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ABSTRACT

THE PURPOSE OF THIS THESIS IS TO INVESTIGATE A METHOD OF

IMPROVING DECISION MAKING RELATIVE TO THE PROBLEMS CREATED

BY OIL SPILLAGE. MANY COUNTRIES AROUND THE WORLD, INCLUDING

INDONESIA, ARE PLAGUED BY INCREASING POLLUTION FROM THESE

SPILLS.

THIS THESIS USES A SIMULATION TO CONSIDER THE SPREAD AND

DAMAGE CAUSED BY OIL SPILLS USING DATA FROM SAN FRANCISCO

BAY. A PROJECTION OF SOCIAL COSTS FROM THESE SPILLS HAS BEEN

MADE.

FORMULATION OF A METHOCOLOGY FOR DERIVING THE SOCIAL COST

OF GIL SPILLS IS A PREREQUISITE IN REACHING OPTIMAL, RATIO-

NAL DECISIONS IN MANAGING OIL POLLUTION. SUCH DECISIONS WAY

INCLUDE THE ESTABLISHMENT OF A FINE STRUCTURE, DETERMINATION

OF THE REQUIRED LEVEL OF CLEAN-UP AND IDENTIFICATION OF

SOCIALLY SIGNIFICANT SPILLS.
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I. INTRODUCTION,

MAN HAS BEEN POLLUTING THE WATERS OF THE WORLD FOR YEARS.

UNTIL THE ECOLOGY MOVEMENT AND THE PRESENT RESOURCE CONSERV-

ATION PROGRAM, LITTLE CONCERTED EFFORT FAS 3EEN MADE TO

RECUCE POLLUTION.

SINCE 1S70, THE U.S. ENVIRONMENTAL PROTECTION AGENCY HAS

PLAYED A MAJCR ROLE IN ATTEMPTS TO REDUCE THE FREQUENCY

OF OIL AND HAZARDOUS SUBSTANCE SPILLS AND TO MINIMIZE ENVI-

RONMENTAL DAMAGE CAUSED BY THOSE SPILLS THAT DO OCCUR.

IN ACDITION, THE U.S. COAST GUARD HAS BEEN INCREASING ITS

EFFGRTS IN DETECTION ANC CLEANING OF HAZARDOUS SUBSTANCES

SPILLED INTO BODIES OF WATER.

OVER 13, COO SPILLS OF OIL (REF-3) AND HAZARDOUS SUBSTANCES

OCCUR ANNUALLY. SPILLEO INTO RIVERS, STREAMS, COASTAL WATERS

ESTUARIES AND LAKES, OIL SPREAC IN A MATTER OF MINUTES BY

THE FORCE OF CURRENT INDUCED BY THE W IND ,S ALI

N

ITY AND TIDES.

SPILLS NCT ONLY REPRESENT WASTED RESOURCES BUT CREATE SOCIAL

COSTS TO THE SOCIETY NEARBY DIRECTLY ANC INDIRECTLY.

CIL POLLUTION IS THE ALMOST INEVITABLE CONSEQUENCE OF THE

DEPENDENCE OF GROWING POPULATION ON AN INCREASINGLY OIL-

BASEC TECHNOLOGY.

BECAUSE GF THE LARGE QUANTITIES OFTEN INVOLVED IN SPILLS,

THE EFFECTS ARE NOT ALWAYS COMPARABLE TC THOSE CAUSED BY THE

CHRONIC POLLUTION OF INDUSTRIAL AND MUNICIPAL DISCHARGES.

SOME OF THE EFFECTS ARE OBVIOUS, SUCH AS POLLUTED BEACHES,

RIVERS CCTTEC WITH OIL SLICKS, DEAD BIRCS AND FISH .

BUT THE ECOLOGICAL EFFECTS FROM SPILLS ARE NOT CONFINED TO

THE IMMEDIATE OR OBVIOUS SINCE OVER A LCNG PERIOD OIL SPILLS

COULC CHANGE THE COMPOSITION OF AQUATIC COMMUNITIES OR DAMA-

GE THE ABILITY OF THE SPECIES TO SURVIVE.

THIS STUDY WILL ADDRESS THE PROBLEM OF INCORPORATING A SO-

CIAL CCST FIGURE ON THE CONDITIONS SURROUNDING AN OIL SPILL.

IT EMPHASIZES THE PROBLEM GF OIL POLLUTION IN THE SAN FRAN-

CISCC BAY AREA AND ITS RELATED SOCIAL CCST. A PREDICTION OF

SOCIAL CCST HAS SEEN MADE USING COMPUTER SIMULATION WITH





PROBABLE, BUT ARTIFIAL, INPUT DATA,





II. FREQUENCY OF OIL SPILL

A. OIL FCLLUTIGN IN THE WATERS OF THE UNITED STATES.
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POLLUTION INCIDENTS BY AREA

GREAT LAKES

3.5%

NUMBER

GREAT LAKES
3

Source

PACIFIC

VOLUME

fig-1

U.S. Coast Guard P.I.R.S. (Ref-2)





POLLUTION INCIDENTS BY LOCATION

NUMBER

OPEN COASTAL

WATERS
5 .0%

pPEN

INTERNAL WATERS
3.0%

VOLUME

fig- 2

Source : U.S. Coast Guard P.I.R.S. (Ref-2)





SOURCES OF DISCHARGES >100 ,000 GALLONS

Calendar Year 1973

Onshore
Product ion

/

Storage

Source

Calendar Year 1974

Fig-3

U.S. Coast Guard P.I.R.S. (Ref-2)





b. -spill probability.

the majority gf spills are quite small . however, it is
THE VOLUME OF LARGE SPILLS THAT HEAVILY INFLUENCES THE SIZE
OF AVERAGE SPILLAGE.
RELIANCE CN THE ANNUAL AVERAGE VOLUME SPILLED OVER A

PROJECTED TIME P C RICD CAN 3E QUITE MISLEADING.
IN REALITY, "^HE ENVIRONMENTAL IMPACT OF OIL SPILLS DEPENDS
BOTH CN THE FREQUENCY AND SIZE OF SPILLS.
IT ALSC CEP5N0S ON THE RATE OF SPILL DISCHARGc RELATIVE TO
THE ABILITY TO CLEAN UP "HE SPILL.

BOTH DEV.4NNEY AND PAULSON (REF-2) CONCLUDE THAT THE OCCUR-
ENCE OF A POLLUTION INCIDENT IS ESSENTIALLY A RANCOM PROCES:
AND CAN BE DESCRIBED BY A PCISSDN DISTRIBUTION :

P(nia)= e
"^ x (Ax)

N

N !

WHERE :

N

X

\

= # 3F SPILLS

= VOLUME HANDLED

= MEAN SPILL INCIDENCE RATE IN * SPILLS/VOLUME
HANDLED.

P(N|X) = PROBABILITY CF 'N' SPILLS OCCUR IMG GIVEN X.

THEY CONCLUDE THAT :

1. AVERAGE SPILL SI ZFS ARE RATHER MEANINGLESS STATISTICS
SINCE THE VOLUME RANGE IS SO GREAT.

2. ThE TRUE IMPACT OF SPILLS IS A FUNCTION GF FREQUENCY
SIZE AND LOCATION.
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ILLUSTRATION OF AN OIL SPILL RISK ANALYSIS

1. SPILL FREQUENCY

USING VALIC AND RELEVANT HISTORICAL CATA» AN ESTIMATE PCR
- N - IS MACE. THIS ESTIMA T ICN IS THE AVERAGE NUN3ER OF

SPILL EVENTS PER YEAR: BASED ON CORRELATION WITH AM APPRO-
PRIATE OPERATING PARAMETER SUCH AS THE NUMBER ZF TANKER PORT
VISITS, THE NUMBER OF OIL TRANSFER OPERATIONS OR The VOLUME
OF OIL HANDLED.

2. SPILL SIZE DISTRIBUTION

USING VALIC AND RELEVANT HISTORICAL DATA, DETERMINE THE
PROBABILITY DISTRIBUTION OF ACTUAL SPILL SIZES.

•

1

1

1

1

1

1

90% confidence interval ^^ •..^ A
s '

s .

X
+ ' 1

~ ~~ ^^^^ „ — - "* 1
^

'-"*" _^-^> «. - "*
1

_..-'"\**^-\"
I^~ ^^^^ "

i I

, ..
—""" ^^"^ --^^

<-

g "
1 i !_

10. 90 98.9%

P' = PERCENT PROBABILITY, THAT A SPILL WILL HAVE A SIZE LESS
THAN OR EQUAL TO S«, GIVEN THAT A SPILL HAS CCCURED.

2. RECURRENCE INTERVAL

FRO;' THE ABOVE, •R 1
* THE RECURRENCE INTERVAL IN YEARS CAN

BE ESTIMATED FOR SPILlS OF VARIOUS SIZES BY USING THE FCLLCW
ING RELATIONSHIP:

R' = 00
N ( 10 - S' )

FIGURE-4
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III. THE SPREAD OF OIL SPILLAGE IN WATER

A. The FATE OF OIL

WILL BE A3SOR3EQ INTO
THE SURFACE SEEKING

IF OIL IS SPILT ON LAND, PART QF IT
THE SOIL AND PART OF IT WILL FLOW OVER
A LGW SPCT.
THE FATE OF GIL SPILLED ON THE WATER IS A VERY COVPLEX
SUBJECT. MUCH EFFORT HAS BEEN MADE TO ESTIMATE THE PHYSICAL
SPREADING AND MOVEMENT OF jIL ON THE SURFACE OF WATER UNDER
THE INFLUENCE OF WIND, WAVES AND CURRENTS.
THE PRECICTIVE MODELS DEVELOPED SO FAR AS E NOT CAPABLE OF
HANCLING SUCH COMPLEXITIES AS :

1. EVAPORATION, DISSOLUTION, SEDIMENTATION, EMULSIFICATI ON,
ALTO/PHGTO-GXIDATICN AND 31 CDEGR ACATICN

.

2. TFF CHANGE IN PHYSICAL AND CHEMICAL PROPERTIES OF
FLOATING OIL RESULTING FROM PART ONE.

3. THE EFFECT OF SEA CONDITIONS.
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SPILLS , IDENTIFIED EVAPORATION AS BEING THE MOST SIGNIFICANT.
EVAPORATION IS ENCHANCED BY INCREASING WIND SPEED, SEA SUR-
FACE ROUGHNESS, AIR TEMPERATURE AND DECREASING OIL FILM
THICKNESS. LIGHTER WEIGHT OIL EVAPORATES FASTER THAN HEAVIER
TYPES.
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B. MCDEL OF DISAPPEARANCE GF GIL SPILLS DUE TO EVAPORATION.

TWO EASIC ASSUMPTIONS MADE BY SIVADIEP AND M1KCLAJ IN

THEIR MCDEL :

2. OIL CONSISTS GF TWO ARBITRARY DEFINED PARTS :

A. A VOLATILE FRACTION FROM WHICH ALL EVAPORATIVE

LOSSES GCCUR

B. A RESIDUUM FRACTION WHICH IS TOTALLY UNAFFECTED BY

WEATHERING.

F = C1*T/(I + C2*T)

WHERE:
c thf -WPIGHT FRACTION OF THE WEATHERED OIL
F "

SAMPLE WHICH IS EVAPORATED, IN PERCENT.

n C? - CONSTANT, IN WHICH THE VALUE DEPENDS
Clf

ON THE TYPE OF OIL, WEATHER ^ID WA.ER
CONDITION.

T = TIME, IN MINUTES.

AS TIME APPROACHES INFINITY, THE VALUE OF -F- CONVEPGES TO

20 - 22? (REF-10).

PORT MECHANISM.

C. MCDEL TO CETERMINE THE LEEWAY OF OIL SLICKS.

2 - ^hSL
5
IC-Y5EKF8V^ glteSK^WaMinx^h-

ICN

OSL 0.0179*W10 + 0.0196
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WFEPE:

OSL = GIL SLICK LEEWAY, IN KNOTS.

W10 = WINO SPEED AT 10 METERS ELEVATION , IN KNOTS.

3. THE EXPRESSION FOR WIND IN RANGE LESS THAN FIVE KNOTS
SHOULD LSE:

OSL = C.0199*W10.

4. OIL SLICKS MOVE
hATER SURFACE.

IN THE DIRECTION OF WIND ACROSS THE

5. OIL SPILL VOLUME WAS NOT FOUND TO AFFECT THE MAGNITUDE
OF THE SLICK LEEWAY, BUT VERY THIN OIL FILMS WERE
FOUND TC EXHIBIT LITTLE OR NO LEEWAY.

