REPORT

OF THE

UNITED STATES
 COMMISSIONER OF FISHERIES

FOR THE FISCAL YEAR 1923

WITH

APPENDIXES

HENRY O'MALLEY

Commissioner

CONTENTS.

Report of the Commissioner of Fisheries for the fiscal year ended June 30, 1923. By Henry O'Malley. 47 pp. (Document No. 946. Issued December 13, 1923.)
Properties and values of certain fish-net preservatives. By Harden F. Taylor and Arthur W. Wells. Appendix I, 69 pp., 35 figs. (Document No. 947. Issued August 15, 1923.)
Aquatic plants in pond culture. Second edition. By John W. Titcomb. Appendix II, 24 pp., 32 figs. (Document No. 948. Issued November 3, 1923.)

Artificial propagation of whitefish, grayling, and lake trout. By Glen C. Leach. Appendix III, 32 pp., 42 figs. (Document No. 949. Issued December 1, 1923.)
Alaska fishery and fur-seal industries in 1922. By Ward T. Bower. Appendix IV, 118 pp., 16 figs. (Document No. 951. Issued December 28, 1923.)

Fishery industizies of the United States. Report of the division of fishery industries for 1922. By Harden F. Taylor. Appendix V, 111 pp., 4 figs. (Document No. 954. Issued December 31, 1923.)
Artificial propagation of brook trout and rainbow trout, with notes on three other species. By Glen C. Leach. Appendix VI, 74 pp., 22 figs. (Document No. 955. Issued January 24, 1924.)
Progress in biological inquiries, 1923. Report of the division of scientific inquiry for the fiscal year 1923. By Willis H. Rich. Appendix VII, 27 pp. (Document No. 956. Issued February 2, 1924.)
A new myxosporidian parasite, the cause of "wormy" halibut. By H. S. Davis. Appendix VIII, 5 pp., 10 figs. (Document No. 957. Issued January 29, 1924.)
The ichthyophthirius disease of fishes, and methods of control. By Herbert F. Prytherch. Appendix IX, 6 pp., 10 figs. (Document No. 959. Issued April 21, 1924.)
Oyster-cultural problems of Connecticut. By J. S. Gutsell. Appendix X, 10 pp., 2 figs. (Document No. 960. Issued May 22, 1924.)
Experiments in the artificial propagation of oysters. By Herbert F Prytherch. Appendix XI, 14 pp., 9 figs. (Document No. 961. Issued June 4, 1924.)
The fisheries of Key West and the clam industry of southern Florida. By W. C. Schroeder. Appendix XII, 74 pp., 29 figs. (Document No. 962. Issued June 26, 1924.)
Propagation and distribution of food fishes, fiscal year 1923. By Glen C. Leach. Appendix XIII, 108 pp., 3 figs. (Document No. 964 . Issued September 3, 1924.

DEPARTMENT OF COMMERCE. BUREAU OF FISHERIES.

HEADQUARTERS STAFF, 1922-23.

Commissioner,
Henry O'Malley.
Deputy Commissioner.-H. F. Moore.
Assistants in Charge of Divisions:
Office.-Irving H. Dunlap.
Fish Culture.-Glen C. Leach.
Inquiry Respecting Food Fishes.-Willis H. Rich.
Fishery Industries.-Harden F. Taylor.
Alaska Serviee.-Ward T. Bower.
Architect and Engineer.-George A. Schneider.
Accountant.-Charles W. Scudder.
Superintendent Central Station and Aquaria.-L. G. Harron.

Bureau of Fisheries Document No. 946.

REPORT OF THE COMMISSIONER OF FISHERIES, 1923.

CONTENTS.
Page.
Fisher'y industries services 2
Review 2
Fish merchandising 3
Technological inrestigations 4
Brine-freezing of fish 4
Preservation of nets 5
Canning sardines 5
Salting of Pacific coast mackerel 6
Pearl essence 6
Participation in the Brazilian International Centemnial Exposition_- 7
Canned fishery products and by-products 7
Frozen-fish trade 9
New England ressel fisheries 9
Vessel fisheries at Seattle, Wash 12
Fisheries of California 12
Fisheries of New York. New Jersey, Pennsylvania, and Delaware 13
Shad fishery of the Hudson liver 14
Fiorida sponge fishery 14
Inquiry respecting food fislies and fishing grounds 15
Introduction 15
Studies of fishes 16
Oyster investigations 19
Investigations relating 10 fish culture 19
Fresh-water mussels 20
Mosquito control 21
Fouling of ressel bottoms 22
Miscellancous investigations in interior waters 22
Operation of biological laboratories 23
Pollution of waters 23
I'ropagation and distribution of ford fishes $\because 4$
Review 24
Distribution of output of hatcheries 27
Relations with States in fish colture 28
Cooperation with fish-protective associations 30
Propagation of migratory fishes of Atlantic rivers 30
Propagation of commercial species of the Great Lakes 31
Propagation of Pacific salmons 32
Cultivation of fishes of interior waters 34
Alaskal fisheries service 37
Extent of the Alaska fisheries 37
Enforcement of fishery laws and regulations 38
Private salmon hatcheries 38
New salum-fishery regulations 39
Sirecial studies and investigations 40
Protection of walrus and sea lions 41
New legislation neederl $+1$
Alaska Legislature $4 \because$
Page.
Nlaska fur-seal service 42
General activities at the Pribilof Islands 42
seal herd 43
Take of sealskins 43
Sales of sealskins 44
Foxes and reindeel 44
Cooperation with other Goremment agencies 45
Vessel service notes, 1923 45
Apmopriations. 47
Department of Commerce, Bureau of Fisheries, Washington, September 15, 1923.
$\mathrm{S}_{\text {IR }}$: I have the honor to submit herewith a report of the operations of the Bureau of Fisheries during the fiscal year ended June 30, 1923.

FISHERY INDUSTRIES SERVICES.

REview.

The depression that existed in the fishery industries in 1921 was to a considerable extent relieved in 1922, as noted in my last report, and decidedly better conditions prevailed in the fiscal year 1923. In the New England ressel fisheries, in the calendar year 1922, 11.9 per cent ferser trips were made than in 1921 , but the catch increaserl (i per cent. Becaluse of lower prices during part of the year there was a net decrease of 4.5 per cent from 1921 in the valne of the product. In the spring of 1923, from Janmary to May, inclusive, the landings were steadily greater than for 102 , except that in March. 1922, abnormally large landings were recorded, which were greater than the March, 1923 , landings. In the first fire months of 1923 the average price of fish landed from fishing ressels in New England was 4.64 cents per pound, as compared with 3.42 cents for the same period in 1922. At Seattle, in 1922, the was little change from the preceding rear in either landings or value. In California, in 1923, there was an increase of 32.3 per cent in quantity over 1921 , the production being 168,969,733 pounds.

In the Pacific Coast States the prack of canned salmon in 1922 showed a net decrease of 26.9 per cent in the number of cases and 6.5 per cent in ralue as compared with the pack of 1921 ; hut this decrease was more than made up in Maska, where there was an increase of 72 per cent in the number of cases and 51.7 per cent in value as compared with the previous year. The total pack of camed fishery proctucts in the United States and Alaska in 192 was rabued at \$6 60.46 , , 947, an increase of 29.6 per cent over 1921. The by-products of the fisheries in 1920 were valned at $\$ 11,390,693$, an increase of 36.4 per cent over their value in 1921.

Gratifying increases orer the 1921 pack of sardines are recorded for both Maine and California in 1922. In Maine the increase amomed to 31.5 per cent in mumber of cases and t5. 2 per cent in value; in California the increase amomnted to 75.4 per cent in number of cases and 51.7 per cent in value. In the total sardine pack of both Maine and California there was an increase of 41.8 per cent in number of cases and 44.4 per cent in value.

The activities of the bureau included a market survey of Boston, Mass., similar to those previously made in other cities. In the field of statistics canvasses have been completed of the fisheries of New York, New Jersey, Pennsylvania, and Delaware for 1921, the shad and alewife fisheries of the Potomac River for 1922 and 1923, and the canned fishery products and by-products of the United States for 1922. The regular collections of statistics of the landings of the vessel fisheries at the ports of Boston and Gloucester, Mass., Portland, Me., and Seattle, Wash., have been carried out and the data published as statistical bulletins. The statistical bulletins of cold-storage holdings of frozen fish have also been issued monthly.

Technological investigations have included a continuation of experiments in the preservation of fish nets, including the preparation of a report of results up to January 1, 1923; freezing fish in brine; canning sardines; an examination into the possibilities of producing insulin, the newly discovered palliative for diabetes, from the pancreas of sharks; and certain work on the reddening of salt codfish.

The bureau also prepared and managed the exhibit of fisheries and fishery industries at the Brazilian International Centennial Exposition, which opened September 7, 1922, at Rio de Janeiro.

Broadcasting fisheries market reports was also begun and continued once a week for the benefit of the wholesale and retail fish trade.

FISH MERCHANDISING.

That part of the fish industry which has to do with distribution and sales remains the most important problem presented to those engaged in this business. The limit upon the volume of fish business that can be done at present is set by distribution rather than by production. The bureau has continued, in so far as its resources permitted, its efforts to be of service in this field.

In the autumn of 1922 a survey was made of the fish trade of Boston, Mass., our largest fishing port.

Boston, with a population of $i 48,060$, is the principal landing port for the fisheries of the North Atlantic. It is also the greatest fishing port in the United States and among the greatest of the world's fishing ports. In the calendar year 1922 there were landed at Boston by vessels of 5 tons or over $106,190,403$ pounds of fish, valued at $\$ 4,020,105$. More than 80 per cent of its fishing business, on the basis of quantity, is in cod, haddock, halibut, mackerel, swordfish, and lobsters, a rery different group of fish from those prominent in Seattle. A moderate or limited business is also done in alewives, butterfish, carp, flounders, salmon, smelts, suckers, clams, crabs, and oysters and some 54 other species. In Boston there were 108 wholesale fish dealers and 171 retailers-one retailer for each 6,926 persons.

The production or landings of fish in the year ended September 30,1922 , was $101,949,525$ pounds, valued at $\$ 4.051,350$. In the month of September, 1922, the following products were landed at Boston: Fish, 13,244,074 pounds; lobsters, 616.355 pounds; clams, 398,964 pounds; oysters, 10,068 gallons, or 80,544 pounds; scallops, 478 gallons, or 3,824 pounds. The amount of fish frozen during 1922 was

8,946,183 pounds, and the amount shipped from Boston during September, 1922, was $14,383,761$ pounds.

In the month of September, 1922, 56 per cent of all Boston's fish was consumed in Massachusetts, and 89 per cent in Massachusetts, Rhode Island, Connecticut, New York, and Pennsylvania. It is thus evident that while Boston has done much in developing her near-hy market the more distant markets are still awaiting development. There is evidence also that this is the case with other centers of fish production. The per capita consumption of Boston fish in Massachusetts during the month of September, 1922, was over $1 \frac{1}{2}$ pounds, which must be increased by the fish taken at other Massachusetts ports, perhaps, to more than 2 pounds, or 24 pounds per capita annually. The per capita consumption of fish in the United States, as a whole, is probably not more than 12 or 14 pounds. This development of local fish consumption resulted in the shipment to Boston from the Pacific coast of 169 carloads of halibut and salmon during the year ended September 30, 1922, althongh Boston itself is the largest fish-producing port in the United States.

TECHNOLOGICAL INVESTIGATIONS.

It was pointed out, in connection with the discussion of the market survey of Boston, that the limit to the fish business was set by problems of distribution. The limit to extensive and successful distribution is fixed not only by incomplete organization of the industry but also by the lack of adequate methods of preserving and handling fish, so that they can be transported to distant markets in first-class edible condition. Other technical difficulties, such as the rapid decomposition of the nets he uses, further reduce the fisherman's reward for his arduous labors. Technological inquiry only can solve these problems, and it is in a continuation of such inquiries that the bureau's technological staff has been engaged.

BRINE-FREEZING OF FISH.
In Economic Cireular No. 53, issued in 1921, the status of brinefreezing was outlined as it was at that time. It was pointed out that in principle brine-freezing seemed to have received sufficient test and approval by various scientific investigators, and that the chief problem ahead was the engineering problem of constructing a plant that would freeze fish on a large seale with a minimum of labor and expense. There has been eonstructed in the fishery products laboratory a brine-freezing apparatus of new design intended to meet these requirements. It consists of a tumnel 40 feet long provided with a short compartment at each end. The fish are suspended from horizontal bars that are mechanically conveyed through this tunnel. The fish first pass through a fresh-water spray in the entrance compartment for the purpose of washing; then through a violent spray of brine at -5 or $-6^{\circ} \mathrm{F}$. for 32 feet, wherein they are frozen; emerging from the brine spray, they again pass under a fresh-water spray, which removes the brine and applies a glaze. The conveyor is arranged for variable speed so that fish of different sizes may be
treated for the time required to freeze. The conveyor is located so that it is not exposed to the corrosive action of the brine. Mechanical refrigeration is used to refrigerate coils or heat-absorbing units located in the bottom of the apparatus. The salt brine is circulated continuously, only a small volume being required. Trials so far made with this apparatus indicate that it freezes quite satisfactorily, though more extensive trials will yet be necessary. The fish are individually frozen, trim and straight.

preservation of nets.

The bureau's work on the preservation of fish nets has been carried to the point of yielding results of value. The several series of samples of twine that had been exposed at several localities in 1922 and tested monthly were completed, and the results were prepared for publication. In addition to numerous well-known preservative materials, there was tried for the first time copper oleate, in which the bureau hoped to discover a better preservative than any of those hitherto used. In so far as experiments of this kind go, the results fully justified expectations. Copper oleate, dissolved in gasoline or other suitable solvent and applied to cotton or linen lines, effected a superior preservation of tensile strength or resisted fouling to a remarkable degree without materially adding weight to the lines or diminishing their flexibility, as so many other preservatives do. The results were very much more satisfactory in salt water than in fresh water. In the latter the copper oleate seems to be somewhat more soluble than in salt water. In a new and larger series of experimental exposures of lines begun in the spring of 1923 several other commercial or proprietary preservatives were tested, and an effort also was made to reduce the solubility of copper oleate in water by the addition of linseed oil and paraffin and by other combinations. Success in this direction, if attained, will not only provide a suitable preservative for fresh water but will overcome one of the principal objections to the use of copper oleate in salt water; that is, its tendency to wash out of the lines.

CANNING SARDINES.

In the canning of sardines it is always necessary to remove some of the water from the fish before the cans are finally sealed, else the fish break down to a wet mass and present a poor appearance. In California the usual method of removing the excess water is to pass the fish through a bath of hot oil, wherein much of the water is cooked out. At the bureau's experimental laboratory at San Pedro, Calif., the conclusion has been reached, and heretofore reported, that the oil in which the frying is done becomes oxidized, rancid, and objectionable from a dietetic point of view, since part of it is carried on the fish into the can. During the fiscal year 1923 work has been confined chiefly to the solution of the problem of removing the water by methods other than frying in oil, and considerable progress can be reported. Three methods were tried, all of which showed some merit. They were (α) cooking in strong brine instead
of oil, (b) steaming, and (c) canning raw after removal of excess water by brining and partial drying. A pack that appeared to be equal, if not superior, to any fried-in-oil product was made by a modified steaming process. Quite satisfactory products were prepared by the raw-pack method; that is, preliminary brining and drying, followed by sealing and processing. Good packs also were prepared by the method of cooking in brine, but this may perhaps be adjudged an unsatisfactory method because of the penetration of too much salt.

SALTING OF PACIFIC COAST MACKEREL.

Attention was given by the San Pedro laboratory to the salting of the Pacific Coast mackerel (Scomber japonicus). This fish is, in general, less fat than the Atlantic mackerel and its flesh is more likely to be dark in color. It was found, however, that the method that previously in the burean's salting experiments had been found to be applicable to other fish in warm climates was here successful. This process consists in using high-purity salt applied dry to perfectly fresh fish that have been thoroughly cleaned of all blood and viscera. These points all seem to be essential. Packers, who have themselves hit upon most of these points, have found by experience that salt of inferior quality produces inferior fish and that any blood left in the fish darkens it. Freshness is also important, so much so that salting aboard the boats seems advisable.

PEAILL ESSENCE.

Pearl essence, an incidental product of the fisheries, has continued to attract considerable attention, perhaps more because of its spectacular beauty and novel application than because of its industrial importance. Nevertheless, the business of manufacturing imitation pearls, which was at one time an exclusively European and Japanese industry, has migrated to America to a very large extent. New York City and its vicinity are now the center of a considerable imitation-pearl industry, based largely on the supply of pearl essence produced in the United States principally from herring and alewife scales.
A process of making a pearl essence has been elaborated in the fishery products laboratory which, in technique, is a radical departure from any methods known to have been used hitherto. By this method the lustrous material from the scales is removed in water, together with any dirt, blood, slime, etc., that may accompany the scales. The crude suspension is then treated chemically in such a way that the lustrous or nacreous particles are removed bodily from the crude liquor and transferred to ether and then to ethyl or amyl acetate, which are solvents of nitrocellulose, which, when dissolved in the suspension, makes a pearl lacquer. This applied to glass beads makes the "indestructible" pearl of commerce. "Essence" has been prepared by this process from the scales of numerous species of fish. The details of the process will be published in a separate document.

PARTICIPATION IN THE BILAZILIAN INTERNATIONAL CENTENNIAL EXPOSITION.

In accordance with that part of the act of Congress authorizing participation of the United States in the Brazilian exposition that provided for a fisheries exhibit, the bureau assembled collections of fishery products, apparatus, vessel models, transparencies, photographs, motion pictures, etc. Among the more important exhibits were those of the salmon industry, the New England banks fisheries, the oyster industry, the menhaden industry, canning and by-products of the fisheries, fishing gear, preservation of nets, and organization and functions of the Bureau of Fisheries. A brief description of the fishery industries of the United States was prepared and printed in English, Spanish, and Portuguese for distribution at the exposition.

CANNED FISHERY PRODUCTS AND BY-PRODUCTS.

The bureau made a canvass of the canned fishery products and fishery by-products industries of the United States and Alaska for the year 1922 . The total value of the canned fishery products for the year was $\$ 60,464,947$, and the value of the fishery by-products prepared, such as fish oil, fertilizer, fish meal, liquid glue, poultry grit, and lime from shells, was $\$ 11,390,693$. The results of the canvass were published and distributed to the trade as Statistical Bulletin No. 570.

The pack of canned salmon, reduced to the equivalent of 48 pounds of fish to the case, amounted to $5,234,898$ cases, valued at $\$ 38,420.717$, of which $4,501,652$ cases, valued at $\$ 29,787,193$, were packed in Alaska, and 733,246 cases, valued at $\$ 8,633,524$, in the Pacific Coast States. Other canned-salmon products, valued at $\$ 71,248$, were also prepared.

The pack of sardines in Maine in 1922 amounted to $1,775,878$ cases, valued at $\$ 5,750,109$, compared with $1,350,631$ cases, valued at $\$ 3,960,916$, in 1921. The pack of sardines in California in 1922 was 728,979 cases, valued at $\$ 3,361,480$, compared with 415,587 cases, valued at $\$ 2,346,446$, in 1921.

The canning of shad is confined to Washington, Oregon, and California. The pack of shad in 1922 amounted to 2,257 cases, valued at $\$ 9,961$, and of shad roe to 433 cases, valued at $\$ 8,517$. The shad are packed in half-pound flat, half-pound oval, and 1-pound tall cans; the shad roe in half-pound flat and 1-pound oval cans; all with 48 cans to a case.

The pack of canned alewives and alewife roe in 1922 was prepared in Maryland, Virginia, and North Carolina. The pack of alewives amounted to 1,043 cases, valued at $\$ 1,994$, and of alewife roe to 38,298 cases, valued at $\$ 137,514$.

The pack of canned albacore in California in 1922 amounted to 272,563 cases, valued at $\$ 2,304,935$; canned tuna to 345,363 cases, valued at $\$ 1,989,977$; canned bonito to 10,591 cases, valued at $\$ 58,900$; canned yellowtail to 4,403 cases, valued at $\$ 18,994$; and other canned products to 31,548 cases, valued at $\$ 182,033$. These products were packed in cans of various sizes and mostly with 48 cans to a case.

Shrimp were canned in North Carolina, Georgia, Florida, Alabama, Mississippi, and Louisiana. The pack in 1922 amounted to 586,691 cases, valued at $\$ 3,064,087$. Lonisiana ranked first with a pack of 179,164 cases, valued at $\$ 951,302$, and Mississippi ranked second with a pack of 174,466 cases, valued at $\$ 882,389$. The greater part of the pack, or 545,402 cases, valued at $\$ 2,843,516$, was put up in No. 1 cans, four dozen to the case. The remainder was packed in No. $1 \frac{1}{2}$ and No. $2 \frac{1}{2}$ cans, two dozen to the case, and No. 10 cans, onehalf dozen to the case.

Crabs were canned at two plants in Virginia, five in Alaska, and one each in Maine and Washington, the pack amounting to 9,111 cases, valued at $\$ 104,171$.

The pack of razor clams in 1922 was confined to Washington, Oregon, and Alaska and amounted to 139,656 cases, valued at $\$ 879$,956. It included whole and minced clams and clam juice. The pack of hard clams, confined to Florida and Washington, amounted to 53,349 cases, valued at $\$ 298,042$, and included whole and minced clams, clam bouillon, chowder, and juice. Soft clams were canned in Maine, Massachusetts, and Rhode Island, and the pack amounted to 116,635 cases, valued at $\$ 538,367$, including whole clams, clam bouillon, chowder, and broth.

In 1922 oysters were canned in Maryland, North Carolina, South Carolina, Georgia, Florida, Alabama, Mississippi, and Louisiana. The pack amounted to 522,549 cases, valued at $\$ 2,423,616$, compared with 455,550 cases, valued at $\$ 2,179,271$, the previous year.

In addition to the canned products already referred to, there were packed in Maine, Massachusetts, New York, New Jersey, Maryland, Virginia, North Carolina, and Washington, 224,304 cases of miscellaneous fishery products, valued at $\$ 840,329$.

In 1922 there were 45 factories engaged in the manufacture of products from menhaden, as compared with 39 factories in 1921. The number of menhaden utilized was $1,212,450,669$, or $747,470,402$ pounds, valued at $\$ 2,457,690$. The products included 93,576 tons of scrap and fish meal, valued at $\$ 3,221,758$, and $7,102,677$ gallons of oil, valued at $\$ 2,004,833$, the total value of the products amounting to \$6,126,591.

The total production of fish oils in 1922, including menhaden oil, in the United States and Alaska amounted to $10,535,473$ gallons, valued at $\$ 4,230,760$. The various oils produced were as follows: Menhaden oil, $7,102,675$ gallons, valued at $\$ 2,904,833$; whale oil, $1,863,015$ gallons, valued at $\$ 731,000$: sperm oil, 384,130 gallons, valued at $\$ 153.714$; herring oil, 450,362 gallons, valued at $\$ 150,144$; sardine oil, 428,859 gallons, valued at $\$ 145,668$; tuna oil, 86,099 gallons, valued at $\$ 62,702$; salmon oil, 25,989 gallons, valued at $\$ 9,435$; cod and codliver oil, 71,539 gallons, valued at $\$ 33,666$; and miscellaneous fish oils, 122,803 gallons, valued at $\$ 39,598$.

The production of fish scrap and meal, including menhaden, and shrimp bran in 1922 amounted to 116,166 tons, valued at $\$ 4,336,677$. The production of dried scrap and meal was 89,459 tons, valued at $\$ 3,755.787$: of acidulated scrap 25,712 tons, valued at $\$ 555,973$; of crude or green scrap 433 tons. valued at $\$ 9.519$: and of shrimp bran. 562 tons, valued at $\$ 15,398$. Of the quantity of dried scrap produced in the menhaden industry 7,172 tons, valued at $\$ 390,677$, were reported sold as fish meal.

In 1922 there were 56 plants engaged in converting oyster shells into poultry grit and lime. The poultry grit produced from this source amounted to 236,021 tons, valued at $\$ 2,005,838$, and the lime to 93,168 tons, valued at $\$ 431,213$.

Other by-products of the fisheries included fish glue, shark hides, agar-agar, pearl or fish-scale essence, shark fins, whalebones (skeletons), whale tails, ambergris, herring skins, and alewife scales, to the value of $\$ 386,205$.

FROZEN-FISH TRADE.

Statistics of the cold-storage holdings of frozen fish have been collected and published by the Bureau of Markets, Department of Agriculture, beginning with October, 1916. These reports give the holdings on the fifteenth day of each month. Through the courtesy of that bureau arrangements were made in December, 1921, for the Bureau of Fisheries to publish and disseminate this information, beginning with the returns for January 15, 1922, in the form of a monthly statistical bulletin. This bulletin gives the holdings by species and sections, total holdings for the current month and for the same month of the previous year, the five-year average, holdings for the previous month, and the quantity of each species frozen during the month.

In 1922 there were in operation 274 freezers that were devoted wholly or partly to the cold storage of fish. The holdings were very much smaller in 1922 than they had been on the corresponding dates in several previous years. The smallest holdings were in May and the largest in November.

The greater part of the freezing of fish, or 80 per cent, was in the New England, Middle Atlantic (including the Great Lakes in New York and Pennsylvania), and the Northwestern States, which include Montana, Wyoming, Idaho, Washington, and Oregon. The total quantity of fish frozen during the year was $75,453,674$ pounds. Of this quantity. 24.67 per cent was frozen in New England, 27.12 per cent in the Middle Atlantic, and 27.94 per cent in the Northwestern section. Compared with the previous year, there was a decrease of $3,720,218$ pounds in the total quantity frozen. The principal species and quantities frozen during the year 1922 were salmon. 12,143,194 pounds: ciscoes. $10,245,252$ pounds; herring, $7.964,778$ pounds: mackerel, $6.165,248$ pounds; whiting, $6.058,126$ pounds: and halibut, 5,122.396 pounds. Several other species were frozen in large quantities, and miscellaneous fishes not shown separately by species amounted to $10,956,348$ pounds.

NEW ENGLAND VESSEL FISHERIES.

The bureau through its local agents has collected statistics of the ressel fisheries at Boston and Gloucester, Mass., and Portland, Me., which have been published in monthly and annual statistical bulletins. Two annual bulletins have been issued, one showing the catch by months and the other by fishing grounds. There was a decrease in the number of trips with an increase in the quantity and a decrease in the value of the products landed at these ports as compared with the previous year. At Portland, while there was a de-
crease in the number of trips, there was an increase in both the quantity and value of the products landed.

The fishing fleet at these ports during the calendar year 1922 numbered 338 sail, steam, and gasoline-screw vessels, including 28 steam trawlers. These vessels landed at Boston 2,893 trips, aggregating $106,190,403$ pounds of fish, valued at $\$ 4,020,105$; at Gloucester, 1,653 trips, aggregating $37,751,223$ pounds, valued at $\$ 813,353$; and at Portland, 1,803 trips, aggregating $15,933,765$ pounds, valued at $\$ 632,474$. The total for the three ports amounted to 6,349 trips, aggregating $159,875,391$ pounds of fresh and salted fish, having a value to the fishermen of $\$ 5,465,932$.

Compared with the previous year, there was a decrease of 857 trips, or 11.89 per cent, in the total number landed by the fishing fleet at Boston, Gloucester, and Portland, and an increase of $9,010,285$ pounds, or 5.97 per cent, in the quantity, with a decrease of $\$ 256,697$, or 4.48 per cent, in the value of the products landed. There was an increase in the quantity of all of the important species except pollock and halibut, and a decrease in the value of all except hake, herring, and swordfish. The catch of cod increased $1,665,151$ pounds, or 3.11 per cent, in quantity and decreased $\$ 95,488$, or 5.51 per cent, in value; haddock increased $2,783,289$ pounds, or 4.12 per cent, in quantity and decreased $\$ 236.770$, or 11.57 per cent, in value; cusk increased 149,035 pounds, or 7.10 per cent, in quantity and decreased $\$ 3,277$, or 8.66 per cent, in value; and mackerel increased 1,342,567 pounds, or 39.67 per cent, in quantity and decreased $\$ 59,127$, or 17.61 per cent, in value. Hake increased 838,139 pounds, or 18.47 per cent, in quantity and $\$ 1,728$, or 15.76 per cent, in value; herring, 30,814 pounds, or 1 per cent, in quantity and $\$ 40,747$, or 100.84 per cent, in value; and swordfish, 1,684,103 pounds, or 105.41 per cent, in quantity and $\$ 128,610$, or 40.39 per cent, in value. Pollock decreased $1,847,926$ pounds, or 26.60 per cent, in quantity and $\$ 46,636$, or 28.32 per cent, in value; and halibut, 41,879 pounds, or 0.73 per cent, in quantity and $\$ 19,017$, or 2.36 per cent, in value. The catch of Newfoundland herring increased from 551,400 pounds, valued at $\$ 19,584$, in 1921 , to $2,302,420$ pounds, valued at $\$ 76,855$, in 1922 . In the various other species combined there was an increase of 2,406,992 pounds, or 77.73 per cent, in quantity and $\$ 32,533$, or 23.90 per cent, in value.

The catch of scrod cod landed at these ports decreased from $1,150,577$ pounds, valued at $\$ 10,844$, in 1921 , to 815,371 pounds, valued at $\$ 9,200$, in 1922; and the catch of scrod haddock increased from 30,562 pounds, valued at $\$ 535$, in 1921 , to 253,283 pounds, valued at $\$ 4.261$, in 1922. The small quantity of these grades landed, as compared with other grades of these species, is said to be due to the fact that the price is so low that the fishermen do not save all that are canght.

The fishery products landed at Boston, Gloncester, and Portland by fishing vessels each year are taken principally from fishing grounds off the coast of the United States. In the calendar year 1922, 78.96 per cent of the quantity and 75.27 per cent of the value of the catch landed by fishing vessels were from these grounds; 4.16 per cent of the quantity and 8.17 per cent of the value, consisting chiefly of cod, halibut, and herring, were from fishing banks off the coast of Newfoundland, and 16.88 per cent of the quantity and 16.56
per cent of the value from fishing grounds off the Canadian Provinces. There was some falling off in the percentage of products from grounds off the United States, with a small increase in that from grounds off Newfoundland and the Canadian Provinces compared with the previous year. Newfoundland herring constituted 1.44 per cent of the quantity and 1.40 per cent of the value of the fishery products landed at these ports during the year. The herring were taken from the treaty coast of Newfoundland and the cod, haddock, hake, halibut, and other species of that region were obtained from fishing banks on the high seas. All fish caught by American fishing ressels off the coast of the Canadian Provinces were from offshore fishing grounds.

Haddock ranked first in both quantity and value in the vessel fisheries at these ports in 1922, the catch amounting to $70,195,998$ pounds, valued at $\$ 1,809,400$, all landed fresh except 131,385 pounds salted, valued at $\$ 2,736$. The catch of cod was $55,180,165$ pounds, valued at $\$ 1,635,279$, including $5,006,170$ pounds salted, valued at $\$ 188,552$. The catch of hake was $5,374,247$ pounds, valued at $\$ 111,331$, all landed fresh except 32,910 pounds salted, valued at $\$ 555$. The greater part of the catch was landed at Boston. The catch of pollock was $5,097,085$ pounds, valued at $\$ 118,006$, all landed fresh except 49,300 pounds salted, valued at $\$ 938$. The catch of cusk was $2,247,450$ pounds, valued at $\$ 34,552$, all landed fresh except 53,435 pounds salted, valued at $\$ 1,204$. The catch of halibut was $5,624,149$ pounds, valued at $\$ 784,057$, all landed fresh except 15,706 pounds salted, valued at $\$ 915$. There was a small decrease in the catch of halibut in both quantity and value as compared with the previous year. The quantity landed at Boston was $3,948,456$ pounds, valued at $\$ 550,735$; at Gloucester, 58,058 pounds, ralued at $\$ 7,696$; and at Portland, $1,617,635$ pounds, valued at $\$ 225,626$. The eatch of swordfish was $3,281,748$ pounds, valued at $\$ 447,016$; and of flounders, $3,281,327$ pounds, valued at $\$ 134,749$. The catch of herring amounted to $2,644,354$ pounds, valued at $\$ 81,154$. Of this quantity, 341,934 pounds, valued at $\$ 4,299$, were taken off the coast of the United States and landed fresh, and the remainder, including 410,000 pounds fresh, frozen, valued at $\$ 20,500$, and 1.892.420 pounds salted, valued at $\$ 50,355$, were Newfoundland herring.

The total catch of fresh mackerel taken by the American fishing fleet in 1922 was 53,703 barrels, compared with 40,323 barrels in 1921, an increase of 13.380 barrels. The total catch of salted mackerel was 2, 249 barrels, compared with 3,242 barrels in 1921, a decrease of 493 barrels. The quantity of mackerel landed at Boston, Gloucester, and Portland by the fishing fleet in 1922 was $4,726,747$ pounds, valued at $\$ 276,499$, of which $4,266,367$ pounds, valued at $\$ 239,111$, were fresh and 460,380 pounds, valued at $\$ 37,388$, were salted.

In 1923 the total catch of mackerel up to July 1 was 22,866 barrels fresh and 217 barrels salted, compared with 25,090 barrels fresh and $2,3+4$ barrels salted for the same period in 1922. The southern mackerel fleet numbered about 25 purse-seine vessels and 136 gill-net vessels. Both seiners and netters had poor success on account of windy weather and scarcity of fish during the spring months. The first catch was landed at Norfolk April 9, consisting of 300 pounds of large mackerel, which sold at 75 cents per pound in New York. This
was three days earlier than the landing of the first catch the previous year. A considerable quantity of tinker mackerel scattered in small schools was reported in the south. The first catch of mackerel from Cape Shore was landed at Yarmouth, Nova Scotia, May 29, consisting of 4,000 pounds of large mackerel, which were shipped to Boston. The first arrival at Boston, direct from the fleet, was on June 7, consisting of 20,000 pounds of large mackerel, which sold at $6 \frac{1}{2}$ cents per pound. Fresh mackerel sold during the season from $6 \frac{1}{2}$ to 40 cents per pound, according to market conditions, and salted mackerel from Cape Shore sold at $\$ 11$ per barrel.

VESSEL FISHERIES AT SEATTLE, WASH.

Statistics of the vessel fisheries at Seattle, Wash., have been collected by the local agent and published as monthly and annual statistical bulletins, giving the quantity and value of fishery products landed by American fishing and collecting vessels during the year at that port.

The fishing fleet at Seattle in 1922 landed 836 trips, amounting to $11,332,050$ pounds of fish, having a value to the fishermen of $\$ 1,249,-$ 822, from fishing grounds along the coast from Oregon to Portlock Bank, Alaska. The largest quantities were taken from Flattery Banks, west coast of Vancouver Island, and Hecate Strait. The products included halibut, $9,938,150$ pounds, valued at $\$ 1,196,390$; sablefish, 1,014,100 pounds, valued at \$46,652; " lingcod," 258,200 pounds, valued at $\$ 4,509$; and rockfishes, 121,600 pounds, valued at $\$ 2,271$. Compared with the previous year there was a decrease of 30 trips by fishing vessels and $2,334,650$ pounds, or 17.08 per cent, in the quantity and $\$ 173,481$, or 12.18 per cent, in the value of the products. There was a decrease in the catch of halibut of $1,542,850$ pounds, or 13.43 per cent, in quantity and $\$ 139,268$, or 10.42 per cent in value. The catch of sablefish decreased 505,300 pounds, or 33.25 per cent, in quantity and $\$ 17,033$, or 26.74 per cent, in value. The catch of "lingcod" decreased 205,100 pounds, or 44.27 per cent, in quantity and $\$ 11,882$, or 72.49 per cent, in value; and the catch of rockfishes decreased 81,400 pounds, or 40.09 per cent, in quantity and $\$ 5,298$, or 69.99 per cent, in value.

The fishery products taken in Puget Sound and landed at Seattle by collecting vessels during the year amounted to $15,083,390$ pounds, valued at $\$ 964,832$. This quantity included $13,615,780$ pounds of salmon, valued at $\$ 882,481$, and the remainder consisted of herring, sturgeon, steelhead trout, smelt, perch, rocl fishes, " lingcod," flounders, sole, and crabs. Compared with the previous year there was an increase in the products landed by collecting vessels of $2,654,865$ pounds, or 21.36 per cent, in quantity and $\$ 185,954$, or 23.87 per cent, in value.

FISIIERIES OF CALIFORNIA.

Through the courtesy of the California Fish and Game Commission the bureau has received statistics of the catch of fish, by species and by comnties, for California, and also the quantity of fish imported into California from Mexico during the calendar year 1922. The catch of fish taken in the waters of California in 1922 amounted to
$168,969,733$ pounds, compared with $127,728,623$ pounds the previous year, an increase of $41,241,110$ pounds, or 32.28 per cent. The species taken in largest quantities were pilchards, $93,399,900$ pounds; albacore and tuna, 17,920,019 pounds; flounders, $11,341,262$ pounds; bonito, or skipjack, $10,998,855$ pounds; salmon, $7,235,124$ pounds; barracuda, $4,710,753$ pounds; rockfishes, $4,238,480$ pounds; yellowtail, $3,111,198$ pounds; mackerel, $2,466,762$ pounds; white sea bass, or squeteague, $2,195,932$ pounds; abalones, 1,523,394 pounds; and shad, 1,109,445 pounds.
The imports of fish from Mexico in 1922 amounted to $12,146,066$ pounds, as compared with $6,699,817$ pounds the previous year. The principal species imported were albacore and tuna, $6,179,754$ pounds; barracuda, $1,528,770$ pounds; bonito, or skipjack, 1,792,592 pounds; flounders, 817,304 pounds; white sea bass or squeteague, 736,220 pounds; sea crawfish or spiny lobster, 640,466 pounds; and yellowtail, 303,292 pounds.

FISHERIES OF NEW YORK, NEW JERSEY, PENNSYLVANIA, AND DELAWARE.
A canvass of the fisheries of New York, New Jersey, Pemnsylvania, and Delaware was made for the calendar year 1921, and the results were published in condensed form as Statistical Bulletin No. 569.

The number of persons engaged in the fisheries of New York was 7,145 , the investment was $\$ 13,836,455$, and the products amounted to $210,377,152$ pounds, valued at $\$ 4,986,918$. The principal species taken, in the order of their value, were oysters, $9,500,295$ pounds, or $1,357,185$ bushels, valued at $\$ 1,785,913 ;$ menhaden, $179,447,799$ pounds, valued at $\$ 1,117,235$; flounders, $4,471,161$ pounds, valued at $\$ 283,412$; clams, $1,006,538$ pounds, or 121,113 bushels, valued at $\$ 260,773$; squeteagues, "sea trout," or weakfish, $1,921,036$ pounds, valued at $\$ 228,524$; scallops, $1,235,760$, or 205,960 bushels, valued at $\$ 217,108$; lobster, $1,037,395$ pounds, valued at $\$ 196,762$; and bluefish, $1,082,917$ pounds, valued at $\$ 176,726$. Compared with 1904 , there was a decrease of 4,348 , or 37.83 per cent, in the number of persons employed; an increase of $\$ 3,214,839$, or 30.26 per cent, in the investment; and a decrease of $67,272,595$ pounds, or 24.23 per cent, in the quantity and $\$ 1,243,640$, or 19.96 per cent, in the value of the products.

The number of persons engaged in the fisheries of New Jersey was 5,771 , the investment was $\$ 4,701,704$, and the products amounted to $96,936,784$ pounds, valued at $\$ 5,983,406$. The principal species taken, in the order of their value, were oysters, $22,997,555$ pounds, or $3,285,-$ 365 bushels, valued at $\$ 2,759,930$; squeteagues, " sea trout," or weakfish, $11,651,735$ pounds, valued at $\$ 902,439$; bluefish, $2,243,425$ pounds, valued at $\$ 390,947$; clams, 925,588 pounds, or 112,111 bushels, valued at $\$ 385,198$; scup or porgy, $4,115,552$ pounds, valued at $\$ 200,046$; butterfish, $2,862,491$ pounds, valued at $\$ 159.286$; flounders, $1,985,340$ pounds, valued at $\$ 140,586$; croaker, $3,815,554$ pounds, valued at $\$ 126,700$; menhaden, $30,405,093$ pounds, valued at $\$ 121,451$; and mackerel, 584,386 pounds, valued at $\$ 100.556$. Compared with 1904 , there was a decrease of 3.323 , or 36.54 per cent. in the number of persons employed, but an increase of $\$ 2,015,908$ in the investment, and of $6,828,116$ pounds, or 7.57 per cent, in the quantity and $\$ 2,597,991$, or 76.74 per cent, in the value of the products.

The number of persons engaged in the fisheries of Pennsylvania was 591 , the investment was $\$ 1,375,778$, and the products amounted to 594,613 pounds, valued at $\$ 44,621$. The principal species taken, in the order of their value, were squeteagues, "sea trout," or weakfish, 240,000 pounds, valued at $\$ 14,400$; sea bass, 135,000 pounds, valued at $\$ 12,500$; scup or porgy, 142,000 pounds, valued at $\$ 7,100$; shad, 18,872 pounds, valued at $\$ 5,834$; suckers, 21,199 pounds, valued at $\$ 2,469$; carp, 9,712 pounds, valued at $\$ 1,511$; and alewives, 20,085 pounds, valued at $\$ 405$. Compared with 1904 , there was a decrease of 821 , or 58.14 per cent, in the number of persons employed, of $\$ 721,937$, or 34.41 per cent, in the investment, and of $1,451,681$ pounds, or 70.94 per cent, in the quantity and $\$ 122,878$, or 73.36 per cent, in the value of the products.

The number of persons engaged in the fisheries of Delaware was 976 , the investment was $\$ 585,616$, and the products amounted to $25,023,193$ pounds, valued at $\$ 652,448$. The principal species taken, in the order of their value, were oysters, $4,315,731$ pounds, or 616,533 bushels, valued at $\$ 450,873$; menhaden, $18,082,000$ pounds, valued at $\$ 67,970$; squeteagues, "sea trout," or weakfish, 886,550 pounds, valued at $\$ 53,317$; croaker, 418,873 pounds, valued at $\$ 18,682$; shad, 86,836 pounds, valued at $\$ 16,312$; carp, 87,820 pounds, valued at $\$ 13,166$; sturgeon, including roe, 13,962 pounds, valued at $\$ 6,952$; and alewives, 351,590 pounds, valued at $\$ 6,431$. Compared with 1904 , there was a decrease of 923 , or 48.60 per cent, in the number of persons employed, and of $\$ 84,379$, or 12.59 per cent, in the investment, but an increase of $19,414,904$ pounds, or 346.18 per cent, in the quantity and $\$ 392,858$, or 151.53 per cent, in the value of the products.

SHAD FISHERY OF THE HUDSON RIVER.

The shad fishery of the Hudson River in 1921 had engaged 307 persons, the investment was $\$ 44,607$, and the catch was 35,448 shad in number, or 130,803 pounds, valued at $\$ 30,623$. Of this quantity 28,948 shad, or 104,883 pounds, valued at $\$ 24,329$, were taken in New York, and 6,500 or 25,920 pounds, valued at $\$ 6,294$, in New Tersey. Compared with 1920 , there was a decrease of 61 persons, and of 13,867 shad, or 69,041 pounds, and $\$ 25.706$ in the value, but an increase of $\$ 4,256$ in the investment.

In 1922 there were engaged 272 persons, the investment was $\$ 40,342$, and the catch was 48,336 shad, or 175,186 pounds, valued at $\$ 39,706$. The catch in New York was 36,111 shad, or 128,324 pounds, valued at $\$ 27,451$, and in New Jersey, 12,225 shad, or 46,862 pounds, valued at $\$ 12,255$. Compared with 1920 , there was a decrease of 96 persons, and of 979 shad, or 24,658 pounds, and $\$ 16,603$ in the value, with practically no change in the investment.

The quantity of sponges sold at the Sponge Exchange, Tarpon Springs, Fla., in 1922, was 526,885 pounds, valued at $\$ 699.092$. This. total included large wool sponges, 248,475 pounds, valued at \$596,199; small wool, 70,478 pounds, valued at $\$ 42,286$; yellow, 115,455 pounds,
valued at $\$ 37,637$: grass, 84,892 pounds, valued at $\$ 20,379$: and wire, 7.585 pounds, valued at $\$ 2,588$. It is estimated that sponges to the value of $\$ 50,000$ were sold at Tarpon Springs outside of the exchange. Information as to the quantity sold at Key West is not available but is known to be comparatively small.

INQUIRY RESPECTING FOOD FISHES AND FISHING GROUNDS.

INTRODUCTION.

The effect of the gradual development of the fisheries of the United States has borne unequally upon the several resources exploited, partly as a result of the intensity with which the fisheries have been prosecuted in relation to the abundance of the original supply, partly owing to peculiarities in the distribution and life histories of the several species, partly as the consequence of ruinous methods of fishing or wanton and short-sighted destruction, and partly as an inevitable sequence of the social, industrial, and commercial developnent of the country and the consequent modification of the character of the waters. Certain species like the sturgeon have become almost extinct commercially, the natural oyster beds in some originally richly endowed areas have been depleted or destroyed, the Atlantic salmon has become hardly more than a memory in the United States, the shad runs in almost all streams are sadly reduced, the salmons of the Pacific Coast States and Alaska are no longer able to support the fisheries of former years, and in some places are on the verge of economic extinction, and the halibut banks of the western Atlantic lave been reduced far below their pristine productivity, and those of the north Pacific Ocean are following the same course.

The resources that have been more particularly affected are those that are fixed to the bottom or have limited powers of locomotion, those that are confined to circumscribed bodies of water, or that run into such waters for spawning or other purposes at certain seasons of the year, or those that mature slowly and are represented by comparatively few individuals of large size.

On the other hand, there are many fishes, particularly marine species, some of them of paramount economic importance, that show no indications of depletion. These are mainly species of wide distribution. abindance, and high reproductive capacity and that at no time congregate in narrow waters where they come under the control of the activities of man as exhibited by fishing operations or obstrucion. pollution. or other alteration of their accustomed enviromment. It does not follow, however, that because no evidences of depletion have been detected it can be assumed certainly in all cases that it has not begun. or that it may not occur as the cumulative result of existing operations and conditions or future developments.

The correction of existing and the prevention of prospective depletion has been sought principally through the agency of fish culture and legislation more or less restrictive of fishing operations and practices. It is obrious that a foundation for these measures must he established on an accurate and reasonably complete knowledge of the life histories of the organisms with which they deal, as otherwise they may prove wasteful and ineffective while at the same time im-
posing futile obstacles to the development of a legitimate and essential industry. The work of the division of scientific inquiry of the burean is directed to the acquisition of this knowledge and its adaptation to the needs of the fisheries, its principal activities during the fiscal year being epitomized in the following pages.

STUDIES OF FISIIES.
The salmon fisheries of Alaska present the most critical problem of fishery conservation confronting the burean at the present time, the intensity of the fishery developed during recent years having very seriously depleted the runs in some streams, while almost everywhere the diminution has made itself manifest to a degree threatening eventual disaster. As is explained in more detail elsewhere in this report, the laws under which the burean has been endeavoring to conserve this fishery are inadequate, and it has been necessary to invoke the powers of the President to create fishery reservations to give the immediate control of the situation necessary to save the fish.

While studies made during the past decade have added much to knowledge of the habits and life histories of the Pacific coast salmons, their wide distribution from California to the Arctic, the differences in environment throngh their range, and the fact that practically each stream has its own exchusive school of fish, makes their study laborious, time-consuming, and difficult. With the purpose of preparing a sound basis for regulatory measures that will conserve the fish while permitting the maximum safe exploitation of the fisheries, the bureau for a number of years past has engaged specialists to conduct the necessary investigations.

The enumeration of the salmon passing into Karluk River, on Kodiak Island, which has been referred to in previous reports, was continued during the year and a similar work was undertaken at Chignik. These studies are intended to furnish data of the ratio of fish on the spawning grounds to the total run necessary to maintain an unimpaired supply.

In an effort to determine the composition of sea schools of salmon in respect to the location of their spawning streams, about 4,000 adult fish were marked with aluminum tags at varions places on or near the Alaska Peninsula. A considerable percentage of these was retaken, and valuable data were obtained regarding the oceanic migrations of the fish. This work will be supplemented and extended by tagging about 10,000 fish during the fiscal year 1924. A report on the progress of these studies was published during the year. Since 1916 nearly 750,000 young salmon have been marked by cutting off various of the fins and liberating them in the Columbia, Sacramento, and Quinault Rivers. On their return to the streams after several years spent in the sea these fish are easily recognized. During the spring of 1920, 100,000 young sockeye salmon, reared from eggs brought from Alaska in 1918, were so marked and liberated in the Columbia River with the invaluable cooperation of the Oregon Fish Commission. In 1922 large numbers of these, grown to maturity, returned to the river, and scales and data from approximately 1,200 were obtained. This, of course, does not represent the number entering the river. The fish, both in external appearance and qualities of flesh, retained the char-
acters of their Alaskan ancestry, being distinctly different from native Columbia River fish of the same species.

Many of the important former spawning grounds of the blueback salmon of the Columbia River have been made inaccessible by the construction of power and irrigation works, and in 1922 an investigation was made to locate the spawning places now resorted to. It was found that a spawning run progresses at least to Sunbeam Dam on Salmon River, Idaho, and that the improvement of the fishway at that place to make it more readily passable to fish bound for Redtish Lakes should be undertaken.

The investigations on the Coregoninæ, or whitefishes, which are among the most important commercially of the Great Lakes, have been continued; the field work was completed early in the fiscal year, and the attention of the investigators has been directed for some months to the examination and comparison of collections and the compilation of data to be included in the final report on the systematic relations and natural history of the various species. Many data bearing on the differences between various races of whitefish and other coregonine fishes are now available, and especial attention is being given to the life history of the whitefish. The University of Michigan and the State Biological Survey are evincing a fine spirit of cooperation, which will materially aid and advance the work.

For a number of years the bureau made investigations, as opportunity occurred, of the salmons, tronts, and smelts of the Atlantic coast, but the work was suspended in 1921 on the resignation of the assistant who had been conducting it. It was resumed during 1923 on the return of the investigator to the service, and considerable progress has been made in assembling the accumulated data for publication. Some light has been thrown on the complicated relationships of the trouts, and material is on hand for clearing up certain puzzling matters of particular interest to fish culturists and anglers, but during the year attention has been devoted chiefly to smelts, which are important economically both as local food supplies, as entering into commerce, and as food for other fishes. As a consequence of the assiduity with which the smelt fisheries have been prosecuted, the supply of fish is being depleted gradually, and the report in preparation will be comprehensive of all facts relating to them that may be significant in efforts toward their conservation where still abundant and their increase in waters that have been depleted.

In cooperation with members of the faculty of the University of Wisconsin, studies of the natural foods of fresh-water fishes, particularly the basses, sunfishes, and perch, in wild waters, have been conducted with very small assistance from the bureau.

The available fisheries of interior waters and of the streams falling directly into the sea, as a whole, are now exploited to their permissible limits, and in some cases already mentioned are showing more or less macked indications of exhaustion. For increased production of fish food to meet the demands of growing population recourse must be had to that great reservoir of food, the sea. Of the strictly marine fishes none of the more important species, with the exception of the halibut, are exhibiting the criteria of depletion excepting, perhaps, locally ; but with a conceivably possible but by no means imminent large increase in consumption, such symptoms may manifest
themselves on some of the banks and fishery grounds more adjacent to our coasts, and it is not impossible that they are already present obscurely. It will be highly important to recognize them promptly, that corrective measures may be taken before conditions become so critical as to require drastic action economically objectionable. For these reasons comprelensive investigations of important fishery areas north and east of Cape Cod were undertaken a number of years ago and continued to the present time, with an interruption of several years during the war.

The fundamental facts of the distribution of water temperatures and salinities, the horizontal and vertical circulation of the water, the resulting production and distribution of the primary foods of fishes, and the dissemination of their eggs and young have been determined more accurately than on any other part of our Atlantic coast. During the year the most important worko in this connection has been the release of 1,500 drift bottles for current determinations in cooperation with studies of like character conducted by the Canadian Government in the home waters. Plans hava been laid for supplementary work during the fiscal year 1924. Also, following a project of cooperation with Canada, 2,396 cod, haddock, and pollock were marked with metal tags and released, and the practice will be continued until a total of 10,000 fish has been so treated. This experiment is to elucidate the facts of the migration, growth, etc., of these important food fishes, and will b. supplemented by other studies during the coming year that will develop the other information necessary for the formulation of conservation measures, which at any time may become necessary.

A correlated investigation during the year was the study of the seasonal changes of the plankton of the vicinity of Woods Hole, based largely on the collections made by the burean's laboratory at that place over a long series of years. Plankton is composed of the floating plants and animals, mostly minute, which constitute practically the sole food of most marine fish fry and directly or indirectly the food of most of the adults. On it primarily depends the fish production of the sea.

During the year there was completed and submitted for publication a comprehensive report briefly describing all of the fishes known to occur in the Gulf of Maine and epitomizing what is known of their life histories. This work, and a large part of the other work of the bureau in that region during the past 10 years, has been made possible by the cooperation of the director of the Museum of Comparative Zoology at Cambridge, Mass., and Dr. H. B. Bigelow, of the same institution.

The field work of the investigation of the fisheries of Chesapeake Bay was completed in June, 1922; the collections and data have been consigned to specialists, and considerable progress has bien made toward a comprehensive report on the region. This investigation repeats, in a more circumscribed area, the general features of that conducted in the Gulf of Maine. The U. S. Coast and Geodetic Survey, the U. S. Geological Survey, and the U. S. Weather Bureau have all cooperated by furnishing valuable data respecting the hydrography and meteorology of the Chesapeake basin.

OYSTER INVESTIGATIONS.

Oyster investigations in Long Island Sound and Great South Bay were continned during the year, the field work lasting from early in June until September 20.

The special purpose of the work in Great South Bay is to discover the cause of the great mortality which frequently occurs after an abundant "set" has apparently established the basis for a good crop. The presumption has been established that this is due to conditions peculiar to the bottom or the stratum of water near the bottom. Well-grown oysters of the set of 1921 were found in compact groups in various situations a few feet above the bottom, while all those that had set so abundantly on or near the bottom had died shortly after becoming attached. The work planned for the summer was the testing of various types of cultch that would permit a set above the danger zone, but this purpose was defeated by the exceedingly poor set of 1922 , possibly due to unstable water conditions.

The investigations in Comsecticut revealed that a much better than ordinary set followed a reasonably early spawning in harbor and inshore waters, lending some confirmation to the previous indications that failures of recent years have been due to the depletion of the inshore beds from overfishing and the results of pollutions. Oyster larve were found in Housatonic River, recently devoid of oysters, where some had been planted in the spring.

In cooperation with the Burean of Chemistry a study was made of conditions in Housatonic River and New Haven Harbor in respect to trade pollutions from heary metals, oxygen content, and alkalinity. One of the difficulties encountered in all of these investigations has been the lack of precise information regarding the pristine and present hydrographic and planktonic conditions. To furnish such data of the existing state of the waters, the Fish Hawk, under the direction of the naturalist of the Albatross, was detailed to make a survey of conditions that might bear on the mortality obtaining among the oyster fry and the spat after a brief period of survival. The field work was practically complete at the close of the fiscal year, with the exception of a few weeks' special study of inshore polluted areas.

INVESTIGATION゙S RElATIN゙G TO F1SH CULTURE.

The biological station at Fairport. Iowa, has continued its experiments in the culture of various of the important commercial fishes of the Mississippi Valley. The latching and rearing of buffalo fish in ponds as an adjunct to the farm-food supply appears feasible, but it is doubtful if the species can be so produced on a commercial scale, owing to the large pond area required for attainment of maximum growth in large numbers.

The results of experiments with the chamel cat have been sufficiently promising to warrant setting aside several ponds for the work, and at the close of the year the indications were that there would be justification for undertaking the work on a basis of practical magnitude next season.

The spawning habits of the paddlefish, a disappearing species particularly valuable for the production of caviar, are entirely un-
known, notwithstanding the work of a number of investigators. A number of young fish are now being reared at the laboratory, but they have not yet reached the sparning age.

The hackleback sturgeon is another highly prized fish likewise imperiled by the fishery as now conducted, and drastic control will be necessary if it is not to be economically exterminated. Unlike most fishes, the hackleback does not spawn annually. The rock sturgeon is in the same category with the hackleback in respect to its individual value and waning numbers, and both species have been the subject of study and experiment for the development of practical regulatory and fish-cultural measures for their conservation.

The bureau's fish pathologist has been engaged principally in the investigation of certain diseases that have produced serious losses of fish at various hatcheries and during distribution of the young. One of the most widespread and destructive of these maladies affecting trout was found to be due to an intestinal parasite (Octomitus salmonis) which causes fatal enteritis. No means for directly combating this disease have been developed, but palliative measures, such as the avoidance of overcrowding and the maintenance of a lower water temperature during transportation, have decreased the mortality.

The brood stock of bass and. to a minor degree, other pondfishes at Neosho (Mo.) station has developed from time to time numerous cases of sterility, which have seriously curtailed the output of the station. An investigation during the past year has shown this to be due to an orarian infection by the larve of a tapeworm.

During the latter part of the year a series of experiments for developing a more satisfactory diet for trout was inaugurated at the hatchery at Manchester, Iowa, and the laboratory at Fairport, Iowa, under the direction of the fish pathologist. In the light of present knowledge of mammalian nutrition, to which much attention has been directed in recent years, it appears that the foods now used in hatcheries may be deficient in certain essential constituents, particularly vitamines and salts. It is not improbable that these deficiencies may contribute to the troubles encountered by fishculturists, and it is hoped that a more fully adequate ration can be devised as a result of the current investigation.

The pathologist and several members of the staff of Fairport laboratory have made a number of investigations of epidemics occurring both in wild waters and in State and private hatcheries.

FRESHI-WATER MUSSELS.

Investigations and experiments relating to the pearl-button mussels of the Mississippi River drainage system have been continued in the interests of improvement in the methods of mussel culture and other essentials for the conservation of these economically important mollusks.

Studies of the factors affecting the survival and growth of juvenile mussels after they hare passed the parasitic larval stage have been attended with results warranting the establishment of a small rearing system, consisting of 150 metal troughs with a capacity of about 750,000 mussels, an important feature of which is the exclusion of light. The indications are that more tangible and better-
controlled results will accrue from this method than are now attained by the infection of fish liberated in the open waters with all the attendant uncertainties as to the fate of the little mussels dropped fortuitously.

Statistical and biological surveys have been conducted during the year in Lake Pepin and Lake Pokegama, in both of which mussel culture has been carried on for several years. In Lake Pepin there has been also an alternate sectional closure to commercial mussel fishing. The survey of Lake Pepin indicates that there has been an increase in the commercially important mucket (Lampsilus luteola), propagated by the bureau, while the other species not propagated have decreased. The facts developed in this survey are the most conclusive evidence of the value of mussel culture so far obtained.

The persomel of the Fairport laboratory has been active in assisting the State authorities in developing rational legal measures for the conservation of the mussel beds, as a consequence of which the States of Minnesota, Iowa, Wisconsin, and Illinois have entered into cooperative closure of alternate sections of the Mississippi Rivel between Brownsville, Minn., and Keokuk, Iowa, and Arkansas has amounced the intention to pursue the same system of regulation on the Black and White Rivers.

MOSQUITO CONTROL.

Investigations relative to mosquito control by means of fish, particularly the top minnow Gambusia, were continued at Augusta, Ga., from Jily 1 to November 10, in cooperation with the U. S. Public Health Service.

The problems under immediate consideration were the effects of various types of regetation on mosquito production: the effects of increased competition for food among Cambusia upon the rate of mosquito production; sex frequency and the relative vitality of the sexes of Gambusia : and the proper treatment of the fish in captivity and under shipment.

Tests made with various types of vegetation, including some that have been considered inimical to mosquito production, show that few, if any. of them prerent mosquitoes breeding, but that many species of plants do not form barriers between top minnows and mosquito larre and are therefore neutral in their effects on mosquito production in waters containing the minnows. It was shown also that it is not always the dense regetation, as is commonly believed, that forms the best protection for mosquito larre against fish.

Competition for food among Gambusia is adrantageous, and even in the presence of a serious barrier complete mosquito control may be approached if sufficient minnows are present. The observations on the vitality of the sexes indicated that the males succumb more easily than the females.

Under shipping conditions Gambusia lived equally well in vessels of the same diameter when only one-third full of water as they did when the vessels were filled two-thirds full, and tests indicate that shipments can be made most successfully when the temperature of the water ranges from $83^{\circ} \mathrm{F}$. downward. During December, 1922, 200 Gambusias mere shipped to Palestine with a loss of but 30 en route.

During the year two rather extensive trips were made by the assistant in charge of the investigation to various sections of the Southeastern States for the purpose of inspecting malaria-control projects and to offer suggestions to local health officers concerning the proper use of mosquito-destroying fish. The annual conferences of the National Malaria Committee and the field men conducting malaria-control work were attended.

FOULING OF VESSEL BOTTOMS.

In September, 1922, at the request of the Navy Department, the burean undertook direction of an investigation of the marine growths on the bottoms of ships to determine, if possible, the conditions governing the amount and character of such growths and the possible seasonal and regional factors affecting them, with a view of securing data on the problem of preventing their attachment to ships' bottoms, as well as to determine the docking intervals for ships in yarions kinds of service.

The investigation has also indicated, rather conclusively, that most of the fouling occurs while the ships are in harbors and that vessels in commission that nerer stay more than six or seren days in any port and that travel between ports a considerable distance apart do not foul seriously, at least during August to March, in the North Atlantic Ocean. On the other hand, it is found that vessels that lie continuously at anchor in any one port for the five or sis winter months become heavily coated with hydroids but not with barnacles.

Cooperation has been extended to the Navy Department in testing the relative efficiency of various antifouling paints.

MISCELLANEOUS INVESTIGATIONS IN INTERIOR WATERS.

Cooperation has been continued with the Wisconsin Geological and Natural History Survey in important investigations of the fundamental conditions of fish life in lakes. The aquatic plants, the plankton, bottom fauma, and mussels of Green Lake were studied during the past year with reference to quantity and distribution. Arrangements have been made for the continuance of these investigations during the fiscal year 1924 .

In cooperation with the lllinois Natural History Survey, the Chicago Drainage District, and the U. S. Public Health Service, a statistical survey of the Illinois River for 1921 was made by members of the staff of the Fairport Biological Station in connection with a study of the effects of pollution and the reclamation of land along the stream upon public health, recreation, agriculture, and the fisheries.

During the summer of 1922 , in cooperation with the National Park Service, the bureau made an investigation of the pelicans in the Yellowstone National Park to determine their destructiveness in relation to the trout, the supply of which the bureau helps to maintain by artificial propagation. The results of this investigation indicate that the pelican is a highly specialized predatory bird, and that its breeding period in the park is so precisely synchronized with that of the trout that its depredations effect maximum losses. It was originally suggested that attention be directed rather definitely to the problem presented by the parasites of the pelicans and of the trout
in Yellowstone Lake. Some data were secured on this point, but the general problem of the destructiveness of the birds with respect to the trout, after conferences on the ground, was considered to be of such immediate importance that the question of parasites was temporarily relegated to the background and has not been the subject of special attention.

OLERATION OF DIOLOGICAL LABORATORIES.

The biological laboratory at Fairport, Iowa, has been operated as usual, conducting investigations and experiments in the interests of the economic aquatic resources of the Mississippi Valley and practical fish culture and mussel culture as an aid to their conservation. The more important activities have been mentioned briefly in their appropriate places in preceding pages of this report.
The laboratory at Woods Hole was operated during the summer with a small staff of the bureau's employees, and its facilities were extended, at no additional expense, to a number of independent investigators making studies of various problems of marine biology. During the remainder of the year it was used as a base for the staff of the Albutross, who were engaged in investigations of the basic food organisms of the region and in the oceanographic and biologic studies mentioned in connection with the investigation of the causes of the disastrous conditions obtaining in the oyster industry in Long Island Sound and contiguous waters.

There is still an almost complete lack of personnel at the Beaufort (N. C.) laboratory, due to the impossibility of filling the vacant positions with competent men at the salaries available. The work on diamond-back terrapin culture made some progress, and the facilities of the laboratory wére profitably employed during a large part of the year by investigators of the Navy Department employed in the study of fouling of ships' bottoms. During the summer of 1922 several independent investigators made use of the laboratory. Repairs have been made to buildings, sea wall, and grounds, and the station is in satisfactory physical condition.

The situation at Key West (Fla.) laboratory is also unsatisfactory in respect to personnel for the same reasons as at Beaufort. Some improvement in the buildings and grounds were made during the year. but the incomplete condition of the station and the lack of persomel render it nearly unproductive at present.

POLLUTION OF WATERS.

The burean's recommendation of a small appropriation for the systematic study of water pollutions in their relation to the fisheries failed to receive the farorable consideration of Congress, and this important subject has received practically no attention during the year excepting as a part of the investigation into the conditions cansing the failure of the oyster set in Long Island Sound. I feel that I can not do better than reiterate the statement carried by my report of last year :

Pollution of interior streams and waterways by industrial wastes and municipal sewage has been the subject of complaint and protest for many years. Industry itself frequently has been a victim of its own acts through inability to use the polluted water with safety in boilers or for the many other industrial purposes that require pure water. The public health has been menaced, lublic works have been damaged, agriculture has suffered, and in some parts of the country the streams have been swept bare of living things, including
fishes and other animals of economic importance. Recently the vast development of petroleum production and transportation, the use of its derivatives for manifold purposes ashore, and particularly as fuel on ships, has introduced a new element of serious pollution in the great harbors and in places on the open coust.

The pollutions are almost as varied as industry and in many cases are not only complex in themselves but are further complicated by their reactions on one another and on the natural constituents of the waters themsclves. The waters can not be restored to their pristine purity, nor to any state approaching it, by mere lesislative fiat, and the sooner that fact is appreciated and constructive measures are taken the better for the public welfare.
'The pecuniary losses now suffered as the result of water pollutions are enormons, ind the preventable damage to the life and beauty of our streams, lakes, and seacoast is heyond estimate in terms of mere money. If existing abuses are to be corrected and new ones prevented withont inflicting widespread economic injury, something more constructive than drastic laws must come into being. There must be corrective legishation, but it should be based on something more substantial than a perfectly justifiable desire for improvement. Complete utilization of raw materials is an ideal not attainable. Industry must be accompanied by "waste," and the wastes must be disposed of in some manner. The problem is to devise ways of disposing of them so as to minimize their harmfulness while still permitting industrial development. This is the problem of the biologist, the chemist, and the engineer working in cooperation.

The effects of these pollutions on the fisheries are the only phases of the subject that officially concern the bureau, and it has continued to endeavor, so far as its means would permit, to contribute to the solution of the problems involyed; but it is futile to expect that much can be done unless money and, particularly, trained and capable men are provided for the purpose of determining facts and their practical and scientific implications.

PROPAGATION AND DISTRIBUTION OF FOOD FISHES.

REVIEW.

During the fiseal year 1923 the fish-cultural operations of the bureau were conducted along the same lines as in 1922 . Work at some of the more remote substations had to be discontinued owing to insufficient funds, particularly on the Pacific coast, where it is the practice to operate widely seattered field stations on or near the spawning grounds in order to supply the salmon hatcheries with their full quota of eggs. No attempt was made to collect eggs of the pike perch and yellow perch at the Bay City (Mich.) or the Swanton (V t.) substations. In the marine fish-cultural field the menal offshore work of collecting and fertilizing eggs of the cod, haddock. and other commercial species, and immediately returning them to the natural spawning grounds, had to be omitted.

The Green Lake (Me.) station was closed at the begimning of the fiscal year by authority of Congress, on the recommendation of the bureau. Fish-cultural work at this station has been handicapped by the nature of the water supply, taken from a large open pond, which frequently during the early spring months attained a temperature too high for trout rearing, thus necessitating the premature planting of all stock on hand. In view of the limitations imposed on the work by these conditions, and the very appreciable increase in the cost of maintaining and operating the station within recent years, it was deemed advisable to close it.

Generally speaking, conditions were not favorable to fish culture during the year. Low-water stages on the west coast interfered with the rum of fish in many of the streams early in the season, only to be followed later by heavy floods, which in some instances carried away the racks and permitted the escape of the brood stock held
below. A large number of lake-trout eggs were taken, but adverse weather during the spawning season curtailed the collections of whitefish and cisco eggs.

In the Lake Erie field pike-perch propagation was seriously curtailed by the late spring and the large accumulations of ice remaining on the spawning grounds beyond the usual time. On the other hand, a remarkably good showing was made in the propagation of carp at Port Clinton, Ohio. The carp fishery of this region is an important industry, yielding an annual product valued at approximately a million dollars, and the local fishermen are very appreciative of the burear's efforts to maintain the supply. As a result of their hearty cooperation, the collection of eggs last season was the largest ever made by the bureau. The fishermen take carp in large numbers in the course of their ascent of the Portage River during the spring to spawn and transfer them to ponds from 5 to 15 acres in area, where they are held and fed on shelled corn until September and are then shipped alive to the New York markets. The buffalofish. a species which the commercial fishermen regards as more valuable than the carp, was introduced into the Portage River by the bureau several years ago and appears to have become established there.

A successful season was experienced in the collection of buffalofish eggs in Louisiana, but owing to pollution of the water supply from floods in the Ouachita River, very heavy losses were sustained during the incubation period, thus reducing the output. The bureau received considerable assistance in the collection of the eggs and the distribution of the fry through the cooperation extended by the Louisiana Conservation Commission.

The collection of cod eggs on the Atlantic coast was the largest ever made by the bureau, but there was a considerable reduction in the output of other species from the marine hatcheries owing partly to adverse natural conditions during the spawning season and partly to lessened activities of the commercial fishermen on account of the low market prices prevailing for the species in question during the spawning period.

Shortage of funds necessitated the omission of the usual purchase of adult Atlantic salmon as a source of egg supply for the Craig Brook (Me.) station. Thus far the Penobscot River fishermen have refused to conperate with the bureau on a reasonable basis in its efforts to maintain the supply of salmon in that river, and unless they can be prevailed upon to adopt a more farorable attitude a large measure of success can not be expected. It is essential that the fishermen turn over brood fish to the bureau at the prevailing market price without requiring a bonus for handling, as at present. The maintenance of the salmon supply in this region is of far greater importance to the local fishermen than to anyone else, and they should lend the bureau a reasonable amount of assistance in connection with its efforts in their behalf.

The shad-spawning season on the Potomac River was unusually late, no eggs being arailable until near the end of April, fully three weeks beyond the usnal time. Scarcity of snow, slight rainfall, and unseasonably low temperatures undoubtedly had their effect in delaying and shortening the spawning period. Shad are extremely sensitive to the temperature and quality of water, and they will enter those streams only where the conditions are favorable.

As will be noted from the summary of distribution, the output of fingerling fish of all species was 35 per cent smaller than that of the previous year. This is largely accounted for by the smaller number of rescued fish handled as compared with that year. Shortage in the general propagation fund also had its effect upon this branch of the work, as large numbers of young fish can not be reared without inrolving considerable expense for food and labor.

During the fiscal year 1993 fish-cultural work was conducted by the bureau in 33 States and in the Territory of Alaska, involving the operation of 37 main stations and 32 auxiliaries, and the propagation of orer 40 species of food fishes. Consignments of eyed eggs of certain species were furnished on request to several foreign Governments, and in numerous instances allotments of eggs were transferred to State hatcheries and other stations of the bureau as an economical and efficient means of rehabilitating depleted waters.

The bureau does not transfer eggs or fry of the important commercial fishes to points remote from the source of collection, as the entire available supply is needed for the maintenance of the fisheries in home waters. This applies especially to the Pacific salmons, to the whitefish, lake trout, and pike perch of the Great Lakes region, and to the shad and the marine species of the Atlantic coast.

Summary, by species, of the output of fish and fish eggs during the fiscal year ended June 30, 1923.

Species.	Eggs.	Fry.	Fingerlings.	Total.
Catfish			37,092,979	37,092,979
Buffalofi	163,169,500	5, 925, 000	9,429, 838	178, 524,338
Carp.	29,000, 000	115,000,000	14, 226,110	158, 226, 110
Shad.		16, 971,000		16,971, 000
Glut herring		150,000,000		150, 000, 000
Whitefish	148,041,000	20S, 675,000	3,000	356, 719,000
Cisco.	10,000,000	39,000,000		49,000,000
Chinook salmo	4,205,000	720,000	28,965, 045	$33,590,045$
chum salmon		8, 274, 830	14,997,900	23, 272, 730
Humpback salmon		396,950	1,915, 435	2,312,385
Silver salmon.	100,000	8,371,025	5,910,630	14,381,655
Sockeye salmon	10,678,400	31, 582,000	50, 949,400	93, 209, 800
Steelhead salmon	1,744,000	275, 000	5,339, 005	7,358, 005
Atlantic salmon.		451,000	40, 038	491,038
Landlocked salmon	76, 872	727,670	92,800	897,342
Rainbow trout	2,689,960	754,000	3,40S, 159	6. 852,119
Black-spotted trout	10,127,100	2,160,100	1,492,700	13,779,900
Loch Leven trout			43, 800	43, 800
Lake trout.	7,253,300	34, 748,415	232,080	42, 233, 795
Brook trout	725,300	2, 841,400	8, 477,250	12,043,950
Smelt.	16,280, 000	28, 000, 000		44, 280,000
Pike and pickerel			905, 395	905,395
Crappie.			35,602, 522	35, 602,522
Largemouth black bass		806,500	1,342,349	2,148, 819
Smallmouth black bass		449,400	79,007	52, 407
Rock bass.			64,035	64,035
TVarmouth bass			8,350	8,350
Sunfish.			26, 854, 257	26, 854,257
Pike perch	$37,275,000$	63,365,000		100,640,000
Yellow perch	3,680,000	136,325, 000	936,295	140, 941,295
White perch				
Striped bass.		16,341,000		16,341,000
White bass.			40, 085	40,085
Fresh-water d			49,026	49,026
Cod.	650, 980,000	376, 113,000		1,027,793, 000
Haddock	104, 400,000	2,960,000		107,360, 000
Pollock	$33,960,000$	276,098,000		310, 058, 000
Flounder	229,345,000	1,058,781,000		1,288, 126,000
Miscellaneous fish			15, 818, 142	15, 818, $1+2$
Total.	1,463, 730,432	2,586, 812, 290	264,316,307	4,314, 859,029

DISTRIBUTION OF OUTPUT OF HATCHERIES.

As heretofore, the fish and fish eggs produced at the bureau's stations were widely distributed, the output of commercial fishes being liberated as fry in suitable public waters, while the various species adapted for interior ponds, lakes, and streams were assigned on applications submitted by individuals, organizations, and State fisheries authorities. Shipments were made to practically every part of the United States, the coastal regions of Alaska, and to several foreign countries.

The five specially equipped cars of the bureau are used principally for the distribution of fishos to interior waters, including both public and private ponds, lakes, and streams, for which individual applications have been submitted, and waters within the United States forest reservations and national parks. In addition, the cars are employed to some extent in shipping fry from the Great Lakes hatcheries to distant spawning grounds that can not be reached conveniently by boat. In all other cases the distribution of the commercial species is accomplished without the use of the cars, most of the fish being liberated on spawning grounds in the immediate vicinity of the hatcheries.

During the fiscal year 1923 the bureau's cars and messengers covered 415,505 miles of travel on regular passenger trains, in the course of which 11,500 applications for fish were filled. Of this total, 70,118 miles were traveled by the cars and 345,387 miles by detached messengers.

In a number of instances the bureau refused to entertain applications for such spiny-rayed fishes as bass and pike for introduction into waters connected with the salmon streams of the west coast, on the ground that such fishes would be certain to prove destructive to the existing valuable fisheries of that region. If placed in such waters, the young of these predatory fishes would almost certainly eventually ascend the salmon and trout streams to the natural spawning grounds, prey upon the eggs and young of the indigenous spacies, and destroy their nests.

The bureau has also found it necessary to refuse trout and smallmouth black bass for stocking waters in the South, where the temperature becomes too high for these fishes. It also refuses to furnish hass and other warm-water fishes for introduction in rivers and lakes where these species are indigenous and already abound. Many persons submit applications for fish without considering the necessity. If the fishing happens to be poor they apparently think that the mere planting of fresh supplies of fish will afford a bountiful stock. In any crent, it is easier to ask for "something for nothing " than to exercise care and vigilance in the conservation of that which already exists. In such cases the essential requirement is not additional plants of fish but adequate protection for the existing stock during the spawning season and the application of proper restrictive regulations during the remainder of the year. If well protected, most of the warm-water fishes will maintain themselves and multiply without other assistance where the conditions are congenial. The demands for fish for depleted waters throughout the country are so great as to tax the resources of the bureau, and it can not under-
take to furnish stock for waters that need nothing but reasonable protection to restore them to full productivity.

RELATIONS WITH STATES IN FISH CULTURE.

To meet the heary demands by tourists and automobile parties upon the fishing in the waters of many States, the State authorities have had either to increase the production at their own hatcheries or to work in closer harmony than heretofore with the burean. The cooperative relations thus established have been beneficial to both parties and in many instances have resulted in more economical and efficient work than would otherwise have been possible.

