
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2006-06

An analysis of Specware and its usefulness in

the verification of high assurance systems

DeCloss, Daniel P.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/2764

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

AN ANALYSIS OF SPECWARE AND ITS USEFULNESS IN
THE VERIFICATION OF HIGH ASSURANCE SYSTEMS

by

Daniel P. DeCloss

June 2006

 Thesis Advisor: Timothy Levin
 Co-Advisor: Cynthia Irvine

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
 An Analysis of Specware and its Usefulness in the Verification of High Assurance
Systems
6. AUTHOR(S) DeCloss, Daniel P.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Formal verification is required for systems that require high assurance. Formal verification can

require large and complex proofs that can drastically affect the development life cycle. Through the use
of a verification system, such proofs can be managed and completed in an efficient manner. A
verification system consists of a specification language that can express formal logic, and an automated
theorem tool that can be used to verify theorems and conjectures within the specifications. One
example of a verification system is Specware. This thesis presents an analysis of Specware against a set
of evaluation criteria in order to determine the level of usefulness Specware can have in the verification
of high assurance systems. This analysis revealed that Specware contains a powerful specification
language capable of representing higher order logic in a simple and expressive manner. Specware is
able to represent multiple levels of abstraction and generate proof obligations regarding specification
correctness and interlevel mapping. The theorem prover associated with Specware was found to be
lacking in capability. Through this analysis we found that Specware has great potential to be an
excellent verification system given improvement upon the theorem prover and strengthening of
weaknesses regarding linguistic components.

15. NUMBER OF
PAGES 111

14. SUBJECT TERMS Verification, High Assurance Systems, Separation Kernel, Specware,
Refinement, Theorem Prover, Information Assurance

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AN ANALYSIS OF SPECWARE AND ITS USEFULNESS IN THE
VERIFICATION OF HIGH ASSURANCE SYSTEMS

Daniel P. DeCloss

Civilian, Naval Postgraduate School
B.S., Northwest Nazarene University, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2006

Author: Daniel P. DeCloss

Approved by: Timothy Levin

Thesis Advisor

Cynthia Irvine
Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Formal verification is required for systems that require high assurance. Formal

verification can require large and complex proofs that can drastically affect the

development life cycle. Through the use of a verification system, such proofs can be

managed and completed in an efficient manner. A verification system consists of a

specification language that can express formal logic, and an automated theorem tool that

can be used to verify theorems and conjectures within the specifications. One example of

a verification system is Specware. This thesis presents an analysis of Specware against a

set of evaluation criteria in order to determine the level of usefulness Specware can have

in the verification of high assurance systems. This analysis revealed that Specware

contains a powerful specification language capable of representing higher order logic in a

simple and expressive manner. Specware is able to represent multiple levels of

abstraction and generate proof obligations regarding specification correctness and

interlevel mapping. The theorem prover associated with Specware was found to be

lacking in capability. Through this analysis we found that Specware has great potential

to be an excellent verification system given improvement upon the theorem prover and

strengthening of weaknesses regarding linguistic components.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. BACKGROUND ..3
A. FORMAL METHODS AND THEIR IMPORTANCE................................3
B. THE REFINEMENT PROCESS IN FORMAL METHODS......................4
C. VERIFICATION SYSTEMS..6

1. Ina Jo – Category Theoretic..6
2. PVS – Type Theoretic..7
3. Specware – Category Theoretic..8

D. THE VERIFICATION PARADIGM...8

III. SPECWARE OVERVIEW ...11
A. SPECWARE DESCRIPTION ..11
B. SPECWARE FUNCTIONALITY..11

1. MetaSlang ...11
a. Specs ..12
b. Types ..13
c. Ops and Defs ...13
d. Claims: Axioms, Conjectures, and Theorems........................15

2. Refinement and Morphisms..15
3. Proof Obligations ...16
4. Specware Shell..18

C. SUMMARY ..18

IV. SPECWARE AND THE VERIFICATION PARADIGM21
A. SEPARATION KERNEL OVERVIEW..21
B. DESCRIPTION OF SEPARATION KERNEL MODEL IN

SPECWARE...22
1. Type Declarations ..22
2. BB, SR, and Partition Function Declarations24
3. Policy Description Functions – SecureEffect and SecureOP26
4. Model Axiom and Basic Security Theorem.....................................27

C. DESCRIPTION OF SEPARATION KERNEL FTLS IN SPECWARE..29
1. FTLS Type Declarations ...29
2. FTLS Function Declarations...31
3. FTLS Transforms ..33
4. FTLS Axioms..36

D. MORPHISM IN SPECWARE..39

V. ANALYSIS OF SPECWARE AGAINST EVALUATION CRITERIA...............43
A. INTRODUCTION TO ANALYSIS..43
B. OVERVIEW OF EVALUATION CRITERIA ...43
C. ANALYSIS OF SPECWARE ...44

 viii

1. Product Maturity ...44
2. Usability of Tool and Verification Environment.............................45
3. Theorem Proving ...47
4. Specification Language..52
5. Executable Specifications ..53
6. Multiple Levels of Abstraction ...55
7. Automatic Generation of Conjectures ...57
8. Semantics ..59

D. CONCLUSION ..59

VI. CONCLUSIONS AND FUTURE WORK...61
A. CONCLUSIONS OF ANALYSIS ..61
B. RECOMMENDATIONS...63

1. Integrated Development Environment ..63
2. Theorem Prover Integration...64

C. FUTURE WORK...64
1. Verification of State Representation in Specware64
2. Trusted Computing Exemplar..65

APPENDIX A: SEPARATION KERNEL MODEL IN SPECWARE67

APPENDIX B: SEPARATION KERNEL FTLS IN SPECWARE...................................69

APPENDIX C: MORPHISM FROM MODEL TO FTLS...73

APPENDIX D: SEPARATION KERNEL PROOF UNITS ..75

APPENDIX E: SEPARATION KERNEL MODEL PROOF OBLIGATIONS79

APPENDIX F: SEPARATION KERNEL FTLS PROOF OBLIGATIONS83

APPENDIX G: SEPARATION KERNEL MORPHISM PROOF OBLIGATIONS......85

LIST OF REFERENCES..87

INITIAL DISTRIBUTION LIST ...91

 ix

LIST OF FIGURES

Figure 1. Spec Definition ..12
Figure 2. Type Declarations ..13
Figure 3. Op Declarations ...14
Figure 4. Op Definitions..14
Figure 5. Claim Definitions...15
Figure 6. Sample Morphism Declaration ..16
Figure 7. Proof and Obligation Declarations...17
Figure 8. Morphism Obligations ...18
Figure 9. Resource and Exported_Resource type declarations23
Figure 10. Subject type declaration...23
Figure 11. Block, Mode, Effect, and Operation type declarations....................................24
Figure 12. active?, BB, SR, and Partition Function Declarations26
Figure 13. SecureEffect and SecureOP definitions ...27
Figure 14. Model Axioms and Basic Security Theorem...29
Figure 15. FTLS Type Declarations..31
Figure 16. FTLS Function Declarations and CurrentAccess Axioms...............................32
Figure 17. Transform Declarations ...36
Figure 18. FTLS Transform Axioms...38
Figure 19. Morphism Declaration ...40
Figure 20. Morphism Proof Obligations ...42
Figure 21. Specware Error Messages ..47
Figure 22. Unsuccessful Proof Message ...49
Figure 23. Successful Proof Message..49
Figure 24. Snapshot of Snark Log File..50
Figure 25. Example of Terse MetaSlang...53
Figure 26. Executable Specification..54
Figure 27. Non-Executable Specificaion...54
Figure 28. Mapping Problem Example ...57

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Specware Evaluation Criteria ..10

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to thank my advisors Timothy Levin and Cynthia Irvine for their

continued support, patience, and guidance throughout this process. I would like to thank

Dennis Volpano and George Dinolt who provided insight and direction during the

research of this thesis. I would also like to thank Kestrel Technology, particularly

Alessandro Coglio, for their support with Specware.

This material is based upon work supported by the National Science Foundation

under Grant No. DUE0414102. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

High assurance computing and communication systems are evaluated to a high

level of trust based in part on a formal verification that the actions of the system adhere to

the established security policy. This is important due to stringent requirements on high

assurance systems and their development process. The Common Criteria (CC) is used to

evaluate, certify, and accredit systems and imposes requirements such that any system

requiring a high level of trust (i.e. Evaluation Assurance Level 7 or EAL7), must undergo

a rigorous life cycle including the use of formal verification of its security properties

[Com06]. Examples include systems housing information at multiple classification

levels, avionics software, missile guidance software, and even critical infrastructure

management systems for water, power, and gas. All of these types of systems are

required to be correct and must not contain errors or malicious artifacts that might result

in the leak of sensitive information or the loss of human life. One way to ensure that the

system is correct is to incorporate formal verification in the development life cycle.

Formal verification is thus a necessity for high assurance systems, but the level of

effort associated with manual verification can be unreasonable due to large and

complicated proofs. The use of an automated verification system can increase the

efficiency and productivity of formal verification. There are several verification systems

available and the choice between such systems is important and must be considered

carefully based on the scope of project requirements.

In this thesis we analyzed Specware, a verification system developed by Kestrel

Development Corporation, to determine the level of usefulness it could have in the

verification of high assurance systems. We are evaluating Specware as a candidate for

use on the Trusted Computing Exemplar project [Irv04]. For our analysis we adapted a

set of evaluation criteria presented by Ubhayakar [Ubh03]. We conducted a simple

experiment as a basis for evaluation. The experiment required familiarity with Specware

and the capabilities of MetaSlang, Specware’s specification language. The experiment

consisted of creating a formal model with a basic security theorem based on a separation

kernel security policy presented by Levin, Irvine, and Nguyen [Lev04]. Furthermore, we

2

created a formal top level specification as a refinement of the model and investigated the

interlevel mapping capability within Specware. We continued to evaluate Specware

through analysis of its ability to automatically generate theorems and conjectures at each

specification level as well as conjectures associated with the interlevel mapping. Finally

we analyzed Specware’s theorem proving capabilities by attempting to prove the basic

security theorem in the formal model and all of the conjectures associated with the

model, formal top level specification (FLTS), and interlevel mapping.

This thesis presents our experimental findings and discusses the strengths and

weaknesses of Specware corresponding to the adapted verification system evaluation

criteria. We will present a brief overview of Specware and MetaSlang and its basic

components. We will then describe the separation kernel formal model and FTLS

developed in Specware and the technique used to produce the interlevel mapping.

Finally, we will conclude with our analysis of Specware against the adapted evaluation

criteria and present our conclusions and recommendations for future work. Overall, we

found Specware to be a powerful tool with potential to be highly useful in the verification

of high assurance systems; however, currently, a few aspects of the tool has weaknesses.

Specware is under continued development and progress will hopefully be made in these

areas.

3

II. BACKGROUND

A. FORMAL METHODS AND THEIR IMPORTANCE
The process of developing a high assurance system is naturally arduous. Yet the

motivation to undergo such a process relies on the outcome provided. When a high

assurance system is completed and implemented, one can be assured with a high degree

of confidence that the system will behave correctly and appropriately. Appropriate

behavior could be considered as system behavior that is intentional, free from malicious

or inadvertent side affects. When discussing what types of systems should be developed

using a high assurance methodology, many examples are immediately present, including

but not limited to medical technology systems, aviation systems, and multilevel secure

systems. Taking these examples one can immediately see how a small bug or glitch in

the system could be disastrous, possibly resulting in the loss of human life.

The high assurance methodology ensures that a system will undergo a rigorous

development life cycle in order to eliminate bugs and prove that the functionality is

necessary and sufficient. The system must also be evaluated to determine its level of

assurance. The evaluation process incorporates stringent guidelines relating to the

development life cycle. The entire process is time consuming due to the guidelines that

must be followed and heavy documentation associated with those guidelines. Such

documentation provides a clear outline that developers and engineers can follow in order

to verify system requirements and functionality. The documentation also serves as an

invaluable reference for system maintenance. And finally the documentation is used for

system evaluation. Although the process can seem almost overwhelming, it results in a

system that can be verified to meet its specified requirements and desired functionality.

This methodology is also vitally important when describing the security properties of the

system.

Formal methods are the use of mathematics to prove certain properties about a

system. Formal methods involve several levels of abstract descriptions of the system’s

security properties and desired functionality. Applying formal methods to the design and

implementation of high assurance systems can be described through the following steps:

4

1. Security Policy
2. Security Model
3. Formal Top Level Specification
4. Implementation

For each step the appropriate verification must be achieved in order to maintain a

correct mapping to the previous level, ending up back at the security policy. The goal is

to sequentially refine the security policy to the implementation of the system such that the

implementation is shown to be a valid representation (i.e. “maps to”) the policy. The

process can seem quite simple yet it is quite rigorous. It could take years to develop a

high assurance system where the security policy is provably secure. Due to the expense

in terms of time, money, and expertise, formal methods are mostly used in the

development of systems that require trusted security properties to protect high valued

information. One important reason formal methods are used is to provide a high level of

confidence that the implementation meets the specification. Thus formal methods

provide assurance that the security properties will be provided as specified. Another

reason is that a formal security policy model provides developers with a single point of

reference that defines exactly what is to be implemented. Thus formal methods provide

an accountability mechanism for the developers and a solid reference framework to

ensure that the security of the system can be understood. Landwehr described it well

when stating that formal methods provide a concise organization of the complexity of

“computer” and “security”. Thus they provide a definition of what security actually

means and how it can be determined with relation to the computer’s behavior [Lan81].

Finally, formal methods provide the means to answer the question of whether the system

is secure or not based on the proof of the basic security theorem.

B. THE REFINEMENT PROCESS IN FORMAL METHODS
As noted previously there are several levels of abstraction when applying formal

methods to a system and security policy. The term security policy can be quite vague if

not put within the proper context. Sterne distinguishes between the security policy

objective, the organizational security policy, and the automated security policy [Ster91].

In terms of formal methods, we are concerned with the automated security policy which

is an abstract view of the desired functionality and security properties that the system

5

must contain or address. It is free of implementation details and provides the reference

for the entire formal methods process. The construction of the automated security policy

is vital as it serves as the backbone for the entire process.

The next two phases are the construction of the formal security policy model

(FSPM) and then the formal top level specification (FTLS). The model is a

mathematically structured statement of the security policy. It is a logical representation

of the security policy which basically takes the English language stated policy and

formulates the mathematical equivalent. Additionally, the model must make a significant

progression toward the actual implementation of code. The model serves as the first

stepping stone in the process and is a high level abstraction between the security policy

and the implementation of the system. Keep in mind that the ultimate goal of this process

is to ensure that the actual code behaves in no way violates the policy, and yet still

contains the desired functionality. Thus a system full of NOPs is not a violation of the

policy, but provides no useful functionality. The code preserves the security properties

and is based ultimately from the model. Thus the model must be an accurate

representation of the policy in order to maintain a high level of assurance. The model

consists of two major components. The first is a general model of a system plus a set of

operations, and the second is a definition of security that constrains the system.

Constraints are stated in the form of axioms and conjectures, which must be proven based

on the constraints. Ultimately, the basic security theorem must be proven true based on

all the constraints put on the system. Thus a secure system is defined as one in which all

constraints are satisfied [Ubh03].