6. OIL SLICK LEEWAY INCREASES AS A POSITIVE FUNCTION
CF SEA STATE, BUT THE RELATIONSHIP WAS NOT QUANTITATIVE
LV DEFINED.

7. OIL SLICK MOVES ACROSS THE WATER SURFACE UNCER "HE
INFLUENCE OF THE WIND LEAVING A THIN FILM AlCNG THEIR
PATH.

C. GIL SLICK SPREADING ANALYSIS.
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IN THIS STUDY THE FOLLOWING VALUES ARE USED :

G = 98C CM/SEC2

U s 10 DYNE/CM

P a 1.0

P = 0.95

LATITUDE = 38 DEGREE NORTH

v
co

= 0.01 CM2 /SEC.

C. i^CVEHENT OF SPILLED GIL IN SAN FRANCISCO BAY AREA.
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IV. FACTORS AFFECTED BY THE OIL POLLUTION.

CRUCE OIL AND OIL ?RODUCT S SPILLED IN NATURE ARE ALTERED
BY EVAPORATION, BY DISSOLUTION, BY BACTERIAL ANC CHEMICAL
ATTACK.
IN SPITE OF COMPLEX PROCESSES OCCURING CURING WEATHERING,
MANY COMPOSITIONAL PARAMETERS ARE RELATIVELY STABLE AND ARE
NOT OBLITERATED UNTIL AN ADVANCED STAGE DF DEGRADATION HAS
BEEN REACHED (REF-1).
THE STABLE PARAMETERS MAY AID THE IDENTIFICATION OF AN OIL
POLLLTAfvT ANC IN THE CORRELATION WITH ITS SOURCE FOR MANY
\MEEKS AFTER THE SPILL (REF-1, 2).
THE EFFECTS OF GIL POLLUTION CAN BE DIVIDED INTO TWO GROUPS,
MECHANICAL CAMAGE AND TOXIC EFFECTS.

A. MECHANICAL DAMAGE.
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B. TCXIC EFFECTS.

THE PHYTOTCXIC EFFECT OF HYDROCARBONS HAD BEEN STUDIED

22





IN MOST
TOXICIT
ONES.
FISH US
SHELLFI
FIVE TO
OYSTERS
RAL CON
THIS HA
. ALSCt
CARCENO
MAKING
AQUATIC
EXPCSUP
VIOR PA
AVOID I

NIZE TE

CETAIL ON TERRESTRIAL PLANTS . IT WAS
Y IN SMALLER MOLECULES WAS GREATER THAN

UALLY
SH ARE
TEN P
THUS

DITIGN
S MEAN
SOME

C-ENIC
IT UNF
LIFE

E TO
TTERN
NJURY,
RRITCR

KEEP WELL
AFFECTED
ERCENT CR
AFFECTING
(REF-7)

.

T FINAMCI
CCMMERCIA
SUBSTANCE
IT FOR CO
UNDER CON
IL SPILLS
SUCH AS L
ESCAPE F

Y, MIGRAT

CLEAR OF AN OIL SPILL I

8Y OIL DUE TO THEIR LAC
UDE OIL SLOWS THE PUMPIN
THEIR FEEDING, RESPIRAT

AL LOSSES FOR FISHERMEN
L SPECIES CAN ACCUMULATE
St DAMAGING THE ORGANISM
NSUMPTION 3Y MAN AND OTH
DI T IONS OF LONG TERM OR
DEVELOPES SUBTLE CHANGE

OSING THEIR ABILITY TO S
ROM ENEMIES, CHOOSE A HA
E, COMMUNICATE AND REPRQ

FOUND THAT
IN LARGER

F THEY CAN.
K OF MOBILITY.
G RATE OF
ION AND GENE-

AND PROCESSORS
PQTENTI ALLY
ITSELF OR

ER ANIMALS.
CONTINUOUS
S IN THE 3EHA-
ECURE FOOD,
BITAT, RECQG-
DUCE (REF-8) .

C. IMPACT OF A DISCHARGE.

AN GIL SPILL CAN HAVE ADVERSE SOC I A L , ECONQM IC AND EN-
VIRONMENTAL IMPACT . THE SEVERITY OF THE IMPACT DEPENDS
ON THE ENVIRONMENTAL SETTING OF THE AFFECTED AREA, THE TYPE
AND AMOUNT OF OIL SPILT, AND THE MITIGATION MEASURES EMPLOY-
ED.
SOCIO-ECONOMIC IMPACTS COULD INCLUDE ADVERSE PUBLICITY AND
PUBLIC CONCERN WHICH COULD TEMPORARILY DETER COASTAL RECREA-
TION ANC TOURISM.
PERSONAL PROPERTIES SUCH AS BOATS AND FISHING GEA* COULD BE
FOULED BY OIL.
COMMERCIAL AND SPORT FISHING ACTIVITY COULD BE TEMPORARILY
STOPPED OR CURTAILED IN THE AREA.
THE POSSIBLE IMPACTS OF A DISCHARGE CAN INCLUDE (REF-2) :

A. HAZARD TO HUMANS THROUGH EATING CONTAMINATEC SEAFOOD,

B. CECREASE OF FISHERY RESOURCES, ANC DAMAGE TO WILDLIFE
SUCH AS SEA BIRDS ANO MARINE MAMMALS,

C. CECREASE OF AESTHETIC VALUE DUE TO UNSIGHTLY SLICKS
OP OILEC BEACH, DECREASING THE VALUE OF PRIVATE PRO-
PERTIES AND RECREATIONAL ACTIVITIES AND TOURISM,

0. CECREASE IN DIVERSITY AND PRODUCTIVITY OF SPECIES IN
THE POLLUTED AREA.

E. MODIFICATION OF HABIT ATS , DELAYI NG OR PREVENTING RE-
CGLCNIZATION.
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V. THE ECONOMICS OF OIL SPILLS

IN MARCH 1967 THE 1 I L TANKER TCRREY CANYON FOUNDERED OFF
THE SOUTHERN COAST OF ENGLAND, SPILLING 119,000 TCNS OF
CRUDE OIL. THE OIL SLICK QUICKLY SPREAD ACROSS NEARBY WATERS
ANC FOULED LARGE AREA OF ADJOINING ENGLISH AND FRENCH
COASTS. THE BRITISH GQVERMMEMT ALONE SPENT $8 MILLION (REr-
12) CN CLEAN UP. THAT WAS ONLY A PQRTICN OF TOTAL CLEAN UP
COSTS. IN ADDITION, THERE WAS EXTENSIVE LOSS OF MARINE LIFE
AND FOULING OF BEACHES AND COASTLINES.

SINCE OIL IS NOT COMPLETELY BIODEGRA CABLE OR DOES NOT DETER-
IORATE RAPIDLY, SLICKS AND GLOBULES OF OIL ARE VISIBLE
THRGLGHOUT THE HIGH SEA OF THE WORLD. THE EXACT BIOLOGICAL
CONSEQUENCES ARE STILL UNDETERMINED.

IT IS TEMPTING FOR PEOPLE TO ASSERT THAT ALL POLLUTION
SHOULD BE STGPPED, BUT THE SOCIETY WILL HAVE LESS REAL IN-
COME IF THE COSTS OF TOTAL ELIMINATION GF PGLLUTICN EXCEED
THE BENEFITS.
FROM THIS POINT OF VIEW SOME LEVEL OF GIL POLLUTION MAY
INDEED BE SOCIALLY DESIRABLE.
IT IS CRITICAL TO DEVELOP A PROCEDURE AND METHODOLOGY TO
DETERMINE THE SOCIAL C ^ST OF AN OIL SPILL SO AS TC CONDUCT
PRCCLCTIVE INQUIRES IN DERIVING THE SOCIALLY OPTIMAL LEVEL
OF OIL SPILLAGES. THIS SECTION AS WELL AS THE FOLLOWING
SECTION ARE CEVOTED TO SUCH DEVELOPMENT.

IF A SPILL OCCURS, THE DIRECT
NOMY MAY BE MEASURED IN TERMS
PRCCLCT.

COST ASSOCIATED WITH
COMPLICATED.
COST IS THE FUNCTION OF SIZE, FREQUENCY,
TYPE OF OIL SPILLED INTO THE WATERS.

THE INDIRECT
IS MUCH MORE
THE INCIFECT
LOCATION AND

LOSS OF A PRODUCT TC THE ECO'
OF THE MARKET VALUE OF THE

THE ENVIRONMENTAL DAMAGE

THE SOCIAL COST IS DEFINED AS VALUATION OF LOSSES IN REAL
GOODS AND SERVICES RESULTING FROM THE GIL SPILL.

IN THE ABSENCE OF ANY CLEAN UP PROCEDURES (DETECTION,
CHEMICALS EQUIPMENT ETC), THE SOCIAL CCST OF A SPILL COULD
BE DEFINED AS THE SUM OF DIRECT AND INDIRECT COSTS.

C(S) = A(S) + 3(S)

WHERE:

A, THE DIRECT COST IS A FUNCTION OF SPILL SIZE AND

B, THE INDIRECT COST IS THE FUNCTION OF SIZE,
FREQUENCY , LOCATION AND TYPE CF OIL.
TYPE CF OIL CHARACTERIZED THE TOXICITY TO MARINE
LIFE.

A. GENERAL ECONOMIC ANALYSIS
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ASSUME THAT THERE ARE N COMMODITIES IN THE ECONOMY WHICF
CAN SERVE AS GOODS WHERE THE COMMODITIES AWE DEFINED FOR A

PARTICULAR DATE AND PLACE SO THAT A SINGLE PHYSICAL COMMO-
DITY DELIVEREC AT 7wC DIFFERENT DATES OR Wi DIFFERED
PLACES KCULO EE CONSIDERED DIFFERENT ECONOMIC COMMODITIES.
ASSUME N IS FINITE, AND THE QUANTITIES OF ANY COMMODITY ARE
ASSoMEO PERFECTLY DIVISIBLE.
A PARTICULAR BUNDLE OF COMMODITIES IS SUMMARIZED BY THE
COLUMN VECTOR 'X':

X = { Ait Ami • • , A
N

THIS VECTOR IS DEFINED CN EUCLIDEAN N-SPACE,- E » REFEREC
TO AS CCMMCDITY SPACE.
PRICE IN THE ECONOMY ARE SUMMARIZED BY ROW VECTCR P :

P = ( Pi ,P • • • T P N

PRICE ARE NCN NEGATIVE AND AT LEAST ONE PRICE IS NON ZERO.
THE PRICE CAN BE NORMALIZED AND ONE POSSIBLE NORMALIZATION
IS THAT OF MEASURING PRICES SO THAT THEY SUM TO UNITY.

N

J*l J
= 1

EACH OF Tf-E FIRMS IN THE ECONOMY MUST SELECT LEVELS OP
INPUTS AND OUTPUTS SUBJECT TO THE AVAILABLE TECHNOLOGY, SO
AS TO MAXIMIZE PROFITS. FOR EXAMPLE THE FIRM f MAY CHOOSE

INPUT-OUTPUT VECTOR Y
f

IN THE COMMODITY SPACE

Y f
= ( Y* f Yff ..".,Y* )•12 N

THE PRODUCTION POSSIBILITIES SET f f
, A SUBSET OF COMMODITY

SPACE IN WHICH:

Y
f
€ f f

f =1,2, ...,F

IT IS ASSUMED THAT EACH PRODUCTION POSSIBILITIES SET IS IN-
DEPENDENT OF THE INPUT/OUTPUT VECTOR CHOSEN BY CTrER FIRMS
AND OF THE CONSUMPTION CHOICES OF CONSUMERS.

THE ECONCMY -WIDE I-Q VECTOR Y , IS OBTAINED BY SUMMING
ALL INOIVICUAL FIRM I-Q VECTORS:

F
= Z

-f
Y = ( ? • • •

,

BY SUMMATION, INTERMEDIATE GOODS CANCEL OUT, SO ONLY FINAL
QUTPLTS (MEASURED AS POSITIVE) AND PRIMARY RESOURCES (MEA-
SURED AS NEGATIVE) APPEAR IN Y

THE ECCNCMY-WIDE PRODUCTION POSSIBILITIES SET T IS OBTAINED
BY SLMMING ALL FIRM PRODUCTION POSSIBILITIES SETS :

T
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ASSUKPTICNS :

1. T IS CONVEX: Y, i" > ay + d- a)Z «f < a< 1

2. IT IS IMPOSSIBLE TO PRODUCE OUTPUTS USING NC INPUTS.

3. OUTPUT AND INPUT CANNOT 8E REVERSED.

4. IT IS POSSIBLE TO USE INPUTS AND PRODUCE NO OUTPUT.
INPUTS BEING FREELY DISPOSABLE.

SINCE OUTPUTS ARE MEASURED AS POSITIVE 4ND INPUTS AS
NEG4TIVE, THE PROFIT OF FIRM f :

f - -f N
f

n = p.y
1

= it*. .Y,
r

TOTAL FRGFIT n IS MAXIMIZED WITHIN T IFF ALL FIRMS MAXIMIZE

THEIR INCIVICUAL PROFITS 11* WITHIN THEIR PRODUCTION POSSI-

BILITIES SETS f f
.