In several parts of the country eggs are collected conjointly by the bureau and the State fish commissions. In some instances the bureau's personnel is lent to the State authorities for the development of egg-collecting fields with the understanding that an equitable division of the eggs or the resulting fry will be made. In the southern districts of the Mississippi Valley young fish are removed from more or less inaccessible waters, where they are crowded together in large numbers and serve only as prey for larger fish, and are placed in a more suitable environment, that they may eventually be of benefit to the public. In the upper Mississippi Valley assistance is rendered by the neighboring States in transferring fish from landlocked pools to tributary waters of the Mississippi River where favorable conditions exist. In several cases surplus eggs have been exchanged by State organizations and the bureall with advantage to both parties.

With the increasing demand for fish other cooperative relations between the bureau and the States have assumed larger proportions. The bureau is constantly calling the attention of various State officials to the necessity for more adequate laws for the protection of the food and game fishes within their boundaries. At the present time legislation of this character is lacking to a greater extent in the Southern States than in any other part of the country. The fisheries of the South have not as yet become so depleted as in many parts of the North, and, owing to the natural productivity of southern waters, the need for protective legislation has not become so imperative. However, the large influx of tourists to the Sonthern States during the winter months is rapidly changing the situation, and imless these States adopt measures for the protection of fish, particularly during the spawning season, their waters will soon be in a state of depletion. Not only are the laws inadequate but very few States in this region make any additions to the existing stock by the introduction of fish produced at their own hatcheries.

The cooperative relations that have heretofore existed between the burean and the Canadian fisheries authorities have been continued. Every year the burean's station at Cape Vincent, N. Y.. collects large numbers of whitefish and cisco eggs on the Canadian side in the Bay of Quinte, and not only turns over a portion of such collections to the Canadian hatcheries but also liberates in Canadian waters a certain percentage of the fry produced. The bureau has also received from the Canadian authorities consignments of Atlantic-salmon eggs and has returned in exchange eggs of the rainbow, brook, and blackspotted trout. This cooperation between the two countries has
resulted in each case in a greater output of fish than would otherwise have been possible and has led to the introduction of species that were especially desirable or necessary for the maintenance of existing fisheries.
During the fiscal year 1923 the fisheries authorities of 26 States were supplied with fish or fish eggs, as is shown in the following table:

Assignments of fish and fish eggs to State and Territorial fish commissions, fiscal year 1923.
[Asterisk $\left(^{*}\right.$) denotes eggs; dagger (\dagger) fry; all others are fingerlings.]

State and species.	Number.	State and species.	Number.
Alaska:		New Jersey:	
Brook trout	*50, 000	Rainbow trout	*100,000
Sockeye salmon	*5, 098,936	Sunfish.:	
California: Black-spotted trout	*100,000	New Mexico: Blackspotted trout.	*50,000
Lake trout..........	*100, 000	Do..	62,000
Colorado: Lake trout	*50,000	Brook trout	*300, 000
Connecticut: Lake trout	*30, 000	Rainbow tro	*69,500
Hawaii: Blackspotted trout.	*50,000	New lork: Lake trout	*1,250,000
Rainbow trout......	*25, 000	Whitefish.	*31, 885,000
Idaho:		North Dakota:	
Blackspotted trout.	*125, 000	Black bass.	400
Brook trout	900	Buffalofish	1,110
Catfish.	1,500	Catfish.	9, 600
Rainbow	4, 500	Crappie.	5,550
Whitefish	* $1,000,000$	Sunfish.	1,330
Iowa: Lake trout		Ohio: Pellow pe	*37, 1,100
Lake trout...	* 75,000	Ohio: Pike perch..........	*37, 275, 000
Louisiana:	*153,600	Oregon:	119, 151
Black bass	24	Blackspotted trout	*50,000
Buffalofish	$\dagger 1,200,000$	Chinook salmon.	* $4,000,000$
Crappie.	250	Sockeye salmon	*5, 045,000
Sunfish	1,700	Steelhead salmon	*370,000
Maine: Lake trout.	*50, 000	Pennsylvania:	
Marvland:		Rainbow trout.	*681,000
Brook trout	750	Whitefish.	*2S, 000, 000
Chinook salmo Do........	*15, 000	Utah:	
Crappie.	†4,000	Catish.	28,400
Crappie..........	100	Lake trou	*150, 000
Humpback salm	†3, 350	Vermont:	
Rainbow trout Do.......	400	Lake trout.	*130,000
Whiteñis	*114,000	Landlocked salmon	*20,349
Whiteâsh	*192,000	Steelhead salmon	8,000
Miehigan:		Washington:	
Cisco..	*10,000,000	Sockeye salmon.	*534,464
Lake trout	$\dagger 636,000$	Steelhead salmon	*95,000
Minnesota ${ }_{\text {Black }}$		Do.	50,000
Black bas	600	West Virginia:	
Catfish.	12,700	Brook trout.	352,000
Crappie	17,900	Rainbow trout	500,000
Lake trout	*200, 000	Wisconsin:	
Sunfish...	7,520	Black bass.	8,350
Yellow per	100	Catfish.	16,150
Missouri:		Crappie	**3, 7,800
Rainbow trout	*50,000	Lake trou	*3, 000,000
Yellow perch	*3,680, 000		†1,760,000
Montana:		Wyoming:	
Lake trout	*1,599,000	Blackspotted trout	*550,000
Lake trout.	*50, 000		+300,000
Steelhead salmon	*100,000	Lake trout	*150,000
Whitefish	*1,000,000	Rainbow tro	*309, 000
New Hampshire:	*120,000		*138, 112,198
Lake trout.	*50,000		+3, 903,350
Landlocked salm	*20, 349		1, 219, 973

Shipments of fish eggs to forcign countrics, fiscal year 1923.

Country and species.	Number of eggs shipped.	Country and species.	Number of eggs shipped.
Argentina: Steelhead salmon.	25,000	Germany: Rainbow trout	68,000
Canada: Blackspotted trout	317, 000	Netherlands: Chinook salmon	200, 000
Steelhead salmon..	400, 000	Rainbow trout.	50, 000
Czechoslovakia: Rain bow trout	$44,000,000$ 100,00	Total	45, 150, 000

COOPERATION WITH FISH-PROTECTIVE ASSOCLATIONS.

Throughout the year the bureau has worked in close harmony with fishing clubs and other organizations interested in stocking certain waters or in securing legislation for their protection. Such organizations have assisted in the distribution of fish by promptly meeting shipments sent out by cars or detached messengers and carefully liberating them in the most suitable waters available. The bureau has furnished these agencies information as to the best methods of planting fish, and in some instances public talks have been given by the bureau's representatives explaining its work at some length. In other instances the bureau's employees have been detailed to give advice to State organizations, their expenses while thus engaged being borne by the State in question.

PROPAGATION OF MIGRATORY FISHES OF ATLANTIC RIVERS.

Owing to various unfavorable conditions, the season's results in shad propagation on the Potomac River and in the Albermarle Sound district were smaller than for several years past. At the Bryans Point station the unusually cold and stormy weather prevailing practically throughout the spawning season interfered with fishing operations, and the river water remained too cold to ripen the eggs and cause the fish to seek shallow waters to spawn until about two weeks beyond the usual time. Shortly after the middle of April egg collections were undertaken and continuonsly prosecuted until May 15, and $17,677,000$ eggs were secured. Shad work at the Edenton station was practically negligible as a result of a recently adopted decision to issue no permits for the operation of gill nets on the usual spawning grounds. In past years gill nets have constituted the main source of supply for shad eggs for this station, but experience having shown that many of the fishermen were not complying with the terms of the license, its discontinuance was deemed advisable. The results of the season's work in the propagation of glut herring at the Edenton station were most encouraging, the egg collections being increased over last year's collections by approximately 200 per cent, notwithstanding the difficulty encountered in obtaining efficient spawn takers to handle the large numbers of fish available.

Eggs to the number of $313,000,000$ were obtained and incubated at an average cost of $\$ 2.14$ per $1,000,000$. The propagation of this
species represents conservation of the highest type, since the eggs would be sent to the market in the fish and lost were it not for the bureal's intervention. In past years the fishermen of the region have appeared reluctant to cooperate with the bureau in furnishing eggs, but they now seem to realize the importance of the work and it is believed there will be no difficulty hereafter in obtaining an egg supply.

The Weldon substation, on the Roanoke River, was fitted up for striped-bass propagation as usual, but egg collections were discontinued at the height of the sparning season, as it was found that the large amount of trade waste discharged into the river from a local manufacturing plant was polluting the water and killing the fry liberated from the hatchery. The total egg collection amounted to $22,08+, 000$. At the begimning of the spawning season the fishermen at this point were loath to cooperate in the collection of eggs on a fair basis, but this opposition was overcome after the situation had been fully explained to them.

The usual collection of adult Atlantic salmon at the Craig Brook (Me.) station could not be made, due to the washing away of the barrier at the Dead Brook inclosure, where it has been customary to hold the fish for several months awaiting the development of their spawn. Five hundred thousand Atlantic salmon eggs, received at the Craig Brook station from the Canadian Government in exchange for an equal number of trout eggs, produced 466,000 fry, all of which, with the exception of a small number reserved for rearing to the fingerling stage, were liberated in the Penobscot River and its tributaries.

It is believed that greater results than heretofore may be attained by rearing a comparatively small number of fish to the No. 2 or No. 3 fingerling stage before liberating, and this policy will be pursued in connection with any future operations with this species. It is probable, however, that Atlantic salmon propagation on the Penobscot will be entirely discontinued unless the fishermen of the region show a greater willingness than they have thus far shown to cooperate in the work.

PROPAGATION OF COMMERCIAL SPECIES OF THE GREAT LAKES.

The bureau's work in this region was concerned as usual with the propagation of such important commercial fishes as the lake trout, whitefish, pike perch, yellow perch, and carp. Most of the eggs obtained from these species are taken from fish caught for the market by the commercial fishermen and incubated in the bureaus hatcheries, the resulting fry being liberated on the natural spawning grounds. Owing to heavy storms, which prevailed practically throughout the incubation period, there was a considerable shortage in whitefish eggg collections as compared with the previous year, and the quality of those secured was impaired by the quantities of slime and sediment carried in the water supply. On the other hand, the weather in the spawning fields where lake trout eggs are obtained was favorable, and the collections of that species exceeded those made in 1922.

In the eastern end of Lake Ontario the ciscoes, for some unknown reason, did not resort to the spawning grounds in the usual numbers. Especially was this true in the ordinarily prolific Bay of Quinte, the
catch of the commercial fishermen in that field being very much below the average. As a consequence the egg collections for the Cape Vincent hatchery were reduced far below the total of last year. The smaller than average collection of pike perch eggs in the Put in Bay field resulted from an unduly late fishing season, the setting of the fishermen's nets being greatly interfered with by the large bodies of ice that remained in the lake to a late period. The collection of carp eggs in the Portage River district was the largest ever made by the bureau. All the carp fishermen of this region are greatly interested in the success of the work and are cooperating heartily in the bureau's efforts to increase its egg collections.

PROPAGATION OF PACIFIC SALAMONS.

In the Pacific coast and Alaska fields the collection of salmon eggs amounted, in round numbers, to $179,000,000$, or approximately $50,-$ 000,000 less than were secured last year, this considerable shortage being due to unusual water conditions. In some of the streams where operations were conducted the water stages were so low as to prevent fish from entering, while in other fields the racks installed to intercept the run were carried away by floods, permitting the escape of brood stock upon which the stations were depending for their egg supply.

A successful season was experienced in the collection of sockeye salmon eggs for the Afognak (Alaska) station, 61,790,000 being secured. The steady increase in the yearly egg collections in this region since 1912 , when the run of salmon was destroyed by the eruption of Mount Katmai, would seem to indicate beyond donbt the effectiveness of artificial propagation. With the view of obtaining some definite information along this line as a preliminary to extending the work if the conditions warrant, steps have been taken to make an annual count of the salmon passing up the Karluk River, the first count to be made during the current season.

At the beginning of the sockeye spawning season at the Yes Bay (Alaska) station the water stages were too low to permit of egg collections, the conditions in this respect remaining unfavorable up to the end of the first week in September. Eggs to the number of $25,000,000$ were taken between that time and September 22, when the work was abruptly terminated by heavy rains, which flooded and carried away the racks, permitting the eseape of brood fish estimated to contain at least $10,000,000$ eggs. This station has been making a point of rearing large numbers of young salmon to the fingerling stage before liberating them, and in order to conduct the work as advantageously as possible has inclosed the outlet of a natural slough, which appears to make an excellent feeding ground. The Forest Service has cooperated with the bureau in this region by constructing a trail to connect the station with tidewater.

In the Washington field the floods were especially severe in the Quilcene River, on which the Duckabush and Quilcene hatcheries are located, the water remaining at a very high stage for several weeks during a critical period. The 1922 annual census of sockeye salmon descending through the weir at Quinault Lake, Wash., was concluded on September 13 of that year, the total count amounting to

248,935 fish. The annual count for 1923 began March 20 , and between that time and June 30 the number passing above the weir aggregated 123,022, as compared with 199,489 for the corresponding period of the previous year.

In the Oregon field the racks and other collecting cquipment were damaged considerably by floods, which were heavy enough to wash away the station site on the upper Clackamas River and to carry out 200 feet of the flume and crib of the intake at the Little White Salmon hatchery. The total egg collections in this field were approximately $27,000,000$, as compared with $63,000,000$ last year. Part of this falling off may be attributed to depletion resulting from the heary fishing operations four years ago, though success in the collection of eggs of any of the Pacific salmons is largely dependent on local water conditions in the streams, regardless of other influences. It is probable that the large industrial dams constructed in recent years will greatly interfere with stream flow, as the water is impounded during the wet season for use during periods of slight rainfall. Deforestation also has a deleterious effect on fish-cultural operations, causing the rainfall to drain rapidly from the land and overflow the streams where work is being conducted.

The marine stations in New England experienced a considerable falling off in egg collections, the total of all species secured amounting to but $3,200,876,000$, as compared with $3,955,314,000$ taken last rear. The shortage occurred principally in the propagation of the winter flounder and haddock, and was the direct result of the lowmarket prices prevailing for fish of these species. which curtailed the commercial catch from which eggs are obtained. On the other hand, cod eggs were plentiful, both at the Woods Hole and the Gloucester stations, the collections for the two hatcheries exceeding 1.279.000.000, or more than twice the number secured in 1922.

In the Gloucester field the conditions connected with the propagation of pollock were even more unfavorable than last year. There seemed to be an abundance of fish on the spawning grounds, but they were constantly shifting about and large numbers remained close to the bottom where the nets could not reach them. The catch of the commercial fishermen was, therefore, small, and the egg collections for the station were correspondingly reduced. Owing to the large amount of surface water entering the harbor, part of the end eggs secured for the Gloucester station could not be successfully incubated in the hatchery and 277.500 .000 were planted on the fishing grounds immediately after being fertilized.

The fish-cultural output of the Boothbay Harbor (Me.) station was confined to the winter flounder, efforts to secure eggs of the pollock, haddock, and cod being unsuccessful. Late in February the station emplovess undertook the collection of a brood stock of winter flounders but were hampered by the heavy ice fields and abundance of snow on the fishing grounds, very few fish and no eggs being obtained until late in March. Notwithstanding this serious delay, about 5.000 brood fish were captured, the first on March 20. and between that time and May 10, the end of the spawning season, $943.316,000$ eggs were secured. Comparatively small results were yielded in the usually prolific Linekins Bay field. as most of the fish in that territory remained in water from 30 to 40 fathoms rleep throughout the season.

At the Woods Hole (Mass.) station considerable difficulty was: experienced in securing a ressel equipped with a well for the tramsportation of brood cod as a source of eqges supply, the ressels formerly employed for this work haring either been sold or lost. A small one suitable for the purpose was finally hired at Newport, R. I., and, arrangements haring been made with the various trap owners to supply cod, approximately 2.800 were transferred from the fishing grounds to the station. These fish vielded 555,584,000 eggs, and $114,000,000$ additional were obtained for the station by spawn takers operating in Cape Cod Bay. Due to mfavorable weather conditions in the Waquoit Bay collecting field, the collection of winter flounder eggs for the Woods Hole station was the smallest in several years, only 369.865 .000 being secured. The work with this species was undertaken on January 16 and completed April 4.

CULTIVITION OF FISHES OF INTERIOR WATERS.
Collections of eggs of the brook, rainbow, blackspotted, and Loch Leven tronts at the rarious stations devoted to work with these species amounted, in round numbers, to $47,349,000$, or $8,823,000$ in excess of those collected in 1922. The increase in output over that of last year was even greater, due to smaller losses sustained during the incubation and rearing periods.

A very successful collection of brook-tront eggs was made for the Leadville (Colo.) station, but there was a falling off, compared with the previous year, in the percentage of hatch. In accordance with the usual custom, 200,000 of the eyed eggs were forwarded to the Bozeman (Mont.) station, with the view of utilizing the resulting fry in stocking suitable waters in the Glacier National Park.

During the month of November the force attached to the Springville (Utah) station, in cooperation with employees of the Utah State fisheries department, collected $8,250,000$ brook tront eggs in Fish Lake, of which the station received $3,200,000$ as its share. The egg collections at this lake have shown a steady increase ever since the work was inaugurated by the bureau in 1917, the number takeu that year being 2,785,000. Collections of lainbow-trout eggs were also made at Fish Lake during the spring of 1923, the station receiving 882,000 .

During April and May eggs from wild rainbor trout to the number of $1,500,000$ were taken at the Meadow Creek field station, in Madison Valley, Mont. Some trouble was experienced in fertilizing them and the losses to the eyed stage were abnormally large. only 810,000 good eggs resulting from the work. These were of excellent quality, however. At the Bozeman (Mont.) station the entire pond system is being remodeled, and when the work is completed the capacity of the station for rearing fry and fingerling fish will be materially increased.

A very successful season was experienced in the propagation of backspotted trout in the Yellowstone Park during the summer of 1922 under the direction of the superintendent of the Leadville (Colo.) station. The egge collections, as compared with the previous rear, were nearly doubled and the output of fry was proportionately large. It is planned hereafter to utilize a larger percentage of
the young fish resulting from egg collections in this field in building up fishing in the Yellowstone Park, and with this end in view extensive rearing and planting arrangements are under way. Operations in this field during 1923 were undertaken late in May, under the supervision of the district supervisor of the Mississippi Valley rescue station, and $4,794,000$ eggs had been secured up to and including June 30.

Egg collections in the Saratoga (Wyo.) field practically were confined to brook trout and rainbow trout, though a few Loch Leven trout eggs were taken from brood stock carried in the station ponds. The operation of the recently constructed rainbow-trout field station on Sage Creek during the spring months was made exceedingly difficult by the almost impassable mountain roads, which were still heavily blocked with snow on May 1. The substation was finally reached, as a result of great effort, and a fairly successful season's work was accomplished. Low-water stages in the Pathfinder Reservoir caused an unusually light run of fish. Eggs were taken throughout the month of May and up to June 7, the total collection amounting to $1,237,150$.

The season's output of trout from Manchester (Iowa) station was very seriously curtailed by the flooding of the station reservation during a heavy storm in July, 1922, at which time a large number of brood brook and rainbow trout were washed from the ponds and perished on the station grounds. This loss was partially overcome through the donation of a considerable number of adult brook trout by the Sportsmen's Club, of Calmer, Iowa, and small consignments of rainbow-trout eggs received in the following spring from the Madison Valley (Mont.) and Springville (Utah) fields. Part of the fry resulting from these western eggs will be reared for the purpose of replenishing the depleted brood stock.

During March and April a heavy mortality occurred among the young brook trout at the Hartsville (Mass.) station. It was found impossible to check it by any of the methods of treatment usually applied, and before the distribution could be made the stock had been reduced fully 40 per cent by losses. An investigation showed the presence of the parasite Octomitus, elsewhere referred to in this report, and the mortality was probably due to it, possibly aggravated by unfarorable water conditions which may have reduced the resistance of the young fish.

At the newly established Roaring River auxiliary of the Neosho (Mo.) station the results of the first season in rainbow-trout propagation were disappointing, only 958,720 eggs being obtained from the 3,000 adult and 7,000 yearling fish on hand. The low egg production is attributed to underfeeding of the brood stock by the owner of the ponds. A more satisfactory season's work was experienced at Bourbon, Mo., where another field auxiliary of the Neosho station was operated for the first time. An arrangement was entered into with the owner of the property whereby the bureau is to receive two-thirds of all the fingerling fish produced. As the site is in the eastern part of the State, its use as a fish-rearing plant will not only effect a material saving in distribution expenses but a greater number of fish than formerly will be available for stocking waters in that section of the country. During the year the bureau
leased a private pond system at Langdon, Kans, to be operated as an auxiliary of the Neosho station for the production of bass and crappie. The work was started in the spring of 1923, but owing to flooded conditions the output of fish was small.

Owing to the adverse weather conditions encountered, the production of pond fishes was below normal at several of the stations engaged in that branch of fish culture. The most serious reduction was at the stations located at White Sulphur Springs, W. Va., Northville, Mich., Mammoth Springs, Ark., and Erwin, Tenn., at all of which points violently fluctuating air and water temperatures during the spawning season caused the destruction of many nests of eggs. More favorable natural conditions obtained at the Tupelo (Miss.), Orangeburg (S. C.), and Louisville (Ky.) stations, and the output of bass and allied species from those stations was the largest in their history.

The spawning of buffalofish at the Atchafalaya (La.) station extended from February 15 to March 28, and during this period approximately $179,000,000$ eggs were secured. As at many other points, the work was retarded and curtailed by unseasonable weather and water conditions. On March 5 all lowlands in the vicinity of the hatchery were inundated by flood waters coming down from the Ouachita River. The salts and oil with which the flood waters were charged put a stop to the run of spawning fish and also polluted the hatchery water, killing the entire stock of eggs on hand at the time. From then on to the close of the spawning season all eggs secured were fertilized and immediately returned to the waters from which the parent fish were taken.

The work of rescuing stranded food fishes from overflowed lands bordering the Mississippi River was taken up July 1 and prosecuted daily until the 1 st of November, when freezing weather necessitated its discontinuance. The field of operations extended from Prescott, Minn., to Andalusia, Ill., and the rescued fishes included nearly every food species native to the region. Of the 139,799,031 fish handled in the course of the season, $1,164,952$ were distributed to applicants, and the remainder was released in the Mississippi River and its tributaries. The smaller results obtained, as compared with the previous year, were due to the abnormal water stages in the river during the usual salvage period.

In view of the difficulty experienced in transporting or holding for later distribution the crappie and sunfish rescued during extremely warm weather, some experiments were made at the Homer station with the copper-sulphate treatment for the prevention and cure of fungoid growths. As a result of the tests, it was found that the very small crappie and sunfish were too weak to withstand the treatment, but that it might be advantageously applied to the larger fishes and to the more vigorous individuals among the smaller ones. Its general use therefore will be resorted to hereafter in handling and holding fish of these species at the several collecting points in the rescue field.

The Alaskan salmon industry returned to practically normal proportions in the season of 1922 after its decline in 1921. Many salmon canneries were reopened and 15 new ones established, making a total of 123 plants operated as against 83 in the previous year. A number of plants remained closed, in some instances operations being carried on jointly by two or more companies at one plant. Market conditions also improver, thus promising a successful season. The larger production in 1922 resulted chiefly from the unusually heavy run of humpback salmon in southeastern Alaska.

The catch of salmon in the Alaska fisheries in 1922 was $72,370,400$ fish, of which $33,898,772$ were red or sockeye salmon, $30,589,342$ humpback or pink salmon, $5,273,883$ chum or keta salmon, $1,838,094$ coho or silver salmon, and 770,309 king or spring salmon. Apportioned by geographical districts, the catch in southeast Alaska was 31,055,302 fish; central Alaska, 15,612,843 fish; and western Alaska, $25,702,255$ fish. Comparing these figures with the returns for 1921, there was a total increase of about 91 per cent. All species, with the exception of kings, were taken in greater numbers. The number of humpbacks taken in 1922 was an increase of about 327 per cent over the take in 1921.

The 123 canneries utilized the greater part of the catch of salmon in the canned pack, which comprised $4,501,652$ cases with a market ralue of $\$ 29,787,193$, an increase of $1,904,826$ cases, or approximately 72 per cent, and $\$ 10,154,449$ in value over the previous year. The pack of all species, except kings, was larger.

Other salmon products were $4,266,050$ pounds of mild-cured fish, valued at $\$ 821,169 ; 3,585,100$ pounds of pickled fish, valued at $\$ 248,-$ $015 ; 3,849,153$ pounds of frozen fish, valued at $\$ 261,094 ; 3,802,729$ pounds of fresh fish, valued at $\$ 271,869 ; 906,550$ pounds of dried or smoked fish, valued at $\$ 148,464 ; 774,000$ pounds of fertilizer, valued at $\$ 23,438$; and 12,989 gallons of oil, valued at $\$ 5,015$; the total value of the products of the salmon industry of Alaska in 1922 being $\$ 31,566,257$.

The herring fishery ranked next to the salmon fishery in 1922, totaling $35,905,450$ pounds of Scotch-cured fish, valued at $\$ 2,030,975$; 237,850 pounds of Norwegian-cured fish, valued at $\$ 14,009 ; 240,000$ pounds of dry salted for food, valued at $\$ 9,600 ; 425,241$ gallons of oil, valued at $\$ 144,418 ; 1,646$ tons of fertilizer, valued at $\$ 98,528$; and $3,488,615$ pounds of bait, valued at $\$ 31,586$.

The halibut fishery produced $7,886,764$ pounds of fresh fish, valued at $\$ 772,610$, and $3,188,473$ pounds of frozen fish, valued at $\$ 262,357$.

The cod fishery yielded a catch valued at $\$ 464,169$ and the whale fishery $\$ 409,518$. Clam products were valued at $\$ 185,007$ and shrimp products at $\$ 126,690$. Other minor items were : Crabs, $\$ 47,379$; trout, $\$ 5,914$; sablefish, $\$ 1,538$; flatfish, $\$ 367$; and ling cod, $\$ 26$.

The entire Alaska fishery industry gave employment to 21,974 persons, represented an investment of $\$ 54,590,302$, and yielded products valued at $\$ 36,170,948$.

A detailed account of the extent and condition of the Alaska fisheries in 1922 and of the activities of the bureau under the laws and regulations for the protection of the fisheries is embodied in the annual report of the Alaska service for that year. ${ }^{1}$

ENFORCEMENT OF FISHERY LAWS AND REGULATIONS.

Primarily for the purpose of enforcing the fishery laws and regulations, the bureau in 1922 operated 8 of its own vessels in Alaskan waters, and in addition 22 small boats were chartered for varying periods and 6 launches, maintained on Bristol Bay chiefly for the destruction of predatory fish, were used for patrol service during the fishing season. On account of shortage of funds the force of temporary stream guards, of which there were 60 in 1922, will necessarily be employed for a shorter period in the season of 1923. The total force aggregates 19 statutory employees, 25 men on vessels, and 69 stream guards and temporary assistants.

A number of prosecutions were made for violations of the fishery laws and regulations in 1922, the majority being for fishing in streams or within the prohibited distances of the mouths of streams. In the cases disposed of fines and costs amounted to about $\$ 2,500$, with two jail sentences of 30 days and one of 20 days. A few cases had not been brought to trial at the end of the year. The stationing of stream guards at the mouths of many salmon streams operated, without doubt, as a deterrent to unlawful fishing in protected waters and thus aided materially in conserving the runs of salmon.

Markers were erected at the mouths of a number of streams that heretofore had been unmarked, and those destroyed or defaced were replaced. Some work was also done to clear streams of obstructions and render them more easily accessible to spawning salmon. Investigations were made and results reported to the Federal Power Commission in regard to the effect proposed power projects on certain streams would have on the runs of salmon.

PRIVATE \&ALMON HATCHERIES.

In 1923 two private salmon hatcheries were operated in Alaska as authorized by law. The hatchery of the Alaska Packers Association on Naha Stream liberated $16,985,000$ red salmon fry in the fiscal year 1923, and that of the Northwestern Fisheries Co., located on Hugh Smith Lake, liberated $6,007,000$ red salmon fry in the same period. The total rebate of taxes on canned salmon, at the rate of 40 cents per 1,000 fry released by these hatcheries, amounted to $\$ 9,196.80$.

Representatives of the Washington State Fish Commission made collections of humpback-salmon eggs in Prince William Sound in the season of 1922. Very heavy losses occurred during the early stages of the work, and on request of the burean the collecting of eggs was discontinued. The eggs on hand were eyed, and shipments made in October totaled 14,571,708 eyed humpback-salmon eggs.

NEW SAIMON-FISHERY REGULATIONS.

Under date of November 3, 1922, an Executive order was issued creating a reserve designated as the Southwestern Alaska Fisheries Reservation, including Bristol Bay, Kodiak and Afognak waters, and Cook Inlet. Hearings were held at Seattle and San Francisco the latter part of November to consider necessary restrictions on fishing in the reserved districts. Revised regulations for the Alaska Peninsula Fisheries Reservation and regulations for the administration of the newly created Southwestern Alaska Fisheries Reservation were issued December 14 and 16, 1922, respectively. The full text of these regulations and of the Executive order of November 3 will be found in the report of Alaska Fishery and Fur-Seal Industries in 1922.

For the season of 1923 a total of 90 formal permits for fishery operations within these reserves were issued by the Secretary of Commerce, of which 9 were canceled before the beginning of the fishing season, leaving 81 under which operations were carried on. Eight supplementary permits were granted in connection with permits previously issued. Permits effective in the season of 1923 are as follows:

Alaska Peninsula Fisheries Reservation.

No. 1. Alaska Packers Association Chignik.

No. 3. Northwestern Fisheries Co
No. 4. Shumagin Packing Co
No. 5. P. E. Harris \& Co
No. 6. P'acific American Fisheries
No. 7. Pacific American Fisheries
No. S. Everett Packing Co
No. 9. Fidalgo Island Packing Co
No. 10. I'acific American Fisheries
No. 11. Pacific American Fisheries
No. 12. Phoenix Packing Co
No. 13. George Albert
No. 70. Union Fish Co
No. S6. Brown Fish Co

Do.
Squaw Harbor.
False Pass.
Ikatan.
King Core.
Herendeen Bay. Do.
Nelson Lagoon.
Port Moller.
Herendeen Lay. Port Heiden. 10 stations. 2 stations.

Southuestern Alaska Fisheries Reservation.
BRISTOL BAY DISTRICT.

No. 14. Alaska Packers Associati	Kvichak.
No. 15. Alaska Packers Association	Do.
No. 16. Alaska Packers Association	Naknek.
No. 17. Alaska Packers Association	Do.
No. 18. Alaska Packers Association	Do.
No. 19. Alaska Packers Association	Egegik.
No. 20. Alaska Packers Association	Ugashik.
No. 21. Alaska Packers Association	Nushagak.
No. 22. Alaska Packers Association	Do.
No. 24. Alaska-Portland Packers' Association	Naknck.
No. 25. Aliska Salmon Co_	Kvichak.
No. 26. Alaska Salmon Co	Wood River.
No. 27. Pristol Pay Packing Co	Kogriung.
No. 28. Carlisle Packing Co	Knggiung Rive
No. 29. Columbia River Packers' Association	Nushagak.
No.30. International Packing Co_	Ugashik.
No. 31. Libly , McNeill \& Libhy-	Egegik.
No. 32. Libhy, McNeill \& Libhy	Ekuk.
No. 33. Libby, McNeil	Nushagak.

No. 34. Libby, McNeill \& Libby	Lockanok.
No. 35. Libby, McNeill \& Libby	Libbyrille.
No. 36. Libby, McNeill \& Libby	Koggiung.
No. 37. Libby, McNeill \& Libby	Igushik.
No. 38. Naknek Packing Co	Naknek.
No. 39. Peter M. Nelson	Kvichak.
No. 40. Northwestern Fisheries Co	Naknek.
No. 41. Northwestern Fisheries Co	Nushagak.
No.42. Red Salmon Canning Co	Ugashik.
No. 43. Red Salmon Canning Co	Naknek.
No. 72. Peter M. Nelson	Copenhagen Creek.
No. 74. Peter M. Nelson	Igushik.
No. 77. Pering Sea Salmon Packing Co	King Salmon Creek.
No. S5. Alaska-Portland Packers' Associ	Nushagak.
No. S8. Alaska Calmon Co.	Kvichak.
COOK INLET DISTRICT.	
No. 44. Alaska Packers Associ	Kasilof.
No. 46. Anchorage Packing Co	Anchorage.
No. 48. Fidalgo Island Packins	Port Gralinm.
No. 50. Kamishak Canning Co	Kamishak Bay.
No. 51. Libby, McNeill \& Libby	Kenai.
No. 52. North Coast Packing Co	Ninilchik.
No. 53. Northwestern Fisheries Co	Kenai.
No. 66. Delorne and Wilso	Chisik Island.
Ňo. 75. H. J. Emard	Moose Point.
No. S1. Pioneer Canneries (In	Sung Harbor.
No. S2. Arctic Packing Co	English Bay.
No. S4. Charles B. Myers_	Paulie Creek.
No. 90. Alaska Year-Tound Canneries	Seldovia.
KODIAK-AFOGNAK DISTRICT.	
No. 56. Alaska Packers Association	Larsen Bay.
No. 57. Northwestern Fisheries Co	Uyak.
No. 58. Robinson Packing Corpor	Zachar Bay.
No. 61. Michael P. Galvin	Our Island.
No. 62. Kodiak Fisheries Co	Kodiak.
No. 63. Katmai Packing Co	Uzinki.
No. 64. Kodiak Island Fishing \& Packing	Uganik Bay.
No. 65. Pajoman \& Trout	Raspberry Istand.
No. 67. W. J. Erskine Co	Korliak.
No. 68. Alaska Sea Food Products Co	Three Saints Bay.
No. 69. San Juan Fishing \& Packing Co	Uganik Bay.
No. 71. The W. J. Imlach Packing	Uzinki.
No. 76. Uganik Packing Co_	Umanik Bar.
No. 78. Opheim \& Sargent	Shuyak Island.
No. 79. Hemrich Packing Co	Kıkak Bay.
No. S0. R. M. Dahl	Uyak Bay.
No. 83. Breyer \& Freund	Kaspberry Island.
No. S7. Alitak Packing Co	Lazy Bay.
No. S9. Hopp \& Danielsen	Usanik Bay.

Permits for operations on a small scale have also been granted to a number of local residents by the burean's representatives in the districts, 27 such permits having been issued in the Alaska Peninsula Fisheries Reservation, 90 in Bristol Bay district, 120 in Cook Inlet, and 60 in the Kodiak-Afognak district.

SPECIAL STUDIES AND INVESTIGATIONS.
Mention of these is made in a preceding section of this report, but it appears desirable to refer to them here to complete in one section a record of the bureau's activities in Alaska.

Counts of red salmon ascending to their spawning grounds were made on Karluk and Chignik Rivers in the season of 1922 and are being renewed in the season of 1923 . Inasmuch as these streams afford an excellent opportunity for determining the commercial catch of salmon and at the same time enable satisfactory results in counting salmon passing upstream, it is felt that reliable information as to the percentage of escapement necessary to perpetuate the runs without diminution can be developed eventually. This will necessitate counts over a series of years. Similar counting operations were inaugurated in the season of 1923 on Nelson River, flowing into Herendeen Bay, but were abandoned on account of physical difficulties, and on two streams tributary to Alitak Bay on Kodiak Island.

Under the direction of Dr. C. H. Gilbert, important investigations were made in western Alaska in 1922 and will be continued upon a larger scale through the season of 1923 , with a view to determining migration routes of salmon. Interesting information has already resulted in this connection from the tagging of 4,000 red salmon at Ikatan Bay and other waters of that general region in 1922. While most of the fish subsequently recaptured were taken in the vicinity where tagged, a number were secured in Bristol Bay and a few on Cook Inlet, and one even on the Kuskokwim River.

A party remained over the winter in the Nushagak region to investigate the salmon-sparning grounds and endeavor to ascertain the size of the escapement in 1922. A specialist was sent to the Cook Inlet district in the season of 1923 to investigate the extent of the clam beds and thus secure data as a basis for the proper regulation of the fishery. A study of the salmon fishery of the Kuskokwim River was made in 1922, and the destruction of predatory fishes in streams tributary to Bristol Bay was again conducted along lines followed in recent years.

PROTECTION OF WALRUS AND SEA LIONS.
No changes were made in the walrus and sea lion regulations issued April 21, 1921, nor were any violations reported during the year.

NEW LEGISLATION NEEDED.
The fisheries of Alaska are being administered under the provisions of the act of June 26,1906 . This law is wholly inadequate and there is urgent need of new legislation to meet present-day conditions. The expansion of the fishery and modifications in methods make effective conservation impossible in many sections. This situation has been brought to attention repeatedly but so far without avail. and it is earnestly hoped that at its next session Congress will afford the desired relief. While the situation has been helped through the creation of reservations by Executive order, that expedient is regarded merely as a temporary measure pending the enactment of the legislation necessary for adequate control of a grave situation. To those who have opposed fishery reservations upon grounds of principle, the answer is that the fishery must be saved now and the reserration policy is the only possible means until Congress acts. The
best means available have been used to alleviate a critical situation until the final cure, through added legislation, can be effected.

ALASKA LEGISLATURE.

At its regular session early in the year 1923, the Territorial Legislature of Alaska passed several laws bearing upon the fisheries. One of these added materially to the license-tax rates on products and on certain fishing apparatus, another provided for the licensing of fishermen, and the third imposed certain closed seasons on fishing in the waters of southeast Alaska.

ALASKA FUR-SEAL SERVICE.

GENERAL ACTIVITIES AT THE IRIBILOF ISLANDS.

The administrative work on the Pribilof Islands was carried on in the usual manner by the bureau's staff of 15 white employees. The population of the two islands consists of about 325 native men, woinen, and children, who carry on the physical work of sealing and foxing and other activities, supervised by the bureau's representatives. Compensation for these services is in the form of nominal cash payinents for the work of taking seal and fox skins, together with subsistence, including food, fuel and clothing, and living quarters, school facilities, and medical attention. In addition to the island natives, from 50 to 60 native laborers are secured each year from the Aleutian Islands for the period of active sealing.

The work of the bureau on the islands covers a wide range, for, in addition to sealing and foxing operations, it involves the erection of buildings, construction of roads, maintenance of machinery and equipment necessarily various in so remote and isolated a region, construction and repair of small boats used for landing cargo, installation of water-supply and electric-lighting systems for the villages on each island, operation of a by-products plant for the production of oil for use in dressing sealskins, preparation of seal meat for feeding foxes during the winter season, and the keeping of extensive records of all activities.

Supplies for the Pribilof Islands were transported from Seattle by chartered commercial vessels during the summer of 1922 , but in 1923 it was again possible to secure cargo space on the naval radio tender Gold Star, which also transported a number of passengers for the bureau. Passengers and small lots of supplies were also carried by vessels of the Coast Guard and by the commercial steamer Buford in the spring of 1923.

The process of removing pelts by stripping from the body of fur seals, developed within the last two or three seasons, was continued along more extensive lines. This process requires certain marginal cuts to permit the literal pulling off of the pelt, but does away with the use of knives, as formerly, for separating the skin from the underlying tissues. This reduces or practically eliminates cuts, to the consequent enhancement of the value of the pelts. The improved process of stripping necessitates washing and blubbering
the pelts on the islands before they are salted. In the season of 1922 approximately 50 per cent of the skins were taken in this manner. Expansion in facilities will make possible its application to about 75 per cent in 1923. It is planned to remove practically all skins in this way during the next season.
A party headed by Assistant Secretary Huston was at the Pribilof Islands from July 11 to 19, 1922, for the purpose of observing methods and giving consideration to administrative policies. Included in the party were Dr. Leonhard Steineger, of the U. S. National Museum, a noted authority in regard to the fur seals of the north Pacific, and Ward T. Bower, of the Bureau of Fisheries. After leaving the Pribilofs, visits were made to the Commander Islands to note conditions regarding the Russian fur-seal herd, and to Robben Island, to which the Japanese herd resorts. Consideration was also given to fishery and fur-seal matters in Japan and elsewhere.

A representative of the bureau authenticated 625 fur-seal skins taken by Indians in the vicinity of Sitka, Alaska, during the spring migration of 1923, and 1 additional skin that had been taken in the spring of 1922 but not authenticated at that time. Indians also took 871 fur-seal skins off the coast of Washington, which were authenticated by the superintendent of the Neah Bay Reservation under authorization by the Department of Commerce. A patrol for the protection of the seal herd during its migration to the Pribilof Islands was conducted by vessels of the U. S. Coast Guard. Four ressels of the bureau also maintained a patrol of the sealing grounds in the vicinity of Sitka.

The bureau's vessel Eider performed excellent service for the islands during the first six months of the current fiscal year in which she made seven trips from Unalaska to the Pribilof Islands. One trip was made to King Cove in an effort to secure native workmen for sealing on the Pribilofs and one trip to Belkofsky to return native laborer's to their homes. Early in January the vessel was ordered to Cordova for repairs and later was sent to Seattle for the installation of a Diesel engine. The vessel was still at Seattle at the end of the fiscal year but was expected to return to Alaska about the middle of July.

SEAL HERD.

The 1922 estimate of the seal herd, as of August 10, gives the total number of animals as 604,962 , an increase of 23,519 over 1921. In 1922 some experiments were made in photographing sections of the lookeries, with a view to determining the practicability of the use of photography in the counting of seals. No conclusive results were obtained.

TAKE OF SEALSKINS.

The number of seals killed under Government supervision on the Pribilof Islands in 1922 was 31,156 , of which 30,260 were taken during the regular season ended August 5 and the remainder in the fall and winter.

An important innovation this season has been the branding on the back with a hot iron of 5,0003 -year-old male seals for breeding purposes. This work was done before the begimning of extensive commercial killing. In addition to the 5,000 thus branded, 5,000 were temporarily marked by shearing the hair on top of the head, so that these animals were exempted from killing in the current season, and thus from abundance of caution the actual reserve of 5,000 required by law has been doubled. Since only 3 -year-old seals are killed for their skins, none of these animals will be killed intentionally in later years and will thus be allowed to develop to maturity, subject only to natural mortality.

SALES OF SEALSKINS.

In the fiscal year 1923 two public auction sales of fur-seal skins were held at St. Louis. At the sale on October 9, 1922, 17,194 dressed, dyed, and machined skins brought $\$ 535,967.50$, and in addition 164 raw, washed, and dried skins and 37 raw salted skins were sold for $\$ 87.55$; at the sale on May $28,1923,18,118$ dressed, dyed, and machined skins brought $\$ 564,224.75$, a total of 35,513 skins and $\$ 1,100,279.80$. These prices averaged approximately the same as in the previous year.

At the May sale there were also sold 55 sealskins from the Japanese herd on Robben Island, representing the share of the United States in the skins taken in 1921. They brought a total of $\$ 1,940$.

As a result of the sales of fur-seal skins from the Pribilof Islands in the fiscal year 1923 the sum of $\$ 69,105.86$ has been paid to Great Britain and a like amount to Japan covering value of their respective shares of skins under the terms of the North Pacific Sealing Convention of 1911.

FOXES AND REINDEER.

Herds of blue foxes of considerable commercial importance are maintained on the Pribilof Islands. To a large extent these herds support themselves, feeding on the carcasses remaining from seal killings and on the immense flocks of sea birds that nest on the islands, but winter feeding is also provided for by the preserving of seal carcasses. During the winter of 1922-23 a total of 888 blue and 29 white fox skins was taken. The prevalence of warm, wet weather on St. George Island, which has the larger herd, seriously interfered with foxing operations during the season, as the animals were able to secure food in plenty and were not forced to come to the traps for food. A breeding reserve was also marked and released on St. George Island.

The 712 blue and 21 white fox skins taken in the winter of 1921-22 were sold at public auction at St. Louis, October 9, 1922. The total amount bid was $\$ 67,310$, an average of $\$ 93.18$ for blue and $\$ 46$ for white skins. In addition, 12 live blue foxes were sold for stocking fox farms in Alaska, delivery being made at Unalaska in S ptember. The price received for the live animals was $\$ 175$ each.

The herds of reindeer, which were introduced on the Pribilof Islands in 1911, now furnish a valuable supply of fresh meat. It
was estimated that there were approximately 400 animals on the islands at the end of the calendar year 1922, while 60 animals had been used for food during the preceding 12 months- 38 on St. Paul Island and 22 on St. George.

COOPERATION WITH OTHER GOVERNMENT AGENCIES.

The International Committee on Marine Fishery Investigations met in Washington on November 10, 1922, and in Toronto on May 4, 1923. The first meeting was attended by three representatives each of the United States and Canada, and the second by two representatives of the United States and three of Canada. At the Toronto meeting the committee had the satisfaction of welcoming a representative of France, that country, by reason of its fisheries in the western Atlantic, having officially expressed a desire to participate in these conferences. The representative of Newfoundland was unable to attend either meeting. Plans were laid for coordinating certain of the marine-fisheries investigations of the countries represented.
Helpful relations have been maintained with the Bureau of Standards, Coast and Geodetic Survey, Bureau of the Census, and Bureau of Foreign and Domestic Commerce.

The National Park Service and the Forest Service have cooperated in stocking streams with fish and in facilitating fish-cultural work in other respects, and assistance to various branches of the bureau's activities has been rendered by the Bureau of Indian Affairs, the Reclamation Service, and the Geological Survey.

An assistant was again detailed to the Public Health Service for investigations of mosquito control through the agency of fishes.

The Navy Department furnished transportation for supplies and personnel to the Pribilof Islands, and the Coast Guard Service as usual extended valuable assistance on many occasions.

The Consular Service has supplied important information concerning the fisheries of foreign countries.

VESSEL SERVICE NOTES, 1923.

The steamer Fish Hawk has continued the hydrographic and biological survey of Long Island Sound, which was inaugurated at the end of the last fiscal year. Eight round trips, aggregating 2,213 miles of steaming, have been made, from 30 to 56 stations being covered on each trip. The Fish Hawh has not been extensively overhauled since 1916 and is in urgent need of repairs and new propellers, for which a special appropriation has been asked.

The steamer Halcyon has been engaged in carrying on a fishery investigation in the north Atlantic and in fish-cultural operations in connection with the Gloucester and Woods Hole stations. In July current observations were made on lines 150 miles each from Sandy Hook and Chatham and 25 miles from Cape Elizabeth, and April, May. and Jume were spent in tagging codfish in the vicinity of Nantucket. During August and September the crew was occupied in overhauling the gas boat Kittiwake preparatory to her transfer to Seattle, and in February valuable service was performed by the

Halcyon in keeping channels open through the ice in the harbors of Gloucester, Salem, and Manchester. In all the vessel steamed 3,575 miles.

The Pha'arope and Gannet were utilized for fish-cultural and collecting work at the Woods Hole and Gloncester (Mass.) stations, respectively, and the former was brought to the Potomac River for use at the hatchery at Bryans Point, Md., during the shad season. In October her crew took the Kittiwake from Woods Hole to Norfolk, whence she was carried on a Navy transport to Seattle.

In addition to the steamer Shearwater, the burean now operates two large gas boats, the Curlew and Fulmar, on the Great Lakes. These are attached to the fish-cultural stations at Put in Bay, Ohio, Cape Vincent, N. Y., and Charlevoix, Mich.

The supply vessel Eider made seven round trips between Unalaska, Alaska, and the Pribilof Islands, carrying Government employees, freight, and supplies, and two trips to Belkofsky with native laborers who had been employed on the islands. During the winter exceedingly stormy weather prevailed, which delayed operations and at times prevented the vessel from going to sea. In December an attempt was made to save the gas vessel Lister, which was ashore at Cape Makushin, about 40 miles from Unalaska. The wife and family of the captain were transported to Unalaska. In February the Eider was taken to Cordova for repairs to her engines and upper works, but as it was finally decided to equip her with new engines she proceeded to Seattle, where she arrived March 24. The old 110-horsepower engine has been removed and a 140-horsepower Diesel engine installed. It is believed the change will effect a great saving in the cost of fuel and also give the vessel needed additional power. Other changes and improvements will add to her efficiency and seaworthiness. During the year she cruised 7,420 miles.

The usual patrol and fisheries investigations were carried on in southeast Alaskan waters by the gas boats Auklet. Murre. Petrel, and Widgeon; the Scoter operated in Bristol Bay, the Tern on the Yukon River, and the Merganser was sent to Chignik. While these Alaska boats are on active duty only during spring, summer, and early fall months, the service they are called on to perform is onerous, exacting, and often dangerons. They cruised during the year from 4,000 to 7,300 miles each. During inactive periods their crews are kept busy with repairs and upkeep, and in addition are called on for other work not directly pertaining to vessels and boats.

The Kittiwake, originally obtained from the Navy, reached Seattle in the spring of 1923 , and is being refitted and furnished with a more powerful engine to fit her for the needs of the Alaska service. In May the small gas boat Ibis was purchased for use at Chignik.

The activities of vessels in Alaska are briefly stated in the section of this report dealing with the bureau's work in the Territory.

APPROPRIATIONS.

The regular appropriations for the bureau for the fiscal year 1923 aggregated $\$ 1,262,090$, as follows:

Miscellaneous expenses:

Repairs to fish-cultural stations:

Total
1,262, 090
Respectfully submitted.

> Henry O'Malley, Commissioner of Fisheries.

To Hon. Herbert Hoover, Secretary of Commerce.

PROPERTIES AND VALUES OF CERTAIN FISH-NET PRESERVATIVES. ${ }^{1}$

By Harden F. Taylor, Chief techologist, and Arthur W. Wells, Assistant technologist, U. S. Bureau of Fisherics.

Contribution from the Fishery Products Laboratory, Washington, D. C. ${ }^{3}$

CONTENTS.

Page.
Introduction 2
General summary 3
Preliminary experiments 5
Conclusions from preliminary experiments 6
Copper soap 6
Experimental exposure and testing of lines 7
Notation of samples 7
Method of taking samples 9
Series exposed to weather conditions at Washington, D. C 9
Materials tested 9
Tensile strength 10
Summary of results of Washington experiments 12
Series exposed in sea water at Key West, Fla 12
Water conditions at Key West 12
Materials tested 13
Tensile strength 13
Summary of results of Key West experiments 15
Series exposed in sea water at Beaufort, N. C 16
Water conditions at Beaufort 16
Tests with cotton lines 16
Materials tested 16
Tensile strength 17
Flexibility 19
Method of measuring flexibility 20
Results of flexibility tests 23
Resistance to mechanical wear or abrasion (wearing quality) 24
Method of measuring wearing quality 25
Results of wearing tests 25
Resistance to fouling by marine growths 28
Tests with linen lines 29
Materials tested 29
Tensile strength 29
Summary of results of Beaufort experiments 30
Series exposed in sea water at Woods Hole, Mass 31
Water conditions at Woods Hole 31
Tests with cotton lines 32
Materials tested 32
Tensile strength 32
Flexibility 34
Wearing quality 35
Tests with linen lines 36
Materials tested 36
Tensile strength 37
Summary of results of Woods Hole experiments 37

[^0]Experimental exposure and testing of lines-Continued. Page.
Series exposed in fresh water at Put in Bay, Ohio 38
Water conditions at Put in Bay 38
Tests with cotton lines 39
Materials tested 39
Tensile strength 39
Flexibility 40
Wearing quality. 41
Tests with linen lines 43
Materials tested 43
Tensile strength 43
Summary of results of Put in Bay experiments 44
Other considerations of importance in judging value of preservatives 45
Varying rate of decomposition of lines in different localities. 45
Increase in weight caused by application of preservatives 46
Shrinkage caused by application of preservatives 49
Time and labor required to apply preservatives. 51
Color imparted to lines by preservatives 51
Spontaneous heating 52
Apparatus used for testing 52
Linseed oil 53
Copper oleate 53
Other preservatives. 54
Effect of heat on cotton lines 54
Discussion of results 54
General consideration of various preservatives in light of data presented 55
Tar 55
Coal tar 56
Pine tar 56
Mixed tar 56
Tanning or barking 56
Quercitron and potassium bichromate 57
The Dutch method 57
Copper paint 58
Petroleum products 58
Gilsonite 59
Copper oleate 59
Chemical properties and manufacture of copper oleate 61
Method of applying copper oleate to nets 62
Grading the several materials as all-round preservatives 63
Tabular summary 68
Bibliography 68

INTRODUCTION.

Most of the fish taken commercially in the waters of the United States are captured by means of textile gear that is perishable-chiefly cotton and linen. The value of the webbing and lines used by our fishermen, as shown in Table 1, is approximately $\$ 14,000,000$. When this sum is compared with the value of the annual catch of fish, which for the entire nation is about $2,500,000,000$ pounds, valued at $\$ 80,-$ 000,000 , it appears that the invested capital for gear is very large; boats, houses, machinery, and the like further increase the cost. Not only is this item for textile gear large, but the gear itself is very perishable. Many nets wear out in one season; perhaps most nets last less than two full seasons. Such rapid loss of invested capital becomes, therefore, of the nature of overhead expense, which helps to diminish the fisherman's reward for his labor, but which must in the end be paid for, at least in part, by the consumer. When considered from the viewpoint of the individual fisherman, a fishing vessel, or company, the importance of reducing the cost of this item is obvious,
but no less obvious is its importance when considered as a part of our national economy.

Table 1.-Number and value of fishing nets in the United States.

	Number.	Value. ${ }^{1}$		Number.	Value. ${ }^{1}$
Seines.	5,440	81, 577, 278	Otter trawls.	1,287	\$74,017
Gill nets.	223, 890	4, 196, 592	Paranzella nets.	44	9,000
Trammel nets................*	3,312	116, 611	Lampara nets.	65	29, 514, 913
weirs........................	17,968	6,355, 281	Eel pots and trap	23,792	514, 695
Fyke nets.	62, 570	-449,247	Lobster pots....	247,324	623,475
Stop nets......................	23,047	13,367 44,819	Total.	608,983	4,337,630
Beam trawls..............	37	4,835			

[^1]One would think, in view of these facts, that the art of preserving nets effectively would already have reached a high degree of perfection, but it has not done so. The literature of the subject is very small; the number of scientific papers reporting serious research into the subject can almost be counted on one's fingers. The conclusions found in the few papers reviewed are mostly inadequate, dealing as they do mainly with the factor of tensile strength and being based on too short periods of exposure. Furthermore, the principal materials used for net preservatives seem to have come into use for insufficient reasons. Tar, the commonest material, appears to be used principally because it is available, cheap, and does some good, though never developed especially to meet any particular requirement, and indeed answering rather poorly most of the requirements of a good all-round preservative. Tanning extracts seem to have come into use through reasoning by a false analogy that if tanning preserves skins it will preserve cotton and linen lines also. As a matter of fact, there is no chemical similarity between cotton or linen and animal skins, and, as will be seen later, very little good results from the use of tanning materials alone on cotton or linen.

The plain need is therefore obvious. The various preservatives now available should be subjected to thoroughgoing scientific investigation to determine their suitability and effectiveness in every way as general or special preservatives, and a serious effort should be made to produce a material that really meets the many requirements of a suitable, efficacious, and all-round preservative of fish nets. The present paper will report results of experiments and tests made during the past two years with these objects in view.

GENERAL SUMMARY.

The principal results and conclusions arrived at and reported in detail in the main part of this paper following are here summarized.

1. The following preservatives and preservative methods were tested: Coal tar, pine tar, coal and pine tar mixed, two proprictary petroleum products, quercitron and potassium bichromate, the Dutch tanning method, copper oleate in nine variations, two proprietary copper paints, a proprietary waterproofing compound, gilsonite (sold
under a trade name), and two combinations of copper oleate and coal tar.
2. The textiles tested were No. 24 cable-laid, hard-finish twine cotton and 10 -ply linen thread.
3. The factors determined were tensile strength, flexibility, wearing quality, increase in weight, shrinkage, resistance to fouling by marine growths, color imparted, and in some cases liability to spontaneous heating.
4. For determining flexibility and wearing quality machines were devised and made. The construction and operation of these machines are described.
5. Series of lines treated with various preservatives were exposed to weather conditions in the air, in Atlantic Ocean water at three places, and in fresh water at one place.
6. In the series exposed to weather conditions, the deterioration was comparatively slight. Those preservatives with a heavy body, such as the tars and gilsonite, preserved better than did those without heavy body.
7. In the salt water, if preservation of tensile strength only is considered, those samples that contained copper in some form were best preserved.
8. Tar was a fairly good preservative in salt water for about two months, after which time lines treated by it began to lose strength. Coal tar and pine tar were similar in effect, but coal tar was slightly better.
9. Tar, either coal or pine, caused a great increase in stiffness and weight, both of which increases were quantitatively measured. Tar failed to protect nets against fouling by growths of hydroids and barnacles.
10. Tanning by quercitron followed by a treatment with potassium bichromate, without copper, was a poor preservative. Lines treated by this method showed little superiority to untreated lines.
11. Tanning by the Dutch method (quercitron followed by ammoniacal copper sulphate, or bluestone, solution) was much better than quercitron and potassium bichromate. It deposited some copper in the line, preserved fairly well, and increased weight and stiffness only slightly. It was troublesome to apply, caused considerable shrinkage of the line, and was not so good generally as preservatives that deposit more copper in the line. On cotton lines in fresh water it was a good preservative.
12. The proprietary petroleum products and a proprietary gilsonite that were studied showed little value as net preservatives. They increased the weight and stiffness of the line without causing any noticeable preservation. They showed no favorable effect on tensile strength, wearing quality, or resistance to fouling.
13. Copper paint, of which two commercial brands were studied, gave excellent preservation of tensile strength and resisted to a high degree fouling by marine growths; but it excessively increased stiffness and weight of lines to which it was applied, and because of its harshness greatly diminished the resistance of the lines to abrasion or wear.
14. Copper oleate, here tested for the first time and now proposed as a net preservative, showed many valuable characteristics. Dissolved in gasoline and applied it penetrated instantly and dried ou
the lines quickly. It preserved tensile strength well in salt water, resisted fouling by marine growths, resisted abrasion or wear as well as any other preservative, increased weight and stiffness only slightly, and imparted an acceptable green color to the line. In fresh water results were less promising. Directions are given for making and using it.
15. Marked differences in the behavior of lines were manifested at different places and in different waters. At Beaufort, N. C., in salt water, sample lines fouled more heavily and disintegrated more rapidly than they did at either Key West, Fla., or at Woods Hole, Mass. In fresh water of Lake Erie, at Put in Bay, Ohio, the sample lines suffered more rapid deterioration than they did at any place in salt water.
16. On linen lines quercitron and potassium bichromate, the Dutch method, a petroleum product, and copper oleate were tested. Copper oleate preserved best in both salt and fresh water. The Dutch method was good; the others were worthless. Linen line, with or without preservatives, and in salt or fresh water, deteriorated more rapidly than cotton lines.
17. In no preservative studied was there detected any tendency toward spontaneous heating or combustion. Such cases of heating of nets as occur must be ascribed to something other than simply the preservative.
18. Even with highly oxidizable oils, such as linseed oil, the temperature necessary to kindle spontaneous heating is in excess of 122° F. $\left(50^{\circ} \mathrm{C}\right.$.).
19. Cotton lines exposed to temperature as high as $302^{\circ} \mathrm{F}$. $\left(150^{\circ} \mathrm{C}\right.$.) dry heat, or $257^{\circ} \mathrm{F}$. ($125^{\circ} \mathrm{C}$.) under steam pressure for two hours showed no significant loss of tensile strength. Higher temperatures than these are necessary to produce any weakening of lines.
20. A mathematical procedure was devised for grading the several materials for all-round usefulness as fish-net preservatives with new white cotton line as a standard of reference. By this method copper oleate easily led all the materials tested as an all-round preservative in salt water.

PRELIMINARY EXPERIMENTS.

In a paper by J. T. Cunningham (1902) mention was made of the successive use of soap and copper sulphate, by which lines were colored a blue green, a method used by French sardine fishermen. This method, which deposits a comparatively insoluble form of copper in the lines, appeared to descrve more attention than it had yet received. Copper is well known to be an exceedingly toxic substance to lower plant life, bacteria, algie, etc., and highly antagonistic to certain ferments, although comparatively harmless to the higher animals, and therefore seemed a good prospect for trial in different forms. The ferrocyanide of copper is highly insoluble, impermeable to water when dried, and can be applied without difficulty by wetting the lines successively with solutions of copper sulphate and potassium ferrocyanide. Accordingly, in 1920 a small preliminary series of exposures and tests was carried out that included these two treatments-copper soap and copper ferrocyanide. For comparison and control untreated lines were used, and also the
method found in the literature to be best. This latter method, described by Bull (1902) and reviewed by Taylor (1921, p. 22), consists of treating the lines first with a hot solution of quercitron in water, then with a cold solution of potassium bichromate and copper sulphate.

The lines prepared for exposure were treated as follows: (1) Lines treated by Bull's method (quercitron, potassium bichromate, and copper sulphate); (2) a tenth normal solution of copper sulphate followed by a tenth normal solution of potassium ferrocyanide; (3) a tenth normal solution of potassium ferrocyanide followed by a tenth normal solution of copper sulphate; (4) same as (2), but half normal solutions instead of tenth normal solutions were used; (5) a hot solution of soap followed by a hot solution of copper sulphate.

Samples of No. 24 white cable-laid, hard-finish cotton lines were prepared, two by each method, and sent to Beaufort, N. C., for immersion in sea water in June. One sample of each was removed and tested after 4 weeks, the other after 10 weeks. Table 2 shows the tensile strength in kilograms.

Table 2.-Tensile strength of cotton lines exposed in sea water at Beaufort, N. C., 1920.

Number and method of treatment.	Tensile strength after-	
	4 weeks.	10 weeks.
	Kilograms.	Kilngrams.
2. Tenth normal copper sulphate and tenth normal potassium ferrocyanide.	13.48	3.66
3. Tenth normal potassium ferrocyanide and tenth normal copper sulphate.	10.62	3.22
4. Half normal copper sulphate and potassium ferrocyanide.	13.06	4.98
5. Soap and copper sulphate.	11.96	7.32
6. Untreated, control (tensile strength before exposure, 18 kg .)	10.48	1.18

Bull's method was best. Copper ferrocyanide was a failure, for the reason, obvious on examination, that all the copper ferrocyanide was deposited near the surface of the line; the inner parts were not reached. The copper soap preserved nearly as well as Bull's method, though examination revealed the soap to be confined largely to the exterior of the line, and the copper soap itself was a precipitate not uniformly spread over the fibers.

CONCLUSIONS FROM PRELIMINARY EXPERIMENTS.

None of the methods included can be regarded as satisfactory, as a marked decomposition occurs in all of them on 10 weeks' exposure.

Copper ferrocyanide is of little value.
Copper soap promises well and calls for more study to effect good penetration and uniform distribution.

COPPER SOAP.

The green precipitate deposited on the lines by successive applications of soap and bluestone is, of course, copper soap, a mixture of several fatty acid salts of copper oleate, stearate, palmitate, etc. The two principal defects in this mode of application are (1) the
precipitate first formed near the surface of the line prevents further penetration of the reagents, and (2) the precipitate is in the form of irregular particles adhering to the fibers, not enveloping them in a continuous film. It was found that a uniform deposit could be produced and thorough penetration effected if the copper soap were dissolved in a suitable solvent and so applied. Benzol, gasoline, carbon tetrachloride, turpentine, oils, etc., dissolve copper oleate, but not stearate. Accordingly, attention was from this time confined to copper oleate dissolved in benzol, gasoline, kerosene, etc., and in the many experiments with samples of lines preserved copper oleate was included in a variety of concentrations and combinations to determine its value absolutely and in comparison with other preservatives.

Before further experiments were begun, however, it was necessary to solve certain problems connected with the application of copper oleate solutions. It was found that when benzol is used as a solvent the solution in the line creeps to the surface during the evaporation of benzol, so that on the dried line almost all of the copper oleate is on the outside. It was found that a small quantity of mineral oil added to the benzol solution remains and prevents the oleate from creeping. With gasoline the difficulty was scarcely so great, yet it seems wise to add the oil, by which means a perfectly uniform deposit is secured throughout the line.

EXPERIMENTAL EXPOSURE AND TESTING OF LINES.

Four series of experiments were undertaken with a view of determining the effects of the preservatives. Different geographical regions were chosen to determine differences that might arise from that cause; and from time to time new tests were carried out as the need for them appeared and as soon as the technique of applying them could be worked out. These tests will be described as they arise in connection with the experiments. No. 24 cable-laid, hardfinish cotton line was used uniformly throughout for cotton line; for linen line 10 -ply salmon gill netting was used. The results are therefore comparable.

NOTATION OF SAMPLES.

In the following key all samples designated by the same letter of the alphabet are always treated with the same preservatives in the same way. In all the results recorded herein the symbols and identifying numbers refer to this key.

Key to symbols for preservatives studied.
cotton lines.
A...... White line-untreated-No. 24 medium laid cotton line used as a control.

B Copper oleate- 7 per cent concentration in gasoline. Lines were dipped into this solution and allowed to become thoroughly saturated. This requires two or three minutes. The lines were then removed and spread out to dry (not piled in a heap).
C.Copper oleate- 7 per cent concentration in gasoline and containing 5 cc . of mineral oil to every 95 cc . of solution and 1-1000 parts of cresol. Applied same as B.
D....... Copper oleate-11 per cent concentration in gasoline. Applied same as B.
E.Copper oleate- 11 per cent concentration in gasoline and containing 2 cc . of mineral oil for every 95 cc . of solution. Applied same as B.
F.......Equal weights of heavy coal tar (sp. gr. about 1.25) and benzol were mixed. The benzol thinned the tar sufficiently, so that no heating was necessary. The lines were then dipped into this tar-benzol solution, soaked for 5 or 10 minutes, and then wound out on a reel to dry. As the lines were drawn out of the tar they were drawn between the fingers in order to remove the excess tar adhering to the lines. This may also be accomplished by using a wringer.
G......Equal weights of pine tar (sp. gr. 1.18) and benzol were mixed, the benzol serving as a thinner, and thus eliminating the use of heat. Applied same as F .
H......Coal tar 25 per cent, pine tar 25 per cent, and benzol 50 per cent were mixed and applied same as F.
I.......Quercitron and potassium bichromate. The lines were steeped in a hot solution of quercitron, 1 pound to 2 gallons of water, until the solution was cold, dried, again steeped in the same way and again dried. They were then immersed for a few minutes in a solution of potassium bichromate $3 \frac{1}{3}$ pounds to 150 gallons of water. This method was tried for the purpose of comparison with the Dutch method in which tanning extract and copper are used together.
J....... Petroleum product No. 1. This is a product made and sold by a western oilrefining company as a preservative for fish nets. It is a heavy, black liquid, closely resembling tar and is applied in the same way as tar; that is, by dipping once in the cold liquid and then winding on a reel to dry. The product is ready for use as purchased from the manufacturer.
K...... Proprietary waterproofing material. All lines used in experiments with this material were treated at the factory of the concern making the material. The material is a thin, black liquid of specific gravity about 0.850 and is applied by dipping the line into the solution. No heating is necessary.
L....... Dutch method. The lines were steeped in a hot solution of quercitron, 1 pound to 2 gallons of water, until the solution was cold, dried, again steeped in the same way, and again dried. They were then immersed for a few minutes in an ammoniacal solution of copper sulphate, containing 1 pound of copper sulphate and 3 pounds of 25 per cent liquid ammonia for every $12 \frac{1}{2}$ gallons of water. For a full description of this method see Olie (1918).
M..... Copper oleate-7i per cent concentration in gasoline. Applied same as B.
N....... Copper oleate- $12 \frac{1}{2}$ per cent concentration in gasoline with 5 cc . of mineral oil for every 95 cc . of the copper oleate solution, and 1-1000 parts of cresol. Applied same as B.
O Copper oleate- $12 \frac{1}{2}$ per cent concentration in gasoline. There was no mineral oil added to this. It was run for the purpose of comparison with those combinations of copper oleate solution with oil. Applied same as B.
P....... Copper oleate- $12 \frac{1}{2}$ per cent concentration in gasoline with 5 cc . of mineral oil to every 95 cc . of copper oleate solution. Applied same as B.
Q Copper paint No. 1. This is a red copper paint similar to that used on ships' bottoms. The principal ingredient is copper oxide suspended in some vehicle, such as thin coal tar. The paint was mixed with an equal volume of creosote oil and the line dipped into this solution. The twine was then wound out on a reel. It is preferably used immediately after such treatment, but may be allowed to dry before putting in water.
R....... Copper paint No. 2. This is another red copper paint, similar to Q, but containing more copper. This is applied without any additional thinning, but otherwise the same as Q . The preservative may be allowed to dry or used immediately. The twine was left much stiffer than when treated with copper paint No. 1 , and the increase in weight was much greater. More copper was deposited in the line than in the case of Q .
S....... Gilsonite. This is an asphalt product sold by a western company under a proprietary name as a fish-net preservative. It is a thin, black liquid having a specific gravity of about 0.870 . The product is sold ready for use and is applied by allowing the line to soak in the liquid for about 20 minutes and then winding out on a reel and allowing to dry.
X...... Petroleum product No. 2. This product is sold by the same concern as was petroleum product No. $1(J)$. The No. 2 is a black liquid, thinner than No. 1 , and intended for use on gill nets and other light gear that must be left flexible. Applied same as J.
Y.......This preservative is a mixture of 50 per cent heavy coal tar (road tar), 35 per cent benzol, and 15 per cent copper oleate (each by weight). Applied same as F .

Z The lines are first treated with a 15 per cent solution of copper oleate in gasoline, allowed to dry and then dipped into a solution of coal tar and benzol, 50 per cent each. The lines are then dried as in the case of coal $\operatorname{tar}(\mathrm{F})$.
AA Copper oleate -15 per cent concentration in gasoline. Applied same as B.

LINEN LINES

T....... Untreated, 10-ply 40, Irish flax salmon thread, used as a control.
U....... Copper oleate- $12 \frac{1}{2}$ per cent concentration in gasoline. This is the same preservative as was described under P for cotton line and is applied the same as P .
V......Quercitron and potassium bichromate. This is the same method as was described under I for cotton thread.
W...... Dutch method. This is the same method as was described under I , for cotton line.
BB . . . Petroleum product No. 2. This is the same product as was described under X for cotton line and is applied same as X .
CC...... Copper oleate- 15 per cent concentration in gasoline. This is the same solution as was described under AA for cotton line and is applied the same as the other copper oleate solutions; that is, by dipping the twine into the solution and then spreading out to dry.

METHOD OF TAKING SAMPLES.

In order that the same amount of line might be used for each sample, and that shrinkage might be measured, it was necessary to measure the samples under constant tension. To measure a line, one end of the line was made fast at one end of a long hall. The line was then paid out for about 100 feet, passed over a small pulley, and made fast to a $2-\mathrm{kg}$. weight. The line thus stretched out horizontally under a $2-\mathrm{kg}$. tension was measured with a steel tape. Trials showed that these measurements could be repeated to within 4 inches for 100 -foot lengths. After the samples were treated with the several preservatives they were again measured in the same way as before, and the shrinkage was noted. The figures for shrinkage from all series of experiments will be considered together later (p. 50).

The accurately measured samples were weighed on the analytical balance before and after treatment by the preservatives and the gain in weight recorded. These gains will also be considered together after the several series of experiments have been considered (p. 46). Where the weight per unit length of any particular sample disagreed markedly from the others it was discarded as of over or under size. No doubt the figures contained in this paper show some discrepancies or variations that are due to differences in the line itself, but errors of this kind are reduced to a minimum by obtaining the average of results from numerous tests.

Because of the length of samples needed it was impossible to measure them in a room of constant air conditions. After trials with oven-dried samples for weighing it was found best to weigh in the air-dry condition.

SERIES EXPOSED TO WEATHER CONDITIONS AT WASHINGTON, D. C.

materials tested.

Cotton lines were prepared by each of 11 different preservatives and preservative methods, namely, copper oleate in four different concentrations or combinations, B, C, D, and E; coal tar, F; pine tar, G ; the two tars in equal parts, H ; quercitron and potassium bichro-
mate, I; petroleum product No. 1, J; a proprietary waterproofing material, K; and the Dutch method, L; untreated white line, A, was used as a control. Seven samples were prepared by each preservative, one to hold as an unexposed check; the other six to be exposed.

These samples were lightly stretched on the roof of the Fishery Products Laboratory, Washington, D. C., on November 25, 1921. At the end of each succeeding month for six months one sample treated by each preservative and one control sample were removed and tested for tensile strength. The experiments made by others in England, Norway, and Holland have usually lasted only about two months. In the present instance it was desired to have a full test of endurance, so the exposures were continued for six months.

Fig. 1.-Tensile strength of cotton lines exposed to weather conditions at Washington, D. C.

TENSILE STRENGTH.

This factor was measured on a tensile-strength machine at the U. S. Bureau of Standards. ${ }^{3}$ The machine was automatic, motordriven, and recorded the tensile strength by means of a moving pen. Because of variations in the line it is necessary to take the average of a number of tests. The figure given for the control is the average of 60 tests, all others of 15 . Table 3 gives the results of the measurements of tensile strength for the lines exposed to weather conditions at Washington, D. C. The same results are expressed graphically in Figure 1, wherein the curves are smoothed by the method of moving averages.

[^2]Table 3.-Tensile strength of cotton lines exposed on roof of Fishery Products Laboratory, Washington, D. C., 1922.

Symbol and treatment.	Unex posed	Number of months exposed.					
		1	2	3	4	5	6
	Tensile strength in pounds.						
B-Copper oleate 7 per cent in gasoline......................... cresol.	36.336.1	35.3	36.335.0	33.834.0	31.431.9	27.531.9	28.0
	$\begin{aligned} & 35.5 \\ & 36.1 \end{aligned}$	34.0	33.4	33.2	31.6	$31.1 \quad 28.2$	
D -Copper oleate 11 per cent in gasoline.		36.533.8	36.1	35. 3	35.8	34.4	31.1
E-Copper olcate 11 per cent in gasoline, 2 per cent oil	$\begin{aligned} & 36.1 \\ & 31.4 \end{aligned}$		33.8	33.2	33.8	31.2	28.4
F-Coal tar 50 per cent, benzol 50 per cent..	35.435.2	39.6	36.939.8	$\begin{aligned} & 44.0 \\ & 44.7 \end{aligned}$	$\begin{aligned} & 46.1 \\ & 47.0 \end{aligned}$	43.1	44.0
G-Pine tar 50 per cent, benzol 50 per cent						44.1	44.0
H -Coal tar 25 per cent, pine tar 25 per cent, benzol 50 per cent.		38.2	37.0	41.6	$43.3 \quad 43.0$		46.0
I-Quereitron and potassium bichromat	39.339.0	40.041.4	$\begin{aligned} & 3.0 \\ & 34.6 \\ & 44.0 \end{aligned}$	35.745.7	36.246.4	36.647.0	32.446.0
J-Petrolenm product ${ }^{\text {No. }} 1$.							
K-Proprietary waterproofing ma	$\begin{aligned} & 43.0 \\ & 38.6 \end{aligned}$	${ }^{(2)}$	$\begin{aligned} & 47.0 \\ & 43.5 \\ & 39.0 \end{aligned}$	(2)37.6	41.836.2	42.836.0	41.033.0
L-Duteh method........							

${ }^{1}$ Average of 60 breaks; every other figure in this table is the average of 15 breaks.
${ }^{2}$ No sample run.
Here, it will be observed, the lines preserved by any of the materials suffer an immediate diminution of strength even before they are exposed. (K, the commercial waterproofing was not tested immediately after treatment.) The reason for this diminution of strength appears to be the lubrication of the fibers. The cotton line used consists of comparatively short fibers that are made to serve the purpose of a long line by being twisted together. The friction between the fibers holds them together. When a pull breaks the line, some of the fibers are actually broken, others disengaged. The introduction of a foreign substance between these fibers or strands may greatly alter the behavior of the line. A lubricant, by diminishing the friction between the fibers, causes more of them to slip out or become disengaged and fewer to break; consequently, the line is weakened. We see that most of our preservatives immediately after application cause such a weakening. These remarks may not, and probably do not, apply to lines made of very long fiber cotton, like sea-island cotton. The tensile strength of such lines is probably the sum of the tensile strengths of the fibers, and binders would have little effect on the tensile strength.

On the other hand, anything between the fibers that increases the friction or glues the fibers together will cause an increase in strength. This effect becomes evident after the material begins to become sticky or dry. In the present instance the lines treated with copper oleate, $\mathrm{B}, \mathrm{C}, \mathrm{D}$, and E , and by the tanning methods, I and L, on exposure to the weather suffer a gradual though small diminution of strength. At the end of six months' exposure to weather the lines are still strong and useful. These preservatives have no body or binder. The other preservatives that have a body or bindernamely, coal tar, F; pine tar, G; a mixture of the two, H; and the petroleum product No. 1, J-show an increase in strength as the preservative dries. This increase is sufficient to neutralize any deterioration of the fibers. Those preservatives that behave in a similar
way are grouped together in Figure 2, where F, G, H, and J represent all preservatives that have a heavy body, B, C, D, E, I, and L those that have no heavy body, and A untreated line.

SUMMARY OF RESULTS OF WASHINGTON EXPERIMENTS.

1. The effects of exposure of cotton lines to outdoor weather conditions in Washington, D. C., in winter were small; lines so exposed suffered very little deterioration.
2. All preservatives here used caused an immediate small diminution in tensile strength.
3. Preservatives that have a heavy body, such as tar, by binding together the fibers caused an increase in tensile strength after the material became hard and dry.

Fig. 2.-Tensile strength of cotton lines exposed to weather conditions at Washington, D. C., grouped.
4. Tar and the petroleum product were adequate and effective preservatives where only weather conditions were encountered.
5. The modifications of copper oleate showed only trifling differences between themselves.