The FTLS is the second level of abstraction from the policy and steps towards the

implementation in terms of specificity. It defines all interfaces with appropriate

parameters. It represents all inputs and outputs necessary for the system and also

describes the exceptions and effects that processing will have on the state of the system. .

The FTLS describes all actions that the system takes and the impact that those actions

will have on the security properties of the system. The formal nature of the FTLS allows

for proof that it maps to the model and transitively supports the security policy.

6

The FTLS must support three main goals. First, it must support a proof that the

system design enforces the security policy. Secondly, it must provide a basis for an

analysis and catalogue of all covert storage channels. Lastly, it must provide a criterion of

correctness for the implementation [NSA87]. The major difference between the security

policy model and the FTLS is the level of specificity. The important distinction is that

the FTLS represents a significant progression from the policy to the implementation.

This sequential progression must be provably secure in that each refinement is shown to

map to the previous level of abstraction and ultimately the policy. The sequential

refinements can be quite challenging and the proofs can become cumbersome.

Performing the proofs of the model and FTLS by hand could consume a large amount of

time and human resources. Thus the need for tools that aid in the refinement and

representation of security models and policies is quite evident.

C. VERIFICATION SYSTEMS
The use of tools that improve the efficiency and correctness of the verification

process is necessary to produce a secure system. Tools that can assist in the verification

of high assurance systems include formal specification languages and theorem provers.

Languages provide a means to represent models and policies and to express the

refinement of such models in a formal manner. Theorem proving tools help to minimize

the manual effort required to arrive at a valid proof. Theorem provers can either be

interactive or automatic. An interactive prover requires the user to initiate proof

commands to guide the system through the verification, whereas an automatic prover

attempts to reach a proof without any guidance or involvement from the user except at

the invocation of the prover. Essentially a theorem prover processes specifications and

determines if the conjectures are correct and valid. A specification language can be used

to specify a system and to declare conjectures and proof obligations. We will briefly

describe three tools that are in use to aid in the verification of high assurance systems.

1. Ina Jo – Category Theoretic
Ina Jo is the specification language processor included in the Paramax Formal

Development Methodology (FDM) software [Par92]. The Ina Jo processor reads specs

7

that are written in the Ina Jo specification language and automatically generates

correctness conjectures. The FDM tool set includes two theorem provers, the Interactive

Theorem Prover (ITP), and the Natural deduction Automated Theorem proving

Environment (Nate). Ina Jo is derived from first order logic with quantification. An Ina

Jo specification describes system states, state transitions, and correctness criteria. Ina Jo

also provides linguistic elements to describe multiple levels of abstraction as well as the

mapping from one level to another. The conjectures must then be proven and once they

have been proven they become theorems. Ina Jo theorems fall into three categories:

• Initial condition theorems state that the initial states satisfy the correctness

criteria.

• Transform theorems state that transforms preserve the correctness criteria.

• Mapping theorems state that a lower level spec properly implements its parent.

Once Ina Jo has generated the conjectures the previously mentioned theorem

prover is used to verify them. Some nice features that Ina Jo provides include a precise

way to state what level the specification represents through the use of the LEVEL

statement. Thus a declaration of the spec could appear as LEVEL model and then LEVEL

ftls UNDER model [Par92].

2. PVS – Type Theoretic
The Prototype Verification System (PVS) is a verification system that provides an

interactive specification environment that supports writing formal models and

specifications and theorem proving. PVS provides an all inclusive environment that

contains its own powerful specification language and interactive theorem prover

[Ubh03]. Certain low level proof steps are automatically included in PVS, but the user

must initiate the higher level steps to create goals and subgoals that need to be proven in

order for the specification to be correct.

8

3. Specware – Category Theoretic
Specware is a utility created by Kestrel Institute which provides a specification

language, MetaSlang, and the ability for refinement of specifications to produce code in a

target programming language. MetaSlang provides linguistic elements to describe

multiple levels of refinement and its processor generates the associated proof obligations.

Specware incorporates the theorem prover SNARK developed by SRI [Kes04].

Specware comprises multiple specs and refinements of specs to ultimately produce

provably correct code. Refinement is conducted through the use of morphisms.

Morphisms are a concept based from category theory which are defined by McDonald

and Anton as truth preserving mappings of one spec into another [McD01]. Thus the two

major stages in producing a Specware application include building the spec and then

refining the spec [Kes04]. It is the intent of the rest of this document to analyze

Specware and determine the degree to which it is useful in the verification of high

assurance systems. A more extensive overview of Specware is provided in Chapter III

and Chapter IV provides an analysis of Specware’s application to the verification

paradigm.

D. THE VERIFICATION PARADIGM
Due to the extensive nature of developing a high assurance system, it is important

to choose a verification tool, or set of tools, that will be useful throughout the

development process. Ubhayakar presented a set of evaluation criteria for verification

tools [Ubh03]. Ideally, the verification tool will support formal specifications, proofs,

refinement and covert channel analysis, and provide adequate documentation of the same.

 When determining a tool’s usefulness in the verification of high assurance

systems, we desire to evaluate it based on a set of objective criteria in order to show its

relative effectiveness. The analysis is performed by developing specification models and

proofs based on a security policy in the tools’ specification language. In terms of the

verification of high assurance systems, we are mainly concerned with the tools’

usefulness in developing the security policy model, FTLS, and the proofs associated with

the mapping. Naturally this type of analysis will depend on many factors that might exist

beyond the initial set of evaluation criteria. Such dependencies are very important and

9

should not be overlooked, for instance, suppose that a tool is found to be quite useful but

requires expensive training costs. The decision to use the tool must be made according to

the available resources and development schedule. Thus, it is important to state ahead of

time, what criteria beyond the initial set should be considered when performing the

analysis of the tool. Ubhayakar [Ubh03] presented an initial table of evaluation criteria,

which we have extended as seen in Table 1:

Evaluation Criteria Definition Utility

Product Maturity A tool should be old enough

and currently maintained and

supported

Specific questions need to be

answered in a timely manner

regarding syntax and

specification language

Usability of Tool and

Verification

Environment

The level of simplicity and

flexibility of operations

provided to the user

The interface and commands

should be simple to

understand and should

provide syntax highlighting

and error checking to

increase efficiency

Theorem Proving Interactive versus automated

theorem proving

Theorem proving should be

easily integrated and

provide meaningful

descriptions of errors and

logging capabilities

Specification

Language

Syntactical elements of the

language

Learning curve associated

with language should be

minimal to provide efficient

generation of specficiations

10

Executable

Specifications

Ability to test system directly

from specification language

Executable specifications

provide the user with a

general “feel” for the

system

Multiple Levels of

Abstraction

Refinement capabilities from

more abstract specifications to

more concrete specifications

Multiple levels of

abstraction provides ability

to verify that the top level

specification satisfies

security policy

Automatic Generation

of Conjectures

Ability to automatically state

items which must be proven

This aids in ensuring that all

obligations regarding the

system are being addressed

Semantics Powerful expression of logic

with minimal complexity

Underlying logic and

foundational theory affects

the expressiveness of the

tool regarding system

properties

Table 1. Specware Evaluation Criteria

For this thesis, we will analyze Specware and determine its usefulness in the

verification of high assurance systems. We will develop formal specifications in

Specware based upon a simple separation kernel security policy. We will then analyze

the specifications in order to describe the utility of Specware regarding the verification

paradigm. This analysis is not to determine Specware’s usefulness in the general sense,

but to describe the level of its usefulness when developing a formal security policy model

and FTLS and its proving capabilities. The next chapter will provide an overview of

Specware and describe its history as well as some projects that it has been used on.

Following the discussion of Specware, we will present our experiment and analysis.

11

III. SPECWARE OVERVIEW

A. SPECWARE DESCRIPTION
Specware was developed and is supported by Kestrel Development Corporation

and has been in production for over a decade. The version of Specware used in this

project is version 4.1.3. The philosophy behind Specware is to provide an automated tool

to aid in a refinement-based approach to formal software development. Formal software

development implies the rigorous construction of executable code that meets a well-

defined specification [McD01]. Specware’s refinement process is based on the

mathematical foundation of category theory, which is concerned with the manner in

which properties are preserved between different objects. In category theory, morphisms

are the relations between objects [Sri96]. The advantage of category theory as the

foundation of Specware is that it enables the production of a well-defined stepwise

refinement from an abstract specification to concrete implementation. Specification

morphisms preserve the structure of one specification through the translation to another

specification and preserve theorems across the specifications [Sri95]. Thus refinement

capabilities in Specware provide a logic-preserving process wherein each refinement can

be proven to preserve the properties of the more abstract specification [McD01]. The

entire goal of Specware is to provide a framework to produce provably correct code and

aid in the development of efficient, high-assurance software [Pav03]. Based on the

description of the verification paradigm and formal methods process, Specware’s

foundation is appealing for developing high assurance systems.

B. SPECWARE FUNCTIONALITY

1. MetaSlang
Specware is a tool to build and refine specifications, generate code from

specifications, and prove properties regarding those specifications and refinements. The

specification language used in Specware is called MetaSlang. The Specware Language

Manual contains a detailed description of the MetaSlang grammar, including a BNF

description. MetaSlang includes syntactic constituents for describing functional

semantics within a specificaiton as well as constructs for describing composition,

12

refinement, code generation, and proof capabilities. Specification constituents include

types, expressions, and axioms which can be used to describe domain-specific

formalisms [Kes04]. The MetaSlang grammar follows a functional style of

programming, which is valuable for proving properties regarding functions; however, the

functional style causes issues when trying to represent state, which is discussed in

Chapter V, Section E and future work. The basics of MetaSlang are briefly described in

this section, but the reader is recommended to refer to the Specware documentation for a

more comprehensive explanation.

a. Specs
“A specification is a finite presentation of a theory in higher-order logic”

[Sri95]. Specifications, or specs, provide the means to describe abstract concepts of the

problem domain. Specs contain types for describing collections of values and operations,

or functions on those values. Specs also contain axioms and definitions which define the

actions and properties of types and operations. A spec can be extended by importing

other specs. This copies the imported spec into the target spec creating a larger and

potentially more complex spec. Specs are also the objects used in morphisms which

define the part-of or is-a relationship between two specs. Morphisms allow for

refinement of specs and provide the utility to take simple abstract specifications, and

refine them to more concrete, complex specifications [Kes04]. The general form of a

spec definition in MetaSlang is a sequence of one or more declarations, as shown in

Figure 1.

spec example_spec

 {declaration}

 ...

endspec1

Figure 1. Spec Definition

1 Reserved words in MetaSlang will appear in bold throughout all figures in this document.

13

b. Types
Types are collections, or sets, of objects and expressions that characterize

those objects. Specware has several inbuilt types provided in its libraries which are

imported automatically for every spec processed by Specware. Specware’s libraries

continue to grow as time goes on and when creating specifications it is important to

consider if they can be reused across multiple problem domains. Some example type

declarations are shown in Figure 2. Notice in the definition of Mode the vertical bar

precedes each element.

type Resource

type String

type Mode = | READ | WRITE | EXECUTE

Figure 2. Type Declarations

c. Ops and Defs
An operation, or op in MetaSlang, is used to describe instantiations of

types. Ops are used to declare explicit types as well as declare functions that will

perform an operation based on the types given in the declaration. Figure 3 shows

example of op declarations. Ops can be monomorphic (i.e. strict typing) as seen by the

definition of Name which can only be of type String. My_Predicate is also an example of

a monomorphic op that can only take a String as input and will only result in a Boolean

value. Ops can be polymorphic, as seen in My_Function, indicating that the op can be

used across different types. Thus My_Function takes two parameters of different or the

same type and returns a value of a third type. It is clear that the declaration of a

polymorphic op describes little context for its use, but the definition of the op will bring

clarity to its context and proper use.

14

 op Name : String

%Polymorphic op

 op My_Function: [a,b,c] a * b -> c

 op My_Predicate: String -> Boolean

Figure 3. Op Declarations

Once the operations have been declared, definitions, or defs, of ops are

used to define the behavior and constraints (i.e. the semantics) of the ops. Thus an op

definition corresponds to a previously declared op and must correspond to the signature

of the op declaration. An op definition is considered a special notation for an axiom and

is expresses the same logic that an axiom might express; however, a def might still have

proof obligations associated with it, whereas an axiom is automatically assumed to be

true and has no obligations. Thus, it is encouraged to use defs as much as possible in

order to be as precise as possible [Kes04]. A def can also be used to declare constants.

Figure 4 shows the use of defs to declare a constant Limit and the definition of op f.

 def Limit = 12

%Declaration

 op f : Nat -> Nat

%Definition

 def f(n) = 3*n

Figure 4. Op Definitions

15

d. Claims: Axioms, Conjectures, and Theorems
Axioms, conjectures, and theorems are all considered types of claims

within Specware. All claims must be of type Boolean. Conjectures and theorems are

claims that must be proven through the use of op definitions and axioms. Specware will

automatically generate conjectures based on op declarations, but the user can also create

conjectures as well [Kes04]. Currently, conjectures and theorems are synonymous in the

way that the Specware processor handles the two types of claims, but as Specware

becomes interoperable with other theorem provers, a difference might be distinguishable.

Some example claim definitions are:

axiom Example_1 is fa (x: Integer, y: Integer)

f(x) = f(y) => x = y

conjecture Example_2 is fa (w: Integer, z: Integer)

(z*w = 0) => (z =0 || w = 0)

theorem Example_3 is fa (a: System_Transform)

Transform_Secure(a)

Figure 5. Claim Definitions

2. Refinement and Morphisms
The goal of refinement is to take an abstract description of a solution and develop

a more precise description which can be shown to be a correct representation of the initial

description. The process of stepwise refinement provides a sequential composition of

refinements where each refinement introduces new detail and is shown to preserve all

previous properties [Sri95]. The refinement process in Specware consists of an initial

specification that expresses the high level requirements and then continues with

refinement specs that indicate design and implementation decisions. Thus the stepwise

refinement of specifications proves the existence of a valid implementation of the initial

specification [Pav03]. The glue that connects each pair of refinement specs is the

specification morphism.

16

In Specware the morphism from one specification (source) to another (target) is a

property and structure-preserving mapping such that every type and op in the source spec

is directly mapped to a type and op in the target spec. The morphism allows us to speak

of items (types, ops, axioms, and defs) in the target spec as images of items in the source

spec. The images of the axioms and definitions in the source spec are conjectures

generated by Specware to be proven in the target spec. Thus the morphism shows that all

properties of the source spec are satisfied by the target spec. Thus each level of

refinement is shown to satisfy the conditions from the level above, providing a proof

chain from the most concrete refinement to the initial specification [Kes04].

A morphism between two specifications is declared by indicating the source spec

mapping to the target spec with a specialized arrow (i.e. +->) in between. Specware will

automatically map types and ops in the source spec to types and ops of the same name in

the target spec. If type names differ between specs, then the mapping between types

must be made explicitly. Every type and op in the source specification must map to

another type and op in the target. The syntactic elements of the morphism include the #

symbol which is used to identify the particular spec within the file, and the +-> symbol

which is the mapping symbol used to express individual element mapping. An example

morphism declaration is seen in Figure 6.

Sample_Morphism =

 morphism Source_Filename#Source_Spec ->

 Target_Spec {

 source_type1 +-> target_type1,

 source_op1 +-> target_op1}

Figure 6. Sample Morphism Declaration

3. Proof Obligations
Proof obligations are properties regarding relationships of items within a

specification and must be shown to be true in order for the specification to be correct.

