
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2005-03

Developing dependable software for a system-of-systems

Caffall, Dale Scott

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/10039

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

Approved for public release; distribution is unlimited

DEVELOPING DEPENDABLE SOFTWARE FOR A
SYSTEM-OF-SYSTEMS

by

Dale Scott Caffall

March 2005

 Dissertation Supervisor: James Bret Michael

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2005

3. REPORT TYPE AND DATES COVERED
Dissertation

4. TITLE AND SUBTITLE:
 Developing Dependable Software for a System-of-Systems
6. AUTHOR(S) Dale Scott Caffall

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Missile Defense Agency
7100 Defense Pentagon, Washington, D.C. 20301-7100

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
 Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Capturing and realizing the desired system-of-systems behavior in the traditional natural language development documents is a
complex issue given that the legacy systems in a system-of-systems exhibit independent behaviors. As a result of a
development strategy of interconnecting systems, the emergent behavior of the system-of-systems cannot be predicted. In our
consideration of dependable software for a system-of-systems, we used our case study of the Ballistic Missile Defense System
to study the development of architectural views, distributed-system and real-time design considerations, components, contract
interfaces, and the application of formal methods in system-of-systems specifications. We developed a prototype of a battle
manager and demonstrated a slice of the formal model of the battle manager. Given the technical contributions of this research,
we conclude that it is possible to develop an architecture from which we can reason about the controlling software for a
system-of-systems. Furthermore, we can realize the controlling software for a system-of-systems through the concepts of
component-based software engineering. Finally, we can apply formal methods in the design and development of the
controlling software for a system-of-systems by specifying the requirements for the software components with assertions and
employing a runtime-verification tool to verify the desired behavior as specified by the assertions.

15. NUMBER OF
PAGES

264

14. SUBJECT TERMS
System-of-systems, dependable, trustworthy, architecture, distributed system, real-time system,
component-based software engineering, kernel, formal methods, assertions, model checking

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited.

DEVELOPING DEPENDABLE SOFTWARE
FOR A SYSTEM-OF-SYSTEMS

Dale Scott Caffall

Civilian, Missile Defense Agency, Washington, D.C.
B.S. in Electrical Engineering, University of Arizona, 1986

M.S. in Software Engineering, Naval Postgraduate School, 2003

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

March 2005

Author: __
Dale Scott Caffall

Approved by:

______________________ _______________________
James Bret Michael Man-tak Shing
Professor of Computer Science Professor of Computer Science
Dissertation Supervisor
Committee Chairman

______________________ _______________________
Doron Drusinsky Dan Boger
Professor of Computer Science Chairman of Information Sciences

Kevin Greaney
Senior Software Engineer
DB Data Systems

Approved by: __
 Peter J. Denning, Chairman, Department of Computer Science

Approved by: __
 Julie Filizetti, Associate Provost for Academic Affairs

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Capturing and realizing the desired system-of-systems behavior in the traditional

natural language development documents is a complex issue given that the legacy

systems in a system-of-systems exhibit independent behaviors. As a result of a

development strategy of interconnecting systems, the emergent behavior of the system-

of-systems cannot be predicted. In our consideration of dependable software for a

system-of-systems, we used our case study of the Ballistic Missile Defense System to

study the development of architectural views, distributed-system and real-time design

considerations, components, contract interfaces, and the application of formal methods in

system-of-systems specifications. We developed a prototype of a battle manager and

demonstrated a slice of the formal model of the battle manager.

Given the technical contributions of this research, we conclude that it is possible

to develop an architecture from which we can reason about the controlling software for a

system-of-systems. Furthermore, we can realize the controlling software for a system-of-

systems through the concepts of component-based software engineering. Finally, we can

apply formal methods in the design and development of the controlling software for a

system-of-systems by specifying the requirements for the software components with

assertions and employing a runtime-verification tool to verify the desired behavior as

specified by the assertions.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. SYSTEM-OF-SYSTEMS ENVIRONMENT ..2
C. CONTROLLING SOFTWARE IN A SYSTEM-OF-SYSTEMS4
D. CONTRIBUTIONS OF THIS RESEARCH ...6
E. OVERVIEW OF THE DISSERTATION..7

II. STATEMENT OF THE PROBLEM ...13
A. INTRODUCTION..13
B. CASE STUDY: BALLISTIC MISSILE DEFENSE15

1. Ballistic Missile Threats ..15
2. Description of the Ballistic Missile Trajectory................................18
3. Ballistic Missile Defense System ...19
4. Battle Manager...20

C. PROBLEM STATEMENT ...20

III. SIGNIFICANCE OF THE PROBLEM...23
A. BACKGROUND ..23

1. Insufficient Requirements Specification and Verification23
2. System-of-Systems Integration ...23
3. Specifications and Error-Handling Verification.............................24
4. Logic Errors ...25

B. BATTLE-MANAGEMENT ISSUES...25
1. Predictable System Behavior ..25
2. Distributed System Environment ...26
3. Real-Time System Considerations..27
4. Software Architecture ...27
5. Safety Considerations ..28

IV. ASSESSMENT OF PREVIOUS WORK...29
A. BACKGROUND ..29
B. STATE OF SYSTEM-OF-SYSTEMS RESEARCH AND

DEVELOPMENT ..29
C. FINDINGS..38
D. KEY TOPICS TO BE ADDRESSED...40

V. RESEARCH ...41
A. RESEARCH QUESTIONS...41
B. RESEARCH STRATEGY ..41
C. SCOPE ..43
D. SUMMARY OF CONTRIBUTIONS FROM THIS RESEARCH............44

VI. DEPENDABLE SYSTEM-OF-SYSTEMS..45
A. TRUSTWORTHY AND DEPENDABLE SYSTEM-OF-SYSTEMS45

viii

B. CHALLENGES FOR DEVELOPING A DEPENDABLE SYSTEM-
OF-SYSTEMS..46

C. BATTLE MANAGER CONSIDERATIONS..47
1. Distributed System Design ..48
2. Real-Time Design...48
3. System-of-Systems Architecture...48
4. Battle-Management Kernel...48
5. Components and Interfaces ..49
6. Development of Specifications ..49

VII. DISTRIBUTED SYSTEM ENVIRONMENT...51
A. BATTLE MANAGEMENT IN A DISTRIBUTED ENVIRONMENT51
B. DISTRIBUTED SYSEM DEFINITION..52
C. BATTLE MANAGER CONSIDERATIONS..53
D. TECHNICAL CONTRIBUTION...60

VIII. REAL-TIME ENVIRONMENT...61
A. BATTLE MANAGEMENT IN A REAL-TIME ENVIRONMENT.........61
B. REAL-TIME SYSTEM DEFINITION..61
C. BATTLE-MANAGEMENT COMPUTATION DEADLINES..................62
D. BATTLE MANAGER CONSIDERATIONS..68

1. Interaction With External Environment ...68
2. Timing Constraints ..68
3. Concurrency ...69
4. Predictability ..70

E. TECHNICAL CONTRIBUTION...70

IX. SYSTEM-OF-SYSTEMS ARCHITECTURE ..71
A. ARCHITECTURE AND DESIGN...71
B. BATTLE-MANAGER BEHAVIOR ..74

1. Introduction..74
2. Planning, Command and Control, Battle Management.................77
3. Kill Chain..79

a. Observe-Orient-Decide-Act...79
b. Detect-Control-Engage ...81
c. Decide-Detect-Deliver-Assess ...82
d. Find-Fix-Track-Target-Engage-Assess83
e. Detect-Identify-Locate-Track-Destroy83
f. Detect-Track-Assign Weapon-Engage-Assess Kill84

C. ARCHITECTURE...84
1. System-of-Systems Considerations...84
2. BMDS Architecture ...86
3. Battle Manager Architecture ..88
4. Battle-Manager Interfaces ..90

a. C2 to Battle Manager..90
b. Battle Manager to Weapon. ..91
c. Sensor to Battle Manager ...92

5. BMK Architecture ...92

ix

D. TECHNICAL CONTRIBUTION...94

X. BATTLE-MANAGEMENT KERNEL..95
A. BACKGROUND ..95
B. DEFINITION OF A KERNEL...96
C. BATTLE-MANAGEMENT KERNEL..96
D. LOGIC IN BMK ..101

XI. BATTLE-MANAGER COMPONENTS ...103
A. BATTLE-MANAGEMENT FRAMEWORK...103
B. DEFINITION OF COMPONENT ...103
C. BATTLE MANAGER CONSIDERATIONS..104
D. COMPONENT ENGINEERING CONSIDERATIONS..........................105

1. Component-Based Software Engineering......................................105
2. Component Framework ..106
3. Component Properties...107
4. Component Interfaces ...107
5. Specifications ..108

E. CHALLENGES..109
1. Modeling ...109
2. Specifications ..110
3. Trusted Components ...110
4. Component Reuse Versus Component Salvaging.........................110

F. BATTLE MANAGER ...110
1. Modeling ...111
2. Specifications ..112
3. Trusted Components ...114
4. Component Reuse Versus Component Salvaging.........................115

XII. SPECIFICATION OF THE BATTLE MANAGER ..117
A. BACKGROUND ..117
B. SPECIFICATION PROBLEM...117
C. FORMAL SPECIFICATION OF THE BATTLE MANAGER..............118

1. Formal Specifications ..119
2. Model checking...122
3. Testing...124

D. TECHNICAL CONTRIBUTION...129

XIII. PROTOTYPE...131
A. INTRODUCTION..131
B. ASSERTIONS IN BMK SPECIFICATIONS ...132
C. BMK PROTOTPE ARCHITECTURE ...133
D. TRACK PROCESSING COMPONENT...134

1. Track Processing Component...136
2. iDiscriminate ..138
3. Discrimination Computation ..139
4. iCorrelate ..139
5. Correlation..140
6. Kill Data Store..141

x

7. Battlespace Representation Data Store..141
8. Suspect Track Data Store..141
9. Track Data Store..141

E. WEAPON ASSIGNMENT COMPONENT ..141
1. Weapon Assignment Processing ...143
2. iPrioritize ..144
3. Track Prioritization Computation ...145
4. iWeaponAssignment ..146
5. Weapon Assignment Computation...146
6. PDAL Data Store ...147
7. Prioritized Threats Data Store ...147
8. Weapon System Data Store...147
9. Weapon H&S Data Store ..147
10. ROEs Data Store ..147
11. Track Engagement Data Store ...147

F. DISTRIBUTED BEHAVIOR COMPONPENT147
1. Situational Awareness: Kill Data Store ..149
2. Situational Awareness: Battlespace Representation Data Store 149
3. Sensor Support RPC..149
4. Situational Awareness: Track Engagement Data Store149
5. Weapon Assignment RPC ...149
6. Sensor Support RPC: Suspect Track Data Store.........................149

G. SAFETY COMPONENT ..149
H. ANALYSIS OF PROTOTPE..155

1. Availability..155
a. Track..155
b. Weapon Assignment..156
c. Component Interfaces...157
d. Findings and Conclusions ..158

2. Consistency ...158
a. Track..158
b. Weapon Assignment..158
c. Component Interfaces...159
d. Findings and Conclusions ..159

3. Correctness. ..160
a. Track..160
b. Weapon Assignment..160
c. Component Interfaces...161
d. Findings and Conclusions ..162

4. Reliability..162
a. Track..162
b. Weapon Assignment..163
c. Component Interfaces...163
d. Findings and Conclusions ..164

5. Robustness ..164
a. Track..164

xi

b. Weapon Assignment..165
c. Component Interfaces...165
d. Findings and Conclusions ..166

6. Safety...166
a. Safety Component ...167
b. Findings and Conclusions ..168

7. Recoverability...168
a. Continuity of Operations: Track Processing168
b. Continuity of Operations: Weapon Assignment

Processing..169
c. Findings and Conclusions ..170

I. TECHNICAL CONTRIBUTION...170

XIV. DEMONSTRATION OF THE BMK ASSERTIONS ..171
A. INTRODUCTION..171
B. TRACK PROCESSING ..171
C. SAFETY COMPONENT ..173
D. TECHNICAL CONTRIBUTIONS ..190

XV. CONCLUSIONS ..193
A. TECHNICAL CONTRIBUTIONS ..193
B. PARNAS’ ISSUES ...193

1. Issue One...194
a. Statement of the Issue ...194
b. Contributions of this Research...194

2. Issue Two ..195
a. Statement of the Issue ...195
b. Contribution of this Research...196

3. Issue Three..197
a. Statement of the Issue ...197
b. Contribution of this Research...198

4. Issue Four ...199
a. Statement of the Issue ...199
b. Contribution of this Research...200

5. Issue Five...201
a. Statement of the Issue ...201
b. Contribution of this Research...202

6. Issue Six...204
a. Statement of the Issue ...204
b. Contribution of this Research...204

C. CONCLUSIONS ..206

XVI. FUTURE RESEARCH RECOMMENDATIONS..209
A. BACKGROUND ..209
B. FUTURE RESEARCH RECOMMENDATIONS....................................209

1. Safety Kernel for a System-of-Systems..209
2. System-of-Systems Operation in Multiple Configurations209

xii

3. Trade-Offs of Assertions Left in System-of-Systems at Runtime
Versus Assertions Used in Development..209

4. Asserting Control in System-of-Systems..210
5. Development Metrics for a System-of-Systems.............................210
6. Properties of a Dependable System-of-Systems and Network-

Centric Warfare Solution..210
7. Distributed Considerations for a Dependable System-of-

Systems and Network-Centric Warfare Solution210
8. Real-Time In Distributed Environment...211
9. Interface Considerations For A Dependable System-Of-

Systems And Network-Centric Warfare Solution211
10. Testing Considerations For A Dependable System-Of-Systems

And Network-Centric Warfare Solution211

APPENDIX A. GLOSSARY..213

APPENDIX B. ACRONYMS..225

LIST OF REFERENCES..231

INITIAL DISTRIBUTION LIST ...239

xiii

LIST OF FIGURES

Figure 1. Keep-Out Altitude in Kill Chain..63
Figure 2. Shoot at Highest Percentage Shot Opportunity ...64
Figure 3. Shoot-Look-Shoot..65
Figure 4. Information Sources for Developing Specifications..76
Figure 5. Reactive System Model ...87
Figure 6. External View of BMDS Battle Manager...88
Figure 7. Internal View of BMDS Battle Manager ...90
Figure 8. Class Diagram..93
Figure 9. BMK Architecture ...93
Figure 10. Messaging Example in a Distributed Battle-Management Network99
Figure 11. Component-Based Design Pattern ...106
Figure 12. Track Processing Component Interface to Discrimination Component112
Figure 13. BMK Active Components and Data Stores ...133
Figure 14. Track Processing Component ..136
Figure 15. Weapon Assignment Processing Component ..142
Figure 16. BMK Distributed Behavior Component ..148
Figure 17. BMK Safety Component..152
Figure 18. Track Processing: Scenario 1..172
Figure 19. Track Processing: Scenario 2..173
Figure 20. Safety Component: Rule 1, Scenario 1 ...175
Figure 21. Safety Component: Rule 1, Scenario 2 ...176
Figure 22. Safety Component: Rule 1, Scenario 3 ...177
Figure 23. Safety Component: Rule 2, Scenario 1 ...179
Figure 24. Safety Component: Rule 2, Scenario 2 ...180
Figure 25. Safety Component: Rule 2, Scenario 3 ...181
Figure 26. Safety Component: Rule 3, Scenario 1 ...183
Figure 27. Safety Component: Rule 3, Scenario 2 ...184
Figure 28. Safety Component: Rule 3, Scenario 3 ...185
Figure 29. Safety Component: Rule 3, Scenario 4 ...186
Figure 30. Safety Component: Rule 4, Scenario 1 ...188
Figure 31. Safety Component: Rule 4, Scenario 2 ...189
Figure 32. Safety Component: Rule 4, Scenario 3 ...190
Figure 33. Technical Contributions of this Research that Address Parnas’ Issues194

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF TABLES

Table 1. Ballistic Missile Threat Flight Times * ...65
Table 2. Battle-Management Response Times * ...67
Table 3. Predicted Loss of life from Weapons of Mass Destruction69
Table 4. Summary of Kill Chains ..85
Table 5. Test Oracle for Assertion ...129

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

ACKNOWLEDGMENTS

I would like to thank Professor Bret Michael, Professor Man-Tak Shing, Professor

Doron Drusinsky, Professor Dan Boger, and Dr. Kevin Greaney for serving on my

dissertation committee and providing me with wise counsel during the past four years.

They worked tirelessly to help increase my understanding of software engineering. I

would like to offer additional gratitude and admiration to Professor Michael who helped

shape my understanding of software development, engaged me in valuable discussions,

and provided sage guidance. He is a gifted educator and a talented researcher, and

without peer in dedication and devotion to the responsibility of guiding students to

greater academic achievements. I would like to thank Dr. Kevin Greaney for introducing

me to the oustanding software engineering program at the Naval Postgraduate School and

encouraging me throughout my journey.

I would like to thank Lieutenant Colonel Tom Cook who offered me numerous

reviews of my dissertation material and keen insight into computer science. I would like

to thank General Robert Dehnert and Mr. Richard Ritter for their encouragement and

support during the past two years of my work and research. I would like to offer my

thanks to Mr. Gerald Durbin who recruited me into Federal Service and mentored me

throughout my career. He continues to be a great inspiration to me.

I would like to thank my mother and father who provided me with the inspiration

to seek higher-level education through personal example and sacrifice. I offer thanks to

my daughter Kim and our two granddaughters – Kailie and Alayna. They motivated me

far beyond what they might imagine.

Most of all, I would like to thank the greatest wife in the world to whom I am

very happily married. As is her giving and supporting nature, Trudy went “above and

beyond” to ensure that the all was well on the home front, and made possible this

doctoral journey. While this research and the challenges of my job motivate me to reach

for higher goals, she inspires me to love life and to be a better man. I love her dearly.

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

xix

EXECUTIVE SUMMARY

Many of the systems that comprise a system-of-systems most likely existed first

as legacy systems that operated as stand-alone capabilities in the operational world.

These legacy systems were developed with specific sets of requirements and with specific

system functionality in mind. Additionally, just as we developed the legacy systems as

independent developments, we are typically developing new systems that will become

members of a system-of-systems under similar conditions. That is, we are developing

these systems as stand-alone capabilities with specific sets of requirements and with

specific system functionality in mind.

Typically, developers will connect these systems through some communication

medium in the hope of achieving greater functionality, although this long-standing

acquisition strategy does not necessarily result in the intended synergistic effect. One can

identify the systems that will form the system-of-systems, and then set out to bend, fold,

spindle, and mutilate these systems in the fevered hope of producing a functional

composition: it is difficult to think about the system-of-systems as a single entity, which

may explain why system developers sometimes mistakenly focus on modifying

individual systems with little deliberation and consideration for the system as a whole.

The control of a system-of-systems presents a tremendous challenge to software

developers. As developers interconnect a number of independent systems to form a

system-of-systems, they should address the emergent properties for the control of a

system-of-systems that cannot be predicted by analyzing each independent system.

The following is a summary of the technical contributions of this research:

1. Identification of distributed-system attributes for controlling

software in a system-of-systems

2. Identification of real-time attributes for real-time controlling

software in a reactive system-of-systems

3. Development of system-of-systems architecture views from

system-of-systems view to component view in controlling software

xx

4. Use of kernel in controlling software for system-of-systems to

shape dependable behavior of system-of-systems

5. Reduction of software complexity from an exponential factor for a

monolithic software program to a component-based construct in which the active

components are decoupled by data stores

6. Development of assertions from collaboration diagrams

7. Adaptation of CBSE by advanced use of assertions in interface

contracts between components to assert protocols surrounding the components in reactive

systems

8. Demonstration that formal methods can be applied to large,

complex system-of-systems developments

The technical contributions of this research offer evidence that lead us to conclude

the following about the questions posed for this research:

1. It is possible to develop a system-of-systems architecture from

which we can reason about the controlling software for a system-of-systems.

2. We can realize the controlling software from a system-of-systems

architecture through the concepts of component-based software engineering.

3. We can apply formal methods in the design and development of

the controlling software for a system-of-systems by specifying the requirements for the

software components with assertions and employing a runtime verification tool to verify

the desired behavior specified in the assertions.

Additionally, this research addresses David Parnas’ challenges back in 1985 to the

Department of Defense on the Strategic Defense Initiative (SDI). Parnas’ six issues are

summarized as follows:

1. Discrimination of the threat objects from decoys and debris is a

significant challenge.

xxi

2. Software developers cannot predict the behavior of the battle-

management software with confidence given the actual configuration of weapons,

sensors, and battle managers are not known until the moment of battle.

3. Software developers cannot test the battle-management software

under realistic conditions.

4. The duration of the defense engagement will be short. It will not

allow for either human intervention or debugging the software to overcome software

faults at runtime.

5. Battle-management software will have absolute real-time

deadlines.

6. Battle-management software must integrate numerous dynamic

software systems to the extent that has never before been achieved.

xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND
The annals of human conflict are replete with the terrible results of the traditional

war strategy of attrition in which opposing forces attempt to inflict more casualties on the

enemy than the enemy can sustain and maintain a viable military force. This “mass-on-

mass” strategy resulted in staggering losses of life in countless wars. For example,

623,026 soldiers lost their lives in the four years of the U.S. Civil War. At Antietam, the

combined casualties of Union and Confederate forces totaled 26,134 soldiers on a single

day of battle. [48] The war of attrition concept was a costly strategy in terms of human

life.

During the past decade, the Department of Defense (DoD) shifted military tactics

from the traditional war of attrition to a transformational concept of full-spectrum

dominance: the ability of US forces, operating unilaterally or in combination with

multinational and interagency partners, to defeat any adversary and control any situation

across the full range of military operations. In Joint Vision 2020 (JV 2020), the

Chairman, Joint Chiefs of Staff included the following operational concepts that will

support the achievement of full-spectrum dominance [23]:

1. Dominant maneuver is the ability of joint forces to gain positional

advantage with decisive speed and overwhelming operational tempo in the achievement of

assigned military tasks.

2. Focused logistics is the ability to provide the joint force with the right

personnel, equipment, and supplies in the right place, at the right time, and in the right

quantity, across the full range of military operations.

3. Full dimensional protection is the ability of the joint force to protect its

personnel and other assets required to decisively execute assigned tasks.

4. Precision engagement is the ability of joint forces to locate, surveil,

discern, and track objectives or targets; select, organize, and use the correct systems;

 2

generate desired effects, assess results; and reengage with decisive speed and

overwhelming operational tempo as required, throughout the full range of military

operations.

B. SYSTEM-OF-SYSTEMS ENVIRONMENT
In recent times, systems-of-systems have exploded into the battlespace of the joint

and coalition warfighters to meet the challenges that the Chairman identified in his vision

of future warfare. (N.B.: For this research, we define a system-of-systems as an

amalgamation of legacy systems and developing systems that provide an enhanced

military capability greater than that of any of the individual systems within the system-of-

systems.) The development community’s response in the U.S. Department of Defense to

the rabid craving for more accurate information and more lethal functionality has been a

less than sterling hobbling of various legacy systems and ongoing system developments

through tightly coupled and lowly cohesive communication shackles.

Many of the systems that comprise a system-of-systems most likely existed first

as legacy systems that operated as stand-alone capabilities in the operational world.

These legacy systems were developed with specific sets of requirements and with specific

system functionality in mind. Just as we developed the legacy systems as independent

developments, we are typically developing new systems that will become members of a

system-of-systems under similar conditions. That is, we are developing these systems as

stand-alone capabilities with specific sets of requirements and with specific system

functionality in mind.

Typically, developers will connect these systems through some communication

medium in the hope of achieving greater functionality, although this long-standing

development strategy does not necessarily result in the intended synergistic effect. One

can identify the systems that will form the system-of-systems, and then set out to bend,

fold, spindle, and mutilate these systems in the fevered hope of producing a functional

composition: it is difficult to think about the system-of-systems as a single entity, which

may explain why system developers sometimes mistakenly focus on modifying

individual systems with limited deliberation and consideration for the system as a whole.

 3

Our tools for reasoning about a system-of-systems typically consist of little more

than a “sticks-and-circles” diagram. The “circles” represent the various systems that

comprise the system-of-systems while the “sticks” are means of information transfer, a

messaging protocol, and, perhaps, a translator box to translate the messaging format from

one system to another. Armed with this sophomoric view of the system-of-systems, we

attempt to analyze and design the system-of-systems through a trivial picture of the

various systems as connected by a convoluted labyrinth of lines. Unfortunately, sticks-

and-circles diagrams lack both a formal semantics and the richness needed to express the

many dimensions of system behavior.

Are the circles meant to represent systems, subsystems, modules, classes, objects,

functions, hardware, or some other entity? Are the sticks meant to represent data flow,

triggers, synchronization, calls, inheritance, or something else?

Far too frequently, we initiate detailed design and coding from reasoning about

the sticks-and-circles diagrams. During the development, we add new layers of features

and functional enhancements to the system software without clear insight into the

organization of the system software. Inevitably, the basic organization of the software

that seemed so reasonable at the beginning of the development process begins to break

apart under the weight of the revisions made to the system software. Sadly, the software

development becomes another casualty to report in future studies as to why software

developments are not successful.

Traditionally, this methodology failed to achieve an interoperable and integrated

system-of-systems with predictable, dependable behavior. With each new failure, the

system engineers attempted to “tighten up” the protocol standard; however, the system-

of-systems cannot be made to exhibit predictable, dependable behavior by increasing the

level of detail in the interconnectivity standards. As a result of the traditional system-of-

systems development effort, the end-state is a collection of systems that have a high

degree of coupling with a realized protocol standard that only serves to significantly

increase the system-of-systems software complexity.

 4

As we have witnessed time and again, system-software critical interactions

increase as the complexity of highly interconnected systems increases. In the complex

system-of-systems, these possible combinations are practically limitless. System

“unravelings” seem to have an intelligence of their own as they expose hidden

connections, neutralize redundancies, and exploit chance circumstances for which no

system engineer might plan. A software fault at runtime in one module of the system-

software may coincide with the software fault of an entirely different module of the

system-software. This unforeseeable combination can cause cascading failures within the

system-of-systems.

C. CONTROLLING SOFTWARE IN A SYSTEM-OF-SYSTEMS1
 The control of a system-of-systems presents a tremendous challenge to software

developers. As developers interconnect a number of independent systems to form a

system-of-systems, they should address the emergent properties for the control of a

system-of-systems that cannot be predicted by analyzing each independent system. [100]

In [101] and [102], the authors maintain that the “…basic paradigm of control has

not found its place as a first-class concept in software engineering.” They offer a new

paradigm that considers the software system as a plant and includes a “controller

subsystem” for controlling the plant. As suggested in [15], we offer the concept of

developing the controlling software as a distinct control application for a system-of-

systems.

We suggest that the battle-management software in the Ballistic Missile Defense

System (BMDS) exemplifies the aforementioned difficulties and challenges of

controlling software in a system-of-systems. (N.B.: The BMDS is a collection of

independent missile defense systems that will be integrated into a system-of-systems.

We describe the BMDS in detail in Chapter II as we use the BMDS as our case study in

this research.)

In his book “Software Fundamentals: Collected Papers by David L. Parnas,”

Parnas outlines six major characteristics of the battle-management software in the

1 The text of the statement of the problem is largely an extract from [10].

 5

Strategic Defense Initiative (SDI) program (known today as the BMDS). [61] The

following issues are as relevant today as during the time when Parnas published his

observations:

1. The battle-management software must identify, track, and direct weapons

towards targets whose characteristics may not be known with certainty until the moment

of battle. The battle-management software must discriminate the threat objects from

decoys and debris.

2. The battle-management computing will be accomplished through a

network of computers that are connected to sensors and weapons as well as other battle-

management computers. The behavior of the battle-management software cannot be

predicted with confidence given the actual configuration of weapons, sensors, and battle

managers at the moment of battle.

3. Developers cannot test the battle-management software under realistic

conditions prior to actual use of the software.

4. The duration of the defense engagement will be short: it will not allow for

either human intervention or debugging the software to overcome software faults at

runtime.

5. The battle-management software will have absolute real-time deadlines for

the computation that will consist of periodic processes to include detecting and

identifying potential threat missiles, assigning a weapon to engage the threat missile, and

providing an assessment of the interceptor-threat missile engagement. Because of the

unpredictability of the computational requirements of each process, developers cannot

predict the required resources for computation.

6. The missile defense system will include a large variety of sensors,

weapons, and battle-management components for which all will be large, complex

software systems. The suite of weapons and sensors will increase in number as the

development progresses. The characteristics of these future weapons and sensors are not

well defined and will likely remain fluid for many years. Additionally, all weapons and

sensors will be subject to change independently of each other. As such, the battle-

 6

management software must integrate numerous dynamic software systems to the extent

that has never before been achieved.

D. CONTRIBUTIONS OF THIS RESEARCH
The following is a summary of the technical contributions of this research:

1. Identification of distributed-system attributes for controlling software in a

system-of-systems

2. Identification of real-time attributes for real-time controlling software in a

reactive system-of-systems

3. Development of system-of-systems architecture views from system-of-

systems view to component view in controlling software

4. Use of kernel in controlling software for system-of-systems to shape

dependable behavior of system-of-systems

5. Reduction of software complexity from an exponential factor for a

monolithic software program to a component-based construct in which the active

components are decoupled by data stores

6. Development of assertions from collaboration diagrams

7. Adaptation of CBSE by advanced use of assertions in interface contracts

between components to assert protocols surrounding the components in reactive systems

8. Demonstration that formal methods can be applied to large, complex

system-of-systems developments

The technical contributions of this research offer evidence that lead us to conclude

the following about the questions posed for this research:

1. It is possible to develop a system-of-systems architecture from which we

can reason about the controlling software for a system-of-systems.

2. We can realize the controlling software from a system-of-systems

architecture through the concepts of component-based software engineering.

 7

3. We can apply formal methods in the design and development of the

controlling software for a system-of-systems by specifying the requirements for the

software components with assertions and employing a runtime verification tool to verify

the desired behavior specified in the assertions.

Additionally, this research addresses each of the aforementioned challenges

highlighted by Parnas regarding the Strategic Defense Initiative (SDI). (N.B.: President

Ronald Reagan tasked the SDI Organization (SDIO) to develop the SDI which was

colloquially known as Star Wars. SDIO later become the Ballistic Missile Defense

Organization (BMDO). In January 2002, Secretary of Defense Donald Rumsfeld

elevated BMDO to agency status and renamed BMDO as the Missile Defense Agency

(MDA). SDI is currently known as the BMDS which contains both the former National

Missile Defense (NMD) system and the Theater Ballistic Missile Defense (TBMD)

systems.)

E. OVERVIEW OF THE DISSERTATION
In Chapter II, we reference Parnas’ six issues and discuss the difficulty involved

in the design and development of a system-of-systems. Parnas’ six issues are

summarized as follows:

1. Discrimination of the threat objects from decoys and debris is a significant

challenge.

2. Software developers cannot predict the behavior of the battle-management

software with confidence given the actual configuration of weapons, sensors, and battle

managers are not known until the moment of battle.

3. Software developers cannot test the battle-management software under

realistic conditions.

4. The duration of the defense engagement will be short. It will not allow for

either human intervention or debugging the software to overcome software faults at

runtime.

5. Battle-management software will have absolute real-time deadlines.

6. Battle-management software must integrate numerous dynamic software

systems to the extent that has never before been achieved.

 8

In Chapter III, we provide examples of system-of-systems that failed in operations

– two of the examples reflect the loss of life as a result of unknown emergent behavior in

the system-of-systems.

In Chapter IV, we assess the previous research and developments of systems-of-

systems. Based upon our assessment of previous research and developments of system-

of-systems, the key topics to be addressed are as follows:

1. Although there would seem to be a global trend towards composing

systems-of-systems, there appears to be a significant void in both research activities and

the engineering practices for the development of a system-of-systems.

2. The architecture of the system-of-systems seems to be a critical issue for

the developer of a system-of-systems. A suitable architecture may be a valuable first step

in the successful design and development of a system-of-systems.

3. A component-based structure could be one characteristic of successful

system-of-system developments. With components, we might consider techniques in

which we can isolate the behavior of a given component from all others with the

objective of isolating faults within the component.

4. Formal methods and model checking could be useful in the design and

development of a system-of-systems. It seems as if previous research considered the

entire system-of-systems rather than decomposing the system-of-systems into

components for which formal methods and model checking could provide value.

In Chapter V, we pose the following research questions:

1. Is it possible to develop a system-of-systems architecture from which we

can reason about the controlling software for a system-of-systems?

2. Can we realize the controlling software from a system-of-systems

architecture through the concepts of component-based software engineering?

3. Can we apply formal methods in the design and development of the

controlling software for a system-of-systems by specifying the requirements for the

software components with assertions and employing a runtime verification tool to verify

the desired behavior specified in the assertions?

 9

In Chapter VI, we define a dependable system and a trustworthy system as

follows:

A dependable system is one that provides the appropriate levels of correctness

and robustness in accomplishing its mission while demonstrating the appropriate levels of

availability, consistency, reliability, safety, and recoverability.

A trustworthy system is one that provides the appropriate levels of correctness

and robustness in accomplishing its mission while demonstrating the appropriate levels of

availability, consistency, reliability, safety, and recoverability to the degree that justifies

a user’s confidence that the system will behave as expected.

We discuss specific dependability issues in the development of specifications,

interfaces, battle-management kernel (BMK), distributed systems, and real-time systems.

In Chapter VII, we briefly discuss the distributed-system issues of the battle

manager; however, we propose that this be a future research topic.

In Chapter VIII, we briefly discuss the real-time issues of the battle manager;

however, we propose that this be a future research topic.

In Chapter IX, we offer several architectural views of the battle manager and

propose the following architectural principles for the battle manager:

1. With the knowledge of the short timelines to conduct battle management

for missile defense, it is not prudent to realize the battle-manager capability in a

centralized fashion; that is, it is not reasonable to expect such a system to be positioned

within the United States and require the system to direct the engagements of all possible

ballistic missiles from all parts of the globe. As such, we will consider a distributed-

system construct for the BMDS Battle Manager. The distributed battle manager must be

able to communicate with all the sensors and all the weapons systems in the BMDS;

however, the distributed battle manager should be transparent from the perspective of the

sensors and weapons connected to it.

2. We anticipate that the BMDS Battle Manager will continually experience

modifications and upgrades to its applications. As such, it would be useful to isolate the

 10

software that will change little over time from the software that will change more

frequently. We will employ the concept of component-based engineering to design and

develop the BMDS Battle Manager.

3. We will develop the software that realizes the basic functions of the battle

manager as a kernel given that this software should experience limited modifications over

time. We will add a software application to the kernel that controls the distributed

processing in the battle manager.

4. We have defined an architecture for the battle manager that could provide

flexibility for decisions in the detailed design. The architecture that we have defined for

the battle manager could allow the incorporation of design details for dependable

software, distributed systems, real-time software, software kernels, and software

components.

In Chapter X, we propose the use of a BMK that consists of the set of software

components that are necessary to provide correct real-time execution of battle-

management tasks in a system-of-systems context, both in nominal and degraded modes

of system operation. We propose that the BMK should exhibit the following

characteristics:

1. The BMK has absolute priority. That is, no other component can interrupt

the kernel from accomplishing its work.

2. System parameters and external events are measurable and observable by

the BMK. When presented with measurements for a given set of parameters and external

events, the BMK will exhibit correct system behavior. (N.B.: We define correct as the

reaching of the desired state given the previous state is presented with a given set of

inputs.)

3. Detection of errors will be through the use of assertions. The BMK will

direct non-kernel software components for the recovery of observed errors such as

violation of pre-conditions, post-conditions, and invariants.

 11

In Chapter XI, we propose that we develop the software that contains the basic

functions of battle management as a set of components in the BMK given that this

software should experience limited modifications over time. We propose to develop

other component software that contains the algorithms required to perform the

computations of the BMDS Battle Manager.

In Chapter XII, we assert that our current development techniques are failing to

support system developers in producing systems with predictable behavior. Almost

exclusively, acquisition organizations rely on exhaustive testing prior to fielding the

completed product to assess system behavior. Rather than discovering system behavior at

the end of the development phase, developers might apply techniques that support the

design and realization of desired system behavior from the earliest phases of concept

development and requirements development.

The application of formal methods for specification and verification is a technique

for consideration by developers of system-of-systems. Formal methods can complement

traditional techniques such as testing and can help developers improve the degree of

trustworthiness in defense acquisitions.

For the battle manager, we will use assertions to specify the desired behavior.

While assertions alone will not ensure dependable software, the use of assertions can

increase the level of dependability of a system.

In Chapter XIII, we develop a prototype that contains natural language assertions

to specify specific behavior for the track processing and weapon-system assignment in

the BMK. Additionally, we develop safety policies for the battle manager and proposed

natural language assertions to monitor the safety policies in the BMK. Finally, we

identify specific distributed behavior and offer natural language assertions to specify the

desired distributed behavior among BMKs in the system-of-systems.

In Chapter XIV, we demonstrate a slice of the BMK as we transform several

natural language assertions to temporal logic assertions and run those assertions through a

model checker to determine whether we achieved the desired behavior.

 12

In Chapter XV, we outline the technical contributions of this research and present

a matrix of the contributions against Parnas’ six issues for SDI.

In Chapter XVI, we offer future research topics for the subject of systems-of-

systems.

 13

II. STATEMENT OF THE PROBLEM

A. INTRODUCTION
In the crusade for acquisition reform, the tendency in specifications is to

document the “thou shalts” of specific system functions, design to the “thou shalts” with

modifications to accommodate the development, and field a system that little resembles

the collective “thou shalts” and, more importantly contains limited user utility. The

Department of Defense has realized limited success in attempting to capture the desired

system behavior in natural language requirements documentation (e.g., Operational

Requirements Documents (ORDs), System Requirements Specifications (SRSs), and

Interface Requirements Specifications (IRSs)) and achieve the documented behavior in

the fielded systems. [49] In [50], Leffingwell and Widrig discuss the impacts of

insufficient and incomplete system specifications.

The system-of-systems problem is one of designing and implementing the degree

of desired system behavior by somehow connecting legacy systems. (N.B.: For this

research, we define system behavior as the collective responses of a system as it reacts to

stimuli such as sensory information, a clock, or a received transaction.) Capturing the

desired system-of-systems behavior in the traditional natural language documents is a

complex issue given that the legacy systems in the system-of-systems have a combination

of existing known and unknown system behaviors. Typically, the system-of-systems

specification is reduced to a table of information exchange requirements (IERs) that

define the messaging that passes from one system to another.

As a result of a system-of-systems development strategy of interconnecting

systems while concentrating the development efforts on messaging and protocols, the

operational system-of-systems frequently demonstrate undesired system behaviors.

Although the system-of-systems may require safety considerations, system architects and

system designers can experience a significant degree of difficulty in testing for the safety-

critical features and certifying a system-of-systems as being safe. (N.B.: For this

research, we define safety as the property of avoiding a catastrophic outcome given a

system fails to operate correctly.) Additionally, the user is frequently irritated at the

 14

undesirable distributed-system behaviors that a system-of-systems may exhibit such as

halted processes without recovery and disparate versions of same-source data.

While a primary concern of a system-of-systems is the exhibited system behavior,

the financial costs for incorrectly and insufficiently specified systems is staggering.

System-specification errors will be the source of seventy percent of the system rework

costs. Given that rework costs are typically 30% to 50% of a program budget, the

correction of system-specification errors can cost 25% to 40% of an entire program

budget. [50]

Increasingly, software concerns are overtaking hardware concerns in systems

engineering. From numerous lessons-learned from failed developments, it would appear

that the following statements are becoming development truths [50]:

Software – not hardware – determines the degree of achieved success in the

fielded capabilities of our systems.

Software – not hardware – consumes the majority of costs for system

development.

Software – not hardware – is on the critical path of every development and

ultimately determines when and if a system is fielded.

Software – not hardware – is the entity changed most often in the acquisition

lifecycle of a system to meet the changing needs of the warfighters.

Our journey to achieve the desired system behavior in a system-of-systems has no

end in sight. The development community continues to fail in delivering the critical

functionality required by the warfighters in our system-of-systems. The development

community continues to fail in capturing and achieving the desired system behavior, and

the development community continues to invest a significant amount of the program

budget in system rework to correct specification deficiencies.

Unfortunately, we seem to accept these facts and are resigned to repeat the errors

of our predecessors. We continue on with the same bad practices of the past. As the old

adage goes: we do not plan to fail - we just fail to plan.

 15

B. CASE STUDY: BALLISTIC MISSILE DEFENSE
 To help us understand the proposed concepts for developing dependable

software for a system-of-systems environment, we will use the BMDS as a case study in

this research. We offer that the BMDS exemplifies other systems-of-systems as the

BMDS is an amalgamation of numerous independent systems. Although we will

describe the research with respect to the BMDS, the statement of the problem, proposed

concepts, and conclusions of this research is representative of other system-of-systems

environments for which a dependable system-of-systems-level software is required.

Within a sensor-to-shooter system-of-systems, battle managers hold the

controlling software. The legacy systems in the system-of-systems include sensors that

detect and track a threat object, and weapon systems that compute firing solutions and

engage the threat object.

We find the importance of battle management within the concept of precision

engagement. (N.B.: For this research, we define battle management as the decisions and

actions executed in direct response to the activities of enemy forces in support of the

Joint Chiefs of Staff’s concept of precision engagement. [18]) Battle managers must

rapidly make decisions to counter both enemy actions and force movements. Battle

managers must correctly cope with the fog-of-war conditions that are ever-present during

the prosecution of the war. The success or failure of the battle-management functions

will determine the success or failure of joint forces with respect to the achievement of

their assigned objectives. [30]

1. Ballistic Missile Threats
With respect to ballistic missile threats, the current trend is increased distance for

ballistic missile flight which requires greater velocities of future threats. Additionally,

the proliferation of ballistic missiles is worldwide as noted by the Director of Central

Intelligence in his testimony before the Senate Select Committee on Intelligence. [76]

Excerpts from his testimony are as presented below:

“North Korea also continues to advance its missile programs. North Korea is

nearly self-sufficient in ballistic missiles, and has continued procurement of raw materials

and components for its extensive ballistic missile programs from various foreign sources.

 16

The North also has demonstrated a willingness to sell complete systems and components

that have enabled other states to acquire longer-range capabilities and a basis for

domestic development efforts earlier than would otherwise have been possible.”

“North Korea has maintained a unilateral long-range missile launch moratorium

since 1999, but could end that with little or no warning. The multiple-stage Taepo Dong-

2—capable of reaching the United States with a nuclear weapon-sized payload—may be

ready for flight-testing.”

“Finally, Iran's missile program is both a regional threat and a proliferation

concern. Iran's ballistic missile inventory is among the largest in the Middle East and

includes the 1300-km range Shahab-3 medium-range ballistic missile (MRBM) as well as

a few hundred short-range ballistic missiles (SRBMs). Iran has announced production of

the Shahab-3 and publicly acknowledged development of follow-on versions. During

2003, Iran continued R&D on its longer-range ballistic missile programs, and publicly

reiterated its intention to develop space launch vehicles (SLVs)—and SLVs contain most

of the key building blocks for an intercontinental ballistic missile (ICBM). Iran could

begin flight-testing these systems in the mid- to latter-part of the decade.”

“Iran also appears willing to supply missile-related technology to countries of

concern and publicly advertises its artillery rockets and related technologies, including

guidance instruments and missile propellants.”

“China continues an aggressive missile modernization program that will improve

its ability to conduct a wide range of military options against Taiwan supported by both

cruise and ballistic missiles. Expected technical improvements will give Beijing a more

accurate and lethal missile force. China is also moving on with its first generation of

mobile strategic missiles.”

