ballistic missile threat.)  

For the interceptor to be launched in time for the engagement to occur at or above the 

keep-out altitude, the battle manager assigns the ballistic missile track to a weapon 

assignment in sufficient time for the weapon system to develop a fire-control solution and 

launch the interceptor.  (N.B.:  For this research, we define the fire-control solution as the 

collection of calculations by a weapon system to determine the point of intercept, launch 

angle, and time of launch of an interceptor.)  The weapon assignment in the battle 

manager is dependent on the determination of a ballistic missile threat in the sensor data 

which must be discriminated to identify threat objects, and potentially correlated to 

determine the true number and position of threat objects.  (N.B.:  For this research, we 

define discrimination as the capability to distinguish a threat object from benign objects 

such as debris, chaff, countermeasures, and satellites.  Furthermore, we define correlation 
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as the capability to associate one track with one sensed object.)  Thus, the deadlines in the 

kill chain are:  (1) identification of threat objects and (2) weapon assignment to a threat 

object.   

The hard deadlines must be calculated for each threat ballistic missile and will not 

be fixed; that is, the hard deadlines will be a function of battlespace conditions to include 

such characteristics as:  (1) the selected shot doctrine (e.g., shoot at point of highest 

percentage of a kill probability as depicted in Figure 2 or shoot an interceptor – assess the 

kill – shoot again if necessary:  shoot-look-shoot as depicted in Figure 3), (2) velocity of 

the ballistic missile threat, and (3) fly-out time of the interceptor. 

 
Figure 2.   Shoot at Highest Percentage Shot Opportunity   

 

 

 

 

 

 

 

 

 

Note that soft real-time deadlines may exist for which the battle manager must 

address.  We will differentiate a hard deadline from a soft deadline as follows:  a hard 

deadline that is missed may be considered to be a fatal fault while a soft deadline that is 

missed is considered undesireable.  For example, developers may specify a  deadline for 

detection that should be met within 60 seconds of launch.  If the battle manager 

completes the deadline 20 seconds late, then this is undesireable but not a fatal fault.  

This is an example of a soft deadline.  If the battle manager completes the weapon 

assignment so late in the kill chain that the weapon cannot launch the interceptor in time 

to engage the threat at or above the keep-out altitude, then this is a fatal flaw as the 
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ground effects from the engagement may cause either human fatalities or loss of assets.  

This is an example of a hard deadline. 

Figure 3.   Shoot-Look-Shoot   
 

 

 

 

 

 

 

 

While the battle-management deadlines within the kill chain are a function of 

numerous variables, we offer the information in Table 1 that provides approximate time 

values for the required battle-management response times to a detected threat.  For this 

research, we define response time as the time required to complete an activity in the kill 

chain.  (N.B.:  We offer the battle-management response times for addressing ballistic 

missile threats as a point of reference rather than absolute values.  [55] offers a detailed 

analysis of response times for various missile types and atmospheric conditions.)  

 

Table 1.   Ballistic Missile Threat Flight Times * 
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BM Class 
(kilometers) 

Flight 
Time 

(seconds)

Boost 
Time 

 
(seconds) 

Mid-
course Time 

(seconds) 

Terminal 
Time 

(seconds)

1000 443 50 377 16 
3000  767 75 682 10 

* We offer the flight times for ballistic missiles in the three phases for minimum energy trajectories as a point of 
reference rather than absolute values.  [55] offers a detailed analysis of flight times for various missile types and 
atmospheric conditions.  
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Given that current infrared satellite technology requires a minimum of three hits 

to determine a trajectory, then the minimum time to detect a ballistic missile launch is 30 

seconds.  These 30 seconds must be subtracted from the flight time in the calculation of 

the maximum available battle-management response time.  Since the intercept must occur 

above the minimum altitude above the defended assets, then we must subtract 16 seconds 

and 10 seconds from the flight times of the 1000 kilometer and 3000 kilometer ballistic 

missile threats respectively.   For the 1000 kilometer ballistic missile threat, the 

maximum battle-management response time to complete the kill chain is 397 seconds or 

6.6 minutes.  For the 3000 kilometer ballistic missile threat, the maximum battle-

management response time to complete the kill chain is 727 seconds or 12.1 minutes.   

So, the battle manager must detect the ballistic missile threat, track the threat, 

assign a weapon to the threat, authorize the launch of an interceptor, observe the 

engagement, conduct a hit assessment of the engagement, track any residual remaining 

threat, assign a weapon to any residual threat, and authorize the launch of the interceptor 

– all within the calculated maximum battle-management response time.  [55] offers that 

an interceptor with a range of 500 kilometers and a final velocity of 2.0 kilometers per 

second would have a maximum flight time of 313 seconds for the maximum range.  This 

would leave a maximum of 84 seconds for the detection, tracking, weapon assignment, 

launch authorization, and hit assessment for the defense against the 1000 kilometer 

ballistic missile threat.  Note that there is insufficient time to launch a second interceptor 

if the first interceptor failed to negate the threat.  The maximum time remaining for a 

3000 kilometer ballistic missile threat would be 414 seconds or 6.9 minutes.  This would 

leave sufficient time for a second interceptor launch; however, the maximum battle 

response time to complete the required kill-chain activities for a “shoot-look-shoot” 

engagement (i.e., one interceptor, hit assessment, second interceptor) would be reduced to 

101 seconds.   

If we equally divide the maximum available battle-management response time for 

each interceptor, then the timeline would be as shown in Table 2. 



 67

Table 2.   Battle-Management Response Times * 

 

 

Given that a late computation in either battle-management deadlines will result in 

a late engagement below the keep-out altitude, the battle-management system might be a 

real-time system.  If an engagement occurs below the keep-out altitude, then the debris 

fallout could result in the loss of human life and the contamination of physical assets.   

The battle-management system must support the timely execution of these hard 

deadlines.  (N.B.: For this research, we define a deadline as a point in time or a delta-time 

interval by which an action of the battle-management system must occur. [30])  The 

battle-management system must ensure that the required resources to execute its highest 

priority tasks are available for execution of these tasks.   

The battle-management system must complete computations on threat evaluation 

based on sensor inputs from the ballistic missile defense battlespace and make decisions 

on weapons assignment without human intervention.  The correctness of the 

computations and decisions by the battle-management system depends on the logical 

correctness of the computations and decisions as well as the timely termination of the 

computations and decisions – late computations and decisions will be wrong 

computations and decisions.  
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* We offer the battle-management response  times for ballistic missiles in the three phases for minimum energy 
trajectories as a point of reference rather than absolute values.  [55] offers a detailed discussion of  response times 
for various missile types and battlespace conditions.  
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D. BATTLE MANAGER CONSIDERATIONS 

1. Interaction With External Environment 
The battle manager will continually receive asynchronous inputs from various 

sensors to include radars and IR sensors.  Based upon the location of the launch and 

sensors that can detect and track the ballistic missile threat, the specific sensors and 

number of threats will not be known to the battle manager in advance.  As the battle 

manager determines that a track is a ballistic missile threat, it must activate the weapon-

assignment software to complete the kill chain.  As the weapon system engages a ballistic 

missile threat, the battle manager will receive sensor inputs that it will process to 

determine whether the interceptor destroyed the ballistic missile threat.  

2. Timing Constraints 
The battle manager must provide weapon assignments in sufficient time for the 

weapon to launch an interceptor for an engagement above the minimum altitude 

requirement of 15 kilometers for terminal-phase systems and 83 kilometers for mid-

course-phase systems. [55]  If the engagements fall below these altitudes, then the 

potential for the loss of human life is increased.   

What is the risk of a late engagement below the keep-out altitude?  Predictions of 

the loss of human life are offered in the following examples: 

a. The Department of Defense has determined that a ballistic missile 

that delivers thirty kilograms of anthrax spores to an unprotected city could kill the entire 

population in the area of five to twenty square kilometers.  If a major population center is 

defined as five thousand people per square kilometer, then the predicted loss of life from 

a ballistic missile carrying a payload of thirty kilograms of anthrax spores could range 

from 25,000 to 100,000 people. [55] 

b. For a one megaton nuclear detonation at twelve to fourteen 

kilometers over a major population center, most materials within twelve to fourteen 

kilometers of the nuclear detonation will spontaneously ignite as a result of the heat 

generated by the blast.   If  a  major  population center is defined as five thousand people  
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per square kilometer, then the predicted loss of life from a ballistic missile carrying a 

payload of a one megaton nuclear warhead could range from 1,130,000 to 1,540,000 

people. [55]   

The predicted loss of life for four major cities from the result of detonation of 

weapons of mass destruction in the United States is presented in Table 3. 

 Without question, the consequences of a late engagement due to a missed 

deadline in the battle manager could be a significant loss of human life.  Thus, a late 

computation in the track processing and weapon assignment software in the battle 

manager will be deemed as a wrong computation.  

 

Table 3.   Predicted Loss of life from Weapons of Mass Destruction 

 
3. Concurrency 
The track-processing software of the battle manager will execute discrimination 

and correlation algorithms on the received sensor data to identify ballistic missile threats.  

Additionally, the assign-weapon software of the battle manager must assign each 

identified ballistic missile threat to a specific weapon system.  Given the potential for a 

high number of potential threat objects in the battlespace, the battle manager must 

concurrently discriminate and correlate input data for a multitude of threat objects as well 
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Wash. D.C. 3,236 16,180 – 64,720 731,336 – 966,688 

New York 10,291 51,455 – 205,820 2,325,766 – 3,169,628 
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as concurrently assign a weapon to each threat object and monitor the engagement for a 

possible re-engagement assignment to a weapon.  

4. Predictability 
The battle manager must respond immediately to external sensor stimulation and 

execute its highest priority tasks as designed.  In the interest of developing dependable 

software, we must know that the battle manager will execute its highest priority tasks 

without fail under all conditions in the battlespace.  In the development of the battle-

manager software, we must be able to determine in the design phase that the battle 

manager will meet its deadline requirements.  Otherwise, we are leaving the meeting of 

the deadlines to chance.  

E. TECHNICAL CONTRIBUTION 
For the second technical contribution in this research, we identified real-time 

system attributes for developing the controlling software in a reactive system-of-systems.  

In the development of the architectural views, BMK design, and BMK specification, we 

should consider the real-time aspects offered in this research to include the interactions 

between the BMDS sensors and shooters with the BMK, timing constraints, concurrency, 

and predictability. 

 



 71

IX. SYSTEM-OF-SYSTEMS ARCHITECTURE  

A. ARCHITECTURE AND DESIGN 
As Glinda the Good Witch of the North told Dorothy in her journey to find the 

Wizard of Oz:  “It's always best to start at the beginning, and all you do is follow the 

yellow brick road."  In the case of software development of a control function for a 

system-of-systems, we assert that the yellow brick road is the architecture. 

Why is architecture important? 

Martin Fowler offers an insightful observation about architecture in [32].  At a 

conference that he attended, an economist offered his analysis of the underpinning of the 

agile concepts in manufacturing and software development.  According to the economist, 

one of the prime drivers of complexity is the influence of irreversibility.  As software 

developers make a design decision upon which all future design decisions will be 

influenced, the design becomes irreversible at that point; that is, a design that is hard to 

change is, for all intents and purposes, irreversible.  

The role of the architect is to find ways to eliminate irreversibility in designs. [32]  

The architect should ensure that today’s decision does not limit the flexibility of design 

decisions tomorrow.  We will adopt this philosophy in this research and attempt to avoid 

irreversibility in the architecture of the battle manager. 

In addition, developers of a system need to agree on the meaning of an 

architecture, in addition to distinguishing architecture from design: there are many 

formalisms—each with it own semantics—for specifying architectures and it is difficult 

to define a brightline between architecture and design.  

In [12], Clements et al. differentiate between an architecture and a design as 

follows:  an architecture is a design but not all design is an architecture.  Furthermore, 

they tell us that an architecture “…establishes constraints on downstream activities – 

finer grained designs and code – that are compliant with the architecture, but architecture 

does not define an implementation.”  In short, the architecture defines bounds so that the 

system can satisfy the required behavior, implementation, and quality objectives. 
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In [2], Bass, Clements, and Kazman define software architecture as the 

“…structure or structures of the system, which comprise software elements, the 

externally visible properties of those elements, and the relationships among them.”3   The 

externally visible properties are the assumptions that other elements may make of an 

element to include “…provided services, performance characteristics, fault handling, 

shared resource usage, and so on.” 

In [67], Shaw and Garlan state that a software architecture is the structural aspects 

of a system to include the “…organization of a system as a composition of components; 

global control structures; the protocols for communication, synchronization, and data 

access; the assignment of functionality to design elements; the composition of design 

elements; physical distribution; scaling and performance; dimensions of evolution; and 

selection among design alternatives.”  Moreover, Shaw and Garlan describe a system’s 

architecture as the “computational components and interactions among those 

components.”  Shaw and Garlan remind us that as the “…size and complexity of software 

systems increase, the design and specification of overall system structure become more 

significant issues than the choice of algorithms and data structures of computation.” 

None of the preceding definitions of architecture are precise.  Instead, the 

definitions describe what are thought to be key aspects of an architecture:  structure, 

components, interactions of components, and system constraints. 

Architecture may fit into a bin of concepts which defy a crisp, clear definition.  

The bin could also include interoperability, integration, quality, reliability, and other 

aspects of dependability.  In an attempt to define one of the concepts in the bin, no one to 

our knowledge has given a precise, universal definition.   

Another confounding factor in the attempt to define these concepts is that they 

may have different attributes depending on the context of the problem.  For example, 

                                                 
3 In the first edition of [2], Bass, Clements, and Kazman identified the primary building blocks of a 

system as components.  Given the rising popularity of component-based software engineering, the authors 
changed the primary building blocks of a system from components to elements with the intent of avoiding 
confusion between their use of components in their definition of an architecture and the use of components 
in component-based software engineering. 
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interoperability between two word processors may have a different context than the 

interoperability of sensors and weapons in the BMDS. 

In [32], Fowler offers that an architecture is the shared understanding of a system 

design.  This definition implies two things:  (1) an architecture represents that which 

results in a common comprehension of the desired system behavior, its limits, and 

operational environment and (2) humans must socialize that which comprises an 

architecture.  If one followed Fowler’s definition for an architecture, conceivably, all 

descriptions and artifacts related to a system design could be considered to be the 

architecture.  However, the important implied statement in his definition is that humans 

must determine the content of an architecture: the task of delineating between 

architecture and design cannot be performed using a mechanical algorithm. 

For this research, we define architecture and design as follows: 

Architecture: the collection of logical and physical views, constraints, and 

decisions that define the external properties of a system and provide a shared 

understanding of the system design to the development team and the intended user of the 

system.  

Design:  the details of planned implementation that are defined, structured, and 

constrained by the architecture. 

In these definitions, there is an implied responsibility of the system architect to 

collaborate with the development team and the intended system user to document the 

architecture.  While numerous tools, artifacts, and methodologies exist on the market to 

support the system architect, the content and usefulness of the architecture will be 

dependent on the skill of the architect to select the appropriate tools, artifacts, and 

methodologies that bring about a shared understanding of the system design.  One can 

argue that the shared understanding of the system design should be the primary objective 

of architecting a system.  

We will not attempt to develop either a complete set of architectural views or the 

design of the controlling software for a system-of-systems in this research; however, we 

will develop a set of views that range from an architectural view of the BMDS to the 



 74

architectural view of a component in the controlling software so that the reader might 

gain a shared understanding of one way to architect the controlling software in a system-

of-systems. 

B. BATTLE-MANAGER BEHAVIOR 

1. Introduction 
We offer that the initial step in developing a system-of-systems architecture is to 

define the system-of-systems behavior.  Although numerous methods exist to define 

system behavior, we favor the understanding of the operational concepts for the system-

of-systems, identification of user goals, and the development of use cases that outline the 

required interactions between an actor and the system to achieve the user’s goals 

As we develop the user goals and use cases, we will accumulate a list of 

specifications for the system-of-systems that characterize the system behavior.  (N.B.:  

For this research, we define a specification as either (1) a desired system behavior that is 

expressed as a feature, function, property, or capability, or (2) an undesired system 

behavior that can be expressed as a limitation, constraint, negative (e.g., “the system must 

not operate in this mode when…”), or condition.  While the scope of a specification can 

be expanded beyond system behavior, we chose to limit the scope of the definition of 

specification to system behavior for this research.) 

Specifications are different from the requirements of a system that acquisition 

organizations have produced for many years.  As traditional development approaches 

mandated, engineers would use the formal users’ documents (e.g., Mission Needs 

Statement, Operational Requirements Document) to develop functional requirements.  

(N.B.:  For this research, we define a requirement as a criterion that a system must meet.)  

Typically, the formal requirements would define what a system must do, characteristics it 

must have, and levels of performance it must attain.  After completing this document, the 

system engineer would allocate these functional requirements to developmental areas of 

hardware, software, and skinware (i.e., people), and expand the requirements in the 

development areas to include non-functional requirements such as reliability, 

recoverability, and usability. 
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At this point in the development, the hardware engineers would acquire hardware.  

The communications engineers would purchase communication services and acquire 

communication devices.  Before the software engineers could outline a software 

architecture, the engineers in the other developmental areas of focus would have saddled 

them with hardware, operating system, database application, and communication 

structures within which the software applications must be integrated.  The less than 

sterling results of this traditional approach to eliciting requirements and developing 

systems include substantial cost and time overruns to deliver a product that contains 

significant reductions in delivered functionality as compared to required functionality.  

[49][50][69][70] 

The senior leadership in defense acquisition recognized the so-called software 

crisis in the early 1990’s and instituted significant acquisition reforms to the traditional 

system-development approach.  Capability-based acquisition is one such modification 

with which defense acquisition organizations are struggling to incorporate in their 

development processes.  (N.B.:  For this research, we define a capability as the ability to 

perform a course of action or sequence of activities leading to a desired outcome. 

Furthermore, we define capability-based acquisition as the process of identifying system 

capabilities in terms of specifications and acquiring the software applications, hardware, 

and information services to support these desired capabilities in an integrated 

environment.)  [20][26][28]  

In the capability-based acquisition approach, the traditional products such as 

formal requirements disappeared in favor of a natural language description of desired 

capabilities.  Although senior leadership within the U.S. DoD believe that they gain 

greater insight on the definition of a system as compared to the development approaches 

of the past, the development engineers have a daunting challenge of developing 

acquisition documents that can be used to develop a system.  Specifically in the software 

area of focus, engineers recognized that software programmers cannot be handed merely 

a laundry-list of capabilities to code.  Software engineers should translate the list of 

desired capabilities into specifications and design documentation to avoid the situation in 

which programmers must interpret the design. 
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To develop specifications, we should understand the source of specifications.  For 

this research, we will adopt the methodology for developing specifications that is 

suggested in Figure 4.  That is, we should recognize that development of specifications 

ought to have a level of rigor in the process to support validation and verification of the 

specifications.  (N.B.:  For this research, we define validation as the process of evaluating 

a system or component during or at the end of the development process to determine 

whether it satisfies specified requirements.  Furthermore, we define verification as the 

process of evaluating a system or component to determine whether the products of a 

given development phase satisfy the conditions imposed at the start of that phase. [44]) 

 

Figure 4.   Information Sources for Developing Specifications  
 

 

 

 

 

 

 

 

 

In Figure 4, we propose that specifications represent the functional model of a 

system.  (N.B.:  For this research, we define a functional model as a system abstraction 

that contains the set of observations, modeling data, pre-conditions, post-conditions, 

invariants, boundary conditions, and algorithms that describe the physical system.)  To 

develop the specifications of a system, we propose three sources of information be used:  
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of proposed military improvements in the defined battlespace.  Battlespace constraints 

may include natural and physical forces, doctrine, threat descriptions, and environmental 

features.) 

Thus, we offer that a system’s specifications are the synthesis of desired 

capabilities, functional requirements, and battlespace constraints.  For this research, we 

will anchor the development of the functional requirements to the UML use cases that 

explored the achievement of the user goals.  We will consider the impacts of the 

battlespace constraints in the use cases.  We will synthesize the desired capabilities with 

the functional requirements and battlespace constraints to form the system specifications.   

To develop the functional requirements, a kill chain could be identified for the 

mission area of interest.  (N.B.:  For this research, we define a kill chain as the sequence 

of activities that must occur to complete a mission goal.)  The kill chain should represent 

the high-level activities of the mission that can serve as a point of departure in developing 

the use cases and vision document for use in identifying the system’s specifications.  

Given that the kill chain captures the totality of the major mission functions, then one can 

use the major mission functions to establish the initial set of user goals that span the 

mission area; that is, one can restate the major mission functions of the kill chain in terms 

of summary user goals with the confidence that summary user goals address the entire 

mission area.  At that point, one can define sub-goals to the summary user goals and 

continue to define sub-goals as required. 

With respect to the battle manager, we will identify a kill chain that defines the 

military activities involved in destroying a potential adversary’s ballistic missile threat.  

Before we begin developing the use cases and vision document for the battle manager, let 

us examine the role of the battle manager in ballistic missile defense.  

2. Planning, Command and Control, Battle Management 
Because the BMDS Battle Manager will react in response to external events in the 

battlespace, it will be deemed a reactive system.  (N.B.:  For this research, we define a 

reactive system as one for which its behavior is primarily caused by reactions to external 

events as opposed to being internally generated stimuli.)   Because the BMDS Battle 

Manager must meet hard deadlines along the kill chain, we propose that the BMDS Battle 
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Manager software be developed as a real-time system.  (N.B.:  For this research, we 

define a real-time system as one for which producing correct computations as a result of 

an external event is equally as critical as meeting the deadlines for those computations.) 

Battle management relies on two functions that influence the outcomes of battles:  

planning and command and control (C2).  For this research, we define planning as that 

military planning that produces either an Operation Plan (OPLAN) or an Operations 

Order (OPORD) to employ military force against an adversary.  We define C2 as the 

exercise of authority and direction by a properly designated commander over assigned 

and attached forces in the accomplishment of the mission.  Recall that our definition of 

battle management for this research is the decisions and actions executed in direct 

response to the activities of enemy forces in support of the Joint Chiefs of Staff’s concept 

of precision engagement. [18]   

Planning includes the initial lay-down of joint and coalition forces, rules of 

engagement, provisioning, and re-supply.  Planning “sets the table” for the military and 

establishes the initial ruleset that the warfighters will follow at the onset of the battle.  

Planning is a coordinated joint staff procedure used by a commander to determine the 

best method of accomplishing assigned tasks and to direct the action necessary to 

accomplish the mission.  [21]  Planning includes both deliberate planning and crisis-

action planning (CAP).  Combatant commanders (COCOMs) conduct deliberate planning 

to develop a military response to a future hypothetical contingency while CAP takes 

place in response to a crisis in which the United States’ national security interests are 

threatened and the President is considering a military response. [29] 

C2 functions are performed through an arrangement of personnel, equipment, 

communications, facilities, and procedures employed by a COCOM in planning, 

directing, coordinating, and controlling forces and operations in the accomplishment of 

the mission. [21]  Through C2, the senior military leadership modifies and enhances the 

initial ruleset that governs the battlespace.  (N.B.: Battlespace is defined as the 

environment, factors, and conditions that must be understood to successfully apply 

combat power, protect the force, or complete the mission.  This includes the air, land, sea,  
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space, and the included enemy and friendly forces; facilities; weather; terrain; 

electromagnetic spectrum; and the information environment within the operational areas 

and areas of interest. [21])  

3. Kill Chain4 
Recall from previous discussion that the Joint Staff defined Precision Engagement 

as follows:   

…the ability of joint forces to locate, surveil, discern, and track objectives or 

targets; select, organize, and use the correct systems; generate desired effects, assess 

results; and reengage with decisive speed and overwhelming operational tempo as 

required, throughout the full range of military operations. [23]  

The basic construct of the definition for precision engagement is the identification 

of the functional flow of military activities that must occur to engage a threat object.  

This functional flow of military activities is colloquially known as the kill chain.  The kill 

chain defines what must occur from the moment of the detection of a threat through the 

engagement to the determination of the negation of the threat. 

Rather than capriciously defining a kill chain for the battle-management function, 

we treat the functional flow of events that occur in the engagement of a military threat, 

starting with an examination of the original work of Colonel John Boyd (USAF, Ret.) and 

followed by the Navy’s functional construct for missile defense, the Army’s functional 

flow of events for deep operations, the Air Force’s kill chain, and the Joint Chiefs of 

Staff’s functional flow of events for theater ballistic missile defense (TBMD).  

a. Observe-Orient-Decide-Act 
Colonel John Boyd was an avid student of military engagements.  From 

his analysis of the engagement actions of commanders and famous battles, he formed a 

concept of what is known today as the Observe-Orient-Decide-Act (OODA) loop.  He 

noted that in many of the engagements, one military force presented the other with a 

series of unexpected and threatening situations with which they had not been able to keep 

pace.  The faster military force eventually defeated the slower military force.  Boyd 

observed that military conflicts are time-competitive. 
                                                 

4 Kill Chain discussion extracted from [10].   
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In the OODA Loop, Boyd incorporated a temporal aspect in his analysis 

of military decision-making before and during battle.  Decisions and actions that are 

delayed are often rendered ineffective because of the constantly changing circumstances.  

When a military adversary is involved, the operation is not only time-sensitive but also 

time-competitive.  Time or opportunity neglected by one adversary can be exploited by 

the other. [14]   

According to Boyd, military conflict can be seen as a series of time-

competitive cycles through an OODA loop.  Each military force in a conflict begins by 

observing themselves, the physical surroundings, and the adversary.  Next, the military 

force orients itself; orientation refers to making a mental image or snapshot of the 

situation.  Orientation is necessary because the fluid, chaotic nature of conflicts makes it 

impossible to process information as fast as military commanders can observe it.  This 

necessitates applying a freeze-frame concept and provides a perspective or orientation.5  

Once we have an orientation, military commanders must make a decision.  The decision 

takes into account all the factors present at the time of the orientation.  Finally, the 

military commander must implement the decision.  This requires action.  One tactical 

adage states: “Decisions without actions are pointless and actions without decisions are 

reckless.”  Then the cycle begins anew as military commanders believe that their actions 

will have changed the situation.  The cycle continues to repeat throughout a tactical 

operation. [6] 

The military force that can consistently go through the OODA loop faster 

than the other enemy force can, ceteris paribus, gains a tactical advantage.  By the time 

the slower adversary reacts, the faster force is doing something different and the slower 

adversary’s action may become ineffective.  With each cycle, the action of the slower 

military force becomes increasingly ineffective by an increasingly larger margin.   

The aggregate resolution of these episodes will eventually determine the 

outcome of the conflict.  For example, as long as the actions of the faster military force 

continue to prove successful, the slower military force will remain in a reactive posture 

while the commander of the faster military force maintains the freedom to act.  No matter                                                  
5 This is analogous to creating a materialized (i.e., stored) view of data by querying a database. 
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how desperately the slower military force strives to accomplish its military objectives, 

every action becomes less useful than the preceding one.  As a result, the slower military 

force falls farther and farther behind.  [6][14]  

b. Detect-Control-Engage 
At a Millennial Challenges Colloquium presentation in April 2000, Vice 

Admiral Rodney Rempt (then Rear Admiral and Deputy Assistant Secretary of the Navy 

for Theater Combat Systems) discussed Naval theater air and missile defense for the 

twenty-first century.  He observed that some level of defense is the “price of admission” 

for carrying the battle to the shores of potential adversaries.  He discussed the threat to 

the Fleet of cruise missiles, ballistic missiles, fighter-bombers, and unmanned aerial 

vehicles (UAVs); these threats are steadily increasing in lethality, accuracy, and range.  