SERIES EXPOSED IN SEA WATER AT KEY WEST, FLA.

WATER CONDITIONS AT KEY WEST.
The sea at Key West is part of the Gulf Stream. The temperature and density of the water during the period the lines were exposed are shown in Table 4. The water is characterized by an abundance of lime. The bottom in this region is covered with a crust of limestone, and a fine white sediment in the water deposits on the articles placed in it. It may be for this reason that the lines did not deteriorate as rapidly as was expected. There were no barnacles or other marine growths on the samples returned.

Table 4.-Water conditions at Key West, Fla.

Year and month.	Temperature.						Specific gravity.		
	Maximum.		Minimum.		A verage.		Maximum.	Minimum.	A verage.
1921.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \boldsymbol{F}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{C}$.			
November.	82	28	75	24	79	26.0	1.027	1.020	1.024
December.	81	27	68	20	74	23.5	1. 029	1. 026	1. 027
1922.	8	28	63	17	72	22.4	1.30		
February.	82	28	68	20	75	24.0	1.028	1.015	1.022
March....	86	30	73	23	80	26.5	1.027	1.025	1.026

MATERIALS TESTED.

In this series 11 preservatives and preservative methods and a control were tested. The preservatives and preservative methods were copper oleate in four variations, $\mathrm{B}, \mathrm{C}, \mathrm{D}$, and E ; coal tar, F ; pine tar, G ; the two tars in equal parts, H ; quercitron and potassium bichromate, I; petroleum product No. 1, J; proprictary waterproofing material, K; and the Dutch method, L.

The samples of No. 24 cotton line, six treated by each method, were fastened to a frame made of galvanized iron pipe and immersed in a cement tide pond at the U. S. Fisheries Station, Key West, Fla., on November 7, 1921. A set of samples was removed every 3 weeks for 18 weeks.

TENSILE STRENGTH.

The samples were tested for tensile strength as already described (p. 10). Table 5 gives the results. These results are shown graphically in Figures 3 and 4, but in Figure 4 those preservatives that give similar results are grouped for easy comparison. In both figures the curves are smoothed by the method of moving averages.

Table 5.-Tensile strength of cotton lines exposed in sea water at Key West, Fla.

Symbol and treatment.	Unexposed.	Number of weeks exposed.					
		3	6	9	12	15	18
	Tensile strength in pounds.						
A-White line, untreated control.	${ }^{1} 39.3$	37.3	34.3	35.0	29.3	26.2	13.7
B-Copper oleate 7 per cent in gasoline.....................	36.1	34.7	35.1	36.6	35.0	33.4	29.6
C-Copper oleate 7 per cent in gasoline, 5 per cent oil (by volume), 1-1000 cresol	35.5	32.4	41.5	34.5	34.1	35.8	34.5
D-Copper oleate 11 per cent in gasoline.	36.1	37.6	37.4	36.6	37.9	37.9	37.9
E-Copper oleate 11 per cent in gasoline, 2 per cent oil	31.4	35.0	33.9	33.5	34.4	34.3	35.4
F-Coal tar 50 per cent, benzol 50 per cent	35.4	43.2	51.0	50.2	47.8	49.6	44.4
G-Pine tar 50 per cent, benzol 50 per cent	35.2	43.9	38.9	44.8	44.2	47.0	41.0
H-Pine and coal tar, 25 per cent each, benzol 50 per cent. .	37.4	52. 2	53.0	44. 0	50.1	46.0	51.0
I-Quercitron and potassium bichromate.	39.3	36.1	40.6	31.7	25.1	17.6	14.4
J-Petroleum product No. 1 .-	39.0	40.6	34.0	31.0	27.9	19.7	17.0
K-Proprictary waterproofing materi	43.7	48.9	42.0	36.6	27.1	20.5	16.2
L-Dutch method......	38.6	41.4	41.1	40.7	39.0	36.3	24.4

[^3]It is apparent, in the first place, that the effect of the sea water at Key West is much more severe than that of the weather at Washington. The untreated line and also those lines treated by quercitron and potassium bichromate, I, petroleum product, J, as well as the proprietary waterproofing material, K, were all but completely rotten in 18 weeks, though a two or three months' test (as was done in the European experiments) would have shown them to

Fig. 3.-Tensile strength of cotton lines exposed in sea water at Key West, Fla.
be good. The Dutch method, L, which deposits a little copper in the lines, was somewhat better, though lines treated by it, too, showed marked deterioration, especially after the fourth month. The only preservative that brought the samples through four and one-half months' exposure unimpaired in tensile strength were the three tars, F, G, H, and the copper oleate, B, C, D, E. The difference between the tar and the copper oleate is that the tar stuck the fibers together,
and thus increased the tensile strength, while the copper oleate did not stick the fibers, but by its preservative action prevented decay and held the lines throughout the test up to their original strength. The lines preserved with copper oleate did not show great differences between themselves, nor do the different kinds of tar show important differences.

Fig. 4.-Tensile strength of cotton lines exposed in sea water at Key West, Fla., grouped.

SUMMARY OF RESULTS OF KEY WEST EXPERIMENTS.

1. Exposure to sea water at Key West had a severer action on cotton lines than the weather at Washington, D. C.
2. Quercitron and potassium bichromate, petroleum product, and the proprietary waterproofing material showed no noteworthy preserving effect.
3. The Dutch method was somewhat better, though the lines treated by it showed marked deterioration in four and one-half months.
4. The lines preserved with copper oleate showed no substantial deterioration in six months' exposure at Key West; an immediate
diminution in strength after treatment was apparently due to the lubricating effect. The variations of copper oleate showed no considerable differences between themselves.
5. Coal tar, pine tar, and the mixture of the two preserved the tensile strength unimpaired for four and one-half months.
6. The tars also increased the tensile strength by sticking the fibers of the twine together.
7. No growth of marine plants or animals was attached to any of the lines at Key West.

SERIES EXPOSED IN SEA WATER AT BEAUFORT, N. C.

The exposures were made in the water of Beaufort harbor, at the wharf of the U. S. Fisheries Biological Laboratory, from February 15 to August 15, 1922.

WATER CONDITIONS AT BEAUFORT.

The water temperature and salinity for the six months are given in Table 6. Here both salinity and temperature vary more than they do at Key West, the water being at times considerably diluted with fresh water. There is abundant growth of barnacles, hydroids, ascidians, sea anemones, and other attached marine growths.

> Table 6.-Water conditions at Beaufort, N. C.

Year and month.	Temperature.						Specific gravity.		
	Maximum.		Minimum.		Average.		Maximum.	Minimum.	Average.
1922.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{C}$.	${ }^{-} F_{\text {r }}$	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{C}$.			
February.	60	16	44	7	${ }^{54}$	12	1.019	1.015	1.016
April.	73	23	5	14	68	20	1. 023	1.016	1.021
May.	80	27	62	17	73	23	1. 023	1.018	1.020
June..	84	29	73	23	79	26	1.021	1.014	1.018
July..	86	30	77	25	82	28	1.022	1.016	1.019
August..........	82	28	77	25	79	26	1.021	1. 014	1.018

TESTS WITH COTTON LINES.
The lines to be exposed were measured and weighed by the methods already described (p. 9). After treatment they were again measured and weighed and differences noted, as shrinkage and increase of weight, respectively. These factors will be considered later. In this series of experiments two new tests were introduced, namely, tests of flexibility and of wearing quality, as influenced by the preservatives. These factors will be discussed in connection with the data obtained concerning them.

```
MATERIALS TESTED.
```

The cotton twine used here was, as before, No. 24 cable-laid, hard-finish cotton, in individual samples, each 100 feet long.

The preservatives and preservative methods were as follows: Coal, pine, and mixed tar, F, G, and H , as in the previous experiments; quercitron and potassium bichromate, I; petroleum product

No. $1, \mathrm{~J}$; and also a similar material by new formula by the same company, which we designate petroleum product No. 2, symbolized by X ; the Dutch method, L; four variations of copper oleate, M, N, O , and P ; two commercial brands of copper paint sold for fish-net preservatives, No. 1, Q and No. 2, R.

TENSILE STRENGTH.

Of the preservatives here considered for the first time the two samples of copper paint cause an immediate increase in the strength of the line. These materials, containing cuprous oxide, suspended in a binding material, cause great internal friction, which manifests itself in its effect on tensile strength and also, as will be seen later, on flexibility and the mechanical wearing quality of the lines. All of the other materials caused the usual diminution of tensile strength by internal lubrication.

The results of tensile strength measurements are given in Table 7. The same results are shown graphically in Figure 5, where the individual preservatives are shown, and in Figure 6, where the preservatives that behave similarly are presented in groups, such groups being the copper paints, copper oleates, and tars.

Table 7.-Tensile strength of cotton lines exposed in sea water at Beaufort, N. C.

Symbol and treatment.	Unex posed.	Number of months exposed.					
		1	2	3	4	5	6
		Tensile strength in pounds.					
A-White line, untreated control.	139.3	33.0	5.3	2.9	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$
F-Coal tar 50 per cent, benzol 50 pe	35.4	46.0	44.9	36.2	23.2	18.0	${ }^{(2)}$
G-Pine tar 50 per cent, benzol 50 per cent....................	35.2	45.0	46. 9	33.8	11.9	3.1	${ }^{2}$
H-Coal and pine tar, 25 per cent each, benzol 50 per cent.	37.4	45.0	46.8	33.9	27.9	16.2	(2)
I-Quercitron and potassium bichromate	39.3	42.4	19.6	3.2	${ }^{(2)}$	${ }^{(2)}$	${ }^{2}$)
J-Petroleum product No. 1	39.0	40. 0	23.4	8.7	${ }^{(2)}$	${ }^{(2)}$	
L-Dutch method.	38.6	40.3	37.0	35.3	20.3	8.3	4.9
M-Copper oleate 7.5 per cent in gasoline.	34.2	36.2	36.6	28.6	16.6	11.0	9.7
N -Copper oleate 7.5 per cent in gasoline, 5 per cent oil, $1-1000 \text { cresol. }$	33.2	35.2	33.8	33.9	25.4	20.8	12.0
O-Copper oleate 12.5 per cent in gasoline.	33.6	36.6	40.3	30.0	21.3	25. 1	8.8
P-Copper oleate $12 \frac{1}{2}$ per cent in gasoline, 2 per cent oil	36.3	37.2	39.0	37.0	29.7	19.5	16.9
Q-Copper paint No. 1, 50 per cent creosote oil.	41.5	42.0	42.4	40.8	41.0	33.0	18.9
R-Copper paint No. 2 .	42.7	48.0	50.0	49.5	47.0	40.0	38.3
S-Gilsonite.........	35.5	28.2	14.5	8.5	3.9	${ }^{2}$ 2)	${ }^{(2)}$
X-Petroleum product No. 2	32.9	34.0	5.7	${ }^{(2)}$	${ }^{(2)}$	$\left.{ }^{2}\right)$	${ }^{(2)}$

1 Average of 60 breaks; every other figure in this table is the average of 15 breaks.
2 Sample was disintegrated and gone.
Upon exposure the lines Q and R, preserved with copper paint, are easily in the lead, as far as preservation of tensile strength is concerned. At the end of six months' exposure lines preserved by them are nearly as strong as the original untreated line, though a weakening begins to appear in three or four months. Next to those preserved with copper paint, in the diminishing order of tensile strength at the end of six months' exposure, come those treated with the copper oleates, the Dutch method, and the tars. Of these the tarred lines, F, G, and H, made an excellent showing for two months (that is, as long as creosote was present), after which a very rapid deterioration occurred. The establishment on them of a
heary growth of ascidians or sea squirts broke the lines and carried them away. The Dutch method followed the tars closely, being not quite so good at first, but better at the finish. The lines treated with copper oleate, $\mathrm{M}, \mathrm{N}, \mathrm{O}$, and P , showed at the beginning the

Fig. 5.-Tensile strength of cotton lines exposed in sea water at Beaufort, N. C.
usual weakening due to lubrication, but upon exposure lost strength less rapidly than those preserved by either the Dutch method or tar; in fact, were second only to those treated with the copper paint at the end of six months.

The other preservatives exposed at Beaufort showed no preserving effect worth considering. These were quercitron and potassium bichromate, I; petroleum products, Nos. 1 and 2, J and X; and gilsonite, S. These materials and methods may be definitely eliminated by this experiment, since they do not preserve.

Fig. 6.-Tensile strength of cotton lines exposed in sea water at Beaufort, N. C., grouped.

The results of these experiments show also that lines suffer deterioration much more rapidly at Beaufort than at Key West. This applies equally to untreated lines and to those treated with preservatives.

FLEXIBILITY.
If preservation of tensile strength on exposure were a sure and sufficient criterion, it would now be proper to pronounce copper
paint the best preservative, copper oleate next, then the Dutch method, and finally the tars. Tensile strength, however important it is, is not the only consideration-indeed, in many cases is not the most important consideration.

Flexibility is a factor of great importance in many kinds of fishing textiles. In gill nets a stiff or wiry line will cause the approaching fish to react on coming in contact with the net and to turn and leave, whereas a soft line yields and the fish becomes gilled in his effort to get through. It is also said that a school of fish when surrounded by a purse seine will, upon striking a soft net, continue to exert themselves against it, forcing it outward while the net is being pursed from below. In this manner the entire school is captured; but if the net is stiff and wiry, experienced fishermen say, the fish will react and "sound," or dive, before the seine can be pursed, and thus escape. The factor of flexibility of netting has long been recognized in a qualitative way; but, so far as the writers are aware,

Fig. 7.-Equipment used for testing the flexibility of lines.
no effort has ever been made to measure it quantitatively. The writers have devised a simple method of measuring quantitatively the flexibility of lines treated with various preservatives, and by that means have obtained some highly interesting figures for the several materials studied.

Method of measuring flexibility.-The method consists, essentially, of measuring the energy dissipated (or converted into heat) in bending a sample of the line through a definite angle. For this purpose advantage was taken of the well-known laws of the pendulum. The apparatus consists of a pair of simple wooden jaws, b, Figure 7, supported from a horizontal support rod not shown in the figure. A block, g, serves as a base, and is cut out as an arc of a circle with the jaws, b, as a center, so arranged that a sample of twine gripped in the jaws will just fail to reach when the plummet, c, is attached and swings freely. The plummet, c, is made of brass and is so constructed that the twine can be gripped straight and true at the center.

The sample of line, a, is gripped in the jaws and the plummet attached at the lower end. The plummet is displaced from the

Fig. 8.-Apparatus used for testing the flexibility of lines.

Fig. 9.-Machine used for making wearing tests.
vertical pesition over e, to a convenient point, d; that is, so that the pendulum when released will swing through an angle. As the pendulum swings it bends the twine back and forth. The bending of the twine is work and causes the energy originally imparted to the plummet to diminish; that is, the oscillations of the pendulum are of diminishing amplitude. Presently the pendulum will be swinging only to some selected point, f, as its highest point. If the oscillations from the start are counted until the pendulum swings only to point f, the number will be a measure of the energy that has been transformed in bending the line-the more flexible the sample the greater the number of oscillations necessary to reduce the amplitude to the predetermined angle.

For the present work the following arbitrary standards were adopted as convenient and easily measured: Distance from jaws to arc base, 30 cm .; weight of plummet 50 g .; angle of first oscillation, one radian $\left(57.2958^{\circ}\right.$, or $57^{\circ} 17^{\prime} 45^{\prime \prime}$) or 15 cm . of arc from the vertical position to the starting point, d; angle of last oscillation one-half radian (28.6479° or $28^{\circ} 38^{\prime} 52.5^{\prime \prime}$). All the data on flexibility in this paper are obtained on these standards. They are convenient and satisfactory, though there are some grounds for considering a smaller angle of oscillation as a possible improvement. The instrument used in our tests is shown in Figure 8. In the present work the results have been expressed by the number of oscillations necessary to reduce the ampli-

Fig. 10. tude by the amount chosen, one-half radian. The actual amount of energy may be calculated in the following way:

When the 50 -gram plummet is elevated from C to G, Figure 10, it receives energy in ergs, equal to its elevation, $A C$, times its mass, in grams, times the force of gravitation. When its amplitude has been reduced so that it rises only to D on its upward swing, it possesses energy expressed in the same way, only with the lesser elevation, $B C$; that is, the number of ergs of energy that have disappeared in bending the twine is equal to the difference in elevation times mass, times gravitation, or,

$$
\text { Energy consumed }=(O B-O A) \times 50 \times 980
$$

to determine $O B-O A$ we determine $O B$ as $r \cos y$ where r is the radius of the circle and y is one-fourth radian, or $14.3239^{\circ}=29.07$ and $O A$ as $r \cos x$, where x is one-half radian, or $28.6479^{\circ}=26.33$. The difference here is therefore $29.07-26.33=2.74 \mathrm{~cm}$. and the energy that has disappeared is $2.74 \times 50 \times 980=134,260$ ergs. This quantity, being always the same for the different samples as long as we maintain the same standards, we have but to divide it by the number of oscillations to find the average amount of energy transformed in bend-
ing any particular sample one time through the average amplitude, three-fourths radian, or 42.97°. Of course, since each oscillation is of different amplitude, the amount of energy that is transformed with each oscillation is accordingly smaller than that for the preceding, but for practical purposes only the average would be necessary.

It may be objected that the friction of the air is considerable and variable. Efforts were made to determine this source of error, but it was found impracticable to do this precisely, because the angle chosen was too large for the swinging of a frictionless (agate knife-edges) bearing. For this reason a smaller working angle might be better as permitting an accurate determination of the air-friction error. In any case this error is small and practically constant, so that it is not corrected in this paper.

Fig. 11.-Flexibility of cotton lines exposed in sea water at Beaufort, N. C.
Two other sources of error in this test require attention. One is a variation in the flexibility at various places on the sample, the other is a change in flexibility caused by the action of heat, generated by bending, on the viscosity of the preservative. The method of making the test takes these two factors into account. Ten pieces, each about 32 cm . long, were cut from the sample to be tested. One was placed in the jaws of the tester and the number of oscillations counted in the manner described. This test was repeated 10 times at the one place on each test piece, 100 tests being made on each sample. If heating is considerable the successive tests at the same place will show increasing flexibility with preservatives that are subject to variation in flexibility with temperature. Progressive increase in flexibility on repeated bending was found in lines treated with tar, petroleum product No. 1, gilsonite, copper oleate, slight increase in quercitron and potassium bichromate, the Dutch method, petroleum product No. 2, and copper paint No. 2, and no increase at all in copper paint No. 1 and untreated white line.

Results of flexibility tests.-The samples included in the Beaufort series were all tested for flexibility (1) immediately after treatment, and (2) after each month of exposure in the water. In Table 8 and in Figure 11 the results of these tests are given; in Figure 12 the same results are shown by groups of preservatives that had a similar effect on flexibility.

Fig. 12.-Flexibility of cotton lines exposed in sea water at Beaufort, N. C., grouped.
Table 8.-Flexibility of lines exposed to ocean water at Beaufort, N. C. ${ }^{1}$

Symbol and treatment.	Unexposed.	Number of months exposed.					
		1	2	3	4	5	6
	Number of oscellations.						
A-White line, untreated control.	41.3	70.6	62.7	43.8			
F-Coal tar 50 per cent, benzol 50 per cent	25.0	19.3	18.9	16.6	16.1	18.0	${ }^{2}$ 2)
G-Pinetar 50 per cent, benzol 50 per cent...................	29.9	15.0	14.8	18.1	27.4	34.2	(2)
H—Pine tar 25 per cent, coal tar 25 per cent, benzol 50 per cent.	24.2	18.0	14.8	16.6	16.5	19.2	${ }^{(2)}$
I-Quercitron and potassium bichromate	45. 1	44.8	35.9	37.0			
J-Petroleum product No. 1..	29.0	18.2	18.1	18.2	(2)	(2)	
L-Dutch method.	44.9	44.3	45.5	33.8	33.6	41.7	40.5
M-Copper oleate $7 \frac{1}{2}$ per cent in gasoline.	60.5	74.3	71.8	56.6	46.4	46.7	49.7
N -Copper oleate $12 \frac{1}{2}$ per cent in gasoline, 5 per cent oil, 1-1000 cresol.	59.1	61.4	63.9	68.4	70.1	62. S	65.4
	50.2	60.9	56.9	53.0	45.9	58. 4	57.3
P -Copper oleate $12 \frac{1}{2}$ per cent in gasoline, 2 per cent oil	49.6	64.3	57.5	55.5	64.7	35.3	64.4
Q-Copper paint No. 1.	31.1	39.3	29.3	31.0	39.6	28.2	34.6
1-Copper paint No. 2	29.4	14.6	26.4	33.9	23.6	23.3	34.6
S-Gilsonite..............	30.5	21.1	17.2	18.0	21.3	${ }^{(2)}$	${ }^{2}$)
X-Petroleum product No.	34.3	18.9	23.5	${ }^{(2)}$	${ }^{(2)}$	$\left.{ }^{2}\right)$	${ }^{2}$)

I Every figure in this table is the average of 100 tests.
${ }^{2}$ Sample was disintegrated and gone.
The most flexible lines after treatment are those treated with copper oleate, M, N, O, and P, which make around 60 oscillations; those treated by the tanning methóds-that is, quercitron and potassium bichromate, I, and the Dutch method, L-are next in flexi-
bility, with about 40 oscillations; copper paint, which made such a good showing in the tensile-strength tests, is here at a great disadvantage, the lines being stiff or wiry and making only about 30 oscillations under the conditions described; finally, the tars, petroleum products, and gilsonite cause the greatest stiffening, the lines treated with them making only about 20 oscillations.

According to these tests, if we express the flexibility of tarred lines as 1 , then the other preservatives have approximately the following flexibility values:

resistance to mechanical wear or abrasion (wearing quality).
In experiments so far presented and discussed, the undesirable changes in the lines were brought about during exposure principally

Fig. 13.-Apparatus used for testing the wearing quality of lines.
by decomposition or weakening of the lines, presumably by chemical or biological agencies. These agencies are, perhaps, not always the greatest enemy of lines. It has been shown that in air and exposed to the weather cotton lines do not undergo rapid deterioration. Many types of nets are actually in the water only a small part of the time. They are handled much, however, are dragged over the gunwales of boats and across decks and wharves, and the lines rub against themselves during such handling. No doubt this factor of mechanical wear or abrasion is highly important in such gear as purse seines, haul or drag seines, and trawls. It is to be expected, also, that the preservatives used will have an important bearing on this factor. Like flexibility, it has often been recognized qualitatively as a factor, but has never been given quantitative measurement or expression. In the present work the attempt was made to measure the wearing quality of the lines treated.

Method of measuring wearing quality.-The principle of the method is the obvious one, which consists of drawing or "sawing" the lines across some wearing or abrading edge under a constant pull and measuring the number of strokes required to wear it out. In practice, however, this proved to be difficult of application. Close-grained wood was tried first, but the results were not at all consistent or even similar for similar samples. It was found that the edge wore sleek at a very inconstant rate. With iron, steel, hard rubber, and even glass the same difficulties were encountered. The most satisfactory results were obtained by causing the sample to saw against itself at a rather acute angle and under pull of a definite weight.

The construction and operation of the machine for making this test is shown diagrammatically in Figure 13. To an eccentric, a, are fastened the lines to be tested, b and b^{\prime}, which are passed over the rollers, h and h^{\prime}, and fastened at c and c^{\prime}. Other pieces of the same line, d and d^{\prime}, are made fast at e and e^{\prime}, and run through the slack part of b and b^{\prime}, at f and f^{\prime}. The samples so attached form angles $c f h$ and efg, etc., of about 13°. Weights of 1 kg . (g and g^{\prime}) are attached to the free ends of the lower piece of line. The eccentric a is revolved by a motor, imparting a reciprocating motion to the samples b and b^{\prime}, which causes them to saw across similar samples, d and d^{\prime}. The samples thus wear out and the weights drop to the floor. The number of strokes necessary to wear each sample down to a breaking strength of 1 kg . is taken as a measure of the wearing quality. The machine was made so as to run 10 samples at a time, five on each side of the table, and a mechanical revolution counter was used to assist in keeping count. In Figure 9 (p. 21), the machine used is shown with all samples in, ready to start.

Table 9.-Wearing quality of cotton lines exposed in sea water at Beaufort, N. C.

Symbol and treatment.	Unexposed.	Number of months exposed.					
		1	2	3	4	5	6
	Number of strokes.						
A- White line, untreated control.	1399.0	56.8	(2)	(2)	(2)	(2)	(2)
F - Coal tar 50 per cent, benzol 50 per cent	189.4	172.4	94.5	103.9	34.4	14.9	(2)
G-Pine tar 50 per cent, benzol 50 per cent....................	159.7	141.4	97.8	75.1	5.7	${ }^{(2)}$	(2)
II-Pine tar and coal tar 25 per cent each, benzol 50 per cent.	168. 5	171.6	107.2	92.6	43.6	9.8	(2)
I-Qucreitron and potassium bichromate......................	50.9	45.1	${ }^{(2)}$	(2)	${ }^{2}$)	$\left.{ }^{2}\right)$	(2)
J-I'etroleum product No. 1.	281.3	124. 2	17.0	(2)	(2)	(2)	(2)
L-Duteh method.........	46.6	84.6	79.6	91.0	8.8	0	0
M-Copper oleate $7 \frac{1}{2}$ per cent in gasoline.	118.4	167.4	141.2	129.2	12.8	8.1	6.1
N -Copper oleate $12 \frac{1}{2}$ per cent in gasoline, oil 5 per cent. cresol 1-1000.	127.5	157.3	117.0	150.9	79.4	42.8	22.8
O-Copper oleate $12 \frac{2}{2}$ per cent in gasoline.	191.1	191.9	143.6	123.3	40.4	48.1	5.1
P-Copper olcate $12 \frac{1}{2}$ per cent in gasoline, 2 per cent oi	141.7	22s. 8	157.4	182.4	122.0	13.2	41.5
Q-Copper paint No. 1 plus 50 per cent creosote oil..	23.0	57.4	43.6	58.7	56.7	34.2	11.6
R-Copper paint No.2..............................	89.0	30.8	17.0	17.9	12.5	14.1	14.0
S-Gilsonite.............	2.80 .0	207.4	24.4	(2)	${ }^{2}$)	${ }^{2}$)	${ }^{2}$)
X-Petroleum product No. 2.	132.0	31.8	1.8	(2)	$\left.{ }^{2}\right)$	(2)	(2)

1 Average of 100 tests; every other figure in this table is the average of 50 tests.
2 Line was disintegrated and gone.
Results of wearing tests.-This method of making the mechanical wearing tests on the various samples exposed and tested, though good enough for use and having already given some valuable data,
is still not all that one could wish. It is an extremely severe test, and no line that is seriously impaired in strength by exposure endures more than a few strokes. Linen line will not endure more than half a dozen strokes. The results it gives are influenced considerably by tensile strength, though other factors also enter. Because of a rather wide variation 50 tests (five sets on the machine) were made on each sample, and the figures here given are the averages, respectively, of 50 tests. The lines were dry when tested. These results, which are somewhat surprising, are shown in Table 9 and graphically in Figures 14 and 15.

Fig. 14.-Wearing quality of cotton lines exposed in sea water at Beaufort, N. C.
Among the points worthy of note are the following: Of the fresh unexposed lines the untreated line, A, wore best of all. Any preservative tried immediately diminished the wearing ability in the following increasing order: The petroleum product No. 1, J, and gilsonite, S , reduced the wearing quality least; the three tars, F, G, and H , reduced it more; the copper oleates, $\mathrm{M}, \mathrm{N}, \mathrm{O}$, and P (O showing an apparently anomalous wearing quality), reduced it yet more; and finally a group very low in wearing ability, consisting of all the others, namely, the oopper paints, Q and R, quercitron and potassium bichromate, I, and the Dutch method, L, reduced it most of all. It
should be noted that the tarry preservatives, or others having a protective body, do have the property attributed to them of protecting against chafing or wearing.
Upon exposure, howerer, the relative wearing abilities rapidly change. The untreated line, A, and lines treated by the petroleum products J and X , gilsonite, S , and quercitron and potassium bichromate, I, all rapidly lose wearing quality so that in two months it is practically zero. Lines treated with the copper paints, Q and R, never have much wearing ability, even when freshly treated. Yet,

Fig. 15.-Wearing quality of cotton lines exposedi n sea water at Beaufort, N. C., grouped.
because decomposition of the line is so well prevented and tensile strength so well preserved, such wearing quality as they have persists well through the full six months. The tarred lines do fairly well but suffer a steady decline in wearing quality. Lines preserved with copper oleate lead all others after the first month. This material is waxy or soapy and seems to possess physical properties that enable a line treated by it to rub without giving up its fibers. The harshness of copper paint and of the tanning extracts also is easily palpable and shows up clearly in the results. The conclusions from this test are plainly that (1) all preservatives studied calse an immediate
diminution of wearing quality as compared with new white line in the dry condition, (2) copper paints, which give such good results with tensile strength tests, are very poor in their resistance to mechanical wear, and (3) copper oleate leads all the preservatives in mechanical wearing ability upon exposure.

It is obvious that this factor is highly important in the selection of a proper preservative. The test described may or may not simulate closely the wear that nets receive while in use. Nevertheless, it is mechanical wear and brings out marked and unexpected differences in the several preservatives. It is therefore believed to be of value as a test.

> RESISTANCE TO FOULING BY. MARINE GROWTHS.

When nets remain in water for a long time, as pound nets, traps, etc., must, they are subject to fouling by growths by barnacles, hydroids, ascidians, algæ, etc. These organisms are objectionable for several reasons: Barnacles injure the fisherman's hands and make handling the net difficult; fouling growths cause the nets to resist current and tides, which accordingly causes greater strains on the nets. The weight of the fouling may many times over exceed the weight of the net and therefore greatly increase the strain on it. It is a desirable characteristic of net preservatives that they prevent the accumulation of these growths.

At Key West, Fla., no noticeable fouling appeared on any of the lines. At Beaufort, N. C., however, fouling proved to be an important consideration. Figures 16, 17, 18, and 19 show the samples of cotton and linen lines that were returned from Beaufort at the end of four months before they were subjected to tests. The key to these is as follows: All of these samples were propared at the same time, were placed in the water at the same time and place, and were taken up at the end of four months, with the exception of X, which was in the water only one month.

Symbol and treatment.	Condition after four months in water.
A-White line; no treatment..... Disintegrated and gone.	
F-Coal tar........................	Fouled with hydroids and barnacles.
G-Pine tar	Do.
H-Pine and coal	Do
- Quercitron and potassium bi- Covered with dense matting of hydroids.chromate.	
J-Petroleum product No. 1	Do.
L-Dutch method................. Few hydroids; nearly clean.	
$\mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$-Copper oleate	Substantially clean; very few barnacles; no hydroids.
	Perfectly clean; no growths.
S-Gilsonite . -.................... . Fouled with hydroids and barnacles.	
X-Petroleum product No.	Fouled, less than petroleum product No. 1. This sample had been in water only one month.
U-Copper oleate	Slightly fouled; some hydroids; no barnacles.
W-Dutch method	Do.

All the lines that resisted all fouling growths contained copper; that is, those treated with the copper paints, Q and R , and the four copper oleates, M, N, O, and P. The Dutch method, L, containing a very small quantity of copper, was fouled only slightly. All the others that contained no copper fouled to an objectionable degree, especially quercitron and potassium bichromate, I, and the petroleum

F18. 16.-Cotton lines exposed in sea water at Beaufort, N. C., for four months. Heavily fouled. J, petroleum nroduct No. 1: I. quereitron and potassium bichromate.

Fig. 17.-Coton lines exposed in sea water at Beaufort, N. C., for four months. No fouling. All had been treated with copper oleate.

Fig. 1x.-Cotton linas exposed in sea water at Beaufort, N. C. X, petroleum product No. 2, exposed one month; all the rest exposed four months. S, gilsonite; H, pine and coal tar: G, pine tar: L, Dutch method. All were somewhat fonled.

Frg. 19. Three cotion and two tinen lines exposed in sea water at Beaufort, N. C., for four months. F, coal tar on cotton, heavily fouled; Q, copper paint No. 1 on cotton and R, copper paint No. 2 on cotton, no fouling; U, copper oleate on linen and W", Duteh method on linen, both somewhat fouled.
product, J, lines treated with which are almost entirely covered with hydroids. The tarred lines are also heavily fouled. In the next two months after these samples were taken up the tarred samples were so heavily fouled with ascidians that they broke and were carried away. The lines treated by quercitron and potassium bichromate, I, petroleum products Nos. 1 and 2, J and X, and gilsonite, S , also failed to be returned.

Here, again, copper oleate shows to advantage, though no better with respect to prevention of fouling than copper paint. The petroleum products, gilsonite, quercitron and potassium bichromate, and the tars seem to produce an agreeable anchorage for these organisms, and this fact must be held seriously against them as net preservatives.

TESTS WITH LINEN LINES.

MATERIALS TESTED.

In this series of experiments samples of linen lines were included. The linen selected was 10 -ply 40 "Irish flax salmon thread," looselaid, such as is used in gill netting for salmon on the Pacific coast. The tensile strength of the untreated, unexposed line is 55.2 pounds, somewhat greater than that of No. 24 cotton twine. Although its tensile strength is greater than cotton, it is a characteristic of this linen line that it fails completely to resist mechanical wear on the testing machines, even the new untreated line falling in two in only a half dozen strokes. The exposed samples usually broke on the first stroke, so that it was useless to apply this test. This weakness is

Fig. 20.-Tensile strength of linen lines exposed in sea water at Beaufort, N. C. apparently due, at least in part, to the fact that the component strands of the line are not twisted together, but each acts separately. When the lines "saw" together, each individual strand is exposed; under such circumstances the life of the whole line is only equal to the life of one strand.

It would be useless to test for linen thread the preservatives that cause stiffness, such as tar, copper paint, and gilsonite. The preservatives and preservative methods physically suitable for gill nets and available at the beginning of these Beaufort experiments were three, quercitron and potassium bichromate, V (when applied to linen this symbol was given), Dutch method, W, copper oleate, U, the untreated linen, T, being the control. The samples were exposed at Beaufort 180 days, samples being returned each two months. The exposure began February 15 and continued to August 15, 1922.

TENSILE STRENGTH.
The results of the measurements of tensile strength of these samples are given in Table 10 and are shown graphically in Figure 20.

Table 10.-Tensile strength of linen lines exposed to sea water at Beaufort, N. C.

Symbol and treatment.	Unexposed.	Number of months exposed.		
		2	4	6
	Tensile strength in pounds.			
T-Untreated control.	${ }^{1} 55.2$	4.2	${ }^{(2)}$	${ }^{(2)}$
U-Copper oleate solution $12 \frac{1}{2}$ per cent in gasoline, 5 per eent oil	41.3	33.9	18.9	(2)
V-Quereitron and potassium bichromate..	49.5	3.2	(2)	(2)
W-Dutch method.........................	43.0	34.3	7.8	${ }^{(2)}$

${ }^{1}$ Average of 50 breaks; every other figure in this table is the average of 15 breaks.
${ }^{2}$ Line was disintegrated and gone.
The conclusions from these tests are obvious: Linen lines, with or without preservatives, disintegrate more rapidly than cotton lines under the same conditions in salt water at Beaufort, all four samples having disappeared before the term of six months expired. Only the two samples that contained copper-that is, copper oleate, U, and the Dutch method, W-lasted four months, the one preserved by the Dutch method being then all but totally rotten. At the end of two months the lines treated by either the copper oleate or Dutch method are still serviceable, but the leading score in this experiment easily belongs to copper oleate.

The principal method of preserving these linen lines on the Pacific coast is barking-that is, treating with the hot extract of oak barkwhich treatment is not followed by a mordant. Even when mordanted, as in quercitron and potassium bichromate, it is plain that no good results are obtained by the use of bark, unless possibly the periodical treatment with the infusion merely washes and sterilizes the net for the time being. When bark is mordanted with ammoniacal copper sulphate (Dutch method), considerable good is done; but this method is much more laborious and time-consuming than the application of copper oleate and not so effective. Washing the nets in bluestone (copper sulphate) solution, as done on the Pacific coast, may serve to keep the lines clean, but because of its solubility blucstone can not be a permanent preservative. The regular use of copper oleate in the salmon gill-net fishery should effect a marked saving in nets.

SUMMARY OF RESULTS OF BEAUFORT EXPERIMENTS.

1. The materials and preservative methods studied at Beaufort were: For cotton lines, copper oleate in four variations, coal tar, pine tar, coal tar and pine tar mixed, quercitron and potassium bichromate, petroleum products Nos. 1 and 2, Dutch method, copper paints, Nos. 1 and 2 , and gilsonite; for linen lines, quercitron and potassium bichromate, Dutch method, and copper oleate, $12 \frac{1}{2}$ per cent solution.
2. In the preservation of tensile strength of cotton lines the copper paints, which contain heary concentrations of copper, excelled. Copper oleate, in the concentrations tried, which were much less than those of copper paint, was next in order of supcriority; the Dutch method, also containing copper, was third; the tars were fourth; all
the other preservatives failed to bring their respective lines through six months' exposure.
3. The effects of sea water at Beaufort were more severe than those at Key West, Fla., though temperatures at Beaufort were somewhat lower than those at Key West.
4. A method of and device for determining the flexibility of lines and changes therein brought about by the application of preservatives were devised, tested, and used. A description and discussion of this method and derice are given (p. 20).
5. In diminishing the flexibility of the cotton lines the tars, petroleum residues, and gilsonite had the greatest effect, the copper paints had a large effect, the tanning methods caused some stiffening, and copper oleate had less effect than any other preservative studied.
6. A machine for determining the ability of lines to endure mechanical wear or abrasion was devised, tested, and used. A description and discussion of this device are given (p. 25).
7. In wearing ability the copper paints, which made such a good showing in preserving tensile strength, were at a great disadvantage. The lines treated with these and those treated with quercitron and potassium bichromate wore very poorly; those treated by the Dutch method wore rather better than those treated with copper paints or by quercitron and potassium bichromate; those treated with tar resisted mechanical abrasion well at first, but this quality was lost on exposure along with the disappearing tensile strength. The copper oleates, when applied as preservatives, enabled the lines to resist mechanical abrasion better than any of the preservatives.
8. All lines, except those treated with copper paint or copper oleate, were fouled by marine growths in four months at Beaufort. The lines treated by the Dutch method, which also contained copper, were slightly fouled. The lines treated by quercitron and potassium bichromate and those treated with a petroleum product were very heavily fouled. Copper oleate and copper paint effectually prevent fouling.
9. Of the linen lines only those treated with copper oleate or by the Dutch method endured four months' exposure at Beaufort. Of these two copper oleate was more efficacious and much easier to apply.
10. Linen lines deteriorated in sea water at Beaufort more rapidly than cotton lines, whether preserved or not.

SERIES EXPOSED IN SEA WATER AT WOODS HOLE, MASS.

Beginning June 9 and extending to December 9, 1922, a period of six months, a series of lines preserved with various materials was exposed in sea water at Woods Hole, Mass.

WATER CONDITIONS AT WOODS HOLE.

The water conditions at Woods Hole were different from those at either Key West or Beaufort, being cooler. The temperature and specific gravities that prevailed at Woods Hole during the period of test are shown in Table 11. The samples were suspended under the dock at the station of the U. S. Bureau of Fisheries Biological Laboratory. The water is full sea water, and the samples were subjected to the regular ebb and flow of the tide.

$$
36199^{\circ}-23-3
$$

Table 11.-Water conditions at Woods Hole, Mass.

Year and month.	Temperature.						Specifie gravity.		
	Maximum.		Minimum.		Average.		Maximum.	Minimum.	A verage.
1922.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{C}$.			
June.	66	18.3	61	16.1	63	17.2	1. 024	1.023	1.023
July.	69	20.5	65	18.3	67	19.4	1. 024	1. 023	1. 023
August	71	21.6	66	18.8	68	20.0	1.024	1. 023	1.023
Scplember.	68	20.0	62	16.6	66	18.8	1.023	1.022	1. 022
October.	64	17.7	50	10.0	59	15.0	1. 025	1. 023	1. 023
November	51	10.5	40	4.4	47	8.3	1.025	1.024	1.024
December	42	6.0	31	-0.56	37	2.7	1.025	1.025	1. 025

TESTS WITH COTTON LINES.
MATERIALS TESTED.
The lines tested in this series were the same as in the preceding experiments, No. 24 cable-laid hard-flnish cotton twine.

Fig. 21.-Tensile strength of cotton lines exposed in sea water at Woods Hole, Mass.
The preservatives and preservative methods tested were the Dutch method, L; copper paints Nos. 1 and 2, Q and R; petroleum product No. 2, X ; copper oleate followed by coal tar diluted with benzol, Y ; and copper oleate mixed with coal tar and the whole diluted with benzol, Z; copper oleate in 15 per cent solution in gasoline, AA; and the untreated line A, as control. The lines were measured and weighed, as before described (p. 9), treated, and again measured and weighed. The shrinkage and increase in weight will be considered later.

TENSILE STRENGTH.
Table 12 gives the results of tensile strength measurements on the unexposed and exposed cotton lines of the Woods Hole series. These results are shown graphically in Figure 21

Table 12.-Tensile strength of cotton lines exposed in sea water at Woods Hole, Mass.

Symbol and treatment.	Unex-	Number of months exposed.					
		1	2	3	4	5	6
	Tensile strength in pounds.						
A-Untreated white line	${ }^{1} 39.3$	39.0	20.1	8.0	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$
	${ }_{41.5}$	42.0	40.0	40.0	40.6	37.0	24.7 40.8
	42.7	42.0	45.0	45.0	37.5	39.0	49.6
	32.9	45.0	23.0	15.0	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$
per cent		43.0					
Z-Copper oleate followed by coal tar	36.0	38.0	${ }^{39.0}$	48.0	40.0	50.0	${ }^{43.6}$
AA-Copper oleate, alone, 15 per cent gasoline.	35.0	42.0	37.0	37.0	26.0	30.0	31.0

${ }^{1}$ A verage of 60 breaks; every other figure in this table is the average of 15 breaks.
${ }^{2}$ Line was disintegrated and gone.
The lines treated with petrolcum product No. 2, designated X, is scarcely better than the untreated line, A. This result is in keeping with the result obtained with the same preservative at Beaufort. The copper oleate, AA, employed in this case, is strikingly similar to the Dutch method, L, both of which show good preservation, though, as before, these preservatives do not add anything to the strength of the lines by a sticky effect on the fibers. When allowance is made for this effect in the lines treated with copper paint or the combinations of copper oleate and tar ($\mathrm{Q}, \mathrm{R}, \mathrm{Y}$, and Z), strikingly similar preservation effect is noticed. As might be expected, the lines treated with copper oleate and tar behave very much like those treated with copper paint, since the mixture of copper oleate and tar is very similar to copper paint in composition. Each consists of a form of copper incorporated in a binder-the paints containing copper oxide, the tar mixture containing copper oleate. It should be noticed here, however, that the tar mixtures contain very much less copper than the copper paints and should accordingly be cheaper, though they preserve fully as well.

Between the two combinations of tar and copper oleate-that is, the separate application of the copper oleate and tar in the one case and the mixture of the two for application in the other-there is little difference. The combination can be easily and simply applied, since both the copper oleate and tar are soluble in benzol and may be applied cold. Perhaps the separate application of tar and copper oleate is slightly better, though the extra time and labor required to make the two applications would probably more than make up the difference. On the other hand, the separate application may be employed without the use of benzol by using a gasoline solution of copper oleate and following with tar in the usual way by the hot process.

These combinations of copper oleate and tar furnish a new possibility where nets are exposed to the most extreme conditions for long periods. Straight copper oleate is toxic and preserves to a high degree, but contains nothing in the way of a binder to hold it in the lines. When combined with tar it constitutes a permanent toxic ingredient that will stay in the lines over long periods, although
ereosote, the natural toxic principle of fresh tar, escapes during a short term of exposure.

It may further be noticed that the water at Woods Hole is not so severe in its effect on lines as that at Beaufort. The strength of the lines after the second month at Beaufort is similar to that of the Woods Hole lines after the fourth month.

FLEXIBILITY.
The samples used in this test were tested for flexibility by the pendulum method already described. The results of these tests are given in Table 13 and are shown graphically in Figure 22.

Fig. 22.-Flexibility of cotton lines exposed in sea water at Woods Hole, Mass.
Table 13.-Flexibility of cotton lines exposed at Woods Hole, Mass. ${ }^{1}$

Symbol and treatment.	Unexposed.	Number of months exposed.					
		1	2	3	4	5	ठ
	Number of oscillations.						
A-Untreated white line control.	41.3	36.8	32.2	51. 3	61.2	${ }^{(2)}$	
L-Dutch method..	44.9	33.8	33.6	44.4	53.6	56.6	59.3
Q-Copper paint No. 1	31.1	26.5	28.1	30.8	37. 4	37.2	41.5
R-Copper paint No. 2 .	29.4	16. 5	19.5	27.5	34. 4	35.6	35.6
Y-Copper oleate 15 per cent, benzol 3 per	34.3	18.4	24.7	22.4	30.5	${ }^{(2)}$	${ }^{(2)}$
Z-Copper oleate followed by coal tar	27.0 35.3	30.5 30.0	27.7 39.0	28.8 31.9	31.7 47	55. 3	58. 6
AA-Copper oleate 15 per cent in gasoline.	43.1	46.4	51.0	56. 9	68. 9	38.4 70.5	40.3 70.0

${ }^{1}$ Each figure in this table is the average of 100 tests.
${ }^{2}$ Line was disintegrated and gone.
The gencral trend of the lines is at first toward a slight stiffening and later toward an increasing flexibility. The line AA, preserved with copper oleate, easily leads all the lines in flexibility, being more
flexible than the untreated lines. The lines treated by the Dutch method were also sufficiently flexible. The copper paints, Q and R , tar and copper combinations, Y and Z, and petroleum product No. 2, designated by X , cause marked stiffening, all to about the same extent. Though the lines treated with petroleum product are, by a little, the stiffest, the copper paints also cause marked stiffening, and, upon comparison with the tar-copper-oleate combinations, show slight advantage in favor of the latter. Here, again, the copper

Fig. 23.-Wearing quality of cotton lines exposed in sea water at Woods Hole, Mass.
paints and tar-copper-oleate combinations, being somewhat similar in composition, give similar results. None of these materials would be suitable where flexibility is desired, but they are otherwise excellent preservatives.

WEARING QUALITY.
By the method already described, of sawing the lines against themselves (p.25), the ability of the varions lines exposed at Woods Hole to resist mechanical wear, was measured. The results are given in Table 14 and are shown graphically in Figure 23.

Table 14.-Wearing quality of cotton lines exposed to sea vater, Wioods Mole, Mass.

Symbol and treatment.	Unexposed.	Number of months exposed.					
		1	2	3	4	5	6
	Number of strokes.						
A-Not treated.	1399.0	80.9	37.0	17.5	${ }^{(2)}$	${ }^{(2)}$	${ }^{2}$)
L-Dutch method.	46.6	29.8	53.7	95. 4	40.4	30.5	23.9
Q-Copper paint No. 1	23.0	51.3	36.4	47.4	43.9	36.1	35.6
R-Copper paint No. 2 - ${ }_{\text {Netroleum product }}$ No. 2	89.0 132.0	15.6 104.0	17.4	19.4 29.6	${ }_{(2)}^{15.6}$	${ }_{(2)}^{14.6}$	${ }_{(2)}^{14.8}$
Y-Copper oleate 15 per cent, benzol 35 per cent, coal tar 50 per sent.	26.9 .3	297.6	282.6	269.4	180.4	115.3	130.3
Z-Copper oleate followed by coal tar	223.1	299.0	250.3	227.6	127.3	13s. 7	157.0
AA-Copper oleate, 15 per cent in gasoline..	203.1	228.0	155.6	178.7	66.1	101.7	99.8

${ }^{1}$ Average of 100 tests; every other figure in this table is the average of 50 tests.
${ }^{8}$ Line was disintegrated and gone.
It has been noticed that, with respect to tensile strength and flexibility, the copper paints and the tar-copper-oleate mixtures run "neck and neck." They differ widely, however, when their wearing quality is measured. The tar-copper-oleate mixtures, Y and Z , lead the entire series in this respect, while the copper paints, Q and R, take last place, as they did in the other series. This might be expected, since copper paint makes the lines harsh, and copper oleate, on the other hand, is smooth or waxy in consistency. Next to the tar and copper mixture is copper oleate alone, AA, then the Dutch method, L, which comes low in the series, because it, too, makes the lines to which it is applied harsh. The petroleum product No. 2, designated X , is here again very low, running only a little better than the white line, Λ, upon exposure in sea water.

TESTS WITH LINEN LINES.

MATERIALS TESTED.

Besides the tests with cotton lines at Woods Hole, just described, there were also conducted some tests of linen lines. As before, $10-\mathrm{ply}$ linen, such as is used in salmon gill netting, was used. The lines were prepared and placed in the water along with the cotton lines on June 9, 1922, and samples were removed after the first, second, and third months, the test running in this case only three months. Linen lines are in practice of course never exposed continuously in the water. For purposes of experiment, however, it seemed that the effects of the preservatives could be brought out more certainly in this way, without the possible entrance of other complicating factors, if intermittent exposure had been attempted. Since linen lines do not wear at all well on the wearing-test machine and the preservatives applied to it increase stiffness very little, tests of these two factors were omitted, and only the tensile strength, shrinkage, and increase in weight were determined.

The preservatives and preservative methods tested were Dutch method, W; petroleum product No. 2, BB; and copper oleate, CC. Untreated linen line, T , was used as control.

TENSILE STRENGTH.

The results of determination of tensile strength before and after exposture are shown in Table 15 and in Figure 24.

Table 15.-Tensile strength of linen lines exposed in sea water at Woods Mole, Mabs.

Symbol and treatment.	Unexposed.	Number of months exposed.		
		1	2	3
	Tensile strength in pounds.			
T-Not treated.	155.2	4.8	27	27
W-1) utch method...	43.0	56	20	34
	49.0 48.0	44 45	12 43	8

${ }^{1}$ Average of 50 breaks; every other figure in this table is the average of 15 breaks.
Although the Dutch method here shows some merit, copper oleate easily leads, linen lines treated with it finishing the three months in the water with the original strength unimpaired. The petroleum product here, as elsewhere, failed to effect any noticeable preservation of the lines treated with it.

SUMMARY OF RESUITS OF WOODS HOLE EXPERIMENTS.

1. For cotton line seven preservatives and preservative methods and untreated line as control were tested at Woods Hole, Mass., being exposed from June 9 to December 9, 1922. The preservatives and preservative methods were two copper paints, two combinations of copper oleate and tar, the Dutch method, copper oleate, and petroleum product No. 2.
2. For linen lines three preservatives and preservative methods and the untreated line as control were tested, being exposed from June 9 to September 9, 1922. The preservatives and preservative methods were Dutch method, petroleum product No. 2, and copper oleate.

Fig. 24.-Tensile strength of linen lines exposed in sea water at Woods Hole, Mass.
3. Exposure in the water at Woods Hole had a much less severe effect on lines, treated or not, than at Beaufort.
4. In combinations of copper oleate and tar it made little difference whether the two were mixed and applied or applied separately.
5. These combinations of copper and tar effected about the same degree of preservation of tensile strength and stiffened the lines to about the same degree as the copper paints but were far superior to copper paints in mechanical wearing quality.
6. Copper oleate alone here, as elsewhere, produced a very flexible line; it held tensile strength during exposure about like the Dutch method for cotton lines. Copper oleate excelled in wearing quality but did not equal in this respect the combinations of copper oleate and tar.
7. The petroleum product No. 2 proved to be a poor preservative in all respects studied.
8. The Dutch method, in preservation of tensile strength and in flexibility, was intermediate in value between the best and poorest; in mechanical wearing quality it was inferior.

9 . The copper paints preserved tensile strength well, greatly stiffened the lines, and wore poorly.

SERIES EXPOSED IN FRESH WATER AT PUT IN BAY, OHIO.

All the exposures of lines in water so far described were in sea water at Key West, Beaufort, and Woods Hole. It is important to determine how preservatives behave in fresh water also. Since Lake Erie is the seat of one of our greatest fresh-water fisheries, where the art of constructing and using fishing nets has been brought to a high degree of perfection, it seemed appropriate to make a series of experimental exposures in its waters. Accordingly, a series identical with the Woods Hole series in the lines and preservatives used was prepared and placed in the water at the U. S. Bureau of Fisheries hatchery at Put in Bay, Ohio, June 15, 1922. The series for cotton lines was exposed till December 15, 1922.

WATER CONDITIONS AT PUT IN BAY.

The temperatures of the water at Put in Bay are shown in Table 16.
Table 16.-Temperature of water at Put in Bay, Ohio.

Year and month.		Maximum.		Minimum.		A verage.	
	1922.	${ }^{\circ} F$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ}{ }^{\prime}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{C}$.
June		73	22.7	6.5	18.3	70	21.1
July.		77	25.0	72	22.2	75	23.8
August		77	25.0	72	22.2	75	23.8
September		76	24.4	66	18.8	71	21.6
October...		68	20.0	50	10.0	59	15.0
November		53	11.6	38	3.3	47	8.3
December.		39	3.8	33	. 5	35	1.6

It is well known that fresh water in Lake Erie is very severe in its effect on lines. A red slime becomes deposited on the nets in the summer season, and a strong deterioration of nets occurs at the same time. This red slime consists of hydroids, colonies of small animals that may or may not directly affect the nets. At any rate, decomposition of the samples was rapid, as will be seen, and the order of effectiveness of the different preservatives differed considerably from that of the salt-water experiments.

TESTS WITII COTTON LINES.

MATERIALS TESTED.
The preservatives and preservative methods tested for cotton lines were the Dutch method, L; copper paints, Nos. 1 and 2, Q and R; petroleum product No. 2, designated X ; copper oleate in gasoline, AA; copper oleate followed by coal tar diluted with benzol, Y; and copper oleate mixed with coal tar and the whole diluted with benzol, Z. The shrinkage and increase in weight caused by the preservatives were noted; the data for these factors will be considered later.

TENSILE STRENGTH.
The tensile strength of the lines exposed at Put in Bay are given in Table 17 and are shown graphically in Figure 25.

Fig. 25.-Tensile strength of cotton lines exposed in fresh water at Put in Bay, Ohio.
Table 17.-Tensile strength of cotton lines exposed in fresh water at Put in Bay, Ohio.

Symbol and treatment.	Unexposed.	Number of months exposed.					
		1	2	3	4	5	6
	Tensile strength in pounds.						
A-Whiteline, untreated control	${ }^{1} 39.3$	12.3	1.7	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$	${ }^{(9)}$
L-Duteh method.....	38.6	40.0	38.0	27.0	34.1	34.0	33.0
R-Copper paint No. 2	42.7	52.0	49.0	53.0	42.3	44.0	49.7
X -Petroleum product No o. 2 \mathbf{Y}-Copper oleate 15 per cent, beuzol 35 per cent, coal iar 50 per cent.	32.9	26.0	11.0	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$
	35.0	40.0	44.0	51.0	47.8	45.0	48.4
	36.0	42.0	47.0	50.0	46.6		45.6
AA-Copper oleate 15 per cent in gasoli	$3 \times .0$	38.0	10.0	10.0	6.5	${ }^{(2)}$	

[^4]Here, as at Woods Hole, the copper paints, Q and R , run very close to the copper oleate and tar combinations. The copper paint No. 2, (R), containing, as it does, much more copper than No. 1, (Q), stands first; then come the copper and tar combinations, followed by copper paint No. 1. Both the copper paints, however, contain much more copper than either of the copper and tar mixtures. A striking difference from the Woods Hole series (and the other salt-water experiments) is found in the behavior of copper oleate alone and the Dutch method. In all the salt-water tests, without exception, copper oleate preserved better than the Dutch method. Here, however, the Dutch method stands higher, comparing favorably with the copper paints and the copper and tar mixtures, while copper oleate, doing well the first 30 days, afterwards fails rapidly.

It seems likely that the cause of this peculiar difference lies in the comparative solubilities of the copper compounds present. The Dutch method deposits copper tannate, which appears to remain in the lines; but the copper oleate was not very plainly visible in the lines returning from these fresh-water experiments as it was in the salt-water series. It may be that the copper oleate is too soluble in fresh water and gradually dissolves out, while the tannate is less soluble. If this is so, why the reverse condition of results from salt water? Copper oleate appears to be less soluble in salt water than in fresh. A certain degree of solubility of the active ingredient may be necessary, for a totally insoluble material may be inert and ineffectual as a preservative. Sea water, being an electrolyte, precipitates many colloids-as it will precipitate soap. Copper oleate is a soap and is probably soluble to a small degree as such in fresh water, although not soluble to the same extent in salt water.
That a binder may hold the copper oleate in the lines and in that way prolong its preservative effect is shown by the copper oleate and tar combinations. The remedy indicated for the shortcoming of copper oleate in fresh water may be found in the use of a binder that will keep the copper oleate present and not greatly increase stiffness and weight. Experiments in this field are planned for the near future.

FLEXIBILITY.

The flexibility of the cotton lines exposed at Put in Bay was tested in the way previously described (p. 20), both before and after exposure. The results are given in Table 18 and are shown graphically in Figure 26.

$$
\text { Table 18.-Flexibility of cotton lines exposed in fresh water at Put in Bay, Ohio. }{ }^{1}
$$

Symbol and treatment.	Unexposed	Number of months exposed.					
		1	2	3	4	5	6
	Number of oscillations.						
A-White line, untreated control	41.3	62.7	69.1	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$
L-Dutch method................	44.9	52.5	51.4	53.3	58.7	67.1	59.2
Q-Copper paint No. 1	31.1	34.1	38. 7	39.5	44.2	45.0	46. 8
	29.4 34.3	16.3 24.2	22.1 37.3	${ }_{(2)}^{21.3}$	$\underset{(2)}{30.1}$	${ }_{(2)}^{37.4}$	${ }_{(2)}^{37.3}$
Y-Copper oleate, 15 per cent; benzol, 35 p 50 per cent	27.0	24.2 30.0	31.1	28.4	34.2	52.4	
Z-Copper olcate followed by coal tar.	35. 3	30.5	34.1	49.7	49.2	40.5	58.2 58.0
AA-Copper oleate, 15 per eent, in benzol.	43.1	69.7	74.0	73.5	78.3	$\left(^{2}\right)$	(${ }^{2}$

The most flexible of all the lines exposed are those treated with copper oleate, AA; then comes untreated line, A, and that treated by the Dutch method, L. Considered together the lines treated with copper oleate and tar combinations, Y and Z, and copper paints, Q and R, are very stiff, though the stiffest is copper paint No. 2, R, and the most flexible is the combination, Z , which is copper oleate followed by tar, with copper paint No. 1, Q, and the mixed copper oleate and tar, Z, an intermediate. The petroleum residue, \mathbf{X}, also markedly stiffens the lines.

Fig. 26.-Flexibility of cotton lines exposed in fresh water at Put in Bay, Ohio.
The tendency toward increasing flexibility of all the lines is an indication of general deterioration; as they lose in strength and general quality they become more and more flexible.

WEARING QUALITY.
The results of the tests of wearing quality of the lines in the Put in Bay scries are given in Table 19 and are shown graphically in Figure 27.

Table 19.-Wearing quality of lines exposed in fresh water at Put in Bay, Ohio.

Symbol and treatment.	Unexposed.	Number of months exposed.					
		1	2	3	4	5	6
	Number of strokes.						
A-White line, untreated control.	1399.0	2.1	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$	(2)	${ }^{2}$)
L-Dutch method..	46.6	44.8	43.6	46.6	42.7	24.8	35.5
Q-Copper paint No. 1	23.0	41.7	28.9	29.8	34.8	31.1	31.5
R-Copper paint No. 2	89.0	25.6	29.2	24.8	19.2	16.3	15.3
X-Petroleuin product No. 2.:.	132.0	37.6	4.8	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$
Y-Copper oleate, 15 per cent; benzol, 35 p 50 per cent.	268.3	227.4	222.9	189.3	150.6	88.1	92.0
Z-Copper oleate followed by coal tar	225.1	231.2	274.9	130.0	153.4	121.8	111.5
AA-Copper oleate, 15 per cent in gasoline	203.1	180.8	18.1	8.6	4.2	${ }^{2}$)	${ }^{(2)}$

${ }^{1}$ Average of 100 tests; every other figure in this table is the average of 50 tests.
${ }^{2}$ Line was disintegrated and gone.

Fig. 27.-Wearing quality of cotton lines exposed in fresh water at Put in Bay, Ohio.
The leaders in this test are by long odds the lines preserved with the copper oleate and tar combinations which, even after three months' exposure, are still more resistant to wear than any of the others even before exposure, with the single exception of unexposed white line. This result agrees with the result at Woods Hole, where
the copper oleate and tar combinations showed exceptional wearing quality. Running, as they do, very close to the copper paints in flexibility and tensile strength, they excel copper paints so much in wearing quality that their selection is already indicated for the hearier types of gear where wear is a consideration. Copper oleate alone, AA, since it failed to preserve tensile strength, of course failed also in wearing quality, because, as already pointed out, if tensile strength is impaired the lines will make a poor showing in wearing quality whatever the results might otherwise be. We already know from the other series that copper oleate is better in wearing quality than any other preservative studied, and we can therefore with assurance ascribe its failure here to failure to preserve the strength of the fibers.

The Dutch method, L, does not show a wearing quality that can be called satisfactory, It makes only 43 to 46 strokes on the wearing machine against 399 for fresh white line and 231 for lines freshly treated with copper oleatc and tar. Nevertheless, the uniformity of results indicates good preservation, as was seen in its effect on tensile strength. The Dutch method is therefore in fresh water a good preservative in general for cotton lines, though it leares much to be desired in the particular factor of wearing quality. The petroleum product No. 2, designated X , is no better in wearing quality than in other particulars-it fails consistently, as far as tested, ana excels in no quality.

Fig. 28.-Tensile strength of linen lines exposed in fresh water at Put in Bay, Ohio.

TESTS WITH LINEN LINES.

A series of linen lines identical in material, preservatives, and preservative methods used with those at Woods Hole was exposed at Put in Bay for a three months' period. The line was 10 -ply linen gill netting. The preservatives and preservative methods used were copper oleate, $12 \frac{1}{2}$ per cent concentration in gasoline and 5 per cent oil, CC; the Dutch method, W; petroleum product No. 2, designated BB.

TENSILE STRENGTH.
The tensile strength of these lines before and after exposure is given in Table 20, the same results appearing graphically in Figure 28.

Table 20.-Tensile strength of linen lines exposed in fresh uater at Put in Bay, Ohio.

Symbol and treatment.	Unexposed.	Number of months exposed.		
		1	2	3
	Tensile strength in pounds.			
T-Untreated line, control.	${ }^{1} 55.2$	7.7	$\left.{ }^{2}\right)$	(2)
W-Dutch method..........	43.0	34.0	${ }^{(2)}$	(2)
13 B -Petroleum product No. 2.	49.0	8. 2	${ }^{(2)}$	${ }^{(2)}$
CC-Copper oleate, 15 per cent in gasoline	48.0	54.0	28.0	${ }^{(2)}$

${ }^{1}$ A verage of 50 tests; every other figtire in this table is each the average of 15 tests.
${ }^{2}$ Line was disintegrated and gone.
In this series the only preservative that shows any considerable success is copper oleate, CC; all three of the other lines-that is, the untreated line controls, T , and the samples treated by the Dutch method, W, and with the petroleum product No. 2, designated BBfailed to appear at all after one month of exposure. Of course, linen gill netting in practice would not be exposed to such conditions; but all the lines received similar exposure, and copper oleate clearly preserved better than any of the others.

Just why copper oleate preserved better with linen line than with cotton relatively to the other preservatives is not apparent. The conditions at Put in Bay are worse for the lines, both cotton and linen, than they are at either Woods Hole or Beaufort. At Beaufort two of the linen samples-that is, the ones treated with copper oleate and by the Dutch method-came through 120 days with some strengtil left, and at Woods Hole the corresponding samples were in good shape after 90 days, those preserved with copper oleate still being equal in tensile strength to the original lines. Linen is like cotton in showing more rapid deterioration in Lake Erie than the Atlantic Ocean; but copper oleate preserved linen relatively better than it did cotton.

SUMMARY OF RESULTS OF PUT IN BAY EEPERIMENTS.

1. The samples exposed at Put in Bay, Ohio, showed a general tendency toward a more rapid deterioration than did similar lines exposed in sea water.
2. The exceptions to this statement were those lines treated with the copper paints and tar-copper-oleate combinations, which showed no deterioration of tensile strength in fresh or salt water in six months, and the Dutch method, which preserved cotton lines better in fresh water than it did in salt water.
3. For cotton lines the copper paints and the combination of copper oleate and tar gave splendid results, but both classes of the preservatives stiffened the lines greatly.
4. As between copper paints and the tar-copper-oleate combinations, the preservation of tensile strength was equal, although in wearing quality the tar-copper-oleate combinations greatly excelled.
5. The Dutch method gave excellent results on cotton lines in this series, preserving the samples for the entire six months' period and not causing excessive stiffness.
6. Copper oleate alone did not excel in the preservation of cotton lines in this fresh-water series, apparently because it dissolves in fresh water and is removed from the lines.
7. On linen lines copper oleate preserved better in this series than did the Dutch method-the reverse of the results on cotton lines.

OTHER CONSIDERATIONS OF IMPORTANCE IN JUDGING VALUE OF PRESERVATIVES.

VARYING RATE OF DECOMPOSITION OF LINES IN DIFFERENT LOCALITIES.

It is generally understood that lines decompose more rapidly in some localities than in others and more rapidly in summer than in winter, but no quantitative data on the subject have been published. For purposes of comparison the tensile strength records of the untreated cotton lines exposed in the several series are given in Figure 29. It will be noted that the line lasied over the entire six months'

Fig. 29.- Varying rate of decomposition of cotton lines in different localities.
period of exposure to weather conditions at Washington, D. C., and over the entire period of $4 \frac{1}{2}$ months at Key West, Fla. At both Woods Hole, Mass., and Beaufort, N. C., the lines were entirely disintegrated and gone at the end of 4 months, though at the end of 4 months the line from Woods Hole showed a tensile strength of about 10 pounds and the one from Beaufort of about 3 pounds. In fresh water at Put in Bay the line showed a tensile strength of but about 2 pounds at the end of 2 months and at the end of 3 months was entirely rotten. The average specific gravity of the water at Kev West for the entire period of exposure was 1.025, at Woods Hole 1.023, at Beaufort 1.019, and at Put in Bay about 1.000 . Thus, considered roughly, the rate of deterioration of the exposed lines is directly proportional to the specific gravity (salinity) of the water in which they were exposed.

There is in all probability a relation also between the temperature of the water and the rate at which a line exposed in it will deteriorate; other factors being held constant the rate of deterioration of a line would no doubt bear an inverse relation to the temperature. The temperature records given for the localities of exposure do not show this relation here. Salinity differences complicate the results, and also, because the exposures were made in different seasons at the different places, the fluctuations in temperatures are very unlike.

INCREASE IN WEIGHT CAUSED BY APPLICATION OF PRESERVATIVES.

Among the properties of textiles that make them suitable for fishing is lightness. A light net is more easily and more rapidly handled than a heavy one, and consequently less labor is required to handle it. Since a net must support its own weight, the weight added to a net in the substance of a preservative adds just so much to the load to be carried by the net.

It is therefore important to determine the increase in weight caused by preservation and to select the preservatives that impart least weight to the nets, other conditions being the same. In all the series of experiments so far described in this paper this factor was determined by weighing the sample lines before and after treatment. These weighings were made on the analytical laboratory balance, but the lines were not dried to constant weight. It was found by experiment that, unless elaborate precautions were taken, the perfectly dried sample reabsorbed moisture so rapidly from the air that accurate weighing was impossible. Since it was impractical to use weighing bottles to prevent this and would be improper to heat the treated nets to the temperature required for drying, the samples were weighed in the air-dry condition.

Table 21 gives the results of the determinations of increase in weight of cotton and linen lines caused by the preservatives. These results are shown graphically in Figures 30 and 31.
Table 21.-Increase in weight of cotton and linen lines caused by application of preserva-
COTTON LINES.

Symbol and treatment.	Per cent increase in weight.					
	$\begin{aligned} & \text { Wash- } \\ & \text { ington. } \end{aligned}$	Key West.	Beaufort.	Woods Hole.	Put in Bay.	$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$
B-Copper oleate 7 per	11	16				3
-Copper oleate 7 per cent, 5 per cent parafin oil, 1-1000 cresol						
- Copper oleate 11 per cent.............................						
- Copper oleate e 11 per cent, 2 per cent par	21	31				26
F-Coal tar 50 per cent, benzol 50 per cent.	71 50	${ }_{49}^{69}$	66 57			69
$\xrightarrow{\text { G-Pine tar }} 50$ per cent, benzol 50 per cent H-Coal tar aud pine tar each 25 per cent, benzol 50	50	49	57			
per cent...................................	58	47	41			48
I-Quercitron and potassium bichrom		6	13			
J-Petroleum product No. 1	51	52	41			48
K-Proprietary watcrproofin		17				17
M-Copper oleate 7 N per cent			9			17
N -Copper oleate ${ }^{121}$ 2 per cent, 5 per cent paraffin						
o-Copper oleate i2i per cent.			14			14
P - Copper oleate $12 \frac{2}{2}$ per cent, 5 per cent parafin oil			19			
Q-Copper paint No. 1			48	74	75	${ }^{66}$
			109 46	138	132	126
X -Petroleum product N O. 2			37	36	$3{ }^{\circ}$	36
- Copper oleate 15 per cent, benzol 35 per cent, coal						
Z-Copper oleate 15 per cent, followed by coal				$\begin{aligned} & 58 \\ & 59 \end{aligned}$	${ }_{62}^{56}$	57
AA-Copper oleate 15 per cent.				$\begin{aligned} & 18 \\ & 18 \end{aligned}$	18	18

LINEN LINES.

Symbol and treatment.	Beaufort.	Woods Hole.	Putin Bay.	Average.
U-Copper oleate 121 $\frac{1}{2}$ per cent in gasoline, 5 per cent paraffin oil..	30.8			30.8
V-Quercitron and potassium bichromate......................	15.6			15.6
W-Dutch method.	26.2	31.2	29.8	29.0
BB-Petroleum product No. 2.		35.7	39.4	37.5
CC-Copper oleate 15 per cent in gasoline		22.0	23.3	22.6

Fig. 30.-Inctease in weight of cotton lines caused by one application of the various preservatives, $36199^{\circ}-23-4$

In Figures 30 and 31 the original weight of the line is represented by the height of the polygon up to 100 . The diagonally hatched part above 100 represents the weight added by the preservative, and the total height of the polygon represents

Fig. 31.-Increaso in woight of linen lines causod by one application of various preservatives. U , copper oleate, $12 \frac{1}{2}$ per cent solution in gasoline, 5 per cent paraffin oil; W, Dutch method; V, quercitron and potassium bichromate; BB, petroleum product No. 2; CC, copper oleate, 15 per cent solution in gasoline. the total weight of the line after treatment.

It is readily seen that certain materials, such as tar and copper paint, very greatly increase the weight of the lines, while others, notably the tanning methods and copper oleate, add very little to the weight. Tar, which shows a considerable increase, would probably show even a greater increase in weight where it is applied by the hot method. Copper paint, which made such a good showing in preservation of tensile strength, here makes a very poor showing in that it causes a great increase in weight.

It was noticed in connection with the data on tensile strength that certain preservatives actually increased tensile strength by their binding effect on the fibers. The preservatives that have the greatest effect in this way are also those that increase weight most. The question then arises, Does the extra tensile strength imparted to the lines compensate for the added weight? Will the extra added strength carry the extra added weight? This question can be determined by examining the breaking length, which is the length of itself that a line will support. Table 22 shows the tensile strength in pounds and breaking length in feet of the untreated and treated lines before exposure; that is, the number of feet of line that will just support itself without breaking, calculated by dividing the weight per foot into the tensile strength in pounds. Similar figures are shown for the same lines after 30 days' exposure.

Table 22.-Tensile strength and breaking length of all lines tested. ${ }^{1}$

Symbol and treatment.	Freshly treated.		Exposedone month.	
	Tensile strength.	Breaking length.	Tonsile strength.	Breaking length.
	Pounds.	Feet.	Pounds.	Fret.
A-White line, untreated control.			30.4	25, 200
C-Copper oleate 7 per cent: 5 per cent oil, $1-1000$ cresol	35.5	25,100	31.4 32.4	22,900
D-Copper oleate 11 per cent.	36.1	23, 300	37.6	24, 600
E-Copper oleate 11 per cent, 2 per cent	31.4	21,000	35.0	23, 200
F-Coaltar 50 per cent, benzol 50 per cent.	35.4	17, 900	44.6	22,700
G-Pine tar 50 per cent, benzol 50 per cent	35.2	19,500	44.4	24,500
H-Coal and pine tar 25 per cent cach, benzol 50 p	37.4	21,800	48.6	28, 300
I-Quercitron and potassium bichromate.	39.3	$2 \mathrm{2x}, 100$	39.2	28, 000
J-Petroleum product No. 1	39.0	21,700	44.8	25, 300
K-Waterproofing ma	43.9	27,400	48.9	30, 400
L-Dutch method.	38.6	23,300	39.9	23,600
M-Copper oleate 71 l per cent	34.2	27,300	36. 2	28,900
N-Copper oleate 12 per cent, 5 per cent oil, 1-1000	33.2	25,300	- 35.2	26,900
O-Copper oleate 121 $\frac{1}{2}$ per cent.	33.6	25,000	- 36.6	27, 300
	36.3	26,200	37.2	26,900
Q-Copper paint No. 1.	41.5	12,500	41.0	18, 200
${ }_{\text {R }}$-Copper paint No. 2	42.7	14,300	47.3	15, 800
S-Gilsonite.	35.5	21,500	28.2	15,700
X-Petroleum product No 2..	32.9	20,400	35.0	21,700
Y-Copper oleate 15 per cent, benzol 35 per cent, coal tar 50 per cent.	35.0	17,400	44.5	22300
Z-Copper oleate followed by co	36.0	17, 600	40.0	19,400
AA-Copper oleate 15 per cent	38.0	25,700	40.0	27,000

${ }^{1}$ The figures herein are averages from all the series studied.
It will be seen that those lines treated with tar or copper paint are of high tensile strength, especially after 30 days, yet the breaking length, which takes added weight into account, is comparatively low. Unexposed, untreated cotton line has a breaking length of 32,600 feet. If the increased strength of the line caused by application of tar and copper paints were proportional to the increased weight, the breaking length should be at least equal to that of the untreated lines, 32,600 feet. It is seen that this is not true for any of the preservatives when freshly applied. After a month's exposure many of the lines, such as tar, show an improvement, because of increasing binding on the fibers in comparison with the white line, which begins to weaken very soon. The copper oleates here show up well, while the copper paints, by their excessive weight, give poor results.

It can be concluded from this section of the paper that weight is an important factor in net preservation; that although some preservatives, like tar and copper paint, increase the tensile strength of lines by binding the fibers together, this increase of strength does not compensate for the increased weight imparted to the lines. It may also be concluded that tar increases weight markedly and so does copper paint. Copper oleate and the tanning methods are best in this particular, while the petroleum products and gilsonite are intermediate.

SHRINKAGE CAUSED BY APPLICATION OF PRESERVATIVES.

Many substances applied to lines as preservatives cause some shrinkage. As stated in connection with the description of the experiments, the samples were always measured to length while under a strain of 2 kg. (4.4 pounds). The stindard used was a steel tape 50 feet long. The measurements, being made before and after treat-
ment, revealed, by difference, any change in lengths of the lines. Table 23 exhibits the results so obtained, which are also shown graphically in Figure 32.

Fig. 32.-Shrinkage of cotton lines caused by one application of the various preservatives.
Table 23.-Shrinkage of cotton lines caused by a single application of each of the various preservatives.

Symbol and treatment.	Per cent shrinkage.					
	Washington.	Key West.	Beaufort.	Woods Hole.	Put in Bay.	Average.
B-Copper oleate 7 per cent.	0.6	1.4				1.0
C-Copper oleate 7 per cent; 5 per cent oil, 1-1000 cresol.	. 6	1.4				1.0
D-Copper oleate 11 per cent..............il	1.4 .8	1.9				1.7
F-Coal tar 50 per cent, benzol 50 per cent.	2.1	1.4	2.9			2.1
G-Pine tar 50 per cent, benzol 50 per cent.	1.9	. 9	2.9			1.9
H-Coal tar and pine tar each 25 per cent, benzol 50 per cent.	1.4	2.2	2.4			2.0
I-Quercitron and potassium bichromate.......	2.4	5.2	3.5			3.7
J-Petroleum product No. 1..	2.6	2.6	2.4			2.5
K -Proprietary waterproofing materia	2.1	2.1				2.1
L-Dutch method.	2.4	2.4	3.2	3.5	3.5	3.0
M-Copper oleate $7 \frac{1}{2}$ per cent.			1			. 1
N -Copper oleate $12 \frac{1}{2}$ per cent, 5 per cent oil, 1-1000 cresol....			. 4			. 4
O-Copper oleate $12 \frac{1}{2}$ per cent.			1.1			1.1
P-Copper oleate $12 \frac{1}{2}$ per cent, 5 per cent oil			1.1		.3	. 7
Q-Copper paint No. 1.			2.5	. 7	. 2	1.2
R-Copper paint No. 2			. 3	. 83		. 4
X-Piletroleum product ${ }^{\text {So... }} 2$			1.1	1.1	. 8	1.0
Y-Copper oleate 15 per cent, benzol 35 per cent, coal						1.0
tar 50 per cent.-..............				4	. 4	4
Z--Copper olcate followed by coal tar				. 4	. 4	. 4
AA-Copper oleate 15 per cent.				. 0	. 0	. 0

The results given are for only one application of the preservative. In practice, of course, some preservatives are repeatedly applied. Tar, copper paint, etc., can not well be applied repeatedly, because the accumulating substance increases weight and stiffness too much. Tanning materials, however, can be repeatedly applied, and it is just these that produce the greatest shrinkage, even on first application. This shrinkage is to be expected, for hot water is used in applying them. With repeated application, shrinkage becomes a rather serious objection to taming extracts. The copper oleate, being applied cold in gasoline, produces very little shrinkage. In general, however, one application of any of the preservatives produces little shrinkage. On linen lines none of the preservatives used caused any measurable shrinkage.

