

Python Basics
With Illustrations from the Financial Markets

QuantInsti Quantitative Learning Pvt. Ltd.
- India -

Contents

1 Introduction 1
1.1 What is Python? . 1
1.2 Where is Python used? . 2
1.3 Why Python? . 2
1.4 History of Python . 6
1.5 Python 3 versus Python 2 . 7
1.6 Key Takeaways . 10

2 Getting Started with Python 11
2.1 Python as a Calculator . 11

2.1.1 Floating Point Expressions 14
2.2 Python Basics . 17

2.2.1 Literal Constants . 17
2.2.2 Numbers . 18
2.2.3 Strings . 18
2.2.4 Comments . 19
2.2.5 print() function . 20
2.2.6 format() function . 22
2.2.7 Escape Sequence . 23
2.2.8 Indentation . 24

2.3 Key Takeaways . 25

3 Variables and Data Types in Python 27
3.1 Variables . 27

3.1.1 Variable Declaration and Assignment 27
3.1.2 Variable Naming Conventions 28

3.2 Data Types . 31
3.2.1 Integer . 31

i

3.2.2 Float . 32
3.2.3 Boolean . 34
3.2.4 String . 35
3.2.5 Operations on String 38
3.2.6 type() function . 41

3.3 Type Conversion . 42
3.4 Key Takeaways . 45

4 Modules, Packages and Libraries 47
4.1 Standard Modules . 50
4.2 Packages . 52
4.3 Installation of External Libraries 53

4.3.1 Installing pip . 54
4.3.2 Installing Libraries . 54

4.4 Importing modules . 56
4.4.1 import statement . 56
4.4.2 Selective imports . 57
4.4.3 The Module Search Path 59

4.5 dir()function . 61
4.6 Key Takeaways . 63

5 Data Structures 65
5.1 Indexing and Slicing . 65
5.2 Array . 67

5.2.1 Visualizing an Array 67
5.2.2 Accessing Array Element 68
5.2.3 Manipulating Arrays 68

5.3 Tuples . 70
5.3.1 Accessing tuple elements 71
5.3.2 Immutability . 72
5.3.3 Concatenating Tuples 72
5.3.4 Unpacking Tuples . 73
5.3.5 Tuple methods . 73

5.4 Lists . 74
5.4.1 Accessing List Items 75
5.4.2 Updating Lists . 75
5.4.3 List Manipulation . 77
5.4.4 Stacks and Queues . 80

ii | Table of Contents

5.5 Dictionaries . 82
5.5.1 Creating and accessing dictionaries 82
5.5.2 Altering dictionaries 85
5.5.3 Dictionary Methods 86

5.6 Sets . 88
5.7 Key Takeaways . 92

6 Keywords & Operators 95
6.1 Python Keywords . 95
6.2 Operators . 106

6.2.1 Arithmetic operators 106
6.2.2 Comparison operators 107
6.2.3 Logical operators . 109
6.2.4 Bitwise operator . 110
6.2.5 Assignment operators 114
6.2.6 Membership operators 118
6.2.7 Identity operators . 118
6.2.8 Operator Precedence 119

6.3 Key Takeaways . 121

7 Control Flow Statements 123
7.1 Conditional Statements . 123

7.1.1 The if statement . 123
7.1.2 The elif clause . 125
7.1.3 The else clause . 125

7.2 Loops . 126
7.2.1 The while statement 126
7.2.2 The for statement . 128
7.2.3 The range() function 128
7.2.4 Looping through lists 130
7.2.5 Looping through strings 131
7.2.6 Looping through dictionaries 131
7.2.7 Nested loops . 133

7.3 Loop control statements . 134
7.3.1 The break keyword . 134
7.3.2 The continue keyword 135
7.3.3 The pass keyword . 136

7.4 List comprehensions . 137

Table of Contents | iii

7.5 Key Takeaways . 140

8 Iterators & Generators 143
8.1 Iterators . 143

8.1.1 Iterables . 143
8.1.2 enumerate() function 145
8.1.3 The zip()function . 146
8.1.4 Creating a custom iterator 147

8.2 Generators . 149
8.3 Key Takeaways . 151

9 Functions in Python 153
9.1 Recapping built-in functions 154
9.2 User defined functions . 155

9.2.1 Functions with a single argument 156
9.2.2 Functions with multiple arguments and a return

statement . 157
9.2.3 Functions with default arguments 159
9.2.4 Functions with variable length arguments 160
9.2.5 DocStrings . 162
9.2.6 Nested functions and non-local variable 164

9.3 Variable Namespace and Scope 166
9.3.1 Names in the Python world 167
9.3.2 Namespace . 168
9.3.3 Scopes . 169

9.4 Lambda functions . 174
9.4.1 map() Function . 175
9.4.2 filter() Function . 176
9.4.3 zip() Function . 177

9.5 Key Takeaways . 179

10 NumPy Module 181
10.1 NumPy Arrays . 182

10.1.1 N-dimensional arrays 185
10.2 Array creation using built-in functions 186
10.3 Random Sampling in NumPy 188
10.4 Array Attributes and Methods 192
10.5 Array Manipulation . 198
10.6 Array Indexing and Iterating 203

iv | Table of Contents

10.6.1 Indexing and Subsetting 203
10.6.2 Boolean Indexing . 205
10.6.3 Iterating Over Arrays 210

10.7 Key Takeaways . 212

11 Pandas Module 215
11.1 Pandas Installation . 215

11.1.1 Installing with pip . 216
11.1.2 Installing with Conda environments 216
11.1.3 Testing Pandas installation 216

11.2 What problem does Pandas solve? 216
11.3 Pandas Series . 217

11.3.1 Simple operations with Pandas Series 219
11.4 Pandas DataFrame . 223
11.5 Importing data in Pandas . 228

11.5.1 Importing data from CSV file 228
11.5.2 Customizing pandas import 228
11.5.3 Importing data from Excel files 229

11.6 Indexing and Subsetting . 229
11.6.1 Selecting a single column 230
11.6.2 Selecting multiple columns 230
11.6.3 Selecting rows via [] 231
11.6.4 Selecting via .loc[] (By label) 232
11.6.5 Selecting via .iloc[] (By position) 233
11.6.6 Boolean indexing . 234

11.7 Manipulating a DataFrame 235
11.7.1 Transpose using .T . 235
11.7.2 The .sort_index() method 236
11.7.3 The .sort_values() method 236
11.7.4 The .reindex() function 237
11.7.5 Adding a new column 238
11.7.6 Delete an existing column 239
11.7.7 The .at[] (By label) 241
11.7.8 The .iat[] (By position) 242
11.7.9 Conditional updating of values 243
11.7.10 The .dropna() method 244
11.7.11 The .fillna() method 246
11.7.12 The .apply() method 247

Table of Contents | v

11.7.13 The .shift() function 248
11.8 Statistical Exploratory data analysis 250

11.8.1 The info() function 250
11.8.2 The describe() function 251
11.8.3 The value_counts() function 252
11.8.4 The mean() function 252
11.8.5 The std() function . 253

11.9 Filtering Pandas DataFrame 253
11.10Iterating Pandas DataFrame 255
11.11Merge, Append and Concat Pandas DataFrame 256
11.12TimeSeries in Pandas . 259

11.12.1 Indexing Pandas TimeSeries 259
11.12.2 Resampling Pandas TimeSeries 262
11.12.3 Manipulating TimeSeries 263

11.13Key Takeaways . 265

12 Data Visualization with Matplotlib 267
12.1 Basic Concepts . 268

12.1.1 Axes . 269
12.1.2 Axes method v/s pyplot 272
12.1.3 Multiple Axes . 273

12.2 Plotting . 275
12.2.1 Line Plot . 276
12.2.2 Scatter Plot . 289
12.2.3 Histogram Plots . 294

12.3 Customization . 300
12.4 Key Takeaways . 313

vi | Table of Contents

Preface

"If I have seen further, it is by standing upon the shoulders of giants."

- Sir Isaac Newton (1643 - 1727)

The universe we inhabit today is swimming in data. About 90% of the
data created until 2016 was in just the previous couple of years!1 There
have also been simultaneous advances in affordable data storage (on both
local workstations and cloud-based) and computing power. Case in point:
The smartphones that we carry with us all day are cheap, pocket-sized
supercomputers.

Closer home, our world of quantitative finance and algorithmic trading
is awash with facts and figures, on financial markets, the macroeconomy,
market sentiments, etc. We need a suitable tool to harness and profitably
exploit the power of all this information. In a perfect world, this tool would
be both easy to use and efficient. Reality, however, is rarely perfect. These
qualities are often at odds with each other, and we have to choose our tool
wisely.

As an algorithmic/quantitative trader, what are some of the critical issues
we deal with every day?

• Downloading and managing massive datasets in multiple file formats
from varied web sources

• Data cleaning/munging
• Backtesting and automating trading strategies
• Managing order executions with little manual intervention

1https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WRL12345USEN

vii

We find that based on the domain-specific needs of our community, Python
is a near-perfect fit. It’s a high-level programming language that is rela-
tively easy to learn. When used in conjunction with some of its libraries,
it’s incredibly powerful.

Why was this written?

This book grew out of the EPAT lectures that we have been conducting in
Python for a number of years. In the EPAT Python lectures, we attempt
to cover topics as widely as possible and therefore do not dig as deep as
we’d like to, given the time limitations. These notes give us the freedom
to marinate on some concepts a little longer and fill in on gaps that arise in
the lecture format. We hope that our writing is compact and adequate for
you, the reader, to obtain a greater understanding of the language and some
of its essential libraries. We expect that for the interested reader, this book
would be among the first of many books or blogs that you would read on
Python. There is also a list of references towards the end of the book which
we trust you may find useful.

Who should read this?

When this writing project began, our intended objective was to prepare
a book geared towards the needs of our EPAT participants. In retrospect
though, we think it should also be useful to

• anyone who wants a brief introduction to Python and the key compo-
nents of its data science stack, and

• Python programmers who want a quick refresher on using Python for
data analysis.

We do not expect any of our readers to have a formal background in com-
puter science, although some familiarity with programming would be nice
to have. The concepts and ideas here are covered with several examples to
help connect theory to practice.

What’s in this book?

The material presented here is a condensed introduction to Python and its
data science related libraries such as NumPy, Pandas, and Matplotlib. The

viii | Preface

illustrative examples we use are associated with the financial markets. We
like to think we have done a satisfactory job of meeting the goals we set out
to achieve.

How to read this?

We can suggest three ways to learn from this book depending on your con-
versance with Python and the time you have.

1. Read the book sequentially at your own pace from beginning to end.
Ideally, you should read the chapters before or soon after you at-
tend/watch the relevant EPAT lectures. It will certainly help in de-
veloping intuitions on new concepts that you pick up.

2. Blaze through the book linearly to get a big picture view of all the
areas covered. You can then concentrate on the different parts based
on what you find harder or what is more important for your work.

3. If you’re already familiar with Python programming, you can pretty
much hop on and hop off chapters as you like it.

We believe there is value to be had with any of these approaches, and each
of us needs to assess what works best for us based on our learning style.

Where else can you find all this?

The short answer: Lots and lots of places (way too many to enlist here). We
direct you to a non-exhaustive set of resources that we really like at in the
references towards end of the book for further reading.

Python has been around for about three decades now. There are several
excellent books, videos, online courses, and blogs covering it from various
angles and directed at different kinds of users. However, the core set of
ideas and concepts are well-understood and covered by most of them.

Copyright License

This work is licensed under the Creative Commons Attribution-ShareAlike
4.0 International License2.

2http://creativecommons.org/licenses/by-sa/4.0/

Preface | ix

That is why you see this image here. In essence, it means that you can
use, share, or improve upon this work (even commercially) as long as you
provide attribution to us. To put things in perspective, Wikipedia3 also uses
the same license.

Acknowledgments

Jay Parmar, Mario Pisa Pena, and Vivek Krishnamoorthy are the authors of
this book. Jay’s done the lion’s share of the writing and formatting. Mario’s
written some sections and reviewed most of the others. Vivek was the
principal conspirator in hatching the book-writing plan to ease a student’s
learning journey as far as possible. He was also involved in the writing,
the editing, the review, and in overseeing this venture.

Most of the material we present here is but an incremental change or
modification to some of the fine works we have read and admired. We are
in complete alignment with Isaac Newton, who viewed any knowledge as
building upon itself.

Our debts in the writing of this book are many, and we spell them out now.
Bear with us.

We acknowledge many in the ’References’ section of each chapter in the
book. We have tried our best but almost certainly failed to recognize some
of the others by not making proper notes. To any such creators that we
may have overlooked, our apologies.

We have learned a great deal from the writings of experts in the in-
vestor/trader community and the Python community on online Q&A
forums like stackoverflow.com, quora.com,and others and are indebted to
them. A special shout-out to Dave Bergstrom (Twitter handle @Dburgh),
Matt Harrison (Twitter handle @__mharrison__) and PlanB (Twitter handle
@100trillionUSD) for their comments on our work.

3https://en.wikipedia.org/wiki/Main_Page

x | Preface

We are also grateful to the helpful and supportive team members of
QuantInsti. Many of them worked uncomplainingly on tight timelines
and despite our badgering (or perhaps because :)), gave us insightful
suggestions.

Finally, we would like to thank all the students we have taught in the past
several years. A special thanks to those of you who endured our first few
iterations of the lectures before we learned how best to teach it. Dear stu-
dents, we exist because you exist. You have inspired us, challenged us, and
pushed us never to stop learning just to keep up with you. We hope you
enjoy reading this as much as we enjoyed writing it for you.

Suggestions and Errors

Any suggestions from you are welcome. We would be even more eager to
receive any comments from you about errors in our work. Please write to
us about any or all of these at contact@quantinsti.com.

Preface | xi

xii | Preface

Chapter 1

Introduction

Welcome to our first module on programming. In this module, we will
be discussing the nuts and bolts of the Python programming language
ranging from the very basic to more advanced topics.

Python is a general-purpose programming language that is becoming more
and more popular for

• performing data analysis,
• automating tasks,
• learning data science,
• machine learning, etc.

1.1 What is Python?

Python is a dynamic, interpreted (bytecode-compiled) language that is used
in a wide range of domains and technical fields. It was developed by Guido
van Rossum in 1991. It was mainly developed for code readability and
its syntax is such that it allows programmers to code/express concepts in
fewer lines of code. Compared to compiled languages like C, Java, or For-
tran, we do not need to declare the type of variables, functions, etc. when
we write code in Python. This makes our code short and flexible. Python
tracks the types of all values at runtime and flags code that does not make
sense as it runs. On the Python website1, we find the following executive
summary.

1https://www.python.org/doc/essays/blurb/

1

Python is an interpreted, object-oriented, high-level programming lan-
guage with dynamic semantics. Its high-level built in data struc-
tures, combined with dynamic typing and dynamic binding, make it
very attractive for Rapid Application Development, as well as for use
as a scripting or glue language to connect existing components to-
gether. Python’s simple, easy to learn syntax emphasizes readability
and therefore reduces the cost of program maintenance. Python sup-
ports modules and packages, which encourages program modularity
and code reuse. The Python interpreter and the extensive standard
library are available in source or binary form without charge for all
major platforms and can be freely distributed.

1.2 Where is Python used?

Python is used by the novice programmer as well as by the highly skilled
professional developer. It is being used in academia, at web companies, in
large corporations and financial institutions. It is used for

• Web and Internet development: Python is used on the server side to cre-
ate web applications.

• Software development: Python is used to create GUI applications, con-
necting databases, etc.

• Scientific and Numeric applications: Python is used to handle big data
and perform complex mathematics.

• Education: Python is a great language for teaching programming, both
at the introductory level and in more advanced courses.

• Desktop GUIs: The Tk GUI library2 included with most binary distri-
butions of Python is used extensively to build desktop applications.

• Business Applications: Python is also used to build ERP and e-
commerce systems.

1.3 Why Python?

Python is characterized by many features. Let’s examine a few of them
here:

2https://wiki.python.org/moin/TkInter

2 | Chapter 1

• Simple

– Compared to many other programming languages, coding in
Python is like writing simple strict English sentences. In fact,
one of its oft-touted strengths is how Python code appears like
pseudo-code. It allows us to concentrate on the solution to the
problem rather than the language itself.

• Easy to Learn

– As we will see, Python has a gentler learning curve (compared
to languages like C, Java, etc.) due to its simple syntax.

• Free and Open Source

– Python and the majority of supporting libraries available are
open source and generally come with flexible and open licenses.
It is an example of a FLOSS(Free/Libré and Open Source Soft-
ware). In layman terms, we can freely distribute copies of open
source software, access its source code, make changes to it, and
use it in new free programs.

• High-level

– Python is a programming language with strong abstraction from
the details of the underlying platform or the machine. In con-
trast to low-level programming languages, it uses natural lan-
guage elements, is easier to use, automates significant areas of
computing systems such as resource allocation. This simplifies
the development process when compared to a lower-level lan-
guage. When we write programs in Python, we never need to
bother about the lower-level details such as managing the mem-
ory used by programs we write, etc.

• Dynamically Typed

– Types of variables, objects, etc. in Python are generally inferred
during runtime and not statically assigned/declared as in most
of the other compiled languages such as C or Fortran.

• Portable/Platform Independent/Cross Platform

– Being open source and also with support across multiple
platforms, Python can be ported to Windows, Linux and Mac

Why Python? | 3

OS. All Python programs can work on any of these platforms
without requiring any changes at all if we are careful in avoiding
any platform-specific dependency. It is used in the running of
powerful severs and also small devices like the Raspberry Pi3.

In addition to the above-mentioned platforms, following are
some of the other platforms where Python can be used

* FreeBSD OS
* Oracle Solaris OS
* AROS Research OS
* QNX OS
* BeOS
* z/OS
* VxWorks OS
* RISC OS

• Interpreted

– A programming language can be broadly classified into two
types viz. compiled or interpreted.

– A program written in a compiled language like C or C++ re-
quires the code to be converted from the original language (C,
C++, etc.) to a machine-readable language (like binary code i.e.
0 and 1) that is understood by a computer using a compiler with
various flags and options. This compiled program is then fed to
a computer memory to run it.

– Python, on other hand, does not require compilation to machine
language. We directly run the program from the source code.
Internally, Python converts the source code into an intermediate
form known as byte code and then translates this into the native
language of the underlying machine. We need not worry about
proper linking and the loading into memory. This also enables
Python to be much more portable, since we can run the same
program onto another platform and it works just fine!

– The ’CPython’ implementation is an interpreter of the language
that translates Python code at runtime to executable byte code.

• Multiparadigm

3https://www.raspberrypi.org/

4 | Chapter 1

– Python supports various programming and implementation
paradigms, such as Object Oriented, Functional, or Procedural pro-
gramming.

• Extensible

– If we need some piece of code to run fast, we can write that part
of the code in C or C++ and then use it via our Python program.
Conversely, we can embed Python code in a C/C++ program to
give it scripting capabilities.

• Extensive Libraries

– The Python Standard Library4 is huge and, it offers a wide range
of facilities. It contains built-in modules written in C that pro-
vides access to system functionality such as I/O operations as
well as modules written in Python that provide standardized so-
lutions for many problems that occur in everyday programming.
Some of these modules are listed below

* Text Processing Modules
* Data Types
* Numeric and Mathematical Modules
* Files and Directory Modules
* Cryptographic Modules
* Generic Operating System Modules
* Networking Modules
* Internet Protocols and Support Modules
* Multimedia Services
* Graphical User Interfaces with Tk
* Debugging and Profiling
* Software Development, Packaging and Distribution

– In addition to the Python Standard Library, we have various
other third-party libraries which can be accessed from Python
Package Index5.

• Garbage Collection

– Python takes care of memory allocation and deallocation on its
own. In other words, a programmer does not have to manage

4https://docs.python.org/3/library/
5https://pypi.org/

Why Python? | 5

memory allocation and need not have to preallocate and deal-
locate memory before constructing variables and objects. Addi-
tionally, Python provides Garbage Collector6 interface to handle
garbage collection.

1.4 History of Python

Python is the brainchild of Guido van Rossum who started its developmen-
tal efforts in the 1980s. Its name has nothing to do with anything serpen-
tine, it’s in fact inspired by the British comedy Monty Python! The first
Python implementation was in December 1989 in the Netherlands. Since
then, Python has gone through major turnarounds periodically. The fol-
lowing can be considered milestones in the development of Python:

• Python 0.9.0 released in February 1991
• Python 1.0 released in January 1994
• Python 2.0 released in October 2000
• Python 2.6 released in October 2008
• Python 2.7 released in July 2010
• Python 3.0 released in December 2008
• Python 3.4 released in March 2014
• Python 3.6 released in December 2016
• Python 3.7 released in June 2018

Often times it is quite confusing for newcomers that there are two major
versions 2.x and 3.x available, still being developed and in parallel use
since 2008. This will likely persist for a while since both versions are quite
popular and used extensively in the scientific and software development
community. One point to note is that they are not entirely code compatible
between the versions. We can develop programs and write code in either
version but there will be syntactical and other differences. This handbook is
based on the 3.x version, but we believe most of the code examples should
work with version 2.x as well with some minor tweaks.

6https://docs.python.org/3/library/gc.html

6 | Chapter 1

1.5 Python 3 versus Python 2

The first version of the Python 3.x was released at the end of 2008. It made
changes that made some of the old Python 2.x code incompatible. In this
section, we will discuss the difference between the two versions. However,
before moving further one might wonder why Python 3 and not Python 2.
The most compelling reason for porting to Python 3 is, Python 2.x will not
be developed after 2020. So it’s no longer a good idea to start new projects
in Python 2.x. There won’t ever be a Python 2.8. Also, Python 2.7 will only
get security updates from the Python 3 development branch. That being
said, most of the code we write will work on either version with some
small caveats.

A non-exhaustive list of features only available in 3.x releases are shown
below.

• strings are Unicode by default
• clean Unicode/bytes separation
• exception chaining
• function annotations
• the syntax for keyword-only arguments
• extended tuple unpacking
• non-local variable declarations

We now discuss some of the significant changes between the two versions.

• Unicode and Strings

– There are two types of strings which can be broadly classified as
byte sequences and Unicode strings.

– Byte sequences have to be literal characters from the ASCII al-
phabet. Unicode strings can hold onto pretty much any character
we put in there. In Unicode, we can include various languages
and, with the right encoding, emoji as well.

– In Python 2, we have to mark every single Unicode string with
a u at the beginning, like u'Hello Python!'. As we use Unicode
string every now and then, it becomes cumbersome to type a u

for every Unicode string. If we forget to prefix the u, we would
have a byte sequence instead.

Python 3 versus Python 2 | 7

– With the introduction to Python 3, we need not write a u ev-
ery time. All strings are now Unicode by default and we have
to mark byte sequences with a b. As Unicode is a much more
common scenario, Python 3 has reduced development time for
everyone this way.

• Division with Integers

– One of the core values of Python is to never do anything im-
plicitly. For example, never turn a number into string unless a
programmer codes for it. Unfortunately, Python 2 took this a bit
too far. Consider the following operation

5 / 2

– The answer we expect here is 2.5, but instead Python 2 will re-
turn only 2. Following the core value mentioned above, Python
will return the output of the same type as the input type. Here,
the input is integer and Python returned the output as the inte-
ger.

– Again, this has been fixed in Python 3. It will now output 2.5 as
the output to the above problem. In fact, it gives a float output
to every division operation.

• Print Function

– The most significant change brought in Python 3 is with regard
to the print keyword.

– In Python 2, if we are to output any text, we use print followed
by output text, which would internally work as a function to ren-
der output.

– In Python 3, print has parentheses and hence, if we are to output
any text, we use print() with the output text inside parentheses.

• Input Function

– There has been an important change to the input() function.
– In Python 2, we have raw_input() and input() functions for

capturing user input from a terminal and standard input de-
vices. raw_input() would capture input and treat everything
as a string. Whereas, input() function helps a user in a way that

8 | Chapter 1

if an integer is inputted such as 123, it would be treated as an in-
teger without being converted to a string. If a string is inputted
for input(), Python 2 will throw an error.

– In Python 3, raw_input() is gone and input() no longer evalu-
ates the data it receives. We always get back a string whatever
the input may be.

• Error Handling

– There is a small change in the way each version handles errors.

– In Python 3, we need to use as keyword in except clause while
checking error, whereas as keyword is not required in Python 2.
Consider the following example

Python 2

try:

trying_to_check_error

except NameError, err: # 'as' keyword is NOT needed

print (err, 'Error Occurred!')

Python 3

try:

trying_to_check_error

except NameError as err: # 'as' keyword is needed

print (err, 'Error Occurred!')

• __future__ module

– __future__ module is introduced in Python 3 to allow backward
compatibility, i.e. to use the features of Python 3 in code devel-
oped in Python 2.

– For example, if we are to use the division feature with float out-
put or print() in Python 2, we can do so by using this module.

Python 2 Code

from __future__ import division

from __future__ import print_function

print 5/2 # Output will be 2.5

print('Hello Python using Future module!')

Python 3 versus Python 2 | 9

Although we have discussed most of the key differences between two
versions, there are many other changes being introduced or changed in
Python 3 such as next() for generators and iterators, how xrange() be-
came range(), etc.

1.6 Key Takeaways

1. Python is a high level and cross-platform language developed by
Guido van Rossum in 1991.

2. It is used in many fields ranging from simple web development to
scientific applications.

3. It is characterized by features such as ease of learning and extensibil-
ity to other languages.

4. In addition to built-in or standard libraries known as Python Standard
Libraries, Python also offers support for third-party libraries.

5. It supports multiple programming styles like Object Oriented, Proce-
dural and Functional.

6. There are two major versions of Python: 2.x and 3.x. The code devel-
oped in either version are to some extent compatible with each other.

7. The latest version in the Python 2.x franchise is Python 2.7. There
won’t be any new update in Python 2.x after 2020.

10 | Chapter 1

Chapter 2

Getting Started with Python

As we have seen in the previous section, Python offers different versions,
comes in a variety of distributions and is suited for a myriad combinations
of platform and devices. Thanks to its versatility, we can use Python to code
nearly any task that we can think of logically. One of the most important
tasks that a computer performs is mathematical computation. Python pro-
vides a direct interface to this fundamental functionality of modern com-
puters. In fact an introduction of Python could be started by showing how
it can be used as a tool for simple mathematical calculations.

2.1 Python as a Calculator

The easiest way to perform mathematical calculations using Python is to
use the Console, which can be used as a fancy calculator. To begin with
the simplest mathematical operations, such as addition, subtraction, mul-
tiplication and division, we can start using the Python Console using the
following expressions.

Addition

In []: 5 + 3

Out[]: 8

Subtraction

In []: 5 - 3

Out[]: 2

11

Multiplication

In []: 5 * 3

Out[]: 15

Division

In []: 5 / 3

Out[]: 1.6666666666666667

Modulo

In []: 5 % 2

Out[]: 1

NOTE: The content after the # symbols are comments and can be
ignored when typing the examples. We will examine comments
in more detail in the later sections. Here, In refers to an input
provided to the Python interpreter and Out represents the out-
put returned by the interpreter. Here we use the IPython con-
sole to perform the above mathematical operations. They can
also be performed in the Python IDLE (Integrated Development
and Learning Environment) (aka The Shell), the Python console,
or Jupyter notebook in a similar fashion. Basically, we have a
host of interfaces to choose from and programmers choose what
they find most comfortable. We will stick to the Python Console
interface to write and run our Python code in this handbook.
To be clear, each of the above-mentioned interfaces connects us
to the Python interpreter (which does the computational heavy
lifting behind the scenes).

Let us dissect the above examples. A simple Python expression is similar
to a mathematical expression. It consists of some numbers, connected
by a mathematical operator. In programming terminology, numbers (this
includes integers as well as numbers with fractional parts ex. 5, 3.89) are
called numeric literals. An operator (e.g. +, -, /) indicates mathematical
operation between its operands, and hence the value of the expression. The
process of deriving the value of an expression is called the evaluation of
the expression. When a mathematical expression is entered, the Python
interpreter automatically evaluates and displays its value in the next line.

12 | Chapter 2

Similar to the / division operator, we also have the // integer division oper-
ator. The key difference is that the former outputs the decimal value known
as a float which can be seen in the above example and the latter outputs an
integer value i.e. without any fractional parts. We will discuss about the
float and integer datatype in more detail in the upcoming sections. Be-
low is an example of an integer division where Python returns the output
value without any decimals.

In []: 5 // 3

Out[]: 1

We can also use expressions as operands in longer composite expressions. For
example,

Composite expression

In []: 5 + 3 - 3 + 4

Out[]: 9

In the example above, the order of evaluation is from left to right, resulting
in the expression 5 + 3 evaluating first. Its value 8 is then combined with
the next operand 3 by the - operator, evaluating to the value 5 of the
composite expression 5 + 3 - 3. This value is in turn combined with the
last literal 4 by the + operator, ending up with the value 9 for the whole
expression.

In the example, operators are applied from left to right, because - and +

have the same priority. For an expression where we have more than one
operators, it is not necessary all the operators have the same priority. Con-
sider the following example,

In []: 5 + 3 * 3 - 4

Out[]: 10

Here, the expression above evaluated to 10, because the * operator has a
higher priority compared to - and + operators. The expression 3 * 3 is
evaluated first resulting in the value of 9 which will be combined with the
operand 5 by the operator + producing the value of 14. This value is in
turn combined with the next operand 4 by the operator - which results in
the final value of 10. The order in which operators are applied is called

Python as a Calculator | 13

operator precedence. In Python, mathematical operators follow the natural
precedence observed in mathematics.

Similar to mathematical functions, Python allows the use of brackets (and
) to manually specify the order of evaluation, like the one illustrated below:

Brackets

In []: (5 + 3) * (3 - 4)

Out[]: -8

The expression above evaluated to the value -8 as we explicitly defined
the precedence for the expression 5 + 3 to be evaluated first resulting in
the value 8, followed by 3 - 4 producing the value -1 and then finally we
combined both the values 8 and -1 with operator * resulting in the final
value to be -8.

In the examples above, an operator connects two operands, and hence they
are called binary operators. In contrast, operators can also be unary which
take only one operand. Such an operator is - known as negation.

Negation

In []: - (5 + 3)

Out[]: -8

First, We compute the expression 5 + 3 resulting in the value 8 and sec-
ondly, we negate it with - operator producing the final value of -8.

2.1.1 Floating Point Expressions

Whatever examples we have seen so far were performed on integers also
to yield integers. Notice that for the expression 5 / 3 we would get a real
number as an output even though the operands are integers. In computer
science, real numbers are typically called floating point numbers. For exam-
ple:

Floating Point Addition

In []: 5.0 + 3

Out[]: 8.0

14 | Chapter 2

Floating Point Multiplication

In []: 5.0 * 3

Out[]: 15.0

Floating Point Exponential

In []: 5.0 ** 3

Out[]: 125.0

Floating Point Exponential

In []: 36 ** 0.5

Out[]: 6.0

For the above example, the last part calculates the positive square root of 36.

Python provides a very convenient option to check the type of number, be
it an output of an expression or the operand itself.

In []: type(5)

Out[]: int

In []: type(5.0)

Out[]: float

In []: type(5.0 ** 3)

Out[]: float

The command type(x) returns the type of x. This command is a function
in Python where type() is a built-in function in Python. We can call a
function with a specific argument in order to obtain a return value. In
the above example, calling a function type with the argument 5 returns
the value int which means 5 is an Integer. The function calls can also be
considered as an expression similar to mathematical expressions, with a
function name followed by a comma-separated list of arguments enclosed
within parentheses. The value of a function call expression is the return
value of the function. Following the same example discussed above, type is
the function name, which takes a single argument and returns the type of
argument. As a result, the call to function type(5.0) returns the value as a
float.

Python as a Calculator | 15

We can also convert the type of an argument using the following built-in
functions. For example,

In []: float(5)

Out[]: 5.0

In []: type(float(5))

Out[]: float

In []: int(5.9)

Out[]: 5

In []: type(int(5.9))

Out[]: int

As can be seen in the above example, using the float function call, which
takes a single argument, we can convert an integer input to a float value.
Also, we cross verify it by using the type function. Likewise, we have an
int function using which we can change a float input to the integer value.
During the conversion process int function just ignores the fractional part
of the input value. In the last example, the return value of int(5.9) is 5,
even though 5.9 is numerically closer to the integer 6. For floating point
conversion by rounding up an integer, we can use the round function.

In []: round(5.9)

Out[]: 6

In []: round(5.2)

Out[]: 5

A call to the round function will return a value numerically closer to the
argument. It can also round up to a specific number of digits after the dec-
imal point in the argument. We then need to specify two arguments to the
function call, with the second argument specifying the number of digits to
keep after the decimal point. The following examples illustrate the same. A
comma is used to separate the arguments in the function call.

In []: round(5.98765, 2)

Out[]: 5.99

16 | Chapter 2

In []: round(5.98765, 1)

Out[]: 6.0

Another useful function is abs, which takes one numerical argument and
returns its absolute value.

In []: abs(-5)

Out[]: 5

In []: abs(5)

Out[]: 5

In []: abs(5.0)

Out[]: 5.0

We can also express a floating point expression using scientific notation in
the following manner.

In []: 5e1

Out[]: 50.0

In []: 5e-1

Out[]: 0.5

In []: 5E2

Out[]: 500.0

2.2 Python Basics

We have just completed a brief overview of some functionalities in Python.
Let’s now get ourselves acquainted with the basics of Python.

2.2.1 Literal Constants

We have seen literals and their use in the above examples. Here we define
what they are. Some more concrete examples of numeric literals are 5, 2.85,
or string literals are I am a string or Welcome to EPAT!.

Python Basics | 17

It is called a literal because we use its value literally. The number 5 always
represents itself and nothing else -- it is a constant because its value cannot
be changed. Similarly, value 2.85 represents itself. Hence, all these are said
to be a literal constant.

2.2.2 Numbers

We have already covered numbers in detail in the above section. Here we
will discuss it in brief. Numbers can be broadly classified into two types -
integer and float.

Examples of an integer number (int for short) are - 5, 3, 2, etc. It is just a
whole number.

Examples of a floating point number (floats for short) are - 2.98745, 5.5,
5e-1, etc. Here, e refers to the power of 10. We can write either e or E, both
work just fine.

NOTE: As compared to other programming languages, we do
not have separate long or double. In Python, int can be of any
length.

2.2.3 Strings

Simply put, a string is a sequence of characters. We use strings almost
everywhere in Python code. Python supports both ASCII and Unicode
strings. Let us explore strings in more detail.

Single Quote - We can specify a string using single quotes such as 'Python

is an easy programming language!'. All spaces and tabs within the
quotes are preserved as-is.

Double Quotes - We can also specify string using double quotes such as
"Yes! Indeed, Python is easy.". Double quotes work the same way
single quotes works. Either can be used.

Triple Quotes - This is used as a delimiter to mark the start and end of a
comment. We explain it in greater detail in the next topic.

18 | Chapter 2

Strings are immutable - This means once we have created a string we cannot
change it. Consider the following example.

In []: month_name = 'Fanuary'

We will be presented with an error at this line.

In []: month_name[0] = 'J'

Traceback (most recent call last):

File "<ipython-input-24>", line 1, in <module>

month_name[0] = 'J'

TypeError: 'str' object does not support item assignment

Here, month_name is a variable that is used to hold the value
Fanuary. Variables can be thought of as a container with a name
that is used to hold the value. We will discuss variables in detail
in the upcoming sections.

In the above example, we initialize variable month_name with an incorrect
month name Fanuary. Later, we try to correct it by replacing the letter F

with J, where we have been presented with the TypeError telling us that
strings do not support change operation.

2.2.4 Comments

We have already seen comments before. Comments are used to annotate
codes, and they are not interpreted by Python. Comments in Python start
with the hash character # and end at the end of the physical line in the
code. A comment may appear at the start of a line or following whitespace
or code, but not within a string literal. A hash character within a string
literal is just a hash character. This type of comment is also known as a
single-line comment.

The other way we can annotate code is by using a multi-line comment that
serves as a reference or documentation for others to understand the code.

Let us have a look at the single-line comment in the following example.

Python Basics | 19

Following line adds two integer numbers

In []: 5 + 3

Out[]: 8

We can write a comment after code line to annotate what particular line
does as depicted in the following example.

In []: 5 + 3 # Add two literals

Out[]: 8

In []: # This is also a comment!

Python does not support multi-line/block comments. However, we can
span comments across multiple lines using the same notation that we use
for single line comments. Block comments are intended to the same level
as that of code. Each line of a block comment starts with a # and a single
space.

This is an example of a multi-line comment

in Python that spans several lines and

describes the code. It can be used to

annotate anything like the author name, revisions,

the purpose of a script, etc. It uses a delimiter

to mark its start and end.

It is always a good programming practice to generously inter-
sperse our code with comments. Remember: The code tells you
how, the comment tells you why.

2.2.5 print() function

The print() function is a very versatile tool that is used to print anything
in Python.

NOTE: In Python 2, print is just a statement without parenthe-
sis and NOT a function, whereas in Python 3, print() is a func-
tion and the content that we need to be outputted goes inside a
parenthesis. We have covered this in detail in Chapter 1 under
the topic ’Python 2 versus Python 3’.

20 | Chapter 2

Let us visit a few examples to understand how the print() works.

Simple print function

In []: print("Hello World!")

Out[]: Hello World!

Concatenating string and integer literal

In []: print("January", 2010)

Out[]: January 2010

Concatenating two strings

In []: print("AAPL", "is the stock ticker of Apple Inc.")

Out[]: AAPL is the stock ticker of Apple Inc.

Concatenating a variable and string.

Here, stock_name is a variable containing stock name.

In []: print(stock_name + " is the stock name of

Microsoft Corporation.")

Out[]: MSFT is the stock name of Microsoft Corporation.

As we can see in the above examples, print() can be used in a variety of
ways. We can use it to print a simple statement, concatenate with a literal,
concatenate two strings, or combine a string with a variable. A common
way to use the print() function is f-strings or formatted string literal.

f-strings

In []: print(f'The stock ticker for Apple Inc

is {stock_name}.')

Out[]: The stock ticker for Apple Inc is AAPL.

The above string is called formatted string literal. Such strings are preceded
by the letter f indicating that it be formatted when we use variable names
between curly brackets {}. stock_name here is a variable name containing
the symbol for a stock.

One more way to print a string is by using %-formatting style.

%-formatting strings

In []: print("%s is currently trading at %.2f."

Python Basics | 21

%(stock_name, price))

Out[]: AAPL is currently trading at 226.41.

Here we print the current trading price of AAPL stock. A stock name is stored
in the variable stock_name, and its price is stored in the variable price. %s
is used for specifying a string literal and %f is used to specify float literal.
We use %.2f to limit two digits after the decimal point.

2.2.6 format() function

Another useful function for printing and constructing string for output is
format() function. Using this function, we can construct a string from in-
formation like variables. Consider the following code snippet.

In []: stock_ticker = 'AAPL'

In []: price = 226.41

In []: print('We are interested in {x} which is currently

trading at {y}'.format(x=stock_ticker, y=price))

Upon running the above code, we will be presented with the following out-
put.

Output

Out[]: We are interested in AAPL which is currently

trading at 226.41

Above code will first prepare a string internally by substituting the x and y

placeholders with variables stock_ticker and price respectively, and then
prints the final output as a single string. Instead of using placeholders, we
can also construct a string in the following manner:

In []: print('We are interested in {0} which is currently

trading at {1}'.format(stock_ticker, price))

Here, the output will be similar to the above illustration. A string can be
constructed using certain specifications, and the format function can be
called to substitute those specifications with corresponding arguments of
the format function. In the above example, {0} will be substituted by vari-
able stock_ticker and similarly, {1} will get a value of price. Numbers
provided inside the specification are optional, and hence we can also write
the same statement as follows

22 | Chapter 2

print('We are interested in {} which is currently trading

at {}'.format(stock_ticker, price))

which will provide the same exact output as shown above.

2.2.7 Escape Sequence

Escape characters are generally used to perform certain tasks and their
usage in code directs the compiler to take a suitable action mapped to that
character.

Suppose we want to write a string That's really easy.. If we are to write
this within a double quote ", we could write it as "That's really easy.",
but what if we are to write the same string within single quote like 'That's

really easy.', we cannot write it because we have three ' and the Python
interpreter will get confused as to where the string starts and ends. Hence,
we need to specify that the string does not end at s in the string, instead, it
is a part of the string. We can achieve this by using the escape sequence. We
can specify it by using a \ (backslash character). For example,

In []: 'That\'s really easy.'

Out[]: "That's really easy."

Here, we preceded ' with a \ character to indicate that it is a part of the
string. Similarly, we need to use an escape sequence for double quotes if
we are to write a string within double quotes. Also, we can include the
backslash character in a string using \\. We can break a single line into
multiple lines using the \n escape sequence.

In []: print('That is really easy.\nYes, it really is.')

Out[]: That is really easy.

Yes, it really is.

Another useful escape character is \t tab escape sequence. It is used to
leave tab spaces between strings.

In []: print('AAPL.\tNIFTY50.\tDJIA.\tNIKKEI225.')

Out[]: AAPL. NIFTY50. DJIA. NIKKEI225.

Python Basics | 23

In a string, if we are to mention a single \ at the end of the line, it indi-
cates that the string is continued in the next line and no new line is added.
Consider below example:

In []: print('AAPL is the ticker for Apple Inc. \

...: It is a technology company.')

Out[]: AAPL is the ticker for Apple Inc. It is a

technology company.

Likewise, there are many more escape sequences which can be found on
the official Python documentation1.

2.2.8 Indentation

Whitespaces are important in Python. Whitespace at the start of a line is
called indentation. It is used to mark the start of a new code block. A block or
code block is a group of statements in a program or a script. Leading spaces
at the beginning of a line are used to determine the indentation level, which
in turn is used to determine the grouping of statements. Also, statements
which go together must have same indentation level.
A wrong indentation raises the error. For example,

stock_name = 'AAPL'

Incorrect indentation. Note a whitespace at

the beginning of line.

print('Stock name is', stock_name)

Correct indentation.

print('Stock name is', stock_name)

Upon running the following code, we will be presented with the following
error

File "indentation_error.py", line 2

print('Stock name is', stock_name)

^

IndentationError: unexpected indent

1https://docs.python.org/3.6/reference/lexical_analysis.html#literals

24 | Chapter 2

The error indicates to us that the syntax of the program is invalid. That is,
the program is not properly written. We cannot indent new blocks of state-
ments arbitrarily. Indentation is used widely for defining new block while
defining functions, control flow statement, etc. which we will be discussing
in detail in the upcoming chapters.

NOTE: We either use four spaces or tab space for indentation.
Most of the modern editors do this automatically for us.

2.3 Key Takeaways

1. Python provides a direct interface known as a Python Console to in-
teract and execute the code directly. The advanced version of the
Python console is the IPython (Interactive Python) console.