Hence, Vice Admiral Rempt concluded that the Naval theater air and missile defense 

must formulate and apply a concept of Detect, Control, and Engage. [65] 

For the detect aspect of Naval theater air and missile defense, the concepts 

of multi-spectrum sensor netting and data fusion must be realized from a variety of active 

sensor arrays, passive staring infrared sensors, and bistatic radars.  The timely and 

accurate detection of current and future threats is absolutely essential in triggering 

military action to negate the threat. 

For the control aspect, the Navy should realize a network of planning 

tools, automated decision aids, and the single integrated battle space.  The Navy must 

develop solutions to potential threats before the threats are realized.  As in all 

competitions and conflicts, planning and identifying potential engagement zones, rules of 

engagement, and consequence management will lead to the success of Naval theater air 

and missile defense.   

For the engage aspect, the Navy should deliver the appropriate force to 

negate current and future threats to the Fleet and its defended assets.  The received 

information must be processed in a timely fashion so that Naval officers can make timely 

decisions for engaging potential threats.  Indecision due to inconclusive or untimely 

information can have catastrophic consequences to Fleet resources.  
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c. Decide-Detect-Deliver-Assess 
The Army defines targeting as the process of selecting targets and 

matching the appropriate response to them on the basis of operational requirements and 

capabilities.  COCOMs use the functional construct of decide, detect, deliver, and assess 

to transform a COCOM’s targeting intent into an engagement. 

The objectives of targeting are to:  (1) identify those resources that the 

enemy can least afford to lose and (2) identify the greatest weakness of the enemy that is 

most susceptible to attack by friendly forces.  By attacking and destroying such resources 

as munitions stockpiles, tactical communication centers, operations centers, the enemy 

and his military assets are more vulnerable to the COCOMs’ battle plans.  Successful 

targeting enables the COCOM to synchronize intelligence, maneuver, fire-support 

systems, and in addition to special operations forces, by attacking the right target with the 

best system and munitions at the right time. 

The decide function, as the first step in the targeting process, provides the 

overall focus and sets priorities for collecting intelligence and planning attacks. Targeting 

priorities must be addressed for each phase or critical event of an operation.  

Detect is the next critical function in the targeting process. The 

intelligence cell is the main figure in directing the effort to detect high-payoff targets 

identified in the decide function. This process determines accurate, identifiable, and 

timely requirements for collection systems.  

The deliver function of the targeting process executes the target attack 

guidance and supports the COCOM's battle plan once the high-payoff targets have been 

located and identified. Some targets will not appear as anticipated. Target attack takes 

place only when the forecasted enemy activity occurs in the projected time or place. The 

detection and tracking of activities associated with the target becomes the trigger for 

target attack. 

Combat assessment is the determination of the effectiveness of force 

employment during military operations.  On the basis of battle damage assessment 

(BDA) reports, the COCOM continuously estimates the enemy's ability to make and 
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sustain war and centers of gravity. During the review of the effects of the campaign, re-

strike recommendations are proposed or executed.  BDA is the timely and accurate 

estimate of damage resulting from the application of military force, either lethal or non-

lethal, against a target. BDA in the targeting process pertains to the results of attacks on 

targets designated by the commander. [18]  

d. Find-Fix-Track-Target-Engage-Assess 
According to General John Jumper (Chief of Staff of the United States Air 

Force), today’s Air Force is a “community of stovepipes.”  General Jumper wants to 

achieve horizontal integration that he defines as the “…ability to fuse data from every Air 

Force platform into a single repository of information, such as crews, planes, targets, and 

loads.”  His vision is to achieve horizontal integration through the assimilation of the 

entire “kill chain” from a single source of information.  General Jumper defines the kill 

chain as find, fix, track, target, engage, and assess. [37] 

As avowed by Lieutenant General Leslie Kenne (Air Force Deputy Chief 

of Staff for Warfighting Integration), the Air Force must “close the seams” in the kill 

chain by “integration of manned, unmanned, and space systems.”  Historically, 

technology limited the flow of information.  Battlefield information delivery was limited 

to the speed of the horses and the ability of the commander to assess the battlefield 

information from afar.  Execution was centralized as only the commander had the 

situational awareness of the entire battlefield.   

Consequently, reinforcement troops had no time to gain situational 

awareness.  Thus, troops had to rely on their commander to direct their movements and 

placements, and hoped that the enemy had not conducted movements that countered the 

commander’s situational awareness. [46]  

Today, technology provides the potential to maintain situational awareness 

for the entire military force.  The military has developed an interconnected network of 

information with the objective of providing timely and accurate information to all points 

of the battlespace.  The stovepipes discussed by General Jumper prevent the achievement 

of this objective and prevent effective battle-management in the battlespace.  

e. Detect-Identify-Locate-Track-Destroy 
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In recent years, the threat of missile attack to American forces and allies in 

foreign lands has dramatically increased.  The proliferation of theater missiles to 

numerous nations, advances in missile technology, and the pursuit of weapons of mass 

destruction have provided potential adversaries with a lethal-attack capability against 

United States’ interests.  This fact has forced the United States to address the potential 

threat that these missiles pose to National security. 

As outlined by the Joint Chiefs of Staff, theater missile defense applies to 

the “…identification, integration, and employment of forces supported by other theater 

and national capabilities to detect, identify, locate, track, minimize the effects of, and/or 

destroy enemy [theater missiles].”  Through this process, military commanders should be 

capable of countering threats from theater missiles and have the capability for rapid 

global deployment and theater mobility.  [22]  

f. Detect-Track-Assign Weapon-Engage-Assess Kill 
For this research, we will employ a kill chain that consists of the following 

five functions:  Detect, Track, Assign Weapon, Engage, and Assess Kill.  These five 

functions address all the functions outlined in the definition of precision engagement to 

which the Joint Chiefs of Staff subscribe, in addition to all of the functions identified in 

the Boyd, Navy, Army, Air Force, and Joint Chiefs of Staff functional models.   

Of the five kill chains described in the preceding paragraphs, only the 

Army and the Air Force identified an assess function that is required to determine 

whether the threat object is indeed negated.  The assess function is essential to complete 

the engagement as defined by the Precision Engagement.  The fix function of the Air 

Force kill chain is captured within the track function of our defined kill chain.   

As can be observed in Table 4, the proposed kill chain is complete with respect to 

addressing the major functions required to negate a threat object.  

C. ARCHITECTURE 

1. System-of-Systems Considerations 
The nature of global ballistic missile defense drives the assumption that the 

BMDS Battle Manager must provide services in every potential theater of battle as well 

as the defense of our homeland:   
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Table 4.   Summary of Kill Chains 
 

Recall the following from Chapter II:  The flight time for a ballistic missile with a 

range of 1000 kilometers is approximately 7.4 minutes and the flight time for a ballistic 

missile with a range of 3000 kilometer is approximately 12.8 minutes.  Moreover, the 

available time for tracking, assigning a weapon system, and authorizing a launch is 

approximately eighty-four seconds for a ballistic missile with a range of 1000 kilometers 

with no possibility of a second-shot opportunity if the first shot is not successful.   In 

addition, the available time for tracking, assigning a weapon system, and authorizing a 

first launch opportunity is approximately fifty-one seconds for a ballistic missile with a 

range of 1000 kilometers and approximately fifty-one seconds for a second-shot 

opportunity if the first shot is not successful. 

With the knowledge of the short timelines to conduct battle management for 

missile defense, it is not possible to realize the battle-manager capability in a centralized 

fashion.  That is, it is not reasonable to expect such a system to be positioned in location 

within the United States and require the system to direct the engagements of all possible 

ballistic missiles from all parts of the globe as described in Chapter I.  As such, we will 

consider a distributed system construct for the BMDS Battle Manager.  (N.B.:  For this 

research, we define a distributed system as one that has multiple processors that are 

connected by a communications structure.) 
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The distributed battle manager must be able to communicate with all the sensors 

and all the weapons systems in the BMDS; however, the distributed battle manager 

should be transparent from the perspective of the sensors and weapons connected to it.  

(N.B.:  For this research, we define transparent as a distributed system that appears to be 

a single system to the users that operate the distributed system, and the applications that 

reside and execute on the distributed system. [75]) 

The BMDS Battle Manager may continually experience modifications and 

upgrades to its applications.  As such, it would be useful to isolate the software that will 

change slowly over time from the software that will change more frequently.  From the 

discussion of the kill chain, it seems apparent that the basic five functions of battle 

management will remain regardless of the methods in which we realize the battle 

manager.  For example, the basic structure of track processing and weapon assignment 

may change occasionally as required.  However, the computation methods used in track 

processing and weapon assignment are likely to change frequently as new algorithms 

evolve and new technologies emerge. 

To this point, we have established that the battle manager must have interfaces 

with the sensors and weapons connected to it.  Additionally, the battle manager will be a 

distributed system for which its properties might be transparent to the weapons and 

sensors connected to it.  Finally, the battle manager may experience change over time.  

While the basic tenets of battle management will hold true, the methods of computation 

in the battle manager may experience frequent changes.  

2. BMDS Architecture  
Before considering the battle-manager architecture, we will set the context for the 

BMDS.  We will model the controlling software in the BMDS as a reactive system as 

depicted in Figure 5.  
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Figure 5.   Reactive System Model 

 

In our model, we consider the Battle Manager to be the Controller as depicted in 

Figure 5; that is, the Sensor will detect external signals (i.e., external stimuli) and process 

this information to send to the Controller.  The Controller will make decisions based on 

the input from the Sensor and send control data to the Actuator (i.e., BMDS weapons) for 

execution of tasks.  This results in the system response from the reactive system.  The 

Sensor will sense new signals as a result of any environmental change that was stimulated 

by the Actuator and so the cycle continues. 

From an external view of the BMDS Battle Manager, we depict a number of 

interfaces between the BMDS Network and external C2 systems, sensors, and weapons.  

We depict the Battle Manager interfaced with the BMDS Network as the controlling 

software in the system-of-systems.  For this research, we define the external view of the 

BMDS as the logical construct of the subsystems of the BMDS from a black-box 

perspective.  Our external view of the BMDS is depicted in Figure 6. 
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Figure 6.   External View of  BMDS Battle Manager  

 

 

 

 

 

 

 

 

 

 

 

3. Battle Manager Architecture 
From the perspective of the internal view of the BMDS Battle Manager, recall 

that we want to separate those applications that may change infrequently over time as 

compared to those applications that may change frequently.  For this research, we define 

the internal view of a battle manager as the logical construct of the components that 

compose the battle manager.  We desire to physically separate the two categories of 

components (i.e., those components that may change infrequently and those components 

that may change frequently) through a distinct interface so as to facilitate the anticipated 

changes of the components in the fielded system. 

We propose to employ the concept of component-based engineering to design and 

develop the internal view of the BMDS Battle Manager.  For this research, we define 

component-based engineering as the design and development of a system through the 

assembly of components which can be developed independently of the system, and we 

define a component as a software unit of composition with contractually specified  
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interfaces and explicit context dependencies.  We propose that the component software 

contain the algorithms required to perform the computations of the BMDS Battle 

Manager. 

Furthermore, we propose that we develop the software that contains the basic 

functions of battle management as a kernel given that this software should experience 

limited modification over time.  Derived from the kill chain [10], these basic battle-

management functions are called tasks, and will manage the use of the system’s 

computing resources to ensure that all time-critical, battle-management events are 

processed as efficiently as possible.   

Moreover, we propose to add another software component to the kernel that 

controls the distributed processing in the battle manager.  While we anticipate that the 

battle-management functions will execute on a single, multi-processor platform, the 

distributed functions to include control sensor-resource management, engagement 

control, sensor tasking, and survivability will exhibit different behavior than the kill-

chain functions.  As the kill-chain functions must execute regardless of the status of the 

distributed system, we do not desire to mix the distributed functions with the kill-chain 

functions. 

Finally, we should consider the external data that will come into the battle 

manager as well as the information transported from the battle manager to external 

subsystems.  These interfaces of the battle manager are critical for the operation of the 

battle manager.  We must deliberately consider these interfaces and how we will handle 

the transported data in the system-of-systems environment. 

Our internal view of the BMDS Battle Manager is depicted in Figure 7: 

 

 



 90

Figure 7.   Internal View of BMDS Battle Manager  
 

 

 

 

 

 

 

 

 

 

 

 

4. Battle-Manager Interfaces 

a. C2 to Battle Manager 
The C2 subsystem sets the parameters in the battle manager.  Given that 

the different C2 subsystems may provide different parameters to the battle manager, each 

battle manager will employ the appropriate C2 parameters assigned to it.  For instance, a 

theater battle-manager may be filled with rules of engagement (ROE) that are specific to 

that theater but not applicable to the Homeland Battle Manager.  As such, the ROE that 

are designated for the theater battle manager must be transferred into the theater battle-

manager and no others.  This feature is the tailoring of a battle manager to its specific 

mission in the BMD battlespace. 

Given that a theater battle manager may actually be multiple battle-

manager platforms for the purposes of survivability, all theater platforms should receive 

the C2 parameters.  We anticipate the C2 platform may not have visibility into the 
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location of each battle manager.  As such, we propose that the C2 and the battle manager 

should be decoupled from each other. 

To support the decoupling of the C2 from the battle manager, we will 

consider the use of the publish-subscribe architectural style for these interfaces.  In the 

publish-subscribe architectural style, subsystems subscribe to a set of events and the 

publish-subscribe infrastructure ensures that each published event is provided to all 

subscribers of that event. 

The primary connector in the publish-subscribe architectural style is an 

event bus.  C2 puts an event (e.g., ROE) on the bus by announcing the event.  The 

connector delivers the event to each subscriber (i.e., battle manager) of that event.  The 

C2 has no visibility into the consumers of the event data.  As such, the C2 is decoupled 

from the battle manager as well as other potential consumers of the event data from the 

C2.  [12]  

b. Battle Manager to Weapon.   
The BMDS Battle Manager will pair a specific weapon to a threat object.  

Unlike the C2 and sensor situation, the battle manager must have visibility into the health 

and status of the weapons.  Additionally, the weapon must acknowledge the receipt of a 

target assignment.  If the battle manager cannot determine the health and status of a 

weapon with an assigned target, it must reassign that target to another weapon that 

reports a positive health and status. 

It seems reasonable for each weapon to post its health and status at 

prescribed intervals from which the battle manager can receive.  Additionally, it seems 

reasonable for the battle manager to post target assignments to weapons and that weapons 

can respond to that post as to whether the assignment is accepted.  Finally, it seems 

reasonable for the non-assigned weapons to receive the posted weapon assignments to 

determine the engagement status. 

We will use a publish-subscribe architectural style for these interfaces to 

support the decoupling of the battle manager from the weapons.  The battle manager 

receives the posted health and status from a weapon and considers this information along 

with other factors into the weapon-target pairing calculation.  The battle manager posts 

the weapon assignment and the weapons receive the weapon-target pairing assignment.  
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The assigned weapon acknowledges the receipt of the assignment, builds a firing 

solution, and launches the interceptor within the constraints imposed by the battle 

manager.  The other weapons see that the battle manager assigned the target to another 

weapon and hold fire on that target until instructed to do otherwise by the battle manager. 

c. Sensor to Battle Manager   
The sensors detect ballistic missile launches and send track data to the 

battle manager and weapons in the BMDS.  The sensors do not require visibility into how 

that information will be used.  Additionally, the success of the sensor mission is not 

dependent on knowing the location of the consumers of its information.  As such, the 

sensors should be decoupled from the other BMDS subsystems. 

As with the C2 to battle-manager interface, we propose the use of the 

publish-subscribe architectural style for these interfaces to support the decoupling of the 

sensors from the battle manager.  Similar to the C2 to battle-manager construct, a sensor 

puts an event on the bus by announcing the event.  The connector delivers the event to 

each subscriber of that event.  The sensor has no visibility into the consumers of the event 

data.  As such, the sensor is decoupled from the battle manager as well as other 

consumers of the event data from the sensor.  [12]  

5. BMK Architecture 
The BMK depends on components in another layer to accomplish computations in 

track processing, weapon assignment, and distributed processing.  In the BMK, the 

software will call specific components to do work for the kernel software.  For example, 

the track processing component will call upon the discrimination component to 

discriminate various benign objects from the threat ballistic missile.  The track processing 

component needs to know how to call the discrimination component to do its work.  The 

class diagram for the interface between the Track Processing component and the 

Discrimination component is depicted in Figure 8. 
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Figure 8.   Class Diagram 

 

 
 
The architecture for the BMK will include the components that call computational 

components to do work as well as various data stores that separate the BMK components.  

We discuss this construct later in this document.  The architecture for the BMK is 

depicted in Figure 9. 

Figure 9.   BMK Architecture 
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D. TECHNICAL CONTRIBUTION 
For the third technical contribution in this research, we developed architectural 

views from the system-of-systems view to the component view in the BMK of the BMDS 

Battle Manager.  This demonstrates it is possible to develop system-of-systems 

architectural views that a developer can use to reason about the system-of-systems as 

well as the controlling software.  This contribution addresses the first of the three 

research questions from Chapter V.  
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X. BATTLE-MANAGEMENT KERNEL  

A. BACKGROUND 
Software engineers initially applied the concept of a kernel in the development of 

operating systems to address the growing problem of increasingly large and 

unmanageable operating system programs.  In 1968, Edsger Dijkstra proposed that 

systems could be developed as a strict hierarchy of layers.  He proposed a five-layer 

model that featured a progressive layering of abstraction that hid the details of the 

computer hardware from the software program.  In this model, the innermost layer 

surrounds the computer-system hardware.  Dijkstra considered this layer to be the kernel 

as it contained the only system software that had access to the hardware.  This kernel 

provided services to the other four layers outside of it. [64][17] 

In the 1980’s, the Unix kernel included a great deal more functions than other 

kernels that sought to minimize the functions in a kernel.  The Unix concept was that of 

isolating specific functions from the user software by designing the system’s hardware to 

call those specific functions.  The result is a monolithic program that contains a 

significant amount of the system’s software.  The disadvantage of the large, monolithic 

approach is that software engineers experience a considerable difficulty in replacing or 

upgrading hardware components without a complete shutdown or a recompilation of the 

software. [64][75] 

Nancy Leveson proposed the realization of a safety kernel that provides a 

structuring concept that would support the detection and recovery of safety-critical 

software faults.  Leveson maintained that the detection of a software fault should occur 

through the application of logic-based assertions in non-kernel software.  The recovery 

from software faults should occur by direction of the kernel to other non-kernel software.  

The importance of this work was to establish that the software that provided the detection 

of safety-critical software faults and the recovery from those faults does not have to 

reside in the kernel; the kernel directs non-kernel software to recover from the safety-

critical faults. [64]  
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John Rushby introduced the concept of independence and separation for a kernel: 

a safety kernel must be uncoupled from the events, activities, and faults of the software 

programs from the perspective that an action or fault in non-safety-kernel software must 

not result in an alteration or fault to the safety-kernel software. [64]  

B. DEFINITION OF A KERNEL 
For this research, we define a kernel to be that set of software components that are 

necessary to provide management of the message transfer among the non-kernel software 

applications and the computer-system hardware.  

C. BATTLE-MANAGEMENT KERNEL6 
The concept of a kernel was envisioned decades ago. [64]  There is a significant 

amount of literature on the use of a kernel to monitor and enforce required system safety 

policies.  In [64], Preckshot proposes a definition and rigor to a safety kernel. However, 

he concludes that his safety kernel is for a restricted set of applications.  In [73], Storey 

discusses the use of a safety kernel for a safety-critical system. However, he foresees the 

success of a safety-kernel approach as dependent upon the developer to “…protect the 

kernel from outside influences that might interfere with its operation.”  Brown suggests in 

[7] that a safety-kernel could “…significantly enhance the overall safety of the BMDS.” 

In [10], Caffall and Michael propose extending the concept of a kernel to the 

battle management of sensors and weapons in the BMDS.  They liken the concept of a 

BMK to that of a safety kernel.  There does not appear to be any literature that suggests 

research for employing the kernel concept in the control of military systems in a system-

of-systems environment. 

In this research, we propose the use of a BMK that consists of the set of software 

components that are necessary to provide correct real-time execution of battle-

management tasks in a system-of-systems context, both in nominal and degraded modes 

of system operation.  We propose that the BMK must exhibit the following 

characteristics: 

 

                                                 
6 This section includes extracts from [10]. 
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1. The BMK has absolute priority, that is, no other component can 

interrupt the kernel from accomplishing its work. 

2. System parameters and external events are measurable and 

observable by the BMK.  When presented with measurements for a given set of 

parameters and external events, the BMK will exhibit correct system behavior.  (N.B.:  

We define correct as the reaching of the desired state given the previous state is presented 

with a given set of inputs.) 

3. Detection of errors will be through the use of assertions.  The 

BMK will direct non-kernel software components for the recovery of observed errors 

such as violation of pre-conditions, post-conditions, and invariants. 

A BMK is similar in purpose to an operating system (OS) kernel in that both 

kernels manage resources shared by competing entities.  In the case of an OS kernel, the 

competing entities are computer processes vying for processor and memory resources.  In 

the case of a BMK, the competing entities are all of the components of the system-of-

systems that comprise the battle-management system, such as the C2 and weapon 

systems.   

The active components in the kernel are expected to be stable compared to the 

other components in the system-of-systems.  (N.B.:  For this research, we define an active 

component as one that will execute based on external conditions and a defined set of 

rules.) 

For instance, device drivers tend to be updated frequently and therefore in 

principle should not be included in the OS kernel.  If they are included (i.e., the case of a 

monolithic kernel), and even worse, tightly coupled to OS management functions, then it 

becomes challenging to make modifications to the kernel that do not affect other parts of 

the kernel.  We would like to apply this same reasoning to the BMK in order to simplify 

the design and maintenance of the BMK. 

We also draw a parallel between BMK and safety kernels.  The functions to be 

included in a safety kernel are those that must be performed to maintain a safe system 

state or bring a system back into a safe state after the occurrence of a safety-critical event.  
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No other functions may be included in a safety kernel.  An automated train protection 

(ATP) system is an example of a safety kernel. [103]  Such kernels are well documented, 

validated, and verified before being considered for certification and accreditation.  We 

view BMKs in a similar light:  they must work as advertised because the ability of the 

entire system-of-systems to conduct warfare in the BMD battlespace is dependent on the 

BMK. 

In our proposed approach, we envision software engineers developing the BMK 

as a real-time set of system functionality that addresses its use by warfighters, starting 

from a high-level statement of capabilities and refining these statements into successively 

lower levels of system artifacts.  We define the BMK to be the software that contains the 

basic functions of battle management that will remain stable over time.  Derived from the 

kill chain [10], these basic battle-management functions are called tasks, and will manage 

the use of the system’s computing resources to ensure that all time-critical, battle-

management events are processed as efficiently as possible. 

Recall from Chapter IX that we defined and depicted the internal view of the 

battle manager.  In Figure 7, the BMK is the kernel that contains four active components:  

Track Processing, Weapon Assignment, Distributed Processing, and Safety Executive.  In 

our model of the Battle Manager, the active components of the BMK task the passive 

components in the Components layer to perform the required computations and return the 

requested results of the computation to the BMK.  (N.B.:  For this research, we define a 

passive component to be one which must be triggered from an external source in order to 

operate.)   

Recall that we proposed that the battle-management framework would feature 

distributed processing.  To achieve the desired property of transparency in the distributed 

system, we propose that BMK direct the message communications among tasks in the 

system-of-systems.   

We propose that each battle manager in the system-of-systems contain an instance 

of the distributed BMK.  The global BMK would maintain the master copy of the name 

table while each BMK would maintain a local copy of the name table.  As a battle 
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manager joins the battle-management network, its BMK would request a copy of the 

name table from the global BMK.   

As a source task at one battle manager sends a message to a destination task at 

another battle manager, the local BMK references the name table and determines the 

location of the destination task.  If the destination task is local, the BMK routes the 

message to the destination task.  If the destination task resides at another battle manager, 

the BMK sends the message to the remote BMK.  On receipt of the message, the remote 

BMK routes the message to the destination task. [41] 

These activities are depicted in Figure 10.  Consider that the tracking software 

task in the regional battle manager requires the correlate task to do work.  The regional 

BMK (i.e., BMK_Regional) routes the message from taskTracking to taskCorrelate.  This 

is handled locally by BMK_Regional.  Consider that the tracking software task in the 

regional battle manager requires that a sensor do work.  The regional BMK references the 

name table to determine the location of the specific sensor and routes the sensor-tasking 

message to the theater BMK (i.e., BMK_Theater) where the sensor is associated.  On 

receipt of the message, BMK_Theater schedules the tasking locally and sends a sensor-

tasking message to the sensor to do the required work. 

 
Figure 10.   Messaging Example in a Distributed Battle-Management Network  
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In the actual design, each battle manager should have the identical software 

components and kernel.  While the trivial example above illustrates the distributed nature 

of the BMK, the following example is more akin to the issues facing the software 

engineers that design the operational battle manager. 

Recall that various BMDS systems may be operationally interfaced with two or 

more battle managers.  Consider the example of a sea-based X-band radar that provides 

mid-course sensing as well as sensor updates to launched interceptors.  For the majority 

of its service the sea-based X-band radar will be in the surveil mode for mid-course 

sensing.  However, for short periods of the fight, a system may require the use of this 

asset to provide threat-object update information for a launched interceptor.  The 

challenge to software engineers is to design the BMK so that the BMDS can accomplish 

both missions. 

Consider the battle-manager framework in Figure 10.  Consider that the sea-based 

X-band radar has an operational interface to the theater battle manager and the regional 

battle manager.  In normal operations to include execution, the regional battle manager 

will control the sea-based sensor to include the adjustment of its field of regard.  Consider 

during a ballistic missile fight that the Homeland Defense Battle Manager tasks the 

ground-based mid-course defense (GMD) system to launch an interceptor against an 

ICBM.  The GMD system requests the sea-based X-band radar to adjust its field of regard 

to support the threat-object information updates to the interceptor.  The global BMK 

receives this request and references the name table to determine the location of the 

destination task.  The global BMK sends this request to the regional BMK which 

processes the information.  In the Assign Sensor logic, the support to an active 

engagement is a higher priority than the surveil mode so the regional BMK forwards the 

GMD system’s sensor request to the sea-based X-band radar for execution.  After the 

interceptor “opens its eyes” and assumes onboard tracking responsibilities, the sea-based 

X-band radar resource is released and the regional BMK directs the radar to resume the 

surveil mode.  
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D. LOGIC IN BMK7  
We will construct a set of specifications for each active component using 

assertions and temporal-logic statements that will serve as the functional model of the 

BMK. The goal is to achieve a greater degree of clarity and focus in the specification of 

the desired BMK behavior as compared to that obtained from the traditional method of 

simply listing the system requirements.  We will develop a sufficient amount of 

information to automatically produce test cases for the implementation.  Otherwise, we 

run the risk of developing so-called “cartoon models” that are only useful for drafting and 

refining potential solutions.   

We will develop a slice of the test-ready model for the BMK.  According to 

Binder [3], in order to be testable, a model should contain all the features of the system-

under test (in the present context, the BMK), preserve sufficient detail that is critical for 

discovering faults, and faithfully represent the essential states, actions, and transitions in 

the state diagram.  If the BMK model is to be useful for this effort and in future 

development efforts, it might exhibit the following properties outlined in [66]: 

appropriate level of abstraction, high degree of understandability, high measure of 

accuracy, and high level of predictiveness.  