17

Specware automatically generates proof obligations for definitions and the user can also

state explicit obligations in the form of conjectures or theorems. Proof obligations are

also automatically generated for a morphism. Proof obligations that are automatically

generated within specs are typically related to type checking and op definitions.

Automatically generated obligations do not appear within the original spec, and in order

for the spec to be proven true, the user must invoke them by using obligations command.

This command can be present in the definition of a unit, as seen in Figure 7 or it can be

given from the Specware shell in combination with the show command. We will discuss

the Specware shell environment in the next section.

Once the obligations have been invoked, they can then be proved using the prove

command [Kes04]. Obligations must be proved one at a time, but not necessarily

sequentially. For organization purposes, we found it beneficial to maintain a separate file

containing only proof units which assigns proof obligations unique identifiers. This

allowed us to select which proofs should be attempted in a proving session as opposed to

attempting all proofs in every proving session. Figure 7 is an example of a file that

assigns proof obligations from a given spec to a unit and it also demonstrates assigning

individual proof obligations from the same spec to proof units. Note that a unit

references a label to an assigned element in Specware (e.g. p1 is a unit).

 spec_obligations = obligations File#Sample_Spec

 p1 = prove obligation1 in File#spec_obligations

 p2 = prove obligation2 in Spec#spec_obligations

Figure 7. Proof and Obligation Declarations

This technique allows for unambiguous identification of obligations and provides

a reference when analyzing the log files associated with each proof attempt. If the

theorem prover is not able to prove the claims, this does not mean that the proof does not

exist as the theorem prover may not be smart enough to figure it out. If a proof fails, the

user can walk through the proof by hand and determine if a solution exists or if the

18

specification needs modification. Obligations associated with a morphism can be seen

using the show obligations command within the Specware shell. The Specware

processor will generate a separate spec which will contain all obligations necessary to

satisfy the morphism [Kes04]. Figure 8 shows the way to view our Sample_Morphism

oblgations from within the Specware shell.

show obligations Filename#Sample_Morphism

Figure 8. Morphism Obligations

4. Specware Shell
The processing of Specware specifications is performed within the Specware

shell. The Specware shell is a command line environment. The Specware distribution

package comes with XEmacs which can run the Specware shell, but the Specware shell

can be run outside of XEmacs. XEmacs provides some features, such as syntax

highlighting, that are useful for spec development in MetaSlang. The Specware shell

contains several commands including basic file system operations such as cd and dir but

also commands specific to processing Specware units such as the proc and show

commands. The show command can be used to display the contents of units or proof

obligations. Within the Specware shell, the user can create and process specs, generate

proof obligations, send obligations to a theorem prover, and even evaluate constructive

MetaSlang expressions [Kes04]. Readers are encouraged to review the Specware

documentation to become more familiar with the Specware shell and development

environment.

C. SUMMARY
In summary, Specware is a tool intended to aid in the process of formal software

development through the use of stepwise refinement. The mathematical foundation of

Specware refinement is category theory which provides a mathematical foundation for

describing the relationships between objects and operations. This foundation allows us to

describe and prove the relationship between specifications. Specifications are written in

19

MetaSlang. Specs contain types, ops, and claims (e.g. axioms, conjectures, and theorems)

which formally represent the logic of a specific problem domain. The concept of

stepwise refinement is achieved through the use of morphisms. A morphism is a

relationship between specifications that describes how the properties of one map to the

properties of another. All conditions of the source spec must be satisfied in the target

spec in order for the morphism to be proper. Thus final refinement specification is shown

to preserve the properties from the abstract specification.

Next we will analyze how Specware and its refinement features support the

verification of high assurance systems. We will describe the development of a formal

model in Specware based on a separation kernel security policy. Then we will describe

the development of an FTLS in Specware as a refinement of the model. We will use the

morphism feature in Specware to achieve the interlevel mapping and thus demonstrate

refinement, which is required by the formal methods process.

20

THIS PAGE INTENTIONALLY LEFT BLANK

21

IV. SPECWARE AND THE VERIFICATION PARADIGM

A. SEPARATION KERNEL OVERVIEW
To conduct our analysis of Specware within the verification paradigm we chose to

create a policy model and FTLS of a separation kernel. A separation kernel provides a

partitioning of all system resources under its control into blocks such that actions taken

by active entities within any particular block are isolated and undetected by entities in

other blocks. A separation kernel achieves this partitioning and isolation of entities

through management and virtualization of shared resources such that each block is

assigned a resource set over which it believes itself to have complete control. The only

manner in which a block might communicate with another block is if a means for

communication has been established explicitly. Such information flow properties are

desirable in environments where certain flows are allowed based upon a flow policy.

One example might be a Multi-Level Secure (MLS) system that manages a flow policy

between different classification levels of data. Levin, Irvine, and Nguyen defined a

model for a static separation kernel which provides least privilege information flow

[Lev04]. For a comprehensive understanding of this model we recommend referencing

the paper, but we will provide an overview of the model and discuss its specification

within Specware.

The least privilege separation kernel model consists of a set of resources, a set of

operations, a set of modes of flow (i.e. Read, Write, Read & Write), a distinct partitioning

of the resources into a set of blocks, a block-to-block flow function, and a subject-to-

resource flow function. The set of resources is composed of internal resources, i.e. those

which are only available to the kernel, and exported resources to which an explicit

reference is possible via the separation kernel interface [Lev04]. The set of resources is

partitioned into blocks, where every resource belongs to one and only one block.

Subjects are a subset of exported resources which represent the active entities of the

system, such as processes, programs, etc. Subjects can invoke certain modes of flow with

respect to other exported resources. The notion of this flow is called an effect, which

consists of a subject, resource, and mode of flow. Note that the resource can be another

subject, the only stipulation being that within an effect, the resource, or passive entity, is

22

an exported resource. The set of all possible effects is the cross product of the set of

subjects, exported resources, and modes of flow. Next the model describes the notion of

the flow policy. The flow policy dictates what types of flows are allowed between

blocks, and what types of flows are allowed between subjects and resources. The block-

to-block flow function defines the set of allowed flows between blocks. The subject-to-

resource flow function defines the set of allowed flows between subjects and exported

resources. Thus the subject-to-resource flow function and the block-to-block function

together express the flow policy.

An operation is associated with a set of effects. For example, if the separation

kernel includes a read operation, there might be several effects associated with that read

depending on the implementation of the operation. Thus all operations possess a set of

effects. The notion of a secure operation is defined as an operation in which all of its

effects are considered secure. A secure effect is one in which the given flow between the

subject and resource is allowed by the policy, as well as the flow between the blocks in

which the subject and resource reside is allowed by the policy. Finally a secure system is

one in which all of its operations are secure [Lev04]. The paper also goes on to describe

the notion of partial ordering of blocks and a trusted partial ordering using trusted

subjects; but for this work we did not implement the trusted partial ordering and refer the

reader to the paper for a more comprehensive understanding of this aspect. Next we will

describe our specification of the model within Specware.

B. DESCRIPTION OF SEPARATION KERNEL MODEL IN SPECWARE

1. Type Declarations
As described earlier, once the security policy has been clearly defined, the next

step is to represent the policy in a formal model. The model states the essence of the

policy in a basic security theorem, which must be proved in order to verify that the model

is consistent with the policy. In this section we describe the specification of the

separation kernel model written in Specware’s Metaslang. The complete specification for

the separation kernel model is given in Appendix A. First we declare a type called

Resource which indicates the set of all resources available to the kernel. We then

proceed to define a subtype Exported_Resource which indicates all resources which are

23

not internal to the kernel. Figure 9 shows the declaration of Resource and

Exported_Resource.

type Resource

 op exported? : Resource -> Boolean

type Exported_Resource = (Resource | exported?)

Figure 9. Resource and Exported_Resource type declarations

In Specware we declare Exported_Resource as a subtype using a predicate that

satisfies some condition indicating that it is an exported resource. This condition is left

abstract and does not need to be defined in the model. Next we define subtype of

Exported_Resource called a Subject. We declare Subject as a subtype in a very similar

fashion as we defined the subtype Exported_Resource by using a predicate that must be

true in order for it to be a subject. The definition of the subject predicate is left abstract

in the model, but in the FTLS we refine the definition of the predicate. Notice that

constructing subtypes in this manner provides a proper containment of elements such that

Subject is a subset of Exported_Resource which is a subset of Resource. Figure 10 shows

the declaration of subtype Subject.

 op subject? : Exported_Resource -> Boolean

type Subject = (Exported_Resource | subject?)

Figure 10. Subject type declaration

24

Following the Subject declaration we complete the type declarations by declaring

the Block, Mode, Effect, and Operation types. The Block declaration utilizes the Sum

type feature in Specware, which allows a partitioning of the type being declared. Thus

for our Block declaration we declare names for blocks with which resources will later be

associated. We use the terms High, Medium, and Low to represent how separation

kernels are sometimes used, but these are merely labels and will have no semantic

designation. Type Mode indicates the modes of flow that are taking place in the system

and is declared in a similar fashion to Block such that the only modes of flow are RD (for

Read), WR (for Write), RW (for Read/Write), and NULL. The declaration of the Effect

type uses what is known in Specware as a record type where each effect consists of a

subject which is of type Subject, a resource which is of type Exported_Resource, and a

flow which is of type Mode. The final type declaration is an Operation which consists of

a List of effects, or all the effects that are associated with each operation. Figure 11

shows the final type declarations.

 type Block = | High | Medium | Low

 type Mode = | RD | WT | RW | NULL

 type Effect = {subject: Subject,

 resource: Exported_Resource,

 flow: Mode}

 type Operation = List Effect

Figure 11. Block, Mode, Effect, and Operation type declarations

2. BB, SR, and Partition Function Declarations
Following the type declarations we declare functions that allow us to express the

allocation of the resources to blocks as well as determine what types of flows are allowed

between blocks and what types of flows are allowed between subjects and resources.

25

First we declare a polymorphic predicate that is used to indicate which entity is the active

entity for both policies. This predicate is given the name active?, where the general

convention for predicates is to end their names with a question mark signifying that it is a

Boolean expression.

Next we declare the BB function which represents the block-to-block flow policy.

This function takes two blocks, b1 and b2, where b1 is the block of the active entity that

causes the flow. The function returns the list of modes of flow that subjects in b1 are

allowed to perform on resources in b2. We make this distinction in order for the model to

be able to express a policy which allows, for example, the flow [b1, b2, RD], but does not

allow the flow [b2, b1, WR]. In this case, the direction of the flow is the same

(information is flowing from b2 to b1), however, the cause of the flow is different.

The SR function represents the subject-to-resource flow policy and is declared in a

similar fashion as the BB function. The SR function takes a subject and exported resource

as parameters, where the subject is the active entity, and returns a list of modes flow that

the subject is allowed to perform on the exported resource. Note that this policy

definition allows flows between two subjects, since subjects are defined as exported

resources, which is why we declare the Subject to be the active entity.

Finally we declare the Partition function which takes an exported resource as

input and returns the block in which it resides. In Specware, when a function is declared

it is naturally assumed to be well-define and no constraint is needed to discuss its totality.

Thus the Partition function is total, such that every exported resource is assigned to

exactly one block, but multiple resources could map to the same block. Note that we

need not define how the policy relations are populated. This is a convenient abstraction

leaving the details of the initialization of these policies as a refinement. Figure 12 shows

the declarations of these functions.

 op active? : [a] a -> Boolean

 op BB : {(b1,b2): Block*Block |

26

 active? (b1)} -> List Mode

 op SR : {(s1,r2): Subject*Exported_Resource |

 active? (s1)} -> List Mode

 op Partition : Exported_Resource -> Block

Figure 12. active?, BB, SR, and Partition Function Declarations

3. Policy Description Functions – SecureEffect and SecureOP
Now that we have described the types and functions that exist within the system,

we need to express certain qualities about the security of the system. We do this by

defining what it means for an effect and an operation to be secure. As mentioned

previously a secure effect is an effect in which the flow is allowed based on the subject-

to-resource and the block-to-block flow policies. Thus we can declare a function called

SecureEffect which returns true if the effect is in fact secure. The definition of

SecureEffect states that either the flow is NULL, which means that the subject will

perform no action on the resource, or the flow is allowed by the BB and SR functions.

Once we have the notion of a secure effect we can describe a secure operation in which

all effects associated with the operation are secure. SecureOP is defined as an iterative

search through the list of effects associated with the operation. The iteration clause states

that if the operation consists of a head element, hd, and a tail, tl, which is another list of

elements, then continue the process through the list by checking the head and recursively

processing the tail. If all of the effects are found to be secure, then the entire operation is

considered to be secure and the function will return true. Figure 13 shows the definition

of SecureEffect and SecureOP.

%Policy Description

 op SecureEffect : Effect -> Boolean

27

 def SecureEffect (effect) =

 (effect.flow = NULL ||

 (member(effect.flow, BB(Partition(effect.subject),

 Partition(effect.resource)))

 &&

 member(effect.flow, SR(effect.subject,

 effect.resource))))

 op SecureOP : Operation -> Boolean

 def SecureOP (operation) = case operation of

 | nil -> true

 | Cons(hd, tl) ->

 (SecureEffect(hd) &&

 SecureOP(tl))

Figure 13. SecureEffect and SecureOP definitions

4. Model Axiom and Basic Security Theorem
Before we can state the basic security theorem we need to include an axiom to

support the basic security theorem. The axiom operations states that for all effects and

operations, if an effect is a member of an operation, then its flow is either RD, WT, or RW

and the flow is allowed by the BB and SR policies. Essentially this implies that all effects

in an operation are secure, which implies that the operation is secure. In our initial

development of the model we defined three operations that met the same properties as

this axiom; however, we encountered mapping problems with our initial approach and

resorted to stating this axiom. The mapping problem we encountered regarded the fact

that we could not map multiple operations in the FTLS to only one operation in the

28

model. We will discuss this mapping problem further in Chapter V, Section C-6. It is

important to remember the operations axiom because it will become a conjecture in the

FTLS which must be proved based on our definitions of the operations.

Finally we can state the theorem which must be proved in order to ensure that the

system is secure. The theorem plainly states that in order for the system to be secure, all

operations must be secure. This is proved using the definitions and axioms we have

already described. The basic security theorem does prove within Specware using Snark.

Figure 14 shows the declarations of the axioms and security theorem.

 %Axiom

 axiom operations is

 fa(e: Effect, o: Operation)

 member(e,o) =>

 (e.flow = RD &&

 member(e.flow, BB(Partition(e.subject),

 Partition(e.resource))) &&

 member(e.flow, SR(e.subject, e.resource)))

 ||

 (e.flow = WT &&

 member(e.flow, BB(Partition(e.subject),

 Partition(e.resource))) &&

 member(e.flow, SR(e.subject, e.resource)))

 ||

 (e.flow = RW &&

 member(e.flow, BB(Partition(e.subject),

29

 Partition(e.resource))) &&

 member(e.flow, SR(e.subject, e.resource)))

 %Theorem

 theorem Secure is

 fa(o: Operation) SecureOP(o)

Figure 14. Model Axioms and Basic Security Theorem

It can be seen that the model for the separation kernel security policy is fairly

concise and yet provides enough detail to accurately express the security policy. The

model is a significant progression towards the implementation and can now be refined

through morphisms in Specware. Since the security theorem has been proved in the

model, if we can prove that the FTLS satisfies the morphism theorems, then it too will

satisfy the security theorem in the model. The FTLS will provide greater detail of the

separation kernel and will provide more concrete descriptions of abstract concepts

presented in the model.