TIME AND LABOR REQUIRED TO APPLY PRESERVATIVES.

These factors are, of course, of great importance. Where two preservatives are of the same value in all technical particulars, the one which is less expensive to apply is preferable. It sometimes happens that on off days the fisherman's time is worth little if it can not be employed on his nets and boats, and in large organizations the employees are sometimes without important work to do. In such cases the cost of material is the principal cost of preservation. The cost of copper oleate will be considered elsewhere.

The time required to apply the several preservatives and for the treated nets to dry may be expensive, especially in busy seasons, when time employed on nets is just so much time taken from fishing.

Table 24 sets forth the time required to dry the several preservatives after they have been applied.

Table 24.-Time required for application and drying of preservatives.

Preservative	Number of applications.	Total time required for drying.
Copper oleate.	1	30 to 45 minutes.
Pine tar 50 per cent in benzol	1	10 to 12 minutes.
Coal tar and pine tar 50 per cent benzol	1	20 to 24 hours.
Coal tar 50 per cent benzol. Tanning materials:	1	24 hours.
Quercitron and potassium bichromate.	3	12 to 18 hours. ${ }^{1}$
Dutch method.	3	Do. ${ }^{1}$
Gilsonite.	1	24 hours.
Petroleum products.	1	36 to 48 hours.
Copper paint No. 1.	1	No drying required.
Copper paint No. 2.	1	Do.
Copper oleate-tar combinations.	1	20 to 24 hours.

${ }^{1}$ Requires from four to six hours for each application to dry.

COLOR IMPARTED TO LINES BY PRESERVATIVES.

All the preservatives studied change the color of the lines. Just what the value of color in a line is and what color and shade would be preferable we do not know. There is a large literature on the subject of color vision in fishes, but results by different observers are quite inconsistent. Still less do we know of the reactions of fish to colors that they may distinguish. However, since many people who are
interested in net preservatives have their own and very often decided, opinions on the subject, a statement of the colors produced follows:

Preservative.	Color of treated line.
Copper oleate......................	Apple green, sky blue, or strong brilliant green, depending on concentration of preservative.
Tar	Dark brown or black.
Copper paint	Dark coppery red.
Petroleum products.	Black.
Gilsonite. .	Do..
Tanming materials:	
Quercitron and potassium bichromate.	Brown.
Dutch method	Dark brown.
Copperoleate and tar combination	Dark brown or black.

Fig. 33.-Apparatus uzed in testing the preservatives for tendeney toward spontaneons heating.

SPONTANEOUS HEATING.
Spontaneous heating is commonly said by fishermen and others to cause the nets to rot. This heatiug is often attributed to the substance with which the nets are preserved. Experiments along this line have led the writers to suspect, however, that spontaneous heating of nets is caused by something other than the preservatives used.

APPARATUS USED FOR TESTING.

The apparatus used for these experiments (fig. 33) was made after the fashion of Mackey's spontaneous combustion tester. This consits, essentially, of a doublewalled cylindrical water bath with a cover carrying two air circulation tubes, a and a^{\prime}. The sample to be tested is placed in a cylindrical wire gauze or sereen, f. A thermometer, t, extends into the sample. A second thermometer, t^{\prime}, is suspended in the inner cylinder, c, through the air circulation tube a^{\prime}. The water in the onter cylinder, w, is then heated to any arhitrary temperature and kept at that temperature for a period of three or four hours. The temperatures of the thermometers, t and t^{\prime}, are noted at frequent intervals, and if the temperature of t in the sample cxeceds that of t^{\prime} in the air surrounding the sample, the difference may be taken as heat due to oxidation in the sample being tested.

LINSEED OIL.

Tests made were on cotton waste treated with the various preservatives studied. Two other tests were made upon samples of cotton waste that had been treated with linseed oil. Spontaneous heating is perhaps more likely to eccur in the presence of linseed oil than of almost any other common substance. The tests with it were made, therefore, for the purpose of determining whether or not spontaneous heating would actually occur under the conditions set up for the experiments.

Twenty grams of cotton waste was moistened with 25 cc . of linseed oil and the waste allowed to dry somewhat and placed in the tester. The water was brought to boiling and the temperature of t and t^{\prime} noted. The maximum temperature recorded by t was about $203^{\circ} \mathrm{F}$. $\left(95^{\circ} \mathrm{C}\right.$.). The temperature of the waste, shown by the thermometer t, rose at about the same rate as that of the surrounding air, shown by t^{\prime}. When a temperature of $212^{\circ} \mathrm{F}$. $\left(100^{\circ} \mathrm{C}\right.$.) was reached, readings were made at intervals of one minute. The temperature rose $1,1 \frac{1}{2}$, and 2° per minute up to about $266^{\circ} \mathrm{F}$. $\left(130^{\circ} \mathrm{C}\right.$.), when the differences became gradually larger, reaching a maximum between 300 and $345^{\circ} \mathrm{F}$: (149 and $174^{\circ} \mathrm{C}$.), when the differences were $14^{\circ} \mathrm{F}$. ($8^{\circ} \mathrm{C}$.) per minute. The increments per minute then became gradually smaller, and a brown gas or smoke was noticeable above $368^{\circ} \mathrm{F}$. ($187^{\circ} \mathrm{C}$.). The maximum temperature obtained in this experiment was $419^{\circ} \mathrm{F}$. (215° C.). The waste was scorched to a brown color. The experiment with linseed oil was repeated with the same results as described in the preceding paragraph.

A third test with linseed oil was made but differed from the first two in that the temperature of the water in the outer jacket was maintained at $122^{\circ} \mathrm{F}$. ($50^{\circ} \mathrm{C}$.) instead of $212^{\circ} \mathrm{F} .\left(100^{\circ} \mathrm{C}\right.$.). This temperature was held for about four hours, but the temperature of the waste saturated with linseed oil did not rise above that of the air surrounding it-about $113^{\circ} \mathrm{F}$. ($45^{\circ} \mathrm{C}$.). It may therefore be concluded that a temperature higher than this is necessary to kindle spontaneous heating of linseed oil.

COPPER OLEATE.

A sample of copper oleate taken from the batch before it was blown was dissolved in benzol. Cotton waste was saturated with this benzol solution and allowed to dry, after which it was placed in the tester and the temperature of the water in the outer jacket brought to $212^{\circ} \mathrm{F}$. ($100^{\circ} \mathrm{C}$.). This temperature was maintained for a period of three hours. The maximum temperature reached in the inner chamber was $194^{\circ} \mathrm{F}$. ($90^{\circ} \mathrm{C}$.). The maximum temperature of the waste was also $194^{\circ} \mathrm{F}$. $\left(90^{\circ} \mathrm{C}\right.$.), proving that there was no elevation of temperature in the waste caused by the unoxidized copper oleate. This experiment was repeated under like conditions and the same results obtained as in the first case. Two other samples of waste that had been saturated with a benzol solution of the finished or oxidized copper oleate were tested in the same manner as described for the unoxidized samples. The maximum temperature obtained in each of these was $194^{\circ} \mathrm{F}$. $\left(90^{\circ} \mathrm{C}\right.$.), both in the sample of waste and in the air surrounding it.

The results obtained in all four of the above experiments would seem to indicate that there need be no fear of spontaneous heating of nets treated with copper oleate, either oxidized or unoxidized.

OTHER PRESERVATIVES.

Creosote oil: The substance as previously described as being used for a lubricant in the manufacture of copper oleate.

Heavy coal tar: A road tar diluted with an equal volume of benzol in order to thin it sufficiently for application.

Pine tar: Ordinary wood tar, thinned with an equal volume of benzol.

Light coal tar: A thin crude coal tar, containing all the substances found in crude coal tar with the exception of water and benzol.

Copper paint No. 1: A copper paint used as a net preservative.
All of the above products were tested by saturating cotton waste with each and placing it in the tester. In no case was there any evidence of spontaneous heating. The maximum temperature noted at any time in the air surrounding the sample was $203^{\circ} \mathrm{F} .\left(95^{\circ} \mathrm{C}\right.$.). Observed fluctuations in the temperature were in all probability due to air currents. At no time was the temperature of the waste over $200^{\circ} \mathrm{F}$. ($93^{\circ} \mathrm{C}$.). The major portion of the time it was between 190 and $197^{\circ} \mathrm{F}$. (88 and $92^{\circ} \mathrm{C}$.). The water in the outer jacket was kept at boiling.

EFFECT OF HEAT ON COTTON LINES.

The question may here be raised as to how much heating is necessary to cause noticeable deterioration of the line. In order to answer this question, the following experiments were carried out:

Samples of No. 24 cotton line were heated in an electric oven in dry heat. One sample was heated for a period of two hours at a temperature of $212^{\circ} \mathrm{F} .\left(100^{\circ} \mathrm{C}.\right)$, another for two hours at $257^{\circ} \mathrm{F}$. $\left(125^{\circ} \mathrm{C}.\right)$, and a third for two hours at $302^{\circ} \mathrm{F}$. $\left(150^{\circ} \mathrm{C}.\right)$. These samples were subjected to tests for tensile strength and showed no appreciable weakening due to the heating. The sample that had been heated to $302^{\circ} \mathrm{F}$. ($150^{\circ} \mathrm{C}$.) was slightly browned or scorched in appearance but was fully as strong as any of the other samples.

Other samples of the same kind of twine were heated in steam. One sample was heated with steam at $212^{\circ} \mathrm{F}$. $\left(100^{\circ} \mathrm{C}\right.$.), another at $239^{\circ} \mathrm{F}$. ($115^{\circ} \mathrm{C}$.) under 10 pounds steam pressure, and a third at $257^{\circ} \mathrm{F}$. ($125^{\circ} \mathrm{C}$.) under 20 pounds steam pressure. All samples were heated for two hours. Tests of tensile strength were also made on these lines, and again there was no noticeable difference between the lines that had been heated and those that had not.

The results of these experiments seem to indicate that a temperature much higher than any to which fish nets or lines are ordinarily subjected would have to be reached before any noticeable weakening of the threads would take place from the heat alone.

DISCUSSION OF RESULTS.

That some kind of heating occurs in nets in use seems certain. Since it is shown here that even linseed oil must be artificially heated to a comparatively high temperature before it continues to heat
spontaneously, it seems necessary to discover some factor other than those that entered into the experiments to account for spontaneous heating of nets. In the case of fish nets, water, fish blood, slime, and fish oil, and also sunlight, must be taken into account. Bacterial decomposition might well cause an initial elevation of temperature, but it seems likely that the activities of the bacteria would be arrested and the bacteria killed before a temperature would be reached sufficient to kindle spontaneous heating of the oil. It should also be pointed out, as casting doubt on the belief that spontaneous heating commonly damages nets, that the high temperatures to which lines were experimentally exposed without damage would probably never be reached spontaneously.

It may also be that the damage done to nets by spontaneous heating is of the nature of supposition without foundation. That nets heat may be a fact, that they rot is certainly a fact, but that the one causes the other does not necessarily follow. Other and more widespread beliefs than this have turned out to be erroneous. Further investigation of the subject of spontaneous heating will be necessary before positive conclusion can be reached.

GENERAL CONSIDERATION OF VARIOUS PRESERVATIVES IN LIGHT OF DATA PRESENTED.

Data have now been presented concerning the effects of 23 preserving materials (or combinations and variations thereof) on cotton lines, and four on linen lines, with data on the untreated lines as controls. The data concern effects of weather conditions at Washington, D. C.; the sea water at Key West, Fla., Beaufort, N. C., and Woods Hole, Mass.; and fresh water at Put in Bay, Ohio, as compared with treated but unexposed lines held as controls. In all, 393 samples were measured to length, weighed, treated, measured and weighed a second time, exposed to the elements, and upon return were tested for tensile strength, wearing quality, and stiffness, and notes were taken on fouling, color imparted, and time required for treatments to dry. Where so many data are presented, bearing in so many tangled ways on the practical choice and improvement of preservatives, it will require close study to draw useful and reliable conclusions. All the more so, in that the requirements of nets for different classes of service are markedly different. The different preservatives will now be considered and discussed separately.

TAR.

Tar is the most commonly used preservative for fish nets in the United States. Coal tar is used more than pine tar; sometimes the two are mixed. They are usually applied hot, often in a metal vessel by direct heat from a fire, sometimes by the use of steam. The direct heat process applies tar very heavily to lines, stiffens them, and increases weight greatly. Steam tarring applies tar to a much lighter extent, sometimes scarcely more than coloring the lines. In the present experiments coal tar, pine tar, and a mixture of equal parts of the two were studied. The tar was diluted by the addition of an equal volume of benzol and applied cold.

COAL TAR.
The coal tar used was the 270° F. fraction, a thick, black, sirupy liquid. It contains many things, including creosote or the cresols, that are lighly antimicrobic. Under conditions of exposure to weather it protects the lines well. At Key West, in sea water, it showed a good preserving effect on tensile strength. At Beaufort it held the lines in good condition for about two months, after which time a rapid deterioration took place. This, it is assumed, is accounted for by the fact that the creosote present at first preserves the lines, but when it has dissolved, the lines are no longer protected. In ability to resist mechanical wear coal tar is at first very good, but as the lines stiffen and weaken on exposure this quality rapidly disappears. Tar greatly stiffens the lines. Where an untreated cotton line swings 40 to 50 times, a tarred line swings only about 15 to 20 times. Tar also increases the weight of lines, under conditions of application herein described, to the extent of about 50 to 70 per cent.

There is a noticeable increase in strength in tarred lines over the white lines, to which it is applied. This increase in strength, caused by a cementing of the fibers, is not sufficient to compensate for the increase in weight. The breaking length of an mexposed tarred line is less than that of the white line.

In resistance to the accumulation of fouling by marine growth tar is poor, and the time required to dry the applied tar is 12 hours or more. Tar is cheap in material but is laborious and messy to apply. It colors the nets dark brown or black.

Coal tar is suitable as a preservative for heary nets, and when applied in concentration is much better than nothing on two months' continuous exposure, after which it is comparatively worthless. Fortified with copper oleate, coal tar was an extraordinarily good preservative. This will be referred to later.

PINE TAR.

Pine tar behaves very much like coal tar, running a close second to it in most respects. It does not preserve tensile strength quite so well, but, on the other hand, is not quite so stiffening. Little can be said in favor of pine tar as against coal tar.

MIXED TAR.

The tars mixed were also similar to the straight tars, the properties of the mixture being usually intermediate between those of the separate components.

TANNING OR BARKING.

Next to tarring barking is the commonest preservative treatment applied in this country. The use of bark is principally confined to gear that can not be tarred, such as gill nets and light seines. The barking process usually consists of dipping the net in a hot decoction of oak bark, cutch, or other tanning extract, in water. Since, in a previous paper (Taylor, 1921) it was shown that barking alone is of no noticeable value as a preservative (though the gear may be well
cleaned by it), experiments were restricted to the treatment of nets with a hot solution of quercitron, followed by a treatment with potassium bichromate, and the Dutch method. This latter method consists of treating the net with quercitron and following with a solution of 1 per cent copper sulphate in water, with 3 per cent of stronger ammonia water added. The experiments with quercitron, followed by potassium bichromate, were made in order to determine the effect of copper by comparison with the Dutch method.

Both tanning methods color the lines brown and by making them harsh greatly impair their ability to withstand mechanical wear or abrasion. Also, in their effect on stiffness, there is little difference, both stiffening the lines more than copper oleate but less than any of the other preservatives. They also shrink the lines more than any other preservative.

QUERCITRON AND POTASSIUM BICHROMATE.

Where the two methods begin to differ is in actual preserving effect on exposure to water, as shown by the tensile strength tests and also the wearing tests. The lines treated by quercitron and potassium bichromate at all places where tested did not last any longer than the untreated cotton lines. This method was therefore omitted from consideration in the later scries.

THE DUTCH METHOD.
This method shows much merit. In the Key West, Beaufort, and Woods Hole series-that is, in all the sen-water tests-it had a preserving effect, as shown by tensile strength measurements, at lirst intermediate between copper oleate and tar. At the end it was still intermediate, though the eopper oleate and tar had changed places. The order of tensile strength at first was tar, Dutch method, and copper oleate; later, copper oleate, Dutch method, and tar. In addition to its effect on tensile strength, the Dutch method also prevented fouling almost entirely.

On linen lines in sea water, where these two methods were also tried, the only preservatives worth considering were copper oleate and the Dutch method; quercitron and potassium bichromate did not show any preserving effect. The Dutch method and copper oleate both preserved to about the same extent at Beaufort, the lines lasting about four months' continuous exposure. At Woods Hole copper oleate was considerably better than the Dutch method, though the Dutch method showed merit.

In fresh water at Put in Bay the results were somewhat surprising. The Dutch method gave excellent results with cotton, easily outstripping copper oleate as far as tensile strength is concerned.

The linen.lines treated by the Dutch method lasted only 60 days, while those treated with copper oleate lasted 90 days and were stronger than the linen lines preserved by the Dutch method.

As appearances now stand, the Dutch method in fresh water and for cotton lines is best; for linen lines in fresh water, copper oleate excels. It must be borne in mind, however, that only one series of experiments has been conducted. Before these conclusions are entirely trustworthy it will be necessary to carry out many more tests.

In salt water the Dutch method proved itself to be a very good preservative, but not the best. Lines preserved by it are strong, light, flexible, but wear easily from mechanical abrasion and shrink considerably, and the method is somewhat troublesome of application. Since the quercitron and potassium bichromate method and the Dutch method are similar, except for the absence of copper from the one and the presence of it in the other, it is clear that the preserving eflect of the Dutch method lies in the copper and not in the tamning.

COPPER PAINT.

This material, long used for the bottoms of boats and ships to prevent the entrance of marine borers and to prevent also the attachment of fouling by barnacles and other growths, has been introduced only recently as a preservative of fish nets. The two commercial samples tested in these experiments are regularly sold for the purpose. One (Q) is a product prepared for fish nets by a considerable thinning. It contains much less copper oxide than the ship's paint. Accordingly, its properties that depend on body-that is, stiffiness and weight-are somewhat less extreme than those of the straight ship's paint (R), the other sample tested. This latter contains very much more copper. It stiffens lines and increases their weight more than the other copper paint. The copper oxide present gives to lines treated by either of these paints a harshess that greatly reduces the wearing quality of Jines treated by it. It is in this particular that they are at a great disadvantage when compared with other preservatives. They cause very little shrinkage but increase the weight from 60 per cent (Q) to 125 per cent (R). They both impart to nets the familiar reddish or coppery color that is seen on ships' bottoms painted with them. They are expensive but are not very troublesome to apply, as the nets are to be put into service in water without waiting to dry.

Both copper paints proved themselves to be most excellent preservatives of tensile strength under all conditions tested, both in salt and fresh water, being usually the strongest lines of all after exposure. They add something to the tensile strength of unexposed lines, but this increase is not sufficient to compensate for the added weight, as shown by the breaking length data. R, containing as it does a larger proportion of copper, is more effective under very severe conditions than Q , which contains less copper. When compared with the lines treated with copper oleate, which contained very much less copper, it appears that the large deposits of copper in the paints are unnecessary. Copper paints entirely prevented fouling in all the experiments.

In summary, copper paint is an excellent preservative of tensile strength and in preventing fouling, but is seriously lacking in wearing quality. It stiffens the lines and increases their weight and is decidedly expensive. It is unsuitable for gill nets and light seines.

PETROLEUM PRODUCTS.

These two materials, J and X, submitted for test, are prepared from petroleum from the Western States. They are black tarry liquids, J being heavier than X . X was prepared thin so as to be suitable for gill nets. They impart to the line a brown color, penetrate well, and as far as appearances go might readily be taken as good substitutes for
tar. In the trials, however, they fail to show any preserving quality worth considering. The tensile strength of lines treated by them rapidly diminishes on exposure, the stiffness is greatly increased, and the wearing quality, while good in the unexposed lines, rapidly disappears on exposure. The failure of these materials was equally rapid on cotton and linen lines.

GLLSONITE.

This material, also called Uintaite, coming as it does from the Uinta Mountains of Utah, is an asphalt, similar to Trinidad asphalt. It is sold under a proprietary name as a net dip, and this proprietary product was the one tested in this work. It is a black sirupy liquid of a bituminous odor. When applied to cotton twine, it dries in about 24 hours, leaving the lines colored dark brown or black and of a stiffness as great as that produced by tar or copper paint. It increased the weight of No. 24 cotton twine when dipped 48 per cent, wnich is similar to the increase caused by tar.

As might be expected from the results already given, which show that mere waterproofing or covering lines is not in itself adequate to preserving them against deterioration on exposure, gilsonite fails to show any preserving effect. At Beaufort, where it was exposed, it was little better than no preservation as far as tensile strength was concerned. In resistance to mechanical wear gilsonite compared well at first with other preservatives, but this resistance soon disappeared on exposure of the samples. This substance, if fortified with copper oleate or some other toxic material, might be effective; but if it costs much more than tar, little if any advantage would be gained by substituting it for tar. Because of general failure and disintegration of lines treated by it gilsonite may be dismissed as of no value as a net preservative.

COPPER OLEATE.

In our experiments this substance is tested for the first time as a net preservative. It has been tried in various concentrations and combinations, and, as far as our experiments go, it shows characteristics that should make it valuable for preserving nets. If tensile strength of lines after exposure is alone taken as a measure of its preserving effect, copper oleate gave good results, though not always the best. In the Key West series it kept the lines up to their original strength for four and one-half months. At Beaufort the only preservatives that resisted six months' exposure were copper oleate, copper paint, and the Dutch method. Because of a binding effect on the fibers the tensile strength of the lines treated with copper paint was greater than that of lines treated with copper oleate. At Woods Hole again all those lines that endured six months had copper in some form in them. Those preservatives that contained a protecting body in addition to the copper lasted better than those treated with copper oleate alone. At Put in Bay in fresh water copper olcate alone did not give encouraging results, but combined with tar as a binder it gave excellent results. The copper oleate without binder seems to disappear from the lines rather rapidly in the fresh water of Lake Erie. In none of the foregoing experiments was copper oleate applied a second time to the sample. The amount of copper per yard of line was very small in
comparison with that in lines treated with copper paint, yet in preserving effect it occupied second place when it did not occupy first. In the Key West and Beaufort series, where different concentrations ($7,7 \frac{1}{2}, 11$, and $12 \frac{1}{2}$ per cent) were tried, solutions of copper oleate in gasoline, the higher concentrations, gave in every case better results. The addition of a small quantity of cresol effected no improvement, but the small quantity of oil scemed to increase the preserving effect. It is probable, therefore, that still higher concentrations than we used or repeated applications of copper oleate will give even better results and should equal any other preservative tried.

Copper oleate does not stiffen lines to which it is applied to an objectionable degree. In fact, it appears to be quite suitable for gill nets and other soft gear, where flexibility is essential. Lines treated with it made about three times as many swings, acting as pendulums, as lines treated with tar. The weight imparted to lines by the application of copper oleate is insignificant, being only about 16 per cent of the original twine. In these two particulars-that is, flexibility and weight-copper oleate greatly excels tar and copper paint. In ability to withstand mechanical wear, lines treated with copper oleate are better than any other treated lines tested. In this particular, also, it is far ahead of copper paint, which causes excessive wear.

Copper oleate prevented the attachment of marine growths to the lines exposed at all places, in this particular being equaled only by copper paint. Copper oleate when used alone, dissolved in gasoline and with or without oil, imparts to the lines a color that varies between azure and green as concentration varies. This color is said by some to be desirable. Japanese fishermen have introduced in the northwest the practice of dying green their gill nets used for salmon. The acceptability to different fishermen of the color imparted by copper oleate will be greatly influenced by their customs and their notions of fish behavior.

In ease of application and time required to dry copper oleate is equal to any other preservative tested. When dissolved in gasoline or benzol in the proportion of 1 to 2 pounds of copper oleate to 1 gallon of solvent, the lines or nets need only be dipped in it and sproad out to dry. Drying requires about one-half hour for cotton lines and two or three hours for linen or hemp. Applied in gasoline with a little mineral oil, then, copper oleate answers well all the principal requirements of a good net preservative. When copper oleate alone dissolved in benzol is applied to cotton twine, the copper oleate seems to creep to the surface of the twine as the solvent evaporates. The addition of about 1 pound of mineral oil or creosote to each 10 pounds of copper oleate prevents this creeping. Creosote seems preferable to oil as being cheaper and in possessing a toxicity of its own.

The combination of copper oleate and tar preserves the nets better than cither copper oleate or tar alone. After six months' exposure in both fresh and salt water the samples of cotton line preserved with these combinations were equal in strength to the original unexposed samples. It made little difference whether the copper and tar were applied separately, or mixed. This being so, the choice would be the mixture that would require less labor in being applied. This combination is similar to copper paint in preserving effect and to
tar-in weight and stiffness. In wearing quality it greatly excels copper paint. It would be a suitable preservative for heavy gear subject to continued severe exposure, such as traps and pound nets. Directions for applying this combination are as follows:

Dissolve 1 pound copper oleate in 1 gallon of benzol (gasoline is not suitable for this purpose). Stir in, cold, 1 gallon of coal tar, more or less, according to the stiffness and weight that is allowable. Dip the net in this combination cold and dry. Λ void fire. ${ }^{4}$

CIIEMICAL PROPERTIES AND MANUFACTURE OF COPPER OLEATE.
Cupric oleate $\mathrm{Cu}\left(\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{2}\right)_{2}$ is a green substance of the consistency of beeswax, insoluble in water, soluble in alcohol, ether, benzol, gasoline, carbon tetrachloride, turpentine, oils, etc., forming emerald green solutions. It contains, on the basis of the formula given, 10.15 per cent copper, by weight, though the percentage of copper in commercial preparations may vary between wide limits. It has a metallic coppery taste and is poisonous when taken internally, though external exposure to it is apparently harmless.

Copper oleate may be made in a number of different ways. It is precipitated when sodium oleate and any soluble copper salt are brought together in aqueous solution. When prepared in this way, it is gummy and contains much water that is removed only with difficulty. Cupric oxide dissolves in hot acid with formation of copper oleate and water, but it is difficult or impossible to carry the reaction to completion. Copper acetate and oleic acid combine at an elevated temperature, whereby copper oleate is formed and acetic acid driven off. The latter may be condensed and recovered. This method produces a good product, entirely soluble, but some acetic acid usually remains. Moreover, copper acetate is expensive.

The method employed in our production of copper oleate was to treat copper carbonate (containing also copper hydroxide) with oleic acid. In this reaction carbon dioxide and water are produced, and both are driven off by heat. Both reagents are obtainable in commerce in large quantities at a low price. The current (December 30, 1922) price of copper carbonate is 20 cents per pound, and oleic acid (the red oil of commerce) is 10 cents per pound. The exact procedure as followed in the laboratory in making this material is as follows:

Into a 5-grallon copper steam-jacketed kettle put 4 pounds of dry copper carbonate. Moisten this with enough red oil (about 1 quart) to make a paste; knead the paste with a wooden pestle until all lumps are crushed and the mass is of uniform consistency. Stir in more oil. As the oil is added large quantities of gas are generated, and constant stirring is necessary to keep the contents from running over the sides of the kettle. As the foaming subsides more oleic acid is put in until 15 pounds in all have been added. Steam is now cautiously admitted to the jacket, and with constant stirring the mass is kept from foaming over. A thermometer is kept in the mass. When the boiling point of water is reached, bubbles of steam escape rapidly. This bubbling may continue for two hours or more, until

[^5]all the water is driven off, during which time the temperature does not rise far above $212^{\circ} \mathrm{F}$. ($100^{\circ} \mathrm{C}$.). When bubbles of steam cease to escape, the temperature will rise slowly until 45 pounds' pressure of steam is maintained in the jacket, the copper oleate comes to a temperature of 257 to $268^{\circ} \mathrm{F}$. (126 to $132^{\circ} \mathrm{C}$.), and the mass is a thick green liquid. When this temperature is reached, an air hose nozzle is so placed that air is blown in and bubbles through the hot mass from the bottom. Stirring now helps to incorporate the air bubbles in the mass and to accelerate oxidation. As the mass absorbs oxygen, it becomes very viscid, so that a stick inserted in it and brought out carries a sticky bulk which in large part hangs without dropping. The blowing requires about one-half hour. The blowing of air is, of course, for the purpose of oxidizing the mass with as much oxygen as it will spontaneously absorb at this elevated temperature, so as to diminish the likelihood of spontancous heating of fish nets to which it is applied.

When the consistency just described is reached, the batch is considered finished, a lot sample is taken, and to the batch is added the amount of oil necessary to prevent creeping. If oil is used, it should be mineral lubricating oil in the proportion of 3 pints for the batch as described. Later experiments, however, indicate that creosote answers the same purpose more cheaply and more effectively. Creosote is a good preservative itself; it prevents the copper oleate from creeping to the surface of lines and can be bought for 50 cents per gallon or less. If creosote is used, $1 \frac{1}{2}$ to 2 pints to the batch quantity described is sufficient. The creosote used in the work herein described has the following properties: A thin mobile brownish but rather transparent liquid; specific gravity, 980; smell, smoky. It is the grade used for preserving wood.

When the oil or creosote has been added and thoroughly mixed into the mass, the latter is poured into cans or other containers and set aside to cool. A record is kept of each batch, which is designated by number. If cans are used, they may be of the friction-top type. The contents of a 5 -pound can will, when dissolved in 5 gallons of gasoline, treat between 50 and 60 pounds of cotton net. When dissolved in $2 \frac{1}{2}$ gallons of gasoline, it will treat 25 to 30 pounds of net with a comparatively heavy deposit of the preservative, suitable for severe conditions. For combining tar the contents of a 5 -pound can are dissolved in 5 gallons of benzol and 5 gallons of coal tar are added and mixed, making about $10 \frac{1}{2}$ gallons of a preservative, suitable for traps and other gear, subject to the severest exposure. The nets are dipped in the mixture cold and are hung out to dry. Drying takes about 24 hours. It may also be applied separately to the lines, as will be described below, the lines then to be tarred in the usual way.

METIIOD OF APPLYING COPPER OLEATE TO NETS.

The copper oleate as canned is dissolved in gasoline. If it does not already contain the oil or creosote, one of these must be added in the quantity indicated. The cold, waxy, copper oleate dissolves rather slowly in gasoline, but the can may be put in boiling water for a few minutes, until the copper oleate is liquefied; it then dissolves quickly. The gasoline solution should be contained in a metal vessel (a galvanized-iron washtub, for example); the net is dipped into this
mixture and hung (not piled) to dry. Any unused portion of the copper oleate in gasoline may be kept indefinitely in a tightly corked can, such as a 10 -gallon oil can. For larger quantities a steel gasoline barrel is suitable. The treatment may be repeated as of ten as seems desirable without danger of injury to the twine.

GRADING THE SEVERAL MATERIALS AS ALL-ROUND PRESERVATIVES.

In the experimental part of this paper it has been shown that the several materials studied differ in value as net preservatives-in one particular respect one preservative may excel, in another some other preservative. The impression may have been given that in most respects copper oleate is best. But, just how much better is one preservative than another, considered generally? Some systematic and impartial method of attaching values to the different factorssuch as tensile strength, stiffness, and wearing quality-by which to grade the several preservatives accordingly is desirable. Can we not derive a figure that is made up of the several values of tensile strength, wearing quality, flexibility, etc., that will give an indication of the all-round value of each preservative?

In deriving such a figure it is impossible to avoid making assumptions that are more or less arbitrary. It is also necessary to ignore the obvious fact that for different purposes and classes of nets the relative weights of the different factors are quite dissimilar. For example, in gill nets the necessity of flexibility absolutely dominates the choice of material and preservation, while in pound nets flexibility is of no great importance, but preservation of tensile strength, ability to withstand chafing or abrasion, and resistance to fouling by marine growths are decisive factors.

In selecting a suitable preservative, therefore, one can not avoid a consideration of the relative importance of the several factors for the particular purpose the net is intended to serve. Nevertheless, our new preservative, copper oleate, is proposed for all classes of nets. If it can make a good score in all or most of the several requirements that make it suitable for many different purposes, it is more desirable than a preservative that excels for some limited purpose and is useless for others.

The following method of grading the preservatives for all-round use on cotton lines involves the minimum number of arbitrary assumptions: (1) The breaking length of the treated line was first calculated; that is, the length of line that will just hold itself up. (2) This figure was then reduced to the same extent as the shrinkage was found to reduce the length of cotton lines on application of the preservative. (3) This figure was then multiplied by a factor that, in the case of white untreated line, brings the breaking length to 100 . Thus, the samples were compared with white line as a standard of excellence. (t) The number of strokes on the wearing tester was multiplied by a factor that, in the case of white untreated line, brings the number of strokes to 100 . Here, again, the samples were referred to white line as a standard. (5) The number of pendulum oscillations of the several samples (flexibility) was multiplied by a factor that, in the case of white untreated line, gives 100 oscillations. This factor is also referred to white line as a standard. We thus take into the reckoning tensile strength, increase in weight,
shrinkage, resistance to wear, and flexibility, and by multiplying each by a factor, that, in the case of white line, brings each figure to 100 we attach the same weight to the factors, and at the same time refer all samples to the one standard of excellence for fishing purposes, the new white line. The ideal preservative is that one that most closely keeps its twine like new white line for the longest time, and our composite score by its magnitude indicates the relative ability of the preservatives so to keep the lines. It was not practicable to include in the score resistance to fouling, because exact numerical expression for this factor was lacking. Allowance for it would raise the values for copper oleate and copper paint alike with respect to all the others, for only these two preservatives prevented fouling.

The new untreated, unexposed cotton line, No. 24, cable-laid, hardfinish, scored in the way described 300 , or 100 for each of the three different factors, derived as follows:

Let
$T=$ tensile strength in pounds of sample.
$W=$ weight in pounds per 100 feet.
$\stackrel{T}{W}=$ breaking length in hundreds of feet.
$S_{1}=$ original length, in hundreds of feet, of sample before treating.
$S_{2}=$ length, in hundreds of feet, of sample after treating.
$\frac{S_{2}}{S_{1}} \times \frac{T}{W}=$ breaking length, in hundreds of feet, of sample after treating.
$F=$ flexibility $=$ number of swings of pendulum.
$A=$ number of strokes on wearing machine.
For white line:

$$
\begin{aligned}
& \frac{100}{S_{2}} \times \frac{T}{W}=F_{1}=\begin{array}{l}
\text { the factor that brings the shrunken breaking length of } \\
\text { white line to a value of } 100 \text {. This white-line factor is } \\
\text { used in bringing the shrunken breaking length of treated }
\end{array} \\
& \begin{array}{l}
\text { line to a common standard. }
\end{array} \\
& \frac{100}{F}=F_{2}=\begin{array}{l}
\text { factor that brings the flexibility of untreated white line } \\
\text { to a value of } 100 \text {. This white-line factor is used for the } \\
\text { treated line. }
\end{array} \\
& \frac{100}{A}=F_{3}=\begin{array}{l}
\text { factor that brings the wearing ability of white line to a } \\
\text { value of } 100 \text {. }
\end{array}
\end{aligned}
$$

Then, the full score of any sample is the sum of the three separate scores, shrunken breaking length, flexibility, and wearing ability,

$$
\frac{S_{2}}{S_{1}} \times \frac{T}{W} \times F_{1}+F F_{2}+A F_{3}
$$

In Table 25 are given the numerical values of the scores of all lines in the Beaufort and Woods Hole series. The same data are presented in graphic form for the several preservatives in Figure 34. It is seen that treatment by any preservative whatsoever causes a reduction in the score.

Fig. 34.-Scores of the several preservatives showing their relative values applied to cotton line, tensile strength, wearing quality, flexibility, shrinkage, and increase in weight considered. Now untreated white cotton line is the standard, scoring 300.
Table 25.-Scores of cotton lines at Beaufort, N. C., and Woods Hole, Mass.

Symbol and treatment.	Tests.	Unex posed.	Number of months exposed.					
			1	2	3	4	5	6
A-White line,untreated control.	(Breaking length...	100.0	92.0	32.5	13. 5			
	Wearing quality..	$\begin{aligned} & 100.0 \\ & 100.0 \end{aligned}$	19.8 140.0	114. ${ }^{5.1}$	2.7 115.0			
	Total	30 n .0	251.8	151.6	131.2			
F-Coal tar 50 per cent, benzol 50 per cent.	$\left\lvert\, \begin{aligned} & \text { Breaking length... } \\ & \text { Wearing quality. }\end{aligned}\right.$	55.0 55.0	72.0 48.5	70.0 16.6	57.0 32.2	36.0 9.7	28.0 4.2	
	Flexibility........	${ }^{50.5}$	46.5	46.0	40.0	39.0	43.5	
	Total	170.5	167.0	132.6	129.2	84.7	75.7	
$\begin{aligned} & \text { G-Pine tar } 50 \text { per cent, benzol } \\ & 50 \text { per cent. } \end{aligned}$	(Breaking length...	60.0 45.0	76.5 40.0	79.0 27.6	57.0 21.2	20.1 16.2	4.9	
	\{Flexibility	72.0	36.4	36.0	41.0	66.5	82.5	
	Total	177.0	152.9	142.6	122.2	102.8	87.4	
H-Coal tar 25 per cent, pinetar 25 per cent, benzol 25 per cent.	$\left\{\begin{array}{l}\text { Breaking length... } \\ \text { Wearing quality }\end{array}\right.$	67.0 47.5	78.0 48.5	84.0 30.4 3	60.0 26.1	50.0 12.3	29.0 2.8	
	Flexibility	58.5	43.5	36.0	40.0	39.8	46.5	
	Total	173.0	170.0	150.4	126.1	102.1	78.3	\ldots
I-Quercitron mordanted with potassium bichromate.	(Breaking length...		94. 0	43.0	5.2			
	Flexibility		108. 0	¢7.0	89.5			
	Total	209.3	214.7	130.0	94.7			...

Table 25.-Scores of cotton lines at Beaufort, N. C., and Woods Hole, Mass.-Contd.

Symbol and treatment.	Tests.	Unexposed.	Number of months exposed.					
			1	2	3	4	5	6
J-Perroleum product No. $1 . .$.	Breaking length...	66.5	69.5	41.0	15.0			
	Wearing quality. .	79.5 70.0	35.1 44.0	44.0	44.0			
	Tota	216.0	148.6	85.0	59.0			
L-Dutch method, quercitron mordanted with ammoniacal copper sulphate.	(Breaking length	71.5	75.0	71.0	66.5	44.0	29.6	28.5
	Wearing quality	13.4 108.5	16.1 94.5	18.8 95.5	26.4. ${ }^{4.5}$	18.2 104.0	4.5 119.0	3.3 113.5
	Tot	193.4	185.6	185.3	187.4	166.2	153.1	150.3
M-Copper oleate $7 \frac{1}{2}$ per cent in gasoline.	(Breaking length.	84.0	88.5	89.0	72.0	40.5	24.8	23.6
	$\left\{\begin{array}{l}\text { Wearing quality.. } \\ \text { Flexibility } ~\end{array}\right.$	33.4 146.0	45.5 179.0	40.2 174.0	36.5 137.0	3.6 112.0	2.3 113.0	1.7 120.0
	Tot	263.4	313.0	303.2	245.5	156.1	140.1	145.3
N -Copper oleate $12 \frac{1}{2}$ per cent in gasoline, 5 per cent paraffin oil, 1-1000 parts cresol.	Breaking length...	77.5	83.0	79.0	79.0	59.5	51.0	23. 2
	Wearing quality..	$\begin{array}{r} 36.0 \\ 143.0 \end{array}$	$\begin{array}{r} 44.5 \\ 143.0 \end{array}$	33.2 154.0	42.5 165.0	27.4 170.0	152.0	648 158.0
	Total	256.5	275.5	266.2	286.5	251.9	215.1	250.7
O-Copper oleate $12 \frac{1}{2}$ per cent in gasoline.	(Breaking length..	77.0	84.0	91.5	68.5	48.5		
	Wearing quality.. Flexibility	54.0 121.0	54.0 147.0	40.5 137.0	35.0 125.0	$\begin{array}{r} 11.4 \\ 110.0 \end{array}$	$\begin{array}{r}13.6 \\ 141.0 \\ \hline\end{array}$	13.4
	Tota	252.0	285.0	269.0	231.5	169.9	206.6	160.4
P-Copper oleate $12 \frac{1}{2}$ per cent in gasoline, 2 per cent in paraffin oil.	Breaking length	80.0	82.5	84.5	82.5	66.0	43.0	37.4
	Wearing quality.. Flexibility	40.0 120.0	65.0 155.0	41.5 139.0	$\begin{array}{r} 37.4 \\ 134.0 \end{array}$	$\begin{array}{r} 34.5 \\ 156.0 \end{array}$	3.6 85.0	
	To	240.0	302.5	268.0	253.9	256.5	131.6	205.1
Q-Copper paint No. 1...........	Breaking length.	57.0	56.0	56.0	55.0	58.0	48.0	40.6
	Wearing quality.	65.0 75.5	$\begin{array}{r} 15.3 \\ 80.0 \end{array}$	$\begin{aligned} & 11.3 \\ & 69.5 \end{aligned}$	15.0 75.0	$\stackrel{11.1}{93.0}$	9.9 79.0	6.6 92.0
	Tota	197.5	151.3	136.8	145.0	165.1	136.9	139.2
R-Copper paint No. 2..........	Breaking length.	44.0	45.0	48.5	48.5	67.0 3.9	40.5 4.4	43.
	Wearing quality. Flexibulity	$\begin{aligned} & 25.0 \\ & 71.0 \end{aligned}$	6.6 37.5	5.0 55.5	74.5	$\begin{array}{r}30.0 \\ \hline 0.0\end{array}$	4.4 71.0	84. 5
	Tota	140.0	89.1	109.0	128.2	140.9	115.9	131.8
S-Gilsonite......................	Breaking length.	66.0	48.0	14.4	6.4			
	Wearing quality.	79.0 88.5	58.5 51.0	43.5	51.5			
	Tot	233.5	157.5	57.9	57.9			
X-Petroleum product No. $2 . .$.	Breaking length.	63.0	74.5	27.2	14.0			
	Wearing quality.	37.4	19.1	9.7	4.2			
	Flexibility	83.0	45.0	58.5	27.1			
	Total	183.4	138.6	95.4	45.3			
Y.-Copper oleate 15 per cent, benzol 35 per cent, coal tar 50 per cent.								71.5 36.8
	Wearing quality.. Flexibility.	76.0 85.5	$\begin{aligned} & 84.0 \\ & 74.0 \end{aligned}$	79.5 75.0	76.0 70.0	51.0 77.0	32.4 134.0	31.8 142.0
	T Total	214.0	224.0	211.0	218.5	193.5	242.9	250.3
Z-Copper oleate 15 per cent \ln gasoline followed by coaltar. tar.	(Breaking length.	54.0	57.0	58.5	72.0	59.5	74.5	66.0
	Wearing quality..	- $\begin{array}{r}64.0 \\ 65.5\end{array}$	84.5 72.5	70.5 94.5	64.5 77.0	36.0 115.0	39.0 94.0	49.5 97.5
	Tot	183.5	214.0	223.5	213.5	220.5	207.5	208.0
AA-Copper oleate 15 per cent in gasoline.	$\left\{\begin{array}{r}\text { Breakıng length... } \\ \text { Wearing quality } \\ \text { Flexibility }\end{array}\right.$. 79.0	88.0				63.0	65.0
		57.5 104.1	64.0 112.0	$\begin{array}{r} 44.0 \\ 123.0 \end{array}$	53.5 137.0	18.6 166.0	28.8 170.0	28.9 169.0
		240.6	264.0	244.0	266.5	266.1	261.8	262.2

The only lines that at any time make a higher score than white line are the line, M, treated with copper oleate, after the first and second month, and P, another line treated with copper oleate, after the first month. The Dutch method, L, makes a good score. The copper paints, Q and R, at first make a poor showing because of excessive weight and low wearing ability, but because of a good preserving effect they occupy a high place, compared with others, after three months. The tarred lines, F, G, and H, all make similar scores but are intermediate between the better and poorer preservatives. In Figure 35 these lines are grouped for a more convenient interpretation.

Fig. 35.-Scores of the preservatives shown in Figure 34, with the preservatives having a similar effect grouped.

The samples treated with copper oleate easily lead as all-round preservatives when rated by the method described, the copper paints and the Dutch method show merit, the tarred samples are somewhat better than nothing, and the quercitron and potassium bichromate method and three proprietary preservatives do not score at any point as high as the plain white line.
The striking fact, already mentioned, is again evident in this connection, that those preservatives that contain copper in some form deposited in the lines are best-copper oleate, the copper paints, and the Dutch method. It is plain that in the Dutch method copper is the active ingredient, for in the quercitron and potassium bichromate method the same tanning extract mordanted without copper is ineffective. Since copper seems essential in a net preservative, the form that
carries with it fewest incidental objections, such as stiffness, increase in weight, and wearing quality, is preferable. Copper oleate is undoubtedly best in all these particulars.

TABULAR SUMMARY.

For convenient reference and comparison a summary of the properties of the various preservatives is given in Table 26.

BIBLIOGRAPHY.

Aase, Hans.

1912. Barkning. Norsk Fiskeritidende, 31de Aargang, pp. 169-172. Bergen. barclay, M.
1913. Barkning og Oljing af Sildegarn paa hollandsk Maade. Norsk Fiskeritidende, 23de Aargang, pp. 448-458, 475-485. Bergen.
1914. Om Barkningsmetoder. Referat fra Fiskermodet paa Sortland den 11te og 12te Juli, 1905; ved M. H. Stoltz. Ibid., 24de Aargang, pp. 233-239 (discussion of paper, pp. 238-239).
1905a. Sildegarnenes Konservering i England og Skotland. Ibid., 24de Aargang, pp. 372-376.
Bull, Henrik.
1915. Om Barkning af Garn. Norsk Fiskeritidende, 20de Aargang, pp. 863-872. Bergen.
1916. Barkning af Garn. Ibid., 21de Aargang, pp. 401-404.
1917. Om Opbevaring af Garn ombord. Ibid., 24de Aargang, p. 207.
1918. Om vore Drivgarn og deres Belastning. Ibid.. 25de Aargang, pp. 195-203.
1919. Hvad Slags Barkestof skal man kjobe for Barkning af Garn? Ibid., 31de Aargang, pp. 39-40.

Cunninghan, J. T.

1902. The chemistry of net-curing. Fish Trades Gazette and Poultry. Game and Rabbit Trades Chronicle, Vol. XX, No. 993, p. 29; No. 994, p. 29; No. 995, p. 29; No. 996, p. 29; No. 997 , p. 27; No. 998, p. 31; No. 999, p. 31; No. 1000, p. 31; No. 1001, p. 31; No. 1002, p. 31; No. 1003, p. 25; No. 1004, p. 27; No. 1005, p. 31; No. 1006, p. 31; No. 1007, p. 37; No. 1008, p. 31; No. 1009, p. 31; June-September. London.

Deutscher Fischerei-Verein.
1885. Mittel zur Conservierung von Fischnetzen. Mittheilungen der Section für Küsten und Hochseefischerei, No. 1, pp. 34-35. Berlin.
Fillon, Robert.
1922. La préservation des filets de pêche. Office scientifique et technique des Pêches maritimes, Notes et Mémoires No. 15.16 pp . Paris. (General review.)
J—. C.
1912. Forsóg med Metaltraadsnæt. Dansk Fiskeritidende, N. R. 10de Aargang, p. \&88. København.

Jessen, Peter.
1903. Det hollandske Drivgarn. Norsk Fiskeritidende, 22de Aargang, pp. 395-407. Bergen.
1906. Om Konservering af Garn og Not. Ibid., 25de Aargang, pp. 151-159.
1910. Fiskenes Farvesans og sjofarvede Garn. Ibid., 29de Aargang, pp. 219222.

Lindenan, Thy.
1S97. Om konserveringsmidlers indflydelse på fiskegarnstràd. Årsberetning fra Trondhjems fiskeriselskab for budgetterminen, 1st juli, 1896-30te juni, 1897. Trondhjem.
Mittheilungen des Westrreussischen Fischerei-Vereins.
1896. Zur besseren Haltbarkeit der Netze. Allgemeine Fischerei-Zeitung, XXI Jahrg. No. 3, pp. 44-45. München.
Norsk Fiskertitidende.
1886. Bevaring af Garn. Norsk Fiskeritidende, 5te Aargang, pp. 138-151. Bergen. (A translation by Herman Jacobson, appeared in the Bulletin of the U. S. Fish Commission, Vol. VI, 1906, No. 7. pp. 96-104. Washington.)
1887. Bevaring ai Tougverk og Seildug. Ibid., 6te Aargang, p. 295.
1896. Praktisk Konserveringsmiddel for Noter og Garn. Ibid., 15́de Aargang, pp. 647-648.
1906. Belhandling of Fiskentter med Blaasten. Ibid., 25de Aargang, p. 251.

Table 26.-Summary of properties of net preservatives.

Preservative.	Tensila strength.	Wearing quality.	Flexiblity.	Shrinkaga.	Increaso in weight.	Fouling.	Time required for application.	Color.	Value as a preservative in fresk water.
Copper oleate without binder.	Causesimmediats diminution lyy lubrication of fibers: thereafter tensile strength remains coostant over long period; excelieat preservative.	Preserves wearing qualities over long periods in salt water, but not in fresh water.	Flexibility considersbly increased immediately after treating; this flexibility deoreases after two or three weeks to an equality with untreated lina; twine remains soft and pliable suitabla for gill nets.	Sbrinkaga very small; causes about 0.5 to 1.5 per cent decrease ia leagth after ons application.	Iacreass in weight not great; a verage of all lines trested shows about 16.5 per cent gain in weight. as applied.	Very little fouling; a few barnacles were in ϵ vidence, but no hydroids or other growth appeared on 4 months' exposure.	Lines or nets can be treated io sbort time; should be lmmersed for 5 or 10 minutes and will dry in about onehalf hour.	Color varies from a light green to a darker bluish green, depending upon enin. centration of the preservative.	Used alone on cotton lines it is not of much value; on linea lias results are much better.
Tar (pine, coal, and mixed).	Immediate diminution of tensile strength followed by marked increase, Which drops off after water.	Very good on freshly treated lines but diminishes rapidly on being exposed; exposed lines not so good as copper oleata.	Very stiff; fewer oscillstions of pendulum than any other preservative.	Shrinkage not great, but a little more than copper oleate; averaged 2.22 per cent on one application.	Increase in weight very high, especially in casa of coal tar: average increase 56.8 per cent when applied from 50 per ceat benzol solution.	Lines contained beavy growth of hydroids and barnacles.	Much labot and time required to treat line; from 24 to 36 hours required for drying.	Dark brown or block..	No experiments with tar alone have been made in fresh water.
Copper paint Nos. 1 and 2 .	Slight immediate increase foliowed by marked increase, which remains quite constaat even after preservative.	Poor resistances to mechanical wear.	Causes immediata stiffening, but oot to as great a degree as tar; copper paint No. 1 remains lairly constant, while copper paint No. 2 continues to grow stiffer.	Very little shrinkage; about 0.5 per ceat on one application.	Greatest increase in weight of all preservatives studied; copper paint No. 1, 65 per ceat; copper paint No. 2, 127 per cent.	No fouling of any sort after 6 months' exposure.	Not much labor or time required; drying befora use unnecessary.	Dark red.	Teasile strength uodiminisbed at end of 6 months' exposure; no difference in bebavior in fresh or salt water.
Potroleum product Nos. 1 and 2 .	Very little immediate change; product No. 1 shows marked increase after a short time; prodchange; both decreaso Tery rapidly on beiag exposed; poor preservative.	Product No. 1 when frestIf applied resists mechanical wear better than any other preservative; product No. 2 resists wear only moderately well; about onehalf as well as No. 1 ; on exposure both rapidly lose resistanca to wear.	Causes considerable stiffening which iscreases for 3 or 4 weeks and then rernains constant.	Shrinkage about 2 per cent on one application.	Increase in weight averages about 41.9 per ceat.	Lines contained heavy grow th of hydroids ad barnacles; preservative seems to have no antifouling quality.	24 to 36 bours required for drying.	Black.	No value as a preservative for fresh water.
Gilsonite.	Sligbt immediate decreasa followed by rapid decrease during time of exposure: poor preservative.	Resistance to mechanical wear very good when freshly treated, but this quality soon disappears when the line is exposed.	Causes a little immediata stiffening and grows gradually stiffer for about 4 weeks; about like tar.	do	Increase in weight 46 per cent.	Lines exposed for short time are laden with beavy growth of hydroids aad barnacles.	Requires but little time to apply, but is rather slow drying; about 24 hours required.	do	Not tried in fresh Water.
Taaaing extract (quercitron) with potassium bichromata as a mordant (copper omitted).	No immediate changa in tensile strength: little chango noticed on Key West and air conditions lines, but streagth decreased rapidly on Beau- fort liaes; poor preservative as used.	Very poor.	Flexibility of line little affected.	CoDsiderable shrinkage as compared to most other treatmeats, this line showing 3.43 ner cent decreass in cation.	Very littls increase in weight; about 10 per ceat.	Lines carried beavy growth of bydroids and barnacles.	Two treatmeats with tbe extract and one treatment with the mordant; about 24 hours required for entire process, including time of drying.	Brown..	No experiments.
Dutch method.	Praclically no immediata change; experimental lines of all places eadured 6 months with same tensile strengtb remaining: good preservative, espe cotton lines.	Poor.	Flexibility of line very little sffected.	Shrinkage compars. tively large, as with most preservatives applied hot; decrease in length 3.6 per cent on one application.	Increase in weight 20 per cent.	Not mucb fouling after 5 months' exposure in sea water at Beanfort, N. C.	Time required same as that of tanning extract listed above.	Dark brown...	Better in fresh water tban in salt water for cotton, but not as good as copper oleate for linen in fresb water.
$\begin{aligned} & \text { Conper oreatc-tar } \\ & \text { combinations. } \end{aligned}$	Slight immediate decreasa followed by marked iocrease whicb remains quile constant tbrough loag exposure: strengith after 6 months unimpaired.	Is exceeded only by the white untreated line; wearing qualities excellent even after loag periods of exposure.	Depends on percentage of lar used; where 50 per fexibility is about equal to that of copper paint; after 2 or 3 moaths' exposurs it becomes very mucb more flaxible tban copper paint.	Shriakage very little, about 0.5 per cent.	Great increase ia weigbt; about 60 per ceat.	No fouling ia aay experiments.	24 to 30 bours.	do.	Preserving effect on 6 months' exposure sams for fresh and salt water.

Olie, J., jr.
191S. Verslag van der directeur van het Nederlandsch Visscherij-Proefstation over het jaar 1917. Bijlage, Jaarverslag van het Visscherij-Proefstation over 1917, No. 21, Mededeelingen en Yerslagen van de Tisscherijinspectie. Uitgegeven voor rekening van het Departement ran Landbouw. Nijverheid en Handel, 's-Gravenhage. (See especially Voorschriften roor de behandeling van netten met kopersulfaat en ammonia, pp. $40-42$.
1919. Idcm. Ibid., over 1918, No. 26.
1920. Idcm. Ibid., over 1919, No. 29.

Olofsson, Ossian.
1917. Försök med några olika impregneringsmedel för fiskredskap. Skrifter utgirna av Södra Sveriges Fiskeriförening, 15 pp . Lund.
Reeves, Cora D.
1919. Discrimination of light of different wave-lengths by fish. Behavior. Monographs, Vol. 4, No. 3, 1919, Serial No. 19, 106 pp. (Bibliography). Cambridge, Mass.
Taylor, Harden F.
1921. Preservation of fish nets. Appendix IV, Report of the U. S. Commissioner of Fisheries for 1920, Bureau of Fisheries Document No. 89S, 34 pp., 1 fig. Washington.
Tombrock, W.
1918. Studie over de houdbaarheid van katoengaren bij verschillende taanwijze en behandeling met verschillende taanmiddelen. Bijroegsel, Jaarsverlag van het Visscherij-Proefstation over 1917, No. 21, Mededeelingen en Verslagen van de Visscherijinspectie, pp. 5-30. Uitgegeven voor rekening van het Departement van Landbouw, Nijverheid en Handel, 's-Gravenhage.
Van Dorp, G. C. A.. and W. Tombrock.
1914. Studie over de opname van looistoffen uit hare oplossingen door katoen. Bijyoegsel, Jaarverslag van het Visscherij-Proefstation over 1913, No. 9, Mededeelingen en Verslagen van de Visscherijinspectie, IV + 46 pp . Uitgegeven voor rekening van het Departement ran Landbour, Nijverheid en Handel, 's-Gravenhage.
1915. Studie over de houdbaarheid van op verschiliende wijze getaand katoen. Ibid., over 1914, No. 12, IV + 43 pp.
1916. Sturlie over de houdbaarheid vah katoengaren bij verschillende taanwijzen en bij behandeling met rerschillende taanmiddelen. Ibid., over 1915 , No. 15 . II +42 pp .
1917. Idem. Ibid., over 1916, No. 18, II +89 pp .

AQUATIC PLANTS IN POND CULTURE. ${ }^{1}$

Ey John W. Titcomb,
Formerly C'hief, Division of F'ish C'ulture, U. S. Bureau of Fisheries.

CONTENTS.

I'age.

Importance of aquatic plants in pond culture

Aquatic plants at the pond-culture stations of the Bureau of Fisheries _-_ 4

POND CULTURE AND ITS APPLICATION.

Among the fresh-water fishes most desirable for food purposes and for sport-fishing there are certain species, such as the basses, crappies, sunfishes, and catfishes, that are not susceptible to manipulation for the taking and impregnation of their eggs, but must be allowed to mate and select nests, on which the spawn is deposited, fertilized, and hatched in the natural way. For the cultivation of these species, therefore, it is necessary to provide surroundings fulfilling their requirements, and at the same time permitting control of the fish, which purpose is accomplished by the maintenance of natural or artificial ponds. These ponds are stocked with the maximum number of adult fish, and the young hatch in numbers abnormal for the volume of water in which they are contained, there to be reared for a few weeks or months and then distributed to other waters as desired. The pond itself affords sustenance to

[^6]the young, and therefore the pond is the direct object of attention in order to produce the maximum number of fish. Fish culture under these conditions is consequently intensive pond culture, and in the United States the term "pond culture" distinguishes this branch of fish culture from the propagation of all fishes whose eggs can be expelled and fertilized artificially or which are incubated in hatching houses by the use of special apparatus and equipment. The species to which it is applied are chiefly the black basses, crappies, sunfishes, and catfishes.

The propagation of the Salmonidæ, notably the trouts, approaches pond culture in the fact that several species are often reared in ponds, whereas the other fishes hatched in special equipment are usually distributed as fry as soon as the yolk sac is absorbed. However, although the cultivation of the trouts in this country may require ponds in which to rear the young, the different service the ponds perform and the different management required place American trout-rearing methods outside the proper definition of pond culture. ${ }^{2}$ In Europe the case is not wholly similar; although in a few instances American methods have been adopted, the term "pond culture " usually embraces the rearing of trout by much the same methods as are in the United States pursued only with fishes that can not be artificially spawned; that is, the young trout may not be fed artificially but often subsist in large part upon the natural food supply induced by culture of the ponds.

IMPORTANCE OF AQUATIC PLANTS IN POND CULTURE.

Since the young of the species of fishes to which pond culture is applied in the United States can not be successfully confined in the troughs or small ponds of the American trout breeder and do not accept artificial food, they must depend for sustenance upon minute forms of animal life found in the waters and upon one another. At a very tender age they develop cannibalistic tendencies, and even where there is apparently an abundance of natural food they may reduce their own numbers 60 to 80 per cent within a month or six weeks from the time of hatching. It is therefore necessary in pond culture to provide not only sufficient natural food to satisfy the physiological requirements of the young fish, but, so far as possible, an abundance that will divert them from the tendency to devour one another.

[^7]Through the necessity for natural food, then, comes the primary importance of aquatic plants in pond culture. All animal life is dependent, directly or indirectly, upon plant life, the minute forms as well as many of the larger feeding directly upon plants, and the herbivorous species in turn serving as food for the carnivorous. In the beginning the young fishes feed upon water lice, nymph larvæ, and other minute forms. As they develop in growth they feed upon small crustaceans, insect larvæ, and other forms that are not ordinarily abundant except in an environment with abundant vegetation. Aquatic plants are therefore the food-producing agency in pond culture and are accordingly indispensable. It is also obvious that by a judicious selection of plants the quantity of food can be maintained at the maximum, with corresponding results in the production of young fish.
It is the consensus of opinion among pond culturists that plants are essential also for the proper aeration of the water. At a trout hatchery the fish are supplied with the necessary air by means of a constant flow of water; in pond culture the volume of water supply is often little, if any, more than enough to compensate for evaporation and leakage, and the oxygenation from this source is limited. The balanced aquarium is a well-recognized illustration of the value of plants as oxygenators. Although there are many factors entering into the aeration of the waters at a pond-culture station that do not apply to the balanced aquarium, and it may be assumed that the larger the body of water the more must other factors than those of the balanced aquarium be considered, there can be no doubt as to the rôle of vegetation in the aeration of shallow ponds of limited area.

It is perhaps superfluous to add that submerged plants bind the bottom soil together, thus acting as a deterrent to turbidity from that source; and that plants doubtless facilitate clarification when the water of a pond has become turbid with surface drainage after a rain or from other external causes of a temporary character. As an evidence of this the numerous reservoirs or "tanks" in the West, which are devoid of vegetation and in which the water is constantly roiled, may be cited. It is possible that in some instances the absence of vegetation is due to the constantly roily water, a condition elsewhere referred to ; but control tests in aquaria demonstrate that in an aquarium containing Cabomba the water is clarified much more quickly than in one in which there is no vegetation.

Some other adrantages of aquatic plants that are of more or less importance may be mentioned, such as shade, shelter from predacious birds, and refuges for the smaller fishes from the larger ones and from each other. The ornamental feature of some plants in some places is of minor importance from the viewpoint of the fish-culturist, but all of these have been given consideration.

OBJECTIONABLE ASPECTS OF POND VEGETATION.

Notwithstanding their essential importance in fishponds, however, and the careful effort requisite to the securing of suitable vegetation, in one aspect nearly all aquatic plants are to the pond culturist wholly a nuisance and a necessary evil. The seining of the ponds,
to obtain the young fis'l for distribution to waters they are intended to stock, or for other purposes, can not be accomplished while thick plant growth is present to entangle the fish and interfere with the operation of the seine, and there is thus a periodical necessity of clearing away or at least reducing all gross vegetation. This process is laborious and expensive; the cost of operating a pond-culture station is, in fact, largely the cost of this periodic clearance of the ponds and varies with the characteristics of the predominating species of plants. Methods in practice at several stations are described in a later portion of this paper.

Particular kinds of vegetation may be objectionable also in specific ways other than with reference to the difficulties of removal at seining time. Large-leaveã plants may offer too much shade to permit other plants and the requisite animal life to thrive; plants of persistent growth may take possession of the ponds and crowd out species more desirable; or plants not in themselves objectionable may not be desired because other obtainable plants are more desirable for the same qualities. The question becomes one of control. Wherever there is soil bottom vegetation is voluntary, springing up immediately even in artificial ponds, and any attempt to prevent the entrance by natural agencies of water plants common to a region is fraught with much the same difficulties that are encountered in the attempted exclusion of weeds from a garden. It remains to secure the balance that will bring the conditions nearest to the ideal.

AQUATIC PLANTS AT THE POND-CULTURE STATIONS OF THE BUREAU OF FISHERIES.

With its wide geographic range the Government work in pond culture naturally embraces a variety of conditions and affords interesting and profitable comparisons. The climate, the quality and temperature of the water, the character of the soil, as well as other factors, make the management of each pond-culture station a separate problem. The inevitable dependence upon a natural food supply for the young fish, however, concentrates the efforts in such work about the great factor of vegetation and, next to water supply, makes the selection and control of aquatic plants in ponds the most important question with which the pond culturist has to contend. The popularity of the basses, crappies, and sunfishes, moreover, and the feasibility of increasing their numbers by cultivation make pond culture a subject of especial interest to people everywhere in the United States, and the Bureau of Fisheries is constantly receiving inquiries and requests for information. The following notes are therefore thought to have interest and value not only to the professional fishculturist but to the public generally. They represent efforts to collect specimens of all the aquatic plants found at the various pondculture stations of the bureau, with observations of the respective superintendents as to the particular value of the desirable species and the objectionable characters of the undesirable. It is hoped thus to aid in determining the relative value of each, or at least to afford data that will be useful in future work, at the same time emphasizing the fact that present knowledge of the subject is all too limited. These notes are not based upon biological or other scientific investigation, but are gained from the observations and experience of prac-
tical fish-culturists. They are presented, moreover, as pertaining only to the particular field of pond culture conducted by the bureau. Their application beyond this is yet to be determined.

It may be assumed that all aquatic plants harbor a certain amount of minute animal life. In the following descriptions, therefore, the term " food producer" is applied to plants conspicuous for the large quantity of small animal forms living or breeding thereon. The term "oxygenator" is applied to plants believed to be especially useful in keeping water in a proper condition by throwing off oxygen. The word "shelter" is applied to plants that afford the small fish a hiding place and protection from the large ones and serve as an aid to the prevention of cannibalism among the fishes. The term "ornamental" is used to designate those plants that extend above the surface and beautify the ponds. The depth of water in which the plants are found as here mentioned applies to the ponds of the respective stations in question. It is recognized that some of the plants thrive in much deeper ponds and lakes. In most instances the plants described under the various station heads are indigenous, having appeared voluntarily. There are no records to show to what extent plants have been introduced, but undoubtedly some of the more desirable plants have been introduced, largely through transfer from one station to another.

Common names of the plants are given, but as these are often of restricted local application the botanical nomenclature also is used, and for more ready identification figures have been inserted for almost every species. All but one of the cuts are copied from Britton and Brown's Illustrated Flora of North America. The figure of Chara is taken from the Text Book of Botany by Strasburger, Noll, Schenk, and Schimper. The geographical range of the respective species likewise is taken from these anthorities.

For the identification of a large number of these plants the bureau is indebted to Messrs. J. N. Rose and G. H. Shull, of the United States National Herbarium, Smithsonian Institution, and also to the division of botany, Department of Agriculture.

COLD springs, Gi.
At this station the water supply comes from a large spring, and the maximum water temperature is about $82^{\circ} \mathrm{F}$. The water contains only a trace of lime, and, as a result some difficulty has been experienced in stocking the ponds with aquatic plants, but efforts in this direction have resulted as follows, as reported by a former superintendent:

For ponds with fairly fertile bottoms with an admixture of muck and clay, the foxtail (Myriophyllum spicatum) excels all other species. It makes an ideal growth, affords abundant cover for the fish and for the minute life upon which the fish feed, and is apparently a good oxygenator. At the same time it offers but little obstruction to seining operations owing to its slender, feathery growth. Even for ponds having rich muck bottom it has been found most satisfactory, though in such ponds considerable work is required to remove it when preparing for seining.

For ponds with sterile bottoms of clay, sand, or gravel, where foxtail will not thrive, parrot-feather (Myriophyllum proserpinacoides)
attains an excellent growth and affords abundant lodgment for minute aquatic life and for the alevins; it also provides a sufficient amount of shade for the brood fish and suitable cover for their nesting places. Large-mouthed black bass seem to prefer the fibrous roots of these plants to all other nesting materials. Both plants disappear from the warmest parts of the ponds by midsummer and are replanted in the fall or following spring. Near the inflow, especially of ponds that are abundantly supplied with water, the plants thrive throughout the year. The parrot-feather is more susceptible to high temperatures than the foxtail. These two plants have proved so

satisfactory at Cold Springs that there has seemed little occasion to experiment with other species.

FISII LAKES, WASHINGTON, D. C.
Although the Fish Lakes at Washington are no longer maintained, observations upon the characteristics of the plant life are valuable for purposes of comparison. The bottoms of the ponds were of dark fertile soil, the maximum water temperature was about $87^{\circ} \mathrm{F}$., and the plant growth was extremely dense. Whether the elimination of some of this luxuriant growth would have resulted in a decrease in the production of young fish is theoretical. This station had been in operation nearly 30 years, and the lakes contained an unusually large number of plants when these observations were made.

The hornwort (Ceratophyllum demersum) is especially good as a food producer and shelter, is fairly good for shade, is a good oxygenator and a good aquarium plant, has little root anchorage, and will grow over hard bottom. It is found in 2 to 4 feet of water, extending to the surface, but not above it. It was considered the best ${ }^{2}$ lant in the ponds.

Fanwort (Cabomba caroliniana) also is especially good as a food producer, as a shelter, and for aquarium work, and is given second place. It is regarded as a good oxygenator and as fairly good for

Fig. 3.-Hornwort (Ceratophyllum demersum). Found in ponds and slow streams throughout North America, except extreme north. (After Britton \& Brown.)

Fig. 4.-Fanwort (Cabomber carolimiona). Found in ponds and slow streams, southern Illinois to North Carolina, south to Florida and Texas. (After Britton \& Brown.)
shade and, like the hornwort, has little root anchorage and will grow on hard bottom. It is found in 1 to 4 feet of water and extends nearly to the surface.

Fig. \bar{T}--Curled-leaverl pondweed (Potamogeton crispus). Found in fresh, brackish, or even salt water, Massachusetts to Pennsylvania and Virginia. Also in Europe. (After Britton \& Jrown.)

FIG. 6.-Leafy pondreed (Potamogeton foliosus). Niagara Falls to Michigan and California. (After Britton \& Brown.)

The curled-leaved pondweed (Potamogeton crispus), a good food producer, oxygenator and aquarium plant, good for shelter, shade, and ornament, is one of the earliest plants to put forth shoots, and is
therefore valuable for early spawning fishes, such as the goldfish and carp. It is found in 2 to 5 feet of water, reaching to the surface.

Fig. 7.-Wild celery, or eelgrass (Vallisneria spiralis). In quiet waters, New Brunswick to Florida, west to Minnesota, lowa, and Texas. (After Britton \& Brown.)

Fig. 8.-Slender Naias (Naias frrilis). Found in ponds and streams througliout nearly all North America. (After Britton \& Brown.)

Another Potamogeton (foliosus), the leafy pondweed, also good as a food producer and oxygenator and for shelter, is found in 2 to 4 feet of water, extending to but not above the surface.

Fig. 9.- Waterweed (Philotria canadensis). Found nearly throughout North America, except extreme north. (After Britton \& Brown.)

Fig. 10.-Water stargrass (Heteranthera dubia). Found in still water, Ontario to Oregon, south to Florida and Mexico. Also in Cuba. (After Britton \& Brown.)

The wild celery, or eelgrass (Vallisneria spiralis), is found to be a good oxygenator and is a desirable plant because of its early growth. It is also good for shade and shelter and is an excellent
aquarium plant. It is found in 2 to 4 feet of water, extending to but not above the surface.

The slender naias (Naias flexilis), which is a good food producer, is good for shelter, is regarded as a fair oxygenator, is somewhat ornamental, and is a fairly good aquarimm plant.

The six plants so far mentioned have been listed in the order of esteem as held by the superintendent of the Fish Lakes. The remainder of the list for this station does not follow any particular order, but, as before, the good or bad qualities the superintendent believed the plants to possess are noted in each case.

The waterweed (Philotria canadensis), which grows in 2 to 4 feet of water, extending to, but not above, the surface, is a good food producer and a good oxygenator, is good for shelter, and is valuable

for its early growth. It also makes a good aquarium plant, but is dangerous in ponds, however, owing to its dense growth.

Water stargrass (Heteranthera dubia) has the same merits as the waterweed, being a good food producer, fair oxygenator, and excellent for the shelter it affords and for its early growth. It is found in water 1 inch to 4 feet deep.

The needle spikerush (Eleocharis acicularis) is of very little value except for its early growth. The fine, smooth culms are very easily cleaned by the large-mouthed black bass, which cast their spawn upon them.
One of the water lilies (Castalia tuberosa), which furnishes shade and shelter, is ornamental and of value because of its early growth. It serves as a good protection to young fish from predacious birds.

Floating heart (Limnanthemum nymphooides), althongh but fairly good as a food producer, is excellent for shade, shelter, and ornament and is fairly hardy.

The fennel-leaved pondweed (Potamogeton pectinatus) is somewhat objectionable on account of its excessive growth. It is, however, a good food producer and a fair oxygenator and is fairly good for shelter. It is found in 1 to 4 feet of water.

The pickerel weed (Pontederia cordata), found in 6 to 12 feet of water, is not especially valuable in fish culture, although it has some merit for ormamental qualities, for shade, and for shelter. It is not thought to be a good oxygenator or food producer.

The two duckweeds (Spirodela polyrthiza and the more common Lemna minor) are not highly esteemed, though not especially objectionable. The larger form is quite ornamental, and both are of early growth. For fish-cultural purposes, however, their poor qualities as food producers and oxygenators make them insignificant.

The water clover (Marsilea quadrifolia) is excellent for shade and shelter and is ornamental and of early growth. It is objectionable

Fig. 13.-Water lily, or floating heart (Limnanthemum nymphrooides). Naturalized in ponds, District of Columbia. Native of Europe and Isia. (After Britton \& Browis.)

Fig. 14.--Fennel-leaved pondweed (Potamogeton pectinatus). Found in fresh, brackish, or salt water, Cape Breton to British Columbia, south to Florida, Texas, aud California. Also in Europe. (After Britton \& Brown.)
in shallow ponds, however, completely covering the surface to a depth of about 2 feet.

At this station the limeweed (Chara) is valued as a food producer, harboring the small forms that are especially good as food for young fish, and as an oxygenator it is found remarkable. It is fairly good for shelter and as an aquarium plant.
The spatterdock (Nymphaea advena) is valued chiefly as an ornament and for the shade and shelter it affords. It is also of early growth, but it is a poor food producer on account of its long, smooth stems, which do not provide favorable breeding places for insect larva or other minute animal life. It is found in 1 to 4 feet of . water.

The long-leaved pondweed (Potamogeton lonchites) does not rank with the two other Potamogetons mentioned here, being but fairly good in any of the important respects.

The water chestnut (Trapa natans), though fairly good as a food producer and for shelter, shade, and ornament, is of negative value in fish culture.

Fig. 15.- Pickerel weed (Ponterleria cordata). Borders of ponds and streams, Nova Scotia to Minnesota, south to Florida and Texas. (After Britton \& Brown.)

Fig. 16.-Greater duckweed (Spirodela polyrhiza). round in rivers, ponds, pools, and shallow lakes, Nova Scotia to British Columbia, south to South Carolina, Texas, northern Mexico, and Nevada. Widely distributed in the Old World and tropical America. (After Britton \& Brown.)

The lotus (Nelumbo lutea) is troublesome to the pond culturist, having bulbs extending 3 feet into the mud and being accordingly difficult to remove when not desired. It is, however, very ornamental, good for shade, and fairly good for shelter.

Had it been possible the waterweed, the water chestnut, the fennelleaved pondweed, the duckweeds, and the water clover would have been eradicated. In ponds maintained for angling, however, rather than for propagating purposes, these plants should not prove unde-

Fig. 19.-Large yellow pond lily (Nymphara advena). Found in ponds and slow streams, New Brunswick and Nova Scotia to Rocky Mountains, sonth to Florida, Texas, and Utah. Called also spatterdock. (After Britton \& Brown.)

Fig. 21. - Water chestnut (Trapa natans). Naturalized in ponds, eastern Massachusetts and neal Schenectady, N. Y. Native of Europe. (After Britton \& Brown.)

Frg. 20.-Long-leaved pondweed (Potamogeton lonchites). Found in ponds and slow streams, New Brunswick to Washington, south to Florida and California. (After Britton \& Brown.)

Fig. 22. - Lotus (Nelumbo Iutea). Found locally in ontario and southward to Florida, west to Michigan, Indian Territory, and Loulsiana. (After Britton \& Brown.)
sirable except in depths of less than 4 feet; though not without due consideration of local conditions should the fennel-leaved pondweed and the water clover be introduced, owing to their dense growth at the surface even in deep water.

W YTHEVILLE, VA.

Here the pond bottoms consist of a rich loam to a depth of 12 inches, and the range in water temperature during the summer months is from 70 to $85^{\circ} \mathrm{F}$. The following list of plants gives the opinion of a former superintendent as to their respective qualities and characteristics. The preceding lists have not included semiaquatic or border plants, but arrowhead (Sagittaria longirostra) and water plantain (Alisma plantago-aquatica) are given an important place among the plants at this station. A more careful investigation may lead to the conclusion that certain semiaquatic plants are equal in value to some of their exuberant companions of the deeper water.