“Although Beijing has taken steps to improve ballistic missile related export

controls, Chinese firms continue to be a leading source of relevant technology and

continue to work with other countries on ballistic missile-related projects.”

 17

“South Asian ballistic missile development continues apace. Both India and

Pakistan are pressing ahead with development and testing of longer-range ballistic

missiles and are inducting additional SRBMs into missile units. Both countries are

testing missiles that will enable them to deliver nuclear warheads to greater distances.”

“Last year Syria continued to seek help from abroad to establish a solid-propellant

rocket motor development and production capability. Syria's liquid-propellant ballistic

missile program continued to depend on essential foreign equipment and assistance,

primarily from North Korean entities. Syria is developing longer-range missile

programs, such as a Scud D and possibly other variants, with assistance from North

Korea and Iran.”

“Many countries remain interested in developing or acquiring land-attack cruise

missiles, which are almost always significantly more accurate than ballistic missiles and

complicate missile defense systems. Unmanned aerial vehicles are also of growing

concern.”

“To conclude my comments on proliferation, I'll briefly run through some WMD

programs I have not yet discussed, beginning with Syria.”

“Syria is an NPT signatory with full-scope IAEA safeguards and has a nuclear

research center at Dayr Al Hajar. Russia and Syria have continued their long-standing

agreements on cooperation regarding nuclear energy, although specific assistance has not

yet materialized. Broader access to foreign expertise provides opportunities to expand its

indigenous capabilities and we are closely monitoring Syrian nuclear intentions.

Meanwhile, Damascus has an active CW development and testing program that relies on

foreign suppliers for key controlled chemicals suitable for producing CW.”

“Finally, we remain alert to the vulnerability of Russian WMD materials and

technology to theft or diversion. We are also concerned by the continued eagerness of

Russia's cash-strapped defense, biotechnology, chemical, aerospace, and nuclear

 18

industries to raise funds via exports and transfers—which makes Russian expertise an

attractive target for countries and groups seeking WMD and missile-related assistance.”

2. Description of the Ballistic Missile Trajectory
All ballistic missiles share a common, fundamental element - they follow a

ballistic trajectory that includes three phases. These phases are the boost phase, the

midcourse phase, and the terminal phase.

The boost phase is the portion of a missile's flight in which it is thrusting to gain

the acceleration needed to reach its target. This phase usually lasts 50 seconds for a 1000

kilometer ballistic missile threat and 75 seconds for a 3000 kilometer ballistic missile

threat. During the boost phase the rocket is climbing against the earth's gravity and either

exiting the earth's atmosphere, or in the case of shorter-range missiles, only reaching the

fringes of outer space.

Once the missile has completed firing its propulsion system, it begins the longest

part of its flight, which is known as the mid-course phase. During this phase the missile

is coasting, or freefalling towards it target. This phase can be as short as 6 minutes for a

1000 kilometer ballistic missile threat and as long as 11 minutes for a 3000 kilometer

ballistic missile threat. Most missiles that leave the atmosphere shed their rocket motors

by this time in order to increase the range that the missile's weapon (i.e., warhead) can

travel. For medium and long-range missiles this phase occurs outside the earth's

atmosphere.

The final phase of a missile's flight is the terminal phase which is flight space in

which the ballistic missile threat reenters the Earth’s atmosphere during which the

atmosphere begins to measurably impact the velocity and flight characteristics of the

ballistic missile threat. For this research, we will consider 32 kilometers above sea level

as the point of reentry into Earth’s atmosphere. During this phase the ballistic missile's

warhead reenters the Earth's atmosphere at incredible speeds. For example, a 3000

kilometer ballistic missile threat has a velocity of 3.85 kilometers per second at an

altitude of 10 kilometers. This phase last approximately 16 seconds for a 1000 kilometer

ballistic missile threat and approximately 10 seconds for a 3000 kilometer ballistic

missile threat. [55] (N.B.: We offer the flight times for missiles in the three phases as a

 19

point of reference rather than absolute values. [55] offers a detailed analysis of flight

times for various missile types and atmospheric conditions.)

3. Ballistic Missile Defense System
DoD plans to acquire a layered ballistic missile defense to defend the forces and

territories of the United States, its Allies, and friends against all classes of ballistic

missile threats. The Ballistic Missile Defense (BMD) program will pursue a broad range

of activities in order to develop and evaluate technologies for the integration of land, sea,

air, and space-based platforms to counter ballistic missiles in all phases of their flight. In

parallel, sensor suites and battle management and command and control will be

developed to form the backbone of the BMDS. The Missile Defense Agency2 (MDA)

will accomplish this mission by developing a layered defense that employs

complementary sensors and weapons to engage threat targets in the boost, midcourse, and

terminal phases of flight, and incrementally deploying that capability.

There are advantages and challenges to set up engagement opportunities against a

threat missile in each of the three phases of flight. The capability to defend against an

attacking missile in each of these phases is called a layered defense, and it may be

expected to increase the chances that the missile and its payload will be destroyed. By

attacking the missile in all phases of flight, we exploit opportunities that could increase

the advantage of the defense. A capability to intercept a missile in the boost phase, for

example, can destroy a missile regardless of its range or intended aim-point and provide a

global coverage capability. A midcourse intercept capability can provide wide coverage

of a region or regions, while a terminal defense reduces the protection coverage

considerably to a localized area. As we add shot opportunities in the midcourse and

terminal phases of flight to boost phase opportunities, we increase the probability for a

successful intercept of the ballistic missile threat.

Improving the odds of interception becomes critical when ballistic missiles carry

weapons of mass destruction. When possible, for the global coverage and protection

against lethal payloads, a capability to intercept a missile near its launch point is always

2 MDA is the US agency within the Department of Defene that is responsible for leading the design
and development of the BMDS. MDA evolved from the former Ballistic Missile Defense Organization
which evolved from the former Strategic Defense Initiative Organization.

 20

preferable to attempting to intercept that same missile closer to its target. To minimize

the negative fallout effects from weapons of mass destruction, we expect terminal

defense systems to engage a ballistic missile threat at a minimum altitude of 15

kilometers above a defended asset. For those mid-course systems that engage ballistic

missile threats beyond the discernable impacts of Earth’s atmosphere, we expect mid-

course systems to engage a ballistic missile threat at a minimum altitude of 83 kilometers

above a defended asset. [55]

4. Battle Manager
The battle managers must direct the activities in the battlespace. Typically,

multiple engagements occur concurrently in the battlespace. Oftentimes, the activities for

killing a threat object at such a high operations tempo (OPTEMPO) that humans can

experience great difficulty in maintaining situational awareness of the entire battlespace.

(N.B.: For this research, we define operations tempo as the rate of military actions or

missions. Additionally, we define situational awareness as the perception of available

facts, comprehension of the facts in relation to the individual’s expert knowledge, and

projecting how the situation is likely to develop in the future.)

The challenge will be to develop the battle manager as a dependable system

within the capabilities and constraints of the system-of-systems. (N.B.: For this

research, we define a dependable system as one that demonstrates the appropriate levels

of availability, reliability, safety, and recoverability to the degree that justifies a user’s

confidence that the system will behave as expected.)

C. PROBLEM STATEMENT
The six issues identified by Parnas are not unique to the BMDS Battle Manager.

With limited tailoring, these six issues could extend to controlling software in any

system-of-systems.

Referencing Parnas’ six issues for the battle manager, we propose that a problem

in the acquisition community is defining, developing, and building a controller in a

system-of-systems environment that is available for operations at any time, operates

correctly at all times, traps system faults and returns to operations without impacting the

 21

mission of the BMDS, and performs its missions in such a way that no unintended harm

to people and protected assets will come from its operations.

This is the problem that we will address in this research.

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

III. SIGNIFICANCE OF THE PROBLEM

A. BACKGROUND
A system-of-systems development raises a multitude of issues that are beyond the

development of a single system such as the system behavior of the system-of-systems as

well as each system within the system-of-systems. In defense acquisitions, the control of

a system-of-systems is typically left to humans via voice or assigned sector

responsibilities in the battlespace (i.e., a predetermined, physical division of the

battlespace in the military operations for each system in the system-of-systems). As

examples to the potential impact of our current inability to confidently predict system

behavior and our continued failings in system-of-systems developments, the following

anecdotes are offered:

1. Insufficient Requirements Specification and Verification
US Central Command (CENTCOM) forces deployed six PATRIOT batteries in

the Dhahran area of operations during the Persian Gulf War of 1991. Of those six

PATRIOT batteries, CENTCOM forces assigned Alpha Battery the mission of protecting

the Dhahran air base. Alpha Battery had been in continuous operations for over one

hundred hours on February 25, 1991. Iraqi forces launched a Scud missile at the Dhahran

air base that Alpha Battery failed to track and intercept. The Scud missile impacted at an

US Army barracks and killed twenty-eight US soldiers. Subsequent investigations into

this catastrophe revealed that PATRIOT could not perform sustained operations beyond

twenty continuous hours as potential targets would fall outside the range gate – an

electronic detection system within the PATRIOT radar that calculates the area in the field

of regard where PATRIOT should next look for the threat missile. At one hundred hours

of continuous operation, the shift in the range gate would be 687 meters so the PATRIOT

could not detect, track, and destroy incoming ballistic missiles. [35][62]

2. System-of-Systems Integration
In December of 2001, a 2000-pound, Joint Direct Attach Munitions (JDAM)

bomb killed three U.S. Special Forces airmen and five Afghan soldiers, and wounded

nineteen other military personnel. The root cause of this friendly-fire incident was the

 24

inadvertent passing of the coordinates of the US air controller’s own position to the

bomber. While the air controller had correctly passed the latitude and longitude target

coordinates to a US Navy F/A-18 minutes prior to the friendly-fire incident, the US Air

Force B-52 bomber crew required a second calculation in “degrees decimal.” The air

controller complied with the request and stored the coordinates in the GPS receiver. At

that moment, the GPS’ battery expired and the air controller replaced it with a fresh

battery. Apparently unbeknownst to the air controller, the GPS receiver re-initialized and

displayed its coordinates (as programmed into the GPS software) which the air controller

passed to the bomber crew. The JDAM struck at those coordinates with deadly precision.

[53] [77] Included with the ground-aided precision strike conclusions and

recommendations in [77], the author recommended an interface between relay-coordinate

systems and weapons vice the human handling of target coordinates. What was not

mentioned was the insufficient integration of independently-acquired systems into a

larger system-of-systems.

3. Specifications and Error-Handling Verification
From a study of 387 software errors discovered during the integration and testing

phase of the Voyager and Galileo spacecraft, Robyn Lutz observed that the safety-related,

functional faults exhibited by Voyager could be categorized as follows: 50% as

behavioral faults, 31% as conditional faults, and 19% as operating faults. For Galileo, the

safety-related, functional faults could be categorized as follows: 38% as behavioral

faults, 18% as conditional faults, and 44% as operating faults. (N.B.: The author offered

the following definitions: behavioral faults – “incorrect behavior, not conforming to

requirements”, conditional faults – “incorrect condition or limit value”, and operating

faults – “omission or unnecessary operations.”) The author concluded that the primary

cause of safety-related, functional faults (62% on Voyager and 79% on Galileo) was due

to requirements that had not been identified by the developers. Included with the

author’s six recommendations to software developers were the use of formal methods in

the specification of requirements and the inclusion of appropriate software responses to

unexpected conditions and values. [54]

 25

4. Logic Errors
Delores Wallace and Richard Kuhn analyzed software faults from 342 medical

systems and determined that 43% of the software faults were logic-related errors such as

incorrect logic in requirement specification, unexpected behavior of multiple conditions

occurring simultaneously, and improper limits. Additionally, Wallace and Kuhn

attributed 24% of the software faults to calculation errors to include incorrect limits and

ranges as well as implementation of mathematical expressions. [81] Among the

recommendations, the authors suggested that software engineers should consider formal

methods for highly complex systems with emphasis on pre- and post-conditions as well

as the interaction of system functions and unforeseeable combinations that can cause

cascading failures within the system-of-systems.

B. BATTLE-MANAGEMENT ISSUES

1. Predictable System Behavior
Given that the interconnected battle-management solutions in the system-of-

systems environment are separately designed and developed on various operating

platforms in different languages, predicting battle-management behavior of the system-

of-systems is not possible. As a rule, battle management is still executed at the system

level rather than the desired system-of-systems level.

Another factor that contributes to the challenge involved in predicting battle-

management behavior is the development practices currently employed in DoD. The

increased pressure to rapidly move product into the operational battlespace tends to

channel program managers into focusing on achieving functionality as quickly as

possible. As such, the development community responds with a hurried and oftentimes

inadequate design phase, and follows with an intense period of coding. In the rush to

rapidly develop a product, one can fall into the trap of exclusively seeking some level of

achieved capability while ignoring the behavior of the software.

Defense acquisition organizations typically develop a system-of-systems by

interconnecting multiple processors with a defined communications medium. Rather

than focusing on shaping the behavior of the system-of-systems, the focus of the

interconnectivity scheme is the exchange of messages that follow a prescribed protocol

 26

standard. The interpretation of the messages and the resultant actions are left to the

individual acquirers of the various systems; however, the protocol standards oftentimes

include limited behavior rules such as the rule for determining which system should

report a track in a tactical data-link network. Also, the protocol standards do not include

requirements for handling runtime faults other than error-checking of transmitted

messages (e.g., parity checks, Hamming codes, cyclic redundancy checks). Thus,

handling runtime faults is left to the developers of the individual systems in the system-

of-systems.

Because each system in the system-of-systems develops the implementation of the

interconnectivity standard independent of the other systems, there is no guarantee that all

the implementations will result in consistent behavior by the system-of-systems. As

such, the warfighters cannot predict the reactive behavior of the system-of-systems to

external events.

Given the short duration of the BMD fight, the warfighters cannot accept the risk

of inconsistent behavior and undesired outcomes. The serious nature of the consequences

of missed engagements drives the requirement for correct, predictable behavior in the

system-of-systems as well as the ability to handle all system faults during runtime.

Additionally, the system-of-systems must be able react immediately to external events so

it must be available for use twenty-four hours of every day.

2. Distributed System Environment
It is true that any fool can interconnect a set of computers by following given

standards for messaging protocols and physical connections; however, it takes deliberate,

knowledgeable engineering to achieve the desired system behavior in a system-of-

systems. Typically, Defense acquisition organizations concentrate on the functionality of

individual system applications while giving limited attention to the principles of

distributed system theory. As a result, the developers may find that the system-of-

systems has a fragile dependency on absolute timing synchronization for system-of-

systems computations. Additionally, the developers may learn that the heterogeneity of

 27

the systems in the system-of-systems results in a significant level of difficulty in

integration with respect to continued consistent behavior through independent system

software releases.

In operations, the warfighters may experience a high level of confusion and

frustration as a result of the inconsistent outcomes of various battle-management

computations. Without deliberate engineering efforts to handle out-of-tolerance latencies

or non-functioning communication mediums, the warfighters will not be able to

distinguish the continued wait for the termination of a computation from the result of a

slow process or that of a failed processor. Subsequently, the defense of the battlespace

may suffer the consequences of missed engagement opportunities.

3. Real-Time System Considerations
C2 systems are usually non-real-time systems. As such, C2 systems typically

depend on synchronous messaging schemes for operations. Traditionally, weapon

systems are real-time systems. Thus, required message synchronization between a non-

real-time C2 system and a real-time weapon might cause an inadvertent interrupt of a

real-time process that could result in deadlock and race conditions. If interrupts are

disabled during critical-section processing, then the interrupt for message synchronization

will be missed and the message could be lost. Lost messages could result in missed

engagement opportunities in the battlespace.

A computation that is late may result in late or missed engagement opportunities.

The kill chain has definitive deadlines which must be met by the BMDS or the

warfighters cannot successfully defeat ballistic missile attacks. If we are to match the

performance of the weapon systems and avoid the negative impact of forcing

synchronization of the battle manager with the weapon system for messaging, then we

should develop the battle manager as real-time software.

4. Software Architecture
The software architecture can impact one’s ability to understand and modify the

software. [31] If the software maintenance team does not understand the design and

behavior of a system, then adding additional features or improving the characteristics

(e.g., performance, correctness, robustness) of the software may be difficult. If the

 28

executable code was compiled as a single, monolithic software program, then the

software maintenance team may experience a significant level of effort in providing new

features in the software as the team may require that the operational system be taken

offline so that the old software version can be downloaded and the new software version

can be uploaded.

5. Safety Considerations
One safety consideration is the interconnectivity construct in the system-of-

systems. Because the development focus is frequently on correct message transmission

and receipt, there is no viable means of ensuring safety at the system-of-systems level.

As such, an erroneous output in a given system can be quickly propagated throughout the

system-of-systems with potentially catastrophic results. For example, the inadvertent

typing of a manned space vehicle as a ballistic missile threat by a sensor could result in

the inappropriate destruction of the manned space vehicle by a weapon in the BMDS.

A second safety consideration is the potential situation in which two processes

have simultaneous access to a critical section during runtime. (N.B.: We define the

critical section to be a shared resource in which multiple processes may access during

runtime.) The software of the critical section must execute without interruption;

otherwise, the system software could experience deadlock and race conditions. A

deadlock condition can occur if a process waits indefinitely for conditions that will never

be satisfied. For deadlock to occur, all of the following four conditions must be true: (1)

processes claim exclusive control of shared resources, (2) processes hold shared

resources while waiting for other shared resources to be released, (3) processes cannot be

directed to release shared resources, and (4) a circular waiting condition exists for the

release of shared resources. [30] A race condition can occur if the final result of a

computation that requires access to a critical section is executed by two or more

processes, and the final result of the computation depends on the order in which those

processes execute. For example, if two processes (PA and PB) write different values VA

and VB to the same variable in a critical section, then the final value of the variable is

determined by the order in which PA and PB execute.

 29

IV. ASSESSMENT OF PREVIOUS WORK

A. BACKGROUND
So far we have argued the case that developers have experienced limited success

in designing, developing, and delivering a dependable system-of-systems. We presented

two examples in which military system-of-systems exhibited unknown behaviors which

resulted in the loss of American and allied lives. At this point in the dissertation, we

review the literature on system-of-systems development to provide some insight into the

root causes of systems-of-systems development failures. We would like to assess the

proposed solutions and potentially offer solutions that could address the shortcomings in

a system-of-systems development.

B. STATE OF SYSTEM-OF-SYSTEMS RESEARCH AND DEVELOPMENT
In July 2004, the Potomac Institute for Policy Studies hosted a series of

discussions of issues concerning systems-of-systems. [83] The group noted that

traditional system engineering is based on the assumption that engineers can build a

system if provided a complete set of requirements. They note that the defining of

requirements for a system-of-systems may be an intractable problem because the

complete operational concepts on how a system-of-systems might be employed can never

be completely known at the requirements elicitation phase. They state that the Federal

Aviation Administration attempted five times to build a completely new system from the

ground up and was not successful in any of the attempts. The group asserted that

systems-of-systems are open systems in the sense that a system-of-systems does not have

fixed and stable boundaries. The group noted that emergent behavior in a system-of-

systems is a critical concern and further noted that tools do not exist for developers to

deal with the emergent behavior of the components within an individual system and the

system-of-systems as a single entity. The group offered the Unified Modeling Language

(UML) as a possible tool for developers to handle the emergent behavior of a system-of-

systems.

Mark Greaves, Victoria Stavridou-Coleman, and Robert Laddaga noted in [99]

the following: “It is well known that building dependable software systems for dynamic

 30

environments is difficult. It is also well known that building large-scale distributed

software systems is difficult. The relatively few attempts to combine these two tasks

confirm that successfully building large-scale distributed systems with predictable

properties is exceptionally difficult.”

The authors observe that the increasing demand for systems-of-systems will

require engineers and computer scientists to design, develop, and deliver highly flexible

and dependable systems-of-systems that exhibit highly predictable behavior.

Furthermore, they note that the traditional techniques for designing and developing

dependable software will be “difficult or impossible to employ” in a system-of-systems

environment.

In [84], Dennis Smith, Edwin Morris, and David Carney discuss the issues

associated with the development of a system-of-systems that include incomplete

requirements, unexpected interactions, and unshared assumptions. The authors claim that

“strict specification of standards” is not sufficient for achieving the desired level of

interoperability in a system-of-systems as the various developers of the individual

systems can interpret specifications differently. The authors further note that achieving

and maintaining interoperability among the systems is difficult due to the inherent

complexity of the individual systems, and the number of potential interactions between

and among systems. According to the authors, the technical innovations in software

engineering have not fruitfully addressed the system-of-systems development problems.

They cite an example in the United States automobile supply chain in which inadequate

interoperability among complex systems costs one billion dollars each year.

Smith, Morris, and Carney claim that traditional software engineer state-of-the-

practice assumes a complete and precise understanding of the system in development.

They state that integrators of the independent systems hold different assumptions and

beliefs about the system-of-systems than that of the developers of the individual systems.

As such, system-of-systems developments can fail due to conflicting and incomplete

information. They cite emergent properties of the system-of-systems pose the greatest

challenge to developers for predicting dependable system-of-systems.

 31

The authors offer that developers require new approaches to establish and

maintain interoperability in a system-of-systems. These new approaches include: (1)

assess proposed requirements and architectural changes to the system-of-systems as well

as each individual system, (2) develop a system-of-systems architecture that minimizes

the impact of change, and (3) verify proposed interoperability solutions prior to fielding

the system-of-systems.

Robert Schaefer offers in [100] that developers of systems-of-systems face

significantly more complex integration issues than developers of single systems. He

asserts that “[i]mproving the development process is not enough” and “[l]anguage and

tools are not enough.” According to Schaefer, the current set of system integration tools

“… do not yet fill the needs for debugging large systems.” He claims that placing

additional controls over the development process for a system-of-systems may not prove

to be more cost effective than developing a system-of-systems architecture. Schaefer

notes that independent systems may exhibit the desired behavior; however, when the

independent systems are integrated into a system-of-systems, system faults can occur

“…irrespective of good architecture and design practices.” He contends that middleware

is “…both a breach in the [system interface] firewall that can propagate faults and a

critical weak link when the middleware software itself fails.” Furthermore, he states that

a system build from a number of components will be only as dependable is its weakest

serial component. That is, the component with the “poorest fault handling capabilities”

will determine the level of dependability in the system-of-systems. Schaefer holds that

advances in systems architecture may be the key to successful integration of the

independent systems in a system-of-systems.

Cliff Jones and Brian Randell wrote in [85] that it is “…easy to bemoan the fact

that computer systems are less dependable than one might want, but it is essential to

understand that large networked computer systems are among the most complex things

that the human race has created.” They further noted that “…present trends and

predictions indicate that huge, even globally-distributed, networked computer systems,

 32

perhaps involving everything from super-computers and large server ‘farms’ to myriads

of small mobile computers and tiny embedded devices, are likely to become highly

pervasive.”

The authors cited the following as examples of the costs of undependable

systems:

1. “The average cost per hour of computer system downtime across 30

domains such as banking, manufacturing, retail, health insurances, securities,

reservations, etc. has recently been estimated at nearly $950,000 by the US Association

of Contingency Planners.

2. The French Insurer’s Association has estimated that the yearly cost of

computer failures is [approximately $2,000,000,000] of which slightly more than half is

due to deliberately induced faults, for example, by hackers and corrupt insiders.

3. The Standish Group’s ‘Chaos Chronicles’ report for 2003 analyzed over

13,000 IT projects and estimated that nearly 70 percent either failed completely or were

‘challenged’ that is although completed and operational, exceeded their budget and time

estimates and had less functionality than originally specified. This led to their estimate

that in 2002 the US ‘wasted’ $55 billion in cancelled and over-run IT projects compared

with a total IT spend of $255 billion.”

Jones and Randell report that the European Commission’s Accompanying

Measure on System Dependability Overall Dependability Roadmap 2003 estimates that

“…for large and complex computer systems, namely those involving 1-100 [million]

lines of code, current development techniques…can at best produce systems that achieve

a level of reliability in the range of 10 to 100 failures per year.”

The authors claim that current formal methods and tools are not “readily

applicable” to large and complex systems. They do state that formal methods can play a

significant role in the development of large systems; however, they believe that the state-

of-the-practice may limit formal methods to “small, highly-critical areas.”

 33

John Knight discussed computing system dependability in [86], in which he states

“It is important that computer engineers, software engineers, project managers, and users

understand the major elements of current technology in the field of dependability, yet this

material tends to be unfamiliar to researchers and practitioners alike.” According to

Knight, the “…trick to dependable design is to make sure that failed components within a

system do not lead to system failure.” He points to the specification of system

requirements as the Achilles’ heel of software developments. He notes that while

verification techniques such as formal methods and model checking are available,

software developers depend on testing as the dominant approach for verification. Knight

observes that testing “remains problematic” in that “…it is impossible to execute a

sufficient number of tests to permit a statistical assessment of extreme dependability….”

A wealth of literature exists that suggests the use of formal methods can benefit

software developers in the verification of requirements. Likewise, there is a significant

amount of literature in which attempts are made to debunk the purported myths

surrounding the use of formal methods. [5][42][60][79] Bob Lang from the Software

Engineering Institute (SEI) offers the following observation:

“Formal methods have long offered the promise of ensuring high quality software

using mathematical rigor. The director’s message in the Spring 2001 issue of news@sei

points to one article suggesting that 40 to 50 percent of programs contain nontrivial

defects. Formal methods represent a clear attempt to address such concerns. However,

applying traditional formal methods to a complete system design requires a significant

investment – from learning a difficult technology to applying it in all phases of the

development effort.” [47]

As a result, while there have been successful developments that employed formal

methods, software developers have not embraced and employed formal methods in the

development of large, complex systems. In [8], the authors describe several research

projects in which researchers working for the National Aeronautics and Space

Administration (NASA) are applying formal methods.

 34

Charles Keating et al. noted in [87] that the challenge to engineers of developing

and integrating large, complex systems. They observe that system-of-systems

engineering is “…emerging as an attempt to address integrating complex meta-systems.

However, [system-of-systems engineering] is in the embryonic stages of development

and lacks consistent focus.” Furthermore, the authors claim that system-of-systems

engineering is being largely addressed as an information technology issue with the

general objective of “getting everything to work together.” Additionally, they assert that

the current state of system-of-systems literature that could support practicing engineers is

a “…fragmented collection of seemingly disparate perspectives on the associated

phenomena.”

Goran Mustapic et al. list seven system-of-systems developments that were

successful albeit perhaps not on the scale of large, global system-of-systems

developments. [88] The authors focused on the software architecture aspects of these

developments. These systems will all experience system evolution as requirements are

expressed and new technologies are introduced. What seemed to be common in the

successful programs was a component-based structure in a layered architecture.

Additionally, the trend in the architecture seemed to be isolating the controller from other

parts of the system. Finally, another trend that seemed to be a factor in the success of

these efforts is that the development and integration of the system-of-systems was within

a single company. This is not the conventional situation for a system-of-systems in

which the independent systems are typically designed and developed independently of

the system-of-systems. The authors noted that potential difficulties could arise if the

architecture can no longer support new requirements and technologies; however, they

believe that the architecture techniques described could be applicable to large, complex

systems-of-systems.

Mark Maier observes in [89] that system-of-systems should be a different class of

development than a single system due to the independence of the individual systems in a

system-of-systems and the emergent behavior of a system-of-systems. Maier states that a

system-of-systems is defined by its communication standards. He cites Integrated Air

Defense as a system-of-systems as well as the Internet and intelligent transportion

 35

systems (e.g., advanced traveler information services and advanced traffic control

systems). He believes that the greatest opportunity to develop a system-of-systems is at

the interfaces which are where he sees the greatest dangers in the development of a

system-of-systems. According to Maier, if the individual systems in a system-of-systems

are operationally and managerially independent, then the work of the architect is at the

system-of-systems interfaces. For example, if an architect separates the sensors and

weapons as independent systems, then the integrated air defense system is the battle

management network. He offers that communications is the primary enabling technology

for a system-of-systems. Maier states his belief that successful information exchange is

the key to a successfully functioning system-of-systems. He supports the concept of

better communication standards to improve the degree of success in system-of-systems

development.

David Fisher and Dennis Smith stated the following in [90]: “Most systems of

systems use their component systems in ways that were neither intended nor anticipated.

Assumptions that were reasonable and appropriate for individual component systems

become sources of errors and malfunction within system-of-systems.” They state that the

effect of emergent properties in a system-of-systems is potentially the greatest

development risk in a system-of-systems given that developers cannot predict the

dependability of the system-of-systems before fielding.

Fisher and Smith further note that unbounded system-of-systems are the typical

products of the military and commercial applications with challenging requirements.

They offer that unbounded systems exhibit emergent behavior that cannot be predicted in

advance by developers. Furthermore, they state that the techniques used to develop

dependability in closed, tightly coupled, and completely defined systems will not produce

the same level of dependability in unbounded systems.

The authors note that developers have typically employed such interoperability

methods as enforcing a single, central control on the system-of-systems, imposing

stronger standards, and demanding increased coordination mechanisms. Fisher and

Smith state that these methods become less effective as the complexity and degree of

distributed computing increases in a system-of-systems. As a result, a system-of-systems

 36

can experience an increase of system faults and user errors. Furthermore, they state that

the frequency of accidents in systems-of-systems increases with the degree of coupling of

the components, degree of a central control, overly specified requirements, and “broadly

imposed” interface standards. They recommend that loose coupling of components

should be an objective of the developers of systems-of-systems.

Donna Rhodes and Daniel Hastings state in [91] that “…classical Systems

Engineering is not well suited to dealing with the global and social-technical aspects of

the 21st century engineering systems….” They believe that classical system engineering

practices should be adapted and expanded to address the engineering and development of

highly complex systems. Furthermore, Rhodes and Hastings believe that Systems

Engineering will experience a “significant evolution” given the increasing complexity of

technology globalization of users as well as emerging systems models such as network-

centric structures and system-of-systems developments.

In [92], Pin Chen and Jun Han state that immaturity of the development practices

and increasing complexity of a system-of-systems drive the need to develop new

approaches for developing such systems. The authors claim that the individual systems

must be compatible within the system-of-systems architecture to realize an effective

system-of-systems. They offer that developers must find solutions for identified

architectural gaps which signify non-compatible systems.

Ivy Hooks proposes in [93] that basic requirements principles are more essential

for the development of a system-of-systems than for a single system. The basic

requirements principles include developing the operational concept for the entire life-

cycle of the system-of-systems and identify verification methods for each requirement.

She further states that standards may be the key to developing an effective system-of-

systems. Finally, she offers that each system in the system-of-systems must develop

defensive and self-healing requirements to protect itself from undesired behavior at its

interface to the system-of-systems.

Andrew Sage claims in [94] that risk and conflict thrive in the system-of-systems

development environment due to the conflict of individual system goals and system-of-

 37

systems goals. He states that developers can observe the behavior of a system-of-

systems; however, the interplay of individual systems cannot be considered by the study

of individual systems. Furthermore, Sage claims that emergent behavior evolves from

the interaction of many systems but it cannot be predicted from the knowledge of the

individual systems.

In [95], Joseph Kasser offers that the development of a system-of-systems is not

as complex as others may believe. His premise is that a system-of-systems development

is ad hoc and uncontrolled. He offers that centralizing the program management

activities of all the systems within the system-of-systems will lead to a successful

development.

In May of 2003, the Schools of Engineering at Purdue University identified the

concept of system-of-systems as a focused research area. [96] The objective of this

focused research was to develop new techniques to support the development of a system-

of-systems. In the paper that describes this effort, William Crossley noted that the ability

of the individual systems to operate independently within a system-of-systems increases

complexity above the level of complexity of a single system. He notes that developers

have a significant challenge in optimizing performance of a system-of-systems without

creating computational bottlenecks and eliminating conflicting commands from the

controller of the system-of-systems. Crossley states that approaches required for

predicting dependability in a system-of-systems may not be available to developers. He

further notes that the optimized control of a system-of-systems may compete for

resources against individual systems in the system-of-systems. He concludes his paper

with the recommendation for a significant amount of research to solve the system-of-

systems development problems.

In May 2004, Eliot Christian, who was representing the Federal Geographic Data

Committee of the United States Geological Survey, presented a briefing to the Industry

Workshop on Global Earth Observation System of Systems (GEOSS) that described the

proposed architecture of GEOSS. [97] The architectural team proposed a distributed

system-of-systems that would include an observation component, data processing and

archiving component, and a data exchange and dissemination component. The

 38

architectural team proposed that interface specifications focus upon how the components

interoperated with each other. They believed the means to achieve this level of

interoperability was a set of open, international standards. The architectural team

identified UML, XML, Web Services Definition language (WSDL), and Common Object

Request Broker Architecture (CORBA) as means to realize the interfaces of components.

The architectural team proposes that GEOSS will be assured of verifiable, scalable, and

interoperable interfaces by imposing standard service definitions on interface

interoperability specifications on components within a complex system or discrete

systems within the system-of-systems.

Craig Stoudt offers in [98] that the air traffic control system will transform

“…from a ground-based, centralized, loosely integrated system to a space-based,

decentralized, tightly integrated system-of-systems.” According to the author,

decentralized systems tend to be “inefficient and lead to conflict.” He points out that the

advantages of decentralized systems are increased dependability as compared to a

centralized system. As other authors stated, the emergent behavior of a system-of-

systems can reflect the desired behavior as well as unpredicted and undesired behavior.

C. FINDINGS
1. The increasing demand for systems-of-systems will require engineers and

computer scientists to design, develop, and deliver highly flexible and dependable

systems-of-systems that exhibit highly predictable behavior.

2. Building large, complex system-of-systems that exhibits predictable

behavior and is dependable is among the most complex endeavors of the human race.

3. Classical systems engineering techniques may not be well suited to

dealing with the design and development of system-of-systems.

4. The body of knowledge on developing a system-of-systems seems to be

limited.

5. System-of-systems development seems to be ad hoc and unstructured due

to programmatic shortcomings as well as architecture and verification issues in a system-

of-systems.

 39

6. Developers require new engineering skills and tools to support the

development of a dependable system-of-systems that exhibits predictable behavior.

7. It is important that computer engineers, software engineers, project

managers, and users understand the major elements of current technology in the field of

dependability, yet this material tends to be unfamiliar to researchers and practitioners

alike.

8. Developers require new approaches to establish and maintain

interoperability in a system-of-systems. These new approaches should include: (1) assess

proposed requirements and architectural changes to the system-of-systems as well as each

individual system, (2) develop a system-of-systems architecture that minimizes the

impact of change, and (3) verify proposed interoperability solutions prior to fielding the

system-of-systems.

9. The emergent properties in a system-of-systems may be the greatest

development risk given that developers cannot predict the dependability of the system-of-

systems before delivering it to the users.

10. The ability of the individual systems to operate independently within a

system-of-systems increases complexity above the level of complexity of a single system.

System-of-systems developers have a significant challenge in optimizing performance of

a system-of-systems without creating computational bottlenecks and eliminating

conflicting commands from the controller of the system-of-systems.

11. The increasing detail in the specification of standards will not be sufficient

for achieving the desired level of interoperability in a system-of-systems as the various

developers of the individual systems can interpret specifications differently. Achieving

and maintaining interoperability among the systems in a system-of-systems is difficult

due to the inherent complexity of the individual systems, and the number of potential

interactions between systems.

12. The specification and verification of system requirements in a system-of-

systems may be the Achilles’ heel of software developments. Although verification

 40

techniques such as formal methods and model checking are available, software

developers depend on testing as the dominant approach for verification.

13. A component-based structure in a layered architecture could be a

successful technique in the development of a system-of-systems.

14. Formal methods may have a significant role in the design and

development of a system-of-systems; however, current formal methods and tools may

need to be extended to support the development of large, complex system-of-systems.

D. KEY TOPICS TO BE ADDRESSED
Although there would seem to be a global trend towards composing systems-of-

systems, there appears to be a significant void in both research activities and the

engineering practices for the development of a system-of-systems. Esteemed researchers

from the Massachusetts Institute for Technology and the Purdue University have

expressed this observation. The Purdue University has established a focused research

area in the engineering of a system-of-systems with the objective of filling the void.

The architecture of the system-of-systems seems to be a critical issue for the

developer of a system-of-systems. A suitable architecture may be a valuable first step in

the successful design and development of a system-of-systems.

A component-based structure could be one characteristic of successful system-of-

systems developments. With components, we might consider techniques in which we can

isolate the behavior of a given component from all others with the objective of isolating

faults within the component.

Formal methods could be useful in the design and development of a system-of-

systems. It seems as if previous research considered the entire system-of-systems rather

than decomposing the system-of-systems into components for which formal methods and

model checking could provide value. We might consider techniques in which we can

isolate state behavior to reduce the number of reachable states in the components.

 41

V. RESEARCH

A. RESEARCH QUESTIONS
We believe that it is possible to develop globally distributed, real-time controlling

software for a system-of-systems that exhibits highly predictable system-software

behavior. We make the assumption that it is impractical to realize a significant level of

changes in legacy software of the independent systems within a system-of-systems. To a

lesser degree, this assumption could hold true for systems that are currently under

development. If these assumptions hold true, software engineers can design and develop

controlling software for a system-of-systems that exhibits a high level of trustworthiness.

We pose the following questions that we will address in this research:

1. Is it possible to develop a system-of-systems architecture from which we

can reason about the controlling software for a system-of-systems?

2. Can we realize the controlling software from a system-of-systems

architecture through the concepts of component-based software engineering?

3. Can we apply formal methods in the design and development of the

controlling software for a system-of-systems by specifying the requirements for the

software components with assertions and employing a runtime verification tool to verify

the desired behavior specified in the assertions?

B. RESEARCH STRATEGY
In the assessment of previous work in the area of system-of-systems, there is a

recognized void in the software engineering body of knowledge for the design and

development of a system-of-systems. This research extends the body of knowledge in the

design and development of systems-of-systems by proposing innovative architectural and

software development practices.

In the key topics to be addressed, we highlighted several suggestions that others

proposed could increase the effectiveness and dependability of fielded systems-of-

systems. We developed an architectural framework that ranged from the summary view

of our case study for a system-of-systems to the component framework in the BMK. We

 42

offered a systematic method to develop natural language assertions from a collaboration

diagram for the specification of the BMK components. We demonstrated the method for

a slice of the BMK by transforming natural language assertions into temporal assertions

that we demonstrated on a runtime verification tool.

To address research question V.A.1, we expanded the key topic area from Chapter

IV in which the proposal was made that a suitable architecture could be a valuable first

step in the successful design and development of a system-of-systems. We developed

architectural views of the system-of-systems to include a framework for the controlling

software in the BMDS. We treated weapon systems as being comprised of components

rather than a single entity. In addition, we treated sensors as a component. We identified

a controlling component for this system-of-systems that we refer to as the battle manager.

In the battle-manager framework, we identified a BMK that is the controlling

software in the battle manager. The BMK connects to software components used for

calculations in battle-management as well as the interfaces to external components of

systems such as sensors, C2, and weapons. The objective of this framework is to show a

design of a battle manager as an integration of various components rather than a single

software application. [9]

While the design of the system-of-systems might require other views and

additional details, we demonstrated that it is possible to create a set of architectural views

that represents the independent systems in a system-of-systems and identifies controlling

software for the system-of-systems. Furthermore, we established that it is possible to

create a set of architectural views for the controlling software that identify the

functionality of the controlling software in terms of its components.

Using our case study of the BMDS, we identified desired dependability properties

for the system-of-systems. Additionally, we identified design considerations for the

distributed properties of a system-of-systems. Finally, we identified design

considerations for the real-time nature of the BMDS.

To address research question V.A.2, we expanded the key topic area that a

component-based structure could be one characteristic of successful system-of-system

 43

developments. We separated computational work from behavioral work through the

specification of passive and active components, with data stores employed between active

components to isolate state behavior and potential software faults in any given active

component from all other active components. We provided examples of the work as

well as the thought process to develop the work.

To address research question V.A.3, we expanded the key topic that formal

methods could be useful in the design and development of a system-of-systems. Recall

that previous research seemed to consider applying formal methods across the entire

system-of-systems as a single entity rather than decomposing the system-of-systems into

components for which formal methods and model checking could provide value.

In this research, we decoupled each active component from all other active

components through the use of data stores. The objective of this design technique was to

isolate the effects of state behavior to a single active component. As a result, we reduced

the number of reachable states in the controlling software as compared to realizing the

battle-manager functionality in a monolithic program in which each component might

have direct, synchronous messaging among other components.

We developed natural language assertions to define the desired behavior of the

active components in the battle manager. We assessed the role of natural language

assertions to define the dependability properties identified for this research: availability,

correctness, consistency, reliability, robustness, safety, and recoverability. To

demonstrate the feasibility of applying formal methods to a system-of-systems as

outlined in this research, we developed a working model of a slice of the BMK by

transforming the natural language assertions into temporal assertions and exercising the

temporal assertions in a runtime verification tool; this demonstrated how formal methods

can be applied to the design and development of controlling software for a system-of-

systems.

C. SCOPE
Our research addresses Parnas’ six issues with the exception of the discrimination

problem. We extended the suggestions for the design and development of a system-of-

systems by the development of architectural views and a framework for the controlling

 44

software. We applied formal methods to the BMK to demonstrate that formal methods

can play a significant role in the design and development of a system-of-systems.

Finally, we demonstrated a slice of the BMK by transforming several natural language

assertions into temporal assertions, and demonstrating the utility of the temporal

assertions by running the assertions in a runtime verification tool.

D. SUMMARY OF CONTRIBUTIONS FROM THIS RESEARCH
This research extends the software engineering body of knowledge for the design,

development, and fielding of large, complex systems-of-systems as follows:

1. Identification of distributed-system attributes for controlling software in a

system-of-systems

2. Identification of real-time attributes for real-time controlling software in a

reactive system-of-systems

3. Development of system-of-systems architecture views from system-of-

systems view to component view in controlling software

4. Use of kernel in the controlling software of systems-of-systems to shape

the behavior of such systems to be dependable

5. Reduction of software complexity from an exponential factor for a

monolithic software program to a component-based construct in which the active

components are decoupled by data stores

6. Development of assertions from collaboration diagrams

7. Adapting component-based software engineering by advanced use of

assertions in interface contracts between components to assert protocols surrounding the

components in reactive systems

8. Providing evidence that formal methods can be applied to large, complex

system-of-systems developments

 45

VI. DEPENDABLE SYSTEM-OF-SYSTEMS

A. TRUSTWORTHY AND DEPENDABLE SYSTEM-OF-SYSTEMS
In general, we do not have the luxury of beginning a system-of-systems

development from scratch. We must work with the systems at hand that are in

development and in operational use. We cannot begin anew so we must find other

methods to apply to this common development situation.

Widely accepted definitions of a trustworthy and dependable system do not seem

to exist. Indeed, authors seem to blur the lines of definition in discussions of the

properties of trustworthiness, dependability, reliability, and fault tolerance. In [73] Neil

Storey defines dependability as the “…a property of a system that justifies placing one’s

reliance on it.” Andrew Tanenbaum and Maarten van Steen discuss dependability with

respect to fault tolerance and offer availability, reliability, safety, and recoverability as

key requirements for a dependable system. [75] Ivica Crnkovic and Magnus Larsson

state that trustworthiness indicates “… a user’s confidence that the system will behave as

expected.” [15]

Whereas many descriptions of dependable and trustworthy systems can be found,

we will blend the above descriptions of dependable and trustworthy for this research as

follows:

A dependable system is one that provides the appropriate levels of

correctness and robustness in accomplishing its mission while demonstrating the

appropriate levels of availability, consistency, reliability, safety, and

recoverability.