We will use temporal-logic assertions to define the temporal aspects of the BMK 

specifications. We anticipate that these assertions will yield specifications that are 

verifiably consistent and accurate, and in turn, verifiably predictable behavior of the 

BMK.   

As an example of such logic in the BMK, let us consider the situation for which 

the BMK has determined that an observed object is a threat and must now assign a 

weapon to engage that threat track.  Clearly, we want to establish a time constraint by 

which the BMK has assigned a weapon to engage a threat track.  This is a situation for 

which a late computation is an incorrect computation so we should establish a time 

constraint to ensure that the BMK has completed its weapon assignment work as desired.   

                                                 
7 This section includes extracts from [10]. 
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For this example, we will assume that the BMK must assign a weapon to engage a 

threat track within thirty seconds of the BMK determining that the tracked object was 

indeed a threat. 

We could state the natural language assertion as follows: 

Within thirty seconds of determining a given track is a 

threat object, the BMK will assign a weapon system to 

engage the threat object. 

We could write the temporal assertion as follows: 

Boolean: Ballistic_Threat  
// Tracked object is ballistic-missile threat is true 

 
Boolean: Weapon_Assigned  
// Weapon assigned to tracked object is true  

 

Always (Ballistic_Threat) Implies Eventuallytimer<30 (Weapon_Assigned) 
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XI. BATTLE-MANAGER COMPONENTS  

A. BATTLE-MANAGEMENT FRAMEWORK 
Recall from Chapter XI that we proposed the concept of component-based 

engineering to design and develop the BMDS Battle Manager.  We proposed that we 

develop the software that contains the basic functions of battle management as 

components in the BMK, given that this software should experience limited 

modifications over time.  Derived from the kill chain [10], these basic battle-management 

functions are called tasks, and will manage the use of the system’s computing resources 

to ensure that all time-critical, battle-management events are processed as efficiently as 

possible.  We proposed to develop other component software that contains the algorithms 

required to perform the computations of the BMDS Battle Manager.   

Finally, we proposed to add another software application to the kernel that 

controls the distributed processing in the battle manager.  While we anticipate that the 

battle-management functions will execute on a single, multi-processor platform, the 

distributed functions to include control sensor-resource management, engagement 

control, sensor tasking, and survivability will exhibit different behavior than the kill-

chain functions.  As the kill chain functions must execute regardless of the status of the 

distributed system, we do not desire to mix the distributed functions with the kill-chain 

functions. 

Due to continual research and development in many areas of missile defense, we 

anticipate that researchers will discover improved algorithms that will replace currently 

realized algorithms in the components of the battle manager.  In this chapter, we will 

explore various hypotheses of components and component engineering, and offer a 

recommended course of action for using the concept of a component in the development 

of a controller for system-of-systems software.  

B. DEFINITION OF COMPONENT 
For this research, we will adopt Szyperski’s definition in [74]:  “A software 

component is a unit of composition with contractually specified interfaces and explicit 

context dependencies only.  A software component can be deployed independently and is 
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subject to composition by third party.”  This definition implies that one must precisely 

and clearly specify the interfaces and ensure that the component software is encapsulated 

and can be accessed by software external to the component only through its interface. 

[15]  

C. BATTLE MANAGER CONSIDERATIONS 
Why should we consider components for the BMD Battle Manager? 

We will frequently modify and update the operational software for the BMD 

Battle Manager.  Given that one requirement for the BMD Battle Manager is 24x7x365 

operations, the warfighters cannot tolerate a system that is non-operational due to 

uploading new software or for debugging newly uploaded software.  As such, we must 

develop a solution in which we do not interrupt operations and in which we can recover 

to the last known operational state if the upload is not successful.   

From operational perspective, the employment of the BMK and associated 

components will support the requirement for no downtime due to uploading new 

software.  Rather than downloading the old software and uploading the new software in a 

monolithic software program, we can change out the modified components while leaving 

the remainder of the system intact. 

From the software development perspective, the employment of the BMK and 

associated components might offer four potential advantages over a large, complex 

monolithic software program [1]:  

1. Independent Extensions.  The component model and framework outline 

the methods of extending the capability beyond the original design.  By adherence to the 

interface specifications, the extensions to a component can be designed, developed, and 

fielded without undesired interactions. 

2. Component Markets.  The component model and framework can 

significantly reduce system complexity as compared to a large monolithic software 

program.  The component model and the framework define the standards to ensure that 

independently developed components can be employed in the system without unintended 

interactions.  If one integrates the support services into the framework, then the 
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development of components can be simplified.  The component model and framework 

allow developers to seek third-party vendors to develop specific components. 

3. Reduced Time-to-Fielding.  The component model and framework 

promote concurrent code development.  Given that the architectural decisions are set to 

include the definition of the component interfaces, the development team can develop the 

components concurrently or use existing components in the component product line.   

Additionally, the component model and framework allow for the incremental delivery of 

a system which supports the ability to get a system into operational use quickly. 

4. Improved Predictability.  The designers specify the design rules for the 

component model so that these rules are consistently imposed on all components in the 

system.  The consistency of the imposed design rules will ensure that global properties 

such as security, safety, and recovery are designed into the system.  

D. COMPONENT ENGINEERING CONSIDERATIONS 

1. Component-Based Software Engineering 
Component-based software engineering is the design and construction of a system 

by integrating software components, interfaces, contracts, and a component framework.  

The concept is to employ portions of legacy software that contain the desired 

functionality as expressed in the software architecture, shape the legacy software into a 

“unit of composition with contractually specified interfaces [74],” develop new 

components as required, and integrate the components into a component framework to 

realize the desired system functionality.   

The logical view of components, interfaces, contracts, and frameworks is depicted 

below as the component-based design pattern in Figure 11: 
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Figure 11.   Component-Based Design Pattern  
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temporal invariants to enforce system time constraints.  Additionally, the component 

framework specifies the context into which one can integrate the various components to 

compose a system.  [15] 

To increase the capability of a system, we will add other components to the 

framework that provides additional functionality.  To increase the precision of a system, 

we could replace the current components with new components that contain more precise 

algorithms.  Note that new components must meet the contract of the component 

interface as it is a distinct, configurable entity that is modified only through established 

software maintenance procedures. 

3. Component Properties 
In developing the software architectural views with respect to components, we 

might consider the following properties of components as outlined in [15], [38], and [74]: 

a. Provide services through well-specified interfaces. 

b. Encapsulate state and behavior so that neither is visible to the 

component framework. 

c. Rely on the component framework to initialize and communicate 

with other components.  

4. Component Interfaces 
We propose to employ the concepts of design by contract in the specification and 

design of the component interfaces.  For this research, we define a component interface 

as the specification of the access to the software component by the component 

framework.  [15]   

Design by contract is a formalized way of writing comments to incorporate 

specification information into the software to express the requirements for the 

component.  That is, the contracts describe the assumptions the developer made when 

writing the code, and the assumptions that the system can make about a piece of code.  

The concept of design by contract is that software entities have obligations to other 

entities based upon formalized rules between them.  We create a functional specification 

(i.e., contract) for each component in the system whether it is salvaged code from legacy 
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software or developed as new code.  Thus, the execution of the software is the interaction 

between the component framework and the various components as bound by these 

contracts.  [15][74] 

For example, if a developer assumes that a given variable will never receive a null 

or negative input, then the developer should include this information in the contract.  

Additionally, if a developer writes a piece of code that is always supposed to return a 

value greater than 100, he should add this information in a contract so the developers 

working with the other parts of the application know what to expect.  These contracts 

describe requirements such as:  

a. Conditions that must be satisfied before a method is invoked  

b. Results that need to be produced after a method executes 

c. Assertions that a method must satisfy at specific points of its 

execution  

A contract can specify three types of constraints in the interface.  A contract 

specifies the constraints that the component will preserve – an invariant.  (N.B.:  We 

define an invariant as a condition that does not change in the presence of system or 

environmental transformations.)  The contract specifies the constraints upon the 

component framework (i.e., a pre-condition).  Additionally, the contact specifies the 

constraints upon a component with respect to what it returns to the component framework 

with respect to the input to the component operation (i.e., a post-condition).  

5. Specifications 
In the specification of the component framework, components, and interfaces, we 

recommend that the control and coordination features be specified in the component 

framework and the method of computation be specified in the component.  We 

recommend specifying the interface as a separate entity than the component framework 

and the component.  We want to specify the contract between the interface and the 

component framework in the interface.  Thus, the interface is specified as an independent 

entity rather than a portion of either the component framework or the component. 
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In the specification of the component framework, one must specify more than the 

desired functionality of the component.  Included in the specification should be:  (1)  the 

required response time of a component’s computation that supports the desired behavior 

of the system, (2) the required precision of the result to ensure that matching of precision 

between the component framework and a component, (3) the required throughput of the 

data streams to ensure that data loss does not occur as a result of a throughput mismatch, 

(4) required protocol and formatting to ensure the matching of data and fields during data 

transfer, (5) legal values for inputs and outputs, and (6) data dictionary to include the 

specification of the units of measure in the component framework. [12][15][74] 

In the specification of the component, one must specify more than the required 

input parameter from the component framework.  Included in the specification should be:  

(1) time to complete a computation, (2) the required precision of the input to ensure that 

matching of precision between the component framework and a component, (3) memory 

requirements to ensure sufficient memory is designed into the software architecture, and 

(4) data dictionary to include the specification of the units of measure in the component 

framework. [12][15][74]  

E. CHALLENGES 
Although the benefits of component-based software engineering are widely touted 

in numerous publications, challenges exist that should be understood.  We should 

consider mitigation strategies for these challenges to enhance the probability of realizing 

the benefits of component-based software engineering.  These challenges include the 

following: 

1. Modeling 
A single, chosen architecture method does not exist that defines the relationships 

among component frameworks, components, and component interfaces.  Although such 

tools as the Unified Modeling Language provide various options for documenting the 

relationships, a clear roadmap is not available for one to model the use of components in 

the design of a controller for a system-of-systems.  
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2. Specifications 
Frequently, the specifications for a system-of-systems are focused solely on 

functionality.  As such, the specification of system properties that can increase the level 

of trustworthiness may be ignored.  

3. Trusted Components 
One potential benefit of component-based software engineering is the ability to 

upgrade or replace an existing component with ease.  The flip side of this benefit is that 

modified or new components can precipitate failures in the system by producing 

undesired side effects or feature conflicts regardless of whether the other components of 

the system remain unchanged. 

4. Component Reuse Versus Component Salvaging 
Another potential benefit of component-based software engineering is the ability 

to replace existing software components with components from another system.  This 

capability is frequently referred to as software reuse; however, it is more often than not a 

situation of software salvage.  (N.B.:  For this research, we define software reuse as the 

act of selecting and employing a chunk of software that was designed and implemented 

for use in other systems without modification to that chunk of software.  We define 

software salvage as the act of selecting a chunk of software and modifying it for use in 

another system.)   

With respect to components, both software reuse and software salvage bring about 

the question of trusted components as previously described which is that new components 

can precipitate failures in the system by producing undesired side effects or feature 

conflicts regardless of whether the other components of the system remain unchanged.  

For the situation of software salvage, this negative impact is likely to increase as the 

degree of modification increases.  

F. BATTLE MANAGER 
To address the previously discussed challenges, we offer the following 

recommendations in the application of component-based software engineering approach  
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to the system-of-systems problem.  While the offered solutions are not the only solutions, 

these solutions can improve the probability of a successful development of a controller 

for a system-of-systems. 

1. Modeling 
To move beyond the simple structural model of sticks and circles to represent a 

system-of-systems, we will consider a modeling technique that captures information on 

the desired behavior of the system as well as the desired behavior of each element in the 

system with respect to its contribution towards the desired behavior of the system.  With 

respect to components, we should understand the behavior and constraints of the 

component framework, each component, and each interface between the component 

framework and a component. 

Recall that we chose to model the BMDS as a reactive system.  In our model, we 

considered the Battle Manager to be the Controller as depicted in Figure 5.  That is, the 

Sensor will detect external signals (i.e., external stimuli) and process this information to 

send to the Controller.  The Controller will make decisions based upon the input from the 

Sensor and send control data to the Actuator for execution of tasks.  This results in a 

response from the reactive system. 

Furthermore, we proposed the internal view of the BMDS Battle Manager to be a 

layered construct of interfaces, components, and a kernel as depicted in Figure 7.  Recall 

that we defined the BMK as a composite of active components and we proposed that the 

components that perform computations in the Battle Manager be passive components.  

Thus, in our model of the Battle Manager, the active components of the kernel task the 

passive components to perform the required computations and return the requested results 

of the computation to the kernel.   

For the Battle Manager, we desire that the state and behavior of the active 

components in the kernel not be visible to the passive components.  Ideally, we would 

prefer that the passive components be pure computations without state and behavior; 

however, if a passive component cannot meet this ideal goal, then the state and behavior 

of the passive component should not be visible to the active components in the kernel;  

that is, we do not desire that the state and behavior in the active components inadvertently 
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trigger state transitions in the passive components that result in undesired behavior in a 

passive component.  Equally, we do not desire that the state and behavior in the passive 

components inadvertently trigger state transitions in the active components that result in 

undesired behavior in an active component.   

Now, we will consider the interface between an active component in the kernel 

and a passive component.  As one means of increasing the level of trustworthiness in the 

Battle Manager, one might define the desired services, behavior, and constraints in the 

interface between an active component and a passive component.  In interface, we will 

find that it receives data (i.e., input) from the active component that is intended for the 

passive component and provides data (i.e., output) from the passive component that is 

intended to return to the active component.   

We model this relationship for the active component Track Processing and the 

passive component Discrimination as depicted in Figure 12. 

 
Figure 12.   Track Processing Component Interface to Discrimination Component   

 

 
2. Specifications 
To specify the behavior and constraints in the interface, we suggest the use of 

assertions to check the input and output parameters as well as to establish any invariants 

required for the interface.  For the input parameters, we could assert the pre-conditions 

that are required to process data that lies within the set of legal values.  For the output 

parameters, we could assert the post-conditions that are required to return the results of 
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the passive component’s computation as related to the input to the active component.  For 

the invariant, we could assert any property which must hold true regardless of any and all 

computations.   

The use of assertions in the pre-conditions, post-conditions, and invariants can 

enhance the safety properties of a system but verifying input parameters.  By allowing 

only legal inputs to be processed, the probability of an errant computation on illegal data 

is reduced.  By allowing only legal values of the output to be returned, the post-condition 

assertion reduces the probability that an incorrect result will be passed to the active 

component.  By requiring a computation to terminate within a specified timeframe, the 

invariant ensures that the system will not halt while waiting for a never-ending 

computation to terminate. 

As a simple example of applying assertions to implement the behavior and 

constraints of an interface, we will use the class diagram depcited in Figure 12.  Consider 

that we want to define two input variables (X,Y) for discrimination in terms of range of 

value.  Consider that we want to define the output to include (ThreatObject) as a Boolean 

statement that has a relationship to the input variables (X,Y) and the type of threat object 

based upon the computation in the passive component.  Consider that we want the 

computation to terminate no more than ten seconds after passing the input variables to the 

component.  We suggest the following assertions reflect these considerations: 

Pre-condition 

Always (X,Y) Implies> {(X>0 and X<10) and (Y>100 and Y<1000)} 

//(X,Y) will be valid only if:    

X is equal to or greater than 0 and X is equal to or less than 10 

AND 

Y is equal to or greater than 100 and Y is equal to or less than 1000 

Post-condition 

Always ThreatObject Implies {(X>5 and Y< 500) or (X< 10 and Y>500)} 

//ThreatObject will be true only if: 

X is greater than 5 and Y is less than 500  
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OR 

X is less than 10 and Y greater than or equal to 500 

 

Invariant 

Always (X,Y)Implies Eventuallyt<10 (Terminated) 

//The condition of the Boolean value “Terminated” will be true 

sometime in the future but less than 10 seconds have expired 

following the passing of valid and legal X,Y input variables to the 

passive component.  (N.B.:  The Boolean value “Terminated” must 

be set to not true each time new variables are sent to the passive 

component.)  

3. Trusted Components 
One method that can increase the degree of trustworthiness of a component and 

the Battle Manager is the development of a certified test suite for each component as well 

as a certified test suite for the Battle Manager.  [3][15]  (N.B.:  For the purposes of this 

research, we define a certified test suite as one in which the results of the testing are 

known, verified, and certified with respect to the test inputs to a system under test.  For 

the purposes of this research, we define certified as the guarantee that a system or 

component will operate correctly and will operate correctly in adverse conditions.) 

If assertions were employed in the development of the component interfaces, then 

the test suite should include test cases that examine the inclusive range of values for the 

assertion, the boundary values, and illegal values.  More than checking whether the 

assertion holds, one should investigate the error-handling procedures associated with a 

logic break in an assertion.  It is imperative to determine that a system will not experience 

a fail-hard condition for a break in the logic of an assertion. 

The test suite should include the inspection of the (1) the time to complete a 

component’s computation to determine whether the component supports the desired 

behavior of the system, (2) the precision of the result to ensure that matching of precision 

between the component framework and a component, (3) the throughput of the data 
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streams to ensure that data loss does not occur as a result of a throughput mismatch, (4) 

protocol and formatting to ensure the matching of data and fields during data transfer, (5) 

legal values for inputs and outputs, and (6) data dictionary to include the specification of 

the units of measure to ensure consistency of the received and returned data with respect 

to units of measure. 

The certification of trustworthy components should include the verification of 

functionality, degree of fault tolerance, level of compliance with the interface contract, 

speed of service, throughput, time of computation, and degree of consistency with the 

data dictionary of the component framework. 

4. Component Reuse Versus Component Salvaging 
In the situation of component reuse, the black-box testing and component 

certification as previously described can reveal issues with the correctness, robustness, 

and reliability of the component.  (N.B.:  For this research, we define black-box testing as 

a software testing technique whereby explicit knowledge of the internal workings of the 

component being tested are not known and the outputs are examined with respect to the 

inputs.) 

In the situation of component salvage, it may be insufficient to employ solely 

black-box testing and component certification.  We recommend the addition of white-box 

testing techniques to the test suite for the situation of component salvage.  (N.B.:  For this 

research, we define white-box testing as a software testing technique whereby explicit 

knowledge of the internal workings of the component being tested is used to examine the 

outputs.)  That is, it may be necessary to test such items as the algorithms employed in 

the component to ensure that the precision in the computation meets the precision 

requirement of the system, exception handling to ensure that software faults are caught 

and handled appropriately, degree of encapsulation of class methods from interface, 

presence and implementation of multiple inheritance, and termination of computation. 
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XII. SPECIFICATION OF THE BATTLE MANAGER  

A. BACKGROUND 
Software is becoming increasingly more critical and complex in system-of-

systems development.  Since acquisition life-cycles, failure models, and verification 

methods that have performed satisfactorily for hardware systems are not always optimal 

for systems that include a significant software component, the identification and 

evaluation of better specification and verification techniques for system-of-systems is a 

never-ending search in defense acquisition.   

One tool for specifying and implementing the desired system behavior is formal 

methods.  (N.B.:  We define a formal method as one that precisely describes a 

specification in mathematical terms to make possible the verification of the specification 

in the requirements phase as well as the testing phase of system development.)  One can 

use formal methods in the definition and verification of system specifications.  

Additionally, one can implement the formal specifications with formalisms in the 

software.  (N.B.:  For this research, we define a formal specification as the precise 

definition of a system behavior that is typically expressed in mathematical terms.) 

The application of formal methods for specification and verification is a technique 

for consideration by developers of system-of-systems.  Formal methods can complement 

traditional techniques such as testing and can help developers improve the degree of 

trustworthiness in defense acquisitions.  

B. SPECIFICATION PROBLEM 
The less-than-sterling success of software development in the United States is 

well documented in [49], [69], and [70].  While the actual statistics and cited numbers 

might be challenged by skeptics, the information seems to tell us that we have a serious 

problem in developing software that provides the required functionality of the user in a 

timely fashion and within budget.   

If we are to develop dependable software-applications for a system-of-systems, 

then it would seem that we need to address the specification issue.  (N.B.:  For this 



 118

research, we define a specification as the description of a desired system behavior that is 

expressed as a feature, function, property, or capability.)   

Recall specific examples of specification issues from Chapter III:  

• In 1991, the PATRIOT system failed to intercept a Scud missile which resulted 

in the deaths of twenty-eight American soldiers. 

• In December of 2001, a 2000-pound, Joint Direct Attach Munitions (JDAM) 

bomb killed three U.S. Special Forces airmen and five Afghan soldiers, and 

wounded nineteen other military personnel.  The root cause of this friendly-fire 

incident was the inadvertent passing of the coordinates of the US air 

controller’s own position to the bomber. 

• From a study of 387 software errors discovered during the integration and 

testing phase of the Voyager and Galileo spacecraft, Robyn Lutz observed that 

the safety-related, functional faults Voyager could be categorized as follows:  

50% as behavioral faults, 31% as conditional faults, and 19% as operating 

faults.  For Galileo, the safety-related, functional faults could be categorized 

as follows:  38% as behavioral faults, 18% as conditional faults, and 44% as 

operating faults. 

• Delores Wallace and Richard Kuhn analyzed software faults from 342 medical 

systems and determined that 43% of the software faults were logic-related 

errors such as incorrect logic in the systems’ specifications, unexpected 

behavior of multiple conditions occurring simultaneously, and improper limits.  

C. FORMAL SPECIFICATION OF THE BATTLE MANAGER 
Conventional software development methods may not be suitable for the 

development of safety-critical systems. [79]  In safety-critical systems, system faults 

could prove fatal to human life or lead to loss of valuable physical assets. [34][73]  With 

the use of formal methods, developers can analyze formalized statements and the 

associated impacts in a repeatable manner.  Formal methods help one test a significant 

number of test cases and support analysis that can be checked by verified model 
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checkers.  In operational software, the use of formal methods can significantly enhance 

the ability to catch and handle runtime errors.  

1. Formal Specifications 
Traditional specification engineering uses natural language statements to describe 

the desired system behavior.  Typically, the specifications are inaccurate, inconsistent, 

and ambiguous.  [79][49]  Graphical representations of specifications (e.g., UML) 

typically have limited precision in semantics and can lead to an ambiguous interpretation 

of requirements.   

Indeed, Dean Leffingwell and Don Widrig make the following four statements in 

[50] that should give us cause to pause, and understand the relationship of seemingly 

insufficient specification elicitation impact of and why acquisition organizations cannot 

develop good software: 

Specification errors are likely to be the most common class of error in software 

developments. 

Specification errors are likely to be the most expensive errors to correct after 

fielding. 

Specification errors will contribute up to 70% of all software rework costs. 

Specification errors can consume 25%-40% of the total program budget. 

Testers can develop test cases from natural language specifications and graphical 

representations of the system; however, they will need to interpret the natural language 

specifications and graphical representations which are typically limited in content and 

consistency. [3]  So, it would seem wise for acquisition organizations to adopt techniques 

that could lead to a significant reduction in specification errors.   

For this research, we develop a functional model formed by the specifications are 

verifiable and can produce a test-ready model as described in [3].  (N.B.:  For this 

research, we define a test-ready model as one that contains sufficient information for 

which to automatically produce test cases for its implementation.)  As outlined in [3], a 

test-ready model should meet the following requirements: 
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The model should be a complete and accurate representation of the 

implementation to include all features, functions, properties, and capabilities of 

the system. 

The model should preserve the level of details that is essential for testing fault 

tolerance while abstracting out unnecessary detail. 

The model should represent all states, guard conditions, actions, and triggers in 

the system state model. 

As one develops the test-ready model, the issue of verification of the model 

arises.  That is, developers should ensure that the evolving test-ready model of the system 

is progressing towards faithfully realizing the system specifications.  Given that the 

expression of requirements is typically in the form of natural language, developers cannot 

easily verify system requirements.  System engineers oftentimes employ traceability 

techniques that focus upon tracing system requirements to user requirements.  Besides 

being tedious, the constraints of natural language can lead to misinterpretations, inability 

to detect incomplete or conflicting logic statements, and limited verification of 

robustness.  Unfortunately, traditional system developments rely on unit testing and 

integration testing to verify whether the system meets its requirements. 

The development of formal specifications in the test-ready model can lead to a 

significantly high level of confidence in the implementation phase of a software 

development.  The development of formal specifications typically clarifies the 

specification, surfaces latent errors and ambiguities, and supports the shaping of the 

desired system behaviors. [42]   

For the battle manager, we propose the use of assertions in the development of 

formal specifications.  (N.B.:  For this research, we define an assertion a predicate 

expression whose value is either true or false.)  We propose that developers develop 

assertions to define pre-conditions, post-conditions, and invariants.  (N.B.:  For this 

research, we define a pre-condition as a fact that must always be true just prior to 

execution of a specific section of code.  Furthermore, we define a post-condition as a fact 
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that must always be true just after the execution of a specific section of code.  Finally, we 

define an invariant as a property that holds true under any transformation in the system.) 

Assertions can help us find defects in specifications and designs earlier than they 

would be otherwise and greatly reduce the incidence of mistakes in interpreting and 

implementing correct requirements and designs.     Additionally, the development and 

verification of formal specifications can support the development of error-handling 

specifications to appropriately manage runtime errors and logic breaks.   

The use of assertions can significantly reduce the errors introduced in the 

specifying system behavior. [3]  Assertions can considerably increase the level of clarity 

in the assumptions and responsibilities of system behavior, and reveal errors such as logic 

omissions and conflicting logic-statements.  Assertions can catch common interface 

faults (e.g., processing out-of-range or illegal inputs) by precisely asserting the legal 

interface values for variables passed in through an interface. 

An example of using an assertion to specify a pre-condition is as follows: 

 Variables: 
 //Track data Input to interface contains two variables:  Input_A 

and Input_B 
  Integer: Input_A 
  Real: Input_B 

Boolean: Detect_Track  
//True if sensor has provided data to battle manager for a 
reportable object 
Boolean: Track_Data 
// True only if Detect_Track is true and valid track data exists for 
observed object 

 
 Assertion: 

//Restrict Input_A to be greater than or equal to zero, and less than 
100 and Restrict Input_B to be less than 1000 

   //Confirm adherence to pre-conditions 
  read (Input_A,Input_B) 
 

assert:  Always Track_Data Implies (Detect_Track) and  
{(Input_A > 0 and Input_A < 100) and (Input_B < 1000)} 
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An example of using an assertion to specify a post-condition is as follows: 

 Variable: 
  Real: Output_B 

Boolean: Track_Data 
// True if Detect_Track is true and valid track data exists for 
observed object 

 
 Assertion: 

//Confirm that Output_B is not empty 
read (Output_B) 
 
assert:  Always (Track_Data) Implies (Output_B ≠ null) 

An example of using an assertion to specify an invariant is as follows: 

Variables:  
Boolean: Detect_Track  
//True if sensor has provided data to battle manager for  a 
reportable object 
Boolean: Track_Data 
// True if Detect_Track is true and valid track data exists for 
observed object  
Set: Track_Dataset 
//Contains observed characteristics from sensor 
Boolean: Threat_Object  
// True only  if tracked object is a ballistic missile threat  
Boolean:  Benign_Object 
//True only  if tracked object is not a ballistic missile threat 
 

Assertion:  
//Confirm data processing of track data within twenty seconds of 
detecting object 
Read (Detect_Track,Tracked_Data) 

assert: Always (Detect_Track and Track_Data) Implies 
Eventuallyt<20 (Threat_Object or Benign_Object) 

2. Model checking8 
Software developers should consider verifying the functional specifications via a 

tool such as model checking.  (N.B.:  For this research, we define model checking as the 

systematic approach for testing functional assertions and substantiating the desired 

system behavior in the model.)  Model checking is not a proof of correctness; instead, 

model checking involves creating functional models of a system and analyzing the model 
                                                 

8 This section was extracted from [10] 
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against the formal representations of the desired behavior [51].   For the battle manager, 

we propose to verify the functional specifications using an automated model-checking 

tool that can accept either developed specifications or UML statecharts as discussed in 

[40], and exercise the temporal-logic assertions over a number of time cycles.  Such an 

approach can support the identification of inconsistencies and breaks in logic through the 

use of the model-checking tool.  From the results of the model checking, developers can 

correct our specifications and the artifacts from the domain analysis as required.  