2. A whole number is called an integer and a fractional number is called
a float. They are represented by int and float data types respectively.

3. Expressions are evaluated from left to right in Python. An expression
with a float value as input will return the float output.

4. Strings are immutable in Python. They are written using a single
quote or double quote and are represented by str data type. Any
characters enclosed within quotes is considered a string.

5. Comments are used to annotate code. In Python, # character marks
the beginning of a single line comment. Python discards anything
written after the #.

6. Multiline comments are within triple single or double quotes. They
start and end with either """ or ”’.

7. Use the type() function to determine the type of data, print() to
print on the standard output device and format() to format the out-
put.

8. Use the escape character to escape certain characters within a string.
They can be used to mark tab within a line, a new line within a string
and so on.

9. Blocks of code are separated using indentation in Python. Code
statements which go together within a single block must have
the same indentation level. Otherwise, Python will generate an
IndentationError.

Key Takeaways | 25

26 | Chapter 2

Chapter 3

Variables and Data Types in
Python

We have previously seen that a variable can take data in various formats
such as a string, an integer, a number with fractional parts (float), etc. It
is now time to look at each of these concepts in greater detail. We start by
defining a variable.

3.1 Variables

A variable can be thought of as a container having a name which is used to
store a value. In programming parlance, it is a reserved memory location
to store values. In other words, a variable in a Python program gives
necessary data to a computer for processing.

In this section, we will learn about variables and their types. Let start by
creating a variable.

3.1.1 Variable Declaration and Assignment

In Python, variables need NOT be declared or defined in advance, as is
the case in many other programming languages. In fact, Python has no
command for declaring a variable. To create a variable, we assign a value
to it and start using it. An assignment is performed using a single equal

27

sign = a.k.a. Assignment operator. A variable is created the moment we
assign the first value to it.

Creating a variable

In []: price = 226

The above statement can be interpreted as a variable price is assigned a
value 226. It is also known as initializing the variable. Once this statement
is executed, we can start using the price in other statements or expressions,
and its value will be substituted. For example,

In []: print(price)

Out[]: 226 # Output

Later, if we change the value of price and run the print statement again,
the new value will appear as output. This is known as re-declaration of the
variable.

In []: price = 230 # Assigning new value

In []: print(price) # Printing price

Out[]: 230 # Output

We can also chain assignment operation to variables in Python, which
makes it possible to assign the same value to multiple variables simulta-
neously.

In []: x = y = z = 200 # Chaining assignment operation

In []: print(x, y, z) # Printing all variables

Out[]: 200 200 200 # Output

The chained assignment shown in the above example assigns the value 200

to variables x, y, and z simultaneously.

3.1.2 Variable Naming Conventions

We use variables everywhere in Python. A variable can have a short name
or more descriptive name. The following list of rules should be followed
for naming a variable.

• A variable name must start with a letter or the underscore character.

28 | Chapter 3

stock = 'AAPL' # Valid name

_name = 'AAPL' # Valid name

• A variable name cannot start with a number.

1stock = 'AAPL' # Invalid name

1_stock = 'AAPL' # Invalid name

• A variable name can only contain alpha-numeric characters(A-Z, a-z,
0-9) and underscores(_).

Valid name. It starts with a capital letter.

Stock = 'AAPL'

Valid name. It is a combination of alphabets

and the underscore.

stock_price = 226.41

Valid name. It is a combination of alphabets

and a number.

stock_1 = 'AAPL'

Valid name. It is a combination of a capital

letter, alphabets and a number.

Stock_name_2 = 'MSFT'

• A variable name cannot contain whitespace and signs such as +, -, etc.

Invalid name. It cannot contain the whitespace.

stock name = 'AAPL'

Invalid name. It cannot contain characters

other than the underscore(_).

stock-name = 'AAPL'

• Variable names are case-sensitive.

STOCK, stock and Stock all three are different

variable names.

Variables | 29

STOCK = 'AAPL'

stock = 'MSFT'

Stock = 'GOOG'

Remember that variable names are case-sensitive in Python.

• Python keywords cannot be used as a variable name.

'str', 'is', and 'for' CANNOT be used as the

variable name as they are reserved keywords

in Python. Below given names are invalid.

str = 'AAPL'

is = 'A Variable'

for = 'Dummy Variable'

The following points are de facto practices followed by professional pro-
grammers.

• Use a name that describes the purpose, instead of using dummy
names. In other words, it should be meaningful.

Valid name but the variable does not

describe the purpose.

a = 18

Valid name which describes it suitably

age = 18

• Use an underscore character _ to separate two words.

Valid name.

stockname = 'AAPL'

Valid name. And it also provides concise

readability.

stock_name = 'AAPL'

• Start a variable name with a small alphabet letter.

30 | Chapter 3

Valid name.

Stock_name = 'AAPL'

Valid name. Additionally, it refers to uniformity

with other statements.

stock_name = 'AAPL'

NOTE: Adhering to these rules increases readability of code. Re-
member these are good coding practices (and recommended but
by no means necessary to follow) which you can carry with you
to any programming language, not just Python.

3.2 Data Types

Having understood what variables are and how they are used to store val-
ues, its time to learn data types of values that variables hold. We will learn
about primitive data types such as numeric, string and boolean that are
built into Python. Python has four basic data types:

• Integer
• Float
• String
• Boolean

Though we have already had a brief overview of integer, float and string in
the previous section, we will cover these data types in greater detail in this
section.

3.2.1 Integer

An integer can be thought of as a numeric value without any decimal. In
fact, it is used to describe any whole number in Python such as 7, 256, 1024,
etc. We use an integer value to represent a numeric data from negative
infinity to infinity. Such numeric numbers are assigned to variables using
an assignment operator.

In []: total_output_of_dice_roll = 6

In []: days_elapsed = 30

Data Types | 31

In []: total_months = 12

In []: year = 2019

We assign a whole number 6 to a variable total_output_of_dice_roll as
there can be no fractional output for a dice roll. Similarly, we have a variable
days_elapsed with value 30, total_months having a value 12, and year as
2019.

3.2.2 Float

A float stands for floating point number which essentially means a number
with fractional parts. It can also be used for rational numbers, usually end-
ing with a decimal such as 6.5, 100.1, 123.45, etc. Below are some exam-
ples where a float value is more appropriate rather than an integer.

In []: stock_price = 224.61

In []: height = 6.2

In []: weight = 60.4

NOTE: From the statistics perspective, a float value can be
thought of as a continuous value, whereas an integer value can
correspondingly be a discrete value.

By doing so, we get a fairly good idea how data types and variable names go hand
in hand. This, in turn, can be used in expressions to perform any mathematical
calculation.

Let’s revisit the topic Python as a Calculator very briefly but this time using
variables.

Assign an integer value

In []: x = 2

Assign a float value

In []: y = 10.0

Addition

In []: print(x + y)

Out[]: 12.0

32 | Chapter 3

Subtraction

In []: print(x - y)

Out[]: -8.0

Multiplication

In []: print(x * y)

Out[]: 20.0

Division

In []: print(x / y)

Out[]: 0.2

Modulo

In []: print(x % y)

Out[]: 2.0

Exponential / Power

In []: print(x ** y)

Out[]: 1024.0

NOTE: Please note the precise use of comments used in the code
snippet to describe the functionality. Also, note that output of all
expressions to be float number as one of the literals used in the
input is a float value.

Look at the above-mentioned examples and try to understand the code
snippet. If you are able to get a sense of what’s happening, that’s great.
You are well on track on this Pythonic journey. Nevertheless, let’s try to un-
derstand the code just to get more clarity. Here, we assign an integer value
of 2 to x and a float value of 10.0 to y. Then, we try to attempt various
mathematical operations on these defined variables instead of using direct
values. The obvious benefit is the flexibility that we get by using these vari-
ables. For example, think of a situation where we want to perform the said
operation on different values such as 3 and 15.0, we just need to re-declare
variables x and y with new values respectively, and the rest of the code
remains as it is.

Data Types | 33

3.2.3 Boolean

This built-in data type can have one of two values, True or False. We use
an assignment operator = to assign a boolean value to variables in a manner
similar to what we have seen for integer and float values. For example:

In []: buy = True

In []: print(buy)

Out[]: True

In []: sell = False

In []: print(sell)

Out[]: False

As we will see in upcoming sections, expressions in Python are often evalu-
ated in the boolean context, meaning they are interpreted to represent their
truth value. Boolean expressions are extensively used in logical conditions
and control flow statements. Consider the following examples

Checking for equality between 1 and itself using

comparison operator '=='.

In []: 1 == 1

Out[]: True

Checking for equality between values 1 and -1

In []: 1 == -1

Out[]: False

Comparing value 1 with -1

In []: 1 > -1

Out[]: True

The above examples are some of the simplest boolean expressions that eval-
uate to either True or False.

NOTE: We do NOT write True and False within quotes. It needs
to be written without quotes. Also, the first letter needs to be

34 | Chapter 3

upper case followed by lower case letters. The following list
will not be evaluated to a boolean value - ’TRUE’ - TRUE - true
- ’FALSE’ - FALSE - false

3.2.4 String

A string is a collection of alphabets, numbers, and other characters written
within a single quote ' or double quotes ". In other words, it is a sequence
of characters within quotes. Let us understand how a string works with the
help of some examples.

Variable assignment with a string

In []: sample_string = '1% can also be expressed as 0.01'

Print the variable sample_string

In []: sample_string

Out[]: '1% can also be expressed as 0.01'

In the above examples we have defined a string variable with name
sample_string assigned a value '1% can also be expressed as 0.01'.
It is interesting to note here that we have used a combination of alphabets,
numbers and special characters for defining the variable. In Python, any-
thing that goes within quotes is a string. Consider the following example,

In []: stock_price = '224.61'

In []: stock_price

Out[]: '224.61'

We define the variable stock_price assigning the string value '224.61'.
The interesting thing to notice is the output of the variable is also a string.
Python will not convert the data types implicitly whenever numeric values
are given as a string.
We can concatenate two or more string using the + operator.

In []: 'Price of AAPL is ' + stock_price

Out[]: 'Price of AAPL is 224.61'

Concatenation operation using the + operator works only on a string. It
does not work with different data types. If we try to perform the operation,
we will be presented with an error.

Data Types | 35

Re-declaring the variable with an integer value

In []: stock_price = 224.61

In []: 'Price of AAPL is ' + stock_price # Error line

Traceback (most recent call last):

File "<ipython-input-28>", line 1, in <module>

'Price of AAPL is ' + stock_price

TypeError: must be str, not float

As expected, Python spat out a TypeError when we tried concatenating a
string and float literal. Similar to the + operator, we can use the * operator
with a string literal to produce the same string multiple times.

In []: string = 'Python! '

In []: string * 3

Out[]: 'Python! Python! Python! '

We can select a substring or part of a string using the slice operation. Slicing
is performed using the square brackets []. The syntax for slicing a single
element from the string is [index] which will return an element at index.
The index refers to the position of each element in a string and it begins with
0, which keeps on increasing in chronological order for every next element.

In []: string = 'EPAT Handbook!'

In []: string[0] # 0 refers to an element E

Out[]: 'E'

In []: string[1] # 1 refers to an element P

Out[]: 'P'

In the above example, an element E being the first character belongs to an
index 0, P being next to E belongs to an index 1, and so on. Similarly, the
index for element b will be 9. Can you guess the index for element k in the
above example?

36 | Chapter 3

To slice a substring from a string, the syntax used is [start index:end

index] which will return the substring starting from an element at start
index up to but not including an element at end index. Consider the fol-
lowing example, where we substring the string from an index 0 up to 4

which yields the output 'EPAT'. Notice how the element ' ' at an index 4

is not included in the output. Similarly, we slice a substring as seen in the
below example.

In []: string[0:4]

Out[]: 'EPAT'

In []: string[4]

Out[]: ' '

In []: string[5:13]

Out[]: 'Handbook'

In []: string[13]

Out[]: '!'

In Python, we cannot perform the slicing operation with an index not
present in the string. Python will throw IndexError whenever it encoun-
ters slicing operation with incorrect index.

In []: string[141]

Traceback (most recent call last):

File "<ipython-input-36>", line 1, in <module>

string[14]

IndexError: string index out of range

In the above example, the last index is 13. The slicing operation performed
with an index 14 will result in an error IndexError stating that index we
are looking for is not present.

NOTE: We list out some of the important points for string literals
below: - In Python 3.x all strings are Unicode by default. - A
string can be written within either '' or "". Both work fine. -

Data Types | 37

Strings are immutable. (although you can modify the variable)
- An escape sequence is used within a string to mark a new line,
provide tab space, writing \ character, etc.

3.2.5 Operations on String

Here we discuss some of the most common string methods. A method is
like a function, but it runs on an object. If the variable sample_string is a
string, then the code sample_string.upper() runs the upper() method on
that string object and returns the result(this idea of running a method on an
object is one of the basic ideas that make up Object Oriented Programming,
OOP). Some methods also take an argument as a parameter. We provide a
parameter to a method as an argument within parentheses.

• upper() method: This method returns the upper case version of the
string.

In []: sample_string.upper()

Out[]: 'EPAT HANDBOOK!'

• lower() method: This method returns the lower case version of the
string.

In []: sample_string.lower()

Out[]: 'epat handbook!'

• strip() method: This method returns a string with whitespace re-
moved from the start and end.

In []: ' A string with whitespace at both \

the ends. '.strip()

Out[]: 'A string with whitespace at both the ends.'

• isalpha() method: This method returns the boolean value True if all
characters in a string are letters, False otherwise.

In []: 'Alphabets'.isalpha()

Out[]: True

38 | Chapter 3

The string under evaluation contains whitespace.

In []: 'This string contains only alphabets'.isalpha()

Out[]: False

• isdigit() method: This method returns the boolean value True if all
characters in a string are digits, False otherwise.

In []: '12345'.isdigit()

Out[]: True

• startswith(argument) method: This method returns the boolean
value True if the first character of a string starts with the character
provided as an argument, False otherwise.

In []: 'EPAT Handbook!'.startswith('E')

Out[]: True

• endswith(argument) method: This method returns the boolean value
True if the last character of a string ends with the character provided
as an argument, False otherwise.

In []: 'EPAT Handbook!'.startswith('k')

Out[]: False # String ends with the '!' character.

• find(sub, start, end) method: This method returns the lowest
index in a string where substring sub is found within the slice
[start:end]. Here, arguments start and end are optional. It returns
-1 if sub is not found.

In []: 'EPAT Handbook!'.find('EPAT')

Out[]: 0

In []: 'EPAT Handbook!'.find('A')

Out[]: 2 # First occurrence of 'A' is at index 2.

In []: 'EPAT Handbook!'.find('Z')

Out[]: -1 # We do not have 'Z' in the string.

• replace(old, new) method: This method returns a copy of the string
with all occurrences of old replace by new.

Data Types | 39

Out[]: '00 01 10 11'.replace('0', '1')

Out[]: '11 11 11 11' # Replace 0 with 1

In []: '00 01 10 11'.replace('1', '0')

Out[]: '00 00 00 00' # Replace 1 with 0

• split(delim) method: This method is used to split a string into mul-
tiple strings based on the delim argument.

In []: 'AAPL MSFT GOOG'.split(' ')

Out[]: ['AAPL', 'MSFT', 'GOOG']

Here, the Python outputs three strings in a single data structure called List.
We will learn list in more detail in the upcoming section.

• index(character) method: This method returns the index of the first
occurrence of the character.

In []: 'EPAT Handbook!'.index('P')

Out[]: 1

Python will provide an error if the character provided as an argument is
not found within the string.

In []: 'EPAT Handbook!'.index('Z')

Traceback (most recent call last):

File "<ipython-input-52>", line 1, in <module>

'EPAT Handbook!' .index('Z')

ValueError: substring not found

• capitalize() method: This method returns a capitalized version of
the string.

In []: 'python is amazing!'.capitalize()

Out[]: 'Python is amazing!'

• count(character) method: This method returns a count of an argu-
ment provided by character.

40 | Chapter 3

In []: 'EPAT Handbook'.count('o')

Out[]: 2

In []: 'EPAT Handbook'.count('a')

Out[]: 1

3.2.6 type() function

The inbuilt type(argument) function is used to evaluate the data type and
returns the class type of the argument passed as a parameter. This function
is mainly used for debugging.

A string is represented by the class 'str'.

In []: type('EPAT Handbook')

Out[]: str

A float literal is represented by the class 'float'.

In []: type(224.61)

Out[]: float

An integer literal is represented by the class 'int'.

In []: type(224)

Out[]: int

An argument provided is within quotation marks.

In []: type('0')

Out[]: str

A boolean value is represented by the class 'bool'.

In []: type(True)

Out[]: bool

In []: type(False)

Out[]: bool

An argument is provided within a quotation mark.

In []: type('False')

Out[]: str

Data Types | 41

An object passed as an argument belongs to the

class 'list'.

In []: type([1, 2, 3])

Out[]: list

An object passed as an argument belongs to the

class 'dict'.

In []: type({'key':'value'})

Out[]: dict

An object passed as an argument belongs to the

class 'tuple'.

In []: type((1, 2, 3))

Out[]: tuple

An object passed as an argument belongs to the

class 'set'.

In []: type({1, 2, 3})

Out[]: set

A list, dict, tuple, set are native data structures within Python. We will
learn these data structures in the upcoming section.

3.3 Type Conversion

We often encounter situations where it becomes necessary to change the
data type of the underlying data. Or maybe we find out that we have been
using an integer when what we really need is a float. In such cases, we
can convert the data types of variables. We can check the data type of a
variable using type() function as seen above.

There can be two types of conversion possible: implicit termed as coercion,
and explicit often referred to as casting. When we change the type of a
variable from one to another, this is called typecasting.

Implicit Conversion: This is an automatic type conversion and the Python
interpreter handles this on the fly for us. We need not to specify any com-
mand or function for same. Take a look at the following example:

42 | Chapter 3

In []: 8 / 2

Out[]: 4.0

The division operation performed between two integers 8 being a dividend
and 2 being a divisor. Mathematically, we expect the output to be 4 - an
integer value, but instead, Python returned the output as 4.0 - a float
value. That is, Python internally converted an integer 4 to float 4.0.

Explicit Conversion : This type of conversion is user-defined. We need to
explicitly change the data type for certain literals to make it compatible for
data operations. Let us try to concatenate a string and an integer using the
+ operator.

In []: 'This is the year ' + 2019

Traceback (most recent call last):

File "<ipython-input-68>", line 1, in <module>

'This is the year ' + 2019

TypeError: must be str, not int

Here we attempted to join a string 'This is the year ' and an integer
2019. Doing so, Python threw an error TypeError stating incompatible data
types. One way to perform the concatenation between the two is to convert
the data type of 2019 to string explicitly and then perform the operation.
We use str() to convert an integer to string.

In []: 'This is the year ' + str(2019)

Out[]: 'This is the year 2019'

Similarly, we can explicitly change the data type of literals in the following
manner.

Integer to float conversion

In []: float(4)

Out[]: 4.0

String to float conversion

In []: float('4.2')

Type Conversion | 43

Out[]: 4.2

In []: float('4.0')

Out[]: 4.0

Float to integer conversion

In []: int(4.0)

Out[]: 4 # Python will drop the fractional part.

In []: int(4.2)

Out[]: 4

String to integer conversion

In []: int('4')

Out[]: 4

Python does not convert a string literal with a

fractional part, and instead, it will throw an error.

In []: int('4.0')

Traceback (most recent call last):

File "<ipython-input-75>", line 1, in <module>

int('4.0')

ValueError: invalid literal for int() with base 10: '4.0'

Float to string conversion

In []: str(4.2)

Out[]: '4.2'

Integer to string conversion

In []: str(4)

Out[]: '4'

In the above example, we have seen how we can change the data type of
literals from one to another. Similarly, the boolean data type represented by
bool is no different. We can typecast bool to int as we do for the rest. In
fact, Python internally treats the boolean value False as 0 and True as 1.

44 | Chapter 3

Boolean to integer conversion

In []: int(False)

Out[]: 0

In []: int(True)

Out[]: 1

It is also possible to convert an integer value to boolean value. Python
converts 0 to False and rest all integers gets converted to True.

Integer to boolean conversion

In []: bool(0)

Out[]: False

In []: bool(1)

Out[]: True

In []: bool(-1)

Out[]: True

In []: bool(125)

Out[]: True

In this section, we started with familiarizing ourselves with variables, and
then went on to define them, understanding data types, their internal work-
ings, and type conversions.

3.4 Key Takeaways

1. A variable is used to store a value that can be used repetitively based
on the requirement within a program.

2. Python is a loosely typed language. It is not required to specify the
type of a variable while declaring it. Python determines the type of
the variable based on the value assigned to it.

3. Assignment operator = is used for assigning a value to a variable.
4. Variable names should start with either a letter or an underscore char-

acter. They can contain alpha-numeric characters only. It is a good
programming practice to have descriptive variable names.

Key Takeaways | 45

5. Variable names are case sensitive and cannot start with a number.
6. There are four primitive data types in Python:

(a) Integer represented by int

(b) Float represented by float

(c) String represented by str

(d) Boolean (True or False) represented by bool

7. Internally, True is treated as 1 and False is treated as 0 in Python.
8. A substring or a part of a string is selected using the square brackets

[] also known as slice operation.
9. Type conversion happens either implicitly or explicitly.

(a) Implicit type conversion happens when an operation with com-
patible data types is executed. For example, 4/2 (integer divi-
sion) will return 2.0 (float output).

(b) When an operation involves incompatible data types, they need
to be converted to compatible or similar data type. For example:
To print a string and an integer together, the integer value needs
to be converted to a string before printing.

46 | Chapter 3

Chapter 4

Modules, Packages and
Libraries

To start with, a module allows us to organize Python code in a systematic
manner. It can be considered as a file consisting of Python code. A module
can define functions, classes and variables. It can also include runnable
code. Consider writing code directly on the Python or IPython console.
The definitions that we create(functions and variables) will be lost if we
quit the console and enter it again. Therefore, in order to write a longer
program, we might consider switching to a text editor to prepare an input
for the interpreter and running it with that file as an input instead. This
is known as writing a script. As a program gets longer, we may want it to
split it into several small files for easier maintenance. Also, we may want
to use a handy function that we have written in several programs without
copying its definition into each program.

To support this, Python has a way to put a code definition in a file and
use them in another script or directly in an interactive instance of the
interpreter. Such a file is called a module; definitions from a module can be
imported into other modules or in the program that we code.

As we discussed above, a module is a file containing Python definitions and
statements. The file name is the module name with the suffix .py appended.
For instance, we create a file called arithmetic.py in the current directory
with the following contents:

47

-*- coding: utf-8 -*-

"""

Created on Fri Sep 21 09:29:05 2018

@filename: arithmetic.py

@author: Jay Parmar

"""

def addition(a, b):

"""Returns the sum of of two numbers"""

return a + b

def multiply(a, b):

"""Returns the product of two numbers"""

return a * b

def division(dividend, divisor):

"""

Performs the division operation between the dividend

and divisor

"""

return dividend / divisor

def factorial(n):

"""Returns the factorial of n"""

i = 0

result = 1

while(i != n):

i = i + 1

result = result * i

return result

We are now ready to import this file in other scripts or directly into the
Python interpreter. We can do so with the following command:

In []: import arithmetic

Once we have imported the module, we can start using its definition in the
script without re-writing the same code in the script. We can access func-

48 | Chapter 4

tions within the imported module using its name. Consider an example
below:

In []: result = arithmetic.addition(2, 3)

In []: print(result)

Out[]: 5

In []: arithmetic.multiply(3, 5)

Out[]: 15

In []: arithmetic.division(10, 4)

Out[]: 2.5

In []: arithmetic.factorial(5)

Out[]: 120

A module name is available as a string within a script or the interpreter as
the value of the global variable __name__.

In []: arithmetic.__name__

Out[]: 'arithmetic'

When we import the module named arithmetic, the interpreter first
searches for a built-in module with that name. If not found, it then searches
for a file named arithmetic.py in a list of directories given by the variables
sys.path.

This variable is initialized from the following locations:

• The directory containing the input script (or the current directory).
• PYTHONPATH (An environment variable)
• The installation-dependent path.

Here, the module named arithmetic has been created that can be imported
into the other modules as well. Apart from this, Python has a large set
of built-in modules known as the Python Standard Library, which we will
discuss next.

| 49

4.1 Standard Modules

Python comes with a library of standard modules also referred to as the
Python Standard Library1. Some modules are built into the interpreter;
these modules provide access to operations that are not part of the core
of the language but are either for efficiency or to provide access to tasks
pertaining to the operating system. The set of such modules available also
depends on the underlying platform. For example, winreg2 module is
available only on the Windows platform.

Python’s standard library is very extensive and offers a wide range of
facilities. The library contains built-in modules that provide access to
system functionality such as file I/O operations as well as modules that
provide standardized solutions for many problems that occur in everyday
programming.

The Python installers for the Windows platform usually include the entire
standard library and often also include many additional components. For
Unix-like operating systems, Python is normally provided as a collection
of packages, so it may be necessary to use the packaging tools provided
with the operating system to obtain some or all of the optional components.

One particular module that deserves attention is sys, which is built into
every Python interpreter. This module provides access to variables used or
maintained by the interpreter and to functions that interact with the inter-
preter. It is always available and used as follows:

In []: import sys

Returns a string containing the copyright pertaining to

the Python interpreter

In []: sys.copyright

Out[]: 'Copyright (c) 2001-2018 Python Software Foundation.

\nAll Rights Reserved.\n\nCopyright (c) 2000

BeOpen.com.\nAll Rights Reserved.\n\n

Copyright (c) 1995-2001 Corporation for National

1https://docs.python.org/3/library/
2https://docs.python.org/3/library/winreg.html#module-winreg

50 | Chapter 4

Research Initiatives.\nAll Rights Reserved.\n\n

Copyright (c) 1991-1995 Stichting Mathematisch

Centrum, Amsterdam.\nAll Rights Reserved.'

Return the name of the encoding used to convert between

unicode filenames and bytes filenames.

In []: sys.getfilesystemencoding()

Out[]: 'utf-8'

Returns information regarding the Python interpreter

In []: sys.implementation

Out[]: namespace(cache_tag='cpython-36',

hexversion=50726384, name='cpython',

version=sys.version_info(major=3, minor=6,

micro=5, releaselevel='final', serial=0))

Returns a string containing a platform identifier

In []: sys.platform

Out[]: 'win32'

Returns a string containing the version number of the

Python interpreter plus additional information on the

compiler

In []: sys.version

Out[]: '3.6.5 |Anaconda, Inc.| (default, Mar 29 2018,

13:32:41) [MSC v.1900 64 bit (AMD64)]'

In the above examples, we discussed a handful of functionalities provided
by the sys module. As can be seen, we can use it to access system level
functionality through Python code. In addition to this, there are various
other built-in modules in Python. We list some of them below based on
their functionality.

• Text Processing : string, readline, re, unicodedata, etc.
• Data Types : datetime, calendar, array, copy, pprint, enum, etc.
• Mathematical : numbers, math, random, decimal, statistics, etc.
• Files and Directories : pathlib, stat, glob, shutil, filinput, etc.
• Data Persistence: pickle, dbm, sqlite3, etc.
• Compression and Archiving: gzip, bz2, zipfile, tarfile, etc.

Standard Modules | 51

• Concurrent Execution: threading, multiprocessing, sched, queue,
etc.

• Networking: socket, ssl, asyncio, signal, etc.
• Internet Data Handling: email, json, mailbox, mimetypes, binascii,

etc.
• Internet Protocols: urllib, http, ftplib, smtplib, telnetlib, xmlrpc,

etc.

In addition to the standard library, there is a growing collection of several
thousand modules ranging from individual modules to packages and entire
application development frameworks, available from the Python Package In-
dex.

4.2 Packages

Packages can be considered as a collection of modules. It is a way of struc-
turing Python’s module namespace by using "dotted module names". For
example, the module name matplotlib.pyplot designates a submodule
named pyplot in a package named matplotlib. Packaging modules in
such a way saves the author of different modules from having to worry
about each other’s global variable names and the use of dotted module
names saves the author of multi-module packages from having to worry
about each other’s module names.

Suppose we want to design a package (a collection of modules) for the uni-
form handling of various trading strategies and their data. There are many
different data files based on data frequencies, so we may need to create and
maintain a growing collection of modules for the conversion between the
various data frequencies. Also, there are many different strategies and op-
erations that we might need to perform. All of this put together means we
would have to write a never-ending stream of modules to handle the com-
binatorics of data, strategies, and operations. Here’s a possible package
structure to make our lives easier.

strats/ Top-level package

__init__.py Initialize strats package

data/ Sub-package for data

__init__.py

52 | Chapter 4

equity.py Equity module

currency.py

options.py

...

strategies/ Sub-package for strategies

__init__.py

rsi.py RSI module

macd.py

smalma.py

peratio.py

fundamentalindex.py

statisticalarbitrage.py

turtle.py

...

operations/ Sub-package for operations

__init__.py

performanceanalytics.py

dataconversion.py

...

When importing the package, Python searches through the directories in
sys.path looking for the package subdirectory. The __init__.py file is re-
quired to make Python treat the directories as containing packages. If we
are to use this package, we can do so in the following manner:

import strats.data.equity

import strats.strategies.statisticalarbitrage

Above statements loads the equity and statisticalarbitrage modules
from the data and strategies sub-packages respectively under the strats

package.

4.3 Installation of External Libraries

One of the great things about using Python is the number of fantastic
code libraries (apart from the Python Standard Library) which are readily
available for a wide variety of domains that can save much coding or
make a particular task much easier to accomplish. Before we can use such

Installation of External Libraries | 53

external libraries, we need to install them.

The goal here is to install software that can automatically download and
install Python modules/libraries for us. Two commonly used installation
managers are conda3 and pip4. We choose to go with pip for our installa-
tions.

pip comes pre-installed for Python >= 2.7 or Python >= 3.4
downloaded from Python official site5. If the Anaconda distri-
bution has been installed, both pip and conda are available to
manage package installations.

4.3.1 Installing pip

We can install a pip via the command line by using the curl command, which
downloads the pip installation perl script.

curl -O https://bootstrap.pypa.io/get-pip.py

Once it is downloaded, we need to execute it in the command prompt with
the Python interpreter.

python get-pip.py

If the above command fails on a Mac and Linux distribution due to permis-
sion issues (most likely because Python does not have permission to update
certain directories on the file system. These directories are read-only by de-
fault to ensure that random scripts cannot mess with important files and
infect the system with viruses), we may need to run following command.

sudo python get-pip.py

4.3.2 Installing Libraries

Now that we have installed pip, it is easy to install python modules since
it does all the work for us. When we find a module that we want to use,

3https://conda.io/docs/
4https://pip.pypa.io/en/stable/installing/
5https://www.python.org

54 | Chapter 4

usually the documentation or installation instructions will include the
necessary pip command.

The Python Package Index6 is the main repository for third-party Python
packages. The advantage of a library being available on PyPI is the ease of
installation using pip install <package_name> such as

pip install pandas

pip install numpy

pip install nsepy

Remember, again if the above command fails on a Mac and Linux distribu-
tion due to permission issue, we can run the following command:

sudo pip install pandas

sudo pip install nsepy

The above examples will install the latest version of the libraries. To install
a specific version, we execute the following command:

pip install SomeLibrary==1.1

To install greater than or equal to one version and less than another:

pip install SomeLibrary>=1, < 2

Listed below are some of the most popular libraries used in different do-
mains:

• Data Science : NumPy, pandas, SciPy, etc
• Graphics : matplotlib, plotly, seaborn, bokeh, etc.
• Statistics : statsmodels
• Machine learning : SciKit-Learn, Keras, TensorFlow, Theano, etc.
• Web scraping : Scrapy, BeautifulSoup,
• GUI Toolkit : pyGtk, pyQT, wxPython, etc.
• Web Development : Django, web2py, Flask, Pyramid, etc.

We can upgrade already installed libraries to the latest version from PyPI
using the following command:

6https://pypi.org/

Installation of External Libraries | 55

pip install --upgrade SomeLibrary

Remember, pip commands are run directly within the command
prompt or shell without the python interpreter. If we are to run
pip commands from Jupyter Notebook we need to prefix it with
the ! letter like !pip install SomeLibrary.

4.4 Importing modules

Now that we have installed the module that we are interested in, we can
start using it right away. First, we need to import the installed module in
our code. We do so with the import statement. The import statement is the
most common way of invoking the module machinery.

4.4.1 import statement

We can import any module, either internal or external into our code using
the import statement. Take a look at below example:

Importing an internal module

In []: import math

Importing an external library

In []: import pandas

The above example will import all definitions within the imported library.
We can use these definitions using . (dot operator). For example,

Accessing the 'pi' attribute of the 'math' module

In []: math.pi

Out[]: 3.141592653589793

Accessing the 'floor' function from the 'math' module

In []: math.floor

Out[]: <function math.floor>

Accessing the 'floor' method from the 'math'

In []: math.floor(10.8)

Out[]: 10

56 | Chapter 4

Accessing the 'DataFrame' module from the 'pandas'

library

In []: pandas.DataFrame

Out[]: pandas.core.frame.DataFrame

As seen in the above example, we can access attributes and methods of the
imported library using the dot operator along with the library name. In fact,
the library we import acts as an object and hence, we can call its attributes
using the dot notation. We can also alias a library name while importing it
with the help of the as keyword.

Aliasing math as 'm'

In []: import math as m

Aliasing pandas as 'pd'

In []: import pandas as pd

Aliasing numpy as 'np'

In []: import numpy as np

An alias can be used in the same way as the module name.

In []: m.pi

Out[]: 3.141592653589793

In []: m.e

Out[]: 2.718281828459045

In []: m.gamma

Out[]: <function math.gamma>

4.4.2 Selective imports

The other way to import a definition/module is to import all definitions in
that particular module or all modules in the particular package. We can do
so by using from keyword.

Import all definitions of math module

In []: from math import *

Importing modules | 57

Import all definitions from pyplot module of matplotlib

library

In []: from matplotlib.pyplot import *

Accessing definitions directly without module name

In []: pi

Out[]: 3.141592653589793

In []: e

Out[]: 2.718281828459045

In []: floor(10.8)

Out[]: 10

Remember, when definitions are directly imported from any module, we
need not use the module name along with the dot operator to access them.
Instead, we can directly use the definition name itself. Similarly, it is also
possible to import the specific definition that we intend to use, instead of
importing all definitions. Consider a scenario where we need to floor down
a value, we can import the floor() definition from the math module, rather
than importing every other unnecessary definition. Such import is called
selective import.

Selective import

Import only floor from math module

In []: from math import floor

In []: floor(10.8)

Out[]: 10

Error line as the ceil is not imported from math module

In []: ceil(10.2)

Traceback (most recent call last):

File "<ipython-input-33>", line 1, in <module>

ceil(10.2)

NameError: name 'ceil' is not defined

58 | Chapter 4

Error line as the math is not imported

Only the floor from math is imported

In []: math.ceil(10.2)

Traceback (most recent call last):

File "<ipython-input-34>", line 1, in <module>

math.ceil(10.2)

NameError: name 'math' is not defined

In the above example, we selectively import the floor from the math mod-
ule. If we try to access any other definition from the math module, Python
will return an error stating definition not defined as the interpreter won’t be
able to find any such definition in the code.

4.4.3 The Module Search Path

Let’s say we have a module called vwap_module.py which is inside the
folder strategy. We also have a script called backtesting.py in a directory
called backtest.

We want to be able to import the code in vwap_module.py to use
in backtesting.py. We do so by writing import vwap_module in
backtesting.py. The content might look like this:

Content of strategy/vwap_module.py

def run_strategy():

print('Running strategy logic')

Content of backtest/backtesting.py

import vwap_module

vwap_module.run_strategy()

The moment the Python interpreter encounters line import vwap_module,
it will generate the following error:

Traceback (most recent call last):

Importing modules | 59

File "backtest/backtesting.py", line 1, in <module>

import vwap_module

ModuleNotFoundError: No module named 'vwap_module'

When Python hits the line import vwap_module, it tries to find a package
or a module called vwap_module. A module is a file with a matching
extension, such as .py. Here, Python is looking for a file vwap_module.py

in the same directory where backtesting.py exists, and not finding it.

Python has a simple algorithm for finding a module with a given name,
such as vwap_module. It looks for a file called vwap_module.py in the direc-
tories listed in the variable sys.path.

In []: import sys

In []: type(sys.path)

Out[]: list

In []: for path in sys.path:

...: print(path)

...:

C:\Users\...\Continuum\anaconda3\python36.zip

C:\Users\...\Continuum\anaconda3\DLLs

C:\Users\...\Continuum\anaconda3\lib

C:\Users\...\Continuum\anaconda3

C:\Users\...\Continuum\anaconda3\lib\site-packages

C:\Users\...\Continuum\anaconda3\lib\site-packages\win32

C:\Users\...\Continuum\anaconda3\lib\site-packages\win32\lib

C:\Users\...\Continuum\anaconda3\lib\site-packages\Pythonwin

C:\Users\...\.ipython

In the above code snippet, we print paths present in the sys.path. The
vwap_strategy.py file is in the strategy directory, and this directory is not
in the sys.path list.

Because sys.path is just a Python list, we can make the import statement
work by appending the strategy directory to the list.

60 | Chapter 4

In []: import sys

In []: sys.path.append('strategy')

Now the import statement will work

In []: import vwap_strategy

There are various ways of making sure a directory is always on the
sys.path list when you run Python. Some of them are

• Keep the directory into the contents of the PYTHONPATH environment
variable.

• Make the module part of an installable package, and install it.

As a crude hack, we can keep the module in the same directory as the code
file.

4.5 dir()function

We can use the built-in function dir() to find which names a module de-
fines. It returns a sorted list of strings.

In []: import arithmetic

In []: dir(arithmetic)

Out[]:

['__builtins__',

'__cached__',

'__doc__',

'__file__',

'__loader__',

'__name__',

'__package__',

'__spec__',

'addition',

'division',

'factorial',

'multiply']

dir()function | 61

Here, we can see a sorted list of names within the module arithmetic. All
other names that begin with an underscore are default Python attributes
associated with the module (we did not define them.)

Without arguments, dir() lists the names we have defined currently:

In []: a = 1

In []: b = 'string'

In []: import arithmetic

In []: dir()

Out[]:

['__builtins__',

'a',

'arithmetic',

'b',

'exit',

'quit']

Note that it lists all types of names: variables, modules, functions, etc.
The dir() does not list the names of built-in functions and variables. They
are defined in the standard module builtins. We can list them by passing
builtins as an argument in the dir().

In []: import builtins

In []: dir(builtins)

Out[]: ['ArithmeticError', 'AssertionError',

'AttributeError', 'BaseException',

'BlockingIOError', 'BrokenPipeError',

'BufferError', 'BytesWarning', 'ChildProcessError',

'ConnectionAbortedError', 'ConnectionError',

'ConnectionRefusedError', 'ConnectionResetError',

'DeprecationWarning', 'EOFError', 'Ellipsis',

'EnvironmentError', 'Exception', 'False',

'SyntaxError', ...]

62 | Chapter 4

4.6 Key Takeaways

1. A module is a Python file which can be referenced and used in other
Python code.

2. A single module can also have multiple Python files grouped to-
gether.

3. A collection of modules are known as packages or libraries. The
words library and package are used interchangeably.

4. Python comes with a large set of built-in libraries known as the
Python Standard Library.

5. Modules in Python Standard Library provides access to core system
functionality and solutions for many problems that occur in everyday
programming.

6. The sys library is present in every Python installation irrespective of
the distribution and underlying architecture and it acts as an interme-
diary between the system and Python.

7. In addition to built-in libraries, additional third-party/external li-
braries can be installed using either the pip or conda package man-
agers.

8. The pip command comes pre-installed for Python version >= 2.7 or
Python >=3.4

9. A library (either built-in or external) needs to be imported into
Python code before it can be used. It can be achieved using import

library_name keyword.
10. It is a good idea to alias the library name that we import using an as

keyword.
11. It is always a good programming practice to selectively import only

those modules which are required, instead of importing the whole
library.

12. Python will look out for the library being imported in the module
search path. If the library is not available in any of the paths listed by
module search path, Python will throw an error.

13. The dir() function is used to list all attributes and methods of an
object. If a library name is passed as an argument to the dir(), it
returns sub-modules and functions of the library.

Key Takeaways | 63

64 | Chapter 4

Chapter 5

Data Structures

In this section we will learn about various built-in data structures such as
tuples, lists, dictionaries, and sets. Like a variable, data structures are also
used to store a value. Unlike a variable, they don’t just store a value, rather
a collection of values in various formats. Broadly data structures are di-
vided into array, list and file. Arrays can be considered a basic form of data
structure while files are more advanced to store complex data.

5.1 Indexing and Slicing

Before we dive into the world of data structures, let us have a look at the
concept of indexing and slicing which is applicable to all data structures in
Python. A string can be thought of as a sequence of characters. Similatly,
data structures store sequences of objects (floats, integers, strings, etc.).

Consider a sequence of 10 characters ranging from A to J where we assign a
unique position to each literal in a sequence. The position assigned to each
character is a sequence of integers beginning with 0 up to the last character.
These increase successively by 1 as can be seen below.

Index 0 1 2 3 4 5 6 7 8 9

Sequence A B C D E F G H I J

In the above sequence, the character A is at index 0, B at 1, C at 2, and so
on. Notice how the index increases in chronological order by one unit at

65

each step. Whenever a new character is appended to this sequence, it will
be appended at the end, and will be assigned the next index value (in the
above example, the new index will be 10 for the new character). Almost all
data structures in Python have an index to position and locate the element.

Elements within the sequence can be accessed using the square brackets [].
It takes index of an element and returns the element itself. The syntax for
accessing a single element is as follows:

sequence[i]

The above statement will return the element from sequence at index i. We
can access multiple elements from the sequence using the syntax [start

index : end index] in the following manner:

sequence[si : ei]

The above statement will return values starting at index si up to but NOT
including the element at index ei. This operation is referred to as slicing.
For example:

sequence[0:4] will return elements from 'A' to 'D' and not up

to 'E'. Element at the last index in the provided range will

not be returned.

Python also supports negative indexing to access elements from the se-
quence end and it starts with -1 as follows:

Index 0 1 2 3 4 5 6 7 8 9

Sequence A B C D E F G H I J
Negative Index -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

A sequence can also be sliced using the negative indexing. In order to access
the last element, we write

sequence[-1]

and it will return the element J. Similarly, a range can be provided to access
multiple elements.

66 | Chapter 5

sequence[-5:-1] will return elements from 'F' to 'I'

5.2 Array

An array can be thought of as a container that can hold a fixed number
of data values of the same type. Though the use of array is less popular in
Python as compared to other languages such as C and Java, most other data
structures internally make use of arrays to implement their algorithms. An
array consists of two components, viz Element and Index.