A trustworthy system is one that provides the appropriate levels of

correctness and robustness in accomplishing its mission while demonstrating the

appropriate levels of availability, consistency, reliability, safety, and

recoverability to the degree that justifies a user’s confidence that the system will

behave as expected.

 46

With respect to dependable and trustworthy systems, we define the following

properties in the context of a dependable system-of-systems:

Availability: The probability that a system is operating correctly and is ready to

perform its desired functions.

Consistency: The property that invariants will always hold true in the system.

Correctness: A characteristic of a system that precisely exhibits predictable

behavior at all times as defined by the system specifications.

Reliability: The property that a system can operate continuously without

experiencing a failure.

Robustness: A characteristic of a system that is failure and fault tolerant.

Safety: The property of avoiding a catastrophic outcome given a system fails to

operate correctly.

Recoverability: The ease for which a failed system can be restored to operational

use.

(N.B.: Other properties can be used to describe a dependable system; however,

we selected the above seven properties as these seven properties may be a minimum set

of properties for a dependable system-of-systems. Other properties such as security

might be enhanced by the techniques offered by this research (e.g., a security

component); however, for the scope of the research to be manageable, we will focus on

the above seven properties.)

B. CHALLENGES FOR DEVELOPING A DEPENDABLE SYSTEM-OF-
SYSTEMS
We must find new development methods for producing a dependable system-of-

systems that exhibits predictable behavior and fault tolerance during runtime. As

suggested in the assessment of previous research in the system-of-systems, our current

development techniques fail to support system developers in producing systems with

predictable behavior. Almost exclusively, developers rely on testing prior to fielding the

completed product to assess system behavior. Rather than discovering system behavior at

the end of the development phase, developers might apply techniques that support the

 47

design and realization of desired system behavior from the earliest phases of concept

development and requirements development.

In ballistic missile defense, the warfighter must have confidence that the BMDS

will correctly complete the kill chain in its operational environment regardless of the

conditions in the operational environment. That is, the BMDS must be a trustworthy

system. [57] Otherwise, the BMDS could engage non-threat objects such as satellites and

manned spacecrafts. Other impacts of not realizing a trustworthy BMDS could be failure

to launch at real threat objects that could result in tremendous loss of life in the U.S. from

delivered weapons of mass destruction.

In the battle-management operations of the BMDS, the computations for

discrimination, correlation, weapon assignment, and kill assessment must be correct and

robust. That is, the BMDS Battle Manager should demonstrate correctness in that it does

the right thing all the time and it is available all the time to engage potential threat

ballistic missiles. Additionally, the BMDS should demonstrate robustness in that it

handles unexpected states in a manner that minimizes performance degradation, data

corruption, and incorrect output.

C. BATTLE MANAGER CONSIDERATIONS
In the BMDS, the battle manager contains the controlling software. A sensor will

detect external signals (i.e., external stimuli) and process this information to send to the

battle manager that will make decisions based upon the input from the sensor and send

control data to a weapon for execution of tasks. As the controller in the BMDS, the battle

manager must be a trustworthy and dependable system within the system-of-systems; that

is, the battle manager must execute and complete its functions correctly and robustly.

The battle manager must ensure that the kill chain is correctly executed in the

BMDS. In all likelihood, a ballistic missile attack will involve multiple missiles so that

the battle manager will be controlling the engagements on multiple, concurrent kill

chains. The battle-management software must provide a degree of trustworthiness that is

commensurate with the critical functions of battle management. Software system failures

could result in massive civilian casualties.

 48

In our consideration of dependable software in the battle manager, we should

consider the development of specifications, interfaces, BMK, distributed system design,

and real-time design. Our seven properties of a dependable system apply to each of

these areas; however, each area has unique considerations that we should consider as

follows:

1. Distributed System Design
The behavior of the system-of-systems with respect to distributed system behavior

is equally as important as the functionality designed into the applications. The

correctness of the computations in the system-of-systems applications is dependent on the

supporting distributed-system implementation. We will discuss distributed systems in

depth in Chapter VII.

2. Real-Time Design
If the battlespace imposes deadlines that the system-of-systems must meet, then

one should consider developing the system-of-systems as a real-time system. We should

ensure that the battle manager produces its results of computation to meet the deadlines in

the kill chain. This will involve the consideration of concurrency of kill-chain activities

as well as establishing computational priorities of the kill-chain activities. We will

discuss real-time systems as applicable to the battle manager in Chapter VIII.

3. System-of-Systems Architecture
As suggested in the findings of the assessment of previous work, an architecture

could be a key contributor towards the successful development of a system-of-systems.

We will develop architectural views of the system-of-systems and discuss the framework

of the controlling software in Chapter IX.

4. Battle-Management Kernel
The BMK must coordinate the work of the battle manager (not to be confused

with the scheduling of work by the real-time operating system). The BMK must assign

the appropriate sensor support to a weapon when assigning that weapon to engage on an

assigned track. The BMK must monitor each engagement through its conclusion. The

BMK must control the access of shared resources (i.e., weapons and sensors) to ensure

that two or more processes do not attempt to concurrently manipulate variables and

parameters in the shared resources. Finally, the BMK must ensure that the applications

 49

appropriately handled runtime faults. While the discussion on developing formal

specifications and testing the formal specifications to determine the level of correctness

and robustness in the evolving software is applicable to the development of the software

in the kernel, we will discuss the BMK in depth in Chapter X.

5. Components and Interfaces
Given the component-based approach that we proposed, the interfaces between

the BMK and the components must provide the required services for each interface while

appropriately constraining the input and output parameters of each component. We will

discuss components and contract interfaces in Chapter XI.

6. Development of Specifications
Recall that our definition of a dependable system included seven properties:

availability, correctness, consistency, robustness, reliability, safety, and recoverability. If

we desire the battle manager to exhibit the appropriate levels of these properties, then we

should specify what an appropriate level would be for each property. We will discuss

developing and testing the formal specifications to determine the level of achievement of

the seven dependability properties for the battle manager in Chapter XII.

 50

THIS PAGE INTENTIONALLY LEFT BLANK

 51

VII. DISTRIBUTED SYSTEM ENVIRONMENT

A. BATTLE MANAGEMENT IN A DISTRIBUTED ENVIRONMENT
We reviewed the battle-management issues that David Parnas identified from his

assessment of the Strategic Defense Initiative. [61] Among those issues, Parnas offered

that battle-management computing will be accomplished through a network of computers

that are connected to sensors and weapons as well as other battle-management computers.

Given that a single sensor cannot view the entire battlespace, the future direction in

defense acquisition is to connect the available sensors into a network from which

warfighters can obtain information for the entire battlespace of interest. Given that a

single weapon cannot engage all potential threats in the battlespace, DoD development

organizations are attempting to connect the available weapons into a network from which

warfighters can assign the appropriate weapon to an identified threat in the battlespace of

interest.

To control these resources, warfighters require a battle manager that performs

computations on received sensory information and makes assignments of weapons to

threats in a coordinated fashion; that is, warfighters require a hierarchical and

coordinating authority to direct the engagements of identified threats in their battlespace.

Since the battlespace area can be as large as the entire globe such as the case for ballistic

missile defense, a single authority (i.e., centralized battle manager) may not provide a

timely and effective battle-management solution. Not only do warfighters require a

coordinated solution for the sensors and weapons, warfighters require a coordinated

solution for the various battle managers in the battlespace.

For these reasons, battle-management solutions will require a distributed system

that connects battle managers, sensors, and weapons. Indeed, the vision of network-

centric warfare is to join sensors, weapons, and C4I systems for integrated warfare.

[25][33][45][72][80]

In the past, system developers have attempted to connect defense systems through

data links that have served only to interconnect heterogeneous systems in accordance

 52

with complex protocol standards, but have not achieve DoD’s goals for system-of-

systems integration. [9] The result of these interconnections is a hobbling of disparate

systems that produce a system-of-systems with significantly limited dependability as

defined in [75].

Since the network-centric concept implies a distributed system, we should

consider the issues associated with distributed systems with respect to battle

management. For a battle-management distributed system, we should be very precise in

our definitions and assumptions in the development of such a system lest we design our

battle manager with inappropriate properties.

B. DISTRIBUTED SYSEM DEFINITION
It can be easy to connect a number of computers together with a given means of

communications; however, it is significantly harder to cause the software in that gang of

interconnected computers to perform and behave as desired. Leslie Lamport offered the

following observation as a result of a continuing problem in a distributed system: “A

distributed system is one in which the failure of a computer you didn't even know existed

can render your own computer unusable.” Lamport’s observation seems to be

characteristic of defense systems-of-systems. Far too often, defense acquisition

organizations equate connecting together a group of computers as effectively engineering

a distributed system. Before we define what we require in a distributed system for a

battle manager, we should define precisely what we mean by a distributed system.

Many definitions exist to describe a distributed system. Vijay Garg defines

distributed systems in [36] “…as those computer systems that contain multiple processors

connected by a communication network.” Andrew Tanenbaum and Maarten van Steen

define a distributed system in [75] as “…a collection of independent computers that

appears to its users as a single coherent system.” James Michael defines a distributed

system in [58] as “…any aggregation of automation that manages and mitigates the

conflicts and incompatibilities of a problem domain by generating an abstraction of the

domain.”

For this research, we define a distributed system as a system that has multiple

processors that are connected by a communications structure. We will not include any

 53

desired characteristics of a distributed system in the definition given that the properties of

an operational distributed system may include undesired behaviors; however, the system

is a distributed system nonetheless.

C. BATTLE MANAGER CONSIDERATIONS
Key characteristics of a battle manager within a system-of-systems might include

the following: (1) a distributed network, (2) an operational battlespace that includes land,

sea, air, and space, (3) capability to address multiple targets that can threaten a specific

theater of operations or region of the world, (4) management of concurrent battlespace

activities, (5) automated decision making regarding the release or hold of lethal weapons,

and (6) stringent requirements for high levels of dependability of the systems that provide

BMD capabilities due to the fact that the encountered threats will consist of weapons of

mass destruction.

The system-of-systems in a given battlespace might include a large variety of

sensors, weapons, and battle-management components that will all be large, complex

software systems. The suite of weapons and sensors will most likely increase in number

during the acquisition lifecycle of the system-of-systems. The characteristics of these

future weapons and sensors are not well defined and will likely remain fluid for many

years. [61]

We can divide the battle-manager functionality into three major pieces: birth-to-

death tracking, weapon assignment, and kill assessment. In the birth-to-death tracking,

the battle manager considers the first detection reports of one or more sensors, and –

through embedded logic – decides which reported objects are threat ballistic missiles by

assessing incoming sensor information. After the birth-to-death tracking has identified a

threat object, the weapon-assignment feature will pair an available weapon with known

health and status to that threat object for the purposes of engagement. Following the

engagement opportunity, the battle manager will assess incoming information to

determine whether the interceptor negated the threat object. If not true, then the battle

manager must assign a weapon to re-engage with the threat object.

For this research, we will consider three hypothetical battle managers in a

hierarchical structure: Theater Battle Manager, Regional Battle Manager, and Homeland

 54

Defense Battle Manager. Homeland defense can have precedence over Regional and

Regional can have precedence over Theater. We will assume the following statements

are true for the notional battle managers in our case study:

· Information sources may be global.

· Computations must be completed without depending on other battle

managers.

· Peripheral components (e.g., C2) can impact the computation.

· Threat objects may be observed at more than one battle manager.

· A sensor may be associated with multiple battle managers – all of which

can request services from that sensor, but only one battle manager’s request can be

fulfilled at any given time.

· A weapon may be associated with multiple battle managers – all of which

can request engagements from that weapon, but only one battle manager’s request can be

fulfilled at any given time.

· Only one weapon will be assigned at any point in time to a single threat

object. That is, there will not be a situation in which two or more weapons are

simultaneously assigned to engage a single threat object.

· Each battle manager may have different sensors and weapons associated

with it. These configurations are dynamic in that additional sensors and weapons may be

added to the control of a battle manager. Conversely, sensors and weapons may be lost to

the control of a battle manager.

· Battle managers may be isolated from other battle managers due to

communications failures or the loss of a battle manager in battle. Each battle manager

must have the capability to continue operations as well as assume operational control of a

lost battle manager’s battlespace.

· Legacy systems within the system-of-systems are not easily modified due

to political, funding, and technical reasons. Solutions for a battle manager should not

assume significant modifications to legacy systems.

 55

· The timelines for engagements are measured in a handful of minutes. As

such, the response to external events must be timely.

The battle managers will form a distributed system into which the BMD

peripheral components will interface. As is characteristic of a distributed system, the

battle managers in the network will not operate from a shared clock as it is difficult to

precisely synchronize the clocks of various processors in a distributed system given that

some measure of variable latency is inherent in communications. Additionally, detecting

failures is difficult in an asynchronous distributed system given that a process cannot

easily determine the difference between a slow processor and a halted processor. Finally,

all memory will be local to a battle manager and it will not be shared by other battle

managers as it is difficult for any one processor in the distributed system to determine the

global state of the system.

Timing is a very important issue in the battle-management problem – especially in

the birth-to-death tracking feature. Consider the problem of correlating received track

data from multiple sensors that have overlapping coverage in the battlespace. The ability

of a battle manager to correlate received track data depends on (1) achieving and

maintaining a geodetic reference, (2) removing individual sensor bias, and (3) accuracy

of the timestamp embedded in the track data. (N.B.: Geodetic referencing and sensor

bias are not issues for this research.)

Consider developing a track-correlation algorithm which did not require that the

synchronized timestamps of tracks from different sensors. Given that a track’s position

in the battlespace is relative to time, it is not fathomable to correlate tracks from different

sensors that do not have synchronized timing. This must be a requirement for the sensors

that provide track data to the BMDS battle managers.

As such, the current solution for this problem is to use the Global Positioning

System (GPS); however, this design solution places a high dependency on the

performance, accuracy, and dependability of GPS. Additionally, the latency errors in

GPS transmission and internal sensor time stamping must be bounded, and considered in

the correlation algorithms of the battle manager. While GPS-transmission latency is

 56

understood, it is difficult to know how a sensor applies timestamp within its track

processing; that is, the application of a timestamp to track data is not standardized across

all sensors. One sensor may apply the timestamp as the last step prior to transmission to

the battle manager. Another sensor may apply the timestamp as first observed by the

sensor.

We should consider the ability to detect failures in the distributed system to

satisfy the seven dependability properties that we previously identified. A crashed battle

manager is not easily distinguishable by another battle manager without careful design of

a failure-detection solution in the distributed system. Without a failure-detection

solution, a battle manager may wait forever for a message to arrive from a failed or lost

battle manager. We should consider the incorporation of redundancy methods to handle

battle-management failures. For example, we could employ error-correction coding

techniques to correct a designed number of transmission errors in a message. We could

employ a time-out scheme that allow a battle manager to wait for a specified time before

resending a message to another battle manager. We could turn to physical redundancy of

either software or hardware to increase the opportunities for successful operations. We

could design each battle manager to raise an exception when that battle manager

determines that another battle manager has failed. For such an exception, software

engineers should develop an appropriate error-handling technique to overcome a failed

battle manager.

A battle manager will be aware of its local state but not the state of other battle

managers. While this characteristic is appropriate for the majority of battle-management

functions, it is not satisfactory for continuity of operations given the failure or loss of

another battle manager. In the event of a failure or loss of a battle manager, another

battle manager must assume the responsibilities of the lost battle manager without

interruption of battle-management services.

To solve the problem from a failed or lost battle manager, we can employ an

election algorithm to designate the coordinator in the battle-manager distributed network.

If a battle manager is determined to be lost (e.g., failure to receive a health and status

message from a battle manager), the coordinator would designate the control of the lost

 57

battle manager’s responsibilities to another battle manager until the original battle

manager rejoins the distributed network.

The implementation of an election algorithm addresses another problem among

battle managers which is access to the critical section of a distributed system. For the

battle managers, we will consider the critical section to be the sensors and weapons of the

BMDS. Recall that a sensor can only fulfill sensor tasking requests from a single battle

manager at any given time. This is also true of a weapon. The problem is one of mutual

exclusion. The solution to the mutual exclusion problem must satisfy the properties of

safety (i.e., two processes cannot have simultaneous access to the critical section),

liveness (i.e., every request to access the critical section should be granted eventually),

and fairness (i.e., requests to access the critical section should be granted in the order that

these requests are made).

For safety reasons, it is not desirable to have the situation in which multiple battle

managers are attempting to direct a sensor’s resource-management software.

Additionally, it is not desirable to have the situation in which multiple battle mangers are

attempting to simultaneously direct a weapons launcher at multiple targets. These two

situations could generate outcomes that are unpredictable and potentially hazardous to

allied forces and assets.

For liveness reasons, it is desirable to have each battle manager eventually access

the critical section as requested. Given that a sensor has redirected its field of regard to

satisfy the request by one battle manager, it is not desirable to break that access until the

original request is fulfilled. The battle-manager should have the ability to direct the

second battle manager’s request to another sensor of equal ability to satisfy the request.

This situation is true for multiple battle managers’ request to a weapon.

For fairness reasons, it is desirable to grant requests in the order that the battle

managers generate the requests to access the critical section. Each battle manager has an

essential mission to perform so each request must be granted fairly to achieve maximum

ballistic missile defense.

 58

There are numerous algorithms that provide mutual exclusion in the critical

section. There are pros and cons for each algorithm. For this research, we will consider a

centralized algorithm, a distributed algorithm, and a token-ring algorithm.

In the centralized algorithm, each battle manager would request access to the

critical section from the coordinator. If the coordinator determines that access is

available, then the requesting battle manager would be granted access to the critical

section. If another battle manager currently has access to the critical section, then the

coordinator cannot grant access to the requesting battle manager; however, the

coordinator queues the request for when the occupying battle manager vacates the critical

section. This centralized algorithm satisfies the safety, liveness, and fairness properties.

Only one battle manager can gain access to the critical section at any given time. All

requests will eventually be fulfilled. Requests are satisfied in the order each request is

made. The downside to this algorithm is that the coordinator becomes a single point of

failure in the battle-management network. If the coordinator crashes, then the battle-

management may go down. Additionally, the coordinator could become a bottleneck in

the battle-management network.

In the token-ring algorithm, a token is passed from battle manager to battle

manager in a prescribed pattern of token passing. This token must be held by a battle

manager to access the critical section. If a battle manager receives a token, it checks to

see whether it desires to enter the critical section. If so, the battle manager accesses the

critical section and performs its work. After it leaves the critical section, the battle

manager passes the token on to another battle manager. If not, then the battle manager

passes the token on to another battle manager. The token continues to circulate in the

prescribed pattern until a battle manager desires to access the critical section. The

distributed algorithm satisfies the safety and liveness properties; however, it does not

satisfy the fairness property as previously defined. Only one battle manager can gain

access to the critical section at any given time. All requests will eventually be fulfilled.

Requests are satisfied as the token becomes available. Every battle manager will have

access to the token during every token-passing circuit on the network. Access is fairly

granted but requests are not granted with respect to the time the request is made. The

 59

downside of this algorithm is that the detection of a lost token on the network is difficult

in which to distinguish from the situation in which the token is being used by any given

battle manager on the network. Additionally, if a battle manager fails or is lost, the

prescribed pattern of token passing is interrupted.

In the distributed algorithm, a battle manager constructs a message that indicates

the name of the critical section that it wants to access. This message is sent to all other

battle managers. When another battle manager receives the access-request message, it

will perform one of the following three actions based upon its current state:

1. If the battle manager is not in the requested critical section and does not

want to enter the requested critical section, it will send an “OK” message back to the

requesting battle manager.

2. If the battle manager is in the critical section, it will queue the request for

access.

3. If the battle manager is not in the requested critical section but wants to do

so, it will compare the timestamp on the requesting message to the timestamp on its own

request message. The battle manager honors the message with the older timestamp. If

the received message has an older timestamp, then the battle manager sends an “OK”

message to the requesting battle manager. If the received message has a younger

timestamp, then the battle manager queues the request message and waits for action on its

access request.

The distributed algorithm can satisfy the safety, liveness, and fairness properties

for the BMDS Battle Manager. Only one battle manager can gain access to the critical

section at any given time. All requests will eventually be fulfilled. Requests are satisfied

in the order each request is made. The downside of this algorithm is that each battle

manager on the network is a potential point of failure; that is, if a battle manager is lost or

failed, it will not respond to access requests from other battle managers. Consequently,

this “silence” will be interpreted as a denial of access by battle managers that have

 60

submitted access requests to the critical section. Additionally, every battle manager in

the network is a potential bottleneck given the number of messages generated for each

access request.

D. TECHNICAL CONTRIBUTION
For the first technical contribution in this research, we identified distributed

system attributes for developing the controlling software in a system-of-systems. The

design of distributed systems is not a trivial problem. It involves the consideration of

issues that may not be typically considered in single-node system. In the design of a

distributed system, we should recognize that synchronized clocks, detection of failures,

and awareness of global state are difficult to accomplish in distributed systems. Also, we

should uphold the properties of safety, liveness, and fairness in the consideration of

mutual exclusion solutions for the access to the critical section.

 61

VIII. REAL-TIME ENVIRONMENT

A. BATTLE MANAGEMENT IN A REAL-TIME ENVIRONMENT
The battle-management system will be a reactive system. That is, the battle-

management system behavior will be characterized with respect to its response to

external events in the operating environment. As Parnas noted in [61], the battle-

management software must identify, track, and direct weapons towards targets whose

characteristics may not be known with certainty until the moment of battle. The battle-

management software must discriminate the threat objects from decoys and debris.

Given that the battle-management system may be processing information on up to

thousands of objects as in the ballistic missile defense battlespace [13], we will require

the battle-management system to concurrently process a significant number of tasks.

Parnas further noted that the battle-management software will have absolute real-

time deadlines for the computation that will consist of periodic processes to include

detecting and identifying potential threat missiles, assigning a weapon to engage the

threat missile, and providing an assessment of the interceptor-threat missile engagement.

Because of the unpredictability of the computational requirements of each process,

developers cannot predict the required resources for computation. [61] We must develop

an approach that bounds the computational requirements for the battle-management

system.

B. REAL-TIME SYSTEM DEFINITION
Engineers and designers oftentimes equate “real time” with “real fast.” This

misperception has permeated the thinking of system engineers as they discuss “near-real-

time systems” that exhibit “near-real-time performance.” This thinking may have

originated in the business-systems world from the concept of “near-real-time

transactions” which is intended to mean somewhat fast transactions. Regardless of the

origin, the phrases “near-real-time” and “real-time” can be found in system specifications

to describe the desired performance conditions of fast and very fast, respectively.

There does not seem to be a universally accepted definition for a real-time

system; however, many common themes seem to permeate from the offered definitions.

 62

In [30], Bruce Douglass defines a real-time system as “…one that has performance

deadlines on its computations and actions.” Hassan Gomaa states in [41] that “…real-

time systems are concurrent systems with timing constraints.” In [52], Jane Liu suggests

that “… a real-time system is required to complete its work and deliver its services on a

timely basis.”

Real-time systems are frequently reactive systems in that real-time systems are

event-driven and must respond immediately to stimuli from an external environment in

which the real-time system exists. (N.B.: For this research, we define a reactive system

as a system for which its behavior is primarily caused by reactions to external events as

opposed to being internally generated stimuli. [30]) This external environment is

typically non-human and involves input data from mechanical processes or alarm

conditions. From sensory input data, real-time systems commonly make control

decisions that are without human intervention. [41]

For this research, we define a real-time system as one for which producing correct

computations as a result of an external event is equally as critical as meeting the

performance deadlines for those computations.

C. BATTLE-MANAGEMENT COMPUTATION DEADLINES
We identify the hard deadline for the battle manager in the context of the kill

chain. Recall the five functions of the kill chain: Detect, Track, Assign Weapon,

Engage, and Assess Kill. Along the kill chain is a point called keep-out altitude which

we define as follows: The keep-out altitude for ballistic missile defense is the lowest

altitude above an area on the surface of the Earth for which an engagement must occur to

minimize the ground effects of debris from the engagement. The issue is that the debris

from the resultant engagement will fall back to Earth, and it may contain nuclear,

chemical, or biological agents that can negatively impact humans and assets in the

volume of the debris fallout. The keep-out altitude is noted in Figure 1.

 63

Figure 1. Keep-Out Altitude in Kill Chain

Note that the keep-out altitude drives the deadlines in the battle manager.

Considering the fly-out time of the interceptor and the velocity of the ballistic missile, the

interceptor must be released in advance of the ballistic missile descending to the keep-out

altitude. (N.B.: For this research, we define fly-out time as the time difference from the

time of launch of the interceptor to the time of engagement of the ballistic missile threat.)

For the interceptor to be launched in time for the engagement to occur at or above the

keep-out altitude, the battle manager assigns the ballistic missile track to a weapon

assignment in sufficient time for the weapon system to develop a fire-control solution and

launch the interceptor. (N.B.: For this research, we define the fire-control solution as the

collection of calculations by a weapon system to determine the point of intercept, launch

angle, and time of launch of an interceptor.) The weapon assignment in the battle

manager is dependent on the determination of a ballistic missile threat in the sensor data

which must be discriminated to identify threat objects, and potentially correlated to

determine the true number and position of threat objects. (N.B.: For this research, we

define discrimination as the capability to distinguish a threat object from benign objects

such as debris, chaff, countermeasures, and satellites. Furthermore, we define correlation

Keep-out Altitude

Interceptor Release

Weapon Assignment
Threat Determination

Detection

Threat Missile Interceptor

Response is to external events
Late response is incorrect response

 64

as the capability to associate one track with one sensed object.) Thus, the deadlines in the

kill chain are: (1) identification of threat objects and (2) weapon assignment to a threat

object.

The hard deadlines must be calculated for each threat ballistic missile and will not

be fixed; that is, the hard deadlines will be a function of battlespace conditions to include

such characteristics as: (1) the selected shot doctrine (e.g., shoot at point of highest

percentage of a kill probability as depicted in Figure 2 or shoot an interceptor – assess the

kill – shoot again if necessary: shoot-look-shoot as depicted in Figure 3), (2) velocity of

the ballistic missile threat, and (3) fly-out time of the interceptor.

Figure 2. Shoot at Highest Percentage Shot Opportunity

Note that soft real-time deadlines may exist for which the battle manager must

address. We will differentiate a hard deadline from a soft deadline as follows: a hard

deadline that is missed may be considered to be a fatal fault while a soft deadline that is

missed is considered undesireable. For example, developers may specify a deadline for

detection that should be met within 60 seconds of launch. If the battle manager

completes the deadline 20 seconds late, then this is undesireable but not a fatal fault.

This is an example of a soft deadline. If the battle manager completes the weapon

assignment so late in the kill chain that the weapon cannot launch the interceptor in time

to engage the threat at or above the keep-out altitude, then this is a fatal flaw as the

Keep-out Altitude

Interceptor Release

Weapon Assignment
Threat Determination

Detection

Shoot Once – Highest Percentage of Kill Probability

Interceptor

 65

ground effects from the engagement may cause either human fatalities or loss of assets.

This is an example of a hard deadline.

Figure 3. Shoot-Look-Shoot

While the battle-management deadlines within the kill chain are a function of

numerous variables, we offer the information in Table 1 that provides approximate time

values for the required battle-management response times to a detected threat. For this

research, we define response time as the time required to complete an activity in the kill

chain. (N.B.: We offer the battle-management response times for addressing ballistic

missile threats as a point of reference rather than absolute values. [55] offers a detailed

analysis of response times for various missile types and atmospheric conditions.)

Table 1. Ballistic Missile Threat Flight Times *

.

BM Class
(kilometers)

Flight
Time

(seconds)

Boost
Time

(seconds)

Mid-
course Time

(seconds)

Terminal
Time

(seconds)

1000 443 50 377 16
3000 767 75 682 10

* We offer the flight times for ballistic missiles in the three phases for minimum energy trajectories as a point of
reference rather than absolute values. [55] offers a detailed analysis of flight times for various missile types and
atmospheric conditions.

Keep-out Altitude

1st Interceptor Release
1st Weapon Assignment

Detection

Shoot-Look-Shoot

Kill Assessment

2nd Weapon Assignment

2nd Interceptor Release

Threat Determination

Interceptors

 66

Given that current infrared satellite technology requires a minimum of three hits

to determine a trajectory, then the minimum time to detect a ballistic missile launch is 30

seconds. These 30 seconds must be subtracted from the flight time in the calculation of

the maximum available battle-management response time. Since the intercept must occur

above the minimum altitude above the defended assets, then we must subtract 16 seconds

and 10 seconds from the flight times of the 1000 kilometer and 3000 kilometer ballistic

missile threats respectively. For the 1000 kilometer ballistic missile threat, the

maximum battle-management response time to complete the kill chain is 397 seconds or

6.6 minutes. For the 3000 kilometer ballistic missile threat, the maximum battle-

management response time to complete the kill chain is 727 seconds or 12.1 minutes.

So, the battle manager must detect the ballistic missile threat, track the threat,

assign a weapon to the threat, authorize the launch of an interceptor, observe the

engagement, conduct a hit assessment of the engagement, track any residual remaining

threat, assign a weapon to any residual threat, and authorize the launch of the interceptor

– all within the calculated maximum battle-management response time. [55] offers that

an interceptor with a range of 500 kilometers and a final velocity of 2.0 kilometers per

second would have a maximum flight time of 313 seconds for the maximum range. This

would leave a maximum of 84 seconds for the detection, tracking, weapon assignment,

launch authorization, and hit assessment for the defense against the 1000 kilometer

ballistic missile threat. Note that there is insufficient time to launch a second interceptor

if the first interceptor failed to negate the threat. The maximum time remaining for a

3000 kilometer ballistic missile threat would be 414 seconds or 6.9 minutes. This would

leave sufficient time for a second interceptor launch; however, the maximum battle

response time to complete the required kill-chain activities for a “shoot-look-shoot”

engagement (i.e., one interceptor, hit assessment, second interceptor) would be reduced to

101 seconds.

If we equally divide the maximum available battle-management response time for

each interceptor, then the timeline would be as shown in Table 2.

 67

Table 2. Battle-Management Response Times *

Given that a late computation in either battle-management deadlines will result in

a late engagement below the keep-out altitude, the battle-management system might be a

real-time system. If an engagement occurs below the keep-out altitude, then the debris

fallout could result in the loss of human life and the contamination of physical assets.

The battle-management system must support the timely execution of these hard

deadlines. (N.B.: For this research, we define a deadline as a point in time or a delta-time

interval by which an action of the battle-management system must occur. [30]) The

battle-management system must ensure that the required resources to execute its highest

priority tasks are available for execution of these tasks.

The battle-management system must complete computations on threat evaluation

based on sensor inputs from the ballistic missile defense battlespace and make decisions

on weapons assignment without human intervention. The correctness of the

computations and decisions by the battle-management system depends on the logical

correctness of the computations and decisions as well as the timely termination of the

computations and decisions – late computations and decisions will be wrong

computations and decisions.

BM Class
(kilometers)

Minimum
Detection

Time
(seconds)

Available Time
for Tracking,

Assign
Weapon,
Authorize
Launch

(seconds)

Maximum
Fly-out Time

for First
Interceptor
(seconds)

Available Time for
Hit Assessment,

Tracking, Assign
Weapon,

Authorize Launch
(seconds)

Maximum Fly-
out Time for

Second
Interceptor
(seconds)

1000

30

84

313

N/A

N/A

3000

30

50.5

313

50.5

313

* We offer the battle-management response times for ballistic missiles in the three phases for minimum energy
trajectories as a point of reference rather than absolute values. [55] offers a detailed discussion of response times
for various missile types and battlespace conditions.

 68

D. BATTLE MANAGER CONSIDERATIONS

1. Interaction With External Environment
The battle manager will continually receive asynchronous inputs from various

sensors to include radars and IR sensors. Based upon the location of the launch and

sensors that can detect and track the ballistic missile threat, the specific sensors and

number of threats will not be known to the battle manager in advance. As the battle

manager determines that a track is a ballistic missile threat, it must activate the weapon-

assignment software to complete the kill chain. As the weapon system engages a ballistic

missile threat, the battle manager will receive sensor inputs that it will process to

determine whether the interceptor destroyed the ballistic missile threat.

2. Timing Constraints
The battle manager must provide weapon assignments in sufficient time for the

weapon to launch an interceptor for an engagement above the minimum altitude

requirement of 15 kilometers for terminal-phase systems and 83 kilometers for mid-

course-phase systems. [55] If the engagements fall below these altitudes, then the

potential for the loss of human life is increased.

What is the risk of a late engagement below the keep-out altitude? Predictions of

the loss of human life are offered in the following examples:

a. The Department of Defense has determined that a ballistic missile

that delivers thirty kilograms of anthrax spores to an unprotected city could kill the entire

population in the area of five to twenty square kilometers. If a major population center is

defined as five thousand people per square kilometer, then the predicted loss of life from

a ballistic missile carrying a payload of thirty kilograms of anthrax spores could range

from 25,000 to 100,000 people. [55]

b. For a one megaton nuclear detonation at twelve to fourteen

kilometers over a major population center, most materials within twelve to fourteen

kilometers of the nuclear detonation will spontaneously ignite as a result of the heat

generated by the blast. If a major population center is defined as five thousand people

 69

per square kilometer, then the predicted loss of life from a ballistic missile carrying a

payload of a one megaton nuclear warhead could range from 1,130,000 to 1,540,000

people. [55]

The predicted loss of life for four major cities from the result of detonation of

weapons of mass destruction in the United States is presented in Table 3.

 Without question, the consequences of a late engagement due to a missed

deadline in the battle manager could be a significant loss of human life. Thus, a late

computation in the track processing and weapon assignment software in the battle

manager will be deemed as a wrong computation.

Table 3. Predicted Loss of life from Weapons of Mass Destruction

3. Concurrency
The track-processing software of the battle manager will execute discrimination

and correlation algorithms on the received sensor data to identify ballistic missile threats.

Additionally, the assign-weapon software of the battle manager must assign each

identified ballistic missile threat to a specific weapon system. Given the potential for a

high number of potential threat objects in the battlespace, the battle manager must

concurrently discriminate and correlate input data for a multitude of threat objects as well

CITY PEOPLE

PER KM2

LOSS OF LIFE FROM

3O Kg ANTHRAX

WARHEAD

LOSS OF LIFE FROM

1 MEGATON NUCLEAR

WEAPON AT 12-14 KMs

ABOVE CITY

Phoenix 990 4,950 - 19,800 223,740 - 304,920

Los Angles 938 4,690 – 18,760 211,988 – 288,904

Wash. D.C. 3,236 16,180 – 64,720 731,336 – 966,688

New York 10,291 51,455 – 205,820 2,325,766 – 3,169,628

 70

as concurrently assign a weapon to each threat object and monitor the engagement for a

possible re-engagement assignment to a weapon.

4. Predictability
The battle manager must respond immediately to external sensor stimulation and

execute its highest priority tasks as designed. In the interest of developing dependable

software, we must know that the battle manager will execute its highest priority tasks

without fail under all conditions in the battlespace. In the development of the battle-

manager software, we must be able to determine in the design phase that the battle

manager will meet its deadline requirements. Otherwise, we are leaving the meeting of

the deadlines to chance.

E. TECHNICAL CONTRIBUTION
For the second technical contribution in this research, we identified real-time

system attributes for developing the controlling software in a reactive system-of-systems.

In the development of the architectural views, BMK design, and BMK specification, we

should consider the real-time aspects offered in this research to include the interactions

between the BMDS sensors and shooters with the BMK, timing constraints, concurrency,

and predictability.

 71

IX. SYSTEM-OF-SYSTEMS ARCHITECTURE

A. ARCHITECTURE AND DESIGN
As Glinda the Good Witch of the North told Dorothy in her journey to find the

Wizard of Oz: “It's always best to start at the beginning, and all you do is follow the

yellow brick road." In the case of software development of a control function for a

system-of-systems, we assert that the yellow brick road is the architecture.

Why is architecture important?

Martin Fowler offers an insightful observation about architecture in [32]. At a

conference that he attended, an economist offered his analysis of the underpinning of the

agile concepts in manufacturing and software development. According to the economist,

one of the prime drivers of complexity is the influence of irreversibility. As software

developers make a design decision upon which all future design decisions will be

influenced, the design becomes irreversible at that point; that is, a design that is hard to

change is, for all intents and purposes, irreversible.

The role of the architect is to find ways to eliminate irreversibility in designs. [32]

The architect should ensure that today’s decision does not limit the flexibility of design

decisions tomorrow. We will adopt this philosophy in this research and attempt to avoid

irreversibility in the architecture of the battle manager.

In addition, developers of a system need to agree on the meaning of an

architecture, in addition to distinguishing architecture from design: there are many

formalisms—each with it own semantics—for specifying architectures and it is difficult

to define a brightline between architecture and design.

In [12], Clements et al. differentiate between an architecture and a design as

follows: an architecture is a design but not all design is an architecture. Furthermore,

they tell us that an architecture “…establishes constraints on downstream activities –

finer grained designs and code – that are compliant with the architecture, but architecture

does not define an implementation.” In short, the architecture defines bounds so that the

system can satisfy the required behavior, implementation, and quality objectives.

 72

In [2], Bass, Clements, and Kazman define software architecture as the

“…structure or structures of the system, which comprise software elements, the

externally visible properties of those elements, and the relationships among them.”3 The

externally visible properties are the assumptions that other elements may make of an

element to include “…provided services, performance characteristics, fault handling,

shared resource usage, and so on.”

In [67], Shaw and Garlan state that a software architecture is the structural aspects

of a system to include the “…organization of a system as a composition of components;

global control structures; the protocols for communication, synchronization, and data

access; the assignment of functionality to design elements; the composition of design

elements; physical distribution; scaling and performance; dimensions of evolution; and

selection among design alternatives.” Moreover, Shaw and Garlan describe a system’s

architecture as the “computational components and interactions among those

components.” Shaw and Garlan remind us that as the “…size and complexity of software

systems increase, the design and specification of overall system structure become more

significant issues than the choice of algorithms and data structures of computation.”

None of the preceding definitions of architecture are precise. Instead, the

definitions describe what are thought to be key aspects of an architecture: structure,

components, interactions of components, and system constraints.

Architecture may fit into a bin of concepts which defy a crisp, clear definition.

The bin could also include interoperability, integration, quality, reliability, and other

aspects of dependability. In an attempt to define one of the concepts in the bin, no one to

our knowledge has given a precise, universal definition.

Another confounding factor in the attempt to define these concepts is that they

may have different attributes depending on the context of the problem. For example,

3 In the first edition of [2], Bass, Clements, and Kazman identified the primary building blocks of a

system as components. Given the rising popularity of component-based software engineering, the authors
changed the primary building blocks of a system from components to elements with the intent of avoiding
confusion between their use of components in their definition of an architecture and the use of components
in component-based software engineering.

 73

interoperability between two word processors may have a different context than the

interoperability of sensors and weapons in the BMDS.

In [32], Fowler offers that an architecture is the shared understanding of a system

design. This definition implies two things: (1) an architecture represents that which

results in a common comprehension of the desired system behavior, its limits, and

operational environment and (2) humans must socialize that which comprises an

architecture. If one followed Fowler’s definition for an architecture, conceivably, all

descriptions and artifacts related to a system design could be considered to be the

architecture. However, the important implied statement in his definition is that humans

must determine the content of an architecture: the task of delineating between

architecture and design cannot be performed using a mechanical algorithm.

For this research, we define architecture and design as follows:

Architecture: the collection of logical and physical views, constraints, and

decisions that define the external properties of a system and provide a shared

understanding of the system design to the development team and the intended user of the

system.

Design: the details of planned implementation that are defined, structured, and

constrained by the architecture.

In these definitions, there is an implied responsibility of the system architect to

collaborate with the development team and the intended system user to document the

architecture. While numerous tools, artifacts, and methodologies exist on the market to

support the system architect, the content and usefulness of the architecture will be

dependent on the skill of the architect to select the appropriate tools, artifacts, and

methodologies that bring about a shared understanding of the system design. One can

argue that the shared understanding of the system design should be the primary objective

of architecting a system.

We will not attempt to develop either a complete set of architectural views or the

design of the controlling software for a system-of-systems in this research; however, we

will develop a set of views that range from an architectural view of the BMDS to the

 74

architectural view of a component in the controlling software so that the reader might

gain a shared understanding of one way to architect the controlling software in a system-

of-systems.

B. BATTLE-MANAGER BEHAVIOR

1. Introduction
We offer that the initial step in developing a system-of-systems architecture is to

define the system-of-systems behavior. Although numerous methods exist to define

system behavior, we favor the understanding of the operational concepts for the system-

of-systems, identification of user goals, and the development of use cases that outline the

required interactions between an actor and the system to achieve the user’s goals

As we develop the user goals and use cases, we will accumulate a list of

specifications for the system-of-systems that characterize the system behavior. (N.B.:

For this research, we define a specification as either (1) a desired system behavior that is

expressed as a feature, function, property, or capability, or (2) an undesired system

behavior that can be expressed as a limitation, constraint, negative (e.g., “the system must

not operate in this mode when…”), or condition. While the scope of a specification can

be expanded beyond system behavior, we chose to limit the scope of the definition of

specification to system behavior for this research.)

Specifications are different from the requirements of a system that acquisition

organizations have produced for many years. As traditional development approaches

mandated, engineers would use the formal users’ documents (e.g., Mission Needs

Statement, Operational Requirements Document) to develop functional requirements.

(N.B.: For this research, we define a requirement as a criterion that a system must meet.)

Typically, the formal requirements would define what a system must do, characteristics it

must have, and levels of performance it must attain. After completing this document, the

system engineer would allocate these functional requirements to developmental areas of

hardware, software, and skinware (i.e., people), and expand the requirements in the

development areas to include non-functional requirements such as reliability,

recoverability, and usability.

 75

At this point in the development, the hardware engineers would acquire hardware.

The communications engineers would purchase communication services and acquire

communication devices. Before the software engineers could outline a software

architecture, the engineers in the other developmental areas of focus would have saddled

them with hardware, operating system, database application, and communication

structures within which the software applications must be integrated. The less than

sterling results of this traditional approach to eliciting requirements and developing

systems include substantial cost and time overruns to deliver a product that contains

significant reductions in delivered functionality as compared to required functionality.

[49][50][69][70]

The senior leadership in defense acquisition recognized the so-called software

crisis in the early 1990’s and instituted significant acquisition reforms to the traditional

system-development approach. Capability-based acquisition is one such modification

with which defense acquisition organizations are struggling to incorporate in their

development processes. (N.B.: For this research, we define a capability as the ability to

perform a course of action or sequence of activities leading to a desired outcome.

Furthermore, we define capability-based acquisition as the process of identifying system

capabilities in terms of specifications and acquiring the software applications, hardware,

and information services to support these desired capabilities in an integrated

environment.) [20][26][28]

In the capability-based acquisition approach, the traditional products such as

formal requirements disappeared in favor of a natural language description of desired

capabilities. Although senior leadership within the U.S. DoD believe that they gain

greater insight on the definition of a system as compared to the development approaches

of the past, the development engineers have a daunting challenge of developing

acquisition documents that can be used to develop a system. Specifically in the software

area of focus, engineers recognized that software programmers cannot be handed merely

a laundry-list of capabilities to code. Software engineers should translate the list of

desired capabilities into specifications and design documentation to avoid the situation in

which programmers must interpret the design.