However, the use of model checking is constrained by the state explosion problem 

as the size of the state space exceeds the memory capacity of the automated tool to check 

every trace in the model. [16]  Through abstraction of the battle-manager functions in our 

specifications, we can employ the concept of symbolic model checking in which Boolean 

functions are employed to represent transition relations and sets of states, using, for 

instance, a compact representation of the state space (e.g., binary decision diagrams [11]), 

to simplify the battle-manager states by removing sub-trees and redundant edges on the 

battle manager’s Boolean decision tree.  In other words, we can transform the complex 

logic decisions at the bottom of the tree into simple Boolean statements so that we can 

capture the essence of the system behavior in the upper portions of the decision tree.  By 

reducing the high number of lower-level logic statements that develop very specific 

solutions and have limited impact on the overall system behavior, we should be able to 

manage the state-explosion problem.  

As an example of the state-explosion problem in terms of the BMK, consider the  

following assertion:  

Always Intercept_Point_Min_Within_Intercept_Range Implies 

(Min_Intercept_Point is contained within Interceptor_Range_Volume)  

Note that the number of points in Interceptor_Range_Volume could be large and 

that we are seeking to ensure that one specific point (Min_Intercept_Point) is within the 

set of points that define Interceptor_Range_Volume.  Rather than use model checking to 

ensure that this condition is true, we could abstract the assertion to either a True or False 
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for Intercept_Point_Min_Within_Intercept_Range. This will reduce the number of traces 

through the model to verify this assertion.  

Model checking is not within the scope of this research; however, we will 

recommend the application of model checkers as a potential research topic in the 

development of dependable systems.  

3. Testing 
The Standish Group reported a dismal report on the state of software development 

in 1994.  According to [70], software developers in the United States produced successful 

software in only 16.2% of the development efforts.  The following is an extract from 

[70]: 

The Standish Group research shows a staggering 31.1% of 

projects will be cancelled before they ever get completed. Further results 

indicate 52.7% of projects will cost 189% of their original estimates. The 

cost of these failures and overruns are just the tip of the proverbial 

iceberg. The lost opportunity costs are not measurable, but could easily be 

in the trillions of dollars.  

Based on this research, The Standish Group estimates that in 1995 

American companies and government agencies will spend $81 billion for 

cancelled software projects. These same organizations will pay an 

additional $59 billion for software projects that will be completed, but will 

exceed their original time estimates. Risk is always a factor when pushing 

the technology envelope, but many of these projects were as mundane as a 

driver’s license database, a new accounting package, or an order entry 

system. 

On the success side, the average is only 16.2% for software 

projects that are completed on-time and on-budget. In the larger 

companies, the news is even worse: only 9% of their projects come in on-

time and on-budget. And, even when these projects are completed, many 

are no more than a mere shadow of their original specification 
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requirements. Projects completed by the largest American companies have 

only approximately 42% of the originally-proposed features and functions. 

In 1999, the Standish Group updated their research from the 1994 study.  The 

report offered that the success rate of software developments had increased to a 26% 

success rate from the dismal 16.2% success rate in 1994.  The research revealed that 

project size seemed to be a factor in predicting success as projects that cost over $10 

million had a 0% chance of success while projects costing less than $750 thousand had a 

55% chance of success.  The following is an extract from [69]: 

Company size does not guarantee success.  The Standish group has 

found no correlation between a company’s size and its project success 

rate.    As with project size, bigger is not necessarily better.  While large 

companies (over $500 million) do experience more failures and fewer 

successes than medium companies ($200 million to $500 million), project 

failure rates are generally distributed quite uniformly across companies of 

all sizes.  Project failure is everyone’s problem.  

Another way to look at project resolution is to compare the value 

of successful projects with the waste of challenged and failed ones.  Along 

with improvements in time and costs overruns, companies’ waste- to-value 

ratios have improved substantially.  In 1996, CHAOS research fond 50% 

waste in IT projects.   By 1998 the data identified only 37% waste. 

In 2003, the Standish Group released their latest findings which listed the success 

rate for software projects was 34% in 2003 as compared to 16.2% in the 1994 report and 

26% in the 1999 report. [71]  Furthermore, the report claimed that the failure rate of 

software projects was 15% in 2003 as compared to 31% in the 1994 report and 28% in 

the 1999 report.  However, the report revealed that time overruns had significantly 

increased to 82% as compared to 63% in the year 2000.  Additionally, the report claimed 

that software developers fielded only 52% of the required features and functions as 

compared to 67% in the year 2000. 
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With respect to the limited success of defense software development, Leishman 

and Cook offered the following observation which is an extract from their article in the 

April 2002 issue of CrossTalk [49]: 

At the 5th Annual Joint Aerospace Weapons Systems Support, 

Sensors, and Simulation Symposium in 1999, the results of a study of 1995 

Department of Defense (DoD) software spending were presented.  

As indicated, of $35.7 billion spent by the DoD for software, only 2 

percent of the software was able to be used as delivered. The vast 

majority, 75 percent, of the software was either never used or was 

cancelled prior to delivery. The remaining 23 percent of the software was 

used following modification. 

Recall that Leffingwell and Widrig claimed in [50] that specification errors will 

be the source of seventy percent of the system rework costs.  Furthermore, they state that 

given that rework costs are typically 30% to 50% of a program budget, the correction of 

system-specification errors can cost 25% to 40% of an entire program budget.  Software 

bugs cost the United States economy $59.5 billion annually according to a 2002 report by 

the National Institute of Standards and Technology.  [19]  Additionally, this report claims 

that software developers expend approximately eighty percent of development costs 

towards identifying and correcting discovered bugs.   

The use of assertions in specifying a system can result in more detected defects 

than traditional testing and can provide a higher degree of dependability than systems that 

have undergone traditional testing without supporting formal methods.  Due to resource 

constraints in development efforts, one cannot exhaustively test the entire test suite that is 

required for complete test coverage.   

As an example of the futility of attempting to realize complete, exhaustive testing 

for a system, let us consider the problem of developing a test for a program that reads 

three integers that represent the lengths of the sides of a triangle.  The output of the 

program is a statement that identifies the triangle as isosceles, equilateral, or scalene.  If 

we limit the points on an x,y axis to be integers between one and ten, there are 104 
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possible ways to draw a line.  If we test three lines at a time, then we have 1012 possible 

inputs for the three lines to include all invalid combinations.  Consider that we automate 

the test procedures for this problem to the extent that we can continuously execute a 

thousand tests every second.  Under these conditions, the automated tester would require 

about 31.7 years to test every possible input combination if the automated tester ran 

twenty-four hours each day for every calendar day in each year of the continual 

automated testing. [3] 

Exhaustive testing may be possible for the most trivial of systems; however, the 

complex systems in the Department of Defense are significantly more complex than the 

triangle problem.  Consequently, defense software testers typically execute a finite 

number of test cases that test a portion of the system software.  Unfortunately, finding a 

runtime software fault in large, complex system can be difficult.  Oftentimes, the location 

of the observed fault is not the location of the true defect.  Therefore, as the number of 

instructions and computations increase between the observed fault and the true defect, the 

software tester can experience increased difficulty in identifying the true defect in the 

software. 

The risk of drawing conclusions about a system behavior by extrapolating the 

results from a finite number of tests can be reduced by using formal methods.  

Additionally, the use of formal methods can support the software tester in identifying 

inappropriate system behavior (i.e., observed faults) and locating the defects in the code.   

That is, the testing with assertions in the software can identify software faults earlier than 

software without assertions and the testing with assertions can lead to the software testers 

closer to the defect as compared to testing software without assertions. 

The use of assertions can support the design and implementation of built-in 

testing of the software. [3]  Such built-in tests can check implementation details such as 

assumptions and constraints.  Additionally, the use of assertions provides a mechanism to 

test the trapping of software faults and the runtime handling of the trapped software 

faults.  For example, assertions can support the tester in determining that legal and valid 

inputs are processed as designed.  On the other hand, assertions can trap unanticipated 

inputs that may be illegal or invalid as defined by the assertion.   



 128

In component-based software engineering, the use of assertions can provide an 

instrument for testing interface contract-violations.  These violations could include 

inappropriate calling of a component by the component framework or the called 

component fails to deliver its computational results. [68] 

In the test development of software with assertions, testers should understand that 

an assertion will hold true for all legal and valid inputs. [3]  That is, an assertion will not 

pop for legal and valid inputs.  Thus, assertion errors can be hidden from testers who 

assume that the absence of popped assertions equates to the software exhibiting the 

desired behavior.  Therefore, testers should include inputs that cause the assertion to pop.   

  Assertions can enable testers to develop test cases to check the behavior at 

domain limits and boundary values. [3]  Oftentimes, asserting pre-conditions will suffice 

to define domain limits and boundary values.  For example, consider the assertion 

previously developed for a pre-condition: 

 

 Always Track_Data Implies (Detect_Track) and  
{(Input_A > 0 and Input_A < 100) and (Input_B < 1000)} 

 

Testers can use the assertions to develop a test oracle.  (N.B.:  For this research, 

we define an oracle to be a tool to evaluate the results of a test case as either pass or not 

passed.  The oracle is the test key that contains the inputs for a system and the associated 

required output for each input.)   

In our test case for the above assertion, we might develop procedures that test the 

following combinations of Input_A and Input_B as depicted in Table 5.  While not an 

exhaustive input/output table for this assertion, this oracle can provide confidence that the 

assertion will trap illegal or invalid inputs for Input_A and Input_B.  
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Table 5.   Test Oracle for Assertion 
 

 
 

 
D. TECHNICAL CONTRIBUTION  

For the fourth technical contribution in this research, we proposed the use of a 

kernel in the controlling software for a system-of-systems to shape the dependable 

behavior of the system-of-systems.  To develop the specifications for the controlling 

software in the BMDS, we proposed the development of BMK specifications in this 

Input_A Values Input_B Values Assertion Comment 

0 0 True Legal and valid 
values for Input_A 
and Input_B 

(-1) 0 False Invalid value for 
Input_A 

0 (-1) True Legal and valid 
values for Input_A 
and Input_B 

0 999 True Legal and valid 
values for Input_A 
and Input_B 

0 1000 False Invalid value for 
Input_B 

99 999 True Legal and valid 
values for Input_A 
and Input_B 

100 999 False Invalid value for 
Input_A 

1.5 0 False Illegal value for 
Input_A (not an 
integer) 

0 AAABBB False Illegal value for 
Input_B (not a real 
number) 
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fashion:  (1) develop natural language assertions to support a common understanding of 

what behavior the specification is attempting to define and constrain and (2) developing 

assertions for which we can verify the desired behavior and timing constraints through 

such mechanisms as model checkers.  

The technical contribution and concepts offered in the previous two chapters and 

this chapter concepts addresses the second of the three research questions in Chapter V.  

We have demonstrated that a component-based structure could be useful in the design 

and specification of the controlling software in a system-of-systems. 
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XIII. PROTOTYPE  

A. INTRODUCTION 
We will develop a prototype of the BMK to demonstrate the use of assertions in 

the kernel to define functional and dependability goals.  Included with the prototype will 

be specifications of contracts between the active components of the BMK and the passive 

components.  Additionally, we will specify distributed behaviors in the BMK to 

demonstrate the ability to use assertions in the kernel to achieve liveness, dependability, 

and survivability in a distributed environment. 

We will develop specifications for the BMK from a synthesis of functional 

requirements, desired capabilities, and battlespace constraints.  We will employ use cases 

for the elicitation of the functional requirements of the battle manager.  We will make 

assumptions about the objectives of the battle manager to define desired capabilities.  

Finally, we will consider battlespace constraints that might impact the execution of 

battle-management functions during operations.  

To develop the use cases for battle management, we propose the use of the kill 

chain for ballistic missile defense.  Recall that we developed the kill chain for ballistic 

missile defense with the following five functions:  Detect, Track, Assign Weapon, 

Engage, and Assess Kill.  For the prototype, we will limit the scope to Track and Assign 

Weapon. 

We employed component-based software engineering to develop the BMK 

prototype.  We developed the Track Processing, Weapon Assignment, and Distributed 

Processing components as active components and define the necessary passive 

components and interfaces to support the activities of the active components.  We used 

the framework depicted in Figure 7. Finally, we analyzed the prototype to determine 

whether it exhibits the desired behavior and provides the desired non-functional behavior.  

We used simple inputs of valid and invalid inputs to assess the behavior of the prototype. 
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B. ASSERTIONS IN BMK SPECIFICATIONS 
We will employ assertions to specify the desired behavior of the BMK prototype 

to include the desired dependability properties of availability, consistency, correctness, 

reliability, robustness, safety, and recoverability. 

In the specifications of the BMK’s components, we will employ the use of 

assertions and exception-handling routines to achieve the following design goals: 

1. Fault Avoidance - Design to avoid the occurrence of software hazards.  

2. Fault Warning - Design to detect conditions which could be hazardous and 

provide operator warning in order that the operator can take appropriate corrective action.  

3. Fault Correction - Design for fault detection but also provide automatic 

means for self-correction.  

4. Fault Tolerance - Design for fault detection but also provide alternate 

paths which are automatically selected.  

5. Fail Operational - Design such that when a single failure or error occurs 

the system fails operational (and safe). It should be noted that safety may have an extra 

burden trying to ensure that the system is also safe in this situation.  (N.B.:  For this 

research, a system that is characterized as fail operational is one that tolerates system 

faults and remains operational in a safe manner.) 

6. Fail Safe - Design such that when two independent failures or errors occur 

the system fails safe (but not necessarily operational).   (N.B.:  For this research, a system 

that is characterized as fail safe is one that shuts down safely after experiencing system 

faults. 

With each assertion used to achieve the above design goals, we will specify an 

associated exception-handling routine to either maintain safe operations or shut down 

safely.  We will develop a safety component to ensure that the BMK implements the 

specified safety policies and maintains the desired dependability properties.  
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C. BMK PROTOTPE ARCHITECTURE 
To reduce the impact of undesired state behavior of any given active component 

on any other active component, we will decouple each active component from all other 

active components.  We will use data stores to connect the active components and use 

pulled data from continual polling of specific data stores as a trigger for activities in 

active components as depicted in Figure 13.   

 

Figure 13.   BMK Active Components and Data Stores   
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Along with the other benefits of decoupling active components from each other, 

we hypothesize that we can increase the degree of test confidence in the BMK.   As the 

first testing step, we propose the testing of each passive component (i.e., computation) 

with its contract interface.  The objective of this testing should be the testing of output as 

a function of the set of valid and invalid inputs to the contract interface.  We propose the 

next step of testing to be the testing of each active component with its passive 

components connected via the contract interface.  Given that active components will have 

state (unlike their passive counterparts), we propose that this step of testing include both 

black-box testing to ensure the appropriate outputs from the inputs of a test oracle and 

white-box testing to determine whether the active components may have exhibited 

coincidental correctness during black-box testing.  (N.B.:  For this research, we define 

coincidental correctness to be a characteristic of a system that can produce the correct 

outputs for specific inputs as defined by the system specifications.  However, incorrectly  

implemented software in the system does not always impact the final output of the 

system.  That is, a system that is said to demonstrate coincidental correctness does the 

right thing some of the time.) 

Rather than using actual discrimination and correlation algorithms in the passive 

components, we will use relatively simple algorithms that are intended to demonstrate the 

effectiveness of the contract vice accuracy of discrimination and correlation algorithms.  

We will describe the work in the timelines that we accomplished the work to record the 

thinking at each step in the prototype development process. 

D. TRACK PROCESSING COMPONENT 
For our prototype system, we will develop the track processing part of the BMK 

to satisfy the Track function of the kill chain.  For the prototype, we will use the 

following assumptions:  (1) we are not concerned about the source of the track data (i.e., 

radar, IR sensor, optical sensor), (2) the track data is normalized to a specific format in 

the data store that contains the track data, and (3) we are not concerned with the specific 

details of discrimination and correlation. 
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The first step is to develop a use case that outlines track processing in the BMK.  

The user goal in Track Processing is to identify ballistic-missile threat objects in the 

observed track data from a sensor.  The following use case outlines the steps required to 

achieve this goal: 

Track Processing Use Case 

Goal:  Identify ballistic missile threat objects from observed track data. 
 
Trigger:  Track data returned to Track Processing as a result of polling track-data 

store 
 
Actors:  Track Processing, Discrimination Computation, Correlation 

Computation 
 
Main success scenario: 
 
1. Track Processing polls Track Data Store for track data and Track Data 

Store returns track data. 
2. Track Processing sends track data to Discrimination Computation to 

determine whether track data is a threat object. 
3. Discrimination Computation stores discriminated tracks in data store and 

returns an end of discrimination message to Track Processing. 
4. Track Processing pulls discriminated tracks from data store and sends 

track data to Correlation Computation. 
5. Correlation Computation associates threat track to existing track file, 

updates track files, and returns an end of correlation message to Track 
Processing. 
 

Extensions: 
 
1a. Track Data-Store returns null message. 
  1a1. Repeat 1 until Track Data-Store returns track data. 

 3a. Discrimination Computation cannot discriminate track data. 
3a1. Discrimination Computation sends track data to Suspect Data 

Store. 
3a2, Discrimination Computation sends Track Processing end of 

discrimination message. 
5a. Correlation Computation cannot associate threat track to existing track 

file. 
 5a1. Correlation Computation creates new track file for threat track 

5a2. Correlation Computation returns an end of correlation message to 
Track Processing. 
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From this use case, we developed the collaboration diagram in Figure 14 to depict 

the relationships of the classes suggested in the use case.  Note that we have identified a 

Track Processing class that coordinates the activities in this work.  Additionally, we have 

identified two classes that perform work:  Discrimination Computation and Correlation 

Computation. 

Figure 14.   Track Processing Component    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the Track Processing use case and diagram, we can prepare a description of 

the components, interfaces, and data stores as well as a set of specifications for track 

processing.  Additionally, we can develop natural language assertions and associated 

error-handling code that can enhance our desired dependability properties of availability, 

consistency, correctness, reliability, robustness, safety, and recoverability.  

1. Track Processing Component 
This is an active component that coordinates activities and computations as track 

data is processed.  Track Processing should ensure that interrupts or slow processing in 

the passive components (i.e., computations) do not result in an interrupt in the processing 
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of the track data.  Track Processing will poll data from Track Data Store, and send the 

track data to the Discrimination Computation.  Concurrently, Track Processing begins to 

poll the Discriminated Track Data Store.  After receiving a discriminated track, Track 

Processing will send the discriminated track data to the Correlation Computation.  Note 

that discrimination and correlation are concurrent activities and denoted on the diagram 

as 3a, 4a, etc. for the discrimination activities and 3b, 4b, etc. for the correlation 

activities.   

The specifications for Track Processing are as follows: 

a. Track Processing will continually poll Track Data Store every two 

seconds and pulls a single track data set from the top of the stack. 

b. Track Processing will poll Track Data Store every two seconds or 

whenever Track Processing receives isEndDiscrim message – whichever event occurs 

first.  This assertion checks for continued polling of the Track Data Store by Track 

Processing thereby realizing a safety property of the BMK processing track data 

whenever track data is presented to the BMK.  If the assertion is violated, then the 

developed error-handling code will reset the polling in Track Processing and resume 

polling every two seconds.   

c. Track Processing will not poll Track Data Store while 

discriminating current track data.  This assertion checks that Track Processing only tasks 

a single set of track data to a single instance of the Discrimination Computation and that 

Track Processing will not send a different set of track data to that instance of the 

Discrimination Computation until it completes its processing of the current set of track 

data. 

d. If track data from Track Data Store is not valid data, then Track 

Processing will discard the invalid data (e.g., null set) and poll Track Data Store in two 

seconds.  Track Processing will not pass invalid data to Discrimination Computation.  

This assertion checks for valid track data to avoid processing invalid track data that may 

cause a system failure.  

e. If Track Processing sends valid track data to Discrimination 
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Computation, then the Discrimination Computation and associated actions must be 

completed within one second of Track Processing presenting track data to 

iDiscrimination.  This includes the update to the Discriminated Tracks Data Store.  If the 

computation is not complete within one second, then Track Processing will terminate the 

tasking to the Discrimination Computation and send that set of track data to the Suspect 

Data Store.  This assertion and associated error-handling code checks to ensure the 

Discrimination Computation has completed its work within the specified time limitation.  

f. If Track Processing sends valid discriminated track data to the 

Correlation Computation, then the Correlation Computation and associated actions must 

be completed within one second of Track Processing presenting discriminated track data 

to iCorrelate.  This includes the updates to the Kill Data Store, Suspect Track Data Store, 

and Battlespace Representation Data Store.  If the processing is not complete within the 

specified time limit, then Track Processing will direct that Correlation Computation 

create a new track file for the current discriminated track data.  This assertion and 

associated error-handling code checks to ensure the Correlation Computation has 

completed its work within the specified time limitation.  

2. iDiscriminate 
This is an interface that describes a contract between the discrimination activities 

in Track Processing and the Discrimination Computation.  Along with the parameters 

passed to/from the computation, the interface will contain pre-conditions, post-

conditions, and invariants as required to ensure that the Discrimination Computation 

completes its work within the specified timeframe and within the constraints set forth in 

the interface contract.  The specifications for iDiscriminate are as follows: 

a. Within one second of presenting track data to iDiscriminate, the 

track data will be returned to Track Processing with one of three possible labels:  Threat, 

Benign, or Suspect; otherwise, iDiscriminate will terminate the discrimination 

computation and discard the invalid output of the discrimination computation.  If the 

computation exceeds one second, then the track data will be labeled as Suspect.  If track 

data is not valid data, then iDiscriminate will terminate processing and return 

isEndDiscrim message to Track Processing. 
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b. If the velocity in the track data is anything other than a real number 

greater than zero and less than 10 (anything other than a real number would include alpha 

characters, mathematical symbols, null values, etc.), then iDiscriminate will terminate 

processing and send isEndDiscrim to Track Processing. 

3. Discrimination Computation 
This is a passive component that receives track data and determines whether the 

track data represents a threat, benign, or suspect track.  A threat track is defined as one 

that is identified as a tracked ballistic missile.  A benign track is defined as one that is 

identified as a mass moving through space at a given velocity but does not represent a 

ballistic missile threat.  A suspect threat track is defined as one that cannot be classified 

as either a threat or benign track, or contains features of both a threat and benign track.  

The specifications for the Discrimination Computation are as follows: 

a. If track data contains a velocity of less than one kilometer per 

second, then the discrimination computation will label the track data as suspect. 

b. If track data contains a velocity of greater than nine kilometers per 

second, then the discrimination computation will label the track data as suspect. 

c. If track data contains features that indicate both a threat and a 

benign identification for the same track, then the discrimination computation will label 

the track data as suspect.  

4. iCorrelate 
This is an interface that describes a contract between the correlation activities in 

Track Processing and the Correlation Computation.  Along with the parameters passed 

to/from the computation, the interface will contain pre-conditions, post-conditions, and 

invariants as required to ensure that the Correlation Computation completes its work 

within the specified timeframe and within the constraints set forth in the interface 

contract.  The specifications for iCorrelate are as follows: 

a. After Track Processing presents track data to iCorrelation, the 

correlation computation must return isEndCorrelation message to iCorrelate within two 

seconds.  If the computation exceeds two seconds, then the track data will be toggled as 
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Suspect and stored in Suspect Track Data Store, and iCorrelation will send 

isEndCorrelation message to Track Processing. 

b. If track data from Track Data Store is not valid data, then 

iCorrelation will discard track data and return isEndCorrelation message to Track 

Processing.  iCorrelation will not pass invalid track data to Correlation Computation.  

5. Correlation 
This is a passive component that receives discriminated track data and correlates 

that data with the current track files that the Correlation Computation pulls from the 

Battlespace Representation Data Store.   

a. All track data will be correlated to an existing track file or the 

correlation computation will generate a new track file. 

b. If current Track File is toggled from Threat to Benign, then 

Correlation will send track data to Suspect Track Data Store and update Battlespace 

Representation Data Store with suspect track data. 

c. If predicted impact point of current Track File differs from the 

predicted impact point of the track data (absolute value of the distance between the two 

impact points) by more than 50 kilometers, then the correlation computation will toggle 

the track file as suspect and send a copy of track file to Suspect Track Data Store.  

d. If threat track file has two consecutive position updates in which 

the absolute difference between the two reported positions is less than three kilometers, 

then the correlation computation will toggle the track file as suspect and send a copy of 

track file to Suspect Track Data Store. 

e. If track data is labeled Suspect, then the correlation computation 

will send a copy of the suspect track data to Suspect Track Data Store after either 

correlating the track data to an existing track file or creating a new track file in the 

Battlespace Representation Data Store. 

f. The correlation computation will complete all computations, and 

store all correlated track data and new track files before sending isEndCorrelation to 
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iCorrelation.  

6. Kill Data Store 
This data store contains the correlated threat track data.  

7. Battlespace Representation Data Store 
This data store contains the entire set of active tracks (benign, threat, and suspect) 

in the battlespace. .  

8. Suspect Track Data Store 
This data store contains the tracks that are classified as suspect.  

9. Track Data Store 
This data store contains the normalized track data from various sensor sources.  

E. WEAPON ASSIGNMENT COMPONENT 
The next effort in developing our prototype will be developing the weapon 

assignment processing part of the BMK.  As with Track Processing, our first step is to 

develop a use case that outlines weapon assignment processing in the BMK.  The user 

goal in Weapon Assignment Processing is to assign a weapon system to engage each 

track in the Kill Data Store.    The following use case outlines the step required to achieve 

this goal: 

Weapon Assignment Processing Use Case 

Goal:  Assign a weapon system to engage each track in Kill Data Store. 
 
Actors:  Weapon Assignment Processing, Track Prioritization Computation, 

Weapon Assignment Computation 
 
Pre-condition:  Kill Data Store contains one or more threat tracks. 
  
Trigger:  Track data returned to Weapon Assignment Processing as a result of 

Weapon Assignment Processing polling Kill Data Store 
 
Main success scenario:  
1. Upon receipt of track data from Weapon Assignment Processing, Track 

Prioritization Computation prioritizes the threats in accordance with the 
PDAL data store. 

2.  After completing the track prioritization tasking, Track Prioritization 
Computation sends an end of prioritization message to Weapon Assignment 
Processing. 



 142

3. Upon receipt of prioritized track data from Weapon Assignment Processing, 
Weapon Assignment Computation determines which weapon it will assign to 
engage threat track, and stores the weapon assignment in Track Engagement 
Data Store. 