C. DESCRIPTION OF SEPARATION KERNEL FTLS IN SPECWARE

1. FTLS Type Declarations
In the model many type declarations were undefined abstractions. In the FTLS,

we refine the type declarations to more closely indicate how the implementation will

represent those types. The complete FTLS is given in Appendix B, which is a subset of

the Least Privilege Separation Kernel FTLS. In the FTLS we declare the type Object

which represents a more concrete description of the Resource declared in the model. In

the FTLS an object can either be a process with a unique ID, a segment in memory with a

unique ID and a size, an eventcount, or a sequencer. Reed & Kanodia describe how

eventcounts and sequencers can provide process synchronization of execution without the

need for mutual exclusion [Ree79]. As a result, sufficient process synchronization can be

30

achieved within the bounds of secure information flow. It is recommended to read the

work of Reed & Kanodia to have a better understanding of how eventcounts and

sequencers manage information flow and process synchronization.

After the declaration of the Object type, we refine the concept of a Subject by first

using the same method for declaring an exported object as in the model. There is no

difference between the declaration of an exported object in the FTLS and an exported

resource in the model. Since all subjects are exported objects, but not all exported

objects are subjects, we defined an abstract predicate in the model called subject?. In the

FTLS we refine the same predicate regarding a subject by stating that a subject is a

process. We achieve this by constructing the predicate to be true if there exists a natural

number such that the object given as input to the predicate equals the process associated

with the number. The rest of the declarations in the FTLS are the same as in the model,

except in the FTLS we declare type Transform as opposed to Operation. Figure 15

shows the FTLS type declarations.

%Types

 type Object = | Process {id: Nat}

 | Segment {id: Nat, size: Nat}

 | EventCT (Nat)

 | Sequencer (Nat)

 op exported? : Object -> Boolean

 type Exp_Object = (Object | exported?)

 op subject? : Exp_Object -> Boolean

 def subject? (process) =

 ex(n: Nat) process = Process {id=n}

31

 type Subject = (Exp_Object | subject?)

 type Block = | High | Medium | Low

 type Mode = | RD | WT | RW | NULL

 type Effect = {subject: Subject,

 resource: Exp_Object,

 flow: Mode}

 type Transform = List Effect

Figure 15. FTLS Type Declarations

2. FTLS Function Declarations
The function declarations in the model were only refined slightly in the FTLS;

however, we added another detail regarding the system with the notion of a

CurrentAccess table. This is similar to the current access matrix described in the Bell &

Lapadula model, which is an abstraction of the hardware segment descriptors through

which access to memory is controlled [Bel73]. For example, the kernel substantiates a

processes right to access the memory protected by a descriptor before providing it to the

process. Thereafter, the process has “current access” such that it can access memory

without kernel mediation. Thus the CurrentAccess table represents the processor local

descriptor table. We also state some basic axioms regarding the state of the effects of the

system such that an effect is in the CurrentAccess table, only if it is in the SR table.

Similarly we state that an effect is in the SR table, only if it is in the BB table. As in the

model, the combination of the SR and BB tables represent an encoding of the security

policy. The addition of the CurrentAccess table allows us to express properties regarding

effects associated with transforms. Figure 16 shows the FTLS function declarations

including the CurrentAccess and axiom declarations.

32

 op active? : [a] a -> Boolean

 op CurrentAccess :

 Subject * Exp_Object * Mode -> Boolean

 op BB : {(b1,b2): Block*Block |

 active? (b1)} -> List Mode

 op SR : {(s1,r2): Subject*Exp_Object |

 active? (s1)} -> List Mode

 op Partition : Exp_Object -> Block

axiom CurrentAccess_implies_SR is

 fa(e: Effect)

 CurrentAccess(e.subject, e.resource, e.flow) =>

 member(e.flow, SR(e.subject, e.resource))

axiom SR_implies_BB is

 fa(e: Effect)

 member(e.flow, SR(e.subject, e.resource)) =>

 member(e.flow, BB(Partition(e.subject),

 Partition(e.resource)))

Figure 16. FTLS Function Declarations and CurrentAccess Axioms

33

Following the function declarations in the FTLS, we include the model’s security

policy descriptions of the active?, BB, SR, and Partition functions (see Figure 12), which

need no further refinement. The following section discusses the declarations of the

transforms.

3. FTLS Transforms
In the separation kernel model we declared there to be a type or set of

Operation(s) and we did not further discuss any members of the set within the model.

We simply left them as an abstraction and constrained properties regarding all operations.

As mentioned previously, we refine the abstract type Operation in the FTLS to be a type

Transform. We then enumerate all the transforms that will exist in the system. In

Specware, we can define an element of a certain type by declaring an op of the desired

type. We can also provide certain constraints within this declaration as well. Since a

transform is a list of effects, we want to ensure that if an effect is a member of the

transform then it satisfies certain properties. This is also vital to uphold the proof that the

FTLS is a proper refinement of the model.

In the FTLS we declare seven transforms: HW_Read, HW_Write, Read_Write,

Ticket, Read_EventCT, Adv_EventCT, and Await_EventCT. These all have certain

semantics, so rather than declare them all to be of type Transform, we can add constraints

within the declaration. This also eliminates the need for axioms that convey these

constraints later in the specification. An example of such constraints can be seen in the

definition of HW_Read. We want to ensure that if an effect is a member of HW_Read,

then the effect’s flow is of type RD and the effect is actually allowed based on the

CurrentAccess table. Each transform has similar but not exact constraints. Figure 17

shows the declarations of the transforms.

op HW_Read :

 {t1: Transform | fa(e: Effect)

34

 member(e, t1) =>

 (e.flow = RD &&

 CurrentAccess(e.subject,

 e.resource,

 e.flow))}

op HW_Write :

 {t2: Transform | fa(e: Effect)

 member(e, t2) =>

 (e.flow = WT &&

 CurrentAccess(e.subject,

 e.resource,

 e.flow))}

op Read_Write :

 {t3: Transform | fa(e: Effect)

 member(e, t3) =>

 (e.flow = RW &&

 CurrentAccess(e.subject,

 e.resource,

 e.flow))}

op Ticket :

 {t4: Transform | fa(e: Effect)

35

 (member(e, t4) =>

 (e.flow = RW &&

 CurrentAccess(e.subject,

 e.resource,

 e.flow)))

 &&

 length(t4) = 1}

op Read_EventCT :

 {t5: Transform | fa(e: Effect)

 (member(e, t5) =>

 (e.flow = RD &&

 CurrentAccess(e.subject,

 e.resource,

 e.flow)))

 &&

 length(t5) = 1}

op Adv_EventCT :

 {t6: Transform | fa(e: Effect)

 (member(e, t6) =>

 (e.flow = WT &&

 CurrentAccess(e.subject,

 e.resource,

 e.flow)))

36

 &&

 length(t6) = 1}

op Await_EventCT :

 {t7: Transform | fa(e: Effect)

 (member(e, t7) =>

 (e.flow = RD &&

 CurrentAccess(e.subject,

 e.resource,

 e.flow)))

 &&

 length(t7) = 1}

Figure 17. Transform Declarations

These declarations indicate specific elements of the type Transform. Thus the

only remaining constraint we need regarding transforms is to declare that these are the

only transforms that exist in the system. We also state some constraints regarding the

resources within the effects of each transform. We provide these constraints as axioms

discussed in the next section.

4. FTLS Axioms
The only additional semantics that need to be defined in the FTLS pertain to the

transforms that have been declared. These semantics are achieved through the axioms

seen in Figure 18. First we need to ensure that the transforms declared are the only

transforms in the system. We do this through an axiom stating that for every entity of

type transform must be one of the seven declared transforms. Another constraint

37

regarding transforms pertains to their effects. Each transform contains a list of effects

and each effect contains a resource. We need to constrain the resources of effects

associated with certain transforms based on the nature of the transform. For the

HW_Read, HW_Write, and Read_Write transforms, their resources should be segments.

The resources of Ticket should be sequencers, and the resources of the Read_EventCT,

Adv_EventCT, and Await_EventCT should be an eventcount. These constraints were not

included as part of the transform declarations mainly to reduce redundancy within the

declarations and to provide clarity of the sets of transforms associated with each type of

resource. We add these constraints through two axioms stating that if a transform is

equal to HW_Read, HW_Write, or Read_Write, then for all of its effects there exists a

segment that equals each effect’s resource. The same is done for the eventcount axiom as

seen in Figure 18.

axiom only_ops is

 fa(t:Transform) t = HW_Read ||

 t = HW_Write ||

 t = Read_Write ||

 t = Ticket ||

 t = Read_EventCT ||

 t = Adv_EventCT ||

 t = Await_EventCT

axiom Segment_as_Object is

 fa(e: Effect, t: Transform)

 ex(n1: Nat, n2: Nat)

 ((t = HW_Read) ||

 (t = HW_Write) ||

38

 (t = Read_Write)) &&

 member(e, t) =>

 e.resource = Segment{id=n1, size=n2}

 axiom EventCT_as_Object is

 fa(e: Effect, t: Transform)

 ex(n: Nat)

 ((t = Read_EventCT) ||

 (t = Adv_EventCT) ||

 (t = Await_EventCT)) &&

 member(e, t) =>

 e.resource = EventCT (n)

 axiom Ticket_as_Object is

 fa(e: Effect, t: Transform)

 ex(n: Nat)

 (t = Ticket) &&

 member(e, t) => e.resource = Sequencer (n)

Figure 18. FTLS Transform Axioms

The FTLS is now complete and now we must show that it preserves the security

properties of the model. The next section describes the morphism and the associated

proof obligations.

39

D. MORPHISM IN SPECWARE
The mapping between the model and the FTLS is done through Specware’s

morphism capability. Every entity in the source must map to an entity in the target in

order for the morphism to be correct. Specware does a good job of pattern matching in

morphisms, thus it will automatically map entities with the same names without an

explicit declaration. For example, in the separation kernel model we declare a type

Subject and we also declare a type Subject in the FTLS. Thus in the mapping Specware

automatically maps the model Subject to the FTLS Subject. Therefore, the only explicit

declarations we need to make in the morphism are the mappings from entities in the

model that do not have the same name as their corresponding entities in the FTLS. We

declare the morphism as a separate unit within Specware which allows us to generate

proof obligations based on that unit. The morphism consists of mapping the type

Resource to type Object, type Exported_Resource to type Exp_Obj, and type Operation

to type Transform. All other mappings do not need explicit declaration, but could be

added for clarity. The morphism will process successfully through the syntax checker

and prover if all entities have been mapped appropriately such that all properties and

structures are preserved. As a result of the morphism, all definitions of operations and

axioms in the model become conjectures that must be proven in the FTLS.

Figure 19 shows the morphism and Figure 20 shows the associated conjectures

generated by the show obligations command given within the Specware shell. We

defined the morphism as the unit Mapping. The morphism between the model and the

FTLS generates conjectures based on the definitions of SecureEffect and SecureOP, and

the operations axiom. The SecureEffect and SecureOP conjectures appear as a result of

using the op structure to define macro logic in the model. Normally we would not expect

these functions to appear in the FTLS because they are only used to bring clarity to the

definition of a “secure system”. Another interesting item to note is that when we

generated the proof obligations for the morphism, Specware produced two obligations

with the same name, SecureOp_def. We defined two separate proof units in order to try

to prove each obligation; however, we could not verify that we were actually

disambiguating the two obligations. We are not sure as to the reason Specware generated

two conjectures with the same name, but this was the only point when we encountered

40

this problem and we will discuss this further in Chapter V. One other bug within the

morphism obligations resides in the definition of Secure_OP_def where it refers to

Operation. This should refer to Transform (since it is being proved based on the FTLS)

as seen in the operations conjecture. It is not known why this bug occurred, and will

hopefully be addressed in the future.

Mapping =

morphism final_model#model ->

 final_ftls#ftls{Resource +-> Object,

 Exported_Resource +-> Exp_Object,

 Operation +-> Transform}

Figure 19. Morphism Declaration

conjecture operations is

 fa(e : Effect, o : Transform)

 member(e, o) =>

 e.flow = RD &&

 member(e.flow, BB(Partition(e.subject),

 Partition(e.resource))) &&

 member(e.flow, SR(e.subject, e.resource))

 ||

 e.flow = WT &&

 member(e.flow, BB(Partition(e.subject),

41

 Partition(e.resource))) &&

 member(e.flow, SR(e.subject, e.resource))

 ||

 e.flow = RW &&

 member(e.flow, BB(Partition(e.subject),

 Partition(e.resource))) &&

 member(e.flow, SR(e.subject, e.resource))

conjecture SecureEffect_def is

 fa(effect : Effect)

 SecureEffect effect =

 (effect.flow = NULL

 || member(effect.flow,

 BB(Partition(effect.subject),

 Partition(effect.resource)))

 && member(effect.flow, SR(effect.subject,

 effect.resource)))

conjecture SecureOP_def is

 fa(nil : Operation)

 fa(operation : Operation)

 nil = operation => SecureOP operation = true

42

conjecture SecureOP_def is

 fa(hd : Effect, tl : List(Effect))

 fa(operation : Operation)

 ~(nil = operation) &&

 Cons(hd, tl) = operation =>

 SecureOP operation =

 (SecureEffect hd && SecureOP tl)

Figure 20. Morphism Proof Obligations

We have now completed the construction of the formal model and FTLS and

shown the mechanism for the interlevel mapping. In Chapter V we discuss the analysis

of Specware, within the verification paradigm, against the evaluation criteria presented in

Chapter II.

43

V. ANALYSIS OF SPECWARE AGAINST EVALUATION
CRITERIA

A. INTRODUCTION TO ANALYSIS
The previous chapter discussed our development of the separation kernel formal

model, FTLS, and interlevel mapping. In this chapter we will critique the process of our

experiment and present our analysis of Specware for use in the verification of high

assurance systems. We based our analysis on a set of evaluation criteria. The evaluation

criteria were motivated by prior work in the evaluation of verification systems by

Ubhayakar [Ubh03]. Further motivation was based on requirements set forth by the

Trusted Computing Exemplar (TCX) project [Irv04]. We will provide a brief overview

of the evaluation criteria and then present our analysis of Specware.

B. OVERVIEW OF EVALUATION CRITERIA
In this experiment, we analyzed Specware’s capabilities in eight key areas. These

areas represent properties that a verification system must exhibit in order to be effective

in the verification of high assurance systems. The eight properties provide the basis for

our analysis of a verification system (or “tool”) and are: product maturity, usability of the

tool and its verification environment, theorem proving capabilities, specification

language, executable specifications, multiple levels of abstraction, automatic generation

of conjectures, and semantics. Product maturity relates to the age and current support of

the system as well as its popularity in terms of past and current projects. Usability of the

tool and its verification environment refers to how complicated the system is for users

and the level of training required to use the system effectively. A tool’s theorem proving

capabilities must be adequate in order to provide the assurance that the specifications

satisfy the requirements. Not only must the theorem prover be capable of proving

complex theorems, but it also must provide intuitive dialog with the user regarding

success or failure of proofs. The specification language must be able to represent the

logic of security theorems, state machines and at least first order logic with

quantification. The syntactic elements should be simple enough to allow for the entire

development team to clearly understand the specification. Executable specifications

44

provide the development team with a way to test certain aspects of the systems without

the introduction of further detail. The tool must be able to represent multiple levels of

abstraction in order to provide a sequential progression from the abstract security policy

to the concrete implementation, where each level is shown to map to the level above.