 76

To develop specifications, we should understand the source of specifications. For

this research, we will adopt the methodology for developing specifications that is

suggested in Figure 4. That is, we should recognize that development of specifications

ought to have a level of rigor in the process to support validation and verification of the

specifications. (N.B.: For this research, we define validation as the process of evaluating

a system or component during or at the end of the development process to determine

whether it satisfies specified requirements. Furthermore, we define verification as the

process of evaluating a system or component to determine whether the products of a

given development phase satisfy the conditions imposed at the start of that phase. [44])

Figure 4. Information Sources for Developing Specifications

In Figure 4, we propose that specifications represent the functional model of a

system. (N.B.: For this research, we define a functional model as a system abstraction

that contains the set of observations, modeling data, pre-conditions, post-conditions,

invariants, boundary conditions, and algorithms that describe the physical system.) To

develop the specifications of a system, we propose three sources of information be used:

(1) the list of desired capabilities, (2) functional requirements, and (3) battlespace

constraints. (N.B.: For this research, we define battlespace constraints as the forces,

facilities, and other features that serve to restrain, restrict, or prevent the implementation

Desired Capabilities

Specifications

Battlespace Constraints

Functional Requirements

Desired Capabilities

Specifications

Battlespace Constraints

Functional Requirements

 77

of proposed military improvements in the defined battlespace. Battlespace constraints

may include natural and physical forces, doctrine, threat descriptions, and environmental

features.)

Thus, we offer that a system’s specifications are the synthesis of desired

capabilities, functional requirements, and battlespace constraints. For this research, we

will anchor the development of the functional requirements to the UML use cases that

explored the achievement of the user goals. We will consider the impacts of the

battlespace constraints in the use cases. We will synthesize the desired capabilities with

the functional requirements and battlespace constraints to form the system specifications.

To develop the functional requirements, a kill chain could be identified for the

mission area of interest. (N.B.: For this research, we define a kill chain as the sequence

of activities that must occur to complete a mission goal.) The kill chain should represent

the high-level activities of the mission that can serve as a point of departure in developing

the use cases and vision document for use in identifying the system’s specifications.

Given that the kill chain captures the totality of the major mission functions, then one can

use the major mission functions to establish the initial set of user goals that span the

mission area; that is, one can restate the major mission functions of the kill chain in terms

of summary user goals with the confidence that summary user goals address the entire

mission area. At that point, one can define sub-goals to the summary user goals and

continue to define sub-goals as required.

With respect to the battle manager, we will identify a kill chain that defines the

military activities involved in destroying a potential adversary’s ballistic missile threat.

Before we begin developing the use cases and vision document for the battle manager, let

us examine the role of the battle manager in ballistic missile defense.

2. Planning, Command and Control, Battle Management
Because the BMDS Battle Manager will react in response to external events in the

battlespace, it will be deemed a reactive system. (N.B.: For this research, we define a

reactive system as one for which its behavior is primarily caused by reactions to external

events as opposed to being internally generated stimuli.) Because the BMDS Battle

Manager must meet hard deadlines along the kill chain, we propose that the BMDS Battle

 78

Manager software be developed as a real-time system. (N.B.: For this research, we

define a real-time system as one for which producing correct computations as a result of

an external event is equally as critical as meeting the deadlines for those computations.)

Battle management relies on two functions that influence the outcomes of battles:

planning and command and control (C2). For this research, we define planning as that

military planning that produces either an Operation Plan (OPLAN) or an Operations

Order (OPORD) to employ military force against an adversary. We define C2 as the

exercise of authority and direction by a properly designated commander over assigned

and attached forces in the accomplishment of the mission. Recall that our definition of

battle management for this research is the decisions and actions executed in direct

response to the activities of enemy forces in support of the Joint Chiefs of Staff’s concept

of precision engagement. [18]

Planning includes the initial lay-down of joint and coalition forces, rules of

engagement, provisioning, and re-supply. Planning “sets the table” for the military and

establishes the initial ruleset that the warfighters will follow at the onset of the battle.

Planning is a coordinated joint staff procedure used by a commander to determine the

best method of accomplishing assigned tasks and to direct the action necessary to

accomplish the mission. [21] Planning includes both deliberate planning and crisis-

action planning (CAP). Combatant commanders (COCOMs) conduct deliberate planning

to develop a military response to a future hypothetical contingency while CAP takes

place in response to a crisis in which the United States’ national security interests are

threatened and the President is considering a military response. [29]

C2 functions are performed through an arrangement of personnel, equipment,

communications, facilities, and procedures employed by a COCOM in planning,

directing, coordinating, and controlling forces and operations in the accomplishment of

the mission. [21] Through C2, the senior military leadership modifies and enhances the

initial ruleset that governs the battlespace. (N.B.: Battlespace is defined as the

environment, factors, and conditions that must be understood to successfully apply

combat power, protect the force, or complete the mission. This includes the air, land, sea,

 79

space, and the included enemy and friendly forces; facilities; weather; terrain;

electromagnetic spectrum; and the information environment within the operational areas

and areas of interest. [21])

3. Kill Chain4
Recall from previous discussion that the Joint Staff defined Precision Engagement

as follows:

…the ability of joint forces to locate, surveil, discern, and track objectives or

targets; select, organize, and use the correct systems; generate desired effects, assess

results; and reengage with decisive speed and overwhelming operational tempo as

required, throughout the full range of military operations. [23]

The basic construct of the definition for precision engagement is the identification

of the functional flow of military activities that must occur to engage a threat object.

This functional flow of military activities is colloquially known as the kill chain. The kill

chain defines what must occur from the moment of the detection of a threat through the

engagement to the determination of the negation of the threat.

Rather than capriciously defining a kill chain for the battle-management function,

we treat the functional flow of events that occur in the engagement of a military threat,

starting with an examination of the original work of Colonel John Boyd (USAF, Ret.) and

followed by the Navy’s functional construct for missile defense, the Army’s functional

flow of events for deep operations, the Air Force’s kill chain, and the Joint Chiefs of

Staff’s functional flow of events for theater ballistic missile defense (TBMD).

a. Observe-Orient-Decide-Act
Colonel John Boyd was an avid student of military engagements. From

his analysis of the engagement actions of commanders and famous battles, he formed a

concept of what is known today as the Observe-Orient-Decide-Act (OODA) loop. He

noted that in many of the engagements, one military force presented the other with a

series of unexpected and threatening situations with which they had not been able to keep

pace. The faster military force eventually defeated the slower military force. Boyd

observed that military conflicts are time-competitive.

4 Kill Chain discussion extracted from [10].

 80

In the OODA Loop, Boyd incorporated a temporal aspect in his analysis

of military decision-making before and during battle. Decisions and actions that are

delayed are often rendered ineffective because of the constantly changing circumstances.

When a military adversary is involved, the operation is not only time-sensitive but also

time-competitive. Time or opportunity neglected by one adversary can be exploited by

the other. [14]

According to Boyd, military conflict can be seen as a series of time-

competitive cycles through an OODA loop. Each military force in a conflict begins by

observing themselves, the physical surroundings, and the adversary. Next, the military

force orients itself; orientation refers to making a mental image or snapshot of the

situation. Orientation is necessary because the fluid, chaotic nature of conflicts makes it

impossible to process information as fast as military commanders can observe it. This

necessitates applying a freeze-frame concept and provides a perspective or orientation.5

Once we have an orientation, military commanders must make a decision. The decision

takes into account all the factors present at the time of the orientation. Finally, the

military commander must implement the decision. This requires action. One tactical

adage states: “Decisions without actions are pointless and actions without decisions are

reckless.” Then the cycle begins anew as military commanders believe that their actions

will have changed the situation. The cycle continues to repeat throughout a tactical

operation. [6]

The military force that can consistently go through the OODA loop faster

than the other enemy force can, ceteris paribus, gains a tactical advantage. By the time

the slower adversary reacts, the faster force is doing something different and the slower

adversary’s action may become ineffective. With each cycle, the action of the slower

military force becomes increasingly ineffective by an increasingly larger margin.

The aggregate resolution of these episodes will eventually determine the

outcome of the conflict. For example, as long as the actions of the faster military force

continue to prove successful, the slower military force will remain in a reactive posture

while the commander of the faster military force maintains the freedom to act. No matter
5 This is analogous to creating a materialized (i.e., stored) view of data by querying a database.

 81

how desperately the slower military force strives to accomplish its military objectives,

every action becomes less useful than the preceding one. As a result, the slower military

force falls farther and farther behind. [6][14]

b. Detect-Control-Engage
At a Millennial Challenges Colloquium presentation in April 2000, Vice

Admiral Rodney Rempt (then Rear Admiral and Deputy Assistant Secretary of the Navy

for Theater Combat Systems) discussed Naval theater air and missile defense for the

twenty-first century. He observed that some level of defense is the “price of admission”

for carrying the battle to the shores of potential adversaries. He discussed the threat to

the Fleet of cruise missiles, ballistic missiles, fighter-bombers, and unmanned aerial

vehicles (UAVs); these threats are steadily increasing in lethality, accuracy, and range.

Hence, Vice Admiral Rempt concluded that the Naval theater air and missile defense

must formulate and apply a concept of Detect, Control, and Engage. [65]

For the detect aspect of Naval theater air and missile defense, the concepts

of multi-spectrum sensor netting and data fusion must be realized from a variety of active

sensor arrays, passive staring infrared sensors, and bistatic radars. The timely and

accurate detection of current and future threats is absolutely essential in triggering

military action to negate the threat.

For the control aspect, the Navy should realize a network of planning

tools, automated decision aids, and the single integrated battle space. The Navy must

develop solutions to potential threats before the threats are realized. As in all

competitions and conflicts, planning and identifying potential engagement zones, rules of

engagement, and consequence management will lead to the success of Naval theater air

and missile defense.

For the engage aspect, the Navy should deliver the appropriate force to

negate current and future threats to the Fleet and its defended assets. The received

information must be processed in a timely fashion so that Naval officers can make timely

decisions for engaging potential threats. Indecision due to inconclusive or untimely

information can have catastrophic consequences to Fleet resources.

 82

c. Decide-Detect-Deliver-Assess
The Army defines targeting as the process of selecting targets and

matching the appropriate response to them on the basis of operational requirements and

capabilities. COCOMs use the functional construct of decide, detect, deliver, and assess

to transform a COCOM’s targeting intent into an engagement.

The objectives of targeting are to: (1) identify those resources that the

enemy can least afford to lose and (2) identify the greatest weakness of the enemy that is

most susceptible to attack by friendly forces. By attacking and destroying such resources

as munitions stockpiles, tactical communication centers, operations centers, the enemy

and his military assets are more vulnerable to the COCOMs’ battle plans. Successful

targeting enables the COCOM to synchronize intelligence, maneuver, fire-support

systems, and in addition to special operations forces, by attacking the right target with the

best system and munitions at the right time.

The decide function, as the first step in the targeting process, provides the

overall focus and sets priorities for collecting intelligence and planning attacks. Targeting

priorities must be addressed for each phase or critical event of an operation.

Detect is the next critical function in the targeting process. The

intelligence cell is the main figure in directing the effort to detect high-payoff targets

identified in the decide function. This process determines accurate, identifiable, and

timely requirements for collection systems.

The deliver function of the targeting process executes the target attack

guidance and supports the COCOM's battle plan once the high-payoff targets have been

located and identified. Some targets will not appear as anticipated. Target attack takes

place only when the forecasted enemy activity occurs in the projected time or place. The

detection and tracking of activities associated with the target becomes the trigger for

target attack.

Combat assessment is the determination of the effectiveness of force

employment during military operations. On the basis of battle damage assessment

(BDA) reports, the COCOM continuously estimates the enemy's ability to make and

 83

sustain war and centers of gravity. During the review of the effects of the campaign, re-

strike recommendations are proposed or executed. BDA is the timely and accurate

estimate of damage resulting from the application of military force, either lethal or non-

lethal, against a target. BDA in the targeting process pertains to the results of attacks on

targets designated by the commander. [18]

d. Find-Fix-Track-Target-Engage-Assess
According to General John Jumper (Chief of Staff of the United States Air

Force), today’s Air Force is a “community of stovepipes.” General Jumper wants to

achieve horizontal integration that he defines as the “…ability to fuse data from every Air

Force platform into a single repository of information, such as crews, planes, targets, and

loads.” His vision is to achieve horizontal integration through the assimilation of the

entire “kill chain” from a single source of information. General Jumper defines the kill

chain as find, fix, track, target, engage, and assess. [37]

As avowed by Lieutenant General Leslie Kenne (Air Force Deputy Chief

of Staff for Warfighting Integration), the Air Force must “close the seams” in the kill

chain by “integration of manned, unmanned, and space systems.” Historically,

technology limited the flow of information. Battlefield information delivery was limited

to the speed of the horses and the ability of the commander to assess the battlefield

information from afar. Execution was centralized as only the commander had the

situational awareness of the entire battlefield.

Consequently, reinforcement troops had no time to gain situational

awareness. Thus, troops had to rely on their commander to direct their movements and

placements, and hoped that the enemy had not conducted movements that countered the

commander’s situational awareness. [46]

Today, technology provides the potential to maintain situational awareness

for the entire military force. The military has developed an interconnected network of

information with the objective of providing timely and accurate information to all points

of the battlespace. The stovepipes discussed by General Jumper prevent the achievement

of this objective and prevent effective battle-management in the battlespace.

e. Detect-Identify-Locate-Track-Destroy

 84

In recent years, the threat of missile attack to American forces and allies in

foreign lands has dramatically increased. The proliferation of theater missiles to

numerous nations, advances in missile technology, and the pursuit of weapons of mass

destruction have provided potential adversaries with a lethal-attack capability against

United States’ interests. This fact has forced the United States to address the potential

threat that these missiles pose to National security.

As outlined by the Joint Chiefs of Staff, theater missile defense applies to

the “…identification, integration, and employment of forces supported by other theater

and national capabilities to detect, identify, locate, track, minimize the effects of, and/or

destroy enemy [theater missiles].” Through this process, military commanders should be

capable of countering threats from theater missiles and have the capability for rapid

global deployment and theater mobility. [22]

f. Detect-Track-Assign Weapon-Engage-Assess Kill
For this research, we will employ a kill chain that consists of the following

five functions: Detect, Track, Assign Weapon, Engage, and Assess Kill. These five

functions address all the functions outlined in the definition of precision engagement to

which the Joint Chiefs of Staff subscribe, in addition to all of the functions identified in

the Boyd, Navy, Army, Air Force, and Joint Chiefs of Staff functional models.

Of the five kill chains described in the preceding paragraphs, only the

Army and the Air Force identified an assess function that is required to determine

whether the threat object is indeed negated. The assess function is essential to complete

the engagement as defined by the Precision Engagement. The fix function of the Air

Force kill chain is captured within the track function of our defined kill chain.

As can be observed in Table 4, the proposed kill chain is complete with respect to

addressing the major functions required to negate a threat object.

C. ARCHITECTURE

1. System-of-Systems Considerations
The nature of global ballistic missile defense drives the assumption that the

BMDS Battle Manager must provide services in every potential theater of battle as well

as the defense of our homeland:

 85

Table 4. Summary of Kill Chains

Recall the following from Chapter II: The flight time for a ballistic missile with a

range of 1000 kilometers is approximately 7.4 minutes and the flight time for a ballistic

missile with a range of 3000 kilometer is approximately 12.8 minutes. Moreover, the

available time for tracking, assigning a weapon system, and authorizing a launch is

approximately eighty-four seconds for a ballistic missile with a range of 1000 kilometers

with no possibility of a second-shot opportunity if the first shot is not successful. In

addition, the available time for tracking, assigning a weapon system, and authorizing a

first launch opportunity is approximately fifty-one seconds for a ballistic missile with a

range of 1000 kilometers and approximately fifty-one seconds for a second-shot

opportunity if the first shot is not successful.

With the knowledge of the short timelines to conduct battle management for

missile defense, it is not possible to realize the battle-manager capability in a centralized

fashion. That is, it is not reasonable to expect such a system to be positioned in location

within the United States and require the system to direct the engagements of all possible

ballistic missiles from all parts of the globe as described in Chapter I. As such, we will

consider a distributed system construct for the BMDS Battle Manager. (N.B.: For this

research, we define a distributed system as one that has multiple processors that are

connected by a communications structure.)

Boyd Navy Army Air Force JCS Dissertation

Observe Detect Decide

Detect

Find

Detect Detect

Orient Fix

Track

Identify

Locate

Track

Track

Decide Control Target Assign Weapon

Act Engage Deliver Engage Destroy Engage

 Assess Assess Assess Kill

 86

The distributed battle manager must be able to communicate with all the sensors

and all the weapons systems in the BMDS; however, the distributed battle manager

should be transparent from the perspective of the sensors and weapons connected to it.

(N.B.: For this research, we define transparent as a distributed system that appears to be

a single system to the users that operate the distributed system, and the applications that

reside and execute on the distributed system. [75])

The BMDS Battle Manager may continually experience modifications and

upgrades to its applications. As such, it would be useful to isolate the software that will

change slowly over time from the software that will change more frequently. From the

discussion of the kill chain, it seems apparent that the basic five functions of battle

management will remain regardless of the methods in which we realize the battle

manager. For example, the basic structure of track processing and weapon assignment

may change occasionally as required. However, the computation methods used in track

processing and weapon assignment are likely to change frequently as new algorithms

evolve and new technologies emerge.

To this point, we have established that the battle manager must have interfaces

with the sensors and weapons connected to it. Additionally, the battle manager will be a

distributed system for which its properties might be transparent to the weapons and

sensors connected to it. Finally, the battle manager may experience change over time.

While the basic tenets of battle management will hold true, the methods of computation

in the battle manager may experience frequent changes.

2. BMDS Architecture
Before considering the battle-manager architecture, we will set the context for the

BMDS. We will model the controlling software in the BMDS as a reactive system as

depicted in Figure 5.

 87

Figure 5. Reactive System Model

In our model, we consider the Battle Manager to be the Controller as depicted in

Figure 5; that is, the Sensor will detect external signals (i.e., external stimuli) and process

this information to send to the Controller. The Controller will make decisions based on

the input from the Sensor and send control data to the Actuator (i.e., BMDS weapons) for

execution of tasks. This results in the system response from the reactive system. The

Sensor will sense new signals as a result of any environmental change that was stimulated

by the Actuator and so the cycle continues.

From an external view of the BMDS Battle Manager, we depict a number of

interfaces between the BMDS Network and external C2 systems, sensors, and weapons.

We depict the Battle Manager interfaced with the BMDS Network as the controlling

software in the system-of-systems. For this research, we define the external view of the

BMDS as the logical construct of the subsystems of the BMDS from a black-box

perspective. Our external view of the BMDS is depicted in Figure 6.

REACTIVE SYSTEM

SENSOR CONTROLLER ACTUATOR

sensor
data

control
dataexternal

stimuli
system

response

 88

Figure 6. External View of BMDS Battle Manager

3. Battle Manager Architecture
From the perspective of the internal view of the BMDS Battle Manager, recall

that we want to separate those applications that may change infrequently over time as

compared to those applications that may change frequently. For this research, we define

the internal view of a battle manager as the logical construct of the components that

compose the battle manager. We desire to physically separate the two categories of

components (i.e., those components that may change infrequently and those components

that may change frequently) through a distinct interface so as to facilitate the anticipated

changes of the components in the fielded system.

We propose to employ the concept of component-based engineering to design and

develop the internal view of the BMDS Battle Manager. For this research, we define

component-based engineering as the design and development of a system through the

assembly of components which can be developed independently of the system, and we

define a component as a software unit of composition with contractually specified

BMDS Battle ManagerBMDS Network

C2 System 1

C2 System 2

C2 System 3

C2 System N

Sensor 1

Sensor 2

Sensor 3

Sensor N Weapon N

Weapon 3

Weapon 2

Weapon 1

Battle Manager

 89

interfaces and explicit context dependencies. We propose that the component software

contain the algorithms required to perform the computations of the BMDS Battle

Manager.

Furthermore, we propose that we develop the software that contains the basic

functions of battle management as a kernel given that this software should experience

limited modification over time. Derived from the kill chain [10], these basic battle-

management functions are called tasks, and will manage the use of the system’s

computing resources to ensure that all time-critical, battle-management events are

processed as efficiently as possible.

Moreover, we propose to add another software component to the kernel that

controls the distributed processing in the battle manager. While we anticipate that the

battle-management functions will execute on a single, multi-processor platform, the

distributed functions to include control sensor-resource management, engagement

control, sensor tasking, and survivability will exhibit different behavior than the kill-

chain functions. As the kill-chain functions must execute regardless of the status of the

distributed system, we do not desire to mix the distributed functions with the kill-chain

functions.

Finally, we should consider the external data that will come into the battle

manager as well as the information transported from the battle manager to external

subsystems. These interfaces of the battle manager are critical for the operation of the

battle manager. We must deliberately consider these interfaces and how we will handle

the transported data in the system-of-systems environment.

Our internal view of the BMDS Battle Manager is depicted in Figure 7:

 90

Figure 7. Internal View of BMDS Battle Manager

4. Battle-Manager Interfaces

a. C2 to Battle Manager
The C2 subsystem sets the parameters in the battle manager. Given that

the different C2 subsystems may provide different parameters to the battle manager, each

battle manager will employ the appropriate C2 parameters assigned to it. For instance, a

theater battle-manager may be filled with rules of engagement (ROE) that are specific to

that theater but not applicable to the Homeland Battle Manager. As such, the ROE that

are designated for the theater battle manager must be transferred into the theater battle-

manager and no others. This feature is the tailoring of a battle manager to its specific

mission in the BMD battlespace.

Given that a theater battle manager may actually be multiple battle-

manager platforms for the purposes of survivability, all theater platforms should receive

the C2 parameters. We anticipate the C2 platform may not have visibility into the

Track
Processing

Weapon
Assignment

Distributed
Behavior

Battle-Management Kernel

Safety
Executive

Discriminate Correlate Weapon/Target
Pairing

Components

Supporting Infrastructure and Operating System

C2 Weapon Sensor

Interfaces

Track
Processing

Weapon
Assignment

Distributed
Behavior

Battle-Management Kernel

Safety
Executive

Discriminate Correlate Weapon/Target
Pairing

Components

Supporting Infrastructure and Operating System

C2 Weapon Sensor

Interfaces

 91

location of each battle manager. As such, we propose that the C2 and the battle manager

should be decoupled from each other.

To support the decoupling of the C2 from the battle manager, we will

consider the use of the publish-subscribe architectural style for these interfaces. In the

publish-subscribe architectural style, subsystems subscribe to a set of events and the

publish-subscribe infrastructure ensures that each published event is provided to all

subscribers of that event.

The primary connector in the publish-subscribe architectural style is an

event bus. C2 puts an event (e.g., ROE) on the bus by announcing the event. The

connector delivers the event to each subscriber (i.e., battle manager) of that event. The

C2 has no visibility into the consumers of the event data. As such, the C2 is decoupled

from the battle manager as well as other potential consumers of the event data from the

C2. [12]

b. Battle Manager to Weapon.
The BMDS Battle Manager will pair a specific weapon to a threat object.

Unlike the C2 and sensor situation, the battle manager must have visibility into the health

and status of the weapons. Additionally, the weapon must acknowledge the receipt of a

target assignment. If the battle manager cannot determine the health and status of a

weapon with an assigned target, it must reassign that target to another weapon that

reports a positive health and status.

It seems reasonable for each weapon to post its health and status at

prescribed intervals from which the battle manager can receive. Additionally, it seems

reasonable for the battle manager to post target assignments to weapons and that weapons

can respond to that post as to whether the assignment is accepted. Finally, it seems

reasonable for the non-assigned weapons to receive the posted weapon assignments to

determine the engagement status.

We will use a publish-subscribe architectural style for these interfaces to

support the decoupling of the battle manager from the weapons. The battle manager

receives the posted health and status from a weapon and considers this information along

with other factors into the weapon-target pairing calculation. The battle manager posts

the weapon assignment and the weapons receive the weapon-target pairing assignment.

 92

The assigned weapon acknowledges the receipt of the assignment, builds a firing

solution, and launches the interceptor within the constraints imposed by the battle

manager. The other weapons see that the battle manager assigned the target to another

weapon and hold fire on that target until instructed to do otherwise by the battle manager.

c. Sensor to Battle Manager
The sensors detect ballistic missile launches and send track data to the

battle manager and weapons in the BMDS. The sensors do not require visibility into how

that information will be used. Additionally, the success of the sensor mission is not

dependent on knowing the location of the consumers of its information. As such, the

sensors should be decoupled from the other BMDS subsystems.

As with the C2 to battle-manager interface, we propose the use of the

publish-subscribe architectural style for these interfaces to support the decoupling of the

sensors from the battle manager. Similar to the C2 to battle-manager construct, a sensor

puts an event on the bus by announcing the event. The connector delivers the event to

each subscriber of that event. The sensor has no visibility into the consumers of the event

data. As such, the sensor is decoupled from the battle manager as well as other

consumers of the event data from the sensor. [12]

5. BMK Architecture
The BMK depends on components in another layer to accomplish computations in

track processing, weapon assignment, and distributed processing. In the BMK, the

software will call specific components to do work for the kernel software. For example,

the track processing component will call upon the discrimination component to

discriminate various benign objects from the threat ballistic missile. The track processing

component needs to know how to call the discrimination component to do its work. The

class diagram for the interface between the Track Processing component and the

Discrimination component is depicted in Figure 8.

 93

Figure 8. Class Diagram

The architecture for the BMK will include the components that call computational

components to do work as well as various data stores that separate the BMK components.

We discuss this construct later in this document. The architecture for the BMK is

depicted in Figure 9.

Figure 9. BMK Architecture

DISCRIMINATION

Apply feature
recognition()
Remove benign objects()
Identify threat objects()

DISCRIMINATION

Apply feature
recognition()
Remove benign objects()
Identify threat objects()

TRACK PROCESSING

Receive SensorData()
Discriminate()
Correlate()
Send TrackData()

TRACK PROCESSING

Receive SensorData()
Discriminate()
Correlate()
Send TrackData()

<<Interface>>
Interface between

TrackProcessing and
Discriminate

Input parameters
Output parameters
Invariant

Forward input()
Forward output()
Reject input()
Reject output()

Track Data
Store

Track
Processing

Battlespace
Representation

Data Store

Suspect Track
Data Store

Kill
Data Store

Weapon
Assignment

Track
Engagement
Data Store

Safety
Executive

Distributed
Behavior

Track
Processing

Weapon
Assignment

Distributed
Behavior

Battle Management Kernel
Safety

Executive

Discriminate Correlate Weapon/Target
Pairing

Components

Supporting Infrastructure and Operating System

C2 Sensor

Interfaces

Weapon

Track Data
Store

Track
Processing

Battlespace
Representation

Data Store

Suspect Track
Data Store

Kill
Data Store

Weapon
Assignment

Track
Engagement
Data Store

Safety
Executive

Distributed
Behavior

Track
Processing

Weapon
Assignment

Distributed
Behavior

Battle Management Kernel
Safety

Executive

Discriminate Correlate Weapon/Target
Pairing

Components

Supporting Infrastructure and Operating System

C2 Sensor

Interfaces

Weapon

 94

D. TECHNICAL CONTRIBUTION
For the third technical contribution in this research, we developed architectural

views from the system-of-systems view to the component view in the BMK of the BMDS

Battle Manager. This demonstrates it is possible to develop system-of-systems

architectural views that a developer can use to reason about the system-of-systems as

well as the controlling software. This contribution addresses the first of the three

research questions from Chapter V.

 95

X. BATTLE-MANAGEMENT KERNEL

A. BACKGROUND
Software engineers initially applied the concept of a kernel in the development of

operating systems to address the growing problem of increasingly large and

unmanageable operating system programs. In 1968, Edsger Dijkstra proposed that

systems could be developed as a strict hierarchy of layers. He proposed a five-layer

model that featured a progressive layering of abstraction that hid the details of the

computer hardware from the software program. In this model, the innermost layer

surrounds the computer-system hardware. Dijkstra considered this layer to be the kernel

as it contained the only system software that had access to the hardware. This kernel

provided services to the other four layers outside of it. [64][17]

In the 1980’s, the Unix kernel included a great deal more functions than other

kernels that sought to minimize the functions in a kernel. The Unix concept was that of

isolating specific functions from the user software by designing the system’s hardware to

call those specific functions. The result is a monolithic program that contains a

significant amount of the system’s software. The disadvantage of the large, monolithic

approach is that software engineers experience a considerable difficulty in replacing or

upgrading hardware components without a complete shutdown or a recompilation of the

software. [64][75]

Nancy Leveson proposed the realization of a safety kernel that provides a

structuring concept that would support the detection and recovery of safety-critical

software faults. Leveson maintained that the detection of a software fault should occur

through the application of logic-based assertions in non-kernel software. The recovery

from software faults should occur by direction of the kernel to other non-kernel software.

The importance of this work was to establish that the software that provided the detection

of safety-critical software faults and the recovery from those faults does not have to

reside in the kernel; the kernel directs non-kernel software to recover from the safety-

critical faults. [64]

 96

John Rushby introduced the concept of independence and separation for a kernel:

a safety kernel must be uncoupled from the events, activities, and faults of the software

programs from the perspective that an action or fault in non-safety-kernel software must

not result in an alteration or fault to the safety-kernel software. [64]

B. DEFINITION OF A KERNEL
For this research, we define a kernel to be that set of software components that are

necessary to provide management of the message transfer among the non-kernel software

applications and the computer-system hardware.

C. BATTLE-MANAGEMENT KERNEL6
The concept of a kernel was envisioned decades ago. [64] There is a significant

amount of literature on the use of a kernel to monitor and enforce required system safety

policies. In [64], Preckshot proposes a definition and rigor to a safety kernel. However,

he concludes that his safety kernel is for a restricted set of applications. In [73], Storey

discusses the use of a safety kernel for a safety-critical system. However, he foresees the

success of a safety-kernel approach as dependent upon the developer to “…protect the

kernel from outside influences that might interfere with its operation.” Brown suggests in

[7] that a safety-kernel could “…significantly enhance the overall safety of the BMDS.”

In [10], Caffall and Michael propose extending the concept of a kernel to the

battle management of sensors and weapons in the BMDS. They liken the concept of a

BMK to that of a safety kernel. There does not appear to be any literature that suggests

research for employing the kernel concept in the control of military systems in a system-

of-systems environment.

In this research, we propose the use of a BMK that consists of the set of software

components that are necessary to provide correct real-time execution of battle-

management tasks in a system-of-systems context, both in nominal and degraded modes

of system operation. We propose that the BMK must exhibit the following

characteristics:

6 This section includes extracts from [10].

 97

1. The BMK has absolute priority, that is, no other component can

interrupt the kernel from accomplishing its work.

2. System parameters and external events are measurable and

observable by the BMK. When presented with measurements for a given set of

parameters and external events, the BMK will exhibit correct system behavior. (N.B.:

We define correct as the reaching of the desired state given the previous state is presented

with a given set of inputs.)

3. Detection of errors will be through the use of assertions. The

BMK will direct non-kernel software components for the recovery of observed errors

such as violation of pre-conditions, post-conditions, and invariants.

A BMK is similar in purpose to an operating system (OS) kernel in that both

kernels manage resources shared by competing entities. In the case of an OS kernel, the

competing entities are computer processes vying for processor and memory resources. In

the case of a BMK, the competing entities are all of the components of the system-of-

systems that comprise the battle-management system, such as the C2 and weapon

systems.

The active components in the kernel are expected to be stable compared to the

other components in the system-of-systems. (N.B.: For this research, we define an active

component as one that will execute based on external conditions and a defined set of

rules.)

For instance, device drivers tend to be updated frequently and therefore in

principle should not be included in the OS kernel. If they are included (i.e., the case of a

monolithic kernel), and even worse, tightly coupled to OS management functions, then it

becomes challenging to make modifications to the kernel that do not affect other parts of

the kernel. We would like to apply this same reasoning to the BMK in order to simplify

the design and maintenance of the BMK.

We also draw a parallel between BMK and safety kernels. The functions to be

included in a safety kernel are those that must be performed to maintain a safe system

state or bring a system back into a safe state after the occurrence of a safety-critical event.

 98

No other functions may be included in a safety kernel. An automated train protection

(ATP) system is an example of a safety kernel. [103] Such kernels are well documented,

validated, and verified before being considered for certification and accreditation. We

view BMKs in a similar light: they must work as advertised because the ability of the

entire system-of-systems to conduct warfare in the BMD battlespace is dependent on the

BMK.

In our proposed approach, we envision software engineers developing the BMK

as a real-time set of system functionality that addresses its use by warfighters, starting

from a high-level statement of capabilities and refining these statements into successively

lower levels of system artifacts. We define the BMK to be the software that contains the

basic functions of battle management that will remain stable over time. Derived from the

kill chain [10], these basic battle-management functions are called tasks, and will manage

the use of the system’s computing resources to ensure that all time-critical, battle-

management events are processed as efficiently as possible.

Recall from Chapter IX that we defined and depicted the internal view of the

battle manager. In Figure 7, the BMK is the kernel that contains four active components:

Track Processing, Weapon Assignment, Distributed Processing, and Safety Executive. In

our model of the Battle Manager, the active components of the BMK task the passive

components in the Components layer to perform the required computations and return the

requested results of the computation to the BMK. (N.B.: For this research, we define a

passive component to be one which must be triggered from an external source in order to

operate.)

Recall that we proposed that the battle-management framework would feature

distributed processing. To achieve the desired property of transparency in the distributed

system, we propose that BMK direct the message communications among tasks in the

system-of-systems.

We propose that each battle manager in the system-of-systems contain an instance

of the distributed BMK. The global BMK would maintain the master copy of the name

table while each BMK would maintain a local copy of the name table. As a battle

 99

manager joins the battle-management network, its BMK would request a copy of the

name table from the global BMK.

As a source task at one battle manager sends a message to a destination task at

another battle manager, the local BMK references the name table and determines the

location of the destination task. If the destination task is local, the BMK routes the

message to the destination task. If the destination task resides at another battle manager,

the BMK sends the message to the remote BMK. On receipt of the message, the remote

BMK routes the message to the destination task. [41]

These activities are depicted in Figure 10. Consider that the tracking software

task in the regional battle manager requires the correlate task to do work. The regional

BMK (i.e., BMK_Regional) routes the message from taskTracking to taskCorrelate. This

is handled locally by BMK_Regional. Consider that the tracking software task in the

regional battle manager requires that a sensor do work. The regional BMK references the

name table to determine the location of the specific sensor and routes the sensor-tasking

message to the theater BMK (i.e., BMK_Theater) where the sensor is associated. On

receipt of the message, BMK_Theater schedules the tasking locally and sends a sensor-

tasking message to the sensor to do the required work.

Figure 10. Messaging Example in a Distributed Battle-Management Network

taskTracking taskCorrelate taskIPP taskSensorTasking

BMK_REGIONAL BMK_THEATER

BMDS NETWORK

 100

In the actual design, each battle manager should have the identical software

components and kernel. While the trivial example above illustrates the distributed nature

of the BMK, the following example is more akin to the issues facing the software

engineers that design the operational battle manager.

Recall that various BMDS systems may be operationally interfaced with two or

more battle managers. Consider the example of a sea-based X-band radar that provides

mid-course sensing as well as sensor updates to launched interceptors. For the majority

of its service the sea-based X-band radar will be in the surveil mode for mid-course

sensing. However, for short periods of the fight, a system may require the use of this

asset to provide threat-object update information for a launched interceptor. The

challenge to software engineers is to design the BMK so that the BMDS can accomplish

both missions.

Consider the battle-manager framework in Figure 10. Consider that the sea-based

X-band radar has an operational interface to the theater battle manager and the regional

battle manager. In normal operations to include execution, the regional battle manager

will control the sea-based sensor to include the adjustment of its field of regard. Consider

during a ballistic missile fight that the Homeland Defense Battle Manager tasks the

ground-based mid-course defense (GMD) system to launch an interceptor against an

ICBM. The GMD system requests the sea-based X-band radar to adjust its field of regard

to support the threat-object information updates to the interceptor. The global BMK

receives this request and references the name table to determine the location of the

destination task. The global BMK sends this request to the regional BMK which

processes the information. In the Assign Sensor logic, the support to an active

engagement is a higher priority than the surveil mode so the regional BMK forwards the

GMD system’s sensor request to the sea-based X-band radar for execution. After the

interceptor “opens its eyes” and assumes onboard tracking responsibilities, the sea-based

X-band radar resource is released and the regional BMK directs the radar to resume the

surveil mode.

 101

D. LOGIC IN BMK7
We will construct a set of specifications for each active component using

assertions and temporal-logic statements that will serve as the functional model of the

BMK. The goal is to achieve a greater degree of clarity and focus in the specification of

the desired BMK behavior as compared to that obtained from the traditional method of

simply listing the system requirements. We will develop a sufficient amount of

information to automatically produce test cases for the implementation. Otherwise, we

run the risk of developing so-called “cartoon models” that are only useful for drafting and

refining potential solutions.

We will develop a slice of the test-ready model for the BMK. According to

Binder [3], in order to be testable, a model should contain all the features of the system-

under test (in the present context, the BMK), preserve sufficient detail that is critical for

discovering faults, and faithfully represent the essential states, actions, and transitions in

the state diagram. If the BMK model is to be useful for this effort and in future

development efforts, it might exhibit the following properties outlined in [66]:

appropriate level of abstraction, high degree of understandability, high measure of

accuracy, and high level of predictiveness.

We will use temporal-logic assertions to define the temporal aspects of the BMK

specifications. We anticipate that these assertions will yield specifications that are

verifiably consistent and accurate, and in turn, verifiably predictable behavior of the

BMK.

As an example of such logic in the BMK, let us consider the situation for which

the BMK has determined that an observed object is a threat and must now assign a

weapon to engage that threat track. Clearly, we want to establish a time constraint by

which the BMK has assigned a weapon to engage a threat track. This is a situation for

which a late computation is an incorrect computation so we should establish a time

constraint to ensure that the BMK has completed its weapon assignment work as desired.

7 This section includes extracts from [10].

 102

For this example, we will assume that the BMK must assign a weapon to engage a

threat track within thirty seconds of the BMK determining that the tracked object was

indeed a threat.

We could state the natural language assertion as follows:

Within thirty seconds of determining a given track is a

threat object, the BMK will assign a weapon system to

engage the threat object.

We could write the temporal assertion as follows:

Boolean: Ballistic_Threat
// Tracked object is ballistic-missile threat is true

Boolean: Weapon_Assigned
// Weapon assigned to tracked object is true

Always (Ballistic_Threat) Implies Eventuallytimer<30 (Weapon_Assigned)

 103

XI. BATTLE-MANAGER COMPONENTS

A. BATTLE-MANAGEMENT FRAMEWORK
Recall from Chapter XI that we proposed the concept of component-based

engineering to design and develop the BMDS Battle Manager. We proposed that we

develop the software that contains the basic functions of battle management as

components in the BMK, given that this software should experience limited

modifications over time. Derived from the kill chain [10], these basic battle-management

functions are called tasks, and will manage the use of the system’s computing resources

to ensure that all time-critical, battle-management events are processed as efficiently as

possible. We proposed to develop other component software that contains the algorithms

required to perform the computations of the BMDS Battle Manager.

Finally, we proposed to add another software application to the kernel that

controls the distributed processing in the battle manager. While we anticipate that the

battle-management functions will execute on a single, multi-processor platform, the

distributed functions to include control sensor-resource management, engagement

control, sensor tasking, and survivability will exhibit different behavior than the kill-

chain functions. As the kill chain functions must execute regardless of the status of the

distributed system, we do not desire to mix the distributed functions with the kill-chain

functions.

Due to continual research and development in many areas of missile defense, we

anticipate that researchers will discover improved algorithms that will replace currently

realized algorithms in the components of the battle manager. In this chapter, we will

explore various hypotheses of components and component engineering, and offer a

recommended course of action for using the concept of a component in the development

of a controller for system-of-systems software.

B. DEFINITION OF COMPONENT
For this research, we will adopt Szyperski’s definition in [74]: “A software

component is a unit of composition with contractually specified interfaces and explicit

context dependencies only. A software component can be deployed independently and is

 104

subject to composition by third party.” This definition implies that one must precisely

and clearly specify the interfaces and ensure that the component software is encapsulated

and can be accessed by software external to the component only through its interface.

[15]

C. BATTLE MANAGER CONSIDERATIONS
Why should we consider components for the BMD Battle Manager?

We will frequently modify and update the operational software for the BMD

Battle Manager. Given that one requirement for the BMD Battle Manager is 24x7x365

operations, the warfighters cannot tolerate a system that is non-operational due to

uploading new software or for debugging newly uploaded software. As such, we must

develop a solution in which we do not interrupt operations and in which we can recover

to the last known operational state if the upload is not successful.

From operational perspective, the employment of the BMK and associated

components will support the requirement for no downtime due to uploading new

software. Rather than downloading the old software and uploading the new software in a

monolithic software program, we can change out the modified components while leaving

the remainder of the system intact.

From the software development perspective, the employment of the BMK and

associated components might offer four potential advantages over a large, complex

monolithic software program [1]:

1. Independent Extensions. The component model and framework outline

the methods of extending the capability beyond the original design. By adherence to the

interface specifications, the extensions to a component can be designed, developed, and

fielded without undesired interactions.

2. Component Markets. The component model and framework can

significantly reduce system complexity as compared to a large monolithic software

program. The component model and the framework define the standards to ensure that

independently developed components can be employed in the system without unintended

interactions. If one integrates the support services into the framework, then the

 105

development of components can be simplified. The component model and framework

allow developers to seek third-party vendors to develop specific components.

3. Reduced Time-to-Fielding. The component model and framework

promote concurrent code development. Given that the architectural decisions are set to

include the definition of the component interfaces, the development team can develop the

components concurrently or use existing components in the component product line.

Additionally, the component model and framework allow for the incremental delivery of

a system which supports the ability to get a system into operational use quickly.

4. Improved Predictability. The designers specify the design rules for the

component model so that these rules are consistently imposed on all components in the

system. The consistency of the imposed design rules will ensure that global properties

such as security, safety, and recovery are designed into the system.

D. COMPONENT ENGINEERING CONSIDERATIONS

1. Component-Based Software Engineering
Component-based software engineering is the design and construction of a system

by integrating software components, interfaces, contracts, and a component framework.

The concept is to employ portions of legacy software that contain the desired

functionality as expressed in the software architecture, shape the legacy software into a

“unit of composition with contractually specified interfaces [74],” develop new

components as required, and integrate the components into a component framework to

realize the desired system functionality.

The logical view of components, interfaces, contracts, and frameworks is depicted

below as the component-based design pattern in Figure 11:

 106

Figure 11. Component-Based Design Pattern

2. Component Framework
The foundation for developing and designing a system using component-based

software engineering is the component framework. It is the “glue” that binds the

components to do the desired work that is specified in the architecture. In the battle

manager, the kernel will contain the component framework which is comparable to an

electronic circuit board with vacant slots into which components can be inserted to

achieve a desired capability. [15] That is, the component framework depicts where a

component resides and its interface to other software.

The primary role of a component framework is that it compels components to do

work in accordance to the methods controlled by the framework such as the inclusion of

Component

I

Interface

Component type and

Battle-Management Kernel
Component type-specific

Interface contract

Component

I

nterface

Component

I

nterface

Component

I

nterface

Component

I

nterface

Component

I

Interface

 107

temporal invariants to enforce system time constraints. Additionally, the component

framework specifies the context into which one can integrate the various components to

compose a system. [15]

To increase the capability of a system, we will add other components to the

framework that provides additional functionality. To increase the precision of a system,

we could replace the current components with new components that contain more precise

algorithms. Note that new components must meet the contract of the component

interface as it is a distinct, configurable entity that is modified only through established

software maintenance procedures.

3. Component Properties
In developing the software architectural views with respect to components, we

might consider the following properties of components as outlined in [15], [38], and [74]:

a. Provide services through well-specified interfaces.

b. Encapsulate state and behavior so that neither is visible to the

component framework.

c. Rely on the component framework to initialize and communicate

with other components.