4. After completing the weapon assignment tasking, Weapon Assignment 
Computation sends an end of weapon assignment message to Weapon 
Assignment Processing. 

 

From this use case, we developed the diagram in Figure 15 to depict the 

relationships of the classes suggested in the use case.  Note that we identified a Weapon 

Assignment Processing class that coordinates the activities in this work.  Additionally, we 

identified two classes that perform work:  Track Prioritization Computation and Weapon 

Assignment Computation. 

 

Figure 15.   Weapon Assignment Processing Component    
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From the use case and the diagram, we can prepare a description of the 

components, interfaces, and data stores as well as a set of specifications for weapon 

assignment processing.  Additionally, we can develop natural language assertions and 

associated error-handling code that can enhance our desired dependability properties of 

availability, consistency, correctness, reliability, robustness, safety, and recoverability.  

1. Weapon Assignment Processing 
This is an active component that coordinates activities and computations for the 

pairing of a weapon system to a given track.  Weapon Assignment Processing should 

ensure that interrupts or slow processing in the passive components (i.e., computations) 

does not result in an interrupt in the weapon assignment processing.  Weapon Assignment 

Processing will poll data from Kill Data Store and send the track data to the Track 

Prioritization Computation.  When triggered, Weapon Assignment Processing will task 

the Weapon Assignment Computation to pair a weapon to a track.  Note that 

prioritization and weapon assignment are concurrent activities and denoted on the 

diagram as 3a, 4a, etc. for the prioritization activities and 3b, 4b, etc. for the weapon 

assignment activities.  The specifications for Weapon Assignment Processing are as 

follows: 

a. Weapon Assignment Processing will continually poll Kill Data 

Store every two seconds and pull a single track data set from top of stack. 

b. Weapon Assignment Processing will poll Kill Data Store every 

two seconds or whenever Weapon Assignment Processing receives isEndPrioritization 

message – whichever event occurs first.   

c. Weapon Assignment Processing will not poll Kill Data Store while 

prioritizing current track data. 

d. If track data from Kill Data Store is not valid data, then Weapon 

Assignment Processing will discard returned track data and resume polling after two 

seconds has elapsed.  Weapon Assignment Processing will not pass invalid track data to 

associated computations. 

e. Weapon Assignment Processing will not process any track data 
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that is identified as either Benign or Suspect.  If a Weapon Assignment Processing pulls a 

track that is identified other than Threat, then Weapon Assignment Processing will send 

an alert to the user display along with the track data.   

g. If Weapon Assignment Processing sends valid track data to Track 

Prioritization Computation, then prioritization computations and actions must be 

completed within two seconds of Weapon Assignment Processing presenting track data 

to iPrioritize.  This includes the update of Prioritized Threats Data Store. 

h. After Weapon Assignment Processing has received valid 

prioritized track data from the Prioritized Threats Data Store, it will send the prioritized 

track data to the Weapon Assignment Computation. 

i. If Weapon Assignment Processing sends valid track data to 

Weapon Assignment Computation, then weapon assignment computations and actions 

must be completed within two seconds of Weapon Assignment Processing presenting 

track data to iWeaponAssignment.  This includes the update of Track Engagement Data 

Store.  

2. iPrioritize 
This is an interface that is described as a contract between Weapon Assignment 

Processing and Track Prioritization Computation.  Along with the parameters passed 

to/from the computation, the interface will contain pre-conditions, post-conditions, and 

invariants as required to ensure that the track prioritization computation completes its 

work within the specified timeframe and within the constraints set forth in the interface 

contract.  The specifications for iPrioritize are as follows: 

a. Within two seconds of presenting track data to iPrioritize, the 

Track Prioritization Computation must return isEndPrioritization message which 

iPrioritize will forward to Weapon Assignment Processing.  If the temporal assertion fails 

to hold, then Weapon Assignment Processing will direct Track Prioritization 

Computation to place track data at the bottom of the priority stack in the Prioritized 

Threats Data Store, reset the polling in Weapon Assignment Processing, and resume 

polling of Kill Data Store. 
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b. If track data is not valid data, then iPrioritize will terminate 

processing and return isEndPrioritization message to Weapon Assignment Processing. 

c. If the Predicted Impact Point (IPP) in the track data is anything 

other than a string of 8 integers (N.B.:  anything other than a string of 8 integers would 

include real numbers other than integers, alpha characters, mathematical symbols, null 

values, etc), then iPrioritization will terminate processing and send isEndPrioritization 

message to Weapon Assignment Processing.  

3. Track Prioritization Computation 
This is a passive component that receives track data and determines the priority of 

the track based upon the PDAL Data Store.  The specifications for the Track 

Prioritization Computation are as follows: 

a. After Weapon Assignment Processing presents track data to 

iPrioritize, the track prioritization computation must prioritize the threat track in 

accordance with the Prioritized Defended Asset List (PDAL).  If the prioritization 

computation exceeds one second, then the track will be placed at the bottom of the 

priority stack in the Prioritized Threats Data Store and the prioritization computation will 

return isEndPrioritization message to iPrioritize. 

b. If the absolute value of the distance from the IPP to any asset on 

the PDAL is equal to or less than 50 kilometers, then the threat will be assign a priority to 

the track that is equal to the priority of the PDAL asset that is within that absolute value 

of 50 kilometers of the IPP.  If there are more than one PDAL assets within 50 kilometers 

of the IPP, then the priority of the track will be equal to the asset that has the highest 

priority within a circle that is defined having a 50 kilometer radius and the center is the 

IPP.  If two or more tracks hold the same priority based upon threatening the same asset, 

then the track with the shortest time remaining to impact will be given the higher priority.  

c. If a the absolute value of the distance from the IPP to any asset on 

the PDAL is greater than 50 kilometers, then the threat will be labeled as “Deliberate 

Pass), monitored, but not engaged unless the IPP moves within 50 kilometers of a 

defended asset.  No weapon will be assigned to engage Deliberate Pass tracks.  



 146

4. iWeaponAssignment 
This is an interface that is described as a contract between Weapon Assignment 

Processing and Weapon Assignment Computation.  Along with the parameters passed 

to/from the computation, the interface will contain pre-conditions, post-conditions, and 

invariants as required to ensure that the Weapon Assignment Computation completes its 

work within the specified timeframe and within the constraints set forth in the interface 

contract.  The specifications for iWeaponAssignment are as follows: 

a. After Weapon Assignment Processing presents track data to 

iWeaponAssignment, the correlation computation must return isEndWeaponAssignment 

message to iWeaponAssignment within two seconds.  If the computation exceeds two 

seconds, then the track will be toggled as “Not Assigned” in Track Engagement Data 

Store, and iWeaponAssignment will send isEndWeaponAssignment  message to Weapon 

Assignment Processing. 

b. If track data from Weapon Assignment Processing is not valid 

data, then iWeaponAssignment will discard track data and return 

isEndWeaponAssignment message to Weapon Assignment Processing.  

iWeaponAssignment will not pass null track data to weapon assignment computation.  

5. Weapon Assignment Computation 
This is a passive component that will receive prioritized track data from Weapon 

Assignment Processing and assign a weapon to each threat based upon the characteristics 

of the weapon systems, health and status of the available weapon systems, and rules of 

engagement as defined by the user.  The specifications for the Weapon Assignment 

Computation are as follows: 

a. Each track that is identified as a threat and prioritized will be 

paired with a weapon.  Any track that is identified as either benign or suspect will If a 

weapon system is not available to engage the track, then the Weapon Assignment 

Computation will tag the track as Unassigned Threat Track. 

b. After all computations and updates are completed, Weapon 

Assignment Computation will send isEndWeaponAssignment message to Weapon 
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Assignment Processing.  

6. PDAL Data Store 
This data store contains the prioritized threats as computed by the Track 

Prioritization Computation. 

7. Prioritized Threats Data Store 
This data store contains the prioritized threats as computed by the Track 

Prioritization Computation. 

8. Weapon System Data Store 
This data store contains information about each weapon system in the BMDS to 

include range and accuracy of organic sensor, altitude and range of interceptor, maximum 

number of available launchers, reload time, and maximum number of concurrent 

engagements. 

9. Weapon H&S Data Store 
This data store contains the continually updated health and status information of 

each weapon associated with the battle manager to include readiness of weapon system, 

number of interceptors that are at the ready, current engagement assignments assigned to 

the weapon system, and current engagements of the weapon system. 

10. ROEs Data Store 
This data store contains the rules of engagement (ROEs) as set in the BMD 

planning phase to include shot doctrine, firing trigger (e.g., first available shot, 90% 

probability of kill (PK), desired interceptor reserve). 

11. Track Engagement Data Store 
This data store contains the current engagement status (Engaged, Not Assigned, 

or Deliberate Pass) of every prioritized track.  

F. DISTRIBUTED BEHAVIOR COMPONPENT 
The BMK Distributed Behavior Component is an active component that monitors 

the status of multiple, independent battle-management processes.   The first process 

copies the track data in Kill Data Store and sends this data to other BMKs as situational 

awareness information.  The second process copies the track data in the Battlespace 

Representation Data Store and sends this data to other BMKs and C2 elements as 

situational awareness information.  The third process monitors the Track Engagement 
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Data Store to find assigned engagements with weapon systems that require additional 

sensor support (modify WAP).  The fourth process copies the engagement data in Track 

Engagement Data Store and provides it to other BMKs and C2 elements as situational 

awareness information.  The fifth process searches the engagement data in Track 

Engagement Data Store to find Unassigned Threat Tracks that have remained unassigned 

for more than 30 seconds.  The sixth process monitors the Suspect Track Data Store to 

find suspect track data that have remained in the suspect status for more than 30 seconds 

without new track updates.  The BMK Distributed Behavior Component is depicted 

below in Figure 16: 

 

Figure 16.   BMK Distributed Behavior Component    
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The specifications for the BMK Distributed Behavior Component are as follows:  

1. Situational Awareness:  Kill Data Store 
BMK Distributed Behavior Component pulls track data from Kill Data Store 

every 5 seconds and sends it to other BMKs.  

2. Situational Awareness:  Battlespace Representation Data Store 
BMK Distributed Behavior Component pulls track data from Battlespace 

Representation Data Store every 10 seconds, and sends it to other BMKs and C2 

elements. 

3. Sensor Support RPC 
BMK Distributed Behavior Component searches for engagement assignments that 

require additional sensor support as stored in Track Engagement Data Store and requests 

sensor support from another BMK.  

4. Situational Awareness:  Track Engagement Data Store 
BMK Distributed Behavior Component pulls track data from Track Engagement 

Data Store every 5 seconds, and sends it to other BMKs and C2 elements.  

5. Weapon Assignment RPC 
BMK Distributed Behavior Component searches the engagement data in Track 

Engagement Data Store to find Unassigned Threat Tracks that have remained unassigned 

for more than 30 seconds, and requests transfer of track responsibility and weapon 

assignment to another BMK.  

6. Sensor Support RPC:  Suspect Track Data Store 
BMK Distributed Behavior Component searches for suspect track data that have 

remained in the suspect status for more than 30 seconds without new track updates data 

in engagement assignments and requests sensor support from another BMK.  

G. SAFETY COMPONENT 
Safety is a system attribute.  System software faults can lead to system accidents; 

however, the system software safety is highly dependent on the operational application of 

the system as well as the environment in which we operate the system.  Software is not 

unsafe when considered in isolation. It is only when the software is integrated into a 

system that it can contribute to system accidents.  
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For the battle manager, we will use the following partial failure analysis for 

ballistic missile defense that will form the basis for our battle-management safety 

policies: 

 

1. Failure of weapon to engage a threat track 

a. Potential causal factor   

Failure of Battle Manager to assign weapon to threat track in 

sufficient time for weapon to engage threat track 

  b. Safety policies 

   (1) For each identified threat track, the Battle Manager must 

either assign a weapon to engage that threat track or classify the threat track as Deliberate 

Pass within thirty seconds of a track being identified as a threat track. 

(2) For each track that is presented to the Battle Manager, the 

track processing code must identify the track as threat, benign, or suspect within fifteen 

seconds of track presentation to the Battle Manager.  

   (3)  For each track that is labeled suspect by the Battle 

Manager, the track processing code must classify the suspect track as either threat or 

benign within thirty seconds of the original classification of the track as suspect. 

   (4)   A threat will not toggle between Deliberate Pass and a 

weapon assignment more than two times. 

   (5) A suspect track will be updated within thirty seconds of its 

previous update or original classification – whichever is later. 

   (6) A track that has a velocity of less than one kilometer per 

second will not be identified as a ballistic missile threat. 

   (7)  Every processed track in the BMD battlespace will be 

updated within thirty seconds of its previous update or original classification – whichever 

is later. 
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 2. Successful engagement of weapon on non-threat track 

  a. Potential causal factors 

   (1)  Weapon assignment pairing weapon to either benign or 

suspect track. 

   (2)  Prioritized threats include one or more benign or suspect 

track(s). 

  b. Safety policies 

   (1) Only threat tracks will be paired with a weapon for 

engagement.  Suspect tracks and benign tracks will not be paired with a weapon for 

engagement. 

   (2) Prioritized threats will only come from threat track storage.  

Suspect tracks and benign tracks will not be prioritized for weapon assignment. 

Rather than scattering the safety assurance through all the active components, we 

will employ the use of a safety component to ensure compliance with our identified 

safety policies.  The checking for compliance to the safety policies might be managed 

easier in a single entity (i.e., safety component) because the complexity of the battle 

manager could make the safety-policy compliance checking more difficult.  Our premise 

is that verification of the safety component will suffice for ensuring the enforcement of 

the safety policies over the battle manager.  While the safety component may not be 

responsible for implementing all the safety policies, it will be responsible for checking 

compliance to all the implemented safety policies and exercising implemented exception-

handling code for detected safety violations.  

For the prototype, the BMK Safety Component will monitor the BMK data stores 

and perform checks to determine whether the BMK active components are complying 

with the implemented safety policies.  Upon a detection of a safety policy violation, the 

BMK Safety Component will return the BMK to a safe operational state if possible or fail 

safe at a minimum.  As such, it is equally important to specify the exception-handling 



 152

routine for the violation of a given assertion as the specification of the desired objective 

for that assertion.  The BMK Safety Component is depicted below in Figure 17: 

 

 

 

Figure 17.   BMK Safety Component   
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1. Threat Engagement Status.  A valid threat track in the Kill Data Store will 

be paired with a weapon system to engage the valid threat track within thirty seconds of 

the first instance of that track in the Kill Data Store.  If a track in the Kill Data Store has 

either not been assigned a weapon system to engage it or classified as Deliberate Pass 

within thirty seconds after entering the track into the Kill Data Store, then the Safety 

Component will send a warning to user display. 

2. Threat Engagement Toggle.  A valid threat track can toggle between 

deliberate pass and a weapon system pairing only one time.  If a track toggles between 

Deliberate Pass and weapon assigned (i.e., deliberate pass to weapon assigned is one 

toggle and weapon assigned to deliberate pass is one toggle) more than two times, then a 

warning will be sent to the user display. 

3. Unassigned Threat Track.  A valid threat track in the Track Engagement 

Data Store will be paired with a weapon system to engage that valid threat track within 

thirty seconds of the first instance of that track in the Track Engagement  Data Store.  If 

an unassigned threat track is not assigned a weapon system to engage it within thirty 

seconds of the first instance of the Weapon Assignment Computation posting this track 

into the Track Engagement Data Store, then a warning will be sent to the user display. 

4. Threat Track Identification.  A track in the Kill Data Store can only be 

identified as a Threat.  Any other identification for a track in the Kill Data Store is 

invalid.  Safety Component will pull all invalid tracks from the Kill Data Store and send 

an alert to the user display along with the invalid track data. 

5. Suspect Track Status.  Each suspect track must be classified as either 

threat or benign within thirty seconds of the first instance of the track that is posted in the 

Suspect Track Data Store.  If the track in the Suspect Track Data Store has not been 

classified as either threat or benign within thirty seconds after the first instance of that 

track appears in the Suspect Track Data Store, then the Safety Component will send a 

warning to user display along with the track data. 

6. Suspect Track Update.  A suspect track file must be updated within thirty 

seconds of its previous update after the first instance of the track in the Suspect Track 
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Data Store.  If a suspect track file has not been updated within thirty seconds from its 

previous update, then Safety Component will send suspect track warning to user display 

along with the track data. 

7. Suspect Track Velocity Status.  A suspect track cannot have more than 

two consecutive velocity updates of less than one kilometer per second.  If suspect track 

file has three consecutive velocity updates of less than one kilometer per second, then 

Correlation Computation will send suspect track data to user display.  

8. Battlespace Representation Track Update.  A track file must be updated 

within thirty seconds of its previous update after the first instance of the track in the 

Battlespace Representation Data Store.  If a track file (benign or threat) in the Battlespace 

Representation Data Store has not been updated for thirty seconds or more, then the 

BMK Safety Component will toggle the track file to Suspect and send track data to 

Suspect Track Data Store. 

9. Continuity of Operations:  Track Processing 

a. A track must be pulled from Track Data Store within fifteen 

seconds of its appearance in the Track Data Store.   

b. The first instance of a track file must appear in Battlespace 

Representation Data Store within thirty seconds of the first appearance of that valid track 

data in the Track Data Store.   

c. If (9a) and (9b) are not true at the same time, then Safety 

Component will send reset signal to Track Processing Component. 

d. If (9a) and (9b) are not true at the same time following a Track 

Processing reset that occurred within the past sixty seconds, then the Safety Component 

will deem the BMK as inoperable and direct the transfer of control to another BMK. 

10. Continuity of Operations:  Weapon Assignment Processing 

a. A track must be pulled from Kill Data Store within fifteen seconds 

of its appearance in the Kill Data Store.   

b. The first instance of a threat track file must appear in Track 
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Engagement Data Store within thirty seconds of the first appearance of that valid threat 

track data in the Kill Data Store.   

c. If (10a) and (10b) are not true at the same time, then Safety 

Component will send reset signal to Weapon Assignment Processing Component. 

d. If (10a) and (10b) are not true at the same time following a 

Weapon Assignment Processing reset that occurred within the past sixty seconds, then 

the Safety Component will deem the BMK as inoperable and direct the transfer of control 

to another BMK.  No other data will be processed by the BMK.  

H. ANALYSIS OF PROTOTPE 
We specified the BMK prototype with the use of assertions.  We identified error-

handling procedures for violations of the assertions.  Functionally, the prototype should 

exhibit the desired behavior to support battle-management operations.   

To support dependability of the BMK, we modified our assertions to specify time 

constraints that are driven by the operational battlespace and added assertions that would 

support our design goals.  In the following discussion, we will assess the assertions that 

we used to specify the prototype to determine whether the BMK contains the seven 

dependability properties that we identified for the battle manager.  

1. Availability 
In Chapter VI, we defined availability as the probability that a system is operating 

correctly and is ready to perform its desired functions.  

a. Track 
For the Track function, we developed two assertions that support the 

availability of the Track Processing component:   

(1) Track Processing will continually poll Track Data Store 

every two seconds and pulls a single track data set from top of stack.  This assertion 

specifies the time constraint for polling the data store for track data.  This assertion 

supports continuity of operations. 

(2) Track Processing will poll Track Data Store every two 

seconds or whenever Track Processing receives isEndDiscrim message – whichever 
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event occurs first.   If the assertion is violated, then the developed error-handling code 

will reset the polling in Track Processing and resume polling every two seconds.   

We chose to use temporal assertions to ensure that Track Processing will 

continually poll the Track Data Store and process track data.  Note that Track Processing 

will return to poll new track data at either two-second intervals or whenever 

discrimination is completed.  As such, the BMK will continually poll and process data as 

specified.  If the assertion is violated, then Track Processing will reset itself and resume 

polling at two-second intervals.  

b. Weapon Assignment 
For Weapon Assignment function, we developed two assertions that 

support the availability of the Weapon Assignment Processing component:   

(1) Weapon Assignment Processing will continually poll Kill 

Data Store every two seconds and pull a single track data set from top of stack. 

(2) Weapon Assignment Processing will poll Kill Data Store 

every two seconds or whenever Weapon Assignment Processing receives 

isEndPrioritization message – whichever event occurs first.  Within two seconds of 

presenting track data to iPrioritize, the Track Prioritization Computation must return 

isEndPrioritization message which iPrioritize will forward to Weapon Assignment 

Processing.  If the temporal assertion fails to hold, then Weapon Assignment Processing 

will direct Track Prioritization Computation to place track data at the bottom of the 

priority stack in the Prioritized Threats Data Store, reset the polling in Weapon 

Assignment Processing, and resume polling of Kill Data Store. 

We chose to use temporal assertions to ensure that Weapon Assignment 

Processing will continually poll the Kill Data Store and develop a weapon/target pairing 

for each threat in the Kill Data Store.  Note that Weapon Assignment Processing will 

return to poll new threat data at either two-second intervals or whenever threat 

prioritization is completed.  As such, Weapon Assignment Processing will continually 

pole and process data as specified.  If the assertion is violated, then Weapon Assignment 

Processing will reset itself and resume polling at two-second intervals.  
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c. Component Interfaces 
In each interface between an active component and a passive component 

(i.e., iDiscriminate, iCorrelate, iPrioritize, and iWeaponAssignment), we specified a 

temporal invariant for the return of output from the passive component.  The intent is to 

ensure that the BMK would continue to operate correctly if a passive component failed to 

return the required output in the specified constraint of the temporal assertion. 

For example, consider the following assertion in the specification for 

iDiscriminate: 

Within one second of presenting track data to iDiscriminate, the track 

data will be returned to Track Processing with one of three possible labels:  Threat, 

Benign, or Suspect; otherwise, iDiscriminate will terminate the discrimination 

computation and discard the invalid output of the discrimination computation.  If the 

computation exceeds one second, then the track data will be labeled as Suspect.  If track 

data is not valid data, then iDiscriminate will terminate processing and return 

isEndDiscrim message to Track Processing. 

Case #1:  Consider the case in which track data is not valid data (e.g., the 

null set).  This is a violation of the precondition assertion for iDiscriminate.  The 

discrimination process will be terminated, and Track Processing will resume polling and 

processing track data.  The system continues to be available for operations. 

Case #2:  Consider the case in which discrimination computation does not 

conclude within one second.  The invariant temporal assertion in iDiscriminate will be 

violated.  The discrimination computation will be terminated, and Track Processing will 

resume polling and processing track data.  The system continues to be available for 

operations. 

Case #3:  Consider the case in which an output from the discrimination 

computation is something other than Threat, Benign, or Suspect.  This is a violation of 

the post-condition assertion for iDiscriminate.  The discrimination computation will be 

terminated, and Track Processing will resume polling and  processing track data.  The 

system continues to be available for operations.  
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d. Findings and Conclusions 
The assertions in Track Processing component, Weapon Assignment 

Processing component, and the component interfaces could support the availability of the 

BMK to coordinate battle-management activities.  We asserted the desired behavior with 

time constraints to ensure that the BMK continues to process track data as specified and 

provided error-handling specifications for violations of the assertions to support 

continuity of operations.  Thus, we conclude that the assertions support the availability of 

the BMK as defined for this research. 

2. Consistency 
In Chapter VI, we defined consistency as the property that invariants will always 

hold true in the system.  

a. Track 
For the Track function, we developed two assertions that support the 

consistency of the Track Processing component:   

(1) Track Processing will poll Track Data Store every two 

seconds or whenever Track Processing receives isEndDiscrim message – whichever 

event occurs first.   If the assertion is violated, then the developed error-handling code 

will reset the polling in Track Processing and resume polling every two seconds. 

(2) Track Processing will not poll Track Data Store while 

discriminating current track data.  

b. Weapon Assignment 
For the Weapon Assignment function, we developed two assertions that 

support the consistency of the Weapon Assignment component:   

(1) Weapon Assignment Processing will poll Kill Data Store 

every two seconds or whenever Weapon Assignment Processing receives 

isEndPrioritization message – whichever event occurs first.  Within two seconds of 

presenting track data to iPrioritize, the Track Prioritization Computation must return 

isEndPrioritization message which iPrioritize will forward to Weapon Assignment 

Processing.  If the temporal assertion fails to hold, then Weapon Assignment Processing 

will direct Track Prioritization Computation to place track data at the bottom of the 
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priority stack in the Prioritized Threats Data Store, reset the polling in Weapon 

Assignment Processing, and resume polling of Kill Data Store. 

(2) Weapon Assignment Processing will not poll Kill Data 

Store while prioritizing current track data.  

c. Component Interfaces 
In each interface between an active component and a passive component 

(i.e., iDiscriminate, iCorrelate, iPrioritize, and iWeaponAssignment), we specified a 

temporal invariant for the return of output from the passive component.  The intent is to 

ensure that the BMK would continue to operate correctly if a passive component failed to 

return the required output in the specified constraint of the temporal assertion. 

For example, consider the following assertion in the specification for 

iCorrelate: 

After Track Processing presents track data to iCorrelation, the correlation 

computation must return isEndCorrelation message to iCorrelate within two seconds.  If 

the computation exceeds two seconds, then the track data will be toggled as Suspect and 

stored in Suspect Track Data Store, and iCorrelation will send isEndCorrelation message 

to Track Processing. 

Consider the case in which correlation computation does not conclude 

within two seconds.  The invariant temporal assertion in iCorrelate will be violated.  The 

correlation computation will be terminated, the track data will be labeled as Suspect, and 

Track Processing will resume polling and processing track data.  The error-handling 

procedure terminates the correlation process and Track Processing resumes polling.  The 

desired invariant behavior is maintained.   

d. Findings and Conclusions 

The assertions in Track Processing component, Weapon Assignment 

Processing component, and the component interfaces could support the consistency of the 

BMK to coordinate battle-management activities.  We asserted the invariants for the 

BMK that will always hold true, and provided error-handling specifications for violations 

of the assertions by resetting the failed component to the desired operational status (i.e., 
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fail operational).  Thus, we conclude that the assertions support the consistency of the 

BMK as defined for this research. 

3. Correctness.  
In Chapter VI, we defined correctness as a characteristic of a system that precisely 

exhibits predictable behavior at all times as defined by the system specifications. 

a. Track 
For the Track function, we developed two assertions that support the 

correctness of the Track Processing component:   

(1) Track Processing will continually poll Track Data Store 

every two seconds and pulls a single track data set from top of stack. 

(2) Track Processing will poll Track Data Store every two 

seconds or whenever Track Processing receives isEndDiscrim message – whichever 

event occurs first.   If the assertion is violated, then the developed error-handling code 

will reset the polling in Track Processing and resume polling every two seconds. 

We chose to use temporal assertions to ensure that Track Processing will 

continually poll the Track Data Store and process track data.  Note that Track Processing 

will return to poll new track data at either two-second intervals or whenever 

discrimination is completed.  As such, the BMK will continually poll and process data as 

specified.  If the assertion is violated, then Track Processing will reset itself and resume 

polling at two-second intervals. 

b. Weapon Assignment 
For Weapon Assignment function, we developed two assertions that 

support the correctness of the Weapon Assignment Processing component:   

(1) Weapon Assignment Processing will continually poll Kill 

Data Store every two seconds and pull a single track data set from top of stack. 

