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ABSTRACT 
 
Formal verification is required for systems that require high assurance.  Formal 

verification can require large and complex proofs that can drastically affect the 

development life cycle. Through the use of a verification system, such proofs can be 

managed and completed in an efficient manner.  A verification system consists of a 

specification language that can express formal logic, and an automated theorem tool that 

can be used to verify theorems and conjectures within the specifications.  One example of 

a verification system is Specware.  This thesis presents an analysis of Specware against a 

set of evaluation criteria in order to determine the level of usefulness Specware can have 

in the verification of high assurance systems.  This analysis revealed that Specware 

contains a powerful specification language capable of representing higher order logic in a 

simple and expressive manner.  Specware is able to represent multiple levels of 

abstraction and generate proof obligations regarding specification correctness and 

interlevel mapping.  The theorem prover associated with Specware was found to be 

lacking in capability.  Through this analysis we found that Specware has great potential 

to be an excellent verification system given improvement upon the theorem prover and 

strengthening of weaknesses regarding linguistic components. 
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I. INTRODUCTION 

High assurance computing and communication systems are evaluated to a high 

level of trust based in part on a formal verification that the actions of the system adhere to 

the established security policy.  This is important due to stringent requirements on high 

assurance systems and their development process.  The Common Criteria (CC) is used to 

evaluate, certify, and accredit systems and imposes requirements such that any system 

requiring a high level of trust (i.e. Evaluation Assurance Level 7 or EAL7), must undergo 

a rigorous life cycle including the use of formal verification of its security properties 

[Com06].  Examples include systems housing information at multiple classification 

levels, avionics software, missile guidance software, and even critical infrastructure 

management systems for water, power, and gas.  All of these types of systems are 

required to be correct and must not contain errors or malicious artifacts that might result 

in the leak of sensitive information or the loss of human life.  One way to ensure that the 

system is correct is to incorporate formal verification in the development life cycle. 

Formal verification is thus a necessity for high assurance systems, but the level of 

effort associated with manual verification can be unreasonable due to large and 

complicated proofs.  The use of an automated verification system can increase the 

efficiency and productivity of formal verification.  There are several verification systems 

available and the choice between such systems is important and must be considered 

carefully based on the scope of project requirements.   

In this thesis we analyzed Specware, a verification system developed by Kestrel 

Development Corporation, to determine the level of usefulness it could have in the 

verification of high assurance systems.  We are evaluating Specware as a candidate for 

use on the Trusted Computing Exemplar project [Irv04].  For our analysis we adapted a 

set of evaluation criteria presented by Ubhayakar [Ubh03].  We conducted a simple 

experiment as a basis for evaluation.  The experiment required familiarity with Specware 

and the capabilities of MetaSlang, Specware’s specification language.  The experiment 

consisted of creating a formal model with a basic security theorem based on a separation 

kernel security policy presented by Levin, Irvine, and Nguyen [Lev04].  Furthermore, we 
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created a formal top level specification as a refinement of the model and investigated the 

interlevel mapping capability within Specware.  We continued to evaluate Specware 

through analysis of its ability to automatically generate theorems and conjectures at each 

specification level as well as conjectures associated with the interlevel mapping.  Finally 

we analyzed Specware’s theorem proving capabilities by attempting to prove the basic 

security theorem in the formal model and all of the conjectures associated with the 

model, formal top level specification (FLTS), and interlevel mapping.   

This thesis presents our experimental findings and discusses the strengths and 

weaknesses of Specware corresponding to the adapted verification system evaluation 

criteria.  We will present a brief overview of Specware and MetaSlang and its basic 

components.  We will then describe the separation kernel formal model and FTLS 

developed in Specware and the technique used to produce the interlevel mapping.  

Finally, we will conclude with our analysis of Specware against the adapted evaluation 

criteria and present our conclusions and recommendations for future work.  Overall, we 

found Specware to be a powerful tool with potential to be highly useful in the verification 

of high assurance systems; however, currently, a few aspects of the tool has weaknesses.   

Specware is under continued development and progress will hopefully be made in these 

areas.   
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II. BACKGROUND 

A. FORMAL METHODS AND THEIR IMPORTANCE 
The process of developing a high assurance system is naturally arduous.  Yet the 

motivation to undergo such a process relies on the outcome provided.  When a high 

assurance system is completed and implemented, one can be assured with a high degree 

of confidence that the system will behave correctly and appropriately.  Appropriate 

behavior could be considered as system behavior that is intentional, free from malicious 

or inadvertent side affects.  When discussing what types of systems should be developed 

using a high assurance methodology, many examples are immediately present, including 

but not limited to medical technology systems, aviation systems, and multilevel secure 

systems.  Taking these examples one can immediately see how a small bug or glitch in 

the system could be disastrous, possibly resulting in the loss of human life.   

The high assurance methodology ensures that a system will undergo a rigorous 

development life cycle in order to eliminate bugs and prove that the functionality is 

necessary and sufficient.  The system must also be evaluated to determine its level of 

assurance.  The evaluation process incorporates stringent guidelines relating to the 

development life cycle.  The entire process is time consuming due to the guidelines that 

must be followed and heavy documentation associated with those guidelines.  Such 

documentation provides a clear outline that developers and engineers can follow in order 

to verify system requirements and functionality.  The documentation also serves as an 

invaluable reference for system maintenance.  And finally the documentation is used for 

system evaluation.  Although the process can seem almost overwhelming, it results in a 

system that can be verified to meet its specified requirements and desired functionality.  

This methodology is also vitally important when describing the security properties of the 

system.   

Formal methods are the use of mathematics to prove certain properties about a 

system.  Formal methods involve several levels of abstract descriptions of the system’s 

security properties and desired functionality.  Applying formal methods to the design and 

implementation of high assurance systems can be described through the following steps: 
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1. Security Policy 
2. Security Model 
3. Formal Top Level Specification 
4. Implementation  

For each step the appropriate verification must be achieved in order to maintain a 

correct mapping to the previous level, ending up back at the security policy.  The goal is 

to sequentially refine the security policy to the implementation of the system such that the 

implementation is shown to be a valid representation (i.e. “maps to”) the policy.  The 

process can seem quite simple yet it is quite rigorous.  It could take years to develop a 

high assurance system where the security policy is provably secure.  Due to the expense 

in terms of time, money, and expertise, formal methods are mostly used in the 

development of systems that require trusted security properties to protect high valued 

information.  One important reason formal methods are used is to provide a high level of 

confidence that the implementation meets the specification.  Thus formal methods 

provide assurance that the security properties will be provided as specified.  Another 

reason is that a formal security policy model provides developers with a single point of 

reference that defines exactly what is to be implemented.  Thus formal methods provide 

an accountability mechanism for the developers and a solid reference framework to 

ensure that the security of the system can be understood.  Landwehr described it well 

when stating that formal methods provide a concise organization of the complexity of 

“computer” and “security”.  Thus they provide a definition of what security actually 

means and how it can be determined with relation to the computer’s behavior [Lan81].  

Finally, formal methods provide the means to answer the question of whether the system 

is secure or not based on the proof of the basic security theorem. 

 

B. THE REFINEMENT PROCESS IN FORMAL METHODS 
As noted previously there are several levels of abstraction when applying formal 

methods to a system and security policy.  The term security policy can be quite vague if 

not put within the proper context.  Sterne distinguishes between the security policy 

objective, the organizational security policy, and the automated security policy [Ster91].  

In terms of formal methods, we are concerned with the automated security policy which 

is an abstract view of the desired functionality and security properties that the system 
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must contain or address.  It is free of implementation details and provides the reference 

for the entire formal methods process.  The construction of the automated security policy 

is vital as it serves as the backbone for the entire process.   

The next two phases are the construction of the formal security policy model 

(FSPM) and then the formal top level specification (FTLS).  The model is a 

mathematically structured statement of the security policy.  It is a logical representation 

of the security policy which basically takes the English language stated policy and 

formulates the mathematical equivalent.  Additionally, the model must make a significant 

progression toward the actual implementation of code.  The model serves as the first 

stepping stone in the process and is a high level abstraction between the security policy 

and the implementation of the system.  Keep in mind that the ultimate goal of this process 

is to ensure that the actual code behaves in no way violates the policy, and yet still 

contains the desired functionality.  Thus a system full of NOPs is not a violation of the 

policy, but provides no useful functionality.  The code preserves the security properties 

and is based ultimately from the model.  Thus the model must be an accurate 

representation of the policy in order to maintain a high level of assurance.  The model 

consists of two major components.  The first is a general model of a system plus a set of 

operations, and the second is a definition of security that constrains the system.  

Constraints are stated in the form of axioms and conjectures, which must be proven based 

on the constraints.  Ultimately, the basic security theorem must be proven true based on 

all the constraints put on the system.  Thus a secure system is defined as one in which all 

constraints are satisfied [Ubh03].   

The FTLS is the second level of abstraction from the policy and steps towards the 

implementation in terms of specificity. It defines all interfaces with appropriate 

parameters. It represents all inputs and outputs necessary for the system and also 

describes the exceptions and effects that processing will have on the state of the system.  .  

The FTLS describes all actions that the system takes and the impact that those actions 

will have on the security properties of the system.  The formal nature of the FTLS allows 

for proof that it maps to the model and transitively supports the security policy.   
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The FTLS must support three main goals. First, it must support a proof that the 

system design enforces the security policy.  Secondly, it must provide a basis for an 

analysis and catalogue of all covert storage channels. Lastly, it must provide a criterion of 

correctness for the implementation [NSA87].  The major difference between the security 

policy model and the FTLS is the level of specificity.  The important distinction is that 

the FTLS represents a significant progression from the policy to the implementation.  

This sequential progression must be provably secure in that each refinement is shown to 

map to the previous level of abstraction and ultimately the policy.  The sequential 

refinements can be quite challenging and the proofs can become cumbersome.  

Performing the proofs of the model and FTLS by hand could consume a large amount of 

time and human resources.  Thus the need for tools that aid in the refinement and 

representation of security models and policies is quite evident.   

 

C. VERIFICATION SYSTEMS 
The use of tools that improve the efficiency and correctness of the verification 

process is necessary to produce a secure system.  Tools that can assist in the verification 

of high assurance systems include formal specification languages and theorem provers. 

Languages provide a means to represent models and policies and to express the 

refinement of such models in a formal manner.  Theorem proving tools help to minimize 

the manual effort required to arrive at a valid proof.  Theorem provers can either be 

interactive or automatic.  An interactive prover requires the user to initiate proof 

commands to guide the system through the verification, whereas an automatic prover 

attempts to reach a proof without any guidance or involvement from the user except at 

the invocation of the prover.  Essentially a theorem prover processes specifications and 

determines if the conjectures are correct and valid.  A specification language can be used 

to specify a system and to declare conjectures and proof obligations.  We will briefly 

describe three tools that are in use to aid in the verification of high assurance systems.  

 

1. Ina Jo – Category Theoretic 
Ina Jo is the specification language processor included in the Paramax Formal 

Development Methodology (FDM) software [Par92].  The Ina Jo processor reads specs 



7 

that are written in the Ina Jo specification language and automatically generates 

correctness conjectures.  The FDM tool set includes two theorem provers, the Interactive 

Theorem Prover (ITP), and the Natural deduction Automated Theorem proving 

Environment (Nate).  Ina Jo is derived from first order logic with quantification.  An Ina 

Jo specification describes system states, state transitions, and correctness criteria.  Ina Jo 

also provides linguistic elements to describe multiple levels of abstraction as well as the 

mapping from one level to another.  The conjectures must then be proven and once they 

have been proven they become theorems.  Ina Jo theorems fall into three categories: 

• Initial condition theorems state that the initial states satisfy the correctness 

criteria. 

• Transform theorems state that transforms preserve the correctness criteria. 

• Mapping theorems state that a lower level spec properly implements its parent. 

 

Once Ina Jo has generated the conjectures the previously mentioned theorem 

prover is used to verify them.  Some nice features that Ina Jo provides include a precise 

way to state what level the specification represents through the use of the LEVEL 

statement.  Thus a declaration of the spec could appear as LEVEL model and then LEVEL 

ftls UNDER model [Par92]. 

 

2. PVS – Type Theoretic 
The Prototype Verification System (PVS) is a verification system that provides an 

interactive specification environment that supports writing formal models and 

specifications and theorem proving.  PVS provides an all inclusive environment that 

contains its own powerful specification language and interactive theorem prover 

[Ubh03].  Certain low level proof steps are automatically included in PVS, but the user 

must initiate the higher level steps to create goals and subgoals that need to be proven in 

order for the specification to be correct.   
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3. Specware – Category Theoretic 
Specware is a utility created by Kestrel Institute which provides a specification 

language, MetaSlang, and the ability for refinement of specifications to produce code in a 

target programming language.  MetaSlang provides linguistic elements to describe 

multiple levels of refinement and its processor generates the associated proof obligations.  

Specware incorporates the theorem prover SNARK developed by SRI [Kes04].  

Specware comprises multiple specs and refinements of specs to ultimately produce 

provably correct code.  Refinement is conducted through the use of morphisms.  

Morphisms are a concept based from category theory which are defined by McDonald 

and Anton as truth preserving mappings of one spec into another [McD01].  Thus the two 

major stages in producing a Specware application include building the spec and then 

refining the spec [Kes04].  It is the intent of the rest of this document to analyze 

Specware and determine the degree to which it is useful in the verification of high 

assurance systems.  A more extensive overview of Specware is provided in Chapter III 

and Chapter IV provides an analysis of Specware’s application to the verification 

paradigm. 

 

D. THE VERIFICATION PARADIGM 
Due to the extensive nature of developing a high assurance system, it is important 

to choose a verification tool, or set of tools, that will be useful throughout the 

development process.  Ubhayakar presented a set of evaluation criteria for verification 

tools [Ubh03].  Ideally, the verification tool will support formal specifications, proofs, 

refinement and covert channel analysis, and provide adequate documentation of the same. 