The curled-leaved pondweed (Potamogeton crispus, fig. 5) is considered the most desirable plant at this station. Its roots are on

Fig. 23.-Long-beaked arrowhead (Sagittaria longirostua). Found in swamps and along pouds, New Jersey and Pennsylvania to Alabama. (After Britton \& Brown.)

Fig. 24.-Water plantain (Alisma plan-tago-aquatica). Found in shallow water or mud throughont North America. Also in Europe and Asia. (After Britton \& Brown.)
muck bottom in water up to 6 feet deep, and it throws up a slender stalk about 2 inches above the surface, on the tip of which is a small white blossom. The plant grows luxuriantly both in summer and winter and flourishes in both cold and warm water ponds. It furnishes abundant shade and protection and is a good breeding place for aquatic insects. It is also easy to control and can be removed from the ponds without injury to the fish. Its only objectionable character is that where the soil is fertile it grows more luxuriantly than is desirable.

The waterweed (Philotria canadensis, fig. 9) exhibits the same characters here as at the Fish Lakes station, but is more highly esteemed, being given second place.

The parrot-feather (Myriophyllum proserpinacoides, fig. 2), rooting in muck bottom in water up to 6 feet deep, reaches to the surface and throws up a slender stalk about 2 inches above, with a small white blossom at the tip. Because of its value as a shade for fish
and as a breeding place for aquatic life this plant is ranked third in importance at this station. It is also an excellent plant for aquaria.

The arrowhead (Sagittaria longirostra) is but semiaquatic, but forms a valuable shade and shelter for the young fish. It can also be removed easily and is not difficult to control. It usually roots in soft clay up to 2 feet and throws up a slender stalk with white blossoms above the surface. The leaves are killed by the first frost, and the plant branches out from the rootstocks in the spring.

The water plantain (Alisma plantago-aquatica) is another border plant, being found about the edges of ponds in water only 4 to 6 inches deep, its leaves floating on the sur-

Fig. 25.-Chara fragilis. A common form of Chara. (After Strasburger, Noll, Schenck, \& Schimper.) face. It is valuable for the same characters exhibited by the arrowhead.

The Chara at this station is a large form with long, slender internodes, growing in all ponds, whether they are fed by spring or creek water. It is an excellent food producer, but grows so densely that the fish can with difficulty get through it, and it is so heary that it will not float when cut loose from the bottom. When a pond is drawn, it settles down like a blanket,

Fig. 26.-Sweet-scented white water lily (Castctia odorata). Found in ponds and slow streams, Nova Scotia to Manitoba, south to Florida and Louisiana. (After Britton \& Brown.)
entangling the young fish so that it must be picked over by hand in order to extricate them. Its objectionable characters, in fact, are so great that it is only by comparison and on negative grounds that its merits are admitted by the superintendent.
A number of years ago the ponds at Wytheville were well stocked with curled-leaved pondweed, waterweed, and limeweed, with a few water lilies (Castalia odorata) scattered here and there; but water lilies increased from year to year until they took complete possession of several of the ponds. They became so dense as entirely to exclude the light from the ponds, and in consequence all the sub-
merged plants, including the Chara, were killed, leaving nothing below the lily pads for the protection of the young fish. During the period when Chara was present in great abundance and was regarded as a nuisance and the lily as a desirable plant, some of the bass ponds annually yielded an average of about 25,000 young fish each, but after the lilies took the place of all other plants the annual production dwindled to less than 2,000 fish to a pond. One is therefore forced to the conclusion that the water lily is a dangerous plant, especially in ponds having soft, fertile bottoms, and that without the submerged plants successful bass culture is impossible. By contrast, Chara, with its merit of being an excellent food producer, comes into better esteem in spite of its objectionable qualities.

NORTHVILLE, MICH.

At the Northville (Mich.) station Chara took possession of the ponds almost immediately after completion. A few other plants have obtained a foothold, but not in appreciable quantities. The ponds are devoted to the production of small-monthed black bass, and the results have been quite successful. A former superintendent stated that he knew of no other plant than Chara so productive of fish food of the sort acceptable to the young bass, and the objectionable characters of the plant did not, in his opinion, offset its merits.

MAMMOTH SPRING, ARK.
At the Mammoth Spring (Ark.) station, established in 190 , a portion of the bottoms of three ponds

Fig. 27.-White water crowfont (Ranunculus aquatilis). In ponds and streams, Nova Scotia to British Columbia, south to North Carolina and California. Also in Europe and Asia. (After Britton \& Brown.) is composed of a heavy muckthe remains of an old swamp bed-and in these portions there immediately sprang up Chara, Elodea, Ranunculus aquatilis, Ceratophyllum, Myriophyllum, and Potamogeton, the relative abundance of each being in about the order named. The entirely new ponds and those parts of the others newly excavated are of a clay and gravel mixture. It appears from the report of the first superintendent that an attempt was made the first two seasons to establish Ranunculus aquatilis and Elodea in these latter, but that they were crowded out by Chara, with results in all ways satisfactory. The superintendent had no preference for any particular plants.

At this station, on April 30,1908 , a pond 18,000 feet in area was stocked with 20,000 (actual count) small-mouthed black bass fry. On

June 24, eight weeks later, there were removed from this pond 6,000 fingerlings, ranging in length from 3 to 4 inches. The rapid growth and large number of fingerlings reared is attributed to the presence of exceptional quantities of small amplipod crustaceans (Gammarus), which are a valuable fish food; and the abundance of this food, although attributable to the quality of the water, seems to be dependent also upon the presence and character of the aquatic vegetation.

The present superintendent believes that of all of the plants above mentioned Myriophyllum has proved to be the most satisfactory. "Its growth is abundant and the stalk being rather tender it is easily removed from the ponds with rakes or grass hooks attached to long handles, whenever it is desired to prepare for seining operations. After a pond has been allowed to season this plant is easily reestablished by simply covering a handful of the stalks with a shovel full

Fig. 28.-Various-leaved water milfoil (Myriophyllum heterophyllum.). Found in ponds, Ontario and New York to Florida, Texas, and Mexico. (After Britton \& Brown.)

Fig. 29.-Cat-tail (Typha Tatifolia). lound in marshes throughout Nortli Imerica, except in extreme north. Also in Europe and Asia. (After Britton \& Brown.)
of earth at intervals of from 3 to 6 feet. If this is done in the late summer or early fall, there is a fine stand of vegetation by the following spawning time in March and April." While some of the other plants are still there, he would prefer the one species only.

SAN MARCOS, TEX.

At the San Marcos (Tex.) station one of the milfoils (Myriophyllum heterophyllum) is preferred to all other water plants. A former superintendent stated that here some of the water lilies, Chara, and the cat-tail (Typha latifolia) would, if permitted, crowd out all other plants of value. He regarded frogbit (Rhizoclonium horsfordi), because of its exuberant growth, as the most objectionable of all the plants found in the pond. He believed water
plants essential in pond culture, but suggested that ponds be constructed with sand and gravel bottoms with the view to keeping them free of all aquatic vegetation, except in selected places where the plants were to be walled in with concrete, the walled-in portions to be filled in with earth of the richness required by the plants selected.

At the Mill Creek station of the Michigan Fish Commission for the propagation of both large-mouthed and small-mouthed black bass Chara is the principal plant, and it is quite satisiactory to the superintendent as a food producer. At one time, he asserts" the Potamogeton drove Chara out and I could not raise 100 fish where before the Chara went I could raise $1,000 .{ }^{\prime \prime}{ }^{3}$

RÉSUMÉ OF OBSERVATIONS.
The various estimates of the commoner plants as found at the different stations, together with the differences in condition and environment, make generalization difficult. The foregoing observations seem to show, however, first of all that the fish-cultural value of a species is chiefly a matter of the growth it attains. Its merits as food producer, shelter, and oxygenator are determined by the kind and quantity of its foliage, stems, and roots, and so likewise are its demerits, few plants being objectionable in themselves for any reason other than growth that is overabundant or overpersistent.

The growth of plants, however, being a matter of environment, depends chiefly, in the case of rooted species, upon the character of the bottom soil. Species most desirable in one locality may be obnoxious in another where by reason of the fertile soil the growth becomes dense and difficult to control. In his paper entitled "The biological relation of aquatic plants to the substratum "Dr. Raymond H. Pond ${ }^{4}$ shows by experiment that Vallisneria spiralis, Ranunculus aquatilis tricophyllus, Elodea canadensis, Myriophyllum spicatum, Potamogeton obtusifolius, and P. perfoliatus, hence probably all rooted aquatics, are for optimum growth dependent upon their rooting in the substratum, and his conclusions are abundantly confirmed by observations in the ponds here described. It would seem, however, that his application of the fact to fish culture might be put differently. Although it is true that good soil is to be sought, it should be added that for very rich soil it is important to avoid, if possible, plants with a tendency to rankness.

The quality of the water is a factor that may entirely control the conditions of fish culture. At Cold Springs, Ga., where the water is soft, it is impossible to obtain a permanent growth of vegetation, and the ponds must accordingly be restocked from time to time. 'Two species of Myriophyllum are the only plants that have been successfully maintained through a season. It sometimes happens also that even with exuberant vegetation there is a dearth of animal life, and this might be ascribed to some property or deficiency of the water, just as is the abundance of certain amphipods and other crustaceans that are an important food for young fish, these forms being known to thrive and multiply best in water containing lime.

[^8]A further quotation from Doctor Pond, in reference to Ceratophyllum, is of interest in this connection. This nonrooted plant he shows to be dependent primarily upon the nutrient salts in solution in the water, and thus a competitor of many of the small forms of life which derive their sustenance from the same source. A pond filled with Ceratophyllum, therefore, would be expected to contain fewer of these forms and, consequently, of the forms that live upon them. From this it would seem to follow that the water best suited to Ceratophyllum would not contain sufficient food for young fish if that plant were the predominant species, and if this reasoning is correct the value of Ceratophyllum would depend upon the presence of sufficient rooted regetation to offset the effects of competition. Such may have been the conditions at the Fish Lakes, where there were an unusually large number of species of rooted plants, above all of which, however, the superintendent believed Ceratophyllum to be the best.

No particular species of aquatic plant can be said to be always desirable. The endless interrelations of plant and animal life and physical surroundings make the problem a special one for each locality. It should be noted, however, that according to the data here presented great caution should be used as to the introduction of pondweeds, waterweed, water clover, water lilies, frogbit, and cat-tail. The last two can not be regarded as desirable in any fishpond. Chara, indigenous at some stations, is in most cases so much in favor as a food producer that, notwithstanding its objectionable characters, it is considered the best plant for fish-cultural purposes. It should be borne in mind, however, that at the stations where this plant is a favorite the ponds are of more recent construction than at Wytheville, for instance, where Chara became especially troublesome.

The introduction of the water lily (Castalia odorata) into the ponds at Wytheville, with the result of apparently crowding out two other aquatic plants, and the somewhat similar experiences at San Marcos, Tex., and at Mill Creek, Mich., suggest that the partial elimination of one species by the introduction of another may at times be advantageously attempted, and that with a full knowledge of the effects of given combinations of species a desirable balance of vegetation could be maintained by this means. This question also, however, enters the broad field of plant physiology.

Heretofore some of the lower forms of vegetation, algal growths, frequently described as " frog spittle," "water moss," and "slime," have entered into pond culture only as an element of water supply, their effect upon fish life being regarded as negligible. Observations ${ }^{5}$ of Dr. Emmeline Moore, in behalf of the United States Bureau of Fisheries, demonstrate that this view as to the value of some species of alge is entirely erroneous, and that in the early stages of the young fishes-particularly the first two or three weeks-their food consists largely of animal life whose food during the same period consists largely of certain species of algæ. This opens a broad field of investigation. The spirogyra, so obnoxious to the fish-culturists, is not included in Doctor Moore's list of food-pro-

[^9]ducing algæ, but it has been generally recognized by fish-culturists that spirogyra is an oxygenator. Further investigation may show that all of the alge contribute to the sustenance of young fish. The recognized food-producing value of some species of alge suggests great possibilities in supplying food to the young fish during the first two or three weeks, and especially so at pond-culture stations like the one at Bullochville, Ga., where the water is so soft that it has been difficult to maintain an adequate amount of plant life. A definite knowledge of the relations of all of the various species of algæ to fish production is much to be desired.

METHODS OF CONTROLLING AQUATIC VEGETATION.

ELIMINATION OF UNDESIRABLE PLANTS.

Plants that are in themselves objectionable should, of course, be eliminated for all time. There is, however, no known method of eradicating the higher forms of vegetation from ponds without destroying the fish, unless it be possible first to draw off the water. When this is done, certain forms of plants die from exposure and the roots of others can be grubbed out. Cat-tails have a root stalk habit of growth. If the plants are constantly cut, the root stalks will become weaker and weaker due to the loss of the food manufacturing leaf surface. If constant cutting is persisted in, the root stalks will starve out after two seasons.

In view of their recently recogmzed importance as food producers, it may be assumed that, until seining operations commence, the presence of certain species of algæ will be encouraged, and that in fishponds generally the removal of algæ will not be attempted until after the young of basses or sunfishes are a month old. However, there are times and places where it is desirable to destroy the more obnoxious forms, and this may be accomplished by means of copper sulphate, according to the method of Moore and Kellerman for the disinfection of municipal water supplies. ${ }^{6}$ This method has been successfully adapted, not only to pond culture but also to waters containing trout, as is set forth in a report of experiments at the White Sulphur Springs station of the Bureau of Fisheries. ${ }^{7}$ The latter application of the method is of especial interest, for the reason that trout are more than ordinarily susceptible to the toxic properties of copper.

CHECKING SUPERABUNDANT OR UNDESIRED GROWTH.

To prevent superabundance of some vegetation or to make less objectionable the presence of troublesome species that can not be eradicated, it is sometimes desired to check the growth of the plants. Mr. Kellerman states, in a letter, that in water not unusually hard the waterweed (Philotria canadensis), Chara, and several species of Potamogeton may be considerably checked in growth by treating the

[^10]water with copper sulphate in the proportion of 8 pounds to $1,000,000$ gallons of water. In limestone regions, however, or where the water contains a large amount of organic matter, the proportion of copper must be increased, and the method is then not applicable to fish culture because a solution of the necessary strength is fatal to most fishes. It is doubtful if any fish-culturist has attempted to retard the growth of plants by this method.

It is possible to retard the growth of plants in small ponds by keeping the mud thoroughly stirred up. Submerse plants require light in order to thrive. The result is analogous to natural conditions in streams like the Potomac River during seasons of frequent heavy rains, when the water is ahnost constantly roily and in consequence the growth of regetation very much less exuberant than in dry seasons, when the water is comparatively clear. In ponds where much mud is carried in and held for a considerable length of time in suspension the growth of both algæ and the higher plants is rendered practically impossible. The same variations in vegetable growth are noticeable where suction dredges have discharged their mud into streams formerly clear. This means-roiling of the waters-has been used with success in small natural ponds maintained for other purposes but is not known to have been applied to pond culture.
Experience at various pond-culture stations shows a carp to be quite efficient in checking the growth of vegetation if given access to it early in the spring before it becomes excessive. At the Fish Lakes station several carp were placed in one of the partitions of a bass pond containing Ceratophyllum demersum, Philotria canadensis, Potamogeton pectinatus, Potamogeton foliosus, Tallisneria spiralis, and Nymphea. When the pond was drawn in the fall, the bottom in this partition was absolutely destitute of any kind of vegetation. The following season carp were not introduced into this pond, and the aquatic growth became as abundant as formerly. Observations at the Erwin station in one of the large ponds where a number of adult carp were confined revealed a great scarcity of aquatic growth, although similar ponds adjoining, which contained bass and other fish, were well supplied. The plants most abundant in this pond were Philotria canadensis and Potamogeton crispus.

At the Cold Spring Harbor State fish hatchery on Long Island the water supply is taken from a long, narrow pond which collects the springs in the immediate vicinity. For many years a number of carp have been confined in this supply pond for the purpose of keeping it free from vegetation, especially algæ, with very satisfactory results. In this instance it was particularly objectionable because it clogged the screens in the hatching troughs.

The introduction of carp into breeding ponds with other fish is, however, inadvisable for various reasons, the one of present concern being that carp work chiefly on the roots of plants and in mudbottom ponds keep the water constantly roiled, a condition unfavorable to the breeding of all pond fishes with the possible exception of the crappie. It is very probable, moreover, that the roiliness of the water is itself partly responsible for the retardation of vegetable growth now credited to the presence of carp.

REMIOVAL OF VEGETATION TO PERMIT SEINING.

For the removal of vegetation in ponds preliminary to the periodical seining operations the pond culturist must depend upon mechanical methods of clearing away the foliage. It is customary to begin the removal of the young fish for distribution soon after their yolk sac is absorbed, or after the fry have been feeding but two or three weeks. At this season the growth of vegetation is not so exuberant as later in the summer, and the first crop of fish may sometimes be collected by seining around the edges of the ponds without the preliminary clearing away of the vegetation. Often, however, the shallower portions of the ponds must be cleared before even the first crop of fish can be removed. Later the fish will have sought the deeper portions, from which they can not be removed without first drawing off the water. In the latter process the foliage, if left, would settle down as the water diminished, entangling the young fish or smothering them, and it is accordingly necessary to clear away the plants before drawing off the water. The methods of removing the foliage are thus reduced to a mowing process under water, varied and adapted as conditions and circumstances may demand and ingenuity may devise. The methods and apparatus here described have been employed at pond-culture stations but are also applicable to natural ponds where the character of the bottom permits of seining operations.

At the Fish Lakes station the removal of the aquatic foliage was accomplished by mowing with ordinary scythes such as are used in a hayfield. The shallower portion of a pond was mowed first, and the water was then partially drawn off, so that it did not reach above the armpits of the mowers, its average depth being from 3 to 4 feet. The cut foliage rose to the surface and was carried to the shore in boats.

When it is desired to transfer young fish from the ponds at Northville, Mich., the slash boards are removed from the overflows and the water drawn down. As it recedes from the banks a few feet, men rake the Chara into piles, taking care that no young fish are destroyed in the operation, and continue this process until all the water and young fish are confined to the kettle of the pond. It was formerly customary to remove the vegetation by the use of teams, but experiments show that if left exposed for two weeks the Chara settles and finally disappears after the pond has been refilled. The presence of this decaying vegetation ought to stimulate the breeding of more or less insect life for young fish to feed upon.

The method of separating plants and young fish at the Mill Creek station of the Michigan Fish Commission is described by the superintendent, in substance, as follows: A space 10 feet wide around the pond is first cleared of foliage with a common iron-toothed garden rake, a piece of galvanized-wire netting of one-fourth-inch mesh being fastened to the back of it to prevent its becoming entangled in the weeds. (Any tinsmith can solder the wire cloth to the iron back.) After this has been done a homemade rake is used to remove the foliage from the deeper water of the pond. The rake is of rude construction, consisting of a cedar pole 8 feet long and 4 or 5 inches in diameter, provided with teeth 6 inches apart and 12 inches long,
made of oak or some similarly strong material. At a proper angle with the teeth are two handles about 20 inches in length, inserted as shown in Figure 31. The handles of an old plow can be utilized for the purpose. A crotch line is attached to the ends of the rake, which is operated by three men, one with waders, who stands between the handles and manipulates the implement, and two on the shore to pull it. A fourth man looks over the weeds, sorts ont the fish, and pitches the growth upon the bank as it is brought ashore. When not loaded, the rake is easily floated out into the pond. To rake the bottom, the operator sometimes must put his hands and arms under water; and as he wades out with the rake he determines by the density of the moss how far it is necessary to go to secure a rakeful. Ordinarily this is about 20 feet beyond the area that was cleaned with the hand raking, but farther if the weeds are not thick. The rake is moved through the weeds slowly to allow the fish to escape, but on reaching the open space made by the garden rake it can be moved more rapidly, so that as it comes ashore, with water rushing around either end, any fish that may be ahead of it will usually escape into the pond. The few that may become entangled are

Fig. 31.-Rake devised by Dwight Lydell, and in use for removing vegetation at the Mill Creek station of the Michigan Fish Commission. (For description see text.)
released by swift handling of the weeds as they are brought ashore. After the first raking is completed a seine is used to remove all fish that may be in the cleared space. Then the rake is used again farther out in the pond, the process being repeated until the pond has been thoroughly cleared of vegetation or the desired number of fish have been obtained.

At the Wytheville station a boat is employed in the removal of the aquatic vegetation from portions of the pond where the growth is most dense. Fastened to each end of the boat is a cleat, through which is a hole about 2 inches in diameter, or of sufficient size to hold a stake loosely fitted in it, the stakes being driven into the bottom of the pond for the purpose of holding the boat steady while the vegetation is being pulled by the rakes. The loosened mass is then loaded into the boat. After the pond bottom has been gone over in this manner the sluices are opened, and men following the water as the pond is drawn pull by hand the remaining vegetation and stack it in piles. If any patches of Chara are found where the fish are apt to lodge, these are reached with rakes and thinned to release the fish. After the fish have been removed and while the pond bot-
tom is still wet the piles of Chara are removed to the shore with pitchforks. In the removal of such plants as water lilies, rushes, cat-tails, etc., the ordinary scythe is used, but this method is resorted to as little as possible because of the tracks made in the bottom of the pond and the muddying of the water.

At the Mammoth Spring station the method of drawing ponds and removing regetation is somewhat similar to that pursued at Northville. If it is desired to remove fish less than 2 inches in length, all of the vegetation is raked out upon a raft and poled to the bank for subsequent removal by horse and wagon. If larger fingerlings are in the pond, the vegetation is first cleared as thoroughly as possible by a similar method from a space about 100 feet in diameter around the outlet drain. A channel is then cleared from the outlet of the pond to its inlet. Ordinarily this preliminary work requires the services of two men to each pond for two days. The ponds range from threefourths to $1 \frac{1}{4}$ acres in area. On the third day the water is drawn down to the cleared space near the outlet. As it recedes the Chara is raked into windrows, the men working in from 1 to 2 feet of water, thus keeping a clear channel ahead of the water line. Windrows are preferred to stacks, because the fish have a means of retreat through the channel formed between the rows.

Four or five men are engaged in the work at pond-drawing time. Perhaps by $3 \mathrm{p} . \mathrm{m}$. of the third day the water will have been drawn down to the "kettle," the 100 -foot cleared pool. If the pond contains adult fish, they are at this time removed by sweeping a coarse-meshed seine through the pool. The following morning the water temperature and other conditions are favorable for the removal of the fingerling stock.

A raft is preferred to a boat, because it will carry a large load of vegetation and the water quickly drains from it. It is homemade, 12 by 16 feet. The outer framework of 2 by 12 inch planks is fastened together by 6 -inch bolts and then the inner planks are slipped into place. The raft is supported by six 10 -gallon ironbound kegs wired to the framework. The round holes in the center of each end plank are for the insertion of stakes to hold the raft in place while loading.

The claim of superiority of a raft over the boat ordinarily used for the same purpose seems well founded and leads to the suggestion that a shallow scow of dimensions to suit conditions, with deck and side rails, would also allow the water to drain off as the deck is loaded with vegetation and would be more easily handled. Rapid movement in the comparatively small ponds of the fish-culturist not being essential, trucks might be attached to the bottom of the scow for convenience in drawing it ashore or from one pond to another.

At the San Marcos station the removal of aquatic vegetation is accomplished with an ordinary scythe, the men going into the water and cutting the growth as closely as possible. For cutting the heavier vegetation at a distance from the embankments a scythe is sometimes attached to a piece of three-quarter-inch iron piping from 10 to 30 feet in length, the latter being spread at the end to hold the shank of the scythe, which is riveted to it with two small bolts. Hand rakes, especially made from 4 -tined hayforks, are then used, care being taken to examine each rakeful of foliage for young fish. An espe-
cially made iron rake shown in Figure 32 has also proved a very effective implement. The main bar, 3 inches in diameter and 8 feet long, is set with 15 teeth 15 inches long and forms the diagonal of a square frame, at the two remaining corners of which is fixed an iron ring. With a strong rope through each ring, the rake is drawn from one side of the pond to the other, making an 8 -foot swath. Two men are usually required on each side of the pond to manipulate the rake.

At the Cold Springs (Ga.) station there is but one pond in which vegetation (Myriophyllum) is sufficiently dense to necessitate its removal prior to seining for the young fish. In this pond it grows

lig. 32.-lron rake in use at San Marcos (Tex.) station. (For description see text.)
exuberantly from bottom to surface and is removed by the use of a wire, about the size of a telegraph wire, loaded with weights and pulled through the pond much as a seine is hauled, except that it is jerked vigorously from side to side. In this way the tender growth of the Myriophyllum is easily severed. It is then dragged ashore with a long rake similar to the one in use at San Marcos.
Owing to the necessity for periodically removing the aquatic foliage at pond-culture stations and the expense involved in the present methods of performing this task, it is obvious that here also is a field for experimentation, but that in this, as in other efforts of the fishculturist to effect economies, each station has its own problems.

ARTIFICIAL PROPAGATION OF WHITEFISH, GRAYLING, AND LAKE TROUT. ${ }^{1}$

By Glen C. Leach, Assistant in Charge of Fish Culture.

THE WHITEFISH.
RANGE.
The common whitefish (Coregonus clupeaformis) is eminently a lake fish. It exists throughout the Great Lakes region and is especially abundant in Lakes Erie, Huron, Michigan, and Superior. The eastern limit of its range is Lake Champlain, and it is found in Lake Winnipeg, and possibly farther west. It is landlocked in Otsego Lake, N. Y. Efforts to introduce it into new waters in the States of the Pacific coast have not been successful. It has been established in Flathead Lake, Mont., Lake Coeur d'Alene, Idaho, and possibly other waters in the Rocky Mountains.

DESCR1PTION.

The body of the common whitefish is rather long and compressed, and the back, especially in adults, is arched in front; the greatest depth is about one-fourth the body length. The head is small and

[^11]
short, contained about five times in the length of the body; the snout is blunt; the mouth is small and nearly horizontal with the lower jaw included; the maxillary is short and broad, reaching to a point near the pupil; the mandible extends to a point under the posterior edge of the eye. The eye is small, its cliameter being about one-fifth the length of the head. The rays in both the dorsal and anal fins number 11. The number of rows of scales along the side of the body varies from about 82 to 92 , with about 11 above the lateral line and 8 below. The gill rakers number about 28, of which 10 are on the upper arm of the gill arch; the longest are contained about twice in the length of the eye. The general color of this fish is a satiny white, with a faint olive-green shade on the back. The fins are uniformly white, except the caudal, which normally has a dark edge.

COMMON NAMES.

This fish has a number of common names in different parts of its range. It is the whitefish par excellence of the United States and Canada. As found in Otsego Lake, N. Y., it is inappropriately called "Otsego bass." In allusion to its humped back it is called "highback whitefish," "bowback whitefish," "buffalo-back whitefish," and other similar names in Lake Superior.

HABITS.

Although more is known of the habits of this species than of any other member of the group, many phases of its life are still obscure, as it remains in deep water most of the time. Besides the regular annual movements of the schools to the spawning grounds there are other well-marked migrations in some lakes. Whether these depend on food, temperature, enemies, or other causes is not known. Owing to its small, weak mouth, it is seldom taken with a baited hook. It subsists on minute animal food, chiefly crustaceans, mollusks, and insect larvæ. The food of the fry and young fish is almost wholly small crustaceans.

COMMERCIAL VALUE.

The whitefishes are by far the most important group of freshwater fishes of North America, probably of the world. The common whitefish is the best of the tribe, but some of the others nearly equal it in merit, and all are more or less esteemed as food. The common whitefish reaches a larger size than any other species of whitefish in the United States. Examples weighing over 20 pounds have been taken, but the average weight is under 4 pounds. Among the fishes of the Great Lakes the common whitefish ranks next in value to the ciscoes and the lake trout. In 1917 the catch in the United States amounted to about $6,288,000$ pounds, having a value of $\$ 731,519$. If to this is added the yield of ciscoes and other species of whitefish, the aggregate is over $54,000,000$ pounds, having a value of nearly $\$ 2,600,000$. The market value of the whitefishes taken in 1920 in the British Provinces was reported as $\$ 1,315,932$, a sum representing about $20,356,000$ pounds.

Whitefish fishing is done chiefly with gill nets set at or near the bottom in comparatively deep water, although considerable quanti-
ties of whitefish are also taken in pound nets, trap nets, and seines. A very large part of the catch reaches the market in a fresh condition, although considerable quantities formerly were salted. The leading centers of the trade are Chicago, Detroit, Sandusky, Cleveland, Erie, and Buffalo, whence the fish are shipped frozen or in ice to all parts of the country.

SPAWNING HABITS.

The spawning season of the whitefish in the western end of Lake Erie begins the early part of November and continues into December. At this season there is a general movement of the fish to shoal parts of the lakes, similar to the migration of anadromous fishes from the ocean to the rivers. Some of the foreign whitefish are typical anadromous species. After spawning the fish return at once to the deeper water.

The spawning habits of whitefish confined in pens have been observed. The fish rise to the surface, occasionally in pairs, and rarely in trios of one female and two males, the female emitting a quantity of spawn at each rise. The males, always the smaller fish, persistently follow the female and discharge milt at the same time the eggs are emitted.

Whitefish reach maturity in the third or fourth year. A fullgrown specimen deposits from 10,000 to 75,000 eggs, depending on its size. A rule for determining the approximate spawning capacity is to allow 10,000 to 12,000 eggs for each pound of the fish's weight. The eggs are one-eighth of an inch in diameter and are of an amber color. They swell somewhat after impregnation. The number per quart varies from 36,000 in Lake Ontario to 40,000 in Lake Erie.

DESTRUCTION OF WHITEFISH SPAWN IN NATURE.

In nature the eggs of the whitefish are subjected to the attacks of many enemies for nearly five months. The mud puppy (Necturus maculatus), commonly known as " lizard" or "water dog" by the people along the lakes, is especially destructive. During the winter months many of these animals are pumped up with the water supply of the Put in Bay station. The stomachs of a considerable number of them contain whitefish and cisco eggs.

Another voracious destroyer of whitefish eggs is the common yellow perch (Perca flavescens). The deck of a boat has been seen covered with the eggs of whitefish and cisco pressed out of the stomachs of perch taken the last of November from gill nets on the reefs, where they had gone to feed on the eggs.

The various smaller Cyprinidæ and some other fishes, crawfish, and wild fowl make the eggs of fishes a considerable portion of their diet, and those eggs that require the longest period in hatching suffer most.

ARTIFICIAL PROPAGATION.

The artificial propagation of whitefish has long since passed the experimental state and has attained a high degree of perfection. The work can be carried on with great facility, and its value is especially apparent when it is considered that under natural conditions only a very small percentage of the eggs hatch, whereas
U. S. B. F--Doc. 949.

FIg. 2.- Put in Bay (Ohio) hatchery.

Fig. 3.-Collection of whitefish eggs, Put in Bay, Ohio.
through artificial propagation from 75 to 95 per cent are productive. Practically all the eggs taken for hatching purposes are obtained from fish caught by the commercial fishermen and otherwise would be lost or sent to market with the fish.

The methods of culture hereafter referred to are those pursued at the Put in Bay (Ohio) station, but they do not differ in any essential particular from those in general use. In the fiscal year 1921 the Bureau of Fisheries hatched and planted $420,450,000$ whitefish fry.

COLLECTION AND INCUBATION OF EGGS.

The taking, impregnating, and handling of whitefish eggs are simple processes, though they require great care at every stage. Eggs are often injured by undue haste in stripping, and many are lost by allowing them to fall too great a distance into the spawning pan. The eggs are very delicate when first taken and before the absorption of water has made the investing membrane tense, and if roughly treated they will be seen to be ruptured as viewed under the microscope. With care about four-fifths of the eggs will hatch. While scarcity of milt may lead to nonfertilization of the eggs, the manner in which the milt is brought in contact with the eggs is a more common cause of failure.

The eggs supplied by each spawn taker should be examined daily. If it is found that a considerable number have ruptured yolks, it may be taken for granted that the spawn taker has handled the fish and eggs roughly, and if many are unimpregnated it is evident that he did not use sufficient milt, or that it was not properly applied to the eggs. Eggs or milt taken from fish that have been dead for any length of time should not be used.

At Put in Bay eggs are obtained from fish captured in pound nets and gill nets, often at considerable distances from the station. The spawn taker, who is employed to take the eggs from the fish as they are lifted from the nets into the boat, has with him two or three 6 quart pans, coated with asphaltum varnish to prevent rusting, in which he takes the spawn, a wooden keg or tin can holding from 10 to 15 gallons, a 10 -quart wooden pail, and a tin dipper. He is clothed in waterproof garments, and his left hand is covered with a woolen mitten for convenience in handling the fish.

After several ripe females and some ripe males are collected a female is taken up and the body slime, which would interfere with impregnation if allowed to fall into the pan, is carefully removed. The spawn taker then grasps the fish firmly in his left hand just forward of the tail. The right hand is placed under the fish just back of the pectoral fins, and the fish is held firmly against the body, with the rent 4 or 5 inches from the bottom of the pan. This position of the fish's body brings pressure on the abdomen, facilitates the flow of the eggs through gravity, and prevents them from being injured by falling too far.
On applying a gentle pressure the eggs will flow in a steady liquid stream about a quarter of an inch in diameter, and a considerable portion of them can be ejected before the hand need be moved. As soon as the stream slackens the hand is moved slowly toward the vent, but only sufficiently to keep the eggs flowing steadily. When the stream finally stops, the hand is placed in its former position
and the process repeated until all good eggs have been secured. If, as is frequently the case, a considerable number of white eggs appear when nearly all the ripe eggs have been emitted, the effort should cease.

In the dry process of impregnation, which is now generally conceded to be superior to the wet process of fertilization, the pan in which the eggs are taken is dampened by dipping it in water before stripping begins. After one or two females have been manipulated the milt from one or two males is added to the eggs, this being done by grasping the fish between the thumb and fingers 2 or 3 inches forward of the vent and moving the fingers toward the opening. The milt comes in a stream, an average fish yielding about a teaspoonful. If ripe males are scarce, the fish is laid aside, as a considerable amount of additional milt may be secured from it a few minutes later in case it is needed.

When the pan is one-third to one-half full of spawn and milt, the spawn taker stirs the eggs gently to incorporate them thoroughly with the milt, using for the purpose the tail of a fish from which the slime has been carefully removed. The pan is then partly filled with water and the mass stirred again very gently. After standing two or three minutes the water is poured off and fresh water added, this operation being repeated until the water flows off clear. The eggs are then poured into a keg or can that has previously been filled with water and the mass again stirred very gently. It is necessary to change the water on the eggs at least once an hour, oftener if the weather is warm, and they should be stirred gently to the bottom of the keg every 30 minutes until placed in running water in the hatchery.

After finishing his work the spawn taker delivers the eggs to the man in charge of field operations, who cares for them until the arrival of the collecting steamer, when they are taken on board and transported to the hatchery, some two to five hours having elapsed since they were taken. At the station the eggs are kept in the kegs in which they were placed by the spawn taker, and in the meantime the water is changed once every hour until the next morning, the mass being stirred to the very bottom whenever a change is made. In this way the eggs are hardened with less injury than would result if they were immediately placed in the jars.

Formerly, in shipping eggs from distant field stations, they were kept in running water in kegs, under the care of a watchman, but experience has demonstrated that it is much better to ship them in cases on trays. After being in water from 8 to 10 hours whitefish ova may be safely placed two or three layers deep on trays and shipped to an indefinite distance. If the air temperature is as high as 55 to $60^{\circ} \mathrm{F}$., the case must be supplied with ice; if it is below 32° care must be taken to prevent freezing.

The field shipping cases are usually constructed of lumber threefourths of an inch thick and of sufficient depth to hold 20 trays. The bottom tray and the top tray are not used for eggs. Cleats at the four inner corners hold the trays about $1 \frac{1}{4}$ inches from the sides of the case.

A tray board is a convenience in spreading eggs on the trays. This consists of a smooth board some 4 inches greater in length and width than the egg trays, with a raised rim one-half inch high and
water-tight. The tray is placed in the tray board, which has previously been filled with water. The eggs are poured on the partly submerged tray and at once spread evenly over its surface. For longer distances greater precautions must be taken and a packing case that has space for proper insulation and ice used. Several modifications of this type of case are in general use in fish-cultural work.

After the eggs are placed on trays and drained they are covered with a thickness of mosquito netting that has been well washed and left damp. If the eggs are to go by express, unaccompanied by a messenger, directions stating that they must be kept cool but not permitted to freeze are fastened to the case. Whitefish eggs, accompanied by an attendant, have been safely shipped from Northrille, Mich., to Australia. Where eggs are to be shipped from one station to another, in care of a messenger, the regular field cases are used.

The trays used at the station are 18 inches square and are made of white pine $\frac{3}{4}$ by 1 inch, mortised together at the corners, with the widest side of the strip horizontal. Cheesecloth or linen scrim is tacked on the bottoms of these frames with galvanized or coppercoated tacks, the cloth being stretched very taut to prevent its sagging after being wet and dried. The tacks are spaced $2 \frac{1}{2}$ to 3 inches apart, so that in a year or two the cloth may be retacked between the spaces to take up the slack. As the trays are square, they fit into the cases either way, thus saving time in packing. Square cases are also more convenient to store and for general handling. One of these trays mill hold 100,000 whitefish eggs.

Where the eggs have to be retained in the field for several days they are sometimes kept in floating boxes adapted for the purpose, but unless the conditions are very favorable it is far better to place them on trays, sprinkling them lightly once in two or three days. (See description of floating box on p. 23.)
When taken from the kegs and trays at the hatchery, the eggs are passed through a screen with meshes sufficiently large to permit the passage of a single egg in order to remove scales and other foreign substances that may be present. The screen is floated in a washtub partly filled with water, with the wire netting well submerged.

Wooden kegs are preferred to tin cans for handling eggs and fry, as their contents are not subjected to sudden changes in temperature and can be readily examined, and as the water can be more easily poured off without risking the loss of eggs. Kegs are also much lighter, cost only a sixth as much as cans, and last longer. For shipment in wagons or by rail, however, tin cans made with covers are indispensable. The kegs should be of white pine, made large enough to hold about 15 gallons, and painted on the outside but not inside. They should be provided with iron drop handles.

PENNING WILD FISH.

The uncertainty of climatic conditions and the liability of failure to obtain spawning fish during the severe storms occurring in November make it desirable, whenever practicable, to capture fish when the weather is favorable and place them in pens to ripen. If the fish are driven off their spawning grounds by heavy storms,
they do not return in large numbers during the spawning season, and the only way to insure a satisfactory supply of eggs is to pen the fish. Penning has been abandoned in most of the Great Lakes fields, because most of the fish are taken by gill nets. Since pound nets are seldom used, the green fish can not be obtained. Most of the fishing boats take their own eggs and deliver them to the bureau's agent in charge of the field.

The pens are usually made about 16 feet long, 8 feet wide, and 5 feet deep and are placed end to end in two rows, with a plank walk between as a convenience in caring for them. A partition is placed in the center of each pen, dividing it into two compartments, each 8 feet square. In each compartment is a false bottom held down by two 2 by 4 pieces fastened to the sides. When the fish are to be removed the false bottom is raised and held at any desired height by inserting pins in the 2 by 4 pieces and the sides of the pens. The fish must be handled as little and as gently as possible, otherwise the eggs will form into a hard mass and never ripen. One cause of injury is the scoop net with which they must be handled, the knots and twine being so hard that they injure the delicate scales of the whitefish in their violent struggles when taken from the water.

Although crates or inclosures of wood construction have been very generally used by the Bureau of Fisheries for penning whitefish, retaining inclosures of cotton webbing are proving very satisfactory in Lake Ontario.

HATCHING METEODS AND EQUIPMENT.

The water supply in the hatchery at Put in Bay is obtained through a pipe extending 75 to 100 feet into Lake Erie, the water being elevated by pumps to supply tanks in the loft of the hatchery, whence it is distributed by the usual methods of piping. Two circular galvanized-iron supply tanks are used, each having a capacity of approximately 18,000 gallons. These tanks are necessary in order to give equal pressure in the pipes and to provide an even supply of water to the whitefish batteries. In the event of being obliged to suspend pumping operations for a short time, there will be sufficient water in the supply tanks to care for the eggs for a period of several hours. A float connected with the throttle valve of the pumps is so arranged in the tanks as to maintain a steady water level therein.

Whitefish eggs are hatched in the open-top McDonald, Downing, and Chase jars, the Downing and Chase jars being more generally used. On arrival at the hatchery the eggs are taken from the shipping-box trays and placed in tubs of water to harden. After remaining in the tubs from 12 to 14 hours, during which time the water is changed once an hour, the tub of eggs is placed on a movable stand and the eggs measured into jars by means of a dipper. The jar is first filled with water and a shallow funnel with an outlet extending well into the jar inserted, so that the water will stand as high in the funnel throat as possible. In this way the eggs are not subjected to a fall from the dipper to the jar.

From this stand the jars are passed to a man who sets them up on the battery. Tin tubes are placed in the jars and connected with fancets supplying the water by rubber tubes. In the battery described each jar on the top row is provided with a water supply of
U. S. B. F.-Doc. 949.

Fig. 4.-Pens used in holding whitefish, Put in Bay, Ohio.

Fig. 5.-Interior of Put in Bay (Ohio) hatchery showing whitefish troughs and battery.
U. S. B. F.-Doc. 949.

Fig. 6.-Close-up of open-top Downing hatching jar.

Fig. 7.-Unfertilized whitefish egg 24 hours old.

Fig. 8.-Fertilized whitefish egg 6 hours old, germinal disks forming, no segmentation having taken

Fig. 9.-Whitefish egg, 12 hours, showing first cleavage, water 35°.
place.

Fig. 10.-Whitefish egg, eighteenth hour, water 38°, showing second segmentation, four cells formed.

Fig. 11.-Whitefish egg, 24 hours, water 35°.

Fig. 12.-Whitefish egg, 45 hours, water 38°.

Fig. 14. -Whitefish egg, seventh day, embryo begimning to show.

FIG. 16.-Whitefish egg, 90 days old, showing embryo.

Fig. 1s.-Whitefish egg with triple disks.

Fig. 17.-Whitefish eagg, yolk sac ruptured by rough handling, $2 t$ hours old.

Fig. 19.-Whitefish egg, showing twin disks, 3 days old.

Fig. 21.-Whitefish egg, showing twin disks, 7 days olf.

Fig. 23.-Whitefish egg, showing l win disks, 13 days old.

Fig. 20.-Whitefish egg, showing twin disks, 6 days old.

Fig. 22.-Whitefish egg, showing twin disks, 8 days old.

Fig. 24.-Whitefish egg, showing twin disks, 15 days

Fig. 25.-Double-headed whitefish fry, just hatched.

Fig. 27.-Curved spine, a common deformity of whitefish fry.

Fig. 29.-A common deformity of whitefish fry.

Fig. 26.-Double-headed whitefish fry.

Fig. 28.-Whitefish fry just hatched, three-eyed, curved spine.

Fig. 30.-Four-eyed whitefish fry.
approximately 5 quarts per minute at the beginning of incubation, which amount is reduced to 4 quarts later on. This water supplies in turn the succeeding rows of jars in the battery. For this reason the jars on the upper row should never be removed without making provision to supply those below.

In a mean water temperature of $35^{\circ} \mathrm{F}$. the eye spots of the fish are visible to the unaided eye in about 40 days, and the entire incubation period averages 133 days. The food sac is absorbed in from 5 to 10 days after the fry have hatched, the time varying somewhat with the period of incubation.

The microscope is a great aid in whitefish culture, enabling the operator to determine the exact percentage of dead eggs and, to a great extent, the cause of their loss, allowing him to remedy some if not all of the evils. For examining eggs in their early stages the microscope is placed horizontally, the eggs being held in a cell filled with water. This may be made easily by fastening two ordinary glass slides to a strip of wood one-eighth of an inch thick, with a portion cut away to form a receptacle for the eggs. The wood is thoroughly saturated with asphaltum varnish, and after drying the sides should receive a thin coat, the sides being laid on and placed under pressure to dry. When dry, an additional coat to the outer joints of contact will guard against possible leaks. Such cells are not satisfactory and a good examination of the eggs can not be made with them. Most optical houses are able to supply what is known as "watch crystals" that are made especially for this purpose.

If the egg be examined six to eight hours after being fertilized, the germinal disk will be found to have contracted to a saucer-shaped cap, extending over about one-fifth the surface of the yolk. It is smooth and even, gradually thinning to a sharp outer rim, with a thickness of about one-fifth its diameter in the center of the cap. Segmentation not having commenced at this stage, the impregnated eggs can not be distinguished from the unimpregnated ones. At 18 hours segmentation will be well advanced and the disk will have contracted into six or eight rounded nodules of uneven size, with well defined ralleys between, the sharp rim having disappeared. At 24 hours, which is the best time to determine the percentage of live eggs, the disk will present a somewhat similar appearance except that it will be divided into 25 or more segments, easily seen under the glass. The disk of the unimpregnated egg of the same age forms an almost exact hemisphere, is perfectly smooth in appearance, and is therefore casily distinguishable from a live egg. Segmentation now proceeds rapidly, and at 72 hours the cell looks about the size of a mustard seed under a 1-inch objective, the most suitable power to use in this work.

During the entire period of incubation, but more especially in its early stages, the eggs should be worked as gently as possible, only enough water being used to give them sufficient motion to prevent "banking." Just at the commencement of incubation they require about 5 quarts of water to the jar per minute, but later they can be run with a quart less per minute. For the first week or more the eggs require constant watching, and although the whitefish eqg is not considered adhesive, agglutination will ocasionally occur when the water becomes roily, and unless the banks thus formed are separated by gentle stirring with a feather (the long feathers of a turkey wing are
suitable) the eggs forming the pack will soon die and form a mass in the jar.

In a few days, varying with the water temperature, the unimpregnated and other dead eggs begin to fungus; that is, a fungous growth develops upon them and they rise to the top of the egg mass. Such eggs must be removed with a siphon immediately, and if live ones are among them they should be set up in what are termed hospital jars, where the dead eggs and the live ones can be more readily separated. The dead eggs are drawn off every day to prevent them from becoming loaded with silt from the water and sinking into the mass of live ones, from which it is difficult to separate them.

A long-distance siphon is used for removing dead eggs from the jars, saving much labor: In its construction the short end of an ordinary siphon, consisting of a thin $\frac{1}{4}$-inch brass tube a foot long bent into the form of a gooseneck, is attached to a piece of common rubber tubing 3 or 4 feet long and $\frac{3}{3}$ inch in diameter inside. This is connected with a rubber tube of the same size and sufficiently long to reach the entire row of jars in the battery. Hose connections are made by the use of a thin brass nipple of the same interior diameter as the piece of rubber tube to which it is joined. The other end of the long tube is connected to and through the center of a wooden float some 12 inches in diameter and 1 or 2 inches thick by means of a piece of brass tubing. The tube is bent to a quarter circle to prevent the rubber from kinking, and the float is set in a tub. When it is desired to siphon eggs into the jars, a short siphon is placed in the supply trough and started and is then connected with a long siphon. When the tub becomes filled with water, it runs over the rim and into the waste ditch, the eggs settling to the bottom. By means of this siphon an entire battery can be operated without moving the tub. It is necessary, however, to exercise care in siphoning eggs from the jars on the top row, as the suction becomes very strong and is apt to draw off the good eggs. The suction may be reduced by gently pinching the rubber tube.

For convenience and economy of space and water the hatching jars are arranged in tiers, constituting what is known as a battery. The structure of a battery, with its system of supply troughs, jars, and other attachments, may be understood by reference to Figures 5 and 31.

The troughs of the battery are usually constructed of white pine or cypress $1 \frac{1}{2}$ inches thick. If it is necessary to make the troughs longer than the usual cuts of lumber, the joints should be squarely butted, and these and all other joints in the troughs should be put together with white lead. At the splice a patch is placed on the inside of each trough and screwed to the two ends, white lead being used freely underneath. As a further strengthening measure a cross piece 5 inches high is placed inside. The ends of the troughs are rabbeted in place and the side pieces nailed to the bottom. At the end of each trough in the bottom is a $1 \frac{1}{2}$-inch hole, supplied with a plug, for use in cleaning the troughs. At the alternate end of each trough, commencing at the top, is a saw cut $1 \frac{1}{2}$ inches deep and 6 inches wide, into which is fitted a galvanized iron or tin overflow spout to conduct surplus water to the next trough below. The lengths of the troughs vary according to the size of the battery. Their inside dimensions are $10 \frac{1}{2}$ inches deep and 8 inches wide.

At the proper distance apart along the sides of the troughs are holes for the wooden faucets; for ease in manipulating the jars these holes should be $7 \frac{1}{4}$ inches on centers and 3 inches above the inside bottom of the trough. The best faucets are the Crandell with the tin key. The faucet is connected with the tin tube by a piece of white or red rubber tube 8 or 10 inches long and $\frac{1}{2}$ inch in diameter. The tin tube is $\frac{7}{8}$ of an inch in diameter and 20 inches long; three short legs are soldered to the lower end to hold the tube above the bottom of the glass jar.

The troughs are placed one above another at a proper distance to accommodate the type of jar used. They are held together by a support made of 4 by 4 timbers, so placed that a row of 6 jars is installed between each set of stanchions. At the Put in Bay hatchery there are 6 rows of jars, making 36 jars between each set of stanchions. This type uses the stagger system in placing the jars on the battery, by which method each jar of the top row supplies the next jar immediately underneath. The troughs are held together in the stanchions by the use of $\frac{1}{2}$-inch bolts, with nuts and washers at each end, which also act as a support to the trough. Beginning at the top trough the water supply enters one end, supplying each jar on the top row, which in turn discharges into the next trough below. The surplus water passes through the tin overflow at the opposite end and into trough No. 2, which projects from 8 to 10 inches on one end beyond the top trough. This alternate system is continued until the water is finally conducted into the receiving tank located at the end of the battery. This tank is 24 inches deep, 3 feet wide, and of sufficient length to receive the water supply from two batteries. Provision is made at one end of the tank for a screen and an overflow for the diversion of part of the water. The water remaining passes into a series of fry tanks arranged at right angles to the receiving tank, connection between them and the fry tanks being made by means of a 2 -inch pipe set 1 foot below the surface of the water and provided with a stopcock. At the Put in Bay hatchery four fry tanks, set in series of two, receive their water supply from the retaining tank. Each fry tank is provided with a screen near its lower end and a similar connection is made between the fry tank and the receiving tank. The fry tanks are 24 inches high, 3 feet wide, and usually 16 feet long.

These screens are made of brass wire cloth, 60 meshes per inch, tacked to a heavy frame. The screen is pulled very tight before it is fastened so as to present a smooth surface to the air jets. The screens should never be painted. The screen frames are held in place by bolts that pass through the frames and into the projecting cleats in the trough. They are not put in place until the fry commence to hatch. If the air pipes are large and are run fairly straight to the screens, an air pressure of from 5 to 8 pounds will be sufficient to keep the screen free from eggshells.

At the Cape Vincent (N. Y.) station a modification of the battery described in the foregoing pages has given excellentsatisfaction. (See fig. 31.) It carries six tiers of jars, and where vertical space is a vailable it may be made to accommodate a larger number of jars in proportion to the floor space occupied. The troughs in this battery are made of $1 \frac{3}{8}$-inch cypress. They are $12 \frac{1}{2}$ inches wide, $9 \frac{3}{3}$ inches deep on the feed half, and 6 inches deep on the catch end. The shelves,
which are also made of cypress $1 \frac{1}{4}$ inches thick, are $8 \frac{1}{2}$ inches wide, and between the uprights they are supported by steel brackets. The condensation from the jars is drained into the troughs through a groove cut along the outer edges of the shelves. At one end of each trough is a galvanized iron overflow. The supply of water to the batteries is regulated by automatic Ford tank valves, and the discharge, after entering the catch box, is carried to the basement sewer. When the fry are hatching the water is carried, as shown, to the fry building, and under the whole length of the batteries galvanized pans are provided to catch the drip, which drains into the basement sewer. There are 11 jars on each shelf between the uprights, making 198 jars in all on each side of a battery, or 398 jars per battery.

This type of battery is compact and neat in appearance. By means of the grooved shelves and drip pans the floors are kept dry, and, as each trough is provided with a drain plug, they may be scrubbed at any time without interfering with the operation of the jars, the attendant stepping along the jar shelves. At all the bureau's hatcheries it has been found best to use the natural water supply without attempting to modify its temperature, but good results in the incubation of whitefish eggs can not be expected in a water temperature much above $50^{\circ} \mathrm{F}$. In early November, when the whitefish spawning season in Lake Erie begins, the water in the Put in Bay hatchery ranges from 40 to 48°. About December 1 it drops to approximately 35 to 38°, and after the lake freezes, or as soon as ice in any appreciable quantity forms, the temperature of the water passing through the jars remains uniform at $32 \frac{1_{2}{ }^{\circ} \text {. Around the }}{}$ middle of March, when the lake is usually free from ice, the water temperature rises slightly. The fry begin hatching about this time, and as a rule the incubation period is completed in the first week of April.

Every year prior to the opening of the spawning season the interior surfaces of all troughs and tanks are well covered with asphaltum varnish. As a first coating, when the wood is new, white lead and oil are applied, followed by two coats of varnish, the latter consisting of one part turpentine to two parts asphaltum. The best asphaltum pitch is used for filling the cracks and joints, first softening it with paraffin to the consistency of chewing gum, or so that it will not break in cold water. This pitch holds firmly to the wood and keeps its place in warm weather. Other pitches that have been tried are likely to run in warm weather and to harden with use, breaking when cold. All jars, tubes, troughs, etc., should be kept scrupulously clean.

When the fry hatch, they immediately leave the jars and follow the course of the running water, those in the upper tiers going through the succeeding jars, and all finally reaching the fry-collecting tank at the bottom, whence they are carried to the main collecting tanks. It has been urged by some that it is injurious for the fry to pass down through the lower jars with the complement of eggs, but in practice this has not been the case.
电

Clogging through an accumulation of eggshells and impurities in the water may be prevented by an air jet, which can easily be arranged for by installing an air pump and carrying the connecting pipe along the side of each tank on the inside of the screen, thence at right angles parallel to the screen and about an inch distant from it. This cross pipe should be perforated on one side with holes one-thirty-second of an inch in diameter and 3 inches apart, the perforations opening toward the screen and upward at an angle of about 45°. When the air is turned on, an apparently solid mass of bubbles will rise along the whole surface of the screen.

With such an arrangement the screen will need no attention for hours, or even days, at a time, whereas without the air jet one or more men must be employed to keep the screens clear. Moreover, many of the fry are unavoidably killed by being forced against the screens and by the work of the men in keeping them free. The thorough aeration of the water indirectly accomplished by use of the air jet is very beneficial when large numbers of fry are passing over, and twice as many can be safely handled in troughs thus equipped.

At Put in Bay, where the fry are planted as soon as hatched, they are dipped from the fry tanks into kegs and transported to the natural spawning grounds on the reefs. From 50,000 to 100,000 fry are carried per keg, according to the distance to be traveled, and when they are to be carried any considerable distance fresh water is added every hour.

Where facilities are available it is advisable to hold the fry in tanks until they have absorbed the yolk sac before planting them, as they are better able at that time to care for themselves than when planted at a very early age. In the spring of 1896 about 1,000 whitefish fry were held in a station trough until late in April, with no food supply except the Entomostraca and other minute life coming into the troughs with the water pumped from the lake. The fish attained a considerable growth and were remarkably active. Cannibalism was of frequent, though not of general occurrence. Toward the close of the period through which they were held numbers were observed to have seized another fry by the tail and swallowed as much of the body as possible; this of course, being very little. In every instance noted a larger fish had attacked a smaller one, the victim being dead and his destroyer swimming about actively with the body trailing along his side. Had these fry been regularly supplied with food it is probable that no cannibalism whatever would have occurred.

REARING IN PONDS.

Few attempts have been made to raise whitefish in ponds, but the experiments conducted lead to the belief that under favorable conditions the species can, to some extent, be reared in artificial ponds, success along this line, of course, implying an abundance of good cold water and suitable ground for the construction of deep ponds. Such an undertaking would not be practical nor feasible at any of the bureau's hatcheries where millions of fish are liberated.

The outcome of an experiment undertaken in 1882 along this line at the Northville (Mich.) station was successful. Three-year-old
whitefish, from 3 to $4 \frac{1}{2}$ pounds in weight, plump and healthy, were produced, and from them a large number of eggs were taken, a fair percentage of which were fertilized. The fish were treated as are young trout, being fed wholly on liver.

Equally succcessful tests have been made in Europe with one of the native whitefishes (Coregomus lavaretus), and noteworthy results have been attained in the rearing of whitefish under private enterprise in ponds at Warren, Ind. It has been found that in rearing the fry the water temperature should not exceed $55^{\circ} \mathrm{F}$. and that a temperature of 65° is fatal.

THE GRAYLINGS.

The grayling is one of the most attractive and gamy of the freshwater fishes. Three species have been described from North American waters-Thymallus signifer of Alaska and the Mackenzie River region, T. montanus of Montana, and T. ontariensis of Michigan. They are all closely related to the Salmonidæ in habits and general appearance but differ in the character of the skeleton.

RANGE.

The Arctic grayling (Thymallus signifer) is found from the Mackenzie River westward through Alaska and north to the Aretic Ocean. The Montana grayling (T. montanus) originally existed only in the streams emptying into the Missouri River above the Great Falls, principally in Smith or Deep River and its tributaries and the three forks of the Missouri-the Jefferson, Madison, and Gallatin Rivers-and their affluents. Its range has since been considerably extended through the agency of fish culture. The Michigan grayling (Thymallus ontariensis) was formerly found only in certain streams of Michigan, though the type specimen is said to have come from Lake Ontario. Though once abundant in many streams in the southern peninsula of Michigan, it has now entirely disappeared from the waters of that section. The opinion is expressed by observers that the introduction of the nonindigenous brook trout and rainbow trout has been a factor of importance in their disappearance. Grayling still occur in the Otter River and possibly in other streams in the northern peninsula of Michigan.

DESCRIPTION.

In Montana waters its body is elongated, compressed, the depth contained four and one-half times in the length. The subconic head is of moderate size and its length is one-fifth that of the body. The dorsal outline from snout to tail is a uniform gentle curve, highest at the beginning of the dorsal fin. The mouth is oblique, terminal, and of moderate size: rather feeble teeth, of uniform size, occur on jars, palatines, and romer. The short and stiff gill rakers number 17. The eye is large, exceeding length of snout, and is contained three and one-half times in length of head. From 82 to 85 scales are found along the lateral line, 8 rows above and 10 rows below the line. The dorsal fin is long and high and contains 18 to 21 ravs: both its length and height equal the depth of body. The candal is strongly forked. The coloration is gorgeous. The color of the back

is gray, with purplish reflections; the sides of the head and body are lighter, with purplish and silvery iridescence; the belly is pure white; there are a few V -shaped black spots on the anterior part of the body; a dark heavy line, more distinct in males, extends along upper border of belly from ventral to pectoral fins. The dorsal fin is richly variegated with a rosy border, four to six rows of roundish rosy spots in whitish areas, with dark blotches forming lines between the spots. The ventral fins have three rose-colored branching stripes along the rays. The anal and pectoral fins are plain with dark border.

The Michigan grayling resembles, in general, the fish of Montana, but is distinguishable by its larger dorsal fin and certain differences in coloration. The Arctic grayling has a higher dorsal fin with 22 to 24 rays, a smaller head, contained five and one-half times in length of body, and more brilliant colors; the back and sides are purplish gray, the belly blackish gray with irregular white blotches, and the head brown; on the anterior part of the body are five or six deep blue spots, and on each side of lower jaw a blue mark; the dark gray dorsal has pale blotches and cross rows of rich blue spots edged with red; the ventrals show red and white stripes.

SIZE.
The Michigan grayling rarely exceeds a reight of $1 \frac{1}{2}$ pounds, and the average is probably not more than one-half pound. In Montana waters the average weight of Thymallus montanus is somewhat greater. As is true with all fish, the size is governed to a considerable extent by the water temperature, food supply, and other local conditions. In Georgetown Lake, Mont., where the Montana Fish and Game Commission has been eminently successful in its efforts to establish the species, the average weight is placed between $1 \frac{1}{2}$ and 2 pounds, and although specimens taken in the South Fork of the Madison River weighing as high as 3 pounds have been recorded they seldon exceed 2 pounds in weight.

SPAWNING HABITS.

Grayling prefer clear, cool streams with sandy or gravelly bottom, although they will at times extend their range to streams where the bottom is strewn with bowlders and broken rock. Unlike salmon and trout, it would appear that grayling make no attempt at nest building. In this respect they, perhaps, more closely resemble the whitefish, as they deposit their eggs in the small eddies formed by roots and rocks or on natural barriers of sand and gravel.

In Michigan, where spawning occurs in April, the eggs are normally laid in the gravel beds of clear streams having a temperature range between 50 and $60^{\circ} \mathrm{F}$. In certain tributaries of the headwaters of the Madison River, in Montana, they spawn in February and March, while farther down the river, near McAllister and Ennis, the fish spawn late in April or in early May. In Ashley, Ronan, and Rogers Lakes the height of the spawning season occurs late in May and is at least two weeks later in Georgetown Lake.

Grayling usually ascend the tributaries of the larger streams, being very partial to spring-fed creeks for spawning purposes. They are persistent swimmers and whenever possible will ascend
U. S. B. F.-Doc. 949.

Fig. 33.-Improvised racks are placed across streams to prevent ascent of fish.
U. S. B. F.-Doc. 949

Fig. 34.-Taking eggs at a field station.
to headwaters. On numerous occasions they have been observed passing artificial or natural barriers that the native blackspotted and rainbow trouts after repeated attempts have failed to surmount. They prefer streams of a rather sluggish current and containing deep pools, with sandy or gravel bottoms. In Montana streams they usually spawn in a water temperature of 50 to $52^{\circ} \mathrm{F}$.

ARTIFICIAL PROPAGATIGN.

Grayling were first artificially propagated in Michigan in 1874, but the work was never vigorously or regularly prosecuted. It has recently been taken up again by the Michigan fishery authorities. The propagation of this species in Montana was not attempted until 1898, but it has been systematically conducted and has been attended by strikingly good results. It is a noteworthy fact that the species has been successfully established in many waters of the State where it is not indigenous. In this connection Georgetown, Ronan, Rogers, and Ashley Lakes are prominent examples, while more recently it appears that plants of grayling made in waters of the Glacier and Yellowstone National Parks are also yielding material results.

The establishment of the grayling in these and other waters of the State will perhaps serve as a balance against their depleted numbers or entire disappearance in waters where they are indigenous, a condition that has been brought about by the improper methods of fishing formerly permitted and possibly also by the introduction of other nonindigenous fishes.

At the present time artificial propagation of the grayling is practically confined to the work being done by the Montana Fish and Game Commission, and the methods of culture herein described are those pursued and recommended by that commission. The grayling required for the work are captured in a modification of the ordinary upstream trap, formed by placing a rack or barrier across a stream the fish ascend for spawning, and installing, 2 rods or more downstream from that point, another rack containing one or more V -shaped openings. The fish pass through these openings on their upstream journey and are trapped between the racks. Pending the development of the eggs and sperm, it has been found necessary to hold the fish in an inclosure of this kind on a natural bottom, as experience has demonstrated that grayling segregated as to sex or ripeness in wooden pens similar to those used in salmon and trout propagation invariably produce eggs of an inferior quality.

COLLECTION AND INCUBATION OF EGGS.

Unlike practically all other species of fish eggs artificially handled, the eggs of the grayling produce better results when taken by the wet method of fertilization, which consists in stripping the eggs into a vessel containing a small amount of water. In the so-called dry method of fertilization the eggs are expressed from the fish into a receptacle that is moist but from which all water has previously been drained. The manner of stripping the males and the females differs in no way from that employed in the propagation of other species of eggs artificially manipulated. A peculiarity of the Montana grayling that has not been mentioned in connection with grayling propaga-
tion elsewhere is the comparatively small amount of milt produced by the males.

When first taken the eggs are of a pale yellow hue and are almost transparent, resembling a drop of honey. They are about one-sixth inch in diameter, nonadhesive, and, because of the presence of a comparatively large oil globule, they are semibuoyant. The average egg production is about 3,000 per pound weight of parent fish. The eye spots, small gilt specks with a minute black pupil, appear in from three to five days, and the eggs hatch in from 12 to 15 days in a water temperature around $50^{\circ} \mathrm{F}$.

The eggs may be successfully incubated in the trays or baskets ordinarily used in salmon and trout work, but, because of their buoyant tendency, the Downing jar has been found more satisfactory during the early stages of development. Approximately 125,000 eggs are placed in a hatching jar and held to the eyed stage, at which time it is customary to transfer them to trays for the completion of incubation.

A peculiarity in connection with the development of grayling eggs is the appearance on the green eggs during the first day of an opaque spot, which gradually enlarges until one-half the surface of the egg is covered, giving it somewhat the appearance of a dead egg. This cloudy condition is of short duration and by the end of the third or fourth day is no longer visible. The embryo becomes active in the egg before the eye spot can be seen by the unaided eye.

Eyed grayling eggs can be transported without difficulty when properly packed. Any of the methods in general use may be successfully applied in the preparation of grayling eggs for shipment.

> FRY AND THEIR DISTRIBUTION.

The percentage of fry produced from grayling eggs in Montana is low, as a rule, seldom exceeding 50. The young fry are provided with a very small yolk sac. On emerging from the egg they are comparatively helpless and show little signs of animation until the sac is practically absorbed at the end of the first week. They are then free-swimming, about one-half inch long, and quite slender and delicate, resembling the fry of whitefish or shad. At this period they move about in search of food but are never as active as are salmon or trout fry at a similar age.

It is customary to distribute the fry within two or three days after incubation is completed, since the attempts made to rear them have not given good results. The fry do not take readily to artificial feeding, and when moved from hatching troughs to rearing ponds they usually refuse food entirely for the first several days. However, the outcome of recent experiments along this line gives ground for the belief that with proper facilities this difficulty in rearing may be overcome.

THE LAKE OR MACKINAW TROUT.

RANGE.

The lake trout is found throughout the chain of the Great Lakes and the inland lakes of northern New York, New Hampshire, and

Maine; the headwaters of the Columbia and Fraser Rivers and streams of Vancouver Island; and even waters within the Arctic Circle are said to contain this species. The present paper discusses the trout of the Great Lakes and the methods employed in its artificial propagation at the bureau's stations on Lake Michigan, at Charlevoix, Mich.; on Lake Superior, at Duluth, Minn.; and on Lake Ontario, at Cape Vincent, N. Y.

DESCRIPTION.

This handsome species (Cristivomer namaycush), the largest of the trouts, is classed with the charrs. It has an elongated body, the length being about four and one-half times the depth. The head is large, flat above, and about as long as the body is deep. The mouth is large; the maxillary bone extends beyond the eye and is half the length of the head; the jaws have strong teeth. A peculiarity of the vomerine bone distinguishes this fish from the genus Salvelinus; it has a crest provided with teeth extending backward from the shaft of the bone. On the hyoid bone the teeth are in a cardiform band. The eye, placed near the top of the head, is contained only about four and one-half times in length of head. The caudal fin is well marked. Both the dorsal and anal fins contain 9 to 11 rays. In the straight lateral line there are about 200 scales. Branchiostegals 11 to 12.

The coloration is quite variable in fish from different localities. The general color is usually dark gray. The body, head, and fins are covered with small, discrete rounded spots, usually of a pale color but often tinged with reddish. On the back and top of head there are fine vermiculations, as in the brook trout. Examples from some lakes of Maine and eastern Canada are nearly black, and Alaskan examples are often very dark; others are quite pale. This fish is known in Maine and other sections of New England under the name of "togue," and in Canada as the gray trout.

That variety of the lake trout known as the siscowet (Cristivomer namaycush siscowet), found only in deep water in Lake Superior, is shorter and paler than the typical fish and has weaker teeth and a shorter head. It is, however, chiefly characterized by an excessive fatness, which greatly reduces its food value.

INFLUENCE OF ENVIRONMENT.

The nature of the environment has a decided influence on the characteristics of the lake trout, the temperature of the water, the food, and the character of the bottom entirely changing the markings and peculiarities of the fish in its various habitats.

FOOD.

Until recently it was commonly thought that the principal food of the lake trout. was the young whitefish, and for this reason the fishermen of the lakes were generally unfavorable to its artificial propagation. The error of that belief is now generally conceded, though no doubt quite a number of young whitefish become food for
trout during each season. Inasmuch as the habits of the lake trout take it to deep water immediately after spawning, whereas the young whitefish remain in shallows, the few whitefish that are destroyed in this manner are either stragglers from shoal to deep water or are taken by trout aimlessly wandering from their natural range. The lake trout is an omnivorous feeder and has a ravenous appetite. It greedily devours all fishes possessing fins of flexible character; and jackknives, corncobs, and other articles equally indigestible have been found in its stomach.

ENEMIES.

The spawn and fry of lake trout suffer from the same enemies as the young of all fishes, but the mature fish are too formidable for other species to prey upon. They are troubled with a few parasites. Occasionally individuals very thin in flesh and sickly looking, known to fishermen as "racers," are found swimming near the surface. No sufficient cause has been discovered for this condition, as the racers are no more afllicted with parasites than are healthy fish.

COMMERCIAL VALUE AND ABUNDANCE.
In the early history of the fisheries of the Great Lakes the lake trout was so plentiful that it did not command a price commensurate with its edible qualities. It has since increased in favor and is to-day one of the highly prized and, with the exception of the whitefishes and ciscoes, perhaps the most numerous food fish of the Great Lakes. It is exceeded in weight by the sturgeon only. Instances are cited by fishermen and others of lake trout weighing as high as 125 pounds, and its average weight has been given at from 20 to 30 pounds; but of late examples are rarely found exceeding 10 or 15 pounds. If unmolested by man they might again reach the enormous weight of early citations, their sluggish movements and voracity being conducive to such a result.

In 1917 the catch of lake trout from the five Great Lakes and Lake St. Clair amounted to $13,344,130$ pounds, valued at $\$ 1,286,704$, the catch being exceeded in weight and value only by that of the ciscoes. Very little thought was given to the conservation of the lake trout until 1886, when it became apparent to those interested that decisive steps must be taken to provide against the extermination of a most valuable food fish. Artificial propagation was undertaken at this time and has been continued by the Federal Government and the several States interested. During the fiscal year 1921 the output of lake trout fry and fingerlings from the hatcheries operated by the Bureau of Fisheries amounted to $19,478,500$.

Attention was also directed to the desirability of regulating the methods employed in the fishery, and all States have enacted laws specifying the forms of apparatus that may be used and the season of the year when fishing may be legally conducted. Unfortunately such laws are not uniform in their application. However, most of the States require all fishermen to deliver, either to agents of the bureau or the State, all ripe eggs taken in their work or to afford suitable accommodations to spawn takers employed by the bureau or State.

Spawning commences the last of September in Lake Superior and later in the lower lakes, since the water does not become sufficiently cool there as early as in the headwaters. In Lakes Huron and Michigan the height of the season is from November 10 to 20, and spawning continues to the 1st of December. The spawning grounds are on the reefs of "honeycombed" rocks, 10 to 15 miles from shore, and during the reproductive period vast numbers of fish visit these places, spawning in a depth of from 1 to 20 fathoms. Owing to the great depth of water, the shyness of the fish, and the severity of the weather at this time, nothing definite has been determined as to the maneuvers of the fish while spawning. The supposition is that the female lies over an indentation of the rocks and allows her eggs to settle into the "honeycomb" cavities, since fragments of the rock with the cavities filled with eggs have been hauled in by fishermen when lifting their nets. No doubt the general characteristics of the Salmonidæ are carried out by the lake trout so far as is permitted by the conditions in which they exist.

Observers of the spawning habits of the lake trout in Lake George, N. Y., have the following to say on the subject:

It is the habit of the lake trout to migrate to shallow water for the spawning function, the time varying anywhere from October 25 to November 1, in accordance with the water temperature. During the spawning period fish will be found upon almost every rocky shoal, at the end of an island, or along the main shore line, in from 1 to 4 feet of water, though they sometimes spawn at a much greater depth. Ordinarily spawning occurs in places where there are small bowlders from 1 to 3 feet or more in diameter. Between such bowlders it is possible to see the trout lying side by side in pairs, each heading in an opposite direction, as if to guard against intrusion from all points.

An instance has been known of a Mackinaw trout of 24 pounds weight containing 14,943 eggs; but not over 5,000 or 6,000 eggs are commonly found, and after the trout have attained maturity, at 3 years of age, 1,000 eggs to the pound of fish may be accepted as a general rule.

A much smaller variety, called the shoal trout, is found in Lake Huron in the vicinity of Alpena and in Lake Michigan near Charlevoix and Northport. Its weight compared with its length is greater than that of the true Mackinaw trout. The markings and appearance of the two differ also. The shoal trout spawns in September, about a month earlier than the Mackinaw trout. Its spawning grounds are the cobble, bowlder, or gravel bottoms, in from 2 to 8 feet of water.

ARTIFLCLAL PROPAGATION.

COLLECTION AND INCUBATION OF EGGS.

The present methods of fishing for lake trout include gill nets, seines, and pound nets, but most of the eggs taken for artificial propagation are obtained from the gill-net fishermen. The gill nets are operated from steam vessels equipped with the most approved appliances for their trade and with living quarters for a crew of 8 to 10 men.

During the egg-collecting period spawn takers are employed to accompany the fishing boats for the purpose of taking ripe eggs from the fish secured. Where a boat is operating a long string of

Fig. 36.-Tug lifting gill net for lake trout in Lake Michigan.

Fig. 37-Collecting lake-trout spawn on fishing steamer in Lake Michigan.
nets, or where exceptionally large catches are being made, two spawn takers may be detailed to one boat.

Pans, pails, and dippers are taken on board and made ready by the time the nets are reached. As the net is lifted the men disentangle the trout and throw them on deck, where the spawn takers sort them orer, taking the eggs from ripe females and impregnating them with milt from the males. During very severe weather the fish are thrown into the hold instead of on deck, and the work is done there.

On the small gasoline boats operated by two to four men the crew takes the eggs and delivers them to the bureau's agent or to the collecting boat. The eggs are sometimes taken at widely separated points and shipped to the main field station and then to the hatchery.

The manner of taking the eggs is similar to that employed in taking spawn from other trout and salmon. First, a female is taken up and the eggs, if mature, are gently stripped into an ordinary milk pan and then impregnated with milt from a male. This operation is repeated until the pan is half full, when the eggs are "washed up" and poured into a 5 -gallon pail. The washing-up process is performed by filling the pans with water and allowing it to run off, repeating the act until the water poured off no longer appears milky. As the specific gravity of the eggs prevents their rising to the surface, this can be done without loss if ordinary care is exercised. The pans are refilled and emptied in this manner until the pail is half or three-fourths full, when it will contain about 75,000 eggs. Other pails or buckets are brought into use as often as may be necessary. To keep the eggs from dying, the water is changed in the large pails every hour until the eggs are taken from the boat and transferred to scrim trays or floating boxes. All pans, pails, and other metallic utensils are coated with asphaltum paint to prevent the appearance of rust, which is fatal to the eggs.

When the weather is so cold that there is any chance of the eggs freezing to the pan, two pans are used. The outside one is partly filled with water, upon which floats the pan that is to receive the eggs as they are stripped. The pan of water protects that part of the inside pan where the eggs rest, and in that way their temperature is kept above the freezing point.

SHIPPING EGGS TO THE HATCHERY.

When spawn takers are operating at a distance, the eggs are held at conveniently located field stations, whence they are sent to the hatchery as soon as possible: but if the stations are at isolated points on the lakes it is often necessary to hold the eggs for several days before means of transportation can be obtained. In such cases the eggs are held in floating boxes, which are made $2 \frac{1}{2}$ by $1 \frac{1}{2}$ feet by 1 foot, with the ends rounded up about 6 inches. The sides and ends are 1 -inch pine and the bottom $\frac{1}{6}$-inch mesh iron wire cloth, which is continued over the rounded ends. Cleats are nailed on the sides, one end somewhat lower than the other, to give the box a tilt when placed in water. Each box carries safely about 180,000 eggs, and when filled it is anchored either in running water or in a sheltered cove of the lake. In the former case a current of water is kept passing through the box, while in the latter the
eggs are given a slight motion by the action of the waves upon the surface of the water.

When eggs held in floating boxes are to be shipped, they are dipped into pails and carried to a place arranged for packing them, where a table upon which to rest the trays has been improrised from any material on hand.

The egg trays are constructed of three-fourths inch material 16 inches square inside measurement, with cheesecloth or linen scrim tacked on one side. A case large enough to contain 19 of these one over the other and to allow for a surrounding air space of 1 inch is made of seven-eighths inch pine. Cleats of one-lalf inch material are fastened to the bottom, on which the egg trays rest, and 1 -inch strips are attached to the inside corners to hold the stack securely in position. The case is provided with hinged cover and suitable handles. Such a case with 18 egg trays, the top tray being

Fig. 38.-Floating box.
filled with moss and serving as a cover for the eggs, has a capacity for approximately 145,000 eggs.