The tool should also have the ability to automatically generate the full set of conjectures,

based on the logic of the specification, which are required to prove the security and

mapping theorems. This is necessary in order to ensure that all obligations are satisfied

and that subtle obligations are not overlooked. And finally, the semantics of the

verification system should be well founded such that the tool is expressive and does not

prohibit efficient expression of system properties and formalisms. Our analysis will

consist of describing how well Specware incorporates these concepts. Beyond these

general requirements for verification of secure systems, several requirements are specific

to certain systems and modeling approaches. These requirements are that the tool suite

should include a non-determinism checker, a flow analyzer, and a shared resource matrix

generator. We will discuss these requirements as future work and do not include them in

our analysis of Specware.

C. ANALYSIS OF SPECWARE

1. Product Maturity
When choosing to use a verification tool it is important that the tool has a

reasonable level of maturity. Product maturity has three measurable aspects: current

product support, user training classes and tutorials, and quality of worked examples in the

field. Current support is important because the specifications being produced might

require support from the tool’s developers in order to produce the correct semantics based

on the syntactical elements of the language. Support for the interface and development

environment is also critical to timely and efficient production of specifications. In

addition, a more mature product might support training courses either from the vendor or

a third party, which could prove valuable for new users and developers. Product maturity

is also important because it implies that the tool is actually in use on other projects, which

can provide useful resources, documentation, and potential collaboration. If the tool is

not new and not in use on other projects, this should be a warning sign that the tool is not

45

very mature, not very useful, or has not succeeded in providing a beneficial alternative to

other products. In addition, more robust tutorials and examples covering a larger range of

common issues might exist with a popular tool that has been on the market for a longer

period of time.

Specware has been under constant support and development since the mid 1990s.

At the time of this writing it is in Version 4.1.3. Customer support is readily available

and custom queries are handled in a timely and efficient manner. Although there does

not exist a dedicated support group within Specware, it has been used on many projects to

specify requirements and generate code. Documentation regarding the theoretical

foundations of Specware is easily found online. Williamson mentions several projects

which have used Specware [Wil01] including collaboration with Boeing, Motorola, and

the NSA as noted by Widmaier [Wid00]. Specware can also provide training in the use

of the tool and background in the language. The current tutorial that is provided with

Specware is a good example of requirements specification and refinement capabilities

proceeding to code generation; however, the tutorial does not present an impressive

display of the theorem prover and its automated verification capabilities. Our analysis of

the theorem prover will be presented later in this section. Overall Specware is in a very

mature state and has positive customer support. It is popular for use in requirements

specifications and for developing correct software.

2. Usability of Tool and Verification Environment
Within any development environment, the interface commands used to operate in

the environment should be intuitive. For projects with time constraints, spending more

time learning the environment implies less time being spent on development. The tool

may be very powerful, but if users cannot function efficiently within the environment

they may choose other tools of lesser quality, which may produce less satisfying results,

but are easier to operate. A graphical user interface (GUI) is also desired to avoid

command line driven operations and to provide an integrated development environment

(IDE). However, the use of a GUI implies that its design is also adequate and simple. If

the GUI is not intuitive, then the command line interface might be more usable.

Currently Specware operates in a command line driven basis. Specware has its own shell

46

with unique commands used to perform certain operations on specifications. The

Specware shell can operate within XEmacs or as its own application outside of XEmacs.

The XEmacs environment provides some features associated with an IDE such as the

Specware menu that provides shortcuts to basic commands within the Specware shell.

The XEmacs environment will also provide syntax highlighting of Specware

specifications reflecting the syntax given in the Specware Language Manual [Kes04].

These IDE-like features are only present in XEmacs if Specware is installed, thus these

features are similar to a plug-in to XEmacs. However, XEmacs does not provide a fully

functional IDE as most commands to operate within Specware must still be given from

the command prompt. Commands that must be initiated from the shell include those

associated with generating proof obligations as well as those for generating C and Java

code. The commands to process and evaluate specifications within Specware are fairly

simple and straightforward and are provided in the Specware user manual [Kes04].

When developing the separation kernel model and FTLS, the usability of the

Specware shell and development environment was not inhibiting or constrictive. Overall,

the Specware shell and commands were simple to understand and contained well

documented support if any issues arose. The Specware shell allows the user to interact

efficiently with the system in order to perform the necessary operations upon the

specifications. Although it might be of interest to have a complete IDE that could be

used to run Specware in the future, this could reside on top of the shell which provides

the flexibility and power needed to produce and process specifications efficiently.

The verification environment should help the developer to increase efficiency of

producing specifications through features such as syntax highlighting, type checking, and

error checking. This is important because otherwise, specifications would be written in a

simple text editor or even a on a piece of paper and it might be difficult to catch subtle

errors or type inconsistencies. If the development environment provides these features,

the mistakes will be caught early in the process rather than persisting until the proof is

attempted. Currently Specware provides a syntax highlighting feature available through

XEmacs, and when the proc command is issued from within the Specware shell, the

processor checks the specification for type consistency as well as for common errors such

as undefined parameters. The error messages are provided directly in the Specware shell

and when working in XEmacs, if an error is present, another buffer appears with the

cursor placed at the line and column of the specification where error occurs. When not

working in XEmacs, the error is simply output to the Specware shell. In both cases, the

error messages contain the line and column position where the error occurs in the file.

This provides the developer with a reference to be able to locate the error exactly. An

example of an error message is given in Figure 21.

Figure 21. Specware Error Messages

Notice that in Figure 21, the first error states that on line eighteen column twenty-

six through line eighteen column thirty-three, there is an error with the sort resource and

consequently there are many more errors related to resource. This type of error checking

is important to avoid wasting time due to syntax errors when the proofs are attempted,

thus increasing the efficiency of specification writing.

3. Theorem Proving

The theorem proving capabilities of a verification tool are very important since

the entire goal of the verification paradigm is to prove certain properties regarding the

security policy. As noted previously there are two basic types of theorem provers,

automated and interactive. Interactive theorem provers allow the user to guide the prover

in proof steps whereas the automated provers simply attempt the proofs without user

intervention. For small problems, model checkers can also be used, but for larger

47

48

problems model checkers cannot completely exhaust all possible states and offer little

assurance. Several characteristics distinguish theorem provers. One useful characteristic

is that the theorem prover should be easily integrated into the verification environment.

For example, the specification processor should automatically prepare the specification to

be input to the prover. This means that the user does not need to modify the specification

in order to be able to invoke the prover. The theorem prover should also provide

meaningful error messages when it finds errors or is unable to finish a proof. In addition,

the prover should have adequate capabilities to log attempted and completed proofs. This

is useful because it allows the user to trace the steps of the prover and perhaps recognize

the problem if a proof has failed. It also allows the user to trace through the steps of the

proof upon success in order to gain better understanding of how the proof was

formulated.

Specware currently interfaces with the Snark first-order theorem prover [Kes04].

Snark is an automated theorem prover and Specware automatically pre-processes

specifications to send to the Snark prover. Thus the user need not manipulate completed

specifications in order to prove obligations and by issuing the prove command within the

Specware shell, Specware will invoke Snark to prove a given unit. Once Snark has been

invoked it will automatically attempt a proof of the unit and will return with a message in

the Specware shell indicating whether or not the conjecture or theorem was proved or

not. Snark also creates a log file of its processing on the given unit. In its raw form, the

log file is not intuitive, and its comprehension was beyond the scope of this thesis. When

a proof has succeeded, it is difficult to trace the log file to see what steps were taken to

complete the proof. Similarly, when a proof has failed, Snark does not generate any type

of helpful error messages and tracing through the log file is not possible without training

in Snark. Figure 22 shows an unsuccessful proof attempt from within the Specware shell,

Figure 23 shows a successful proof attempt and Figure 24 shows a snapshot of a Snark

log file for the successful attempt. Note however, that the structure of the log file is the

same regardless of whether or not the proof was successful. Even though the content of

the log file is different based on success or failure, it remains extremely difficult to read

without extensive knowledge of Snark.

49

* proc /test_oblig

…

Expanded spec file: /Program Files/Specware/Snark/..sw

Snark Log file: /Program Files/Specware/Snark/..log

Conjecture SecureOP_Obligation is NOT proved. using Snark.

*

Figure 22. Unsuccessful Proof Message

* proc /test_oblig

…

Expanded spec file: /Program Files/Specware/Snark/..sw

Snark Log file: /Program Files/Specware/Snark/..log

Theorem Secure in final_model#model is Proved! using

Snark.

*

Figure 23. Successful Proof Message

 :NAME :|unary_minus_injective_on_positives|)

 (SNARK::ASSERT

 '(SNARK:ALL ((SNARK::|?n| :SORT NUMBER))

 (MES:IMPLIES (AND (>= SNARK::|?n| 0)

 (SNARK::|Nat.posNat?|

SNARK::|?n|))

 (= (- 0 (- 0 SNARK::|?n|))

SNARK::|?n|)))

50

 :NAME :|minus_negative|)

 (SNARK::ASSERT '(= (- 0 0) 0) :NAME :|minus_zero|)

 (SNARK::ASSERT

 '(SNARK:ALL ((SNARK::|?i| :SORT NUMBER))

 (= (- 0 (- 0 SNARK::|?i|)) SNARK::|?i|))

 :NAME :|unary_minus_involution|)

 (SNARK::ASSERT '(SNARK::|Functions.bijective?| -)

 :NAME :|unary_minus_bijective|)

 (SNARK::ASSERT

 '(SNARK:ALL ((SNARK::|?i| :SORT NUMBER))

 (AND (= (+ SNARK::|?i| 0) SNARK::|?i|)

 (= (+ 0 SNARK::|?i|) SNARK::|?i|))) :NAME

:|unary_minus_injective_on_positives|)

Figure 24. Snapshot of Snark Log File

Naturally it would be helpful to know why a conjecture did not prove and the only

approach to figuring this out is to look into the log file given by Snark. However, the log

file does not provide a clean representation of the approach the prover took and every log

file is of substantial length. The log for the successful proof of the security theorem in

the separation kernel model, partially shown in Figure 24, was eighty-seven pages long.

However, through working with the proof obligations in Specware, we noticed that most

of the other obligations did not prove in Snark even when it was intuitive that the

obligation was provable. In this case, without Snark training, the options are to verify the

proof by hand or declare an axiom regarding the obligation in the specification.

51

Overall Snark does not succeed often in proving more complicated theorems and

it seems necessary to construct the axioms and definitions in such a manner as to

guarantee that the prover will succeed. But this approach inhibits the developer and

limits the clarity and expressiveness of specifications, which is not an acceptable option.

For example, in an earlier version of our FTLS specification we included the ex1

quantification in order to express that there exists a unique element in the set, which is

perfectly acceptable in Specware’s MetaSlang. When we attempted the proof of the

theorem, the prover generated an error indicating that it could not handle the uniqueness

quantification, resulting in a modification of the specification. This is an example of a

syntactic element in Specware that cannot be handled by the theorem prover. In other

cases the prover simply failed for unknown reasons. In fact, the tutorial provided by

Specware contains proof obligations that do not prove in Snark. If the prover were

interactive, the user might have more success in aiding the proof, and if the user were

given more insight as to why the proof did not succeed, perhaps the specification could

be tweaked to aid in the proof. In addition, more intuitive error messages would also help

to distinguish logic errors from the inadequacy of the theorem prover.

In addition to Snark, Specware includes a simple inequality reasoning engine that

attempts basic inequality proofs on conjectures before sending them to Snark. This is

useful for simple proofs, but it does not provide a log file associated with the proof. A

log would be useful for documentation purposes even though the developer might be able

to sketch a proof by hand knowing that it can be proved using simple inequality

reasoning. Note that the inequality reasoning engine is not a part of Snark, rather it was

developed by Kestrel for Specware. Invoking the reasoning engine is not explicitly done

by the user and the user does not need to do anything different when attempting to prove

obligations.

Thus the inadequate logging and error messages of Specware’s theorem prover,

combined with its apparent weakness at automatically resolving logical propositions,

means that seemingly simple proofs might not be proven. Currently, the best approach

for theorem proving in Specware is to generate the proof obligations, prove as many

obligations as possible automatically, and then verify manually those obligations that did

not succeed. The proof units associated with all the obligations in our experiment are

52

given in Appendix D. This includes the proof units as well as output from the Specware

shell indicating whether or not the proof succeeded or failed for each conjecture.

4. Specification Language
As noted earlier Specware incorporates MetaSlang as its specification language,

and the formal theory behind Specware is category theory. MetaSlang is a functional

language which can express powerful logical statements. Functional languages represent

computation as evaluations of mathematical functions as opposed to imperative

languages which use the modification of state [Wik06]. Functional language expression

is highly useful when defining predicates and composing axioms and theorems regarding

requirements and constraints on the system. When developing the Separation Kernel

model and FTLS, we found the language powerful enough to express our requirements

due to the static nature of the security policy. A limitation of a functional language is its

inability to represent state-based variables, state machines, and state transitions (e.g. x’ =

x+1). Currently the best approach to representing state when using a functional language

is through the use of the Monad construct, described comprehensively by Wadler

[Wad95]. We explored the use of Monads briefly, but did not complete the analysis and

leave this exploration for future work. One issue to explore is the implication that the use

of Monads has on the proof obligations.

The base libraries in Specware provide elements for expressing complex logical

constructs (e.g. higher order quotients [Kes04]) based on the native base logic and

continue to grow. As Specware is used on more projects, the hope is that collaboration

will aid in the growth of libraries, including those for addressing the state monads and

state machine issues. Williamson et. al. also noted some of these same areas for growth

within Specware [Wil01*]. In our experiments the language was initially challenging to

understand due to lack of multiple examples or exercises and it took some time to get

used to the grammar. This was due to the lack of experience within functional

programming paradigm, which is important to keep in mind for developers coming from

a background in imperative or procedural programming. As familiarity with the language

increased it also became evident that MetaSlang provides the ability to express constructs

in a very terse manner, which led to confusion between developers. For example, Figure

53

25 is taken from the List.sw library specification [Kes04]. The construct calculates the

length of a list through the use of recursion. The construct is concise but not necessarily

intuitive at first glance. This terseness could cause confusion and needs to be avoided in

the specifications for high assurance systems. A rule of thumb when developing high

assurance systems is to be as clear as possible in order to avoid confusion even if there is

a more efficient manner in which to write the expression.

 op length : [a] List a -> Nat

 def length l =

 case l of

 | [] -> 0

 | _::tl -> 1 + (length tl)

Figure 25. Example of Terse MetaSlang

The language also supports multiple layers of abstraction and includes native

syntax for morphisms, as well as automatic generation of related proof obligations,

allowing refinement, which is a necessity within the verification paradigm. There are

some minor syntactic peculiarities associated with the grammar, but naturally the more

time a developer is involved with a language, the less distracting they become. For

example, the use of the “|” symbol has many different contexts such as use in the sum

type, the case statement, and set comprehension (i.e. “such that”).