• Element: These are the actual data values to be stored in an array.
• Index: Each element in array is positioned at the particular location

depicted by an index. Python follows zero based indexing which means
an index will always start with 0.

We can create an array by using the built-in array module. It can be created
as follows:

In []: from array import *

In []: arr = array('i', [2, 4, 6, 8])

In []: arr

Out[]: array('i', [2, 4, 6, 8])

In []: type(arr)

Out[]: array.array

In the above example, we import the array method from the array mod-
ule and then initialize the variable arr with values 2, 4, 6, and 8 within the
square brackets. The i represents the data type of values. In this case, it
represents integer. Python array documentation1 provides more informa-
tion about the various type codes available in the Python.

5.2.1 Visualizing an Array

An array declared above can be represented in the following manner:

1https://docs.python.org/3.4/library/array.html

Array | 67

Index 0 1 2 3

Element 2 4 6 8

From the above illustration, following are the points to be considered.

• Index starts with 0.
• Array length is 4 which means it can store 4 values.
• Array can hold values with single data type only.
• Each element can be accessed via its index.

5.2.2 Accessing Array Element

We use slicing operation to access array elements. Slicing operation is per-
formed using the square brackets []. It takes an index of an element we
are interested in. It can be noticed that the index of the first element in the
above array is 0. So, in order to access an element at the position 3, we use
the notation arr[2] to access it.

Here, 2 represents the index of element 6

In []: arr[2]

Out[]: 6

In []: arr[0]

Out[]: 2

5.2.3 Manipulating Arrays

The array module provides a wide variety of operations that can be
performed based on the requirement. We will learn some of the most
frequently used operations.

We use insertion operation to insert one or more data elements into an array.
Based on the requirement, an element can be inserted at the beginning, end
or any given index using the insert() method.

Inserting an element at the beginning

In []: arr.insert(0, 20)

68 | Chapter 5

In []: arr

Out[]: array('i', [20, 2, 4, 6, 8])

Inserting an element at the index 3

In []: arr.insert(3, 60)

In []: arr

Out[]: array('i', [20, 2, 4, 60, 6, 8])

An element can be deleted from an array using the built-in remove()

method.

In []: arr.remove(20)

In []: arr

Out[]: array('i', [2, 4, 60, 6, 8])

In []: arr.remove(60)

In []: arr

Out[]: array('i', [2, 4, 6, 8])

We can update an element at the specific index using the assignment oper-
ator = in the following manner:

Update an element at index 1

In []: arr[0] = 1

In []: arr

Out[]: array('i', [1, 4, 6, 8])

Update an element at index 3

In []: arr[3] = 7

In []: arr

Out[]: array('i', [1, 4, 6, 7])

In addition to the above mentioned operation, the array module provides
a bunch of other operations that can be carried out on an array such as
reverse, pop, append, search, conversion to other types, etc.

Array | 69

Though Python allows us to perform a wide variety of oper-
ations on arrays, the built-in array module is rarely used. In-
stead, in real world programming most programmers prefers to
use NumPy arrays provided by the NumPy library.

5.3 Tuples

In Python, tuples are part of the standard library. Like arrays, tuples also
hold multiple values within them separated by commas. In addition, it also
allows storing values of different types together. Tuples are immutable, and
usually, contain a heterogeneous sequence of elements that are accessed
via unpacking or indexing.

To create a tuple, we place all elements within brackets (). Unlike arrays,
we need not import any module for using tuples.

Creating a tuple 'tup' with elements of the same

data type

In []: tup = (1, 2, 3)

In []: tup

Out[]: (1, 2, 3)

Verifying the type

In []: type(tup)

Out[]: tuple

Creating a tuple 'tupl' with elements of different data

types

In []: tupl = (1, 'a', 2.5)

In []: type(tupl)

Out[]: tuple

The tuple tupl created above can be visualized in the following manner:

Index 0 1 2

Element 1 ’a’ 2.5

70 | Chapter 5

A tuple can also be created without using the brackets.

Creating a tuple without brackets

In []: tup = 1, 2, 3

In []: type(tup)

Out[]: tuple

We can repeat a value multiple times within a tuple as follows:

In []: tupl = (1,) * 5 # Note trailing comma

In []: tupl

Out[]: (1, 1, 1, 1, 1)

5.3.1 Accessing tuple elements

A slice operation performed using the square brackets [] is used to access
tuple elements. We pass the index value within the square brackets to get
an element of our interest. Like arrays, tuples also have an index and all
elements are associated with the particular index number. Again, the index
starts with ’0’.

Access an element at index 0

In []: tup[0]

Out[]: 1

Access an element at index 2

In []: tup[2]

Out[]: 1

Python throws an error if we try to access an element that does not exist.
In other words, if we use the slice operation with a non-existent index, we
will get an error.

In []: tup[3]

Traceback (most recent call last):

File "<ipython-input-30>", line 1, in <module>

Tuples | 71

tup[3]

IndexError: tuple index out of range

In the above example, we try to access an element with index 3 which does
not exist. Hence, Python threw an error stating index out of range.
The built-in len() function is used to check the length of a tuple.

In []: len(tup)

Out[]: 3

In []: len(tupl)

Out[]: 5

5.3.2 Immutability

In Python, tuple objects are immutable. That is, once they are created, it
cannot be modified. If we try to modify a tuple, Python will throw an error.

In []: tup[1] = 10

Traceback (most recent call last):

File "<ipython-input-33>", line 1, in <module>

tup[1] = 10

TypeError: 'tuple' object does not support item assignment

As expected, the interpreter threw an error depicting the tuple object to be
immutable.

5.3.3 Concatenating Tuples

Python allows us to combine two or more tuples or directly concatenate
new values to an existing tuple. The concatenation is performed in the
following manner:

In []: t1 = (1, 2, 3)

In []: t2 = (4, 5)

72 | Chapter 5

In []: t1 + t2

Out[]: (1, 2, 3, 4, 5)

Tuples can be concatenated using operators *= and +=.

In []: t1 = (1, 2, 3)

In []: t1 += 4, 5

In []: t1

Out[]: (1, 2, 3, 4, 5)

5.3.4 Unpacking Tuples

In one of the above example, we encountered the statement tup = 1, 2, 3

which is in turn an example of tuple packing. That is we pack various values
together into a single variable tup. The reverse operation is also possible:

In []: tup

Out[]: (1, 2, 3)

In []: x, y, z = tup

The above statement performs the unpacking operation. It will assign the
value 1 to the variable x, 2 to y, and 3 to z. This operation requires that
there are as many variables on the left hand side of the equal sign as there
are elements in the tuple.

5.3.5 Tuple methods

Tuple being one of the simple objects in Python, it is easier to maintain.
There are only two methods available for tuple objects:

• index() : This method returns the index of the element.

In []: tup

Out[]: (1, 2, 3)

Tuples | 73

Returns the index of value '3'.

In []: tup.index(3)

Out[]: 2

• count() : This method counts the number of occurrences of a value.

In []: tup = (1, 1, 1, 1, 1)

In []: tup.count(1)

Out[]: 5

Some of the reasons why tuples are useful are given below:

• They are faster than lists.
• They protect the data as they are immutable.
• They can be used as keys on dictionaries.

5.4 Lists

A list is a data structure that holds an ordered collection of items i.e. we
can store a sequence of items in a list. In Python, lists are created by placing
all items within square brackets [] separated by comma.

It can have any number of items and they may be of different data types
and can be created in the following manner:

Empty list

In []: list_a = []

In []: list_a

Out[]: []

List with integers

In []: list_b = [1, 2, 3]

In []: list_b

Out[]: [1, 2, 3]

74 | Chapter 5

List with mixed data types

In []: list_c =[1, 2.5, 'hello']

In []: list_c

Out[]: [1, 2.5, 'hello']

A list can also have another list as an item. This is called nested list.

In []: a_list = [1, 2, 3, ['hello', 'stock'], 4.5]

5.4.1 Accessing List Items

Like with any other data structure, slice operator is used to access list items
or a range of list items. It can be used in the following manner.

In []: stock_list = ['HP', 'GOOG', 'TSLA', 'MSFT', 'AAPL',

'AMZN', 'NFLX']

Accessing an element at index 2

In []: stock_list[2]

Out[]: 'TSLA'

Accessing multiple elements using slicing

In []: stock_list[1:4]

Out[]: ['GOOG', 'TSLA', 'MSFT']

Accessing last element using negative index

In []: stock_list[-1]

Out[]: 'NFLX'

5.4.2 Updating Lists

Unlike tuples, lists are mutable. That is, we can change the content even
after it is created. Again, the slicing operation helps us here

In []: stock_list

Out[]: ['HP', 'GOOG', 'TSLA', 'MSFT', 'AAPL', 'AMZN',

'NFLX']

Lists | 75

Updating the first element

In []: stock_list[0] = 'NVDA'

Updating the last three elements

In []: stock_list[-3:] = ['AMD', 'GE', 'BAC']

In []: stock_list

Out[]: ['NVDA', 'GOOG', 'TSLA', 'AMD', 'GE', 'BAC']

It is also possible to add new elements to an existing list. Essentially a list
is an object in Python. Hence, the list class provides various methods to be
used upon the list object. There are two methods append() and extend()

which are used to update an existing list.

• append(element) method adds a single element to the end of the list.
It does not return the new list, just modifies the original list.

• extend(list2) method adds the elements in list2 to the end of the
list.

In []: stock_list

Out[]: ['HP', 'GOOG', 'MSFT']

In []: stock_list.append('AMZN')

In []: stock_list

Out[]: ['HP', 'GOOG', 'MSFT', 'AMZN']

In the above example, we add new element using the append() method.
Let’s add multiple elements to the list. In Python, whenever we are to add
multiple literal to any object, we enclose it within list i.e. using [] the square
brackets. The output that we expect is the appended list will all the new
elements.

In []: stock_list.append(['TSLA', 'GE', 'NFLX'])

In []: stock_list

Out[]: ['HP', 'GOOG', 'MSFT', 'AMZN', ['TSLA', 'GE',

'NFLX']]

76 | Chapter 5

The output we got is not as per our expectation. Python amended the new
element as a single element to the stock_list instead of appending three
different elements. Python provides the extend() method to achieve this.

In []: stock_list

Out[]: ['HP', 'GOOG', 'MSFT', 'AMZN']

In []: stock_list.extend(['TSLA', 'GE', 'NFLX'])

In []: stock_list

Out[]: ['HP', 'GOOG', 'MSFT', 'AMZN', 'TSLA', 'GE',

'NFLX']

To simplify, the append() method is used to add a single element to existing
list and it takes a single element as an argument, whereas the extend()

method is used to add multiple elements to existing list and it takes a list as
an argument.

5.4.3 List Manipulation

Lists are one of the most versatile and used data structures in Python. In ad-
dition to the above discussed methods, we also have other useful methods
at our disposal. Some of them are listed below:

• insert(index, element) : Inserts an item at a given position. The
first argument is the index of the element before which to insert, so
list.insert(0, element) inserts at the beginning of the list.

Inserting an element at index position 1.

In []: stock_list.insert(1, 'AAPL')

In []: stock_list

Out[]: ['HP', 'AAPL', 'GOOG', 'MSFT', 'AMZN', 'TSLA', 'GE',

'NFLX']

• remove(element) : Removes the first item whose value is element

provided in an argument. Python will throw an error if there is no
such item.

Lists | 77

Removing the element 'AAPL'

In []: stock_list.remove('AAPL')

In []: stock_list

Out[]: ['HP', 'GOOG', 'MSFT', 'AMZN', 'TSLA', 'GE',

'NFLX']

Again removing the element 'AAPL'.

This line will throw an error as there is no element

'AAPL' the list.

In []: stock_list.remove('AAPL')

Traceback (most recent call last):

File "<ipython-input-73>", line 1, in <module>

stock_list.remove('AAPL')

ValueError: list.remove(x): x not in list

• pop() : This function removes and returns the last item in the list. If
we provide the index as an argument, it removes the item at the given
position in the list and returns it. It is optional to provide an argument
here.

Without providing index position as an argument. Returns

and removes the last element in the list.

In []: stock_list.pop()

Out[]: 'NFLX'

In []: stock_list

Out[]: ['HP', 'GOOG', 'MSFT', 'AMZN', 'TSLA', 'GE']

Providing an index position as an argument. Returns and

removes the element from the specific location.

In []: stock_list.pop(2)

Out[]: 'MSFT'

In []: stock_list

Out[]: ['HP', 'GOOG', 'AMZN', 'TSLA', 'GE']

78 | Chapter 5

• index(element) : Returns the index of the first item whose value is
element provided in an argument. Python will throw an error if there
is no such item.

In []: stock_list.index('GOOG')

Out[]: 1

In []: stock_list.index('GE')

Out[]: 4

• count(element) : Returns the number of times element appears in
the list.

Count the element 'GOOG'

In []: stock_list.count('GOOG')

Out[]: 1

Appending the same list with 'GOOG'

In []: stock_list.append('GOOG')

In []: stock_list

Out[]: ['HP', 'GOOG', 'AMZN', 'TSLA', 'GE', 'GOOG']

Again, counting the element 'GOOG'

In []: stock_list.count('GOOG')

Out[]: 2

• sort() : When called, this method returns the sorted list. The sort
operation will be in place.

Sorting the list. The same list will be updated.

In []: stock_list.sort()

In []: stock_list

Out[]: ['AMZN', 'GE', 'GOOG', 'GOOG', 'HP', 'TSLA']

• reverse() : This method reverses the elements of the list and the op-
eration performed will be in place.

Lists | 79

Reversing the elements within the list.

In []: stock_list.reverse()

In []: stock_list

Out[]: ['TSLA', 'HP', 'GOOG', 'GOOG', 'GE', 'AMZN']

5.4.4 Stacks and Queues

The list methods make it very easy to use a list as a stack or queue. A stack
is a data structure (though not available directly in Python) where the last
element added is the first element retrieved, also known as Last In, First Out
(LIFO). A list can be used as a stack using the append() and pop() method.
To add an item to the top of the stack, we use the append() and to retrieve
an item from the top of the stack, we use the pop() without an explicit
index. For example:

(Bottom) 1 -> 5 -> 6 (Top)

In []: stack = [1, 5, 6]

In []: stack.append(4) # 4 is added on top of 6 (Top)

In []: stack.append(5) # 5 is added on top of 4 (Top)

In []: stack

Out[]: [1, 5, 6, 4, 5]

In []: stack.pop() # 5 is removed from the top

Out[]: 5

In []: stack.pop() # 4 is removed from the top

Out[]: 4

In []: stack.pop() # 6 is removed from the top

Out[]: 6

In []: stack # Remaining elements in the stack

Out[]: [1, 5]

Another data structure that can be built using list methods is queue, where

80 | Chapter 5

the first element added is the first element retrieved, also known as First
In, First Out (FIFO). Consider a queue at a ticket counter where people are
catered according to their arrival sequence and hence the first person to
arrive is also the first to leave.

In order to implement a queue, we need to use the collections.deque

module; however, lists are not efficient for this purpose as it involves heavy
memory usage to change the position of every element with each insertion
and deletion operation.

It can be created using the append() and popleft() methods. For example,

Import 'deque' module from the 'collections' package

In []: from collections import deque

Define initial queue

In []: queue = deque(['Perl', 'PHP', 'Go'])

'R' arrives and joins the queue

In []: queue.append('R')

'Python' arrives and joins the queue

In []: queue.append('Python')

The first to arrive leaves the queue

In []: queue.popleft()

Out[]: 'Perl'

The second to arrive leaves the queue

In []: queue.popleft()

Out[]: 'PHP'

The remaining queue in order of arrival

In []: queue

Out[]: deque(['Go', 'R', 'Python'])

Lists | 81

5.5 Dictionaries

A Python dictionary is an unordered collection of items. It stores data
in key-value pairs. A dictionary is like a phone-book where we can find
the phone numbers or contact details of a person by knowing only
his/her name i.e. we associate names (keys) with corresponding de-
tails (values). Note that the keys must be unique just like the way it is
in a phone book i.e. we cannot have two persons with the exact same name.

In a dictionary, pairs of keys and values are specified within curly brackets
{} using the following notation:

dictionary = {key1 : value1, key2 : value2, key3 : value3}

Notice that the key-value pairs are separated by the colon : and pairs them-
selves are separated by ,. Also, we can use only immutable objects like
strings and tuples for the keys of a dictionary. Values of a dictionary can
be either mutable or immutable objects. Dictionaries that we create are in-
stances of the dict class and they are unordered, so the order that keys are
added doesn’t necessarily reflect the same order when they are retrieved
back.

5.5.1 Creating and accessing dictionaries

A dictionary can be created either using the curly brackets {} or the method
dict(). For example:

Creating an empty dictionary using {}

In []: tickers = {}

In []: type(tickers)

Out[]: dict

Creating an empty dictionary using the dict() method

In []: tickers = dict()

In []: type(tickers)

Out[]: dict

Let us create a dictionary with values of the same data type.

82 | Chapter 5

In []: tickers = {'GOOG' : 'Alphabet Inc.',

...: 'AAPL' : 'Apple Inc.',

...: 'MSFT' : 'Microsoft Corporation'}

In []: tickers

Out[]:

{'GOOG': 'Alphabet Inc.',

'AAPL': 'Apple Inc.',

'MSFT': 'Microsoft Corporation'}

Next, we will create a dictionary with multiple data types.

In []: ticker = {'symbol' : 'AAPL',

...: 'price' : 224.95,

...: 'company' : 'Apple Inc',

...: 'founded' : 1976,

...: 'products' : ['Machintosh', 'iPod',

'iPhone', 'iPad']

}

We can also provide a dictionary as a value to another dictionary key. Such
a dictionary is called nested dictionary. Take a look at below example:

In []: tickers = {'AAPL' : {'name' : 'Apple Inc.',

...: 'price' : 224.95

...: },

...: 'GOOG' : {'name' : 'Alphabet Inc.',

...: 'price' : 1194.64

...: }

...: }

Keys in a dictionary should be unique. If we supply the same key for mul-
tiple pairs, Python will ignore the previous value associated with the key
and only the recent value will be stored. Consider the following example:

In []: same_keys = {'symbol' : 'AAPL',

...: 'symbol' : 'GOOG'}

In []: same_keys

Out[]: {'symbol': 'GOOG'}

Dictionaries | 83

In the above example, Python discarded the value AAPL and retained the
latest value assigned to the same key. Once we have created dictionaries,
we can access them with the help of the respective keys. We use the slice op-
erator [] to access the values; however, we supply a key to obtain its value.
With the dictionaries created above, we can access values in the following
manner:

In []: ticker

Out[]:

{'symbol': 'AAPL',

'price': 224.95,

'company': 'Apple Inc',

'founded': 1976,

'products': ['Machintosh', 'iPod', 'iPhone', 'iPad']}

In []: tickers

Out[]:

{'AAPL': {'name': 'Apple Inc.', 'price': 224.95},

'GOOG': {'name': 'Alphabet Inc.', 'price': 1194.64}}

Accessing the symbol name

In []: ticker['symbol']

Out[]: 'AAPL'

Accessing the ticker price

In []: ticker['price']

Out[]: 224.95

Accessing the product list

In []: ticker['products']

Out[]: ['Machintosh', 'iPod', 'iPhone', 'iPad']

Accessing the item at position 2 in the product list.

In []: ticker['products'][2]

Out[]: 'iPhone'

Accessing the first nested dictionary from the

'tickers' dictionary

In []: tickers['AAPL']

84 | Chapter 5

Out[]: {'name': 'Apple Inc.', 'price': 224.95}

Accessing the price of 'GOOG' ticker using chaining

operation

In []: tickers['GOOG']['price']

Out[]: 1194.64

5.5.2 Altering dictionaries

A value in a dictionary can be updated by assigning a new value to its
corresponding key using the assignment operator =.

In []: ticker['price']

Out[]: 224.95

In []: ticker['price'] = 226

In []: ticker['price']

Out[]: 226

A new key-value pair can also be added in a similar fashion. To add a new
element, we write the new key inside the square brackets [] and assign a
new value. For example:

In []: ticker['founders'] = ['Steve Jobs', 'Steve Wozniak',

'Ronald Wayne']

In []: ticker

Out[]:

{'symbol': 'AAPL',

'price': 226,

'company': 'Apple Inc',

'founded': 1976,

'products': ['Machintosh', 'iPod', 'iPhone', 'iPad'],

'founders': ['Steve Jobs', 'Steve Wozniak',

'Ronald Wayne']}

In the above example, we add the key founders and assign the list ['Steve
Jobs', 'Steve Wozniak', 'Ronald Wayne'] as value. If we are to delete

Dictionaries | 85

any key-value pair in the dictionary, we use the built-in del() function as
follows:

In []: del(ticker['founders'])

In []: ticker

Out[]:

{'symbol': 'AAPL',

'price': 226,

'company': 'Apple Inc',

'founded': 1976,

'products': ['Machintosh', 'iPod', 'iPhone', 'iPad']}

5.5.3 Dictionary Methods

The dict class provides various methods using which we can perform a
variety of operations. In addition to these methods, we can use built-in
len() functions to get the length of a dictionary.

In []: len(ticker)

Out[]: 5

In []: len(tickers)

Out[]: 2

Now we discuss some of the popular methods provided by the dict class.

• items() : This method returns a object containing all times in the
calling object.

In []: ticker.items()

Out[]: dict_items([('symbol', 'AAPL'), ('price', 226),

('company', 'Apple Inc'),

('founded', 1976),

('products', ['Machintosh', 'iPod',

'iPhone', 'iPad']])

• keys() : This method returns all keys in the calling dictionary.

86 | Chapter 5

In []: ticker.keys()

Out[]: dict_keys(['symbol', 'price', 'company', 'founded',

'products'])

• values() : This method returns all values in the calling object.

In []: ticker.values()

Out[]: dict_values(['AAPL', 224.95, 'Apple Inc', 1976,

['Machintosh', 'iPod', 'iPhone',

'iPad']])

• pop() : This method pops the item whose key is given as an argument.

In []: tickers

Out[]:

{'GOOG': 'Alphabet Inc.',

'AAPL': 'Apple Inc.',

'MSFT': 'Microsoft Corporation'}

In []: tickers.pop('GOOG')

Out[]: 'Alphabet Inc.'

In []: tickers

Out[]: {'AAPL': 'Apple Inc.',

'MSFT': 'Microsoft Corporation'}

• copy() : As the name suggests, this method copies the calling dictio-
nary to another dictionary.

In []: aapl = ticker.copy()

In []: aapl

Out[]:

{'symbol': 'AAPL',

'price': 224.95,

'company': 'Apple Inc',

'founded': 1976,

'products': ['Machintosh', 'iPod', 'iPhone', 'iPad']}

• clear() : This method empties the calling dictionary.

Dictionaries | 87

In []: ticker.clear()

In []: ticker

Out[]: {}

• update() : This method allows to add new key-pair value from an-
other dictionary.

In []: ticker1 = {'NFLX' : 'Netflix'}

In []: ticker2 = {'AMZN' : 'Amazon'}

In []: new_tickers = {}

In []: new_tickers.update(ticker1)

In []: new_tickers.update(ticker2)

In []: new_tickers

Out[]: {'NFLX': 'Netflix', 'AMZN': 'Amazon'}

5.6 Sets

A set is an unordered and unindexed collection of items. It is a collection
data type which is mutable, iterable and contains no duplicate values. A
set in Python represents the mathematical notion of a set.

In Python sets are written using the curly brackets in the following way:

In []: universe ={'GOOG', 'AAPL', 'NFLX', 'GE'}

In []: universe

Out[]: {'AAPL', 'GE', 'GOOG', 'NFLX'}

We cannot access items in a set by referring to an index (slicing operation),
since sets are unordered the item has no index. But we can loop through all
items using the for loop which will be discussed in the upcoming section.
Once a set set is created, we cannot change its items, but we can add new
items using the add() method.

88 | Chapter 5

In []: universe.add('AMZN')

In []: universe

Out[]: {'AAPL', 'AMZN', 'GE', 'GOOG', 'NFLX'}

Python won’t add the same item again nor will it throw any error.

In []: universe.add('AMZN')

In []: universe.add('GOOG')

In []: universe

Out[]: {'AAPL', 'AMZN', 'GE', 'GOOG', 'NFLX'}

In order to add multiple items, we use the update() method with new items
to be added within a list.

In []: universe.update(['FB', 'TSLA'])

In []: universe

Out[]: {'AAPL', 'AMZN', 'FB', 'GE', 'GOOG', 'NFLX', 'TSLA'}

We can use the inbuilt len() function to determine the length of a set.

In []: len(universe)

Out[]: 7

To remove or delete an item, we can use the remove() or discard() meth-
ods. For example,

In []: universe.remove('FB')

In []: universe.discard('TSLA')

In []: universe

Out[]: {'AAPL', 'AMZN', 'GE', 'GOOG', 'NFLX'}

If we try to remove an item using the remove() which is not present in the
set, Python will throw an error.

Sets | 89

In []: universe.remove('FB')

Traceback (most recent call last):

File "<ipython-input-159>", line 1, in <module>

universe.remove('FB')

KeyError: 'FB'

The discard() method will not throw any error if we try to discard an item
which is not present in the set.

In []: universe

Out[]: {'AAPL', 'AMZN', 'GE', 'GOOG', 'NFLX'}

In []: universe.discard('FB')

We use the clear() method to empty the set.

In []: universe.clear()

In []: universe

Out[]: set()

Following the mathematical notation, we can perform set operations such
as union, intersection, difference, etc. in Python using the set. Consider the
following examples:

• We define two sets tech_stocks and fin_stocks as follows:

In []: tech_stocks = {'AMD', 'GOOG', 'AAPL', 'WDC'}

In []: fin_stocks = {'BAC', 'BMO', 'JPLS'}

• union() method: This method allows performing a union between
sets. This operation returns all elements within both sets.

Performs the 'union` operation

In []: universe = tech_stocks.union(fin_stocks)

'universe' contains all elements of both sets

90 | Chapter 5

In []: universe

Out[]: {'AAPL', 'AMD', 'BAC', 'BMO', 'GOOG', 'JPLS', 'WDC'}

• intersection() method: This method performs the intersection be-
tween sets. It returns only elements which are available in both sets.

Only elements present in the 'universe' set and

and 'fin_stocks` are returned

In []: universe.intersection(fin_stocks)

Out[]: {'BAC', 'BMO', 'JPLS'}

• difference() method: This method performs the difference opera-
tion and returns a set containing all elements of the calling object but
not including elements of the second set.

All elements of the 'universe' set is returned except

elements of the 'fin_stock'

In []: universe.difference(fin_stocks)

Out[]: {'AAPL', 'AMD', 'GOOG', 'WDC'}

• issubset() method: This method checks whether all elements of call-
ing set is present within a second set or not. It returns true if the call-
ing set is subset of the second set, false otherwise.

True, as the 'universe' contains all elements of

the 'fin_stocks'

In []: fin_stocks.issubset(universe)

Out[]: True

Can you guess why it resulted in to False?

In []: universe.issubset(tech_stocks)

Out[]: False

• isdisjoint() method: This method checks for the intersection be-
tween two sets. It returns true if the calling set is disjoint and not
intersected with the second set, false otherwise.

True, none of the set contains any element of each other

In []: fin_stocks.isdisjoint(tech_stocks)

Sets | 91

Out[]: True

False, the 'universe' set contains elements of

the 'fin_stocks' set

In []: fin_stocks.isdisjoint(universe)

Out[]: False

• issuperset() method: This method checks whether the calling set
contains all elements of the second set. It returns true, if the calling
set contains all elements of the second set, false otherwise.

True, the 'universe' set contains all elements of

the 'fin_stocks'

In []: universe.issuperset(fin_stocks)

Out[]: True

True, the 'universe' set contains all elements of

the 'tech_stocks'

In []: universe.issuperset(tech_stocks)

Out[]: True

False, the 'fin_stocks' set does not contains all

elements of the 'universe' set

In []: fin_stocks.issuperset(universe)

Out[]: False

5.7 Key Takeaways

1. Data structures are used to store a collection of values.
2. Arrays, tuples, lists, sets and dictionaries are primitive data structures

in Python. Except for dictionaries, all data structures are sequential in
nature.

3. In Python, indexing starts with 0 and negative indexing starts with -1.
4. Elements within data structures are accessed using the slicing oper-

ation [start_index:end_index] where start_index is inclusive and
end_index is exclusive.

5. An array can hold a fixed number of data values of the same type.
Arrays are not built-in data structures. We can use an array library to

92 | Chapter 5

perform basic array operations.
6. A tuple can hold multiple values of different types within it separated

by commas. Tuples are enclosed within parentheses () and they are
immutable.

7. A list holds an ordered collection of items. Lists are created by plac-
ing all items within square brackets [] separated by a comma. They
can also be used to implement other data structures like stacks and
queues.

8. A list can also have another list as an item. This is called a nested list.
9. Dictionary stores data in the form of a key-value pair. It can be created

using the curly brackets {}. Element/Pair within the dictionary is
accessed using the corresponding keys instead of an index.

10. Sets are an unordered data structure created using the curly brackets
{}. It cannot contain duplicate elements.

Key Takeaways | 93

94 | Chapter 5

Chapter 6

Keywords & Operators

Python is a high-level language that that allows us to nearly write programs
in a natural language like English. However, there are certain words and
symbols used internally by Python which carry a definite unambiguous
meaning. They can be used only in certain pre-defined ways when we pro-
gram. We will explore such words known as keywords and various opera-
tors in this section.

6.1 Python Keywords

Keywords are reserved (plainspeak for ’set aside’ or ’on hold’) words in
Python. They are built into the core language. They cannot be used as a
variable name, class name, function name or any other identifier. These
keywords are used to define the syntax and semantics of the Python.

Since Python is case-sensitive, so are the keywords. All keywords are in
lowercase except True, False and None. In this section, we will learn vari-
ous keywords.

• The and keyword is a logical operator used to combine conditional
statements and it returns True if both statements are True, False oth-
erwise.

In []: (5 > 3) and (4 > 2)

Out[]: True

95

• The as keyword is used to create an alias. Consider the following
example where we create an alias for the calendar module as c while
importing it. Once aliased we can refer to the imported module with
its alias.

In []: import calendar as c

In []: c.isleap(2019)

Out[]: False

• The assert keyword is used while debugging code. It allows us to
check if a condition in code returns True, if not Python will raise an
AssertionError. If condition returns True, no output is displayed.

In []: stock = 'GOOG'

In []: assert stock == 'GOOG'

In []: assert stock == 'AAPL'

Traceback (most recent call last):

File "<ipython-input-6>", line 1, in <module>

assert stock == 'AAPL'

AssertionError

• The break keyword is used to break a for loop and while loop.

A for loop that will print from 0 to 9

Loop will break when 'i' will be greater than 3

In []: for i in range(10):

...: if i > 3:

...: break

...: print(i)

Output

0

1

2

3

96 | Chapter 6

• The class keyword is used to create a class.

In []: class stock():

...: name = 'AAPL'

...: price = 224.61

...:

In []: s1 = stock()

In []: s1.name

Out[]: 'AAPL'

In []: s1.price

Out[]: 224.61

• The continue keyword is used to end the current iteration in a for

loop or while loop, and continues to the next iteration.

A for loop to print 0 to 9

When `i` will be 4, iteration will continue without

checking further

In []: for i in range(9):

...: if i == 4:

...: continue

...: else:

...: print(i)

Output: It does not contain 4 as loop continued with

the next iteration

0

1

2

3

5

6

7

8

• The def keyword is used to create/define a function within Python.

Python Keywords | 97

In []: def python_function():

...: print('Hello! This is a Python Function.')

In []: python_function()

Out[]: Hello! This is a Python Function.

• The del keyword is used to delete objects. It can also be used to delete
variables, lists, or elements from data structures, etc.

Define the variable 'a'

In []: a = 'Hello'

Delete the variable 'a'

In []: del(a)

Print the variable 'a'. Python will throw an error as the

variable 'a' does not exist.

In []: a

Traceback (most recent call last):

File "<ipython-input-17>", line 1, in <module>

a

NameError: name 'a' is not defined

• The if keyword is used as a logical test between boolean expres-
sion(s). If the boolean expression evaluates to True, the code follow-
ing the ’if’ condition will be executed.

• The elif keyword is used to define multiple if conditions. It is also
referred to as ’else if’. If the expression evaluates to True, the code
following the condition will be executed.

• The else keyword is used to define the code block that will be exe-
cuted when all if conditions above it fail. It does not check for any
condition, it just executes the code if all the conditions above it fail.

In []: number = 5

...:

...: if number < 5:

98 | Chapter 6

...: print('Number is less than 5')

...: elif number == 5:

...: print('Number is equal to 5')

...: else:

...: print('Number is greater than 5')

...:

Output

Number is equal to 5

• The try keyword is used to define the try...except code block which
will be followed by the code block defined by except keyword.
Python tries to execute the code within try block and if it executes
successfully, it ignores subsequent blocks.

• The except keyword is used in try...except blocks for handling any
error raised by the try block. It is used to define a code block that will
be executed if the try block fails to execute and raises any error.

Python will throw an error here because the variable 'y'

is not defined

In []: try:

...: y > 5

...: except:

...: print('Something went wrong.')

...:

Output

Something went wrong.

• The finally keyword is used to try...except block to define a block of
code that will run no matter if the try block raises an error or not. This
can be useful to close objects and clean up resources.

Code in the 'finally' block will execute whether or not

the code in the 'try' block raises an error

In []: try:

...: y > 5

...: except:

Python Keywords | 99

...: print('Something went wrong.')

...: finally:

...: print('The try...except code is finished')

...:

Output

Something went wrong.

The try...except code is finished

• The False keyword is used to represent the boolean result false. It
evaluates to 0 when it is cast to an integer value.

In []: buy_flag = False

In []: int(False)

Out[]: 0

• The True keyword is used to represent the boolean result true. It eval-
uates to 1 when cast to an integer value.

In []: buy_flag = True

In []: int(True)

Out[]: 1

• The for keyword is used to define/create a for loop.

In []: for i in range(5):

...: print(i)

...:

...:

Output

0

1

2

3

4

100 | Chapter 6

• The import keyword is used to import external libraries and modules
in to current program code.

In []: import pandas

In []: import numpy

• The from keyword is used while importing modules and libraries in
Python. It is used to import specific modules from the libraries.

Importing DataFrame module from the pandas library

In []: from pandas import DataFrame

Importing time module from the datetime package

In []: from datetime import time

Importing floor function from the math module

In []: from math import floor

• The global keyword is used to declare a global variables to be used
from non-global scope.

In []: ticker = 'GOOG'

...:

...: def stocks():

...: global ticker

...: # Redeclaring or assigning new value 'MSFT' to

...: # global variable 'ticker'

...: ticker = 'MSFT'

...:

...:

...: stocks()

...:

...: print(ticker)

Output

MSFT

• The in keyword is used to check if a value is present in a sequence. It
is also used to iterate through a sequence in a for loop.

Python Keywords | 101

In []: stock_list = ['GOOG', 'MSFT', 'NFLX', 'TSLA']

In []: 'GOOG' in stock_list

Out[]: True

In []: 'AMZN' in stock_list

Out[]: False

• The is keyword is used to test if two variables refers to the same ob-
ject in Python. It returns true if two variables are same objects, false
otherwise.

In []: stock_list = ['GOOG', 'MSFT', 'NFLX', 'TSLA']

In []: y = stock_list

Checks whether the 'stock_list' and 'y' are same or not

In []: stock_list is y

Out[]: True

In []: y is stock_list

Out[]: True

Reversing elements in the 'stock_list' also reverses

elements in the 'y' as both are same

In []: stock_list.reverse()

In []: y

Out[]: ['TSLA', 'NFLX', 'MSFT', 'GOOG']

• The lambda keyword is used to create a small anonymous function
in Python. It can take multiple arguments but accepts only a single
expression.

Creates an anonymous function that adds two values

provided by 'x' and 'y'

In []: addition = lambda x, y : x + y

In []: addition(5, 2)

Out[]: 7

102 | Chapter 6

• The None keyword is used to define a null value, or no value at all. It
is not same as 0, False, or an empty string. None is represented by a
datatype of NoneType.

In []: x = None

In []: type(x)

Out[]: NoneType

• The nonlocal keyword is used to declare a variable that is not local.
It is used to work with variables inside nested functions, where the
variable should not belong to the inner function.

Instead of creating a new variable 'x' within the

'nested_function' block, it will use the variable 'x'

defined in the 'main function'

In []: def main_function():

...: x = "MSFT"

...: def nested_function():

...: nonlocal x

...: x = "GOOG"

...: nested_function()

...: return x

...:

...:

...: print(main_function())

Output

GOOG

• The not keyword is a logical operator similar to the and operator. It
returns the boolean value True if an expression is not true, False oth-
erwise.

In []: buy = False

In []: not buy

Out[]: True

Python Keywords | 103

• The or keyword is a logical operator used to check multiple condi-
tional statements and it returns True if at least one statement is True,
False otherwise.

In []: (5 > 3) or (4 < 2)

Out[]: True

• The pass keyword is used as a placeholder for a null statement.
It does nothing when used. If we have empty function definition,
Python will return an error. Hence, it can be used as a placeholder in
an empty function.

In []: def empty_function():

...:

...:

...:

In []: empty_function()

File "<ipython-input-49>", line 5

empty_function()

^

IndentationError: expected an indented block

In []: def empty_function():

...: pass

...:

...:

...: empty_function()

• The raise keyword is used to raise an error explicitly in a code.

In []: x = 'Python'

In []: if not type(x) is int:

...: raise TypeError('Only integers are allowed')

...:

Traceback (most recent call last):

File "<ipython-input-52>", line 2, in <module>

104 | Chapter 6

raise TypeError('Only integers are allowed')

TypeError: Only integers are allowed

• The return keyword is used to return a value from a function or
method.

In []: def addition(a, b):

...: return a + b

...:

In []: addition(2, 3)

Out[]: 5

• The with keyword is used to wrap the execution of a block with meth-
ods defined by a context manager1. It simplifies exception handling
by encapsulating common preparation and cleanup tasks. For exam-
ple, the open() function is a context manager in itself, which allows
opening a file, keeping it open as long as the execution is in context
of the with, and closing it as soon as we leave the context. So simply
put, some resources are acquired by the with statement and released
when we leave the with context.

Open the file 'abc.txt' using the 'with' keyword in the

append mode

In []: with open('abc.txt', 'a') as file:

...: # Append the file

...: file.write('Hello Python')

...:

...:

We do not need to close the file as it will be called

automatically as soon as we leave the 'with' block

Open the file in the read mode

In []: with open('abc.txt', 'r') as file:

...: print(file.readline())

...:

1https://docs.python.org/3/reference/datamodel.html#context-managers

Python Keywords | 105

...:

Out[]: Hello Python

6.2 Operators

Operators are constructs or special symbols which can manipulate or com-
pute the values of operands in an expression. In other words, they are used
to perform operations on variables and values. Python provides a bunch
of different operators to perform a variety of operations. They are broadly
categorized into the following:

6.2.1 Arithmetic operators

Arithmetic operators are used with numerical values to perform the com-
mon mathematical operations.

• + : This is an addition operator used to perform the addition between
values.

In []: 5 + 3

Out[]: 8

• - : This is a subtraction operator used to perform the subtraction be-
tween operands.

In []: 5 - 2

Out[]: 3

• * : This is a multiplication operator used to multiply the operands.

In []: 5 * 2

Out[]: 10

• / : This is a division operator which performs the division operation
and returns a float output.

In []: 10 / 2

Out[]: 5.0

106 | Chapter 6

• % : This is a modulus operator. It returns the remainder of the division
operation.

In []: 16 % 5

Out[]: 1

• ** : This operator is used to perform the exponentiation operation,
sometimes referred to as the raised to power operation. This essentially
performs the operation of raising one quantity to the power of another
quantity.

In []: 2 ** 3

Out[]: 8

In []: 3 ** 2

Out[]: 9

• // : This operator is used to perform the floor division operation and
it returns the integer output.

Floor division operation

In []: 10 // 4

Out[]: 2

Normal division operation

In []: 10 / 4

Out[]: 2.5

6.2.2 Comparison operators

Comparison operators are used to compare two or more values. It works
with almost all data types in Python and returns either True or False. We
define the below variables to understand these operators better.

In []: a = 5

In []: b = 3

In []: x = 5

In []: y = 8

Operators | 107

• == : This is an equal to operator used to check whether two values are
equal or not. It returns true if values are equal, false otherwise.

In []: a == x

Out[]: True

In []: a == b

Out[]: False

• != : This is a not equal to operator and works exactly opposite to the
above discussed equal to operator. It returns True if values are not
equal, and false otherwise.

In []: a != x

Out[]: False

In []: a != b

Out[]: True

• > : This is a greater than operator used to check whether one value is
greater than another value. It returns true if the first value is greater
compared to the latter, false otherwise.

In []: y > x

Out[]: True

In []: b > y

Out[]: False

• < : This is a less than operator used to check whether one value is less
than another value. It returns true if the first value is less compared
to the latter, false otherwise.

In []: y < x

Out[]: False

In []: b < y

Out[]: True

108 | Chapter 6

• >= : This is a greater than or equal to operator used to check whether
one value is greater than or equal to another value or not. It returns
true if the first value is either greater than or equal to the latter value,
false otherwise.

In []: a >= x

Out[]: True

In []: y >= a

Out[]: True

In []: b >= x

Out[]: False

• <= : This is a less than or equal to operator used to check whether one
value is less than or equal to another value or not. It returns true
if the first value is either less than or equal to the latter value, false
otherwise.

In []: a <= x

Out[]: True

In []: y <= a

Out[]: False

In []: b <= x

Out[]: True

6.2.3 Logical operators

Logical operators are used to compare two or more conditional statements
or expressions, and returns boolean result.

• and : This operator compares multiple conditional statements and re-
turns true if all statements results in true, and false if any statement is
false.

In []: 5 == 5 and 3 < 5

Out[]: True

Operators | 109

In []: 8 >= 8 and 5 < 5

Out[]: False

In []: 5 > 3 and 8 == 8 and 3 <= 5

Out[]: True

• or : This operator compares multiple conditional statements and re-
turns true if at least one of the statements is true, and false if all state-
ments are false.

In []: 5 == 5 or 3 > 5

Out[]: True

In []: 3 <= 3 or 5 < 3 or 8 < 5

Out[]: True

In []: 3 < 3 or 5 < 3 or 8 < 5

Out[]: False

• not : This operator reverses the result. It returns true if the result is
false, and vice versa.