  When determining a tool’s usefulness in the verification of high assurance 

systems, we desire to evaluate it based on a set of objective criteria in order to show its 

relative effectiveness.  The analysis is performed by developing specification models and 

proofs based on a security policy in the tools’ specification language.  In terms of the 

verification of high assurance systems, we are mainly concerned with the tools’ 

usefulness in developing the security policy model, FTLS, and the proofs associated with 

the mapping.  Naturally this type of analysis will depend on many factors that might exist 

beyond the initial set of evaluation criteria.  Such dependencies are very important and 
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should not be overlooked, for instance, suppose that a tool is found to be quite useful but 

requires expensive training costs.  The decision to use the tool must be made according to 

the available resources and development schedule.  Thus, it is important to state ahead of 

time, what criteria beyond the initial set should be considered when performing the 

analysis of the tool.  Ubhayakar [Ubh03] presented an initial table of evaluation criteria, 

which we have extended as seen in Table 1: 

 

Evaluation Criteria Definition Utility

Product Maturity A tool should be old enough 

and currently maintained and 

supported 

Specific questions need to be 

answered in a timely manner 

regarding syntax and 

specification language 

Usability of Tool and 

Verification 

Environment 

The level of simplicity and 

flexibility of operations 

provided to the user 

The interface and commands  

should be simple to 

understand and should 

provide syntax highlighting 

and error checking to 

increase efficiency 

Theorem Proving Interactive versus automated 

theorem proving  

Theorem proving should be 

easily integrated and 

provide meaningful 

descriptions of errors and 

logging capabilities 

Specification 

Language 

Syntactical elements of the 

language 

Learning curve associated 

with language should be 

minimal to provide efficient 

generation of specficiations 
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Executable 

Specifications 

Ability to test system directly 

from specification language 

Executable specifications 

provide the user with a 

general “feel” for the 

system 

Multiple Levels of 

Abstraction 

Refinement capabilities from 

more abstract specifications to 

more concrete specifications 

Multiple levels of 

abstraction provides ability 

to verify that the top level 

specification satisfies 

security policy 

Automatic Generation 

of Conjectures 

Ability to automatically state 

items which must be proven 

This aids in ensuring that all 

obligations regarding the 

system are being addressed 

Semantics Powerful expression of logic 

with minimal complexity 

Underlying logic and 

foundational theory  affects 

the expressiveness of the 

tool regarding system 

properties 

Table 1. Specware Evaluation Criteria 

 

For this thesis, we will analyze Specware and determine its usefulness in the 

verification of high assurance systems.  We will develop formal specifications in 

Specware based upon a simple separation kernel security policy.  We will then analyze 

the specifications in order to describe the utility of Specware regarding the verification 

paradigm.  This analysis is not to determine Specware’s usefulness in the general sense, 

but to describe the level of its usefulness when developing a formal security policy model 

and FTLS and its proving capabilities.  The next chapter will provide an overview of 

Specware and describe its history as well as some projects that it has been used on.  

Following the discussion of Specware, we will present our experiment and analysis. 
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III. SPECWARE OVERVIEW 

A. SPECWARE DESCRIPTION 
Specware was developed and is supported by Kestrel Development Corporation 

and has been in production for over a decade.  The version of Specware used in this 

project is version 4.1.3.  The philosophy behind Specware is to provide an automated tool 

to aid in a refinement-based approach to formal software development.  Formal software 

development implies the rigorous construction of executable code that meets a well-

defined specification [McD01].  Specware’s refinement process is based on the 

mathematical foundation of category theory, which is concerned with the manner in 

which properties are preserved between different objects.  In category theory, morphisms 

are the relations between objects [Sri96].  The advantage of category theory as the 

foundation of Specware is that it enables the production of a well-defined stepwise 

refinement from an abstract specification to concrete implementation.  Specification 

morphisms preserve the structure of one specification through the translation to another 

specification and preserve theorems across the specifications [Sri95].  Thus refinement 

capabilities in Specware provide a logic-preserving process wherein each refinement can 

be proven to preserve the properties of the more abstract specification [McD01].  The 

entire goal of Specware is to provide a framework to produce provably correct code and 

aid in the development of efficient, high-assurance software [Pav03].   Based on the 

description of the verification paradigm and formal methods process, Specware’s 

foundation is appealing for developing high assurance systems. 

 

B. SPECWARE FUNCTIONALITY 

1. MetaSlang 
Specware is a tool to build and refine specifications, generate code from 

specifications, and prove properties regarding those specifications and refinements.  The 

specification language used in Specware is called MetaSlang.  The Specware Language 

Manual contains a detailed description of the MetaSlang grammar, including a BNF 

description.  MetaSlang includes syntactic constituents for describing functional 

semantics within a specificaiton as well as constructs for describing composition, 
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refinement, code generation, and proof capabilities.  Specification constituents include 

types, expressions, and axioms which can be used to describe domain-specific 

formalisms [Kes04].  The MetaSlang grammar follows a functional style of 

programming, which is valuable for proving properties regarding functions; however, the 

functional style causes issues when trying to represent state, which is discussed in 

Chapter V, Section E and future work.  The basics of MetaSlang are briefly described in 

this section, but the reader is recommended to refer to the Specware documentation for a 

more comprehensive explanation.   

 

a. Specs 
“A specification is a finite presentation of a theory in higher-order logic” 

[Sri95].  Specifications, or specs, provide the means to describe abstract concepts of the 

problem domain.  Specs contain types for describing collections of values and operations, 

or functions on those values.  Specs also contain axioms and definitions which define the 

actions and properties of types and operations.  A spec can be extended by importing 

other specs.  This copies the imported spec into the target spec creating a larger and 

potentially more complex spec.  Specs are also the objects used in morphisms which 

define the part-of or is-a relationship between two specs.  Morphisms allow for 

refinement of specs and provide the utility to take simple abstract specifications, and 

refine them to more concrete, complex specifications [Kes04].  The general form of a 

spec definition in MetaSlang is a sequence of one or more declarations, as shown in 

Figure 1. 

 

spec example_spec 

   {declaration} 

   ... 

endspec1

Figure 1.   Spec Definition 
 

                                                 
1 Reserved words in MetaSlang will appear in bold throughout all figures in this document.   
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b. Types 
Types are collections, or sets, of objects and expressions that characterize 

those objects.  Specware has several inbuilt types provided in its libraries which are 

imported automatically for every spec processed by Specware.  Specware’s libraries 

continue to grow as time goes on and when creating specifications it is important to 

consider if they can be reused across multiple problem domains.  Some example type 

declarations are shown in Figure 2.  Notice in the definition of Mode the vertical bar 

precedes each element. 

 

type Resource 

type String 

type Mode = | READ | WRITE | EXECUTE 

Figure 2.   Type Declarations 
 

 

c. Ops and Defs 
An operation, or op in MetaSlang, is used to describe instantiations of 

types.  Ops are used to declare explicit types as well as declare functions that will 

perform an operation based on the types given in the declaration.  Figure 3 shows 

example of op declarations.  Ops can be monomorphic (i.e. strict typing) as seen by the 

definition of Name which can only be of type String.  My_Predicate is also an example of 

a monomorphic op that can only take a String as input and will only result in a Boolean 

value.  Ops can be polymorphic, as seen in My_Function, indicating that the op can be 

used across different types.  Thus My_Function takes two parameters of different or the 

same type and returns a value of a third type.  It is clear that the declaration of a 

polymorphic op describes little context for its use, but the definition of the op will bring 

clarity to its context and proper use.   
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  op Name : String 

%Polymorphic op 

  op My_Function: [a,b,c] a * b -> c 

  op My_Predicate: String -> Boolean 

Figure 3.   Op Declarations 
 
 

Once the operations have been declared, definitions, or defs, of ops are 

used to define the behavior and constraints (i.e. the semantics) of the ops.  Thus an op 

definition corresponds to a previously declared op and must correspond to the signature 

of the op declaration.  An op definition is considered a special notation for an axiom and 

is expresses the same logic that an axiom might express; however, a def might still have 

proof obligations associated with it, whereas an axiom is automatically assumed to be 

true and has no obligations.  Thus, it is encouraged to use defs as much as possible in 

order to be as precise as possible [Kes04].  A def can also be used to declare constants.  

Figure 4 shows the use of defs to declare a constant Limit and the definition of op f.   

 

 

 def Limit = 12 

%Declaration 

  op f : Nat -> Nat 

%Definition 

  def f(n) = 3*n 

   

Figure 4.   Op Definitions 
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d. Claims: Axioms, Conjectures, and Theorems 
Axioms, conjectures, and theorems are all considered types of claims 

within Specware.  All claims must be of type Boolean.  Conjectures and theorems are 

claims that must be proven through the use of op definitions and axioms.  Specware will 

automatically generate conjectures based on op declarations, but the user can also create 

conjectures as well [Kes04].  Currently, conjectures and theorems are synonymous in the 

way that the Specware processor handles the two types of claims, but as Specware 

becomes interoperable with other theorem provers, a difference might be distinguishable.  

Some example claim definitions are: 

 

axiom Example_1 is fa (x: Integer, y: Integer) 

f(x) = f(y) => x = y 

conjecture Example_2 is fa (w: Integer, z: Integer)  

(z*w = 0) => (z =0 || w = 0) 

theorem Example_3  is fa (a: System_Transform) 

Transform_Secure(a) 

Figure 5.   Claim Definitions 
 
 

2. Refinement and Morphisms 
The goal of refinement is to take an abstract description of a solution and develop 

a more precise description which can be shown to be a correct representation of the initial 

description.  The process of stepwise refinement provides a sequential composition of 

refinements where each refinement introduces new detail and is shown to preserve all 

previous properties [Sri95].  The refinement process in Specware consists of an initial 

specification that expresses the high level requirements and then continues with 

refinement specs that indicate design and implementation decisions.  Thus the stepwise 

refinement of specifications proves the existence of a valid implementation of the initial 

specification [Pav03].  The glue that connects each pair of refinement specs is the 

specification morphism. 
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In Specware the morphism from one specification (source) to another (target) is a 

property and structure-preserving mapping such that every type and op in the source spec 

is directly mapped to a type and op in the target spec.  The morphism allows us to speak 

of items (types, ops, axioms, and defs) in the target spec as images of items in the source 

spec.  The images of the axioms and definitions in the source spec are conjectures 

generated by Specware to be proven in the target spec.  Thus the morphism shows that all 

properties of the source spec are satisfied by the target spec.  Thus each level of 

refinement is shown to satisfy the conditions from the level above, providing a proof 

chain from the most concrete refinement to the initial specification [Kes04]. 

A morphism between two specifications is declared by indicating the source spec 

mapping to the target spec with a specialized arrow (i.e. +->) in between.  Specware will 

automatically map types and ops in the source spec to types and ops of the same name in 

the target spec.  If type names differ between specs, then the mapping between types 

must be made explicitly.  Every type and op in the source specification must map to 

another type and op in the target.  The syntactic elements of the morphism include the # 

symbol which is used to identify the particular spec within the file, and the +-> symbol 

which is the mapping symbol used to express individual element mapping.  An example 

morphism declaration is seen in Figure 6. 

 

Sample_Morphism =  

  morphism Source_Filename#Source_Spec ->  

    Target_Spec { 

       source_type1 +-> target_type1, 

       source_op1 +-> target_op1} 

Figure 6.   Sample Morphism Declaration 
 
 

3. Proof Obligations 
Proof obligations are properties regarding relationships of items within a 

specification and must be shown to be true in order for the specification to be correct.  
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Specware automatically generates proof obligations for definitions and the user can also 

state explicit obligations in the form of conjectures or theorems.  Proof obligations are 

also automatically generated for a morphism.  Proof obligations that are automatically 

generated within specs are typically related to type checking and op definitions.  

Automatically generated obligations do not appear within the original spec, and in order 

for the spec to be proven true, the user must invoke them by using obligations command. 

This command can be present in the definition of a unit, as seen in Figure 7 or it can be 

given from the Specware shell in combination with the show command.  We will discuss 

the Specware shell environment in the next section. 

Once the obligations have been invoked, they can then be proved using the prove 

command [Kes04].  Obligations must be proved one at a time, but not necessarily 

sequentially.  For organization purposes, we found it beneficial to maintain a separate file 

containing only proof units which assigns proof obligations unique identifiers.  This 

allowed us to select which proofs should be attempted in a proving session as opposed to 

attempting all proofs in every proving session.  Figure 7 is an example of a file that 

assigns proof obligations from a given spec to a unit and it also demonstrates assigning 

individual proof obligations from the same spec to proof units.  Note that a unit 

references a label to an assigned element in Specware (e.g. p1 is a unit). 

 

   spec_obligations = obligations File#Sample_Spec 

   p1 = prove obligation1 in File#spec_obligations 

   p2 = prove obligation2 in Spec#spec_obligations 

Figure 7.   Proof and Obligation Declarations 

 

This technique allows for unambiguous identification of obligations and provides 

a reference when analyzing the log files associated with each proof attempt.  If the 

theorem prover is not able to prove the claims, this does not mean that the proof does not 

exist as the theorem prover may not be smart enough to figure it out.  If a proof fails, the 

user can walk through the proof by hand and determine if a solution exists or if the 
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specification needs modification.  Obligations associated with a morphism can be seen 

using the show obligations command within the Specware shell.  The Specware 

processor will generate a separate spec which will contain all obligations necessary to 

satisfy the morphism [Kes04].  Figure 8 shows the way to view our Sample_Morphism 

oblgations from within the Specware shell. 

 

show obligations Filename#Sample_Morphism 

Figure 8.   Morphism Obligations 

 

4. Specware Shell 
The processing of Specware specifications is performed within the Specware 

shell.  The Specware shell is a command line environment.  The Specware distribution 

package comes with XEmacs which can run the Specware shell, but the Specware shell 

can be run outside of XEmacs.  XEmacs provides some features, such as syntax 

highlighting, that are useful for spec development in MetaSlang.  The Specware shell 

contains several commands including basic file system operations such as cd and dir but 

also commands specific to processing Specware units such as the proc and show 

commands.  The show command can be used to display the contents of units or proof 

obligations.  Within the Specware shell, the user can create and process specs, generate 

proof obligations, send obligations to a theorem prover, and even evaluate constructive 

MetaSlang expressions [Kes04].  Readers are encouraged to review the Specware 

documentation to become more familiar with the Specware shell and development 

environment. 