4. Component Interfaces
We propose to employ the concepts of design by contract in the specification and

design of the component interfaces. For this research, we define a component interface

as the specification of the access to the software component by the component

framework. [15]

Design by contract is a formalized way of writing comments to incorporate

specification information into the software to express the requirements for the

component. That is, the contracts describe the assumptions the developer made when

writing the code, and the assumptions that the system can make about a piece of code.

The concept of design by contract is that software entities have obligations to other

entities based upon formalized rules between them. We create a functional specification

(i.e., contract) for each component in the system whether it is salvaged code from legacy

 108

software or developed as new code. Thus, the execution of the software is the interaction

between the component framework and the various components as bound by these

contracts. [15][74]

For example, if a developer assumes that a given variable will never receive a null

or negative input, then the developer should include this information in the contract.

Additionally, if a developer writes a piece of code that is always supposed to return a

value greater than 100, he should add this information in a contract so the developers

working with the other parts of the application know what to expect. These contracts

describe requirements such as:

a. Conditions that must be satisfied before a method is invoked

b. Results that need to be produced after a method executes

c. Assertions that a method must satisfy at specific points of its

execution

A contract can specify three types of constraints in the interface. A contract

specifies the constraints that the component will preserve – an invariant. (N.B.: We

define an invariant as a condition that does not change in the presence of system or

environmental transformations.) The contract specifies the constraints upon the

component framework (i.e., a pre-condition). Additionally, the contact specifies the

constraints upon a component with respect to what it returns to the component framework

with respect to the input to the component operation (i.e., a post-condition).

5. Specifications
In the specification of the component framework, components, and interfaces, we

recommend that the control and coordination features be specified in the component

framework and the method of computation be specified in the component. We

recommend specifying the interface as a separate entity than the component framework

and the component. We want to specify the contract between the interface and the

component framework in the interface. Thus, the interface is specified as an independent

entity rather than a portion of either the component framework or the component.

 109

In the specification of the component framework, one must specify more than the

desired functionality of the component. Included in the specification should be: (1) the

required response time of a component’s computation that supports the desired behavior

of the system, (2) the required precision of the result to ensure that matching of precision

between the component framework and a component, (3) the required throughput of the

data streams to ensure that data loss does not occur as a result of a throughput mismatch,

(4) required protocol and formatting to ensure the matching of data and fields during data

transfer, (5) legal values for inputs and outputs, and (6) data dictionary to include the

specification of the units of measure in the component framework. [12][15][74]

In the specification of the component, one must specify more than the required

input parameter from the component framework. Included in the specification should be:

(1) time to complete a computation, (2) the required precision of the input to ensure that

matching of precision between the component framework and a component, (3) memory

requirements to ensure sufficient memory is designed into the software architecture, and

(4) data dictionary to include the specification of the units of measure in the component

framework. [12][15][74]

E. CHALLENGES
Although the benefits of component-based software engineering are widely touted

in numerous publications, challenges exist that should be understood. We should

consider mitigation strategies for these challenges to enhance the probability of realizing

the benefits of component-based software engineering. These challenges include the

following:

1. Modeling
A single, chosen architecture method does not exist that defines the relationships

among component frameworks, components, and component interfaces. Although such

tools as the Unified Modeling Language provide various options for documenting the

relationships, a clear roadmap is not available for one to model the use of components in

the design of a controller for a system-of-systems.

 110

2. Specifications
Frequently, the specifications for a system-of-systems are focused solely on

functionality. As such, the specification of system properties that can increase the level

of trustworthiness may be ignored.

3. Trusted Components
One potential benefit of component-based software engineering is the ability to

upgrade or replace an existing component with ease. The flip side of this benefit is that

modified or new components can precipitate failures in the system by producing

undesired side effects or feature conflicts regardless of whether the other components of

the system remain unchanged.

4. Component Reuse Versus Component Salvaging
Another potential benefit of component-based software engineering is the ability

to replace existing software components with components from another system. This

capability is frequently referred to as software reuse; however, it is more often than not a

situation of software salvage. (N.B.: For this research, we define software reuse as the

act of selecting and employing a chunk of software that was designed and implemented

for use in other systems without modification to that chunk of software. We define

software salvage as the act of selecting a chunk of software and modifying it for use in

another system.)

With respect to components, both software reuse and software salvage bring about

the question of trusted components as previously described which is that new components

can precipitate failures in the system by producing undesired side effects or feature

conflicts regardless of whether the other components of the system remain unchanged.

For the situation of software salvage, this negative impact is likely to increase as the

degree of modification increases.

F. BATTLE MANAGER
To address the previously discussed challenges, we offer the following

recommendations in the application of component-based software engineering approach

 111

to the system-of-systems problem. While the offered solutions are not the only solutions,

these solutions can improve the probability of a successful development of a controller

for a system-of-systems.

1. Modeling
To move beyond the simple structural model of sticks and circles to represent a

system-of-systems, we will consider a modeling technique that captures information on

the desired behavior of the system as well as the desired behavior of each element in the

system with respect to its contribution towards the desired behavior of the system. With

respect to components, we should understand the behavior and constraints of the

component framework, each component, and each interface between the component

framework and a component.

Recall that we chose to model the BMDS as a reactive system. In our model, we

considered the Battle Manager to be the Controller as depicted in Figure 5. That is, the

Sensor will detect external signals (i.e., external stimuli) and process this information to

send to the Controller. The Controller will make decisions based upon the input from the

Sensor and send control data to the Actuator for execution of tasks. This results in a

response from the reactive system.

Furthermore, we proposed the internal view of the BMDS Battle Manager to be a

layered construct of interfaces, components, and a kernel as depicted in Figure 7. Recall

that we defined the BMK as a composite of active components and we proposed that the

components that perform computations in the Battle Manager be passive components.

Thus, in our model of the Battle Manager, the active components of the kernel task the

passive components to perform the required computations and return the requested results

of the computation to the kernel.

For the Battle Manager, we desire that the state and behavior of the active

components in the kernel not be visible to the passive components. Ideally, we would

prefer that the passive components be pure computations without state and behavior;

however, if a passive component cannot meet this ideal goal, then the state and behavior

of the passive component should not be visible to the active components in the kernel;

that is, we do not desire that the state and behavior in the active components inadvertently

 112

trigger state transitions in the passive components that result in undesired behavior in a

passive component. Equally, we do not desire that the state and behavior in the passive

components inadvertently trigger state transitions in the active components that result in

undesired behavior in an active component.

Now, we will consider the interface between an active component in the kernel

and a passive component. As one means of increasing the level of trustworthiness in the

Battle Manager, one might define the desired services, behavior, and constraints in the

interface between an active component and a passive component. In interface, we will

find that it receives data (i.e., input) from the active component that is intended for the

passive component and provides data (i.e., output) from the passive component that is

intended to return to the active component.

We model this relationship for the active component Track Processing and the

passive component Discrimination as depicted in Figure 12.

Figure 12. Track Processing Component Interface to Discrimination Component

2. Specifications
To specify the behavior and constraints in the interface, we suggest the use of

assertions to check the input and output parameters as well as to establish any invariants

required for the interface. For the input parameters, we could assert the pre-conditions

that are required to process data that lies within the set of legal values. For the output

parameters, we could assert the post-conditions that are required to return the results of

<<Interface>>
Interface between

TrackProcessing and
Discriminate

Input parameters
Output parameters
Invariant

Forward input()
Forward output()
Reject input()
Reject output()

DISCRIMINATION

Apply feature recognition()
Remove benign objects()
Identify threat objects()

TRACK PROCESSING

Receive SensorData()
Discriminate()
Correlate()
Send TrackData()

 113

the passive component’s computation as related to the input to the active component. For

the invariant, we could assert any property which must hold true regardless of any and all

computations.

The use of assertions in the pre-conditions, post-conditions, and invariants can

enhance the safety properties of a system but verifying input parameters. By allowing

only legal inputs to be processed, the probability of an errant computation on illegal data

is reduced. By allowing only legal values of the output to be returned, the post-condition

assertion reduces the probability that an incorrect result will be passed to the active

component. By requiring a computation to terminate within a specified timeframe, the

invariant ensures that the system will not halt while waiting for a never-ending

computation to terminate.

As a simple example of applying assertions to implement the behavior and

constraints of an interface, we will use the class diagram depcited in Figure 12. Consider

that we want to define two input variables (X,Y) for discrimination in terms of range of

value. Consider that we want to define the output to include (ThreatObject) as a Boolean

statement that has a relationship to the input variables (X,Y) and the type of threat object

based upon the computation in the passive component. Consider that we want the

computation to terminate no more than ten seconds after passing the input variables to the

component. We suggest the following assertions reflect these considerations:

Pre-condition

Always (X,Y) Implies> {(X>0 and X<10) and (Y>100 and Y<1000)}

//(X,Y) will be valid only if:

X is equal to or greater than 0 and X is equal to or less than 10

AND

Y is equal to or greater than 100 and Y is equal to or less than 1000

Post-condition

Always ThreatObject Implies {(X>5 and Y< 500) or (X< 10 and Y>500)}

//ThreatObject will be true only if:

X is greater than 5 and Y is less than 500

 114

OR

X is less than 10 and Y greater than or equal to 500

Invariant

Always (X,Y)Implies Eventuallyt<10 (Terminated)

//The condition of the Boolean value “Terminated” will be true

sometime in the future but less than 10 seconds have expired

following the passing of valid and legal X,Y input variables to the

passive component. (N.B.: The Boolean value “Terminated” must

be set to not true each time new variables are sent to the passive

component.)

3. Trusted Components
One method that can increase the degree of trustworthiness of a component and

the Battle Manager is the development of a certified test suite for each component as well

as a certified test suite for the Battle Manager. [3][15] (N.B.: For the purposes of this

research, we define a certified test suite as one in which the results of the testing are

known, verified, and certified with respect to the test inputs to a system under test. For

the purposes of this research, we define certified as the guarantee that a system or

component will operate correctly and will operate correctly in adverse conditions.)

If assertions were employed in the development of the component interfaces, then

the test suite should include test cases that examine the inclusive range of values for the

assertion, the boundary values, and illegal values. More than checking whether the

assertion holds, one should investigate the error-handling procedures associated with a

logic break in an assertion. It is imperative to determine that a system will not experience

a fail-hard condition for a break in the logic of an assertion.

The test suite should include the inspection of the (1) the time to complete a

component’s computation to determine whether the component supports the desired

behavior of the system, (2) the precision of the result to ensure that matching of precision

between the component framework and a component, (3) the throughput of the data

 115

streams to ensure that data loss does not occur as a result of a throughput mismatch, (4)

protocol and formatting to ensure the matching of data and fields during data transfer, (5)

legal values for inputs and outputs, and (6) data dictionary to include the specification of

the units of measure to ensure consistency of the received and returned data with respect

to units of measure.

The certification of trustworthy components should include the verification of

functionality, degree of fault tolerance, level of compliance with the interface contract,

speed of service, throughput, time of computation, and degree of consistency with the

data dictionary of the component framework.

4. Component Reuse Versus Component Salvaging
In the situation of component reuse, the black-box testing and component

certification as previously described can reveal issues with the correctness, robustness,

and reliability of the component. (N.B.: For this research, we define black-box testing as

a software testing technique whereby explicit knowledge of the internal workings of the

component being tested are not known and the outputs are examined with respect to the

inputs.)

In the situation of component salvage, it may be insufficient to employ solely

black-box testing and component certification. We recommend the addition of white-box

testing techniques to the test suite for the situation of component salvage. (N.B.: For this

research, we define white-box testing as a software testing technique whereby explicit

knowledge of the internal workings of the component being tested is used to examine the

outputs.) That is, it may be necessary to test such items as the algorithms employed in

the component to ensure that the precision in the computation meets the precision

requirement of the system, exception handling to ensure that software faults are caught

and handled appropriately, degree of encapsulation of class methods from interface,

presence and implementation of multiple inheritance, and termination of computation.

 116

THIS PAGE INTENTIONALLY LEFT BLANK

 117

XII. SPECIFICATION OF THE BATTLE MANAGER

A. BACKGROUND
Software is becoming increasingly more critical and complex in system-of-

systems development. Since acquisition life-cycles, failure models, and verification

methods that have performed satisfactorily for hardware systems are not always optimal

for systems that include a significant software component, the identification and

evaluation of better specification and verification techniques for system-of-systems is a

never-ending search in defense acquisition.

One tool for specifying and implementing the desired system behavior is formal

methods. (N.B.: We define a formal method as one that precisely describes a

specification in mathematical terms to make possible the verification of the specification

in the requirements phase as well as the testing phase of system development.) One can

use formal methods in the definition and verification of system specifications.

Additionally, one can implement the formal specifications with formalisms in the

software. (N.B.: For this research, we define a formal specification as the precise

definition of a system behavior that is typically expressed in mathematical terms.)

The application of formal methods for specification and verification is a technique

for consideration by developers of system-of-systems. Formal methods can complement

traditional techniques such as testing and can help developers improve the degree of

trustworthiness in defense acquisitions.

B. SPECIFICATION PROBLEM
The less-than-sterling success of software development in the United States is

well documented in [49], [69], and [70]. While the actual statistics and cited numbers

might be challenged by skeptics, the information seems to tell us that we have a serious

problem in developing software that provides the required functionality of the user in a

timely fashion and within budget.

If we are to develop dependable software-applications for a system-of-systems,

then it would seem that we need to address the specification issue. (N.B.: For this

 118

research, we define a specification as the description of a desired system behavior that is

expressed as a feature, function, property, or capability.)

Recall specific examples of specification issues from Chapter III:

• In 1991, the PATRIOT system failed to intercept a Scud missile which resulted

in the deaths of twenty-eight American soldiers.

• In December of 2001, a 2000-pound, Joint Direct Attach Munitions (JDAM)

bomb killed three U.S. Special Forces airmen and five Afghan soldiers, and

wounded nineteen other military personnel. The root cause of this friendly-fire

incident was the inadvertent passing of the coordinates of the US air

controller’s own position to the bomber.

• From a study of 387 software errors discovered during the integration and

testing phase of the Voyager and Galileo spacecraft, Robyn Lutz observed that

the safety-related, functional faults Voyager could be categorized as follows:

50% as behavioral faults, 31% as conditional faults, and 19% as operating

faults. For Galileo, the safety-related, functional faults could be categorized

as follows: 38% as behavioral faults, 18% as conditional faults, and 44% as

operating faults.

• Delores Wallace and Richard Kuhn analyzed software faults from 342 medical

systems and determined that 43% of the software faults were logic-related

errors such as incorrect logic in the systems’ specifications, unexpected

behavior of multiple conditions occurring simultaneously, and improper limits.

C. FORMAL SPECIFICATION OF THE BATTLE MANAGER
Conventional software development methods may not be suitable for the

development of safety-critical systems. [79] In safety-critical systems, system faults

could prove fatal to human life or lead to loss of valuable physical assets. [34][73] With

the use of formal methods, developers can analyze formalized statements and the

associated impacts in a repeatable manner. Formal methods help one test a significant

number of test cases and support analysis that can be checked by verified model

 119

checkers. In operational software, the use of formal methods can significantly enhance

the ability to catch and handle runtime errors.

1. Formal Specifications
Traditional specification engineering uses natural language statements to describe

the desired system behavior. Typically, the specifications are inaccurate, inconsistent,

and ambiguous. [79][49] Graphical representations of specifications (e.g., UML)

typically have limited precision in semantics and can lead to an ambiguous interpretation

of requirements.

Indeed, Dean Leffingwell and Don Widrig make the following four statements in

[50] that should give us cause to pause, and understand the relationship of seemingly

insufficient specification elicitation impact of and why acquisition organizations cannot

develop good software:

Specification errors are likely to be the most common class of error in software

developments.

Specification errors are likely to be the most expensive errors to correct after

fielding.

Specification errors will contribute up to 70% of all software rework costs.

Specification errors can consume 25%-40% of the total program budget.

Testers can develop test cases from natural language specifications and graphical

representations of the system; however, they will need to interpret the natural language

specifications and graphical representations which are typically limited in content and

consistency. [3] So, it would seem wise for acquisition organizations to adopt techniques

that could lead to a significant reduction in specification errors.

For this research, we develop a functional model formed by the specifications are

verifiable and can produce a test-ready model as described in [3]. (N.B.: For this

research, we define a test-ready model as one that contains sufficient information for

which to automatically produce test cases for its implementation.) As outlined in [3], a

test-ready model should meet the following requirements:

 120

The model should be a complete and accurate representation of the

implementation to include all features, functions, properties, and capabilities of

the system.

The model should preserve the level of details that is essential for testing fault

tolerance while abstracting out unnecessary detail.

The model should represent all states, guard conditions, actions, and triggers in

the system state model.

As one develops the test-ready model, the issue of verification of the model

arises. That is, developers should ensure that the evolving test-ready model of the system

is progressing towards faithfully realizing the system specifications. Given that the

expression of requirements is typically in the form of natural language, developers cannot

easily verify system requirements. System engineers oftentimes employ traceability

techniques that focus upon tracing system requirements to user requirements. Besides

being tedious, the constraints of natural language can lead to misinterpretations, inability

to detect incomplete or conflicting logic statements, and limited verification of

robustness. Unfortunately, traditional system developments rely on unit testing and

integration testing to verify whether the system meets its requirements.

The development of formal specifications in the test-ready model can lead to a

significantly high level of confidence in the implementation phase of a software

development. The development of formal specifications typically clarifies the

specification, surfaces latent errors and ambiguities, and supports the shaping of the

desired system behaviors. [42]

For the battle manager, we propose the use of assertions in the development of

formal specifications. (N.B.: For this research, we define an assertion a predicate

expression whose value is either true or false.) We propose that developers develop

assertions to define pre-conditions, post-conditions, and invariants. (N.B.: For this

research, we define a pre-condition as a fact that must always be true just prior to

execution of a specific section of code. Furthermore, we define a post-condition as a fact

 121

that must always be true just after the execution of a specific section of code. Finally, we

define an invariant as a property that holds true under any transformation in the system.)

Assertions can help us find defects in specifications and designs earlier than they

would be otherwise and greatly reduce the incidence of mistakes in interpreting and

implementing correct requirements and designs. Additionally, the development and

verification of formal specifications can support the development of error-handling

specifications to appropriately manage runtime errors and logic breaks.

The use of assertions can significantly reduce the errors introduced in the

specifying system behavior. [3] Assertions can considerably increase the level of clarity

in the assumptions and responsibilities of system behavior, and reveal errors such as logic

omissions and conflicting logic-statements. Assertions can catch common interface

faults (e.g., processing out-of-range or illegal inputs) by precisely asserting the legal

interface values for variables passed in through an interface.

An example of using an assertion to specify a pre-condition is as follows:

 Variables:
 //Track data Input to interface contains two variables: Input_A

and Input_B
 Integer: Input_A
 Real: Input_B

Boolean: Detect_Track
//True if sensor has provided data to battle manager for a
reportable object
Boolean: Track_Data
// True only if Detect_Track is true and valid track data exists for
observed object

 Assertion:

//Restrict Input_A to be greater than or equal to zero, and less than
100 and Restrict Input_B to be less than 1000

 //Confirm adherence to pre-conditions
 read (Input_A,Input_B)

assert: Always Track_Data Implies (Detect_Track) and
{(Input_A > 0 and Input_A < 100) and (Input_B < 1000)}

 122

An example of using an assertion to specify a post-condition is as follows:

 Variable:
 Real: Output_B

Boolean: Track_Data
// True if Detect_Track is true and valid track data exists for
observed object

 Assertion:

//Confirm that Output_B is not empty
read (Output_B)

assert: Always (Track_Data) Implies (Output_B ≠ null)

An example of using an assertion to specify an invariant is as follows:

Variables:
Boolean: Detect_Track
//True if sensor has provided data to battle manager for a
reportable object
Boolean: Track_Data
// True if Detect_Track is true and valid track data exists for
observed object
Set: Track_Dataset
//Contains observed characteristics from sensor
Boolean: Threat_Object
// True only if tracked object is a ballistic missile threat
Boolean: Benign_Object
//True only if tracked object is not a ballistic missile threat

Assertion:
//Confirm data processing of track data within twenty seconds of
detecting object
Read (Detect_Track,Tracked_Data)

assert: Always (Detect_Track and Track_Data) Implies
Eventuallyt<20 (Threat_Object or Benign_Object)

2. Model checking8
Software developers should consider verifying the functional specifications via a

tool such as model checking. (N.B.: For this research, we define model checking as the

systematic approach for testing functional assertions and substantiating the desired

system behavior in the model.) Model checking is not a proof of correctness; instead,

model checking involves creating functional models of a system and analyzing the model

8 This section was extracted from [10]

 123

against the formal representations of the desired behavior [51]. For the battle manager,

we propose to verify the functional specifications using an automated model-checking

tool that can accept either developed specifications or UML statecharts as discussed in

[40], and exercise the temporal-logic assertions over a number of time cycles. Such an

approach can support the identification of inconsistencies and breaks in logic through the

use of the model-checking tool. From the results of the model checking, developers can

correct our specifications and the artifacts from the domain analysis as required.

However, the use of model checking is constrained by the state explosion problem

as the size of the state space exceeds the memory capacity of the automated tool to check

every trace in the model. [16] Through abstraction of the battle-manager functions in our

specifications, we can employ the concept of symbolic model checking in which Boolean

functions are employed to represent transition relations and sets of states, using, for

instance, a compact representation of the state space (e.g., binary decision diagrams [11]),

to simplify the battle-manager states by removing sub-trees and redundant edges on the

battle manager’s Boolean decision tree. In other words, we can transform the complex

logic decisions at the bottom of the tree into simple Boolean statements so that we can

capture the essence of the system behavior in the upper portions of the decision tree. By

reducing the high number of lower-level logic statements that develop very specific

solutions and have limited impact on the overall system behavior, we should be able to

manage the state-explosion problem.

As an example of the state-explosion problem in terms of the BMK, consider the

following assertion:

Always Intercept_Point_Min_Within_Intercept_Range Implies

(Min_Intercept_Point is contained within Interceptor_Range_Volume)

Note that the number of points in Interceptor_Range_Volume could be large and

that we are seeking to ensure that one specific point (Min_Intercept_Point) is within the

set of points that define Interceptor_Range_Volume. Rather than use model checking to

ensure that this condition is true, we could abstract the assertion to either a True or False

 124

for Intercept_Point_Min_Within_Intercept_Range. This will reduce the number of traces

through the model to verify this assertion.

Model checking is not within the scope of this research; however, we will

recommend the application of model checkers as a potential research topic in the

development of dependable systems.

3. Testing
The Standish Group reported a dismal report on the state of software development

in 1994. According to [70], software developers in the United States produced successful

software in only 16.2% of the development efforts. The following is an extract from

[70]:

The Standish Group research shows a staggering 31.1% of

projects will be cancelled before they ever get completed. Further results

indicate 52.7% of projects will cost 189% of their original estimates. The

cost of these failures and overruns are just the tip of the proverbial

iceberg. The lost opportunity costs are not measurable, but could easily be

in the trillions of dollars.

Based on this research, The Standish Group estimates that in 1995

American companies and government agencies will spend $81 billion for

cancelled software projects. These same organizations will pay an

additional $59 billion for software projects that will be completed, but will

exceed their original time estimates. Risk is always a factor when pushing

the technology envelope, but many of these projects were as mundane as a

driver’s license database, a new accounting package, or an order entry

system.

On the success side, the average is only 16.2% for software

projects that are completed on-time and on-budget. In the larger

companies, the news is even worse: only 9% of their projects come in on-

time and on-budget. And, even when these projects are completed, many

are no more than a mere shadow of their original specification

 125

requirements. Projects completed by the largest American companies have

only approximately 42% of the originally-proposed features and functions.

In 1999, the Standish Group updated their research from the 1994 study. The

report offered that the success rate of software developments had increased to a 26%

success rate from the dismal 16.2% success rate in 1994. The research revealed that

project size seemed to be a factor in predicting success as projects that cost over $10

million had a 0% chance of success while projects costing less than $750 thousand had a

55% chance of success. The following is an extract from [69]:

Company size does not guarantee success. The Standish group has

found no correlation between a company’s size and its project success

rate. As with project size, bigger is not necessarily better. While large

companies (over $500 million) do experience more failures and fewer

successes than medium companies ($200 million to $500 million), project

failure rates are generally distributed quite uniformly across companies of

all sizes. Project failure is everyone’s problem.

Another way to look at project resolution is to compare the value

of successful projects with the waste of challenged and failed ones. Along

with improvements in time and costs overruns, companies’ waste- to-value

ratios have improved substantially. In 1996, CHAOS research fond 50%

waste in IT projects. By 1998 the data identified only 37% waste.

In 2003, the Standish Group released their latest findings which listed the success

rate for software projects was 34% in 2003 as compared to 16.2% in the 1994 report and

26% in the 1999 report. [71] Furthermore, the report claimed that the failure rate of

software projects was 15% in 2003 as compared to 31% in the 1994 report and 28% in

the 1999 report. However, the report revealed that time overruns had significantly

increased to 82% as compared to 63% in the year 2000. Additionally, the report claimed

that software developers fielded only 52% of the required features and functions as

compared to 67% in the year 2000.

 126

With respect to the limited success of defense software development, Leishman

and Cook offered the following observation which is an extract from their article in the

April 2002 issue of CrossTalk [49]:

At the 5th Annual Joint Aerospace Weapons Systems Support,

Sensors, and Simulation Symposium in 1999, the results of a study of 1995

Department of Defense (DoD) software spending were presented.

As indicated, of $35.7 billion spent by the DoD for software, only 2

percent of the software was able to be used as delivered. The vast

majority, 75 percent, of the software was either never used or was

cancelled prior to delivery. The remaining 23 percent of the software was

used following modification.

Recall that Leffingwell and Widrig claimed in [50] that specification errors will

be the source of seventy percent of the system rework costs. Furthermore, they state that

given that rework costs are typically 30% to 50% of a program budget, the correction of

system-specification errors can cost 25% to 40% of an entire program budget. Software

bugs cost the United States economy $59.5 billion annually according to a 2002 report by

the National Institute of Standards and Technology. [19] Additionally, this report claims

that software developers expend approximately eighty percent of development costs

towards identifying and correcting discovered bugs.

The use of assertions in specifying a system can result in more detected defects

than traditional testing and can provide a higher degree of dependability than systems that

have undergone traditional testing without supporting formal methods. Due to resource

constraints in development efforts, one cannot exhaustively test the entire test suite that is

required for complete test coverage.

As an example of the futility of attempting to realize complete, exhaustive testing

for a system, let us consider the problem of developing a test for a program that reads

three integers that represent the lengths of the sides of a triangle. The output of the

program is a statement that identifies the triangle as isosceles, equilateral, or scalene. If

we limit the points on an x,y axis to be integers between one and ten, there are 104

 127

possible ways to draw a line. If we test three lines at a time, then we have 1012 possible

inputs for the three lines to include all invalid combinations. Consider that we automate

the test procedures for this problem to the extent that we can continuously execute a

thousand tests every second. Under these conditions, the automated tester would require

about 31.7 years to test every possible input combination if the automated tester ran

twenty-four hours each day for every calendar day in each year of the continual

automated testing. [3]

Exhaustive testing may be possible for the most trivial of systems; however, the

complex systems in the Department of Defense are significantly more complex than the

triangle problem. Consequently, defense software testers typically execute a finite

number of test cases that test a portion of the system software. Unfortunately, finding a

runtime software fault in large, complex system can be difficult. Oftentimes, the location

of the observed fault is not the location of the true defect. Therefore, as the number of

instructions and computations increase between the observed fault and the true defect, the

software tester can experience increased difficulty in identifying the true defect in the

software.

The risk of drawing conclusions about a system behavior by extrapolating the

results from a finite number of tests can be reduced by using formal methods.

Additionally, the use of formal methods can support the software tester in identifying

inappropriate system behavior (i.e., observed faults) and locating the defects in the code.

That is, the testing with assertions in the software can identify software faults earlier than

software without assertions and the testing with assertions can lead to the software testers

closer to the defect as compared to testing software without assertions.

The use of assertions can support the design and implementation of built-in

testing of the software. [3] Such built-in tests can check implementation details such as

assumptions and constraints. Additionally, the use of assertions provides a mechanism to

test the trapping of software faults and the runtime handling of the trapped software

faults. For example, assertions can support the tester in determining that legal and valid

inputs are processed as designed. On the other hand, assertions can trap unanticipated

inputs that may be illegal or invalid as defined by the assertion.

 128

In component-based software engineering, the use of assertions can provide an

instrument for testing interface contract-violations. These violations could include

inappropriate calling of a component by the component framework or the called

component fails to deliver its computational results. [68]

In the test development of software with assertions, testers should understand that

an assertion will hold true for all legal and valid inputs. [3] That is, an assertion will not

pop for legal and valid inputs. Thus, assertion errors can be hidden from testers who

assume that the absence of popped assertions equates to the software exhibiting the

desired behavior. Therefore, testers should include inputs that cause the assertion to pop.

 Assertions can enable testers to develop test cases to check the behavior at

domain limits and boundary values. [3] Oftentimes, asserting pre-conditions will suffice

to define domain limits and boundary values. For example, consider the assertion

previously developed for a pre-condition:

 Always Track_Data Implies (Detect_Track) and
{(Input_A > 0 and Input_A < 100) and (Input_B < 1000)}

Testers can use the assertions to develop a test oracle. (N.B.: For this research,

we define an oracle to be a tool to evaluate the results of a test case as either pass or not

passed. The oracle is the test key that contains the inputs for a system and the associated

required output for each input.)

In our test case for the above assertion, we might develop procedures that test the

following combinations of Input_A and Input_B as depicted in Table 5. While not an

exhaustive input/output table for this assertion, this oracle can provide confidence that the

assertion will trap illegal or invalid inputs for Input_A and Input_B.

 129

Table 5. Test Oracle for Assertion

D. TECHNICAL CONTRIBUTION

For the fourth technical contribution in this research, we proposed the use of a

kernel in the controlling software for a system-of-systems to shape the dependable

behavior of the system-of-systems. To develop the specifications for the controlling

software in the BMDS, we proposed the development of BMK specifications in this

Input_A Values Input_B Values Assertion Comment

0 0 True Legal and valid
values for Input_A
and Input_B

(-1) 0 False Invalid value for
Input_A

0 (-1) True Legal and valid
values for Input_A
and Input_B

0 999 True Legal and valid
values for Input_A
and Input_B

0 1000 False Invalid value for
Input_B

99 999 True Legal and valid
values for Input_A
and Input_B

100 999 False Invalid value for
Input_A

1.5 0 False Illegal value for
Input_A (not an
integer)

0 AAABBB False Illegal value for
Input_B (not a real
number)

 130

fashion: (1) develop natural language assertions to support a common understanding of

what behavior the specification is attempting to define and constrain and (2) developing

assertions for which we can verify the desired behavior and timing constraints through

such mechanisms as model checkers.

The technical contribution and concepts offered in the previous two chapters and

this chapter concepts addresses the second of the three research questions in Chapter V.

We have demonstrated that a component-based structure could be useful in the design

and specification of the controlling software in a system-of-systems.

 131

XIII. PROTOTYPE

A. INTRODUCTION
We will develop a prototype of the BMK to demonstrate the use of assertions in

the kernel to define functional and dependability goals. Included with the prototype will

be specifications of contracts between the active components of the BMK and the passive

components. Additionally, we will specify distributed behaviors in the BMK to

demonstrate the ability to use assertions in the kernel to achieve liveness, dependability,

and survivability in a distributed environment.

We will develop specifications for the BMK from a synthesis of functional

requirements, desired capabilities, and battlespace constraints. We will employ use cases

for the elicitation of the functional requirements of the battle manager. We will make

assumptions about the objectives of the battle manager to define desired capabilities.

Finally, we will consider battlespace constraints that might impact the execution of

battle-management functions during operations.

To develop the use cases for battle management, we propose the use of the kill

chain for ballistic missile defense. Recall that we developed the kill chain for ballistic

missile defense with the following five functions: Detect, Track, Assign Weapon,

Engage, and Assess Kill. For the prototype, we will limit the scope to Track and Assign

Weapon.

We employed component-based software engineering to develop the BMK

prototype. We developed the Track Processing, Weapon Assignment, and Distributed

Processing components as active components and define the necessary passive

components and interfaces to support the activities of the active components. We used

the framework depicted in Figure 7. Finally, we analyzed the prototype to determine

whether it exhibits the desired behavior and provides the desired non-functional behavior.

We used simple inputs of valid and invalid inputs to assess the behavior of the prototype.

 132

B. ASSERTIONS IN BMK SPECIFICATIONS
We will employ assertions to specify the desired behavior of the BMK prototype

to include the desired dependability properties of availability, consistency, correctness,

reliability, robustness, safety, and recoverability.

In the specifications of the BMK’s components, we will employ the use of

assertions and exception-handling routines to achieve the following design goals:

1. Fault Avoidance - Design to avoid the occurrence of software hazards.

2. Fault Warning - Design to detect conditions which could be hazardous and

provide operator warning in order that the operator can take appropriate corrective action.

3. Fault Correction - Design for fault detection but also provide automatic

means for self-correction.

4. Fault Tolerance - Design for fault detection but also provide alternate

paths which are automatically selected.

5. Fail Operational - Design such that when a single failure or error occurs

the system fails operational (and safe). It should be noted that safety may have an extra

burden trying to ensure that the system is also safe in this situation. (N.B.: For this

research, a system that is characterized as fail operational is one that tolerates system

faults and remains operational in a safe manner.)

6. Fail Safe - Design such that when two independent failures or errors occur

the system fails safe (but not necessarily operational). (N.B.: For this research, a system

that is characterized as fail safe is one that shuts down safely after experiencing system

faults.

With each assertion used to achieve the above design goals, we will specify an

associated exception-handling routine to either maintain safe operations or shut down

safely. We will develop a safety component to ensure that the BMK implements the

specified safety policies and maintains the desired dependability properties.

 133

C. BMK PROTOTPE ARCHITECTURE
To reduce the impact of undesired state behavior of any given active component

on any other active component, we will decouple each active component from all other

active components. We will use data stores to connect the active components and use

pulled data from continual polling of specific data stores as a trigger for activities in

active components as depicted in Figure 13.

Figure 13. BMK Active Components and Data Stores

Track Data
Store

Track
Processing

Battlespace
Representation

Data Store

track Data

track updates

Suspect Track
Data Store

Kill
Data Store

Weapon
Assignment
Processing

track updates

discriminated and
correlated threat

tracks

discriminated and
correlate threat tracks

Track
Engagement
Data Store

weapon/target
pairing

Safety
Component

Distributed
Behavior

Component

 134

Along with the other benefits of decoupling active components from each other,

we hypothesize that we can increase the degree of test confidence in the BMK. As the

first testing step, we propose the testing of each passive component (i.e., computation)

with its contract interface. The objective of this testing should be the testing of output as

a function of the set of valid and invalid inputs to the contract interface. We propose the

next step of testing to be the testing of each active component with its passive

components connected via the contract interface. Given that active components will have

state (unlike their passive counterparts), we propose that this step of testing include both

black-box testing to ensure the appropriate outputs from the inputs of a test oracle and

white-box testing to determine whether the active components may have exhibited

coincidental correctness during black-box testing. (N.B.: For this research, we define

coincidental correctness to be a characteristic of a system that can produce the correct

outputs for specific inputs as defined by the system specifications. However, incorrectly

implemented software in the system does not always impact the final output of the

system. That is, a system that is said to demonstrate coincidental correctness does the

right thing some of the time.)

Rather than using actual discrimination and correlation algorithms in the passive

components, we will use relatively simple algorithms that are intended to demonstrate the

effectiveness of the contract vice accuracy of discrimination and correlation algorithms.

We will describe the work in the timelines that we accomplished the work to record the

thinking at each step in the prototype development process.

D. TRACK PROCESSING COMPONENT
For our prototype system, we will develop the track processing part of the BMK

to satisfy the Track function of the kill chain. For the prototype, we will use the

following assumptions: (1) we are not concerned about the source of the track data (i.e.,

radar, IR sensor, optical sensor), (2) the track data is normalized to a specific format in

the data store that contains the track data, and (3) we are not concerned with the specific

details of discrimination and correlation.

 135

The first step is to develop a use case that outlines track processing in the BMK.

The user goal in Track Processing is to identify ballistic-missile threat objects in the

observed track data from a sensor. The following use case outlines the steps required to

achieve this goal:

Track Processing Use Case

Goal: Identify ballistic missile threat objects from observed track data.

Trigger: Track data returned to Track Processing as a result of polling track-data

store

Actors: Track Processing, Discrimination Computation, Correlation

Computation

Main success scenario:

1. Track Processing polls Track Data Store for track data and Track Data

Store returns track data.
2. Track Processing sends track data to Discrimination Computation to

determine whether track data is a threat object.
3. Discrimination Computation stores discriminated tracks in data store and

returns an end of discrimination message to Track Processing.
4. Track Processing pulls discriminated tracks from data store and sends

track data to Correlation Computation.
5. Correlation Computation associates threat track to existing track file,

updates track files, and returns an end of correlation message to Track
Processing.

Extensions:

1a. Track Data-Store returns null message.
 1a1. Repeat 1 until Track Data-Store returns track data.

 3a. Discrimination Computation cannot discriminate track data.
3a1. Discrimination Computation sends track data to Suspect Data

Store.
3a2, Discrimination Computation sends Track Processing end of

discrimination message.
5a. Correlation Computation cannot associate threat track to existing track

file.
 5a1. Correlation Computation creates new track file for threat track

5a2. Correlation Computation returns an end of correlation message to
Track Processing.

 136

From this use case, we developed the collaboration diagram in Figure 14 to depict

the relationships of the classes suggested in the use case. Note that we have identified a

Track Processing class that coordinates the activities in this work. Additionally, we have

identified two classes that perform work: Discrimination Computation and Correlation

Computation.

Figure 14. Track Processing Component

From the Track Processing use case and diagram, we can prepare a description of

the components, interfaces, and data stores as well as a set of specifications for track

processing. Additionally, we can develop natural language assertions and associated

error-handling code that can enhance our desired dependability properties of availability,

consistency, correctness, reliability, robustness, safety, and recoverability.

1. Track Processing Component
This is an active component that coordinates activities and computations as track

data is processed. Track Processing should ensure that interrupts or slow processing in

the passive components (i.e., computations) do not result in an interrupt in the processing

isEndDiscrim

Track Data

isEndDiscrim

Track Data
Store

Track Processing
Comp

iDiscriminate

iCorrelate

Discrimination
Computation

Track Data

isEndCorrelationdiscriminated track data

isEndCorrelation

Kill
Data Store

Battlespace
Representation

Data Store

get Track Files updates to Track Files

2

3a 4a

6a7a

5b

7b 11b

12b

13b

get discriminated track data
3b

Correlation
Computation

return Track Data

Suspect Track
Data Store

DiscrimatedTracks
Data Store

updates to discriminated
Track Data

5a

return discriminated track data

9bupdates to threat track data

4b

10bupdates to suspect track data

return Track
Files

8b

discriminated track data

6b

get Track Data

1

isEndDiscrim

Track Data

isEndDiscrim

Track Data
Store

Track Processing
Comp

iDiscriminate

iCorrelate

Discrimination
Computation

Track Data

isEndCorrelationdiscriminated track data

isEndCorrelation

Kill
Data Store

Battlespace
Representation

Data Store

get Track Files updates to Track Files

2

3a 4a

6a7a

5b

7b 11b

12b

13b

get discriminated track data
3b

Correlation
Computation

return Track Data

Suspect Track
Data Store

DiscrimatedTracks
Data Store

updates to discriminated
Track Data

5a

return discriminated track data

9bupdates to threat track data

4b

10bupdates to suspect track data

return Track
Files

8b

discriminated track data

6b

get Track Data

1

 137

of the track data. Track Processing will poll data from Track Data Store, and send the

track data to the Discrimination Computation. Concurrently, Track Processing begins to

poll the Discriminated Track Data Store. After receiving a discriminated track, Track

Processing will send the discriminated track data to the Correlation Computation. Note

that discrimination and correlation are concurrent activities and denoted on the diagram

as 3a, 4a, etc. for the discrimination activities and 3b, 4b, etc. for the correlation

activities.

The specifications for Track Processing are as follows:

a. Track Processing will continually poll Track Data Store every two

seconds and pulls a single track data set from the top of the stack.

b. Track Processing will poll Track Data Store every two seconds or

whenever Track Processing receives isEndDiscrim message – whichever event occurs

first. This assertion checks for continued polling of the Track Data Store by Track

Processing thereby realizing a safety property of the BMK processing track data

whenever track data is presented to the BMK. If the assertion is violated, then the

developed error-handling code will reset the polling in Track Processing and resume

polling every two seconds.

c. Track Processing will not poll Track Data Store while

discriminating current track data. This assertion checks that Track Processing only tasks

a single set of track data to a single instance of the Discrimination Computation and that

Track Processing will not send a different set of track data to that instance of the

Discrimination Computation until it completes its processing of the current set of track

data.

d. If track data from Track Data Store is not valid data, then Track

Processing will discard the invalid data (e.g., null set) and poll Track Data Store in two

seconds. Track Processing will not pass invalid data to Discrimination Computation.

This assertion checks for valid track data to avoid processing invalid track data that may

cause a system failure.

e. If Track Processing sends valid track data to Discrimination

 138

Computation, then the Discrimination Computation and associated actions must be

completed within one second of Track Processing presenting track data to

iDiscrimination. This includes the update to the Discriminated Tracks Data Store. If the

computation is not complete within one second, then Track Processing will terminate the

tasking to the Discrimination Computation and send that set of track data to the Suspect

Data Store. This assertion and associated error-handling code checks to ensure the

Discrimination Computation has completed its work within the specified time limitation.

f. If Track Processing sends valid discriminated track data to the

Correlation Computation, then the Correlation Computation and associated actions must

be completed within one second of Track Processing presenting discriminated track data

to iCorrelate. This includes the updates to the Kill Data Store, Suspect Track Data Store,

and Battlespace Representation Data Store. If the processing is not complete within the

specified time limit, then Track Processing will direct that Correlation Computation

create a new track file for the current discriminated track data. This assertion and

associated error-handling code checks to ensure the Correlation Computation has

completed its work within the specified time limitation.

2. iDiscriminate
This is an interface that describes a contract between the discrimination activities

in Track Processing and the Discrimination Computation. Along with the parameters

passed to/from the computation, the interface will contain pre-conditions, post-

conditions, and invariants as required to ensure that the Discrimination Computation

completes its work within the specified timeframe and within the constraints set forth in

the interface contract. The specifications for iDiscriminate are as follows:

a. Within one second of presenting track data to iDiscriminate, the

track data will be returned to Track Processing with one of three possible labels: Threat,

Benign, or Suspect; otherwise, iDiscriminate will terminate the discrimination

computation and discard the invalid output of the discrimination computation. If the

computation exceeds one second, then the track data will be labeled as Suspect. If track

data is not valid data, then iDiscriminate will terminate processing and return

isEndDiscrim message to Track Processing.

 139

b. If the velocity in the track data is anything other than a real number

greater than zero and less than 10 (anything other than a real number would include alpha

characters, mathematical symbols, null values, etc.), then iDiscriminate will terminate

processing and send isEndDiscrim to Track Processing.

3. Discrimination Computation
This is a passive component that receives track data and determines whether the

track data represents a threat, benign, or suspect track. A threat track is defined as one

that is identified as a tracked ballistic missile. A benign track is defined as one that is

identified as a mass moving through space at a given velocity but does not represent a

ballistic missile threat. A suspect threat track is defined as one that cannot be classified

as either a threat or benign track, or contains features of both a threat and benign track.