In []: 3 == 3

Out[]: True

In []: not 3 == 3

Out[]: False

In []: 3 != 3

Out[]: False

In []: not 3 != 3

Out[]: True

6.2.4 Bitwise operator

Bitwise operators are used to compare and perform logical operations on bi-
nary numbers. Essentially operations are performed on each bit of a binary

110 | Chapter 6

number instead of a number. Binary numbers are represented by a combi-
nation of 0 and 1. For better understanding, we define following numbers
(integers) and their corresponding binary numbers.

Number Binary

201 1100 1001
15 0000 1111

In the above example, both 201 and 15 are represented by 8 bits. Bitwise
operators work on multi-bit values, but conceptually one bit at a time. In
other words, these operator works on 0 and 1 representation of underlying
numbers.

• & : This is a bitwise AND operator that returns 1 only if both of its
inputs are 1, 0 otherwise. Below is the truth table for the & operator
with four bits.

Bits 1 2 3 4

Input 1 0 0 1 1
Input 2 0 1 0 1
& Output 0 0 0 1

We can compute the bitwise & operation between 201 and 15 as fol-
lows:

In []: 201 & 15

Out[]: 9

Let us understand with the help of a truth table, how Python returned
the value 9.

Binary Numbers

Input 1 201 1100 1001
Input 2 15 0000 1111
& Output 9 0000 1001

Python evaluated & operation based on each bit of inputs and re-

Operators | 111

turned an integer equivalent of the binary output. In the above ex-
ample, decimal equivalent of 0000 1001 is 9.

• | : This is a bitwise OR operator that returns 1 if any of its inputs are 1,
0 otherwise. Below is the truth table for the | operator with four bits.

Bits 1 2 3 4

Input 1 0 0 1 1
Input 2 0 1 0 1
| Output 0 1 1 1

The bitwise | operation between 201 and 15 can be performed in the
following way:

In []: 201 | 15

Out[]: 207

The above operation can be verified via the truth table as shown be-
low:

Binary Numbers

Input 1 201 1100 1001
Input 2 15 0000 1111
Output 207 1100 1111

In the above example, Python evaluated | operation bitwise and re-
turned the output 1100 1111 which is the binary equivalent of 207.

• � : This is a bitwise XOR operator that returns 1 only if any one of its
input is 1, 0 otherwise. Below is the truth table for the XOR operation.

Bits 1 2 3 4

Input 1 0 0 1 1
Input 2 0 1 0 1
Output 0 1 1 0

Notice that it does not return 1 if all inputs are 1. The bitwise � can be

112 | Chapter 6

performed as follows:

In []: 201 ^ 15

Out[]: 198

The output returned by the Python can be verified via its correspond-
ing truth table as shown below.

Binary Numbers

Input 1 201 1100 1001
Input 2 15 0000 1111
ˆ Output 207 1100 0110

In the above example, Python performed the XOR operation between
its input and returns the result as 1100 0110 which is the decimal
equivalent of 207.

• ~ : This is a bitwise NOT operator. It is an unary operator that take
only one input and inverts all the bits of an input, and returns the
inverted bits. Consider the following truth table

Bits 1 2

Input 0 1
Output 1 0

• << : This is a bitwise left shift operator. It takes two inputs: number to
operate on and number of bits to shift. It shifts bits to the left by pushing
zeros in from the right and let the leftmost bits fall off. Consider the
following example:

In []: 15 << 2

Out[]: 60

In the above example, we are shifting the number 15 left by 2 bits. The
first input refers to the number to operate on and the second input
refers to the number of bits of shift. We compute the truth table for
the above operation as below:

Operators | 113

Binary

Input 15 0000 1111
<< Output 60 0011 1100

• >> : Similar to the left shift operator, we have a shift right operator
that shifts bits right and fills zero on the left. While shifting bits to
right, it let the rightmost bits fall off and add new zeros to the left.

In []: 201 >> 2

Out[]: 50

In the above example, the number 201 gets shifted right by 2 bits and
we get 50 as an output. Its integrity can be verified by the following
truth table.

Binary Numbers

Input 201 1100 1001
>> Output 50 0011 0010

Bitwise operators find great significance in the quantitative trad-
ing domain. They are used to determine the trading signals
based on different conditions. Generally, we assign 1 to the buy
signal, -1 to the sell signal and 0 to the no signal. If we have multi-
ple buy conditions and need to check if all conditions are satis-
fied, we use bitwise & operator to determine if all buy conditions
are 1 and buy the asset under consideration. We will look at
these things in more detail when we discuss pandas and numpy
libraries.

6.2.5 Assignment operators

As the name suggests, assignment operators are used to assign values to
variables.

• = : This operator assigns the value on its right side to the operand on
its left.

In []: a = 5

In []: b = 3

114 | Chapter 6

We can also use this operator to assign multiple values to multiple
operands on the left side. Number of values and operands must be
same on both sides, else Python will throw an error.

In []: a, b = 5, 3

Error line. Number of operands on both sides should

be same.

In []: a, b = 5, 3, 8

Traceback (most recent call last):

File "<ipython-input-1-file>", line 1, in <module>

a, b = 5, 3, 8

ValueError: too many values to unpack (expected 2)

• += : This operator adds the operand on the right side with the operand
on the left side and assigns the result back to the same operand on the
left side.

In []: a += 2

In []: print(a)

Out[]: 7

The above operation is same as the one mentioned below

In []: a = a + 2

• -= : This operator subtracts the operand on the right side with the
operand on the left side and assigns the result back to the same
operand on the left side.

In []: a -= 2

In []: print(a)

Out[]: 5

• *= : This operator multiplies the operand on the right side with
the operand on the left side and assigns the result back to the same
operand on the left side.

Operators | 115

In []: a *= 2

In []: print(a)

Out[]: 10

• /= : This operator divides the operand on the left side by the operand
on the right side and assigns the result back to the same operand on
the left side.

In []: a /= 3

In []: print(a)

Out[]: 3.3333333333333335

• %= : This operator performs the division operation between operands
and assigns the remainder to the operand on the left.

In []: a = 10

In []: a %= 3

In []: print(a)

Out[]: 1

• **= : This operator performs the exponential operation between
operands and assigns the result to the operand on the left.

In []: a **= 3

In []: print(a)

Out[]: 8

• //= : This operator divides the left operand with the right operand
and then assigns the result (floored to immediate integer) to the
operand on the left.

In []: a = 10

In []: a //= 4

In []: print(a)

Out[]: 2

116 | Chapter 6

• &= : This operator performs the bitwise ’AND’ operation between the
operands and then assigns the result to the operand on the left side.

In []: a = 0

In []: a &= 1

& operation results into 0 as one operand is 0 and

the other is 1.

In []: print(a)

Out[]: 0

• |= : This operator performs the bitwise ’OR’ operation between the
operands and then assigns the result to the operand on the left side.

In []: a = 0

In []: a |= 1

| operation results into 1

In []: print(a)

Out[]: 1

• �= : This operator performs the bitwise ’XOR’ operation between the
operands and then assigns the result to the operand on the left side.

In []: a = 1

In []: a ^= 1

^ operation results into 0 as both operands will be 1

In []: print(a)

Out[]: 0

• >>= : This operator shifts bits of the left operand to the right specified
by the right operand and then assigns the new value to the operand
on the left side.

In []: a = 32

In []: a >>= 2

In []: print(a)

Out[]: 8

Operators | 117

• <<= : This operator shifts bits of the left operand to the left specified
by the left operand and then assigns the new value to the operand on
the left side.

In []: a = 8

In []: a <<= 2

In []: print(a)

Out[]: 32

6.2.6 Membership operators

These operators are used check whether the value/variable exist in a se-
quence or not.

• in : This operator returns True if a value exists in a sequence, False
otherwise.

In []: stock_list = ['GOOG', 'MSFT', 'AMZN', 'NFLX']

In []: 'GOOG' in stock_list

Out[]: True

In []: 'AAPL' in stock_list

Out[]: False

• not in : This operator returns True if a value does not exists in a se-
quence, False otherwise.

In []: 'AAPL' not in stock_list

Out[]: True

In []: 'GOOG' not in stock_list

Out[]: False

6.2.7 Identity operators

These operators are used to check if two values or objects belong to same
memory location or refer to same instance in Python. They can be used in
the following way:

118 | Chapter 6

• is : This operator returns True if both operands are identical, False
otherwise.

In []: a = 3

In []: b = a

True as both variables refers to same value in

the memory

In []: a is b

Out[]: True

In []: x = 3

True as Python will create new reference of variable 'x'

to value 3 on the same memory location

In []: x is a

Out[]: True

• is not : This operator returns True if both operands are not on same
memory location, False otherwise.

In []: stock_list = ['AMZN', 'NFLX']

In []: my_list = ['AMZN', 'NFLX']

In []: stock_list is my_list

Out[]: False

Though both lists are identical, they will not be stored

at the same memory location as lists are mutable.

In []: stock_list is not my_list

Out[]: True

6.2.8 Operator Precedence

In Python, expressions are evaluated from left to right order. That is, if
there are multiple operators within an expression, Python will evaluate its
value starting from left most operand and ultimately up to the right most
operator. Consider the following example:

Operators | 119

In []: 2 + 5 - 3 + 1

Out[]: 5

In the above example, Python will first evaluate 2 + 5 resulting into 7, then
subtracts 3 from it to get 4, and finally adding 1 to obtain the final result of
5. But this is not the case always. If we include more operators, Python will
behave in the different manner. For example,

In []: 2 + 5 * 3

Out[]: 17

Based on the principle discussed above (left to right evaluation), Python
should evaluate the above expression to 21, but instead, it returned 17.
Here, the Python first evaluated 5 * 3 resulting into 15 and then added 2

to obtain the final value of 17, because the operator * has higher precedence
over the +.

If there are multiple operators in an expression, Python will execute opera-
tors at same precedence from the left to right order starting from operators
having the highest precedence. Following table lists the operators from
highest precedence to lowest.

Operators Precedence
() Parentheses
** Exponential

+, -, ~ Positive, Negative, Bitwise NOT
*, /, //, % Multiplication, Division,

Floor Division, Modulus
+, - Addition, Subtraction
�, � Bitwise Left, Bitwise Right
& Bitwise AND
� Bitwise XOR
| Bitwise OR

==, !=, >, >=, <, <=, Comparison, Identity,
is, is not, in, not in Membership Operators

not Logical NOT
and Logical AND
or Logical OR

120 | Chapter 6

As the above table lists the () with the highest precedence, it can be used
to change the precedence of any operator to be highest. Any expression
written inside the parentheses () gets highest precedence and evaluated
first.

In []: (5 / 2) * (2 + 5)

Out[]: 17.5

In the above example, the order of evaluation will be (5 / 2) resulting into
2.5 followed by (2 + 5) evaluating to 7 and finally 2.5 multiplied with 7

with the multiplication * operator providing the output as 17.5.

6.3 Key Takeaways

1. Keywords are reserved words in Python. They can be used only in
certain predefined ways when we code. They are always available
and cannot be used as a variable name, class name, function name or
any other identifier.

2. Keywords are case-sensitive. All keywords are in lowercase except
True, False and None.

3. In Python, logical expressions are evaluated from left to right.
4. Operators are special constructs or symbols which are used to per-

form operations on variables and literals.
5. Arithmetic operators are used for performing various mathematical

operations.
6. Comparison operators are used for comparing two or more values. It

works with almost all data types and returns either True or False as
an output.

7. Logical operators are used for comparing two or more conditional
statements or expressions. They return boolean True or False as an
output.

8. Bitwise operators act on bits and perform bit by bit operations. These
operators perform operations on a binary (0 and 1) equivalent of a
decimal number.

9. Assignment operators are used for assigning values to variables.
10. Membership operators check whether the given value exists in a data

structure or not.

Key Takeaways | 121

11. Identity operators check if two objects belong to the same memory
location or refer to the same instances or not.

12. Each operator has specific precedence in Python. The precedence of
any expression can be changed using the parenthesis ().

122 | Chapter 6

Chapter 7

Control Flow Statements

The code we write gets executed in the order they are written. In other
words, a program’s control flow is the order in which the program’s code
executes. Using conditional statements such as if statements, and loops,
we can define or alter the execution order of the code. This section covers
a conditional if statement and for and while loops; functions are covered
in the upcoming section. Raising and handling exceptions also affects the
control flow which will be discussed in subsequent sections.

7.1 Conditional Statements

Often times it is required that a code should execute only if a condition
holds true, or depending on several mutually exclusive conditions. Python
allows us to implement such a scenario using an if statement.

7.1.1 The if statement

The if statement is used when we want a code to be executed under
certain conditions only. It can be either a single condition or multiple
conditions. The code within the if block will be executed if and only if the
logical conditions are held true. We use a comparison operator to check the
truthfulness of the condition. The if statement evaluates the output of any
logical condition to be either True or False, and the codes within the if

block gets executed if the condition is evaluated true.

123

Let us consider a scenario where we want to go long on a stock if
buy_condition is True.

Buy a stock when the buy condition is true

if buy_condition == True:

position = 'Buy'

In Python, we use the colon : to mark the end of the statement
and start of the block. This is true for any statement such as
a class or function definition, conditional statements, loops, etc.
Notice the : at the end of the if statement which marks the start
of the if block. The code is indented inside the block to depict
that it belongs to a particular block. To end the block, we just
write the code without any indentation.

In the above statement, the code statement position = 'Buy' is said to
be inside the if block. If the variable or logical condition itself tends to
be boolean i.e. True or False, we can directly write the condition without
comparing. We can re-write the above example as shown below:

Here, buy_condition itself is a boolean variable

if buy_condition:

position = 'Buy'

In another scenario we want to buy a stock when an indicator is below 20,
we can use the if statement as depicted in the following example:

Buy a stock when an indicator (RSI value) is less than

or equal to 20

if rsi_indicator <= 20:

position = 'Buy'

Additionally, two or more conditions can be combined using any logical
operator such as and, or, etc. In a more refined scenario, we might want
to go long on a stock only if two conditions are true. We can do so in the
following way:

Input

if buy_condition_1 == True and rsi_indicator <= 20:

position = 'Buy'

124 | Chapter 7

Similar to the above scenario, we can compound the if condition to be as
complex as we want it to be, using different combinations of logical opera-
tors.

7.1.2 The elif clause

The elif clause checks for new conditions and executes the code if they
are held true after the conditions evaluated by the previous if statement
weren’t true. In a scenario with mutually exclusive conditions, we might
want the code to execute when one set of condition/s fails and another
holds true. Consider the following example:

Input

if buy_condition_1 == True and rsi_indicator <= 20:

position = 'Buy'

elif sell_condition_1 and rsi_indicator >= 80:

position = 'Sell'

During the execution, the interpreter will first check whether the conditions
listed by the if statement holds true or not. If they are true, the code within
the if block will be executed. Otherwise, the interpreter will try to check
the conditions listed by the elif statement and if they are true, the code
within the elif block will be executed. And if they are false, the interpreter
will execute the code following the elif block. It is also possible to have
multiple elif blocks, and the interpreter will keep on checking the con-
ditions listed by each elif clause and executes the code block wherever
conditions will be held true.

7.1.3 The else clause

The else clause can be thought of as the last part of conditional statements.
It does not evaluate any conditions. When defined it just executes the code
within its block if all conditions defined by the if and elif statements are
false. We can use the else clause in the following way.

Input

if buy_condition_1 == True and rsi_indicator <= 20:

position = 'Buy'

elif sell_condition_1 and rsi_indicator >= 80:

Conditional Statements | 125

position = 'Sell'

else:

position = 'None'

In the above example, if the conditions listed by the if and elif clauses
are false, the code within the else block gets executed and the variable
position will be assigned a value 'None'.

7.2 Loops

Let us consider a scenario where we want to compare the value of the
variable rsi_indicator multiple times. To address this situation, we
need to update the variable each time manually and check it with the if

statement. We keep repeating this until we check all the values that we
are interested in. Another approach we can use is to write multiple if

conditions for checking multiple values. The first approach is botched and
cumbersome, whereas the latter is practically non-feasible.

The approach we are left with is to have a range of values that need to be
logically compared, check each value and keep iterating over them. Python
allows us to implement such approach using loops or more precisely the
while and for statements.

7.2.1 The while statement

The while statement in Python is used to repeat execution of code or block
of code that is controlled by a conditional expression. The syntax for a while
loop is given below:

while conditional expression:

code statement 1

code statement 2

...

code statement n

A while statement allows us to repeat code execution until a conditional
expression becomes true. Consider the following while loop:

126 | Chapter 7

Input

data_points = 6

count = 0

while count != data_points:

print(count)

count += 1

The while statement is an example of what is called a looping statement.
The above loop will print 6 digits starting from 0 up to 5 and the output
will be the following:

Output

0

1

2

3

4

5

When the above code is run, the interpreter will first check the conditional
expression laid by the while loop. If the expression is false and the condi-
tion is not met, it will enter the loop and executes the code statements within
the loop. The interpreter will keep executing the code within the loop until
the condition becomes true. Once the condition is true, the interpreter will
stop executing the code within the loop and move to the next code state-
ment. A while statement can have an optional else clause. Continuing the
above example, we can add the else clause as shown in the below example:

Input

data_points = 6

count = 0

while count != data_points:

print(count)

count += 1

else:

print('The while loop is over.')

Loops | 127

In the above example, the interpreter will execute the while loop as we
discussed above. Additionally, when the condition becomes true, the inter-
preter will execute the else clause also and the output will be as follows:

Output

0

1

2

3

4

5

The while loop is over.

7.2.2 The for statement

The for statement in Python is another looping technique which iterates
over a sequence of objects. That is, it will go through each item in a se-
quence. A sequence may be either a list, tuple, dictionary, set or string. The
syntax of a forloop is as follows:

for item in sequence:

code statement 1

code statement 2

...

code statement n

The for statement is also known as for..in loop in Python. The item in
the above syntax is the placeholder for each item in the sequence.

The for loop in Python is different as compared to other pro-
gramming languages. We shall now see some of its avatars be-
low.

7.2.3 The range() function

Python provides the built-in function range() that is used to generate
sequences or arithmetic progressions which in turn can be combined with
the for loop to repeat the code.

128 | Chapter 7

The range() function returns a sequence of numbers, starting from 0 by
default, and increments by 1 (by default), and ends at a specified number.
The syntax of range() is as follows:

range([start,] stop [, step])

Parameter Values:-

start : Optional. An integer specifying at which number to

start. The default is 0.

stop : Required. An integer specifying at which number to end.

step : Optional. An integer specifying the incrementation.

The default is 1.

The range() function can be used along with the for loop as follows:

Input

for i in range(5):

print(i)

Here, we have provided only stop parameter value as 5. Hence, the range()
function will start with 0 and end at 5 providing us with a sequence of 5
numbers. The output of the above for loop will be the following:

Output

0

1

2

3

4

In the above for loop, the variable i will take the value of 0 generated
by the range() function for the first iteration and execute the code block
following it. For the second iteration, the variable i will take the value of
1 and again execute the code block following it and such repetition will
continue until the last value is yielded by the range() function.

It is also possible to use various combinations of the start, stop and step pa-
rameters in a range() function to generate any sort of sequence. Consider
the following example:

Loops | 129

Input

for i in range(1, 10, 2):

print(i)

The above range() function will generate the sequence starting from 1 up
to 10 with an increment of 2 and the output will be the following:

Output

1

3

5

7

9

7.2.4 Looping through lists

With the for loop we can execute a set of code, once for each item in a list.
The for loop will execute the code for all elements in a list.

Input

top_gainers = ['BHARTIARTL', 'EICHERMOT', 'HCLTECH',

'BAJFINANCE', 'RELIANCE']

for gainer in top_gainers:

print(str(top_gainers.index(gainer)) + ' : ' + gainer)

Here the for loop will iterate over the list top_gainers and it will print each
item within it along with their corresponding index number. The output of
the above for loop is shown below:

Output

0 : BHARTIARTL

1 : EICHERMOT

2 : HCLTECH

3 : BAJFINANCE

4 : RELIANCE

130 | Chapter 7

7.2.5 Looping through strings

Strings in Python are iterable objects. In other words, strings are a sequence
of characters. Hence, we can use a string as a sequence object in the for

loop.

volume_name = 'Python'

for character in volume_name:

print(character)

We initialize the string volume_name with the value ’Python’ and provide
it as an iterable object to the for loop. The for loop yields each character
from the it and prints the respective character using the print statement.
The output is shown below:

Output

P

y

t

h

o

n

7.2.6 Looping through dictionaries

Another sequential data structure available at our disposal is dictionary. We
learnt about dictionaries in detail in the previous section. Looping through
dictionaries involves a different approach as compared to lists and strings.
As dictionaries are not index based, we need to use its built-in items()

method as depicted below:

dict = {'AAPL':193.53,

'HP':24.16,

'MSFT':108.29,

'GOOG':1061.49}

for key, value in dict.items():

print(f'Price of {key} is {value}')

Loops | 131

If we execute the command dict.items() directly, Python will return us a
collection of a dictionary items (in form of tuples). as shown below:

Input

dict.items()

Output

dict_items([('AAPL', 193.53), ('HP', 24.16),

('MSFT', 108.29), ('GOOG', 1061.49)])

As we are iterating over tuples, we need to fetch a key and value for each
item in the for loop. We fetch the key and value of each item yielded by
the dict.items() method in the key and value variables and the output is
shown below:

Output

Price of AAPL is 193.53

Price of HP is 24.16

Price of MSFT is 108.29

Price of GOOG is 1061.49

In Python version 2.x, we need to use the method iteritems()

of the dictionary object to iterate over its items.

A for loop can also have an optional else statement which gets executed
once the for loop completes iterating over all items in a sequence. Sample
for loop with an optional else statement is shown below:

for item in range(1, 6):

print(f'This is {item}.')

else:

print('For loop is over!')

The above for loop prints five statements and once it completes iterating
over the range() function, it will execute the else clause and the output
will be the following:

Output

This is 1.

132 | Chapter 7

This is 2.

This is 3.

This is 4.

This is 5.

For loop is over!

7.2.7 Nested loops

Often times it is required that we need to loop through multiple sequences
simultaneously. Python allows the usage of one loop inside another loop.
Consider a scenario where we want to generate multiplication tables of 1
up to 9 simultaneously. We can do so by using nested for loops as given
below:

for table_value in range(1, 10):

for multiplier in range(1, 11):

answer = table_value * multiplier

print(answer, end=' ')

print()

else:

print('For loop is over!')

The first for loop defines the range for table from 1 to 9. Similarly, the
second or the inner for loop defines the multiplier value from 1 to 10. The
print() in the inner loop has parameter end=' ' which appends a space in-
stead of default new line. Hence, answers for a particular table will appear
in a single row. The output for the above nested loops is shown below:

Output

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

For loop is over!

Loops | 133

The same scenario can also be implemented using the while nested loops
as given below and we will get the same output shown above.

Input

table_value = 1

while table_value != 10:

multiplier = 1

while multiplier != 11:

answer = table_value * multiplier

print(answer, end=' ')

multiplier += 1

table_value += 1

print()

else:

print('While loop is over!')

In Python it is also possible to nest different loops together. That is, we can
nest a for loop inside a while loop and vice versa.

7.3 Loop control statements

Python provides various ways to alter the code execution flow during the
execution of loops. Three keywords to do so are break, pass and continue.
Though we already got a glimpse of these keywords in the previous section,
we will learn its usage in this section. These keywords can be used with any
looping technique in Python. Here, we will learn its implementation using
a for loop.

7.3.1 The break keyword

The break keyword is used to break the execution flow of a loop. When
used inside a loop, this keyword stops executing the loop and the execution
control shifts to the first statement outside the loop. For example, we can
use this keyword to break the execution flow upon certain condition.

Input

for item in range(1,10):

134 | Chapter 7

print(f'This is {item}.')

if item == 6:

print('Exiting FOR loop.')

break

print('Not in FOR loop.')

We define a for loop that iterates over a range of 1 to 9 in the above exam-
ple. Python will try to execute the code block following the loop definition,
where it will check if the item under consideration is 6. If true, the inter-
preter will break and exit the loop as soon as it encounters the break state-
ment and starts executing the statement following the loop. The output of
the above loop will be the following:

Output

This is 1.

This is 2.

This is 3.

This is 4.

This is 5.

This is 6.

Exiting FOR loop.

Not in FOR loop.

7.3.2 The continue keyword

Similar to the break keyword discussed above, we have the continue key-
word which will skip the current iteration and continue with the next iter-
ation. Consider the below example:

Input

for item in range(1,10):

if item == 6:

continue

print('This statement will not be executed.')

print(f'This is {item}.')

print('Not in FOR loop.')

Again, we define a for loop to iterate over a range of 1 to 9 and check
whether the item under consideration is 6 or not? If it is, we skip that itera-
tion and continues the loop. Python interpreter will not attempt to execute

Loop control statements | 135

any statement once it encounters the continue keyword. The output of the
above for loop is shown below:

Output

This is 1.

This is 2.

This is 3.

This is 4.

This is 5.

This is 6.

This is 7.

This is 8.

This is 9.

Not in FOR loop.

As seen in the output above, the interpreter didn’t print anything once it
encountered the continue keyword thereby skipping the iteration.

7.3.3 The pass keyword

Essentially the pass keyword is not used to alter the execution flow, but
rather it is used merely as a placeholder. It is a null statement. The only
difference between a comment and a pass statement in Python is that the
interpreter will entirely ignore the comment whereas a pass statement is
not ignored. However, nothing happens when pass is executed.

In Python, loops cannot have an empty body. Suppose we have a loop that
is not implemented yet, but we want to implement it in the future, we can
use the pass statement to construct a body that does nothing.

Input

stocks = ['AAPL', 'HP', 'MSFT', 'GOOG']

for stock in stocks:

pass

else:

print('For loop is over!')

136 | Chapter 7

In the loop defined above, Python will just iterate over each item without
producing any output and finally execute the else clause. The output will
be as shown below:

Output

For loop is over!

7.4 List comprehensions

List comprehension is an elegant way to define and create a list in Python. It
is used to create a new list from another sequence, just like a mathematical
set notation in a single line. Consider the following set notation:

{i^3: i is a natural number less than 10}

The output of the above set notation will be cubes of all natural numbers
less than 10. Now let’s look at the corresponding Python code implement-
ing list comprehension.

[i**3 for i in range(0,10)]

As we see in the Python code above, list comprehension starts and ends
with square brackets to help us remember that the output will be a list. If
we look closely, it is a for loop embedded in the square bracket. In a general
sense, a for loop works as follows:

for item in sequence:

if condition:

output expression

The same gets implemented in a simple list comprehension construct in a
single line as:

[output expression for item in sequence if condition]

As shown above, the syntax for list comprehension starts with the opening
square bracket [followed by output expression, for loop, and optional
if condition. It has to be ended with the closing square bracket].
The set defined above can also be implemented using the for loop in the
following way:

List comprehensions | 137

Input

cube_list = []

for i in range(0,10):

cube_list.append(i**3)

The corresponding list comprehension is constructed in the following way:

Input

[i**3 for i in range(0,10)]

The output for the for loop and the list comprehension defined above will
be the same shown below:

Output

[0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

We can filter the output produced by a list comprehension using the condi-
tion part in its construct. Consider the revised set notation given below:

{i^3: i is a whole number less than 20, i is even}

The set defined above contains cubes of all whole numbers which are less
than 20 and even. It can be implemented using the for loop as given below:

Input

cube_list = []

for i in range(1,20):

if i%2==0:

cube_list.append(i**3)

print(cube_list)

Output

[8, 64, 216, 512, 1000, 1728, 2744, 4096, 5832]

The output we got is in line with the set defined above and the for loop
defined above can be implemented in a single line using the LC construct.

138 | Chapter 7

Input

[i**3 for i in range(1,20) if i%2==0]

With a list comprehension, it does not have to be a single condition. We can
have multiple conditions to filter the output produced by it. Suppose, we
want to have a list of all positive numbers less than 20 which are divisible
by 2 and 3 both. Such a list can be generated as follows:

Input

[i for i in range(0,20) if i%2==0 if i%3==0]

#Output

[0, 6, 12, 18]

Python provides a flexible way to integrate if conditions within a list com-
prehension. It also allows us to embed the if...else condition. Let us
segregate a list of positive numbers into Odd and Even using a comprehen-
sion construct.

Input

[str(i)+': Even' if i%2==0 else str(i)+': Odd' for i in

range(0,6)]

In such a scenario, we need to put the if and else part of a condition before
the for loop in the comprehension. The output of the above construct is as
below:

Output

['0: Even', '1: Odd', '2: Even', '3: Odd', '4: Even',

'5: Odd']

Finally, we can use a list comprehension to write a nested for loop. We
resort to normal for loop and implement the multiplication table of 7 using
the nested for loops in the following example:

Input

for i in range(7,8):

for j in range(1,11):

print(f'{i} * {j} = {i * j}')

List comprehensions | 139

Output

7 * 1 = 7

7 * 2 = 14

7 * 3 = 21

7 * 4 = 28

7 * 5 = 35

7 * 6 = 42

7 * 7 = 49

7 * 8 = 56

7 * 9 = 63

7 * 10 = 70

Such nested for loops can be implemented using a comprehension in the
following way:

Input

[i * j for j in range(1,11) for i in range(7,8)]

Here, the output will only be the result of multiplication as shown below:

Output

[7, 14, 21, 28, 35, 42, 49, 56, 63, 70]

Is it possible to produce the exact output using comprehension as generated
by nested for loops above? The answer is yes. Go ahead and give it a try.
This brings us to an end of this section. Here we took a deep dive into a con-
ditional statement and various looping techniques in Python. We learned
about ways to implement if conditions within a for and while loop and
explored list comprehensions and their applications.

7.5 Key Takeaways

1. Control flow statements are Python constructs that alter the flow of
the execution.

2. The conditional if statement is used when code needs to be executed
based on some condition.

3. The if statement can evaluate multiple conditions.

140 | Chapter 7

4. The elif statement can be used in case of multiple mutually exclusive
conditions.

5. The else statement can be used when code needs to be executed if all
previous conditions fail.

6. Loops are used to perform an iterative process. In other words, loops
are used to execute the same code more than one time.

7. A loop can be implemented using: a while statement and a for state-
ment.

8. A counter needs to be coded explicitly for a while loop, else it might
run infinitely.

9. The range() function is used to generate sequences in Python.
10. A loop within a loop is known as a nested loop.
11. A for loop is used to iterate over data structures such as lists, tuples,

dictionaries and string as well.
12. The break keyword is used to break the execution of a loop and di-

rects the execution flow outside the loop.
13. The continue keyword is used to skip the current iteration of a loop

and moves the execution flow to the next iteration.
14. In Python, loops cannot have an empty body.
15. The pass keyword is used as a placeholder in an empty loop.
16. A list comprehension returns list. It consists of square brackets con-

taining an expression that gets executed for each element in the itera-
tion over a loop.

Key Takeaways | 141

142 | Chapter 7

Chapter 8

Iterators & Generators

In this section we will explore the natural world of iterators, objects that we
have already encountered in the context of for loops without necessarily
knowing it, followed by its easier implementation via a handy concept of
generators. Let’s begin.

8.1 Iterators

Iterators are everywhere in Python. They are elegantly implemented in for

loop, comprehensions, etc. but they are simply hidden in plain sight. An
iterator is an object that can be iterated upon and which will return data,
one element at a time. It allows us to traverse through all elements of a
collection, regardless of its specific implementation.

Technically, in Python, an iterator is an object which implements the it-
erator protocol, which in turn consists of the methods __next__() and
__iter__().

8.1.1 Iterables

An iterable is an object, not necessarily a data structure that can return an
iterator. Its primary purpose is to return all of its elements. An object is
known as iterable if we can get an iterator from it. Directly or indirectly it
will define two methods:

143

• __iter__() method which returns the iterator object itself and is used
while using the for and in keywords.

• __next__() method returns the next value. It also returns
StopIteration error once all the objects have been traversed.

The Python Standard Library contains many iterables: lists, tuples, strings,
dictionaries and even files and we can run a loop over them. It essentially
means we have indirectly used the iterator in the previous section while
implementing looping techniques.

All these objects have an iter() method which is used to get an iterator.
Below code snippet returns an iterator from a tuple, and prints each value:

In []: stocks = ('AAPL', 'MSFT', 'AMZN')

In []: iterator = iter(stocks)

In []: next(iterator)

Out[]: 'AAPL'

In []: next(iterator)

Out[]: 'MSFT'

In []: iterator.__next__()

Out[]: 'AMZN'

In []: next(iterator)

Traceback (most recent call last):

File "<ipython-input-6>", line 1, in <module>

next(iterator)

StopIteration

We use the next() function to iterate manually through all the items of
an iterator. Also, the next() function will implicitly call the __next__()

method of an iterator as seen in the above example. It will raise
StopIteration error once we reach the end and there is no more data to be
returned.

144 | Chapter 8

We can iterate manually through other iterables like strings and list, in
the manner similar to one we used to iterate over the tuple int the above
example. The more elegant and automated way is to use a for loop. The
for loop actually creates an iterator object and executes the next() method
for each loop.

We are now going to dive a bit deeper into the world of iterators and iter-
ables by looking at some handy functions viz. the enumerate(), zip() and
unzip() functions.

8.1.2 enumerate() function

The enumerate() function takes any iterable such as a list as an argument
and returns a special enumerate object which consists of pairs containing an
element of an original iterable along with their index within the iterable.
We can use the list() function to convert the enumerate object into a list
of tuples. Let’s see this in practice.

In []: stocks = ['AAPL', 'MSFT', 'TSLA']

In []: en_object = enumerate(stocks)

In []: en_object

Out[]: <enumerate at 0x7833948>

In []: list(en_object)

Out[]: [(0, 'AAPL'), (1, 'MSFT'), (2, 'TSLA')]

The enumerate object itself is also iterable, and we can loop over while un-
packing its elements using the following clause.

In []: for index, value in enumerate(stocks):

...: print(index, value)

0 AAPL

1 MSFT

2 TSLA

It is the default behaviour to start an index with 0. We can alter this be-
haviour using the start parameter within the enumerate() function.

Iterators | 145

In []: for index, value in enumerate(stocks, start=10):

...: print(index, value)

10 AAPL

11 MSFT

12 TSLA

Next, we have the zip() function.

8.1.3 The zip()function

The zip() function accepts an arbitrary number of iterables and returns a
zip object which is an iterator of tuples. Consider the following example:

In []: company_names = ['Apple', 'Microsoft', 'Tesla']

In []: tickers = ['AAPL', 'MSFT', 'TSLA']

In []: z = zip(company_names, tickers)

In []: print(type(z))

<class 'zip'>

Here, we have two lists company_names and tickers. Zipping them to-
gether creates a zip object which can be then converted to list and looped
over.

In []: z_list = list(z)

In []: z_list

Out[]: [('Apple', 'AAPL'), ('Microsoft', 'MSFT'),

('Tesla', 'TSLA')]

The first element of the z_list is a tuple which contains the first element
of each list that was zipped. The second element in each tuple contains the
corresponding element of each list that was zipped and so on. Alternatively,
we could use a for() loop to iterate over a zip object print the tuples.

In []: for company, ticker in z_list:

...: print(f'{ticker} = {company}')

146 | Chapter 8

AAPL = Apple

MSFT = Microsoft

TSLA = Tesla

We could also have used the splat operator(*) to print all the elements.

In []: print(*z)

('Apple', 'AAPL') ('Microsoft', 'MSFT') ('Tesla', 'TSLA')

8.1.4 Creating a custom iterator

Let’s see how an iterator works internally to produce the next element in
a sequence when asked for. Python iterator objects are required to support
two methods while following the iterator protocol. They are __iter__()

and __next__(). The custom iterator coded below returns a series of num-
bers:

class Counter(object):

def __init__(self, start, end):

"""Initialize the object"""

self.current = start

self.end = end

def __iter__(self):

"""Returns itself as an iterator object"""

return self

def __next__(self):

"""Returns the next element in the series"""

if self.current > self.end:

raise StopIteration

else:

self.current += 1

return self.current -1

We created a Counter class which takes two arguments start (depicts the
start of a counter) and end (the end of the counter). The __init__() method
is a constructor method which initializes the object with the start and end

Iterators | 147

parameters received. The __iter__() method returns the iterator object
and the __next__() method computes the next element within the series
and returns it. Now we can use the above-defined iterator in our code as
shown below:

Creates a new instance of the class 'Counter' and

initializes it with start and end values

counter = Counter(1, 5)

Run a loop over the newly created object and print its

values

for element in counter:

print(element)

The output of the above for loop will be as follows:

Output

1

2

3

4

5

Remember that an iterator object can be used only once. It means once
we have traversed through all elements of an iterator, and it has raised
StopIteration, it will keep raising the same exception. So, if we run the
above for loop again, Python will not provide us with any output. Inter-
nally it will keep raising the StopIteration error. This can be verified using
the next() method.

In []: next(counter)

Traceback (most recent call last):

File "<ipython-input-18>", line 21, in <module>

next(counter)

File "<ipython-input-12>", line 11, in __next__

raise StopIteration

StopIteration

148 | Chapter 8

8.2 Generators

Python generator gives us an easier way to create iterators. But before we
make an attempt to learn what generators in Python are, let us recall the list
comprehension we learned in the previous section. To create a list of the
first 10 even digits, we can use the comprehension as shown below:

In []: [number*2 for number in range(10)]

Out[]: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Now, if we replace the square brackets [] in the above list comprehension
with the round parenthesis (), Python returns something called generator
objects.

In []: (number*2 for number in range(10))

Out[]: <generator object <genexpr> at 0x000000000CE4E780>

But what are actually generator objects? Well, a generator object is like
list comprehension except it does not store the list in memory; it does not
construct the list but is an object we can iterate over to produce elements of
the list as required. For example:

In []: numbers = (number for number in range(10))

In []: type(numbers)

Out[]: generator

In []: for nums in numbers:

...: print(nums)

...:

0

1

2

3

4

5

6

7

8

9

Generators | 149

Here we can see that looping over a generator object produces the elements
of the analogous list. We can also pass the generator to the function list() to
print the list.

In []: numbers = (number for number in range(10))

In []: list(numbers)

Out[]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Moreover, like any other iterator, we can pass a generator to the function
next() to iterate through its elements.

In []: numbers = (number for number in range(5))

In []: next(numbers)

Out[]: 0

In []: next(numbers)

Out[]: 1

This is known as lazy evaluation, whereby the evaluation of the expression
is delayed until its value is needed. This can help a great deal when we are
working with extremely large sequences as we don’t want to store the entire
list in memory, which is what comprehensions do; we want to generate
elements of the sequences on the fly.
We also have generator functions that produce generator objects when
called. They are written with the syntax of any other user-defined func-
tion, however, instead of returning values using the keyword return, they
yield sequences of values using the keyword yield. Let us see it in practice.

def counter(start, end):

"""Generate values from start to end."""

while start <= end:

yield start

start += 1

In the above function, the while loop is true until start is less than or equal
to end and then the generator ceases to yield values. Calling the above
function will return a generator object.

150 | Chapter 8

In []: c = counter(1, 5)

In []: type(c)

Out[]: generator

And again, as seen above, we can call the list() function or run a loop
over generator object to traverse through its elements. Here, we pass the
object c to the list() function.

In []: list(c)

Out[]: [1, 2, 3, 4, 5]

This brings us to an end of this section. Iterators are a powerful and use-
ful tool in Python and generators are a good approach to work with lots of
data. If we don’t want to load all the data in the memory, we can use a gen-
erator which will pass us each piece of data at a time. Using the generator
implementation saves memory.

8.3 Key Takeaways

1. An iterator is an object which can be iterated upon and will return
data, one element at a time. It implements the iterator protocol, that
is, __next__() and __iter__() methods.

2. An iterable is an object that can return an iterator.
3. Lists, Tuples, Strings, Dictionaries, etc. are iterables in Python. Di-

rectly or indirectly they implement the above-mentioned two meth-
ods.

4. Iterables have an iter() method which returns an iterator.
5. The next() method is used to iterate manually through all the items

of an iterator.
6. The enumerate() function takes an iterable as an input and returns

the enumerate object containing a pair of index and elements.
7. The zip() function accepts an arbitrary number of iterables and re-

turns zip object which can be iterated upon.
8. Generators provides an easy way to create and implement iterators.
9. The syntax for generators is very similar to list comprehension, except

that it uses a parentheses ().
10. Generators do not store elements in the memory and often creates the

elements on the fly as required.

Key Takeaways | 151

11. The list() method is used to convert generators to lists.

152 | Chapter 8

Chapter 9

Functions in Python

Let’s now explore this remarkably handy feature seen in almost all
programming languages: functions. There are lots of fantastic in-built
functions in Python and its ecosystem. However, often, we as a Python
programmer need to write custom functions to solve problems that are
unique to our needs. Here is the definition of a function.

A function is a block of code(that performs a specific task) which runs only when it
is called.

From the definition, it can be inferred that writing such block of codes, i.e.
functions, provides benefits such as

• Reusability: Code written within a function can be called as and when
needed. Hence, the same code can be reused thereby reducing the
overall number of lines of code.

• Modular Approach: Writing a function implicitly follows a modular
approach. We can break down the entire problem that we are trying
to solve into smaller chunks, and each chunk, in turn, is implemented
via a function.

Functions can be thought of as building blocks while writing a program,
and as our program keeps growing larger and more intricate, functions
help make it organized and more manageable. They allow us to give a
name to a block of code, allowing us to run that block using the given
name anywhere in a program any number of times. This is referred to as

153

calling a function. For example, if we want to compute the length of a list,
we call a built-in len function. Using any function means we are calling it
to perform the task for which it is designed.

We need to provide an input to the len function while calling it. The
input we provide to the function is called an argument. It can be a data
structure, string, value or a variable referring to them. Depending upon
the functionality, a function can take single or multiple arguments.

There are three types of functions in Python:

• Built-in functions such as print to print on the standard output de-
vice, type to check data type of an object, etc. These are the functions
that Python provides to accomplish common tasks.

• User-Defined functions: As the name suggests these are custom func-
tions to help/resolve/achieve a particular task.

• Anonymous functions, also known as lambda functions are custom-
made without having any name identifier.

9.1 Recapping built-in functions

Built-in functions are the ones provided by Python. The very first built-in
function we had learned was the print function to print a string given to it
as an argument on the standard output device. They can be directly used
within our code without importing any module and are always available
to use.

In addition to print function, We have learned the following built-in func-
tions until now in the previous sections.

• type(object) is used to check the data type of an object.

• float([value]) returns a floating point number constructed from a
number or string value.

• int([value]) returns an integer object constructed from a float or
string value, or return 0 if no arguments are given.

• round(number[, ndigits]) is used to round a float number up to dig-
its specified by ndigits.

154 | Chapter 9

• abs(value) returns the absolute value of a value provided as an argu-
ment.

• format(value[, format_spec]) converts a value to a ’formatted’ rep-
resentation, as controlled by format_spec.

• str([object]) returns a string version of object. If the object is not
provided, returns the empty string.