When making up a shipment from a field station, the eggs are transferred from the pails to trays by means of a graduated dipper. About 8,000 are carefully placed on a tray and evenly distributed. This is easily accomplished by a gentle shake of the tray, holding it on a flat, smooth surface. A small amount of water in the measure, added either before or after the eggs are on the tray, will facilitate the work. The use of ice depends upon the outside air temperature and the distance the eggs are to be transported in baggage cars. For short shipments from the field little, if any, is needed. If the case is to pass through a varied air temperature, moss is packed in the space between the trays of eggs and the sides of the shipping case for protection against abrupt changes in the weather.

If it is necessary to hold the eggs on the trays for any length of time, as is often the case, each tray must be taken out and sprinkled
with water at least once every 24 hours. If held for a longer period than four or five days, they must be taken from the trays and washed in a tub of water in the manner described in taking spawn. In adding water the dipper is either held down near the eggs or the water is poured against the side of the tub a little above the surface of the spawn in order to guard against its striking them with such force as to cause injury. Poured in this manner the eggs are given a steady whirling motion and are not injured.

The process of transferring eggs from trays to a tub is very simple. After filling a tub with water to about one-third of its capacity a tray of eggs is placed in the water at an angle of about 45° with its surface, causing most of the eggs to slide down the incline into the tub. The few remaining eggs may be washed down by pouring a little water on the uppermost side of the tray. After giving the eggs a good washing they are replaced on the trays and returned to the cases as described above.

The eggs are shipped in charge of a messenger to insure careful handling at transfer points and when being placed in the baggage car. They must be kept in the coolest place in the baggage car, provided its temperature is not below 28° or $30^{\circ} \mathrm{F}$.

Because of the difficulties encountered in collecting lake-trout eggs from commercial fishermen for artificial propagation it is not surprising that the percentage of fry produced from such eggs falls below the percentage realized in the hatching of other species of trout whose eggs are obtained under more promising conditions.

In common with the eggs of all the trouts and salmons, the eggs of the lake trout display a strong adhesive tendency when first expressed from the fish. This characteristic persists for a longer or shorter period, apparently depending to a considerable extent on the water temperature. The necessity of absolute quiet during this period has long been recognized in fish-cultural practice. The rolling and pitching of the boats upon which the sparn takers operate prevent the eggs from separating naturally. Separation should occur approximately within 30 minutes after the eggs are stripped, but, as the boats are out from 5 to 24 hours or longer, quiet is no longer of value when they reach the shore. Furthermore, the temperature often falls below the freezing point, and despite all precautions considerable numbers of the eggs are frequently chilled, though the ill effects may not become apparent until after they have reached the hatchery. Other losses often occur through accident or the carelessness of those handling the cases of green eggs while en route to the hatchery.

It is very probable that the greatest loss occurs through improper taking of the eggs. The bureau can not place experienced sparn takers on all the boats, and the fishermen of the smaller outfits take the eggs available and are sometimes careless in performing the operation. Frequently eggs and milt are taken from fish that have been read for some time. After taking the eggs they are not always cleaned and carefully placed in the kegs. The fishermen are naturally more interested in the catch of fish than in the care of the eggs.

The hatching trough in use at the Charlevoix (Mich.) station embodies the principles of the Williamson hatching apparatus, with the exception that it has deep pockets and trays (fig. 40). Though simple in construction, this trough possesses more advantages than any other device for the development of large numbers of eggs within a limited space. It permits of a thorough circulation of water; the eggs can be readily handled for picking and cleaning, and the fry may be carried on trays until the yolk sac is absorbed, when they are ready to plant. Only the best $1 \frac{1}{2}$-inch pine or cypress is used in its construction, all planks containing imperfections being rejected. The sides and ends are each made of a single piece of lumber, the bottom being made first. All strips of different widths used in the construction are tongued and grooved, and all joints are laid in white lead.

Referring to Figure 40, it will be noted that the trough is divided by cross partitions into compartments $16 \frac{1}{2}$ by $14 \frac{1}{2}$ inches. The stationary wooden partitions are mortised one-fourth inch in the sides of the trough and are raised three-fourths inch from the trough bottom to allow water to pass under them. They extend to within three-fourths inch of the top. The movable partitions are made of 14 or 16 gauge galvanized iron, set $1 \frac{1}{2}$ inches from the others in onefourth inch saw cuts in the sides and bottom of the trough and are readily removable. These movable partitions extend from the bottom of the trough to the level of the top egg tray.

In the bottoms of the compartments thus formed strips one-half inch by seven-eighths inch are nailed at the sides, on which the trays rest. Each compartment holds 13 trays, of which 12 are filled with eggs, the top one serving merely as a cover to prevent the eggs on the twelfth tray from being carried off by the current. About three-fourths inch below the top on either side is a three-eighths-inch groove running the full length of the trough. A crossbar with a five-eighths-inch block is made to fit into these grooves and hold the trays securely in place, preventing them from rising in the water.

Water enters the head of the trough through a 1 -inch pipe, a flow of 5 gallons per minute being the usual volume. By arranging the partition as is indicated in Figure 40, all water must pass from the bottom of the trough upward through each alternate stack of trays containing the eggs or fry, flowing first over an iron partition, under the succeeding wooden one, up through the trays, and so on throughout the length of the trough.

The troughs are set upon iron standards cemented into the floor and are given a pitch of 1 inch to every 8 feet in length. The height from the floor is a matter of convenience to the operator, or it depends upon the fall of water available. The trays are wooden frames 14 by 16 inches, made of seven-eighths-inch strips. They are covered with galvanized wire cloth 14 meshes to the inch for eggs, a smaller mesh being substituted for fry, as is described under care of eggs and fry. The trays will conveniently hold 1 quart of eggs (approximately 6,400) or 3,500 fry to the time they are ready to take food. The troughs and trays are given three coats of asphaltum
U. S. B. F. Doc. 949.

paint before using and one additional coat at the beginning of each successive season.

Where there is occasion to economize in the use of water, it may pass through two or more troughs, so placed that the overflow from the first trough is 8 inches higher than the head of the one immediately below. This fall gives some aeration to the water, and the results are usually as satisfactory as where an independent water supply is furmished to each trough. In this manner two double troughs, with 38 compartments, occupying a floor space of about 90 square feet, with the required flow of 10 gallons of well-aerated water per minute, will accommodate very nearly $3,000,000$ eggs.

If the water supply carries any considerable amount of sediment, or if it is subject to even occasional periods of turbidity from surface drainage or other causes, it is essential to install a filter, otherwise the eggs soon become coated with sediment, the trays clog, and the water circulation is impaired, a condition which is sure to result in serious loss. The bureau has found that water pumped directly from the lakes is the most satisfactory source of hatchery supply. Spring water, with its usually higher temperature, shortens the natural incubation period and for this reason is objectionable.

A convenience in caring for the eggs is a shallow picking trough of any length, 15 inches wide and $2 \frac{1}{2}$ inches deep. A strip one-half by seven-eighths inch is nailed along each side of the bottom, and upon these the trays rest, to give a good circulation while the eggs are being assorted. The trough has a fall of not more than one-half inch throughout a length of 20 feet, and it is fed by a flow of about 2 gallons of water per minute. A dam at its lower end raises the water $1 \frac{1}{4}$ inches, not entirely covering the trays. This is a point that must not be overlooked, for if the water flows over the tops of the trays many of the eggs or fry will be washed a way.

CARE OF EGGS AND FRY.

On arrival at the hatchery the eggs are removed from the shipping cases and turned into tubs, whence they are transferred to the hatching troughs. In removing them from the shipping trays to tubs the method followed in washing eggs that have been held in cases for several days is employed, the transfer being made at a temperature not exceeding $50^{\circ} \mathrm{F}$.
The eggs are measured in a dipper having a perforated bottom, its capacity first being determined by an actual count of eggs, 1 quartapproximately 6,400 eggs-being placed on each tray. A tray is placed in the water and a dipperful of eggs poured upon it and evenly distributed; then another tray, placed on top of the first, is filled, and the operation repeated until 12 trays have been filled. The thirteenth, or cover tray, is left empty and the whole apparatus is secured in place by the use of the cross bar or binder described on page 24. For the first few weeks after the eggs are installed in the hatchery they must be given close attention to prevent the growth and spread of fungus; all dead eggs must be carefully removed and the trays and troughs kept thoroughly clean.

To remove the egg trays for assorting, the binder is first slipped from the grooves and the trays are taken out separately. Each tray will rise to the surface as the one above it is removed, or they may be
taken out as a unit by encircling the stack of trays with a galvanizediron binder $1 \frac{1}{2}$ inches wide. All the trays are taken from one compartment and placed one after the other along the picking trough. The dead eggs, which soon become white and opaque and are easily distinguishable, are then picked out with small metal tweezers. If allowed to remain on the trays, a fungus would soon develop on them and spread its growth until all eggs within a short radius were affected and eventually smothered. When it is necessary to change the position of the eggs, bringing those at the bottom to the surface, it may be accomplished by the use of a soft feather, which, if carefully manipulated, will have no injurious effect. After carefully assorting the eggs the trays are again placed in the hatching trough and are looked over at least every three days during the first five or six weeks.

After the eggs have reached that stage of development where the eye spots are discernible by the unaided eye they are comparatively hardy and less susceptible to injury from handling. At this time it is customary to remove them from the hatching trays and subject them to a thorough washing. This may be accomplished by placing the eggs in pans or buckets and passing a soft feather brush among them; or a stream of water can be introduced into the vessel with sufficient force to agitate the eggs to a considerable extent. This washing not only removes all sediment that may have become attached to the outer covering of the eggs, but it also causes all infertile eggs (ringers), which up to this point have retained the color and appearance of good eggs, to turn white, thus greatly facilitating their removal. If there are only a few infertile or dead eggs, they may be removed by the use of the tweezers mentioned; but if there is a considerable number, their separation can be more readily accomplished by submerging the trays with the eggs in a salt solution. As the specific gravity of dead eggs is slightly less than that of live ones, they rise to the surface of the solution and may be removed with a small net. The salt solution is composed of approximately one part dairy salt to eight or nine parts of water. It is always advisable to test its suitability by introducing into it a small number of both living and dead eggs. Fresh water or salt may be added as required to bring the solution to the proper density.

From this time to the hatching point the eggs will require but little attention, it being necessary to go over them only about once a week for the purpose of removing any accumulation of sediment or an occasional dead egg.

From two to three weeks before the hatching period the eggs are transferred from the trays to tubs of water, carefully washed, and placed on clean trays, after which a careful measurement is made to determine the actual number of eyed eggs remaining in the hatchery. From this time until the fry commence to hatch a careful count is kept of all the dead eggs removed. On the completion of the hatching period this number is deducted from the measurement of the eyed eggs to determine the approximate number of fry. A careful count is also kept of the fry losses up to the time they are ready to plant. In a water temperature of 40° to $45^{\circ} \mathrm{F}$. the eye spots are visible in from 20 to 40 days, while the total incubation period is approximately 131 days in a mean temperature of 36°. The fry
absorb the yolk sac in 30 days at a mean temperature of 39°. These stages of development are all subject to considerable variation, being shortened or lengthened as the mean water temperature is decreased or increased. As the time of hatching approaches the distinct outline of the fish is plainly visible in the dark hue of the egg, and the convulsive movements of the embryo fish continue to increase until hatching occurs, when the fish breaks forth from the shell with its tail. The bright warm days of spring and the slightly warmer water temperatures usually bring out 50 per cent of the fry between the hours of 6 and $10 \mathrm{p} . \mathrm{m}$.

Just prior to the hatching period the eggs are removed from the trays on which they have been developing and transferred to trays covered with wire cloth of smaller mesh-16 to the inch. The larger mesh cloth gives a freer circulation of water during the development of the eggs, but the smaller mesh is required for the fry, as the yolk sacs of many of them become enmeshed if a more closely woven cloth is not provided.

Considerable attention is required of the fish-culturist at this time to guard against smothering of the fry. The shells from hatching fish must be removed to prevent clogging of the trays and stoppage of the water circulation. To provide against it, when about 50 per cent of the eggs have completed development, one stack of 12 trays is emptied into a pan of water and the eggs and fry stirred with a feather. This causes the shells to rise to the top, and they can be poured off easily by gently tipping the pan. By repeating the operation several times the hatching fish are entirely freed from refuse. In returning the fish and eggs to the trays they should be divided as equally as possible among the 12 trays. To accomplish this the trays are placed in the picking trough and the fish-culturist starts at the upper end, pouring an equal quantity on each of the trays. Since handling the eggs at this time hastens hatching, it is seldom necessary to give this treatment more than two or three times.
From the hatching period until just prior to the complete absorption of the food sac, at which time the fry are usually distributed, the treatment given them is somewhat similar to that prescribed for the eggs. Monstrosities, "blue-sacs", and dead fry are picked out as soon as discovered. The fry grow very fast at this period; therefore it is not advisable to place more than 3,500 on a hatching tray, 14 by 16 inches in dimensions, which number can be held until they are ready to plant.

DISTRIBUTION OF FRY.

In view of all the considerations involved, perhaps the most satisfactory results are to be obtained from planting lake-trout fry just prior to the complete absorption of the yolk sac. Liberated at this stage of development, they are provided with sufficient nourishment to sustain life until they become somewhat acclimated to their new surroundings and the impulse to forage for their natural food has not been lessened by having artificial food placed conveniently before them. At none of its stations where lake trout are propagated is the burean equipped for rearing to the fingerling size the large numbers of fry produced. In view of the importance of the industry de-
pendent on the lake-trout fishery and the urgent need for exercising the most careful conservation in order to maintain the supply, the lureau has for a number of years found it experdient to distribute the output of its lake-trout hatcheries on the local spawning grounds from which the eggs are obtained. The fry are placed in the ordinary 10 -gallon cans used in the distribution work, one tray of fry being carried to each can for medium distances. They are frequently transported in the bureau's distribution cars to a convenient lake port and thence by means of a fishing steamer to the planting areas. However, most of the plants are made by placing the cans of fish on regular commercial vessels employed for the trip. At the Charlevoix (Mich.) station, where the bureau has a boat equipped with two troughs, the trays of fish are carried from the hatchery to the boat, a distance of 100 feet, and placed in troughs, which are supplied with running water by a pump. Since the conditions are the same as in the hatchery, the fry may be carried long distances withont loss. Allotments of lake-trout eggs are not infrequently supplied to various State fish commissions, where this course will result in economy in distributing the resulting fry or where possibilities exist for extending the fishery to new and unproductive fields.

PACKING EYED EGGS FOR SHIPMENT.

Just as soon as the eye spots are plainly visible the eggs can be packed and successfully shipped to any part of the United States or to most of the foreign countries, provided they are maintained at a uniform temperature. The shipping trays are usually constructed of material three-fourths inch thick by 1 inch wide, and the bottoms are covered with linen scrim or heavy cheesecloth. The size of the trays depends upon the number of eggs to be shipped. For a 50,000 case of eggs 12 trays 14 inches square are used. After installing the eggs on them the trays are placed one above another in the egg case. The ice hopper is then inserted and the pressure of the lid holds down the entire lot. For shipments to points within the United States where the eggs will not be en route more than four or five days the packing case is insulated with a $1 \frac{1}{2}$ or 2 inch thickness of ground cork.

In preparing the shipment the temperature of the room in which the eggs are to be packed should not be higher than 40° or lower than $26^{\circ} \mathrm{F}$. The trays are first stacked in order on a table to receive the eggs; then a compartment of eggs that has been previously picked and cleaned is taken from the trough and carried to the packing room in a tub of water. The day before the shipment is to be made up the eggs are usually poured from one pan to another, the slight concussion resulting being sufficient to cause all infertile eggs to turn white. In the packing room most of the water is poured from the tub, and the eggs are removed by the use of a graduated dipper with perforated bottom and placed in a 16 -ounce glass graduate. The proper number of ounces is then poured onto each tray, the trays having previously been spread with mosquito bar from 4 to 6 inches wider than their outside dimensions. The eggs are carefully distributed over the smrface of the tray, as already described, and the edges of the mosquito bar brought in and lapped
U. S. B. F.-Doc. 949.

Fig. 41.-Packing eyed eggs for shipment, Northville, Mich.

over the top of the eggs. Unless the shipment is to be in transit a number of days it is not necessary to use moss. When moss is used it is placed between the eggs and the wooden frame of the tray, and frequently some of it is scattered over the top of the eggs, the mosquito bar preventing it from coming in direct contact with them. The best moss for the purpose is known as sphagnum, which is found in low, swampy places. It should be gathered in the fall when green and stored in a damp place until required. It is well soaked in water before placing it on the trays and the surplus water removed by squeezing a bunch of it between the hands.

When packed, the egg trays are placed upon an empty tray that has previously been filled with moss, the upper tray of eggs is covered with a tray of moss, and the ice hopper is put in place. Best results will follow if a block of ice is fitted into the ice hopper. In most of the shipments that are destined to points within the United States crushed ice is not used around the egg trays. Shipments intended for foreign countries are prepared in the same manner, except that moss is placed on each of the egg trays and the outside packing case is provided with a 2-inch thickness of cork insulation. The interior of the case is so arranged as to provide a $1 \frac{1}{2}$ or 2 inch space all around the egg trays for crushed ice. An ice hopper is also used at the top. These cases are shown in Figure 42.

FEEDING AND REARING.

Lake-trout fry may be held in troughs and fed, as are the fry of other species of trout. Such a procedure is prohibitive at stations of the Bureau of Fisheries that are concerned with the commercial fishery, owing to the impossibility of providing sufficient space and facilities for accommodating the large numbers produced. Moreover, it is the consensus of opinion among scientists and fishculturists that better results are assured in this field by planting the young fish on the spawning grounds just before the yolk sac is absorbed, at the time when they are known as "free swimmers." At stations of the bureau where small numbers of lake trout are reared for noncommercial purposes the fish are held in troughs 12 to 16 feet long, 14 inches wide, and 8 inches deep, inside measurement. A screen compartment about 6 inches wide at the head of the trough prevents the fish from coming in direct contact with the inflow of water, and about 1 inch below it is a dam board extending within one-half inch of the bottom of the trough. At intervals of 18 inches throughout the remaining length of the trough cleats $1 \frac{3}{4}$ inches high are mortised across the bottom of the trough. In the sides of the trough just above the cleats saw cuts one-fourth inch deep are made for the insertion of screens, their purpose being to distribute the fish evenly in small compartments throughout the length of the trough. After the fish have been fed for two or three weeks they will adjust themselves to the different parts of the trough, when the screens may be removed.

A week or 10 days before the disappearance of the yolk sac the fry intended for rearing should be transferred to troughs. A trough 14 feet long, supplied with 8 to 10 gallons of water per minute, at a temperature ranging from 45 to 50° F., will support 25,000 fry
for two or three weeks after the beginning of the, feeding period. As the fingerlings increase in size they must be thinned by removing some of them, and by the time they have attained a length of 3 inches not more than 5,000 can be safely carried to a trough.

For the first four weeks the fry are fed from four to six times a day on finely chopped beef liver or beef heart. The food must be carefully trimmed of all fat and gristle, and, after being run through the finest plate of a meat chopper two or three times, it should finally be passed through a tin having perforations one-tenth inch in diameter. This tin is usually placed between the knives and the plate on the meat grinder. Just before giving it to the fish the food is diluted with water and carefully stirred with a spoon. A small amount is then dipped up with a feather and carefully placed in the troughs. For some days the fish will appear not to be taking their food, but with the continuance of the feeding routine the entire lot will soon commence to feed. No prescribed quantity of food can be suggested for a given number of fish. The amount must depend upon the manner in which the fish take it. From 50 to 70 days after hatching the number of feedings per day may be reduced to three.

The troughs must be thoroughly cleaned twice daily, morning and evening, and during the cleaning process it is usually well to double the flow of water. The foul matter in the trough may be gradually worked to the foot screen with a feather, and by reducing the depth of water in the trough the scurrying of the fish will hasten the flow of sediment toward the foot screen.

After the fish reach a length of 2 or 3 inches they may be distributed in outside rearing ponds. At stations of the burean where lake trout were formerly reared in ponds from 50,000 to 75,000 fish of this size were held in a pond 100 feet long, 5 to 6 feet wide, and provided with a flow of 35 to 50 gallons of water per minute, at a temperature not exceeding $50^{\circ} \mathrm{F}$. Ponds for work of this character should have natural earth sides and gravel bottoms.

Fig. 1.-st. Gicorge landing and village, Pribilof Islands.

ALASKA FISHERY AND FUR-SEAL INDUSTRIES IN 1922. ${ }^{1}$

By Ward T. Bower, Field Assistant.

CONTENTS.

Page.
INTRCOUCTION
Special investigation by Assistant Secretaryof Commerce and party3
Regular employees, Alaska service.6
Fishery ladustries 8
Waters elosed to commercial fishing8
Alaska Peninsula Fisheries Reservation... 8
Southwestern Alaska Fisheries Reservation 11
A fognak Reservation 15
Aleutian Islands Reservation.
16
Annette 1sland Fishery Reserve. 16
Stream markers 16
17
Fishery patrol 18
Alaska fishery intelligence service 18 18
Violations of the fisheries laws and regula- tions. 19
Territoriallicense tax 21
Water-power projects in Alaska 21
Tagging of salmon. 24 24
Salmon for fox food
Salmon for fox food
Bristol Bay district. 25
General report of season's orera:ions. 25
Destruction of predatory fishes and birds 26
Extent of salmon runs 31
Patrol. 32
Spawning grounds
Spawning grounds 33 33
Wood River lake system
Wood River lake system 35
35
39
General report of season's opera'ions. 39
Predatory fish and birds
Predatory fish and birds 41
Fishing on spawning ground 41
Conclusion 41
Lake Aleknagik investigations.
Notes on explorations of Lake Aleknagik,
Notes on explorations of Lake Aleknagik, Alaska, its tributaries, and the salmon spawning grounds, in 1908 and 1909 42
50
The large escapement of 1908 50
Kuskokwim River 50 50
Markers. 53
Runs of salmon.$E 4$
Natural enemies 54
General description of the Kuskokwim
General description of the Kuskokwim 5. 5.
Chignik salmon counts 56
Karluk salmon counts 5
Yukon River fishery
Yukon River fishery 57 57
Hatcheries.
Hatcheries. 58
58
Extent of operation -9
Hatchery rebates.
Hatchery rebates. 9 9 59
59
Hatchery operations
Hatchery operations
MeDonald Lake
MeDonald Lake
ก?
ก?
Fortmann 59
Quadra.. f0
Territorial hatcheries $f 0$
60
Egg collections by Washington state fish- crs authorities f0
General statistics of the fisheries 61 61
Salmon industry 62 62
Salmon catch and apparatus. 63
Salmon canning
Salmon canning 6
Changes in canneries. 64 64
New canneries 65
65
Total 65
Total canneries opera (68

Statistics.| 68 |
| :--- |
| 68 |

Mild euring of salmon 72
Salmon pickling 72
${ }^{1}$ Appendix If to the Report of the U. S. Commissioner of Fisheries for 1923.

INTRODUCTION.

The bureau's work in Alaska was conducted along much the usual lines in the calendar year 1922, the chief change being the adoption of the policy of establishing reservations in districts that were threatened with overfishing and the licensing of operators under restrictions on output and apparatus. Two reservations were created, the Alaska Peninsula Fisheries Reservation by Executive order of February 17, 1922, and the Southwestern Alaska Fisheries Reservation by Executive order of November 3, 1922. Special regulations governing fishing operations in the Alaska Peninsula Fisheries Reservation were in effect during the fishing season of 1922.

A considerably increased force of temporary stream guards worked under the direction of the bureau's permanent employees during the active fishing season. Three patrol boats were added to the bureau's fleet and were made use of for the first time this season. A larger number of small boats was also chartered during the season.

An expedition was again sent into the Bristol Bay region, which during the early part of the season gave attention to the destruction of predatory fishes and birds and during commercial fishing activities maintained a patrol for the enforcement of the fishery laws and regulations. Two members of the party remained in the district during the winter of 1922-23 to make an examination of spawning beds and secure information as to the size of the escapement of spawning salmon.

A count of spawning salmon ascending the Karluk River was again made, and similar operations were undertaken at Chignik River, where a rack was constructed a short distance above Chignik Lagoon. A special study of fishery conditions on the Kuskokwim River was made.

The burean cooperated with the Federal Power Commission in connection with applications for licenses for power projects in Alaska. Inquiries were made regarding the use of salmon for fox food on the numerous fur farms in Alaska.

In connection with studies by Dr. C. H. Gilbert of the life history of the Pacific salmons, and particularly the determination of migration routes, important work was inangurated by the tagging of salmon taken from traps along the Alaska Peninsula and at the Shumagin Islands and by the collection of data on the time and place of recapture.

No change was made in the regulations for the protection of walruses and sea lions.

Transportation of Government employees and supplies for the Pribilof Islands was chiefly by commercial vessels, although valuable assistance along these lines was rendered by Coast Guard and naval vessels in a number of instances.

Operations in connection with the fur-seal and blue-fox industries and the administration of the affairs of the natives on the Pribilof Islands were carried on in a manner similar to previous years. The improved methods of taking skins and the removal of blubber at the islands was extended in operations on St. Paul Island. The total take of sealskins in the calendar year 1922 was 31,156 ; and 888 blue
and 29 white fox skins were taken in the trapping season of 1922-23, in addition to which 12 live foxes for breeding purposes were sold to fox farmers in Alaska.

Two sales at public auction of sealskins taken on the Pribilof Islands were held at St. Louis in 1922 by the selling agents of the department. The fox skins taken in the preceding season were also disposed of at one of these sales.

Acknowledgment is made of the assistance rendered by Assistant Agent Edward M. Ball in the compilation of statistics and text in the fisheries section of this report and by H. D. Aller and Edward C. Johnston in the preparation of data regarding the fur-seal and fox industries of the Pribilof Islands.

A special party headed by the Assistant Secretary of Commerce, and of which the author of this report was a member, made an extensive trip for the study of conditions of the fisheries and fur seals of Alaska, also the seal herds of Russia and Japan, and returned by way of Asia and Europe. The latter part of the trip was more particularly devoted to trade promotion and a study of economic conditions in the various countries visited.

SPECIAL INVESTIGATIONS BY ASSISTANT SECRETARY OF COMMERCE AND PARTY.

With a view to making certain essential inquiries regarding the fisheries of Alaska and the fur-seal industry of the north Pacific, also to devote attention to other important govermmental matters, a party sailed from Seattle June 20, 1922, on the Coast Guard cutter Mojuve, which had been specially detailed for this purpose. The party was headed by C. H. Huston, Assistant Secretary of Commerce, other members officially attached being Dr. Leonhard Stejneger, of the United States National Museum; Dr. Alfred H. Brooks, United States Geological Survey; Lieut. Col. H. M. Evans, United States Public Health Service; Lieut. John M. Creighton, United States Navy; Ward T. Bower, Bureau of Fisheries; D. J. Davis, Department of Labor; and J. L. Baker and C. E. Lindquist, special assistants. Col. James G. Steese, president of the Alaska Road Commission, joined the party at Juneau and continued as far as Petropaulski, Siberia. In Alaska the more important places visited were Ketchikan. Yes Bay, Wrangell, Petersburg, Juneau, Cordova, Seward, Karluk, Chignik, False Pass, Akutan, Unalaska, the Pribilof Islands, and Nome. En route from Seattle a brief stop was also made at Prince Rupert, British Columbia. At Cordova the party left the Mojave and proceeded by railroad and automobile to Fairbanks, thence by Government railway to Anchorage and Seward, where the Mojave was rejoined.

Consideration was given to important fishery questions in the Territory, particularly in regard to measures for perpetuating the supply of salmon so seriously threatened in a number of places. The Government hatchery at Yes Bay was visited, as was also the Territorial hatchery at Juneau. Important conferences were had with the Governor of Alaska and other officials. Note was made of the salmoncounting experiments conducted at Karluk. Important action was taken in regard to administering the fisheries of the Alaska Peninsula Fisheries Reservation.

On July 10 Mr. Huston, accompanied by Dr. Stejneger and Messrs. Bower, Baker, and Lindquist, left the Mojave and proceeded to the Pribilof Islands on the Coast Guard cutter Algonquin, arriving at St. Paul Island July 12, having stopped for a few hours en ronte at St. George Island. Doctor Stejneger and Captain Lindquist left the Pribilofs shortly thereafter on that vessel for the Commander Islands via Unalaska for a special investigation of the Russian fur-seal herd. Mr. Huston made a thorough investigation of the condition of the fur-seal herd at the Pribilof Islands and observed administrative methods and various features of the work. Attention was devoted especially to the improved manner of taking sealskins by stripping the pelts from the animals instead of the old laborions skinning by hand. The journey was resumed on the Mojave July 19, arriving at Nome July 21.

Thereafter visits were paid to Emma Harbor and Anadir, Siberia, where salmon fishery conditions were noted. Although the river at Anadir is large, it does not carry a particularly heavy run of salmon. No canneries were found in that region, and fishing operations were limited to two salteries, the product being destined for Japanese markets.

The Mojave returned from Anadir to Dutch Harbor, Alaska, for fuel, sailing from that place August 2 and arriving at Bering Island of the Commander group on August 8, where a brief visit ashore was made and Doctor Stejneger and Captain Lindquist were taken aboard. The condition of the fur-seal herd of the Commander Islands is not grood; the lack of stable government has proved unfortunate in respect to the protection and conservation of the Russian seal herd. Representatives of the Govermment at Vladivostok were in charge, but their authority was more or less in doubt and they did not know what derelopments might be brought forth from day to day. Inasmuch as this condition has resulted in lack of supplies for the natives, it is only natural that they should engage in the occasional surreptitious disposal of fur-seal and fox skins. From time to time Japanese cruisers have visited the waters, and it is said that the natives traded skins for supplies. It was understood that in 1922 about 600 fur seals would be taken at the Commander Islands, chiefly for food for the native inhabitants.

There has been some seal poaching by Japanese schooners around the Commander Islands; in fact, the crew of a Japanese vessel was captured by native guards at Copper Island and was confined in jail at the time the Mojave was in Petropaulski. Subsequent inquiries at Tokyo developed the fact that officials of the Japanese Government regard this poaching as wholly improper and indefensible.

The Russian fur-seal herd has declined to probably not over 18,000 animals. This matter will be made the subject of a special report by Doctor Stejneger, who had visited the Commander Islands previously in 1882, 1883, 1895, 1896, and 1897. The department considered itself fortunate in securing the services of Doctor Stejneger for this important investigation.

From August 9 to 11 the Mojave was at Petropaulski on the Kamchatka Peninsula, where inquiries were made regarding fishery and fur-trade conditions. This is the principal port on the Kamchatkan coast and is the base of salmon fishery operations conducted at four
canneries in that region. The Kamchatka River, about 100 miles north of Petropaulski, is the only stream of real importance on the eastern coast of Kamchatka. It has a fairly good run of red salmon.

On the west coast of Kamchatka the Ozernaya River has a good run of red salmon and is fished by several canneries. The lack of harbors makes operations precarious. The products are marketed largely in Japan and England. Fishery operations are chiefly controlled by Japanese capital. Several Japanese cruisers were observed in this region, their presence being primarily to afford protection to Japanese fishing interests.

From Petropaulski the Mojave proceeded to Robben Island, arriving August 15. Representatives of the Japanese Government who had been especially sent there for the occasion extended a cordial welcome. A careful examination of the rookeries revealed them to be in splendid condition. The Japanese Government is handling Robben Island very successfully. Doctor Stejneger visited this island in 1896 and was much surprised to note the great increase of the herd in 1922. This island is small, not over one-half mile in length, and the number of fur seals is necessarily correspondingly limited. Doctor Stejneger's preliminary estimate, however, was that the herd now numbers upward of 20,000 animals, a very remarkable increase. The take of skins in 1922 numbered 600 . The results of observations here will be covered in a special report.

After leaving Robben Island August 16 the Mojave made calls at Otomari, Otaru, and Hakodate and reached Yokohama August 26. Members of the party visited Tokyo for conferences with Japanese officials and went also to the Marine Biological Laboratory at Misaki. Messrs. Stejneger, Brooks, and Lindquist returned to the States by commercial steamer from Yokohama. Dr. James F. Abbott, commercial attaché at Tokyo, joined the party and remained with it until arrival at Shanghai. Some of the members of the party proceeded to Kyoto and Osaka, rejoining the Mojave at Kobe. After leaving the latter port a call was made at Itozaki, and Vladivostok was reached September 6, where consideration was given to fishery matters affecting the Siberian coast. The party left Vladivostok September 9 and arrived the following day at Fusan, Korea. From this point Mr. Huston and Doctor Abbott proceeded by train to Seoul, Mukden, Peking, and Shanghai. The Mojave reached Shanghai September 14 and remained nine days. The next port of call was Manila, which was reached September 27. Lieutenant Creighton left at this point and returned to the States.

At Manila the Mojave was dispensed with. Approximately 103 days were spent aboard the vessel and about 12,000 miles were cruised. This was the first extended voyage of the Mojave, one of the new electric-driven Coast Guard cutters built in the fall of 1921. The results speak very highly for the ship and for the efficiency of Lieut. Commander H. G. Hamlet, commanding the vessel, and the officers and crew. Acknowledgment is hereby made of the splendid cooperation and numerons courtesies freely extended by the officers and crew of the Mojave.

From Manila the party, which now consisted of Assistant Secretary Huston and Messrs. Evans, Bower, Baker, and Davis, proceeded by commercial steamer to Hongkong. A trip was also made to Canton. October 10 the party left Hongkong for Singapore, which
was reached five days later. Other points thereafter visited included Penang, Calcutta, Bombay, Aden, Port Said, and Cairo. Marseilles was reached November 25 . From that point visits were made to Monte Carlo, Rome, Milan, Zurich, Vienna, Prague, Berlin, Brussels, Paris, The Hague, and London. Departure from Southampton occurred December 14, and New York was reached December 23.

After leaving Japan attention was chiefly devoted to a study of economic conditions and possibilities of trade promotion through the countries of Asia and Europe. Attention was also given to the activities of representatives of the Department of Commerce stationed in those countries.

In London visits were made to plants where fur-seal skins have been dressed and dyed, and special attention was given to conditions affecting the marketing of fur-seal skins. The conclusion was reached that there was nothing to warrant any change in the method of this Government in disposing of its fur-seal skins in the United States.

REGULAR EMPLOYEES, ALASKA SERVICE.

During the year 1922 the following regular employees were identified with the Alaska service of the bureau:

Regular employees identified with the Alaska service in 1922.

Name.	Position.	Headquarters or chief place of duty.
Ward T. Bower	Field assistant	Washington, D. C.
Dennis Winn.	Chief agent.	Seattle.
Edward M. Ball Harry J. Christo	Assistant agent	Juneau.
Calvin F . Townsend	Inspector	Fairbanks.
Shirley A. Baker.	Assistant agent	Cordora.
Lemuel G. Winga	. .do.	Pethel.
A. H. Proctor.	Superintendent......	
Charles E. Crompton.	Agent and caretaker.	St. George Island. St. Paul Island.
Edwry D. Aller.....	Storekee	St. Paul Island. Do.
Henry C. Scudder..do	St. George Island.
George B. Bowlby	Physician	St. Paul Island. (Resigned Oct. 9, 1922.)
William M. Murph		St. George Island. (Resigned Aug. 11, 1922.)
George S. Lesher.		St. George 1<land. ${ }_{\text {St. Paul Island. }}$ (Appointed Oct. 10, 1922.)
Henry Mygatt.	Assistant to agent	St. Paul Island. (Resigned Aug. 9, 1922.)
Paul E. Moran	do.	St. Paul lsland. (Appointed Aug. 10, 1922.)
Richard Culbertson	School-teach	St. Panl lsland. (Resigned July 31, 1922.)
Harold W. Lashier	do.	St. Paul Island. (Appointed Aug. 18, 1922.)
John M. Orcbard.		St. George lsland.
Edna C. Mygatt		St. Paul 1sland. (Resigned July 10, 1922.) st. Paul Island. (Appointed Aug. 14, 1922.)
Lois L. Proctor.	Warden	St. Paul Island. (Appointed Aug. 14, 1922.)
Fred H. Gray.	do	Wrangell.
James K. Nevill	do	Do.
Adolph T. Looff.	do.	Nushagak.
Joseph N. Braun.		False Pass. (Resigned Scpt. 12, 1922.)
William E. Baunann Chauncer Combs.		A fognak. Haines. (Resigned Ang. 31, 1922.)
Charles Petry.		Chignik.
Lawrence K. Smith	do	Seldovia. (Resigned Dec. 31, 1921.)
Arthur H. Mellic	Master power vessel Fider...	Unalaska.
Jesse L. Nevill	Master patrol vessel Auklet..	Wrangell.
George G. Naud	Master patrol vessel Murre..	Juneau. (Resigned Aug. 31, 1922.) Juneau. (Appointed Sept. 1, 1922.)
Earle L. Hunter	Master patrol vessel Widgcon.	Juncall. (Appointed Aug. 1, 1922.)
C. E. Tibbits..	Master patrol vessel Y'etrel..	Do.
Hector Mcalister	Master patrol loat Scoter.	Nushagak. (Appointed May 1, 1922.)
Albert K. Brow	Clerk.	Washington, D.C.
Mary S. Haines.		Do.
Edna Bishop.		Do. (Resigned Apr 15, 1922)
Gladys M. Gaml		Seattle. (Resigned Apr. 15, 1922.) Seattle.
Beverly G. Rupp		Seattle. (Appointed Apr. 17, 1922.)

Regular employees at Government hateheries in Alaska in 1922.

Location and name.	Position.
A fognak: Wdwin Wentworth..... Superintendent. (Resigned Sept. 21, 192	
Fred R. Lucas.	Superintendent. (Promoted Allg. 21, 1922, from fish-culturist.)
Harry J. Heuver	
Arank Led Nelson...	Foreman. (Transferred Nov. 1, 1922, from fish-culturist, Tupelo, Miss.) Fish-culturist.
Homer H. Whitford	Fish-culturist. (Trausferred Aug. 1, 1922, from apprentice fish-culturist, Puget Sound stations; promoted Oct 16, 1922.)
Nicolai Boskotsky	Apprentice fish-culturist.
Ray S. Wood.	
Nicolai W. Anderson	Apprentice fish-culturist. (Appointed Feb. 1, 1922; appointment expired May 4, 1922.)
Carl A. Kjorsvick..	Apprentice fish-culturist. (Appointed May 5, 1922; appointment expired Aug. 8, 1922.)
Russell Waterbury	Apprentice fish culturist. (Appointment expired May 4, 1922.)
Robert E. Forsyth	Apprentice fish-culturist. (Appointed May 5, 1922.)
McDouald Lake:	Cook.
C. II. Van Atta.	Superintendent. (Transferred Sept. 21, 1922, to Leadville, Colo.)
John W. Gardner	Superintendent. (Promoted Sept. 22, 1922, Irom foreman, Puget Soun. 1 stations.)
Calvin D. Ryan.	Foreman.
George L. Sa vage.	Fish-culturist. (Dismissed Feb. 28, 1922.)
Melvin L. Sonles	Fisl-culturist. (Promoted Ang. 1, 1922, from apprentice fish-culturist.)
Frank W. Ross.....	Apprentice fish-culturist. (Resigned July 19, 1922.)
Gustarus W. Hanion	Apprentice fish-culturist. (Appointed Ailg. 16, 1922.)
Herbert D. Rhodes.	Apprentice fish-culturist. (Transferred Aug. 1, 1922, from apprentice fishculturist, Cape Vincent, N. Y.)
Louis Flagstad. .	Apprentlice fish-culturist. (Appointed Jan. 1, 1922; resigned Sept.30, 1922.)
Joseph M. Lysnes	Apprentice Eish-culturist. (Appointed Oct. 1, 1922.)
Sadie Ross.	Cook. (Resigned July 19, 1922.)
Marie Flagstad	Cook. (Appointed Aug. 16, 1922.)

FISHERY INDUSTRIES.

As in corresponding reports for previous years, the Territory of Alaska is here considered in the three coastal geographic sections generally recognized, as follows: Southeast Alaska, embracing all that narrow strip of mainland and the numerous adjacent islands from Portland Canal northwestward to and including Yakutat Bay; central Alaska, the region on the Pacific from Yakutat Bay westward, including Prince William Sound, Cook Inlet, and the southern coast of Alaska Peninsula, to Unimak Pass: and western Alaska, the north shore of the Alaska Peninsula, including the Aleutian Islands westward from Unimak Pass, Bristol Bay, and the Kuskokwim and Yukon Rivers. These divisions are solely for statistical purposes and do not coincide with districts made under reservations created during the calendar year, which include areas from both the central and \#estern statistical divisions.

Detailed reports and statistical tables dealing with the various fishery industries are presented herewith, and there are also given the important features of certain subjects that were the objects of special investigation or inquiry.

WATERS CLOSED TO COMMERCIAL FISHING.

Restrictions and limitations imposed by previous orders of the Department of Commerce prohibited all commercial fishing in the streams and lakes of Alaska and within a zone extending 500 yards off the mouth of all streams, with the exception of the Ugashik and Karluk Rivers, where, owing to peculiar geographic conditions, specified districts remained open to fishing. Executive orders previously issued remain in effect also with regard to the Afognak Reservation, Alentian Islands Reservation, Yés Bay and Stream, and the Annette Island Fishery Reserve. Executive orders issued in 1922 established two new reservations-the Alaska Peninsula Fisheries Reservation and the Southwestern Alaska Fisheries Reservation.

ALASKA PENINSULA F1SHERIES RESERVATION.

By Executive order of February 17, 1922, the Alaska Peninsula Fisheries Reservation was created. It extends eastward from the Aleutian Islands Reservation to a line from Foggy Cape, on the eastern end of Sutwik Island, to Cape Menshikof, on the northern shore of the Alaska Peninsula, and includes the Shmmagin Islands and the territorial waters adjacent to these lands and also the lands of the Aleutian Islands Reservation. The text of the order is as follows:

In addition to the islands of the Aleutian Clain, Alaska, withdrawn and made a preserve and breeding ground for native birds, for the propagation of reindeer and fur-hearing animats, and for the encouragement and development of fisheries, by the Executive order of March 3, 1913 (No. 1733), as modified
by the Executive order of August 11, 1916 (No. 2442), a reservation comprising the islands, peninsulas, and lands adjoining the eastern end of the reserration established by the said Executive order of March 3, 1913, and extending in an easterly and northerly direction from Isanotski Strait to a line extending from low-water mark at Foggy Cape on the eastern end of Sutwik Island to low-water mark at Cape Menshikof on the northern shore of the Alaska Peninsula, including the Shumagin Islands and all other islands, peninsulas, or parts thereof within the described area, is hereby set apart as a preserre to more effectively insure the protection of the fisheries and for their encouragement and development. This latter reservation is to be known as the Alaska Peninsula Fisheries Reservation.

It is herely further ordered that all straits, bays, and other waters over which the Enited States has jurisdiction by reason of their relation and proximity to the islands, peninsulas, and other lands to which this order, as well as the said order of March 3, 1913, applies, be, and the same are hereby, reserved and set apart also as a preserve to more effectively insure the protection of the fisheries and for their encouragement and development.

The Secretary of Commerce shall have power to make regulations for the proper administration of the said Alaska Peninsula Fisheries Reservation and the straits, bays, and other waters reserved by this Executive order.

The estallishment of the reservations under this Executive order shall not interfere with the use of the waters, islands, or other lands for lighthouse, military, naval, or other public purposes, nor with the use of any of said islands or other lands under the laws of the United States for town-site purposes, mining purposes, or srazing of animals thereupon, under rules and regulations to be established by the Secretary of the Interior.

Under authority of the above Executive order the department, under date of Λ pril 18. 1922, issued the following regulations:

1. For purposes of administration the following six fishing districts are rreated:
(a) Port IIeiden district--Fixtends along the Bering Sea shores of the reservation from its eastern limit to the one hundred and sixtieth meridian of west longitude.
(b) Port Moller district.-Extends along the Bering Sea shores of the reserration from the one hundred and sixtieth meridian of west longitude to the north entrance of Isanotski Strait (etherwise commonly known as False Pass), which forms its western boundary.
(c) Iliaten district.-Includes Isanotski Strait south of its northern entrance and extends thence along the Pacific shore of the reservation eastward to the one hundred and sixty-first meridian of west longitude.
(d) Shumayn district.-Includes the Shunagin Islands and the mainland shores and islands of the Pacific side of the reservation from the one hundred and sixtr-first to the one hundred and fifty-ninth meridian of west longitude.
(e) Cligmk district.-Extends from the one hundred and fifty-ninth meridian of west longitude along the Pacific shores of the reservation to its eastern margin.
(f) Aleutian Islands district.-Waters over which the United States has jurisdiction from Isanotski Strait westward throughout the entire Aleutian 1slands reservation.
2. No individual or concern shall engage in the business of catching, canning, or preparing salmon, except for personal or family use and not for sale or harter, within the above-stated districts without first securing a permit from the Secretary of Commerce. Applications for annual permits shall be addressed on or before January 15 of each year to the Secretary of Commerce, Washingtom, D. C., and shall give full information on the following points: (a) Name and permanent address of person or corporation desiring permit; (b) character of business proposed, whether fishing, canning, salting, or otherwise curing fish; (c) character and extent of plant to be operated and its location; (d) method and extent of fishing proposed; (e) exact place or places where fishing is to be carried on; (f) number and kind of each class of fishing apparatus to be used; (g) number of cases of salmon to be packed (based upon 48 one-pound cans per case) or number of barrels of salnwn to be salted or tierces of salmon to be mild cured; (h) when operations are to begin; (i) if application is for continuance of operations formerly conducted, the catch and pack of salmon by species and the amount of each class of gear operated in the next preceding se;-
son must be shown ; (j) affidavit as to correctness of facts set forth in the application must be made by competent authority.
3. Permits will specify the amount of pack and the character and extent of fishing operations allowed.
4. Permits for the season of 1922 will be issued only to such individuals or concerns as are now operating within the reservation.
5. Permits will be valid only within the district for which issued.
6. Transportation of fresh salmon for canning, salting, or otherwise preserving will not be permitted from one fishing district to another or outside the reservation.
7. These regulations do not apply to persons taking salmon with rod, hand line, or spear for their personal or family use and not for sale or barter.
8. These regulations will be subject to such annual revision by the Secretary of Commerce as may appear advisable in view of the investigation and the experience of the preceding season.
9. These regulations will be in full force and effect immediately from and after date of issue.

Under date of December 14, 1922, revised regulations for the reservation were issued as follows:

1. For the purposes of administration the following six fishing districts are created:
(a) Port Heiden district.-Extends along the Bering Sea shores of the reservat on from its eastern limit to the one hundred and sixtieth meridian of west longitude.
(b) Port Moller district.-Extends along the Bering Sea shores of the reservation from the one hundred and sixtieth meridian of west longitude to the north entrance of Isanotski Strait (otherwise commonly known as False Uiss), which forms its western boundary.
(c) Ikatan district.-Includes Isanotski Strait south of its northern entrance, the waters surrounding Uninak and the Sanak Islands, and the waters to the eastward along the Pacific shores of the reservation to the one hundred and sixty-first meridian of west longitude.
(d) Shumagin district.-Includes the Shumagin Islands and the mainland shores and islands of the Pacific side of the reservation from the one humdred and sixty-first to the one hundred and fifty-ninth meridian of west longitude.
(e) Chignik district.-Extends from the one hundred and fifty-ninth meridian of west longitude along the Pacific shores of the reservation to its eastern margin.
(f) Aleutian Islands district.-Waters over which the United States has jurisdiction from Unimak Pass westward throughout the entire Aleutian Islands Reservation.
2. No individual shall engage in the business of catching, canning, or preparing salmon, except for personal or family use and not for sale or barter. within the above-stated districts without first securing a permit from the Secretary of Commerce. Applications for annual permits shall be made on or before January 15, 1923, and on or before December 15 of each year thereafter, to the Secretary of Commerce, Washington, D. C., and shall give full information on the following points:
(a) Name and permanent address of person or corporation desiring permit. (b) Character of business proposed, whether fishing, canning, salting. or otherwise curing fish. (c) Location and capacity of plant (number of lines of machinery in cannery and whether for pound or half-pound cans). (d) Number and kind of each class of fishing gear desired, and location where same is to be operated. (e) Number of cases of salmon to be packed (based upon 48 one-pound cans per case), or number of barrels of salmon to be salted, or tierces of salmon to be mild cured. (f) If application is for continuance of operations formerly conducted, the catch and pack of salmon by species and the amount of each class of gear operated in the next preceding season must be shown. (g) Affidavit as to correctness of facts set forth in the application must be made by competent authority.
3. Permits shall specify the amount of pack allowed, if that be limited, and the character, extent, and locality of fishing operations to be conducted.
4. Transportation of fresh salmon for canning, salting, or otherwise preserving will not be permitted between any two districts or zones withiu the
?

reservation or between any district or zone within the reservation and any outside district.
5. The pack of each plant shall be made exclusively from the proceeds of the fishing gear specifically allotted to it. Transfer of salmon from one plant to another will not be permitted; but nothing in these regulations shall prevent the purchase of salmon from natives or local inhabitants who have secured permits to fish.
6. Fox farmers may take and prepare salmon for fox feed in all legal ways but must secure permits from the Secretary of Commerce.
7. These regulations shall be subject to such annual revision by the Secretary of Commerce as may appear advisable in view of the investigation and the experience of the preceding season. They shall be in full force and effect immediately from and after date of issue.

Ten formal permits for commercial salmon-canning operations by established plants within the reservation were granted for the season of 1922 , as shown in the table below, which gives also the pack of canned salmon in the reservation. A permit was also granted to George Albert, of Port Heiden, for the salting of not over 700 barrels of all species of salmon, and 30 permits were issued to local residents by Warden J. N. Braun, the bureau's representative in the district, for fishery operations upon a small scale. Approximately 1,570 barrels of salted salmon were prepared under these minor permits.

Pack of canned salmon in the Alaska Peninsula Fisheries Reservation, Alaska, in 1922.

Per- mit No.	Name of permittee.	Location.	Cohos.	Chums.	$\begin{aligned} & \text { Hump. } \\ & \text { back. } \end{aligned}$	Kings.	Reds.	Total.
47	P.E. Harris \& Co............	False Pass	Cases.	Cases. 4, 095	$\begin{gathered} \text { Ceses. } \\ 1,678 \end{gathered}$	Cases. 205	Cases. 58. 634	Cases. 64.612
48	Joint permit to Pacific A merican Fisheries, Nelson Jagoon Packing Co., Phoenix Packing Co., and Fidalgo Island Packing Co.	Port Molle		4,004		1,729	44, 624	50,357
49	Everett Packing Co.........	Herendeen Bay.		104		97	15,931	${ }^{1} 16,132$
50	Pacific American Fisheries..	Iratan		8.215	4.723	458	67,043	80.439
51		King Cove	261	15,554	11.403	74	73,028	100322
52	Shumagin Packing Co........	Souaw Harbor		5.946	2,808	63	27,183	36,000
53	Northwestern Fisheries Co.-	Chignik.	462	7,413	4,431	52	37,677	50,035
54	Columbia River Packers, Association.	,	521	6,409	5,411	40	37,836	50,217
55	Alaska Packers Association..	.do.	632	7,117	4,701	32	37,811	50,293
	Total		1,876	58,859	35,155	2,750	399,767	498,407

${ }^{1}$ Included in this pack were 520 chum, 312 king, and 194,045 red salmon purchased from a cannery at Ugashik River, hence not taken from the waters of the reservation.

SOUTHWESTERN ALASKA FISHERIES RESERVATION.

With the rapid depletion of the salmon fisheries in other parts of Alaska and the realization that an exodus from the less profitable districts would probably soon occur to such districts as still maintained large runs of the valuable red salmon the bureau felt that some definite action should be taken at once to secure broad enough control of these districts to regulate operations properly and conserve the runs in their present value. Efforts had been made for many years to secure the passage of a fishery law that would enable effectual preservation of the fisheries of Alaska, but always without success because of the opposition of certain divergent interests. As a last resort and as a more or less temporary measure pending the
passage of adequate laws by Congress the President, under date of November 3, 1922, signed an Executive order creating the Southwestern Alaska Fisheries Reservation, including the waters of Bristol Bay, Cook Inlet, and the Kodiak-Afognak region. The text of the order is as follows:

Whereas it has become apparent that certain valuable fisheries of Alaska have been seriously impaired and are in danger of further depletion, and that It is necessary to establish authority to meet the exigency which has arisen for the protection of these fisheries, and

Whereas by Executive order issued under date of March 3, 1913, modified by an order of August 11, 1916, a reservation kuown as the Aleutian Islands Resarration was created, and by an Executive order under date of February 17, 1920, a reservation known as the Alaska Peninsula Fisheries Reservation was created, including therein the lands and the territorial waters of the Uniterl States contiguous to the lands covered by said Executive order,

Now, therefore, I, Warren G. Harding, President of the United States of America, by virtue of the power in me rested by the laws of the United States, do hereby set apart as a preserve to more effectively insure the protection of the fisheries and for their encouragement and development, in addition to the above reservations, a reserve of lands and waters, which said reservittion shall be known as the Southwestern Alaska Fisheries Reservation, which shall include all territorial waters, and the lands within one-half mile of the shores thereof, within the lines defined as follows:

From the northeasterly point of the Alaska Peninsula Fisheries Reservation at Cape Menshikof, Bristol Bay, northwesterly to a point in latitude $58^{\circ} 32^{\prime}$ north, longitude $162^{\circ} 12^{\prime}$ west, off Cape Newenham; thence to a point in latitude $59^{\circ} 15^{\prime}$ north, longitude $162^{\circ} 0^{\prime}$ west; thence eastward along parallel of latitude $59^{\circ} 15^{\prime}$ north, to Iongitude 155° west ; thence to a point in latitude f:1 ${ }^{\circ}$ 20^{\prime} north, longitude $151^{\circ} 20^{\prime}$ west ; thence to a point in latitude $61^{\circ} 20^{\prime}$ north, longitude $150^{\circ} 10^{\prime}$ west ; thence to a point in latitude $61^{\circ} 35^{\prime}$ north, longitude $149^{\circ} 40^{\prime}$ west ; thence to a point in latitude $61^{\circ} 35^{\prime}$ north, longitude $149^{\circ} 0^{\prime}$ west ; thence to a point in latitude $60^{\circ} 40^{\prime}$ north, longitude $149^{\circ} 0^{\prime}$ west ; thence to a point in latitude $60^{\circ} 40^{\prime}$ north, longitude $151^{\circ} 0^{\prime}$ west ; thence to a point in latitude $57^{\circ} 30^{\prime}$ north, longitude 151° west; thence to a point in latitude $55^{\circ} 0^{\prime}$ north, longitude $157^{\circ} 0^{\prime}$ west; thence to low-water mark at the eastern extremity of Foggy Cape on Sutwik Island; thence to point of beginning.

Fishery operations within the said Southwestern Alaska Fisheries Reservation shall be subject to such regulations and restrictions as shall be issued by the Secretary of Commerce, in addition to the general fisheries laws and regulations of the United States as administered by the Secretary of Commerce.

The reservation hereby established shall not interfere with the use of the waters, islands, or other lands embraced therein for any purpose not inconsistent therewith, nor with the operation therein of the laws now or hereafter applicable to the public lands in Alaska, nor with the respective jurisdictions of the Secretary of Agriculture and the Secretary of the Interior therenver.

Warning is hereby expressly given to all unauthorized persons not to fish in or use any of the waters herein described or mentioned.

Following the issuance and publication of the order, announcement was made that the Commissioner of Fisheries would hold hearings at Seattle on November 21 and at San Francisco on Norember 28, at which all interested persons were invited to be present and discuss the conditions and needs of the fishery, in order to establish a basis of information for the issuance of the necessary regulations and the granting of permits for operations to be carried on in 1923. Dr. Charles H. Gilbert, of Stanford University, who conducted extensive investigations in southwestern Alaska during the season of 1922, was present at and assisted in the conduct of the hearings. Dennis Winn, agent, Alaska service, who was in the Bristol Bay region during the fishing season, and Ransom L. Wilkins, who was stationed in Cook Inlet district, were present at the Seattle hearing.
野

Regulations for the administration of the reservation were issued by the Secretary of Commerce on December 16, 1922, as follows:

1. For purposes of administration the following districts and zones are established:
(a) Bristol Bay district,-All that portion of the reservation lying within the Bering Sea, the coast line extending from Cape Menshikof to Cape Newenham and thence northward to $59^{\circ} 15^{\prime}$ north latitude.

Zone 1. Including all the Ugashik fishing grounds which lie northerly and westerly from Cane Menshikof and are included between the boundary of the reservation and the fifty-eighth parallel of north latitude east of the one hundred and fifty-ninth meridian.

Zone 2. All that portion of Bristol Bay north of the fifty-eighth parallel of north latitude and east of the one hundred and fifty-ninth meridian, including the Egegik, Naknek, Kvichak, and Nushagak fishing areas.

Zone 3. All waters of the Bering Sea included in the reservation, but not included in zones 1 and 2.
(b) Cook Inlet district.-Wmbracing all that portion of the reservation east of Bristol Bay and north of the latitude of Cape Douglas (approximately 58° © 0 '), including the Barren Islands, the shores and outlying islands of the Kenai Peninsula, and all the shores and waters of Cook Inlet.
(c) Kodiak-Afognak district.-All that portion of the reservation south and east of the Alaska Peninsula and south of the latitude of Cape Douglas, including the Kodiak-Afognak group of islands, the Trinity and the Semidi groups, Chirikof Island, Shelikof Strait, and all the mainland shores from Cape Douglas to the southwestern boundary of the reservation.

Zone 1. Extends on Kodiak Island from Low Cape to Cape Ugat, and on the mainland coast from the latitude of Cape Ugat to the western limit of the reservation. Includes Red and Karluk Rivers and Uyak Bay.

Zone 2. Extends from Low Cape on the western coast of Kodiak Island to but not including Three Saints Bay, on the southeastern coast, and includes Alitak and Olga Bays and Chirikof, Trinity, and Semidi Islands.

Zone 3. Embraces all that portion of the district not included in zones 1 and 2. Includes the western shores of Kodiak and Afognak Islands north of the latitude of Cape Ugat and the northern and eastern shores as far south as Three Saints Bay. It also includes Shelikof Strait and the mainland shores north of the latitude of Cape Ugat.
2. No individual shall engage in the business of catching, canning, or preparing salmon, except for personal or family use and not for sale or barter, within the above-stated districts without first securing a permit from the Secretary of Commerce. Applications for annual permits shall be made on or before January 15,1923 , and on or hefore December 15 of each year thereafter, to the Secretary of Commerce, Washington, D. C., and shall give full information on the following points: (a) Name and permanent address of person or corporation desiring nermit. (b) Character of business pronosed, whether fishing, canning, salting, or otherwise curing fish. (c) Location and capacity of plant (number of lines of machinery in cannery and whether for pound or half-pound cans). (d) Number and kind of each class of fishing gear desired and location where same is to be operated. (e) Number of cases of salmon to be packed (based upon 48 one-pound cans per case) or number of barrels of salmon to be salted, or tierces of salmon to he mild cured. (f) If application is for continuance of operations formerly conducted, the catch and pack of salmon by species and the amount of each class of gear operated in the next preceding season must be shown. (g) Affidarit as to correctness of facts set forth in the application must be made by competent authority.
3. Permits shall specity the amount of pack allowed, if that be limited, and the character, extent, and locality of fishing operations to be conducted.
4. The use of purse seines in fishing for salmon will not be permitted within the reservation.
5. Fox farmers may take and prepare salmon for fox feed in all legal ways, but must secure permits from the Secretary of Commerce.
6. Transportation of fresh salmon for canning, salting, or otherwise preserving will not be permitted between any two districts or zones within the reservation or between any district or zone within the reservation and any outside district.
7. Througlout the Cook Inlet and the Kodiak-Afognak districts the pack of each plant shall be made exclusively from the proceeds of the fishing gear specifically allotted to it. Transter of samon from one plant to another will not be permitted.
8. Nothing in these regulations shall prevent the purchase of salmon from natives, local inhabitants, or other individuals who have secured permits to fish within areas properly tributary to the camnery, but fish so purchased shall not be in excess of the pack limit which may be allotted.
9. No fishing for salmon shall be permitted in Chinik Inlet, Kamishak Bay, within a line which joins the outer headlands of the inlet and passes outside the two small islands which lie near its entrance. Markers shall be placed on the headlands to designate the closed areas.
10. In the Bristol Bay district the following requlations shall be in effect: (a) In zone 2 it is permitted that fishing boats discharge their catch wherever convenient, but lighters or other collecting boats shall not transport salmon from the Nushagak fishing grounds to the canneries along the east shore, nor from the Egegik-Naknek-Kvichak fishing grounds to the Nushagak canneries. For the purposes of this regulation the fishing grounds off Cape Etolin shall be considered as belonging to the Nushagak River. (b) Fishing for salmon for commercial purposes shall be conducted solely by the use of drift gill nets, except that traps operated in the season of 1922 in the Nushagak region may continue to operate during the season of 1923. In 1924 and in subsequent years no traps shall be driven or operated in the Bristol Bay district. (c) King salmon nets shall have a mesh not less than $8 \frac{1}{2}$ inches knit measure. and red-salmon nets, after the season of 1923 , a mesh not less than $5 \frac{3}{t}$ inches stretched measure between knots. For the season of 1923 only, red-salmon nets will be permitted with mesh as small as $5 \frac{1}{2}$ inches, measured as above. (d) Companies operating motor gill-net fishing boats during the season of 1922 may continue their use in 1923, but the use of motor fishing boats will not be permitted in the Bristol Bay district after the season of 1923 . (e) Each fishing boat may be provided with gill nets not to exceed in length 200 fathoms hung measure. (f) Fishing for red salmon shall not hegin prior to midnight of June 25 and shall close at or before midnight of July 25 of each year; but each cannery may operate one commissary net at any time to supply fresh salmon for the mess. Salmon traps shall not be operated prior to midnight of June 25. (g) Fishing for king salmon with drift gill nets having a mesh not less than $S_{\frac{1}{2}}$ inches knit measure is permitted prior to June 26 , as well as after that date; but the total length of gill nets employed by any fishing hoat at one time shall not exceed 200 fathoms.
11. These regulations shall be subject to such annual revision by the Secretary of Commerce as may appear advisable in view of the investigation and the experience of the preceding season. They shall be in full force and effect immediately from and after date of issue.

AFOGNAK RESERVATION.

During the 1922 salmon-fishing season 60 Afognak and Uzinki (Spruce Island) natives were granted permits to engage in commercial fishing in the Afognak Reservation. These natives operated 19 beach seines, averaging 125 fathoms in length, 5 at Malina, 6 at Paramanoff, 4 at Seal Bay, and 4 at Little Afognak, with 15 natives working at each locality.

On May 25 fishing was begun at Malina and on September 6 ended at Little Afognak. During this period 173,255 salmon of all species were taken within the reservation, of which 84,411 were purchased by the Kadiak Fisheries Co. and 88,844 by the Katmai Packing Co.

At the principal bays closed seasons were imposed, as has been the custom for many years, in order to insure against overfishing and to provide sufficient escapement to the spawning grounds. Warden William E. Baumann, who was in charge of the general enforcement of the fisheries laws and the patrol work of the Afognak Reservation, established these close periods at the height of the red-salmon runs in the various localities.

Fishing periods in principal bays of Afognak Reservation in 1922.

Locality.	Fishing began.	Fishing ended.	Close season.	Number days elosed.
Malina	Mav 25	Ang. 1	July 17-22...	6
Paramanof Bay	June 5	July 25	July 5-8...	4
Scal Bay.......	June 16 May 24	Sept. ${ }^{\text {do }}$ ¢	June 12-15.	4

To secure information as to escapement, Mr. Baumann visited the headwaters of the various streams and found that an adequate number of salmon appeared to have ascended to the spawning grounds and that conditions generally compared favorably with previous seasons.

The total catch of all species of salmon taken in the waters of the Afognak Reservation in 1922 was 173,255 , as compared with 192,694 in 1921, a decrease of 10 per cent. This decrease is probably due to the fact that fishing activities were less intensive during the latter part of the season in the Afognak Reservation than during the same period in 1921. When the fishing zeason was well under way at Karluk, labor troubles arose among the fishermen, who called a general strike, which necessitated the employment of native fishermen. Several Afognak natives were employed at Uyak Bay by the Northwestern Fisheries Co. and several in the Karluk district by the Katmai Packing Co.

Commercial catch of salmon in waters of Afognak Reservation in 1922.

Locality.	Coho.	Chum.	Humpback.	King.	Red.	Total.
I ittle Afognak.	11.609		2,141	17	5,241	19,008
Danger Bay.	2. 777		16,680		14	19, 471
I.itnik Bay.	17, 669				117	17,686
Paramanotl Bay		485	9,731	7	14,228	24, 451
Malina.	2,905	¢2	65,366		17,123	85, 476
Seal Bay.			154	6	5,426	5,586
Zelair ${ }^{1}$	1,112					1,112
Marca Bay ${ }^{2}$	465					465
Total.	36,437	567	94,072	30	42,149	173,255

${ }^{1}$ In Raspberry Strait.
2 Or Markaway Bay, between Litnik Bay and Danger Bay.

ALEUTIAN ISLANDS RESERVATION.

The waters of Aleutian Islands Reservation were embraced in the Alaska Peninsula Fisheries Reservation created by Executive order of February 17, 1922, and the regulations of April 18, 1922, for that reservation were therefore applicable also to fishing in the Aleutian Islands. Because of the remoteness of the district and the slowness of communication by mail it was deemed desirable to allow operations to continue in the season of 1922 under permits granted to local residents and other operators westward of Unimak Island. Permits for the salmon canneries of the Pacific American Fisheries and P. E. Harris \& Co., on the eastern end of Unimak Island, are listed
in the table (p.11) regarding the Alaska Peninsula Fisheries Reservation. No other permits were granted for the Alentian Islands proper. At the end of the calendar year notice was mailed to all holders of permits that such permits were canceled and if it was desired to operate in the season of 1923 application for new permits should be made under the revised regulations issued December 14, 1922, for the administration of the Alaska Peninsula Fisheries Reservation.

A permit for the grazing of sheep on Amaknak Island was granted to O. K. Quean jointly by the Secretaries of Agriculture and Commerce under date of February 13, 1922.

ANNETTE ISLAND FISHERY RESERVE.

Fishery operations within the Annette Island Fishery Reserve were again conducted in the season of 1922 by the Annette Island Packing Co. under its lease from the Department of the Interior. Data in regard to operations have been furnished by the Bureau of Education, of that department, which administers the affairs of the reserve for the benefit of the Metlakatla Indians residing therein.

In 1922 the total number of fish taken by traps within the reserve was 847,800 , on which a royalty of 1 cent per fish was paid, amounting to $\$ 8,478$. A fee of $\$ 100$ each for the five traps operated was also charged. In addition 318,553 salmon were taken by natives in purse seines and gill nets and were purchased by the company for $\$ 13$,351.26. The natives received $\$ 25,425.32$ for cannery labor, and other payments brought the total amount disbursed to the Indians by the Annette Island Packing Co. to $\$ 52,186.94$, which was $\$ 13,794.87$ more than in 1921. In addition the amounts of $\$ 500$ for trap fees and $\$ 2,478.54$ for case tax on canned salmon are due but withheld pending a decision on a suit brought by the Territory of Alaska for collection of territorial license taxes for 1922. This suit was decided in favor of the Federal Government on trial in the United States District Court at Juneau, but was taken on appeal by the Territory to the Circuit Court of ippeals in San Francisco.

The six-year lease to the Annette Island Packing Co. expired October 1,1922 . During this period $\$ 11,429.72$ was paid to the Indians of the reserve for trap fees and per case tax paid to council, $\$ 50$.261.27 for salmon taken in traps, $\$ 172,465.11$ for cannery labor, and $\$ 68,526.89$ for salmon taken by purse seines and gill nets. Other miscellaneous items brought the grand total to $\$ 337,556.30$, exclusive of approximately $\$ 7,547.30$ and the territorial income tax, payment of which is withheld pending decision of the territorial case mentioned above.

STREAM MARKERS.

Considerable work was done in marking the mouths of streams in the southeast district of Alaska in the season of 1922 because of the change in the regulations under date of December 30, 1921, which extended the protected zone from 200 yards to 500 yards off the mouths of all streams. Larger notices and more substantial posts and signs were used. Attention was particularly given to the streams heretofore unmarked along the west coast of Baranof Island from Sitka to Cape Ommaney and through Peril Strait,

Work in the central district consisted principally in the replacement, at the mouths of the sloughs of the Copper River, of markers that had been defaced by weather or carried away by winter storms. Markers were also erected by stream guards at Kachemak Bay, Kamishak Bay, Chinik Inlet, and other localities on Cook Inlet, and at Coghill River, Miners River, Cowpen River, and other places on Prince William Sound. Markers were also posted at the various streams in Olga Bay on Kodiak Island.

In western Alaska attention was given to the replacing of markers at the salmon streams in Bristol Bay, and for the first time markers were established at the mouth of the Kuskokwim River on a line extending from Point Popokamute to Beacon Point. Fishermen have urged that fishing should be permitted up that river as far as Helmick Point, which is 8 miles above the upper end of Eek Island, or at least up to the upper end of Eek Island. The bureau has held, however, that it can not change the markers as placed, as a number of years ago the United States Coast and Geodetic Survey designated these points as the mouth of the Kuskokwim.

STREAM GUARDS.

The plan of augmenting the bureau's patrol force by the employment of stream guards for duty during the active fishing season was carried out on a still larger scale in 1922 than ever before. In all 59 persons were thus employed for varying periods in this service, of which 30 were stationed in the southeast district, 16 in central Alaska, and 13 in Bristol Bay.

In southeast Alaska guards were stationed in the following localities: Chilkoot River, Chilkat River, Excursion Inlet and north shore of Icy Strait, Tenakee Inlet, Freshwater Bay and Redoubt Lake, Glacier Bay and Cross Sound, Whitewater Bay to Killisnoo, south shore of Icy Strait, Port Frederick to Point Adolphus, Redoubt Lake and Basket Bay, Redfish and Whale Bays, Pybus Bay to Point Gardiner and Tebenkof Bay, Gut Bay to Cape Ommaney, Wrangell Narrows, Cholmondeley Sound, Kasaan Bay, Karta Bay, Lake Bay, Rocky and Thorne Bays, Kah Sheets Bay and Carroll Inlet, Point Barrie and Steamer Bay, Salmon Bay and McHenry Inlet, Red Bay, Deweyville and Staney Creek, Hanus Bay, Howard Bay, Auke Cove and Parlof Harbor, Ratz Harbor, Eagle Creek, Mud Bay to Lisianski Strait, and Anan Creek. The agent in charge of the district reported that the presence of the guards was of unquestioned benefit to the fisheries in preventing encroachments on the streams and closed areas at their mouths, thus permitting a larger escapement of salmon than otherwise would have been the case. The nten were chosen chiefly for their knowledge of the country and general interest in the fisheries of Alaska.

In the central district two of the guards were detailed to duty in Cook Inlet, five at various points in Prince William Sound, six on the Copper River Delta, and one each at Bering River, Karluk, and Alitak. Some transfers were made to other localities as the centers of activity changed and operations progressed.

In the Bristol Bay districts the 13 temporary employees were engaged in the destruction of predatory trout in the Naknek, Egegik,

Ugashik, and Nushagak waters before the beginning of active salmon-fishing operations and later were on guard duty near the mouths of these rivers and also at the Igushik River.

FISHERY PATROL.

In 1922 the burean maintained eight vessels in Alaska for patrol work in connection with the enforcement of the laws for the protection of the seal and salmon fisheries. Of these the Murre, Auklet, Petrel, Widgeon, and Puffin were stationed in southeast Alaska; and the Merganser, Scoter, and T'ern, at Chignik, Bristol Bay, and the Yukon River, respectively. The Widqeon and Scoter were additions to the burean's fleet this year, and the Merganser was made use of actively for the first time. In addition six launches owned by the Bristol Bay packers were used both for the destruction of predatory trout and in the bureau's patrol. During the fishing season 18 small boats were chartered in the southeast district, 1 in Cook Inlet, and 3 in the Prince William Sound region for periods ranging from 10 to 75 days during the season from May to September.

During the calendar year it is reported that the Auklet cruised 6,300 miles, Murre 7,708 miles, Petrel 5,478 miles, Puffin approximately 1,500 miles, Widgeon 3,588 miles, and Tern 5,015 miles. The Auklet and Murre were in continuous commission except during the time required to install in each new 40 -horsepower engines and to effect necessary alterations and repairs. These improvements have made both vessels better for the burean's service, and they are now able to make headway against wind and sea that heretofore would have sent them to shelter. The Petrel was redecked and remodeled generally and was in commission four months. The Dusenberg engine was taken out and replaced by the 25 -horsepower Standard engine from the Auklet. The Puffin was used chiefly in the protected waters of the west coast of Prince of Wales Island. The Widgeon reached Alaska late in August and was in commission the remainder of the year.

In February the Merganser was towed to Seattle by the Auklet, where a new 16 -horsepower engine was installed and certain repairs and alterations were made. The Merganser was loaded on the ship St. Paul March 27 for transportation to Chignik, reaching there in April.

The Scoter, a vessel about 60 feet long and of the seaworthy purseseine type, was purchased in April for the Bristol Bay district. It was used throughout the season by the agent in charge of the district and proved of great value in keeping in touch with the different sections and in facilitating action in prosecuting law violators.

The Tern was used as usual bet ween Fairbanks and the mouth of the Yukon River and in patrol of the delta. The Swan remained at Fairbanks during the year but was not in use.

The Coast Guard cutter Unalga was stationed in southeast Alaska and rendered cooperative service in connection with fishery matters.

ALASKA FISHERY INTELLIGENCE SERVICE.

The triweekly dissemination of telegraphic information regarding the price of certain fresh and pickled fish to the important fishery centers of southeast and central Alaska was continued by coopera-
U. S. B. F.-Doc. 951.

Fig. 4.-Camp for temporary stream guard, Copper River district.

Fic. 5.-Patrol boat II idyeon.
tion of the Alaska Military Telegraph \& Cable System. The purpose of this service is to make available to the fishermen in the several localities the market quotations on halibut, sablefish, red rockfish, and herring in the important buying centers of Ketchikan and Seattle.

VIOLATIONS OF THE FISHERIES LAWS AND REGULATIONS.

During the season of 1922 there were 17 prosecutions in the Bristol Bay district. In each case the offense consisted in fishing at various distances above the Government markers in the Naknek and Ugashik Rivers. The fines and costs aggiegated $\$ 2,137.25$.

On Saturday, June 17, Stream Guard Neil C. Gallagher apprehended Jack Moore, Peter Kanosh, and Moses Smith while trolling for salmon in Port Frederick during the weekly close scason. Each man was using a power boat and fishing with more than one line. They were arraigned before the United States commissioner at Hoonah, pleaded guilty, and each paid a fine of $\$ 1$ and costs.

On Sunday, June 25, during a patrol off Port Alexander and Cape Ommaney, Earle L. Hunter, master of the Petrel, found Charles Olsen, P. Peterson, and L. M. Hair, of Ketchikan, and Edward Thompson and John Thompson, of Seattle, trolling for salmon with power boats, contrary to law and regulations. They were ordered to stop fishing and to go to Port Alexander, where notice was served on each one informing him that he would be reported to the United States attorney for prosecution. In due time this was done, and the attorney advised that he would endeavor to have the Unalga, then at Juneau, go to Port Alexander so that he could dispose of the cases, but the commanding officer demurred on the ground that Chatham Strait, in the region of Port Alexander, was unsurveyed and that he could not risk his vessel in those waters. Therefore these cases have not come to trial.

On June 24 Warden O^{\prime} Connor found Richard T. Marshall trolling for salmon off Point Gardiner at $6.50 \mathrm{p} . \mathrm{m}$. with four lines from a power boat. No action was taken against him as he had but recently returned to Alaska from school in Oregon and probably had not heard that a notice had been issued earlier in the season warning all fishermen that trolling for salmon during the weekly close season, except by line held in the hand, was unlawful.

On July 9 at $1.10 \mathrm{p} . \mathrm{m}$. Warden O'Connor found a trap on Pleasant Island and one on Porpoise Island in Icy Strait. operated by the Thlinket Packing Corporation, with the pot tunnels open. On July 16 he found a trap at Wilson Cove, owned and operated by the Wilson Fisheries Co., with the tunnel but partly closed and the heart walls opened 44 and 23 inches, respectively, at one hour before low water. These matters were laid before the United States attorney, who decided that as they were largely technical offenses it was not worth while to take them up.

On August 9 O. Benjaminson. O. Odsera, and O. E. Fasness made a set with a purse seine within 500 yards of the month of a salmon stream 2 miles north of Point Barrie, Kupreanof Island, where Lawrence L. Hick was stationed as stream guard. The case was reported to the commissioner at Wrangell. and warrants were issued and served on Benjaminson and Odsera. They were brought to trial
at Petersburg before a jury which, after due deliberation, found them guilty of a violation of the fishery regulations. They were fined $\$ 10$ each and the costs of the prosecution, amounting to about $\$ 70$. Fasness had gone to Seattle, so the case against him is still pending.

On October 16 the grand jury at Junean indicted Chris Wick. Ole Olson, and Magnus Nygard for fishing within 500 yards of the mouth of a stream entering Redfish Bay, on the southwest coast of Baranof Island. They were arraigned October 19 and entered pleas of not guilty. On October 20 pleas were changed to guilty. Judgment and sentence were filed and entered October 21. Wick was fined $\$ 50$ and costs and sent to jail for 30 days at Petersbiurg; Olson was fined the costs of the case and sent to jail at Petersburg for 30 days; Nygard was sentenced to jail for 20 days at Juneau.