5. Executable Specifications
The ability to execute specifications allows developers the flexibility to

experiment with the semantics of the system being specified while not having to address

lower level implementation details. Overall the use of executable specifications aids in

54

the efficiency of correctly constructing the system. Specware supports the ability to

execute certain expressions in MetaSlang, particularly constructive expressions. A

constructive expression is an expression where all types and ops have explicit definitions

and do not include quantifications (i.e. ex, fa, ex1)[Kes04]. Constructive expressions are

evaluated by setting the context of the Specware shell to the spec term itself and then

invoking the eval <expression> command. A built-in MetaSlang interpreter supports

execution. Figure 26 shows an example of an executable specification and Figure 27

shows an example of a non-executable expression because it is non-constructive [Kes04].

 spec

 def f x = 2*x+1

 def t = 6172

 endspec

Figure 26. Executable Specification

 spec

 def f x = 2*x+1

 op t : Nat -> Nat

 endspec

Figure 27. Non-Executable Specification

The command eval f t for Figure 26 would result in 12345, whereas the command

could not be executed for Figure 27. This is a nice feature but is limited to constructive

expressions and therefore not all specifications can be executed. Thus to generally

execute specifications, actual code would need to be generated but a specification might

not be refined enough to generate the code. Specware’s sister product, Planware,

provides a framework for Libraries designed to provide the necessary refinements. The

55

fact that Specware has the ability to generate code is a beneficial feature, because it

allows for quicker testing once the specification has been refined to the point of possible

code generation. Even though Specware may not allow all specifications to be executed,

it does allow for some execution and also provides the benefit of code generation from

refined specifications.

6. Multiple Levels of Abstraction
A verification tool must be able to support multiple levels of abstraction in order

to allow for the proper refinement from the security policy to the implementation. This

type of refinement is achieved through incremental steps moving from more abstract

concepts at a higher level to more concrete details at the lower level. Specware supports

the process of refinement corroborated formally through category theoretic morphisms,

colimits, and diagrams. For a comprehensive understanding of category theory, readers

are encouraged to investigate other resources and texts including Pierce [Pie91] and Barr

[Bar90]. Our main investigation focused on the use of the morphism. In Specware, the

morphism is a structure- and property-preserving mapping between two specifications

and their individual elements and operations. All axioms and definitions (i.e. the

semantics of the elements and operations) in the higher (source) spec become conjectures

in the lower (target) spec. Category theory provides the corollary that any theorems that

are proved in the source spec need not be proved again in the target spec as long as the

target spec is shown to uphold the axioms and definitions in the source. For example, in

our mapping from the Separation Kernel model to the FTLS, the axioms and definitions

in the model became conjectures in the FTLS. As long as we proved those conjectures,

then the security theorem in the model will hold in the FTLS and does not need to be

proved again. Thus Specware supports multiple levels of abstraction very well and

ensures proper refinement between levels, whereas a verification system without this

support would impose the additional requirement to verify the correctness of the

mapping-theorem logic.

We mentioned in Chapter IV that we encountered a mapping problem in our

initial approach to developing the model. Initially, we defined three operations, each of

which was to be a prototype for a class of FTLS transforms. Thus one operation was

56

called a Read operation, one was called a Write, and the other a Read_Write, where each

operation had the semantics that its effects contained the corresponding flows and the

flows were allowed by the BB and SR policies. When we developed the FTLS we wanted

to define more than just three operations yet we wanted to map them to our original three

operations in the model. For example, we wanted to map HW_Read, Read_EventCT, and

Await_EventCT back to the abstract Read function in the model. However, this type of

mapping is not allowed in Specware, in which the morphism requires a one-to-one

mapping. In order to satisfy the morphism, we collapsed the operations in the model into

the operations axiom. This allowed us to preserve the semantics of the prototype

transform operations and also define a legal mapping.

The only other problems we encountered when attempting the morphism between

the separation kernel model and FTLS were problems regarding explicit mapping

definitions. Specware developers have indicated that these problems will not exist in

future releases since the problems are not logical errors and preserve the morphism

properties. One problem was where we wanted to map the sum type Mode = | RD | WT |

EXEC to the FTLS type Mode = | READ | WRITE | EXECUTE. Specware did not allow

this mapping because the types were named differently and there was no way to explicitly

map each element of the sum type in the model to another partition of the sum type in the

FTLS, e.g. RD +-> READ. A similar problem with identifiers occurred when mapping

types or objects of exactly the same type, but where different instantiated variables within

the definition were used. Figure 28 shows an example.

 Model:

 type Operation

 op Read : {o1: Operation |

 fa(e: Effect) member(e, o1)}

57

 FTLS:

 type Transformation

 op HW_Read : {t1: Transformation |

 fa(e: Effect) member(e, t1)}

 Mapping:

 morphism Model +->

 FTLS {Operation +-> Transformation,

 Read +-> HW_Read}

Figure 28. Mapping Problem Example

In the example shown in Figure 28 the Specware processor throws an error due to

the t1 in the FTLS not being a o1 as it is in the model. Thus in the FTLS we must switch

the t1 back to an o1. This is strange since the o1 and t1 are simply arbitrary and we are

concerned with their use being mapped correctly and not their names.

These are minor problems that will hopefully be resolved in future releases of

Specware. Overall, the refinement capabilities within Specware are powerful and

provide support for multiple layers of abstraction.

7. Automatic Generation of Conjectures

When working with intricate specifications, many proof obligations can be

obvious to the developers, but some obligations may be subtle. In these cases it is useful

if the verification tool can automatically generate all of the conjectures to prove the

soundness of the specification and mappings. Specware supports the automatic

generation of conjectures when the user issues the appropriate commands from within the

Specware shell. The show obligations in <unit> command displays the proof obligations

that are not explicitly stated as conjectures or theorems within the specification. For

example, in our Separation Kernel model, a proof obligation is not displayed by the show

58

obligations command for the security theorem because it is an explicit obligation. Once

the command is issued, Specware generates a separate specification containing all of the

conjectures that are not explicit. Note that, this specification is output to the Specware

shell and is not created as a separate file, so it is advisable to copy the output and store

the specification as a separate file for future reference. However, any obligations stated

explicitly remain within the original specification. In summary, obligations that are not

stated explicitly in the specification are accessed by the show obligations command and

all other obligations remain in the specification. All proof attempts of obligations are

performed using the prove command, followed by the unit and obligation name.

Specware also automatically generates the conjectures that must be proved for a

morphism in the same manner, where the morphism is treated as a separate unit. This is

valuable because developers need not worry about the obligations associated with each

level of refinement as they are automatically generated by Specware. In our generation

of the morphism obligations, Specware generated two conjectures with the same name,

seen in Figure 20 in Chapter IV and in Appendix G. This made it difficult to attempt to

prove the two conjectures as we could not verify which one was actually being attempted

when we ran them in Snark. This was later determined to be a bug in Specware.

However, this was the only time we ran across two conjectures being generated with the

same identifier. Since the glitch we encountered revolved around unique identification, it

should be easily fixed. The fact that Specware still generated a necessary conjecture is a

positive aspect of the system. Thus, even though two conjectures had the same name, the

conjectures were still generated and could be proved by hand in order to verify their

correctness.

Overall, Specware aids in ensuring that subtle obligations are addressed

throughout the development of specifications. Conjectures and theorems can be stated

explicitly within the specification and can also be generated automatically by the

Specware processor. The proof obligations generated by Specware for the separation

kernel model, FTLS, and morphism can be found in Appendices E, F, and G respectively.

59

8. Semantics
The underlying logic and foundational theory behind a verification tool is

important because this directly affects the expressiveness of the tool and the assurance

provided. We have previously discussed that the underlying foundational theories for

Specware are category theory and lambda calculus as apparent in the functional language

paradigm. This foundation allows Specware to express higher order logic and refinement

with minimal complexity. However, there were some challenges associated with

developing our separation kernel model and FTLS. Some linguistic problems we faced

were based on ambiguities in the use of certain symbols. For example, the * can either

imply a product in the literal sense, such as multiplication of integers, or it could be used

as a separator between input parameters in a function (e.g. Subject*Resource -> Flow).

The use of the * in the latter example implies a cross product of the “sets” of inputs.

Those not familiar with the functional language paradigm might find the “overloading” of

the * symbol to be ambiguous and perhaps a different symbol would be beneficial for the

sake of clarity. The major problem we faced when familiarizing ourselves with the

language was determining how to express the logic that we could verbalize quite easily.

This problem could easily be overcome with more robust documentation and explanation

of logic within tutorial examples and specifications. It took some time to understand

what certain example expressions were saying and it took time to determine the best way

to express what we wanted to formalize for our specifications. Thus the foundational

theory and semantics of Specware is very powerful, but there are some linguistic

idiosyncrasies that must be overcome in order to utilize the full capability of Specware

D. CONCLUSION
In this chapter we have provided an analysis of Specware based on a set of

evaluation criteria. We discussed the strengths of Specware as well as problems

encountered regarding the development of the Separation Kernel model, FTLS, and

morphism between the two specifications. The next section will discuss our conclusions

regarding Specware and recommendations for future work.

60

THIS PAGE INTENTIONALLY LEFT BLANK

61

VI. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS OF ANALYSIS
The construction of the separation kernel formal model and FTLS within

Specware allowed us to assess the role Specware can play in the verification of high

assurance systems. As noted previously, a verification tool consists of a specification

language and theorem proving capabilities. Overall we found that Specware is a

powerful tool that has a solid foundational theory allowing it to express higher order logic

in a simple and concise manner. In terms of the specification language, Specware is in a

mature state and has been used in many commercial and research projects. Theorem

proving support in Specware needs some improvement, as we will discuss later in this

section. The Specware shell and development environment is not complicated, allowing

developers to quickly become familiar and comfortable with Specware. However,

Specware does not contain a fully integrated development environment. This might be a

desirable feature that would increase its efficiency and usability. The Specware

processor supports error checking. The error messages are terse and sometimes it is

difficult to distinguish the actual error, but overall they provide sufficient context to

locate the problem. Thus the Specware environment is adequate for developing formal

specifications and certainly does not provide a hindrance to the development lifecycle.

The specification language, MetaSlang, incorporated by Specware is a powerful

and expressive language. MetaSlang is a functional language which is valuable in terms

of verification, but it has difficulty representing state based variables. Representation of

state leads to the use of monads and future work will hopefully reveal what challenges

this might present to verification of specifications. We will discuss potential future work

regarding verification of specifications which incorporate monads later in this section.

The refinement capabilities in Specware definitely support the goals of multiple

levels of abstraction needed in the verification paradigm. The morphism provides the

necessary and sufficient mechanism to show that a lower level specification preserves the

62

security properties1 of the level above. Specware also succeeds in its ability to express

theorems and conjectures concisely in addition to the capability to automatically generate

conjectures. The automatic generation of conjectures in Specware ensures that subtle

obligations will not be overlooked. Specware also generates automatic conjectures when

performing a morphism, which provides a means to prove the interlevel mapping. Aside

from a few minor problems with the mapping syntax and semantics, Specware succeeds

in providing an effective means to express multiple levels of abstraction and automatic

generation of conjectures.

The theorem proving capabilities are the biggest area for improvement. Currently

Specware interfaces with the automated theorem prover Snark. Snark is deficient in

multiple ways including insufficient logging capabilities such that it is difficult for the

user to verify the proof, or lack thereof, based on the generated log. It also struggles with

proving relatively simple theorems providing no intuitive indication as to the reason for

failure. The error messages are not typically helpful and will only indicate that the

theorem proved or did not prove. The theorem prover drawbacks are naturally an initial

deterrent when considering Specware for use in the verification paradigm, due to the fact

that proofs will not be guaranteed unless produced by hand. We understand that most

projects using Specware forego the actual proving of theorems. One example of not

relying on the theorem prover was noted by Widmaier [Wid00]. Within the context of

the verification of high assurance systems, proofs are a necessity not only to verify that

the system satisfies the security policy, but also to meet desired evaluation assurance

levels with respect to criteria (e.g. Common Criteria). Since Specware is not a theorem

prover in and of itself, this problem can be solved relatively simply without the need to

restructure the entire foundation of Specware. An interface to other theorem provers

appears to be the major feature needed. To add versatility to the users and projects a

generic interface would allow users to choose which prover they would like to use either

based on familiarity or other requirements. For instance, some users may wish to know

that the simple theorems can be proved, a job well suited for an automated prover or

1 This thesis examined the preservation of flow properties from the perspective of subjects and their

effects on exported resources. Other research has shown that a noninterference property from the
perspective of traces might not be preserved by refinement unless the specifications are bi-similar (i.e. at
the same level of detail) [Bib05]

63

model checker. Other users wish to know the formulation of the proof or provide the

proof as documentation, which can be provided by an interactive theorem prover. These

are examples of reasons to integrate Specware with multiple theorem provers, but the

main issue is confidence in the proving capabilities. If a theorem is not proved the prover

should indicate why and the path it took to the reach the point of failure. We will discuss

integration with other theorem provers as future work.

In conclusion, through our analysis of Specware, we feel that Specware has the

necessary components to serve as a verification system for high assurance system

development, provided the improvement upon the theorem proving capabilities occurs.

More research is required to understand the use of MetaSlang for state-machine formal

models. We are aware that efforts are being made to improve these weaknesses and

under that assumption, Specware can be very useful in the verification of high assurance

systems. Specware provides a powerful specification language and is an excellent system

to produce high assurance software. Furthermore, verification of high assurance systems

can be enhanced with automatic code generation, although this aspect of formal system

development was not investigated. Specware takes an average amount of time to become

familiar with but features excellent support. It has great potential for use as a verification

system in the development of high assurance systems.

B. RECOMMENDATIONS

1. Integrated Development Environment

Providing a stand alone distribution that incorporates the Specware processor

underneath an integrated development environment (IDE) would be beneficial to the

overall efficiency of developing formal specifications. An IDE would allow developers

to create, process, and verify specifications with better organization and more graphical

interaction. This would allow users to install one application to get benefits such as

syntax highlighting, as opposed to first requiring XEmacs. An example of this type of

IDE would be similar to Microsoft Visual Studio, or NetBeans for Java. We feel that this

type of environment can also aid in the organization of Specware libraries where the IDE

can manage the paths to the libraries regardless of the path under which the current

specification is being developed. The IDE could also provide better organization of the

64

proof units associated with a project. Currently, the best way to handle the units is to

place them in a separate file, but an IDE could provide a display of all obligations and an

interactive dialog that would display obligations that have been attempted as well as

indicate their success or failure. The IDE recommendation is merely a suggestion to

provide more continuity throughout the process of development and verification within

Specware.

2. Theorem Prover Integration
Integration efforts between Specware and multiple theorem provers would be

valuable to aid in the confidence of proving capabilities associated with Specware as well

as provide versatility to the developers. Currently Specware only interfaces with one

automated theorem prover that lacks the power needed to be used in the verification of

high assurance systems. This results in a lack of user confidence in Specware’s theorem

proving capabilities and Specware as a complete verification system. Developing the

capability to interface Specware with alternate theorem provers such as PVS or Isabelle

HOL would allow Specware to be used in a much broader set of verification

environments. This integration would allow theorems to be proved on multiple platforms

thus decreasing the amount of manual verification. For example, if a theorem could not

be proved in Snark, perhaps the theorem could be proved in PVS, and if not in PVS,

hopefully in HOL or even another theorem prover. Research into integrating Specware

with other theorem provers would improve the versatility and capability of Specware as a

verification system.