• bool([value]) return a Boolean value, i.e. one of True or False. value
is converted using the standard truth testing procedure1. If the value
is false or omitted, this returns False; otherwise, it returns True.

• dir([object]) returns the list of names in the current local scope
when an argument is not provided. With an argument, it attempts
to return a list of valid attributes for that object.

• len(object) returns the length (the number of items) of an object. The
argument may be a sequence (such as a string, bytes, tuple, list, or
range) or a collection (such as a dictionary, set, or frozen set).

It is worth noting that almost all built-in functions take one or more argu-
ments, perform the specific operation on it and return the output. We will
keep learning about many more built-in functions as we progress through
our Python learning journey. More information about various built-in func-
tions can be obtained from Python official documentation2.

9.2 User defined functions

Although Python provides a wide array of built-in functions, it does not
suffice in tackling issues we would face while we develop programs and
applications. As Python programmers, we might need to break down the
programming challenge into smaller chunks and implement them in the
form of custom or user defined functions. The concept of writing functions
is probably an essential feature of any programming language.

Functions are defined using the def keyword, followed by an identifier name
along with the parentheses, and by the final colon that ends the line. The

1https://docs.python.org/3/library/stdtypes.html#truth
2https://docs.python.org/3/library/functions.html

User defined functions | 155

block of statements which forms the body of the function follows the function
definition. Here’s a simple example.

def greet():

"""Block of statement.

or Body of function.

"""

print(' Hello from inside the function!')

The above defined greet function can be called using its name as shown
here.

Calling the function

greet()

And the output will be

Hello from inside the function.

9.2.1 Functions with a single argument

A function can be called as many times as we want, and Python will exe-
cute the statements within its body. This function neither takes any input
nor does it return any output. It just prints the statement written within
it. If the function has to take any input, it goes within the parentheses as
a parameter during the function definition. Parameters are the values we
supply to the function so that the function can do something utilizing those
values.

Note the terminology used here:

• Parameters: They are specified within parentheses in the function def-
inition, separated by commas.

• Arguments: When we call a function, values that parameters take are
to be given as arguments in a comma separated format.

The modified version of the above simple function explains these two
terms:

156 | Chapter 9

Here 'person_name' is a parameter.

def greet(person_name):

"""Prints greetings along with the value received

via the parameter."""

print('Hello ' + person_name + '!')

The above function definition defines person_name as a parameter to the
function greet, and it can be called as shown below:

Calling the function

greet('Amigo')

The above call to the function greet takes a string Amigo as an argument
and the output will be as follows:

Hello Amigo!

9.2.2 Functions with multiple arguments and a return statement

Both versions of the greet functions defined above were actually straight-
forward in terms of functionality that they perform. One more functionality
that functions are capable of performing is to return a value to the calling
statement using the keyword return. Consider a function that takes sev-
eral parameters, performs some mathematical calculation on it and returns
the output. For example:

Function with two parameters 'a' and 'b'

def add(a, b):

"""Computes the addition and returns the result.

It does not implement the print statement.

"""

result = a + b # Computes addition

return result # Returns the result variable

This user defined function add takes two parameters a and b, sums them
together and assigns its output to a variable result and ultimately returns
the variable to calling statement as shown below:

User defined functions | 157

Calling the add function

x = 5

y = 6

print(f'The addition of {x} and {y} is {add(x, y)}.')

We call the function add with two arguments x and y (as the function def-
inition has two parameters) initialized with 5 and 6 respectively, and the
addition returned by the function gets printed via the print statement as
shown below:

The addition of 5 and 6 is 11.

Similarly, functions can also return multiple values based on the implemen-
tation. The following function demonstrates the same.

Function definition

def upper_lower(x):

"""

Returns the upper and lower version of the string.

The value must be a string, else it will result in

an error.

This function does not implement any error handling

mechanism.

"""

upper = x.upper() # Convert x to upper string

lower = x.lower() # Convert x to lower string

return upper, lower # Return both variables

The above upper_lower function takes one argument x (a string) and con-
verts it to their upper and lower versions. Let us call it and see the output.

NOTE: The function upper_lower implicitly assumes to have a
string as a parameter. Providing an integer or float value as an
argument while calling will result in an error.

Calling the function

upper, lower = upper_lower('Python')

158 | Chapter 9

Printing output

print(upper)

PYTHON

print(lower)

python

Here, the call to upper_lower function has been assigned to two variables
upper and lower as the function returns two values which will be unpacked
to each variable respectively and the same can be verified in the output
shown above.

9.2.3 Functions with default arguments

Let us say, we are writing a function that takes multiple parameters. Often,
there are common values for some of these parameters. In such cases, we
would like to be able to call the function without explicitly specifying every
parameter. In other words, we would like some parameters to have default
values that will be used when they are not specified in the function call.

To define a function with a default argument value, we need to assign a
value to the parameter of interest while defining a function.

def power(number, pow=2):

"""Returns the value of number to the power of pow."""

return number**pow

Notice that the above function computes the first argument to the power
of the second argument. The default value of the latter is 2. So now when
we call the function power only with a single argument, it will be assigned
to the number parameter and the return value will be obtained by squaring
number.

Calling the power function only with required argument

print(power(2))

Output

4

User defined functions | 159

In other words, the argument value to the second parameter pow became
optional. If we want to calculate the number for a different power, we can
obviously provide a value for it and the function will return the correspond-
ing value.

Calling the power function with both arguments

print(power(2, 5)

Output

32

We can have any number of default value parameters in a function. Note
however that they must follow non-default value parameters in the defini-
tion. Otherwise, Python will throw an error as shown below:

Calling the power function that will throw an error

def power(pow=2, number):

"""Returns the raised number to the power of pow."""

return number**pow

File "<ipython-input-57>", line 1

def power(pow=2, number):

^

SyntaxError: non-default argument follows default argument

9.2.4 Functions with variable length arguments

Let’s consider a scenario where we as developers aren’t sure about how
many arguments a user will want to pass while calling a function. For ex-
ample, a function that takes floats or integers (irrespective of how many
they are) as arguments and returns the sum of all of them. We can imple-
ment this scenario as shown below:

def sum_all(*args):

"""Sum all values in the *args."""

Initialize result to 0

result = 0

160 | Chapter 9

Sum all values

for i in args:

result += i

Return the result

return result

The flexible argument is written as * followed by the parameter name in
the function definition. The parameter args preceded by * denotes that this
parameter is of variable length. Python than unpacks it to a tuple of the
same name args which will be available to use within the function. In the
above example, we initialize the variable result to 0 which will hold the
sum of all arguments. We then loop over the args to compute a sum and
update the result with each iteration. Finally, we return the sum to the
calling statement. The sum_all function can be called with any number of
arguments and it will add them all up as follows:

Calling the sum_all function with arbitrary number of

arguments.

print(sum_all(1, 2, 3, 4, 5))

Output

15

Calling with different numbers of arguments.

print(sum_all(15, 20, 6))

Output

41

Here, *args is used as the parameter name (the shorthand for arguments),
but we can use any valid identifier as the parameter name. It justs needs to
be preceded by * to make it flexible in length. On the same lines, Python
provides another flavor of flexible arguments which are preceded by dou-
ble asterisk marks. When used ,they are unpacked to dictionaries (with the
same name) by the interpreter and are available to use within the function.
For example:

def info(**kwargs):

"""Print out key-value pairs in **kwargs."""

User defined functions | 161

Run for loop to prints dictionary items

for key, value in kwargs.items():

print(key + ': ' + value)

Here, the parameter **kwargs are known as keywords arguments which will
be converted into a dictionary of the same name. We then loop over it and
print all keys and values. Again, it is totally valid to use an identifier other
than kwargs as the parameter name. The info function can be called as
follows:

Calling the function

print(info(ticker='AAPL', price='146.83',

name='Apple Inc.', country='US'))

Output

ticker: AAPL

price: 146.83

name: Apple Inc.

country: US

That is all about the default and flexible arguments. We now attempt to
head towards the documentation part of functions.

9.2.5 DocStrings

Python has a nifty feature called documentation string, usually referred to by
its shorter name docstrings. This is an important but not required tool that
should be used every time we write a program since it helps to document
the program better and makes it easier to understand.

Docstrings are written within triple single/double quotes just after defini-
tion header. They are written on the first logical line of a function. Doc-
strings are not limited to functions only; they also apply to modules and
classes. The convention followed for a docstring is a multi-line string where
the first line starts with a capital letter and ends with a dot. The second line
is blank followed by any detailed explanation starting from the third line.
It is strongly advised to follow this convention for all docstrings. Let’s see
this in practice with the help of an example:

162 | Chapter 9

def power(x, y):

"""

Equivalent to x**y or built-in pow() with two

arguments.

x and y should be numerical values else an appropriate

error will be thrown for incompatible types.

Parameters:

x (int or float): Base value for the power operation.

y (int or float): Power to which base value should be

raised.

Returns:

int or float: It returns x raised to the power of y.

"""

try:

return x ** y

except Exception as e:

print(e)

The function power defined above returns the raised value of the argument
x powered to y. The thing of our interest is the docstring written within '''

which documents the function. We can access a docstring of any function
using the __doc__ attribute (notice the double underscores) of that function.
The docstring for the power function can be accessed with the following
code:

print(power.__doc__)

And the output is shown below:

Equivalent to x**y or built-in pow() with two arguments.

x and y should be numerical values else an appropriate

error will be thrown for incompatible types.

Parameters:

User defined functions | 163

x (int or float): Base value for the power operation.

y (int or float): Power to which base value should be

raised.

Returns:

int or float: It returns x raised to the power of y.

We have already seen the indirect usage of docstrings in previous sections.
When we use a function help in Python, it will show up the docstring.
What it does is fetch the __doc__ attribute of that function and displays it
in a neat manner. If we ask for the help on the user defined power using the
print(help(power)), Python will return the same output as shown above
that we got using the print(power.__doc__).

9.2.6 Nested functions and non-local variable

A nested function is a function that is defined inside another function. The
syntax for the nested function is the same as that of any other function.
Though the applications of nested functions are complex in nature and lim-
ited at times, even in the quant domain, it is worth mentioning it, as we
might encounter this out there in the wild. Below is an example which
demonstrates the nested functions.

Defining nested function

def outer():

"""This is an enclosing function"""

def inner():

"""This is a nested function"""

print('Got printed from the nested function.')

print('Got printed from the outer function.')

inner()

We define the function outer which nests another function inner within
it. The outer function is referred to as an enclosing function and inner is
known as nested function. They are also referred to as inner functions some-
times. Upon calling the outer function, Python will, in turn, call the inner

function nested inside it and execute it. The output for the same is shown
below:

164 | Chapter 9

Calling the 'outer' function

outer()

Output

Got printed from the outer function.

Got printed from the nested function.

The output we got here is intuitive. First, the print statement within the
outer function got executed, followed by the print statement in the inner

function. Additionally, nested functions can access variables of the enclos-
ing functions. i.e. variables defined in the outer function can be accessed
by the inner function. However, the inner or the nested function cannot
modify the variables defined in the outer or enclosing function.

def outer(n):

number = n

def inner():

print('Number =', number)

inner()

A call to outer function will print the following

outer(5)

Output

Number = 5

Though the variable number is not defined within inner function, it is able
to access and print the number. This is possible because of scope mechanism
that Python provided. We discuss more on this in the following section.
Now consider, what if we want the nested function to modify the variable
that is declared in the enclosing function. The default behavior of Python
does not allow this. If we try to modify it, we will be presented with an
error. To handle such a situation, the keyword nonlocal comes to the
rescue.

User defined functions | 165

In the nested function, we use the keyword nonlocal to create and change
the variables defined in the enclosing function. In the example that follows,
we alter the value of the variable number.

def outer(n):

number = n

def inner():

nonlocal number

number = number ** 2

print('Square of number =', number)

print('Number =', number)

inner()

print('Number =', number)

A call to the outer function will now print the number passed as an argu-
ment to it, the square of it and the newly updated number (which is nothing
but the squared number only).

outer(3)

Output

Number = 3

Square of number = 9

Number = 9

Remember, assigning a value to a variable will only create or change the
variable within a particular function (or a scope) unless they are declared
using the nonlocal statement.

9.3 Variable Namespace and Scope

If we read the The Zen of Python (try import this in Python console), the
last line states Namespaces are one honking great idea -- let’s do more of those!
Let’s try to understand what these mysterious namespaces are. However,
before that, it will be worth spending some time understanding names in
the context of Python.

166 | Chapter 9

9.3.1 Names in the Python world

A name (also known as an identifier) is simply a name given to an object.
From Python basics, we know that everything in Python are objects. And
a name is a way to access the underlying object. Let us create a new vari-
able with a name price having a value 144, and check the memory location
identifier accessible by the function id.

Creating new variable

price = 144

Case 1: Print memory id of the variable price

print(id(price))

Case 1: Output

1948155424

Case 2: Print memory id of the absolute value 144

print(id(144))

Case 2: Output

1948155424

Interestingly we see that the memory location of both cases (the variable
and its assigned value) is the same. In other words, both refer to the same
integer object. If you would execute the above code on your workstation,
memory location would almost certainly be different, but it would be the
same for both the variable and value. Let’s add more fun to it. Consider the
following code:

Assign price to old_price

old_price = price

Assign new value to price

price = price + 1

Print price

print(price)

Variable Namespace and Scope | 167

Output

145

Print memory location of price and 145

print('Memory location of price:', id(price))

print('Memory location of 145:', id(145))

Output

Memory location of price: 1948155456

Memory location of 145: 1948155456

Print memory location of old_price and 144

print('Memory location of old_price:', id(old_price))

print('Memory location of 144:', id(144))

Output

Memory location of old_price: 1948155424

Memory location of 144: 1948155424

We increased the value of a variable price by 1 unit and see that the mem-
ory location of it got changed. As you may have guessed, the memory loca-
tion of an integer object 145 would also be the same as that of price. How-
ever, if we check the memory location of a variable old_price, it would
point to the memory location of integer object 144. This is efficient as
Python does not need to create duplicate objects. This also makes Python
powerful in a sense that a name could refer to any object, even functions.
Note that functions are also objects in Python. Now that we are aware of
the nitty-gritty of names in Python, we are ready to examine namespaces
closely.

9.3.2 Namespace

Name conflicts happen all the time in real life. For example, we often see
that there are multiple students with the same name X in a classroom. If
someone has to call the student X, there would be a conflicting situation for
determining which student X is actually being called. While calling, one
might use the last name along with the student’s first name to ensure that
the call is made to the correct student X.

168 | Chapter 9

Similarly, such conflicts also arise in programming. It is easy and manage-
able to have unique names when programs are small without any external
dependencies. Things start becoming complex when programs become
larger and external modules are incorporated. It becomes difficult and
wearisome to have unique names for all objects in the program when it
spans hundreds of lines.

A namespace can be thought of a naming system to avoid ambiguity be-
tween names and ensures that all the names in a program are unique and
can be used without any conflict. Most namespaces are implemented as a
dictionary in Python. There is a name to object mapping, with names as
keys and objects as values. Multiple namespaces can use the same name
and map it to a different object. Namespaces are created at different mo-
ments and have different lifetimes. Examples of namespaces are:

• The set of built-in names: It includes built-in functions and built-in
exception names.

• The global names in a module: It includes names from various mod-
ules imported in a program.

• The local names in a function: It includes names inside a function. It is
created when a function is called and lasts until the function returns.

The important thing to know about namespaces is that there is absolutely
no relation between names in different namespaces; that is, two differ-
ent modules can contain a function sum without any conflict or confusion.
However, they must be prefixed with the module name when used.

9.3.3 Scopes

Until now we’ve been using objects anywhere in a program. However, an
important thing to note is not all objects are always accessible everywhere
in a program. This is where the concept of scope comes into the picture.
A scope is a region of a Python program where a namespace is directly
accessible. That is when a reference to a name (lists, tuples, variables, etc.)
is made, Python attempts to find the name in the namespace. The different
types of scopes are:

Local scope: Names that are defined within a local scope means they are de-
fined inside a function. They are accessible only within a function. Names

Variable Namespace and Scope | 169

defined within a function cannot be accessed outside of it. Once the execu-
tion of a function is over, names within the local scope cease to exist. This
is illustrated below:

Defining a function

def print_number():

This is local scope

n = 10

Printing number

print('Within function: Number is', n)

print_number()

This statement will cause error when executed

print('Outside function: Number is', n)

Output

Within function: Number is 10

Traceback (most recent call last):

File "<ipython-input-2>", line 8, in <module>

print('Outside function: Number is', n)

NameError: name 'n' is not defined

Enclosing scope: Names in the enclosing scope refer to the names defined
within enclosing functions. When there is a reference to a name that is not
available within the local scope, it will be searched within the enclosing
scope. This is known as scope resolution. The following example helps us
understand this better:

This is enclosing / outer function

def outer():

number = 10

This is nested / inner function

def inner():

170 | Chapter 9

print('Number is', number)

inner()

outer()

Output

Number is 10

We try to print the variable number from within the inner function where
it is not defined. Hence, Python tries to find the variable in the outer

function which works as an enclosing function. What if the variable is not
found within the enclosing scope as well? Python will try to find it in the
global scope which we discuss next.

Global scope: Names in the global scope means they are defined within the
main script of a program. They are accessible almost everywhere within
the program. Consider the following example where we define a variable n

before a function definition (that is, within global scope) and define another
variable with the same name n within the function.

Global variable

n = 3

def relu(val):

Local variable

n = max(0, val)

return n

print('First statement: ', relu(-3))

print('Second statement:', n)

Output

First statement: 0

Second statement: 3

Here, the first print statement calls the relu function with a value of -3

which evaluates the maximum number to 0 and assigns the maximum

Variable Namespace and Scope | 171

number to the variable n which in turn gets returned thereby printing 0.
Next, we attempt to print the n and Python prints 3. This is because Python
now refers to the variable n defined outside the function (within the global
scope). Hence, we got two different values of n as they reside in different
scopes. This brings us to one obvious question, what if the variable is not
defined within the local scope, but available in the globals scope and we
try to access that global variable? The answer is intuitive, we will be able
to access it within the function. However, it would be a read-only variable
and hence we won’t be able to modify it. An attempt to modify a global
variable result in the error as shown below:

Global variable

number = 5

Function that updates the global variable

def update_number():

number = number + 2

print('Within function: Number is', number)

Calling the function

update_number()

print('Outside function: Number is', number)

Output

Traceback (most recent call last):

File "<ipython-input-8>", line 8, in <module>

update_number()

File "<ipython-input-8>", line 4, in update_number

number = number + 2

UnboundLocalError: local variable 'number' referenced

before assignment

To handle such a situation which demands modification of a global name,
we define the global name within the function followed by the global key-

172 | Chapter 9

word. The global keywords allow us to access the global name within the
local scope. Let us run the above code, but with the global keyword.

Global variable

number = 5

Function that updates the global variable

def update_number():

global number

number = number + 2

print('Within function: Number is', number)

Calling the function

update_number()

print('Outside function: Number is', number)

Output

Within function: Number is 7

Outside function: Number is 7

The global keyword allowed us to modify the global variable from
the local scope without any issues. This is very similar to the keyword
non-local which allows us to modify variables defined in the enclosing
scope.

Built-in scope: This scope consists of names predefined within built-ins
module in Python such as sum, print, type, etc. Though we neither define
these functions anywhere in our program nor we import them from any
external module they are always available to use.

To summarize, when executing a Python code, names are searched in vari-
ous scopes in the following order:

1. Local
2. Enclosing
3. Global
4. Built-in

If they are not found in any scope, Python will throw an error.

Variable Namespace and Scope | 173

9.4 Lambda functions

We have written functions above using the def keyword, function headers,
DocStrings and function bodies. There’s a quicker way to write on-the-fly
functions in Python and they are known as lambda functions. They are
also referred to as anonymous functions sometimes. We use the keyword
lambda to write such functions. The syntax for lambda functions is as fol-
lows:

lambda arguments: expression

Firstly, the syntax shows that there is no function name. Secondly, argu-
ments refers to parameters, and finally, expression depicts the function body.
Let us create a function square which squares the argument provided to it
and returns the result. We create this function using the def keyword.

Function defnition

def square(arg):

"""

Computes the square of an argument and returns the

result.

It does not implement the print statement."""

"""

result = arg * arg

return result

Calling the function and printing its output

print(square(3))

Output

9

The function square defined above can be re-written in a single line using
the lambda keyword as shown below:

Creating a lambda function and assigning it to square

square = lambda arg: arg * arg

174 | Chapter 9

Calling the lambda function using the name 'square'

print(square(3))

Outpuut

9

In the above lambda function, it takes one argument denoted by arg and
returns its square. Lambda functions can have as many number of argu-
ments as we want after the lambda keyword during its definition. We will
restrict our discussion up to two arguments to understand how multiple
arguments work. We create another lambda function to raise the first argu-
ment to the power of the second argument.

Creating a lambda function to mimic 'raise to power'

operation

power = lambda a, b: a ** b

Calling the lambda function using the name 'power'

print(power(2, 3))

Output

8

Lambda functions are extensively used along with built-in map and filter

functions.

9.4.1 map() Function

The map function takes two arguments: a function and a sequence such as
a list. This function makes an iterator that applies the function to each el-
ement of a sequence. We can pass lambda function to this map function
without even naming it. In this case, we refer to lambda functions as an
anonymous function. In the following example, we create a list nums con-
sisting of numbers and pass it to a map function along with the lambda
function which will square each element of the list.

Creating a list of all numbers

nums = [1, 2, 3, 4, 5]

Lambda functions | 175

Defining a lambda function to square each number and

passing it as an argument to map function

squares = map(lambda num: num ** 2, nums)

The lambda function in the above example will square each element of the
list nums and the map function will map each output to the corresponding
elements in the original list. We then store the result into a variable called
squares. If we print the square variable, Python will reveal us that it is a
map object.

Printing squares

print(squares)

Output

<map object at 0x00000000074EAD68>

To see what this object contains, we need to cast it to list using the list

function as shown below:

Casting map object squares to a list and printing it

print(list(squares))

Output

[1, 4, 9, 16, 25]

9.4.2 filter() Function

The filter function takes two arguments: a function or None and a se-
quence. This function offers a way to filter out elements from a list that
don’t satisfy certain criteria. Before we embed a lambda function with it,
let’s understand how it works.

Creating a list of booleans

booleans = [False, True, True, False, True]

Filtering 'booleans', casting it to a list, and finally

printing it

print(list(filter(None, booleans)))

176 | Chapter 9

Output

[True, True, True]

In the above example, we first create a list of random boolean values. Next,
we pass it to the filter function along with the None which specifies to
return the items that are true. Lastly, we cast the output of the filter func-
tion to a list as it outputs a filter object. In a more advanced scenario, we
can embed a lambda function in the filter function. Consider that we
have been given a scenario where we need to filter all strings whose length
is greater than 3 from a given set of strings. We can use filter and lambda
functions together to achieve this. This is illustrated below:

Creating a pool of random strings

strings = ['one', 'two', 'three', 'four', 'five', 'six']

Filtering strings using a lambda and filter functions

filtered_strings = filter(lambda string: len(string) > 3,

strings)

Casting 'filtered_strings' to a list and printing it

print(list(filtered_strings))

Output

['three', 'four', 'five']

In the above example, a lambda function is used within the filter function
which checks for the length of each string in the strings list. And the
filter function will then filter out the strings which match the criteria
defined by the lambda function.

Apart from the map and filter functions discussed above, now we will
learn another handy function zip which can be used for iterating through
multiple sequences simultaneously.

9.4.3 zip() Function

As regular computer users, we often comes across a file with .zip extension
aka zip files. Basically, these files are the files which have zipped other files

Lambda functions | 177

within them. In other words, zip files work as a container to hold other files.

In the Python world, the zip function works more or less as a container for
iterables instead of real files. The syntax for the zip is shown below:

zip(*iterables)

It takes an iterable as an input and returns the iterator that aggregates ele-
ments from each of the iterable. The output contains the iterator of a tuple.
The i-th element in the iterator is the tuple consisting the i-th element from
each input. If the iterables in the input are of unequal sizes, the output it-
erator stops when the shortest input iterable is exhausted. With no input,
it returns an empty iterator. Let us understand the working of zip with the
help of an example.

Defining iterables for the input

tickers = ['AAPL', 'MSFT', 'GOOG']

companies = ['Apple Inc', 'Microsoft Corporation',

'Alphabet Inc']

Zipping the above defined iterables using the 'zip'

zipped = zip(tickers, companies)

We define two lists tickers and companies which are used as an input to
the zip. The zipped object is the iterator of type zip and hence we can
iterate either over it using a looping technique to print its content:

Iterating over a zipped object

for ticker, company in zipped:

print('Ticker name of {} is {}.'.format(ticker,

company))

Output

Ticker name of AAPL is Apple Inc.

Ticker name of MSFT is Microsoft Corporation.

Ticker name of GOOG is Alphabet Inc.

or cast it to sequential data structures such as list or tuple easily.

178 | Chapter 9

Casting the zip object to a list and printing it

print(list(zipped))

Output

[('AAPL', 'Apple Inc.'),

('MSFT', 'Microsoft Corporation'),

('GOOG', 'Alphabet Inc.')]

As we should expect, the zipped object contains a sequence of tuples where
elements are from the corresponding inputs. A zip object in conjunction
with * unzips the elements as they were before. For example:

Unzipping the zipped object

new_tickers, new_companies = zip(*zipped)

Printing new unzipped sequences

print(new_tickers)

('AAPL', 'MSFT', 'GOOG')

print(new_companies)

('Apple Inc.', 'Microsoft Corporation', 'Alphabet Inc.')

We unzip the zip object zipped to two sequences new_tickers and
new_companies. By printing these sequences, we can see that the opera-
tion got successful and elements got unzipped successfully into respective
tuples.

9.5 Key Takeaways

1. A function is a block of statements that can be reused as and when
required.

2. There are three types of functions available in Python: Built-in func-
tions, User-defined functions and anonymous functions using the
lambda keyword.

3. Python provides various built-in functions to perform common pro-
gramming tasks such as print(), len(), dir(), type(), etc

4. User-defined functions are defined using the keyword def.
5. Functions may take zero or more arguments. Arguments are specified

while defining a function within parentheses ().

Key Takeaways | 179

6. It is possible that arguments take some default value in the function
definition. Such arguments are called default arguments.

7. Functions can return a value using the keyword return.
8. Functions can have variable-length arguments. There are two types

of such arguments:

(a) An argument that is preceded by * in the function definition can
have a flexible number of values within it. And gets unpacked
to a tuple inside a function.

(b) An argument that is preceded by ** in the function definition can
have a flexible number of key-value pairs and gets unpacked to
a dictionary inside a function.

9. A docstring is used to document a function and is written within
triple single/double quotes. It can be accessed by the __doc__ at-
tribute on the function name.

10. Docstrings can be used to document modules and classes as well.
11. A namespace is a naming system in Python to avoid ambiguity be-

tween names (variable names, object names, module names, class
names, etc.).

12. A scope is a region of a Python program where a namespace is directly
accessible.

13. The global keyword is used when a variable that is defined outside a
function and needs to be accessed from within a function.

14. The lambda keyword is used to create anonymous functions. Such
functions are created during the run time and do not have any name
associated with them.

15. map(), filter() and zip() functions are often used with anonymous
functions.

180 | Chapter 9

Chapter 10

NumPy Module

NumPy, an acronym for Numerical Python, is a package to perform scientific
computing in Python efficiently. It includes random number generation
capabilities, functions for basic linear algebra, Fourier transforms as well
as a tool for integrating Fortran and C/C++ code along with a bunch of
other functionalities.

NumPy is an open-source project and a successor to two earlier scientific
Python libraries: Numeric and Numarray.

It can be used as an efficient multi-dimensional container of generic
data. This allows NumPy to integrate with a wide variety of databases
seamlessly. It also features a collection of routines for processing single and
multidimensional vectors known as arrays in programming parlance.

NumPy is not a part of the Python Standard Library and hence, as with
any other such library or module, it needs to be installed on a workstation
before it can be used. Based on the Python distribution one uses, it can
be installed via a command prompt, conda prompt, or terminal using the
following command. One point to note is that if we use the Anaconda distri-
bution to install Python, most of the libraries (like NumPy, pandas, scikit-learn,
matplotlib, etc.) used in the scientific Python ecosystem come pre-installed.

pip install numpy

NOTE: If we use the Python or iPython console to install the

181

NumPy library, the command to install it would be preceded by
the character !.

Once installed we can use it by importing into our program by using the
import statement. The de facto way of importing is shown below:

import numpy as np

Here, the NumPy library is imported with an alias of np so that any func-
tionality within it can be used with convenience. We will be using this form
of alias for all examples in this section.

10.1 NumPy Arrays

A Python list is a pretty powerful sequential data structure with some nifty
features. For example, it can hold elements of various data types which
can be added, changed or removed as required. Also, it allows index sub-
setting and traversal. But lists lack an important feature that is needed
while performing data analysis tasks. We often want to carry out operations
over an entire collection of elements, and we expect Python to perform this
fast. With lists executing such operations over all elements efficiently is a
problem. For example, let’s consider a case where we calculate PCR (Put
Call Ratio) for the previous 5 days. Say, we have put and call options vol-
ume (in Lacs) stored in lists call_vol and put_vol respectively. We then
compute the PCR by dividing put volume by call volume as illustrated in
the below script:

Put volume in lacs

In []: put_vol = [52.89, 45.14, 63.84, 77.1, 74.6]

Call volume in lacs

In []: call_vol = [49.51, 50.45, 59.11, 80.49, 65.11]

Computing Put Call Ratio (PCR)

In []: put_vol / call_vol

Traceback (most recent call last):

File "<ipython-input-12>", line 1, in <module>

182 | Chapter 10

put_vol / call_vol

TypeError: unsupported operand type(s) for /: 'list' and

'list'

Unfortunately, Python threw an error while calculating PCR values as it
has no idea on how to do calculations on lists. We can do this by iterating
over each item in lists and calculating the PCR for each day separately.
However, doing so is inefficient and tiresome too. A way more elegant
solution is to use NumPy arrays, an alternative to the regular Python list.

The NumPy array is pretty similar to the list, but has one useful feature: we
can perform operations over entire arrays(all elements in arrays). It’s easy
as well as super fast. Let us start by creating a NumPy array. To do this,
we use array() function from the NumPy package and create the NumPy
version of put_vol and call_vol lists.

Importing NumPy library

In []: import numpy as np

Creating arrays

In []: n_put_vol = np.array(put_vol)

In []: n_call_vol = np.array(call_vol)

In []: n_put_vol

Out[]: array([52.89, 45.14, 63.84, 77.1 , 74.6])

In []: n_call_vol

Out[]: array([49.51, 50.45, 59.11, 80.49, 65.11])

Here, we have two arrays n_put_vol and n_call_vol which holds put and
call volume respectively. Now, we can calculate PCR in one line:

Computing Put Call Ratio (PCR)

In []: pcr = n_put_vol / n_call_vol

In []: pcr

Out[]: array([1.06826904, 0.89474727, 1.0800203,

0.95788297, 1.14575334])

NumPy Arrays | 183

This time it worked, and calculations were performed element-wise. The
first observation in pcr array was calculated by dividing the first element
in n_put_vol by the first element in n_call_vol array. The second element
in pcr was computed using the second element in the respective arrays
and so on.

First, when we tried to compute PCR with regular lists, we got an error, be-
cause Python cannot do calculations with lists like we want it to. Then
we converted these regular lists to NumPy arrays and the same opera-
tion worked without any problem. NumPy work with arrays as if they
are scalars. But we need to pay attention here. NumPy can do this easily
because it assumes that array can only contain values of a single type. It’s
either an array of integers, floats or booleans and so on. If we try to cre-
ate an array of different types like the one mentioned below, the resulting
NumPy array will contain a single type only. String in the below case:

In []: np.array([1, 'Python', True])

Out[]: array(['1', 'Python', 'True'], dtype='<U11')

NOTE: NumPy arrays are made to be created as homogeneous
arrays, considering the mathematical operations that can be per-
formed on them. It would not be possible with heterogeneous
data sets.

In the example given above, an integer and a boolean were both converted
to strings. NumPy array is a new type of data structure type like the Python
list type that we have seen before. This also means that it comes with its
own methods, which will behave differently from other types. Let us im-
plement the + operation on the Python list and NumPy arrays and see how
they differ.

Creating lists

In []: list_1 = [1, 2, 3]

In []: list_2 = [5, 6, 4]

Adding two lists

In []: list_1 + list_2

Out[]: [1, 2, 3, 5, 6, 4]

184 | Chapter 10

Creating arrays

In []: arr_1 = np.array([1, 2, 3])

In []: arr_2 = np.array([5, 6, 4])

Adding two arrays

In []: arr_1 + arr_2

Out[]: array([6, 8, 7])

As can be seen in the above example, performing the + operation with
list_1 and list_2, the list elements are pasted together, generating a list
with 6 elements. On the other hand, if we do this with NumPy arrays,
Python will do an element-wise sum of the arrays.

10.1.1 N-dimensional arrays

Until now we have worked with two arrays: n_put_vol and n_call_vol. If
we are to check its type using type(), Python tells us that they are of type
numpy.ndarray as shown below:

Checking array type

In []: type(n_put_vol)

Out[]: numpy.ndarray

Based on the output we got, it can be inferred that they are of data type
ndarray which stands for n-dimensional array within NumPy. These arrays
are one-dimensional arrays, but NumPy also allows us to create two dimen-
sional, three dimensional and so on. We will stick to two dimensional for
our learning purpose in this module. We can create a 2D (two dimensional)
NumPy array from a regular Python list of lists. Let us create one array for
all put and call volumes.

Recalling put and call volumes lists

In []: put_vol

Out[]: [52.89, 45.14, 63.84, 77.1, 74.6]

In []: call_vol

Out[]: [49.51, 50.45, 59.11, 80.49, 65.11]

NumPy Arrays | 185

Creating a two-dimensional array

In []: n_2d = np.array([put_vol, call_vol])

In []: n_2d

Out[]:

array([[52.89, 45.14, 63.84, 77.1 , 74.6],

[49.51, 50.45, 59.11, 80.49, 65.11]])

We see that n_2d array is a rectangular data structure. Each list pro-
vided in the np.array creation function corresponds to a row in the two-
dimensional NumPy array. Also for 2D arrays, the NumPy rule applies: an
array can only contain a single type. If we change one float value in the
above array definition, all the array elements will be coerced to strings, to
end up with a homogeneous array. We can think of a 2D array as an ad-
vanced version of lists of a list. We can perform element-wise operation
with 2D as we had seen for a single dimensional array.

10.2 Array creation using built-in functions

An explicit input has been provided while creating n_call_vol and
n_put_vol arrays. In contrast, NumPy provides various built-in functions
to create arrays and input to them will be produced by NumPy. Below we
discuss a handful of such functions:

• zeros(shape, dtype=float) returns an array of a given shape and
type, filled with zeros. If the dtype is not provided as an input, the
default type for the array would be float.

Creating a one-dimensional array

In []: np.zeros(5)

Out[]: array([0., 0., 0., 0., 0.])

Creating a two-dimensional array

In []: np.zeros((3, 5))

Out[]:

array([[0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0.],

186 | Chapter 10

[0., 0., 0., 0., 0.]])

Creating a one-dimensional array of integer type

In []: np.zeros(5, dtype=int)

Out[]: array([0, 0, 0, 0, 0])

• ones(shape, dtype=float) returns an array of a given shape and
type, filled with ones. If the dtype is not provided as an input, the
default type for the array would be float.

Creating a one-dimensional array

In []: np.ones(5)

Out[]: array([1., 1., 1., 1., 1.])

Creating a one-dimensional array of integer type

In []: np.ones(5, dtype=int)

Out[]: array([1, 1, 1, 1, 1])

• full(shape, fill_value, dtype=None) returns an array of a given
shape and type, fill with fill_value given in input parameters.

Creating a one-dimensional array with value as 12

In []: np.full(5, 12)

Out[]: array([12, 12, 12, 12, 12])

Creating a two-dimensional array with value as 9

In []: np.full((2, 3), 9)

Out[]:

array([[9, 9, 9],

[9, 9, 9]])

• arange([start,]stop, [step]) returns an array with evenly
spaced values within a given interval. Here the start and step param-
eters are optional. If they are provided NumPy will consider them
while computing the output. Otherwise, range computation starts
from 0. For all cases, stop value will be excluded in the output.

Creating an array with only stop argument

In []: np.arange(5)

Array creation using built-in functions | 187

Out[]: array([0, 1, 2, 3, 4])

Creating an array with start and stop arguments

In []: np.arange(3, 8)

Out[]: array([3, 4, 5, 6, 7])

Creating an array with given interval and step value

as 0.5

In []: np.arange(3, 8, 0.5)

Out[]: array([3. , 3.5, 4. , 4.5, 5. , 5.5, 6. , 6.5, 7. ,

7.5])

• linspace(start, stop, num=50, endpoint=True) returns evenly
spaced numbers over a specified interval. The number of samples
to be returned is specified by the num parameter. The endpoint of the
interval can optionally be excluded.

Creating an evenly spaced array with five numbers within

interval 2 to 3

In []: np.linspace(2.0, 3.0, num=5)

Out[]: array([2. , 2.25, 2.5 , 2.75, 3.])

Creating an array excluding end value

In []: np.linspace(2.0, 3.0, num=5, endpoint=False)

Out[]: array([2. , 2.2, 2.4, 2.6, 2.8])

Creating an array with ten values within the specified

interval

In []: np.linspace(11, 20, num=10)

Out[]: array([11., 12., 13., 14., 15., 16., 17., 18., 19.,

20.])

10.3 Random Sampling in NumPy

In addition to built-in functions discussed above, we have a random sub-
module within the NumPy that provides handy functions to generate data
randomly and draw samples from various distributions. Some of the
widely used such functions are discussed here.

188 | Chapter 10

• rand([d0, d1, ..., dn]) is used to create an array of a given shape
and populate it with random samples from a uniform distribution over
[0, 1). It takes only positive arguments. If no argument is provided,
a single float value is returned.

Generating single random number

In []: np.random.rand()

Out[]: 0.1380210268817208

Generating a one-dimensional array with four random

values

In []: np.random.rand(4)

Out[]: array([0.24694323, 0.83698849, 0.0578015,

0.42668907])

Generating a two-dimensional array

In []: np.random.rand(2, 3)

Out[]:

array([[0.79364317, 0.15883039, 0.75798628],

[0.82658529, 0.12216677, 0.78431111]])

• randn([d0, d1, ..., dn]) is used to create an array of the given
shape and populate it with random samples from a standard normal
distributions. It takes only positive arguments and generates an ar-
ray of shape (d0, d1, ..., dn) filled with random floats sampled
from a univariate normal distribution of mean 0 and variance 1. If
no argument is provided, a single float randomly sampled from the
distribution is returned.

Generating a random sample

In []: np.random.randn()

Out[]: 0.5569441449249491

Generating a two-dimensional array over N(0, 1)

In []: np.random.randn(2, 3)

Out[]:

array([[0.43363995, -1.04734652, -0.29569917],

[0.31077962, -0.49519421, 0.29426536]])

Random Sampling in NumPy | 189

Generating a two-dimensional array over N(3, 2.25)

In []: 1.5 * np.random.randn(2, 3) + 3

Out[]:

array([[1.75071139, 2.81267831, 1.08075029],

[3.35670489, 3.96981281, 1.7714606]])

• randint(low, high=None, size=None) returns a random integer
from a discrete uniform distribution with limits of low (inclusive) and
high (exclusive). If high is None (the default), then results are from 0
to low. If the size is specified, it returns an array of the specified size.

Generating a random integer between 0 and 6

In []: np.random.randint(6)

Out[]: 2

Generating a random integer between 6 and 9

In []: np.random.randint(6, 9)

Out[]: 7

Generating a one-dimensional array with values between 3

and 9

In []: np.random.randint(3, 9, size=5)

Out[]: array([6, 7, 8, 8, 5])

Generating a two-dimensional array with values between 3

and 9

In []: np.random.randint(3, 9, size=(2, 5))

Out[]:

array([[5, 7, 4, 6, 4],

[6, 8, 8, 5, 3]])

• random(size=None) returns a random float value between 0 and 1
which is drawn from the continuous uniform distribution.

Generating a random float

In []: np.random.random()

Out[]: 0.6013749764953444

Generating a one-dimensional array

190 | Chapter 10

In []: np.random.random(3)

Out[]: array([0.69929315, 0.61152299, 0.91313813])

Generating a two-dimensional array

In []: np.random.random((3, 2))

Out[]:

array([[0.55779547, 0.6822698],

[0.75476145, 0.224952],

[0.99264158, 0.02755453]])

• binomial(n, p, size=None) returns samples drawn from a binomial
distribution with n trials and p probability of success where n is
greater than 0 and p is in the interval of 0 and 1.

Number of trials, probability of each trial

In []: n, p = 1, .5

Flipping a coin 1 time for 50 times

In []: samples = np.random.binomial(n, p, 50)

In []: samples

Out[]:

array([1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0,

0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1,

0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0])

• normal(mu=0.0, sigma=1.0, size=None) draws random samples
from a normal (Gaussian) distribution. If no arguments provided, a
sample will be drawn from N(0, 1).

Initialize mu and sigma

In []: mu, sigma = 0, 0.1

Drawing 5 samples in a one-dimensional array

In []: np.random.normal(mu, sigma, 5)

Out[]: array([0.06790522, 0.0092956, 0.07063545,

0.28022021, -0.13597963])

Drawing 10 samples in a two-dimensional array of

Random Sampling in NumPy | 191

shape (2, 5)

In []: np.random.normal(mu, sigma, (2, 5))

Out[]:

array([[-0.10696306, -0.0147926, -0.07027478, 0.04399432,

-0.03861839],

[-0.02004485, 0.08760261, 0.18348247, -0.09351321,

-0.19487115]])

• uniform(low=0.0, high=1.0, size=None) draws samples from a
uniform distribution over the interval 0 (including) and 1 (excluding),
if no arguments are provided. In other words, any value drawn is
equally likely within the interval.

Creating a one-dimensional array with samples drawn

within [-1, 0)

In []: np.random.uniform(-1, 0, 10)

Out[]:

array([-0.7910379, -0.64144624, -0.64691011, -0.03817127,

-0.24480339, -0.82549031, -0.37500955, -0.88304322,

-0.35196588, -0.51377252])

Creating a two-dimensional array with samples drawn

within [0, 1)

In []: np.random.uniform(size=(5, 2))

Out[]:

array([[0.43155784, 0.41360889],

[0.81813931, 0.70115211],

[0.40003811, 0.2114227],

[0.95487774, 0.92251769],

[0.91042434, 0.98697917]])

In addition to functions shown above, we can draw samples from vari-
ous other distributions such as Poisson, Gamma, Exponential, etc. using
NumPy.