 

C. SUMMARY 
In summary, Specware is a tool intended to aid in the process of formal software 

development through the use of stepwise refinement.  The mathematical foundation of 

Specware refinement is category theory which provides a mathematical foundation for 

describing the relationships between objects and operations.  This foundation allows us to 

describe and prove the relationship between specifications.  Specifications are written in 
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MetaSlang.  Specs contain types, ops, and claims (e.g. axioms, conjectures, and theorems) 

which formally represent the logic of a specific problem domain.  The concept of 

stepwise refinement is achieved through the use of morphisms.  A morphism is a 

relationship between specifications that describes how the properties of one map to the 

properties of another.  All conditions of the source spec must be satisfied in the target 

spec in order for the morphism to be proper.  Thus final refinement specification is shown 

to preserve the properties from the abstract specification.   

Next we will analyze how Specware and its refinement features support the 

verification of high assurance systems.  We will describe the development of a formal 

model in Specware based on a separation kernel security policy.  Then we will describe 

the development of an FTLS in Specware as a refinement of the model.  We will use the 

morphism feature in Specware to achieve the interlevel mapping and thus demonstrate 

refinement, which is required by the formal methods process.  
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IV. SPECWARE AND THE VERIFICATION PARADIGM 

A. SEPARATION KERNEL OVERVIEW 
To conduct our analysis of Specware within the verification paradigm we chose to 

create a policy model and FTLS of a separation kernel.  A separation kernel provides a 

partitioning of all system resources under its control into blocks such that actions taken 

by active entities within any particular block are isolated and undetected by entities in 

other blocks.  A separation kernel achieves this partitioning and isolation of entities 

through management and virtualization of shared resources such that each block is 

assigned a resource set over which it believes itself to have complete control.  The only 

manner in which a block might communicate with another block is if a means for 

communication has been established explicitly.  Such information flow properties are 

desirable in environments where certain flows are allowed based upon a flow policy.  

One example might be a Multi-Level Secure (MLS) system that manages a flow policy 

between different classification levels of data.  Levin, Irvine, and Nguyen defined a 

model for a static separation kernel which provides least privilege information flow 

[Lev04].  For a comprehensive understanding of this model we recommend referencing 

the paper, but we will provide an overview of the model and discuss its specification 

within Specware. 

The least privilege separation kernel model consists of a set of resources, a set of 

operations, a set of modes of flow (i.e. Read, Write, Read & Write), a distinct partitioning 

of the resources into a set of blocks, a block-to-block flow function, and a subject-to-

resource flow function.  The set of resources is composed of internal resources, i.e. those 

which are only available to the kernel, and exported resources to which an explicit 

reference is possible via the separation kernel interface [Lev04].  The set of resources is 

partitioned into blocks, where every resource belongs to one and only one block.  

Subjects are a subset of exported resources which represent the active entities of the 

system, such as processes, programs, etc.  Subjects can invoke certain modes of flow with 

respect to other exported resources.  The notion of this flow is called an effect, which 

consists of a subject, resource, and mode of flow.  Note that the resource can be another 

subject, the only stipulation being that within an effect, the resource, or passive entity, is 
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an exported resource.  The set of all possible effects is the cross product of the set of 

subjects, exported resources, and modes of flow.  Next the model describes the notion of 

the flow policy.  The flow policy dictates what types of flows are allowed between 

blocks, and what types of flows are allowed between subjects and resources.  The block-

to-block flow function defines the set of allowed flows between blocks.  The subject-to-

resource flow function defines the set of allowed flows between subjects and exported 

resources.  Thus the subject-to-resource flow function and the block-to-block function 

together express the flow policy. 

An operation is associated with a set of effects.  For example, if the separation 

kernel includes a read operation, there might be several effects associated with that read 

depending on the implementation of the operation.  Thus all operations possess a set of 

effects.  The notion of a secure operation is defined as an operation in which all of its 

effects are considered secure.  A secure effect is one in which the given flow between the 

subject and resource is allowed by the policy, as well as the flow between the blocks in 

which the subject and resource reside is allowed by the policy.  Finally a secure system is 

one in which all of its operations are secure [Lev04].  The paper also goes on to describe 

the notion of partial ordering of blocks and a trusted partial ordering using trusted 

subjects; but for this work we did not implement the trusted partial ordering and refer the 

reader to the paper for a more comprehensive understanding of this aspect.  Next we will 

describe our specification of the model within Specware. 

 

B. DESCRIPTION OF SEPARATION KERNEL MODEL IN SPECWARE 

1. Type Declarations 
As described earlier, once the security policy has been clearly defined, the next 

step is to represent the policy in a formal model.  The model states the essence of the 

policy in a basic security theorem, which must be proved in order to verify that the model 

is consistent with the policy.  In this section we describe the specification of the 

separation kernel model written in Specware’s Metaslang.  The complete specification for 

the separation kernel model is given in Appendix A.  First we declare a type called 

Resource which indicates the set of all resources available to the kernel.  We then 

proceed to define a subtype Exported_Resource which indicates all resources which are 
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not internal to the kernel.  Figure 9 shows the declaration of Resource and 

Exported_Resource. 

 

 

type Resource 

  op exported? : Resource -> Boolean 

type Exported_Resource = (Resource | exported?) 

 

Figure 9.   Resource and Exported_Resource type declarations  

 

In Specware we declare Exported_Resource as a subtype using a predicate that 

satisfies some condition indicating that it is an exported resource.  This condition is left 

abstract and does not need to be defined in the model.  Next we define subtype of 

Exported_Resource called a Subject.  We declare Subject as a subtype in a very similar 

fashion as we defined the subtype Exported_Resource by using a predicate that must be 

true in order for it to be a subject.  The definition of the subject predicate is left abstract 

in the model, but in the FTLS we refine the definition of the predicate.  Notice that 

constructing subtypes in this manner provides a proper containment of elements such that 

Subject is a subset of Exported_Resource which is a subset of Resource.  Figure 10 shows 

the declaration of subtype Subject. 

 

 

  op subject? : Exported_Resource -> Boolean 

type Subject = (Exported_Resource | subject?) 

 

Figure 10.   Subject type declaration 
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Following the Subject declaration we complete the type declarations by declaring 

the Block, Mode, Effect, and Operation types.  The Block declaration utilizes the Sum 

type feature in Specware, which allows a partitioning of the type being declared.  Thus 

for our Block declaration we declare names for blocks with which resources will later be 

associated.  We use the terms High, Medium, and Low to represent how separation 

kernels are sometimes used, but these are merely labels and will have no semantic 

designation.  Type Mode indicates the modes of flow that are taking place in the system 

and is declared in a similar fashion to Block such that the only modes of flow are RD (for 

Read), WR (for Write), RW (for Read/Write), and NULL.  The declaration of the Effect 

type uses what is known in Specware as a record type where each effect consists of a 

subject which is of type Subject, a resource which is of type Exported_Resource, and a 

flow which is of type Mode.  The final type declaration is an Operation which consists of 

a List of effects, or all the effects that are associated with each operation.  Figure 11 

shows the final type declarations. 

 

   

  type Block = | High | Medium | Low 

  type Mode = | RD | WT | RW | NULL 

  type Effect = {subject: Subject, 

         resource: Exported_Resource, 

         flow: Mode} 

  type Operation = List Effect 

 

Figure 11.   Block, Mode, Effect, and Operation type declarations 

 

2. BB, SR, and Partition Function Declarations 
Following the type declarations we declare functions that allow us to express the 

allocation of the resources to blocks as well as determine what types of flows are allowed 

between blocks and what types of flows are allowed between subjects and resources.  
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First we declare a polymorphic predicate that is used to indicate which entity is the active 

entity for both policies.  This predicate is given the name active?, where the general 

convention for predicates is to end their names with a question mark signifying that it is a 

Boolean expression.   

Next we declare the BB function which represents the block-to-block flow policy.  

This function takes two blocks, b1 and b2, where b1 is the block of the active entity that 

causes the flow.  The function returns the list of modes of flow that subjects in b1 are 

allowed to perform on resources in b2.  We make this distinction in order for the model to 

be able to express a policy which allows, for example, the flow [b1, b2, RD], but does not 

allow the flow [b2, b1, WR].  In this case, the direction of the flow is the same 

(information is flowing from b2 to b1), however, the cause of the flow is different.  

The SR function represents the subject-to-resource flow policy and is declared in a 

similar fashion as the BB function.  The SR function takes a subject and exported resource 

as parameters, where the subject is the active entity, and returns a list of modes flow that 

the subject is allowed to perform on the exported resource.  Note that this policy 

definition allows flows between two subjects, since subjects are defined as exported 

resources, which is why we declare the Subject to be the active entity.   

Finally we declare the Partition function which takes an exported resource as 

input and returns the block in which it resides.  In Specware, when a function is declared 

it is naturally assumed to be well-define and no constraint is needed to discuss its totality.  

Thus the Partition function is total, such that every exported resource is assigned to 

exactly one block, but multiple resources could map to the same block.  Note that we 

need not define how the policy relations are populated.  This is a convenient abstraction 

leaving the details of the initialization of these policies as a refinement.  Figure 12 shows 

the declarations of these functions.  

 

 

  op active? : [a] a -> Boolean 

  op BB : {(b1,b2): Block*Block |  
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                    active? (b1)} -> List Mode 

  op SR : {(s1,r2): Subject*Exported_Resource |  

                    active? (s1)} -> List Mode 

  op Partition : Exported_Resource -> Block  

 

Figure 12.   active?, BB, SR, and Partition Function Declarations 
 
 

3. Policy Description Functions – SecureEffect and SecureOP 
Now that we have described the types and functions that exist within the system, 

we need to express certain qualities about the security of the system.  We do this by 

defining what it means for an effect and an operation to be secure.  As mentioned 

previously a secure effect is an effect in which the flow is allowed based on the subject-

to-resource and the block-to-block flow policies.  Thus we can declare a function called 

SecureEffect which returns true if the effect is in fact secure.  The definition of 

SecureEffect states that either the flow is NULL, which means that the subject will 

perform no action on the resource, or the flow is allowed by the BB and SR functions.  

Once we have the notion of a secure effect we can describe a secure operation in which 

all effects associated with the operation are secure. SecureOP is defined as an iterative 

search through the list of effects associated with the operation.  The iteration clause states 

that if the operation consists of a head element, hd, and a tail, tl, which is another list of 

elements, then continue the process through the list by checking the head and recursively 

processing the tail. If all of the effects are found to be secure, then the entire operation is 

considered to be secure and the function will return true.  Figure 13 shows the definition 

of SecureEffect and SecureOP. 

 

 

%Policy Description 

  op SecureEffect : Effect -> Boolean 
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 def SecureEffect (effect) =  

    (effect.flow = NULL || 

    (member(effect.flow, BB(Partition(effect.subject),  

                            Partition(effect.resource))) 

   && 

   member(effect.flow, SR(effect.subject,  

                            effect.resource)))) 

 

  op SecureOP : Operation -> Boolean 

 def SecureOP (operation) = case operation of 

                            | nil -> true 

                            | Cons(hd, tl) -> 

                                 (SecureEffect(hd) && 

            SecureOP(tl)) 

 

Figure 13.   SecureEffect and SecureOP definitions 

 

4. Model Axiom and Basic Security Theorem 
Before we can state the basic security theorem we need to include an axiom to 

support the basic security theorem.  The axiom operations states that for all effects and 

operations, if an effect is a member of an operation, then its flow is either RD, WT, or RW 

and the flow is allowed by the BB and SR policies.  Essentially this implies that all effects 

in an operation are secure, which implies that the operation is secure.  In our initial 

development of the model we defined three operations that met the same properties as 

this axiom; however, we encountered mapping problems with our initial approach and 

resorted to stating this axiom.  The mapping problem we encountered regarded the fact 

that we could not map multiple operations in the FTLS to only one operation in the 
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model.  We will discuss this mapping problem further in Chapter V, Section C-6.  It is 

important to remember the operations axiom because it will become a conjecture in the 

FTLS which must be proved based on our definitions of the operations. 

Finally we can state the theorem which must be proved in order to ensure that the 

system is secure.  The theorem plainly states that in order for the system to be secure, all 

operations must be secure.  This is proved using the definitions and axioms we have 

already described.  The basic security theorem does prove within Specware using Snark.  

Figure 14 shows the declarations of the axioms and security theorem. 

 

 

  %Axiom 

      axiom operations is 

        fa(e: Effect, o: Operation)  

      member(e,o) =>  

       (e.flow = RD &&  

        member(e.flow, BB(Partition(e.subject),  

                              Partition(e.resource))) && 

        member(e.flow, SR(e.subject, e.resource))) 

       || 

       (e.flow = WT &&  

        member(e.flow, BB(Partition(e.subject),  

                              Partition(e.resource))) && 

        member(e.flow, SR(e.subject, e.resource))) 

       || 

       (e.flow = RW &&  

        member(e.flow, BB(Partition(e.subject),  
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                              Partition(e.resource))) && 

        member(e.flow, SR(e.subject, e.resource))) 

 

  %Theorem 

    theorem Secure is 

            fa(o: Operation) SecureOP(o) 

 

Figure 14.   Model Axioms and Basic Security Theorem 

 

It can be seen that the model for the separation kernel security policy is fairly 

concise and yet provides enough detail to accurately express the security policy.  The 

model is a significant progression towards the implementation and can now be refined 

through morphisms in Specware.  Since the security theorem has been proved in the 

model, if we can prove that the FTLS satisfies the morphism theorems, then it too will 

satisfy the security theorem in the model.  The FTLS will provide greater detail of the 

separation kernel and will provide more concrete descriptions of abstract concepts 

presented in the model. 