(2) Weapon Assignment Processing will poll Kill Data Store 

every two seconds or whenever Weapon Assignment Processing receives 

isEndPrioritization message – whichever event occurs first.  Within two seconds of 

presenting track data to iPrioritize, the Track Prioritization Computation must return 
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isEndPrioritization message which iPrioritize will forward to Weapon Assignment 

Processing.  If the temporal assertion fails to hold, then Weapon Assignment Processing 

will direct Track Prioritization Computation to place track data at the bottom of the 

priority stack in the Prioritized Threats Data Store, reset the polling in Weapon 

Assignment Processing, and resume polling of Kill Data Store. 

We chose to use temporal assertions to ensure that Weapon Assignment 

Processing will continually poll the Kill Data Store and develop a weapon/target pairing 

for each threat in the Kill Data Store.  Note that Weapon Assignment Processing will 

return to poll new threat data at either two-second intervals or whenever threat 

prioritization is completed.  As such, Weapon Assignment Processing will continually 

pole and process data as specified.  If the assertion is violated, then Weapon Assignment 

Processing will reset itself and resume polling at two-second intervals.  

c. Component Interfaces 
In each interface between an active component and a passive component 

(i.e., iDiscriminate, iCorrelate, iPrioritize, and iWeaponAssignment), we specified a 

temporal invariant for the return of output from the passive component.  The intent is to 

ensure that the BMK would continue to operate correctly if a passive component failed to 

return the required output in the specified constraint of the temporal assertion. 

For example, consider the following assertion in the specification for 

iPrioritize: 

Within two seconds of presenting track data to iPrioritize, the Track 

Prioritization Computation must return isEndPrioritization message which iPrioritize 

will forward to Weapon Assignment Processing.   

If the temporal assertion fails to hold, then Weapon Assignment 

Processing will direct Track Prioritization Computation to place track data at the bottom 

of the priority stack in the Prioritized Threats Data Store, reset the polling in Weapon 

Assignment Processing, and resume polling of Kill Data Store. 

Consider the case in which prioritization computation does not conclude 

within two seconds.  The invariant temporal assertion in iPrioritize will be violated.  The 

prioritization computation will be terminated, the track data will be placed at the bottom 
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of the priority stack of prioritized threats.  Weapon Assignment Processing will resume 

polling and processing threat track data.  The desired behavior is achieved.   

d. Findings and Conclusions 
The assertions in Track Processing component, Weapon Assignment 

Processing component, and the component interfaces could support the correctness of the 

BMK to coordinate battle-management activities.  We asserted the desired behavior with 

time constraints to ensure that the BMK continues to process track data as specified and 

provided error-handling specifications for violations of the assertions to support 

continuity of operations.  Thus, we conclude that the assertions support the correctness of 

the BMK as defined for this research.  

4. Reliability 
In Chapter VI, we defined reliability as the property that a system can operate 

continuously without experiencing a failure. 

a. Track 
For the Track function, we developed two assertions that support the 

reliability of the Track Processing component:   

(1) Track Processing will continually poll Track Data Store 

every two seconds and pulls a single track data set from top of stack. 

(3) Track Processing will poll Track Data Store every two 

seconds or whenever Track Processing receives isEndDiscrim message – whichever 

event occurs first.   If the assertion is violated, then the developed error-handling code 

will reset the polling in Track Processing and resume polling every two seconds. 

We chose to use temporal assertions to ensure that Track Processing will 

continually poll the Track Data Store and process track data.  Note that Track Processing 

will return to poll new track data at either two-second intervals or whenever 

discrimination is completed.  As such, the BMK will continually poll and process data as 

specified.  If the assertion is violated, then Track Processing will reset itself and resume 

polling at two-second intervals.  
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b. Weapon Assignment 
For Weapon Assignment function, we developed two assertions that 

support the reliability of the Weapon Assignment Processing component:   

(1) Weapon Assignment Processing will continually poll Kill 

Data Store every two seconds and pull a single track data set from top of stack. 

(2) Weapon Assignment Processing will poll Kill Data Store 

every two seconds or whenever Weapon Assignment Processing receives 

isEndPrioritization message – whichever event occurs first.  Within two seconds of 

presenting track data to iPrioritize, the Track Prioritization Computation must return 

isEndPrioritization message which iPrioritize will forward to Weapon Assignment 

Processing.  If the temporal assertion fails to hold, then Weapon Assignment Processing 

will direct Track Prioritization Computation to place track data at the bottom of the 

priority stack in the Prioritized Threats Data Store, reset the polling in Weapon 

Assignment Processing, and resume polling of Kill Data Store. 

We chose to use temporal assertions to ensure that Weapon Assignment 

Processing will continually poll the Kill Data Store and develop a weapon/target pairing 

for each threat in the Kill Data Store.  Note that Weapon Assignment Processing will 

return to poll new threat data at either two-second intervals or whenever threat 

prioritization is completed.  As such, Weapon Assignment Processing will continually 

pole and process data as specified.  If the assertion is violated, then Weapon Assignment 

Processing will reset itself and resume polling at two-second intervals.  

c. Component Interfaces 
In each interface between an active component and a passive component 

(i.e., iDiscriminate, iCorrelate, iPrioritize, and iWeaponAssignment), we specified a 

temporal invariant for the return of output from the passive component.  The intent is to 

ensure that the BMK would continue to operate correctly if a passive component failed to 

return the required output in the specified constraint of the temporal assertion. 

For example, consider the following assertion in the specification for 

iWeaponAssignment:  
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After Weapon Assignment Processing presents track data to 

iWeaponAssignment, the correlation computation must return isEndWeaponAssignment 

message to iWeaponAssignment within two seconds.   

If the computation exceeds two seconds, then the track will be toggled as 

“Not Assigned” in Track Engagement Data Store, and iWeaponAssignment will send 

isEndWeaponAssignment  message to Weapon Assignment Processing. 

Consider the case in which weapon assignment computation does not 

conclude within two seconds.  The invariant temporal assertion in iWeaponAssignment 

will be violated.  The weapon assignment computation will be terminated and the track 

data will be labeled as not assigned.  Weapon Assignment Processing will resume polling 

and processing threat track data.  The BMK continues to operate without experiencing a 

failure.  

d. Findings and Conclusions 
The assertions in Track Processing component, Weapon Assignment 

Processing component, and the component interfaces could support the reliability of the 

BMK to coordinate battle-management activities.  We asserted the desired behavior with 

time constraints to ensure that the BMK continues to process track data as specified and 

provided error-handling specifications for violations of the assertions to support 

continuity of operations.  Thus, we conclude that the assertions support the reliability of 

the BMK as defined for this research. 

5. Robustness 
In Chapter VI, we defined robustness as a characteristic of a system that is failure 

and fault tolerant. 

a. Track 
For the Track function, we developed an assertion that supports the 

robustness of the Track Processing component:   

If track data from Track Data Store is not valid data, then Track 

Processing will discard the invalid data (e.g., null set) and poll Track Data Store in two 

seconds.    Track Processing will not pass invalid data to Discrimination Computation.  
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This assertion checks for valid track data to avoid processing invalid track 

data that may cause a system failure.  We chose to assert that only valid data would be 

processed.  Anything other than valid data (e.g., null set) will be discarded.  If the 

assertion is violated, then Track Processing will reset itself and resume polling at two-

second intervals.  This supports the fault-tolerant behavior for Track Processing in that it 

will consider all track data pulled from the data store but it will only process valid track 

data.  

b. Weapon Assignment 
For Weapon Assignment function, we developed an assertion that supports 

the robustness of the Weapon Assignment Processing component:  

If track data from Kill Data Store is not valid data, then Weapon 

Assignment Processing will discard returned track data and resume polling after two 

seconds has elapsed.  Weapon Assignment Processing will not pass invalid track data to 

associated computations. 

We chose to assert that only valid data would be processed.  Anything 

other than valid data (e.g., null set) will be discarded.  If the assertion is violated, then 

Weapon Assignment Processing will reset itself and resume polling at two-second 

intervals.  This supports the fault-tolerant behavior for Weapon Assignment Processing in 

that it will consider all threat track data pulled from the data store but it will only process 

valid threat track data.  

c. Component Interfaces 
In each interface between an active component and a passive component 

(i.e., iDiscriminate, iCorrelate, iPrioritize, and iWeaponAssignment), we specified a 

precondition and post-condition for the passing of information through the interfaces.  

The intent is to ensure that the BMK would continue to operate correctly if either the 

active component sent invalid data to the interface or a passive component failed to return 

the required output in the specified constraint of the assertion. 

For example, consider the following assertion in the specification for 

iDiscriminate: 
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Within one second of presenting track data to iDiscriminate, the track 

data will be returned to Track Processing with one of three possible labels:  Threat, 

Benign, or Suspect; otherwise, iDiscriminate will terminate the discrimination 

computation and discard the invalid output of the discrimination computation.  If the 

computation exceeds one second, then the track data will be labeled as Suspect.  If track 

data is not valid data, then iDiscriminate will terminate processing and return 

isEndDiscrim message to Track.  

(1) Precondition.  Consider the case in which track data is not valid 

data (e.g., the null set).  This is a violation of the precondition assertion for iDiscriminate.  

The discrimination process will be terminated, and Track Processing will resume polling 

and processing track data.  The system continues to be available for operations. 

(2) Post-condition.  Consider the case in which an output from the 

discrimination computation is something other than Threat, Benign, or Suspect.  This is a 

violation of the post-condition assertion for iDiscriminate.  The discrimination 

computation will be terminated, and Track Processing will resume polling and  

processing track data.  The system continues to be available for operations.  

d. Findings and Conclusions 
The assertions in Track Processing component, Weapon Assignment 

Processing component, and the component interfaces could support the robustness of the 

BMK to coordinate battle-management activities.  We asserted the desired behavior with 

time constraints to ensure that the BMK continues to process track data as specified and 

provided error-handling specifications for violations of the assertions to support 

continuity of operations.  Thus, we conclude that the assertions support the robustness of 

the BMK as defined for this research. 

6. Safety 

In Chapter VI, we defined safety as the property of avoiding a catastrophic 

outcome given a system fails to operate correctly.  We developed the following eight 

assertions and error-handling procedures in the Safety Component that monitor the 

processes in the BMK: 
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a. Safety Component 
(1) Threat Engagement Status.  A valid threat track in the Kill Data 

Store will be paired with a weapon system to engage the valid threat track within thirty 

seconds of the first instance of that track in the Kill Data Store.  If a track in the Kill Data 

Store has either not been assigned a weapon system to engage it or classified as 

Deliberate Pass within thirty seconds after entering the track into the Kill Data Store, then 

the Safety Component will send a warning to user display. 

(2) Threat Engagement Toggle.  A valid threat track can toggle 

between deliberate pass and a weapon system pairing only one time.  If a track toggles 

between Deliberate Pass and weapon assigned (i.e., deliberate pass to weapon assigned is 

one toggle and  weapon assigned to deliberate pass is one toggle) more than two times, 

then a warning will be sent to the user display. 

(3) Unassigned Threat Track.  A valid threat track in the Track 

Engagement Data Store will be paired with a weapon system to engage that valid threat 

track within thirty seconds of the first instance of that track in the Track Engagement  

Data Store.  If an unassigned threat track is not assigned a weapon system to engage it 

within thirty seconds of the first instance of the Weapon Assignment Computation 

posting this track into the Track Engagement Data Store, then a warning will be sent to 

the user display. 

(4) Threat Track Identification.  A track in the Kill Data Store can 

only be identified as a Threat.  Any other identification for a track in the Kill Data Store 

is invalid.  Safety Component will pull all invalid tracks from the Kill Data Store and 

send an alert to the user display along with the invalid track data. 

(5) Suspect Track Status.  Each suspect track must be classified as 

either threat or benign within thirty seconds of the first instance of the track that is posted 

in the Suspect Track Data Store.  If the track in the Suspect Track Data Store has not 

been classified as either threat or benign within thirty seconds after the first instance of 

that track appears in the Suspect Track Data Store, then the Safety Component will send a 

warning to user display along with the track data. 
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(6) Suspect Track Update.  A suspect track file must be updated within 

thirty seconds of its previous update after the first instance of the track in the Suspect 

Track Data Store.  If a suspect track file has not been updated within thirty seconds from 

its previous update, then Safety Component will send suspect track warning to user 

display along with the track data. 

(7) Suspect Track Velocity Status.  A suspect track cannot have more 

than two consecutive velocity updates of less than one kilometer per second.  If suspect 

track file has three consecutive velocity updates of less than one kilometer per second, 

then Correlation Computation will send suspect track data to user display. 

(8) Battlespace Representation Track Update.  A track file must be 

updated within thirty seconds of its previous update after the first instance of the track in 

the Battlespace Representation Data Store.  If a track file (benign or threat) in the 

Battlespace Representation Data Store has not been updated for thirty seconds or more, 

then the BMK Safety Component will toggle the track file to Suspect and send track data 

to Suspect Track Data Store.  

b. Findings and Conclusions 
The assertions in Track Safety Component could support the safety of the 

BMK to coordinate battle-management activities.  We asserted the desired behavior with 

time constraints to ensure that the BMK continues to process track data as specified and 

provided error-handling specifications for violations of the assertions to support 

continuity of operations.  Thus, we conclude that the assertions support the safety of the 

BMK as defined for this research. 

7. Recoverability 
In Chapter VI, we defined recoverability as the ease for which a failed system can 

be restored to operational use.  We developed the following set of assertions and error-

handling procedures in the Safety Component that monitor the processes in the BMK: 

a. Continuity of Operations:  Track Processing 
(1) A track must be pulled from Track Data Store within fifteen 

seconds of its appearance in the Track Data Store.   

(2) The first instance of a track file must appear in Battlespace 
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Representation Data Store within thirty seconds of the first appearance of that valid track 

data in the Track Data Store.   

(3) If (1) and (2) are not true at the same time, then Safety Component 

will send a reset signal to Track Processing Component.  This means that: 

(a) Track Processing failed to poll data within fifteen seconds 

of a given set of track data appearing in the Track Data Store AND 

(b) Track Processing failed to discriminate and correlate the 

track data within thirty seconds of a given set of track data appearing in the Track Data 

Store. 

(c) If both assertion violations occur at the same time, then the 

Safety Component will reset Track Processing Component. 

(4) If (1) and (2) are not true at the same time following a 

Track Processing reset that occurred within the past sixty seconds, then the Safety 

Component will deem the BMK as inoperable and direct the transfer of control to another 

BMK. 

b. Continuity of Operations:  Weapon Assignment Processing 
(1) A track must be pulled from Kill Data Store within fifteen 

seconds of its appearance in the Kill Data Store.   

(2) The first instance of a threat track file must appear in Track 

Engagement Data Store within thirty seconds of the first appearance of that valid threat 

track data in the Kill Data Store.   

(3) If (1) and (2) are not true at the same time, then Safety 

Component will send reset signal to Weapon Assignment Processing Component. 

(4) If (1) and (2) are not true at the same time following a 

Weapon Assignment Processing reset that occurred within the past sixty seconds, then 

the Safety Component will deem the BMK as inoperable and direct the transfer of control 

to another BMK.  No other data will be processed by the BMK.  
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c. Findings and Conclusions 
The assertions in the Safety Component could support the recoverability 

of the BMK to coordinate battle-management activities.  We asserted the desired 

behavior with time constraints to ensure that the BMK continues to process track data as 

specified and provided error-handling specifications for violations of the assertions to 

support continuity of operations.  Thus, we conclude that the assertions support the 

recoverability of the BMK as defined for this research.  

I. TECHNICAL CONTRIBUTION 
For the fifth technical contribution in this research, we offer that we have reduced 

the software complexity of the BMK by decoupling the active components in the BMK 

through the use of data stores.  No active component has direct communications with any 

other active component.  As other active components are added to the BMK in the future, 

the software complexity increases linearly in this construct as compared to the addition of 

a software module in a monolithic software kernel.   
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XIV. DEMONSTRATION OF THE BMK ASSERTIONS  

A. INTRODUCTION 
For a slice of the BMK prototype, we will develop temporal assertions from 

selected natural language assertions of the prototype to specify the timing constraints for 

the BMK.  While numerous types of assertions are available to developers, we chose 

temporal assertions in this research to keep the scope of the dissertation manageable.  We 

offer that a future research area could be the use of other types of assertions to support 

the development of controlling software in a system-of-systems. 

We will enter the assertions in a model-checking tool that is called DBRover and 

execute several scenarios to test the assertions.  DBRover is a temporal-logic monitoring 

tool that is based on the TemporalRover code generator.  It consists of a graphical user 

interface for editing temporal assertions, a graphical temporal-logic simulator, and an 

execution engine. DBRover builds and executes temporal rules for a target program or 

application.  In run-time, DBRover listens for messages from the target application and 

evaluates corresponding temporal assertions.  (N.B.:  A complete description of the tool 

and how to obtain the tool can be found at www.time-rover.com.)  

B. TRACK PROCESSING 
We selected the following assertion from Track Processing: 

Track Processing will not poll Track Data Store while discriminating current 

track data.  This assertion checks that Track Processing only tasks a single set of track 

data to a single instance of the Discrimination Computation and that Track Processing 

will not send a different set of track data to that instance of the Discrimination 

Computation until it completes its processing of the current set of track data.  

From the natural language assertion, we define the following terms: 

P is defined as Track_Data which will be true if Track Processor sends a poll to 

Track Data Store to get another set of track data. 

Q is defined as Discrimination Begin which is the point in time that the 

discrimination component begins its work on the set of track data. 



 172

R is defined as Discrimination End which is the point in time that the 

discrimination component ends its work on the set of track data. 

We formally define the assertion in metric temporal logics as follows: 

[] ((Q & !R & <>R) -> (!P U_15seconds_R)) 

This translates as follows: 

Always Q is true at this time and R is not true at this time but R will be true at 

some future time implies that R will become true within fifteen seconds of Q being true 

and P will remain not true while R is not true; that is, we should not observe an instance 

of P being true between the time that Q is true and R becomes true.   

The screenshots shown below captures are from two scenarios in DBRover. 

Observe that Q (i.e., Discrimination Begin) occurs at Cycle 2 and that R (i.e., 

Discrimination End) occurs at Cycle 11.  P (i.e., Track_Data) is not true between Q and 

R.  As such, this assertion holds as specified:  Track Processing will not poll for new 

track data while Track Processing is discriminating. 

 

Figure 18.   Track Processing:  Scenario 1   
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Figure 19.   Track Processing:  Scenario 2   
 

 
 
 
 
 

C. SAFETY COMPONENT 
We selected the following natural language assertions from the Safety Component 

for continuity of operations of Track Processing: 

(1) A track must be pulled from Track Data Store within fifteen 

seconds of its appearance in the Track Data Store.   

(2) The first instance of a track file must appear in Battlespace 

Representation Data Store within thirty seconds of the first appearance of that valid track 

data in the Track Data Store.   

(3) If (1) and (2) are not true at the same time, then Safety Component 

will send reset signal to Track Processing Component.  This means that the Track 

Processing failed to poll data (1) within fifteen seconds of a given set of track data 

appearing in the Track Data Store and Track Processing failed to discriminate and 

correlate the track data within thirty seconds of a given set of track data appearing in the 

Observe that Q (i.e., Discrimination Begin) occurs at Cycle 2 and that R (i.e., 

Discrimination End) occurs at Cycle 11.  P (i.e., Track_Data) is true at Cycle 7 which 

is between Q and R.  As such, this assertion does not hold as specified:  Track 

Processing has attempted to poll for new track data before the discrimination work is 

completed.  This is an example of trapping undesired system behavior. 
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Track Data Store.  If both assertion violations occur at the same time, then the Safety 

Component will reset Track Processing Component. 

(4) If (1) and (2) are not true at the same time following a Track 

Processing reset that occurred within the past sixty seconds, then the Safety Component 

will deem the BMK as inoperable and direct the transfer of control to another BMK. 

We will develop the formal assertions for each of the above as follows: 

Rule 1. Always (TrackDataNew) Implies Eventually_15seconds 

(TrackPullIsTrue) 

Where:  

Boolean:  TrackDataNew 
//true if a new set of track data has been stored in Track Data Store 
 
Boolean:  TrackPullIsTrue 
//true if Track Processor has pulled the new track data set from Track Data Store 
 
Assertion: 

 

[] (TrackDataNew) <>_15seconds (TrackPullIsTrue)  
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Figure 20.   Safety Component:  Rule 1, Scenario 1   
 

 
 

Observe that the assertion (i.e., Rule 1) holds as TrackPullIsTrue becomes true 

within fifteen seconds of TrackDataNew becoming true; that is, Track Processor pulls the 

new track data set from Track Data Store within fifteen seconds of the new track data 

being stored in Track Data Store.  
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Figure 21.   Safety Component:  Rule 1, Scenario 2   
 

 
 

Observe that the assertion (i.e., Rule 1) does not hold as TrackPullIsTrue does not 

become true within fifteen seconds of TrackDataNew becoming true; that is, Track 

Processor does not pull the new track data set from Track Data Store within fifteen 

seconds of the new track data being stored in Track Data Store.  This is an example of 

trapping undesired behavior.  Developers can devise a recovery scheme from this 

violation of the assertion. 
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Figure 22.   Safety Component:  Rule 1, Scenario 3   
 

 
 

Observe that the assertion (i.e., Rule 1) does not hold as TrackPullIsTrue does not 

become true within fifteen seconds of TrackDataNew becoming true.  (N.B.:  In fact, 

TrackPullIsTrue does not become true in the scenario.)  Track Processor does not pull the 

new track data set from Track Data Store within fifteen seconds of the new track data 

being stored in Track Data Store.  This is an example of trapping undesired behavior.  

Developers can devise a recovery scheme from this violation of the assertion. 
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Rule 2.  Always (TrackDataNew) And (TrackDataIsValid) Implies 

Eventually_30seconds (TrackFileIsTrue) 

Where:  

Boolean:  TrackDataNew 
//true if a new set of track data has been stored in Track Data Store 
 
Boolean:  TrackDataIsValid 
//true if Track Processor has determined that the new track data set is valid 
 
Boolean:  TrackFileIsTrue 
//true if Track Processor has stored the processed track data in 
  Battlespace Representation Data Store 
 
Assertion: 

[] (TrackDataNew) & (TrackDataIsValid) <>_30seconds (TrackFileIsTrue) 
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Figure 23.   Safety Component:  Rule 2, Scenario 1   

 

Observe that the assertion (i.e., Rule 2) holds as TrackFileIsTrue becomes true 

within thirty seconds of TrackDataNew and TrackDataIsValid becoming true; that is, 

Track Processor stores the processed track data in Battlespace Representation Data Store 

within thirty seconds of new track data being stored in Track Data Store that Track 

Processing determines to be valid track data.  This is an example of verifying desired 

system behavior. 

 



 180

Figure 24.   Safety Component:  Rule 2, Scenario 2   

 

Observe that the assertion (i.e., Rule 2) does not hold as TrackFileIsTrue does not 

become true within thirty seconds of TrackDataNew and TrackDataIsValid becoming 

true.  (N.B.:  In fact, TrackFileIsTrue does not become true in the scenario.)  Track 

Processor does not store the processed track data in Battlespace Representation Data 

Store within thirty seconds of new track data being stored in Track Data Store that Track 

Processing determines to be valid track data.  This is an example of trapping undesired 

behavior.  Developers can devise a recovery scheme from this violation of the assertion. 
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Figure 25.   Safety Component:  Rule 2, Scenario 3   

 

Observe that the assertion (i.e., Rule 2) holds as TrackDataNew and 

TrackDataIsValid do not become true simultaneously as defined in the assertion.  As 

such, a check for TrackFileIsTrue is not valid; that is, the arrival of new track data at the 

Track Data Store and the determination that the new track data is valid does not occur 

simultaneously.  This is an example of trapping undesired behavior.  Developers can 

devise a recovery scheme from this violation of the assertion.  

Rule 3.  Always (TrackDataNew) & Eventually_15seconds 

(TrackPullIsTrue) & (TrackDataIsValid) & Not Eventually_30seconds (TrackFileIsTrue) 
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Implies Eventually_35seconds (Reset==1) 

Where:  

Boolean:  TrackDataNew 
//true if a new set of track data has been stored in Track Data Store 
 
Boolean:  TrackDataIsValid 
//true if Track Processor has determined that the new track data set is valid 
 
Boolean:  TrackPullIsTrue 
//true if Track Processor has pulled the new track data set from Track Data Store 
 
Boolean:  TrackFileIsTrue 
//true if Track Processor has stored the processed track data in 
  Battlespace Representation Data Store 
 
Integer:  Reset 
//Reset has value of zero until reset is invoked by Safety Component 
 
Assertion: 

[] {(TrackDataNew) & <>_15seconds (TrackPullIsTrue) & (TrackDataIsValid) &  

⌐(<>_30seconds (TrackFileIsTrue))} -> {(<>_35seconds (Reset==1)} 
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Figure 26.   Safety Component:  Rule 3, Scenario 1   

 

Observe that the assertion (i.e., Rule 3) holds as Reset==1 given that 

TrackFileIsTrue does not become true although the following variables are true:  (1) 

TrackDataNew,  (2) eventually (within fifteen seconds) TrackPullIsTrue, and (3)  

TrackDataIsValid; that is, the Safety Component will observe that Track Processor will 

reset itself given that Track Processor does not store the processed track data in 

Battlespace Representation Data Store within thirty seconds of new track data being 

stored in Track Data Store that Track Processing pulls from Track Data Store and 

determines to be valid track data.  This is an example of verified system behavior.  
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Figure 27.   Safety Component:  Rule 3, Scenario 2   

 

Observe that the assertion (i.e., Rule 3) does not hold as Reset is not set to “1” 

given that TrackFileIsTrue does not become true and the following variables are true:  (1) 

TrackDataNew,  (2) eventually (within fifteen seconds) TrackPullIsTrue, and (3) 

TrackDataIsValid; that is, the Safety Component will observe Track Processor should 

have reset itself given that Track Processor does not store the processed track data in 

Battlespace Representation Data Store within thirty seconds of new track data being 

stored in Track Data Store that Track Processing pulls from Track Data Store and 

determines to be valid track data.  This is an example of trapping undesired behavior.  

Developers can devise a recovery scheme from this violation of the assertion.  
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Figure 28.   Safety Component:  Rule 3, Scenario 3   

 

Observe that the assertion (i.e., Rule 3) holds as Reset is not set to “1” given that 

the following variables are true:  (1) TrackDataNew,  (2) eventually (within fifteen 

seconds) TrackPullIsTrue, (3) TrackDataIsValid, and (4) eventually (within 30 seconds) 

TrackFileIsTrue; that is, the Safety Component will observe Track Processor behaved 

according to the specification and should not have reset itself given that Track Processor 

stores the processed track data in Battlespace Representation Data Store within thirty 

seconds of new track data being stored in Track Data Store that Track Processing pulls 

from Track Data Store and determines to be valid track data.  This is an example of 

trapping undesired behavior.  Developers can devise a recovery scheme from this 

violation of the assertion.   
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Figure 29.   Safety Component:  Rule 3, Scenario 4   

 

Observe that the assertion (i.e., Rule 3) holds as Reset is not set to “1” given that 

TrackPullIsTrue becomes true in a time frame greater than or equal to fifteen seconds;   

that is, the Safety Component will observe Track Processor should not have reset itself 

based on this assertion that requires Track Processor to eventually pull (within fifteen 

seconds of TrackDataNew becoming true) new track data being stored in Track Data 

Store.  This is an example of verifying desired system behavior.   