10.4 Array Attributes and Methods

We now have some idea about the working of NumPy arrays. Let us now
explore the functionalities provided by them. As with any Python object,

192 | Chapter 10

NumPy arrays also have a rich set of attributes and methods which sim-
plifies the data analysis process to a great extent. Following are the most
useful array attributes. For illustration purpose, we will be using previ-
ously defined arrays.

• ndim attribute displays the number of dimensions of an array. Using
this attribute on n_call_vol and pcr, we expect dimensions to be 1
and 2 respectively. Let’s check.

Checking dimensions for n_call_vol array

In []: np_call_vol.ndim

Out[]: 1

In []: n_2d.ndim

Out[]: 2

• shape returns a tuple with the dimensions of the array. It may also
be used to reshape the array in-place by assigning a tuple of array
dimensions to it.

Checking the shape of the one-dimensional array

In []: n_put_vol.shape

Out[]: (5,)

Checking shape of the two-dimensional array

In []: n_2d.shape

Out[]: (2, 5) # It shows 2 rows and 5 columns

Printing n_2d with 2 rows and 5 columns

In []: n_2d

Out[]:

array([[52.89, 45.14, 63.84, 77.1 , 74.6],

[49.51, 50.45, 59.11, 80.49, 65.11]])

Reshaping n_2d using the shape attribute

In []: n_2d.shape = (5, 2)

Printing reshaped array

In []: n_2d

Array Attributes and Methods | 193

Out[]:

array([[52.89, 45.14],

[63.84, 77.1],

[74.6 , 49.51],

[50.45, 59.11],

[80.49, 65.11]])

• size returns the number of elements in the array.

In []: n_call_vol.size

Out[]: 5

In []: n_2d.size

Out[]: 10

• dtype returns the data-type of the array’s elements. As we learned
above, NumPy comes with its own data type just like regular built-in
data types such as int, float, str, etc.

In []: n_put_vol.dtype

Out[]: dtype('float64')

A typical first step in analyzing a data is getting to the data in the first
place. In an ideal data analysis process, we generally have thousands of
numbers which need to be analyzed. Simply staring at these numbers
won’t provide us with any insights. Instead, what we can do is generate
summary statistics of the data. Among many useful features, NumPy
also provides various statistical functions which are good to perform such
statistics on arrays.

Let us create a samples array and populate it with samples drawn from
a normal distribution with a mean of 5 and standard deviation of 1.5 and
compute various statistics on it.

Creating a one-dimensional array with 1000 samples drawn

from a normal distribution

In []: samples = np.random.normal(5, 1.5, 1000)

Creating a two-dimensional array with 25 samples

194 | Chapter 10

drawn from a normal distribution

In []: samples_2d = np.random.normal(5, 1.5, size=(5, 5))

In []: samples_2d

Out[]:

array([[5.30338102, 6.29371936, 2.74075451, 3.45505812,

7.24391809],

[5.20554917, 5.33264245, 6.08886915, 5.06753721,

6.36235494],

[5.86023616, 5.54254211, 5.38921487, 6.77609903,

7.79595902],

[5.81532883, 0.76402556, 5.01475416, 5.20297957,

7.57517601],

[5.76591337, 1.79107751, 5.03874984, 5.05631362,

2.16099478]])

• mean(a, axis=None) returns the average of the array elements. The
average is computed over the flattened array by default, otherwise
over the specified axis.

• average(a, axis=None) returns the average of the array elements
and works similar to that of mean().

Computing mean

In []: np.mean(samples)

Out[]: 5.009649198007546

In []: np.average(samples)

Out[]: 5.009649198007546

Computing mean with axis=1 (over each row)

In []: np.mean(samples_2d, axis=1)

Out[]: array([5.00736622, 5.61139058, 6.27281024,

4.87445283, 3.96260983])

In []: np.average(samples_2d, axis=1)

Out[]: array([5.00736622, 5.61139058, 6.27281024,

4.87445283, 3.96260983])

Array Attributes and Methods | 195

• max(a, axis=None) returns the maximum of an array or maximum
along an axis.

In []: np.max(samples)

Out[]: 9.626572532562523

In []: np.max(samples_2d, axis=1)

Out[]: array([7.24391809, 6.36235494, 7.79595902,

7.57517601, 5.76591337])

• median(a, axis=None) returns the median along the specified axis.

In []: np.median(samples)

Out[]: 5.0074934668143865

In []: np.median(samples_2d)

Out[]: 5.332642448141249

• min(a, axis=None) returns the minimum of an array or minimum
along an axis.

In []: np.min(samples)

Out[]: 0.1551821703754115

In []: np.min(samples_2d, axis=1)

Out[]: array([2.74075451, 5.06753721, 5.38921487,

0.76402556, 1.79107751])

• var(a, axis=None) returns the variance of an array or along the spec-
ified axis.

In []: np.var(samples)

Out[]: 2.2967299389550466

In []: np.var(samples_2d)

Out[]: 2.93390175942658

The variance is computed over each column of numbers

In []: np.var(samples_2d, axis=0)

Out[]: array([0.07693981, 4.95043105, 1.26742732,

1.10560727, 4.37281009])

196 | Chapter 10

• std(a, axis=None) returns the standard deviation of an array or
along the specified axis.

In []: np.std(samples)

Out[]: 1.5154965981337756

In []: np.std(samples_2d)

Out[]: 1.7128636137844075

• sum(a, axis=None) returns the sum of array elements.

Recalling the array n_put_vol

In []: n_put_vol

Out[]: array([52.89, 45.14, 63.84, 77.1 , 74.6])

Computing sum of all elements within n_put_vol

In []: np.sum(n_put_vol)

Out[]: 313.57

Computing sum of all array over each row

In []: np.sum(samples_2d, axis=1)

Out[]: array([25.03683109, 28.05695291, 31.36405118,

24.37226413, 19.81304913])

• cumsum(a, axis=None) returns the cumulative sum of the elements
along a given axis.

In []: np.cumsum(n_put_vol)

Out[]: array([52.89, 98.03, 161.87, 238.97, 313.57])

The methods discussed above can also be directly called upon NumPy ob-
jects such as samples, n_put_vol, samples_2d, etc. instead of using the np.

format as shown below. The output will be the same in both cases.

Using np. format to compute the sum

In []: np.sum(samples)

Out[]: 5009.649198007546

Calling sum() directly on a NumPy object

In []: samples.sum()

Out[]: 5009.649198007546

Array Attributes and Methods | 197

10.5 Array Manipulation

NumPy defines a new data type called ndarray for the array object it cre-
ates. This also means that various operators such as arithmetic operators,
logical operator, boolean operators, etc. work in ways unique to it as we’ve
seen so far. There’s a flexible and useful array manipulation technique that
NumPy provides to use on its data structure using broadcasting.

The term broadcasting describes how NumPy treats arrays with different
shapes during arithmetic operations (with certain constraints). The smaller
array is ’broadcast’ across the larger array so that they have compatible
shapes. It also provides a mean of vectorizing array operations.

NumPy operations are usually done on pairs of arrays on an element-by-
element basis. In the simplest case, the two arrays must have exactly the
same shape as in the following example.

In []: a = np.array([1, 2, 3])

In []: b = np.array([3, 3, 3])

In []: a * b

Out[]: array([3, 6, 9])

NumPy’s broadcasting rule relaxes this constraint when the array’s shapes
meet certain constraints. The simplest broadcasting example occurs when
an array and a scalar value are combined in operation as depicted below:

In []: a = np.array([1, 2, 3])

In []: b = 3

In []: a * b

Out[]: array([3, 6, 9])

The result is equivalent to the previous example where b was an array.
We can think of the scalar b in the above example being stretched during
the arithmetic operation into an array with the same shape as a. The
new elements in b are simply copies of the original scalar. Here, the

198 | Chapter 10

stretching analogy is only conceptual. NumPy is smart enough to use
the original scalar value without actually making copies so that broad-
casting operations are as memory and computationally efficient as possible.

The code in the last example is more efficient because broadcasting moves
less memory around during the multiplication than that of its counter-
part defined above it. Along with efficient number processing capabili-
ties, NumPy also provides various methods for array manipulation thereby
proving versatility. We discuss some of them here.

• exp(*args) returns the exponential of all elements in the input array.
The numbers will be raised to e also known as Euler’s number.

Computing exponentials for the array 'a'

In []: np.exp(a)

Out[]: array([2.71828183, 7.3890561, 20.08553692])

• sqrt(*args) returns the positive square-root of an array, element-
wise.

Computing square roots of a given array

In []: np.sqrt([1, 4, 9, 16, 25])

Out[]: array([1., 2., 3., 4., 5.])

• reshape(new_shape) gives a new shape to an array without changing
its data.

Creating a one-dimensional array with 12 elements

In []: res = np.arange(12)

In []: res

Out[]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

Reshaping the 'res' array to 2-dimensional array

In []: np.reshape(res, (3, 4))

Out[]:

array([[0, 1, 2, 3],

[4, 5, 6, 7],

[8, 9, 10, 11]])

Array Manipulation | 199

Reshaping the dimensions from (3, 4) to (2, 6)

In []: np.reshape(res, (2, 6))

Out[]:

array([[0, 1, 2, 3, 4, 5],

[6, 7, 8, 9, 10, 11]])

• resize(a, new_shape) return a new array with the specified shape.
If the new array is larger than the original array, then the new array is
filled with repeated copies of a.

Creating a one-dimensional array

In []: demo = np.arange(4)

In []: demo

Out[]: array([0, 1, 2, 3])

Resizing a 'demo' array to (2, 2)

In []: np.resize(demo, (2, 2))

Out[]:

array([[0, 1],

[2, 3]])

Resizing a 'demo' greater than its size.

In []: np.resize(demo, (4, 2))

Out[]:

array([[0, 1],

[2, 3],

[0, 1],

[2, 3]])

• round(a, decimals=0) round an array to the given number of deci-
mals. If decimals are not given, elements will be rounded to the whole
number.

Creating a one-dimensional array

In []: a = np.random.rand(5)

Printing array

200 | Chapter 10

In []: a

Out[]: array([0.71056952, 0.58306487, 0.13270092,

0.38583513, 0.7912277])

Rounding to 0 decimals

In []: a.round()

Out[]: array([1., 1., 0., 0., 1.])

Rounding to 0 decimals using the np.round syntax

In []: np.round(a)

Out[]: array([1., 1., 0., 0., 1.])

Rounding to 2 decimals

In []: a.round(2)

Out[]: array([0.71, 0.58, 0.13, 0.39, 0.79])

Rounding to 3 decimals using the np.round syntax

In []: np.round(a, 3)

Out[]: array([0.711, 0.583, 0.133, 0.386, 0.791])

• sort(a, kind='quicksort') returns a sorted copy of an array. The
default sorting algorithm used is quicksort. Other available options
are mergesort and heapsort.

In []: np.sort(n_put_vol)

Out[]: array([45.14, 52.89, 63.84, 74.6 , 77.1])

In []: np.sort(samples_2d)

Out[]:

array([[2.74075451, 3.45505812, 5.30338102, 6.29371936,

7.24391809],

[5.06753721, 5.20554917, 5.33264245, 6.08886915,

6.36235494],

[5.38921487, 5.54254211, 5.86023616, 6.77609903,

7.79595902],

[0.76402556, 5.01475416, 5.20297957, 5.81532883,

7.57517601],

[1.79107751, 2.16099478, 5.03874984, 5.05631362,

5.76591337]])

Array Manipulation | 201

• vstack(tup) stacks arrays provided via tup in sequence vertically
(row wise).

• hstack(tup) stacks arrays provided via tup in sequence horizontally
(column wise).

• column_stack(tup) stacks 1-dimensional arrays as column into a 2-
dimensional array. It takes a sequence of 1-D arrays and stacks them
as columns to make a single 2-D array.

Creating sample arrays

In []: a = np.array([1, 2, 3])

In []: b = np.array([4, 5, 6])

In []: c = np.array([7, 8, 9])

Stacking arrays vertically

In []: np.vstack((a, b, c))

Out[]:

array([[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

Stacking arrays horizontally

In []: np.hstack((a, b, c))

Out[]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])

Stacking two arrays together

In []: np.column_stack((a, b))

Out[]:

array([[1, 4],

[2, 5],

[3, 6]])

Stacking three arrays together

In []: np.column_stack((a, b, c))

Out[]:

array([[1, 4, 7],

202 | Chapter 10

[2, 5, 8],

[3, 6, 9]])

• transpose() permutes the dimensions of an array.

Creating a two-dimensional array with shape (2, 4)

In []: a = np.arange(8).reshape(2, 4)

Printing it

In []: a

Out[]:

array([[0, 1, 2, 3],

[4, 5, 6, 7]])

Transposing the array

In []: a.transpose()

Out[]:

array([[0, 4],

[1, 5],

[2, 6],

[3, 7]])

10.6 Array Indexing and Iterating

NumPy is an excellent library for efficient number crunching along with
ease of use. It seamlessly integrates with Python and its syntax. Following
this attribute, NumPy provides subsetting and iterating techniques very
similar to lists. We can use square brackets to subset NumPy arrays, Python
built-in constructs to iterate, and other built-in methods to slice them.

10.6.1 Indexing and Subsetting

NumPy arrays follow indexing structure similar to Python lists. Index
starts with 0 and each element in an array is associated with a unique index.
Below table shows NumPy indexing for a one-dimensional array.

Index 0 1 2 3 4

np.array 52 88 41 63 94

Array Indexing and Iterating | 203

The index structure for a two-dimensional array with a shape of (3, 3) is
shown below.

Index 0 1 2

0 a b c
1 d e f
2 g h i

The two arrays arr_1d and arr_2d which depicts the above-shown struc-
ture have been created below:

Creating one-dimensional array

In []: arr_1d = np.array([52, 88, 41, 63, 94])

Creating two-dimensional array

In []: arr_2d = np.array([['a', 'b', 'c'],

...: ['d', 'e', 'f'],

...: ['g', 'h', 'i']])

We use square brackets [] to subset each element from NumPy arrays. Let
us subset arrays created above using indexing.

Slicing the element at index 0

In []: arr_1d[0]

Out[]: 52

Slicing the last element using negative index

In []: arr_1d[-1]

Out[]: 94

Slicing elements from position 2 (inclusive) to

5 (exclusive)

In []: arr_1d[2:5]

Out[]: array([41, 63, 94])

In the above examples, we sliced a one-dimensional array. Similarly, square
brackets also allow slicing two-dimensional using the syntax [r, c] where
r is a row and c is a column.

204 | Chapter 10

Slicing the element at position (0, 1)

In []: arr_2d[0, 1]

Out[]: 'b'

Slicing the element at position (1, 2)

In []: arr_2d[1, 2]

Out[]: 'f'

Slicing the element at position (2, 0)

In []: arr_2d[2, 0]

Out[]: 'g'

Slicing the first row

In []: arr_2d[0,]

Out[]: array(['a', 'b', 'c'], dtype='<U1')

Slicing the last column

In []: arr_2d[:, 2]

Out[]: array(['c', 'f', 'i'], dtype='<U1')

Notice the syntax in the last example where we slice the last column. The :

has been provided as an input which denotes all elements and then filtering
the last column. Using only : would return us all elements in the array.

In []: arr_2d[:]

Out[]:

array([['a', 'b', 'c'],

['d', 'e', 'f'],

['g', 'h', 'i']], dtype='<U1')

10.6.2 Boolean Indexing

NumPy arrays can be indexed with other arrays (or lists). The arrays used
for indexing other arrays are known as index arrays. Mostly, it is a sim-
ple array which is used to subset other arrays. The use of index arrays
ranges from simple, straightforward cases to complex and hard to under-
stand cases. When an array is indexed using another array, a copy of the
original data is returned, not a view as one gets for slices. To illustrate:

Array Indexing and Iterating | 205

Creating an array

In []: arr = np.arange(1, 10)

Printing the array

In []: arr

Out[]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])

Subsetting the array `arr` using an anonymous array

In []: arr[np.array([2, 5, 5, 1])]

Out[]: array([3, 6, 6, 2])

We create an array arr with ten elements in the above example. Then we
try to subset it using an anonymous index array. The index array consisting
of the values 2, 5, 5 and 1 correspondingly create an array of length 4,
i.e. same as the length index array. Values in the index array work as an
index to subset (in the above-given operation) and it simply returns the
corresponding values from the arr.

Extending this concept, an array can be indexed with itself. Using logical
operators, NumPy arrays can be filtered as desired. Consider a scenario,
where we need to filter array values which are greater than a certain thresh-
old. This is shown below:

Creating an random array with 20 values

In []: rand_arr = np.random.randint(1, 50, 20)

Printing the array

In []: rand_arr

Out[]:

array([14, 25, 39, 18, 40, 10, 33, 36, 29, 25, 27, 4, 28,

43, 43, 19, 30,29, 47, 41])

Filtering the array values which are greater than 30

In []: rand_arr[rand_arr > 30]

Out[]: array([39, 40, 33, 36, 43, 43, 47, 41])

Here, we create an array with the name rand_arr with 20 random values.
We then try to subset it with values which are greater than 30 using the
logical operator >. When an array is being sliced using the logical operator,

206 | Chapter 10

NumPy generates an anonymous array of True and False values which is
then used to subset the array. To illustrate this, let us execute the code used
to subset the rand_arr, i.e. code written within the square brackets.

In []: filter_ = rand_arr > 30

In []: filter_

Out[]:

array([False, False, True, False, True, False, True,

True, False, False, False, False, False, True,

True, False, False, False, True, True])

It returned a boolean array with only True and False values. Here, True
appears wherever the logical condition holds true. NumPy uses this
outputted array to subset the original array and returns only those values
where it is True.

Apart from this approach, NumPy provides a where method using which
we can achieve the same filtered output. We pass a logical condition within
where condition, and it will return an array with all values for which condi-
tions stands true. We filter out all values greater than 30 from the rand_arr

using the where condition in the following example:

Filtering an array using np.where method

In []: rand_arr[np.where(rand_arr > 30)]

Out[]: array([39, 40, 33, 36, 43, 43, 47, 41])

We got the same result by executing rand_arr[rand_arr > 30] and
rand_arr[np.where(rand_arr > 30)]. However, the where method pro-
vided by NumPy just do not filter values. Instead, it can be used for more
versatile scenarios. Below given is the official syntax:

np.where[condition[, x, y]]

It returns the elements, either from x or y, depending on condition. As
these parameters, x and y are optional, condition when true yields x if
given or boolean True, otherwise y or boolean False.

Below we create an array heights that contains 20 elements with height
ranging from 150 to 160 and look at various uses of where method.

Array Indexing and Iterating | 207

Creating an array heights

In []: heights = np.random.uniform(150, 160, size=20)

In []: heights

Out[]:

array([153.69911134, 154.12173942, 150.35772942,

151.53160722, 153.27900307, 154.42448961,

153.25276742, 151.08520803, 154.13922276,

159.71336708, 151.45302507, 155.01280829,

156.9504274 , 154.40626961, 155.46637317,

156.36825413,151.5096344 , 156.75707004,

151.14597394, 153.03848597])

Usage 1: Without x and y parameters. Using the where method without the
optional parameter as illustrated in the following example would return
the index values of the original array where the condition is true.

In []: np.where(heights > 153)

Out[]:

(array([0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 17, 19],

dtype=int64),)

The above codes returned index values of the heights array where values
are greater than 153. This scenario is very similar to the one we have seen
above with the random array rand_arr where we tried to filter values
above 30. Here, the output is merely the index values. If we want the
original values, we need to subset the heights array using the output that
we obtained.

Usage 2: With x as True and y as False. Having these optional parameters
in place would return either of the parameters based on the condition. This
is shown in the below example:

In []: np.where(heights > 153, True, False)

Out[]:

array([True, True, False, False, True, True, True, False,

True, True, False, True, True, True, True, True,

False, True,False, True])

208 | Chapter 10

The output in the Usage 2 provides either True or False for all the elements
in the heights array in contrast to the Usage 1 where it returned index
values of only those elements where the condition was true. The optional
parameters can also be array like elements instead of scalars or static value
such as True or False.

Usage 3: With x and y being arrays. Now that we have quite a good un-
derstanding of how the where method works, it is fairly easy to guess the
output. The output will contain values from either x array or y array based
on the condition in the first argument. For example:

Creating an array 'x_array'

In []: x_array = np.arange(11, 31, 1)

In []: x_array

Out[]:

array([11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30])

Creating an array 'y_array'

In []: y_array = np.arange(111, 131, 1)

In []: y_array

Out[]:

array([111, 112, 113, 114, 115, 116, 117, 118, 119, 120,

121, 122, 123, 124, 125, 126, 127, 128, 129, 130])

In []: np.where(heights > 153, x_array, y_array)

Out[]:

array([11, 12, 113, 114, 15, 16, 17, 118, 19, 20,

121, 22, 23, 24, 25, 26, 127, 28, 129, 30])

As expected, the output of the above code snippet contains values from
the array x_array when the value in the heights array is greater than 153,
otherwise, the value from the y_array will be outputted.

Having understood the working of where method provided by the NumPy
library, let us now see how it is useful in back-testing strategies. Consider a
scenario where we have all the required data for generating trading signals.

Array Indexing and Iterating | 209

Data that we have for this hypothetical example is the close price of a stock
for 20 periods and its average price.

Hypothetical close prices for 20 periods

In []: close_price = np.random.randint(132, 140, 20)

Printing close_price

In []: close_price

Out[]:

array([137, 138, 133, 132, 134, 139, 132, 138, 137, 135,

136, 134, 134, 139, 135, 133, 136, 139, 132, 134])

We are to generate trading signals based on the buy condition given to us.
i.e. we go long or buy the stock when the closing price is greater than the
average price of 135.45. It can be easily computed using the where method
as shown below:

Average close price

In []: avg_price = 135.45

Computing trading signals with 1 being 'buy' and 0

represents 'no signal'

In []: signals = np.where(close_price > avg_price, 1, 0)

Printing signals

In []: signals

Out[]: array([1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0,

0, 1, 1, 0, 0])

The signals array contains the trading signals where 1 represents the buy

and 0 represents no trading signal.

10.6.3 Iterating Over Arrays

NumPy arrays are iterable objects in Python which means that we can di-
rectly iterate over them using the iter() and next() methods as with any
other iterable. This also implies that we can use built-in looping constructs
to iterate over them. The following examples show iterating NumPy arrays
using a for loop.

210 | Chapter 10

Looping over a one-dimensional array

In []: for element in arr_1d:

...: print(element)

Output

52

88

41

63

94

Looping over a one-dimensional array is easy and straight forward. But, if
we are to execute the for loop with arr_2d, it will be traverse all rows and
provide that as the output. It is demonstrated in the following example.

In []: for element in arr_2d:

...: print(element)

Output

['a' 'b' 'c']

['d' 'e' 'f']

['g' 'h' 'i']

To iterate over two-dimensional arrays, we need to take care of both axes.
A separate for loop can be used in a nested format to traverse through each
element as shown below:

In []: for element in arr_2d:

...: for e in element:

...: print(e)

Output

a

b

c

d

e

f

g

Array Indexing and Iterating | 211

h

i

The output that we got can also be achieved using nditer() method of
NumPy, and it works for irrespective of dimensions.

In []: for element in np.nditer(arr_2d):

...: print(element)

Output

a

b

c

d

e

f

g

h

i

This brings us to the end of a journey with the NumPy module. The exam-
ples provided above depicts only a minimal set of NumPy functionalities.
Though not comprehensive, it should give us a pretty good feel about what
is NumPy and why we should be using it.

10.7 Key Takeaways

1. NumPy library is used to perform scientific computing in Python.
2. It is not a part of the Python Standard Library and needs to be in-

stalled explicitly before it can be used in a program.
3. It allows creating n-dimensional arrays of the type ndarray.
4. NumPy arrays can hold elements of single data type only.
5. They can be created using any sequential data structures such as lists

or tuples, or using built-in NumPy functions.
6. The random module of the NumPy library allows generating samples

from various data distributions.
7. NumPy supports for element-wise operation using broadcast func-

tionality.

212 | Chapter 10

8. Similar to lists, NumPy arrays can also be sliced using square brackets
[] and starts indexing with 0.

9. It is also possible to slice NumPy arrays based on logical conditions.
The resultant array would be an array of boolean True or False based
on which other arrays are sliced or filtered. This is known as boolean
indexing.

Key Takeaways | 213

214 | Chapter 10

Chapter 11

Pandas Module

Pandas is a Python library to deal with sequential and tabular data. It in-
cludes many tools to manage, analyze and manipulate data in a convenient
and efficient manner. We can think of its data structures as akin to database
tables or spreadsheets.

Pandas is built on top of the Numpy library and has two primary data struc-
tures viz. Series (1-dimensional) and DataFrame (2- dimensional). It can
handle both homogeneous and heterogeneous data, and some of its many
capabilities are:

• ETL tools (Extraction, Transformation and Load tools)
• Dealing with missing data (NaN)
• Dealing with data files (csv, xls, db, hdf5, etc.)
• Time-series manipulation tools

In the Python ecosystem, Pandas is the best choice to retrieve, manipulate,
analyze and transform financial data.

11.1 Pandas Installation

The official documentation1 has a detailed explanation that spans over sev-
eral pages on installing Pandas. We summarize it below.

1https://pandas.pydata.org/pandas-docs/stable/install.html

215

11.1.1 Installing with pip

The simplest way to install Pandas is from PyPI.
In a terminal window, run the following command.

pip install pandas

In your code, you can use the escape character ’!’ to install pandas directly
from your Python console.

!pip install pandas

Pip is a useful tool to manage Python’s packages and it is worth investing
some time in knowing it better.

pip help

11.1.2 Installing with Conda environments

For advanced users, who like to work with Python environments for each
project, you can create a new environment and install pandas as shown
below.

conda create -n EPAT python

source activate EPAT

conda install pandas

11.1.3 Testing Pandas installation

To check the installation, Pandas comes with a test suite to test almost all of
the codebase and verify that everything is working.

import pandas as pd

pd.test()

11.2 What problem does Pandas solve?

Pandas works with homogeneous data series (1-Dimension) and heteroge-
neous tabular data series (2-Dimensions). It includes a multitude of tools to
work with these data types, such as:

216 | Chapter 11

• Indexes and labels.
• Searching of elements.
• Insertion, deletion and modification of elements.
• Apply set techniques, such as grouping, joining, selecting, etc.
• Data processing and cleaning.
• Work with time series.
• Make statistical calculations
• Draw graphics
• Connectors for multiple data file formats, such as, csv, xlsx, hdf5, etc.

11.3 Pandas Series

The first data structure in Pandas that we are going to see is the Series.
They are homogeneous one-dimensional objects, that is, all data are of the
same type and are implicitly labeled with an index.

For example, we can have a Series of integers, real numbers, characters,
strings, dictionaries, etc. We can conveniently manipulate these series
performing operations like adding, deleting, ordering, joining, filtering,
vectorized operations, statistical analysis, plotting, etc.

Let’s see some examples of how to create and manipulate a Pandas Series:

• We will start by creating an empty Pandas Series:

import pandas as pd

s = pd.Series()

print(s)

Out[]: Series([], dtype: float64)

• Let’s create a Pandas Series of integers and print it:

import pandas as pd

s = pd.Series([1, 2, 3, 4, 5, 6, 7])

print(s)

Out[]: 0 1

Pandas Series | 217

1 2

2 3

3 4

4 5

5 6

6 7

dtype: int64

• Let’s create a Pandas Series of characters:

import pandas as pd

s = pd.Series(['a', 'b', 'c', 'd', 'e'])

print(s)

Out[]: 0 1

1 2

2 3

3 4

4 5

5 6

6 7

dtype: int64

• Let’s create a random Pandas Series of float numbers:

import pandas as pd

import numpy as np

s = pd.Series(np.random.randn(5))

print(s)

Out[]: 0 0.383567

1 0.869761

2 1.100957

3 -0.259689

4 0.704537

dtype: float64

In all these examples, we have allowed the index label to appear by default
(without explicitly programming it). It starts at 0, and we can check the
index as:

218 | Chapter 11

In []: s.index

Out[]: RangeIndex(start=0, stop=5, step=1)

But we can also specify the index we need, for example:

In []: s = pd.Series(np.random.randn(5),

index=['a', 'b', 'c', 'd', 'e'])

Out[]: a 1.392051

b 0.515690

c -0.432243

d -0.803225

e 0.832119

dtype: float64

• Let’s create a Pandas Series from a dictionary:

import pandas as pd

dictionary = {'a':1, 'b':2, 'c':3, 'd':4, 'e':5}

s = pd.Series(dictionary)

print(s)

Out[]: a 1

b 2

c 3

d 4

e 5

dtype: int64

In this case, the Pandas Series is created with the dictonary keys as index
unless we specify any other index.

11.3.1 Simple operations with Pandas Series

When we have a Pandas Series, we can perform several simple operations
on it. For example, let’s create two Series. One from a dictionary and the
other from an array of integers:

Pandas Series | 219

In []: import pandas as pd

dictionary = {'a' : 1, 'b' : 2, 'c' : 3, 'd': 4,

'e': 5}

s1 = pd.Series(dictionary)

array = [1, 2, 3, 4, 5]

s2 = pd.Series(array)

Out[]: a 1

b 2

c 3

d 4

e 5

dtype: int64

0 1

1 2

2 3

3 4

4 5

dtype: int64

We can perform operations similar to Numpy arrays:

• Selecting one item from the Pandas Series by means of its index:

In []: s1[0] # Select the first element

Out[]: 1

In []: s1['a']

Out[]: 1

In []: s2[0]

Out[]: 1

• Selecting several items from the Pandas Series by means of its index:

In []: s1[[1, 4]]

Out[]: b 2

220 | Chapter 11

e 5

dtype: int64

In []: s1[['b', 'e']]

Out[]: b 2

e 5

dtype: int64

In []: s2[[1, 4]]

Out[]: b 2

e 5

dtype: int64

• Get the series starting from an element:

In []: s1[2:]

Out[]: c 3

d 4

e 5

dtype: int64

In []: s2[2:]

Out[]: 2 3

3 4

4 5

dtype: int64

• Get the series up to one element:

In []: s1[:2]

Out[]: c 3

d 4

e 5

dtype: int64

In []: s2[:2]

Out[]: 2 3

3 4

4 5

dtype: int64

Pandas Series | 221

We can perform operations like a dictionary:

• Assign a value:

In []: s1[1] = 99

s1['a'] = 99

Out[]: a 1

b 99

c 3

d 4

e 5

dtype: int64

In []: s2[1] = 99

print(s2)

Out[]: 0 1

1 99

2 3

3 4

4 5

dtype: int64

• Get a value by index (like dictionary key):

In []: s.get('b')

Out[]: 2

Here are some powerful vectorized operations that let us perform quickly
calculations, for example:

• Add, subtract, multiply, divide, power, and almost any NumPy func-
tion that accepts NumPy arrays.

s1 + 2

s1 - 2

s1 * 2

s1 / 2

s1 ** 2

np.exp(s1)

222 | Chapter 11

• We can perform the same operations over two Pandas Series although
these must be aligned, that is, to have the same index, in other case,
perform a Union operation.

In []: s1 + s1 # The indices are aligned

Out[]: a 2

b 4

c 6

d 8

e 10

dtype: int64

In []: s1 + s2 # The indices are unaligned

Out[]: a NaN

b NaN

c NaN

d NaN

e NaN

0 NaN

1 NaN

2 NaN

3 NaN

4 NaN

dtype: float64

11.4 Pandas DataFrame

The second data structure in Pandas that we are going to see is the
DataFrame.

Pandas DataFrame is a heterogeneous two-dimensional object, that is, the
data are of the same type within each column but it could be a different
data type for each column and are implicitly or explicitly labeled with an
index.

We can think of a DataFrame as a database table, in which we store
heterogeneous data. For example, a DataFrame with one column for the
first name, another for the last name and a third column for the phone

Pandas DataFrame | 223

number, or a dataframe with columns to store the opening price, close
price, high, low, volume, and so on.

The index can be implicit, starting with zero or we can specify it ourselves,
even working with dates and times as indexes as well. Let’s see some ex-
amples of how to create and manipulate a Pandas DataFrame.

• Creating an empty DataFrame:

In []: import pandas as pd

s = pd.DataFrame()

print(s)

Out[]: Empty DataFrame

Columns: []

Index: []

• Creating an empty structure DataFrame:

In []: import pandas as pd

s = pd.DataFrame(columns=['A', 'B', 'C', 'D', 'E'])

print(s)

Out[]: Empty DataFrame

Columns: [A, B, C, D, E]

Index: []

In []: import pandas as pd

s = pd.DataFrame(columns=['A', 'B', 'C', 'D', 'E'],

index=range(1, 6))

print(s)

Out[]: A B C D E

1 NaN NaN NaN NaN NaN

2 NaN NaN NaN NaN NaN

3 NaN NaN NaN NaN NaN

4 NaN NaN NaN NaN NaN

5 NaN NaN NaN NaN NaN

• Creating a DataFrame passing a NumPy array:

224 | Chapter 11

In []: array = {'A' : [1, 2, 3, 4],

'B' : [4, 3, 2, 1]}

pd.DataFrame(array)

Out[]: A B

0 1 4

1 2 3

2 3 2

3 4 1

• Creating a DataFrame passing a NumPy array, with datetime index:

In []: import pandas as pd

array = {'A':[1, 2, 3, 4], 'B':[4, 3, 2, 1]}

index = pd.DatetimeIndex(['2018-12-01',

'2018-12-02',

'2018-12-03',

'2018-12-04'])

pd.DataFrame(array, index=index)

Out[]: A B

2018-12-01 1 4

2018-12-02 2 3

2018-12-03 3 2

2018-12-04 4 1

• Creating a DataFrame passing a Dictionary:

In []: import pandas as pd

dictionary = {'a':1, 'b':2, 'c':3, 'd':4, 'e': 5}

pd.DataFrame([dictionary])

Out[]: a b c d e

0 1 2 3 4 5

• Viewing a DataFrame: We can use some methods to explore the Pan-
das DataFrame:

First, we go to create a Pandas DataFrame to work with it.

Pandas DataFrame | 225

In []: import pandas as pd

pd.DataFrame({'A':np.random.randn(10),

'B':np.random.randn(10),

'C':np.random.randn(10)})

Out[]: A B C

0 0.164358 1.689183 1.745963

1 -1.830385 0.035618 0.047832

2 1.304339 2.236809 0.920484

3 0.365616 1.877610 -0.287531

4 -0.741372 -1.443922 -1.566839

5 -0.119836 -1.249112 -0.134560

6 -0.848425 -0.569149 -1.222911

7 -1.172688 0.515443 1.492492

8 0.765836 0.307303 0.788815

9 0.761520 -0.409206 1.298350

• Get the first three rows:

In []: import pandas as pd

df=pd.DataFrame({'A':np.random.randn(10),

'B':np.random.randn(10),

'C':np.random.randn(10)})

df.head(3)

Out[]: A B C

0 0.164358 1.689183 1.745963

1 -1.830385 0.035618 0.047832

2 1.304339 2.236809 0.920484

• Get the last three rows:

In []: import pandas as pd

df=pd.DataFrame({'A':np.random.randn(10),

'B':np.random.randn(10),

'C':np.random.randn(10)})

df.tail(3)

226 | Chapter 11

Out[]: A B C

7 -1.172688 0.515443 1.492492

8 0.765836 0.307303 0.788815

9 0.761520 -0.409206 1.298350

• Get the DataFrame’s index:

In []: import pandas as pd

df=pd.DataFrame({'A':np.random.randn(10),

'B':np.random.randn(10),

'C':np.random.randn(10)})

df.index

Out[]: RangeIndex(start=0, stop=10, step=1)

• Get the DataFrame’s columns:

In []: import pandas as pd

df=pd.DataFrame({'A':np.random.randn(10),

'B':np.random.randn(10),

'C':np.random.randn(10)})

df.columns

Out[]: Index(['A', 'B', 'C'], dtype='object')

• Get the DataFrame’s values:

In []: import pandas as pd

df=pd.DataFrame({'A':np.random.randn(10),

'B':np.random.randn(10),

'C':np.random.randn(10)})

df.values

Out[]: array([[0.6612966 , -0.60985049, 1.11955054],

[-0.74105636, 1.42532491, -0.74883362],

[0.10406892, 0.5511436 , 2.63730671],

[-0.73027121, -0.11088373, -0.19143175],

[0.11676573, 0.27582786, -0.38271609],

[0.51073858, -0.3313141 , 0.20516165],

Pandas DataFrame | 227

[0.23917755, 0.55362 , -0.62717194],

[0.25565784, -1.4960713 , 0.58886377],

[1.20284041, 0.21173483, 2.0331718],

[0.62247283, 2.18407105, 0.02431867]])

11.5 Importing data in Pandas

Pandas DataFrame is able to read several data formats, some of the most
used are: CSV, JSON, Excel, HDF5, SQL, etc.

11.5.1 Importing data from CSV file

One of the most useful functions is read_csv that allows us to read csv files
with almost any format and load it into our DataFrame to work with it.
Let’s see how to work with csv files:

import pandas as pd

df=pd.read_csv('Filename.csv')

type(df)

Out[]: pandas.core.frame.DataFrame

This simple operation, loads the csv file into the Pandas DataFrame after
which we can explore it as we have seen before.

11.5.2 Customizing pandas import

Sometimes the format of the csv file come with a particular separator or we
need specific columns or rows. We will now see some ways to deal with
this.

In this example, we want to load a csv file with blank space as separator:

import pandas as pd

df=pd.read_csv('Filename.csv', sep=' ')

In this example, we want to load columns from 0 and 5 and the first 100
rows:

228 | Chapter 11

import pandas as pd

df=pd.read_csv('Filename.csv', usecols=[0, 1, 2, 3, 4, 5],

nrows=100)

It’s possible to customize the headers, convert the columns or rows names
and carry out a good number of other operations.

11.5.3 Importing data from Excel files

In the same way that we have worked with csv files, we can work with
Excel file with the read_excel function, let’s see some examples:
In this example, we want to load the sheet 1 from an Excel file:

import pandas as pd

df=pd.read_excel('Filename.xls', sheet_name='Sheet1')

This simple operation, loads the Sheet 1 from the Excel file into the Pandas
DataFrame.

11.6 Indexing and Subsetting

Once we have the Pandas DataFrame prepared, independent of the source
of our data (csv, Excel, hdf5, etc.) we can work with it, as if it were a
database table, selecting the elements that interest us. We will work with
some some examples on how to index and extract subsets of data.

Let’s begin with loading a csv file having details of a market instrument.

In []: import pandas as pd

df=pd.read_csv('MSFT.csv',

usecols=[0, 1, 2, 3, 4])

df.head()

df.shape

Out[]: Date Open High Low Close

0 2008-12-29 19.15 19.21 18.64 18.96

1 2008-12-30 19.01 19.49 19.00 19.34

2 2008-12-31 19.31 19.68 19.27 19.44

Indexing and Subsetting | 229

3 2009-01-02 19.53 20.40 19.37 20.33

4 2009-01-05 20.20 20.67 20.06 20.52

(1000, 5)

Here, we have read a csv file, of which we only need the columns of date,
opening, closing, high and low (the first 5 columns) and we check the form
of the DataFrame that has 1000 rows and 5 columns.

11.6.1 Selecting a single column

In the previous code, we have read directly the first 5 columns from the
csv file. This is a filter that we applied, because we were only interested in
those columns.

We can apply selection filters to the DataFrame itself, to select one column
to work with. For example, we could need the Close column:

In []: close=df['Close']

close.head()

Out[]: Close

0 18.96

1 19.34

2 19.44

3 20.33

4 20.52

11.6.2 Selecting multiple columns

We can select multiple columns too:

In []: closevol=df[['Close', 'Volume']]

closevol.head()

Out[]: Close Volume

0 18.96 58512800.0

1 19.34 43224100.0

2 19.44 46419000.0

230 | Chapter 11

3 20.33 50084000.0

4 20.52 61475200.0

11.6.3 Selecting rows via []

We can select a set of rows by index:

In []: import pandas as pd

df=pd.read_csv('TSLA.csv')

df[100:110]

Out[]:

Date Open ... AdjVolume Name

100 2017-10-30 319.18 ... 4236029.0 TSLA
101 2017-10-27 319.75 ... 6942493.0 TSLA
102 2017-10-26 327.78 ... 4980316.0 TSLA
103 2017-10-25 336.70 ... 8547764.0 TSLA
104 2017-10-24 338.80 ... 4463807.0 TSLA
105 2017-10-23 349.88 ... 5715817.0 TSLA
106 2017-10-20 352.69 ... 4888221.0 TSLA
107 2017-10-19 355.56 ... 5032884.0 TSLA
108 2017-10-18 355.97 ... 4898808.0 TSLA
109 2017-10-17 350.91 ... 3280670.0 TSLA

Or we can select a set of rows and columns:

In []: df[100:110][['Close', 'Volume']]

Out[]:

Close Volume

100 320.08 4236029.0

101 320.87 6942493.0

102 326.17 4980316.0

103 325.84 8547764.0

104 337.34 4463807.0

105 337.02 5715817.0

106 345.10 4888221.0

Indexing and Subsetting | 231

107 351.81 5032884.0

108 359.65 4898808.0

109 355.75 3280670.0

11.6.4 Selecting via .loc[] (By label)

With df.loc we can do the same selections using labels:
To select a set of rows, we can code the following using the index number
as label:

In []: df.loc[100:110]

Out[]:

Date Open ... AdjVolume Name

100 2017-10-30 319.18 ... 4236029.0 TSLA
101 2017-10-27 319.75 ... 6942493.0 TSLA
102 2017-10-26 327.78 ... 4980316.0 TSLA
103 2017-10-25 336.70 ... 8547764.0 TSLA
104 2017-10-24 338.80 ... 4463807.0 TSLA
105 2017-10-23 349.88 ... 5715817.0 TSLA
106 2017-10-20 352.69 ... 4888221.0 TSLA
107 2017-10-19 355.56 ... 5032884.0 TSLA
108 2017-10-18 355.97 ... 4898808.0 TSLA
109 2017-10-17 350.91 ... 3280670.0 TSLA

Or we can select a set of rows and columns like before:

In []: df.loc[100:110, ['Close', 'Volume']]

Out[]:

Close Volume

100 320.08 4236029.0

101 320.87 6942493.0

102 326.17 4980316.0

103 325.84 8547764.0

104 337.34 4463807.0

105 337.02 5715817.0

106 345.10 4888221.0

232 | Chapter 11

107 351.81 5032884.0

108 359.65 4898808.0

109 355.75 3280670.0

110 350.60 5353262.0

11.6.5 Selecting via .iloc[] (By position)

With df.iloc we can do the same selections using integer position:

In []: df.iloc[100:110]

Out[]:

Date Open ... AdjVolume Name

100 2017-10-30 319.18 ... 4236029.0 TSLA
101 2017-10-27 319.75 ... 6942493.0 TSLA
102 2017-10-26 327.78 ... 4980316.0 TSLA
103 2017-10-25 336.70 ... 8547764.0 TSLA
104 2017-10-24 338.80 ... 4463807.0 TSLA
105 2017-10-23 349.88 ... 5715817.0 TSLA
106 2017-10-20 352.69 ... 4888221.0 TSLA
107 2017-10-19 355.56 ... 5032884.0 TSLA
108 2017-10-18 355.97 ... 4898808.0 TSLA
109 2017-10-17 350.91 ... 3280670.0 TSLA

In the last example, we used the index as an integer position rather than by
label.
We can select a set of rows and columns like before:

In []: df.iloc[100:110, [3, 4]]

Out[]:

Low Close

100 317.25 320.08

101 316.66 320.87

102 323.20 326.17

103 323.56 325.84

104 336.16 337.34

105 336.25 337.02

Indexing and Subsetting | 233

106 344.34 345.10

107 348.20 351.81

108 354.13 359.65

109 350.07 355.75

11.6.6 Boolean indexing

So far, we have sliced subsets of data by label or by position. Now let’s
see how to select data that meet some criteria. We do this with Boolean
indexing. We can use the same criteria similar to what we have seen with
Numpy arrays. We show you just two illustrative examples here. This is by
no means enough to get comfortable with it and so would encourage you
to check the documentation and further readings at the end of this chapter
to learn more.