EACH OF THE CONSUMER H IN THE ECONOMY MUST
OF PURCHASES SUBJECT TO A BUDGET CONSTRAINT.

SELECT LEVELS

CONSLMER h SELECTS A CONSUMPTION VECTOR c
h

c
h

= ( C-. tC »CN
)'

.N

THE TASTE OF CONSUMERS ARE SUMMARIZED BY THE PREFERENCE
RELATION f ASSUMED CONVEX AND CONTINUOUS, ALSO ASSUMED THAT
THE PREFERENCE RELATION FOR ANY CONSUMERS IS INDEPENDENT OF
THE CONSUMPTION CHOICES OF CTHER CONSUMERS.

THE EUCGET CONSTRAINT 3 :

B = P.C
h

= ZP .C
h

TOTAL CONSUMPTION LEVELS FOR THE ECONOMY C , IS CBTAINEC BY
SUMMING ALL INDIVIDUAL CONSUMER CONSUMPTION VECTORS :

H -h
c = zc

IF A REPRESENT TOTAL RESOURCES FOR THE ECONOMY, THEN
WEALTH OF THE ECONOMY W :

W = P.

A

A COMPETITIVE EQUILIBRIUM IS DEFINED AS A SITUATION IN WHICH
PRICE VECTOR SATISFIES :
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I. fc(P*) < i = 1,2, ..., N

(non positive excess demand function)

P
{

* $j ( P*) = » = 1,2,... ,N

THE PROFIT MAXIMIZING I -0 VECTOR OF EACH FIRM IS SUMMARIZED

_* _1*
'

— 2* -F*

THE EQUILIBRIUM CONSUMPTION VECTOP OF EACH CONSUMER :

_* _i* _2* -H*
C = (C tC t • • • t C )

PRCFIT MAXIMIZING SUBJECT TO THE AVAILABLE TECHNOLOGY AND
PQLLLTICN LEVEL :

_* f* _* _f
P .Y > P .Y FOR ALL Y

f
€ T

A PARETO .OPTIMUM IS A SET OF CONSUMPTION VECTORS :

_1* _2* -H*(C i C j • • • t C )

WHICH I

AND FOR
VECTORS
ONE IS
IN THE
IN FIG-

S CONSISTENT WITH THE TECHNOLOGY AND BUDGET
WHICH THERE EXISTS NO OTHER SET CF CONSUMPTION

, SUCH THAT NO CONSUMER IS WORSE OFF AND AT lEAST
SETTER OFF.

F ONE CONSUMER AND ONE PRODUCER IS ILLUSTRATED

FIG-7
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BY ASSUMPTION THE PREFERENCE SETS AND THE PRODUCTION PC-SSiei
LITIES ARE CONVEX, COMPETITIVE EQUILIBRIUM IS GIVEN BY THE
POINT OF TANGENCY OF THE BOUNDARY OF THE PRODUCTION FRONTIER
AND THE HIGHEST ATTAINABLE INDIFFERENCE CURVE* WHERE THE

-h
VECTOR OF THE CONSUMER IS C AND THE 1-0 VECTOR OF THE FIRM

_f
IS Y
BY CCNVEXITY ASSUMPTIONS THERE EXISTS A SEPARATING HYPER-
PLANE FOR WHICH THE PRODUCTION POSSIBILITIES SET LIES ON
ONE SIDE AND THE PREFERENCE SET ASSOCIATED WITH THE HIGHEST
ATTAINABLE WELFARE CURVE LIES ON THE OTHER SIDE OF THE
HYPEPPLANE. THE HYPERPLANE OR PRICE LINE FUNCTION :

P Z = V

WHERE:
_» -* _* _»

V = P .C = P .Y

IN GUR STUDY WE ASSUMED THE X VECTOR COMMODITIES REFERS TO
GOODS AND SERVICES SENSITIVE TO THE OIL POLLUTION SUCH AS
FISHING INDUSTRIES, RECREATION ACTIVITIES ETC.
ASSUMING THAT THE PRODUCTION POSSIBILITIES SET IS A FUNCTION
OF SPILL SIZE. WE THEN ASSUME INCREASES IN POLLUTION SIZE
WOULD CECREASE THE PRODUCTION OF COMMODITIES IN THE mREA
FOULED BY OIL. THIS MAKES SENSE SINCE FOULED BEACHES MEAN
DECREASES I.N INPUT OF RECREATION PRODUCTION, AND FOULED
WATERS RESULT IN REDUCED COMMERCIAL FISHING REVENUES.
IF GOODS AND SERVICES EFFECTED BY THE OIL SLICK HAVE NO
MARKET VALUES OR PRICES, WE MAY USE A SHADOW PRICING SCHEME
TO DETERMINE THE VALUES.

THE SHACCW PRICE OF A GIVEN (CONSTRAINED J COMMODITY IS DEFI-
NED AS MARGINAL VALUATION OF THE COMMODITY BY RELAXING THE
CONSTRAINT MEASURED IN TERMS OF THE OBJECTIVE FUNCTION .

THE SOCIAL COST C(S) OF THE OIL POLLUTION COULD THUS BE
OESCPIBED AS THE DIFFERENCE IN VALUE BETWEEN THE PRODUCTION
LEVEL IN THE ABSENCE OF SPILLS AND THE PRODUCTION LEVEL
RESULTING FROM A SPILL.

C(S) = P(S=0) ( X*(5=0) - X*S = 1)
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VI. COST MOCEL DEVELOPMENT.

ANY SPILLAGE OF OIL INTO THE WATERS REPRESENTS A LOSS OF
PROCLCTS TO THE ECONOMY. THIS LOSS 15 EQUAL TO THE MARKET
VALUE CF THE PRODUCTS LOST.
IN ACDITION TO THE LOST PRODUCT, THERE WILL ALWAYS BE DAMAGE
DONE TO THE AQUATIC ENVIRONMENT AND POSSI3LY TC THE SURROUN-
DING LANC AREAS OR BEACHES.
MANY FRACTIONS OF OIL ARE SOLUBLE OR EMULSIFIEC IN THE WATER
AND SINK. SUCH DISSGLVED SUBSTANCES CANNOT BE EASILY TAKEN
OUT EY SIMPLE REMOVAL OF THE VISIBLE PRODUCT ANC CAMAGES
INFLICTEC MAY NOT BE REVERSIBLE.
THE ENVIRONMENTAL DAMAGE FACTOR IS COMPLICATED BY THE
EXISTENCE OF SHORT AND LONGER TIME EFFECTS.
THE LOCATION OF THE SPILL IS CRITICAL TO THE COST THAT IS
INCURRED.

A. GENERAL COST MODEL.

AS WAS PREVIOUSLY MENTIONED, THE COST OF A PARTICULAR OIL
SPILL C(S) :

C ( S ) = A( S ) + t_> (S)

WHERE:

A (S) = DIRECT COST OF OIL SPILL.

B (S) = INDIRECT COST OF OIL SPILL.

8. CIRECT COST.
DIRECT COST (S) IS EQUAL TO THE MARKET VALUE OF T HE

PRODUCT LOSS

A (S) = C .V

WHERE:

V = VOLUME OF OIL SPILLED

C = MARKET PRICE PER UNIT VOLUME

S = SPILL INDICATOR.

C. I N C I R COST.
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INDIRECT COST B(S) f IS THE VALUATION OF CGMMOCITY LOSS
RESULTING FROM THE OIL SPILL.

N

B (S) = C. Ax = f->
fctt

•**!

TO SIMPLIFY THE COST MODEL TO A RESOLVABLE LEVEL, CONSIDER
ONLY COMMODITIES THAT MIGHT HAVE SIGNIFICANT EFFECT IN THE
CALCULATION OF COST.
ASSUME THE SIGNIFICANT INDIRECT COST WAS THE SUMMATION OF
LOSS IN WILD BIRD POPULATION, LOSS IN FISH POPULATION, LOSS
IN PROPERTY VALUES, LOSS TO THE BUSINESS ACTIVITIES IN
COMMERCIAL FISHING ANO RELATEC INDUSTRIES AND LOSS TO THE
RECREATICN ACTIVITIES ( SPORT-FISHING, BOATING, TOURISM ETC)

THUS IN CUR MODEL COST, N EQUAL TO FIVE, WE DENCTE :

C
l

~ RELATIVE PRICE (WEIGHTING FACTOR) CF A BIRD.

AXi = NUMBER OF BIRDS KILLED.

THE FELATIVE PRICE REFLECTS THE SHADOW PRICE WHICH IS PRE-
SUMABLY DETERMINED UNDER SOME APPROPRIATE CONSTRAINED MAXIMI
ZATICN PROBLEM.

C 2 = RELATIVE PRICE OF A FISH

AX2 ' NUMBER OF FISH KILLED

AS IN C-l ,USE SHADOW PRICE TO DETERMINE THE RELATIVE PRICE
C-2 OF A FISH. IN THIS CASE THE FISH ARE NOT VALUED AT
THEIR MARKET PRICE TO AVOID DOUBLE COUNTING, SINCE THE
EFFECT ON THE MARKET IS COMPUTED BELOW AS THE REDUCTION OF
OUTPUT IN THE COMMERCIAL FISHING ACTIVITY. THE SHADOW PRICE
REPRESENTS THE LONG TERM EFFECTS AND ALSO REPRESENTING THE
REAL OBVIOUS LOSS IN THE NATURAL RESOURCE BASE.

C* = DROP IN MARKET PRICE OF PROPERTY VALUE PER
' UNIT AREA RELATIVE TO THE BASE PRICE.

AX^ = AREA OF VALUABLE BEAC HES /COAST FOULED BY OIL.

C-4 IS A FUNCTION OF LOCATION. IN OUR STUDY WE DIVIDE SAN
FRANCISCO BAY AREA INTO FIVE DIFFERENT LGCATIONS. THIS COULD
eE REFINED INTO ON THE SPOT LOCATION AS PREDICTEC BY THE
SIMULATION TECHNIQUE. IN REALITY WE SHOULD ALWAYS USE MUCH
FINER GRID SYSTEM TO OBTAIN A MORE ACCURATE COST PICTURE.

C4 = MARKET PRICE PER UNIT PRODUCT OF COMMERCIAL
FISHING ACTIVITIES (ANO RELATED INCUSTRIES)
RELATIVE TO THE BASE PRICE.

AX4 = REDUCTION ON PRODUCTION CAPACITY O c COMMER-
CIAL FISHING ACTIVITIES (ANO RELATED
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INDUSTRIES).

L
5

&X5

= MARKET PRICE PER UNIT PRODUCT OF RECREATION
ACTIVITY RELATIVE TO THE BASE PRICE.

= REDUCTION IN PRODUCTION CAPACITY OF RECREA-
TION ACTIVITY.

»D. DETERMINISTIC MODEL TO ESTIMATE BIRD OR FISH DEATH.

TG ESTIMATE THE BIRD OR FISH KILLED, WE USE DIFFERENTIAL
EQUATION AS FOLLOWS:

dX
dt

=1 -k.Y

WHERE

k = DEATH RATE OF BIRDS OR FISH AS A FUNCTION OF
LOCATION, SIZE AND TYPE OF CIL SPILL.

TYPE OF OIL RELATES WITH ITS TOXICITY.

Y = AREA SPILLED AS A FUNCTION OF TIME.

SOLVE THE EQUATION BY USING EULER APPROXIMATION TECHNIQUE:

NUMBER OF BIRDS OR FISH KILLED = AX

M

AX 3: k.At
t=T

Y.

_

.

DETERMINISTIC MODEL TO ESTIMATE PROPERTY DAMAGE.

IF THE OIL SLICK LANDED ON THE SHORE, THUS ThE SOCIAL
COST OF DAMAGE WOULD BE CONSIDERED TO BE EQUAL TC THE LCSS
OF VALUE IN MARKET PRICE OF THE PROPERTY FQULED BY GIL.

AX^ sTT^

CyAX^ ^ C^.TT. a
f

TCR f REPRESENT THE AREA FOULED BY OIL. Rf MAY BE OBTAINED

FROM THE SIMULATION.
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F. MODEL TO ESTIMATE THE SOCIAL COST OF BUSINESS ACTIVITY.