 

C. DESCRIPTION OF SEPARATION KERNEL FTLS IN SPECWARE 

1. FTLS Type Declarations 
In the model many type declarations were undefined abstractions.  In the FTLS, 

we refine the type declarations to more closely indicate how the implementation will 

represent those types.  The complete FTLS is given in Appendix B, which is a subset of 

the Least Privilege Separation Kernel FTLS.  In the FTLS we declare the type Object 

which represents a more concrete description of the Resource declared in the model.  In 

the FTLS an object can either be a process with a unique ID, a segment in memory with a 

unique ID and a size, an eventcount, or a sequencer.  Reed & Kanodia describe how 

eventcounts and sequencers can provide process synchronization of execution without the 

need for mutual exclusion [Ree79].  As a result, sufficient process synchronization can be 
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achieved within the bounds of secure information flow.  It is recommended to read the 

work of Reed & Kanodia to have a better understanding of how eventcounts and 

sequencers manage information flow and process synchronization. 

After the declaration of the Object type, we refine the concept of a Subject by first 

using the same method for declaring an exported object as in the model.  There is no 

difference between the declaration of an exported object in the FTLS and an exported 

resource in the model.  Since all subjects are exported objects, but not all exported 

objects are subjects, we defined an abstract predicate in the model called subject?.  In the 

FTLS we refine the same predicate regarding a subject by stating that a subject is a 

process.  We achieve this by constructing the predicate to be true if there exists a natural 

number such that the object given as input to the predicate equals the process associated 

with the number.  The rest of the declarations in the FTLS are the same as in the model, 

except in the FTLS we declare type Transform as opposed to Operation.  Figure 15 

shows the FTLS type declarations. 

 

   

%Types 

     type Object = | Process {id: Nat} 

                   | Segment {id: Nat, size: Nat} 

                   | EventCT (Nat) 

                   | Sequencer (Nat) 

       op exported? : Object -> Boolean 

     type Exp_Object = (Object | exported?) 

 

       op subject? : Exp_Object -> Boolean 

      def subject? (process) =  

           ex(n: Nat) process = Process {id=n} 
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     type Subject = (Exp_Object | subject?) 

 

     type Block = | High | Medium | Low 

     type Mode = | RD | WT | RW | NULL 

     type Effect = {subject: Subject, 

                    resource: Exp_Object, 

                    flow: Mode} 

     type Transform = List Effect 

 

Figure 15.   FTLS Type Declarations 

 

2. FTLS Function Declarations 
The function declarations in the model were only refined slightly in the FTLS; 

however, we added another detail regarding the system with the notion of a 

CurrentAccess table.  This is similar to the current access matrix described in the Bell & 

Lapadula model, which is an abstraction of the hardware segment descriptors through 

which access to memory is controlled [Bel73].  For example, the kernel substantiates a 

processes right to access the memory protected by a descriptor before providing it to the 

process.  Thereafter, the process has “current access” such that it can access memory 

without kernel mediation.  Thus the CurrentAccess table represents the processor local 

descriptor table.  We also state some basic axioms regarding the state of the effects of the 

system such that an effect is in the CurrentAccess table, only if it is in the SR table.  

Similarly we state that an effect is in the SR table, only if it is in the BB table.  As in the 

model, the combination of the SR and BB tables represent an encoding of the security 

policy.  The addition of the CurrentAccess table allows us to express properties regarding 

effects associated with transforms.  Figure 16 shows the FTLS function declarations 

including the CurrentAccess and axiom declarations. 
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  op active? : [a] a -> Boolean 

  op CurrentAccess :  

            Subject * Exp_Object * Mode -> Boolean 

 

  op BB : {(b1,b2): Block*Block |  

                    active? (b1)} -> List Mode 

  op SR : {(s1,r2): Subject*Exp_Object |  

                    active? (s1)} -> List Mode 

  op Partition : Exp_Object -> Block  

   

axiom CurrentAccess_implies_SR is 

     fa(e: Effect)  

     CurrentAccess(e.subject, e.resource, e.flow) => 

       member(e.flow, SR(e.subject, e.resource)) 

 

axiom SR_implies_BB is 

     fa(e: Effect)  

       member(e.flow, SR(e.subject, e.resource)) => 

         member(e.flow, BB(Partition(e.subject),  

                           Partition(e.resource))) 

 

Figure 16.   FTLS Function Declarations and CurrentAccess Axioms 
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Following the function declarations in the FTLS, we include the model’s security 

policy descriptions of the active?, BB, SR, and Partition functions (see Figure 12), which 

need no further refinement.  The following section discusses the declarations of the 

transforms. 

 

3. FTLS Transforms 
In the separation kernel model we declared there to be a type or set of 

Operation(s) and we did not further discuss any members of the set within the model.  

We simply left them as an abstraction and constrained properties regarding all operations.  

As mentioned previously, we refine the abstract type Operation in the FTLS to be a type 

Transform.  We then enumerate all the transforms that will exist in the system.  In 

Specware, we can define an element of a certain type by declaring an op of the desired 

type.  We can also provide certain constraints within this declaration as well.  Since a 

transform is a list of effects, we want to ensure that if an effect is a member of the 

transform then it satisfies certain properties.  This is also vital to uphold the proof that the 

FTLS is a proper refinement of the model. 

In the FTLS we declare seven transforms: HW_Read, HW_Write, Read_Write, 

Ticket, Read_EventCT, Adv_EventCT, and Await_EventCT.  These all have certain 

semantics, so rather than declare them all to be of type Transform, we can add constraints 

within the declaration.  This also eliminates the need for axioms that convey these 

constraints later in the specification.  An example of such constraints can be seen in the 

definition of HW_Read.  We want to ensure that if an effect is a member of HW_Read, 

then the effect’s flow is of type RD and the effect is actually allowed based on the 

CurrentAccess table.  Each transform has similar but not exact constraints.  Figure 17 

shows the declarations of the transforms. 

 

 

op HW_Read :  

  {t1: Transform | fa(e: Effect)  
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                     member(e, t1) =>  

                       (e.flow = RD &&  

                        CurrentAccess(e.subject, 

                                      e.resource, 

                                      e.flow))} 

 

op HW_Write :  

  {t2: Transform | fa(e: Effect)  

                     member(e, t2) =>  

                       (e.flow = WT &&  

                        CurrentAccess(e.subject, 

                                      e.resource, 

                                      e.flow))} 

 

op Read_Write : 

  {t3: Transform | fa(e: Effect)  

                     member(e, t3) =>  

                       (e.flow = RW &&  

                        CurrentAccess(e.subject, 

                                      e.resource,  

                                      e.flow))} 

 

op Ticket :  

  {t4: Transform | fa(e: Effect)  
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                     (member(e, t4) => 

                        (e.flow = RW &&  

                         CurrentAccess(e.subject,  

                                       e.resource,  

                                       e.flow))) 

                         && 

                         length(t4) = 1} 

 

op Read_EventCT :  

  {t5: Transform | fa(e: Effect)  

                     (member(e, t5) => 

            (e.flow = RD &&  

                         CurrentAccess(e.subject,  

                                       e.resource,  

                                       e.flow))) 

             && 

             length(t5) = 1} 

op Adv_EventCT :  

  {t6: Transform | fa(e: Effect)  

                     (member(e, t6) => 

            (e.flow = WT &&  

                         CurrentAccess(e.subject,  

                                       e.resource,  

                                       e.flow))) 
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             && 

             length(t6) = 1} 

 

op Await_EventCT :  

  {t7: Transform | fa(e: Effect)  

                     (member(e, t7) => 

             (e.flow = RD &&  

                          CurrentAccess(e.subject,  

                                        e.resource,  

                                        e.flow))) 

              && 

              length(t7) = 1} 

 

Figure 17.   Transform Declarations 

 

These declarations indicate specific elements of the type Transform.  Thus the 

only remaining constraint we need regarding transforms is to declare that these are the 

only transforms that exist in the system.  We also state some constraints regarding the 

resources within the effects of each transform.  We provide these constraints as axioms 

discussed in the next section. 

 

4. FTLS Axioms 
The only additional semantics that need to be defined in the FTLS pertain to the 

transforms that have been declared.  These semantics are achieved through the axioms 

seen in Figure 18.  First we need to ensure that the transforms declared are the only 

transforms in the system.  We do this through an axiom stating that for every entity of 

type transform must be one of the seven declared transforms.  Another constraint 
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regarding transforms pertains to their effects.  Each transform contains a list of effects 

and each effect contains a resource.  We need to constrain the resources of effects 

associated with certain transforms based on the nature of the transform.  For the 

HW_Read, HW_Write, and Read_Write transforms, their resources should be segments.  

The resources of Ticket should be sequencers, and the resources of the Read_EventCT, 

Adv_EventCT, and Await_EventCT should be an eventcount.  These constraints were not 

included as part of the transform declarations mainly to reduce redundancy within the 

declarations and to provide clarity of the sets of transforms associated with each type of 

resource.  We add these constraints through two axioms stating that if a transform is 

equal to HW_Read, HW_Write, or Read_Write, then for all of its effects there exists a 

segment that equals each effect’s resource.  The same is done for the eventcount axiom as 

seen in Figure 18. 

 

 

axiom only_ops is 

      fa(t:Transform) t = HW_Read       ||  

          t = HW_Write      ||  

          t = Read_Write    || 

          t = Ticket        || 

          t = Read_EventCT  || 

          t = Adv_EventCT   || 

          t = Await_EventCT  

axiom Segment_as_Object is 

      fa(e: Effect, t: Transform) 

    ex(n1: Nat, n2: Nat) 

     ((t = HW_Read)     ||  

      (t = HW_Write)    ||  
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      (t = Read_Write)) && 

     member(e, t) => 

                e.resource = Segment{id=n1, size=n2} 

 

    axiom EventCT_as_Object is 

          fa(e: Effect, t: Transform) 

        ex(n: Nat) 

         ((t = Read_EventCT)   || 

          (t = Adv_EventCT)    || 

          (t = Await_EventCT)) && 

         member(e, t) =>  

                    e.resource = EventCT (n) 

 

    axiom Ticket_as_Object is 

          fa(e: Effect, t: Transform) 

        ex(n: Nat) 

        (t = Ticket) && 

         member(e, t) => e.resource = Sequencer (n) 

 

Figure 18.   FTLS Transform Axioms 
 

The FTLS is now complete and now we must show that it preserves the security 

properties of the model.  The next section describes the morphism and the associated 

proof obligations. 
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D. MORPHISM IN SPECWARE 
The mapping between the model and the FTLS is done through Specware’s 

morphism capability.  Every entity in the source must map to an entity in the target in 

order for the morphism to be correct.  Specware does a good job of pattern matching in 

morphisms, thus it will automatically map entities with the same names without an 

explicit declaration.  For example, in the separation kernel model we declare a type 

Subject and we also declare a type Subject in the FTLS.  Thus in the mapping Specware 

automatically maps the model Subject to the FTLS Subject.  Therefore, the only explicit 

declarations we need to make in the morphism are the mappings from entities in the 

model that do not have the same name as their corresponding entities in the FTLS.  We 

declare the morphism as a separate unit within Specware which allows us to generate 

proof obligations based on that unit.  The morphism consists of mapping the type 

Resource to type Object, type Exported_Resource to type Exp_Obj, and type Operation 

to type Transform.  All other mappings do not need explicit declaration, but could be 

added for clarity.  The morphism will process successfully through the syntax checker 

and prover if all entities have been mapped appropriately such that all properties and 

structures are preserved.  As a result of the morphism, all definitions of operations and 

axioms in the model become conjectures that must be proven in the FTLS.   

Figure 19 shows the morphism and Figure 20 shows the associated conjectures 

generated by the show obligations command given within the Specware shell.  We 

defined the morphism as the unit Mapping.  The morphism between the model and the 

FTLS generates conjectures based on the definitions of SecureEffect and SecureOP, and 

the operations axiom.  The SecureEffect and SecureOP conjectures appear as a result of 

using the op structure to define macro logic in the model.  Normally we would not expect 

these functions to appear in the FTLS because they are only used to bring clarity to the 

definition of a “secure system”.  Another interesting item to note is that when we 

generated the proof obligations for the morphism, Specware produced two obligations 

with the same name, SecureOp_def.  We defined two separate proof units in order to try 

to prove each obligation; however, we could not verify that we were actually 

disambiguating the two obligations.  We are not sure as to the reason Specware generated 

two conjectures with the same name, but this was the only point when we encountered 
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this problem and we will discuss this further in Chapter V.  One other bug within the 

morphism obligations resides in the definition of Secure_OP_def where it refers to 

Operation.  This should refer to Transform (since it is being proved based on the FTLS) 

as seen in the operations conjecture.  It is not known why this bug occurred, and will 

hopefully be addressed in the future.   

 

 

Mapping =  

morphism final_model#model ->  

         final_ftls#ftls{Resource +-> Object, 

           Exported_Resource +-> Exp_Object, 

         Operation +-> Transform} 

 

Figure 19.   Morphism Declaration 

 

 

conjecture operations is  

    fa(e : Effect, o : Transform)  

     member(e, o) => 

        e.flow = RD && 

        member(e.flow, BB(Partition(e.subject),  

                          Partition(e.resource))) && 

        member(e.flow, SR(e.subject, e.resource))  

        ||  

        e.flow = WT &&  

        member(e.flow, BB(Partition(e.subject), 
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                          Partition(e.resource))) &&  

        member(e.flow, SR(e.subject, e.resource))  

        || 

        e.flow = RW && 

        member(e.flow, BB(Partition(e.subject),  

                          Partition(e.resource))) && 

        member(e.flow, SR(e.subject, e.resource)) 

 

conjecture SecureEffect_def is  

    fa(effect : Effect)  

        SecureEffect effect =  

          (effect.flow = NULL  

           || member(effect.flow, 

                     BB(Partition(effect.subject), 

                        Partition(effect.resource)))  

              && member(effect.flow, SR(effect.subject, 

                                        effect.resource))) 

 

conjecture SecureOP_def is  

    fa(nil : Operation)  

     fa(operation : Operation)  

        nil = operation => SecureOP operation = true 
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conjecture SecureOP_def is  

    fa(hd : Effect, tl : List(Effect))  

     fa(operation : Operation)  

        ~(nil = operation) &&  

        Cons(hd, tl) = operation => 

                        SecureOP operation =  

                          (SecureEffect hd && SecureOP tl) 

 

Figure 20.   Morphism Proof Obligations 

 

We have now completed the construction of the formal model and FTLS and 

shown the mechanism for the interlevel mapping.  In Chapter V we discuss the analysis 

of Specware, within the verification paradigm, against the evaluation criteria presented in 

Chapter II.  
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V. ANALYSIS OF SPECWARE AGAINST EVALUATION 
CRITERIA 

A. INTRODUCTION TO ANALYSIS 
The previous chapter discussed our development of the separation kernel formal 

model, FTLS, and interlevel mapping.  In this chapter we will critique the process of our 

experiment and present our analysis of Specware for use in the verification of high 

assurance systems.  We based our analysis on a set of evaluation criteria.  The evaluation 

criteria were motivated by prior work in the evaluation of verification systems by 

Ubhayakar [Ubh03].  Further motivation was based on requirements set forth by the 

Trusted Computing Exemplar (TCX) project [Irv04].  We will provide a brief overview 

of the evaluation criteria and then present our analysis of Specware. 