The specifications for the Discrimination Computation are as follows:

a. If track data contains a velocity of less than one kilometer per

second, then the discrimination computation will label the track data as suspect.

b. If track data contains a velocity of greater than nine kilometers per

second, then the discrimination computation will label the track data as suspect.

c. If track data contains features that indicate both a threat and a

benign identification for the same track, then the discrimination computation will label

the track data as suspect.

4. iCorrelate
This is an interface that describes a contract between the correlation activities in

Track Processing and the Correlation Computation. Along with the parameters passed

to/from the computation, the interface will contain pre-conditions, post-conditions, and

invariants as required to ensure that the Correlation Computation completes its work

within the specified timeframe and within the constraints set forth in the interface

contract. The specifications for iCorrelate are as follows:

a. After Track Processing presents track data to iCorrelation, the

correlation computation must return isEndCorrelation message to iCorrelate within two

seconds. If the computation exceeds two seconds, then the track data will be toggled as

 140

Suspect and stored in Suspect Track Data Store, and iCorrelation will send

isEndCorrelation message to Track Processing.

b. If track data from Track Data Store is not valid data, then

iCorrelation will discard track data and return isEndCorrelation message to Track

Processing. iCorrelation will not pass invalid track data to Correlation Computation.

5. Correlation
This is a passive component that receives discriminated track data and correlates

that data with the current track files that the Correlation Computation pulls from the

Battlespace Representation Data Store.

a. All track data will be correlated to an existing track file or the

correlation computation will generate a new track file.

b. If current Track File is toggled from Threat to Benign, then

Correlation will send track data to Suspect Track Data Store and update Battlespace

Representation Data Store with suspect track data.

c. If predicted impact point of current Track File differs from the

predicted impact point of the track data (absolute value of the distance between the two

impact points) by more than 50 kilometers, then the correlation computation will toggle

the track file as suspect and send a copy of track file to Suspect Track Data Store.

d. If threat track file has two consecutive position updates in which

the absolute difference between the two reported positions is less than three kilometers,

then the correlation computation will toggle the track file as suspect and send a copy of

track file to Suspect Track Data Store.

e. If track data is labeled Suspect, then the correlation computation

will send a copy of the suspect track data to Suspect Track Data Store after either

correlating the track data to an existing track file or creating a new track file in the

Battlespace Representation Data Store.

f. The correlation computation will complete all computations, and

store all correlated track data and new track files before sending isEndCorrelation to

 141

iCorrelation.

6. Kill Data Store
This data store contains the correlated threat track data.

7. Battlespace Representation Data Store
This data store contains the entire set of active tracks (benign, threat, and suspect)

in the battlespace. .

8. Suspect Track Data Store
This data store contains the tracks that are classified as suspect.

9. Track Data Store
This data store contains the normalized track data from various sensor sources.

E. WEAPON ASSIGNMENT COMPONENT
The next effort in developing our prototype will be developing the weapon

assignment processing part of the BMK. As with Track Processing, our first step is to

develop a use case that outlines weapon assignment processing in the BMK. The user

goal in Weapon Assignment Processing is to assign a weapon system to engage each

track in the Kill Data Store. The following use case outlines the step required to achieve

this goal:

Weapon Assignment Processing Use Case

Goal: Assign a weapon system to engage each track in Kill Data Store.

Actors: Weapon Assignment Processing, Track Prioritization Computation,

Weapon Assignment Computation

Pre-condition: Kill Data Store contains one or more threat tracks.

Trigger: Track data returned to Weapon Assignment Processing as a result of

Weapon Assignment Processing polling Kill Data Store

Main success scenario:
1. Upon receipt of track data from Weapon Assignment Processing, Track

Prioritization Computation prioritizes the threats in accordance with the
PDAL data store.

2. After completing the track prioritization tasking, Track Prioritization
Computation sends an end of prioritization message to Weapon Assignment
Processing.

 142

3. Upon receipt of prioritized track data from Weapon Assignment Processing,
Weapon Assignment Computation determines which weapon it will assign to
engage threat track, and stores the weapon assignment in Track Engagement
Data Store.

4. After completing the weapon assignment tasking, Weapon Assignment
Computation sends an end of weapon assignment message to Weapon
Assignment Processing.

From this use case, we developed the diagram in Figure 15 to depict the

relationships of the classes suggested in the use case. Note that we identified a Weapon

Assignment Processing class that coordinates the activities in this work. Additionally, we

identified two classes that perform work: Track Prioritization Computation and Weapon

Assignment Computation.

Figure 15. Weapon Assignment Processing Component

1
get prioritized

asset data

Prioritized
Threats

Data Store

Weapon Assignment
Processing

PDAL
Data Store

Track Prioritization
Computation

isEndProritization
iPrioritize

Track Data

return prioritized
asset data

isEndProritization

Track Data

get track data

Kill
Data Store

return track data

update complete

update prioritized
threats

prioritized track
data isEndWeaponAssignment

iWeaponAssignment

get prioritized threats

return prioritized threats

2 3a 4a

5a 6a

9a10a

3b 7a

4b

16b

8a

ROEs
Data Store

Weapon System
Data Store

Weapon H&S
Data Store

Track
Engagement
Data Store

Weapon
Assignment

Computation

prioritzed track
data isEndWeaponAssignment

get weapon system data

return weapon system data

get interceptor H&S status

return interceptor H&S status

get rules of engagement

return rules of engagement

update
weapon/target

pairing
update complete

6b

9b

11b

8b

10b

12b

13b 14b

15b
7b

5b

 143

From the use case and the diagram, we can prepare a description of the

components, interfaces, and data stores as well as a set of specifications for weapon

assignment processing. Additionally, we can develop natural language assertions and

associated error-handling code that can enhance our desired dependability properties of

availability, consistency, correctness, reliability, robustness, safety, and recoverability.

1. Weapon Assignment Processing
This is an active component that coordinates activities and computations for the

pairing of a weapon system to a given track. Weapon Assignment Processing should

ensure that interrupts or slow processing in the passive components (i.e., computations)

does not result in an interrupt in the weapon assignment processing. Weapon Assignment

Processing will poll data from Kill Data Store and send the track data to the Track

Prioritization Computation. When triggered, Weapon Assignment Processing will task

the Weapon Assignment Computation to pair a weapon to a track. Note that

prioritization and weapon assignment are concurrent activities and denoted on the

diagram as 3a, 4a, etc. for the prioritization activities and 3b, 4b, etc. for the weapon

assignment activities. The specifications for Weapon Assignment Processing are as

follows:

a. Weapon Assignment Processing will continually poll Kill Data

Store every two seconds and pull a single track data set from top of stack.

b. Weapon Assignment Processing will poll Kill Data Store every

two seconds or whenever Weapon Assignment Processing receives isEndPrioritization

message – whichever event occurs first.

c. Weapon Assignment Processing will not poll Kill Data Store while

prioritizing current track data.

d. If track data from Kill Data Store is not valid data, then Weapon

Assignment Processing will discard returned track data and resume polling after two

seconds has elapsed. Weapon Assignment Processing will not pass invalid track data to

associated computations.

e. Weapon Assignment Processing will not process any track data

 144

that is identified as either Benign or Suspect. If a Weapon Assignment Processing pulls a

track that is identified other than Threat, then Weapon Assignment Processing will send

an alert to the user display along with the track data.

g. If Weapon Assignment Processing sends valid track data to Track

Prioritization Computation, then prioritization computations and actions must be

completed within two seconds of Weapon Assignment Processing presenting track data

to iPrioritize. This includes the update of Prioritized Threats Data Store.

h. After Weapon Assignment Processing has received valid

prioritized track data from the Prioritized Threats Data Store, it will send the prioritized

track data to the Weapon Assignment Computation.

i. If Weapon Assignment Processing sends valid track data to

Weapon Assignment Computation, then weapon assignment computations and actions

must be completed within two seconds of Weapon Assignment Processing presenting

track data to iWeaponAssignment. This includes the update of Track Engagement Data

Store.

2. iPrioritize
This is an interface that is described as a contract between Weapon Assignment

Processing and Track Prioritization Computation. Along with the parameters passed

to/from the computation, the interface will contain pre-conditions, post-conditions, and

invariants as required to ensure that the track prioritization computation completes its

work within the specified timeframe and within the constraints set forth in the interface

contract. The specifications for iPrioritize are as follows:

a. Within two seconds of presenting track data to iPrioritize, the

Track Prioritization Computation must return isEndPrioritization message which

iPrioritize will forward to Weapon Assignment Processing. If the temporal assertion fails

to hold, then Weapon Assignment Processing will direct Track Prioritization

Computation to place track data at the bottom of the priority stack in the Prioritized

Threats Data Store, reset the polling in Weapon Assignment Processing, and resume

polling of Kill Data Store.

 145

b. If track data is not valid data, then iPrioritize will terminate

processing and return isEndPrioritization message to Weapon Assignment Processing.

c. If the Predicted Impact Point (IPP) in the track data is anything

other than a string of 8 integers (N.B.: anything other than a string of 8 integers would

include real numbers other than integers, alpha characters, mathematical symbols, null

values, etc), then iPrioritization will terminate processing and send isEndPrioritization

message to Weapon Assignment Processing.

3. Track Prioritization Computation
This is a passive component that receives track data and determines the priority of

the track based upon the PDAL Data Store. The specifications for the Track

Prioritization Computation are as follows:

a. After Weapon Assignment Processing presents track data to

iPrioritize, the track prioritization computation must prioritize the threat track in

accordance with the Prioritized Defended Asset List (PDAL). If the prioritization

computation exceeds one second, then the track will be placed at the bottom of the

priority stack in the Prioritized Threats Data Store and the prioritization computation will

return isEndPrioritization message to iPrioritize.

b. If the absolute value of the distance from the IPP to any asset on

the PDAL is equal to or less than 50 kilometers, then the threat will be assign a priority to

the track that is equal to the priority of the PDAL asset that is within that absolute value

of 50 kilometers of the IPP. If there are more than one PDAL assets within 50 kilometers

of the IPP, then the priority of the track will be equal to the asset that has the highest

priority within a circle that is defined having a 50 kilometer radius and the center is the

IPP. If two or more tracks hold the same priority based upon threatening the same asset,

then the track with the shortest time remaining to impact will be given the higher priority.

c. If a the absolute value of the distance from the IPP to any asset on

the PDAL is greater than 50 kilometers, then the threat will be labeled as “Deliberate

Pass), monitored, but not engaged unless the IPP moves within 50 kilometers of a

defended asset. No weapon will be assigned to engage Deliberate Pass tracks.

 146

4. iWeaponAssignment
This is an interface that is described as a contract between Weapon Assignment

Processing and Weapon Assignment Computation. Along with the parameters passed

to/from the computation, the interface will contain pre-conditions, post-conditions, and

invariants as required to ensure that the Weapon Assignment Computation completes its

work within the specified timeframe and within the constraints set forth in the interface

contract. The specifications for iWeaponAssignment are as follows:

a. After Weapon Assignment Processing presents track data to

iWeaponAssignment, the correlation computation must return isEndWeaponAssignment

message to iWeaponAssignment within two seconds. If the computation exceeds two

seconds, then the track will be toggled as “Not Assigned” in Track Engagement Data

Store, and iWeaponAssignment will send isEndWeaponAssignment message to Weapon

Assignment Processing.

b. If track data from Weapon Assignment Processing is not valid

data, then iWeaponAssignment will discard track data and return

isEndWeaponAssignment message to Weapon Assignment Processing.

iWeaponAssignment will not pass null track data to weapon assignment computation.

5. Weapon Assignment Computation
This is a passive component that will receive prioritized track data from Weapon

Assignment Processing and assign a weapon to each threat based upon the characteristics

of the weapon systems, health and status of the available weapon systems, and rules of

engagement as defined by the user. The specifications for the Weapon Assignment

Computation are as follows:

a. Each track that is identified as a threat and prioritized will be

paired with a weapon. Any track that is identified as either benign or suspect will If a

weapon system is not available to engage the track, then the Weapon Assignment

Computation will tag the track as Unassigned Threat Track.

b. After all computations and updates are completed, Weapon

Assignment Computation will send isEndWeaponAssignment message to Weapon

 147

Assignment Processing.

6. PDAL Data Store
This data store contains the prioritized threats as computed by the Track

Prioritization Computation.

7. Prioritized Threats Data Store
This data store contains the prioritized threats as computed by the Track

Prioritization Computation.

8. Weapon System Data Store
This data store contains information about each weapon system in the BMDS to

include range and accuracy of organic sensor, altitude and range of interceptor, maximum

number of available launchers, reload time, and maximum number of concurrent

engagements.

9. Weapon H&S Data Store
This data store contains the continually updated health and status information of

each weapon associated with the battle manager to include readiness of weapon system,

number of interceptors that are at the ready, current engagement assignments assigned to

the weapon system, and current engagements of the weapon system.

10. ROEs Data Store
This data store contains the rules of engagement (ROEs) as set in the BMD

planning phase to include shot doctrine, firing trigger (e.g., first available shot, 90%

probability of kill (PK), desired interceptor reserve).

11. Track Engagement Data Store
This data store contains the current engagement status (Engaged, Not Assigned,

or Deliberate Pass) of every prioritized track.

F. DISTRIBUTED BEHAVIOR COMPONPENT
The BMK Distributed Behavior Component is an active component that monitors

the status of multiple, independent battle-management processes. The first process

copies the track data in Kill Data Store and sends this data to other BMKs as situational

awareness information. The second process copies the track data in the Battlespace

Representation Data Store and sends this data to other BMKs and C2 elements as

situational awareness information. The third process monitors the Track Engagement

 148

Data Store to find assigned engagements with weapon systems that require additional

sensor support (modify WAP). The fourth process copies the engagement data in Track

Engagement Data Store and provides it to other BMKs and C2 elements as situational

awareness information. The fifth process searches the engagement data in Track

Engagement Data Store to find Unassigned Threat Tracks that have remained unassigned

for more than 30 seconds. The sixth process monitors the Suspect Track Data Store to

find suspect track data that have remained in the suspect status for more than 30 seconds

without new track updates. The BMK Distributed Behavior Component is depicted

below in Figure 16:

Figure 16. BMK Distributed Behavior Component

BMK_1
Distributed

Behavior
Component

Kill
Data Store

Battlespace
Representation

Data Store

Suspect Track
Data Store

1aget threat track data

Track
Engagement

Data Store

return threat track data

get track engagement data

return track engagement data

get suspect track data

return suspect track data

get battlespace representation data

return battlespace representation data

2a

3a

4a

1b

2b

1c

2c

BMK_2
Distributed

Behavior
Component

Kill
Data Store

Battlespace
Representation

Data Store

Suspect Track
Data Store

1aget threat track data

Track
Engagement

Data Store

return threat track data

get track engagement data

return track engagement data

get suspect track data

return suspect track data

get battlespace representation data

return battlespace representation data

2a

3a

4a

1b

2b

1c

2c

Send RPC/Track
Data

Acknowledgement of Receipt of
RPC/Track Data

BMK_1
Distributed

Behavior
Component

Kill
Data Store

Battlespace
Representation

Data Store

Suspect Track
Data Store

1aget threat track data

Track
Engagement

Data Store

return threat track data

get track engagement data

return track engagement data

get suspect track data

return suspect track data

get battlespace representation data

return battlespace representation data

2a

3a

4a

1b

2b

1c

2c

BMK_2
Distributed

Behavior
Component

Kill
Data Store

Battlespace
Representation

Data Store

Suspect Track
Data Store

1aget threat track data

Track
Engagement

Data Store

return threat track data

get track engagement data

return track engagement data

get suspect track data

return suspect track data

get battlespace representation data

return battlespace representation data

2a

3a

4a

1b

2b

1c

2c

Send RPC/Track
Data

Acknowledgement of Receipt of
RPC/Track Data

 149

The specifications for the BMK Distributed Behavior Component are as follows:

1. Situational Awareness: Kill Data Store
BMK Distributed Behavior Component pulls track data from Kill Data Store

every 5 seconds and sends it to other BMKs.

2. Situational Awareness: Battlespace Representation Data Store
BMK Distributed Behavior Component pulls track data from Battlespace

Representation Data Store every 10 seconds, and sends it to other BMKs and C2

elements.

3. Sensor Support RPC
BMK Distributed Behavior Component searches for engagement assignments that

require additional sensor support as stored in Track Engagement Data Store and requests

sensor support from another BMK.

4. Situational Awareness: Track Engagement Data Store
BMK Distributed Behavior Component pulls track data from Track Engagement

Data Store every 5 seconds, and sends it to other BMKs and C2 elements.

5. Weapon Assignment RPC
BMK Distributed Behavior Component searches the engagement data in Track

Engagement Data Store to find Unassigned Threat Tracks that have remained unassigned

for more than 30 seconds, and requests transfer of track responsibility and weapon

assignment to another BMK.

6. Sensor Support RPC: Suspect Track Data Store
BMK Distributed Behavior Component searches for suspect track data that have

remained in the suspect status for more than 30 seconds without new track updates data

in engagement assignments and requests sensor support from another BMK.

G. SAFETY COMPONENT
Safety is a system attribute. System software faults can lead to system accidents;

however, the system software safety is highly dependent on the operational application of

the system as well as the environment in which we operate the system. Software is not

unsafe when considered in isolation. It is only when the software is integrated into a

system that it can contribute to system accidents.

 150

For the battle manager, we will use the following partial failure analysis for

ballistic missile defense that will form the basis for our battle-management safety

policies:

1. Failure of weapon to engage a threat track

a. Potential causal factor

Failure of Battle Manager to assign weapon to threat track in

sufficient time for weapon to engage threat track

 b. Safety policies

 (1) For each identified threat track, the Battle Manager must

either assign a weapon to engage that threat track or classify the threat track as Deliberate

Pass within thirty seconds of a track being identified as a threat track.

(2) For each track that is presented to the Battle Manager, the

track processing code must identify the track as threat, benign, or suspect within fifteen

seconds of track presentation to the Battle Manager.

 (3) For each track that is labeled suspect by the Battle

Manager, the track processing code must classify the suspect track as either threat or

benign within thirty seconds of the original classification of the track as suspect.

 (4) A threat will not toggle between Deliberate Pass and a

weapon assignment more than two times.

 (5) A suspect track will be updated within thirty seconds of its

previous update or original classification – whichever is later.

 (6) A track that has a velocity of less than one kilometer per

second will not be identified as a ballistic missile threat.

 (7) Every processed track in the BMD battlespace will be

updated within thirty seconds of its previous update or original classification – whichever

is later.

 151

 2. Successful engagement of weapon on non-threat track

 a. Potential causal factors

 (1) Weapon assignment pairing weapon to either benign or

suspect track.

 (2) Prioritized threats include one or more benign or suspect

track(s).

 b. Safety policies

 (1) Only threat tracks will be paired with a weapon for

engagement. Suspect tracks and benign tracks will not be paired with a weapon for

engagement.

 (2) Prioritized threats will only come from threat track storage.

Suspect tracks and benign tracks will not be prioritized for weapon assignment.

Rather than scattering the safety assurance through all the active components, we

will employ the use of a safety component to ensure compliance with our identified

safety policies. The checking for compliance to the safety policies might be managed

easier in a single entity (i.e., safety component) because the complexity of the battle

manager could make the safety-policy compliance checking more difficult. Our premise

is that verification of the safety component will suffice for ensuring the enforcement of

the safety policies over the battle manager. While the safety component may not be

responsible for implementing all the safety policies, it will be responsible for checking

compliance to all the implemented safety policies and exercising implemented exception-

handling code for detected safety violations.

For the prototype, the BMK Safety Component will monitor the BMK data stores

and perform checks to determine whether the BMK active components are complying

with the implemented safety policies. Upon a detection of a safety policy violation, the

BMK Safety Component will return the BMK to a safe operational state if possible or fail

safe at a minimum. As such, it is equally important to specify the exception-handling

 152

routine for the violation of a given assertion as the specification of the desired objective

for that assertion. The BMK Safety Component is depicted below in Figure 17:

Figure 17. BMK Safety Component

The BMK Safety Component is an active component that monitors the status of

three concurrent BMK processes. The first process ensures that Weapon Assignment has

assigned a weapons system against each identified threat in the Kill Data Store. The

second process ensures that the tracks in the Suspect Data Store are updated as specified.

The third process ensures that the tracks in the Battlespace Representation Data Store are

updated as specified. The specifications for the BMK Safety Component are as follows:

BMK
Safety Executive

Kill
Data Store

Battlespace
Representation

Data Store

Suspect Track
Data Store

1aget threat track data

Track
Engagement
Data Store

return threat track data

get track engagement data

return track engagement data

get suspect track data

return suspect track data

get battlespace representation data

return battlespace representation data

2a

3a

4a

1b

2b

1c

2c

Track
Data Store

get battlespace representation data

return battlespace representation data

1d

2d

BMK
Safety Executive

Kill
Data Store

Battlespace
Representation

Data Store

Suspect Track
Data Store

1aget threat track data

Track
Engagement
Data Store

return threat track data

get track engagement data

return track engagement data

get suspect track data

return suspect track data

get battlespace representation data

return battlespace representation data

2a

3a

4a

1b

2b

1c

2c

Track
Data Store

get battlespace representation data

return battlespace representation data

1d

2d

 153

1. Threat Engagement Status. A valid threat track in the Kill Data Store will

be paired with a weapon system to engage the valid threat track within thirty seconds of

the first instance of that track in the Kill Data Store. If a track in the Kill Data Store has

either not been assigned a weapon system to engage it or classified as Deliberate Pass

within thirty seconds after entering the track into the Kill Data Store, then the Safety

Component will send a warning to user display.

2. Threat Engagement Toggle. A valid threat track can toggle between

deliberate pass and a weapon system pairing only one time. If a track toggles between

Deliberate Pass and weapon assigned (i.e., deliberate pass to weapon assigned is one

toggle and weapon assigned to deliberate pass is one toggle) more than two times, then a

warning will be sent to the user display.

3. Unassigned Threat Track. A valid threat track in the Track Engagement

Data Store will be paired with a weapon system to engage that valid threat track within

thirty seconds of the first instance of that track in the Track Engagement Data Store. If

an unassigned threat track is not assigned a weapon system to engage it within thirty

seconds of the first instance of the Weapon Assignment Computation posting this track

into the Track Engagement Data Store, then a warning will be sent to the user display.

4. Threat Track Identification. A track in the Kill Data Store can only be

identified as a Threat. Any other identification for a track in the Kill Data Store is

invalid. Safety Component will pull all invalid tracks from the Kill Data Store and send

an alert to the user display along with the invalid track data.

5. Suspect Track Status. Each suspect track must be classified as either

threat or benign within thirty seconds of the first instance of the track that is posted in the

Suspect Track Data Store. If the track in the Suspect Track Data Store has not been

classified as either threat or benign within thirty seconds after the first instance of that

track appears in the Suspect Track Data Store, then the Safety Component will send a

warning to user display along with the track data.

6. Suspect Track Update. A suspect track file must be updated within thirty

seconds of its previous update after the first instance of the track in the Suspect Track

 154

Data Store. If a suspect track file has not been updated within thirty seconds from its

previous update, then Safety Component will send suspect track warning to user display

along with the track data.

7. Suspect Track Velocity Status. A suspect track cannot have more than

two consecutive velocity updates of less than one kilometer per second. If suspect track

file has three consecutive velocity updates of less than one kilometer per second, then

Correlation Computation will send suspect track data to user display.

8. Battlespace Representation Track Update. A track file must be updated

within thirty seconds of its previous update after the first instance of the track in the

Battlespace Representation Data Store. If a track file (benign or threat) in the Battlespace

Representation Data Store has not been updated for thirty seconds or more, then the

BMK Safety Component will toggle the track file to Suspect and send track data to

Suspect Track Data Store.

9. Continuity of Operations: Track Processing

a. A track must be pulled from Track Data Store within fifteen

seconds of its appearance in the Track Data Store.

b. The first instance of a track file must appear in Battlespace

Representation Data Store within thirty seconds of the first appearance of that valid track

data in the Track Data Store.

c. If (9a) and (9b) are not true at the same time, then Safety

Component will send reset signal to Track Processing Component.

d. If (9a) and (9b) are not true at the same time following a Track

Processing reset that occurred within the past sixty seconds, then the Safety Component

will deem the BMK as inoperable and direct the transfer of control to another BMK.

10. Continuity of Operations: Weapon Assignment Processing

a. A track must be pulled from Kill Data Store within fifteen seconds

of its appearance in the Kill Data Store.

b. The first instance of a threat track file must appear in Track

 155

Engagement Data Store within thirty seconds of the first appearance of that valid threat

track data in the Kill Data Store.

c. If (10a) and (10b) are not true at the same time, then Safety

Component will send reset signal to Weapon Assignment Processing Component.

d. If (10a) and (10b) are not true at the same time following a

Weapon Assignment Processing reset that occurred within the past sixty seconds, then

the Safety Component will deem the BMK as inoperable and direct the transfer of control

to another BMK. No other data will be processed by the BMK.

H. ANALYSIS OF PROTOTPE
We specified the BMK prototype with the use of assertions. We identified error-

handling procedures for violations of the assertions. Functionally, the prototype should

exhibit the desired behavior to support battle-management operations.

To support dependability of the BMK, we modified our assertions to specify time

constraints that are driven by the operational battlespace and added assertions that would

support our design goals. In the following discussion, we will assess the assertions that

we used to specify the prototype to determine whether the BMK contains the seven

dependability properties that we identified for the battle manager.

1. Availability
In Chapter VI, we defined availability as the probability that a system is operating

correctly and is ready to perform its desired functions.

a. Track
For the Track function, we developed two assertions that support the

availability of the Track Processing component:

(1) Track Processing will continually poll Track Data Store

every two seconds and pulls a single track data set from top of stack. This assertion

specifies the time constraint for polling the data store for track data. This assertion

supports continuity of operations.

(2) Track Processing will poll Track Data Store every two

seconds or whenever Track Processing receives isEndDiscrim message – whichever

 156

event occurs first. If the assertion is violated, then the developed error-handling code

will reset the polling in Track Processing and resume polling every two seconds.

We chose to use temporal assertions to ensure that Track Processing will

continually poll the Track Data Store and process track data. Note that Track Processing

will return to poll new track data at either two-second intervals or whenever

discrimination is completed. As such, the BMK will continually poll and process data as

specified. If the assertion is violated, then Track Processing will reset itself and resume

polling at two-second intervals.

b. Weapon Assignment
For Weapon Assignment function, we developed two assertions that

support the availability of the Weapon Assignment Processing component:

(1) Weapon Assignment Processing will continually poll Kill

Data Store every two seconds and pull a single track data set from top of stack.

(2) Weapon Assignment Processing will poll Kill Data Store

every two seconds or whenever Weapon Assignment Processing receives

isEndPrioritization message – whichever event occurs first. Within two seconds of

presenting track data to iPrioritize, the Track Prioritization Computation must return

isEndPrioritization message which iPrioritize will forward to Weapon Assignment

Processing. If the temporal assertion fails to hold, then Weapon Assignment Processing

will direct Track Prioritization Computation to place track data at the bottom of the

priority stack in the Prioritized Threats Data Store, reset the polling in Weapon

Assignment Processing, and resume polling of Kill Data Store.

We chose to use temporal assertions to ensure that Weapon Assignment

Processing will continually poll the Kill Data Store and develop a weapon/target pairing

for each threat in the Kill Data Store. Note that Weapon Assignment Processing will

return to poll new threat data at either two-second intervals or whenever threat

prioritization is completed. As such, Weapon Assignment Processing will continually

pole and process data as specified. If the assertion is violated, then Weapon Assignment

Processing will reset itself and resume polling at two-second intervals.

 157

c. Component Interfaces
In each interface between an active component and a passive component

(i.e., iDiscriminate, iCorrelate, iPrioritize, and iWeaponAssignment), we specified a

temporal invariant for the return of output from the passive component. The intent is to

ensure that the BMK would continue to operate correctly if a passive component failed to

return the required output in the specified constraint of the temporal assertion.

For example, consider the following assertion in the specification for

iDiscriminate:

Within one second of presenting track data to iDiscriminate, the track

data will be returned to Track Processing with one of three possible labels: Threat,

Benign, or Suspect; otherwise, iDiscriminate will terminate the discrimination

computation and discard the invalid output of the discrimination computation. If the

computation exceeds one second, then the track data will be labeled as Suspect. If track

data is not valid data, then iDiscriminate will terminate processing and return

isEndDiscrim message to Track Processing.

Case #1: Consider the case in which track data is not valid data (e.g., the

null set). This is a violation of the precondition assertion for iDiscriminate. The

discrimination process will be terminated, and Track Processing will resume polling and

processing track data. The system continues to be available for operations.

Case #2: Consider the case in which discrimination computation does not

conclude within one second. The invariant temporal assertion in iDiscriminate will be

violated. The discrimination computation will be terminated, and Track Processing will

resume polling and processing track data. The system continues to be available for

operations.

Case #3: Consider the case in which an output from the discrimination

computation is something other than Threat, Benign, or Suspect. This is a violation of

the post-condition assertion for iDiscriminate. The discrimination computation will be

terminated, and Track Processing will resume polling and processing track data. The

system continues to be available for operations.

 158

d. Findings and Conclusions
The assertions in Track Processing component, Weapon Assignment

Processing component, and the component interfaces could support the availability of the

BMK to coordinate battle-management activities. We asserted the desired behavior with

time constraints to ensure that the BMK continues to process track data as specified and

provided error-handling specifications for violations of the assertions to support

continuity of operations. Thus, we conclude that the assertions support the availability of

the BMK as defined for this research.

2. Consistency
In Chapter VI, we defined consistency as the property that invariants will always

hold true in the system.

a. Track
For the Track function, we developed two assertions that support the

consistency of the Track Processing component:

(1) Track Processing will poll Track Data Store every two

seconds or whenever Track Processing receives isEndDiscrim message – whichever

event occurs first. If the assertion is violated, then the developed error-handling code

will reset the polling in Track Processing and resume polling every two seconds.

(2) Track Processing will not poll Track Data Store while

discriminating current track data.

b. Weapon Assignment
For the Weapon Assignment function, we developed two assertions that

support the consistency of the Weapon Assignment component:

(1) Weapon Assignment Processing will poll Kill Data Store

every two seconds or whenever Weapon Assignment Processing receives

isEndPrioritization message – whichever event occurs first. Within two seconds of

presenting track data to iPrioritize, the Track Prioritization Computation must return

isEndPrioritization message which iPrioritize will forward to Weapon Assignment

Processing. If the temporal assertion fails to hold, then Weapon Assignment Processing

will direct Track Prioritization Computation to place track data at the bottom of the

 159

priority stack in the Prioritized Threats Data Store, reset the polling in Weapon

Assignment Processing, and resume polling of Kill Data Store.

(2) Weapon Assignment Processing will not poll Kill Data

Store while prioritizing current track data.

c. Component Interfaces
In each interface between an active component and a passive component

(i.e., iDiscriminate, iCorrelate, iPrioritize, and iWeaponAssignment), we specified a

temporal invariant for the return of output from the passive component. The intent is to

ensure that the BMK would continue to operate correctly if a passive component failed to

return the required output in the specified constraint of the temporal assertion.

For example, consider the following assertion in the specification for

iCorrelate:

After Track Processing presents track data to iCorrelation, the correlation

computation must return isEndCorrelation message to iCorrelate within two seconds. If

the computation exceeds two seconds, then the track data will be toggled as Suspect and

stored in Suspect Track Data Store, and iCorrelation will send isEndCorrelation message

to Track Processing.

Consider the case in which correlation computation does not conclude

within two seconds. The invariant temporal assertion in iCorrelate will be violated. The

correlation computation will be terminated, the track data will be labeled as Suspect, and

Track Processing will resume polling and processing track data. The error-handling

procedure terminates the correlation process and Track Processing resumes polling. The

desired invariant behavior is maintained.

d. Findings and Conclusions

The assertions in Track Processing component, Weapon Assignment

Processing component, and the component interfaces could support the consistency of the

BMK to coordinate battle-management activities. We asserted the invariants for the

BMK that will always hold true, and provided error-handling specifications for violations

of the assertions by resetting the failed component to the desired operational status (i.e.,

 160

fail operational). Thus, we conclude that the assertions support the consistency of the

BMK as defined for this research.

3. Correctness.
In Chapter VI, we defined correctness as a characteristic of a system that precisely

exhibits predictable behavior at all times as defined by the system specifications.

a. Track
For the Track function, we developed two assertions that support the

correctness of the Track Processing component:

(1) Track Processing will continually poll Track Data Store

every two seconds and pulls a single track data set from top of stack.

(2) Track Processing will poll Track Data Store every two

seconds or whenever Track Processing receives isEndDiscrim message – whichever

event occurs first. If the assertion is violated, then the developed error-handling code

will reset the polling in Track Processing and resume polling every two seconds.

We chose to use temporal assertions to ensure that Track Processing will

continually poll the Track Data Store and process track data. Note that Track Processing

will return to poll new track data at either two-second intervals or whenever

discrimination is completed. As such, the BMK will continually poll and process data as

specified. If the assertion is violated, then Track Processing will reset itself and resume

polling at two-second intervals.

b. Weapon Assignment
For Weapon Assignment function, we developed two assertions that

support the correctness of the Weapon Assignment Processing component:

(1) Weapon Assignment Processing will continually poll Kill

Data Store every two seconds and pull a single track data set from top of stack.

(2) Weapon Assignment Processing will poll Kill Data Store

every two seconds or whenever Weapon Assignment Processing receives

isEndPrioritization message – whichever event occurs first. Within two seconds of

presenting track data to iPrioritize, the Track Prioritization Computation must return

 161

isEndPrioritization message which iPrioritize will forward to Weapon Assignment

Processing. If the temporal assertion fails to hold, then Weapon Assignment Processing

will direct Track Prioritization Computation to place track data at the bottom of the

priority stack in the Prioritized Threats Data Store, reset the polling in Weapon

Assignment Processing, and resume polling of Kill Data Store.

We chose to use temporal assertions to ensure that Weapon Assignment

Processing will continually poll the Kill Data Store and develop a weapon/target pairing

for each threat in the Kill Data Store. Note that Weapon Assignment Processing will

return to poll new threat data at either two-second intervals or whenever threat

prioritization is completed. As such, Weapon Assignment Processing will continually

pole and process data as specified. If the assertion is violated, then Weapon Assignment

Processing will reset itself and resume polling at two-second intervals.

c. Component Interfaces
In each interface between an active component and a passive component

(i.e., iDiscriminate, iCorrelate, iPrioritize, and iWeaponAssignment), we specified a

temporal invariant for the return of output from the passive component. The intent is to

ensure that the BMK would continue to operate correctly if a passive component failed to

return the required output in the specified constraint of the temporal assertion.

For example, consider the following assertion in the specification for

iPrioritize:

Within two seconds of presenting track data to iPrioritize, the Track

Prioritization Computation must return isEndPrioritization message which iPrioritize

will forward to Weapon Assignment Processing.

If the temporal assertion fails to hold, then Weapon Assignment

Processing will direct Track Prioritization Computation to place track data at the bottom

of the priority stack in the Prioritized Threats Data Store, reset the polling in Weapon

Assignment Processing, and resume polling of Kill Data Store.

Consider the case in which prioritization computation does not conclude

within two seconds. The invariant temporal assertion in iPrioritize will be violated. The

prioritization computation will be terminated, the track data will be placed at the bottom

 162

of the priority stack of prioritized threats. Weapon Assignment Processing will resume

polling and processing threat track data. The desired behavior is achieved.

d. Findings and Conclusions
The assertions in Track Processing component, Weapon Assignment

Processing component, and the component interfaces could support the correctness of the

BMK to coordinate battle-management activities. We asserted the desired behavior with

time constraints to ensure that the BMK continues to process track data as specified and

provided error-handling specifications for violations of the assertions to support

continuity of operations. Thus, we conclude that the assertions support the correctness of

the BMK as defined for this research.

4. Reliability
In Chapter VI, we defined reliability as the property that a system can operate

continuously without experiencing a failure.

a. Track
For the Track function, we developed two assertions that support the

reliability of the Track Processing component:

(1) Track Processing will continually poll Track Data Store

every two seconds and pulls a single track data set from top of stack.

(3) Track Processing will poll Track Data Store every two

seconds or whenever Track Processing receives isEndDiscrim message – whichever

event occurs first. If the assertion is violated, then the developed error-handling code

will reset the polling in Track Processing and resume polling every two seconds.

We chose to use temporal assertions to ensure that Track Processing will

continually poll the Track Data Store and process track data. Note that Track Processing

will return to poll new track data at either two-second intervals or whenever

discrimination is completed. As such, the BMK will continually poll and process data as

specified. If the assertion is violated, then Track Processing will reset itself and resume

polling at two-second intervals.

 163

b. Weapon Assignment
For Weapon Assignment function, we developed two assertions that

support the reliability of the Weapon Assignment Processing component:

(1) Weapon Assignment Processing will continually poll Kill

Data Store every two seconds and pull a single track data set from top of stack.

(2) Weapon Assignment Processing will poll Kill Data Store

every two seconds or whenever Weapon Assignment Processing receives

isEndPrioritization message – whichever event occurs first. Within two seconds of

presenting track data to iPrioritize, the Track Prioritization Computation must return

isEndPrioritization message which iPrioritize will forward to Weapon Assignment

Processing. If the temporal assertion fails to hold, then Weapon Assignment Processing

will direct Track Prioritization Computation to place track data at the bottom of the

priority stack in the Prioritized Threats Data Store, reset the polling in Weapon

Assignment Processing, and resume polling of Kill Data Store.

We chose to use temporal assertions to ensure that Weapon Assignment

Processing will continually poll the Kill Data Store and develop a weapon/target pairing

for each threat in the Kill Data Store. Note that Weapon Assignment Processing will

return to poll new threat data at either two-second intervals or whenever threat

prioritization is completed. As such, Weapon Assignment Processing will continually

pole and process data as specified. If the assertion is violated, then Weapon Assignment

Processing will reset itself and resume polling at two-second intervals.

c. Component Interfaces
In each interface between an active component and a passive component

(i.e., iDiscriminate, iCorrelate, iPrioritize, and iWeaponAssignment), we specified a

temporal invariant for the return of output from the passive component. The intent is to

ensure that the BMK would continue to operate correctly if a passive component failed to

return the required output in the specified constraint of the temporal assertion.

For example, consider the following assertion in the specification for

iWeaponAssignment:

 164

After Weapon Assignment Processing presents track data to

iWeaponAssignment, the correlation computation must return isEndWeaponAssignment

message to iWeaponAssignment within two seconds.

If the computation exceeds two seconds, then the track will be toggled as

“Not Assigned” in Track Engagement Data Store, and iWeaponAssignment will send

isEndWeaponAssignment message to Weapon Assignment Processing.

Consider the case in which weapon assignment computation does not

conclude within two seconds. The invariant temporal assertion in iWeaponAssignment

will be violated. The weapon assignment computation will be terminated and the track

data will be labeled as not assigned. Weapon Assignment Processing will resume polling

and processing threat track data. The BMK continues to operate without experiencing a

failure.

d. Findings and Conclusions
The assertions in Track Processing component, Weapon Assignment

Processing component, and the component interfaces could support the reliability of the

BMK to coordinate battle-management activities. We asserted the desired behavior with

time constraints to ensure that the BMK continues to process track data as specified and

provided error-handling specifications for violations of the assertions to support

continuity of operations. Thus, we conclude that the assertions support the reliability of

the BMK as defined for this research.

5. Robustness
In Chapter VI, we defined robustness as a characteristic of a system that is failure

and fault tolerant.

a. Track
For the Track function, we developed an assertion that supports the

robustness of the Track Processing component:

If track data from Track Data Store is not valid data, then Track

Processing will discard the invalid data (e.g., null set) and poll Track Data Store in two

seconds. Track Processing will not pass invalid data to Discrimination Computation.

 165

This assertion checks for valid track data to avoid processing invalid track

data that may cause a system failure. We chose to assert that only valid data would be

processed. Anything other than valid data (e.g., null set) will be discarded. If the

assertion is violated, then Track Processing will reset itself and resume polling at two-

second intervals. This supports the fault-tolerant behavior for Track Processing in that it

will consider all track data pulled from the data store but it will only process valid track

data.

b. Weapon Assignment
For Weapon Assignment function, we developed an assertion that supports

the robustness of the Weapon Assignment Processing component:

If track data from Kill Data Store is not valid data, then Weapon

Assignment Processing will discard returned track data and resume polling after two

seconds has elapsed. Weapon Assignment Processing will not pass invalid track data to

associated computations.

We chose to assert that only valid data would be processed. Anything

other than valid data (e.g., null set) will be discarded. If the assertion is violated, then

Weapon Assignment Processing will reset itself and resume polling at two-second

intervals. This supports the fault-tolerant behavior for Weapon Assignment Processing in

that it will consider all threat track data pulled from the data store but it will only process

valid threat track data.

c. Component Interfaces
In each interface between an active component and a passive component

(i.e., iDiscriminate, iCorrelate, iPrioritize, and iWeaponAssignment), we specified a

precondition and post-condition for the passing of information through the interfaces.

The intent is to ensure that the BMK would continue to operate correctly if either the

active component sent invalid data to the interface or a passive component failed to return

the required output in the specified constraint of the assertion.

For example, consider the following assertion in the specification for

iDiscriminate:

 166

Within one second of presenting track data to iDiscriminate, the track

data will be returned to Track Processing with one of three possible labels: Threat,

Benign, or Suspect; otherwise, iDiscriminate will terminate the discrimination

computation and discard the invalid output of the discrimination computation. If the

computation exceeds one second, then the track data will be labeled as Suspect. If track

data is not valid data, then iDiscriminate will terminate processing and return

isEndDiscrim message to Track.

(1) Precondition. Consider the case in which track data is not valid

data (e.g., the null set). This is a violation of the precondition assertion for iDiscriminate.

The discrimination process will be terminated, and Track Processing will resume polling

and processing track data. The system continues to be available for operations.

(2) Post-condition. Consider the case in which an output from the

discrimination computation is something other than Threat, Benign, or Suspect. This is a

violation of the post-condition assertion for iDiscriminate. The discrimination

computation will be terminated, and Track Processing will resume polling and

processing track data. The system continues to be available for operations.

d. Findings and Conclusions
The assertions in Track Processing component, Weapon Assignment

Processing component, and the component interfaces could support the robustness of the

BMK to coordinate battle-management activities. We asserted the desired behavior with

time constraints to ensure that the BMK continues to process track data as specified and

provided error-handling specifications for violations of the assertions to support

continuity of operations. Thus, we conclude that the assertions support the robustness of

the BMK as defined for this research.

6. Safety

In Chapter VI, we defined safety as the property of avoiding a catastrophic

outcome given a system fails to operate correctly. We developed the following eight

assertions and error-handling procedures in the Safety Component that monitor the

processes in the BMK:

 167

a. Safety Component
(1) Threat Engagement Status. A valid threat track in the Kill Data

Store will be paired with a weapon system to engage the valid threat track within thirty

seconds of the first instance of that track in the Kill Data Store. If a track in the Kill Data

Store has either not been assigned a weapon system to engage it or classified as

Deliberate Pass within thirty seconds after entering the track into the Kill Data Store, then

the Safety Component will send a warning to user display.

(2) Threat Engagement Toggle. A valid threat track can toggle

between deliberate pass and a weapon system pairing only one time. If a track toggles

between Deliberate Pass and weapon assigned (i.e., deliberate pass to weapon assigned is

one toggle and weapon assigned to deliberate pass is one toggle) more than two times,

then a warning will be sent to the user display.