T\-E STANCARO PRODUCTION FUNCTION MODEL IS A SUFFICIENTLY
WELL KNCWN TOOL OF ECONOMIC ANALYSIS.
TG MAKE THE MODEL TRACTABLE, WE SIMPLIFY BY ASSUMING THAT
ONLY A SINGLE FIRM POSSESSES ALL BUSINESS ACTIVITIES IN THE
BAY AREA, AND THE EXISTENCE OF SOCIAL D R£FERENCE OVER RECREA-
TION ANC COMMERCIAL FISHING ACTIVITIES.
ASSUME THE PRODUCTION POSSIBILITIES SET OF THE FIRM IS
KNOWN AS FOLLOWS :

WHERE :

X = PRODUCT OF RECREATION ACTIVITY

Y = PRODUCT OF COMMERCIAL FISHING (AND RELATED IN-
DUSTRIES)

a > , b >

a f b IS A FUNCTION OF SPILL SIZE AND LOCATION.

a 3 a,

r 2

r ~*2 v
- r

( 6 l
e + 6

j >

b = b ( ^ e + E.
5 >

6, = THE PROPORTION OF PRODUCTION RELATED kITH THE
1 BAY ACTIVITIES ( SWIMMING, SPORT FISHING ETC)

S 2
= DEGRADATION CONSTANT

L = THE PROPORTION OF PRODUCTION NOT RELATED TO THE
' BAY ACTIVITIES FOR EXAMPLE PEOPLE IN TRANSIT ETC

C
l = THE PROPORTION OF PRODUCTION WITH LOCAL INPUT

RESOURCES.

£
2

= DEGRADATION CONSTANT

h = THE PROPORTION OF PRODUCTION WITH INTERLOCAL
INPUT RESOURCES.

V = VOLUME, SPILL SIZE.

su , b n = MAXIMUM PRODUCTION LEVEL FOR EACH ACTIVITY
GIVEN ALL AVAILABLE RESOURCES.

a^ , b ,£,£ IS A FUNCTION OF LOCATION.
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THE SOCIAL PREFERENCE FUNCTION IS GIVEN AS

W(s; - cX^.Y*
3

WHERE :

C = CONSTANT, GIVEN AS A FUNCTION OF LOCATION.

0(, ft : KNGWN AS GIVEN MD C>( +
fi

< 1 f 4 } Q , (3> .

BY ASSUMING TFAT THE FIRM TREATS PRICES AS GIVEN ANC SEEKS
TO MAXIMIZE ITS PROFIT,
MAXIMIZE ITS PROFIT,

MAX = P . X + P . Y
x y

SUBJECT TQ X
Z

Y
2

BY USING LAGRANGE MULTIPLIER TECHNIQUE, THEN

PROFIT IS MAXIMIZED IF :

X P -a1 X

VW+ *?$
2. D2L

J/

Y-.
p^.l

2-

Va2
P/ + tf 5?

ON TFE CCNSUMER SIDE, GIVEN BUDGET CONSTRAINT, MAXIMIZE HIS
PREFERENCES

MAX W<S) = C.X .Y

SUBJECT TO Z = P .X + P .Y

USING LAGRANGE MULTIPLIER TECHNIQUE :
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PREFERENCES ARE MAXIMIZED IF

X --
°<-z-

px C^ + p»;

Pj,(-<+P)

EQUILIBRIUM CONDITION IF z =TC=TC

THE CONDITION APPLIES IF :

K-

Y„ =

<* a
2

x 1/2.

* +
f>

1/2

THE SUPPLY ANC DEMAND CURVES OF 'X' PRODUCT ARE

X,=

Xd-

a
z
p;

IT

o<JT
m

THE SUPPLY AND DEMAND CURVES OF «Y' ARE
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V.

2 *
t> P

y

TT

Y,
(S.TT

Py(^+P)

WHERE TL / 2 t,* 2 ,2 *2 ,1/2
( a P

x
+ b P

y
)

THE PRICE FUNCTION IS

P * = p
Y . a
e

2 2 1/2
b( b - Y„ )

G. SENSITIVITY ANALYSIS.

AS AM EXAMPLE WE ANALYSE THE CHANGES IN SUPPLY CURVES
AS WE CHANGE THE PRODUCTION POSSIBILITY PARAMETER :

CHANGES IN SUPPLY CURVES :

Da

a.b 4 (P /P )
2

x y

2 2 2 3/2
( a

Z
(P x /P y )

Z
+ b

Z
)

J/Z

^o

-z>a

2 2 2
a
Z

+ 2b
Z

(P
y
/P

x )

2 2 2 3/2
a ( a + b (P

y
/Px ) )

J/

>o
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CONCLUSICN :

1. IF 'A' DECREASES* THE SUPPLY CURVE OF 'X' WILL
SHIFT TC THE LEFT, IF 'A' INCREASES CGNVERSE HOLDS

2. IF «A» DECREASES THE SUPPLY CURVE GF «Y' WILL
SHIFT TO THE RIGHT, IF »M INCREASES CONVERSE
HOLDS.

CHANGES IN DEMAND CURVES :

i cV:

2>a o /^^ v
*

R, (« + p)

>/0

^i^i(a^ + l?P/)"
Vk

»0
i>a (* + (3)

CONCLUSICN :

1. IF 'A 1 DECREASES, BOTH DEMAND FOR 'X 1 AND »Y« WILL
SHIFT TO THE LEFT.

2. IF 'A* INCREASES, CONVERSE HOLDS.

CHANGE IN ThE EQUILIBRIUM POINT :

V4
2>a

- o

•a a o< + (i
(

c<̂

)-"* ».
f
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CONCLUSICN :

1. NO CHANGE IN »Y« PRODUCTION LEVEL.

2. IF 'A' DECREASES, THE PRODUCTION LEVEL CF 'X' WILL
DECREASE, IF »A« INCREASES , CONVERSE HCLDS.

THE SOCIAL COST OF A SPILL IS EQUAL TO THE MARKET VALUE OF
THE PROCUCT LOSSES.

SOCIAL COST = P X .(X - *• 1 + P.( Y - YJ )

WHERE :

P x AND P
y

REPRESENT THE PRICE PER UNIT PROCUCT OF X

AND Y,

X Q AND Ya REPRESENT THE OPTIMUM PRODUCTION LEVEL

CF X AND Y BEFORE THE SPILL OCCURS.

X* AND y' REPRESENT THE OPTIMUM PRODUCTION LEVEL CF
8 9

X AND Y AFTER THE SPILL OCCURS.

SEE FIGURE 8A,B ; FIGURE 9A, ; FIGURE 10A,3 FCR GRAPHICAL
ILLUSTRATION.
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VII. DATA ANALYSIS

ASSUME THE PARAMETERS OF THE COST MODEL IN THIS STUDY ARE
SHOWN IN TABLE-2

REGICN PROD.PARM BEACH VALUE BIRD PARM FISH PARM

SOUTHERN

BAY / EAST

a
Q
=40,000

b
Q
=10,000

H=4,000

L=2,500

N

N

C l= 2

k
1
=0-01

N 02= 2 N

k2
=0.12

SOUTHERN

BAY / WEST

a =60,000

b =40,000

H=6,000

L=3,500

N

N k
1
=0.01

N C2 = 3 N

k2
=0.10

CENTRAL

BAY

a =100,000

b = 50,000

H=7,000

L=3,500

N

N

C
l =

5

k x
=0.05

N (^ = 2 N

k2 =0.05

NORTHERN aQ =20,000 H=4,000 N C 1
= 3 N <£ = 4 N

BAY / EAST b =30,000 L=l,500 N k 1 =0.10 k2 =0.15

NORTHERN a =100,000 H = 8,000 N C
x
= 10 N C2 = 10 N

BAY / WEST b
Q =100,000 L=5,000 N k

1
=0.10 k2 =0.15

* N=NUMERAIRE ; BASE PRICE, ONE LITER CIL = ONE NUMERAIRE

* BEACH VALUE : N PER HECTARE.

* 2IRD (FISH) VALUE : N PER UNIT KILLED.

* P4RM = PARAMETER

* H £ L : H STANDS FOR THE VALUE OF BEACH OR OTHER
PROPERTY PRIOR TO THE OIL SPILLAGE AND L
AFTER THE SPILL, THUS THE MARKET VALUE OF
THE LOSS (C-p ) IS GIVEN BY :

C^ = H - L.

TABLE-2
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THE RECF-EATICN £ COMMERCIAL FISHING COST MODEL PARAMETERS:

£, = q.9

k - 10- vz

^ = 0.1

U = 0.45

p = 150. N

- 12
E, = 0.75

iz
= 25X10

£
3

= 0.25

ft = 0.33

p = VARIES AS A FUNCTI3N CF ?
x

CCC = COORDINATE, COMPUTED IN METERS FROM THE ORIGIN

lSng-It^de ! ill* §1' 8

USING THESE PARAMETERS WE
R
QBTAIMED FROM THE CggPUTcR |I VLLA-

U8S raWflD^NbSlfllcI) ACTIVITY TABULATED IN TAEuE-3.

LOSS IN RECREATION ACT. AND COMMERCIAL FISHING ACT.

VOLUME (LIT!ERS)

LOCATION 10,000 100,000
1 AAA AAA

SOUTHERN BAY/EAST 6,671. 595,255. 5,099,228.

SOUTHERN 3AY/WEST 10,005. 892,882. 7,648,843.

CENTRAL 1EAY 16,671. 1,488, 135. 12,746, 06C.

NORTHERN BAY/kEST 16,673. 1 ,433 , 133

•

12,748,066.

NORTHERN BAY/EAST 3,335. 297,626. 2,549,613.

TABLE - 3

TC G
IN SAN
OENT TH
GIVE TH
AFFECTE
OF WATE
OIL CUE
SIX EXA
FQLLCWS

ENT

/p
C
LE

E
CF

PCQMP& THE SOCIAL COST WAS OBTAINED AS
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SAMPLES OF COMPUTING THE SOCIAL COST USING THE COMPUTER
SIMULATION TECHNIQUE:

1. COC : (20200;50700)

VOL : 100,000. LTRS

P. : 398 METERS

T = 0.4 HRS

T
25

= 1.9 HRS

T
?

=5.8 HRS

LOCATICN AREA FLD BEACH FLD DEAD BIRD CEAO FiSH

CENTPAL EAY 4234.1 49.8 212 635

SOCIAL COSTS = 1,764,765. N

2. CCO : (20 200; 50700)

VOL : 1,000,000. LTRS

p. : 944 METERS

23

0.9 HRS

8.9 HRS

13.3 HRS

LOCATION AREA FLD BEACH FLD CEAD BIRC CEAD FISH

CENTRAL EAY 6940. 230. 347 1041

SOCIAL COSTS = 14,721,877. N

3. COO : (29000;64500

VOL : 10,000 LTRS

R
?

: 168 METERS

'Z3

= 0.2 HRS

= 0.4 HRS

= 1,8 HRS

LOCATICN AR EA FLD BEACH FLD DEAD BIRC CEAO FISH

NORTHERN EAY 29.4
WEST

NONE

SOCIAL COSTS = 26,753. N
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. coo •
• (29C00;64500) T

«L
0.9 HRS

VOL •
• 1,000,000 LTRS T

*3
= 8.9 HRS

R
f

•
• 944 METERS T

£
18.3 HRS

LOCATICN AREA FLO BEACH FLO C£AD BIRD CEAD FISH

40RTFPRN BAY 2089.6 78.3 209 313
WEST

SOCIAL COSTS = 13,988,186. N

5. COC : (36000;21000) T
K2.

= °* S HRS

VOL : 1,000,000 LTRS hi
= 8-9 HRS

R : 944 METERS \ = 18 ' 3 HRS

LCCATICN AREA FLD BEACH FLD CEAD BIRD CEAD FISH

SOUTHERN BAY 2,432.
wEST

NONE 24 243

1,171 11,706
CENTRAL EAY 11,705.5 280

SOCIAL COSTS = 22,406,971. N

6. CGO : (37500US500) T
l2

= °' 4 HRS

VOL : 100,000 LTRS T23 " U<?

R f : 398 METERS \ = 5 ' 8 HRS

AREA FLD BEACH FLD CHAD BIRD CEAD FISH
LOCATICN

SOUTHERN EAY 1,640. NONE
EAST

16 157
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SOUTHERN BAY 3,168. 50. 32 280
^EST

SOCIAL COSTS = 1,714,799.

THE AGGREGATE LOSSES SHOW THE SIGNIFICANT DIFFERENCE BET-
WEEN SMALL ANC LARGE SPILLS.
THE MOST SIGNIFICANT ECONOMIC LOSSES ARE SUFFERED EY THE
BUSINESS ACTIVITIES IN THIS ILLUSTRATION.
NO ATTEMPT HAS BEEN MADE IN THIS STUDY TO FORMULATE THE LONG
TERM SGCIAL COST OF OIL SPILLS.
THE MAGNITUDE OF COMPUTED VALUES IN THIS ILLUSTRATION NATUR-
RALLY DEPEND UPON THAT GF THE PARAMETERS, WHOSE VALUES ARE
ARBITRARILY CHOSEN, BUT ILLUSTRATIVE OF P0SSI3LE PEAL WORLD
SITUATICNS.
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VIII. CONCLUSICN

THE PURPOSE OF THIS THESIS IS TO DETERMINE THE SOCIAL

COSTS OF OIL SPILLS.