Rule 4.  Always (Reset==0) And sometime in the past (Reset==1) And 

(TrackDataNew) And (TrackDataIsValid) And Eventually_15seconds (TrackPullIsTrue) 

& Not Eventually_40seconds (TrackFileIsTrue) Implies Eventually_10seconds 

(ReplaceBMK) 

Where:  

Boolean:  TrackDataNew 
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//true if a new set of track data has been stored in Track Data Store 
 
Boolean:  TrackDataIsValid 
//true if Track Processor has determined that the new track data set is valid 
 
Boolean:  TrackPullIsTrue 
//true if Track Processor has pulled the new track data set from Track Data Store 
 
Boolean:  TrackFileIsTrue 
//true if Track Processor has stored the processed track data in 
  Battlespace Representation Data Store 
 
Integer:  Reset 
//Reset has value of zero until reset is invoked by Safety Component 
 

Assertion: 

[] (Reset==0) & <-> (Reset==1) & (TrackDataNew) & <>_15seconds 

(TrackPullIsTrue) & (TrackDataIsValid) &  ⌐(<>_40seconds (TrackFileIsTrue) -> 

<>_10seconds (ReplaceBMK) 
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Figure 30.   Safety Component:  Rule 4, Scenario 1   

 

Observe that the assertion (i.e., Rule 4) does not hold as ReplaceBMK does not 

become true although the conditions in the assertion should have driven the BMK to 

identify itself as not functioning correctly, notifying the other BMKs that is will be 

transferring control, and shutting down the nonfunctioning BMK.  In this scenario, Reset 

has a previous history of being set to “1” (i.e., reset condition).  Although Track 

Processor pulls the track data set from Track Data Store as specified and determines that 

the track data set is valid, Track Processor does not store the track data set in Battlespace 

Representation Data Store.  As this is a second violation of the prescribed rules for Track 

Processor (i.e., Reset was set to “1” in the past), the Safety Component will observe that 

the BMK failed to shut itself down and transfer control to another BMK.  This is an 

example of trapping undesired behavior 
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. 

Figure 31.   Safety Component:  Rule 4, Scenario 2   

 

Observe that the assertion (i.e., Rule 4) holds as ReplaceBMK becomes true as the 

conditions in the assertion have are telling the BMK to identify itself as not functioning 

correctly, notify the other BMKs that it will be transferring control, and shutting down.  

In this scenario, Reset has a previous history of being set to “1” (i.e., reset condition).  

Although Track Processor pulls the track data set from Track Data Store as specified and 

determines that the track data set is valid, Track Processor does not store the track data 

set in Battlespace Representation Data Store.  As this is a second violation of the 

prescribed rules for Track Processor (i.e., Reset was set to “1” in the past), the Safety 

Component will observe that the BMK has identified its failure to operate as specified, 

shut itself down, and transfer control to another BMK.  This is an example of verifying 

desired system behavior. 
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Figure 32.   Safety Component:  Rule 4, Scenario 3   

 

1. Observe that the assertion (i.e., Rule 4) holds as TrackPullIsTrue becomes 

true after the time constraint of being true within fifteen seconds of TrackDataNew and 

TrackDataIsValid being true.  ReplaceBMK does not become true since the conditions in 

the assertion are not present for shutting down the BMK.  This is an example of verifying 

desired system behavior.  

D. TECHNICAL CONTRIBUTIONS 
For the sixth contribution of this research, we offered a systematic method for 

deriving assertions from collaboration diagrams.  First, we developed the natural 

language assertions from reasoning about the collaboration diagram.  Second, we 

transformed the natural language assertions to temporal assertions that we input to a 

model checker. 
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For the seventh contribution of this research, we extended component-based 

software engineering by the advanced use of assertions in the contracts for component 

interfaces to assert the protocols surrounding the components in a reactive system. 

For the eighth contribution of this research, we provided evidence that formal 

methods can be applied to large, complex system-of-systems developments as follows: 

1. Develop an architecture that decouples major portions of the 

software 

2. Separate the software into components that will experience limited 

modifications over time from those components that might experience significant and 

frequent modifications 

3. Specify the requirements for components and their interface 

contracts in the form of natural language assertions 

4. Transform the natural language assertions of the components and 

the interface contracts into temporal assertions that can be tested in a model checker 

The concepts offered in the BMK prototype and the demonstration address the 

third of the three research questions from Chapter V.  We demonstrated that formal 

methods can be useful in the design and development of the controlling software in a 

system-of-systems. 
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XV. CONCLUSIONS  

A. TECHNICAL CONTRIBUTIONS  
The following is a summary of the technical contributions in this research: 

1. Identification of distributed-system attributes for controlling software in a 

system-of-systems  

2. Identification of real-time attributes for real-time controlling software in a 

reactive system-of-systems 

3. Development of system-of-systems architecture views from system-of-

systems view to component view in controlling software 

4. Use of kernel in controlling software for system-of-systems to shape 

dependable behavior of system-of-systems 

5. Reduction of software complexity from an exponential factor for a 

monolithic software program to a component-based construct in which the active 

components are decoupled by data stores 

6. Development of  assertions from collaboration diagrams 

7. Adoption of CBSE by advanced use of assertions in interface contracts 

between components to assert protocols surrounding the components in reactive systems 

8. Demonstration that formal methods can be applied to large, complex 

system-of-systems developments 

B. PARNAS’ ISSUES 
Recall from Chapter I that we cited David Parnas’ six major issues with the battle-

management software in the SDI program.  Recall that we stated that these six issues are 

not unique to the SDI program but could be extended to other systems-of-systems for 

which the users desire controlling software (e.g., battle manager) for the system-of-

systems.  We will review the technical contributions of this research with respect to 

Parnas’ six issues.   
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Figure 33.   Technical Contributions of this Research that Address Parnas’ Issues   
 

 

 

 

 

 

 

 

 

 

 

1. Issue One  

a. Statement of the Issue 
The battle-management software must identify, track, and direct weapons 

towards targets whose characteristics may not be known with certainty until the moment 

of battle.   The battle-management software must discriminate the threat objects from 

decoys and debris.  

b. Contributions of this Research 
In this research, we did not address the specific issue of discrimination 

given that discrimination was not within the scope of this research; however, we offer 

that Technical Contributions 3, 5, 7, and 8 address supporting aspects to this issue. 

Recall that we desired a physical separation of the active components in 

the BMK that should be stable over time from the passive components in the component 

layer that are computations, and may be upgraded or replaced frequently.  In this 

research, we defined an architecture that featured a BMK with active components (e.g., 

Track Processing, Weapon Assignment) and a Component Layer that contained passive 
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components (e.g., Discrimination, Correlation).  We proposed the design of the interfaces 

between active and passive components in accordance with the concept of design-by-

contract.  We discussed the testing benefits of such a construct and developed an 

interface with assertions to define the pre-conditions, post-conditions, and invariants of 

the interface.  These assertions can support the development and verification of the 

desired interface behavior as well as support the development and verification of error-

handling procedures for assertions that do not hold true. 

This construct can increase the confidence that the computations are 

correct for planned and unplanned inputs to the passive component along with its 

interface and test oracle can provide the basis for the development of a test suite for that 

passive component.  This construct can increase that the desired functionality and 

behavior are correct in a kernel such as the BMK given that an active component 

connected to its associated passive components with the respective interfaces that are 

defined with pre-conditions, post-conditions, and invariants along with the test oracle for 

the active component can provide the basis for the development of a test suite for the 

kernel. 

Developers and maintainers of systems-of-systems can develop and verify 

the functionality and behavior of the controlling software as outlined in this research.  

Complex computations can be verified as discussed in the passive component construct.  

Complex computations can be upgraded and replaced as discussed in the passive 

component construct. 

2. Issue Two  

a. Statement of the Issue 

Battle-management computing will be accomplished through a network of 

computers that are connected to sensors and weapons as well as other battle-management 

computers.  The behavior of the battle-management software cannot be predicted with 

confidence given the actual configuration of weapons, sensors, and battle managers at the 

moment of battle.  
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b. Contribution of this Research 
We offer that Technical Contributions 1,3,4,5,6,7, and 8 address this issue. 

We identified attributes to consider for distributed systems that developers 

might consider in the design of a system-of-systems that could result in predictable 

distributed behavior of the system-of-systems.  We developed architectural views of the 

system-of-systems that could serve as tools for reasoning about the design of a 

predictable, dependable system-of-systems.   

We defined an architecture that featured a BMK with active components 

(e.g., Track Processing, Weapon Assignment) and a Component Layer that contained 

passive components (e.g., Discrimination, Correlation).  We proposed the design of the 

interfaces between active and passive components in accordance with the concept of 

design-by-contract.  We discussed the testing benefits of such a construct and developed 

an interface with assertions to define the pre-conditions, post-conditions, and invariants 

of the interface.  These assertions can support the development and verification of the 

desired interface behavior as well as support the development and verification of error-

handling procedures for assertions that do not hold true. 

This construct can increase the confidence that the computations are 

correct for planned and unplanned inputs to the passive component, along with its 

interface and test oracle, can provide the basis for the development of a test suite for that 

passive component.  This construct can increase the level of confidence that the desired 

functionality and behavior are correct in a kernel such as the BMK given that an active 

component connected to its associated passive components with the respective interfaces 

that are defined with pre-conditions, post-conditions, and invariants along with the test 

oracle for the active component, can provide the basis for the development of a test suite 

for the kernel. 

Developers and maintainers of system-of-systems can develop and verify 

the functionality and behavior of the controlling software as outlined in this research.  

Complex computations can be verified as discussed in the passive component construct.   
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Complex computations can be upgraded and replaced as discussed in the passive 

component construct. 

We discussed the specification of the battle manager with assertions.  

Additionally, we discussed the verification of the assertions through model checking.  We 

discussed the futility of exhaustive testing of all but the most trivial of systems.  We 

discussed defining, developing, and testing the functionality and behavior of the battle 

manager with the use of assertions and test oracles. 

We constructed a prototype of the BMK by developing natural language 

assertions to specify the desired functionality and behavior of the battle manager.  

Included with the prototype was the specification of contracts between the active 

components of the BMK and the passive components. 

We used temporal assertions to specify the timing constraints of the 

selected natural language assertions that we developed in the prototype.  While numerous 

types of assertions are available to developers, we chose temporal assertions to keep the 

scope of the dissertation manageable.  We defined several scenarios for each assertion 

and ran the assertions through a temporal-logic model checker.  We determined that we 

had captured the desired functionality and behavior through the use of the assertions.  We 

observed that we could trap undesired behavior through the use of assertions. 

In this research, we demonstrated that developers can increase the level of 

predictable behavior in the controlling software of a system-of-systems by specifying 

functionality and behavior through the use of assertions, testing of components and 

interfaces that contain assertions, and verifying the assertions through the use of a model 

checker.  Furthermore, we demonstrated that developers could trap undesired behavior as 

specified by assertions. 

3. Issue Three  

a. Statement of the Issue 
Developers cannot test the battle-management software under realistic 

conditions prior to actual use of the software.  
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b. Contribution of this Research 
As the complexity and scope of the system-of-systems increases, it seems 

that the testing of these large, complex systems becomes increasingly limited with respect 

to exhaustively testing the system.   

We defined an architecture that featured a BMK with active components 

and a Component Layer that contained passive components.  We proposed the design of 

the interfaces between active and passive components in accordance with the concept of 

design-by-contract.  We discussed the testing benefits of such a construct and developed 

an interface with assertions to define the pre-conditions, post-conditions, and invariants 

of the interface.  These assertions can support the development and verification of the 

desired interface behavior as well as support the development and verification of error-

handling procedures for assertions that do not hold true. 

This construct can increase the confidence that the computations are 

correct for planned and unplanned inputs to the passive component, along with its 

interface and test oracle, can provide the basis for the development of a test suite for that 

passive component.  This construct can increase that the desired functionality and 

behavior are correct in a kernel such as the BMK given that an active component 

connected to its associated passive components with the respective interfaces that are 

defined with pre-conditions, post-conditions, and invariants along with the test oracle for 

the active component can provide the basis for the development of a test suite for the 

kernel. 

We discussed the specification of the battle manager with assertions.  

Additionally, we discussed the verification of the assertions through model checking.  We 

discussed the futility of exhaustive testing of all but the most trivial of systems.  We 

discussed defining, developing, and testing the functionality and behavior of the battle 

manager with the use of assertions and test oracles.  

We constructed a prototype of the BMK by developing natural language 

assertions to specify the desired functionality and behavior of the battle manager.  

Included with the prototype was the specification of contracts between the active 
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components of the BMK and the passive components.  To reduce the impact of undesired 

state behavior of any given active component on any other active component, we 

decoupled each active component from all other active components in the prototype.  We 

defined data stores to connect the active components and use pulled data from continual 

polling of specific data stores as a trigger for activities in active components.   The 

decoupling of the active components can enhance the testability of the BMK given that 

developers can test the active components independently with increased confidence that 

the composition of the active components will exhibit the desired behavior.  Furthermore, 

we discussed the testing of active components include both black-box testing to test the 

appropriate outputs for the inputs from a test oracle and white-box testing to determine 

whether  the active components may have exhibited coincidental correctness during the 

black-box testing. 

We used temporal assertions to specify the time constraints of the selected 

natural language assertions that we developed in the prototype.  We defined several 

scenarios for each assertion and ran the assertions through a temporal-logic model 

checker.  We determined that we had captured the desired functionality and behavior 

through the use of the assertions.  We observed that we could trap undesired behavior 

through the use of assertions. 

In this research, we defined and demonstrated a slice of the test paradigm 

that can instill increasing levels of confidence as developers test individual components 

for all possible conditions and continue to compose the system while using the assertions 

and test oracles to assess system behavior. 

4. Issue Four  

a. Statement of the Issue 
The duration of the defense engagement will be short:  it will not allow for 

either human intervention or debugging the software to overcome software faults at 

runtime.  
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b. Contribution of this Research 
In this research, we offered techniques for architecture, design, and 

specification that could produce a dependable system-of-systems at runtime. 

We defined an architecture that featured a BMK with active components 

and a Component Layer that contained passive components.  We proposed the design of 

the interfaces between active and passive components in accordance with the concept of 

the design-by-contract.  We discussed the testing benefits of such a construct and 

developed an interface with assertions to define the pre-conditions, post-conditions, and 

invariants of the interface.  These assertions can support the development and verification 

of the desired interface behavior as well as support the development and verification of 

error-handling procedures for assertions that do not hold true. 

This construct can increase the confidence that the computations are 

correct for planned and unplanned inputs to the passive component along with its 

interface and test oracle can provide the basis for the development of a test suite for that 

passive component.  This construct can increase confidence level that the desired 

functionality and behavior are correct in a kernel such as the BMK given that an active 

component connected to its associated passive components with the respective interfaces 

that are defined with pre-conditions, post-conditions, and invariants along with the test 

oracle for the active component can provide the basis for the development of a test suite 

for the kernel. 

We discussed the specification of the battle manager with assertions.  

Additionally, we discussed the verification of the assertions through model checking.  We 

discussed the futility of exhaustive testing of all but the most trivial of systems.  We 

discussed defining, developing, and testing the functionality and behavior of the battle 

manager with the use of assertions and test oracles.  

We constructed a prototype of the BMK by developing natural language 

assertions to specify the desired functionality and behavior of the battle manager.  

Included with the prototype was the specification of contracts between the active 

components of the BMK and the passive components.  To reduce the impact of undesired 



 201

state behavior of any given active component on any other active component, we 

decoupled each active component from all other active components in the prototype.  We 

defined data stores to connect the active components and use pulled data from continual 

polling of specific data stores as a trigger for activities in active components.   The 

decoupling of the active components can enhance the testability of the BMK given that 

developers can test the active components independently with increased confidence that 

the composition of the active components will exhibit the desired behavior.  Furthermore, 

we discussed the testing of active components include both black-box testing to test the 

appropriate outputs for the inputs from a test oracle and white-box testing to determine 

whether  the active components may have exhibited coincidental correctness during the 

black-box testing. 

We used temporal assertions to specify the time constraints of the selected 

natural language assertions that we developed in the prototype.  We defined several 

scenarios for each assertion and ran the assertions through a temporal-logic model 

checker.  We determined that we had captured the desired functionality and behavior 

through the use of the assertions.  We observed that we could trap undesired behavior 

through the use of assertions. 

We offer that developers and maintainers of system-of-systems can 

develop and verify the functionality and behavior of the controlling software as outlined 

in this research.  While the techniques that are offered in this research will not eliminate 

all design and implementation errors, these techniques can reduce the number of critical 

software faults at runtime and support the handling of unknown conditions at runtime 

while maintaining continuity of operations. 

5. Issue Five  

a. Statement of the Issue 
The battle-management software will have absolute real-time deadlines for 

the computation that will consist of periodic processes to include detecting and 

identifying potential threat missiles, assigning a weapon to engage the threat missile, and 

providing an assessment of the interceptor-threat missile engagement.  Because of the 
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unpredictability of the computational requirements of each process, developers cannot 

predict the required resources for computation.  

b. Contribution of this Research 
While not all system-of-systems will have real-time requirements, 

developers might consider that non-real-time solutions may not be applicable to reactive 

systems with periodic deadlines.  While the development of a real-time solution for a 

reactive system-of-systems was beyond the scope of this research, the use of assertions 

can increase the developer’s awareness of the deadlines in the controlling software of a 

system-of-systems as well as assert specific behavior that correspond to the periodic 

deadlines of the controlling software. 

We defined an architecture that featured a BMK with active components 

and a Component Layer that contained passive components.  We proposed the design of 

the interfaces between active and passive components in accordance with the concept of 

the design-by-contract.  We discussed the testing benefits of such a construct and 

developed an interface with assertions to define the pre-conditions, post-conditions, and 

invariants of the interface.  These assertions can support the development and verification 

of the desired interface behavior as well as support the development and verification of 

error-handling procedures for assertions that do not hold true. 

This construct can increase the confidence that the computations are 

correct for planned and unplanned inputs to the passive component along with its 

interface and test oracle can provide the basis for the development of a test suite for that 

passive component.  This construct can increase confidence level that the desired 

functionality and behavior are correct in a kernel such as the BMK, given that an active 

component connected to its associated passive components with the respective interfaces 

that are defined with pre-conditions, post-conditions, and invariants along with the test 

oracle for the active component, can provide the basis for the development of a test suite 

for the kernel. 

We discussed the specification of the battle manager with assertions.  

Additionally, we discussed the verification of the assertions through model checking.  We 

discussed the futility of exhaustive testing of all but the most trivial of systems.  We 
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discussed defining, developing, and testing the functionality and behavior of the battle 

manager with the use of assertions and test oracles.  

We constructed a prototype of the BMK by developing natural language 

assertions to specify the desired functionality and behavior of the battle manager.  

Included with the prototype was the specification of contracts between the active 

components of the BMK and the passive components.  To reduce the impact of undesired 

state behavior of any given active component on any other active component, we 

decoupled each active component from all other active components in the prototype.  We 

defined data stores to connect the active components and use pulled data from continual 

polling of specific data stores as a trigger for activities in active components.   The 

decoupling of the active components can enhance the testability of the BMK given that 

developers can test the active components independently with increased confidence that 

the composition of the active components will exhibit the desired behavior.  Furthermore, 

we discussed the testing of active components include both black-box testing to test the 

appropriate outputs for the inputs from a test oracle and white-box testing to determine 

whether  the active components may have exhibited coincidental correctness during the 

black-box testing. 

We used temporal assertions to specify the time constraints of the selected 

natural language assertions that we developed in the prototype.    We defined several 

scenarios for each assertion and ran the assertions through a temporal-logic model 

checker.  We determined that we had captured the desired functionality and behavior 

through the use of the assertions.  We observed that we could trap undesired behavior 

through the use of assertions. 

While the scope of this research did not include a solution for a real-time 

system-of-systems, we recognized the real-time nature of reactive controlling software in 

a system-of-systems.  We demonstrated that we could specify timing constraints with 

temporal assertions and test these assertions in a model checker. 
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6. Issue Six  

a. Statement of the Issue 
The missile defense system will include a large variety of sensors, 

weapons, and battle-management components for which all will be large, complex 

software systems.  The suite of weapons and sensors will increase in number as the 

development progresses.  The characteristics of these future weapons and sensors are not 

well defined and will likely remain fluid for many years.  Additionally, all weapons and 

sensors will be subject to change independently of each other.  As such, the battle-

management software must integrate numerous dynamic software systems to the extent 

that has never before been achieved.  

b. Contribution of this Research 
While the scope of this research did not include interfaces to external 

systems in a system-of-systems, the BMK architecture described in this research can 

reduce the impacts of the integration of new systems with the controlling software in a 

system-of-systems.  Rather than direct messaging from a sensor to the BMK, we defined 

an asynchronous solution that separates incoming sensor data from the BMK through a 

data store so the BMK is not cognizant of specific sensors.  Additionally, we defined an 

asynchronous solution that separates the BMK from weapon systems by the same data 

store methodology.   

We defined an architecture that featured a BMK with active components 

and a Component Layer that contained passive components.  We proposed the design of 

the interfaces between active and passive components in accordance with the concept of 

the design-by-contract.  We discussed the testing benefits of such a construct and 

developed an interface with assertions to define the pre-conditions, post-conditions, and 

invariants of the interface.  These assertions can support the development and verification 

of the desired interface behavior as well as support the development and verification of 

error-handling procedures for assertions that do not hold true. 

This construct can increase the confidence that the computations are 

correct for planned and unplanned inputs to the passive component along with its 

interface and test oracle can provide the basis for the development of a test suite for that 
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passive component.  This construct can increase the confidence level that the desired 

functionality and behavior are correct in a kernel such as the BMK given that an active 

component connected to its associated passive components with the respective interfaces 

that are defined with pre-conditions, post-conditions, and invariants along with the test 

oracle for the active component can provide the basis for the development of a test suite 

for the kernel. 

We discussed the specification of the battle manager with assertions.  

Additionally, we discussed the verification of the assertions through model checking.  We 

discussed the futility of exhaustive testing of all but the most trivial of systems.  We 

discussed defining, developing, and testing the functionality and behavior of the battle 

manager with the use of assertions and test oracles.  

We constructed a prototype of the BMK by developing natural language 

assertions to specify the desired functionality and behavior of the battle manager.  

Included with the prototype was the specification of contracts between the active 

components of the BMK and the passive components.  To reduce the impact of undesired 

state behavior of any given active component on any other active component, we 

decoupled each active component from all other active components in the prototype.  We 

defined data stores to connect the active components and use pulled data from continual 

polling of specific data stores as a trigger for activities in active components.   The 

decoupling of the active components can enhance the testability of the BMK given that 

developers can test the active components independently with increased confidence that 

the composition of the active components will exhibit the desired behavior.  Furthermore, 

we discussed the testing of active components include both black-box testing to test the 

appropriate outputs for the inputs from a test oracle and white-box testing to determine 

whether  the active components may have exhibited coincidental correctness during the 

black-box testing. 

We used temporal assertions to specify the time constraints of the selected 

natural language assertions that we developed in the prototype.    We defined several 

scenarios for each assertion and ran the assertions through a temporal-logic model 

checker.  We determined that we had captured the desired functionality and behavior 



 206

through the use of the assertions.  We observed that we could trap undesired behavior 

through the use of assertions. 

With respect to data that originates or is sent to these external sources, our 

research demonstrated that the BMK could have a high level of immunity from the 

impacts of new sensors and weapons systems in the BMDS.  Controlling software in a 

system-of-systems could realize the same benefit of a high level of immunity from the 

impacts of integration with new systems.  We demonstrated that developers can specify 

and verify the desired behavior of controlling software through the use of assertions to 

include the trapping of undesired behavior in the controlling software for a system-of-

systems.  

C. CONCLUSIONS 
Based on the assessment of the prototype demonstration of a slice of the 

prototype, the assertions employed in the BMK prototype could support the dependable 

behavior in the BMK for the seven dependability properties identified in this research:  

availability, correctness, consistency, reliability, robustness, safety, and recoverability.  

We specified the desired behavior in the active components of the BMK and we 

developed assertions that would check the desired behavior at runtime.  We assessed the 

assertions and associated error-handling procedures to determine whether the assertions 

contributed to the achievement of the desired availability, correctness, consistency, 

reliability, robustness, safety, and recoverability.   

The adherence to design-by-contract concepts could further enhance the 

dependability of controlling software.  Through the development concepts of component-

based engineering of the battle manager, we could design the battle manager in such a 

way that the battle-manager capabilities might be extended by adding components and 

extending each capability by improving the components associated with that capability. 

With respect to Parnas’ six issues for the battle manager, the results of this 

research could contribute to defining, developing, and building a battle manager for the 

BMDS that is available for operations at any time, operates correctly at all times, traps 

system faults and returns to operations without impacting the mission of the BMDS, and 
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performs its missions in such a way that no unintended harm to people and protected 

assets will come from its operations.  

Thus, the technical contributions of this research offer evidence that lead us to 

conclude the following about the questions posed for this research:   

1. It is possible to develop a system-of-systems architecture from which we 

can reason about the controlling software for a system-of-systems. 

2. We can realize the controlling software from a system-of-systems 

architecture through the concepts of component-based software engineering.   

3. We can apply formal methods in the design and development of the 

controlling software for a system-of-systems by specifying the requirements for the 

software components with assertions and employing a runtime verification tool to verify 

the desired behavior specified in the assertions. 
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XVI. FUTURE RESEARCH RECOMMENDATIONS  

A. BACKGROUND  
As suggested in this research, the system-of-systems problem space is largely 

unknown to software developers.  By all indications, developers of systems-of-systems 

seem to be experiencing limited success.  This research is a first step towards our mastery 

of the development of dependable systems-of-systems.  There are many paths that 

researchers might travel in the study of the system-of-systems problem.  We offer ten 

recommendations for future research in this area. 

B. FUTURE RESEARCH RECOMMENDATIONS 

1. Safety Kernel for a System-of-Systems 
Each system in the system-of-systems should consider the system-safety concerns 

for that system; however, the system-of-systems developer should consider the system-

safety aspects for the entire system-of-systems.  This may require the design of safety-

monitoring software as well as safety-related fault-handling software.  The considerations 

in this area might include the desired functionality, specifications, control, distributed 

system behavior, and real-time system behavior.  A future research consideration might 

be the design and development of a safety kernel for the system-of-systems.  A further 

consideration might be the application of formal methods in the specification of the 

safety kernel. 

2. System-of-Systems Operation in Multiple Configurations 
System-of-systems can operate in multiple configurations at runtime.  A future 

research consideration might be the development of architecture, design, and 

specification techniques to ensure the desired level of dependability in all configurations 

and reducing the potential negative impacts of configuration modifications at runtime. 

3. Trade-Offs of Assertions Left in System-of-Systems at Runtime 
Versus Assertions Used in Development 

Assertions can be used for testing software, debugging code, and armor-plating 

software.  A future research consideration might be the study of tradeoffs to support the 

determination of whether to leave the assertions in the software of a system-of-systems 

for runtime execution. 



 210

4. Asserting Control in System-of-Systems 
Developers can design and specify the control over a system-of-systems in 

various ways.  A future research topic might be development of techniques for asserting 

control in a system-of-systems to include the integration of traditional control theory with 

software engineering. 

5. Development Metrics for a System-of-Systems 
It is difficult to measure and monitor progress towards achieving architecture and 

design goals in a system-of-systems given the independent development and life-cycle 

activities of each system in the system-of-systems.  A future research topic might be the 

development of metrics that reflect the progress towards achieving the functional goals as 

well as the dependability goals of a system-of-systems development. 