 

B. OVERVIEW OF EVALUATION CRITERIA 
In this experiment, we analyzed Specware’s capabilities in eight key areas.  These 

areas represent properties that a verification system must exhibit in order to be effective 

in the verification of high assurance systems.  The eight properties provide the basis for 

our analysis of a verification system (or “tool”) and are: product maturity, usability of the 

tool and its verification environment, theorem proving capabilities, specification 

language, executable specifications, multiple levels of abstraction, automatic generation 

of conjectures, and semantics.  Product maturity relates to the age and current support of 

the system as well as its popularity in terms of past and current projects.  Usability of the 

tool and its verification environment refers to how complicated the system is for users 

and the level of training required to use the system effectively.  A tool’s theorem proving 

capabilities must be adequate in order to provide the assurance that the specifications 

satisfy the requirements.  Not only must the theorem prover be capable of proving 

complex theorems, but it also must provide intuitive dialog with the user regarding 

success or failure of proofs.  The specification language must be able to represent the 

logic of security theorems, state machines and at least first order logic with 

quantification.  The syntactic elements should be simple enough to allow for the entire 

development team to clearly understand the specification.  Executable specifications 
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provide the development team with a way to test certain aspects of the systems without 

the introduction of further detail.  The tool must be able to represent multiple levels of 

abstraction in order to provide a sequential progression from the abstract security policy 

to the concrete implementation, where each level is shown to map to the level above.  

The tool should also have the ability to automatically generate the full set of conjectures, 

based on the logic of the specification, which are required to prove the security and 

mapping theorems.  This is necessary in order to ensure that all obligations are satisfied 

and that subtle obligations are not overlooked.  And finally, the semantics of the 

verification system should be well founded such that the tool is expressive and does not 

prohibit efficient expression of system properties and formalisms.  Our analysis will 

consist of describing how well Specware incorporates these concepts.  Beyond these 

general requirements for verification of secure systems, several requirements are specific 

to certain systems and modeling approaches.  These requirements are that the tool suite 

should include a non-determinism checker, a flow analyzer, and a shared resource matrix 

generator.  We will discuss these requirements as future work and do not include them in 

our analysis of Specware. 

 

C. ANALYSIS OF SPECWARE 

1. Product Maturity 
When choosing to use a verification tool it is important that the tool has a 

reasonable level of maturity.  Product maturity has three measurable aspects: current 

product support, user training classes and tutorials, and quality of worked examples in the 

field.  Current support is important because the specifications being produced might 

require support from the tool’s developers in order to produce the correct semantics based 

on the syntactical elements of the language.  Support for the interface and development 

environment is also critical to timely and efficient production of specifications.  In 

addition, a more mature product might support training courses either from the vendor or 

a third party, which could prove valuable for new users and developers.  Product maturity 

is also important because it implies that the tool is actually in use on other projects, which 

can provide useful resources, documentation, and potential collaboration.  If the tool is 

not new and not in use on other projects, this should be a warning sign that the tool is not 
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very mature, not very useful, or has not succeeded in providing a beneficial alternative to 

other products.  In addition, more robust tutorials and examples covering a larger range of 

common issues might exist with a popular tool that has been on the market for a longer 

period of time. 

Specware has been under constant support and development since the mid 1990s.  

At the time of this writing it is in Version 4.1.3.  Customer support is readily available 

and custom queries are handled in a timely and efficient manner.  Although there does 

not exist a dedicated support group within Specware, it has been used on many projects to 

specify requirements and generate code.  Documentation regarding the theoretical 

foundations of Specware is easily found online.  Williamson mentions several projects 

which have used Specware [Wil01] including collaboration with Boeing, Motorola, and 

the NSA as noted by Widmaier [Wid00].  Specware can also provide training in the use 

of the tool and background in the language.  The current tutorial that is provided with 

Specware is a good example of requirements specification and refinement capabilities 

proceeding to code generation; however, the tutorial does not present an impressive 

display of the theorem prover and its automated verification capabilities.  Our analysis of 

the theorem prover will be presented later in this section.  Overall Specware is in a very 

mature state and has positive customer support.  It is popular for use in requirements 

specifications and for developing correct software. 

 

2. Usability of Tool and Verification Environment 
Within any development environment, the interface commands used to operate in 

the environment should be intuitive.  For projects with time constraints, spending more 

time learning the environment implies less time being spent on development.  The tool 

may be very powerful, but if users cannot function efficiently within the environment 

they may choose other tools of lesser quality, which may produce less satisfying results, 

but are easier to operate.  A graphical user interface (GUI) is also desired to avoid 

command line driven operations and to provide an integrated development environment 

(IDE).  However, the use of a GUI implies that its design is also adequate and simple.   If 

the GUI is not intuitive, then the command line interface might be more usable.  

Currently Specware operates in a command line driven basis.  Specware has its own shell 



46 

with unique commands used to perform certain operations on specifications.  The 

Specware shell can operate within XEmacs or as its own application outside of XEmacs.  

The XEmacs environment provides some features associated with an IDE such as the 

Specware menu that provides shortcuts to basic commands within the Specware shell.  

The XEmacs environment will also provide syntax highlighting of Specware 

specifications reflecting the syntax given in the Specware Language Manual [Kes04].  

These IDE-like features are only present in XEmacs if Specware is installed, thus these 

features are similar to a plug-in to XEmacs.  However, XEmacs does not provide a fully 

functional IDE as most commands to operate within Specware must still be given from 

the command prompt.  Commands that must be initiated from the shell include those 

associated with generating proof obligations as well as those for generating C and Java 

code. The commands to process and evaluate specifications within Specware are fairly 

simple and straightforward and are provided in the Specware user manual [Kes04].   

When developing the separation kernel model and FTLS, the usability of the 

Specware shell and development environment was not inhibiting or constrictive.  Overall, 

the Specware shell and commands were simple to understand and contained well 

documented support if any issues arose.  The Specware shell allows the user to interact 

efficiently with the system in order to perform the necessary operations upon the 

specifications.  Although it might be of interest to have a complete IDE that could be 

used to run Specware in the future, this could reside on top of the shell which provides 

the flexibility and power needed to produce and process specifications efficiently. 

The verification environment should help the developer to increase efficiency of 

producing specifications through features such as syntax highlighting, type checking, and 

error checking.  This is important because otherwise, specifications would be written in a 

simple text editor or even a on a piece of paper and it might be difficult to catch subtle 

errors or type inconsistencies.  If the development environment provides these features, 

the mistakes will be caught early in the process rather than persisting until the proof is 

attempted.  Currently Specware provides a syntax highlighting feature available through 

XEmacs, and when the proc command is issued from within the Specware shell, the 

processor checks the specification for type consistency as well as for common errors such 

as undefined parameters.  The error messages are provided directly in the Specware shell 



and when working in XEmacs, if an error is present, another buffer appears with the 

cursor placed at the line and column of the specification where error occurs.  When not 

working in XEmacs, the error is simply output to the Specware shell.  In both cases, the 

error messages contain the line and column position where the error occurs in the file.  

This provides the developer with a reference to be able to locate the error exactly.  An 

example of an error message is given in Figure 21. 

 
Figure 21.   Specware Error Messages 

 

Notice that in Figure 21, the first error states that on line eighteen column twenty-

six through line eighteen column thirty-three, there is an error with the sort resource and 

consequently there are many more errors related to resource.  This type of error checking 

is important to avoid wasting time due to syntax errors when the proofs are attempted, 

thus increasing the efficiency of specification writing. 

 

3. Theorem Proving 

The theorem proving capabilities of a verification tool are very important since 

the entire goal of the verification paradigm is to prove certain properties regarding the 

security policy.  As noted previously there are two basic types of theorem provers, 

automated and interactive.  Interactive theorem provers allow the user to guide the prover 

in proof steps whereas the automated provers simply attempt the proofs without user 

intervention.  For small problems, model checkers can also be used, but for larger 
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problems model checkers cannot completely exhaust all possible states and offer little 

assurance.  Several characteristics distinguish theorem provers.  One useful characteristic 

is that the theorem prover should be easily integrated into the verification environment.  

For example, the specification processor should automatically prepare the specification to 

be input to the prover.  This means that the user does not need to modify the specification 

in order to be able to invoke the prover.  The theorem prover should also provide 

meaningful error messages when it finds errors or is unable to finish a proof.  In addition, 

the prover should have adequate capabilities to log attempted and completed proofs.  This 

is useful because it allows the user to trace the steps of the prover and perhaps recognize 

the problem if a proof has failed.  It also allows the user to trace through the steps of the 

proof upon success in order to gain better understanding of how the proof was 

formulated.   

Specware currently interfaces with the Snark first-order theorem prover [Kes04].  

Snark is an automated theorem prover and Specware automatically pre-processes 

specifications to send to the Snark prover.  Thus the user need not manipulate completed 

specifications in order to prove obligations and by issuing the prove command within the 

Specware shell, Specware will invoke Snark to prove a given unit.  Once Snark has been 

invoked it will automatically attempt a proof of the unit and will return with a message in 

the Specware shell indicating whether or not the conjecture or theorem was proved or 

not.  Snark also creates a log file of its processing on the given unit.  In its raw form, the 

log file is not intuitive, and its comprehension was beyond the scope of this thesis.  When 

a proof has succeeded, it is difficult to trace the log file to see what steps were taken to 

complete the proof.  Similarly, when a proof has failed, Snark does not generate any type 

of helpful error messages and tracing through the log file is not possible without training 

in Snark.  Figure 22 shows an unsuccessful proof attempt from within the Specware shell, 

Figure 23 shows a successful proof attempt and Figure 24 shows a snapshot of a Snark 

log file for the successful attempt.  Note however, that the structure of the log file is the 

same regardless of whether or not the proof was successful.  Even though the content of 

the log file is different based on success or failure, it remains extremely difficult to read 

without extensive knowledge of Snark. 
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* proc /test_oblig 

… 

Expanded spec file: /Program Files/Specware/Snark/..sw 

Snark Log file: /Program Files/Specware/Snark/..log 

Conjecture SecureOP_Obligation is NOT proved. using Snark. 

* 

Figure 22.   Unsuccessful Proof Message 

 

* proc /test_oblig 

… 

Expanded spec file: /Program Files/Specware/Snark/..sw 

Snark Log file: /Program Files/Specware/Snark/..log 

Theorem Secure in final_model#model is Proved! using 

Snark. 

* 

Figure 23.   Successful Proof Message 

 

    :NAME :|unary_minus_injective_on_positives|) 

  (SNARK::ASSERT 

     '(SNARK:ALL ((SNARK::|?n| :SORT NUMBER)) 

       (MES:IMPLIES (AND (>= SNARK::|?n| 0) 

                         (SNARK::|Nat.posNat?| 

SNARK::|?n|)) 

                    (= (- 0 (- 0 SNARK::|?n|)) 

SNARK::|?n|))) 
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    :NAME :|minus_negative|) 

  (SNARK::ASSERT '(= (- 0 0) 0) :NAME :|minus_zero|) 

  (SNARK::ASSERT 

     '(SNARK:ALL ((SNARK::|?i| :SORT NUMBER)) 

       (= (- 0 (- 0 SNARK::|?i|)) SNARK::|?i|)) 

 

    :NAME :|unary_minus_involution|) 

  (SNARK::ASSERT '(SNARK::|Functions.bijective?| -) 

    :NAME :|unary_minus_bijective|) 

  (SNARK::ASSERT 

     '(SNARK:ALL ((SNARK::|?i| :SORT NUMBER)) 

       (AND (= (+ SNARK::|?i| 0) SNARK::|?i|) 

            (= (+ 0 SNARK::|?i|) SNARK::|?i|)))    :NAME 

:|unary_minus_injective_on_positives|) 

 

Figure 24.   Snapshot of Snark Log File 

 

Naturally it would be helpful to know why a conjecture did not prove and the only 

approach to figuring this out is to look into the log file given by Snark.  However, the log 

file does not provide a clean representation of the approach the prover took and every log 

file is of substantial length.  The log for the successful proof of the security theorem in 

the separation kernel model, partially shown in Figure 24, was eighty-seven pages long.  

However, through working with the proof obligations in Specware, we noticed that most 

of the other obligations did not prove in Snark even when it was intuitive that the 

obligation was provable.  In this case, without Snark training, the options are to verify the 

proof by hand or declare an axiom regarding the obligation in the specification. 
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Overall Snark does not succeed often in proving more complicated theorems and 

it seems necessary to construct the axioms and definitions in such a manner as to 

guarantee that the prover will succeed.  But this approach inhibits the developer and 

limits the clarity and expressiveness of specifications, which is not an acceptable option.  