C. FUTURE WORK

1. Verification of State Representation in Specware
The use of monads to represent state in Specware is a feasible option and can be

implemented. The monadic structure can be complex and implementation requires

careful attention. The question for research is the effect that monads have on verification

of the basic security theorem. It would be useful to develop formal specifications against

a security policy that used monads to represent system state. Then we would like to

attempt to prove conjectures and a basic security theorem. Creating a refinement of a

65

more abstract specification and being able to prove the mapping when each level uses

monads to represent state would verify that Specware can incorporate verification of

state-based specifications. The level of difficulty associated with such proofs would be a

good point for analysis. This would prove useful for developers needing to not only

incorporate state within formal specifications, but would also satisfy the need to prove

security properties regarding state in the system.

2. Trusted Computing Exemplar
The Trusted Computing Exemplar (TCX) project is an ongoing research effort to

develop a high assurance least privilege separation kernel [Lev04]. The model and FTLS

we developed for this thesis can be enhanced to accommodate all of the requirements for

the TCX separation kernel. Enhancements include incorporating a notion of initialization

of the policy tables within in the model. This initialization can occur at boot up of the

system or during runtime, requiring an interface which accesses multiple policies. The

model would also need to specify a trusted partial ordering on the flows between blocks

for the identification of “trusted subjects”. The TCX project has certain requirements

regarding the verification system used and we have addressed all of those requirements in

our analysis of Specware except for a few, which can be met by hand or potentially with

another tool. These requirements include the need for a non-determinism checker, static

flow analyzer, and shared resource matrix generator. Note that these are optional

requirements for which tool-based support would be desirable within the TCX project,

however if these items are not available there are other avenues available to meet project

objectives.

66

THIS PAGE INTENTIONALLY LEFT BLANK

67

APPENDIX A: SEPARATION KERNEL MODEL IN SPECWARE

This appendix is the Separation Kernel Model as described in Chapter IV.

model = spec

 %Types

 type Resource

 op exported? : Resource -> Boolean

 type Exported_Resource = (Resource | exported?)

 op subject? : Exported_Resource -> Boolean

 type Subject = (Exported_Resource | subject?)

 type Block = | High | Medium | Low

 type Mode = | RD | WT | RW | NULL

 type Effect = {subject: Subject,

 resource: Exported_Resource,

 flow: Mode}

 type Operation = List Effect

%%%

 %Definitions

 op active? : [a] a -> Boolean

 %BB and SR represent the policy tables

 op BB : {(b1,b2): Block*Block | active? (b1)}-> List Mode

 op SR : {(s1,r2): Subject*Exported_Resource | active? (s1)}-> List Mode

 op Partition : Exported_Resource -> Block

%%%

 %Policy Description

 op SecureEffect : Effect -> Boolean

 def SecureEffect (effect) =

 (effect.flow = NULL ||

 (member(effect.flow, BB(Partition(effect.subject),

 Partition(effect.resource))) &&

 member(effect.flow, SR(effect.subject, effect.resource))))

68

 op SecureOP : Operation -> Boolean

 def SecureOP (operation) = case operation of

 | nil -> true

 | Cons(hd, tl) -> (SecureEffect(hd) &&

 SecureOP(tl))

%%

 %Axiom

 axiom operations is

 fa(e: Effect, o: Operation)

 member(e,o) =>

 (e.flow = RD &&

 member(e.flow, BB(Partition(e.subject),

 Partition(e.resource))) &&

 member(e.flow, SR(e.subject, e.resource)))

 ||

 (e.flow = WT &&

 member(e.flow, BB(Partition(e.subject),

 Partition(e.resource))) &&

 member(e.flow, SR(e.subject, e.resource)))

 ||

 (e.flow = RW &&

 member(e.flow, BB(Partition(e.subject),

 Partition(e.resource))) &&

 member(e.flow, SR(e.subject, e.resource)))

%%

 %Theorem

 theorem Secure is

 fa(o: Operation) SecureOP(o)

endspec

69

APPENDIX B: SEPARATION KERNEL FTLS IN SPECWARE

This appendix is the Separation Kernel FTLS as described in Chapter IV.

ftls = spec

 %Types

 type Object = | Process {id: Nat}

 | Segment {id: Nat, size: Nat}

 | EventCT (Nat)

 | Sequencer (Nat)

 op exported? : Object -> Boolean

 type Exp_Object = (Object | exported?)

 op subject? : Exp_Object -> Boolean

 def subject? (process) = ex(n: Nat) process = Process {id=n}

 type Subject = (Exp_Object | subject?)

 type Block = | High | Medium | Low

 type Mode = | RD | WT | RW | NULL

 type Effect = {subject: Subject,

 resource: Exp_Object,

 flow: Mode}

 type Transform = List Effect

%%%

 %Definitions

 op active? : [a] a -> Boolean

 %CurrentAccess represents the process local descriptor table

 op CurrentAccess : Subject * Exp_Object * Mode -> Boolean

 %BB and SR represent the policy tables

 op BB : {(b1,b2): Block*Block | active? (b1}} -> List Mode

 op SR : {(s1,r2): Subject*Exp_Object | active? (s1)} -> List Mode

 op Partition : Exp_Object -> Block

 axiom CurrentAccess_implies_SR is

 fa(e: Effect)

 CurrentAccess(e.subject, e.resource, e.flow) =>

 member(e.flow, SR(e.subject, e.resource))

70

 axiom SR_implies_BB is

 fa(e: Effect)

 member(e.flow, SR(e.subject, e.resource)) =>

 member(e.flow, BB(Partition(e.subject), Partition(e.resource)))

%%%

 %Policy Description

 op SecureEffect : Effect -> Boolean

 def SecureEffect (effect) =

 (effect.flow = NULL ||

 (member(effect.flow, BB(Partition(effect.subject),

 Partition(effect.resource)))

 &&

 member(effect.flow, SR(effect.subject, effect.resource))))

 op SecureOP : Transform -> Boolean

 def SecureOP (transform) = case transform of

 | nil -> true

 | Cons(hd, tl) -> (SecureEffect(hd) &&

 SecureOP(tl))

%%%

%Transforms

 op HW_Read :

 {t1: Transform | fa(e: Effect) member(e, t1) =>

 (e.flow = RD &&

 CurrentAccess(e.subject,

 e.resource,

 e.flow))}

 op HW_Write :

 {t2: Transform | fa(e: Effect) member(e, t2) =>

 (e.flow = WT &&

 CurrentAccess(e.subject,

 e.resource,

 e.flow))}

71

 op HW_Read_Write :

 {t3: Transform | fa(e: Effect) member(e, t3) =>

 (e.flow = RW &&

 CurrentAccess(e.subject,

 e.resource,

 e.flow))}

 op Ticket :

 {t4: Transform | fa(e: Effect) (member(e, t4) =>

 (e.flow = RW &&

 CurrentAccess(e.subject,

 e.resource,

 e.flow)))

 &&

 length(t4) = 1}

 op Read_EventCT :

 {t5: Transform | fa(e: Effect) (member(e, t5) =>

 (e.flow = RD &&

 CurrentAccess(e.subject,

 e.resource,

 e.flow)))

 &&

 length(t5) = 1}

 op Adv_EventCT :

 {t6: Transform | fa(e: Effect) (member(e, t6) =>

 (e.flow = WT &&

 CurrentAccess(e.subject,

 e.resource,

 e.flow)))

 &&

 length(t6) = 1}

 op Await_EventCT :

 {t7: Transform | fa(e: Effect) (member(e, t7) =>

 (e.flow = RD &&

 CurrentAccess(e.subject,

 e.resource,

 e.flow)))

 &&

 length(t7) = 1}

72

%%%

 %Axioms

 axiom only_ops is

 fa(t:Transform) t = HW_Read ||

 t = HW_Write ||

 t = HW_Read_Write ||

 t = Ticket ||

 t = Read_EventCT ||

 t = Adv_EventCT ||

 t = Await_EventCT

 axiom Segment_as_Object is

 fa(e: Effect, t: Transform)

 ex(n1: Nat, n2: Nat)

 ((t = HW_Read) ||

 (t = HW_Write) ||

 (t = HW_Read_Write))

 &&

 member(e, t) => e.resource = Segment{id=n1, size=n2}

 axiom EventCT_as_Object is

 fa(e: Effect, t: Transform)

 ex(n: Nat)

 ((t = Read_EventCT) ||

 (t = Adv_EventCT) ||

 (t = Await_EventCT))

 &&

 member(e, t) => e.resource = EventCT (n)

 axiom Ticket_as_Object is

 fa(e: Effect, t: Transform)

 ex(n: Nat)

 (t = Ticket) &&

 member(e, t) => e.resource = Sequencer (n)

endspec

73

APPENDIX C: MORPHISM FROM MODEL TO FTLS

This appendix displays the morphism unit defined in Specware for the mapping

between the Separation Kernel Model and FTLS as described in Chapter IV.

Mapping = morphism final_model#model ->

 final_ftls#ftls{Resource +-> Object,

 Exported_Resource +-> Exp_Object,

 Operation +-> Transform}

74

THIS PAGE INTENTIONALLY LEFT BLANK

75

APPENDIX D: SEPARATION KERNEL PROOF UNITS

This appendix provides all of the proof units for the Separation Kernel Model,

FTLS, and morphism. Included with each proof unit is a snapshot of the output for each

attempt indicating the success or failure of each proof.

%%%

%model_oblig1-3 did not prove, model_oblig4-9 and Security Theorem did prove

model_oblig = obligations rev_final_model#model

model_oblig1 = prove SecureEffect_Obligation in model_oblig

 %Snark Log file: H:/.../model_oblig1.log

 %model_oblig1: Conjecture SecureEffect_Obligation in model_oblig is NOT

proved using Snark.

model_oblig2 = prove SecureEffect_Obligation0 in model_oblig

 %Snark Log file: H:/.../model_oblig2.log

 %model_oblig2: Conjecture SecureEffect_Obligation0 in model_oblig is NOT

proved using Snark.

model_oblig3 = prove SecureOP_Obligation in model_oblig

 %Snark Log file: H:/.../model_oblig3.log

 %model_oblig3: Conjecture SecureOP_Obligation in model_oblig is NOT proved

using Snark.

model_oblig4 = prove operations_Obligation in model_oblig

 %Snark Log file: H:/.../model_oblig4.log

 %model_oblig4: Conjecture operations_Obligation in model_oblig is Proved!

using Snark.

76

model_oblig5 = prove operations_Obligation0 in model_oblig

 %Snark Log file: H:/.../model_oblig5.log

 %model_oblig5: Conjecture operations_Obligation0 in model_oblig is Proved!

using Snark.

model_oblig6 = prove operations_Obligation1 in model_oblig

 %Snark Log file: H:/.../model_oblig6.log

 %model_oblig6: Conjecture operations_Obligation1 in model_oblig is Proved!

using Snark.

model_oblig7 = prove operations_Obligation2 in model_oblig

 %Snark Log file: H:/.../model_oblig7.log

 %model_oblig7: Conjecture operations_Obligation2 in model_oblig is Proved!

using Snark.

model_oblig8 = prove operations_Obligation3 in model_oblig

 %Snark Log file: H:/.../model_oblig8.log

 %model_oblig8: Conjecture operations_Obligation3 in model_oblig is Proved!

using Snark.

model_oblig9 = prove operations_Obligation4 in model_oblig

 %Snark Log file: H:/.../model_oblig9.log

 %model_oblig9: Conjecture operations_Obligation4 in model_oblig is Proved!

using Snark.

Model_Security_Theorem = prove Secure in model_oblig

 %Snark Log file: H:/.../Model_Security_Theorem.log

 %Model_Security_Theorem: Theorem Secure in model_oblig is Proved! using

Snark.

77

%%%

%ftls_oblig1-4, ftls_oblig6 did not prove, but ftls_oblig5 did prove

ftls_oblig = obligations rev_final_ftls#ftls

ftls_oblig1 = prove CurrentAccess_implies_SR_Obligation in ftls_oblig

 %Snark Log file: H:/.../ftls_oblig1.log

 %ftls_oblig1: Conjecture CurrentAccess_implies_SR_Obligation in ftls_oblig is

NOT proved using Snark.

ftls_oblig2 = prove SR_implies_BB_Obligation in ftls_oblig

 %Snark Log file: H:/.../ftls_oblig2.log

 %ftls_oblig2: Conjecture SR_implies_BB_Obligation in ftls_oblig is NOT proved

using Snark.

ftls_oblig3 = prove SR_implies_BB_Obligation0 in ftls_oblig

 %Snark Log file: H:/.../ftls_oblig3.log

 %ftls_oblig3: Conjecture SR_implies_BB_Obligation0 in ftls_oblig is NOT

proved using Snark.

ftls_oblig4 = prove SecureEffect_Obligation in ftls_oblig

 %Snark Log file: H:/.../ftls_oblig4.log

 %ftls_oblig4: Conjecture SecureEffect_Obligation in ftls_oblig is NOT proved

using Snark.

ftls_oblig5 = prove SecureEffect_Obligation0 in ftls_oblig

 %Snark Log file: H:/.../ftls_oblig5.log

 %ftls_oblig5: Conjecture SecureEffect_Obligation0 in ftls_oblig is Proved!

using Snark.

78

ftls_oblig6 = prove SecureOP_Obligation in ftls_oblig

 %Snark Log file: H:/.../ftls_oblig6.log

 %ftls_oblig6: Conjecture SecureOP_Obligation in ftls_oblig is NOT proved

using Snark.

%%%

%mapping_oblig1&2 did not prove

%mapping_oblig3-5 proved using simple inequality reasoning

mapping_oblig = obligations rev_final_ftls#Mapping

mapping_oblig1 = prove operations in mapping_oblig

 %Snark Log file: H:/.../mapping_oblig2.log

 %mapping_oblig2: Conjecture operations in mapping_oblig is NOT proved using

Snark.

mapping_oblig2 = prove SecureEffect_def in mapping_oblig

 %Snark Log file: H:/.../mapping_oblig3.log

 %mapping_oblig3: Axiom SecureEffect_def in mapping_oblig is Proved! using

simple inequality reasoning.

mapping_oblig3 = prove SecureOP_def in mapping_oblig

 %Snark Log file: H:/.../mapping_oblig4.log

 %mapping_oblig4: Axiom SecureOP_def in mapping_oblig is Proved! using simple

inequality reasoning.

mapping_oblig4 = prove SecureOP_def in mapping_oblig

 %Snark Log file: H:/.../mapping_oblig5.log

 %mapping_oblig5: Axiom SecureOP_def in mapping_oblig is Proved! using simple
inequality reasoning.