• We can filter data that is greater (less) than a number.

In []: df[df.Close > 110]

Out[]:

Date Open ... Close ... Name

0 2017-03-27 304.00 ... 279.18 ... TSLA
1 2017-03-26 307.34 ... 304.18 ... TSLA
2 2017-03-23 311.25 ... 301.54 ... TSLA

...
1080 2017-12-09 137.00 ... 141.60 ... TSLA
1081 2017-12-06 141.51 ... 137.36 ... TSLA
1082 2013-12-05 140.51 ... 140.48 ... TSLA

1083 rows × 14 columns

In []: df[(df['Close'] > 110) | (df['Close'] < 120)]

Out[]:

Date Open ... Close ... Name

0 2017-03-27 304.00 ... 279.18 ... TSLA

234 | Chapter 11

Date Open ... Close ... Name

1 2017-03-26 307.34 ... 304.18 ... TSLA
2 2017-03-23 311.25 ... 301.54 ... TSLA

...
1080 2017-12-09 137.00 ... 141.60 ... TSLA
1081 2017-12-06 141.51 ... 137.36 ... TSLA
1082 2013-12-05 140.51 ... 140.48 ... TSLA

1083 rows × 14 columns

11.7 Manipulating a DataFrame

When we are working with data, the most common structure is the
DataFrame. Until now we have seen how to create them, make selections
and find data. We are now going to see how to manipulate the DataFrame
to transform it into another DataFrame that has the form that our problem
requires.

We’ll see how to sort it, re-index it, eliminate unwanted (or spurious) data,
add or remove columns and update values.

11.7.1 Transpose using .T

The Pandas DataFrame transpose function T allows us to transpose the
rows as columns, and logically the columns as rows:

In []: import pandas as pd

df=pd.read_csv('TSLA.csv')

df2=df[100:110][['Close', 'Volume']]

df2.T

Out[]:

100 101 102 ... 109

Close 320.08 320.87 326.17 ... 355.75

Manipulating a DataFrame | 235

100 101 102 ... 109

Volume 4236029.00 6942493.00 4980316.00 ... 3280670.00

11.7.2 The .sort_index() method

When we are working with Pandas Dataframe it is usual to add or remove
rows, order by columns, etc. That’s why it’s important to have a function
that allows us to easily and comfortably sort the DataFrame by its index.
We do this with the sort_index function of Pandas DataFrame.

In []: df.sort_index()

Out[]:

Date Open High Low Close ... Name

0 2017-03-27 304.00 304.27 277.18 279.18 ... TSLA
1 2017-03-26 307.34 307.59 291.36 304.18 ... TSLA
2 2017-03-23 311.25 311.61 300.45 301.54 ... TSLA

...

11.7.3 The .sort_values() method

Sometimes, we may be interested in sorting the DataFrame by some column
or even with several columns as criteria. For example, sort the column by
first names and the second criterion by last names. We do this with the
sort_values function of Pandas DataFrame.

In []: df.sort_values(by='Close')

Out[]:

Date Open High Low Close ... Name

1081 2013-12-06 141.51 142.49 136.30 137.36 ... TSLA
1057 2014-01-13 145.78 147.00 137.82 139.34 ... TSLA
1078 2013-12-11 141.88 143.05 139.49 139.65 ... TSLA

...

236 | Chapter 11

In []: df.sort_values(by=['Open', 'Close'])

Out[]:

Date Open High Low Close ... Name

1080 2013-12-09 137.00 141.70 134.21 141.60 ... TSLA
1077 2014-12-12 139.70 148.24 138.53 147.47 ... TSLA
1079 2013-12-10 140.05 145.87 139.86 142.19 ... TSLA

...

11.7.4 The .reindex() function

The Pandas’ reindex funtion let us to realign the index of the Series or
DataFrame, it’s useful when we need to reorganize the index to meet some
criteria. For example, we can play with the Series or DataFrame that we
create before to alter the original index. For example, when the index is a
label, we can reorganize as we need:

In []: import pandas as pd

import numpy as np

df=pd.DataFrame(np.random.randn(5),

index=['a', 'b', 'c', 'd', 'e'])

df

Out[]:

0

a -0.134133
b -0.586051
c 1.179358
d 0.433142
e -0.365686

Now, we can reorganize the index as follows:

In []: df.reindex(['b', 'a', 'd', 'c', 'e'])

Out[]:

Manipulating a DataFrame | 237

0

b -0.586051
a -0.134133
d 0.433142
c 1.179358
e -0.365686

When the index is numeric we can use the same function to order by hand
the index:

In []: import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5))

df.reindex([4,3,2,1,0])

Out[]:

0

4 1.058589
3 1.194400
2 -0.645806
1 0.836606
0 1.288102

Later in this section, we’ll see how to work and reorganize date and time
indices.

11.7.5 Adding a new column

Another interesting feature of DataFrames is the possibility of adding new
columns to an existing DataFrame.
For example, we can add a new column to the random DataFrame that we
have created before:

In []: import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5))

Out[]:

238 | Chapter 11

0

0 0.238304
1 2.068558
2 1.015650
3 0.506208
4 0.214760

To add a new column, we only need to include the new column name in the
DataFrame and assign a initialization value, or assign to the new column a
Pandas Series or another column from other DataFrame.

In []: df['new']=1

df

Out[]:

0 new

0 0.238304 1
1 2.068558 1
2 1.015650 1
3 0.506208 1
4 0.214760 1

11.7.6 Delete an existing column

Likewise, we can remove one or more columns from the DataFrame. Let’s
create a DataFrame with 5 rows and 4 columns with random values to
delete one column.

In []: import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5, 4))

df

Out[]:

Manipulating a DataFrame | 239

0 1 2 3

0 -1.171562 -0.086348 -1.971855 1.168017
1 -0.408317 -0.061397 -0.542212 -1.412755
2 -0.365539 -0.587147 1.494690 1.756105
3 0.642882 0.924202 0.517975 -0.914366
4 0.777869 -0.431151 -0.401093 0.145646

Now, we can delete the column that we specify by index or by label if any:

In []: del df[0]

Out[]:

1 2 3

0 -0.086348 -1.971855 1.168017
1 -0.061397 -0.542212 -1.412755
2 -0.587147 1.494690 1.756105
3 0.924202 0.517975 -0.914366
4 -0.431151 -0.401093 0.145646

In []: df['new']=1

df

Out[]:

0 new

0 0.238304 1
1 2.068558 1
2 1.015650 1
3 0.506208 1

In []: del df['new']

Out[]:

240 | Chapter 11

0

0 0.238304
1 2.068558
2 1.015650
3 0.506208

11.7.7 The .at[] (By label)

With at we can to locate a specific value by row and column labels as fol-
lows:

In []: import pandas as pd

import numpy as np

df=pd.DataFrame(np.random.randn(5,4),

index=['a', 'b', 'c', 'd', 'e'],

columns=['A', 'B', 'C', 'D'])

print(df)

Out[]:

A B C D

a 0.996496 -0.165002 0.727912 0.564858
b -0.388169 1.171039 -0.231934 -1.124595
c -1.385129 0.299195 0.573570 -1.736860
d 1.222447 -0.312667 0.957139 -0.054156
e 1.188335 0.679921 1.508681 -0.677776

In []: df.at['a', 'A']

Out[]: 0.9964957014209125

It is possible to assign a new value with the same funcion too:

In []: df.at['a', 'A'] = 0

Out[]:

Manipulating a DataFrame | 241

A B C D

a 0.000000 -0.165002 0.727912 0.564858
b -0.388169 1.171039 -0.231934 -1.124595
c -1.385129 0.299195 0.573570 -1.736860
d 1.222447 -0.312667 0.957139 -0.054156
e 1.188335 0.679921 1.508681 -0.677776

11.7.8 The .iat[] (By position)

With iat we can to locate a specific value by row and column index as
follow:

In []: import pandas as pd

import numpy as np

df=pd.DataFrame(np.random.randn(5, 4),

index=['a', 'b', 'c', 'd', 'e'],

columns=['A', 'B', 'C', 'D'])

print(df)

df.iat[0, 0]

Out[]: 0.996496

It is possible to assign a new value with the same funcion too:

In []: df.iat[0, 0] = 0

Out[]:

A B C D

a 0.000000 -0.165002 0.727912 0.564858
b -0.388169 1.171039 -0.231934 -1.124595
c -1.385129 0.299195 0.573570 -1.736860
d 1.222447 -0.312667 0.957139 -0.054156
e 1.188335 0.679921 1.508681 -0.677776

242 | Chapter 11

11.7.9 Conditional updating of values

Another useful function is to update values that meet some criteria, for
example, update values whose values are greater than 0:

In []: import pandas as pd

import numpy as np

df=pd.DataFrame(np.random.randn(5, 4),

index=['a','b','c','d','e'],

columns=['A', 'B', 'C', 'D'])

print(df)

df[df > 0] = 1

df

Out[]:

A B C D

a 1.000000 -0.082466 1.000000 -0.728372
b -0.784404 -0.663096 -0.595112 1.000000
c -1.460702 -1.072931 -0.761314 1.000000
d 1.000000 1.000000 1.000000 -0.302310
e -0.488556 1.000000 -0.798716 -0.590920

We can also update the values of a specific column that meet some criteria,
or even work with several columns as criteria and update a specific column.

In []: df['A'][df['A'] < 0] = 1

print(df)

Out[]:

A B C D

a 1.0 -0.082466 1.000000 -0.728372
b 1.0 -0.663096 -0.595112 1.000000
c 1.0 -1.072931 -0.761314 1.000000

Manipulating a DataFrame | 243

A B C D

d 1.0 1.000000 1.000000 -0.302310
e 1.0 1.000000 -0.798716 -0.590920

In []: df['A'][(df['B'] < 0) & (df['C'] < 0)] = 9

print(df)

Out[]:

A B C D

a 1.0 -0.082466 1.000000 -0.728372
b 9.0 -0.663096 -0.595112 1.000000
c 9.0 -1.072931 -0.761314 1.000000
d 1.0 1.000000 1.000000 -0.302310
e 1.0 1.000000 -0.798716 -0.590920

11.7.10 The .dropna() method

Occasionally, we may have a DataFrame that, for whatever reason, includes
NA values. This type of values is usually problematic when we are making
calculations or operations and must be treated properly before proceeding
with them. The easiest way to eliminate NA values is to remove the row
that contains it.

In []: import pandas as pd

import numpy as np

df=pd.DataFrame(np.random.randn(5, 4),

index=['a','b','c','d','e'],

columns=['A', 'B', 'C', 'D'])

print(df)

Out[]:

A B C D

a 1.272361 1.799535 -0.593619 1.152889
b -0.318368 -0.190419 0.129420 1.551332

244 | Chapter 11

A B C D

c 0.166951 1.669034 -1.653618 0.656313
d 0.219999 0.951074 0.442325 -0.170177
e 0.312319 -0.765930 -1.641234 -1.388924

In []: df['A'][(df['B'] < 0) & (df['C'] < 0)] = np.nan

print(df)

Out[]:

A B C D

a 1.272361 1.799535 -0.593619 1.152889
b -0.318368 -0.190419 0.129420 1.551332
c 0.166951 1.669034 -1.653618 0.656313
d 0.219999 0.951074 0.442325 -0.170177
e NaN -0.765930 -1.641234 -1.388924

In []: df=df.dropna()

print(df)

Out[]:

A B C D

a 1.272361 1.799535 -0.593619 1.152889
b -0.318368 -0.190419 0.129420 1.551332
c 0.166951 1.669034 -1.653618 0.656313
d 0.219999 0.951074 0.442325 -0.170177

Here we are deleting the whole row that has, in any of its columns, a NaN
value, but we can also specify that it deletes the column that any of its
values is NaN:

df=df.dropna(axis=1)

print(df)

Manipulating a DataFrame | 245

We can specify if a single NaN value is enough to delete the row or column,
or if the whole row or column must have NaN to delete it.
pythonpython df=df.dropna(how=’all’) print(df) “‘

11.7.11 The .fillna() method

With the previous function we have seen how to eliminate a complete row
or column that contains one or all the values to NaN, this operation can be
a little drastic if we have valid values in the row or column.
For this, it is interesting to use the fillna function that substitutes the NaN
values with some fixed value.

In []: import pandas as pd

import numpy as np

df=pd.DataFrame(np.random.randn(5, 4),

index=['a','b','c','d','e'],

columns=['A', 'B', 'C', 'D'])

print(df)

Out[]:

A B C D

a 1.272361 1.799535 -0.593619 1.152889
b -0.318368 -0.190419 0.129420 1.551332
c 0.166951 1.669034 -1.653618 0.656313
d 0.219999 0.951074 0.442325 -0.170177
e 0.312319 -0.765930 -1.641234 -1.388924

In []: df['A'][(df['B'] < 0) & (df['C'] < 0)] = np.nan

print(df)

Out[]:

A B C D

a 1.272361 1.799535 -0.593619 1.152889
b -0.318368 -0.190419 0.129420 1.551332
c 0.166951 1.669034 -1.653618 0.656313
d 0.219999 0.951074 0.442325 -0.170177

246 | Chapter 11

A B C D

e NaN -0.765930 -1.641234 -1.388924

In []: df=df.fillna(999)

print(df)

Out[]:

A B C D

a 1.272361 1.799535 -0.593619 1.152889
b -0.318368 -0.190419 0.129420 1.551332
c 0.166951 1.669034 -1.653618 0.656313
d 0.219999 0.951074 0.442325 -0.170177
e 999 -0.765930 -1.641234 -1.388924

11.7.12 The .apply() method

The apply is a very useful way to use functions or methods in a DataFrame
without having to loop through it. We can apply the apply method to
a Series or DataFrame to apply a function to all rows or columns of the
DataFrame. Let’s see some examples.

Suppose we are working with the randomly generated DataFrame and
need to apply a function. In this example, for simplicity’s sake, we’re going
to create a custom function to square a number.

In []: import pandas as pd

import numpy as np

df=pd.DataFrame(np.random.randn(5, 4),

index=['a','b','c','d','e'],

columns=['A', 'B', 'C', 'D'])

print(df)

Out[]:

A B C D

a -0.633249 -2.699088 0.574052 0.652742

Manipulating a DataFrame | 247

A B C D

b 0.060295 -0.150527 0.149123 -0.701216
c -0.052515 0.469481 0.899180 -0.608409
d -1.352912 0.103302 0.457878 -1.897170
e 0.088279 0.418317 -1.102989 0.582455

def square_number(number):

return number**2

Test the function

In []: square_number(2)

Out[]: 4

Now, let’s use the custom function through Apply:

In []: df.apply(square_number, axis=1)

Out[]:

A B C D

a 0.401005 7.285074 0.329536 0.426073
b 0.003636 0.022658 0.022238 0.491704
c 0.002758 0.220412 0.808524 0.370161
d 1.830372 0.010671 0.209652 3.599253
e 0.007793 0.174989 1.216586 0.339254

This method apply the funcion square_number to all rows of the
DataFrame.

11.7.13 The .shift() function

The shift function allows us to move a row to the right or left and/or to
move a column up or down. Let’s look at some examples.

First, we are going to move the values of a column downwards:

In []: import pandas as pd

import numpy as np

248 | Chapter 11

df=pd.DataFrame(np.random.randn(5, 4),

index=['a','b','c','d','e'],

columns=['A', 'B', 'C', 'D'])

print(df)

Out[]:

A B C D

a -0.633249 -2.699088 0.574052 0.652742
b 0.060295 -0.150527 0.149123 -0.701216
c -0.052515 0.469481 0.899180 -0.608409
d -1.352912 0.103302 0.457878 -1.897170
e 0.088279 0.418317 -1.102989 0.582455

In []: df['D'].shift(1)

Out[]:

A B C D

a -0.633249 -2.699088 0.574052 NaN
b 0.060295 -0.150527 0.149123 0.652742
c -0.052515 0.469481 0.899180 -0.701216
d -1.352912 0.103302 0.457878 -0.608409
e 0.088279 0.418317 -1.102989 -1.897170

We are going to move the values of a column upwards

In []: df['shift'] = df['D'].shift(-1)

Out[]:

A B C D

a -0.633249 -2.699088 0.574052 -0.701216
b 0.060295 -0.150527 0.149123 -0.608409
c -0.052515 0.469481 0.899180 -1.897170
d -1.352912 0.103302 0.457878 0.582455
e 0.088279 0.418317 -1.102989 NaN

Manipulating a DataFrame | 249

This is very useful for comparing the current value with the previous value.

11.8 Statistical Exploratory data analysis

Pandas DataFrame allows us to make some descriptive statistics calcula-
tions, which are very useful to make a first analysis of the data we are han-
dling. Let’s see some useful functions.

11.8.1 The info() function

It is a good practice to know the structure and format of our DataFrame,
the Info function offers us just that:

In []: import pandas as pd

import numpy as np

df=pd.DataFrame(np.random.randn(5, 4),

index=['a','b','c','d','e'],

columns=['A', 'B', 'C', 'D'])

print(df)

Out[]:

A B C D

a -0.633249 -2.699088 0.574052 0.652742
b 0.060295 -0.150527 0.149123 -0.701216
c -0.052515 0.469481 0.899180 -0.608409
d -1.352912 0.103302 0.457878 -1.897170
e 0.088279 0.418317 -1.102989 0.582455

In []: df.info()

Out[]: <class 'pandas.core.frame.DataFrame'>

Index: 5 entries, a to e

Data columns (total 5 columns):

A 5 non-null float64

B 5 non-null float64

C 5 non-null float64

250 | Chapter 11

D 5 non-null float64

shift 4 non-null float64

dtypes: float64(5)

memory usage: 240.0+ bytes

11.8.2 The describe() function

We can obtain a statistical overview of the DataFrame with the ‘describe
function, which gives us the mean, median, standard deviation, maximum,
minimum, quartiles, etc. of each DataFrame column.

In []: import pandas as pd

import numpy as np

df=pd.DataFrame(np.random.randn(5, 4),

index=['a','b','c','d','e'],

columns=['A', 'B', 'C', 'D'])

print(df)

Out[]:

A B C D

a -0.633249 -2.699088 0.574052 0.652742
b 0.060295 -0.150527 0.149123 -0.701216
c -0.052515 0.469481 0.899180 -0.608409
d -1.352912 0.103302 0.457878 -1.897170
e 0.088279 0.418317 -1.102989 0.582455

In []: df.describe()

Out[]:

A B C D

count 5.000000 5.000000 5.000000 5.000000
mean -0.378020 -0.371703 0.195449 -0.394319
std 0.618681 1.325046 0.773876 1.054633
min -1.352912 -2.699088 -1.102989 -1.897170
25% -0.633249 -0.150527 0.149123 -0.701216
50% -0.052515 0.103302 0.457878 -0.608409

Statistical Exploratory data analysis | 251

A B C D

75% 0.060295 0.418317 0.574052 0.582455
max 0.088279 0.469481 0.899180 0.652742

11.8.3 The value_counts() function

The function value_counts counts the repeated values of the specified col-
umn:

In []: df['A'].value_counts()

Out[]: 0.088279 1

-0.052515 1

0.060295 1

-0.633249 1

-1.352912 1

Name: A, dtype: int64

11.8.4 The mean() function

We can obtain the mean of a specific column or row by means of the mean

function.

In []: df['A'].mean() # Specifying a column

Out[]: -0.3780203497252693

In []: df.mean() # By column

df.mean(axis=0) # By column

Out[]: A -0.378020

B -0.371703

C 0.195449

D -0.394319

shift -0.638513

dtype: float64

In []: df.mean(axis=1) # By row

Out[]: a -0.526386

252 | Chapter 11

b 0.002084

c 0.001304

d -0.659462

e -0.382222

dtype: float64

11.8.5 The std() function

We can obtain the standard deviation of a specific column or row by means
of the std function.

In []: df['A'].std() # Specifying a column

Out[]: 0.6186812554819784

In []: df.std() # By column

df.std(axis=0) # By column

Out[]: A 0.618681

B 1.325046

C 0.773876

D 1.054633

shift 1.041857

dtype: float64

In []: df.std(axis=1) # By row

Out[]: a 1.563475

b 0.491499

c 0.688032

d 0.980517

e 1.073244

dtype: float64

11.9 Filtering Pandas DataFrame

We have already seen how to filter data in a DataFrame, including logical
statements to filter rows or columns with some logical criteria. For example,
we will filter rows whose column ’A’ is greater than zero:

Filtering Pandas DataFrame | 253

In []: import pandas as pd

import numpy as np

df=pd.DataFrame(np.random.randn(5, 4),

index=['a','b','c','d','e'],

columns=['A', 'B', 'C', 'D'])

print(df)

Out[]:

A B C D

a -0.633249 -2.699088 0.574052 0.652742
b 0.060295 -0.150527 0.149123 -0.701216
c -0.052515 0.469481 0.899180 -0.608409
d -1.352912 0.103302 0.457878 -1.897170
e 0.088279 0.418317 -1.102989 0.582455

In []: df_filtered = df[df['A'] > 0]

print(df_filtered)

Out[]:

A B C D

b 0.060295 -0.150527 0.149123 -0.701216
e 0.088279 0.418317 -1.102989 0.582455

We can also combine logical statements, we will filter all rows whose col-
umn ’A’ and ’B’ have their values greater than zero.

In []: df_filtered = df[(df['A'] > 0) & (df['B'] > 0)]

print(df_filtered)

Out[]:

A B C D

e 0.088279 0.418317 -1.102989 0.582455

254 | Chapter 11

11.10 Iterating Pandas DataFrame

We can go through the DataFrame row by row to do operations in each
iteration, let’s see some examples.

In []: for item in df.iterrows():

print(item)

Out[]:

('a', A -0.633249

B -2.699088

C 0.574052

D 0.652742

shift NaN

Name: a, dtype: float64)

('b', A 0.060295

B -0.150527

C 0.149123

D -0.701216

shift 0.652742

Name: b, dtype: float64)

('c', A -0.052515

B 0.469481

C 0.899180

D -0.608409

shift -0.701216

Name: c, dtype: float64)

('d', A -1.352912

B 0.103302

C 0.457878

D -1.897170

shift -0.608409

Name: d, dtype: float64)

('e', A 0.088279

B 0.418317

C -1.102989

D 0.582455

shift -1.897170

Name: e, dtype: float64)

Iterating Pandas DataFrame | 255

11.11 Merge, Append and Concat Pandas DataFrame

Another interesting feature of DataFrames is that we can merge, concate-
nate them and add new values, let’s see how to do each of these operations.

• merge function allows us to merge two DataFrame by rows:

In []: import pandas as pd

import numpy as np

df=pd.DataFrame(np.random.randn(5, 4),

index=['a','b','c','d','e'],

columns=['A', 'B', 'C', 'D'])

print(df)

Out[]:

A B C D

a 1.179924 -1.512124 0.767557 0.019265
b 0.019969 -1.351649 0.665298 -0.989025
c 0.351921 -0.792914 0.455174 0.170751
d -0.150499 0.151942 -0.628074 -0.347300
e -1.307590 0.185759 0.175967 -0.170334

In []: import pandas as pd

import numpy as np

df=pd.DataFrame(np.random.randn(5, 4),

index=['a','b','c','d','e'],

columns=['A', 'B', 'C', 'D'])

print(df)

Out[]:

A B C D

a 2.030462 -0.337738 -0.894440 -0.757323
b 0.475807 1.350088 -0.514070 -0.843963
c 0.948164 -0.155052 -0.618893 1.319999
d 1.433736 -0.455008 1.445698 -1.051454
e 0.565345 1.802485 -0.167189 -0.227519

256 | Chapter 11

In []: df3 = pd.merge(df1, df2)

print(df3)

Out[]: Empty DataFrame

Columns: [A, B, C, D]

Index: []

• append function allows us to append rows from one DataFrame to
another DataFrame by rows:

In []: import pandas as pd

import numpy as np

df1=pd.DataFrame(np.random.randn(5, 4),

index=['a','b','c','d','e'],

columns=['A', 'B', 'C', 'D'])

In []: df2=pd.DataFrame(np.random.randn(5, 4),

index=['a','b','c','d','e'],

columns=['A', 'B', 'C', 'D'])

In []: df3 = df1.append(df2)

print(df3)

Out[]:

A B C D

a 1.179924 -1.512124 0.767557 0.019265
b 0.019969 -1.351649 0.665298 -0.989025
c 0.351921 -0.792914 0.455174 0.170751
d -0.150499 0.151942 -0.628074 -0.347300
e -1.307590 0.185759 0.175967 -0.170334
a 2.030462 -0.337738 -0.894440 -0.757323
b 0.475807 1.350088 -0.514070 -0.843963
c 0.948164 -0.155052 -0.618893 1.319999
d 1.433736 -0.455008 1.445698 -1.051454
e 0.565345 1.802485 -0.167189 -0.227519

• concat function allows us to merge two DataFrame by rows or

Merge, Append and Concat Pandas DataFrame | 257

columns:

In []: import pandas as pd

import numpy as np

df1=pd.DataFrame(np.random.randn(5, 4),

index=['a','b','c','d','e'],

columns=['A', 'B', 'C', 'D'])

In []: df2=pd.DataFrame(np.random.randn(5, 4),

index=['a','b','c','d','e'],

columns=['A', 'B', 'C', 'D'])

In []: df3 = pd.concat([df1, df2]) # Concat by row

print(df3)

Out[]:

A B C D

a 1.179924 -1.512124 0.767557 0.019265
b 0.019969 -1.351649 0.665298 -0.989025
c 0.351921 -0.792914 0.455174 0.170751
d -0.150499 0.151942 -0.628074 -0.347300
e -1.307590 0.185759 0.175967 -0.170334
a 2.030462 -0.337738 -0.894440 -0.757323
b 0.475807 1.350088 -0.514070 -0.843963
c 0.948164 -0.155052 -0.618893 1.319999
d 1.433736 -0.455008 1.445698 -1.051454
e 0.565345 1.802485 -0.167189 -0.227519

In []: df3 = pd.concat([df1, df2], axis=0) # Concat by row

print(df3)

Out[]:

A B C D

a 1.179924 -1.512124 0.767557 0.019265
b 0.019969 -1.351649 0.665298 -0.989025
c 0.351921 -0.792914 0.455174 0.170751

258 | Chapter 11

A B C D

d -0.150499 0.151942 -0.628074 -0.347300
e -1.307590 0.185759 0.175967 -0.170334
a 2.030462 -0.337738 -0.894440 -0.757323
b 0.475807 1.350088 -0.514070 -0.843963
c 0.948164 -0.155052 -0.618893 1.319999
d 1.433736 -0.455008 1.445698 -1.051454
e 0.565345 1.802485 -0.167189 -0.227519

Concat by column

In []: df3 = pd.concat([df1, df2], axis=1)

print(df3)

Out[]:

A B ... D A ... D

a 1.179924 -1.512124 ... 0.019265 2.030462 ... -0.757323
b 0.019969 -1.351649 ... -0.989025 0.475807 ... -0.843963
c 0.351921 -0.792914 ... 0.170751 0.948164 ... 1.319999
d -0.150499 0.151942 ... -0.347300 1.433736 ... -1.051454
e -1.307590 0.185759 ... -0.170334 0.565345 ... -0.227519

11.12 TimeSeries in Pandas

Pandas TimeSeries includes a set of tools to work with Series or DataFrames
indexed in time. Usually, the series of financial data are of this type and
therefore, knowing these tools will make our work much more comfortable.
We are going to start creating time series from scratch and then we will see
how to manipulate them and convert them to different frequencies.

11.12.1 Indexing Pandas TimeSeries

With date_range Panda’s method, we can create a time range with a certain
frequency. For example, create a range starting in December 1st, 2018, with
30 occurrences with an hourly frequency.

TimeSeries in Pandas | 259

In []: rng = pd.date_range('12/1/2018', periods=30,

freq='H')

print(rng)

Out[]: DatetimeIndex([

'2018-12-01 00:00:00', '2018-12-01 01:00:00',

'2018-12-01 02:00:00', '2018-12-01 03:00:00',

'2018-12-01 04:00:00', '2018-12-01 05:00:00',

'2018-12-01 06:00:00', '2018-12-01 07:00:00',

'2018-12-01 08:00:00', '2018-12-01 09:00:00',

'2018-12-01 10:00:00', '2018-12-01 11:00:00',

'2018-12-01 12:00:00', '2018-12-01 13:00:00',

'2018-12-01 14:00:00', '2018-12-01 15:00:00',

'2018-12-01 16:00:00', '2018-12-01 17:00:00',

'2018-12-01 18:00:00', '2018-12-01 19:00:00',

'2018-12-01 20:00:00', '2018-12-01 21:00:00',

'2018-12-01 22:00:00', '2018-12-01 23:00:00',

'2018-12-02 00:00:00', '2018-12-02 01:00:00',

'2018-12-02 02:00:00', '2018-12-02 03:00:00',

'2018-12-02 04:00:00', '2018-12-02 05:00:00'],

dtype='datetime64[ns]', freq='H')

We can do the same to get a daily frequency2 (or any other, as per our re-
quirement). We can use the freq parameter to adjust this.

In []: rng = pd.date_range('12/1/2018', periods=10,

freq='D')

print(rng)

Out[]: DatetimeIndex(['2018-12-01', '2018-12-02',

'2018-12-03', '2018-12-04', '2018-12-05',

'2018-12-06', '2018-12-07', '2018-12-08',

'2018-12-09', '2018-12-10'],

dtype='datetime64[ns]', freq='D')

Now, we have a DateTimeIndex in the rng object and we can use it to create
a Series or DataFrame:

2https://pandas.pydata.org/pandas-docs/stable/reference/api/pandasrange.html

260 | Chapter 11

In []: ts = pd.DataFrame(np.random.randn(len(rng), 4),

index=rng, columns=['A', 'B', 'C', 'D'])

print(ts)

Out[]:

A B C D

2018-12-01 0.048603 0.968522 0.408213 0.921774
2018-12-02 -2.301373 -2.310408 -0.559381 -0.652291
2018-12-03 -2.337844 0.329954 0.289221 0.259132
2018-12-04 1.357521 0.969808 1.341875 0.767797
2018-12-05 -1.212355 -0.077457 -0.529564 0.375572
2018-12-06 -0.673065 0.527754 0.006344 -0.533316
2018-12-07 0.226145 0.235027 0.945678 -1.766167
2018-12-08 1.735185 -0.604229 0.274809 0.841128

In []: ts = pd.Series(np.random.randn(len(rng)), index=rng)

print(ts)

Out[]: 2018-12-01 0.349234

2018-12-02 -1.807753

2018-12-03 0.112777

2018-12-04 0.421516

2018-12-05 -0.992449

2018-12-06 1.254999

2018-12-07 -0.311152

2018-12-08 0.331584

2018-12-09 0.196904

2018-12-10 -1.619186

2018-12-11 0.478510

2018-12-12 -1.036074

Sometimes, we read the data from internet sources or from csv files and we
need to convert the date column into the index to work properly with the
Series or DataFrame.

In []: import pandas as pd

df=pd.read_csv('TSLA.csv')

TimeSeries in Pandas | 261

df.tail()

Out[]:

Date Open High Low Close ... Name

1078 2013-12-11 141.88 143.05 139.49 139.65 ... TSLA
1079 2013-12-10 140.05 145.87 139.86 142.19 ... TSLA
1080 2013-12-09 137.00 141.70 134.21 141.60 ... TSLA
1081 2013-12-06 141.51 142.49 136.30 137.36 ... TSLA
1082 2013-12-05 140.15 143.35 139.50 140.48 ... TSLA

Here, we can see the index as numeric and a Date column, let’s convert this
column into the index to indexing our DataFrame, read from a csv file, in
time. For this, we are going to use the Pandas set_index method

In []: df = df.set_index('Date')

df.tail()

Out[]:

Date Open High Low Close ... Name

2013-12-11 141.88 143.05 139.49 139.65 ... TSLA
2013-12-10 140.05 145.87 139.86 142.19 ... TSLA
2013-12-09 137.00 141.70 134.21 141.60 ... TSLA
2013-12-06 141.51 142.49 136.30 137.36 ... TSLA
2013-12-05 140.15 143.35 139.50 140.48 ... TSLA

Now, we have Pandas TimeSeries ready to work.

11.12.2 Resampling Pandas TimeSeries

A very useful feature of Pandas TimeSeries is the resample capacity, this
allows us to pass the current frequency to another higher frequency (we
can’t pass to lower frequencies, because we don’t know the data).

As it can be supposed, when we pass from one frequency to another data
could be lost, for this, we must use some function that treat the values of

262 | Chapter 11

each frequency interval, for example, if we pass from an hourly frequency
to daily, we must specify what we want to do with the group of data that fall
inside each frequency, we can do a mean, a sum, we can get the maximum
or the minimum, etc.

In []: rng = pd.date_range('12/1/2018', periods=30,

freq='H')

ts = pd.DataFrame(np.random.randn(len(rng), 4),

index=rng, columns=['A', 'B', 'C', 'D'])

print(ts)

Out[]:

A B C D

2018-12-01 00:00:00 0.048603 0.968522 0.408213 0.921774
2018-12-01 01:00:00 -2.301373 -2.310408 -0.559381 -0.652291
2018-12-01 02:00:00 -2.337844 0.329954 0.289221 0.259132
2018-12-01 03:00:00 1.357521 0.969808 1.341875 0.767797
2018-12-01 04:00:00 -1.212355 -0.077457 -0.529564 0.375572
2018-12-01 05:00:00 -0.673065 0.527754 0.006344 -0.533316

In []: ts = ts.resample("1D").mean()

print(ts)

Out[]:

A B C D

2018-12-01 0.449050 0.127412 -0.154179 -0.358324
2018-12-02 -0.539007 -0.855894 0.000010 0.454623

11.12.3 Manipulating TimeSeries

We can manipulate the Pandas TimeSeries in the same way that we have
done until now, since they offer us the same capacity that the Pandas Series
and the Pandas DataFrames. Additionally, we can work comfortably with
all jobs related to handling dates. For example, to obtain all the data from a
date, to obtain the data in a range of dates, etc.

TimeSeries in Pandas | 263

In []: rng = pd.date_range('12/1/2018', periods=30,

freq='D')

ts = pd.DataFrame(np.random.randn(len(rng), 4),

index=rng, columns=['A', 'B', 'C', 'D'])

print(ts)

Out[]:

A B C D

2018-12-01 0.048603 0.968522 0.408213 0.921774
2018-12-02 -2.301373 -2.310408 -0.559381 -0.652291
2018-12-03 -2.337844 0.329954 0.289221 0.259132
2018-12-04 1.357521 0.969808 1.341875 0.767797
2018-12-05 -1.212355 -0.077457 -0.529564 0.375572
2018-12-06 -0.673065 0.527754 0.006344 -0.533316

Getting all values from a specific date:

In []: ts['2018-12-15':]

Out[]:

A B C D

2018-12-02 0.324689 -0.413723 0.019163 0.385233
2018-12-03 -2.198937 0.536600 -0.540934 -0.603858
2018-12-04 -1.195148 2.191311 -0.981604 -0.942440
2018-12-05 0.621298 -1.435266 -0.761886 -1.787730
2018-12-06 0.635679 0.683265 0.351140 -1.451903

Getting all values inside a date range:

In []: ts['2018-12-15':'2018-12-20']

Out[]:

A B C D

2018-12-15 0.605576 0.584369 -1.520749 -0.242630

264 | Chapter 11

A B C D

2018-12-16 -0.105561 -0.092124 0.385085 0.918222
2018-12-17 0.337416 -1.367549 0.738320 2.413522
2018-12-18 -0.011610 -0.339228 -0.218382 -0.070349
2018-12-19 0.027808 -0.422975 -0.622777 0.730926
2018-12-20 0.188822 -1.016637 0.470874 0.674052

11.13 Key Takeaways

1. Pandas DataFrame and Pandas Series are some of the most important
data structures. It is a must to acquire fluency in its handling because
we will find them in practically all the problems that we handle.

2. A DataFrame is a data structure formed by rows and columns and has
an index.

3. We must think of them as if they were data tables (for the Array with
a single column) with which we can select, filter, sort, add and delete
elements, either by rows or columns.

4. Help in ETL processes (Extraction, Transformation and Loading)
5. We can select, insert, delete and update elements with simple func-

tions.
6. We can perform computations by rows or columns.
7. Has the ability to run vectorized computations.
8. We can work with several DataFrames at the same time.
9. Indexing and subsetting are the most important features from Pandas.

10. Facilitates the statistical exploration of the data.
11. It offers us a variety of options for handling NaN data.
12. Another additional advantage is the ability to read & write multiple

data formats (CSV, Excel, HDF5, etc.).
13. Retrieve data from external sources (Yahoo, Google, Quandl, etc.)
14. Finally, it has the ability to work with date and time indexes and offers

us a set of functions to work with dates.

Key Takeaways | 265

266 | Chapter 11

Chapter 12

Data Visualization with
Matplotlib

Matplotlib is a popular Python library that can be used to create data visual-
izations quite easily. It is probably the single most used Python package for
2D-graphics along with limited support for 3D-graphics. It provides both,
a very quick way to visualize data from Python and publication-quality fig-
ures in many formats. Also, It was designed from the beginning to serve
two purposes:

1. Allow for interactive, cross-platform control of figures and plots
2. Make it easy to produce static vector graphics files without the need

for any GUIs.

Much like Python itself, Matplotlib gives the developer complete control
over the appearance of their plots. It tries to make easy things easy and
hard things possible. We can generate plots, histograms, power spectra,
bar charts, error charts, scatter plots, etc. with just a few lines of code. For
simple plotting, the pyplot module within matplotlib package provides a
MATLAB-like interface to the underlying object-oriented plotting library. It
implicitly and automatically creates figures and axes to achieve the desired
plot.

To get started with Matplotlib, we first import the package. It is a common
practice to import matplotlib.pyplot using the alias as plt. The pyplot

being the sub-package within Matplotlib provides the common charting

267

functionality. Also, if we are working in a Jupyter Notebook, the line
%matplotlib inline becomes important, as it makes sure that the plots
are embedded inside the notebook. This is demonstrated in the example
below:

import matplotlib.pyplot as plt

%matplotlib inline

NOTE: Matplotlib does not fall under the Python Standard Li-
brary and hence, like any other third party library, it needs to
be installed before it can be used. It can be installed using the
command pip install matplotlib.

12.1 Basic Concepts

Matplotlib allows creating a wide variety of plots and graphs. It is a hu-
mongous project and can seem daunting at first. However, we will break it
down into bite-sized components and so learning it should be easier.
Different sources use ’plot’ to mean different things. So let us begin by
defining specific terminology used across the domain.

• Figure is the top-level container in the hierarchy. It is the overall win-
dow where everything is drawn. We can have multiple independent
figures, and each figure can have multiple Axes. It can be created us-
ing the figure method of pyplot module.

• Axes is where the plotting occurs. The axes are effectively the area
that we plot data on. Each Axes has an X-Axis and a Y-Axis.

The below mentioned example illustrates the use of the above-mentioned
terms:

fig = plt.figure()

<Figure size 432x288 with 0 Axes>

Upon running the above example, nothing happens really. It only creates a
figure of size 432 x 288 with 0 Axes. Also, Matplotlib will not show anything
until told to do so. Python will wait for a call to show method to display the

268 | Chapter 12

plot. This is because we might want to add some extra features to the plot
before displaying it, such as title and label customization. Hence, we need
to call plt.show() method to show the figure as shown below:

plt.show()

As there is nothing to plot, there will be no output. While we are on the
topic, we can control the size of the figure through the figsize argument,
which expects a tuple of (width, height) in inches.

fig = plt.figure(figsize=(8, 4))

<Figure size 576x288 with 0 Axes>

plt.show()

12.1.1 Axes

All plotting happens with respect to an Axes. An Axes is made up of Axis
objects and many other things. An Axes object must belong to a Figure.
Most commands that we will ever issue will be with respect to this Axes
object. Typically, we will set up a Figure, and then add Axes on to it. We
can use fig.add_axes but in most cases, we find that adding a subplot fits
our need perfectly. A subplot is an axes on a grid system.

• add_subplot method adds an Axes to the figure as part of a subplot
arrangement.

-Example 1-

Creating figure

fig = plt.figure()

Creating subplot

Sub plot with 1 row and 1 column at the index 1

ax = fig.add_subplot(111)

plt.show()

The above code adds a single plot to the figure fig with the help of
add_subplot() method. The output we get is a blank plot with axes
ranging from 0 to 1 as shown in figure 1.

Basic Concepts | 269

Figure 1: Empty plot added on axes

We can customize the plot using a few more built-in methods. Let us add
the title, X-axis label, Y-axis label, and set limit range on both axes. This is
illustrated in the below code snippet.

-Example 2-

fig = plt.figure()

Creating subplot/axes

ax = fig.add_subplot(111)

Setting axes/plot title

ax.set_title('An Axes Title')

Setting X-axis and Y-axis limits

ax.set_xlim([0.5, 4.5])

ax.set_ylim([-3, 7])

Setting X-axis and Y-axis labels

ax.set_ylabel('Y-Axis Label')

ax.set_xlabel('X-Axis Label')

270 | Chapter 12

Figure 2: An empty plot with title, labels and custom axis limits

Showing the plot

plt.show()

The output of the above code is shown in figure 2. Matplotlib’s ob-
jects typically have lots of explicit setters, i.e. methods that start with
set_<something> and control a particular option. Setting each option us-
ing explicit setters becomes repetitive, and hence we can set all required
parameters directly on the axes using the set method as illustrated below:

-Example 2 using the set method-

fig = plt.figure()

Creating subplot/axes

ax = fig.add_subplot(111)

Setting title and axes properties

ax.set(title='An Axes Title', xlim=[0.5, 4.5],

ylim=[-3, 7], ylabel='Y-Axis Label',

xlabel='X-Axis Label')

plt.show()

Basic Concepts | 271

NOTE: The set method does not just apply to Axes; it applies to
more-or-less all matplotlib objects.