THE REALIZATION THAT SUCH COSTS DEPEND ON THE ORIGINAL LOCA-

TION ANC SIZE OF A SPILL AND THE EVENTUAL AREA AFFEC~ED

NECESSITATES DEVELOPMENT OF A MODEL WHICH PREDICTS HOW A

GIVEN OIL SPILL WILL SPREAD UNDER PLAUSIBLE CIRCUMSTANCES.

FOR THIS WE HAVE SYNTHESIZED THE WORKS OF FAf (REF-6J, SMITH

(REF-4), SIVADIER AND MIKOLAJ (REF-1) , CONOMOS (REF-5) BY

INCORPORATING WIND (RANDOMIZED DIRECTION AND VELOCITY),

ESTUARINE NON TIDAL DRIFT AND EVAPORATION FACTOR.

IN GRDcR TO CETERMINE SOCIAL COSTS OF AN OIL S D ILL WE ALSO

NEED TO IDENTIFY THE COST COEFFICIENTS OF FAC T ORS DAMAGED

SUCH AS WILDLIFE, RECREATIONAL ANC COMMERCIAL ACTIVITIES,

ETC. EXACT DETERMINATION OF THESE COEFFICIENTS IS BEYOND THE

SCOPE OF THIS PAPER. THUS IN THE QUANTITATIVE ANALYSIS

GIVEN HERE FOR ILLUSTRATION, THEY ARE GIVEN PLAUSIBLE, BUT

ARTI FICIAL VALUES.
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APPENDIX

COMPUTER SIMULATION PROGRAM OF
THE SPREAD AND MOVEMENT OF OIL SLICK

IN SAN FRANCISCO BAY

//HAN1874 JOB (2696, 1446, RL44) ,' MUDJI ARDJO SMC 1374'
// EXEC FORTCLGP, REGION. GO=130K
//FQRT.SYSIN CD *
C THESIS THESIS THESIS THESIS THESIS THESIS THESIS THESIS TH
r

C
C
C
C
c
C
C

THE SPREAC AND MOVEMENT QF OIL SLICKS ON THE WATERS.

OSL = OIL SLICK LEEWAY
WIND = WIND SPEED MEASURED AT 10 METERS ELEVATION IN KNOTS

AN ESTIMATE QF WIND DRIVEN SURFACE CURRENT MAY BE C3TAINED
FROM THE FOLLOWING EQUATICN PROPOSED BY THORAOE (1914) :

SCW = SURFACE CURRENT DRIVEN BY THE WIND
PHI = GEOGRAPHICAL LATITUDE
SCW = 0.0361 * SQRT(WIND)/SQRT { (SIN(PHI )

)

IF( WIND ,GT. 11.64 ) SCW=0.0126*WIND/SQRT< (SIN( PHI )

)

96
97
98
99

100

101
102

103

104
105
106

107'
108

I

109
110
111
112
113

DIMENSI
01 MENS I

DIMENSI
DIMENSI
CI MENS I

DIMENSI
CI MENS I

ECLIVAL
DIMENSI
DIMENSI
DIMENSI
CIMENSI
DIMENSI
DIMENSI
DIMENSI
FOPMAT(
F0RMA7(
FORMAT

(

FGRMAT(
FORMAT

(

12, 3X,

'

FORMAT

(

FORMAT

(

3X, «THI
3X,'V0L
FORMAT (

5X,I3 )

FORMAT!
FORMAT

(

FORMAT

(

F8.2 )

FORMAT (

FORMAT

(

FCF*AT(
FORMAT(
FORMAT!

ON
ON
ON
ON
ON
ON
ON

ON
ON
ON
ON
ON
ON

TIMES (

X( 80)
CCAA(9
GSLV(8
DELT(
CC ( 80
CCA{ 6

ENCE(CCA,
ON XMV(80

XP(200
DZ(10
XQ(200
XS(200
XU(200
AX (800

6 F 5 . 1 )

2F10.1 )

F10.3 )

513 )

/ f 10X, «M*
KX = ' 13,3

80), RADIUS(80)
, Y( 80)
00), 0DAA(900)
0), SCWV(30), WINDV(80)
80),HTT( 80)
, 30) , DD( 30, 80)
400), DOA( 6400)
CC ),

(

CCA.DD)
), YMV(30)
), YP( 200), X0( 200) ,Y0(200)
0) , HZ( 100) , VXL(80)
), YQ( 200) ,XR(200) ,YR(200)
) , YS(200) ,XT(200) ,YT(200)
) , YU(200) , XV (200) ,YV(200)
) , AY (300)

, ,I3,3X,'N=',I3,3X, 'KK=' ,I3,3X,'NK=',
X, 'XMV(1)=' ,F3.1,3X,«YMV(1)= I ,-3.1 )

/,10X, 'VOLUME OF OIL SPILLED IN L IT ERS = ' , Fl 2 . 1

)

US OF SLICK,10X,'RA0I
CK OF OIL
IN LTRS'

15X,F8.2,

,CM« ,3X, 'THICK
M' ,3X, 'AT TIME, HRS« ,

OF OIL PARTICLES, CM' ,

,3X, 'NO: ')
11X,F6.1,10X,F7.3,15X,F7.3 ,12X,F10.1,

)//,18F8.2
13F8.2 )

/,10X, 'MAXIMUM RADIUS OF OIL SLICK IN M£T=RS=',

///)

***********%*&***#******** **********
/,10X,' CRITICAL THICKNESS IN CM :

' ,

F

/,10X, 'THICKNESS Cf= MOL. DIFFUSION,
/,10X,» TIME REQUIRED AS INFINITY, H

• 1' )

10 X, 'GAMA1=«,F5.1,3X, • GA MA 2=
' , F5 . 1 ,

3

, 'GAMA4=» ,F5.1,3X, • GAMA5= ' , F5. 1 , 3X,

•

*****
** ***
7.3 )

CM=' ,

RS:' ,

J» J- -i. -j. I X
--* T- T 1*

}

F7.3)
F6.1 )

114

FOPMAT(
FORMAT

(

F5.1,3X
F5.1 )

FORMAT( /,10X, «T12 = «,F6.1,3X,' T23 = ' , F6. 1 )

X, 'GAMA3 = '

,

GAMA6='

,
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3X,F9.3,3X,F9.3,2X,F9.2,4X,
1 ,SX, 'OSL « ,9X f SCW , 10X, ' XM
)

201 FORMAT! 10X,F9.2,
202 FCRMAT( 13X,' WIND

1 'YMV ,8X, 'NO:'
202 FORMAT ( / )

FORMAT ( 16F5.1
FORMAT* 16FS.2 )

FORMATt 16F5.2 )

FORMAT </,10Xf ' RADIUS OF OIL =',F8.2
FORMATt /,10X, 'TOTAL AREA FOULED IN HECTARE=

300
301
302
303
304

)

NZ-

*****
GAMM
SYST

C
c

GIVE
LITE

CISC
3Y E

THE
DRIF

THE
DRIF

C*****
c
c

*****
A - A
EM
REAO(
SPILL
PEAD(
THE

RS.
1 KIL
READ(
M,N,K

BAY
STUAR
NK :

ESTIM
KX :

THE
LIMIT
READ<
COORD
R5AD(
READ(
COORD
T.
READ(
READ!
COORD
T CCM
READ(
READ(
*****

4**********
NGLE BETWEE

5.96) GAMA1
COORDINATE
5.97) XMV(1
INPUT DATA

READ
* ************* *************
N THE WIND VECTORS AND THE

F9.2,6X,I3)
V ,10X,

• ,14 )

«,F14.1 )

***********
COORDINATE

, GAMA2, GAMA3, GAMA4, GAMA5, GAMA6
MEASURED FROM ORIGIN IN METERS.

), YMV(l)
OF THE QUANTITY OF OIL SPILLED IN KILO

LITER
5,98 ) Q
K = FIX
AREA A
INE NON
NUMBER
ATE THE
NUMBER
IL SPRE
OF (NK
5,99) M
INATE P
5,300)
5,300)
INATE P

= 1000 LITERS.
TT
ED N
ND C
TIDA
OF I

OIL
OF I

AD.
*KX)
, N,
OINT
( XO
( YD
OINT

UMBER OF COORDINATE °OINTS
URRENT VECTORS ON THE BAY A
L DRIFT TO BE PLOTTED BY TH
TE RAT ION RELATED TO TIME NE
MOVEMENT.

TERATIGN TO COMPUTE THE COORDINATE OF

CF SAN FRAN
S PREDICTED
E COMPUTER.
EDED TO

= 900 POINTS.
KK, NK, KX

S TO DRA^ SF BAY AREA.
( I ), 1 = 1, KK )

( I ), 1=1, KK )

S TO DRAW THE ESTUARINE

I ) , I = 1 , N )

I ) ,1-1, N )

S TO DRAW THE ESTUARINE

NON TIDAL

5,302) (AX(
5,302) (AY(
INATE POINTS TO DRAW THE ESTUARINE NON TIDAL
TINUED
5,202) (XR( I ) ,I = 1,M)
5,302) (YR( I

)

,I=1,M)
*************************************************

CI = 0.53
C2 = 0.026
ZU = 0.01
RJ-CIL = 0.95
RHGWAT =1.0
GRAV = 980.0
D = 1.0
SIGMA = 10.
PHI = 38.
IX = 1234567

DELRHO= RHOWAT -

DELTA= DELRHQ/RH
VOL = GTT* 100000
VCLUME = VOL/100

COMPUTE THE CRITICAL
HC = ( SIGMA/tDE
WRITE(6,112)
WRITE(6,108)
WRITE(6,100)
WRITE(6,113)
WRITE(6,101)
WRITEC6,

MAXIMUM RADI

PHOIL
OIL
0.0

COMPUTE
THICKNESS OF THE OIL SLICK.

LRHO * GRAV) )**.5

109)
US OF

M,
GAM
VOL
HC
01

N, KK, NK, KX, XMV(l), YMV(
Al, GAMA2, GAMA3, GAMA4, GA
UME

1)
VA5, GAMA6

L SLICK AS ONE UNIT AT ZERO
( INDEPENDENT OT TIME )

GROWS RATE
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C ENC

VV
R£
CA
C3
RA
R£
TI
TI
HI
TI
RE
TI
TI
T2

1(
T2
VV
WR
WR
MR
WR
WR
WR
WR
TI
TS

cc
C ASSUME
C KNCTS

CA
WI
X X

C CGMPUT
C WINDS.

SC
IF

C CGMPUT
as
IF

C CONVER
WI
SC
OS

C SPREAD
TI
T
TI
IF
DE
VL
Rl
HT
Rl
RA
TS
GC

C SPREAD
1 AA

TI
IF
IF
T
IF
DE
R2
HT
R2
RA
IF
GG

C SPREAC

V =

NO =

LL RA
= 0.

DIUS
NC =
NF=(R
NF =
NF =

NF =
ND
2 = (

2 =
2=(1.
CELT*

I.
T

3 =

L =

ITE(
ITE(
ITE(
ITE(
ITE(
ITE(
ITE(
MES(

T
V
6
6
6
6
6
6
6
1

= 0.

20 K
THE
PER H
LL RA
ND =

X = S
E THE

W =
( WIN
E THE
L =
(WIND
T KNG
NDV(K
WV(K)
LV(K)
BY G

ye =
= TIM
ME =

(TIM
LT(K)
L = V
= 10
= va
= Rl

DIUS(
= TS
TO 2
BY G
= ZU

ME =
(TIME
(TIME
= TIM
(TIM

LT(K)
= 1.45
= VG
= R2

DIUS(
( RAD
TO 2
BY S

VOLUME/1000.
100. * ( 10.**5*VVV**0.75/ 3.14 )**0.5
NDUUX, IY t YFL)
78 + YFL*0.Q2
REDUCED DUE TO EVAPORATION
REND * C3 /2.
END/ 2. 3 )**4*RHCWAT**2*ZU/SIGMA**2
TINF**0. 33333
SQRTt TINF*0/10.**5)
TINF/3600.
REND/100.
45/1.14)**4*<V0L/(DELTA*GRAV*ZU) )**0.333
12/3600.
45/2.30)**2*(RH0WAT/SIGMA) * V0L--0.6667 *
* GRAV * ZU )**0.333

23/3600.
OL
t 106) REND
,110) HINF
till) TINF
t114) T12,T23
,108)
,107)
tl02)
) = 0.

= 1,NK
WIND BLOWS RANDOMLY AT SPEED BETWEEN 0.5 TC 25
GUR.
NDUtlX, IY, YFL)
YFL * 24.5 + 0.5
IN(0.01745*PHI

)

SEA SURFACE CURRENT VELOCITY INDUCEC BY THE

.0361 * SQRT(WIND)/SQRT(XXX)
D .GT. 11.64 ) SCW = 0.0126*WIND/SQRT(XXX)
OIL SLICK LEEWAY BLOWS BY THE WIND.
.0199 * WIND
.GT. 5.0.