In a complaint filed before the commissioner at Craig, James Peratovich was charged with unlawful fishing within 500 yards of the mouth of Klawak Creek, and upon conviction was fined $\$ 32.15$, including costs of the case. At the same time, and before the same court, a complaint was entered against Jim Dick, charging him with setting a seine entirely across the lagoon of Klawak Creek. He was tried, convicted, and fined $\$ 17.15$, including costs.

On August 23 a complaint was filed before the commissioner at Ketchikan, charging Clyde Cowan with purse-seine fishing in White River on August 22. He pleaded guilty and was fined $\$ 10$ and costs.

Warden Combs reported that a trap near Craig, operated by the Alaska Consolidated Canneries, did not have the tunnel closed and the heart walls open on Sunday, July 30, in compliance with law. Owing to the resignation of Mr. Combs on August 31 and his departure from Alaska, this case was not presented for trial.

A controversy arose between the Alaska Consolidated Canneries and the A.\& P. Products Corporation over the location of two floating traps along the southern shore of Kanaganut Island, the disputed question being the lateral distance interval between the traps. The A. \& P. Products Corporation claimed that its trap was the first one put into position and set for fishing, and that later the Alaska Consolidated Canneries set a trap approximately 1,100 feet westward therefrom, making it fast to a rock submerged at high tide, contrary to the regulations of the War Department. Joint investigations were made by representatives of the bureau and of the engineers office of the War Department at Juneau, as a result of which the permit issued to the Alaska Consolidated Canneries was canceled and the removal of the trap was ordered, because the company had misrepresented the facts by stating in its application for the permit that the trap would be tied to a small island. In view of all the circumstances the United States attorney did not think it advisable to accuse either company of a violation of the fisheries law.

On July 12 John Olson was found fishing with a set gill net covering more than one-third the width of a slough of the Stikine River. Complaint was filed with the commissioner at Wrangell and the case was tried by a jury on July 13, resulting in a disagreement. Further disposition of the case has not been made.

The cases against the Kenai Packing Co. for the wanton waste of salmon and against the Copper River Packing Co. for wanton waste
of salmon and for not opening the heart walls of its trap located in Prince of Wales Passage on Sunday, August 15, 1920, on which indictments were returned at the Valdez term of the district court in October, 1920, were again continued with the consent of the bureau's representative and probably will be brought to trial at the February, 1923, term of court at Valdez.

TERRITORIAL LICENSE TAX.

Fisheries license taxes were collected by the Territory under the revenue laws of Alaska as revised in 1921. A statement from the treasurer, under date of May 9, 1923, gives the collections made to that date for the fiscal year 1922. It was stated that only a comparatively small amount remained uncollected on that date. The total for the calendar year is apparently about $\$ 134,000$ greater than in the preceding year.

Fishery license taxes collected by Territory for fiscal year ended December 31, 1922.

Schedule.	Division No. 1 .	Division No. 2.	$\begin{aligned} & \text { Division } \\ & \text { No. } 3 . \end{aligned}$	Total.
Salmon canneries (pack).	\$63, 481. 32		\$152, 385. 45	\$215, 866. 77
Salmon canneries (net income)	2, 797.76		18,183. 83	20, 981. 59
Clam canneries.	16. 30		436.86	453.16
Salteries.	3, 012.86	\$256. 20	7,950. 21	11,219. 27
Cold-storage plants	950.00		375.00	1, 325.00
Fresh-fish dealers................................	3, 018.23		13. 11	3, 031.34
Fish-oil works and fertilizer and fish-meal plants.	3, 413.33		897.60	4,310.93
Fish traps..	51, 800.00		31,300.00	$83,100.00$
Gill and stake nets	684.00	46.00	6,651. 50	7,384. 50
Seines.	2, 885.00		1,925.00	4,810.00
Total.	132, 058. 80	302.20	220,121. 56	352,482. 56

It is of interest to compare the Alaska territorial revenue from all sources with that derived from the fishery industry. The following tabulation covering the last four years for which complete returns are at present available shows that in this period the fishery industry paid an annual average of 48.7 per cent of all territorial revenue:

Comparison of Alaska territorial revenue from all sources with that from fishery industry, 1918-1921.

	Year.	Total territorial revenue.	Fishery license tax.	Percentage of fishery tax.
1918.		\$475, 450.55	\$265, 082.48	55.7
1919.		$555,887.43$	301, 301. 59	54.2
1930.		571, 943.34	271, 696. 43	47.4
1921		$563,474.01$	218, 268.71	38.7
		2, 166, 755. 33	1,056, 349. 21	48.7

WATER-POWER PROJECTS IN ALASKA.

During 1922 the Federal Power Commission referred to the bureau 10 applications for permits for development of water-power projects in Alaska. The importance of this matter is readily apparent, be-
cause of the possibility of hindering or preventing salmon from ascending to their spawning grounds. With respect to the stream covered by each application the commission desired information from the bureau as to whether it was used by spawning salmon, its economic value to the fishery industry, and whether an effective fishway could be constructed over the proposed dam.

The 10 applications referred to the bureau were for Speel River, Cascade Creek, Mill Creek, Aaron Creek, Harding Creek, Grant Creek, Tyee Creek, White River, and Anan Creek, in the southeast district, and Kenai River in central Alaska. Thorough investigation of the streams concerned in sontheast Alaska was made during the season by Assistant Agent E. M. Ball. and of the Kenai River by Assistant Agent Shirley A. Baker. Upon the basis of their reports and other information on file in the bureau, the Federal Power Commission was advised that there was no objection to the development of the proposed projects in Speel River, Cascade Creek, Harding Creek, Grant Creek, Tyee Creek, and White River. inasmuch as there were no commercial runs of salmon in them. No objection was made regarding Mill Creek, as the proposed dam would not be too high to prevent the installation of a successful fishway. The contemplated project in Aaron Creek affected only one fork of that stream, and the remaining spawning beds were regarded as ample for the preservation of the run.

In the case of Anan Creek the burean expressed unqualified opposition to any project that contemplated its use for any purpose other than the propagation of salmon under natural conditions. As bearing upon this stream, the following is quoted from a letter of January 30,1923 , addressed by the Secretary of Commerce to the Federal Power Commission :

Anan Creek has long been known as one of the most important humpbacksalmon streams in southeastern Alaska. It has been a large and steady producer for more than 20 years-in fact, it has yielded about a million salmon in a single season-and it continues to be a salmon producer of the first magnitude. It embraces a spawning area of unequaled excellence approximately 4 miles in length. Its economic importance to the fishery industry is second to none in southeastern Alaska. The erection of a 60 -foot dam at the mouth of Anan Creek would practically destroy one of the most valuable salmon fisheries of southeastern Alaska for two reasons: (a) That a successful fishway of that height would be impracticable, and (b) that the spawning grounds would be flooded with several feet of water, thus greatly lessening their value. In view of these things it is the opinion of this department that Anan Creek should not be used for any other purpose than the production of salmon. Unquestionably there are numerous streams in southeastern Alaska that are better adapted to the development of electric power than Anan Creek and which are inaccessible to salmon by reason of natural insurmountable barriers.

Opposition was also expressed to the development of the project contemplated on Kenai River, which was discussed in the same letter, as follows:

It is understood that this project involves the construction of a storage dam 6 feet in height at the outlet of Kenai Lake and a diversion dam 120 feet high at a point aboin 11 miles below the lake. The department has given very caretul consideration to this matter, and an extended personal investigation in the region has been made by an agent of the Bureau of Fisheries. As a result two important outstanding facts are developed: (a) That the main run of red salmon spawns in the upper Kenai River waters above the proposed diversion dam in Kenai River Canyon; (b) that the tributary streams below the proposed diversion dam carry almost negligible runs of red salmon.

These two important facts have most vital bearing on the subject under discussion. The Kenai River is by far the most important salmon stream in Cook Inlet, and it is believed that the satmon industry of that resion would be irreparably ruined if, the run in the Kenai River were to be destroyed, which would, I believe, be the practical effect of the proposed power projects. If the run on the Lienai River were stopped, it would probably necessitate the closing of several large salmon canneries, including those of Libby, McNeill \& Libby, Northwestern Fisheries Co., Alaska Packers Association, and Fidalgo Island l'acking Co., and would also limit the operations of various smaller canneries and salting stations perhaps to such an extent that they would eventually be compelled to close.

Flowing into Kenai River and Kenai Lake above the proposed dam site in the canyon are six remarkably fine salmon streams, all of which carry good runs of red salmon. They are as follows: Russian River, Trail Creek, Ptarmlgan Creek, Quartz Creek, Chain Lake Creek, and Snow River. Below the proposed project and between Skilak Lake and the mouth of Kenai River there are only three worth-while salmon streams, and they contain mixed runs with few reds, the latter being the most valuable and sought-after species. These streams are Killey River, Fumny River, and Moose River. Although Skilak Lake has valuable spawning areas on the north shore, it is. nevertheless, of minor value, as the tributaries which flow into this lake are not red-salmon streams.
Kenai Lake shows that it has remarkahle fitness for supporting fish life and is the chief spawning lake of the Kenai River basin, being the lake where the greater portion of the roung red salmon spend the first year of their lives before proceeding to salt water.

The agent of the Burean of Fisheries who investigated the matter states that a 120 -foot dam in the Kenai River would flood a tract averaging 1 mile in width and 8 miles in length, and that this flooded area would cover Chain Lake Creek and its first head lake. Thus, a very valuable spawning area would be lost even if the salmon could get over the dam, which seems to be wholly out of the question.

The report in question shows that there are documents on file in the Cordova office of the Forest Service which indicate the intention to utilize Russian River waters in connection with the Kenai River project. Russian River is the chief red salmon tributary of the Kenai River, flowing into the larger stream about 5 miles above the Kenai River Canyon. The construction of a high dam on Russian River would be a most serious blow to the salmon industry.

In the matter of possible hatchery operations above the dam in Kenai River Canyon, the following is extracted from the report of the investigating agent:
"In the letter from the Federal Power Commission, under date of May 22 , 1022, the suggestion has been made to put in a hatchery above the dam. It would be absolutely impracticable to put in a hatchery either above the dam or below the dam and to corral the red salmon until they are ripe. As it is now, the mature salmon come into the lake to ripen. The young red salmon must live a year in the lake-sometimes they stay longer-before going to the ocean waters. It is impracticable and impossible to accommodate in a hatchery the spawning adults and the young fry of the great Kenai River red-salmon run. Therefore the project of the establishment of a hatchery either abore or below the dam is a forlorn hope and should not be entertained at all."

The matter of the proposed power project on the Kenai River, Alaska, was rather recently referred to Dr. C. H. Gilbert, of Stanford University, who is a noted authority on the salmons of the Pacific coast and Alaska. Dr. Gilbert's reply is as follows:
" 1 beg to express my conviction that the proposed dams between the Kenai and Skilak Lakes would result in reducing the red-salmon run in the Kenai River to such a point that it would cease to have any commercial significance. I believe it would be wholly impracticable to construct a fishway over a dam of the height proposed, and I regard it as equally impracticable to operate successfulty a hatchery below the dam. The red salmon on their ascent of the river are far too green to spatwn. It is their habit to remain in the deep waters of the lake for a month or more until their eggs are ripe. To impound them for this purpose in the river below the dam would certainly result in the loss of a large percentage of the spawning fish. The Kenai River is the most important red-salmon stream of Cook Inlet. If the Kenai run is destroyed, the Cook Inlet salmon fisheries will go with it. I recommend that the Isureau of

Fisheries use its influence in opposition to the construction of the proposed dams."

This department desires to express the hope that the proposed power project on Kenai River will not be undertaken, for if it is there is apparently no way of saving the salmon run of the Cook Inlet region.

The Federal Power Commission advised the applicants in the case of Anan Creek and Kenai River that it is doubtful if the commission would feel justified in disregarding the desires of the Department of Commerce and that it would probably refuse to grant a license for the projects under present conditions.

TAGGING OF SALMON.

In the attempt to ascertain what streams form the spawning grounds of the red salmon that constitute important runs along the Alaska Peninsula and the migration routes followed in reaching these streams extensive tagging experiments were carried out by Dr: C. H. Gilbert and W. H. Rich in the Shumagin Islands, in Morzhovoi and Ikatan Bays, and at Port Moller. Consecutively numbered aluminum tags were attached to 4,000 red salmon, which were then released and of which nearly 20 per cent were later recaptured. The most important result of the experiments was the demonstration that a large body of Bering Sea red salmon use as feeding grounds the district sonth of the Alaska Peninsula and on attaining maturity return to Bering Sea and distribute themselves to the red-salmon streams of the peninsula and Bristol Bay and pass as far north even as the Kuskokwim River. This discovery has an important bearing on the problem of conserving the vastly important red-salmon runs of Bristol Bay. It is planned to continue this work upon a larger scale during the season of 1923.

SALMON FOR FOX FOOD.

The notable expansion of the fox-farming industry in Alaska within the last year or two has correspondingly increased the use of salmon for fox food. This has occurred along with the constantly growing demand upon the runs of salmon for camnery use and during a period when the future of the salmon supply has been viewed with grave apprehension. Consequently, in the season of 1922 representatives of the bureau were instructed to make a careful investigation to determine the extent of the use of salmon for fox food, the places and methods of procurement, and whether other sources of food less esteemed for human consumption than salmon might be available.

In September a complete canvass of southeast Alaska was made under the supervision of Assistant Agent E. M. Ball, which showed 75 fox farms stocked with approximately 4,500 foxes. At the time there was on hand a total of 654,550 poinds of food, about half of which consisted of salmon heards obtained from camneries, while the remainder was whole fish, chiefly chum salmon. It was estimated that to carry these animals through until the following summer approximately 642,000 . pounds additional would be required, practically all salmon if obtainable. This means an average daily ration of about three-quarters of a pound of fish for each fox, to which is added about one-quarter of a pound of other food, chiefly cereals. Other species of fish, such as halibut, sablefish, flounders, and her-
ring, are used to some extent in southeast Alaska, but are not regarded as the best fox food. Fish that can be dried are preferable, as the foxes do not relish salted fish. Few of the fox farmers do their own fishing, usually purchasing salmon from packing companies and operators of independent traps, purse seines, and other fishing apparatus.

In the Prince William Sound, Cook Inlet, and Kodiak-Afognak regions of central Alaska a careful survey of the situation was made under the direction of Assistant Agent Shirley A. Baker. In this part of the Territory 87 fox farms were listed, upon 42 of which 1,649 foxes were reported. The reticence of operators made it practically impossible to get an approximation of animals on quite a number of farms. It was computed that in the season of 1922 in this district $270,7 \pi 0$ salmon were taken for for food, of which 26,600 were reds, 191,000 liumpbacks, 29,200 chums, and 23,970 cohos. These fox farmers supplement the supply of salmon with other foods, including herring, cod, skates, sharks, hair seals, porcupines, rabbits, and cereals.

Fishing for salmon for use on fox ranches comes strictly under the head of commercial operations and is subject to all restrictions imposed by the laws and regulations. Fishing on the spawning beds and within streams in order to supply fox ranches is as much in violation of the regulations as if salmon so canght were for cannery use. There is no more certain method of depleting the runs of salmon than to take them from the spawning beds. Some fox farmers have seemed concerned lest such full protection of the salmon might work an undue hardship by depriving them of enough food for their foxes. It is not the intention to burden the fox farmers or to prevent in any way the legitimate development of their business, but at the same time care must be taken to preserve the salmon industry by absolute avoidance of commercial fishing within the streams. It is believed that reasonable foresight upon the part of for farmers in securing the heads of salmon from canneries and in obtaining surplus salmon, particularly of the cheaper grades, from outside waters will fully meet all needs along this line.

BRISTOL BAY DISTRICT.

In 1922 a special force consisting of two regular wardens and a number of other employees under the direction of Agent Dennis Winn was again sent into the Bristol Bay district. As in the previous season, efforts were devoted during the spring to the destruction of predatory fishes, and after the beginning of active salmonfishing operations a patrol was maintained on Bristol Bay and in all tributary rivers. Very satisfactory work was accomplished. Two employees were detailed to remain over the winter and make a thorough survey of the spawning grounds of the Wood River lake system. The report submitted by Mr. Winn follows:

GENELAL REPORT OF SEASON'S OPERATIONS.

Operations in the season of 1922 were conducted along the line of previous years. The operators necessary to conduct the work of the different sectors were engaged in the States and Alaska, preference being given to suitable help procurable in Alaska. Owing to the scarcity of such help around Bristol Bay it was necessary to send most of the employees from the States.

Transportation for nine men was granted on the Alaska Packers Association ship Star of Lapland from Semiahmoo, Wash., to Bristol Bay. The Alaska-Portland Packers' Association shin Berlin, Portland, Oreg., transported three men, supplies, and equipment, and two launches and quantities of fuel oil for the summer's work at Naknek. The Burgess of the same company transported supplies, equipment, and fuel oil, and the Columbia River Packers' Association ship St. Nicholas, Astoria, Oreg., furnished passage for three men and transported one launch for Nushagak operations. Various ships of the Alaska Packers Association transported needed supplies and equipment to the sectors operated at Kvichak, Egegik, and Ugashik, together with necessary fuel oil for the same districts.

On the return passage was furnished for seven men on the Alaska Packers Association ship Star of Zealand and for one man on the Indiana to San Francisco, for three men on the Alaska-Portland Packers' Association ship Chillicothe, for two men on the ship Burgcss of the same company, and for three men on the Columbia River Packers' Association ship St. Nicholas to Astoria.

The writer and an assistant proceeded over the regular transportation route from Seattle to Anchorage, across Cook Inlet via launch to Iliamna Bay, thence over the divide to Iliamna Village by snowshoes, thence after the ice break-up to Bristol Bay, in which section the former supervised the work to the end of the season, after which the return trip was made over the same route to the States.

In compliance with the recommendation of the previous season the bureau purchased in Bristol Bay a cruising boat of the purse-seine tyne that had been towed up from the States by the Alaska-Portland Packers' Association steamer Akutan. This boat, known before the purchase as the Clatsop, was rechristened Scoter by the bureau. It met every expectation, made it possible to keep in close touch with the different crews, and minimized the difficulties of getting action in prosecuting law violators, which was never successful with the facilities of previous years.

Three small launches of the Columbia River trolling-boat type, purchased by the packers for the bureau's operations, were used for trout work and stream patrol. As some repairs were necessary to two of the launches it was late before they could be placed in commission, but they were all especially useful in patrol work.

Before the arrival of the writer in Bristol Bay Warden A. T. Looff assumer charge and placed the different crews in their allotted districts, using the Scoter for transportation. Every courtesy was shown by the cannery superintendents in the different sections visited, and sincere appreciation is expressed for the unselfish assistance given.

Warden A. T. Looff, with an assistant, was detailed by the bureau to remain in the Wood River district for the winter of 1922-23. His duties were to visit the spawning grounds and obtain all information possible regarding the salmon, especially that pertinent to their predatory enemies, and to do whatever was possible to exterminate the latter. A thorough survey of this lake system is contemplated with the hope of obtaining authentic data regarding each tributary stream that will be useful in future work. Such a survey could be accomplished only during the late fall after the departure of the camery ships.

destruction of predatory fishes and birds.

Naknek:-The Naknek crew of three men, in charge of Gus Severson, sailed from Portland on April 21 on the Alaska-Portland Packers' Association bark Berlin. Through misfortune the ship ran on Egegik flats, off Egegik River, on May 17. Although no lives were lost and nearly all the supplies and equipment were salvaged, the ship was held fast and broke completely during the summer storms. The evening of May 18 the crew was landed at the Naknek cannery of the Alaska-Portland Packers' Association. Work of preparing equipment, painting dories, etc., was accomplished, and as soon as sufficient mess supplies were available the crew left for Naknek Lake to begin the season's work. Two loaded dories were towed to the foot of the rapids with patrol boat No. 2, in charge of Warden A. T. Looff. A few days were spent here fishing the river, using drift nets and gill nets stretched entirely across the stream. The results were good but of short duration. When the catch showed a material reduction camp was moved above the rapids to the outlet of the lake. The loaded dories were lined through the rapids and the Evinrude used for power above that point. Good fishing occurred here. On June 7 the first red salmon made its appearance, but salmon were not numer-
ous before the 12th. Camp was then moved to Kidawik Crcek, where good catches of trout occurred up to July 2, when salmon made their appearance in sufficient numbers to compel removal of set nets, and from that time on baited traps and set and hand lines were used.

During the earliest fishing the trout stomachs examined were empty, but from late June to the middle of July practically all contained young salmon. The stomach of one large lake trout contained 40 fingerling migrating salmon. The greater portion of the catch was lake trout (Cristivomer namaycush), all extremely large, averaging from 12 to 15 pounds, and one specimen weighing 22 pounds was captured at the mouth of Kidawik Creek. Several specimens weighing 18 pounds were reported.

A trip was attempted up the Savonoski River to the lakes at its head in an endeavor to operate at that point before the advance of the salmon, but water was too low, making it impossible to navigate the river. An investigation was made July 5 in the upper lakes, going there overland from the north shore of Naknek Lake and arriving just below the rapids connecting the two Savonoski lakes. No boats were available on the lakes, so that only limited observations could be made. No salmon or trout were seen in the upper reaches of either lake. However, it was early for salmon in these waters. The water was clear and the shores appeared excellent for spawning. A folding boat that could be carried on the back overland would be useful here, as at several other points that are difficult of access for observations and trout work also. Along the north shore of Naknek Lake a few salmon were observed, but owing to the deposits of ashes their spawning grounds are limited. It was learned without doubt that the islands in this locality are the greatest breeding grounds for terns in the district, and good work was accomplished on this trip in the destruction of their eggs. Several trips were made during the season to all the breeding islands for the purpose of destroying tern eggs.
The crew returned to Kidawik Creek, as the best work could be accomplished there. Many salmon made their appearance in the creek July 11 and the number increased daily, a large portion passing over the falls and into Brooks Lake, of which Kidawik Creek is a tributary. Cohos made their first appearance in the creek July 13, and the main run, which is not large at this point, was entering toward the end of July.
The season's take in this district was 3,436 trout, weighing 41,232 pounds, an arerage of 12 pounds each. Eighty per cent were lake trout, the remainder being Dolly Vardens, steelhead trout, and pike, in nearly equal proportions. More Dolly Vardens were captured this year than formerly, but the percentage was small. Several fish ducks were taken in the nets each night.

All equipment was overhauled and the boats were painted and stored at the cannery of the Alaska-Portland Packers' Association at Naknek. The crew returned to the States on the Chillicothe.

Egegik.-The Egegik party, consisting of H. B. Looff, foreman, and two assistants, left Semiahmoo, Wash., April 16, on the Star of Lapland, arrived at Ifristol Bay May 16, and transferred as soon as possible to Egegik, establishing base headquarters at the Alaska Packers Association cannery. Supplies being delayed, a sufficient quantity was borrowed from the Libby, McNeill \& Libby cannery, which, added to stores from the previous year, enabled the crew to make an early start upriver. Various difficulties and accidents, such as Evinrude trouble, storms, in which one of the loaded dories capsized, and sickness of one of the men, caused some delay. Camp was eventually established at the outlet of the lake on June 1. Fishing with seines and set nets at this point produced fair returns. Great schools of young salmon were noted migrating on June 6, and large numbers of terns were in evidence working on the young salmon and following the schools downstream.

All islands in the vicinity were visited and considerable numbers of tern eggs destroyed. As soon as it became apparent that possibilities at this point were limited camp was moved to the upper end of the lake at Little Becharoff on June 12, where good results were obtained throughout the remainder of the season.

The effects of the fishing of last season were noticeable in the reduced numhers of trout seen at Kanatak Creek and surrounding streams, which are the principal salmon streams in this district and which produced the greater portion of our trout catch last year. Winter men and natives at the village lere report that Kanatak Creek was practically clear of trout after our departure last fall,

All creeks in the vicinity were visited with good results, the fishing appliances used being seines, spears, hand and set lines, bait traps, and set nets. Seines were used with considerable success along the lake shore near the mouths of the different streams.

The trout averaged much larger than those taken in previous years and were fat and bright, with every appearance of being sea-run fish. Specimens weighing 8 pounds were common. Those of last year were for the most part thin and emaciated.

The north shore of the main lake was investigated, but conditions were not found to be conducive to extensive spawning. Some salmon were noted near the mouth of several streams, but in much smaller numbers than in the Little Becharoff section. All trout taken were given to the local natives, who dried them for food.

In Salmon Creek 386 trout, all weighing from 6 to 8 pounds, were taken July 3 , and red salmon were noted schooling at the creek mouth. The high water of July 7 brought the salmon into many of the creeks in such numbers as to compel the discontinuance of set-net operations in certain streams. Aggressive fishing was conducted in the different streams with movable equipment until the salmon made their appearance in each, after which hand lines, bait traps, and spears were used exclusively.

A most successful method of capture consisted in baiting the lake shores in the vicinity of the streams with trout offal and seining the baited territory. For several successive days an average of 200 trout was taken in this manner, amounting to nearly half a ton, and on July 26, 1,139 Dolly Vardens were caught. Most of this catch were large fish, one specimen weighing 14 pounds, but several were small, measuring from 4 to 8 inches. The total catch for the season aggregated 10.063 fish, all Dolly Vardens, averaging 4 pounds each, or 40,252 pounds weight.

All equipment was overhauled and stored at the Alaska Packers Association cannery, Egegik, and the return trip to the States was made on the Alaska Packers Association ship Star of Zealand.

Ugashik.-The Ugashik crew, in charge of William Tanner, were transported on the Alaska Packers Association ship Star of Lapland from Semiahmoo, Wash., with the Egegik party. Upon arriving in Bristol Bay there was some delay in starting operations because of engine trouble on the Scoter, but the crew was located as soon as possible and base headquarters were established on May 24 at Red Salmon cannery, Ugashik River. A start upstream was made immediately after arrival. ('amp was established at the rapids near the foot of the lower lake, where fishing was conducted for several days with meager results.

A barrier with trap was installed across the entire stream to take both ascending and descending fish, in the belief that some migration of trout was possible either way. The results being unsatisfactory, camp was moved to last year's location on the stream between the two lakes. Here the barrier was installed across the stream with trap on one end, where the fish were in the habit of passing, and expectations were more than justified, as trout were intercented passing up and down stream. Those passing up were bright, having the appearance of sea-run fish, and those caught from the other direction were thin, evidently "spawnouts."

Observations proved that it was late for the early ingress of sea-run trout at the first location, as they had passed into the first lake. They were the fish taken in the trap while attempting to ascend to the second lake, and those captured descending were possibly en route to salt water. At the beginning of operations very large trout were taken, but toward the end their size kent decreasing to very small fish, making the average weight $2 \frac{1}{2}$ pounds.

Migrating salmon passed out of the lake in enornous numbers en ronte to the ocean from June 5 to 14, but small schools were noted at times before and after those dates. Terns were in attendance in great numbers.

Catches were light until July 1, when the trout became active, continuing so until early August. The trap did excellent service, although the heary rains of early July interfered materially with fishing, as refuse drifted against the wire netting, making it impossible at times to hold the netting across the stream at the bottom. Fair success was experienced with drift nets in the evenings during darkness. Trins were made also to all tributary streans and fish were driven down into fyke or gill nets near the stream mouths. These results were satisfactory.

The first red salmon reached the camp June 30, but they did not interfere with operations before July 13, although they were in the lower lake in enormous schools. On their arrival in numbers sufficient to offer interference barrier and trap were removed and fishing was conducted exclusively with bait trap and set and hand lines.

At the season's close the equipment was overhauled and stored at the cannery of the Red Salmon Canning Co., Ugashik, and the patrol launch at the Alaska Packers Association canuery at the same point. The crew proceeded to the States on the Alaska Packers Association ship Star of Zealand. after being transferred to that vessel by the Margaret of the Naknek Packing Co.

The number of fish taken aggregated 8,946 and weighed 22,365 pounds, an arerage of $2 \frac{1}{2}$ pounds each. About 80 per cent were Dolly Vardens and the remainder lake and rainbow trouts. Some whitefish and grayling were taken, but in negligible numbers.

Tushagak.-This crew was in charge of Eric Fenno and embarked on the Columbia River Packers' Association ship St. Nicholus, from Astoria, Oreg.. April 19, arriving at Nushagak May 18. A small launch, which was transported on the st. Nicholas, was used by the crew to make the trip to Snag Point.

Until supplies were unloaded from the Burgess, the crew busied themselves in orerhauling equipment and boats. The latter were placed in the water so that seams could be properly swollen to stop leakage. When this work was completed and supplies were available, the crew started up river with two loaded dories in tow by patrol boat No. 3.

Camp was established June 3 at the head of the first lake, and fishing progressed with but meager results to June 12, when catches began to improve. The greatest success was experienced with set nets, which were transferred from place to place, those on the side of the river toward the lake outlet making the best catches. No large schools of trout were noted at any time. Numbers were observed passing up stream with the salmon, however, and it was concluded that they were going up immediately on arrival from salt water.

About the tine it became necessary to break camp trout were arriving in greater numbers than at any other period. A run arrived from salt water August 1, and sereral successful hauls were made with the seine. The sizes show a decided decrease each year, from an average of 4 pourds in 1920 and $3 \frac{1}{2}$ pounds in 1921 to $2 \frac{1}{2}$ pounds the current year. A few specimens weighing 7 pounds were taken through the season. In former years this size was common.

Schools of migrating salmon were seen passing down at intervals but never in large numbers. The action of the terns gave positive evidence when a school was passing. An intermission in the tern depredations was noticeable from June 18 to 23 , and no migrations were reported during that period. The last migrations reported were on July 27 , and all the terns disappeared from the lake on July 29 . Several trips were made to all islands in the lake for the purpose of destroying tern eggs. On trips of observation to the second like, terns were seen working the entire river.

Incoming salmon made their appearance at the operating point near the river's outlet on July 2, necessitating the removal of nets at that point, after which set and hand lines were used here. At other points the nets were fished with success to July 9 , when the salmon began scattering over the entire territory. For a few days during the early part of the run the salmon passed up in continuous schools, which soon declined to small numbers of from 20 to 30 passing at intervals with long periods between.

Gill-net marked fish, although noticeable all through the run, were not seen in large numbers before the middle of July, when the ratio of fisls badly injured reached about 10 per cent, and a few days later, as the run slackened, 25 per cent. July 21 most of the salmon noted ascending and endeavoring to ascend were injured and sick. Many of these, however, were fish that for some time had endearored to ascend, but without success, and would perish in any case before spawning.

Humphack-salnon spawning was in progress near the outlet of the lower lake when the crew departed on August 9 , but not in large numbers.

The total take of trout for the season was 7,410 fish, weighing 18,525 pounds, an arerage of $2 \frac{1}{2}$ pounds each. Ninety-five per cent were Dolly Vardens, the remainder being pike with a few rainhow trout.

Equipment with one small launch was stored at the Alaska-Portland Packers' Association cannery at Suag Point, and the launch Scoter and patrol boat No, 3 were placed on the ways of the Alaska Packers Association cannery
at the same place. The return trip was made on the Columbia River Packers' Association ship St. Nicholas.
llimmma.-The writer and an assistant left Seattle April 15 by regular passenger vessel for Anchorage and proceeded thence down Cook Inlet by launch to Iliamna Bay, and from that point over the divide to Iliamna Village on snowshoes, arriving May 2.

Ice still corered the lake, but was not safe for travel. Many of the streams, however, were entirely free of ice. On May 6 a trip was made up Iliamna River about 6 miles. The water was clear, and not over a dozen trout were noted in the entire stream. At this time the young salmon were emerging from the gravel, and small schools were scen at certain points along the stream descending slowly to the lake. No trout have gathered in any numbers in this river since 1920 .

A trip was made to Pile Bay on May 8. Five native women were fishing through holes in the ice in about 4 feet of water, using black thread for line and preserved fish eggs for bait. One woman caught 21 fish and the others from 8 to 16 each, all Dolly Vardens, weighing a pound apiece. It is the practice of natives to fish in this manner through the late winter and spring, when weather and ice conditions nermit, and the women's catch on this date was a fair arerage of their usual take.

On the occasion of this visit of the crew the ice on the lake was so dangerous that no work could be attempted. Another trip was made up the Iliamna River and several nets set at advantageous points to determine whether trout were moving. The nets were fished with negligible results for a few days, when the ice broke sufficiently to permit passage across the lake.

On May 18 the crew proceeded down river with a load of equipment and met O. B. Millett with his launch at Fish Village, where they were forced to seek shelter with the smaller boat. They were taken in tow and arrived at Goose Bay in the evening. The bureau's launch had been on the ways here through the winter in care of Mr. Millett and was overhauled, painted, and ready to be placed in the water before the crew's arrival.

After the launch was sufficiently long in the water to stop leakage equipment was taken aboard and the season's work was begun. Nets were placed across the mouth of Goose Bay, and although some miscellaneous species of fish were taken, among which were Dolly Vardens, rainbow trout, whitefish, and grayling, the catches were very small. Trips were made to the surrounding creeks. At each point, the spawning grounds, where young salmon were emerging from the gravel, were visited. Large schools of fry were noted in all the tributary creeks and spring ponds, but few had as yet reached the main creek in their descent to the lake. When inspecting this section last fall during the spawning period a fair run was noted in the spring ponds, and the crew were advised that the run continued rery late and that live spawning fish were seen January 6.

Fishbones piled at different points along the shore the work of bearstestified to a good run. The natives popular method of hunting bears is to have roosts in the tree tops along the shore line, where they lie in wait for the bears, the fish being the bait to attract them. Several were killed from these roosts last year.

The entire section was prospected for trout, but very few were caught. It became evident that they were not in the streams or in that vicinity, so equipment was transferred to Woody Island, at the upner end of Iliamna Lake, the object being to locate trout in connection with the salmon spawning grounds and the presence of salmon fry. Very little is known of this island, but upon investigation it was found to contain several series of connecting lakes, with the entrance to each series from the main lake and deep enough to accommodate patrol boat No. 1. Young salmon were noticed in considerable schools feeding along the shores. Nets were set around some of the schools, and an excellent catch of trout during the night was the result.

Most of the catch during the season was made in this district. When fishing became unprofitable in ous series of lakes, camp was changed to another. The employees lived aboard the launch, which facilitated their movements. The first salmon made their appearance on July 3, and at this time trout were becoming scarce, so operations were transferred to the southeastern part of the lake in the vicinity of Intricate Bay. This was an excellent place for the work, but the salmon appeared in such numbers as to make extensive fishing impossible. Enough information was gathered, however, to show the necessity of a season's aggressive operations in that locality. Another year
it is the intention to place a crew of residents on patrol boat No. 1, which was left on the ways at the head of the lake, and proceed immediately after the break-up to Intricate Bay, where operations will be hegun.

Sufficient equipment and mess supplies were stored at Iliamna for work next year in this sector. One of the smaller patrol boats is to be dispatched with a crew from Naknek to undertake operations at the lake outlet.

Considerable work was accomplished on the fishway at Kokhonak Falls. The grade was made easier, the passage wider, and a new resting pool added to the lower end of the passage, which now enables the salmon to get orer the falls without obstruction. To complete these improvements several tons of rock were removed by blasting.

The total catch in this sector for the season was 3,697 fish weighing 9,242 pounds, an average of $2 \frac{1}{2}$ pounds each. Ninety per cent were Dolly Vardens, the remainder being lake and rainhow trouts and pike.

Upon completion of the work the launch and equinment were overhanled and the former was placed on the ways at Goose Bay, the latter stored at the home of 0 . B. Millett.

Predatory trout taken in 1922.

Location operated.	Fish taken.	Average weight.	Total weight.	Dolly Vardens.	Lake trout.	Allothers, steelhead, rainbow trout, and pike.
Naknek.	Number. 3, 426	Pounds. 12	Pounds. 41, 112	Per cent. 10	Per cent.	Per cent.
Egegik.	10,063	4	40,252	100		
Ugashik.	S,946	$2 \sqrt{2}$	22,365	80	10	10
Nushagak	7,410	$2 \stackrel{1}{2}$	18,525	95		5
Iliamna.	3,697	$2 \sqrt{1}$	9,242	90	5	5
Total.	33, 542		131, 496			

Recapitulation.-It is felt that the work of destroying predatory fish is showing results, as reduced numbers are encountered in streams that have been aggressively fished. This is very noticeable in Iliamna River and the upper portion of Iliamna Lake, also in certain creeks in Little Becharoff Lake, notably Kanatak Creek and vicinity. The work in this section proves also that a continuous war must be waged against the marauders.

Practically all the tront captured this year were large, fat, and sea-run. The majority taken in previous years had the appearance of being lake fish. Most of the fish captured through the entire season's operations were Dolly Varden trout.

The small trap installed this year at Ugashik as an experiment can be utilized with profit at Wood River and possibly other points where sea-run trout may be intercepted. It is cheap, efficient, easy to install, and, with slight changes as to leads and pots, can be made to fish both incoming and outgoing trout, the incoming feature to be removed as the salmon appear and the outgoing portion to remain efficiently operating for the migrations that occur through July at Ugashik. It is assumed that a like migration occurs at other lakes. The loureau is furnishing web for this purpose, and measurements of the width of the river at the lake outlet, together with water depths, are at hand.
Experiments were made with small-caliber shotguns (36 gauge) in making war on terns. Excellent execution was possible from the stern of the boat, as there are usually several birds following in the wake of each boat. picking up small fish that are worked to the water's edge by action of the propeller. The cost of the gun and ammunition is nominal, and the guns can be profitably utilized on all boats.

EXTENT OF SALMON RUNS.

There were approximately $1,500,000$ cases of fish packed in Bristol Pay during the current year. of which about 70 per cent was reported for the east shore, including Krichak, Naknek, Egegik, and Ugashik, and 30 per cent for the

$$
54940^{\circ}-23-3
$$

west shore, including all of Nushagak. It is estimated that about 10 per cent of the Nushagak pack consisted of fish transferred from the east shore.

Along the east shore of Bristol Bay the red salmon made their appearance June 26, when small numbers were taken in the vicinity of Egegik. Fishing improved gradually to July 1, when the heavy rush set in. Purse seiners operating through this period made excellent catches about 25 miles offshore from Egegik. The number of fish increased so rapidly that practically all canneries in this section were compelled to raise their limit flags simultaneously. In the Naknek and Kvichak districts the run held from July 2 to 11, when a falling off was noticed and some limit flags were taken down. All flags were removed a few days later. After July 13 the run declined rapidly with occasional flashes to the 20th, after which fishermen for the most part lost interest. The Ugashik run held steadiest and continued strong to July 22. Fair numbers were entering to the end of July.

At Nushagak the main run of red salmon hegan July 3 and held steady until July 17, when it fell off to almost nothing. The run, however, was never heavy, and no cannery was driven to its limit, although operating on 80 per cent capacity. A small run of humpback salmon was reported July 20. At Irushik red salmon made their appearance July 5, the run reaching its crest the 8th, after which it tapered off rapidly, and after July 15 very few fish were noted. The run was never large even at its height.

In checking the salmon rum at the outlet of the stream between Alegnagik and Nerka Lakes an estimate was made of about 500,000 salmon passing upstream. Some spawning is accomplished in Alegnagik, but it is negligible in comparison with the connecting series of lakes above.

No estimate was possible at the operating points along the east shore and none is necessary. The escapement was ample to meet every requirement for the perpetuity of the cycle. In many cases the fish were too numerous in the spawning beds for any results above normal seeding, especially in certain streams tributary to Iliamna Lake.

PATROL.

The patrol of the entire district was especially efficient. Six power boats and the vessel Scoter were used. Three 30 -font Columbia River type boats, each fitted with living accommodations for three men, were on hand from 1921, and three 28 -foot boats of the Columbia River trolling type, powered with 5 and 6 horsepower engines, each fitted with living accommodations for two men, were available for this year's operations. These boats were used in connection with the predatory tront work and were placed on patrol when the fishing season began. It was thus possible to cover the entire field with suitable power boats to insure proper law enforcement. One boat with warden and assistant was assigned each to Wood, Nushagak, Igushik, Kvichak, Naknek, and Ugashik Rivers. Egegik was handled as previously, using an Evinrude motor and dory with perfect success. One of the boats was used the entire season for operations in Iliamna Lake.

The Scoter proved a welcome addition, making it possible to keep in touch with the different phases of the work at all times and to prosecute those on boats taken for violating fishery laws by transporting the commissioner and marshal to the points where the violations occurred.

The situation at Ugashik is bad. The fishermen refuse to remain below the markers unless absolutely compelled to. There are 15 miles of river above the markers to the Red Salmon Canning Co.'s cannery, and at times fishing boats were anchored at intervals along the entire distance. Although it is certain they were fishing and the method employed is known, positive evidence could not be procured, as the bureau's boat could be seen at a distance when it was impossible to see their nets in the water. A small piece of net is so drawn across the chamel that it can easily be removed. In making the rounds with the warden the writer noted a fisherman 6 to 8 miles above the marker who supposedly had a net in the water, but just before his action could be seen he raised his sail. One boat after another followed his example until from 8 to 10 boats were sailing down the river ahead. The situation can be controlled by two boats, one to operate in the vicinity of the ships just above the markers and the other in the vicinity of the "chutes" and above, and this arrangement will be in force another year. Every effort was made to enforce the laws with the single patrol boat available, and as a result eight boats were apprehended. Fines were imposed in each case.

SPAWNING GROUNDS.

When work was completed in Bristol Bay and arrangements made for the return of the different crews to the States the writer proceeded to Iliamia Lake to view the spawning grounds in this section before departure for the States, in accordance with the custom of the two preceding years. All the spawning territory was risited and observations indicated a sufficient escapement to seed all available grounds. The tributary streams along the southeast, east, and north shore of Iliamna Lake contained surplus spawners to the extent, in many cases, of being wasteful from an economic standpoint. On the trip to and through the Lake Clark section great numbers of salmon, either spawning or spent, were noted along the entire Newhalen River, and extensive spawning was in progress along the shore of Lake Clark to Tarnalia. Fish seemed to be everywhere, and in localities where none were seen the two preceding years.

Visits were made in turn to Tarnalia River, Current Creek, and Big River; thence to the head of Little Lake Clark. Return was made along the opposite lake shore to Kegik Creek. Tazimina River was visited last. Trips were made upstream at each creek and river visited, but the discoloration of the streams caused by glacial water and floods precluded all possibility of intelligent observation, with the exception of Kegik Lake and Tazimina River. The trip was somewhat early for the run in the upper reaches of the lake, but red salmon were observed jumping at the entrance to Little Lake Clark.

From information obtained from reliable residents relative to last rear's run in this section it was learned that "very few fish reached the upper portion of Little Lake Clark, and the only fish of consequence were noted in Kegik Lake, where fair numbers were seen earlier in the season. Signs of a few thousand fish were seen in the sloughs of Current Creek about 10 miles upriver, but the brown bears had cleared off every fish from their spawning heds," and it is felt that the results from spawning here were negligible. At Tarnalia, where great numbers were noted the present season and are numerous in all good years, "there were no dead fish found along the lake shore, where preriously many were picked up for garden fertilizer." On arrival at Kegik on August 23 a trip was made to the lake, where several thousand red salmon were noted milling along the upper shores near the mouths of several small streams. All fish noted were silvery and fresh, as though they had just arrived, and no spawning was in progress. The same resident observers will report next spring on the extent of this year's run in Upper Lake Clark.

A surver was made of Tazimina River to the falls, and salmon were found in its entire length of about 8 miles. This fall is impassable, has a perpendicular drop of about 75 feet, and is about 50 feet wide. And on the date visited the stream was low, about 2 feet of water passing over. The rush upstream was under way in the river, and some spawning at various points was in progress. An unbroken line of fish from 1 to 3 feet wide was passing near the river mouth, with seemingly no limit to the numbers.

The natives had their winter's supply cured, and it is estimated that about 60,000 fish, divided between 30 families, was their Lake Clark quota. About 50,000 fish would be required for the local families around Iliamna Lake.

On the return to Iliamna on August 25 supplies were taken aboard preparatory to an inspection around the lake. Each stream of consequence was visited and examined upriver several miles. The Upper Tularic was visited late in the season. but is not considered of importance as a salmon-spawning stream, although it had the appearance of being thoroughly suitable for the purpose. It was estimated that not over 10,000 fish spawned in its waters. An abundance of spawners was noted along the lake shore in every direction, and the lake surface was generously dotted with the dead fish after spawning.
Visits were made to Chekok Creek and tributaries, and many thousand salmon were seen on the spawning beds and schooling preparatory to spawning. In one spring pond, 350 feet long by 40 feet wide and 6 to 8 inches deep, it was estimated that there were about 5,600 fish in course of spawning and fully as many more in pools outside in the creek schooling and ready to enter. This pool is fed by springs and nerer freezes. The bottom was pure, coarse, clear gravel down as far as dug. The fish were not working as actively as in a flowing stream. In the course of digging it was noted that about 25 per cent of the eggs among the gravel were dead, due to the activities of the late
arrivals. No trout or birds were in evidence. The tenure of life of spawning fish seemed to be prolonged in this water, and the dead were not decaying as rapidly as those in the creek beds. Other spring ponds not as suitable were supplied to capacity with spawners and many far beyond that point. In one pond, 150 feet long by 50 feet wide and 18 inches deep, there were estimated to be about 2,000 fish either dead or spawning. The bottom was literally corered with dead eggs; but few live ones were noted, and they would all erentually be picked up by the numerous gulls. Many more fish were schooling in the creek outside destined to the spring ponds.

At Copper River, August 29, it was estimated that there were about three times as many fish in the stream as were observed last year, possibly at least $1,000,000$ fish in this river. The entire river bottom was dug over, and from the number of dead noticed it was concluded that one run had spawned. Another run was then on the beds, and sufficient numbers to cover this spawning territory a third time to capacity were yet in large schools, finning and milling in every eddy and deep pool.

Many sloughs in which extensive spawning was accomplished before the lowering of the stream were dry or nearly dry, and many that were separated from the main stream in which spawning was yet in force would be dry eventually. These formed serious losses, as the river was due to drop considably and continue extremely low throughout the winter months. Many nests in sloughs, entirely separated from the river, were dug up and both lise and dead eggs found in about equal proportion.

Large losses of eggs have also occurred from rotational spawning on the same grounds, one set of spawners beginning after the first set is through. While watching the spawning rifles in the main river white eggs were seen at times drifting in a steady flow with the current. These were eggs dug up by the latest spawners and were a total loss. It was judged that about onethird of the number of spawners in this stream would bring maximum efficiency.

The number of fish at Kokhonak River was slightly larger than last year; possibly 2,000 were seen below the falls. The salmon were not active in the fishway on August 31 at the date of the inspection. With the improvements made to the fishway no trouble is experienced in their ascent over the falls.

The party followed the river to Kokhonak Lake, a very extensive body of water that has the appearance of being ideal for salmon and is connected with numerous smaller lakes and ponds of more or less value to salmon. The river is about 8 miles long and has four series of falls, each, with the exception of the falls near the river mouth, followed by rapids several hundred yards in length. No. 1 series of falls at the river mouth is about 20 feet high, over which the fishway is blasted, and is the most severe. No. 2 series, about 5 miles above that point, passes through three openings between high rock bluffs and is about 5 feet high. No. 3, a quarter of a mile above, passes through two openings between rock bowlders. No trouble is anticipated for the fish negotiating these natural obstacles. No. 4 is a serious obstruction for salmon. These falls are about 1 mile below the lake. The river passes through two entrances between rock ledges, and the fall is about 15 feet. There are three shelves over which the water flows, and it is doubtful if any salmon are able to pass over. Attention will be centered on this barrier another year.

The conditions at Kokhonak Creek were very similar to those experienced in Copper River, with an equal surplus of spawners and a like loss of eggs from overseeding.

The numbers of salmon entering Belinda Creek were about equal to those entering in 1921, and very few were taken by the natives at that point for home consumption. Early in the season great numbers were seen schooling near the creek mouth, but evidently the main body passed up the lake to other streams or scattered along the lake shore to deposit their eggs.

The fact is emphasized that this season was exceptional, and although it is felt that the corresponding cycle will bring results fully on a par with this year, no absolute reliance can be placed on the return of the next two years. Following that period a substantial improvement may be looked for all along the line. It is felt that the extermination of the predatory enemies of salmon is the most important work that can be accomplished toward satmon conservation and that the results much more than warrant the expenditures made.

WOOD RIVER LAKE SYSTED.

Warden A. T. Looff and one assistant remained in the district during the winter of 1922-23 to make a survey of the spawning grounds of the Wood River lake system. The following report was submitted by Mr. Looff as a result of observations before the freeze up in the fall.

GENERAL REPORT OF SEASON'S OPERATIONS.

During the fall of 1922 an examination was made of the Wood River system to determine the extent of its fishery waters. All of the spawning areas were inspected and the number of salmon on the beds estimated. All tributaries were examined for obstructions to the ascent of salmon. The principal breeding grounds of the predatory tern were located, and a study was made of the spawning habits of Dolly Varden trout in this district.

The Wood River watershed consists of the 5 Wood River lakes, namely Aleknagik, Nerka, Deverly, Fourth, and Kulik, together with their connecting rivers, 5 small tributary lakes, and 55 tributary streams. The whole is drained by Wood River into Bristol Bay.

Leaving Snag Point August 23 the party proceeded up Wood River to Aleknagik Lake, thence to Nerka, Beverly, Fourth, and Kulik Lakes. Patrol boat No. \& was used for the run up Woorl River and the work on Aleknagik Lake. An 18-foot codfish dory was used on the upper lakes. No difficulty was experienced in ascending and descending the connecting rivers. Each lake was circled and the entire shore line examined. All tributary lakes and streams were stndied, and those frequented by salmon or other fish were explored. Work was completed and return made to winter quarters at Snag Point on October 9 , camp having been established 19 times, and about 525 mites, 400 of which were rowed in a dory, having been covered.

Aleknagik Lake.-Aleknagik Lake is about 16 miles in length, has an average width of about $3 \frac{1}{2}$ miles, and lies southeast and northwest. In the lake are 15 islands, 4 of which are important breeding grounds of gull and tern. Besides the connecting river coming down from Lake Nerka, nine tributary streams enter the lake, one of which drains a small tributary lake. Five of the tributaries are entered by salmon.

Creek No. 1 enters the lake on the southeast shore about 3 miles above the outlet of the lake. It is 2 miles in length and heads in a small lake one-half mile long and one-third mile wide. About 5,000 red salmon spawned in the stream and lake. It was examined July 28 and September 25 and 29. Later, while working on this stream in connection with Dolly Varden trout operations, a number of coho salmon were seen ascending.

Creek No. 2 enters the lake one-half mile northwest of creek No. 1. It is small, 1 mile in length, and heads in the tundra. However, 50 red salmon spawned in the stream, and one nest in only 2 inches of water was marked for winter examination.

Creek No. 3 enters the lake on the northeast shore behind the large island near the lake outlet. Its length is 1 mile, and it heads in the tundra. A native reported that red salmon enter this stream, but no salmon were found there.

Bear Creek enters liear Bay on the southwest shore about 6 miles above the outlet of the lake. It is a fair-sized stream 5 miles in length and heads in the mountains to the southwest. The stream was examined on July 28 and September 27 throughout its entire length for obstructions and Dolly Varden trout. Salmon were found 3 miles above the mouth, and it was estimated that 5,000 red salmon spawned in its waters.

Creek No. 4 is a branch of Bear Creek. It is one-half mile in length and heads in the tundra to the west. Twenty red salmon spawned in this little stream.

Creek No. 5 enters the lake on the southwest shore about halfway up the lake. It is the largest tributary and should really be classed as a mountain river. It is 8 miles in length and rises in the mountains to the south. It was examined July 28 and October 5. Salmon spawned 3 miles above the mouth, and it was estimated that the stream contained 4,000 red salmon.

Stormy Creek enters the lake on the southwest shore near the head of the lake. It is a mountain stream 2 miles in length and has no salmon.

Creek No. 6 enters the head of the lake. It is 4 miles in length and has its source in the marshy country to the northwest. Natives stated that salmon spawn in this stream, but none was found.

Of the shore line of Aleknagik Lake proper about 10 miles is suitable for spawning. It was estimated that 18,000 red salmon spawned along the lake shore in areas the total length of which is $5 \frac{1}{2}$ miles.

The river connecting Nerka and Aleknagik Lakes is $4 \frac{1}{2}$ miles in length and flows generally south. It was examined August 25 and September 16. Salmon were spawning in the river throughout its entire length, and it was estimated that it contained 5,000 red salmon.

Nerka Lake.-Nerka Lake is the largest of the Wood River lakes. It lies like a great horseshoe with the opening toward the east. The shortest routs from outlet to head is fully 45 miles. In circling this lake the distance traveled is estimated at 160 miles, not counting side trips up tributaries. In the lake are 26 islands, of which three are grass islands and slonwed evidence of being rast breeding grounds of gull and tern. "wenty-three tributaries enter the lake, four of which have their orlgin in tributary lakes. Eight tributaries are entered by salmon.

Creek No. 7 enters the lake on the southeast shore about one-half mile above the outlet. It is a mountain stream 2 miles in length and contained no salmon. Creek No. 8 enters the lake on the southeast shore about 1 mile above the outlet. Length 2 miles, source mountain, no salmon.

Creek No. 9 enters the southeast shore about 5 miles above the lake outlet. Length 3 miles, source low hills, no salmon.

Creek No. 10 enters the lake on the east shore about 15 miles above the lake outlet. This stream is 3 miles in length. At its head is a small lake 1 mile long and one-half mile wide. The lake and stream have good gravel. The estimate for both was 5,000 red salmon. Examined August 26 and September 15.

Creek No. 11 enters the lake on the east shore 18 miles below the head of the lake. Length 1 mile, source mountain, no salmon.

Creek No. 12 enters the west arm of the big bay on the east shore of the lake, is 1 mile long, and heads on the mountain side. Over 50 red satmon were spawning in this little creek. Examined August 28.

Creek No. 13 enters the east arm of the big bay on the east shore of the lake. Length 1 mile, source low hills, no salmon.

Creek No. 14 enters on the northwest shore 3 miles below the head of the lake. Length $1 \frac{1}{2}$ miles, source low hills, no satmon.

Creek No. 15 enters on the northwest shore 9 miles below the head of the lake. Length 3 miles, source mountain, no salmon. This stream has good gravel for a distance of one-half mile above the mouth.

Creek No. 16 enters on the northwest shore 13 miles below the head of the lake. Length 3 miles, source mountain valles, no salmon.

Creek No. 17 enters the bay formed by the long peninsula on the northwest shore of the lake. This stream is $3 \frac{1}{2}$ miles in length and drains a small mountain valley, is 8 to 10 feet in width, and has an average depth of 2 feet. For a distance of 2 miles above the mouth the bottom is thoroughly suitable for spawning. Here over 50 red salmon were counted. The season was well advanced. Examined September 11.

Creek No. 18 enters the same bay one-fourth mile southwest of Creek No. 17. The stream is 4 miles in length and drains a mountain valley. Its bottom is suitable for spawning for a distance of 1 mile above the mouth. One hundred and fifty red salmon were counted here. Examined September 11.

Creeks Nos. 19 and 20 are short mountain creeks that enter the arm on its north shore. They are each one-half mile long and have no salmon.

Creek No. 21 enters the head of the northwest arm of the lake. This is Nerka's largest tributary. Length S miles, arerage width 20 feet, depth 3 feet. Origin is in the mountains to the northwest. There is good gravel for a distance of 5 miles up this stream. It was estimated that not less than 8,000 red salmon were spawning in this stream. Examined September 12.

Creek No. 22 enters near the entrance of the arm on the south side. This is Nerka's third largest tributary. Length 4 miles, origin in the mountain valley leading to the west. This stream contains good gravel. Estimate for the stream was 1,000 red salmon. Examined September 12 and 13.

Little Togiak River connects Little Togiak Lake with Nerka Lake. The river is only 500 yards long, and it was an easy matter to pole a boat up into Little Togiak Lake. The lake is 8 miles in length and $1 \frac{1}{2}$ miles in width. The shore
line is not attractive as a spawning area, the water being shallow and the bottom corered largely with rocks. At the head of the lake, however, is a small areal with good gravel, and here were 2,500 red salmon. In Little Togiak River were about 500 spawning red salmon. Examined September 14.

Creek No. 23 is a small mountain stream entering the head of Little Togiak Lake. Its length is 2 miles, and salmon do not ascend.

Creek No. 24 enters on the southrest shore of the lake 1 mile sontheast of the outlet of Little Togiak River, is one-third mile in length, and drains a small lake 1 mile long and one-fourth mile wide. The creek is small and the lake shallow. Salmon do not enter.

Ureek No. 25 enters on the southwest shore of the lake $1 \frac{1}{2}$ miles southeast of the outlet of Little Togiak River, is 2 miles long, and drains a small lake onehalf mile in diameter. Stream and lake have good gravel, and salmon were spawning in both. Estimated to contain 1,000 red salmon. Examined September 13.

Creeks Nos. 26, 27, and 28 enter along the southwest shore of the lake. They are short, draining mountain ravines, and are entirely unsuitable for spawning.

Of the 160 miles of shore line of Lake Nerka proper, 90 miles is suitable for spawning. Salmon were spawning in 20 distinct areas with a total length of 22 miles. The areas are well distributed around the lake, most of them centering at the mouths of tributary streams. Salmon were most abundant in two areas, one on each side of the long peninsula on the northwest shore of the lake, but were certainly not crowded. It was estimated that the lake-shore spawning areas totaled 31,000 red salmon.

The river connecting Beverly Lake with Nerka Lake is 2 miles long and flows south. This was found to be the most difficult of ascent of the four connecting rivers. The water is swift and the channel strewn with large bowlders, which makes the river unsuitable for spawning. While ascending the river August 29 thousands of salmon were seen in the eddies. They seemed weak, and upon examination were found to hase spawned. While descending the river September S fully 30,000 dead and dying salmon were found along the shores and in the eddies. Several hundred of the dead fish were examined. All were spawned out. They did not spawn in the river, but must have slawned along the shores of Lake Beverly above, and upon becoming weak dropped back into the river, where the swift rapids made short work of them.

Beverly Lake.-Beverly Lake is the second largest of the Wood River lakes, with a length of about 20 miles and an average width of 4 miles. Fiom the outlet to inlet the direction is west-northwest. In the lake are four islands. All are rocky, and gulls and terns do not nest on them. Twelve tributary streams enter the lake, of which three are ascended by salmon. A brief description of the tributaries follows:

Creeks Nos. 29, 30, 31, 32, and 33 are small streams that enter the lake along the north shore. Salmon do not ascend any of them, although Nos. 30 and 31 have small patches of good gravel. The creeks all head in the low timbered country to the north of the lake.

Creek No. 34 enters the head of the bay on the north shore of the lake about 7 miles below the mouth of the river coming down from Fourth Lake. Length, 1 mile; source, tundra; no salmon.

Creek Ko. 35 enters on the north shore of the lake about 4 miles below the outlet of the river coming down from Fourth Lake. Its length is $1 \frac{1}{2}$ miles. The stream has good gravel bottom and drains a small mountain valley, but salmon do not enter.

Creek No. 36 e:aters on the north shore of the lake about 2 miles below the outlet of the river coming down from Fourth Lake. This stream drains a small mountain valley and is 2 miles long. It has gond gravel bottom for a distance of one-half mile above the mouth, and 500 red salmon were spawning here. Examined August 30 and 31.

Creek No. 37 enters the lake one-half mile south of the outlet of the river coming down from Fourth Lake, is 1 mile long, and has its source at the base of a large mountain to the west. It has good gravel, hut salmon do not ascend.

Creek No. 38 enters the head of the north arm on the upper end of the lake. This is Beverly's largest tributary with a length of 4 miles and an arerage width of 15 feet. The stream drains a momntain valley. The water in the lower 2 miles flows slowly with an averaqe depth of 3 feet. Five thousand red salmon spawned here. Examined September 5.

Creek No. 39 enters the head of the south arm on the upper end of the lake. This is a small mountain stream 1 mile long and has no salmon.

Creek No. 40 is a small mountain creek, one-half mile long, that enters the bay on the south shore of the lake. Twenty red salmon were counted. Examined September 7 .

Creek No. 41 is a small stream that enters on the south shore near the outlet of the lake. Length 2 miles, source low hills, no salmon.

Beverly Lake has a total shore line of 45 miles, of which 12 miles is thoroughly suitable for spawning purposes. Salmon were spawning in four distinct areas having a total length of 7 miles. Estimates of salmon spawning in lake-shore areas total 34,000 . If to this be added the 30,000 dead and dying salmon seen in the river below, which it is believed spawned in the lake, more than twice as many red salmon spawned in Beverly Lake as in any one of the four other lakes. In the lower end of the lake and along most of the north shore the water is shallow and the bottom covered with grass and mud, altogether unsuitable for spawning. Along most of the south shore is good gravel, but large sections of it are covered with a brown slime. Examined Angust 29, 30, and 31, and September 5, 6, 7, and 8.

The river connecting Fourth Lake with Beverly Lake is $2 \frac{1}{2}$ miles long and averages 200 feet in width. Leaving Fourth Lake the river flows southeast. Just before entering Beverly Lake it swings southwest and then back to southeast. It was easy to pole a boat up. The entire length offers splendid spawning gravel, and salmon were spawning all along. It was estimated that 15,000 red salmon were spawning in the river. Examined September 1 and 5.

Fourth Lake.-Fourth Lake is 2 miles long and 1 mile wide. Excepting for the deep narrow gorge at the head where the river enters and the gorge at the outlet where the river flows out, this tiny lake is entirely surrounded hy steep and high mountains rising from the very water's edge. The lake has no other tributaries and no islands. Along the shore line of the left limit is no spawning area, the water being extremely deep close up to the shore. Along the right limit the water is also very deep, but in places there is a narrow shelf of gravel where 1,000 red salmon were found spawning. At the upper end of the lake the river coming down from Kulik Lake has formed a gravel delta one-fourth mile in diameter. This was almost one continuous spawning nest, and it was estimated that 10,000 red salmon were spawning here. Contrary to findings in the three lower lakes the spawning period was apparently just begiming. The salmon were in fine condition. Examined September 1, 4, and 5.

The river connecting Kulik Lake with Fourth Lake is $3 \frac{1}{2}$ miles long and flows south-southeast. There are several rapids in the river and in places the stream breaks up into separate channels. The boat was lined up in five hours. Parts of the river have good gravel, but the water is mostly too swift for spawning. Very few salmon were seen in the river, and such as were seen were ascending, judging from their fresh color. Examined September 1 and 5.

Kulik Lake.-Kulik Lake is the last of the Wood River lakes, or the first as the water flows, and is 18 miles long with an average width of 4 miles. From the outlet the lake leads northeast for the first 6 miles, then curves to the southeast for 10 miles, narrowing down at the head to a small arm 2 milos wide and 2 miles long leading east. In the lake is one large island covered with timber and unfit for breeding grounds of gull or tern. Ten tributary streams enter the lake, only one of which is ascended by salmon. A brief description of the tributaries follows:
Five small creeks enter along the south shore east of the outlet. All of them emerge from narrow mountain ravines and are altogether unfit for spawning. Another small creek enters the head of the lake coming nut of the low timbered country to the east. This creek is 2 miles long and has some good gravel, but salmon do not enter.

Creek No. 42 is a large stream that enters on the north shore about 5 miles below the head of the lake. It is about 4 miles long and 10 feet wide, with a depth of $1 \frac{1}{2}$ feet. The bottom is good gravel for a distance of 2 miles abore the mouth. Here were 5,000 red salmon in the height of their spawning period on September 2 and 3.

Creek No. 43 is a large stream on the north shore about 8 miles below the head of the lake. It is 4 miles long and has good gravel for a distance of 2 miles above the mouth, but salmon do not enter.

Creek No. 44 is a small creek that enters on the north shore 6 miles northeast of the lower end of the lake; length 2 miles; drains small mountain valley; unfit for spawning.

Creek No. 45 enters the west end of the lake, is 3 miles long, and has as its origin a small glacier. The bottom is good gravel, but salmon do not ascend.

Kulik Lake has a total shore line of 40 miles, of which 25 miles is suitable for spawning purposes. The east end and the west end of the lake are rocky, but along the north and south shores are fine areas of gravel. Salmon were spawning sparsely on nearly all suitāble territory. Estimates for the lake shores total 21,000 red salmon, spawning orer areas totaling 20 miles in length.
summary.-All references herein are to red salmon unless otherwise specified, as very few of the other species enter the lakes in this district, and although they were found occasionally they have not been included in tine estimates. During the late summer several thousand humpback salmon spawned in the upper part of Wood River and around the outlet of Aleknagik Lake. About 50 king salmon were spawning here during the same period. An occasional chum samon was found-about 25 in all-along with the red salmon in Aleknagik, Nerka, and Beverly Lakes, but none was found in the two upper lakes. Several hundred coho salmon were spawning in Aleknagik Lake and its trilbutaries during the latter part of September and as late as October 9.

Throughout the work on the spawning areas careful check was made to determine the ratio of male salmon to female. The rich red color of the male makes it easy to distinguish him from the female. That this might work to the male's faror was realized, and tests were limited to conditions where there could be no mistake. As a result of these observations, dealing with thousands of salmon on many spawning areas in each of the lakes, it is believed that fully as many male red samon were on the spawning grounds of the Wood River lakes as female red salmon.

The four rivers that connect the Wood River lakes with a total length of $1 \frac{1}{2}$ miles, although more or less difficult to ascend with a boat, offer no serious obstruction to the ascending salmon, unless they are badly fungused. Throughout the investigation wherever opportunity offered, which was often, dead salmon were examined. The number of dead salmon found that had not spawned was almost negligible. Such as were found were mostly fungused. That the fungus caused their premature end is certain, as the only places where they were found in any numbers was at the outlet of the rivers entering Aleknagik and Nerka Lakes. No fungused salmon were found in the three upper lakes.

The 17 tributaries frequented by salmon, although small, with a total spawning area insignificant as compared with the main lake areas, are all clear of obstructions and easily ascended by the salmon. All other tributaries that were at all suitable for spawning were examined for obstructions. In two failly good streams \log jams were removed, but as no salmon were at the base the work was of no benefit for this season at least.

On lake-shore areas the salmon were distributed over such a vast territory that the areas appeared almost deserted. Only in a few cases were salmon spawning in groups of any size. It was not an uncommon experience to row for 5 miles along a Iake shore with splendid spawning gravel and not see a salmon. In two places where this condition prevailed the ruins of native rillages were seen, both in Lake Beverly. As native villages in this section are always located with regard to the fish supply, thousands of salmon must have spawned there whell the villages were populated-evidently not many years ago.

In arriving at an estimate of the number of salmon that spawned in the Wood River lake system each area was treated as a separate unit. In many cases figures represent actual count, particularly in tributary-stream and small lakeshore areas. In all cases careful count was liept of dead fish and backbones of dead fish scattered along the shores and on the lower lakes, where the spawning period was much further adranced than on the upper lakes. Where it was impossible to count the fish the number was estimated. Although the weather was exceptionally favorable during the examination it is realized that some fish may have been missed. Gulls surely consumed many and dragged the remains of others out of sight. The following facts seem certain: (1) Not less than 213,600 red salmon spawned in the Wood River lakes and their tributaries; and (2) whether 50,000 more than 213.600 or twice 213,600 spawned, there was room for 10 times the number that actually spawned.

PREDATORY FISH AND BIRDS.
Several agencies detrimental to salmon production in the district are of more or less importance. These are depredations by fish and birds on the satmon spawn and young, fishing for salmon on the spawning grounds by na-
tives, and possibly the action of ice on the spawn. The predatory fish of this district are lake trout, pike, and Dolly Varden trout, the last being by far the most abundant and therefore the worst.

Lake trout were found in small numbers with the salmon on the spawning beds in Fourth Lake and in the river connecting Fourth Lake with Beverly Lake, also around the outlet of Little Togiak River. The depredations of these trout on young salmon in several of the salmon streams of Bristol Bay are well known. Examination of the stomachs of several caught proved that they are also egg eaters of no mean ability. However, their number is very small here.

Pike are not plentiful, but a few we, e found in each of the lakes. They do not feed upon spawn, their food consisting of live fish. It is certain that they consume a large number of young salmon.

Of the depredations of Dolly Varden trout on both the salmon spawn and young the bureau has ample evidence. An effor was made to determine something as to their number, their activities in connection with the ascent and spawning of the salmon, where they congregate, and their spawning habits. While inspecting the spawning areas in the various lakes and their tributaries, a trout gill net was used in places where it could be done without injury to the salmon. Being egg eaters most of the trout would be found on the salmon spawning grounds during the spawning period. As all of the salmon spawning areas were examined, it is believed that a large part of the Dolly Varden trout of this district were seen. During the latter part of September and the first part of October, when the red-salmon spawning period was over, attention was given almost entirely to work on trout. During this time six trout gill nets, one fyke net, and one seine were operated. Young Dolly Varden trout between 4 and 6 inches in length were found during early October coming out of the small tributary lake that enters on the southwest shore of Aleknagik Lake. A fyke net was set in the stream below so as to catch all of them, but was only partly successful on account of drifting leaves, with which the streams are choked during this season of the year.

A fence of spruce trees constructed above the net was not effective, due to the great quantities of leaves. About 200 young trout were caught. During the red-sahon spawning period and after, thousands of Dolly Varden trout were found in the upper part of Wood River and in Aleknagik Lake. Ascending the system from Aleknagik Lake they were less and less numerous, until in Kulik Lake they were so scarce that only three or four were seen in the entire lake. Two places were found in the upper lakes that might be profitably fished-namely, at the outlet of Nerka Lake and at the outlet of Little Togiak River-where there were trout by hundreds but not by thousands as in the lower lake. Altogether 1,018 trout were caught and destroyed, all of which were examined. The following conclusions were noted in regard to trout:

There are more Dolly Varden trout in the upper part of Wood River and in Aleknagik Lake than in all the other lakes combined. During the salmonspawning period the trout congregate on the salmon-spawning beds and feed on the spawn. After the salmon-spawning period is over the trout gather around the outlets of tributary streams where they feed on the bodies of spent salmon. Until October 9 about 5 per cent of the trout were ripe and spawning around the outlets of tributary streams, none of them having ascended the streams. All tributaries of Aleknagik Lake were examined in October, and it is certain that no trout had ascended any of them prior to October 9. The condition of the others would indicate their spawming period as ranging from probably November to some time in the spring, with the bulk of them to spawn during the winter months. From the presence of young trout in the tributary lakes it would seem that at least part of the trout ascend tributaries to spawn. An attempt will be made during the winter to determine whether trout ascend the tributaries later.

In this district there are many gulls and terns. Although all terns had left before the 1st of September great flocks of gulls remained around the spawning areas throughout the spawning period and after, until the "freeze up." That the gulls were feeding on spawn, where the salmon were spawning in shallow water, during the early part of the spawning period was plain. As the season advanced, however, it was noticed that they were feeding for the most part on the bodies of spent salmon. Of the menace of terns to young salmon nothing need be said in this report. Their favorite nesting grounds,
if not their only ones, are grass-covered islands. All of e e 52 islands in the Wood River lakes were examined for breeding grounds of gulls and terns. Besides four islands in Aleknagik Lake already known, three islands in Nerka Lake showed evidence of having vast breeding grounds of both these predatory birds. and it is believed that a large part of the great flocks of terns that frequent this district during the spring and summer nest on these three islands, which are close together, and could be kept clear of eggs by two men during the nesting period.

FISHING ON SPAWNING GROUNDS.

Five native families fished for salmon on the spawning beds of Aleknagik Lake during the spawning period. There was no fishing on any of the other lakes. About 3,000 salmon were caught and dried, of which some were spent red salmon and some cohos. Three native families continued fishing in the lake after the red-salmon spawning period was past and until the first part of October, the last family leaving the lake on October 7. They operated a total of nine nets most of the time. which it was estimated caught over 1.000 Dolly Varden trout besides other fresh-water fish, all for food for themselves and their dogs.

ACTION OF ICE ON SALMON EGGS.

To determine the action of the winter ice on salmon eggs, several nests in shallow water near the lake shores were marked with poles for winter examination. During the fall water gages were placed in several of the lakes to register the rise or fall of the water. From Angust 23 to September 5 , when it reached its lowest level, the water of the lakes fell 2 inches. From that date on the water rose steadily, until by October 21 it had reached a level 18 inches higher than on September 5 . The shallowest spawning nest found on lake-shore areas was covered with 12 inches of water on August 26 . As the height of the spawning period was during the lowest stages of the water, few of the spawning beds were covered with less than $2 \frac{1}{2}$ feet of water when the "freeze up" came on Norember 4. It is reported that the past fall has not been wet. The condition of eggs in tributary streams is not certain. The streams, being for the most part small and very short, reach a flood stage on rainy days, but fall again to a low level in a few hours. Several nests in 2 inches of water were marked and will be examined during the coming winter.

CONCLUSION.

In conclusion it may be stated that throughont the examination of the district natural conditions were found to be almost ideal for salmon production. All of the great spawning areas are easily accessible to the samon. Although thousands of tront and terns still remain to menace the young, much benefit has resulted from the past three seasons of work toward their extermination. In the season just passed (1922) the spawning areas were almost destitute of breeding salmon. W'ith continued work on prelatory fish and birds. and an ample escapement of brood salmon, it would seem that the Wood River lake system should produce many times the number of red salmon it has in the past.

IAIKE ALEKNAGIK INVESTIGATIONS.

In connection with recent studies of the Wood River region, it is believed that it will be of interest and value to publish a report of examinations of Lake Aleknagik and its tributaries that were made in 1908 and 1909 by Millard C. Marsh, then chief agent in the bureans Alaska service. In 1908 Mr. Marsh was accompanied by Claudius Wallich, field superintendent, speciaily detailed for the trip, and the period from May 31 to August 9 of that year was spent on the lake. The following year, accompanied by J. A. Legge, of the Afognak hatchery, Mr. Marsh was on Lake Aleknagik from June 7 until August 8. The report on these explorations, which has recently been revised by Mr. Marsh, is as follows:

In 1908 the Bureau of Fisheries, jointly with two of the salmon-packing companies, began the series of annual counts of red salmon escaping up Wood River into Lake Aleknagik, in the Bristol Bay region of Alaska. ${ }^{2}$ Incidental to this project the lake shores and the tributary streams were examined in some detail in relation to the spawning migration of the salmon and possible future salmon-hatching operations in the region. Many of the observations concern the physical conditions only, and the rather desultory notes are chiefly of local value, to be interpreted on the ground covered. The lake is the first of a chain comprising a spawning basin of great extent and carrying a large quota of spawning salmon, and itself receives, besides its main inlet, nearly 40 large and small creeks, most of which are typical spawning grounds, some of them suitable for hatchery sites. It is the nearest large field to the Nushagak region for the study of the spawning grounds and the spawning fish upon them. Since it is accessible to small craft from tidewater, it is the more available as a resource for hatchery operations. For prospectors in either field these notes are likely to be of some assistance. Claudius Wallich, at that time field superintendent, participated in 1908 in some of the trips up the lake and rendered raluable assistance.

The foot of Lake Aleknagik consists of a nearly circular body of water about a mile in diameter. This is referred to throughout the text as the "lagoon." On its north shore is a native village. Its junction with the main body of the lake is marked by two distinct gravel spits making out from shore on either side. The distance between their tips was rather more than 200 yards, and it was here that the tally rack, through which the fish were made to pass for counting, was stretched in 1908 and 1909. This place was the base for the expeditions up the lake and the point of departure for the enumeration of the streams and all the observations.

There is, of course, great variation from year to year in the correlation of the calendar with the water temperature, the lake level, the disappearance of ice, the seasonal run-off, etc. Besides the observations recorded for particular creeks the following few notes and readings were made for the lake itself: Temperature at surface-June 7,1909 , 1 mile above lagoon, 9.30 a. m., 38° F. (head of Nushagak Bay, $44.5^{\circ} \mathrm{F}$.) ; June 16. 1909, head of lagoon, $39.5^{\circ} \mathrm{F}$. Lake level, 1909-highest seasonal level at lagoon June 19, when it was 20 inches above the level of June 7. The fall, beginning June 21 , was about 41 inches during the next 49 days, when observations ceased. The tidal influence affected the lagoon level (June 7) not more than 1 to 3 inches. The current at the site of the rack at this date was 1.6 miles per hour. Several soundings were made in the lake, the deepest of which was 57 fathoms.

The earliest record is of May 31, 1908. Ice was encountered about 1 mile above the lagoon. As far as could be seen it covered the whole of the rest of the lake as a continuous sheet only a few inches thick and much honeycombed. It would bear no one's weight and was easily broken up, but only a large vessel could have made way through it. Many wet places could be seen indicating cracks through which water welled up on the ice. On June 12 of the same year the lake was open to the main inlet and carried a small amount of drift ice. From the inlet to the head of the lake the thin sheet of honeycomb ice still persisted.

Only a few tributaries to the lake can be recognized from craft traversing the lake without following closely the shore. Thus, the map of the lake appearing on page 200 in Bulletin of the United States Fish Commission for 1901^{3} showed but 9 of the 36 streams here recorded as flowing into the lake, the majority of which carry at least some salmon and constitute spawning grounds. There are many tributaries unsuspected until the observer approaches within a few rards of their mouths. Probably there remain a few still unnoticed.

As most of the creeks are not named and as any value of the observations depends on identifying them they have heen numbered. A few have been named. The exact dates are usually given as of use in comnaring the two

[^12]years and in correlating the spawning adrance with the season. The consecutive series begins with the Village Creek at the Indian village. It proceeds thence westward along the north shore and continues completely around the lake.