For example, in an earlier version of our FTLS specification we included the ex1 

quantification in order to express that there exists a unique element in the set, which is 

perfectly acceptable in Specware’s MetaSlang.  When we attempted the proof of the 

theorem, the prover generated an error indicating that it could not handle the uniqueness 

quantification, resulting in a modification of the specification.  This is an example of a 

syntactic element in Specware that cannot be handled by the theorem prover.  In other 

cases the prover simply failed for unknown reasons.  In fact, the tutorial provided by 

Specware contains proof obligations that do not prove in Snark.  If the prover were 

interactive, the user might have more success in aiding the proof, and if the user were 

given more insight as to why the proof did not succeed, perhaps the specification could 

be tweaked to aid in the proof.  In addition, more intuitive error messages would also help 

to distinguish logic errors from the inadequacy of the theorem prover.   

In addition to Snark, Specware includes a simple inequality reasoning engine that 

attempts basic inequality proofs on conjectures before sending them to Snark.  This is 

useful for simple proofs, but it does not provide a log file associated with the proof.  A 

log would be useful for documentation purposes even though the developer might be able 

to sketch a proof by hand knowing that it can be proved using simple inequality 

reasoning.  Note that the inequality reasoning engine is not a part of Snark, rather it was 

developed by Kestrel for Specware.  Invoking the reasoning engine is not explicitly done 

by the user and the user does not need to do anything different when attempting to prove 

obligations. 

Thus the inadequate logging and error messages of Specware’s theorem prover, 

combined with its apparent weakness at automatically resolving logical propositions, 

means that seemingly simple proofs might not be proven.  Currently, the best approach 

for theorem proving in Specware is to generate the proof obligations, prove as many 

obligations as possible automatically, and then verify manually those obligations that did 

not succeed.  The proof units associated with all the obligations in our experiment are 
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given in Appendix D.  This includes the proof units as well as output from the Specware 

shell indicating whether or not the proof succeeded or failed for each conjecture. 

 

4. Specification Language 
As noted earlier Specware incorporates MetaSlang as its specification language, 

and the formal theory behind Specware is category theory.  MetaSlang is a functional 

language which can express powerful logical statements.  Functional languages represent 

computation as evaluations of mathematical functions as opposed to imperative 

languages which use the modification of state [Wik06].  Functional language expression 

is highly useful when defining predicates and composing axioms and theorems regarding 

requirements and constraints on the system.  When developing the Separation Kernel 

model and FTLS, we found the language powerful enough to express our requirements 

due to the static nature of the security policy.  A limitation of a functional language is its 

inability to represent state-based variables, state machines, and state transitions (e.g. x’ = 

x+1).  Currently the best approach to representing state when using a functional language 

is through the use of the Monad construct, described comprehensively by Wadler 

[Wad95].  We explored the use of Monads briefly, but did not complete the analysis and 

leave this exploration for future work.  One issue to explore is the implication that the use 

of Monads has on the proof obligations.   

The base libraries in Specware provide elements for expressing complex logical 

constructs (e.g. higher order quotients [Kes04]) based on the native base logic and 

continue to grow.  As Specware is used on more projects, the hope is that collaboration 

will aid in the growth of libraries, including those for addressing the state monads and 

state machine issues.  Williamson et. al. also noted some of these same areas for growth 

within Specware [Wil01*].  In our experiments the language was initially challenging to 

understand due to lack of multiple examples or exercises and it took some time to get 

used to the grammar.  This was due to the lack of experience within functional 

programming paradigm, which is important to keep in mind for developers coming from 

a background in imperative or procedural programming.  As familiarity with the language 

increased it also became evident that MetaSlang provides the ability to express constructs 

in a very terse manner, which led to confusion between developers.  For example, Figure 
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25 is taken from the List.sw library specification [Kes04].  The construct calculates the 

length of a list through the use of recursion.  The construct is concise but not necessarily 

intuitive at first glance.  This terseness could cause confusion and needs to be avoided in 

the specifications for high assurance systems.  A rule of thumb when developing high 

assurance systems is to be as clear as possible in order to avoid confusion even if there is 

a more efficient manner in which to write the expression. 

 

 

   op length          : [a]   List a -> Nat 

  def length l = 

    case l of 

       | []    -> 0 

       | _::tl -> 1 + (length tl) 

 

Figure 25.   Example of Terse MetaSlang  

 

The language also supports multiple layers of abstraction and includes native 

syntax for morphisms, as well as automatic generation of related proof obligations, 

allowing refinement, which is a necessity within the verification paradigm.  There are 

some minor syntactic peculiarities associated with the grammar, but naturally the more 

time a developer is involved with a language, the less distracting they become.  For 

example, the use of the “|” symbol has many different contexts such as use in the sum 

type, the case statement, and set comprehension (i.e. “such that”). 

 

5. Executable Specifications 
The ability to execute specifications allows developers the flexibility to 

experiment with the semantics of the system being specified while not having to address 

lower level implementation details.  Overall the use of executable specifications aids in 
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the efficiency of correctly constructing the system.  Specware supports the ability to 

execute certain expressions in MetaSlang, particularly constructive expressions.  A 

constructive expression is an expression where all types and ops have explicit definitions 

and do not include quantifications (i.e. ex, fa, ex1)[Kes04].  Constructive expressions are 

evaluated by setting the context of the Specware shell to the spec term itself and then 

invoking the eval <expression> command.  A built-in MetaSlang interpreter supports 

execution.  Figure 26 shows an example of an executable specification and Figure 27 

shows an example of a non-executable expression because it is non-constructive [Kes04]. 

 
 

  spec 

    def f x = 2*x+1 

    def t = 6172 

  endspec 

 
Figure 26.   Executable Specification 

 

 

  spec 

    def f x = 2*x+1 

    op t : Nat -> Nat 

  endspec 

 

Figure 27.   Non-Executable Specification 

 

The command eval f t for Figure 26 would result in 12345, whereas the command 

could not be executed for Figure 27.  This is a nice feature but is limited to constructive 

expressions and therefore not all specifications can be executed.  Thus to generally 

execute specifications, actual code would need to be generated but a specification might 

not be refined enough to generate the code.  Specware’s sister product, Planware, 

provides a framework for Libraries designed to provide the necessary refinements.  The 
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fact that Specware has the ability to generate code is a beneficial feature, because it 

allows for quicker testing once the specification has been refined to the point of possible 

code generation.  Even though Specware may not allow all specifications to be executed, 

it does allow for some execution and also provides the benefit of code generation from 

refined specifications. 

 

6. Multiple Levels of Abstraction 
A verification tool must be able to support multiple levels of abstraction in order 

to allow for the proper refinement from the security policy to the implementation.  This 

type of refinement is achieved through incremental steps moving from more abstract 

concepts at a higher level to more concrete details at the lower level.  Specware supports 

the process of refinement corroborated formally through category theoretic morphisms, 

colimits, and diagrams.  For a comprehensive understanding of category theory, readers 

are encouraged to investigate other resources and texts including Pierce [Pie91] and Barr 

[Bar90].  Our main investigation focused on the use of the morphism.  In Specware, the 

morphism is a structure- and property-preserving mapping between two specifications 

and their individual elements and operations.  All axioms and definitions (i.e. the 

semantics of the elements and operations) in the higher (source) spec become conjectures 

in the lower (target) spec.  Category theory provides the corollary that any theorems that 

are proved in the source spec need not be proved again in the target spec as long as the 

target spec is shown to uphold the axioms and definitions in the source.  For example, in 

our mapping from the Separation Kernel model to the FTLS, the axioms and definitions 

in the model became conjectures in the FTLS.  As long as we proved those conjectures, 

then the security theorem in the model will hold in the FTLS and does not need to be 

proved again.  Thus Specware supports multiple levels of abstraction very well and 

ensures proper refinement between levels, whereas a verification system without this 

support would impose the additional requirement to verify the correctness of the 

mapping-theorem logic. 

We mentioned in Chapter IV that we encountered a mapping problem in our 

initial approach to developing the model.  Initially, we defined three operations, each of 

which was to be a prototype for a class of FTLS transforms.  Thus one operation was 
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called a Read operation, one was called a Write, and the other a Read_Write, where each 

operation had the semantics that its effects contained the corresponding flows and the 

flows were allowed by the BB and SR policies.  When we developed the FTLS we wanted 

to define more than just three operations yet we wanted to map them to our original three 

operations in the model.  For example, we wanted to map HW_Read, Read_EventCT, and 

Await_EventCT back to the abstract Read function in the model.  However, this type of 

mapping is not allowed in Specware, in which the morphism requires a one-to-one 

mapping.  In order to satisfy the morphism, we collapsed the operations in the model into 

the operations axiom.  This allowed us to preserve the semantics of the prototype 

transform operations and also define a legal mapping.   

The only other problems we encountered when attempting the morphism between 

the separation kernel model and FTLS were problems regarding explicit mapping 

definitions.  Specware developers have indicated that these problems will not exist in 

future releases since the problems are not logical errors and preserve the morphism 

properties.  One problem was where we wanted to map the sum type Mode = | RD | WT | 

EXEC to the FTLS type Mode = | READ | WRITE | EXECUTE.  Specware did not allow 

this mapping because the types were named differently and there was no way to explicitly 

map each element of the sum type in the model to another partition of the sum type in the 

FTLS, e.g. RD +-> READ.  A similar problem with identifiers occurred when mapping 

types or objects of exactly the same type, but where different instantiated variables within 

the definition were used.  Figure 28 shows an example. 

 

  

 Model: 

 type Operation 

 op Read : {o1: Operation |  

                    fa(e: Effect) member(e, o1)} 
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 FTLS: 

 type Transformation 

 op HW_Read : {t1: Transformation |  

                       fa(e: Effect) member(e, t1)} 

 Mapping: 

     morphism Model +->  

                FTLS {Operation +-> Transformation, 

             Read +-> HW_Read} 

 

Figure 28.   Mapping Problem Example 

 

In the example shown in Figure 28 the Specware processor throws an error due to 

the t1 in the FTLS not being a o1 as it is in the model. Thus in the FTLS we must switch 

the t1 back to an o1.  This is strange since the o1 and t1 are simply arbitrary and we are 

concerned with their use being mapped correctly and not their names.   

These are minor problems that will hopefully be resolved in future releases of 

Specware.  Overall, the refinement capabilities within Specware are powerful and 

provide support for multiple layers of abstraction. 

 

7. Automatic Generation of Conjectures 

When working with intricate specifications, many proof obligations can be 

obvious to the developers, but some obligations may be subtle.  In these cases it is useful 

if the verification tool can automatically generate all of the conjectures to prove the 

soundness of the specification and mappings.  Specware supports the automatic 

generation of conjectures when the user issues the appropriate commands from within the 

Specware shell.  The show obligations in <unit> command displays the proof obligations 

that are not explicitly stated as conjectures or theorems within the specification.  For 

example, in our Separation Kernel model, a proof obligation is not displayed by the show 
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obligations command for the security theorem because it is an explicit obligation.  Once 

the command is issued, Specware generates a separate specification containing all of the 

conjectures that are not explicit.  Note that, this specification is output to the Specware 

shell and is not created as a separate file, so it is advisable to copy the output and store 

the specification as a separate file for future reference.  However, any obligations stated 

explicitly remain within the original specification.  In summary, obligations that are not 

stated explicitly in the specification are accessed by the show obligations command and 

all other obligations remain in the specification.  All proof attempts of obligations are 

performed using the prove command, followed by the unit and obligation name. 

Specware also automatically generates the conjectures that must be proved for a 

morphism in the same manner, where the morphism is treated as a separate unit.  This is 

valuable because developers need not worry about the obligations associated with each 

level of refinement as they are automatically generated by Specware.  In our generation 

of the morphism obligations, Specware generated two conjectures with the same name, 

seen in Figure 20 in Chapter IV and in Appendix G.  This made it difficult to attempt to 

prove the two conjectures as we could not verify which one was actually being attempted 

when we ran them in Snark.  This was later determined to be a bug in Specware.  

However, this was the only time we ran across two conjectures being generated with the 

same identifier.  Since the glitch we encountered revolved around unique identification, it 

should be easily fixed.  The fact that Specware still generated a necessary conjecture is a 

positive aspect of the system.  Thus, even though two conjectures had the same name, the 

conjectures were still generated and could be proved by hand in order to verify their 

correctness.   

Overall, Specware aids in ensuring that subtle obligations are addressed 

throughout the development of specifications.  Conjectures and theorems can be stated 

explicitly within the specification and can also be generated automatically by the 

Specware processor.  The proof obligations generated by Specware for the separation 

kernel model, FTLS, and morphism can be found in Appendices E, F, and G respectively. 
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8. Semantics 
The underlying logic and foundational theory behind a verification tool is 

important because this directly affects the expressiveness of the tool and the assurance 

provided.  We have previously discussed that the underlying foundational theories for 

Specware are category theory and lambda calculus as apparent in the functional language 

paradigm.  This foundation allows Specware to express higher order logic and refinement 

with minimal complexity.  However, there were some challenges associated with 

developing our separation kernel model and FTLS.  Some linguistic problems we faced 

were based on ambiguities in the use of certain symbols.  For example, the * can either 

imply a product in the literal sense, such as multiplication of integers, or it could be used 

as a separator between input parameters in a function (e.g. Subject*Resource -> Flow).  

The use of the * in the latter example implies a cross product of the “sets” of inputs.  

Those not familiar with the functional language paradigm might find the “overloading” of 

the * symbol to be ambiguous and perhaps a different symbol would be beneficial for the 

sake of clarity.  The major problem we faced when familiarizing ourselves with the 

language was determining how to express the logic that we could verbalize quite easily.  