The above code snippet gives the same output as figure 2. Using the set

method when all required parameters are passed as arguments.

12.1.2 Axes method v/s pyplot

Interestingly, almost all methods of axes objects exist as a method in the
pyplot module. For example, we can call plt.xlabel('X-Axis Label')

to set label of X-axis (plt being an alias for pyplot), which in turn calls
ax.set_xlabel('X-Axis Label') on whichever axes is current.

-Example 3-

Creating subplots, setting title and axes labels

using `pyplot`

plt.subplots()

plt.title('Plot using pyplot')

plt.xlabel('X-Axis Label')

plt.ylabel('Y-Axis Label')

plt.show()

The code above is more intuitive and has fewer variables to construct a plot.
The output for the same is shown in figure 3. It uses implicit calls to axes
method for plotting. However, if we take a look at "The Zen of Python" (try
import this), it says:

"Explicit is better than implicit."

While very simple plots, with short scripts, would benefit from the con-
ciseness of the pyplot implicit approach, when doing more complicated
plots, or working within larger scripts, we will want to explicitly pass
around the axes and/or figure object to operate upon. We will be using
both approaches here wherever it deems appropriate.

Anytime we see something like below:

fig = plt.figure()

ax = fig.add_subplot(111)

272 | Chapter 12

Figure 3: An empty plot using pyplot

can almost always be replaced with the following code:

fig, ax = plt.subplots()

Both versions of code produce the same output. However, the latter version
is cleaner.

12.1.3 Multiple Axes

A figure can have more than one Axes on it. The easiest way is to use
plt.subplots() call to create a figure and add the axes to it automatically.
Axes will be on a regular grid system. For example,

-Example 4-

Creating subplots with 2 rows and 2 columns

fig, axes = plt.subplots(nrows=2, ncols=2)

plt.show()

Upon running the above code, Matplotlib would generate a figure with four
subplots arranged with two rows and two columns as shown in figure 4.

Basic Concepts | 273

Figure 4: Figure with multiple axes

The axes object that was returned here would be a 2D-NumPy array, and
each item in the array is one of the subplots. Therefore, when we want to
work with one of these axes, we can index it and use that item’s methods.
Let us add the title to each subplot using the axes methods.

-Example 5-

Create a figure with four subplots and shared axes

fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True,

sharey=True)

axes[0, 0].set(title='Upper Left')

axes[0, 1].set(title='Upper Right')

axes[1, 0].set(title='Lower Left')

axes[1, 1].set(title='Lower Right')

plt.show()

The above code generates a figure with four subplots and shared X and
Y axes. Axes are shared among subplots in row wise and column-wise
manner. We then set a title to each subplot using the set method for each
subplot. Subplots are arranged in a clockwise fashion with each subplot
having a unique index. The output is shown in figure 5.

274 | Chapter 12

Figure 5: Subplots with the share axes

12.2 Plotting

We have discussed a lot about laying things out, but we haven’t really dis-
cussed anything about plotting data yet. Matplotlib has various plotting
functions. Many more than we will discuss and cover here. However, a
full list or gallery1 can be a bit overwhelming at first. Hence, we will con-
dense it down and attempt to start with simpler plotting and than move
towards more complex plotting. The plot method of pyplot is one of the
most widely used methods in Matplotlib to plot the data. The syntax to call
the plot method is shown below:

plot([x], y, [fmt], data=None, **kwargs)

The coordinates of the points or line nodes are given by x and y. The op-
tional parameter fmt is a convenient way of defining basic formatting like
color, market, and style. The plot method is used to plot almost any kind
of data in Python. It tells Python what to plot and how to plot it, and also
allows customization of the plot being generated such as color, type, etc.

1https://matplotlib.org/gallery/index.html

Plotting | 275

12.2.1 Line Plot

A line plot can be plotted using the plot method. It plots Y versus X as lines
and/or markers. Below we discuss a few scenarios for plotting line. To plot
a line, we provide coordinates to be plotted along X and Y axes separately
as shown in the below code snippet.

-Example 6-

Defining coordinates to be plotted on X and Y axes

respectively

x = [1.3, 2.9, 3.1, 4.7, 5.6, 6.5, 7.4, 8.8, 9.2, 10]

y = [95, 42, 69, 11, 49, 32, 74, 62, 25, 32]

Plot lists 'x' and 'y'

plt.plot(x, y)

Plot axes labels and show the plot

plt.xlabel('X-axis Label')

plt.ylabel('Y-axis Label')

plt.show()

The above code plots values in the list x along the X-axis and values in the
list y along the Y-axis as shown in figure 6.

The call to plot takes minimal arguments possible, i.e. values for Y-axis
only. In such a case, Matplotlib will implicitly consider the index of el-
ements in list y as the input to the X-axis as demonstrated in the below
example:

-Example 7-

Defining 'y' coordinates

y = [95, 42, 69, 11, 49, 32, 74, 62, 25, 32]

Plot list 'y'

plt.plot(y)

Plot axes labels and show the plot

plt.xlabel('Index Values')

plt.ylabel('Elements in List Y')

plt.show()

276 | Chapter 12

Figure 6: Line plot with x and y as data

Here, we define a list called y that contains values to be plotted on Y-axis.
The output for the same is shown in figure 7.

The plots created uses the default line style and color. The optional parame-
ter fmt in the plot method is a convenient way for defining basic formatting
like color, marker, and line-style. It is a shortcut string notation consisting
of color, marker, and line:

fmt = '[color][marker][line]'

Each of them is optional. If not provided, the value from the style cycle2 is
used. We use this notation in the below example to change the line color:

-Example 8-

Plot line with green color

plt.plot(y, 'g')

Plot axes labels and show the plot

plt.xlabel('Index Values')

2https://matplotlib.org/tutorials/intermediate/color_cycle.html

Plotting | 277

Figure 7: Line plot with y as the only data

plt.ylabel('Elements in List Y')

plt.show()

Following the fmt string notation, we changed the color of a line to green
using the character g which refers to the line color. This generates the plot
with green line as shown in figure 8. Likewise, markers are added using the
same notation as shown below:

-Example 9-

Plot continuous green line with circle markers

plt.plot(y, 'go-')

Plot axes labels and show the plot

plt.xlabel('Index Values')

plt.ylabel('Elements in List Y')

plt.show()

Here, the fmt parameters: g refers to the green color, o refers to circle mark-
ers and - refers to a continuous line to be plotted as shown in figure 9. This
formatting technique allows us to format a line plot in virtually any way

278 | Chapter 12

Figure 8: Line plot with green line

Figure 9: Line plot with circle markers

Plotting | 279

Figure 10: Line chart with asterisk markers

we like. It is also possible to change marker style by tweaking marker pa-
rameter in fmt string as shown below:

-Example 10-

Plot continuous green line with asterisk markers

plt.plot(y, 'g*-')

Plot axes labels and show the plot

plt.xlabel('Index Values')

plt.ylabel('Elements in List Y')

plt.show()

The output of the above code is figure 10 where the line and markers share
the same color, i.e. green specified by the fmt string. If we are to plot line
and markers with different colors, we can use multiple plot methods to
achieve the same.

-Example 11-

Plot list 'y'

plt.plot(y, 'g')

280 | Chapter 12

Figure 11: Plot with blue line and red markers

Plot red circle markers

plt.plot(y, 'ro')

Plot axes labels and show the plot

plt.xlabel('Index Values')

plt.ylabel('Elements in List Y')

plt.show()

The above code plots line along with red circle markers as seen in figure 11.
Here, we first plot the line with the default style and then attempt to plot
markers with attributes r referring to red color and o referring to circle. On
the same lines, we can plot multiple sets of data using the same technique.
The example given below plots two lists on the same plot.

-Example 12: Technique 1-

Define two lists

y = [95, 42, 69, 11, 49, 32, 74, 62, 25, 32]

y2 = [35, 52, 96, 77, 36, 66, 50, 12, 35, 63]

Plot lists and show them

plt.plot(y, 'go-')

Plotting | 281

Figure 12: Line plot with two lines

plt.plot(y2, 'b*--')

Plot axes labels and show the plot

plt.xlabel('Index Values')

plt.ylabel('Elements in Lists')

plt.show()

The output can be seen in figure 12 where both green and blue lines are
drawn on the same plot. We can achieve the same result as shown above
using the different technique as shown below:

-Example 12: Technique 2-

Plot lists and show them

plt.plot(y, 'go-', y2, 'b*--')

Plot axes labels and show the plot

plt.xlabel('Index Values')

plt.ylabel('Elements in Lists')

plt.show()

Essentially, the plot method makes it very easy to plot sequential data

282 | Chapter 12

Figure 13: Line plot from a NumPy array

structure such as list, NumPy arrays, pandas series, etc. Similar to plot-
ting lists, we can plot NumPy arrays directly via the plot method. Let us
plot NumPy one dimensional array. As we are executing codes directly in
IPython console, calling the plt.show() is not required and hence, we will
not be calling the same in subsequent examples. However, remember, it is
absolutely necessary to call it while writing Python code in order to show a
plot.

-Example 13-

Importing NumPy library

import numpy as np

Drawing 30 samples from a standard normal distribution

into an array 'arr'

arr = np.random.normal(size=30)

Plotting 'arr' with dashed line-style and * markers

plt.plot(arr, color='teal', marker='*', linestyle='dashed')

In the above example, we draw thirty samples from a normal distribution
into an array arr which in turn gets plotted as a dashed line along with

Plotting | 283

Figure_14: Line plot from 2-D NumPy array

asterisk markers as seen in the figure 13.

Plotting two-dimensional arrays follows the same pattern. We provide a
2-D array to a plot method to plot it. The below code shows the example
of this whose output is shown in figure 14.

-Example 14-

Creating a two dimensional array 'arr_2d' with 40 samples

and shape of (20, 2)

arr_2d = np.random.normal(size=40).reshape(20, 2)

Plotting the array

plt.plot(arr_2d)

Let us now move our focus to plot pandas data structures. The pandas li-
brary uses the standard convention as the matplotlib for plotting directly
from its data structures. The pandas also provide a plot method which
is equivalent to the one provided by matplotlib. Hence, the plot method
can be called directly from pandas Series and DataFrame objects. The
plot method on Series and DataFrame is just a simple wrapper around
plt.plot(). The below example illustrates plotting pandas Series object:

284 | Chapter 12

Figure 15: Line plot from a pandas series

-Example 15-

Importing necessary libraries

import pandas as pd

import numpy as np

Creating pandas Series with 50 samples drawn from normal

distribution

ts = pd.Series(np.random.normal(size=50),

index=pd.date_range(start='1/1/2019',

periods=50))

Plotting pandas Series

ts.plot()

In the above example, we call the plot method directly on pandas Series
object ts which outputs the plot as shown in figure 15. Alternatively, we
could have called plt.plot(ts). Calling ts.plot() is equivalent to call-
ing plt.plot(ts) and both calls would result in almost the same output
as shown above. Additionally, the plot() method on pandas object sup-

Plotting | 285

Figure 16: Line plot from a pandas series in green color

ports almost every attribute that plt.plot() supports for formatting. For
example, calling the plot method on pandas objects with a color attribute
would result in a plot with color mentioned by its value. This is shown
below:

-Example 16-

Plotting pandas Series in green color

ts.plot(color='green')

The output of the above code is shown in figure 16.

Moving forward, the same notation is followed by pandas DataFrame ob-
ject and visualizing data within a dataframe becomes more intuitive and
less quirky. Before we attempt to plot data directly from a dataframe, let us
create a new dataframe and populate it. We fetch the stock data of AAPL
ticker that we will be using for illustration purposes throughout the remain-
ing chapter.

-Script to fetch AAPL data from a web resource-

Import libraries

286 | Chapter 12

import pandas as pd

Fetch data

data = pd.read_csv('https://bit.ly/2WcsJE7', index_col=0,

parse_dates=True)

The dataframe data will contain stock data with dates being the index. The
excerpt of the downloaded data is shown below:

Date Open High Low Close Volume ...

2018-03-27 173.68 175.15 166.92 168.340 38962893.0 ...
2018-03-26 168.07 173.10 166.44 172.770 36272617.0 ...
2018-03-23 168.39 169.92 164.94 164.940 40248954.0 ...

Now we can plot any column of a data dataframe by calling plot method
on it. In the example given below, we plot the recent 100 data points from
the Volume column of the dataframe:

-Example 17-

Plot volume column

data.Volume.iloc[:100].plot()

The output of the above code is shown in figure 17. With a dataframe, plot
method is a convenience to plot all of the columns with labels. In other
words, if we plot multiple columns, it would plot labels of each column
as well. In the below example, we plot AdjOpen and AdjClose columns
together and the output for the same is shown in figure 18.

-Example 18-

data[['AdjOpen', 'AdjClose']][:50].plot()

The plot method generates a line plot by default when called on pandas
data structures. However, it can also produce a variety of other charts as
we will see later in this chapter. Having said that, lets head forward to plot
scatter plots.

Plotting | 287

Figure 17: Line plot of a volume column

Figure 18: Line plot of two columns

288 | Chapter 12

12.2.2 Scatter Plot

Scatter plots are used to visualize the relationship between two different
data sets. Matplotlib provides the scatter method within pyplot sub-
module using which scatter plots can be generated.

• plt.scatter generates scatter plot of y vs x with varying marker size
and/or color.

The x and y parameters are data positions and it can be array-like sequential
data structures. There are some instances where we have data in the format
that lets us access particular variables with string. For example, Python
dictionary or pandas dataframe. Matplotlib allows us to provide such an
object with the data keyword argument to the scatter method to directly
plot from it. The following example illustrates this using a dictionary.

-Example 19-

Creating a dictionary with three key-value pairs

dictionary = {'a': np.linspace(1, 100, 50),

'c': np.random.randint(0, 50, 50),

'd': np.abs(np.random.randn(50)) * 100}

Creating a new dictionary key-value pair

dictionary['b'] = dictionary['a'] * np.random.rand(50)

Plotting a scatter plot using argument 'data'

plt.scatter('a', 'b', c='c', s='d', data=dictionary)

Labeling the plot and showing it

plt.xlabel('A Data Points')

plt.ylabel('B Data Points')

plt.show()

In the above code, we created a dictionary dictionary with four key-value
pairs. Values in key a and b contain fifty random values to be plotted on a
scatter plot. Key c contains fifty random integers and key d contains fifty
positive floats which represents color and size respectively for each scatter
data point. Then, a call to plt.scatter is made along with all keys and
the dictionary as the value to data. The argument c within the call refers

Plotting | 289

Figure 19: Scatter plot with different size and color

to color to be used and the argument s represents the size of a data point.
These arguments c and s are optional. The output we get is a scatter plot
with different size and color as shown in figure 19. A simple scatter plot
with the same color and size gets plotted when we omit these optional ar-
guments as shown in the following example:

-Example 20-

Creating a scatter plot without color and the same size

plt.scatter(dictionary['a'], dictionary['b'])

Labeling the plot and showing it

plt.xlabel('A Data Points')

plt.ylabel('B Data Points')

plt.show()

The output of the above code will be a scatter plot as shown in figure 20.
To better understand the working of scatter plots, let us resort to our old
friends: lists x and y. We defined them earlier whem we learned line plots
and scatter plots. To refresh our memory, we re-define the same lists below:

Data points for scatter plot

290 | Chapter 12

Figure 20: Scatter plot with the same size and color

x = [1.3, 2.9, 3.1, 4.7, 5.6, 6.5, 7.4, 8.8, 9.2, 10]

y = [95, 42, 69, 11, 49, 32, 74, 62, 25, 32]

In addition to these lists, we would be defining two more NumPy arrays
color and size which determines the color and size respectively of each
data point while plotting the scatter plot.

Arrays which defines color and size of each data point

color = np.random.rand(10)

size = np.random.randint(50, 100, 10)

Now that we have data points ready, we can plot a scatter plot out of them
as below:

-Example 21-

Creating a scatter plot

plt.scatter(x, y, c=color, s=size)

Labeling the plot and showing it

plt.xlabel('Values from list x')

plt.ylabel('Values from list y')

plt.show()

Plotting | 291

Figure 21: Scatter plot of lists x and y

The scatter plot would contain data points each with different color and
size (as they are randomly generated). The output is shown in figure figure
21.

In finance, scatter plots are widely used to determine the relations between
two data sets visually. With our working knowledge of scatter plots, let’s
plot AdjOpen and AdjClose prices of AAPL stock that we have in pandas
dataframe data. When it comes to plotting data directly from a pandas
dataframe, we can almost always resort to plot method on pandas to plot
all sorts of plots. That is, we can directly use the plot method on the
dataframe to plot scatter plots akin to line plots. However, we need to
specify that we are interested in plotting a scatter plot using the argument
kind='scatter' as shown below:

-Example 22-

Plotting a scatter plot of 'AdjOpen' and 'AdjClose' of

AAPL stock

data.plot(x='AdjOpen', y='AdjClose', kind='scatter')

plt.show()

Interestingly, we only need to specify column names of a dataframe data

292 | Chapter 12

Figure 22: Scatter plot of columns AdjOpen and AdjClose

for x and y coordinates along with the argument kind which gets resulted
in the output as shown in figure 22.

By visualizing price patterns using a scatter plot, it can be inferred that open
and close prices are positively correlated. Furthermore, we can generate the
same plot using the plt.scatter method.

Method 1

plt.scatter(x='AdjOpen', y='AdjClose', data=data)

plt.show()

Method 2

plt.scatter(x=data['AdjOpen'], y=data['AdjClose'])

plt.show()

The first method uses the argument data which specifies the data source,
whereas the second method directly uses dataframe slicing and hence, there
is no need to specify the data argument.

Plotting | 293

12.2.3 Histogram Plots

A histogram is a graphical representation of the distribution of data. It is a
kind of bar graph and a great tool to visualize the frequency distribution
of data that is easily understood by almost any audience. To construct a
histogram, the first step is to bin the range of data values, divide the entire
range into a series of intervals and finally count how many values fall
into each interval. Here, the bins are consecutive and non-overlapping.
In other words, histograms shows the data in the form of some groups.
All the bins/groups go on X-axis, and Y-axis shows the frequency of each
bin/group.

The matplotlib library offers a very convenient way to plot histograms. To
create a histogram, we use the hist method of pyplot sub-module of the
matplotlib library as shown in the below example:

-Example 23-

Data values for creating a histogram

y = [95, 42, 69, 11, 49, 32, 74, 62, 25, 32]

Creating a histogram

plt.hist(y)

plt.xlabel('Bins')

plt.ylabel('Frequency')

plt.show()

This is the simplest code possible to plot a histogram with minimal ar-
guments. We create a range of values and simply provide it to the hist

method and let it perform the rest of the things (creating bins, segregat-
ing each value to corresponding bin, plotting, etc.). It produces the plot as
shown in figure 23. The hist method also take bins as an optional argu-
ment. If this argument is specified, bins will be created as per the specified
value, otherwise, it will create bins on its own. To illustrate this, we explic-
itly specify the number of bins in the above code and generate the plot. The
modified code and output is shown below:

-Example 24-

Data values for creating a histogram

y = [95, 42, 69, 11, 49, 32, 74, 62, 25, 32]

294 | Chapter 12

Figure 23: A histogram

Creating a histogram

plt.hist(y, bins= 20)

plt.xlabel('Bins')

plt.ylabel('Frequency')

plt.show()

The output we got in figure 24 is very straight forward. Number 32 appears
twice in the list y and so it’s twice as tall as the other bars on the plot.
We specify the number of bins to be 20 and hence, the hist method tries
to divide the whole range of values into 20 bins and plots them on the X-
axis. Similar to the plot method, the hist method also takes any sequential
data structure as its input and plots histogram of it. Let us try to generate
a histogram of an array which draws samples from the standard normal
distribution.

-Example 25-

Creating an array

array = np.random.normal(0, 1, 10000)

Creating a histogram

Plotting | 295

Figure 24: Histogram with 20 bins

plt.hist(array)

plt.xlabel('Bins')

plt.ylabel('Frequency')

plt.show()

The output we got in figure 25 shows that the data distribution indeed re-
sembles a normal distribution. Apart from bins argument, other arguments
that can be provided to hist are color and histtype. There are a number
of arguments that can be provided, but we will keep our discussion limited
to these few arguments only. The color of a histogram can be changed using
the color argument. The histtype argument takes some of the pre-defined
values such as bar, barstacked, step and stepfilled. The below example
illustrates the usage of these arguments and the output is shown in figure
26.

-Example 26-

Creating an array

array = np.random.normal(0, 1, 10000)

Creating a histogram and plotting it

plt.hist(array, color='purple', histtype='step')

296 | Chapter 12

Figure 25: Histogram of an array

plt.xlabel('Bins')

plt.ylabel('Frequency')

plt.show()

In addition to optional arguments discussed so far, one argument that
needs attention is orientation. This argument takes either of two values:
horizontal or vertical. The default is vertical. The below given exam-
ple demonstrate the usage of orientation and the output is shown in figure
27.

-Example 27-

Creating an array

array = np.random.normal(0, 1, 10000)

Creating a histogram and plotting it

plt.hist(array, color='teal', orientation='horizontal')

plt.xlabel('Frequency')

plt.ylabel('Bins')

plt.show()

We now shift our focus on plotting a histogram directly from a pandas
dataframe. Again, the plot method within pandas provides a wrapper

Plotting | 297

Figure 26: Histogram with histtype='step'

Figure 27: Histogram with horizontal orientation

298 | Chapter 12

Figure 28: Histogram of a volume column

around the hist function in matplotlib as was the case with scatter plots. To
plot a histogram, we need to specify the argument kind with the value hist
when a call to plot is made directly from the dataframe. We will be work-
ing with the same dataframe data that contains historical data for AAPL
stock.

-Example 28: Technique 1-

Creating a histogram using a dataframe method

data['Volume'].plot(kind='hist')

plt.show()

-Example 28: Technique 2-

plt.hist(data['Volume'])

plt.ylabel('Frequency')

plt.show()

In the first method, we directly make a call to plot method on the dataframe
data sliced with Volume column. Whereas in the second method, we use
the hist method provided by matplotlib.pyplot module to plot the his-
togram. Both methods plot the same result as shown in figure 28.

Plotting | 299

Figure 29: Line plot of close prices

12.3 Customization

Now that we have got a good understanding of plotting various types of
charts and their basic formatting techniques, we can delve deeper and look
at some more formatting techniques. We already learned that matplotlib
does not add any styling components on its own. It will plot a simple plain
chart by default. We, as users, need to specify whatever customization we
need. We start with a simple line plot and will keep on making it better.
The following example shows plotting of close prices of the AAPL ticker
that is available with us in the dataframe data.

-Example 29-

Extracting close prices from the dataframe

close_prices = data['AdjClose']

Plotting the close prices

plt.plot(close_prices)

plt.show()

Here, as shown in figure 29 the close_prices is the pandas Series object
which gets plotted using the plot method. However, values on the X-axis

300 | Chapter 12

Figure 30: Line plot with rotated xticks

are something that we don’t want. They are all overlapped with each other.
This happens as the plot method did not find sufficient space for each date.
One way to overcome this issue is to rotate the values on the X-axis to make
it look better.

-Example 30-

plt.plot(close_prices)

Rotating the values along x-axis to 45 degrees

plt.xticks(rotation=45)

plt.show()

The xticks method along with the rotation argument is used to rotate the
values/tick names along the x-axis. The output of this approach is shown
in figure 30. Another approach that can be used to resolve the overlapping
issue is to increase the figure size of the plot such that the matplotlib can
easily show values without overlapping. This is shown in the below exam-
ple and the output is shown in figure 31:

-Example 31-

Creating a figure with the size 10 inches by 5 inches

Customization | 301

Figure 31: Line plot with custom figure size

fig = plt.figure(figsize=(10, 5))

plt.plot(close_prices)

plt.show()

Similarly, the matplotlib provides yticks method that can be used to cus-
tomize the values on the Y-axis. Apart from the rotation argument, there
are a bunch of other parameters that can be provided xticks and yticks to
customize them further. We change the font size, color and orientation of
ticks along the axes using the appropriate arguments within these methods
in the following example:

-Example 32-

Creating a figure, setting its size and plotting close

prices on it

fig = plt.figure(figsize=(10, 5))

plt.plot(close_prices, color='purple')

Customizing the axes

plt.xticks(rotation=45, color='teal', size=12)

plt.yticks(rotation=45, color='teal', size=12)

Setting axes labels

plt.xlabel('Dates', {'color': 'orange', 'fontsize':15})

plt.ylabel('Prices', {'color': 'orange', 'fontsize':15})

plt.show()

302 | Chapter 12

Figure 32: Line plot with rotated ticks on axes and colored values

Along with the axes values, we change the color and font size of axes labels
as shown in figure 32. There are numbers of other customizations possible
using various arguments and matplotlib provides total flexibility to create
the charts as per one’s desire. Two main components that are missing in the
above plot are title and legend, which can be provided using the methods
title and legends respectively. Again, as with the other methods, it is
possible to customize them in a variety of way, but we will be restricting
our discussion to a few key arguments only. Adding these two methods as
shown below in the above code would produce the plot as shown in figure
33:

-Example 33-

Showing legends and setting the title of plot

plt.legend()

plt.title('AAPL Close Prices', color='purple', size=20)

Another important feature that can be added to a figure is to draw a grid
within a plot using the grid method which takes either True or False. If
true, a grid is plotted, otherwise not. An example of a plot with grid is
shown below and its output is shown in figure 34.

-Example 34-

Adding the grid to the plot

plt.grid(True)

Customization | 303

Figure 33: Line plot with legends and the title

The axhline method allows us to add a horizontal line across the axis to
the plot. For example, we might consider adding the mean value of close
prices to show the average price of a stock for the whole duration. It can be
added using axhline method. Computation of mean value and its addition
to the original plot is shown below:

-Example 35-

Importing NumPy library

import numpy as np

Calculating the mean value of close prices

mean_price = np.mean(close_prices)

Plotting the horizontal line along with the close prices

plt.axhline(mean_price, color='r', linestyle='dashed')

Now that we have the mean value of close prices plotted in the figure 35,
one who looks at the chart for the first time might think what this red line
conveys? Hence, there is a need to explicitly mention it. To do so, we can
use the text method provided by matplotlib.pyplot module to plot text
anywhere on the figure.

-Example 36-

304 | Chapter 12

Figure 34: Line plot with a grid

Figure 35: Line plot with horizontal line

Customization | 305

Figure 36: Line plot with text on it

Importing DateTime from DateTime library

from datetime import datetime

Plotting text on date 2014-1-7 and price 120

plt.text(datetime(2014,1,7), 120, 'Mean Price',

size=15, color='r')

The text method takes three compulsory arguments: x, y and t which
specifies the coordinates on X and Y-axis and text respectively. Also, we
use a datetime sub-module from a datetime library to specify a date on
the X-axis as the plot we are generating has dates on the X-axis. The chart
with text indicating the mean price is shown in figure 36.

Using all these customization techniques, we have been able to evolve the
dull looking price series chart to a nice and attractive graphic which is not
only easy to understand but presentable too. However, we have restricted
ourselves to plotting only a single chart. Let us brace ourselves and learn
to apply these newly acquired customization techniques to multiple plots.

We already learned at the beginning of this chapter that a figure can have
multiple plots, and that can be achieved using the subplots method. The
following examples show stock prices of AAPL stock along with its traded

306 | Chapter 12

volume on each day. We start with a simple plot that plots stock prices and
volumes in the below example:

-Example 37-

Extracting volume from the dataframe 'data'

volume = data['AdjVolume']

Creating figure with two rows and one column

fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1,

sharex=True,

figsize=(10, 8))

Plotting close prices on the first sub-plot

ax1.plot(close_prices, color='purple')

ax1.grid(True)

Plotting trading volume on the second sub-plot

ax2.bar(volume.index, volume)

ax2.grid(True)

Displaying the plot

plt.show()

First, we extract the AdjVolume column from the data dataframe into a
volume which happens to be pandas series object. Then, we create a figure
with sub-plots having two rows and a single column. This is achieved
using nrows and ncols arguments respectively. The sharex argument
specifies that both sub-plots will share the same x-axis. Likewise, we also
specify the figure size using the figsize argument. These two subplots are
unpacked into two axes: ax1 and ax2 respectively. Once, we have the axes,
desired charts can be plotted on them.

Next, we plot the close_prices using the plot method and specify its color
to be purple using the color argument. Similar to the plot method, mat-
plotlib provides bar method to draw bar plots which takes two arguments:
the first argument to be plotted on the X-axis and second argument to be
plotted along the y-axis. For our example, values on X-axis happens to be
a date (specified by volume.index), and value for each bar on the Y-axis is
provided using the recently created volume series. After that, we plot grids

Customization | 307

Figure 37: Sub-plots with stock price and volume

on both plots. Finally, we display both plots. As can be seen above in fig-
ure 37, matplotlib rendered a decent chart. However, it misses some key
components such as title, legends, etc. These components are added in the
following example:

-Example 38-

Creating figure with multiple plots

fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1,

sharex=True,

figsize=(10, 8))

ax1.plot(close_prices, color='purple', label='Prices')

ax1.grid(True)

Setting the title of a first plot

ax1.set_title('Daily Prices')

Setting the legend for the first plot

ax1.legend()

308 | Chapter 12

Figure 38: Sub-plots with legends and titles

ax2.bar(volume.index, volume, label='Volume')

ax2.grid(True)

Setting the title of a second plot

ax2.set_title('Volume')

Setting the legend for the second plot

ax2.legend()

plt.show()

Here, we use the legend method to set legends in both plots as shown in
figure 38. Legends will print the values specified by the label argument
while plotting each plot. The set_title is used to set the title for each plot.
Earlier, while dealing with the single plot, we had used the title method
to set the title. However, it doesn’t work the same way with multiple plots.

Another handy method provided by the matplotlib is the tight_layout

Customization | 309

Figure 39: Sub-plots with tight layout

method which automatically adjusts the padding and other similar param-
eters between subplots so that they fits into the figure area.

-Example 39-

Setting layout

plt.tight_layout()

Setting label on the x-axis

plt.xlabel('Dates')

plt.show()

The above code explicitly specifies the layout and the label on the x-axis
which results into the chart as shown in figure 39.

In addition to all this customization, matplotlib also provides a number of
predefined styles that can be readily used. For example, there is a prede-
fined style called “ggplot”, which emulates the aesthetics of ggplot (a pop-
ular plotting package for R language). To change the style of plots being

310 | Chapter 12

rendered, the new style needs to be explicitly specified using the following
code:

plt.style.use('ggplot')

One the style is set to use, all plots rendered after that will use the same and
newly set style. To list all available styles, execute the following code:

plt.style.available

Let us set the style to one of the pre-defined styles known as ’fivethirtyeight’
and plot the chart.

-Example 40-

plt.style.use('fivethirtyeight')

fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1,

sharex=True,

figsize=(10, 8))

ax1.plot(close_prices, color='purple', label='Prices')

ax1.grid(True)

ax1.set_title('Daily Prices')

ax1.legend()

ax2.bar(volume.index, volume, label='Volume')

ax2.grid(True)

ax2.set_title('Traded Volume')

ax2.legend()

plt.tight_layout()

plt.xlabel('Dates')

plt.show()

The output of the above code is shown in the figure 40. By changing the
style, we get a fair idea about how styles play an important role to change
the look of charts cosmetically while plotting them.

Customization | 311

Figure 40: Plot with pre-defined style 'fivethirtyeight'

312 | Chapter 12

The last method that we will study is the savefig method that is used to
save the figure on a local machine. It takes the name of the figure by which
it will be saved. This is illustrated below:

plt.savefig('AAPL_chart.png')

Executing the above code will save the chart we plotted above with the
name AAPL_chart.png.
This brings us to the end of this chapter. We started with the basics of
figure and plots, gradually learning various types of charts and along with
the finer details.

We also learned customization and took a sneak peek into plotting multiple
plots within the same chart.

12.4 Key Takeaways

1. Matplotlib does not fall under the Python Standard Library. Hence, it
needs to be installed before it can be used.

2. The pyplot module within matplotlib provides the common charting
functionality and is used to plot various kinds of charts. A common
practice is to import it using the alias plt.

3. The code %matplotlib inline is used to enable plotting charts within
Jupyter Notebook.

4. Figure is the top-level container and Axes is the area where plotting
occurs. plt.figure() creates an empty figure with axes. The figsize
argument is used to specify the figure size.

5. The show() method of pyplot sub-module is used to display the plot.
6. Methods available on the axes object can also be called directly using

the plt notation.
7. The plot() method from pyplot module is used to plot line chart from

a sequential data structures such as lists, tuples, NumPy arrays, pan-
das series, etc.

8. The scatter() method from pyplot module is used to generate scat-
ter plots.

9. The hist() method from pyplot module is used to generate his-
togram plots.

10. The bar() method from pyplot module is used to create a bar chart.

Key Takeaways | 313

11. xlabel() and ylabel() methods are used to label the charts. The
title() method is used to title the chart.

12. The legend() method is used to annotate the charts.
13. The axhline() is used to add a horizontal line across the axis to a plot.
14. xticks() and yticks() methods are used to customize the ticks along

the axes in a plot.
15. The grid() method is used to add a grid to a plot.
16. The subplots() method is used to create multiple plots within a fig-

ure.
17. The style attribute is used to configure the style of a plot.
18. Methods discussed in this chapter have their own attributes specific

to each method.

314 | Chapter 12

References

Chapter 1 - Introduction

1. A Byte of Python, Swaroop CH:
https://python.swaroopch.com/about_python.html

2. Hilpisch, Yves (2014): "Python for Finance - ANALYZE BIG FINAN-
CIAL DATA." O’Reilly.

3. Tutorials Point:
https://www.tutorialspoint.com/python/python_overview.htm

4. Python Official Documentation:
https://www.python.org/about/apps/

5. Geeks for Geeks:
https://www.geeksforgeeks.org/important-differences-between-python-2-x-
and-python-3-x-with-examples/

Chapter 2 - Getting Started with Python

1. Zhang, Y (2015): "An Introduction to Python and Computer Program-
ming". Springer, Singapore.

2. Python Docs:
https://docs.python.org/3/tutorial/introduction.html

Chapter 3 - Variables and Data Types in Python

1. A Byte of Python, Swaroop CH:
https://python.swaroopch.com/about_python.html

2. W3 Schools:
https://www.w3schools.com/python/python_ref_string.asp

3. Tutorials Point:
https://www.tutorialspoint.com/python/python_strings.htm

315

Chapter 4 - Modules, Packages and Libraries

1. Python Official Documentation:
https://docs.python.org/3/tutorial/modules.html and
https://docs.python.org/3/library/index.html

Chapter 5 - Data Structures

1. Python Official Documentation:
https://docs.python.org/3/tutorial/datastructures.html

Chapter 6 - Keywords & Operators

1. W3 Schools:
https://www.w3schools.com/python/

Chapter 7 - Control Flow Statements

1. W3 Schools:
https://www.w3schools.com/python/ref_func_range.asp

2. Programiz:
https://www.programiz.com/python-programming/list-comprehension

Chapter 8 - Iterators & Generators

1. Iterators, generators and decorators:
https://pymbook.readthedocs.io/en/latest/igd.html

2. W3 Schools:
https://www.w3schools.com/python/python_iterators.asp

Chapter 9 - Functions in Python

1. Python Official Documentation:
https://docs.python.org/3/tutorial/classes.html

2. A Byte of Python, Swaroop CH:
https://python.swaroopch.com/

3. w3schools.com:
https://www.w3schools.com/python/python_ref_functions.asp

4. Programiz:
https://www.programiz.com/python-programming/

316 | References

Chapter 10 - Numpy Module

1. Towards Data Science:
https://towardsdatascience.com/a-hitchhiker-guide-to-python-numpy-
arrays-9358de570121

2. NumPy documentation:
https://docs.scipy.org/doc/numpy-1.13.0/

Chapter 11 - Pandas Module

1. 10 Minutes to pandas:
https://pandas.pydata.org/pandas-docs/stable/10min.html

2. Pandas IO Tools:
https://pandas.pydata.org/pandas-docs/stable/io.html

Chapter 12 - Data Visualization with Matplotlib

1. Matplotlib Plot:
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html

2. Pyplot Tutorial:
https://matplotlib.org/tutorials/introductory/pyplot.html

References | 317

• ®

mou1N1
liiiilNSTI

liORLliO

c1uc1ntrc1

quc1ntrc1
BLUESHIFT

Quantlnsti® is one of the pioneer algorithmic trading research and training institutes
across the globe. With its educational initiatives, Quantlnsti is preparing financial market
professionals for the contemporary field of algorithmic and quantitative trading.
Quantlnsti has also designed education modules and conducted knowledge sessions
for/with various exchanges in South and South-East Asia and for leading educational and
financial institutions.

Quantlnsti's flagship programme 'Executive Programme in Algorithmic Trading' (EPAT®)
is designed for professionals looking to grow in the field algorithmic and quantitative
Trading. It inspires individuals towards a successful career by focusing on derivatives,
quantitative trading, electronic market-making, financial computing and risk
management. This comprehensive certificate offers unparalleled insights into the world
of algorithms, financial technology and changing market microstructure with its
exhaustive course curriculum designed by leading industry experts and market
practitioners.

Quantra® is an e-learning portal by Quantlnsti that specializes in short self-paced courses
on algorithmic and quantitative trading. Quantra offers an interactive environment which
supports 'learning by doing' through guided coding exercises, videos and presentations in
a highly interactive fashion through machine enabled learning.

Quantra Blueshift® is a comprehensive trading and strategy development platform that
lets you focus more on the strategy and less on coding and data. Our cloud-based
backtesting engine helps you develop, test and analyse trading strategies and fine-tune
them, for free. Apart from imparting knowledge on advanced concepts through its
various courses, Quantlnsti contributes to the industry through various initiatives
including participating in & hosting webinars, conferences and workshops in different
parts of the world.

https://www.quantinsti.com
https://www.quantinsti.com/epat
https://quantra.quantinsti.com/
https://quantra.quantinsti.com/
https://quantra-blueshift.quantinsti.com/
https://quantra-blueshift.quantinsti.com/

	Introduction
	What is Python?
	Where is Python used?
	Why Python?
	History of Python
	Python 3 versus Python 2
	Key Takeaways

	Getting Started with Python
	Python as a Calculator
	Floating Point Expressions

	Python Basics
	Literal Constants
	Numbers
	Strings
	Comments
	print() function
	format() function
	Escape Sequence
	Indentation

	Key Takeaways

	Variables and Data Types in Python
	Variables
	Variable Declaration and Assignment
	Variable Naming Conventions

	Data Types
	Integer
	Float
	Boolean
	String
	Operations on String
	type() function

	Type Conversion
	Key Takeaways

	Modules, Packages and Libraries
	Standard Modules
	Packages
	Installation of External Libraries
	Installing pip
	Installing Libraries

	Importing modules
	import statement
	Selective imports
	The Module Search Path

	dir()function
	Key Takeaways

	Data Structures
	Indexing and Slicing
	Array
	Visualizing an Array
	Accessing Array Element
	Manipulating Arrays

	Tuples
	Accessing tuple elements
	Immutability
	Concatenating Tuples
	Unpacking Tuples
	Tuple methods

	Lists
	Accessing List Items
	Updating Lists
	List Manipulation
	Stacks and Queues

	Dictionaries
	Creating and accessing dictionaries
	Altering dictionaries
	Dictionary Methods

	Sets
	Key Takeaways

	Keywords & Operators
	Python Keywords
	Operators
	Arithmetic operators
	Comparison operators
	Logical operators
	Bitwise operator
	Assignment operators
	Membership operators
	Identity operators
	Operator Precedence

	Key Takeaways

	Control Flow Statements
	Conditional Statements
	The if statement
	The elif clause
	The else clause

	Loops
	The while statement
	The for statement
	The range() function
	Looping through lists
	Looping through strings
	Looping through dictionaries
	Nested loops

	Loop control statements
	The break keyword
	The continue keyword
	The pass keyword

	List comprehensions
	Key Takeaways

	Iterators & Generators
	Iterators
	Iterables
	enumerate() function
	The zip()function
	Creating a custom iterator

	Generators
	Key Takeaways

	Functions in Python
	Recapping built-in functions
	User defined functions
	Functions with a single argument
	Functions with multiple arguments and a return statement
	Functions with default arguments
	Functions with variable length arguments
	DocStrings
	Nested functions and non-local variable

	Variable Namespace and Scope
	Names in the Python world
	Namespace
	Scopes

	Lambda functions
	map() Function
	filter() Function
	zip() Function

	Key Takeaways

	NumPy Module
	NumPy Arrays
	N-dimensional arrays

	Array creation using built-in functions
	Random Sampling in NumPy
	Array Attributes and Methods
	Array Manipulation
	Array Indexing and Iterating
	Indexing and Subsetting
	Boolean Indexing
	Iterating Over Arrays

	Key Takeaways

	Pandas Module
	Pandas Installation
	Installing with pip
	Installing with Conda environments
	Testing Pandas installation

	What problem does Pandas solve?
	Pandas Series
	Simple operations with Pandas Series

	Pandas DataFrame
	Importing data in Pandas
	Importing data from CSV file
	Customizing pandas import
	Importing data from Excel files

	Indexing and Subsetting
	Selecting a single column
	Selecting multiple columns
	Selecting rows via []
	Selecting via .loc[] (By label)
	Selecting via .iloc[] (By position)
	Boolean indexing

	Manipulating a DataFrame
	Transpose using .T
	The .sort_index() method
	The .sort_values() method
	The .reindex() function
	Adding a new column
	Delete an existing column
	The .at[] (By label)
	The .iat[] (By position)
	Conditional updating of values
	The .dropna() method
	The .fillna() method
	The .apply() method
	The .shift() function

	Statistical Exploratory data analysis
	The info() function
	The describe() function
	The value_counts() function
	The mean() function
	The std() function

	Filtering Pandas DataFrame
	Iterating Pandas DataFrame
	Merge, Append and Concat Pandas DataFrame
	TimeSeries in Pandas
	Indexing Pandas TimeSeries
	Resampling Pandas TimeSeries
	Manipulating TimeSeries

	Key Takeaways

	Data Visualization with Matplotlib
	Basic Concepts
	Axes
	Axes method v/s pyplot
	Multiple Axes

	Plotting
	Line Plot
	Scatter Plot
	Histogram Plots

	Customization
	Key Takeaways