A

ND.WIND.LT. 25.0) OSL= . 1 79* wl ND+O . 0196
TS/HR TO METERS/HR :

)= 1850. * WIND
= 1850. *SCW
= 1350. *GSL

RAVITY-INERTI A FORCE
FLOAT(K)
E*15.*60.
TIME/4.
E .GE. T12) GO TO 1
= (ZU*T)**.5

CL/10.**4
.*( DELTA * GRAV * VLL
L/R1**2
/100.
K) = Rl
+ 1.

1
RAVITY-VI SCGUS FORCE
$# 5
FLOAT(K) - TS
.GT. 24.) TIME=(TIME - 24.)*2.
.GT. 43.) TIME=(TIME - 48.)*3.

E*3600.
E .GE. T2 3) GO TO 2
= (ZU*T)**.5

*( ( (DELTA*GRAV*V0L**2*T**1.5)/AA)**. 166667)
L/R2**2
/100.
K) = R2
IUS(K ) .GE. REND ) GO TO 9
1

URFACE TENSION-VISCOUS

* y** 2 )**0.25*1.14

+ 24.
+ 43.
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c
c
c
c
c

2 BE = ZU*RHCIL**2
DtLT(K) = (ZU*T)**.5
R2 = ( ( SIGMA**2 * T**3
HT = V0L/R3**2
R2 = R3/100.
RACIUS(K) = R3
IF( RADIUS(K) .GE. REND ) GG TO 9
GC TO 21

9 RdCIUS(K) = REND
HT = VGL/(REND*LOO. )**2

LGSS CUE TO EVAPORATION
21 FF = Cl*TIME*60./( l. + C2*TIME*60. )

VOL = (VVL - VVL*FF*0.01)
VXL(K) = VGL/IOOO.

)/ BB )**.25 * 2.30

PRI
SPRE
TIME
MAIN

C THE
C CURR
C SGLT

C GENE

30

20
C+++++

22

NTS THE RA
AC IN HOUR
IN CM, TH

INC- VOLUME
HTT(K) = H
WRITE(6,10
X(K) = ALJ
Y(K) = ALO
ALPHA = 0.
TIPES(K+1)
ESTUARINE
ENT WITH C
H EAY AND
CRAN = 62.
IF( XMV(I)
CRAN = 208
*(TIMES(K+
BETA1 - 0.
IF( XMV(K)
3ETA1 = 0.
IF( XMV(K)
BETA1 = 0.
IF( XMV(K)
SETA1 = 0.
IF( XMV(K)
BETA1 = 0.
IF( XMV(K)
BETA1 = 0.
XCRAN = CR
YCRAN = CR
IX = IY
CALL RANDU
BETA =0.01
IF( XMVIK)
IF( XMV(K)
SETA = 0.0
IF( XMV(K)
BETA = 0.0
ROUTE = OS
XMV(K+1) =

YMWK + 1) =

IX = IY
RATE RACIU

DC 30 L =
ALPHA = AL
CC(K,L) =
DC(KtL) =
CCNTINUE
IF( HTT(K)
CCNTINUE
+ 4 ++ -f + + + ++
WRITE<6,11
WRITE<6,20
CO 50 K = l.
WRITE(6,20

DIUS OF
S, THE T
E THICKN
OF OIL

T
3) RADIU
G10CTIME
G10(RADI

= TIME
NONTIOAL
0N5TANT
200 M/HQ
500* (TIM
.GE. 16

. 3 * ( T I M E
1) - TIM
01745*( Y
.GT.3547
01 745*

(

.GT.2173
01745*(
.GT.2173
01 745*

(

,GT. 161
01745*<
.LE.1612
01745*(
AN*COS(B
AN*SIN(8

(IX,IY,Y
745*( YFL

OIL SDREA
HICKNESS
ESS CF 01
AFTER EVA

S IK), TIME
)

US(K) )

D IN METERS,
OF OIL AS A c

L LAYER IN CM
PORATICN IN L

THE TIME OF
UNCTION OF
, AND THE RE-
ITERS.

,HTT IK) ,OELT( K) , VXL(K) ,K

.LE.

.GT.
1745*(
.GT.

1745*(
LV(K)*(T
XMV(K )

YMV(K)

16
16
Y

16
Y

DRI
SPEE
URS
ES(K
125.
S(K +
ES (K
FL*1
5. .

YFL*
6. •

YFL*
6. .

YFL*
25.
YFL*
5. .

YFL*
ETA1
ETA1

FL)
*GAM
125.
125.
FL*G
125.
FL*G
IMES
+ RO
+ RO

FT WA
D APP
IN TH
+1) -
.AMD

1) -

) J

00. +
AND.
100.
AND.
60. +
AND.
100.
.AND.
60. +
AND.
130.
)

)

Al +
) SE
.AND

AMA3
.AND

AMA5
(K + l)
UTE*C
UTE*S

S SIMULATED A
ROX. 65 M/HOU
E NORTHERN BA
TIMES (K) )

. YMV(I) .GE.
TIMES (KJ)

90. )

YMV(K ) .GT.806
+ 65. )

YMV(K) .GT.177
65. )

YMV(K) .GT.337
+ 45. )

YMV(K).GT.51
160. )

YMV(K ) .LE.516
+ 90. )

GAMA2 )

TA= 0.01745*(
. YMV(K) .GT.
+ GAMA4 )

. YMV(K) .GT.
+ GAMA6 )

-TIMES(K) )

OS (BETA) + XC
IN(BETA) + YC

S A UNIFORM
RS IN THE
Y AREA.

51600. )

3.0 )

37. )

00. )

600. )

OC.O )

YFL*13G,+90.

)

3o230. )

5160C. )

RAN
RAN

S OF OIL SPREAO.

1,KX
PHA + 36
XMVtK+1)
YMV(K+1)

0./FLOAT(
+ RADIUS
+ RADIUS

KX )

(K)*CGS( ALPHA
(K)*SIN(ALPHA

.LT. 0.010 ) GO TO 22

++ +
2)
2)
NK
1) WINOV<K),OSLV(K),SCWV(K) ,XMV(K+1)

,
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2YPV(K+1 ) ,K
50 CONTINUE

WPITE(6,112>
C PLCT THE SLICK MOVEMENTS INDUCED 3Y THE WIND AND ITS
C SPREAC.M = NK*KX

L =
DC 999 11=1, NK
DC 999 JJ=1,KX
L = L + 1

C LET CCNVERT 50000 METERS EQUAL TO 10 INCHES:
CCA(L) = CC( II, JJ )

CCAA(L) = 0.00020*<CCA(L) )

IF( CCAA(L) .LE. 0.0 ) CCAA(L) = 0.0
IF( CCAA(L) .GE. 9.0 ) CCAA(L> = 9.0
CCA(L) = DD(I I, JJ )

DCAAU) = 0.00020*0DA(L)
IF( DDAA(L) .LE. 0.0 ) DDAA(L) = 0.0
IF( DCAA(L) .GE.14.0 ) DOAA(L) = 14.0

999 CONTINUE
C
C PLOT
C> >>>>»>>>»>>»>>»>>>>>>>>>>»>»>>>>>>>>>> >>>>>>>>>>>>»
c
C PLCT IN A LIN-LIN SCALE THE THICKNESS CF OIL AS A FUNCTICN
C OP TIME

CALL PLOTP(X f HTT,NK,0)
WRITE(6tll2)

C PLCT IN A LIN-LIN SCALE VOLUME AS A FUNCTION CF TIME.
CALL PLCTPt X,VXL,NK,0 )

WRITE(6,112)
C PLCT IN A LOG-LOG SCALE THE RADIUS OF SPILL AS * FUNCTION
C OF TIME

CALL FLOTP(X,Y,NK,0)
C

REAL XTITLE12)/' LATI« , 'TUDE'/
REAL YTITLEO)/' LONG' , ' ITUD« ,' E W
XI = 0.0
X2 = 0.0
NCX = -8
SIZEX = 8.
XMIN = CO
CX = 5C00.
Yl = 0.0
Y2 = O.C
NCY = 9
SIZEY = 14.
YMIN = 0.0
DY = 5000.

C
C DRAW
C

NK = NK+1
CALL PLCTS
CALL AXIS(X1,X2, XTITLE, NCX, SIZEX, 0.0,XMIN, DX)
CALL AXIS(Y1,Y2, YTITLE, NCY, SIZEY, 90., YMIN, CY)
NZ =
CO 911 1=1, NK
HTT(I ) = 0.00020*< XMV(I) )

CELTd )= 0.0002*YMV(I )

NZ = NZ+1
IF( HTT(I) .LT. 0.0 .OR. DELT(I) .LT. 0.0 ) GO TO 7
IF( HTT(I) .GE.8.0 .OR. DELT ( I ) . GE . 14.0 ) GO TO 7

911 CONTINUE
7 CALL LINE(HTT,DELT,NZ, 1, 2 )

CALL LINE(CCAA ?
DDAA,NN, 1,-7)

C/*LL PLCT (0.0,16.0,-3 >

C
IF( YMV(l) .GE. 36757.5 ) GO TO 555
IF( XMV(l) .GE. 48165. ) GO T 556
IF( YMV(l) .GE. 60850. ) GO TO 557
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c
c
c

IF( XMV(l) .GT. 58000. .OR. YMV ( 1 ) .GT. 70900. ) STOP

SOUTHERN BAY

DC 912
XG(I) =

IF( XQ(
XG(I ) =

YQ(I) =

IF( YQ(
YG(I ) =

912 CCN7INU
SUM =
NZ =
CG 401
HTTU )

CELT( I)
IF(HTT(
IF(HTT(
CZ(I) =

HZU) =

NZ = NZ
FA = 2.
SUM = S
IF( CEL

C CONVERT TO
HTTd )

CELT( I)
IF( HTT

401 CCNTINU
8 IF( NZ

CALL LI
NN = NZ
DC 501
CCAA( I

)

IF( CCA
IF( CCA
DCAA( I)
IF( DDA

C CONVERT TO
CCAA( I )

• DDAA(I)
501 CONTINU

SUM1 =
WRITE(6
WPITE(6
CALL LI
CALL SY
CALL LI
C4LL PL

1=1, KK
XO(I) - 140.

I ) .LE. 0.0 ) XQ(I )
=

XQ(I )*0.0725
YO(I )

I) .GE. 125. ) YQ(I)
YQ(I )*0.0725

E
.0

0.0

= 125.

1 =

I)
I)

(

(

+ 1
*R
UM
T(
TH

(I
E
• L
NE
*K
1 =

aI
A(

A?
TH

P

0.
,3
t3
NE
MB
NE
CT

liNK
O.G0039*XMV(I ) - 14.0
0.00039*YMV( I

)

•LT.O.O. QR.DELT( I ). LT.O.O)
. GT.9.0.0R.QELT(I ) .GT.12.0)
YMV( I )

- YMV( 1-1) )**2
XMV( I) - XMV( 1-1 J )**2

GO
GO TO

401
401

AOIUS( I )*SQRT( DZ(I ) HZ( I) )

FA
I) .LT. 3.5 ) GO TO 666
ESIS FORMAT 8.5X11.
HTT (I )*0.725
D6LT(I )*0.725
).Gc. 3.0 .OR. DELT(I).GE. 4 ) GO TO 3

, 3 ) GO TO 888
H7T,QELT,NZ, 1,

T
( HTT,OELT,NZ, 1, 2 )

X
l.NM
0.00039*CCA(IJ - 14.

I ) .LE. 0.0 ) CCAAd )

I) .GT. 4.0 ) CCAAd)
0.00039*DDA( I)

I) .GE.12.0 ) DDAA(I)
ESIS F0RMA7 8.5X11.
CCAAd )*0.725
DDAAd )*0.725

= 0.0
= 4.0

= 12.0

0001*SUM
04) SUM1
03) RAO I US (NZ)
( X3,YQ,KK,1 ,

0L< 2.3, 9.4,.
(CCAA,OOAA,NM,
(0.0, 12.0,-3)

, NZ
1 )

14,' EAST SOUTHERN BAY', .0,17 )

1,-7 )

XS( I )

XSd )

YS(I )

YSd

= 0.0
< 90.

0.0
= 120.