This problem could easily be overcome with more robust documentation and explanation 

of logic within tutorial examples and specifications.  It took some time to understand 

what certain example expressions were saying and it took time to determine the best way 

to express what we wanted to formalize for our specifications.  Thus the foundational 

theory and semantics of Specware is very powerful, but there are some linguistic 

idiosyncrasies that must be overcome in order to utilize the full capability of Specware  

 

D. CONCLUSION 
In this chapter we have provided an analysis of Specware based on a set of 

evaluation criteria.  We discussed the strengths of Specware as well as problems 

encountered regarding the development of the Separation Kernel model, FTLS, and 

morphism between the two specifications.  The next section will discuss our conclusions 

regarding Specware and recommendations for future work. 
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VI. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS OF ANALYSIS 
The construction of the separation kernel formal model and FTLS within 

Specware allowed us to assess the role Specware can play in the verification of high 

assurance systems.  As noted previously, a verification tool consists of a specification 

language and theorem proving capabilities.  Overall we found that Specware is a 

powerful tool that has a solid foundational theory allowing it to express higher order logic 

in a simple and concise manner.  In terms of the specification language, Specware is in a 

mature state and has been used in many commercial and research projects.  Theorem 

proving support in Specware needs some improvement, as we will discuss later in this 

section.  The Specware shell and development environment is not complicated, allowing 

developers to quickly become familiar and comfortable with Specware.  However, 

Specware does not contain a fully integrated development environment.  This might be a 

desirable feature that would increase its efficiency and usability.  The Specware 

processor supports error checking.  The error messages are terse and sometimes it is 

difficult to distinguish the actual error, but overall they provide sufficient context to 

locate the problem.  Thus the Specware environment is adequate for developing formal 

specifications and certainly does not provide a hindrance to the development lifecycle. 

The specification language, MetaSlang, incorporated by Specware is a powerful 

and expressive language.  MetaSlang is a functional language which is valuable in terms 

of verification, but it has difficulty representing state based variables.  Representation of 

state leads to the use of monads and future work will hopefully reveal what challenges 

this might present to verification of specifications.  We will discuss potential future work 

regarding verification of specifications which incorporate monads later in this section.  

The refinement capabilities in Specware definitely support the goals of multiple 

levels of abstraction needed in the verification paradigm.  The morphism provides the 

necessary and sufficient mechanism to show that a lower level specification preserves the 
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security properties1 of the level above.  Specware also succeeds in its ability to express 

theorems and conjectures concisely in addition to the capability to automatically generate 

conjectures.  The automatic generation of conjectures in Specware ensures that subtle 

obligations will not be overlooked.  Specware also generates automatic conjectures when 

performing a morphism, which provides a means to prove the interlevel mapping. Aside 

from a few minor problems with the mapping syntax and semantics, Specware succeeds 

in providing an effective means to express multiple levels of abstraction and automatic 

generation of conjectures.   

The theorem proving capabilities are the biggest area for improvement.  Currently 

Specware interfaces with the automated theorem prover Snark.  Snark is deficient in 

multiple ways including insufficient logging capabilities such that it is difficult for the 

user to verify the proof, or lack thereof, based on the generated log.  It also struggles with 

proving relatively simple theorems providing no intuitive indication as to the reason for 

failure.  The error messages are not typically helpful and will only indicate that the 

theorem proved or did not prove.  The theorem prover drawbacks are naturally an initial 

deterrent when considering Specware for use in the verification paradigm, due to the fact 

that proofs will not be guaranteed unless produced by hand.  We understand that most 

projects using Specware forego the actual proving of theorems.  One example of not 

relying on the theorem prover was noted by Widmaier [Wid00].  Within the context of 

the verification of high assurance systems, proofs are a necessity not only to verify that 

the system satisfies the security policy, but also to meet desired evaluation assurance 

levels with respect to criteria (e.g. Common Criteria).  Since Specware is not a theorem 

prover in and of itself, this problem can be solved relatively simply without the need to 

restructure the entire foundation of Specware.  An interface to other theorem provers 

appears to be the major feature needed.  To add versatility to the users and projects a 

generic interface would allow users to choose which prover they would like to use either 

based on familiarity or other requirements.  For instance, some users may wish to know 

that the simple theorems can be proved, a job well suited for an automated prover or 

 
1 This thesis examined the preservation of flow properties from the perspective of subjects and their 

effects on exported resources.  Other research has shown that a noninterference property from the 
perspective of traces might not be preserved by refinement unless the specifications are bi-similar (i.e. at 
the same level of detail) [Bib05] 
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model checker.  Other users wish to know the formulation of the proof or provide the 

proof as documentation, which can be provided by an interactive theorem prover.  These 

are examples of reasons to integrate Specware with multiple theorem provers, but the 

main issue is confidence in the proving capabilities.  If a theorem is not proved the prover 

should indicate why and the path it took to the reach the point of failure.  We will discuss 

integration with other theorem provers as future work. 

In conclusion, through our analysis of Specware, we feel that Specware has the 

necessary components to serve as a verification system for high assurance system 

development, provided the improvement upon the theorem proving capabilities occurs.  

More research is required to understand the use of  MetaSlang for state-machine formal 

models.  We are aware that efforts are being made to improve these weaknesses and 

under that assumption, Specware can be very useful in the verification of high assurance 

systems.  Specware provides a powerful specification language and is an excellent system 

to produce high assurance software.  Furthermore, verification of high assurance systems 

can be enhanced with automatic code generation, although this aspect of formal system 

development was not investigated.  Specware takes an average amount of time to become 

familiar with but features excellent support.  It has great potential for use as a verification 

system in the development of high assurance systems. 

 

B. RECOMMENDATIONS 

1. Integrated Development Environment 

Providing a stand alone distribution that incorporates the Specware processor 

underneath an integrated development environment (IDE) would be beneficial to the 

overall efficiency of developing formal specifications.  An IDE would allow developers 

to create, process, and verify specifications with better organization and more graphical 

interaction.  This would allow users to install one application to get benefits such as 

syntax highlighting, as opposed to first requiring XEmacs.  An example of this type of 

IDE would be similar to Microsoft Visual Studio, or NetBeans for Java.  We feel that this 

type of environment can also aid in the organization of Specware libraries where the IDE 

can manage the paths to the libraries regardless of the path under which the current 

specification is being developed.  The IDE could also provide better organization of the 
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proof units associated with a project.  Currently, the best way to handle the units is to 

place them in a separate file, but an IDE could provide a display of all obligations and an 

interactive dialog that would display obligations that have been attempted as well as 

indicate their success or failure.  The IDE recommendation is merely a suggestion to 

provide more continuity throughout the process of development and verification within 

Specware. 

 

2. Theorem Prover Integration 
Integration efforts between Specware and multiple theorem provers would be 

valuable to aid in the confidence of proving capabilities associated with Specware as well 

as provide versatility to the developers.  Currently Specware only interfaces with one 

automated theorem prover that lacks the power needed to be used in the verification of 

high assurance systems.  This results in a lack of user confidence in Specware’s theorem 

proving capabilities and Specware as a complete verification system.  Developing the 

capability to interface Specware with alternate theorem provers such as PVS or Isabelle 

HOL would allow Specware to be used in a much broader set of verification 

environments.  This integration would allow theorems to be proved on multiple platforms 

thus decreasing the amount of manual verification.  For example, if a theorem could not 

be proved in Snark, perhaps the theorem could be proved in PVS, and if not in PVS, 

hopefully in HOL or even another theorem prover.  Research into integrating Specware 

with other theorem provers would improve the versatility and capability of Specware as a 

verification system. 

 

C. FUTURE WORK 

1. Verification of State Representation in Specware 
The use of monads to represent state in Specware is a feasible option and can be 

implemented.  The monadic structure can be complex and implementation requires 

careful attention.  The question for research is the effect that monads have on verification 

of the basic security theorem.  It would be useful to develop formal specifications against 

a security policy that used monads to represent system state.  Then we would like to 

attempt to prove conjectures and a basic security theorem.  Creating a refinement of a 
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more abstract specification and being able to prove the mapping when each level uses 

monads to represent state would verify that Specware can incorporate verification of 

state-based specifications.  The level of difficulty associated with such proofs would be a 

good point for analysis.  This would prove useful for developers needing to not only 

incorporate state within formal specifications, but would also satisfy the need to prove 

security properties regarding state in the system. 

 

2. Trusted Computing Exemplar 
The Trusted Computing Exemplar (TCX) project is an ongoing research effort to 

develop a high assurance least privilege separation kernel [Lev04].  The model and FTLS 

we developed for this thesis can be enhanced to accommodate all of the requirements for 

the TCX separation kernel.  Enhancements include incorporating a notion of initialization 

of the policy tables within in the model.  This initialization can occur at boot up of the 

system or during runtime, requiring an interface which accesses multiple policies.  The 

model would also need to specify a trusted partial ordering on the flows between blocks 

for the identification of “trusted subjects”.  The TCX project has certain requirements 

regarding the verification system used and we have addressed all of those requirements in 

our analysis of Specware except for a few, which can be met by hand or potentially with 

another tool.  These requirements include the need for a non-determinism checker, static 

flow analyzer, and shared resource matrix generator.  Note that these are optional 

requirements for which tool-based support would be desirable within the TCX project, 

however if these items are not available there are other avenues available to meet project 

objectives. 
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APPENDIX A: SEPARATION KERNEL MODEL IN SPECWARE 

This appendix is the Separation Kernel Model as described in Chapter IV. 

 
model = spec 

  %Types 

     type Resource 

 

       op exported? : Resource -> Boolean 

     type Exported_Resource  = (Resource | exported?) 

 

       op subject? : Exported_Resource -> Boolean 

     type Subject = (Exported_Resource | subject?) 

 

     type Block = | High | Medium | Low 

     type Mode = | RD | WT | RW | NULL 

     type Effect = {subject: Subject, 

                    resource: Exported_Resource, 

                    flow: Mode} 

     type Operation = List Effect 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

  %Definitions 

       op active? : [a] a -> Boolean 

      

  %BB and SR represent the policy tables 

       op BB : {(b1,b2): Block*Block | active? (b1)}-> List Mode 

       op SR : {(s1,r2): Subject*Exported_Resource | active? (s1)}-> List Mode 

       op Partition : Exported_Resource -> Block    

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

  %Policy Description 

       op SecureEffect : Effect -> Boolean 

      def SecureEffect (effect) =  

    (effect.flow = NULL || 

     (member(effect.flow, BB(Partition(effect.subject),  

            Partition(effect.resource))) && 

      member(effect.flow, SR(effect.subject, effect.resource)))) 
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       op SecureOP : Operation -> Boolean 

      def SecureOP (operation) = case operation of 

                            | nil -> true 

                            | Cons(hd, tl) -> (SecureEffect(hd) && 

             SecureOP(tl)) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

   %Axiom 

    axiom operations is 

          fa(e: Effect, o: Operation)  

              member(e,o) =>  

                 (e.flow = RD && 

                  member(e.flow, BB(Partition(e.subject), 

                                    Partition(e.resource))) && 

                  member(e.flow, SR(e.subject, e.resource))) 

                 || 

                 (e.flow = WT && 

                  member(e.flow, BB(Partition(e.subject),  

                                    Partition(e.resource))) && 

                  member(e.flow, SR(e.subject, e.resource))) 

                 || 

                 (e.flow = RW &&  

                  member(e.flow, BB(Partition(e.subject),  

                                    Partition(e.resource))) && 

                  member(e.flow, SR(e.subject, e.resource))) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

  %Theorem 

  theorem Secure is 

          fa(o: Operation) SecureOP(o) 

endspec 



69 

APPENDIX B: SEPARATION KERNEL FTLS IN SPECWARE 

This appendix is the Separation Kernel FTLS as described in Chapter IV. 
 

ftls = spec 

  %Types 

     type Object = | Process {id: Nat} 

                   | Segment {id: Nat, size: Nat} 

                   | EventCT (Nat) 

                   | Sequencer (Nat) 

 

       op exported? : Object -> Boolean 

     type Exp_Object = (Object | exported?) 

 

       op subject? : Exp_Object -> Boolean 

      def subject? (process) = ex(n: Nat) process = Process {id=n} 

     type Subject = (Exp_Object | subject?) 

 

     type Block = | High | Medium | Low 

     type Mode = | RD | WT | RW | NULL 

     type Effect = {subject: Subject, 

                    resource: Exp_Object, 

                    flow: Mode} 

     type Transform = List Effect 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  %Definitions 

       op active? : [a] a -> Boolean 

      

  %CurrentAccess represents the process local descriptor table 

       op CurrentAccess : Subject * Exp_Object * Mode -> Boolean 

 

  %BB and SR represent the policy tables        

 op BB : {(b1,b2): Block*Block | active? (b1}} -> List Mode 

 op SR : {(s1,r2): Subject*Exp_Object | active? (s1)} -> List Mode 

 op Partition : Exp_Object -> Block 

 

    axiom CurrentAccess_implies_SR is 

          fa(e: Effect)  

      CurrentAccess(e.subject, e.resource, e.flow) => 

             member(e.flow, SR(e.subject, e.resource)) 
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    axiom SR_implies_BB is 

          fa(e: Effect)  

      member(e.flow, SR(e.subject, e.resource)) => 

      member(e.flow, BB(Partition(e.subject), Partition(e.resource))) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

  %Policy Description 

       op SecureEffect : Effect -> Boolean 

      def SecureEffect (effect) =  

    (effect.flow = NULL || 

     (member(effect.flow, BB(Partition(effect.subject),  

             Partition(effect.resource)))  

      && 

      member(effect.flow, SR(effect.subject, effect.resource)))) 

 

       op SecureOP : Transform -> Boolean 

      def SecureOP (transform) = case transform of 

                            | nil -> true 

                            | Cons(hd, tl) -> (SecureEffect(hd) && 

                 SecureOP(tl)) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Transforms 

       op HW_Read : 

        {t1: Transform | fa(e: Effect) member(e, t1) =>  

                                        (e.flow = RD && 

                                         CurrentAccess(e.subject, 

                                                       e.resource, 

                                                       e.flow))} 

 

       op HW_Write : 

        {t2: Transform | fa(e: Effect) member(e, t2) =>  

                                        (e.flow = WT &&  

                                         CurrentAccess(e.subject,  

                                                       e.resource,  

                                                       e.flow))} 

 

 

 

 



71 

       op HW_Read_Write :  

        {t3: Transform | fa(e: Effect) member(e, t3) =>  

                                        (e.flow = RW &&  

                                         CurrentAccess(e.subject,  

                                                       e.resource,  

                                                       e.flow))} 

 

       op Ticket : 