6. Properties of a Dependable System-of-Systems and Network-Centric 
Warfare Solution  

For this research, we defined a dependable system as one that provides the 

appropriate levels of correctness and robustness in accomplishing its mission while 

demonstrating the appropriate levels of availability, consistency, reliability, safety, and 

recoverability.  We selected these seven properties as these seven properties could be a 

minimum set of properties for a dependable system-of-systems.  Other properties may be 

applicable to a system-of-systems and a network-centric warfare construct.  We would 

recommend that future research be conducted in the area of dependable system-of-

systems and dependable network-centric warfare solutions.  Development organizations 

sometimes focus on the functional aspects of a solution while neglecting to consider the 

dependability properties of systems that are critical to successful operations. 

7. Distributed Considerations for a Dependable System-of-Systems and 
Network-Centric Warfare Solution 

The Department of Defense has stated initiatives for system-of-systems and 

network-centric warfare solutions.  The initiatives seem to have noble goals; however, it 

is not clear that acquisition organizations have considered the distributed properties that 

these systems must exhibit from a dependability perspective.  Much seems to be left to 

trust with respect to the degree of dependability in the system-of-systems and network-
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centric solution.  We propose the specific design and development of a distributed system 

for a system-of-systems and network-centric solutions as a future research topic.  

8. Real-Time In Distributed Environment  
In the system-of-systems and network-centric warfare environments, there will be 

real-time constraints in the operational battlespace.  Acquisition organizations continue to 

purchase more and faster processors that can mask the real-time problem that has yet to 

be solved for systems-of-systems and network-centric warfare solutions.  We propose the 

real-time nature of system-of-systems and network-centric warfare solutions as a future 

research topic. 

9. Interface Considerations For A Dependable System-Of-Systems And 
Network-Centric Warfare Solution  

To support dependable system-of-systems and network-centric warfare solutions, 

interfaces should provide the appropriate services required for functionality while 

maintaining the properties of dependability.  For example, the BMDS Battle Manager 

services include: (1) sending observed tracks and features from the sensors to the battle 

manager, (2) sending weapon assignments from the battle manager to the weapons, (3) 

sending health-and-status information from the sensors and weapons to the battle manger, 

(4) sending command-and-control parameters from the C2 function to the battle manager, 

and (5) sending situational awareness information from the battle manager to C2 

displays.  We recommend external interfaces as a potential research topic for dependable 

systems-of-systems and network-centric solutions with respect to developing and 

achieving the desired level of dependability.  

10. Testing Considerations For A Dependable System-Of-Systems And 
Network-Centric Warfare Solution 

The Department of Defense has stated initiatives for systems-of-systems and 

network-centric warfare solutions.  Testing of these solutions has focused on a subset of 

the entire functionality of the system-of-systems and network-centric warfare solutions.  

Test solutions as these systems evolve are limited and do not consider the dependability 

aspects.  Testing the entire system can be expensive.  For example, operational flight 

testing  of  these  systems  can  exceed  $100,000,000  for  live  flight  tests  such as in the  
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BMDS development.  We propose the testing for the evolving functionality and 

dependability of a system-of-systems and network-centric warfare solution as a future 

research topic. 
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APPENDIX A. GLOSSARY 

Acquisition:  The process in which the Department of Defense obtains materiel solutions 

to identified problems in mission need statements. 

Active component:  A component that will execute based on external conditions and a 

defined set of rules. 

Architecture:  the collection of logical and physical views, constraints, and decisions 

that define the external properties of a system and provide a shared understanding of the 

system design to the development team and the intended user of the system.  

Architectural style:  a defined grouping of subsystems and connector types along with 

the defined constraints that are used to realize message transport. 

Assertion:  A predicate expression whose value is either true or false. 

Availability:  The probability that a system is operating correctly and is ready to perform 

its desired functions. 

Battle management:  The decisions and actions executed in direct response to the 

activities of enemy forces in support of the Joint Chiefs of Staff’s precision engagement 

concept. 

Battlespace: All aspects of air, surface, and subsurface, land, space, and the 

electromagnetic spectrum that encompass the area of influence and area of interest. 

(NWP 1-02) 

Battlespace constraints:  The forces, facilities, and other features that serve to restrain, 

restrict, or prevent the implementation of proposed military improvements in the defined 

battlespace.  Constraints may include natural and physical forces, doctrine, potential 

adversary threats, and environmental features. 

Bistatic radar:  A radar that radar operates with separated transmitting and receiving 

antennas.  
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Black box testing:  A software testing technique whereby explicit knowledge of the 

internal workings of the component being tested are not known and the outputs are 

examined with respect to the inputs. 

Capability:  The ability to perform a course of action or sequence of activities leading to 

a desired outcome. 

Capability-based acquisition:  The process of identifying system capabilities in terms of 

specifications and acquiring the software applications, hardware, and information 

services to support these desired capabilities in an integrated environment. 

Chain of command: The succession of commanding officers from a superior to a 

subordinate through which command is exercised. (Joint Pub 1-02) 

Coalition:  An ad hoc arrangement between two or more nations for common action. 

Coincidental correctness:  A characteristic of a system that can produce the correct 

outputs for a specific inputs as defined by the system specifications; however, incorrectly  

implemented software in the system does not always impact the final output of the 

system.  That is, a system that is said to demonstrate coincidental correctness does the 

right thing some of the time. 

Combatant command: One of the unified or specified combatant commands established 

by the President. (Joint Pub 1-02) 

Combatant command (command authority): Non-transferable command authority 

established by title 10, United States Code, section 164, exercised only by commanders 

of unified or specified combatant commands unless otherwise directed by the President or 

the Secretary of Defense. Combatant command (command authority) is the authority of a 

combatant commander to perform those functions of command over assigned forces 

involving organizing and employing commands and forces, assigning tasks, designating 

objectives, and giving authoritative direction over all aspects of military operations, joint 

training, and logistics necessary to accomplish the missions assigned to the command. 

Also called COCOM. (Joint Pub 1-02) 



 215

Combatant commander: A commander in chief of one of the unified or specified 

combatant commands established by the President. (Joint Pub 1-02) 

Combat information: Unevaluated data gathered by or provided directly to the tactical 

commander which, due to its highly perishable nature or the criticality of the situation, 

cannot be processed into tactical intelligence in time to satisfy the user's tactical 

intelligence requirements. (Joint Pub 1-02) 

Command: 1. The authority that a commander in the Armed Forces lawfully exercises 

over subordinates by virtue of rank or assignment. Command includes the authority and 

responsibility for effectively using available resources and for planning the employment 

of, organizing, directing, coordinating, and controlling military forces for the 

accomplishment of assigned missions. It also includes responsibility for health, welfare, 

morale, and discipline of assigned personnel. 2. An order given by a commander; that is, 

the will of the commander expressed for the purpose of bringing about a particular action. 

3. A unit or units, an organization, or an area under the command of one individual. (Joint 

Pub 1-02) 

Command and control: The exercise of authority and direction by a properly designated 

commander over assigned and attached forces in the accomplishment of the mission. 

Command and control functions are performed through an arrangement of personnel, 

equipment, communications, facilities, and procedures employed by a commander in 

planning, directing, coordinating, and controlling forces and operations in the 

accomplishment of the mission. (JCS/J7/Joint Doctrine Division memo dated 20 Oct 94) 

Command and control system: The facilities, equipment, communications, procedures, 

and personnel essential to a commander for planning, directing, and controlling 

operations of assigned forces pursuant to the missions assigned. (Joint Pub 1-02) 

Command, Control, Communications, and Computer Systems (C4 Systems). 

Integrated systems of doctrine, procedures, organizational structures, personnel, 

equipment, facilities, and communications designed to support a commander’s exercise 

of command and control through all phases of the operational continuum.  
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Command and control warfare: The integrated use of operations security (OPSEC), 

military deception, psychological operations (PSYOP), electronic warfare (EW), and 

physical destruction, mutually supported by intelligence, to deny information to, 

influence, degrade, or destroy adversary command and control capabilities, while 

protecting friendly command and control capabilities against such actions. Command and 

control warfare applies across the operational continuum and at all levels of conflict. Also 

called C2W. C2W is both offensive and defensive: a. counter-C2-To prevent effective C2 

of adversary forces by denying information to, influencing, degrading, or destroying the 

adversary C2 system. b. C2-protection-To maintain effective command and control of 

own forces by turning to friendly advantage or negating adversary efforts to deny 

information to, influence, degrade, or destroy the friendly C2 system. (Joint Pub 1-02) 

Component:  A software unit of composition with contractually specified interfaces and 

explicit context dependencies.   

Component-based engineering:  The design and development of a system through the 

assembly of components which can be developed independently of the system. 

Configurable component:  A component which can accept parameters from an external 

source such as a sensor or user. 

Control: Authority which may be less than full command exercised by a commander 

over part of the activities of subordinate or other organizations. (Joint Pub 1-02). 

Correctness:  A characteristic of a system that precisely exhibits predictable behavior at 

all times as defined by the system specifications.  That is, a system that is said to 

demonstrate correctness does the right thing all the time. 

Correlation:  The capability to associate one track with one sensed object 

Consistency:  The property that invariants will always hold true in the system. 

Crisis Action Planning:  The time-sensitive planning for the deployment, employment, 

and sustainment of assigned and allocated forces and resources that occurs in response to 

a situation that may result in actual military operations. Crisis action planners base their 
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plan on the circumstances that exist at the time planning occurs. Also called CAP (Joint 

Pub 1-02) 

Critical Section:  Shared resources for which multiple processes can access during 

runtime.  The software code of a critical section must execute without interruption.  

Otherwise, the system software could experience deadlock and race conditions. 

Data: A representation of individual facts, concepts, or instructions in a manner suitable 

for communication, interpretation, or processing by humans or by automatic means. 

[IEEE] 

Deadlock:  The condition in which a process waits indefinitely for conditions that will 

never be satisfied.  For deadlock to occur, all of the following four conditions must be 

true:  (1) processes claim exclusive control of shared resources, (2) processes hold shared 

resources while waiting for other shared resources to be released, (3) processes cannot be 

directed to release shared resources, and (4) a circular waiting condition exists for the 

release of shared resources. [30] 

Deliberate Planning:  A planning process for the deployment and employment of 

apportioned forces and resources that occurs in response to a hypothetical situation. 

Deliberate planners rely heavily on assumptions regarding the circumstances that will 

exist when the plan is executed. (Joint Pub 1-02) 

Dependable system:  One that provides the appropriate levels of correctness and 

robustness in accomplishing its mission while demonstrating the appropriate levels of 

availability, consistency, reliability, safety, and recoverability. 

Design:  The details of planned implementation which are defined, structured, and 

constrained by the architecture 

Discrimination:  The capability to distinguish a threat object from benign objects such as 

debris, chaff, countermeasures, and satellites. 

Distributed component:  A component that executes across multiple processors. 

Distributed system:  A system that has multiple processors that are connected by a 

communications structure. 
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Domain analysis:  The process of identifying and formalizing constraints on input, state, 

and output values. 

Dominant maneuver:  The ability of joint forces to gain positional advantage with 

decisive speed and overwhelming operational tempo in the achievement of assigned 

military tasks.  

Fail hard:  A system condition in which either a hardware or software failure causes the 

entire system to stop working.  

Fail soft:  A system condition in which either a hardware or software failure causes the 

termination of nonessential processing.  Systems in fail-soft mode can still provide partial 

operational-capability.   

Failure:  The inability of a system or component to perform a required function within 

specified limits. 

Fire-control solution:  The collection of calculations by a weapon system to determine 

the point of intercept, launch angle, and time of launch of an interceptor. 

Fault:  An incorrect statement, step, process, or data definition in a software program. 

Fly-out time:  The time difference from the time of launch of the interceptor to the time 

of engagement of the ballistic missile threat 

Focused logistics:  The ability to provide the joint force the right personnel, equipment, 

and supplies in the right place, at the right time, and in the right quantity, across the full 

range of military operations. 

Formal method:  A method that precisely describes a specification in mathematical 

terms to make possible the verification of the specification in the requirements phase as 

well as the testing phase of system development. 

Formal specification:  The precise definition of a system behavior that is typically 

expressed in mathematical terms. 

Framework:  an abstracted view of a complex entity or process 



 219

Full dimensional protection:  The ability of the joint force to protect its personnel and 

other assets required to decisively execute assigned tasks. 

Functional model:  A system abstraction that contains the set of observations, modeling 

data, pre-conditions, post-conditions, invariants, boundary conditions, and algorithms that 

describe the physical system.  

 Information: The meaning that a human assigns to data by means of the known 

conventions used in their representation. (Joint Pub 1-02) 

Intelligence: The product resulting from the collection, processing, integration, analysis, 

evaluation, and interpretation of available information concerning foreign countries or 

areas. (Joint Pub 1-02) 

Interoperability:  The ability of systems, units, or forces to provide services to and 

accept services from other systems, units, or forces and to use the services so exchanged 

to enable them to operate effectively together. (Joint Pub 1-02) 

Invariant:  A property that holds true under any transformation in the system. 

Joint:  Connotes activities, operations, organizations, etc., in which elements of two or 

more Military Departments participate. (Joint Pub 1-02) 

Joint force: A general term applied to a force composed of significant elements, assigned 

or attached, of two or more Military Departments, operating under a single joint force 

commander. (JCS/J7/Joint Doctrine Division memo dated 20 Oct 94) 

Joint task force: A joint force that is constituted and so designated by the Secretary of 

Defense, a combatant commander, a sub-unified commander, or an existing joint task 

force commander. (JCS/J7/Joint Doctrine Division memo dated 20 Oct 94) 

Keep-out altitude:  The keep-out altitude for ballistic missile defense is the lowest 

altitude above an area on the surface of the Earth for which an engagement must occur to 

minimize the ground effects of debris from the engagement.  The keep-out altitude is 

important because the debris from the resultant engagement will fall back to Earth, and it 

may contain nuclear, chemical, or biological agents that can negatively impact humans 

and assets in the volume of the debris fallout. 
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Kill Chain:  The sequence of activities that must occur to complete a mission goal.  For 

this dissertation, the elements of the kill chain are:  Detect, Track, Assign Weapon, 

Engage, and Kill Assessment.   

Recoverability:  The ease for which a failed system can be restored to operational use. 

Memory leak:  An error in a program's dynamic-store allocation logic that causes it to 

fail to reclaim discarded memory and can result in a system crash due to memory 

exhaustion. 

Mission: The task, together with the purpose, that clearly indicates the action to be taken 

and the reason therefore. (Joint Pub 1-02) 

Mission type order: Order to a unit to perform a mission without specifying how it is to 

be accomplished. (Joint Pub 1-02) 

Model:  A representation of a physical system or process intended to enhance the 

software engineer’s ability to understand, predict, or control its behavior. 

Model checking:  The systematic approach for testing functional assertions and 

substantiating the desired system behavior in the model. Model checking is not a proof of 

correctness; however, model checking involves creating functional models of a system 

and analyzing the model against the formal representations of the desired behavior. 

Operational control: Transferable command authority that may be exercised by 

commanders at any echelon at or below the level of combatant command. Operational 

control is inherent in Combatant Command (command authority) and is the authority to 

perform those functions of command over subordinate forces involving organizing and 

employing commands and forces, assigning tasks, designating objectives, and giving 

authoritative direction necessary to accomplish the mission. Also called OPCON. (Joint 

Pub 1-02) 

Operations tempo:  The rate of military actions or missions. 

Oracle:  A tool to evaluate the results of a test case as either pass or not passed.  The 

oracle is the test key that contains the inputs for a system and the associated required 

output for each input. 
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Passive component:  A component that executes only when called upon to do so by an 

active component. 

Pre-condition:  A fact that must always be true just prior to execution of a specific 

section of code. 

Post-condition:  A fact that must always be true just after the execution of a specific 

section of code. 

Precision engagement:  The ability of joint forces to locate, surveil, discern, and track 

objectives or targets; select, organize, and use the correct systems; generate desired 

effects, assess results; and reengage with decisive speed and overwhelming operational 

tempo as required, throughout the full range of military operations. 

Predicate:  A function that represents the truth or falsehood of some condition. 

Race condition:  A condition in which the state of a resource depends on timing 

conditions that are not predictable.  A race condition occurs if the final result of a 

computation that requires access to a critical section is executed by two or more 

processes, and the final result of the computation depends on the order in which those 

processes execute. For example, if two processes (PA and PB) write different values VA 

and VB to the same variable in a critical section, then the final value of the variable is 

determined by the order in which PA and PB execute. 

Reactive system:  A system for which its behavior is primarily caused by reactions to 

external events as opposed to being internally generated stimuli. 

Real-time system:  A real-time system is one for which producing correct computations 

as a result of an external event is equally as critical as meeting the deadlines for those 

computations.   

Reliability:  The property that a system can operate continuously without experiencing a 

failure. 

Requirement:  A criterion that a system must meet.  A requirement may define what a 

system must do, characteristics it must have, and levels of performance it must attain. 
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Robustness:  A characteristic of a system that is failure and fault tolerant.  Such a system 

handles unexpected states in a manner that minimizes performance degradation, data 

corruption, and incorrect output.  

Rules of engagement:   Directives issued by competent military authority that delineate 

the circumstances and limitations under which United States forces will initiate and/or 

continue combat engagement with other forces encountered. Also called ROE. (Joint Pub 

1-02) 

Safety:  The property of avoiding a catastrophic outcome given a system fails to operate 

correctly. 

Schedulability:  The determination of whether a group of tasks, whose individual CPU 

utilization is known, will meet their deadlines. 

Situational awareness:  Perception of available facts, comprehension of the facts in 

relation to the individual’s expert knowledge, and projecting how the situation is likely to 

develop in the future. 

Software reuse:  The act of selecting and employing a chunk of software that was 

designed and implemented for use in other systems without modification to that chunk of 

software. 

Software salvage:  The act of selecting a chunk of software and modifying it for use in 

another system. 

Specification:  An articulation of either:  (1) desired system behavior that is expressed as 

a feature, function, property, or capability, or (2) an undesired system behavior that can 

be expressed as a limitation, constraint, negative (e.g., the system shall not…), or 

condition. 

Specified command: A command that has broad continuing missions and that is 

established by the President through the Secretary of Defense with the advice and 

assistance of the Chairman of the Joint Chiefs of Staff. It normally is composed of forces 

from a single Military Department. Also called specified combatant command. (Joint Pub 

1-02) 
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State:  A recognizable situation that exists over an interval of time. 

State explosion:  The condition in which the size of the state space exceeds the memory 

capacity of the automated tool to check every trace in the model. 

State transition:  A change in state that is caused by an input event. 

Subsystem:  A testable collection of classes, objects, components, and modules that 

typically share a common attribute or contribute to a common goal. (Binder) 

Surveillance: The systematic observation of aerospace, surface or subsurface areas, 

places, persons, or things, by visual, aural, electronic, photographic, or other means. 

(Joint Pub 1-02) 

System-of-Systems:  An amalgamation of legacy systems and developing systems that 

provide an enhanced military capability greater than that of any of the individual systems 

within the system-of-systems. 

System behavior:  The collective responses of a system as it reacts to stimuli such as 

sensory information, a clock, or a received transaction. 

Tactical control: The detailed and, usually, local direction and control of movements or 

maneuvers necessary to accomplish missions or tasks assigned. Also called TACON. 

(Joint Pub 1-02) 

Targeting: 1. The process of selecting targets and matching the appropriate response to 

them taking account of operational requirements and capabilities. 2. The analysis of 

enemy situations relative to the commander's mission, objectives, and capabilities at the 

commander's disposal, to identify and nominate specific vulnerabilities that, if exploited, 

will accomplish the commander's purpose through delaying, disrupting, disabling, or 

destroying enemy forces or resources critical to the enemy. (Joint Pub 1-02) 

Temporal logic:  An extension of propositional logic that incorporates special operators 

that cater for time. With temporal logic one can specify how components, protocols, 

objects, modules, procedures and functions behave as time progresses. The specification 

is done with temporal logic statements that make assertions about properties and 

relationships in the past, present, and the future. 
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Test-ready model:  One that contains sufficient information for which to automatically 

produce test cases for its implementation. 

Time-critical task:  A task that needs to meet a hard deadline. 

Transparent:  A distributed system that appears to be a single system to the users that 

operate the distributed system, and the applications that reside and execute on the 

distributed system. (Tannenbaum and van Steen) 

Trustworthy system:  One that provides the appropriate levels of correctness and 

robustness in accomplishing its mission while demonstrating the appropriate levels of 

availability, consistency, reliability, safety, and recoverability to the degree that justifies a 

user’s confidence that the system will behave as expected. 

 Unified command: A command with broad continuing missions under a single 

commander and composed of forces from two or more Military Departments, and which 

is established by the President, through the Secretary of Defense with the advice and 

assistance of the Chairman of the Joint Chiefs of Staff. Also called unified combatant 

command. (Joint Pub 1-02) 

Validation:  The process of evaluating a system or component during or at the end of the 

development process to determine whether it satisfies specified requirements.  (IEEE Std. 

610.12-1990) 

Verification:  The process of evaluating a system or component to determine whether the 

products of a given development phase satisfy the conditions imposed at the start of that 

phase.  (IEEE Std. 610.12-1990) 

White-box testing:  A software testing technique whereby explicit knowledge of the 

internal workings of the component being tested is used to examine the outputs. 
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APPENDIX B. ACRONYMS 

AADC  Area air defense commander  
ABL   Airborne laser  
ABM   Anti-ballistic missile  
ACTD   Advanced concept technology demonstration  
AD   Air defense 
ADA   Air defense artillery 
ADCP   Air defense communications platform  
ADG   Active defense group  
ALERT  Attack and launch early report to theater  
AO   Area of Operations 
AOA   Amphibious objective area  
AOC   Air Operations Center 
AOR   Area of responsibility  
ATACMS  Army tactical missile system  
ATO   Air tasking order 
AWACS  Airborne warning and control system  
BDA   Battle damage assessment  
BMC4I  Battle management command, control, communications, computers, and 
intelligence  
BMD   Ballistic missile defense  
BMDO Ballistic Missile Defense Organization 
BMDS  Ballistic Missile Defense System 
BPI   Boost-phase intercept  
CAP   Crisis action planning 
C2   Command and control CAP Combat air patrol  
C3I   Command, Control, Communications, and intelligence 
CEC   Cooperative engagement capability  
CENTCOM  United States Central Command  
CEP   Circular error probable  
CIC   Combat information center  
CJCS   Chairman, Joint Chiefs of Staff 
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CM   Configuration management 
CO   Commanding officer  
COA   Course of action 
COCOM  Combatant Commander 
COEA   Cost and operational effectiveness analysis  
CONOPS  Concept of operations  
CONPLAN  Operations plan in concept format 
CONUS  Continental United States (excluding Alaska and Hawaii)  
COP   Common operational picture 
COTS   Commercial off the shelf 
CRC   Control and reporting center  
DAL   Defended asset list  
DE   Directed energy  
DIA   Defense Intelligence Agency  
DISA   Defense Information Systems Agency 
DoD   Department of Defense  
DSP   Defense Support Program  
EO   Electrical-optical 
EUCOM  United States European Command  
EW   Early warning  
EXORD  Execute order 
GBI   Ground-based interceptor 
GBR   Ground-based radar  
GCCS   Global command and control system  
GEM   Guidance enhanced missile (PATRIOT) 
GGIG   Global information grid 
GMD   Ground-based Missile Defense 
GPS   Global Positioning System  
HQ   Headquarters 
IA   Information assurance 
ICBM   Intercontinental ballistic missile  
ICC   Information Coordination Central (PATRIOT) 
IER   Information exchange requirement 
IRS   Interface Requirements Specification  
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IOC   Initial operational capability  
IPB   Intelligence preparation of the battle space  
IR   Infrared  
IRBM   Intermediate-range ballistic missile 
IRST   Infrared search and track  
ITW/AA  Integrated tactical warning/attack assessment 
JCS  Joint Chiefs of Staff  
JCTN   Joint composite tracking network  
JDN   Joint data network  
JEZ   Joint engagement zone 
JFACC  Joint force air component commander  
JFC   Joint force commander  
JFCOM  Joint Forces Command 
JFMCC  Joint force maritime component commander  
JIC   Joint intelligence center 
JMCIS  Joint maritime command information system  
JP   Joint publication 
JPN   Joint planning network  
JS   Joint staff 
JSOC   Joint Special Operations Command  
JSTARS  Joint surveillance and target attack radar system  
JTA   Joint technical architecture 
JTAGS  Joint tactical ground station  
JTF   Joint task force 
JTIDS   Joint tactical information distribution system  
JTMD   Joint theater missile defense  
KE   Kinetic energy  
KV   Kill vehicle 
KW   Kinetic warhead  
MDA   Missile Defense Agency 
MEADS  Medium extended air defense system  
MEZ   Missile engagement zone  
MNS   Mission need statement 
MLRS   Multiple launch rocket system  
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MRBM  Medium-range ballistic missile  
NATO  North Atlantic Treaty Organization  
NBC   nuclear, biological, and chemical 
NASA   National Aeronautics and Space Administration  
NCA   National Command Authority  
NMCC  National Military Command Center 
NMD   National missile defense 
NORTHCOM United States Northern Command 
OCONUS  Outside the continental United States 
OOB   Operational order of battle  
OODA  Observe, orient, decide, act  
OPLAN  Operations plan 
OPORD  Operations order 
OPTEMPO  Operations tempo 
ORD   Operational Requirements Document 
OSD   Office of the Secretary of Defense 
PAC   Patriot advanced capability  
PACOM  Pacific Command 
PATRIOT  phased array tracking radar intercept on target  
PDAL   Prioritized defended asset list 
Pk   Probability of kill  
POM   Program objective memorandum  
R&D   Research and development  
RCS   Radar cross-section  
R&D   Research and development 
RDT&E  Research, development, test, and evaluation 
RF   Radio frequency  
ROE   Rules of engagement  
RV   Reentry vehicle  
SAM   Surface-to-air missile  
SATCOM  Satellite communications  
SBIRS-LOW  Space-based infrared system-low earth orbit  
SBWS   Space-based warning system (DSP + TES)  
SDI  Strategic Defense Initiative 
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SDIO  Strategic Defense Initiative Organization 
SMTS   Space and missile tracking system  
SOCOM  United States Special Operations Command 
SOF   Special operations forces  
STRATCOM  United States Strategic Command 
SRBM  Short-range ballistic missile  
SRS    System Requirements Specifications  
TAOC   Tactical air operations center  
TBM   Theater ballistic missile  
TBM-WMD  Theater ballistic missile—weapons of mass destruction  
TBMD  Theater ballistic missile defense  
TCT   Time critical target 
TDDS   Tactical data distribution system  
TEL   Transporter-erector-launcher (for TBM)  
THAAD  Theater high-altitude area defense  
TIBS   Tactical information broadcast service  
TLAM  Tomahawk land attack missile  
TM   Theater missile  
TMD   Theater missile defense  
TOC   Tactical operations center  
TPFDD  Time-phased force and deployment data 
TPFDL  Time-phased force and deployment list  
TRAP   TRE and related applications (now TDDS)  
TRE   Tactical receive equipment  
UCP   Unified Command Plan 
UOES   User operational evaluation system  
USA   United States Army 
USAF   United States Air Force 
USMC  United States Marine Corps 
USN   United States Navy 
VCJCS  Vice-Chairman, Joint Chiefs of Staff 

WMD   Weapons of mass destruction 
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