838 DC 913 1=1, KK
XSd) = XOd ) - 60.
IF( XS( I ) .LE. 0.0 )

IF( XSd ) .GE. 90. )

XSd ) = XSd )*0.0725
YSd ) = YOd ) - 50.
IF( YSd ) .LE. 0.0 )

IF( YS( I ) .GE. 120. )

YSd) = YS(I)*0.0725
912 CCNTINUc

SUN = 0.0
HTT(l) = 0*00039*XMV(1) - 6.0
DELT(l) = 0.00039*YMV( 1) - 5.0
IF( HTT(1).GE. 0.0 .AND. OELT(l)
DC 701 I=1,NK
HTT(I) = 0.00039*XMVd ) - 6.0
DELT(I) = 0.00039*YMV<I) - 5.0
IF (HTT ( I ). LT.O.O. OR. ELT d ). LT . 0.0)
IF(HTT( I ).GT.9.0. OR. CELT ( I ) .GT . 12.0
DZd) = ( YMV(I) - YMVd-1) )**2
HZd) = ( XMV(I) - XMVU-1))**2

GE. 0.0 ) NZ =

GO
GO

"C 701
TG 701
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SUM
IF(
IF(

C CONVERT

NZ = NZ
F4 = 2.

= S
HTT
HTT
TO

701
3

C CON

601

C
c
c
c

HTT(I)
DELT( I)
IF( HTT
I F ( HTT

(

CCNTINU
CALL LI
Nf* = NZ
CQ 601
CCAA( I)
IF( CCA
IF( CCA
CCAA( I)
IF( CCA
IF( CCA
IF{ CCA

VEPT TO
CCAAd )

DCAA( I)
CCNTINU
SLM2 =

HRITE(6
WPITE(6
CALL 5Y
CALL LI
CALL LI
CALL PL

+ 1

*RADIUS(I
UM + FA
(I ).GT.5.
(I ) .GT.8.
THESIS FG
= HTTd)*
= DELTd

(I) .LT.
I ).GE.5.5
E
NE(HTT,DE
*KX
1=1, MM
= 0.0C03

A( I ) .LE.
Ad) .GE.
= 0.0003

A(IJ .GE.
A(I I.GT.5
A( I ).GT.3
THESIS FQ
= CCAAd
= DOAAd

E
0.0001*SU
,304) SUM
,303) RAO
MBOL( 2.3
NE( XS, Y
NE(CCAA,0
CT (0.0,12

)*SQPT( DZd) + HZ< I) >

25. AND. DELTd ) .GT. 9.0 ) DELT(I)=9.0
0. AND. DELTd ).GT.6.5 ) DELTd) = 6.5
RMAT 3.5X11.
0.725
)*0.72 5
2.4 .AND. DELTd) .LT. 7.3 ) GO TO 3
.AND. DELTd ) .GE. 5.0 ) GO TO 3

LT,NZ, 1, 2 )

= 0.0
= 9.0

= 12.0
.GT. 9.0) DDAA(
C-T.6.5 ) DDAMI

I) = 9.C
) = 6.5

9*CCMI ) - 6.
0.0 ) CCAAd)
9.0 ) CCAAd)

9*DDA(I) - 5.0
12.0 ) DDAA(I)

.25.AND.DDAAd )

.O.AND.DDAA (I)

.

RMAT 8.5X11.
)*0.725
)*0.725

M
2
I U S ( N Z ) , N Z
, 9.2,. 14, 'WEST SOUTHERN BAY', .0,17 )

S,KK, 1, 1 )

DAA,NM, 1,-7 )

.0,-3)

NORTHERN BAY

556

916

DC 916
XVd )

=

IF( XV(
XVd ) =

YVd )
=

IF( YV(
YVd) =

CCNTINU
SUM =
NZ =
DC 705
HTTd)
DELTt I

)

IF(HTT(
DZd) =
HZd) =

NZ = NZ
FA = 2.
SLM = S

C CONVERT TO
HTTd )

DELT( I )

IF( HTT
CCNTINU
IF( NZ
CALL LI
NM = NZ
DO 602
CCAAd )

IFl CCA
IF( CCA
DCAA( I)
IF( DCA
IF( DDA

C CONVERT TO
CCAA( I)

705
6

1=1, KK
XO(I) -

I ) .LE.
0.0725*X
YOd )

-
I ) .LE.
0.0725*Y

E
.0

1=1, NK
= 0.00039
= 0.0003

I ) .LT.0.0
( YMVd)
( XMV(I)

+ 1

*PADIUS( I

UM + FA
THESIS FO
= HTTd)*
= DELTd
d i .GT.6.
E
•LT. 3 )

NE( HTT,D
*KX
1=1, NM
= 6.0003

A( I ) .LE.
Ad) .GE.
= 0.0C03

A( I) .LE.
A(I) .GE.
THESIS FO
= CCAAd

140.
.0 ) XVd)
V< I )

230.
.0 ) YVd)
Vd)

= 0.0

= 0.0

*XMV(I )
- 14.0

9*YMV(I) -23.0
. GR.DELTi I ) .LT.0.0) Gl
- YMVd-1) )**2
- XMVd-1) )**2

)*SQRT( DZd) + HZ( I) )

TO 705

RMAT 8.5X11.
0.725
)*0.725
5 .OR. DELTd ) .GT. 5.0

GO TO 666
ELT,NZ, 1, 2 )

9*CCAd) - 14.
0.0 ) CCAAd) = 0.0
9.0 ) CCAAd) = 9.0

9*DDA( I)- 23.
0.0 ) DDAA(I) =0.0
7.0 ) DDAA( I) = 7.0

RMAT 3.5X11.
)*0.725

) GO TO 6
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DDAAd )*0.725CCAA< !) =

602 CONTINUE
SUM5 = 0.0001*SUM
WRITE(6,304) SUMS
kRITE<6,303) RADIUS
CALL SYMBOL( 2.1,5.
CALL LINE( XV,YV,KK
CALL LINE(CCAA,ODAA
CALL PLQT( 0.0,10.0

(NZ), NZ
43, .14,

'

EAST
, 1, 1 )

,NM, 1,-7 )

,-3 )

NORTHERN BAY', .0,17 )

) XU(I )

) XU(I)
)

J

= CO
= 90.

557 DO 915 1=1, KK
XU(I) = XO(I ) - 50.
IF( XU( I ) .LE. 0.0
IF( XU( I ) .GE. 90.
XU(I) = 0.0725*XUd
YU(I ) = YOU ) - 230
IF( YU( I ) .LE. 0.0 ) YU(I ) = 0.0
YUU) = 0.0725*YU( I

915 CONTINUE
SUM = 0.0
HTT(l) = 0.00039*XM
DELT( 1) = 0.00039*Y
IF( HTTID.GE. 0.0
DO 704 1=1, NK
HTT(I) = 0.00039*XM

v DELT(I) = 0.00039*Y

V(l) - 5.0
MV( 1) - 23.0
.AND. DELT(1).GE, 0.0 ) NZ =

IF( HTT( I ) .LE. 1.0
IF( DELT(I).GE. 5.8
IF(HTT( I ) .LT.O.O.
IF(HTT( I ) .GT.9.0.
CALL SYMBOL( 2.2, 6
DZ(I) = ( YMV(I) -
HZ(I) = ( XMV(I) -
NZ = NZ+1
FA = 2.*RADIUS( I )*
SUM = SUM + FA

CONVERT TO THESIS FORMA
HTT(I ) = HTTd)*0.7
CELT( I ) = DELT(I )*0

LE. 0.7

V(I ) - 5.0
VV(I) -23.0

) HTT(I)=1.0
) CELT(I)=5.8

R.DELTd ). LT.O.O) GO TO 704
R.DELT< I ).GT. 6.0) GJ TC 704
.3, .14, 'CENTRAL BAY', .0,11 )

YMV(I-l) )**2
XMV(I-l) )**2

SQRT( DZ(I ) + hZ( I) )

I F ( HTT ( I )

704 CONTINUE
5 CALL LINE(

N^ = NZ*KX
DO 60 4 I=1,NM
CCAA(I) = 0.00039*C
IF( CCAA( I ) .LE. 1.
I F( CCAA( I ) .GE. 9.
0CAA( I) = 0.00039*0
IF( DDAA( I ) .LE. 0.
IF( DCAA( I) .GE. 5.

C3NVERT TO THESIS FORMA
CCAAU ) = CCAAd )*0
COAA< I) = ODAA( I )*0

604 CCNTINUE
SUM4 = 0.0001*SUM
WRITE(6,304) SUM4
WRITE(6,303) RADIUS
CALL LINE( XU, YU,K
CALL SYMBOL( 2.1,5.
CALL LINE(CCmA,DDAA
CALL PLOT( 0.0,10.0

T 8.5X11.
25
.725
2. OR. OELTd)

HTT,DELT,NZ, 1, 2 )

CA(I ) - 5.
) CCAAd )

=

) CCAAd) =

DA( I)- 23.
) DDAAd) =

8 ) DDAAd) =

T 8.5X11.
725
725

.GE. 3.75) GO TC 5

1.0
9.0

0.0
5.3

( N Z ) , N Z
K, 1, 1 )

43, .14, 'WEST
,NM, 1,-7 )

,-3 )

NORTHERN BAY' T .0,17 )

CENTRAL BAY.

555 CO 914
XT (I )

=
IF( XT(
IF( XT(
XT(I) =

YT(I) =

IF( YT(
IF( YT(

1=1, KK
XO(I )

) .LE
) .GE

- 40
0.0
90

0.0725*XTd
YO(I )

- 145
I ) .LE. 0.0
I ) .GE. 90.

XTd )

XTd )

YTd )

YT(I )

0.0
90.

0.0
90.
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YT(I) =

914 CCNTINU
SUM =
HTT(l)
DELT( 1)
IF( HTT
DO 703
HTT(I)
DELT(I)
IF (HTT

(

IF(HTT(
CZ(I) =
HZ(I) =

NZ = NZ
FA = 2.
SUM = s
IF (HTT

(

C CONVERT TO
HTTU )

DELT( I

)

IF( HTT
702 CONTINU
4 CALL LI

NM = NZ
DJ 603
CCAAd )

IF( CCA
IF( CCA
CCAA( I)
IF{ CCA
IF(CCAA
IF( CCA

C CONVERT TO
CCAA(I)
DCAA( I)

602 CONTINU
SUM3 =

WRITE (6
WRITE(6
CALL LI
CALL LI
CALL PL

C
C
C

666 DO 10 I

XP(I )
=

YP(I ) =

10 CCNTINU
DC 667
AX(J) =
AY( J)=A

667 CONTINU
DO 668
XR(K) =

YR(K) =
668 CONTINU

CALL LI
CALL SY

1 'ANALYS
CALL SY
2.0,25 )

CALL SY
l'AS PRE
CALL SY
CALL SY
CALL SY
CALL SY
CALL SY
CALL SY
CALL SY
CALL SY

0.0725*Y7(I

)

E
.0
= 0.00039*XMV( 1) - 4
= 0.00039*YMV( 1) -

(1) .GE. 0,0 .AND. DE
1=1, NK
= 0.00039*XMV( I ) - 4

0. 00039* YMV(I) -1
.LT.O.O. OR.DELTd
.GT.9.0. OR.DELTd
YMV( I ) - YMV(I-l)
XMV( I ) - XMV( 1-1)

I )

I )

(

(

+ 1
*R
UM
I )

TH

(I
E
NE
*K
1 =

a!
A{

A~i

(I
A(
TH

E
0.
,3
,3
NE
NE
CT

ADIUSd )*SQ?T( DZ
+ FA
.LT.2.125.AND.DELT
ESIS FORMAT 8.5X11
HTT(

I

}*0.725
DELTd )*0.725
).GE.5.6 .OR. DELT

(HTT,DELT,NZ, 1, 2
X
1,NM
0.00039*CCAd ) -

I) .LE. 0.0 ) CCAA
I) .GT. 7.3 ) CCAA
0.0C039*DDA( I )- 1

I) .LE. 0.0 ) DDAA
) .LT.2.125.AN0.DDA
I) .GE. 9.0 ) DDAA
ESIS FORMAT 8.5X11
CCAAd )*0.725
DDAA(

I

)*0.725

0001*SUM
04) SUM

3

03) RADIUS(NZ), NZ
( XT,YT,KK, 1, 1 )

(CCAA, DDAA, MM, 1,-
(0.0,12.0,-3 )

.0
14. 5
LT(1 ) .GE. 0.0 ) NZ =

.0
4.5
). LT.O.O) GO TO 703
).GT. 9.0) GO TO 703

) **2
)**2

(I) + HZ(I) )

(D.GT.2.875) HTT(I) = 2.125

(I ) .GE. 6.5 ) GO TO 4

)

4.
(I) =0.0
(I

)

= 7.8
4.5
( 1) = 0.0
A( I ) .GT.2.875) CCAAd )=2.12
(I) = 9.0

7 )

= 1,KK
.0306*XO( I )

.0306-YOd )

E
J = 1,N
AX(J )*0.78
Y(J)*0.78
E
K = 1,M
XR(K )*0.73
YR(K)*0.78

NE( X?, YP, KK ,-1,1
MB0LC1.44, 10.0, .14,
IS OF OIL SPILL MOVE
MBOL( 1.75, 9.7, .14,

•

MENT',.0,30 )