        {t4: Transform | fa(e: Effect) (member(e, t4) => 

                                         (e.flow = RW &&  

                                          CurrentAccess(e.subject,  

                                                        e.resource,  

                                                        e.flow))) 

                                          && 

                                          length(t4) = 1} 

 

       op Read_EventCT : 

        {t5: Transform | fa(e: Effect) (member(e, t5) => 

                                         (e.flow = RD &&  

                                          CurrentAccess(e.subject, 

                                                        e.resource, 

                                                        e.flow))) 

                                          && 

                                          length(t5) = 1} 

 

       op Adv_EventCT : 

        {t6: Transform | fa(e: Effect) (member(e, t6) => 

                                         (e.flow = WT &&  

                                          CurrentAccess(e.subject, 

                                                        e.resource, 

                                                        e.flow))) 

                                          && 

                                          length(t6) = 1} 

 

       op Await_EventCT : 

        {t7: Transform | fa(e: Effect) (member(e, t7) => 

                                         (e.flow = RD &&  

                                          CurrentAccess(e.subject, 

                                                        e.resource, 

                                                        e.flow))) 

                                          && 

                                          length(t7) = 1} 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  %Axioms 

    axiom only_ops is 

          fa(t:Transform) t = HW_Read       ||  

                          t = HW_Write      ||  

                          t = HW_Read_Write || 

                          t = Ticket        || 

                          t = Read_EventCT  || 

                          t = Adv_EventCT   || 

                          t = Await_EventCT  

     

    axiom Segment_as_Object is 

          fa(e: Effect, t: Transform) 

            ex(n1: Nat, n2: Nat) 

             ((t = HW_Read)       ||  

              (t = HW_Write)      ||  

              (t = HW_Read_Write))  

             && 

             member(e, t) => e.resource = Segment{id=n1, size=n2} 

 

    axiom EventCT_as_Object is 

          fa(e: Effect, t: Transform) 

            ex(n: Nat) 

             ((t = Read_EventCT)   || 

              (t = Adv_EventCT)    || 

              (t = Await_EventCT))  

             && 

             member(e, t) => e.resource = EventCT (n) 

 

    axiom Ticket_as_Object is 

          fa(e: Effect, t: Transform) 

      ex(n: Nat) 

      (t = Ticket) && 

       member(e, t) => e.resource = Sequencer (n) 

endspec 
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APPENDIX C: MORPHISM FROM MODEL TO FTLS 

This appendix displays the morphism unit defined in Specware for the mapping 

between the Separation Kernel Model and FTLS as described in Chapter IV. 

 
Mapping = morphism final_model#model -> 

                         final_ftls#ftls{Resource +-> Object, 

                                         Exported_Resource +-> Exp_Object, 

                                         Operation +-> Transform} 
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APPENDIX D: SEPARATION KERNEL PROOF UNITS 

This appendix provides all of the proof units for the Separation Kernel Model, 

FTLS, and morphism.  Included with each proof unit is a snapshot of the output for each 

attempt indicating the success or failure of each proof. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%model_oblig1-3 did not prove, model_oblig4-9 and Security Theorem did prove 

model_oblig = obligations rev_final_model#model  

 

model_oblig1 = prove SecureEffect_Obligation in model_oblig  

  %Snark Log file: H:/.../model_oblig1.log 

  %model_oblig1: Conjecture SecureEffect_Obligation in model_oblig is NOT 

proved using Snark. 

 

model_oblig2 = prove SecureEffect_Obligation0 in model_oblig  

  %Snark Log file: H:/.../model_oblig2.log 

  %model_oblig2: Conjecture SecureEffect_Obligation0 in model_oblig is NOT 

proved using Snark. 

 

model_oblig3 = prove SecureOP_Obligation in model_oblig  

  %Snark Log file: H:/.../model_oblig3.log 

  %model_oblig3: Conjecture SecureOP_Obligation in model_oblig is NOT proved 

using Snark. 

 

model_oblig4 = prove operations_Obligation in model_oblig  

  %Snark Log file: H:/.../model_oblig4.log 

  %model_oblig4: Conjecture operations_Obligation in model_oblig is Proved! 

using Snark. 
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model_oblig5 = prove operations_Obligation0 in model_oblig  

  %Snark Log file: H:/.../model_oblig5.log 

  %model_oblig5: Conjecture operations_Obligation0 in model_oblig is Proved! 

using Snark. 

 

model_oblig6 = prove operations_Obligation1 in model_oblig  

  %Snark Log file: H:/.../model_oblig6.log 

  %model_oblig6: Conjecture operations_Obligation1 in model_oblig is Proved! 

using Snark. 

 

model_oblig7 = prove operations_Obligation2 in model_oblig  

  %Snark Log file: H:/.../model_oblig7.log 

  %model_oblig7: Conjecture operations_Obligation2 in model_oblig is Proved! 

using Snark. 

 

model_oblig8 = prove operations_Obligation3 in model_oblig  

  %Snark Log file: H:/.../model_oblig8.log 

  %model_oblig8: Conjecture operations_Obligation3 in model_oblig is Proved! 

using Snark. 

 

model_oblig9 = prove operations_Obligation4 in model_oblig  

  %Snark Log file: H:/.../model_oblig9.log 

  %model_oblig9: Conjecture operations_Obligation4 in model_oblig is Proved! 

using Snark. 

 

Model_Security_Theorem = prove Secure in model_oblig 

  %Snark Log file: H:/.../Model_Security_Theorem.log 

  %Model_Security_Theorem: Theorem Secure in model_oblig is Proved! using 

Snark. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%ftls_oblig1-4, ftls_oblig6 did not prove, but ftls_oblig5 did prove 

ftls_oblig = obligations rev_final_ftls#ftls  

 

ftls_oblig1 = prove CurrentAccess_implies_SR_Obligation in ftls_oblig  

  %Snark Log file: H:/.../ftls_oblig1.log 

  %ftls_oblig1: Conjecture CurrentAccess_implies_SR_Obligation in ftls_oblig is 

NOT proved using Snark. 

 

ftls_oblig2 = prove SR_implies_BB_Obligation in ftls_oblig  

  %Snark Log file: H:/.../ftls_oblig2.log 

  %ftls_oblig2: Conjecture SR_implies_BB_Obligation in ftls_oblig is NOT proved 

using Snark. 

 

ftls_oblig3 = prove SR_implies_BB_Obligation0 in ftls_oblig  

  %Snark Log file: H:/.../ftls_oblig3.log 

  %ftls_oblig3: Conjecture SR_implies_BB_Obligation0 in ftls_oblig is NOT 

proved using Snark. 

 

ftls_oblig4 = prove SecureEffect_Obligation in ftls_oblig  

  %Snark Log file: H:/.../ftls_oblig4.log 

  %ftls_oblig4: Conjecture SecureEffect_Obligation in ftls_oblig is NOT proved 

using Snark. 

 

ftls_oblig5 = prove SecureEffect_Obligation0 in ftls_oblig  

  %Snark Log file: H:/.../ftls_oblig5.log 

  %ftls_oblig5: Conjecture SecureEffect_Obligation0 in ftls_oblig is Proved! 

using Snark. 
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ftls_oblig6 = prove SecureOP_Obligation in ftls_oblig  

  %Snark Log file: H:/.../ftls_oblig6.log 

  %ftls_oblig6: Conjecture SecureOP_Obligation in ftls_oblig is NOT proved 

using Snark. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%mapping_oblig1&2 did not prove 

%mapping_oblig3-5 proved using simple inequality reasoning 

 

mapping_oblig = obligations rev_final_ftls#Mapping 

 

mapping_oblig1 = prove operations in mapping_oblig 

  %Snark Log file: H:/.../mapping_oblig2.log 

  %mapping_oblig2: Conjecture operations in mapping_oblig is NOT proved using 

Snark. 

 

mapping_oblig2 = prove SecureEffect_def in mapping_oblig 

  %Snark Log file: H:/.../mapping_oblig3.log 

  %mapping_oblig3: Axiom SecureEffect_def in mapping_oblig is Proved! using 

simple inequality reasoning. 

 

mapping_oblig3 = prove SecureOP_def in mapping_oblig 

  %Snark Log file: H:/.../mapping_oblig4.log 

  %mapping_oblig4: Axiom SecureOP_def in mapping_oblig is Proved! using simple 

inequality reasoning. 

 

mapping_oblig4 = prove SecureOP_def in mapping_oblig 

  %Snark Log file: H:/.../mapping_oblig5.log 

   %mapping_oblig5: Axiom SecureOP_def in mapping_oblig is Proved! using simple 
inequality reasoning. 
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APPENDIX E: SEPARATION KERNEL MODEL PROOF 
OBLIGATIONS 

This appendix displays the output of the automatically generated proof obligations 

for the Separation Kernel Model. 

import /Library/Base/WFO 

conjecture SecureEffect_Obligation is  

    fa(effect : Effect)  

      ~(effect.flow = NULL) => active?(Partition(effect.subject)) 

 

conjecture SecureEffect_Obligation0 is  

    fa(effect : Effect)  

     ~(effect.flow = NULL)  

     && member(effect.flow, BB(Partition(effect.subject), 

                               Partition(effect.resource))) 

     => active?(effect.subject) 

 

conjecture SecureOP_Obligation is  

    ex(pred : List(Effect) * List(Effect) -> Boolean)  

     WFO.wfo pred  

     && (fa(operation : Operation, tl : List(Effect), hd : Effect)  

          (operation = Cons(hd, tl) && SecureEffect hd => pred(tl, operation))) 

 

 conjecture operations_Obligation is  

    fa(e : Effect, o : Operation)  

     member(e, o) && e.flow = RD => active?(Partition(e.subject)) 
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conjecture operations_Obligation0 is  

    fa(e : Effect, o : Operation)  

     member(e, o)  

     && e.flow = RD  

     && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))  

     => active?(e.subject) 

 

conjecture operations_Obligation1 is  

    fa(e : Effect, o : Operation)  

     member(e, o)  

     && ~(e.flow = RD  

           && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))  

           && member(e.flow, SR(e.subject, e.resource))) 

     && e.flow = WT  

     => active?(Partition(e.subject)) 

 

conjecture operations_Obligation2 is  

    fa(e : Effect, o : Operation)  

     member(e, o)  

     && ~(e.flow = RD  

           && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))  

           && member(e.flow, SR(e.subject, e.resource)))  

     && e.flow = WT  

     && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))  

     => active?(e.subject) 
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conjecture operations_Obligation3 is  

    fa(e : Effect, o : Operation)  

     member(e, o)  

     && ~(e.flow = RD  

           && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))  

           && member(e.flow, SR(e.subject, e.resource)))  

     && ~(e.flow = WT  

           && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))  

           && member(e.flow, SR(e.subject, e.resource)))  

     && e.flow = RW  

     => active?(Partition(e.subject)) 

 

conjecture operations_Obligation4 is  

    fa(e : Effect, o : Operation)  

     member(e, o)  

     && ~(e.flow = RD  

           && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))  

           && member(e.flow, SR(e.subject, e.resource)))  

     && ~(e.flow = WT  

           && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))  

           && member(e.flow, SR(e.subject, e.resource)))  

     && e.flow = RW  

     && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))  

     => active?(e.subject) 

 



82 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



83 

APPENDIX F: SEPARATION KERNEL FTLS PROOF 
OBLIGATIONS 

This appendix displays the output of the automatically generated proof obligations 

for the Separation Kernel FTLS. 

import /Library/Base/WFO 

conjecture CurrentAccess_implies_SR_Obligation is  

    fa(e : Effect)  

     CurrentAccess(e.subject, e.resource, e.flow) 

     => active?(e.subject) 

 

conjecture SR_implies_BB_Obligation is  

    fa(e : Effect)  

     active?(e.subject) 

 

conjecture SR_implies_BB_Obligation0 is  

    fa(e : Effect)  

     member(e.flow, SR(e.subject, e.resource))  

     => active?(Partition(e.subject)) 

 

conjecture SecureEffect_Obligation is  

    fa(effect : Effect)  

     ~(effect.flow = NULL)  

     => active?(Partition(effect.subject)) 
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conjecture SecureEffect_Obligation0 is  

    fa(effect : Effect)  

     ~(effect.flow = NULL)  

     && member(effect.flow, BB(Partition(effect.subject), 

                               Partition(effect.resource)))  

     => active?(effect.subject) 

 

conjecture SecureOP_Obligation is  

    ex(pred : List(Effect) * List(Effect) -> Boolean)  

     WFO.wfo pred  

     && (fa(transform : Transform, tl : List(Effect), hd : Effect)  

          (transform = Cons(hd, tl) 

           && SecureEffect hd 

            => pred(tl, transform))) 
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APPENDIX G: SEPARATION KERNEL MORPHISM PROOF 
OBLIGATIONS 

This appendix displays the output of the automatically generated proof obligations 

for the Separation Kernel morphism. 

import /H:/.../rev_final_ftls#ftls 

conjecture operations is  

    fa(e : Effect, o : Transform)  

     member(e, o)  

     => e.flow = RD  

        && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))  

        && member(e.flow, SR(e.subject, e.resource))  

     || e.flow = WT  

        && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))  

        && member(e.flow, SR(e.subject, e.resource))  

     || e.flow = RW  

        && member(e.flow, BB(Partition(e.subject), Partition(e.resource)))  

        && member(e.flow, SR(e.subject, e.resource)) 

 

conjecture SecureEffect_def is  

    fa(effect : Effect)  

     SecureEffect effect =  

       (effect.flow = NULL  

        || member(effect.flow, BB(Partition(effect.subject), 

                                  Partition(effect.resource)))  

           && member(effect.flow, SR(effect.subject, effect.resource))) 

 

conjecture SecureOP_def is  

    fa(nil : Operation)  

     fa(operation : Operation)  
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      nil = operation => SecureOP operation = true 

 

 

conjecture SecureOP_def is  

    fa(hd : Effect, tl : List(Effect))  

     fa(operation : Operation)  

      ~(nil = operation) 

      && Cons(hd, tl) = operation  

      => SecureOP operation = (SecureEffect hd && SecureOP tl) 
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