79

APPENDIX E: SEPARATION KERNEL MODEL PROOF
OBLIGATIONS

This appendix displays the output of the automatically generated proof obligations

for the Separation Kernel Model.

import /Library/Base/WFO

conjecture SecureEffect_Obligation is

 fa(effect : Effect)

 ~(effect.flow = NULL) => active?(Partition(effect.subject))

conjecture SecureEffect_Obligation0 is

 fa(effect : Effect)

 ~(effect.flow = NULL)

 && member(effect.flow, BB(Partition(effect.subject),

 Partition(effect.resource)))

 => active?(effect.subject)

conjecture SecureOP_Obligation is

 ex(pred : List(Effect) * List(Effect) -> Boolean)

 WFO.wfo pred

 && (fa(operation : Operation, tl : List(Effect), hd : Effect)

 (operation = Cons(hd, tl) && SecureEffect hd => pred(tl, operation)))

 conjecture operations_Obligation is

 fa(e : Effect, o : Operation)

 member(e, o) && e.flow = RD => active?(Partition(e.subject))

80

conjecture operations_Obligation0 is

 fa(e : Effect, o : Operation)

 member(e, o)

 && e.flow = RD

 && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))

 => active?(e.subject)

conjecture operations_Obligation1 is

 fa(e : Effect, o : Operation)

 member(e, o)

 && ~(e.flow = RD

 && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))

 && member(e.flow, SR(e.subject, e.resource)))

 && e.flow = WT

 => active?(Partition(e.subject))

conjecture operations_Obligation2 is

 fa(e : Effect, o : Operation)

 member(e, o)

 && ~(e.flow = RD

 && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))

 && member(e.flow, SR(e.subject, e.resource)))

 && e.flow = WT

 && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))

 => active?(e.subject)

81

conjecture operations_Obligation3 is

 fa(e : Effect, o : Operation)

 member(e, o)

 && ~(e.flow = RD

 && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))

 && member(e.flow, SR(e.subject, e.resource)))

 && ~(e.flow = WT

 && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))

 && member(e.flow, SR(e.subject, e.resource)))

 && e.flow = RW

 => active?(Partition(e.subject))

conjecture operations_Obligation4 is

 fa(e : Effect, o : Operation)

 member(e, o)

 && ~(e.flow = RD

 && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))

 && member(e.flow, SR(e.subject, e.resource)))

 && ~(e.flow = WT

 && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))

 && member(e.flow, SR(e.subject, e.resource)))

 && e.flow = RW

 && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))

 => active?(e.subject)

82

THIS PAGE INTENTIONALLY LEFT BLANK

83

APPENDIX F: SEPARATION KERNEL FTLS PROOF
OBLIGATIONS

This appendix displays the output of the automatically generated proof obligations

for the Separation Kernel FTLS.

import /Library/Base/WFO

conjecture CurrentAccess_implies_SR_Obligation is

 fa(e : Effect)

 CurrentAccess(e.subject, e.resource, e.flow)

 => active?(e.subject)

conjecture SR_implies_BB_Obligation is

 fa(e : Effect)

 active?(e.subject)

conjecture SR_implies_BB_Obligation0 is

 fa(e : Effect)

 member(e.flow, SR(e.subject, e.resource))

 => active?(Partition(e.subject))

conjecture SecureEffect_Obligation is

 fa(effect : Effect)

 ~(effect.flow = NULL)

 => active?(Partition(effect.subject))

84

conjecture SecureEffect_Obligation0 is

 fa(effect : Effect)

 ~(effect.flow = NULL)

 && member(effect.flow, BB(Partition(effect.subject),

 Partition(effect.resource)))

 => active?(effect.subject)

conjecture SecureOP_Obligation is

 ex(pred : List(Effect) * List(Effect) -> Boolean)

 WFO.wfo pred

 && (fa(transform : Transform, tl : List(Effect), hd : Effect)

 (transform = Cons(hd, tl)

 && SecureEffect hd

 => pred(tl, transform)))

85

APPENDIX G: SEPARATION KERNEL MORPHISM PROOF
OBLIGATIONS

This appendix displays the output of the automatically generated proof obligations

for the Separation Kernel morphism.

import /H:/.../rev_final_ftls#ftls

conjecture operations is

 fa(e : Effect, o : Transform)

 member(e, o)

 => e.flow = RD

 && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))

 && member(e.flow, SR(e.subject, e.resource))

 || e.flow = WT

 && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))

 && member(e.flow, SR(e.subject, e.resource))

 || e.flow = RW

 && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))

 && member(e.flow, SR(e.subject, e.resource))

conjecture SecureEffect_def is

 fa(effect : Effect)

 SecureEffect effect =

 (effect.flow = NULL

 || member(effect.flow, BB(Partition(effect.subject),

 Partition(effect.resource)))

 && member(effect.flow, SR(effect.subject, effect.resource)))

conjecture SecureOP_def is

 fa(nil : Operation)

 fa(operation : Operation)

86

 nil = operation => SecureOP operation = true

conjecture SecureOP_def is

 fa(hd : Effect, tl : List(Effect))

 fa(operation : Operation)

 ~(nil = operation)

 && Cons(hd, tl) = operation

 => SecureOP operation = (SecureEffect hd && SecureOP tl)

87

LIST OF REFERENCES

[Bar90] Barr, M., and Wells, C. Category Theory for Computing Science,
Prentice Hall. 1990.

[Bel73] Bell, D.E., and LaPadula, L.J. Secure computer systems:

mathematical foundations and model. M74-244, The MITRE
Corp., Bedford, Mass., May 1973.

[Bib05] Bibighaus, D. L. Applying Doubly Labeled Transition Systems to

the Refinement Paradox. Doctoral Dissertation, Naval
Postgraduate School, Monterey, CA, September 2005.

[Com06] _. Common Criteria Documentation.
 <http://www.commoncriteriaportal.org/> May 2006.

[Irv04] Irvine, C. E., Levin, T. E., Nguyen, T. D., and Dinolt, G. W. The

Trusted Computing Exemplar Project. Proc. 2004 IEEE Systems,
Man and Cybernetics Information Assurance Workshop, West
Point, NY, pp. 109-115. June 2004.

[Kes04] Kestrel. Specware Documentation.
 <http://www.specware.org/doc.html>. September 2004.

[Kre99] Kremman, T.W., Martin, W.B., and Taylor, F.S. An Avenue for

High Confidence Applications in the 21st Century. National
Security Agency. February 1999.

[Lan81] Landwehr, Carl E. Formal Models for Computer Security. Naval

Research Laborotory. September 1981.

[Lev04] Levin, T.E., Irvine, C.E., and Nguyen T.D. A Least Privilege Mode

for Static Separation Kernels. Naval Postgraduate School,
Monterey, CA,, Technical Report NPS-CS-05-003. October 2004.

[Mar00] Martin, W.B., White, P.D., and Vanfleet, W.M. Government,

Industry, and Academia: Teaming to design High Confidence
Information Security Applications. Proc. Third Workshop on
Formal Methods in Software Practice, pp. 37-47. 2000.

[McD01] McDonald, J. and Anton, J. SPECWARE Producing Software

Correct by Construction. Kestrel Institute. March 2001.

88

[NSA87] NSA. FTLS Must Accurately Describe TCB Operations (C1-CI-01-
87). Last retrieved from

 http://niap.nist.gov/cc-scheme/PUBLIC/0237.html on June 5,
2006. March 1987.

[Par92] Paramax Systems Corporation. FDM User Guide. June 1992.

[Pav03] Pavlovic, D., and Smith, D.R. Software Development by

Refinement. Lecture Notes in Computer Science, Vol. 2757, pp.
267 – 286. January 2003.

[Pav04] Pavlovic, D., Pepper P., and Smith, D. Colimits for Concurrent

Collectors. Lecture Notes in Computer Science, Vol. 2772, pp. 568
– 597. January 2004.

[Pie91] Pierce, B. Basic Category Theory for Computer Scientists. MIT

Press. 1991.

[Ree79] Reed, D.P., and Kanodia, R.K. Synchronization with Eventcounts

and Sequencers. Comm. ACM. Vol. 2, No. 2. February 1979.

[Sri95] Srinivas, Y.V., and Jüllig, R. Specware: Formal Support for

Composing Software. In Mathematics of Program Construction.
July 1995.

[Sri96] Srinivas, Y.V., and McDonald, J.L. The Architecture of Specware,

A Formal Software Development System. Kestrel Institute
Technical Report KES.U.96.7. August 1996.

[Ster91] Sterne, Daniel. On the Buzzword “Security Policy”. Proc. 1991

IEEE Computer Society Symposium on Research in Security and
Privacy, pp. 219-230, May 1991.

[Ubh03] Ubhayakar, Sonali. Evaluation of Program Specification and

Verification Systems. Master’s Thesis, Naval Postgraduate School.
June 2003.

[Wad95] Wadler, Philip. Monads for Functional Programming. In

Advanced Functional Programming, volume 925 of LNCS, pp. 24-
52. May 1995.

[Wid00] Widmaier, J.C., Smidts, C., and Xin Huang. Producing more

reliable software: mature software engineering process vs. state-
of-the-art technology? Proc. 2000 International Conference on
Software Engineering, pp. 88-93. June 2000.

http://niap.nist.gov/cc-scheme/PUBLIC/0237.html on June 5

89

[Wik06] Wikipedia. Functional Programming. Retrieved from
<http://en.wikipedia.org/wiki/Functional_programming> on May
9, 2006.

[Wil01] Williamson, Keith. Systems Synthesis: Towards a new paradigm

and discipline for knowledge, software, and system development
and maintenance. Mathematics and Computing Technology
Boeing Phantom Works. March 2001.

[Wil01*] Wiliamson, K., Healy, M., Barker, R. Industrial Applications of

Software Synthesis via Category Theory – Case Studies Using
Specware. Journal of Automated Software Engineering, Vol. 8,
pp. 7-30. 2001.

90

THIS PAGE INTENTIONALLY LEFT BLANK

91

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. John Anton
Kestrel Technology, LLC
Los Altos, CA

4. Hugo A. Badillo
NSA
Fort Meade, MD

5. George Bieber
OSD
Washington, DC

6. RADM Joseph Burns

Fort George Meade, MD

7. John Campbell

National Security Agency
Fort Meade, MD

8. Alessandro Coglio
Kestrel Technology, LLC
Los Altos, CA

9. Deborah Cooper
DC Associates, LLC
Roslyn, VA

10. CDR Daniel L. Currie
PMW 161
San Diego, CA

11. Louise Davidson
National Geospatial Agency
Bethesda, MD

92

12. Steve Davis
NRO
Chantilly, VA

13. Dr. Robert DeCloss
 Northwest Nazarene University
 Nampa, ID

14. Vincent J. DiMaria

National Security Agency
Fort Meade, MD

15. CDR James Downey
NAVSEA
Washington, DC

16. Dr. Diana Gant
National Science Foundation

17. Jennifer Guild
SPAWAR
Charleston, SC

18. Richard Hale
DISA
Falls Church, VA

19. CDR Scott D. Heller

SPAWAR
San Diego, CA

20. Wiley Jones
OSD
Washington, DC

21. Russell Jones
 N641

Arlington, VA

22. Tim Kremann
NSA
Ft. Meade, MD

23. David Ladd
Microsoft Corporation
Redmond, WA

93

24. Dr. Carl Landwehr
DTO
Fort George T. Meade, MD

25. Steve LaFountain
 NSA

Fort Meade, MD

26. Dr. Greg Larson
IDA
Alexandria, VA

27. Dr. Karl Levitt
NSF
Arlington, VA

28. Dr. Vic Maconachy
NSA
Fort Meade, MD

29. Doug Maughan

Department of Homeland Security
Washington, DC

30. Dr. John Monastra
Aerospace Corporation
Chantilly, VA

31. John Mildner
SPAWAR
Charleston, SC

32. Dr. Barry Myers

Northwest Nazarene University
Nampa, ID

33. Mark T. Powell

Federal Aviation Administration
Washington, DC

34. Jim Roberts

Central Intelligence Agency
Reston, VA

94

35. Jon Rolf
NSA
Fort Meade, MD

36. Keith Schwalm
Good Harbor Consulting, LLC
Washington, DC

37. Charles Sherupski
Sherassoc
Round Hill, VA

38. Ken Shotting
NSA
Fort Meade, MD

39. CDR Wayne Slocum
SPAWAR
San Diego, CA

40. Dr. Ralph Wachter

ONR
Arlington, VA

41. David Wirth
N641
Arlington, VA

42. CAPT Robert Zellmann
CNO Staff N614
Arlington, VA

43. Dr. Cynthia E. Irvine
Naval Postgraduate School
Monterey, CA

44. Thuy D. Nguyen
Naval Postgraduate School
Monterey, CA

45. Timothy E. Levin
Naval Postgraduate School
Monterey, CA

95

46. Daniel DeCloss
Affiliation (SFS students: Civilian, Naval Postgraduate School)
Monterey, CA

	I. INTRODUCTION
	II. BACKGROUND
	A. FORMAL METHODS AND THEIR IMPORTANCE
	B. THE REFINEMENT PROCESS IN FORMAL METHODS
	C. VERIFICATION SYSTEMS
	1. Ina Jo – Category Theoretic
	2. PVS – Type Theoretic
	3. Specware – Category Theoretic

	D. THE VERIFICATION PARADIGM

	III. SPECWARE OVERVIEW
	A. SPECWARE DESCRIPTION
	B. SPECWARE FUNCTIONALITY
	1. MetaSlang
	a. Specs
	b. Types
	c. Ops and Defs
	d. Claims: Axioms, Conjectures, and Theorems

	2. Refinement and Morphisms
	3. Proof Obligations
	4. Specware Shell

	C. SUMMARY

	IV. SPECWARE AND THE VERIFICATION PARADIGM
	A. SEPARATION KERNEL OVERVIEW
	B. DESCRIPTION OF SEPARATION KERNEL MODEL IN SPECWARE
	1. Type Declarations
	2. BB, SR, and Partition Function Declarations
	3. Policy Description Functions – SecureEffect and SecureOP
	4. Model Axiom and Basic Security Theorem

	C. DESCRIPTION OF SEPARATION KERNEL FTLS IN SPECWARE
	1. FTLS Type Declarations
	2. FTLS Function Declarations
	3. FTLS Transforms
	4. FTLS Axioms

	D. MORPHISM IN SPECWARE

	V. ANALYSIS OF SPECWARE AGAINST EVALUATION CRITERIA
	A. INTRODUCTION TO ANALYSIS
	B. OVERVIEW OF EVALUATION CRITERIA
	C. ANALYSIS OF SPECWARE
	1. Product Maturity
	2. Usability of Tool and Verification Environment
	3. Theorem Proving
	4. Specification Language
	5. Executable Specifications
	6. Multiple Levels of Abstraction
	7. Automatic Generation of Conjectures
	8. Semantics

	D. CONCLUSION

	VI. CONCLUSIONS AND FUTURE WORK
	A. CONCLUSIONS OF ANALYSIS
	B. RECOMMENDATIONS
	1. Integrated Development Environment
	2. Theorem Prover Integration

	C. FUTURE WORK
	1. Verification of State Representation in Specware
	2. Trusted Computing Exemplar

	APPENDIX A: SEPARATION KERNEL MODEL IN SPECWARE
	APPENDIX B: SEPARATION KERNEL FTLS IN SPECWARE
	APPENDIX C: MORPHISM FROM MODEL TO FTLS
	APPENDIX D: SEPARATION KERNEL PROOF UNITS
	APPENDIX E: SEPARATION KERNEL MODEL PROOF OBLIGATIONS
	APPENDIX F: SEPARATION KERNEL FTLS PROOF OBLIGATIONS
	APPENDIX G: SEPARATION KERNEL MORPHISM PROOF OBLIGATIONS
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