IN SAN FRANCISCO 8AY AREA'

MBOL(0.77
DICTED BY
MBOL( 5.8,
MBGL(0.20
MB0L(2.30
MBOL( 5.06
MBOL(3.70
MB0L(4.40
MB0L(2.17
MB0H3.5,

9. 4, .14,
ESTUARINE
7.95,0.07
7. 74, .07

7.78. .07,
7.54, .07

5.60, .07,
4.10 ,.14,
3.73,0.07

NON TICAL DRIFT' ,0.0, 41 )

•SUISUN 3AY' ,0.0,10)
'38N' ,0.0,3)
SAN DABLO BAY' ,0.0,13 )

•* 3ENICIA' ,0.0,9)
* ALBANY' ,0.0,8)
ALAMEDA' ,0.0, 7)
•HUNTER POINT ' ,0.0,12)

72, .07, "SAN FRANCISCO BAY', 0.0, 17)
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CALL SYMB0H3. 50, 1.75, .07, 'FOSTER CITY
CALL SYMBOLU.55,0.4,0.14, » PALO ALT3',0
CALL LINE(AX,AY, N, 1,1)
CALL LINE(XR,YR,M, 1,1)
CALL PLOT(0. 0,14. 0,-3)
CALL PLGTE

* '
, .0,13)

0,9)

C
C

STCP
END

//GQ.SYSIN OD
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APPENDIX

COMPUTER SIMULATION PROGRAM OF
THE SOCIAL COST OF THE LOSSES IN THE RECREATION

ACTIVITIES AND THE COMMERCIAL FISHING ACTIVITIES

//HANI
// EXE
//FCRT

C I NIT

C READ

79
80

81
32
83
84
85
36

87"

88

85'

90
51

92
93

94'

C PSCD

C ESUI

C MAXI

874 JOB
C FORTC
•SYSIN
DIMENSI
DIMENSI
DIMENSI
IAL INP
READ(5,
K = 4
VCLUME

READ(5,
WRITE(6
WRITE(6

FORMAT*
FORMAT(
2X,« VO
FGPMAT(
FORMAT*
FORMAT

(

FORMAT*
FORMAT

(

FORMAT(
• LINE,
FORMAT(
FCRMAT(
F8.2,3X
FORMAT

(

FQRMAT(
FORMAT(
• WELFAR
FORMAT(
FORMAT(
' J=« f 13
FOPMAT(
• CURVE
N = 25
M = 20
CW = 2.
Xt-(l) =

ZETA =

DO 1004
UCTION
AK1 =(V
AH = AK
BK1 =(5
BH = BK
WRITE(6
WRITE(6
WRITE(6
XUP = P
YUP = P
qp = sg
RL = XU
RM = YU
LIBRIUM
XE(J) =

YE(J) =

MUM PRO
PROFT=

(2696, 1446, RL44)

,

'MUDJIARCJO SMC 1874'
LGP, REGION. G0=180K
DD *

XD(50)
XH(50)
XE(10)
DATA

ON
ON
ON
UT

YD(50),
YH( 50)

,

YE( 10) ,

P(50), TX(10),
XC(50», YC(50)
PYY( 10), V(10)

TY( 10)
, YCC(50)
, SC(10)

39) ALFA, BEFA,PX,PY, AK,BK

SPILLED IN LITERS.
83) (V(J), J=1,K)
,85)
,82) (V(J), J=1,K)

/////
/,10X
L. SP
/,58X
/,10
5F12

/,10X
/,4X,
* 1' ,4
OPT!

//, 4
5X, 'A
, «PY=
2F4.

/,10X
/,5X,
E INI

/,1
/,10X

)

,'NG
ILLS
, «AH
X,5F
.1 )

, «PY
• IN
X,'C
MAL
X,'
LPHA
•tF8
2,2F
,F9,
'$ P
TIAL
OXyF
, 'X

)

:(' ,13, «)' ,2X, 'SOCIAL COST=', F12.2,
D LTRS=',F12.1 )

= ' ,F9,2,3X, 'BH = « ,F9.2)
12.1 )

Y(',I3,') EQ. PRICE LEVEL OF Y:',F8.2)
PUT DATA: ' )

OCRD. P~S OF PROD.FNC, MAX. PROFIT',
PROFIT LINE AND WELFARE FUNCTION' )

EQUILIBRIUM POINT: • )

=',F4.2,3X,'BETA=«,F4.2,3X, , PX=',
.2,3X,' AK=« ,F5.2,3X, 'BK=' ,F5.2 )

8 2 2F 9 2 )

lj3X,F9ll,5X,F9*l,5X,F9.1,3X,F12.1 )

ROFIT OF X £ Y= • ,F12.2,3X,
STATUS: ' ,F8.1 )

8.2,3X,4F9.1 )

UNITS :' ,F9.1,3X, 'Y UNITS :• , F9. 1 , 3X

,

COORDINATE POINTS OF SUPPLY AND DEMAND',

50
0.0

ALFA
J=l

FUNC
(J) /
*(0.
.*V(
*(0.
,79)
,88 >

,81)
X*AH
Y*BH
RT(P
p/gp
P/QP
PQI
sgR
SQR

FIT
PX*(

+ BEFA
,K
TION AS A FUNCTION OF VOLUME SPILLED,
10.**6 )**2
9*EXP(-AK1 )+ 0.1)
J )/10.**6)**2
75*EXP(-BK1) + 0.25)

ALFA, BEFA, PX,PY,AK,BK
^AH, BH

X**2*AH**2+PY**2*BH**2)

NT.
T (ALFA*AH**2/ ZETA )

T<BEFA*BH**2/ ZETA )

XUP/QP) + PY*(YUP/QP)
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C WELFARE STATUS VALUE
WWX=ALFA*PRQFT/( PX*ZETA)
WWY=BEFA*PROFT/( PY*ZETA)
WS = CW*XE(

J

)**ALFA * YE(J)**BEFA
WRITE(6,87)
WRITE(6,93) RLtRM, J
WRITE(6,93) WWXtWWY, J
WRITE{6,93) XE(J), YE(J). J
WRITE(6,91) PPQFT,WS

C MOVING OF DRICE TO EQUILIBRIUM STATE.
BUL = BH**2 - YE (J )**2
IF( BUL.LT. O.O) BUL=0.0
PYY( J)=YE( J)*PX*AH/(8H*SQRT(BUL) )

WRITE(6,84) J,PYY(J)
WRITE (6, 86)
00 1000 1=1,

N

C PPCOUCTION POSSIBILITIES CURVE
QRS = BH**2 - (BH**2/AH**2)*XHd )**2
IF( QRS .LT. 0.0) QRS = 0.0
Yhd) = SQRT(QRS)

C BUCGET CONSTRAINT OR PROFIT FUNCTION
YC(I) = (PROFT - PX*XHd))/PY
IF( YC( I ) .LT. 0.0 ) YC(I )=0.0

C NEW OPTIMAL PROFIT LINE
PRGFC=PX*XEl J ) + PYY(J)*YE(J)
YCCd )=(PROFC - PX*XH( I ) )/PYY( J )

IF( YCCd). LT. 0.0) YCCd) =0.0
C WELFARE CURVE

Xhd + 1) = XH(I ) + 50.
XD(I ) = XH(I )

IF( XO(I) .EQ. 0.0 ) XD(I) = 10.0
YCd) = (WS/(CW*XD(I )**ALFA) )**(1./36FA)
WRITE (6, 90) XH( I ) , YH( I ) ,YC( I ) , YCCd ) ,YD( I )

1000 CONTINUE
WRITE(6,94)

C
C C3NVERT TO THESIS FORMAT

DO 1001 1=1.

N

XHI) = 0.00005*XHd ) + 0.5
IF( XH(I).GT.6.5) XH(I)=6.5
YKI) = 0.00005*YH(I) + 0.5
IF( YH( I J.GT.9.0) YH( I )=9.0
YCd) = 0.00005*YC (I ) + 0.5
IF( YCd). GT. 9.0) YC(I)=9.0
XCd) = 0.00005-XD(I ) + 0.5
IF( XD( I ) .GT.6.5 ) XD( I )=6.5
YDd ) = 0.005*YDd ) + 0.5
IF( YDd). GT. 9.0) YD(I)=9.0
YCC(I)= 0.0C005*YCC(I )+ 0.5
IFl YCCd).GT. 9.0 ) YCCd) = 9.0

1001 CONTINUE
TXd) = 0.5
TY(1) = 0.5
TXd) = 6.5
TY(2) = 0.5
TX(3) = 6.5
TY(3) = 9.0
TX(4) = 0.5
TY(4) = 9.0
TX(5) = 0.5
TY(5) = 0.5
CALL PLOTS
CALL SYMBOL! 2. 5 , 0. , . 14, ' X UNIT PRODUCED SO. 0,17 )

CALL SYMBOL( .0 , 2 .0 , . 14, ' Y UNIT PRODUCED ',90.0,17 )

CALL LINE( TX,TY,5,1,1 )

CALL SYMBOL(4.0,8.0,.07, •+ PROD. PCSS CURVE SO., 19)
CALL SYMB0L(4. 0,7.3,. 07, •- ^AX PROFIT LINE SO. J, 18)
CALL SYMB0L(4.0, 7.6, .07, •* WELFARE CURVE SO. 0,16)
CALL LINE! XH,YH, N,l,2 )

CALL LINE( XH,YC, N,l,-7 )

CALL LINE( XH,YCC,N,1,6 )

CALL LINE( XD,YD, IM,1,5 )
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c
c

CALL PLCT( 0.0,12.0,-3 )

P(l) = 5.
DC 1002 1=1,

M

SUPPLY CURVE
XH(I) = AH**2*P(I
Yh(I) = 6H**2*P(i

DEMANC CURVE
XC(I )

=

YC(I )
=

WPITE(6
P(I + 1)

1002 CCNTINUE

) /PROFC
)/PRCFC

ALFA*PR0FC/ZETA*(1./P( I ) )

BEFA*PRQFC/ZETA-( l./P( I ) )

,92) P( I ) ,XH( I) ,YH(I ),XCU),YC(I )

= P<I) + 5.

; CONVEF
DC
PC
IF
XF
IF
XC
IF
YC
IF
YF
IF

1002 CC
CA
CA

190
CA
CA
CA
CA
CA
CA

T TO 7
1003

I) = C
( PCI )

(I) =
(XH(I
(I) =
<XC(I
(I) =

<YC(I
(I) =

(YH( I

NTINUE
LL SYM

HESIS FORMAT
I = 1 , M
.025*P<I ) + 0.5
.GT.9.0) P(I)=9.0
0.0GGG5*XH(I ) + 0.5
.GT.6.5) XH(I ) = 6.5
0.00005*XC(I ) + 0.5
.GT.6.5) XC(I ) = 6.5
0.00005*YC (I ) +0.5
.GT.6.5) YC( I ) = 6.5
G.00005*YH(I ) + 0.5
.GT.6.5) YH(I ) = 6.5

BOL( 2. 5,0.0, .14,
BOL( 0.0,2.0,. 14,
)

BOLU.O, 3.2, .07,

LL SYM
.0,24
LL SYM
LL SYMB0L(4.0,8.0,.07,

«

LL LIN
LL LIN
LL LIN
LL PLC

X UNIT PRODUCED ' ,0.0, 17
PRICE PER UNIT PRODUCT '

,

XC , P , M , 1 , 1 )E(
IE( XH,P,M,1,2 )

!E( TX,TY,5,I,1 )

T( 0.0,12.0,-3 )

+ SUPPLY CURVE
- DEMANC CURVE

' ,0.0,16 )

• ,0.0, 16)

2.5,0.0,
0.0,2.0,

CALL SYMBOL(
CALL SYMBOLt
190.0,24 )

CALL SYMBJLU. 0,6.2,
CALL SYMB0L(4. 0,8.0,
CALL LINE( YC,P, M,l,
CALL LINE(
CALL LINEt
CALL PLGT(
CALL PLCTE

1004 CCNTINUE

14,
14,

07
07
1

Y UNIT
PRICE i

+ SUPPLY
- DEMAND

PRODUCED ',0.0,17 )

ER UNIT PRODUCT •

,

CURVE
CURVE

, U.O, lb I

,0.0, 16)

M,l,2 )YH,r,
TX,TY,5,1,1
0.0,12.0,-3

)

SOCIAL COST OF RECREATION ACTIVITIES 6 COMMERCIAL FISHING
ACTIVITIES (AND RELATED INDUSTRIES)

/

WRITE(6,
DC 1005
SC(J) =
WRITE(6,

1005 CCNTINUE
STOP
ENC

/GO.SYSIN DC

79)
J=1,K
PX*( XEQ )

80) J, SC(
- XE(J)) + PYY(1)*(YE< 1) - YE(J))
J ), V(J)
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