(3) Unassigned Threat Track. A valid threat track in the Track

Engagement Data Store will be paired with a weapon system to engage that valid threat

track within thirty seconds of the first instance of that track in the Track Engagement

Data Store. If an unassigned threat track is not assigned a weapon system to engage it

within thirty seconds of the first instance of the Weapon Assignment Computation

posting this track into the Track Engagement Data Store, then a warning will be sent to

the user display.

(4) Threat Track Identification. A track in the Kill Data Store can

only be identified as a Threat. Any other identification for a track in the Kill Data Store

is invalid. Safety Component will pull all invalid tracks from the Kill Data Store and

send an alert to the user display along with the invalid track data.

(5) Suspect Track Status. Each suspect track must be classified as

either threat or benign within thirty seconds of the first instance of the track that is posted

in the Suspect Track Data Store. If the track in the Suspect Track Data Store has not

been classified as either threat or benign within thirty seconds after the first instance of

that track appears in the Suspect Track Data Store, then the Safety Component will send a

warning to user display along with the track data.

 168

(6) Suspect Track Update. A suspect track file must be updated within

thirty seconds of its previous update after the first instance of the track in the Suspect

Track Data Store. If a suspect track file has not been updated within thirty seconds from

its previous update, then Safety Component will send suspect track warning to user

display along with the track data.

(7) Suspect Track Velocity Status. A suspect track cannot have more

than two consecutive velocity updates of less than one kilometer per second. If suspect

track file has three consecutive velocity updates of less than one kilometer per second,

then Correlation Computation will send suspect track data to user display.

(8) Battlespace Representation Track Update. A track file must be

updated within thirty seconds of its previous update after the first instance of the track in

the Battlespace Representation Data Store. If a track file (benign or threat) in the

Battlespace Representation Data Store has not been updated for thirty seconds or more,

then the BMK Safety Component will toggle the track file to Suspect and send track data

to Suspect Track Data Store.

b. Findings and Conclusions
The assertions in Track Safety Component could support the safety of the

BMK to coordinate battle-management activities. We asserted the desired behavior with

time constraints to ensure that the BMK continues to process track data as specified and

provided error-handling specifications for violations of the assertions to support

continuity of operations. Thus, we conclude that the assertions support the safety of the

BMK as defined for this research.

7. Recoverability
In Chapter VI, we defined recoverability as the ease for which a failed system can

be restored to operational use. We developed the following set of assertions and error-

handling procedures in the Safety Component that monitor the processes in the BMK:

a. Continuity of Operations: Track Processing
(1) A track must be pulled from Track Data Store within fifteen

seconds of its appearance in the Track Data Store.

(2) The first instance of a track file must appear in Battlespace

 169

Representation Data Store within thirty seconds of the first appearance of that valid track

data in the Track Data Store.

(3) If (1) and (2) are not true at the same time, then Safety Component

will send a reset signal to Track Processing Component. This means that:

(a) Track Processing failed to poll data within fifteen seconds

of a given set of track data appearing in the Track Data Store AND

(b) Track Processing failed to discriminate and correlate the

track data within thirty seconds of a given set of track data appearing in the Track Data

Store.

(c) If both assertion violations occur at the same time, then the

Safety Component will reset Track Processing Component.

(4) If (1) and (2) are not true at the same time following a

Track Processing reset that occurred within the past sixty seconds, then the Safety

Component will deem the BMK as inoperable and direct the transfer of control to another

BMK.

b. Continuity of Operations: Weapon Assignment Processing
(1) A track must be pulled from Kill Data Store within fifteen

seconds of its appearance in the Kill Data Store.

(2) The first instance of a threat track file must appear in Track

Engagement Data Store within thirty seconds of the first appearance of that valid threat

track data in the Kill Data Store.

(3) If (1) and (2) are not true at the same time, then Safety

Component will send reset signal to Weapon Assignment Processing Component.

(4) If (1) and (2) are not true at the same time following a

Weapon Assignment Processing reset that occurred within the past sixty seconds, then

the Safety Component will deem the BMK as inoperable and direct the transfer of control

to another BMK. No other data will be processed by the BMK.

 170

c. Findings and Conclusions
The assertions in the Safety Component could support the recoverability

of the BMK to coordinate battle-management activities. We asserted the desired

behavior with time constraints to ensure that the BMK continues to process track data as

specified and provided error-handling specifications for violations of the assertions to

support continuity of operations. Thus, we conclude that the assertions support the

recoverability of the BMK as defined for this research.

I. TECHNICAL CONTRIBUTION
For the fifth technical contribution in this research, we offer that we have reduced

the software complexity of the BMK by decoupling the active components in the BMK

through the use of data stores. No active component has direct communications with any

other active component. As other active components are added to the BMK in the future,

the software complexity increases linearly in this construct as compared to the addition of

a software module in a monolithic software kernel.

 171

XIV. DEMONSTRATION OF THE BMK ASSERTIONS

A. INTRODUCTION
For a slice of the BMK prototype, we will develop temporal assertions from

selected natural language assertions of the prototype to specify the timing constraints for

the BMK. While numerous types of assertions are available to developers, we chose

temporal assertions in this research to keep the scope of the dissertation manageable. We

offer that a future research area could be the use of other types of assertions to support

the development of controlling software in a system-of-systems.

We will enter the assertions in a model-checking tool that is called DBRover and

execute several scenarios to test the assertions. DBRover is a temporal-logic monitoring

tool that is based on the TemporalRover code generator. It consists of a graphical user

interface for editing temporal assertions, a graphical temporal-logic simulator, and an

execution engine. DBRover builds and executes temporal rules for a target program or

application. In run-time, DBRover listens for messages from the target application and

evaluates corresponding temporal assertions. (N.B.: A complete description of the tool

and how to obtain the tool can be found at www.time-rover.com.)

B. TRACK PROCESSING
We selected the following assertion from Track Processing:

Track Processing will not poll Track Data Store while discriminating current

track data. This assertion checks that Track Processing only tasks a single set of track

data to a single instance of the Discrimination Computation and that Track Processing

will not send a different set of track data to that instance of the Discrimination

Computation until it completes its processing of the current set of track data.

From the natural language assertion, we define the following terms:

P is defined as Track_Data which will be true if Track Processor sends a poll to

Track Data Store to get another set of track data.

Q is defined as Discrimination Begin which is the point in time that the

discrimination component begins its work on the set of track data.

 172

R is defined as Discrimination End which is the point in time that the

discrimination component ends its work on the set of track data.

We formally define the assertion in metric temporal logics as follows:

[] ((Q & !R & <>R) -> (!P U_15seconds_R))

This translates as follows:

Always Q is true at this time and R is not true at this time but R will be true at

some future time implies that R will become true within fifteen seconds of Q being true

and P will remain not true while R is not true; that is, we should not observe an instance

of P being true between the time that Q is true and R becomes true.

The screenshots shown below captures are from two scenarios in DBRover.

Observe that Q (i.e., Discrimination Begin) occurs at Cycle 2 and that R (i.e.,

Discrimination End) occurs at Cycle 11. P (i.e., Track_Data) is not true between Q and

R. As such, this assertion holds as specified: Track Processing will not poll for new

track data while Track Processing is discriminating.

Figure 18. Track Processing: Scenario 1

 173

Figure 19. Track Processing: Scenario 2

C. SAFETY COMPONENT
We selected the following natural language assertions from the Safety Component

for continuity of operations of Track Processing:

(1) A track must be pulled from Track Data Store within fifteen

seconds of its appearance in the Track Data Store.

(2) The first instance of a track file must appear in Battlespace

Representation Data Store within thirty seconds of the first appearance of that valid track

data in the Track Data Store.

(3) If (1) and (2) are not true at the same time, then Safety Component

will send reset signal to Track Processing Component. This means that the Track

Processing failed to poll data (1) within fifteen seconds of a given set of track data

appearing in the Track Data Store and Track Processing failed to discriminate and

correlate the track data within thirty seconds of a given set of track data appearing in the

Observe that Q (i.e., Discrimination Begin) occurs at Cycle 2 and that R (i.e.,

Discrimination End) occurs at Cycle 11. P (i.e., Track_Data) is true at Cycle 7 which

is between Q and R. As such, this assertion does not hold as specified: Track

Processing has attempted to poll for new track data before the discrimination work is

completed. This is an example of trapping undesired system behavior.

 174

Track Data Store. If both assertion violations occur at the same time, then the Safety

Component will reset Track Processing Component.

(4) If (1) and (2) are not true at the same time following a Track

Processing reset that occurred within the past sixty seconds, then the Safety Component

will deem the BMK as inoperable and direct the transfer of control to another BMK.

We will develop the formal assertions for each of the above as follows:

Rule 1. Always (TrackDataNew) Implies Eventually_15seconds

(TrackPullIsTrue)

Where:

Boolean: TrackDataNew
//true if a new set of track data has been stored in Track Data Store

Boolean: TrackPullIsTrue
//true if Track Processor has pulled the new track data set from Track Data Store

Assertion:

[] (TrackDataNew) <>_15seconds (TrackPullIsTrue)

 175

Figure 20. Safety Component: Rule 1, Scenario 1

Observe that the assertion (i.e., Rule 1) holds as TrackPullIsTrue becomes true

within fifteen seconds of TrackDataNew becoming true; that is, Track Processor pulls the

new track data set from Track Data Store within fifteen seconds of the new track data

being stored in Track Data Store.

 176

Figure 21. Safety Component: Rule 1, Scenario 2

Observe that the assertion (i.e., Rule 1) does not hold as TrackPullIsTrue does not

become true within fifteen seconds of TrackDataNew becoming true; that is, Track

Processor does not pull the new track data set from Track Data Store within fifteen

seconds of the new track data being stored in Track Data Store. This is an example of

trapping undesired behavior. Developers can devise a recovery scheme from this

violation of the assertion.

 177

Figure 22. Safety Component: Rule 1, Scenario 3

Observe that the assertion (i.e., Rule 1) does not hold as TrackPullIsTrue does not

become true within fifteen seconds of TrackDataNew becoming true. (N.B.: In fact,

TrackPullIsTrue does not become true in the scenario.) Track Processor does not pull the

new track data set from Track Data Store within fifteen seconds of the new track data

being stored in Track Data Store. This is an example of trapping undesired behavior.

Developers can devise a recovery scheme from this violation of the assertion.

 178

Rule 2. Always (TrackDataNew) And (TrackDataIsValid) Implies

Eventually_30seconds (TrackFileIsTrue)

Where:

Boolean: TrackDataNew
//true if a new set of track data has been stored in Track Data Store

Boolean: TrackDataIsValid
//true if Track Processor has determined that the new track data set is valid

Boolean: TrackFileIsTrue
//true if Track Processor has stored the processed track data in
 Battlespace Representation Data Store

Assertion:

[] (TrackDataNew) & (TrackDataIsValid) <>_30seconds (TrackFileIsTrue)

 179

Figure 23. Safety Component: Rule 2, Scenario 1

Observe that the assertion (i.e., Rule 2) holds as TrackFileIsTrue becomes true

within thirty seconds of TrackDataNew and TrackDataIsValid becoming true; that is,

Track Processor stores the processed track data in Battlespace Representation Data Store

within thirty seconds of new track data being stored in Track Data Store that Track

Processing determines to be valid track data. This is an example of verifying desired

system behavior.

 180

Figure 24. Safety Component: Rule 2, Scenario 2

Observe that the assertion (i.e., Rule 2) does not hold as TrackFileIsTrue does not

become true within thirty seconds of TrackDataNew and TrackDataIsValid becoming

true. (N.B.: In fact, TrackFileIsTrue does not become true in the scenario.) Track

Processor does not store the processed track data in Battlespace Representation Data

Store within thirty seconds of new track data being stored in Track Data Store that Track

Processing determines to be valid track data. This is an example of trapping undesired

behavior. Developers can devise a recovery scheme from this violation of the assertion.

 181

Figure 25. Safety Component: Rule 2, Scenario 3

Observe that the assertion (i.e., Rule 2) holds as TrackDataNew and

TrackDataIsValid do not become true simultaneously as defined in the assertion. As

such, a check for TrackFileIsTrue is not valid; that is, the arrival of new track data at the

Track Data Store and the determination that the new track data is valid does not occur

simultaneously. This is an example of trapping undesired behavior. Developers can

devise a recovery scheme from this violation of the assertion.

Rule 3. Always (TrackDataNew) & Eventually_15seconds

(TrackPullIsTrue) & (TrackDataIsValid) & Not Eventually_30seconds (TrackFileIsTrue)

 182

Implies Eventually_35seconds (Reset==1)

Where:

Boolean: TrackDataNew
//true if a new set of track data has been stored in Track Data Store

Boolean: TrackDataIsValid
//true if Track Processor has determined that the new track data set is valid

Boolean: TrackPullIsTrue
//true if Track Processor has pulled the new track data set from Track Data Store

Boolean: TrackFileIsTrue
//true if Track Processor has stored the processed track data in
 Battlespace Representation Data Store

Integer: Reset
//Reset has value of zero until reset is invoked by Safety Component

Assertion:

[] {(TrackDataNew) & <>_15seconds (TrackPullIsTrue) & (TrackDataIsValid) &

⌐(<>_30seconds (TrackFileIsTrue))} -> {(<>_35seconds (Reset==1)}

 183

Figure 26. Safety Component: Rule 3, Scenario 1

Observe that the assertion (i.e., Rule 3) holds as Reset==1 given that

TrackFileIsTrue does not become true although the following variables are true: (1)

TrackDataNew, (2) eventually (within fifteen seconds) TrackPullIsTrue, and (3)

TrackDataIsValid; that is, the Safety Component will observe that Track Processor will

reset itself given that Track Processor does not store the processed track data in

Battlespace Representation Data Store within thirty seconds of new track data being

stored in Track Data Store that Track Processing pulls from Track Data Store and

determines to be valid track data. This is an example of verified system behavior.

 184

Figure 27. Safety Component: Rule 3, Scenario 2

Observe that the assertion (i.e., Rule 3) does not hold as Reset is not set to “1”

given that TrackFileIsTrue does not become true and the following variables are true: (1)

TrackDataNew, (2) eventually (within fifteen seconds) TrackPullIsTrue, and (3)

TrackDataIsValid; that is, the Safety Component will observe Track Processor should

have reset itself given that Track Processor does not store the processed track data in

Battlespace Representation Data Store within thirty seconds of new track data being

stored in Track Data Store that Track Processing pulls from Track Data Store and

determines to be valid track data. This is an example of trapping undesired behavior.

Developers can devise a recovery scheme from this violation of the assertion.

 185

Figure 28. Safety Component: Rule 3, Scenario 3

Observe that the assertion (i.e., Rule 3) holds as Reset is not set to “1” given that

the following variables are true: (1) TrackDataNew, (2) eventually (within fifteen

seconds) TrackPullIsTrue, (3) TrackDataIsValid, and (4) eventually (within 30 seconds)

TrackFileIsTrue; that is, the Safety Component will observe Track Processor behaved

according to the specification and should not have reset itself given that Track Processor

stores the processed track data in Battlespace Representation Data Store within thirty

seconds of new track data being stored in Track Data Store that Track Processing pulls

from Track Data Store and determines to be valid track data. This is an example of

trapping undesired behavior. Developers can devise a recovery scheme from this

violation of the assertion.

 186

Figure 29. Safety Component: Rule 3, Scenario 4

Observe that the assertion (i.e., Rule 3) holds as Reset is not set to “1” given that

TrackPullIsTrue becomes true in a time frame greater than or equal to fifteen seconds;

that is, the Safety Component will observe Track Processor should not have reset itself

based on this assertion that requires Track Processor to eventually pull (within fifteen

seconds of TrackDataNew becoming true) new track data being stored in Track Data

Store. This is an example of verifying desired system behavior.

Rule 4. Always (Reset==0) And sometime in the past (Reset==1) And

(TrackDataNew) And (TrackDataIsValid) And Eventually_15seconds (TrackPullIsTrue)

& Not Eventually_40seconds (TrackFileIsTrue) Implies Eventually_10seconds

(ReplaceBMK)

Where:

Boolean: TrackDataNew

 187

//true if a new set of track data has been stored in Track Data Store

Boolean: TrackDataIsValid
//true if Track Processor has determined that the new track data set is valid

Boolean: TrackPullIsTrue
//true if Track Processor has pulled the new track data set from Track Data Store

Boolean: TrackFileIsTrue
//true if Track Processor has stored the processed track data in
 Battlespace Representation Data Store

Integer: Reset
//Reset has value of zero until reset is invoked by Safety Component

Assertion:

[] (Reset==0) & <-> (Reset==1) & (TrackDataNew) & <>_15seconds

(TrackPullIsTrue) & (TrackDataIsValid) & ⌐(<>_40seconds (TrackFileIsTrue) ->

<>_10seconds (ReplaceBMK)

 188

Figure 30. Safety Component: Rule 4, Scenario 1

Observe that the assertion (i.e., Rule 4) does not hold as ReplaceBMK does not

become true although the conditions in the assertion should have driven the BMK to

identify itself as not functioning correctly, notifying the other BMKs that is will be

transferring control, and shutting down the nonfunctioning BMK. In this scenario, Reset

has a previous history of being set to “1” (i.e., reset condition). Although Track

Processor pulls the track data set from Track Data Store as specified and determines that

the track data set is valid, Track Processor does not store the track data set in Battlespace

Representation Data Store. As this is a second violation of the prescribed rules for Track

Processor (i.e., Reset was set to “1” in the past), the Safety Component will observe that

the BMK failed to shut itself down and transfer control to another BMK. This is an

example of trapping undesired behavior

 189

.

Figure 31. Safety Component: Rule 4, Scenario 2

Observe that the assertion (i.e., Rule 4) holds as ReplaceBMK becomes true as the

conditions in the assertion have are telling the BMK to identify itself as not functioning

correctly, notify the other BMKs that it will be transferring control, and shutting down.

In this scenario, Reset has a previous history of being set to “1” (i.e., reset condition).

Although Track Processor pulls the track data set from Track Data Store as specified and

determines that the track data set is valid, Track Processor does not store the track data

set in Battlespace Representation Data Store. As this is a second violation of the

prescribed rules for Track Processor (i.e., Reset was set to “1” in the past), the Safety

Component will observe that the BMK has identified its failure to operate as specified,

shut itself down, and transfer control to another BMK. This is an example of verifying

desired system behavior.

 190

Figure 32. Safety Component: Rule 4, Scenario 3

1. Observe that the assertion (i.e., Rule 4) holds as TrackPullIsTrue becomes

true after the time constraint of being true within fifteen seconds of TrackDataNew and

TrackDataIsValid being true. ReplaceBMK does not become true since the conditions in

the assertion are not present for shutting down the BMK. This is an example of verifying

desired system behavior.

D. TECHNICAL CONTRIBUTIONS
For the sixth contribution of this research, we offered a systematic method for

deriving assertions from collaboration diagrams. First, we developed the natural

language assertions from reasoning about the collaboration diagram. Second, we

transformed the natural language assertions to temporal assertions that we input to a

model checker.

 191

For the seventh contribution of this research, we extended component-based

software engineering by the advanced use of assertions in the contracts for component

interfaces to assert the protocols surrounding the components in a reactive system.

For the eighth contribution of this research, we provided evidence that formal

methods can be applied to large, complex system-of-systems developments as follows:

1. Develop an architecture that decouples major portions of the

software

2. Separate the software into components that will experience limited

modifications over time from those components that might experience significant and

frequent modifications

3. Specify the requirements for components and their interface

contracts in the form of natural language assertions

4. Transform the natural language assertions of the components and

the interface contracts into temporal assertions that can be tested in a model checker

The concepts offered in the BMK prototype and the demonstration address the

third of the three research questions from Chapter V. We demonstrated that formal

methods can be useful in the design and development of the controlling software in a

system-of-systems.

 192

THIS PAGE INTENTIONALLY LEFT BLANK

 193

XV. CONCLUSIONS

A. TECHNICAL CONTRIBUTIONS
The following is a summary of the technical contributions in this research:

1. Identification of distributed-system attributes for controlling software in a

system-of-systems

2. Identification of real-time attributes for real-time controlling software in a

reactive system-of-systems

3. Development of system-of-systems architecture views from system-of-

systems view to component view in controlling software

4. Use of kernel in controlling software for system-of-systems to shape

dependable behavior of system-of-systems

5. Reduction of software complexity from an exponential factor for a

monolithic software program to a component-based construct in which the active

components are decoupled by data stores

6. Development of assertions from collaboration diagrams

7. Adoption of CBSE by advanced use of assertions in interface contracts

between components to assert protocols surrounding the components in reactive systems

8. Demonstration that formal methods can be applied to large, complex

system-of-systems developments

B. PARNAS’ ISSUES
Recall from Chapter I that we cited David Parnas’ six major issues with the battle-

management software in the SDI program. Recall that we stated that these six issues are

not unique to the SDI program but could be extended to other systems-of-systems for

which the users desire controlling software (e.g., battle manager) for the system-of-

systems. We will review the technical contributions of this research with respect to

Parnas’ six issues.

 194

Figure 33. Technical Contributions of this Research that Address Parnas’ Issues

1. Issue One

a. Statement of the Issue
The battle-management software must identify, track, and direct weapons

towards targets whose characteristics may not be known with certainty until the moment

of battle. The battle-management software must discriminate the threat objects from

decoys and debris.

b. Contributions of this Research
In this research, we did not address the specific issue of discrimination

given that discrimination was not within the scope of this research; however, we offer

that Technical Contributions 3, 5, 7, and 8 address supporting aspects to this issue.

Recall that we desired a physical separation of the active components in

the BMK that should be stable over time from the passive components in the component

layer that are computations, and may be upgraded or replaced frequently. In this

research, we defined an architecture that featured a BMK with active components (e.g.,

Track Processing, Weapon Assignment) and a Component Layer that contained passive

1

TECHNICAL CONTRIBUTIONS OF THIS RESEARCH

21

6

5

4

3

2

876543

PARNAS’
ISSUES

1

TECHNICAL CONTRIBUTIONS OF THIS RESEARCH

21

6

5

4

3

2

876543

PARNAS’
ISSUES

Addresses Parnas’ IssueAddresses Parnas’ Issue

 195

components (e.g., Discrimination, Correlation). We proposed the design of the interfaces

between active and passive components in accordance with the concept of design-by-

contract. We discussed the testing benefits of such a construct and developed an

interface with assertions to define the pre-conditions, post-conditions, and invariants of

the interface. These assertions can support the development and verification of the

desired interface behavior as well as support the development and verification of error-

handling procedures for assertions that do not hold true.

This construct can increase the confidence that the computations are

correct for planned and unplanned inputs to the passive component along with its

interface and test oracle can provide the basis for the development of a test suite for that

passive component. This construct can increase that the desired functionality and

behavior are correct in a kernel such as the BMK given that an active component

connected to its associated passive components with the respective interfaces that are

defined with pre-conditions, post-conditions, and invariants along with the test oracle for

the active component can provide the basis for the development of a test suite for the

kernel.

Developers and maintainers of systems-of-systems can develop and verify

the functionality and behavior of the controlling software as outlined in this research.

Complex computations can be verified as discussed in the passive component construct.

Complex computations can be upgraded and replaced as discussed in the passive

component construct.

2. Issue Two

a. Statement of the Issue

Battle-management computing will be accomplished through a network of

computers that are connected to sensors and weapons as well as other battle-management

computers. The behavior of the battle-management software cannot be predicted with

confidence given the actual configuration of weapons, sensors, and battle managers at the

moment of battle.

 196

b. Contribution of this Research
We offer that Technical Contributions 1,3,4,5,6,7, and 8 address this issue.

We identified attributes to consider for distributed systems that developers

might consider in the design of a system-of-systems that could result in predictable

distributed behavior of the system-of-systems. We developed architectural views of the

system-of-systems that could serve as tools for reasoning about the design of a

predictable, dependable system-of-systems.

We defined an architecture that featured a BMK with active components

(e.g., Track Processing, Weapon Assignment) and a Component Layer that contained

passive components (e.g., Discrimination, Correlation). We proposed the design of the

interfaces between active and passive components in accordance with the concept of

design-by-contract. We discussed the testing benefits of such a construct and developed

an interface with assertions to define the pre-conditions, post-conditions, and invariants

of the interface. These assertions can support the development and verification of the

desired interface behavior as well as support the development and verification of error-

handling procedures for assertions that do not hold true.

This construct can increase the confidence that the computations are

correct for planned and unplanned inputs to the passive component, along with its

interface and test oracle, can provide the basis for the development of a test suite for that

passive component. This construct can increase the level of confidence that the desired

functionality and behavior are correct in a kernel such as the BMK given that an active

component connected to its associated passive components with the respective interfaces

that are defined with pre-conditions, post-conditions, and invariants along with the test

oracle for the active component, can provide the basis for the development of a test suite

for the kernel.

Developers and maintainers of system-of-systems can develop and verify

the functionality and behavior of the controlling software as outlined in this research.

Complex computations can be verified as discussed in the passive component construct.

 197

Complex computations can be upgraded and replaced as discussed in the passive

component construct.

We discussed the specification of the battle manager with assertions.

Additionally, we discussed the verification of the assertions through model checking. We

discussed the futility of exhaustive testing of all but the most trivial of systems. We

discussed defining, developing, and testing the functionality and behavior of the battle

manager with the use of assertions and test oracles.

We constructed a prototype of the BMK by developing natural language

assertions to specify the desired functionality and behavior of the battle manager.

Included with the prototype was the specification of contracts between the active

components of the BMK and the passive components.

We used temporal assertions to specify the timing constraints of the

selected natural language assertions that we developed in the prototype. While numerous

types of assertions are available to developers, we chose temporal assertions to keep the

scope of the dissertation manageable. We defined several scenarios for each assertion

and ran the assertions through a temporal-logic model checker. We determined that we

had captured the desired functionality and behavior through the use of the assertions. We

observed that we could trap undesired behavior through the use of assertions.

In this research, we demonstrated that developers can increase the level of

predictable behavior in the controlling software of a system-of-systems by specifying

functionality and behavior through the use of assertions, testing of components and

interfaces that contain assertions, and verifying the assertions through the use of a model

checker. Furthermore, we demonstrated that developers could trap undesired behavior as

specified by assertions.

3. Issue Three

a. Statement of the Issue
Developers cannot test the battle-management software under realistic

conditions prior to actual use of the software.

 198

b. Contribution of this Research
As the complexity and scope of the system-of-systems increases, it seems

that the testing of these large, complex systems becomes increasingly limited with respect

to exhaustively testing the system.

We defined an architecture that featured a BMK with active components

and a Component Layer that contained passive components. We proposed the design of

the interfaces between active and passive components in accordance with the concept of

design-by-contract. We discussed the testing benefits of such a construct and developed

an interface with assertions to define the pre-conditions, post-conditions, and invariants

of the interface. These assertions can support the development and verification of the

desired interface behavior as well as support the development and verification of error-

handling procedures for assertions that do not hold true.

This construct can increase the confidence that the computations are

correct for planned and unplanned inputs to the passive component, along with its

interface and test oracle, can provide the basis for the development of a test suite for that

passive component. This construct can increase that the desired functionality and

behavior are correct in a kernel such as the BMK given that an active component

connected to its associated passive components with the respective interfaces that are

defined with pre-conditions, post-conditions, and invariants along with the test oracle for

the active component can provide the basis for the development of a test suite for the

kernel.

We discussed the specification of the battle manager with assertions.

Additionally, we discussed the verification of the assertions through model checking. We

discussed the futility of exhaustive testing of all but the most trivial of systems. We

discussed defining, developing, and testing the functionality and behavior of the battle

manager with the use of assertions and test oracles.

We constructed a prototype of the BMK by developing natural language

assertions to specify the desired functionality and behavior of the battle manager.

Included with the prototype was the specification of contracts between the active

 199

components of the BMK and the passive components. To reduce the impact of undesired

state behavior of any given active component on any other active component, we

decoupled each active component from all other active components in the prototype. We

defined data stores to connect the active components and use pulled data from continual

polling of specific data stores as a trigger for activities in active components. The

decoupling of the active components can enhance the testability of the BMK given that

developers can test the active components independently with increased confidence that

the composition of the active components will exhibit the desired behavior. Furthermore,

we discussed the testing of active components include both black-box testing to test the

appropriate outputs for the inputs from a test oracle and white-box testing to determine

whether the active components may have exhibited coincidental correctness during the

black-box testing.

We used temporal assertions to specify the time constraints of the selected

natural language assertions that we developed in the prototype. We defined several

scenarios for each assertion and ran the assertions through a temporal-logic model

checker. We determined that we had captured the desired functionality and behavior

through the use of the assertions. We observed that we could trap undesired behavior

through the use of assertions.

In this research, we defined and demonstrated a slice of the test paradigm

that can instill increasing levels of confidence as developers test individual components

for all possible conditions and continue to compose the system while using the assertions

and test oracles to assess system behavior.

4. Issue Four

a. Statement of the Issue
The duration of the defense engagement will be short: it will not allow for

either human intervention or debugging the software to overcome software faults at

runtime.

 200

b. Contribution of this Research
In this research, we offered techniques for architecture, design, and

specification that could produce a dependable system-of-systems at runtime.

We defined an architecture that featured a BMK with active components

and a Component Layer that contained passive components. We proposed the design of

the interfaces between active and passive components in accordance with the concept of

the design-by-contract. We discussed the testing benefits of such a construct and

developed an interface with assertions to define the pre-conditions, post-conditions, and

invariants of the interface. These assertions can support the development and verification

of the desired interface behavior as well as support the development and verification of

error-handling procedures for assertions that do not hold true.

This construct can increase the confidence that the computations are

correct for planned and unplanned inputs to the passive component along with its

interface and test oracle can provide the basis for the development of a test suite for that

passive component. This construct can increase confidence level that the desired

functionality and behavior are correct in a kernel such as the BMK given that an active

component connected to its associated passive components with the respective interfaces

that are defined with pre-conditions, post-conditions, and invariants along with the test

oracle for the active component can provide the basis for the development of a test suite

for the kernel.

We discussed the specification of the battle manager with assertions.

Additionally, we discussed the verification of the assertions through model checking. We

discussed the futility of exhaustive testing of all but the most trivial of systems. We

discussed defining, developing, and testing the functionality and behavior of the battle

manager with the use of assertions and test oracles.

We constructed a prototype of the BMK by developing natural language

assertions to specify the desired functionality and behavior of the battle manager.

Included with the prototype was the specification of contracts between the active

components of the BMK and the passive components. To reduce the impact of undesired

 201

state behavior of any given active component on any other active component, we

decoupled each active component from all other active components in the prototype. We

defined data stores to connect the active components and use pulled data from continual

polling of specific data stores as a trigger for activities in active components. The

decoupling of the active components can enhance the testability of the BMK given that

developers can test the active components independently with increased confidence that

the composition of the active components will exhibit the desired behavior. Furthermore,

we discussed the testing of active components include both black-box testing to test the

appropriate outputs for the inputs from a test oracle and white-box testing to determine

whether the active components may have exhibited coincidental correctness during the

black-box testing.

We used temporal assertions to specify the time constraints of the selected

natural language assertions that we developed in the prototype. We defined several

scenarios for each assertion and ran the assertions through a temporal-logic model

checker. We determined that we had captured the desired functionality and behavior

through the use of the assertions. We observed that we could trap undesired behavior

through the use of assertions.

We offer that developers and maintainers of system-of-systems can

develop and verify the functionality and behavior of the controlling software as outlined

in this research. While the techniques that are offered in this research will not eliminate

all design and implementation errors, these techniques can reduce the number of critical

software faults at runtime and support the handling of unknown conditions at runtime

while maintaining continuity of operations.

5. Issue Five

a. Statement of the Issue
The battle-management software will have absolute real-time deadlines for

the computation that will consist of periodic processes to include detecting and

identifying potential threat missiles, assigning a weapon to engage the threat missile, and

providing an assessment of the interceptor-threat missile engagement. Because of the

 202

unpredictability of the computational requirements of each process, developers cannot

predict the required resources for computation.

b. Contribution of this Research
While not all system-of-systems will have real-time requirements,

developers might consider that non-real-time solutions may not be applicable to reactive

systems with periodic deadlines. While the development of a real-time solution for a

reactive system-of-systems was beyond the scope of this research, the use of assertions

can increase the developer’s awareness of the deadlines in the controlling software of a

system-of-systems as well as assert specific behavior that correspond to the periodic

deadlines of the controlling software.

We defined an architecture that featured a BMK with active components

and a Component Layer that contained passive components. We proposed the design of

the interfaces between active and passive components in accordance with the concept of

the design-by-contract. We discussed the testing benefits of such a construct and

developed an interface with assertions to define the pre-conditions, post-conditions, and

invariants of the interface. These assertions can support the development and verification

of the desired interface behavior as well as support the development and verification of

error-handling procedures for assertions that do not hold true.

This construct can increase the confidence that the computations are

correct for planned and unplanned inputs to the passive component along with its

interface and test oracle can provide the basis for the development of a test suite for that

passive component. This construct can increase confidence level that the desired

functionality and behavior are correct in a kernel such as the BMK, given that an active

component connected to its associated passive components with the respective interfaces

that are defined with pre-conditions, post-conditions, and invariants along with the test

oracle for the active component, can provide the basis for the development of a test suite

for the kernel.

We discussed the specification of the battle manager with assertions.

Additionally, we discussed the verification of the assertions through model checking. We

discussed the futility of exhaustive testing of all but the most trivial of systems. We

 203

discussed defining, developing, and testing the functionality and behavior of the battle

manager with the use of assertions and test oracles.

We constructed a prototype of the BMK by developing natural language

assertions to specify the desired functionality and behavior of the battle manager.

Included with the prototype was the specification of contracts between the active

components of the BMK and the passive components. To reduce the impact of undesired

state behavior of any given active component on any other active component, we

decoupled each active component from all other active components in the prototype. We

defined data stores to connect the active components and use pulled data from continual

polling of specific data stores as a trigger for activities in active components. The

decoupling of the active components can enhance the testability of the BMK given that

developers can test the active components independently with increased confidence that

the composition of the active components will exhibit the desired behavior. Furthermore,

we discussed the testing of active components include both black-box testing to test the

appropriate outputs for the inputs from a test oracle and white-box testing to determine

whether the active components may have exhibited coincidental correctness during the

black-box testing.

We used temporal assertions to specify the time constraints of the selected

natural language assertions that we developed in the prototype. We defined several

scenarios for each assertion and ran the assertions through a temporal-logic model

checker. We determined that we had captured the desired functionality and behavior

through the use of the assertions. We observed that we could trap undesired behavior

through the use of assertions.

While the scope of this research did not include a solution for a real-time

system-of-systems, we recognized the real-time nature of reactive controlling software in

a system-of-systems. We demonstrated that we could specify timing constraints with

temporal assertions and test these assertions in a model checker.

 204

6. Issue Six

a. Statement of the Issue
The missile defense system will include a large variety of sensors,

weapons, and battle-management components for which all will be large, complex

software systems. The suite of weapons and sensors will increase in number as the

development progresses. The characteristics of these future weapons and sensors are not

well defined and will likely remain fluid for many years. Additionally, all weapons and

sensors will be subject to change independently of each other. As such, the battle-

management software must integrate numerous dynamic software systems to the extent

that has never before been achieved.

b. Contribution of this Research
While the scope of this research did not include interfaces to external

systems in a system-of-systems, the BMK architecture described in this research can

reduce the impacts of the integration of new systems with the controlling software in a

system-of-systems. Rather than direct messaging from a sensor to the BMK, we defined

an asynchronous solution that separates incoming sensor data from the BMK through a

data store so the BMK is not cognizant of specific sensors. Additionally, we defined an

asynchronous solution that separates the BMK from weapon systems by the same data

store methodology.

We defined an architecture that featured a BMK with active components

and a Component Layer that contained passive components. We proposed the design of

the interfaces between active and passive components in accordance with the concept of

the design-by-contract. We discussed the testing benefits of such a construct and

developed an interface with assertions to define the pre-conditions, post-conditions, and

invariants of the interface. These assertions can support the development and verification

of the desired interface behavior as well as support the development and verification of

error-handling procedures for assertions that do not hold true.

This construct can increase the confidence that the computations are

correct for planned and unplanned inputs to the passive component along with its

interface and test oracle can provide the basis for the development of a test suite for that

 205

passive component. This construct can increase the confidence level that the desired

functionality and behavior are correct in a kernel such as the BMK given that an active

component connected to its associated passive components with the respective interfaces

that are defined with pre-conditions, post-conditions, and invariants along with the test

oracle for the active component can provide the basis for the development of a test suite

for the kernel.

We discussed the specification of the battle manager with assertions.

Additionally, we discussed the verification of the assertions through model checking. We

discussed the futility of exhaustive testing of all but the most trivial of systems. We

discussed defining, developing, and testing the functionality and behavior of the battle

manager with the use of assertions and test oracles.

We constructed a prototype of the BMK by developing natural language

assertions to specify the desired functionality and behavior of the battle manager.

Included with the prototype was the specification of contracts between the active

components of the BMK and the passive components. To reduce the impact of undesired

state behavior of any given active component on any other active component, we

decoupled each active component from all other active components in the prototype. We

defined data stores to connect the active components and use pulled data from continual

polling of specific data stores as a trigger for activities in active components. The

decoupling of the active components can enhance the testability of the BMK given that

developers can test the active components independently with increased confidence that

the composition of the active components will exhibit the desired behavior. Furthermore,

we discussed the testing of active components include both black-box testing to test the

appropriate outputs for the inputs from a test oracle and white-box testing to determine

whether the active components may have exhibited coincidental correctness during the

black-box testing.

We used temporal assertions to specify the time constraints of the selected

natural language assertions that we developed in the prototype. We defined several

scenarios for each assertion and ran the assertions through a temporal-logic model

checker. We determined that we had captured the desired functionality and behavior

 206

through the use of the assertions. We observed that we could trap undesired behavior

through the use of assertions.

With respect to data that originates or is sent to these external sources, our

research demonstrated that the BMK could have a high level of immunity from the

impacts of new sensors and weapons systems in the BMDS. Controlling software in a

system-of-systems could realize the same benefit of a high level of immunity from the

impacts of integration with new systems. We demonstrated that developers can specify

and verify the desired behavior of controlling software through the use of assertions to

include the trapping of undesired behavior in the controlling software for a system-of-

systems.

C. CONCLUSIONS
Based on the assessment of the prototype demonstration of a slice of the

prototype, the assertions employed in the BMK prototype could support the dependable

behavior in the BMK for the seven dependability properties identified in this research:

availability, correctness, consistency, reliability, robustness, safety, and recoverability.

We specified the desired behavior in the active components of the BMK and we

developed assertions that would check the desired behavior at runtime. We assessed the

assertions and associated error-handling procedures to determine whether the assertions

contributed to the achievement of the desired availability, correctness, consistency,

reliability, robustness, safety, and recoverability.

The adherence to design-by-contract concepts could further enhance the

dependability of controlling software. Through the development concepts of component-

based engineering of the battle manager, we could design the battle manager in such a

way that the battle-manager capabilities might be extended by adding components and

extending each capability by improving the components associated with that capability.

With respect to Parnas’ six issues for the battle manager, the results of this

research could contribute to defining, developing, and building a battle manager for the

BMDS that is available for operations at any time, operates correctly at all times, traps

system faults and returns to operations without impacting the mission of the BMDS, and

 207

performs its missions in such a way that no unintended harm to people and protected

assets will come from its operations.

Thus, the technical contributions of this research offer evidence that lead us to

conclude the following about the questions posed for this research:

1. It is possible to develop a system-of-systems architecture from which we

can reason about the controlling software for a system-of-systems.

2. We can realize the controlling software from a system-of-systems

architecture through the concepts of component-based software engineering.

3. We can apply formal methods in the design and development of the

controlling software for a system-of-systems by specifying the requirements for the

software components with assertions and employing a runtime verification tool to verify

the desired behavior specified in the assertions.

 208

THIS PAGE INTENTIONALLY LEFT BLANK

 209

XVI. FUTURE RESEARCH RECOMMENDATIONS

A. BACKGROUND
As suggested in this research, the system-of-systems problem space is largely

unknown to software developers. By all indications, developers of systems-of-systems

seem to be experiencing limited success. This research is a first step towards our mastery

of the development of dependable systems-of-systems. There are many paths that

researchers might travel in the study of the system-of-systems problem. We offer ten

recommendations for future research in this area.

B. FUTURE RESEARCH RECOMMENDATIONS

1. Safety Kernel for a System-of-Systems
Each system in the system-of-systems should consider the system-safety concerns

for that system; however, the system-of-systems developer should consider the system-

safety aspects for the entire system-of-systems. This may require the design of safety-

monitoring software as well as safety-related fault-handling software. The considerations

in this area might include the desired functionality, specifications, control, distributed

system behavior, and real-time system behavior. A future research consideration might

be the design and development of a safety kernel for the system-of-systems. A further

consideration might be the application of formal methods in the specification of the

safety kernel.

2. System-of-Systems Operation in Multiple Configurations
System-of-systems can operate in multiple configurations at runtime. A future

research consideration might be the development of architecture, design, and

specification techniques to ensure the desired level of dependability in all configurations

and reducing the potential negative impacts of configuration modifications at runtime.

3. Trade-Offs of Assertions Left in System-of-Systems at Runtime
Versus Assertions Used in Development

Assertions can be used for testing software, debugging code, and armor-plating

software. A future research consideration might be the study of tradeoffs to support the

determination of whether to leave the assertions in the software of a system-of-systems

for runtime execution.

 210

4. Asserting Control in System-of-Systems
Developers can design and specify the control over a system-of-systems in

various ways. A future research topic might be development of techniques for asserting

control in a system-of-systems to include the integration of traditional control theory with

software engineering.

5. Development Metrics for a System-of-Systems
It is difficult to measure and monitor progress towards achieving architecture and

design goals in a system-of-systems given the independent development and life-cycle

activities of each system in the system-of-systems. A future research topic might be the

development of metrics that reflect the progress towards achieving the functional goals as

well as the dependability goals of a system-of-systems development.

6. Properties of a Dependable System-of-Systems and Network-Centric
Warfare Solution

For this research, we defined a dependable system as one that provides the

appropriate levels of correctness and robustness in accomplishing its mission while

demonstrating the appropriate levels of availability, consistency, reliability, safety, and

recoverability. We selected these seven properties as these seven properties could be a

minimum set of properties for a dependable system-of-systems. Other properties may be

applicable to a system-of-systems and a network-centric warfare construct. We would

recommend that future research be conducted in the area of dependable system-of-

systems and dependable network-centric warfare solutions. Development organizations

sometimes focus on the functional aspects of a solution while neglecting to consider the

dependability properties of systems that are critical to successful operations.

7. Distributed Considerations for a Dependable System-of-Systems and
Network-Centric Warfare Solution

The Department of Defense has stated initiatives for system-of-systems and

network-centric warfare solutions. The initiatives seem to have noble goals; however, it

is not clear that acquisition organizations have considered the distributed properties that

these systems must exhibit from a dependability perspective. Much seems to be left to

trust with respect to the degree of dependability in the system-of-systems and network-

 211

centric solution. We propose the specific design and development of a distributed system

for a system-of-systems and network-centric solutions as a future research topic.

8. Real-Time In Distributed Environment
In the system-of-systems and network-centric warfare environments, there will be

real-time constraints in the operational battlespace. Acquisition organizations continue to

purchase more and faster processors that can mask the real-time problem that has yet to

be solved for systems-of-systems and network-centric warfare solutions. We propose the

real-time nature of system-of-systems and network-centric warfare solutions as a future

research topic.

9. Interface Considerations For A Dependable System-Of-Systems And
Network-Centric Warfare Solution

To support dependable system-of-systems and network-centric warfare solutions,

interfaces should provide the appropriate services required for functionality while

maintaining the properties of dependability. For example, the BMDS Battle Manager

services include: (1) sending observed tracks and features from the sensors to the battle

manager, (2) sending weapon assignments from the battle manager to the weapons, (3)

sending health-and-status information from the sensors and weapons to the battle manger,

(4) sending command-and-control parameters from the C2 function to the battle manager,

and (5) sending situational awareness information from the battle manager to C2

displays. We recommend external interfaces as a potential research topic for dependable

systems-of-systems and network-centric solutions with respect to developing and

achieving the desired level of dependability.

10. Testing Considerations For A Dependable System-Of-Systems And
Network-Centric Warfare Solution

The Department of Defense has stated initiatives for systems-of-systems and

network-centric warfare solutions. Testing of these solutions has focused on a subset of

the entire functionality of the system-of-systems and network-centric warfare solutions.

Test solutions as these systems evolve are limited and do not consider the dependability

aspects. Testing the entire system can be expensive. For example, operational flight

testing of these systems can exceed $100,000,000 for live flight tests such as in the

 212

BMDS development. We propose the testing for the evolving functionality and

dependability of a system-of-systems and network-centric warfare solution as a future

research topic.

 213

APPENDIX A. GLOSSARY

Acquisition: The process in which the Department of Defense obtains materiel solutions

to identified problems in mission need statements.

Active component: A component that will execute based on external conditions and a

defined set of rules.

Architecture: the collection of logical and physical views, constraints, and decisions

that define the external properties of a system and provide a shared understanding of the

system design to the development team and the intended user of the system.

Architectural style: a defined grouping of subsystems and connector types along with

the defined constraints that are used to realize message transport.

Assertion: A predicate expression whose value is either true or false.

Availability: The probability that a system is operating correctly and is ready to perform

its desired functions.

Battle management: The decisions and actions executed in direct response to the

activities of enemy forces in support of the Joint Chiefs of Staff’s precision engagement

concept.

Battlespace: All aspects of air, surface, and subsurface, land, space, and the

electromagnetic spectrum that encompass the area of influence and area of interest.

(NWP 1-02)

Battlespace constraints: The forces, facilities, and other features that serve to restrain,

restrict, or prevent the implementation of proposed military improvements in the defined

battlespace. Constraints may include natural and physical forces, doctrine, potential

adversary threats, and environmental features.

Bistatic radar: A radar that radar operates with separated transmitting and receiving

antennas.

 214

Black box testing: A software testing technique whereby explicit knowledge of the

internal workings of the component being tested are not known and the outputs are

examined with respect to the inputs.

Capability: The ability to perform a course of action or sequence of activities leading to

a desired outcome.

Capability-based acquisition: The process of identifying system capabilities in terms of

specifications and acquiring the software applications, hardware, and information

services to support these desired capabilities in an integrated environment.

Chain of command: The succession of commanding officers from a superior to a

subordinate through which command is exercised. (Joint Pub 1-02)

Coalition: An ad hoc arrangement between two or more nations for common action.

Coincidental correctness: A characteristic of a system that can produce the correct

outputs for a specific inputs as defined by the system specifications; however, incorrectly

implemented software in the system does not always impact the final output of the

system. That is, a system that is said to demonstrate coincidental correctness does the

right thing some of the time.

Combatant command: One of the unified or specified combatant commands established

by the President. (Joint Pub 1-02)

Combatant command (command authority): Non-transferable command authority

established by title 10, United States Code, section 164, exercised only by commanders

of unified or specified combatant commands unless otherwise directed by the President or

the Secretary of Defense. Combatant command (command authority) is the authority of a

combatant commander to perform those functions of command over assigned forces

involving organizing and employing commands and forces, assigning tasks, designating

objectives, and giving authoritative direction over all aspects of military operations, joint

training, and logistics necessary to accomplish the missions assigned to the command.

Also called COCOM. (Joint Pub 1-02)

 215

Combatant commander: A commander in chief of one of the unified or specified

combatant commands established by the President. (Joint Pub 1-02)

Combat information: Unevaluated data gathered by or provided directly to the tactical

commander which, due to its highly perishable nature or the criticality of the situation,

cannot be processed into tactical intelligence in time to satisfy the user's tactical

intelligence requirements. (Joint Pub 1-02)

Command: 1. The authority that a commander in the Armed Forces lawfully exercises

over subordinates by virtue of rank or assignment. Command includes the authority and

responsibility for effectively using available resources and for planning the employment

of, organizing, directing, coordinating, and controlling military forces for the

accomplishment of assigned missions. It also includes responsibility for health, welfare,

morale, and discipline of assigned personnel. 2. An order given by a commander; that is,

the will of the commander expressed for the purpose of bringing about a particular action.

3. A unit or units, an organization, or an area under the command of one individual. (Joint

Pub 1-02)

Command and control: The exercise of authority and direction by a properly designated

commander over assigned and attached forces in the accomplishment of the mission.

Command and control functions are performed through an arrangement of personnel,

equipment, communications, facilities, and procedures employed by a commander in

planning, directing, coordinating, and controlling forces and operations in the

accomplishment of the mission. (JCS/J7/Joint Doctrine Division memo dated 20 Oct 94)

Command and control system: The facilities, equipment, communications, procedures,

and personnel essential to a commander for planning, directing, and controlling

operations of assigned forces pursuant to the missions assigned. (Joint Pub 1-02)

Command, Control, Communications, and Computer Systems (C4 Systems).

Integrated systems of doctrine, procedures, organizational structures, personnel,

equipment, facilities, and communications designed to support a commander’s exercise

of command and control through all phases of the operational continuum.

 216

Command and control warfare: The integrated use of operations security (OPSEC),

military deception, psychological operations (PSYOP), electronic warfare (EW), and

physical destruction, mutually supported by intelligence, to deny information to,

influence, degrade, or destroy adversary command and control capabilities, while

protecting friendly command and control capabilities against such actions. Command and

control warfare applies across the operational continuum and at all levels of conflict. Also

called C2W. C2W is both offensive and defensive: a. counter-C2-To prevent effective C2

of adversary forces by denying information to, influencing, degrading, or destroying the

adversary C2 system. b. C2-protection-To maintain effective command and control of

own forces by turning to friendly advantage or negating adversary efforts to deny

information to, influence, degrade, or destroy the friendly C2 system. (Joint Pub 1-02)

Component: A software unit of composition with contractually specified interfaces and

explicit context dependencies.

Component-based engineering: The design and development of a system through the

assembly of components which can be developed independently of the system.

Configurable component: A component which can accept parameters from an external

source such as a sensor or user.

Control: Authority which may be less than full command exercised by a commander

over part of the activities of subordinate or other organizations. (Joint Pub 1-02).

Correctness: A characteristic of a system that precisely exhibits predictable behavior at

all times as defined by the system specifications. That is, a system that is said to

demonstrate correctness does the right thing all the time.

Correlation: The capability to associate one track with one sensed object

Consistency: The property that invariants will always hold true in the system.

Crisis Action Planning: The time-sensitive planning for the deployment, employment,

and sustainment of assigned and allocated forces and resources that occurs in response to

a situation that may result in actual military operations. Crisis action planners base their

 217

plan on the circumstances that exist at the time planning occurs. Also called CAP (Joint

Pub 1-02)

Critical Section: Shared resources for which multiple processes can access during

runtime. The software code of a critical section must execute without interruption.

Otherwise, the system software could experience deadlock and race conditions.

Data: A representation of individual facts, concepts, or instructions in a manner suitable

for communication, interpretation, or processing by humans or by automatic means.

[IEEE]

Deadlock: The condition in which a process waits indefinitely for conditions that will

never be satisfied. For deadlock to occur, all of the following four conditions must be

true: (1) processes claim exclusive control of shared resources, (2) processes hold shared

resources while waiting for other shared resources to be released, (3) processes cannot be

directed to release shared resources, and (4) a circular waiting condition exists for the

release of shared resources. [30]

Deliberate Planning: A planning process for the deployment and employment of

apportioned forces and resources that occurs in response to a hypothetical situation.

Deliberate planners rely heavily on assumptions regarding the circumstances that will

exist when the plan is executed. (Joint Pub 1-02)

Dependable system: One that provides the appropriate levels of correctness and

robustness in accomplishing its mission while demonstrating the appropriate levels of

availability, consistency, reliability, safety, and recoverability.

Design: The details of planned implementation which are defined, structured, and

constrained by the architecture

Discrimination: The capability to distinguish a threat object from benign objects such as

debris, chaff, countermeasures, and satellites.

Distributed component: A component that executes across multiple processors.

Distributed system: A system that has multiple processors that are connected by a

communications structure.

 218

Domain analysis: The process of identifying and formalizing constraints on input, state,

and output values.

Dominant maneuver: The ability of joint forces to gain positional advantage with

decisive speed and overwhelming operational tempo in the achievement of assigned

military tasks.

Fail hard: A system condition in which either a hardware or software failure causes the

entire system to stop working.

Fail soft: A system condition in which either a hardware or software failure causes the

termination of nonessential processing. Systems in fail-soft mode can still provide partial

operational-capability.

Failure: The inability of a system or component to perform a required function within

specified limits.

Fire-control solution: The collection of calculations by a weapon system to determine

the point of intercept, launch angle, and time of launch of an interceptor.

Fault: An incorrect statement, step, process, or data definition in a software program.

Fly-out time: The time difference from the time of launch of the interceptor to the time

of engagement of the ballistic missile threat

Focused logistics: The ability to provide the joint force the right personnel, equipment,

and supplies in the right place, at the right time, and in the right quantity, across the full

range of military operations.

Formal method: A method that precisely describes a specification in mathematical

terms to make possible the verification of the specification in the requirements phase as

well as the testing phase of system development.

Formal specification: The precise definition of a system behavior that is typically

expressed in mathematical terms.

Framework: an abstracted view of a complex entity or process

 219

Full dimensional protection: The ability of the joint force to protect its personnel and

other assets required to decisively execute assigned tasks.

Functional model: A system abstraction that contains the set of observations, modeling

data, pre-conditions, post-conditions, invariants, boundary conditions, and algorithms that

describe the physical system.

 Information: The meaning that a human assigns to data by means of the known

conventions used in their representation. (Joint Pub 1-02)

Intelligence: The product resulting from the collection, processing, integration, analysis,

evaluation, and interpretation of available information concerning foreign countries or

areas. (Joint Pub 1-02)

Interoperability: The ability of systems, units, or forces to provide services to and

accept services from other systems, units, or forces and to use the services so exchanged

to enable them to operate effectively together. (Joint Pub 1-02)

Invariant: A property that holds true under any transformation in the system.

Joint: Connotes activities, operations, organizations, etc., in which elements of two or

more Military Departments participate. (Joint Pub 1-02)

Joint force: A general term applied to a force composed of significant elements, assigned

or attached, of two or more Military Departments, operating under a single joint force

commander. (JCS/J7/Joint Doctrine Division memo dated 20 Oct 94)

Joint task force: A joint force that is constituted and so designated by the Secretary of

Defense, a combatant commander, a sub-unified commander, or an existing joint task

force commander. (JCS/J7/Joint Doctrine Division memo dated 20 Oct 94)

Keep-out altitude: The keep-out altitude for ballistic missile defense is the lowest

altitude above an area on the surface of the Earth for which an engagement must occur to

minimize the ground effects of debris from the engagement. The keep-out altitude is

important because the debris from the resultant engagement will fall back to Earth, and it

may contain nuclear, chemical, or biological agents that can negatively impact humans

and assets in the volume of the debris fallout.

 220

Kill Chain: The sequence of activities that must occur to complete a mission goal. For

this dissertation, the elements of the kill chain are: Detect, Track, Assign Weapon,

Engage, and Kill Assessment.

Recoverability: The ease for which a failed system can be restored to operational use.

Memory leak: An error in a program's dynamic-store allocation logic that causes it to

fail to reclaim discarded memory and can result in a system crash due to memory

exhaustion.

Mission: The task, together with the purpose, that clearly indicates the action to be taken

and the reason therefore. (Joint Pub 1-02)

Mission type order: Order to a unit to perform a mission without specifying how it is to

be accomplished. (Joint Pub 1-02)

Model: A representation of a physical system or process intended to enhance the

software engineer’s ability to understand, predict, or control its behavior.

Model checking: The systematic approach for testing functional assertions and

substantiating the desired system behavior in the model. Model checking is not a proof of

correctness; however, model checking involves creating functional models of a system

and analyzing the model against the formal representations of the desired behavior.

Operational control: Transferable command authority that may be exercised by

commanders at any echelon at or below the level of combatant command. Operational

control is inherent in Combatant Command (command authority) and is the authority to

perform those functions of command over subordinate forces involving organizing and

employing commands and forces, assigning tasks, designating objectives, and giving

authoritative direction necessary to accomplish the mission. Also called OPCON. (Joint

Pub 1-02)

Operations tempo: The rate of military actions or missions.

Oracle: A tool to evaluate the results of a test case as either pass or not passed. The

oracle is the test key that contains the inputs for a system and the associated required

output for each input.

 221

Passive component: A component that executes only when called upon to do so by an

active component.

Pre-condition: A fact that must always be true just prior to execution of a specific

section of code.

Post-condition: A fact that must always be true just after the execution of a specific

section of code.

Precision engagement: The ability of joint forces to locate, surveil, discern, and track

objectives or targets; select, organize, and use the correct systems; generate desired

effects, assess results; and reengage with decisive speed and overwhelming operational

tempo as required, throughout the full range of military operations.

Predicate: A function that represents the truth or falsehood of some condition.

Race condition: A condition in which the state of a resource depends on timing

conditions that are not predictable. A race condition occurs if the final result of a

computation that requires access to a critical section is executed by two or more

processes, and the final result of the computation depends on the order in which those

processes execute. For example, if two processes (PA and PB) write different values VA

and VB to the same variable in a critical section, then the final value of the variable is

determined by the order in which PA and PB execute.

Reactive system: A system for which its behavior is primarily caused by reactions to

external events as opposed to being internally generated stimuli.

Real-time system: A real-time system is one for which producing correct computations

as a result of an external event is equally as critical as meeting the deadlines for those

computations.

Reliability: The property that a system can operate continuously without experiencing a

failure.

Requirement: A criterion that a system must meet. A requirement may define what a

system must do, characteristics it must have, and levels of performance it must attain.

 222

Robustness: A characteristic of a system that is failure and fault tolerant. Such a system

handles unexpected states in a manner that minimizes performance degradation, data

corruption, and incorrect output.

Rules of engagement: Directives issued by competent military authority that delineate

the circumstances and limitations under which United States forces will initiate and/or

continue combat engagement with other forces encountered. Also called ROE. (Joint Pub

1-02)

Safety: The property of avoiding a catastrophic outcome given a system fails to operate

correctly.

Schedulability: The determination of whether a group of tasks, whose individual CPU

utilization is known, will meet their deadlines.

Situational awareness: Perception of available facts, comprehension of the facts in

relation to the individual’s expert knowledge, and projecting how the situation is likely to

develop in the future.

Software reuse: The act of selecting and employing a chunk of software that was

designed and implemented for use in other systems without modification to that chunk of

software.

Software salvage: The act of selecting a chunk of software and modifying it for use in

another system.

Specification: An articulation of either: (1) desired system behavior that is expressed as

a feature, function, property, or capability, or (2) an undesired system behavior that can

be expressed as a limitation, constraint, negative (e.g., the system shall not…), or

condition.

Specified command: A command that has broad continuing missions and that is

established by the President through the Secretary of Defense with the advice and

assistance of the Chairman of the Joint Chiefs of Staff. It normally is composed of forces

from a single Military Department. Also called specified combatant command. (Joint Pub

1-02)

 223

State: A recognizable situation that exists over an interval of time.

State explosion: The condition in which the size of the state space exceeds the memory

capacity of the automated tool to check every trace in the model.

State transition: A change in state that is caused by an input event.

Subsystem: A testable collection of classes, objects, components, and modules that

typically share a common attribute or contribute to a common goal. (Binder)

Surveillance: The systematic observation of aerospace, surface or subsurface areas,

places, persons, or things, by visual, aural, electronic, photographic, or other means.

(Joint Pub 1-02)

System-of-Systems: An amalgamation of legacy systems and developing systems that

provide an enhanced military capability greater than that of any of the individual systems

within the system-of-systems.

System behavior: The collective responses of a system as it reacts to stimuli such as

sensory information, a clock, or a received transaction.

Tactical control: The detailed and, usually, local direction and control of movements or

maneuvers necessary to accomplish missions or tasks assigned. Also called TACON.

(Joint Pub 1-02)

Targeting: 1. The process of selecting targets and matching the appropriate response to

them taking account of operational requirements and capabilities. 2. The analysis of

enemy situations relative to the commander's mission, objectives, and capabilities at the

commander's disposal, to identify and nominate specific vulnerabilities that, if exploited,

will accomplish the commander's purpose through delaying, disrupting, disabling, or

destroying enemy forces or resources critical to the enemy. (Joint Pub 1-02)

Temporal logic: An extension of propositional logic that incorporates special operators

that cater for time. With temporal logic one can specify how components, protocols,

objects, modules, procedures and functions behave as time progresses. The specification

is done with temporal logic statements that make assertions about properties and

relationships in the past, present, and the future.

 224

Test-ready model: One that contains sufficient information for which to automatically

produce test cases for its implementation.

Time-critical task: A task that needs to meet a hard deadline.

Transparent: A distributed system that appears to be a single system to the users that

operate the distributed system, and the applications that reside and execute on the

distributed system. (Tannenbaum and van Steen)

Trustworthy system: One that provides the appropriate levels of correctness and

robustness in accomplishing its mission while demonstrating the appropriate levels of

availability, consistency, reliability, safety, and recoverability to the degree that justifies a

user’s confidence that the system will behave as expected.

 Unified command: A command with broad continuing missions under a single

commander and composed of forces from two or more Military Departments, and which

is established by the President, through the Secretary of Defense with the advice and

assistance of the Chairman of the Joint Chiefs of Staff. Also called unified combatant

command. (Joint Pub 1-02)

Validation: The process of evaluating a system or component during or at the end of the

development process to determine whether it satisfies specified requirements. (IEEE Std.

610.12-1990)

Verification: The process of evaluating a system or component to determine whether the

products of a given development phase satisfy the conditions imposed at the start of that

phase. (IEEE Std. 610.12-1990)

White-box testing: A software testing technique whereby explicit knowledge of the

internal workings of the component being tested is used to examine the outputs.

 225

APPENDIX B. ACRONYMS

AADC Area air defense commander
ABL Airborne laser
ABM Anti-ballistic missile
ACTD Advanced concept technology demonstration
AD Air defense
ADA Air defense artillery
ADCP Air defense communications platform
ADG Active defense group
ALERT Attack and launch early report to theater
AO Area of Operations
AOA Amphibious objective area
AOC Air Operations Center
AOR Area of responsibility
ATACMS Army tactical missile system
ATO Air tasking order
AWACS Airborne warning and control system
BDA Battle damage assessment
BMC4I Battle management command, control, communications, computers, and
intelligence
BMD Ballistic missile defense
BMDO Ballistic Missile Defense Organization
BMDS Ballistic Missile Defense System
BPI Boost-phase intercept
CAP Crisis action planning
C2 Command and control CAP Combat air patrol
C3I Command, Control, Communications, and intelligence
CEC Cooperative engagement capability
CENTCOM United States Central Command
CEP Circular error probable
CIC Combat information center
CJCS Chairman, Joint Chiefs of Staff

 226

CM Configuration management
CO Commanding officer
COA Course of action
COCOM Combatant Commander
COEA Cost and operational effectiveness analysis
CONOPS Concept of operations
CONPLAN Operations plan in concept format
CONUS Continental United States (excluding Alaska and Hawaii)
COP Common operational picture
COTS Commercial off the shelf
CRC Control and reporting center
DAL Defended asset list
DE Directed energy
DIA Defense Intelligence Agency
DISA Defense Information Systems Agency
DoD Department of Defense
DSP Defense Support Program
EO Electrical-optical
EUCOM United States European Command
EW Early warning
EXORD Execute order
GBI Ground-based interceptor
GBR Ground-based radar
GCCS Global command and control system
GEM Guidance enhanced missile (PATRIOT)
GGIG Global information grid
GMD Ground-based Missile Defense
GPS Global Positioning System
HQ Headquarters
IA Information assurance
ICBM Intercontinental ballistic missile
ICC Information Coordination Central (PATRIOT)
IER Information exchange requirement
IRS Interface Requirements Specification

 227

IOC Initial operational capability
IPB Intelligence preparation of the battle space
IR Infrared
IRBM Intermediate-range ballistic missile
IRST Infrared search and track
ITW/AA Integrated tactical warning/attack assessment
JCS Joint Chiefs of Staff
JCTN Joint composite tracking network
JDN Joint data network
JEZ Joint engagement zone
JFACC Joint force air component commander
JFC Joint force commander
JFCOM Joint Forces Command
JFMCC Joint force maritime component commander
JIC Joint intelligence center
JMCIS Joint maritime command information system
JP Joint publication
JPN Joint planning network
JS Joint staff
JSOC Joint Special Operations Command
JSTARS Joint surveillance and target attack radar system
JTA Joint technical architecture
JTAGS Joint tactical ground station
JTF Joint task force
JTIDS Joint tactical information distribution system
JTMD Joint theater missile defense
KE Kinetic energy
KV Kill vehicle
KW Kinetic warhead
MDA Missile Defense Agency
MEADS Medium extended air defense system
MEZ Missile engagement zone
MNS Mission need statement
MLRS Multiple launch rocket system

 228

MRBM Medium-range ballistic missile
NATO North Atlantic Treaty Organization
NBC nuclear, biological, and chemical
NASA National Aeronautics and Space Administration
NCA National Command Authority
NMCC National Military Command Center
NMD National missile defense
NORTHCOM United States Northern Command
OCONUS Outside the continental United States
OOB Operational order of battle
OODA Observe, orient, decide, act
OPLAN Operations plan
OPORD Operations order
OPTEMPO Operations tempo
ORD Operational Requirements Document
OSD Office of the Secretary of Defense
PAC Patriot advanced capability
PACOM Pacific Command
PATRIOT phased array tracking radar intercept on target
PDAL Prioritized defended asset list
Pk Probability of kill
POM Program objective memorandum
R&D Research and development
RCS Radar cross-section
R&D Research and development
RDT&E Research, development, test, and evaluation
RF Radio frequency
ROE Rules of engagement
RV Reentry vehicle
SAM Surface-to-air missile
SATCOM Satellite communications
SBIRS-LOW Space-based infrared system-low earth orbit
SBWS Space-based warning system (DSP + TES)
SDI Strategic Defense Initiative

 229

SDIO Strategic Defense Initiative Organization
SMTS Space and missile tracking system
SOCOM United States Special Operations Command
SOF Special operations forces
STRATCOM United States Strategic Command
SRBM Short-range ballistic missile
SRS System Requirements Specifications
TAOC Tactical air operations center
TBM Theater ballistic missile
TBM-WMD Theater ballistic missile—weapons of mass destruction
TBMD Theater ballistic missile defense
TCT Time critical target
TDDS Tactical data distribution system
TEL Transporter-erector-launcher (for TBM)
THAAD Theater high-altitude area defense
TIBS Tactical information broadcast service
TLAM Tomahawk land attack missile
TM Theater missile
TMD Theater missile defense
TOC Tactical operations center
TPFDD Time-phased force and deployment data
TPFDL Time-phased force and deployment list
TRAP TRE and related applications (now TDDS)
TRE Tactical receive equipment
UCP Unified Command Plan
UOES User operational evaluation system
USA United States Army
USAF United States Air Force
USMC United States Marine Corps
USN United States Navy
VCJCS Vice-Chairman, Joint Chiefs of Staff

WMD Weapons of mass destruction

 230

THIS PAGE INTENTIONALLY LEFT BLANK

 231

LIST OF REFERENCES

[1] Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J.,
Seacord, R., and Wallnau, K. Volume II: Technical Concepts of Component-Based
Software Engineering. Technical Report CMU/SEI-2000-TR-008, Carnegie-Mellon
University/Software Engineering Institute, Pittsburg, Penn., May 2000.

[2] Bass, L., Clements, P. and Kazman, R. Software Architecture in Practice: 2nd
ed., Reading, Mass.: Addison-Wesley, 2003.

[3] Binder, R. V. Testing Object-Oriented Systems: Models, Patterns, and Tools.
Reading, Mass.: Addison-Wesley, June 2001.

[4] Boehm, B. and Basili, V. R. Software defect reduction top 10 list. IEEE
Computer, Jan. 2001, pp. 135-137.

[5] Bowen, J. P. and Hinchey, M. G. Seven more myths of formal methods. IEEE
Software, July 1995, pp. 34-41.

[6] Boyd, J. R. A Discourse on Winning and Losing: Patterns of Conflict.
Unpublished lecture notes, Dec. 1986. (Typewritten)

[7] Brown, M. L., The Application of Safety Kernels in Weapon-Related Systems,
Technical Report, NOSSA-TR-2004-003, National Ordance Safety and Security Activity
of the Naval Sea Systems Command, Indian Head, Md., May 2004.

[8] Butler, R.W., Caldwell, J., Carreno, V., Holloway, M., Miner, P., and Di Vito, B.
NASA Langley’s Research and Technology-Transfer Program in Formal Methods,
http://shemesh.larc.nasa.gov/fm/NASA-over.pdf, May 2002.

[9] Caffall, D. S. and Michael, J. B. A new paradigm for requirements specification
and analysis of system-of-systems. In Wirsing, M., Knapp, A., and Balsamo, S., eds.,
Lecture Notes in Computer Science, Berlin: Springer-Verlag, No. 2941, pp. 108-121.

[10] Caffall, D. S., Michael, J. B., and Shing, M.-T. Developing highly predictable
system behavior in real-time battle-management software. In Savoie, M. J., Chu, H.-W.,
Michael, J., and Pace, P., eds., Proc. Int. Conf. on Computing, Commun. and Control
Technologies, Orlando, Fla.: Int. Inst. of Informatics and Systemics (Austin, Tex., Aug.
2004), vol. 6, pp. 7-12.

[11] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. Progress on the state
explosion problem in model checking. In Wilhelm, R., ed., Lecture Notes in Computer
Science, Vol. 2000, Heidelberg, Ger.: Springer-Verlag, 2001, pp. 176-194.

[12] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R.,
and Stafford, J. Documenting Software Architectures: Views and Beyond. Reading,
Mass.: Addison Wesley, 2003.

[13] U.S. Congress, Office of Technology Assessment, Ballistic Missile Defense
Technologies, OTA-ISC-254, Washington, D.C., U.S. Government Printing Office, Sept.
1985.

 232

[14] Coram, R. Boyd: The Fighter Pilot Who Changed the Art of War. New York:
Little Brown and Co., 2002.

[15] Crnkovic, I. and Larsson, M., eds. Building Reliable Component-Based Software
Systems. Norwood, Mass.: Artech House, 2002.

[16] del Mar Gallardo, M., Martínez, J., Merino, P., and Pimentel, E. Abstract model
checking and refinement of temporal logic in αSPIN. In Proc. Third Int. Conf. on Ap-
plication of Concurrency to System Design, IEEE (Guimarães, Port., June 2003), pp. 245-
246.

[17] Dijkstra, E. W. The structure of the multiprogramming system. Communications
of the ACM, Vol. 11, No. 5 (May 1968), pp. 341-346.

[18] U.S. Department of the Army. Tactics, Techniques, and Procedures for the
Targeting Process. Field Manual 6-20-10, May 1996.

[19] U.S. Department of Commerce. The Economic Impacts of Inadequate
Infrastructure for Software Testing. National Institute of Standards and Technology
Planning Report 02-03, May 2002.

[20] U.S. Department of Defense. Joint Capabilities Integration and Development
System. Chairman of the Joint Chiefs of Staff Instruction 3170.01D, Mar. 12, 2004.

[21] U.S. Department of Defense. Department of Defense Dictionary of Military and
Associated Terms. Joint Pub. 1-02, Apr. 12, 2001 (as amended through May 23, 2003).

[22] US Department of Defense. Doctrine for Joint Theater Missile Defense. Joint
Pub. 3-01.5, Joint Chiefs of Staff, Feb. 1996.

[23] U.S. Department of Defense. Joint Vision 2020. Washington, D.C.: U.S.
Government Printing Office, June 2000.

[24] U.S. Department of Defense. Joint Force Command and Control Concept to
Guide Standing Joint Force Headquarters Development by 2005. Joint Forces
Command, Mar. 5, 2003.

[25] U.S. Department of Defense. Network Centric Warfare: Department of Defense
Report to Congress, Department of Defense, 2001.

[26] U.S. Department of Defense. Operation of the Defense Acquisition System.
Department of Defense Instruction 5000.2, May 12, 2003.

[27] U.S. Department of Defense. Tactical Digital Information Link (TADIL) J
Message Standard. MIL-STD-6016A, Joint Technical Architecture - Version 4.0, July
2002.

[28] U.S. Department of Defense. The Defense Acquisition System. Department of
Defense Directive 5000.1, May 12, 2003.

[29] U.S. Department of Defense. The Joint Staff Officer’s Guide 2000. JFSC Pub 1,
National Defense University, Joint Forces Staff College, Norfolk, Va., 2000.

[30] Douglass, B. P. Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns. Reading, Mass.: Addison-Wesley, 1999.

 233

[31] Fowler, M. Refactoring: Improving the Design of Existing Code, Addison
Wesley, 1999.

[32] Fowler, M. Who needs an architect? IEEE Software, Sept. 2003, pp. 11-13.

 [33] French, M. Network-centric warfare progressing, Federal Computer Week, May
1, 2003.

[34] Friedman, M. A. and Voas, J. M. Software Assessment: Reliability, Safety,
Testability. New York: John Wiley & Sons, 1995.

[35] Ganssle, J.G. Disaster. Embedded.com, Embedded Systems Programming J.,
Vol. 11, No. 5, May 1998.

[36] Garg, V. K. Elements of Distributed Computing, New York: John Wiley & Sons,
2002.

[37] Erwin, S. I. General Jumper. Time to change traditional program advocacy,
National Defense, July 2002, pp. 14-15.

[38] Garland, J. and Anthony R. Large-Scale Software Architecture, West Sussex,
England: John Wiley & Sons, 2003.

[39] National Missile Defense: Schedule and technical risks represent significant
development challenges. Report GAO/NSIAD-98-28, U.S. General Accounting Office,
Washington, D.C., Dec. 1997.

[40] Gnesi, S., Latella, D., and Massink, M. In Proc. Fourth Int. Symposium on High
Assurance Systems Engin., IEEE, (Washington, D.C., Nov. 1999), pp 46-55.

[41] Gomaa, H. Designing Concurrent, Distributed, and Real-Time Applications with
UML. Reading, Mass.: Addison-Wesley, 2000.

[42] Hall, A. Seven myths of formal methods, IEEE Software, Sept. 1990, pp. 11-19.

[43] He, W. and Goddard, S. Capturing an application’s temporal properties with
UML for real-time. In Proc. Fifth Int. Symposium on High Assurance Systems Engin.,
IEEE, (Albuquerque, N.M., Nov. 2000), pp. 65-74.

[44] IEEE. Standard Glossary of Software Engineering Terminology, IEEE Std.
610.12-1990.

[45] Kaufman, P. R. Sensors Emerge as More Crucial Weapons Than Shooters, IEEE
Spectrum Online, News Analysis, July 2002.

[46] Kenne, L. F. Tightening the kill chain: Broadening information access, Intercom,
Jan. 2003, pp. 6-9.

[47] Lang, B. Finding Errors Using Model-Based Verification,
www.sei.cmu.edu/news-at-sei/features/2001/1q01/feature-2-1q01.htm, 2001.

[48] Leckie, R. None Died In Vain. New York: Harpers Collins, 1990.

[49] Leishman, T.R. and Cook, D.A. Requirements risks can drown software projects,
CrossTalk, Apr. 2002, pp. 4-8.

 234

[50] Leffingwell, D. and Widrig, D. Managing Software Requirements: A Unified
Approach. Reading, Mass.: Addison-Wesley, 2000.

[51] Lewis, G. A., Comella-Dorda, S., Gluch, D. P., Hudak, J., and Weinstock, C.
Model-based verification: Analysis guidelines. Technical Note CMU/SEI-2001-TN-028,
Software Engineering Institute, Pittsburgh, Penn., Dec. 2001.

[52] Liu, J. W. S. Real-Time Systems. Upper Saddle River, N.J.: Prentice Hall, 2000.

[53] Loeb, V. Friendly fire deaths traced to dead battery, Washington Post, Mar. 24,
2002, p. A21.

[54] Lutz, R.R. Analyzing software requirements errors in safety-critical, embedded
systems. In Proc. Fourth Int. Symposium on Requirements Engin., IEEE, (San Diego,
Calif., Jan. 1993), pp. 126-133.

[55] Mantle, P. J. The Missile Defense Equation: Factors for Decision Making.
Reston, Va.: American Institute of Aeronautics and Astronautics, Inc., 2004.

[56] Meyers, C. B., Feiler, P. H., Marz, T. Proc. Real-Time Systems Engin.
Workshop. Special Report CMU/SEI-2001-SR-022, Software Engineering Institute,
Pittsburgh, Penn., Aug. 2001.

[57] Michael, J.B. Gaining the Trust of Stakeholders in Systems-of-Systems: A Brief
Look at the Ballistic Missile Defense System. Technical Report NPS CS-04-006, Naval
Postgraduate School, Monterey, Calif., May 2004.

[58] Michael, J.B. and Lawler, G. M. Classification paradigms for comparing
distributed systems. Unpublished manuscript, Nov. 2002.

[59] Musa, J.D., Iannino, A., and Okumoto, K. Software Reliability Measurement
Prediction Application. New York: McGraw-Hill, 1997.

[60] National Aeronautics and Space Administration Formal Methods Specification
and Verification Guidebook for Software and Computer Systems, Volume I: Planning
and Technology Insertion. Office of Safety and Mission Assurance, NASA/TP-98-
208193, 1998.

[61] Parnas, D. L. Software Fundamentals: Collected Papers by David L. Parnas.
Reading, Mass.: Addison-Wesley, 2001.

[62] Patriot Missile Software Problem. Report GAO/IMTEC-92-26, U.S. General
Accounting Office, Washington, D.C., Feb. 1992.

[63] Paul, R. Rapid and adaptive end-to-end T&E of joint systems of systems.
Presentation at the Fifteenth Annual Software Technology Conf., Salt Lake City, Utah,
Apr. 2003.

[64] Preckshot, G. G., A kernel approach to safety systems. Technical Report UCRL-
ID-120075, Lawrence Livermore National Laboratory, Nov. 14, 1994.

[65] Rempt, R. The Navy in the twenty-first century, Part II: Theater Air and Missile
Defense, Johns Hopkins APL Technical Digest, Vol. 22, No. 1 (2001), pp. 21-28.

 235

[66] Selic, B. The pragmatics of model-driven development, IEEE Software,
Sept./Oct. 2003, pp. 19-25.

[67] Shaw, M. and Garlan, D. Software Architecture: Perspectives on an Emerging
Discipline. Saddle River, NJ: Prentice Hall, 1996.

[68] Sitaraman, M. and Gandi, G. Design-time error detection using assertions. In
Cook, J. E. and Ernst, M. D., eds., Proc. ICSE Workshop on Dynamic Analysis, (Portland,
May 2003).

[69] Standish Group, CHAOS: A Recipe for Success, The Standish Group
International, 1999.

[70] Standish Group, The Chaos Report, West Yarmouth, MA.: The Standish Group,
1994.

[71] Standish Group, CHAOS Chronicles Version 3.0, West Yarmouth, Mass.: The
Standish Group, 2003.

[72] Stenbit, J. P. Horizontal fusion: Enabling net-centric operations and warfare,
Crosstalk, Jan. 2004.

[73] Storey, N. Safety-Critical Computer Systems. New York: Addison Wesley, 1996.

[74] Szyperski, C. Component Software: Beyond Object-Oriented Programming.
Reading, Mass.: Addison-Wesley, 2nd ed., 2002.

[75] Tanenbaum, A. S. and van Steen, M. Distributed Systems: Principles and
Paradigms. Upper Saddle River, N.J.: Prentice Hall, 2002.

[76] Tenet, G. J. The Worldwide Threat 2004: Challenges in a Changing Global
Context, Testimony of Director of Central Intelligence before Senate Select Committee on
Intelligence, Feb. 2004.

[77] Theisen, E. E. Ground-aided precision strike: heavy bomber activity in operation
enduring freedom. Maxwell Paper No. 31, Air War College, Air University Press,
Maxwell Air Force Base, Alabama, July 2003.

[78] Voas, J. Mitigating the potential for damage caused by COTS and third-party
software failures. In Ghezzi, C. and Fusani, M., eds., Proc. 4th Int. Conf. on Achieving
Quality in Software, Pisa, Italy: Consorzio Universitario in Ingegneria della Qualita
(Venice, Mar. 1998).

[79] Vinu, G. and Vaughn, R. Application of lightweight formal methods in
requirements engineering. CrossTalk, Jan. 2003.

[80] Walker, R.W. DoD’s Grand Plan, Government Computer News, Feb. 24, 2003.

[81] Wallace, D. R. and Kuhn, D. R. Lessons from 342 medical device failures. In
Proc. Fourth International Symposium on High Assurance Systems Engin., IEEE,
(Washington, D.C., Nov. 1999), pp. 123-131.

[82] Young, R. R. Effective Requirements Practices. Reading, Mass.: Addison-
Wesley, 2001.

 236

[83] Popper, S. W., Bankes, S. C., Callaway, R. and DeLaurenetis, D. System of
systems symposium: report on a summer conversation. Potomac Institute for Policy
Studies, Arlington, Va., Nov. 2004.

[84] Smith, D., Morris, E., and Carney, D. Adoption centric problems in the context of
system of systems interoperability. In Proc. 4th Int. ICSE Workshop on Adoption-Centric
Software Engineering, IEEE (Edinburgh, Scotland, May 2004), pp. 63-68.

[85] Jones, C. and Randell, B. Dependable pervasive systems, CS-TR-839
School of Computing Science, University of Newcastle upon Tyne, Apr. 2004.

[86] Knight, J. C. An introduction to computing system dependability. In Proc. 26th
Int. Conf. on Software Engineering, IEEE (Edinburgh, Scotland, May 2004), pp. 730-
731.

[87] Keating, C., Rogers, R., Unal, R., Dryer, D., Sousa-Poza, A., Safford, R.,
Peterson, W., and Rabadi, G. System of systems engineering. Engineering Management
J., Vol. 15, No. 3 (Sept. 2003) , pp. 36-45.

[88] Mustapic, G., Wall, A., Norstrom, C., Ivica Crnkovic, Sandstrom, K., Froberg, J.,
and Andersson, J. Real world influences on software architecture – interviews with
industrial system experts. In Proc. 4th Working Conf. on Software Architecture, IEEE
(Oslo, Norway, June 2004), pp. 101-111.

[89] Maier, M. Architecting principles for systems of systems. In Proc. 6th Annual Int.
INCOSE Symposium, Seattle, Wash.: Int. Council on Systems Engineering (Boston,
Mass., July 1996), pp. 567-574.

[90] Fisher, D. A., and Smith, D. Emergent issues in interoperability. news@sei,
Software Engineering Institute, No. 3, 2004, pp. 1-5.

[91] Rhodes, D. and Hastings, D. The case for evolving systems engineering as a field
within engineering systems, Paper presented at Massachusetts Institute of Technology
Engineering Systems Symposium, Cambridge, Mass.,
esd.mit.edu/symposium/pdfs/papers/rhodes.pdf, Mar. 2004.

[92] Chen, P. and Han, J. Facilitating system-of-systems evolution with architecture
support. In Proc. 4th Int. ICSE Workshop on Principles of Software Evolution, IEEE
(Vienna, Austria, Sept. 2001), pp. 130-133.

[93] Hooks, I. Managing requirements for a system of systems, CrossTalk, Aug. 2004.

[94] Sage, A. P. Conflict and risk management in complex system of systems issues.
In Proc.Int. Conf. on Systems, Man, and Cybernetics, Vol. 4, Oct. 2003, pp. 3296-3301.

[95] Kasser, J. The acquisition of a system of systems is just a simple multi-phased
parallel-processing paradigm. In Proc. Int. Engineering Management Conf., Vol. 2,
IEEE (Cambridge, England, 2002), pp. 510-514.

[96] Crossley, W. A. System of systems: An introduction of Purdue University’s
schools of engineering’s signature area. Paper presented at Massachusetts Institute of
Technology Engineering Systems Symposium, Cambridge, Mass.,
esd.mit.edu/symposium/pdfs/papers/crossley.pdf, Mar. 2004.

 237

[97] Christian, E. The architecture of GEOSS (global earth observation system of
systems. Briefing presented at Industry Workshop on GEOSS Architecture, Federal
Geographic Data Committee, United States Geological Survey,
iwgeo.ssc.nasa.gov/docs/GEOSSArchitecture.ppt, Reston, Va., May 2004.

[98] Stoudt, C. A. A systems perspective on current ATC trends. IEEE Aerospace
and Electronic Systems Magazine, Sept. 2002, pp. 28-32.

[99] Greaves, M. Stavridou-Coleman, V., and Laddaga, R., Dependable agent
systems. IEEE Intelligent Systems, Sept./Oct. 2004, pp. 20-23.

[100] Schaefer, R. Systems of systems and coordinated atomic actions, ACM SIGSOFT
Software Engineering Notes, Vol. 30, Issue 1, abstract on p. 6 with full article online, Jan.
2005.

[101] Kokar, M. M., Baclawski, K., and Eracar, Y. A. Control theory-based foundations
of self-controlling software. IEEE Intelligent Systems, May/June 1999, pp. 37-45.

[102] Kleinmann, K., Lazarus, R., and Tomlinson, R. An infrastructure for adaptive
control of multi-agent systems. In Proc.Int Conf. on Integration of Knowledge Intensive
Multi-Agent Systems, IEEE (Boston, Mass., Sept. 2003), pp. 230-236.

[103] U.S. Congress. Office of Technology Assessment. Automatic Train Control
in Rail Rapid Transit. Washington, D.C.: Government Printing Office,
1976.

 238

THIS PAGE INTENTIONALLY LEFT BLANK

 239

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Bret Michael
Department of Computer Science
Naval Postgraduate School

4. Professor Man-tak Shing

Department of Computer Science
Naval Postgraduate School

5. Professor Doron Drunsinsky

Department of Computer Science
Naval Postgraduate School

6. Professor Dan Boger
Chairman, Department of Information Sciences
Naval Postgraduate School

7. Dr. Kevin Greaney

Senior Software Engineer
DB Data Systems

8. General Robert Dehnert

Program Director for C2BMC
Missile Defense Agency

9. Mr. Richard Ritter.

Deputy Program Director for C2BMC
Missile Defense Agency

10. LTC Tom Cook
Chief, Advanced Battle Manager Development Team
Missile Defense Agency

 240

11. Ms. Paula Lynn Jones
Human Resources
Joint Interoperability Test Command

12. Professor David Parnas

Software Quality Research Laboratory
University of Limerick

13. Professor John Knight
Department of Computer Science
University of Virginia

14. Mr. R. K. Callaway

Potomac Institute for Policy Studies

15. Professor Duminda Wijesekera

Department of Information and Software Engineering
George Mason University

16. Professor Phillip Pace

Department of Electrical & Computer Engineering
Naval Postgraduate School

17. Professor Murali Tummala

Department of Electrical & Computer Engineering
Naval Postgraduate School

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