Crech 1. Village Creck.-August 4, 1908. At the extreme foot of the lake, emptying at the native village. Examined for about 1 mile of meander without seeing a single salmon. About one-half mile from the village the creek has a considerable hill on the right bank, while the other side is low. About 100 yards above the hill the stream becomes wider (7 feet) and shallower. It has a good coarse gravel bottom, with larger stones and rocks and much moss. Many deadfalls and overhanging branches obstruct passage along the creek bed. Farther up are two low hills one on each side, where the creek could be dammed, though the valley between is 75 feet or more wide. This flat

Fig. 6.-Lake Aleknagik and Wood River, Alaska.
is boggy and has a high, thick growth of grass. In and about this bog four-fifths of the volume of water originates. Several distinct channels rising in this soft mossy ground make into the main creek, which was followed up until it became scarcely a foot wide and was almost hidden by overhanging grass and regetation. Here it ran hetween rather high banks. From the spring flats above mentioned the village was reached in a half hour of steady traveling.

The water of this creek is clear and cold, the bottom is favorable, its size is sufficient, and the gradient is easy, yet salmon do not enter it. There is a bar opposite its mouth and the water is shallow, hut fish would have little trouble getting over it. The influence of the current of the creek is little felt where the salmon are passing up the lake, and they may not readily find it. Nevertheless, it is difficult to understand why it is entirely avoided. At this date, August 4, the salmon had been for some time entering the small streams. Its condition in winter is a question. A man who had wintered on the lake said it does not freeze and that the natives get water from it in the
winter. Probably at least a trickle of water remains, but it should not be regarded as a hatchery creek for several reasons.

Hundreds of redfish fry of the most recent hatch were seen opposite the village August 4. As they did not come from the village creek they may represent some lake spawning in the lagoon or possibly they had migrated from some distance.

Creck 2.-August 7, 190S. Around the first point from the lagoon, on the north shore. Small creek of brown water, too small for any use. Its course lies through a considerable low growth of willows. The bay off its mouth is at this date too shallow for the draft of a small launch.

Creck 3.-August 7, 1908. Opposite inner end of a small iskand. A small, umimportant creek of brown water. Temperature of the strait separating the island from mainland at this point, at 9.15 a. m. $52^{\circ} \mathrm{F}$.

Creek 4.-August 7, 1908. A little west of No. 2. Temperature $45^{\circ} \mathrm{F}$. About 1,000 spawning salmon were seen in less than a half mile of the meander. Many eggs were seen, and on a shallow riffle 22 fish were counted drifting by downstream during 10 minutes. The water was of a brownish color and considerably roiled, probably by salmon above. The gradient is very gradual, and there is no place for a dam, nor is it a good hatchery stream. Fifty salmon were seen crowded into one small hole, and many were schooling at the mouth.

Creek 5, North Shore Creck.-Opposite a point a little east of the tip of the high peninsula of the south shore. August 7, $1908,12.30 \mathrm{p} . \mathrm{m}$. , temperature $52^{\circ} \mathrm{F}$. It is 6 to 16 feet wide, with plenty of water, and carried some sediment, probably not produced by the salmon on the beds above. Near the mouth the stakes of a native barricade were seen. There were not many salmon off the mouth, and only 200 to 300 were seen in from 200 to 300 yards of stream. The bottom is of good gravel. A few redfish fry, the young of the season, and many small sculpins were seen. The banks are flat, and there is no place to dam. The creek comes from a valley between high mountains and may be many miles long, with possibly many salmon above. The estuary is broad and very shallow, and there is much uneven boggy ground around its mouth. The creek has seen very much higher water than the present stage. It is not a hatchery creek. Apparently there are fewer salmon in it than in much smaller creeks even 10 days earlier.

Creek 6, Spring Creek.-August 7, 1908. On the north shore about opposite the high peninsula of the south shore. The approaches were rather shallow, but a launch could get within 50 yards. The stream is about 1 mile long, with its source in a beautiful spring emerging from elevated mossy rocks, making imunediately a gravelly pool about 60 feet in diameter. The temperature of the spring was $38^{\circ} \mathrm{F}$. and of the outlet to the pool $45^{\circ} \mathrm{F}$. The upper reaches to the creek are 20 feet or more wide and are very shallow, with blackish stones and gravel. Near the pool the gravel had a white tinge. The creek receives some small spring tributaries, including one spring pool large enough for salmon; but the large spring mentioned is the main source, and the volume of water is well maintained to this source. The rise is rapid enough for a gravity storage of water, but there is no very good place for a dam. It runs close to a hill at one point, but the banks are mostly low.

On August 7, 1908, there were many finely colored salmon in and off the very shallow mouth. All the salmon in the stream itself and in the two pools were counted:

$$
\begin{aligned}
& \text { Total alive } \\
& \text { 2, } 800 \\
& \text { Total entered creek to August 7-_---------------------4, 410 }
\end{aligned}
$$

Shortly below the head spring a considerable reach of the stream had dead fish only.

The whole stream being accessible a complete census of spawners is possible. Two visits to this stream in 1909 enabled some comparisons. On August 1 of that year only 370 salmon had entered, of which 65 per cent were dead. The spring pool contained 46 , all alive. An excess of males appeared, and nearly all fish were highly colored. The gulls had eaten the eyes and most of the flesh of the dead salmon. One week later (Angust S) the total tally of salmon was 555 , of which 71 per cent were dead. This is but $12 \frac{1}{2}$ per cent of the total that had entered the stream during the 1908 season up to August 7 . In comparing these figures the great escapement for 1908 , as shown at the tally rack, should be recalled.

Crecks γ and 8.-On the north shore about 1 mile west of Creek 6. These are streams of size, the easternmost the larger, with their mouths only 200 yards apart. The two are of the same general character, with fine bottom for spawning beds and moderately rapid rise but no good places to dam nor good hatchery sites near the lake. They are probably long streams, with perhaps a common source farther inland. Heavy underbrush occurs all along the lake and the creeks in this region. Spawning salmon are apparently as abundant in proportion to size as in Creek f, which is somewhat smaller.

Crecks 9 and 10.-These small creeks are a few hundred yards west of the preceding and one must steer close inshore to discover their existence. They are near the base of one of the several long, narrow crooked peninsulas that make out from the north shore and then bend and run parallel with the shore, inclosing long, narrow bays. The region about Creeks 9 and 10 is in a considerable bight. A few hundred salmon were seen in the larger of the two.

Creeks 11 and 12.-Creek 11 is a very small one on the neck of the peninsula referred to above and discharges into the bight. There may be another little creek on this neck nearer its base. In the bight is a secondary peninsula of the same shape as and lying similarly to the first, inclosing a secondary bight navigible for a small launch. Creek 12 discharges into this on the neck of the little peninsula. No live saimon were seen, but there were several dead stranded at its mouth. The neck of the larger peninsula is but a very few hundred yards wide. The lake could be seen across it from a boat at anchor in the head of the bight.

Creek 13.-A small stream about one-third of a mile west of Creek 12. It was not examined. A few salmon were seen near its mouth.

Crcek 14.-August 8,1908 . This is at the head of a bight made by another small peninsula like those described above. It is small, with a mouth so shallow that salmon enter with difficulty. Fifty to one hundred had already entered and about a dozen were dead at the mouth, but no dead were seen in the creek. Only two or three live salmon were seen off the mouth. The stream has good bottom. It bifurcates a short distance up and can not be very large.

West of Creek 14 is another peninsula of irregular shape somewhat like a T. It has several small bays, which deliver no creeks. Several considerable schools of salmon turning red were seen hereabouts. From this peninsula westward for several miles there is fine gravel along the lake shore, but no creeks. A launch can skirt the shore very closely. Many large schools were seen, in total many thousands of salmon, and some of them miles from the nearest creek. They were not all in spawning color. The deep water in many places along here comes close to shore, which shelves off abruptly into 15 or 20 feet of water, in some places at an angle of nearly 45°. Often the bottom could not be seen at 30 feet from shore. Dead salmon were only occasional. Native drying racks were seen on shore, and the shelving bank and shore appeared good spawning ground. The salmon seen had mostly turned red, and it seems probable some may spawn here. Great schools, startled by the launch, would be seen for an instant as they shot away from shore into deeper water.

Creek 15. -This is a little creek on a gravel point that was covered with willow and alder. It has two mouths but is too small to carry salmon. There are four small islands near. Opposite the easternmost of these soundings showed $5 \frac{1}{4}$ fathoms at 30 feet from shore and 15 fathoms at 100 feet.

At places between the mouths of Creeks 15 and 16 strands of long grass on the bottom of the lake showed the current was making gently toward the head instead of the foot of the lake.

Creek 16, Steep Creek.-August 8, 1908. It comes down from the west side of the highest and westernmost of the flat top range of mountains and is marked by the steepest gradient of all the tributaries of the lake. It affords favorable places for a dam, but the volume of water is too small to maintain a hatchery. Many salmon were present for so small a stream, and many eggs were seen in the water. Some distance up its temperature was $42^{\circ} \mathrm{F}$. The shore region adjoining might furnish many spawning salmon. Between Creek 16 and the main inlet a sounding of 27 fathoms was made about 100 yards off the point making out from the north shore.

Creek 17, main inlet.-This stream drains the lakes above Aleknagik and is by far the largest of all the tributaries of the latter. On June 12, 1908, while ice still covered the lake west of the inlet, the flow in the latter was at a high stage, the current swift, and the water very clear. Only with difficulty could a boat have been pushed up the heavy riffles, which in places become rapids. Some drift ice was constantly passing. Two hours' walk up the trail
along its west side disclosed no falls nor cascades nor rise sufficient for a gravity supply of water. The lake near the inlet mouth had an excellent gravel shore with deep water. Many salmon bones lay in a windrow on the bottom 10 or 12 feet from shore. Many thousands of redfish fry, the young of the season with sacs but recently absorbed, were schooling along the beach close inshore. On July 27 of the same season these young fish were no longer to be seen.

The inshore grayel was bare from the fall of the lake level, and the bottom was algæ-covered. In the shore eddies of the inlet stream many ragged and tattered salmon were resting. Farther up a straggling procession, most of the fish still uncolored, was ascending. No ripe salmon were seen, and it seemed evitlent these fish were bound for the upper lakes and not to spawn in the inlet. On August 8 at the same point a similar procession, nearly all in red color, was still slowly passing at the rate of about 300 an hour. These were close inshore, and although the depth prevented seeing any fish beyond a few feet from shore they probably represented most of the run on the west side of the inlet at this date. They kept close in to avoid the current, like the ascending columns in Wood River. Certainly many of these migrating fish were bound for the upper lakes. There was no good evidence of spawning in the inlet.

In 1909 a few observations were repeated. July 1 there were no fry on the gravel beach where on June 12, 190S, they were in force. On July 23, however, they were again seen in numbers along the beach below the inlet. Some young of the season were seen July 1 up the inlet but no adults. July 23 the usual thin procession, with many gaps, was passing, and rery few fish had turned red. The native drying racks had only green fish. Information from a native indicated that the inlet does not freeze over in winter, that considerable drift ice comes down, and that there are "plenty lakes" above. The lake surface July 1 registered a temperature of $42^{\circ} \mathrm{F}$. at $7 \mathrm{p} . \mathrm{m}$. A bench mark placed at this date showed on August 2 a fall of 21 inches for the lake level.

Padden Bay and its streams.-August 8, 1908. West of the inlet is a considerable indentation known locally as Padden Bay. The trend of its upper portion is NW. by W., of its lower or main portion about N. Five creeks (18-22) empty into it, only one of which is of importance.

Creek 18.-This is a small brown creek just inside the bay. There were about 100 salmon in its sluggish muddy estuary.

Creek 19.-A short distance beyond Creek 18 and of the same type. Many live salmon and many eggs on good gravel were seen in its mouth.

Creek 20.-Like the preceding. Fifty salmon were schooling off its mouth. Heavy underbrush impedes progress along the stream, which is close to the peninsula on which is located the cabin of the prospector whose name is given to the bay.

Creek 21.-A small brown creek, corresponding in position to Creek 22, each emptying on opposite sides of a little peninsula. There were many salmon about its mouth. Near by, among moss and plants, a lot of young pike (Esox) were seined. A small bight opposite the cabin may possibly contain another small creek.

Creek 22, Padden Creek.-July 27, 1908. This is the main stream of the bay and is indicated on Rodman's sketch map of 1900 . No observations were made August 8. Above its long narrow estuary it meanders through tundra and is bordered by black birch and alder. Its width varies greatly, not exceeding 8 or 10 feet. It is shallow, reaching a depth of 2 feet where its coarse gravel is hollowed out by salmon. It has a moderate current with occasional riffles. It soon bifurcates, and the eastern branch trends toward the second lake. The salmon present were nearly all in deep red color, and many were spawning. The fish were evidently the first comers, marking the beginning of the spawning season here at a date when practically none of the salmon ascending the main inlet had turned in color. Mr. Wallich estimated the stream as capable of furnishing $12,000,000$ to $15,000,000$ eggs.

The courting fisb, in fine spawning color, were here and there fluttering and fanning over the gravel. A pair seen at Chilkoot Lake in 1907 brought the actual spawning under better observation. The female had been fanning with her tail fin over a definite nest. The two fish approached each other and heading in the same direction lay parallel at the bottom of the nest with their sides in contact. At the same moment, while a convulsive fluttering shudder shook their whole bodies and the mouth of each fish distended widely, eggs and
milt were ejected, slightly clouding the water. The pair soon repeated this performance. The nest was then examined, and at first no eggs were seen. After picking away the stones at the bottom about two dozen eggs were found, presumably just extruded. Accompanying them were several large nematode worms which had been voided by the salmon. It appears that, at least on occasion, only a few eggs are spawned at the mating juncture, which must be frequently repeated.

Lake noxt above Alckugik.-July 27. A mere view of a portion of this lake was obtained. From the mouth of Creek 22 it was reached after an hour's walk over a fairly good old native trail. From the point where the trail meets the shore the lake is somewhat more than a mile wide and the trend of the 10 or 12 miles of water visible is apparently like that of Aleknagik. Opposite this shore of large uniform pebbles the water was rery clear. A few salmon were obscurely seen near shore. The vicinity did not appear to be good spawning ground. Heary shore growths came down close to the water. From Padden Bay to the head of the lake there are no streams.

Creek 23.-July 2S, 1908. At the extreme head of Lake Aleknagik. This is one of its largest tributaries, though much smaller than the main inlet. Opposite its mouth a gravel bar rises abruptly from deep water and should be cautiously approached in power boats. The creek empties in two channels over shallow flats and wide reaching bars of gravel, sandy mud, or quicksand. Abore the delta the mouth was about 75 feet wide. Its water was very clean and clear, with a temperature of $41^{\circ} \mathrm{F}$. at 9 a . m., warming rapidly to $51^{\circ} \mathrm{F}$. at noon of a hot day. The shallows near the mouth contained small schools of 2 to 15 red salmon fry.

A mile and a half of the creek showed an ordinary meander with swift current and excellent spawning bottom, the gravel getting coarser upstream. There were many willows and alders about the mouth and bordering the banks farther up. Pools and holes four to six feet deep occur. Salmon by hundreds in spawning color were seen migrating upstream, while few were making beds. In a small slough over a mile above the mouth a male humpback salmon was seen at the head of a school of 50 Dolly Varden trout and 2 red salmon. The stream is doubtless many miles long. It carries considerable drift timber, of which a large accumulation was cast up on the lake beach south of the mouth.

Creek 2.f. Wallich Creek.-This is the first stream on the south shore, about 2 miles below the head of the lake. It was first examined on July 28 by Mr. Wallich with a riew to its value as a location for a hatchery. It is nearly as large as No. 23 and offers perhaps more advantages for the establishment and maintenance of a hatchery than any of the other streams. The estuary is long and shallow, with gravel bars. Along the lake shore on both sides of the mouth deep water comes within a few feet of sliore, and a steamer could dock at a short wharf. A few hundred yards to the west of the mouth at 30 feet from shore the water was 6 feet deep. It is moreover convenient to the head of the lake and to Creeks 22 and 23 for supplementary egg supplies. On the lake front west of the stream is a tundra-covered plateau, with thin spruce woods, rising quite abruptly from the flats of the creek and bordering these upstream.

In the first half mile the stream is from 15 to 60 feet wide and has excellent gravel heds. About 300 or 400 yards above the mouth there is an island between 500 and 600 feet long. From the upper end of this island to the mouth of the creek the levelings made indicated a fall of at least 16 feet. Several feet of this fall occur in the reach along the island. The plateau passes along the lesser channel opposite the island, standing 10 or 12 feet above the creek bed. This high ground slopes down somewhat at each end of the island to the creek flats, maintaining itself at the lower end as a low, abrupt ridge 4 or 5 feet above the flats. The unper end of the island is apparently the best place to dam the stream. From here a flume could be buried by grading along the face of the bluff on the west shore and led to the lake front not far from the creek mouth. Here a hatchery could be placed abore the highest lake level and low enough to receive water taken from the creek at the upper end of the island.

On August 8, 1908, and August 2 and 8, 1909, the salmon in the stream below the first bend above the island were counted and estimated. The result indicated at least 500 to 600 on each date, besides a few dead. Thermometer readings showed water temperatures between 45° and $52^{\circ} \mathrm{F}$. Observations of the water level in the creek at the upper end of the island showed in 1909 a

$$
54040^{\circ}-23-4
$$

fall of $4 \frac{1}{4}$ inches between July 23 and August 2. On August 8, $1 \frac{1}{2}$ inches had been recovered from the heary rains of the day. July 1, 1909, it had fallen at least 2 feet from the high of the season.

Immediately east of Creek 24 are two indentations. The one visited proved to be a lagoon, its water scarcely flowing out of it into the lake. Salmon bones of the preceding season were seen on the gravel beach outside of it. The other indentation is probably of a similar nature, perhaps with an unimportant creek.

Crcek 25.-August S, 1909. Farther eastward of Creek 24 a long, shallow bight receires Creeks 25 and 26 . Its western portion has shallow flats. Creek 25 has a very narrow mouth overgrown by bushes and is of the swift-current type, carrying no salmon. None was seen in the creek, either living or dead, nor any close to the month. Nevertheless, on the flats there were many. At the eastern end of the bight a rounded gravel point makes almost perpendicularly down into the lake. Here a large ressel could almost dock against the shore. Many salmon were schooling along this shore.

Creek 26.-August S, 1009. No satmon were seen in this small creek. It has a little lagoon mouth a short distance east of Creek 25. Between Creeks 25 and 26 the beach is terraced with small gravel as left by the fall of the lake level. Many old salmon bones were confined mainly to the gravel, which was not continuous between the two creeks.

For some miles eastward of Creek 26 along the south shore of the lake there are no streams. At this date the fall of the lake level had exposed a border of fine gravel just above the water's edge along this region.

Somewhere between Creeks 26 and 27 there is a bay, which was entered July 28, 1908, but no creek could be found. A considerable school of red satmon in spawning color was working on a bottom of large stones and some seemed to be spawning. Red-salmon fry were seen here. Eggs were not certainly identified. For a long distance salmon were seen broaching off shore, and it seems probable there is some shore spawning here.

Crcek 27.-August S, 1908. This stream is oppesite the main inlet across the lake and is an interesting example of the streams carrying few or no salmon. It has a steep gracie, good bottom, strong current, and water enough to maintain a hatchery. The temperature was $42^{\circ} \mathrm{F}$. There were many salmon off its mouth, but only two alive and one dead were seen in the stream. One only of the two was in spawning color. The very narrow mouth had a number of dead salmon around it. Much underbrush and deadfalls made it difficult to ascend the creek bed.

Why do the salmon refuse this stream? Many smaller ones with no better gravel beds had many spawning fish at this date and earlier. The answer may he that it is too switt and torrential for proper spawning, though salmon are able to stem its current, and its mouth, though narrow, is sufficiently accessible. One may compare certain creeks flowing into Chilkont Lake in southeast Alaska, which appear admirable in all conditions except an abundance of quiet places but which take no salmon whatever; but compare also Creek 16, which also has a steep grade, but has manyosalmon. It, however, contains more resting places and quiet spawning pools. The temperature of the lake water at the surface 100 yards off-shore, beyond Creek 27 , at 8 p . m., was $54^{\circ} \mathrm{F}$.

Crech 28. August S, 1908. It is about 1 mile east of Creek 27 and of about the same size and type. Temperatme at month $43 \frac{1}{2}^{\circ} \mathrm{F}$. The month was narrow, discharging over the beach gravel without a channel. A former channel at the mouth was nearly obliterated, and the creek made a right angle turn just hefore debouching. The wash of a storm, or perhaps ice, may have blocked the former mouth, which had become a seepage through gravel and larger stones. The current was swift, and the bed rose rapidly. No fish were seen in the hundred feet examined. Entrance without the channel would be difficult.

Crack 29.-Angust S, 1908. Farther east of Creek $2 S$ there is a lagoon inside the shore line. At this date after a seasonal fall of at least 40 inches it was barely above the lake level and delivering only a trickle of water. The land about was very low. It has been clamed there is a connection between Lake Aleknagik and Snake River Basin, and these conditions gave some hint of this. At this time on account of darkness no stream was identified, but the trickle of one could be heard flowing into the lagoon. However, on July 1, 1909, the place was again visited. The lagoon mouth was then 3 feet deep and three small creeks were delivering into it, while the lake level was only 6 inches below the high water for the season. It is therefore highly improbable that there is any scasonal overflow from this point to another basin: Two of the
three creeks are rery small. All have brown water. Redfish fry were playing in all of them.

Creek 30.-Angust 9, 1909. It is of the same type and about the same size as Creek 24, running through very low land. Its estuary has low islands, grarel bars, and little sloughs. The rise of the lake would put the mouth back hundreds of gards. The creek is 40 to 50 feet wide, narrowing at the mouth. Temperature $44^{\circ} \mathrm{F}$. There are many big rocks and bowlders upstream. Several hundred salmon were seen in a half-mile reach.

Creck 31.-August 9, 190s. East of Creek 30 there are no creeks for a few miles. Just before reaching the high and prominent peninsula a good-sized bight occurs, making a small peninsula on its western end. A small brown creek empties into the eastern portion of this bight, cutting a rather wide mouth through the beach gravel. Temperature at mouth $44^{\circ} \mathrm{F}$. It carried many salmon for so small a stream. Many eggs and spawning fish were seen. It differs markedly in type from those carrying no salmon. It is heavily overgrown with bushes, runs through tundra-like country between mountains, and the grade rises rapidly but leaves plenty of pools and easy currents for fish. It is an excellent supplementary stream as a source of eggs.

Creck 32.-July 28, 1908. At the head of a large bay about 1 mile long behind the high peninsula. The entrance is foul with rock shoals on each side, and caution must be used in approaching. The stream is a large one, exceeded in size by not more than four or five of the lake tributaries, and drains low swampy ground with many stagnant sloughs. There is no favorable place for a dim. It rery soon bifurcates, and one branch bifurcates again. It is probably made up of sereral or many branches. The main stream is about 20 feet wide. The ground about the mouth was at this date swampy and cut up by dry sloughs. The water was rery clear and cold, with the finest kind of gravelly spawning grounds, pools, and riffles. Many highly colored redfish in spawning condition and many nests and eggs were seen. Some thousands of salmon must already have entered at this date.

Creek 33.-July 30, 1909. An insignificant stream, heavily overgrown with hushes, about a half mile east of the island at the mouth of the bay at whose head is Creek 3.2. There was a school of salmon and some redfish fry near the almost stagnant mouth of brown water, but there were no salmon in the few yards of the stream inspected. A few trout were seen.

Creek 34.-June 30, 1909. This important creek is about a mile west of Creek 3.5 and similar in size to the latter. There were some native drying racks near by. Though the stream did not appear promising at the mouth, which is less extensive than that of Creek 35 and debouches more abruptly, it contained an abundance of salmon. Besides hundreds in the mouth, 500 were tallied in less than a half mile, all in fine color and none dead. Nine days later the same reach contained not fewer than 765 living and 34 dead. Nearly all were highly colored and many making nests. This is evidently one of the hest streams of the lake. The grade rises rapidly, the bed is ideal spawning ground of heary gravel, and the water is very clear and cold. It probably does not come from a lake as does Creek 35.

A female redfish with a remarkable gill-net twine wound was seen here. The fish, which was not in full color, had an immense deep sore along the usual site of twine scars. The sore was deenest in the muscles of the back, making a gaping red wound so deeply eroded that, with the more superficial erosion extending around the belly, the two halves of the body vibrated on this wound as a hinge. The fish seemed about to break in two parts whenever it swam rapidly. It had a much fungused head and was rather feeble.

Haring in mind the possibility that the samon may acquire a terminal infection during the latter stages of life or when spent, two highly colored examples were taken from this creek and bacteriological cultures made from them. One was a dead and spent male 26 inches long, the other a dying spent female 23 inches long. Blond from the heart of each was planted in agar plates. The result was neqative.

Creek 35.-July 30, 1909. In the bight south of the point which is npposite the island nearest the location of the tally rack. It is a creek of some importance, with a conspicuous estuary. The water was warmer than most of the other creeks, inclicating its source in a lake that is about a half mile long and less than an hour's travel above the mouth. The grade rises rapidly. making cascades in its upper reaches. About 50 adult salmon were seen, all living. There were many fry where the stream leaves the lake, and four adults
were seen entering the latter. Algæ covered the foot of the lake and the origin of the stream. Just inside the lake, to the right, a small stream enters, coming from a spring pool 100 yards away. This cold pool contained many fry but no adults. In some seasons Creek 35 probably receires many salmon.

Creck 36.-July 27, 1909. This is a little stream 2 feet wide at its mouth emptying into the south side of the lagoon at the foot of the lake. It was not seen in 1908 and carried no salmon in 1909 . It bifurcates soon and branches again, having various sources in boggy seepage in and about the sparse woods near the lagoon. It evidently does not drain any of the small lagoon-like waters lying south of the foot of the lake which were seen on July 21 from the top of the mountain near the village. One of the branches of this creek rises in an irregular seepage pool in which a number of young trout 7 or 8 inches long were seen. These were probably Dolly Vardens. A number of adults of this species were seen in the creek itself. Not a single salmon was seen in the creek, though the bottom is favorable and many pass near its mouth.

THE LARGE ESCAPEMENT OF 1908.

Certain comparable observations in 1908 and 1909 tend to throw light on the size of the escapement of 1908 as related to the preceding and succeeding years.

In 1909 the abundance of redfish fry about the shores of the lagoon and in the small shore pockets of the upper river was frequently noted and appeared to be greatly in excess of that seen in 1908 . The escapement for 1907 is of course unknown, but this confirms the presumption arising on other grounds that it was a small one. In Creek 6, the whole of which was explored in both seasons, there had entered in 1908 on and before August 7 eight times as many salmon as had entered in 1909 on and before August S. This is consonant with the records for the escapement of 1908 and 1909 , which were roundly $2,600,000$ and $\$ 90,000$, respectively. There is thus, outside the actual figures from the tally rack, some confirmation of 1908 as a year with a very much higher escapement than that which preceded and followed it.

Unlike lakes in Alaska on which hatcheries have been established, in Lake Aleknagik the salmon do not all resort for spawning to one or two, or at most very few creeks, but spread through a wide territory represented by many creeks. Noreover, a large number of the salmon entering the lake proceed through it to the upper lakes, of which there are said to be three. What the proportion is between the numbers spawning about Lake Aleknagik and in the basins of the upper lakes is unknown but it is certain that many salmon ascend the main inlet of Aleknagik apparently bound for the upper series of lakes. There is little evidence that any great amount of spawning takes place in the inlet.

From the numbers of salmon seen in the different creeks of Aleknagik during the seasons of 1908 and 1909 up to August 9 it does not appear certain that any one creek contained enough salmon to supply a large hatchery with eggs. However, as many fish may have already passed to the upper portions of the streams, and as more were to enter before the end of the season, it is not improbable that a barricade would show from any one of several streams a quota large enough to fill a hatchery. If the supply were short, it would not be difficult to take eggs from streams at a distance from the hatchery.

Since red salmon have been successfully impounded at the Baker Lake station in Washington, the question arises whether this method can be applied to Lake Aleknagik. The temperature of the water is favorable to holding the salmon in this way. It is not likely that this method will be found expedient in this region. If gravity water supply is to be depended upon, this will control the location of the hatchery and probably place it so far up the lake that the eggs may be taken from the streams. Reports should be obtained on the condition of streams in the winter with respect to freezing and volume of flow.

KUSKOKWIM RIVER.

As conditions seemed to warrant a special inrestigation of the fishing and salmon-run conditions on the Kuskokwim River, Bering Sea district, Alaska, Assistant Agent L. G. Wingard was sent to the region in 1922, leaving Seattle for those waters May 30 on the steamer

Admiral Goodrich and arriving at Bethel June 13. Mr. Wingard made a careful study of conditions, his findings indicating the extent of the run of salmon and the need of conservation to prevent depletion by the influx of fishing concerns from other districts where the industry has declined. His report is as follows:

On arriving at Bethel a good, sturdy gas boat was engaged, as work in the country was to consist wholly of operations along the Kuskokwim River. The first work was the placing of markers at the mouth of the river, which is discussed in detail on page 53. Following that, all fishermen and packers on what is termed the lower river were visited and given notification of the location of the markers and the nature of the regulation governing fishing. After this the writer patrolled the river for 32 days. As every evidence during this time showed that both packers and fishermen intended in entire good faith to obey the regulation, and the run being over excent for the silvers, a general trip of obscrvation was made up the river. This trip lasted 18 days and extended as far as the Eskimo village of Tuliviksak, approximately 400 miles up the Kuskokwim River. Here high water, great quantities of drift, consisting of stumps, uprooted trees, etc., togetlier with an unpopulated country ahead, and consequently nothing to be gained by a farther advance except the town of McGrath, which was over 100 miles farther, caused the agent to turn back to the lower river. On this trip stops were made not only at every village but at every habitation, interviewing residents, taking notes, and getting as nearly as possible all the information obtainable relative to salmon runs and fishing conditions.

As there are no canneries located on the Kuskokwim, the packing operations on the river resolve themselves into the activities of salteries and drying stations. Four salteries-Ǩnaflich station, Jessland station, Walsh-Joaquim station, and Lundstrum-Gartly station-operated there this season. The Knaflich station, located at Apokak, 5 miles from Beacon Point, is owned and operated by Louis Knaflich and employed but three fishermen. The season's pack amounted to thirty-one 500 -pound tierces of king salmon and forty-seven 200 -pound barrels of red salmon. The silver pack at the time of departure was not complete. The Jessland station, located at Quigiung, 20 miles abore Beacon Point, had packed 11 tierces of kings and 35 barrels of reds and had dried 3,000 chum salmon. The Walsh-Joaquim station, located 45 miles up river from Beacon Point, packed 88 tierces of kings and 24 barrels of reds and dried 5,000 chums. The Lundstrom-Garthy station, on the Kuskokwak creek, 5 miles below Beacon Point, packed 8 tierces of kings and 30 barrels of reds and dried 2,000 chums. The output of these four concerns comprises the entire commercial pack of the river that goes outside and is the total pack put up on the river by white men between Bethel and the sea. The total number of fish canght was only 35,000 . In explanation of this small number it should be stated that none of the nackers are large operators. Two or three natives were the most employed at any one time by them during the summer.

There are number of small operators drying fish whose output is consumed locally or sold to persons traveling in the region. On the river above Bethel, at Steamboat Slough, Neal Corrigan dried 1,500 fish for his own dogs. Farther up the river at Ologamute a white trader named Morgan caught 1,500 small fish and 100 kings, drying them for his own use and for barter with the natives. Five miles above Ohogamute Charley Swanson dried 1,500 small fish and 50 kings. A man named Walters, a mile below the native village of Aniak, dried 1,800 small fish and 50 kings. At Aniak a man named Johnson dried $1,6 \overline{5} 0$ small fish and 47 kings. At Napamute George Hoffman dried 2,000 small fish and 30 kings for his dogs and for barter. Sam Voich, 32 miles above Napamute, dried 3,500 small fish and 50 kings. At Crooked Creek a man named Dennis Perrin dried 6,000 small fish and 200 kings. At Georgetown, something like 300 miles up the Kuskokwim, George Fredericks dried 5,500 small fish and 50 kings. A short distance above Georgetown at what its known as Lousetown J. Young dried 2,500 small fish and 200 kings. Eight miles above Georgetown George Woods dried 2,200 small fish and 400 kings. Thirteen miles below Sleitmute, a native village 350 miles from the sea, two partners, Nick Millet and J. Johnson. dried 3,000 small fish and 150 kings. At Sleitnute a white trader, George Bishop, employed a native fisherman, and after drying 250 small fish, desisted on account of high water. Fifty miles above Sleitmute, at the native village Tulivilsak, a trader, Ora Earnhardt, also had a native fishing
for him but was in turn discouraged by the high water after he had dried more than 100 small fish.

The term "small fish" is used on the Kuskokwim to indicate red salmon and chum salmon, no distinction being made between these two varieties by driers. At the salteries, however, they split the reds for salting and dry the chums for winter use locally.

From observations and from reports of the white traders and trappers it seems that the natives of the Kuskokwim do not depend upon dried salmon for their winter food supply in by any means as large a ratio, as do the natives of the Copper River region, or of the Kvichak district, one reason being that about only one-half of the native families lave dog teams, and those consist of but two to five dogs.

On the lower river-that is to say, between Bethel and the sea-the native makes his living by trapping and fishing, deriving the larger part of his livelihood by shooting musk'ats and trapping fores. The natives are seminomadic, each family apparently having three or four homes. One of these is a summer salmon camp, where a tent is pitched or where there is an old barabara built in previous years. There the family lives through the fishing season on salmon and dries a few for winter use. After the salmon run the family will move to some permanent camping grounds, usually a village, which is its winter headquarters. There the native trades, bartering a portion of his dried fish for food or other articles he needs, and fishes for the ever abundant whitefish and smelt in the sloughs and for blackfish, called by the natives Chinagik, in the lakes. All of these fish are easily taken and furnish a constant source of fresh food supply during the winter in noteworthy contrast with the very large amount of dried fish eaten by natives farther south in the Bering Sea region. For these reasons and the further fact that he is an active hair-seal hunter in the early spring, the Kuskokwim native is not dependent upon dried salmon to the extent that natives in other sections are.

There were roughly 150,000 small fish dried in the 15 native villages between Bethel and the sea. This allowed 1,000 fish for each family, which is the number the consensus of opinion on the river credited the average native family with putting up and the average of the agent's counts tallied with this number. One-half of these and sometimes more are sold or bartered, leaving the rest for home consumption.

In 50 native villages and camps above Bethel 150 families were found, each one of which areraged the usual 1,000 dried fish, or 150.000 in all. These upriver natives impressed one as being more energetic and thrifty than the lower Kuskokwim or tundra natives. With the conditions for fishing not as good as on the lower river, they nevertheless made fair catches under adverse circumstances. Driftwood, consisting of huge logs and roots of trees, together with swift and high water throughout the entire fishing season, resulted in the ruin of nearly all their fish wheels.

As one of the matters to be investigated was the amount of salmon a ra lable for the use of the natires, it can be reported, after traveling 300 miles upstream from Bethel and visiting more than 50 villages, that the natives have sufficient dried salmon for both themselves and their dog teams.

Whitefish, before referred to, are caught throughout the winter by natives, giving them fresh fish, which are relished more than dried fish. The natives also subsist largely on game in the winter, such as ptarmigan, Arctic hares, and snowshoe rabbits. These, with an occas:onal moose and caribou, together with smelt taken during the run of this small fish in the winter, and with provisions secured from the white traders, such as flour, rice, tea, and sugar, make ample provision for these people. Berries are an important article of diet among families with a semblance of thrift.

The Kuskokwim native is quiet and peaceable, possibly a little less advanced in civilization than are the natives of the Krichak River region. In all about 65 villages and camps were visited, and some of these contained as many as 30 families.

There are tabulated below a few of the villages visited, with the number of families in each and the amount of fish dried. The number of fish in the shed were determined by entering the smokehouse or drying rack where the fish were curing. Because the natives were late in beginning fishing, as mentioned before, they caught very few king salmon, many of the familes drying none at all. Many camps that had no name were risited. These have been designated as camps and placed in the order in which they came, traveling from Bethel up river.

Native villages on the Kuskowwim River and approximate number of salmon dried in each.
below bethel.

Name of village.	Number of fanilies.	Number of fish.	Name of village.	$\begin{gathered} \text { Number } \\ \text { of fami- } \end{gathered}$ lies	Number of fish.
Apokak.	17	8, 200	Napagahogamute..	14	15, 000
Davis Pt.	3	1,500	Napaiskak...........	9	5,500
Quickchogamu	12	7,500	Kalag imute (lower)	7	7,500
Kiktok.	5	2,200	Kalagamute (Upper)	5	5,500
Quigiung.	2	1,150	Kokokamute.	22	20, 000
Quigiugh.	${ }^{7}$	T,000	Popokamute.	31	30,000
Ichikslikonute.	19	20,000	Four camps.	11	12,000
Lomavik. ${ }_{\text {Loravian }}$	11 1	9,000 2,200	Total.	1.6	155,350

BETHEL, AND ABOYE.

Name of village.	Number of fami-lies.	Number of fish.	Apparatus.		Name of tillage.	$\begin{aligned} & \text { Num- } \\ & \text { ber of } \\ & \text { fami- } \\ & \text { lics. } \end{aligned}$	Number of f.sit.	Apparatus.	
			$\begin{gathered} \text { Set } \\ \text { nets. } \end{gathered}$	Fis? whicels.				Set nets.	Fish wheels.
Bethel.	7	5,500	1		Napamute.	1	400		
Five camps	14	15,000	1		Martin Village	6	7,000	1	3
Akiachuk.	23	15,000	1		Three camps.	3	3,500		3
One camp.	3	3,200	1		Canoe Village	3	10,000		2
Tulaksak (Main)...	6	4,500	1		Two camps.	3	4, 100		3
Tulaksak (Lower).	2	1,500	1		Georgetown	1	\%00		1
Tulaksak (Upper)..		2,000	1		Lousetown.	1	1,200		1
Koskogamute.	14	16,000		1	Two camps.	4	3, 300		4
Ohogamute..	-	9,000		3	Sleitmute.	5	1,200		5
Two camps.	5	11,000	1	4	Tuliksak	2	400		2
Crow ${ }^{\text {niak...... }}$	${ }_{1}^{2}$	5,500 1,100		1	Total.	117	125, 000	10	37
Russian Mission.	1	1,700		1					

MARKERS.

The location of the markers at the mouth of the Kuskokwim River did not prove satisfactory to the fishermen and packers on the lower river, as markers had never before been placed on the Kuskokwim, the regulations being promulgated only at the close of last season.
Upon arriving on the Kuskokwim the markers were placed immediately at points directed by the bureau, the one at Popokamute Point being fixed June 15 and the one at Beacon Point June 16. Following this all the operators were visited and informed of the ruling of the burean and also of the further fact that the markers were already in position. In conversation with them it became apparent that they all were of the opinion that the markers were too far down the river. They felt it was imposing a needless hardship upon fishermen to ask them to go outside the line drawn across the river by the markers, it being practically a big bay, wide open to the sea, with rough weather nearly all the time and generally a sea rumning. The present fishing operations, they felt, were of such small volume, and the methods and gear employed in the catch would be considered so ineffective where large operations are under way in other portions of Alaska that it was needless to go so far down the stream.

The writer agreed with them in the matter of the small demand made upon the river at this stage of the fishing and packing operations, but informed them at the same time that the prohibitive locations were made as a matter of stream protection in case other and larger operators came in; that the bureau had in view such efficient protection of the Kuskokwim as would keep the river runs of salmon up to their present level throughout perpetuity. The conversations ended by all admitting that as the regulation was made and in force they would have to abide by it for the present, but nearly all of them expressed the hope that the matter would be reconsidered and the markers placed farther unstream so that they would have at least some sheltered water to fish in.

Going farther into the discussion of the locations of these markers, which may in the wisdom of the bureau require further consideration, it may be said that the Kuskokwim is about 14 miles wide at the point where the prohibitive line from marker to marker crosses the river. The river at this point is rapidly widening into the ocean, and as the stream opens to the south, from which prevailing storms blow, it reduces the matter of fishing to open-sea operations, with a high sea, due to storms, generally running. The Kuskokwim fishermen and operators nearly all asked that fishing should be permitted upriver as far as Helmick Point, which is 8 miles above the upper end of Eek Island. At the very least they requested that the markers be placed not higher than Quigiung and West Point, which would bring the prohibitive line across the river just at the upper end or head of Eek Island. Notwithstanding the discussions that arose over the locations and the objections to the sites of the markers, as far as observed or ascertained, there was no infraction of the regulations.

RUNS OF SALMON.

Four salmon runs seasonally enter the Kuskokwim River, consisting of the king, red, silver, and chum salmon runs. There is no bumpback-salmon run. It is commonly reported that the run of silvers is the largest and the chum salmon next, with the red salmon a close third. The run of kings is the smallest in point of numbers, yet, owing to the size of the fish this run, weight for weight, will likely equal the ret-salmon run.

The first run of the season is that of the kings, which commences about June 10 and lasts hardly a month. While the kings are still in the river, along about June 25, red salmon are found in scattering numbers and by July 1 the run is good. Two or three days after the first red salmon appear in the river chnm salmon commence showing up, these two species running almost simnltaneously. Both runs last about three weeks, with the peaks of the runs passing between July 1 and 10, storms out on the ocean often either retarding or accelerating the action of the runs. By the 1st of August silvers are rumning and continue almost until the time of the freeze-up.

Owing to the severe storms this season all the salmon runs were about 10 days ahead of time. This advance in time was not known along the river, and by eatching the fishermen unawares a third of the run got up river before gear was in the water. The natives were particularly tardy in opening fishing. It was the first open season on beaver and marten trapping in several years, and they were still occupied with dressing and bartering their furs.

By comparing and sifting information obtained from interviews with hundreds of native fishermen and with every one of the white fishermen and checking them with the writer's own observations a fair estimate of the volume of the different salmon runs in the Kuskokwim River was arrived at. The redsalmon run is about one-half of the red-salmon run in the Egegik River. The run of chums is fully as large as the run of chums in the Egegik. As for the silver run it is doubtless as large as the run of silvers in any of the other rivers flowing into Bering Sea. The general comment everywhere along the Kuskokwim was that the silver run was ahways heavy, and many stories and statements were constantly fortheoming as to the strength of the run of this fish. The king salmon run also would stand on about the same level as the run of kings in the Egegik.

As for good and poor years, considered from the standpoint of the salmon rum, not a great deal of information could be obtained. The general opinion among the fishermen, both white and native, seemed to be that there were two good years with large runs and two poor years with lean runs.

Fishing on the Kuskokwim is carried on by fish wheels and set nets. The fish wheel is not used at all on either the Nushagak or the Kvichak, which are sister rivers in the Bering Sea country. Set-net operators, taking adrantage of the tides, can utilize nets of from 25 to 30 fathoms in length on all the lower river where the tidal ebb and flow offers the advantage of rising and falling waters. Above the tides eddies in the stream are utilized and fair fishing locations found. Wheels are placed on exposed points where the salmon crowd the meandering line of the stream in rounding the curre.

NATURAL ENEMIES.

As for natural enemies there are not as many gulls and terns in Kuskokwim waters as on other salmon streams of Alaska. There are more seals and belugas there ordinarily, if reports given by many different fishermen are cor-
rect, but as yet this season both of these pests were very scarce on the river. In this connection Al Walsh, of the Walsh-Joaquim saltery, has for several years been keeping a systematic tab on the salmon taken that have seal marks on them. Last season he found that "seal marked" king salmon averaged 1 in every 30 fish taken. This season there was but 1 so marked in every 72 caught. Natives also caught very few seals the past spring. In consequence of this there will be a shortage the coming winter of the seal muckluck which is so dear to the comfort of the average native.

GENERAL DESCRIPTION OF THE KUSKOKWIM.

In topography and physical conditions the Kuskokwim district is very similar to the Krichak River. The volume of water flowing out of the river is much larger, howerer. In addition to being one of the largest rivers of Alaska, the Kuskokwim is also distinguished by the fact that it is the only Alaskan stream of any consequence that has not had salmon canneries operating upon it. Flowing out of the mountains of the interior the upper river is a swiftly running stream with many large tributaries feeding it. One hundred and twenty-five miles from its mouth the river leaves a rolling country covered with clumps of spruce, willow, and birch, and from that point onward traverses a tundra plain to the sea. Shallow waters, bars, sloughs, and a tendency of the stream to shift channels are the features of this portion of the river. The freeze-up in the fall and the break-up in the spring occur at approximately the same time as in the Naknek and the Kivichak Rivers in Bristol Bay. When the spring break-up takes place the river rises with the melting snow and ice, then as the season adrances gradually falls. and by midsumner is very low. This season the water was from 5 to 7 feet abore the normal summer level and higher than the average rise during break-up. The river, as is usual with tundra streams, has a wide bed and plenty of room for surplus water, but, owing to continued rains in July, the water, which had startel to fall, suddenly commenced rising again. The old timers said over and over that it had been many and many a year since there was such high water during the summer as during this second rise.

The damage done was large, considering the small number of people living in the immediate valley of the stream. On the trip up the river at least four out of every fire fish wheels encountered were damaged in varying extent, only those on sheltered sloughs escaping damage. Some of them were entirely swept away, others being jammed, splintered, and portions of them carried dlownstream. The greatest loss was caused by logs and stumps drifting against the wheels.

The Kuskokwim River country naturally divides itself into upper and lower river regions The line of division crosses the valley of the river at Bethel, where, as stated, the country breaks from a region of rolling landscape into a low-lying tundra country, which reaches away to Bering Sea. Much of this lower river country has water upon it when there are extreme high tides and storms driving inland. Small lakes everywhere dot these thousands of square miles of monotonous tundra, which is treeless. Just above Bethel scattering, stunted spruce, birch, and willow begin showing, and about 30 or 40 miles farther up the river timber is scattered profusely over a rolling country.
The tidal flow on the Kuskokwim is noticeable 75 miles from the mouth, but the current of the river shows the retarding effects of the tide as far up as Akiak, over 100 miles from the sea. The height of the tides is not so great on the Kuskokwim as on the Kvichak and the Nushagak.

In an endearor to give the bureau an accurate "close-up" of the general conditions of life in the Kuskokwim district it may be stated that in the whole district, from the Tuliviksak tributary to the sea, approximately 400 miles. there are 300 natire families and about 75 white people. They all live along the river, either on the banks of the river proper or on sloughs paralleling the river and forming part of it. The natives of the lower river live in an igloo form of structure, as do many of the natives in the Kvichak region, more energetic families sometimes having log cabins. The home life, as is usual in the isolation of the Northland, is somewhat barren. Hunting, fishing. trapping, prospecting, and trading form the occupations of the whites. The natives lire by trapping, fishing, and hunting. Although the region is sparsely settled, yet mile for mile there are more families on its banks than on the Kvichak River.

Communication is carried on up and down the river by three small river steamers, which operate from Bethel. These steamers are the Trana, owned and operated by Captain Langley; the Quickstcp, operated by Captain Green; and the Tacotna, operated by Captain Buggy. They carry freight, mail, and passengers and serve the little trading posts and native villages, and through their offices the necessities, many of the comforts, and a few of the luxuries of life reach the modest huts of the natives and whites scattered up and down the river.

The trading center of the Kuskokwim region is the little town of Bethel. It is situated on the northwest bank of the river, 80 miles from its mouth, at the head of sea navigation. It is also the judicial center of the region, United States Marshal J. L. Heron and also United States Commissioner Bohnam being located there, and has the Government school for the natives. The Moravian Mission has a church, sawmill, and large launch there and makes Bethel the general headquarters for their mission operations in the Kuskokwim region. There are two stores and several independent traders. A native village of 15 or 20 families forms part of the community. There are several white families and five or six white men with native wives.

Situated 40 miles upriver fron Bethel is Akiak, a native village, where a hospital, school, and the office of the super:ntendent of schools are located. Going on up the river white men are found about every 50 miles operating trading posts or roadhouses. Most of them have native wives.

On the lower river--that is, below Bethel-there are a few scattering whites, who trade with the natives, bartering provisions and various articles for fur. In the summer they fish; in the winter they do a little trapping. Their life is an easy, indolent, and, it might be said, shiftless existence. Of course, there is thrift showing here and there.

The spirit with which the people along the river accepted the entrance of the bureau into the fishing operations of the district was gratifying. Both fishermen and packers seemed much pleased to have their corner of the world officially recognized by a department of the Government, and during the writer's entire stay he was cordially received and on no occasion was aware of any resentment because of the efforts of the bureau to regulate fishing. While some were visilly disappointed, as noted elsewhere in this report, with the point of location of the prohibitive markers, the spirit seemed to be to accept the regulation and abide by it. The inference given everywhere in conversations with these men was that they were interested in the conservation of the fish runs and stood ready to cooperate, a feeling very different from the attitude taken elsewhere on occasions by many fishermen and even packers. The impression given on the writer's departure was that the entire fishing interests of the Kuskokwim would welcome a return of bureau representatives year by year. In the case of the Walsh-Joaquim and Jessland stations fishing was begun before the writer's arrival and consequently before any markers were set, so that they had been fishing above the limits as prescribed by the bureau. After placing the markers and giving notice of the same to the operators concerned, there was no evidence of any attempt to evade the law.

If the salmon runs of the Kuskokwim are carefully conserved, the time may come when, due to depletion of runs in other streams of Alaska, the morlestsized runs of this river will measure up to the size of the receding runs of other salmon rivers of Alaska, and the Kuskokwim will then take an important place in the fisheries of the North. Certainly the runs should be carefully protected to start with.

CHIGNIK SALMON COUNTS.

Arrangements were made in the spring of 1922 for the counting of salmon ascending Chignik River to spawn, and a crew consisting of John W. Gardner, Charles Petry, warden, and three others left Seattle April 5 to install a rack through which the fish should pass to enable counting. All necessary supplies and the small patrol boat Merganser were transported on the St. Paul. of the Northwestern Fisheries Co., from Seattle to Chignik, reaching there on April 25.

Construction of the rack was begun at once at a point several miles up the Chignik River, where it is 464 feet wide and from 2 to
U. S. B. F.-Doc. 951.

Fig. 7.-Salmon counting rack in Chignik River.

Fig. S.-Upstream side of rack in Chignik River.

4 feet deep. The rack was of tripod and picket construction, standing 4 feet above low water, but because of high tides it was found necessary to raise its height 5 feet by means of wire netting. A plank walk extended along the top of the pickets, and four openings were built in the rack for passage of fish, the counter to stand directly orer an opening. A gate 6 feet wide was constructed for the passage of small boats.
'The rack was practically completed by June 2, and on June 9 the first salmon was seen below it. Counting was continued until fish ceased running October 20. A total of 428,976 red, 58,300 coho, and 241 king salmon were counted during this period. Humpback and chum salmon were not counted, but it was estimated that probably 15,000 humpback and 1,200 chum salmon ascended the river. These two species spawn chiefly in the creeks that empty into Chignik Bay and Lagoon. Reports of the three companies operating at Chignik show a catch of $1,403.701$ red salmon, indicating that the escapement in the season of 1922 was only 23.4 per cent, or less than one-fourth of the total run. The counting experiment will be continued over a series of years with a view to determining a basis for commercial operations in this district.

KARLUK SALMON COUNTS.

Red salmon ascending the Karluk River for spawning purposes were counted in 1922 as they passed through a rack 360 feet long placed across the river about half a mile above the lagoon. Everything was in readiness at the rack by May 12, and the first salmon were counted on May 20. Considerable numbers of Dolly Varden trout were captured by means of trap and seine, and large numbers also were destroyed by dynamite before the appearance of salmon necessitated stopping its ise. Counting was in charge of Fred R. Lucas, who was detailed from the bureau's hatchery at A fognak. It was reported that considerable difficulty was experienced with humpback salmon, which spawned in large numbers above and below the rack and in some instances undermined sections of it. Thousands of the dead fish were carried down in a slight rise of water, and it was necessary to open a section of the rack to let them pass through in order to prevent the water damming up and carrying out the rack.
'The ascent of salmon continued until October 22, a total of 384,683 reds and 9,752 kings passing through the rack during the season. No count of other species was made. Upon the basis of reports of the various companies securing salmon from Karluk it is computed that approximately 700,000 red salmon were captured. The escapement for spawning purposes was thus slightly over 35 per cent of the total run.

YUKON RIVER FISHERY.

The general prohibition on commercial fishing for salmon on the Yukon River for export from Alaska was in force in the season of 1922 . The floating cannery of the Carlisle Packing Co., which was operated at Kwiguk Slough in 1921, was towed out at the end of that season and found a new location on Bristol Bay, where it was operated in 1922.

The mild-curing plant of Waechter Bros., which was located on Leslies Island, outside of the protected zone, continued operations in

1922, all of its fishing being carried on in the shallow waters of Bering Sea, extending several miles off the delta. The season was successful, fishing operations beginning June 10 and ending July 11, when it was necessary to close the plant in order to make connections at St. Michaels with the steamship Victoria, which took the pack to Seattle. The total catch was 16,825 kings, from which 277 tierces were mild cured and 26 tons frozen. The 2,787 chum salmon taken were turned over to the natives camped around the saltery. Rates paid for king salmon ranged from 25 to 35 cents each to fishermen who were furnished gear by the company, and 40 to 60 cents to independent fishermen. Chum salmon were not purchased by the company.

The bureau's representative reported that the catch by natives along the river was probably the smallest in its history, which was probably due to the extreme high water, the river being bank full all summer, the longest stage of high water ever known. At a number of places good catches were made, which indicated that there was a normal run. It was reported also that the natives fished less diligently than usual, as in many places they were still supplied with money from the sale of their large catch of furs the previous winter. All occupied camps from the delta to Rampart Rapids were visited, the catch being estimated at approximately 15,000 kings and 215 tons of dried dog salmon. In addition, WV. F. O'Connor, at Andreafsky, and Charles Homeier, at Mountain Village, put up small packs of canned salmon, 448 cases and 43 cases, respectively, for local use.

HATCHERIES.

EXTENT OF OPERATIONS.

Four hatcheries, exclusive of Territorial plants, were again operated in Alaska in 1922. Two belong to the United States and are located at A fognak Lake on Afognak Island and at McDonald Lake near Yes Bay in southeast Alaska. A third is maintained by the Alaska Packers Association at Loring, and the fourth by the Northwestern Fisheries Co. at Quadra. The total number of red-salmon eggs collected at these four hatcheries in 1922 was $110,745,000$, which is a decrease of $17,455,000$ from the collections of 1921. The largest decrease occurred at McDonald Lake, where the take of eggs in 1922 was $26,000,000$ less than in 1921.

Operations of Federal and private hatcherics in Alasta in 1922.

Location of hatchery	Red or sockeye salmon.		
	Eggs taken in 1921.	Salmon liberated in 1921-	Eggs taken in 1922.
MacDonald Lake.	$151,000,000$ $253,835,000$	$47,640,000$ 32580	$25,000,000$ 861790,000
Afognak Lake.	2 13, $13,350,000$	32, 580500000	
Quadra.	9,985, 000	9,647,000	6,195,000
Total.	12S, 200,000	102,752,000	110,745,000

${ }^{8}$ Shipped to Territorial Fish Commission $5,098,936$ red-salmon egss; to State hatchery at Bonneville, Oreg., 5,045,000 red-salmon eggs; to the Washington State Fish Commission 534,4C4 red-salmon egge.

HATCHERY REBATES.

The Federal fishery law of Alaska, approved June 26, 1906, provides that the owners of privately operated hatcheries shall be exempt from the payment of all taxes and license fees on their catch and pack of salmon at the rate of 40 cents per 1,000 red or kingsalmon fry liberated.

Rebates credited to private salmon hatchcrics, fiscal year ended June 30, 1922.

Owner.	Location.	Red-salmon fry liberated.	Rebate due.
Alaska Packers Association. Northwestern Fisheries Co... Total...................	Naha Stream. Hugh Smith Lake.	$12,885,000$ $9,647,000$	$\$ 5,154.00$ $3,858.80$
		22,532,000	9,012. 80

HATCHERY OPERATIONS.

> M'DONALD LAKE.

In 1921 the collection of red-salmon eggs aggregated $51,000,000$, from which $47,640,000$ fry and fingerlings were liberated. In addition 150,000 eyed eggs were planted in two lakes adjacent to the hatchery. The loss of eggs and fry together was 6.6 per cent. In 1922, 210,000 humpback-salmon fingerlings were liberated. In the season of 1922 egg taking began on September 7 and was completed on September 22 , between which dates $25,000,000$ red-salmon eggs and 499,200 humpback-salmon eggs were taken.

AFOGNAK.

From the collection of $53,835,000$ red-salmon eggs taken at Afognak in 1921 there were shipper to the State hatchery at Bonneville, Oreg., $5,200,000$ eggs. Out of the remaining $48,635,000$ there were lost $2,614,000$ eggs, and $46,021,000$ fry were hatched. The loss of fry aggregated $13,441,000$, the plantings of red-salmon fry being $32,580,-$ 000. An epidemic in May and Jume, 1921, occasioned a very heavy loss of fry. Its cause is thought to have been due in part at least to low vitality of the parent fish occasioned by exceedingly low water that occurred the latter part of the previous August and early September when the take of eggs was heavy. No doubt such reduced ritality might have been transmitted from the parent fish to the eggs and fry.

In the season of 1922, in the period from August 1 to September 14, the take of red-salmon eggs was $61,790,000$. Of these 10.678,400 were shipped in September, $5,098,936$ going to the Alaska Territorial Fish Commission at Juneau, $5,045,000$ to the Oregon Fish Commission at Bonneville, and 534,464 to the State Fish Commission at Seattle, Wash. In addition, 600,000 humpback-salmon eggs were taken, of which 278,616 were shipped to the bureau's hatchery at Birdsvier, Wash.

> FORTMANN.

The Fortmann hatchery of the Alaska Packers Association on Heckman Lake, Revillagigedo Island, liberated 12,885,000 young red
salmon in Naha stream and lakes out of 13.380,000 eggs collecter irı 1921. The loss of eggs was 3.7 per cent. In addition 830,000 humpback-salmon fry were hatched from 900,000 egrgs collected in 1921 and liberated in the same water system. Egg taking in 1922 began August 28 and ended November 4 after 17,760,000 red and 240,000 humpback-salmon eggs were collected.

QUADRA.

The hatchery of the Northwestern Fisheries Co. on Hugh Smith Lake produced and released $9,6+7,000$ red-salmon fry out of a total collection of $9,985,000$ eggs in 1921. The loss was 3.4 per cent. Spawn taking began in 1922 on August 11 and ended November 21, after $6,195,000$ red-salmon eggs had been taken.

TERRITORIAL HATCHERIES.

The Alaska Territorial Fish Commission carried on salmon culture at Eyak Lake near Cordova and at Auk Lake and Anan Creek in southeast Alaska. At Eyak Lake 3.134.000 red-salmon eggs were taken, from which $3,078,000$ were eyed and planted in the gravel of streams tributary to that lake, there being a loss of 56,000 eggs during the period of incubation. Spawn taking began in this field on July 6 and was discontinued August 1. At Auk Lake 945.000 redsalmon eggs were collected and transferred to the hatchery at J uneau, from which 759,000 fry were produced and distributed in streams of the Juneau district. In addition a shipment of 5,098,936 red-salmon eggs was received from the Federal Bureau of Fisheries station at A fognak, from which 4,933,000 fry were hatched. Of this number 2,600,000 were planted in Auk Lake and 400.000 on Mendenhall Bar.

The commission operated a humpback-salmon collecting station on Anan Creek during July and August and secured a total of 250,000 eggs. These were transferred to Juneal in a green state with a loss of approximately 50 per cent. The 121,000 fry that resulted were distributed in the Junean district.

At the beginning of the year 100,000 coho fingerlings were being held in the Juneau hatchery: These were planted during the summer in streams and lakes tributary to Gastineau Channel and Lynn Canal.

In addition to its fish-cultural operations the commission continued the work of removing obstructions from salmon streams, thus opening larger areas to the spawning fish. Several streams in the Serrard and Ketchikan districts were cleared during the year, $\$ 3,659.04$ being expended in this work.
egg collections by washington state fishery authorities.
Early in the season the Washington State Fish Commission applied for permission to make collections of humphack-salmon eggs in southeast and central Alaska, stating that approximately half of them would be planted in the waters of the State of Washington and the remainder returned to the streams from which they were secured. The bureau took the position that it could not recommend the granting of the desired permission even could it be lawfully
done, for the reason that the fisheries of the Territory were in a precarious state and the export of eggs would add to the already existing danger of serious depletion of the streams.

The bureau's representative in charge of the southeast district reported by telegraph August 14 that a barricade had been placed in Anan Creek that was causing the death of thousands of salmon and also that preparations were being made to collect $20,000,000$ humpback-salmon eggs for shipment to Puget Sound, with apparently no preparation to stock Alaskan streams with salmon equaling the number of eyed eggs to be exported. Instructions were at once issued to remove the barricade in Anan Creek, which was accordingly done on August 25 without any eggs having been taken.

On August 15 the bureau's agent at Cordova reported that over $10,000,000$ humpback-salmon eggs had been collected by representatives of the Washington State Fish Commission at Irish Cove, on Fidalgo Bay, Prince William Sound, which probably would be a total loss. This was due to the use of water from the vicinity of an abandoned copper mine. Instructions were at once issued that the eggs on hand be planted and all operations cease. In the meantime the operations of the commission had been moved to the head of Whalen Bay, where the water proved to be more suitable for development of the eggs and further large collections had been made.

An agreement was reached with the Washington State Fish Commission on August 24 (1) that the operations at Anan Creek should cease entirely, (2) that the healthy eggs already secured on Prince William Sound should be eyed for shipment but no further collections made, and (3) that the expedition would withdraw entirely from Alaska. Final reports from the bureau's representative at Cordova, who inspected the shipments, indicated that the total sent out in October was $14,571,708$ eyed humpback-salmon eggs.

GENERAL STATISTICS OF THE FISHERIES.

In 1922 the total investment in the fisheries of Alaska was $\$ 54,590$,302 , or $\$ 15,589,206$ more than in 1921 . The investment in the herring industry more than doubled that of 1921, and the salmon industry investment increased more than 25 per cent. Of the total investment, $\$ 47,509,138$, or approximately 87 per cent, was in the salmon industry alone. Employment was given to 21,974 persons, or 6,904 more than in 1921. The total value of the products in 1922 was $\$ 36,170,948$, or $\$ 12,084,081$ more than in 1921.

Summary of investments in the Alaska fisheries in 1922.

Industries.	Southeast Alaska.	Central Alaska.	Western Alaska.	Total.
Salmon canning.-	\$17, 032, 037	\$10, 373, 814	\$17, 801, 708	\$45, 207, 557
Salmon mild curing	1,572,025			1,572, 025
Ssimon pickling.	35,541	123,779	387, 219	510,998
Salmon by-products.	183, 017			- 183,511
Halibut fishery.	1, 839,910			1, 839, 910
Herring fishery	872,550	2, 471, 089	24, 203	3, 367, 811
Cod fishery...		778, 376		778, 376
Shrimp fishery	163, 111			163, 111
Whab fishery...	129, 976			129,976
Whale fishery.		374, 057	427, 893	801,950
Total.	21, 828, 165	14, 121, 114	18, 641, 023	54, 590, 302

Summary of persons engaged in the Alaska fisheries in 1922.

Races.	Southeast Alaska.	Central Alaska.	Western Alaska.	Total.
Whites.	4,620	3, 423	4,386	12, 429
Natives.	2,675	1,147	370	4,192
Chinese..	383	313	526	1,222
Japanese	482	346	96	924
Filipinos.	649	300	575	1,524
Mexicans.	70	92	1,216	1,378
Negroes....	6	20	126	152
Miscellaneous.	48	28	77	153
Total.	8,933	5,669	7,372	21,974

Summary of products of the Alaska fisheries in 1922.

Products.		Quantity.	Value.
Salmon:			
Canned..	...cases..	4,501,652	\$29, 787, 193
Mild cured	.pounds..	4, 266, 050	821, 169
Pickled.do....	3, $58.5,100$	248,015
Frozen.	. . do....	3, 819,153	261,094
Fresh.	do....	3, 802, 729	271, 869
Dried and smoked.	. .do....	906,550	148, 464
Fertillzer...........	.-do....	774,000	23,438
Oil.	gallons..	12,989	5,015
Herring:			
Fresh for bait.	.pounds..	824,600 $2,664,015$	8,246 23,310
Pickled, Seotch cure.		35, 995, 450	2, 030,975
Piekled, Norwegian cure.	. do.	237, 850	14,009
Dry salted for food.	. .do....	210,000	9,600
Fertilizer	..do....	3, 292,000	98,52s
Oil.....	gall n	425, 241	144,418
Halibut:			
Frozen.	...do....	3, 188, 473	762,610 262,357
Cod:			
Dry salted	.do.	6,085,989	458, 9.58
Pickled.	do	10, 800	925
Stoekfish	do	20,000	3,000
Tongues.	do.	11, 860	1,186
Wil......	gallons..	100	100
Whale:			
Fertilizer.	pounds..	3, 092, 480	78,974
Whalebonedo....	-14,000	1,400
Ivory (teeth).	. ${ }^{\text {d }}$.	500	200
Clams...	d	32, 290	185,007
Crabs:			
Canned.....	...eases. .	4,619	46, 231
Fresh meat....	.pounds..	120	
Whole in shell	...dozen..	383	1,100
Trout:			
Canned.cuses..	61, 134	5,64
Sablefish.	.p junds. .	49, 167	1,533
Flatfish.	...d)	12,255	367
Ling eodd).	1,327	26
Total.			${ }^{1} 36,170,948$

[^13]
SALMON INDUSTRY.

Among the notable developments of the salmon industry in 1922 may be mentioned the increased production of camed salmon in western Alaska and the surprisingly large run of humpback salmon in the Ketchikan district of southeast Alaska. The pack in
both of these districts again reached normal proportions, and that in central Alaska was not far below the average for several years.

The condition of the salmon fisheries in the northern section of sontheast Alaska was unsatisfactory, and concern is felt over the very evident decline of the salmon runs in that region. Several canneries in the affected district were idle during the year, and at most of those that did operate much smaller packs were made, showing ummistakably that the supply of salmon is depleted.

SALMON CATCH AND APPARATUS.

In 1922 there were used in the salmon fisheries of Alaska 160 beach seines, aggregating 21,905 fathoms, and 289 purse seines, aggregating 48,600 fathoms, a total of 449 seines or 70,505 fathoms, an increase over 1921 of 236 seines or 35,442 fathoms. Southeast Alaska is credited with 308 seines, having a total length of 48,380 fathoms; central Alaska, with 119 seines, having a total length of 17,525 fathoms; and western Alaska, with 22 seines, having a total length of 4,600 fathoms.

The gill nets operated in the salmon industry in 1922 total 3,335, aggregating 378,410 fathoms of webbing, an increase over 1921 of 100 nets and 3,120 fathoms. Operators in southeast Alaska used 270 gill nets, with 28,775 fathoms of webbing; in central Alaska, 1,010 gill nets, with 71,930 fathoms; and in western Alaska 2,055 gill nets, with 277,735 fathoms.

The total number of traps used in the salmon industry in 1922 was 111 floating and 265 driven, a total of 376 , an increase of 196 traps over the number in 1921. Southeast Alaska is credited with 138 driven and 109 floating traps; central Alaska with 118 driven and 2 floating; and western Alaska with 9 driven. Southeast Alaska is credited with 5,790 lines used in taking salmon and western Alaska with 7 salmon wheels. Of the total catch of salmon approximately 23 per cent were taken in seines, 35 per cent in gill nets, and 41 per cent in traps. Less than 1 per cent was taken by all other methods combined.

Percontage of salmon caught in cach Alaska district, by principal forms of apparatus.

| Apparatus. |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |

In 1922 the total take of salmon was $72,370,400$, as compared with $37,905,591$ in 1921 , an increase of $34,464,809$, or approximately 91 per cent. The increase occurred in all three districts of Alaska, that of southeast Alaska being 19,202,791, central Alaska 7,683,497, and western Alaska 7,578,521. As compared with 1921 the catch in Alaska shows that cohos increased 655,889 , chums $2,636,982$, hump-
backs $23,432,524$, and reds $7,795,481$. Kings decreased 56,067 . The number of humpbacks taken in 1922 was an increase of approximately 327 per cent over the take of 1921.

Salmon taken in 1922, by apparatus and species, for each gcographic section of Alaska.

Apparatus and species.	Southeast Alaska.	Central Alaska.	Western Alaska.	Total.
Seines:				
Coho, or silver.	336, 201	91,348		427, 549
Chum, or keta	2,278,660	164, 31	5,166	2,448,657
King or spring	$7,835,208$ 2,705	$2,880,490$ 2,963		$10,715,698$ 8,054
Red, or sockeye.	2,705 614,478	1, 286, ${ }^{2,963}$	1,029, 674	8,054 2.931,096
Total.	11,067, 252	4,426,576	1,037,226	16,531, 054
Gill nets:				
Coho, or silver.	122, 870	6,303	163, 131	292,304
Chum, or keta..	49, 169	3,357	614,882	667,408
Humpback, or pink	38,972	148,250	220, 248	407, 510
King, or spring.	73, 884	23, 151	89,863	156, 898
Red, or sockeye	316, 109	826, 198	22,918, 065	24,060, 372
Total.	601,004	1,007,259	24,006, 229	25,614,492
Traps:				
Coho, or silver.	679,586	269,075		948,661
Chum, or keta	1. 398, 044	700,641	39,040	2,137, 725
Humpback, or pin	12, 649, 373	3,747, 254	69,507	19,466, 134
King, or spring.		5, 436,522	9,160 519,493	6,907, 304
Total.	18,711, 521	10, 179, 008	637, 200	29,527,729
Lines:				
Coho, or silver.	168, 580			
Chum, or kcta	93 506,852			$506,852$
Total.	675, 525			675,525
Wheels:				
Coho, or silver.			1,000	
Chum, or keta.			20,000	20, 000
King, or spring.			600	600
Total.			21,600	21,600
Total:				
Coho, or silver.	1,307,237	366,726	164, 131	1,838, 094
Chum, or keta.	3,725,966	868,829	679, 088	5,273,883
Humphack, or pink	23, 523,553	6,775,994	289, 795	30, 589, 342
King, or spring.	615,664	5, 52,636	102,009	770, 309
Red, or sockeye.	1,882, 882	7,548,658	24, 467, 232	33, 898, 772
Grand total.	31, 055, 302	15,612, 843	25, 702, 255	72,370,400

SALIION CANNING.

changes in canneries.

The year was marked by a number of changes in the ownership and operation of canneries and also by the opening of new plants. In southeast Alaska a company, known as the Alaska Consolidated Canneries, was organized to operate the Tee Harbor, Chomley, and Yes Bay canneries of the Alaska Pacific Fisheries, the Quadra and Rose Inlet canneries of the Southern Alaska Canning Co., and the Tenakee cannery of the Columbia Salmon Co. The A. \& P. Products Corporation leased the Ford Arm cannery of the Deep Sea Salmon Co. and the Heceta Island cannery of Swift-Arthur-Crosby

Co. The J. D. Roop Co. operated the plant of the Standard Salmon Packers (Inc.) at Tenakee: A. P. Wolf \& Co. leased the plant of the Sitka Packing Co. at Sitka; and the Mitkof Island Packing Co. continued to operate the Petersburg cannery of the Petersburg Packing Corporation. The Noyes Island Packing Co. was reorganized as the Steamboat Bay Packing Co. The Stuart Packing Corporation became the owner of the floating cannery of the Mutual Packing Co. The Sea-Coast Packing Co. purchased the Craig cannery of the Columbia Salmon Co.

In central Alaska the Emel Packing Co. operated the Valdez Packing Co.'s cannery at Valdez, the Star Canning Co. took over the floating cannery of the Hayes-Graham Fish Co., the cannery of the Hillery-Scott Co. at Cordova was transferred to the Cordova Packing Co., and the Snug Harbor cannery of the Surf Packing Co. was operated by the Polar Fisheries Co. The Cordova cannery of the Pioneer Packing Co. is now listed under the name of the Pioneer Sea Foods Co., and the Seldovia Cannirg Co. was succeeded by the Seldovia Packing Co. For operating purposes the Carlisle Packing Co. and the Canoe Pass Packing Co. consolidated and used the Cordova plant of the former.

In western Alaska the floating plant of the Carlisle Packing Co., previously operated at Kwiguk Slough at the mouth of the Yukon River, was moved to Koggiung River, on Bristol Bay.

```
NEW CANNERIES.
```

Fifteen new or heretofore unlisted canneries were operated in Alaska in 1922. Of these six were located in southeast Alaska, as follows: A. \& P. Products Corporation, at Hidden Inlet on the site formerly occupied by the cannery of the Hidden Inlet Canning Co.; Big Harbor Packing Co., at Craig: Ness Fish Co., at Petersburg; Red Salmon Packers Association, floating cannery Retriever, at Dry Bay and later at Ketchikan; R. J. Peratovich, at Bay View; and the Dobbins Packing Co., a floating plant at Petersburg for salmon and crabs.

Central Alaska is credited with six new canneries, located as follows: Anchorage Packing Co., at Anchorage; Kamishak Canning Co., at Kamishak Bay; Kodiak Island Fishing and Packing Co., at Seward; North Coast Packing Co., at Ninilchik; Robinson Packing Corporation, floating cannery Azalea, at Zachar Bay; and Hopp \& Danielsen, at Uganik Bay.

One new cannery was opened in western Alaska at Ugashik River by the International Packing Co., which operated the motor ship Santa Flavia as a floating plant. After the close of the season on Bristol Bay this cannery was moved to Uyak to pack humpback salmon. IW. F. O'Connor and Charles Homeier put up small packs of canned salmon on the Yukon River for local use; their plants have not been listed heretofore.

CANNERIES NOT OPERATED.

Forty-six camneries were closed during the season, of which three are probably permanently out of business-the F. H. Madden cannery at Abercrombie abandoned by reason of the enforcement of
regulations for the protection of the Copper River salmon run, the Ketchikan Packing Company's cannery sold under bankruptcy proceedings, and the small plant of E. R. Strand, near Petersburg. Including these three, the list is as follows:

In 1922 there were 123 canneries operated in Alaska, of which 57 were located in southeast Alaska, 36 in central Alaska, and 30 in western Alaska. This is an increase of 40 over the number operated in 1921.

Companics canning salmon in Alaska, number and location of canneries
operated, and number of pound nets owncd by eaeh, 1922.

[New canneries indicated by (*).]

Companies canning salmon in Alaska, number and location of canneries operated, and number of pound nets owned by each, 1922-Continued.

LOSSES AND DISASTERS.
The loss of property and apparatus in the salmon industry in 1922 totaled $\$ 253,470$, the most important item being the AlaskaPortland Packers' Association's bark Berlin (1,416 tons), valued at $\$ 114,768$, which went ashore at Egegik Flats May 17. There were no lives lost. In the whole of Alaska 10 people were killed in this industry, 4 of whom were drowned. Of the total number 4 were fishermen, 1 was a transporter, and 5 were shoresmen.

STATISTICS.

In 1922, 123 canneries were operated in Alaska, as compared with 83 in 1921. These represented an active investment of $\$ 45,207,557$, or $\$ 11,961,265$ more than in 1921 . The increase by districts was: Southeast Alaska, $\$ 8,394,097$; central Alaska, $\$ 2,766,959$; and western Alaska, $\$ 800,179$. simployment was given to 17,697 persons, or

4,711 more than in $19 £ 1$. The increase in numbers was: Whites 2,234, natives 1,174 , Chinese 332, Japanese 275, Filipinos 563, Mexicans 5 , Negroes 44 , and miscellaneous 84.

A total of 4,501,652 cases of salmon was packed in 1922, valued at $\$ 29,75 \overline{7}, 193$. This is an increase over the 1921 pack of $1,904,826$ cases, or approximately 73 per cent, and of $\$ 10,154,449$, or approximately 52 per cent. This increase was largely due to the increased run of humpbacks, which produced $1,658,423$ cases, having a value of $\$ 7,189,494$, as compared with 423,984 cases in 1921 , valued at $\$ 1,758,778$. Other species increased as follows: Cohos from 106,555 to 175,993 cases, chums from 255,495 to 565,918 cases, and reds from $1,765,798$ to $2,070,658$ cases. Kings decreased from $44,99 t$ to 30,660 cases. By districts, southeast Alaska increased from 803,071 to $2,018,743$ cases, central Alaska from 643,099 to 988,143 cases, and western Alaska from 1,150,656 to 1,494,766 cases. In southeast Alaska the increase was $1,215,672$ cases, or approximately 151 per cent.

Investment in the Alaska salmon-canning industry in 1922.

Items.	Southe	ast Alaska.	Centr	1 Alaska.	Weste	n Alaska.		otal.
Canneries operated Working capital. Wages paid.	$\begin{gathered} \text { Num- } \\ \text { bcr- } \\ 57 \end{gathered}$	$\begin{gathered} \text { Yalue. } \\ \begin{array}{c} 85,183,390 \\ 5,6,60,677 \\ 2,319,459 \end{array} \end{gathered}$	$\begin{gathered} \text { Num- } \\ \text { Ber } \\ \text { Si } \end{gathered}$	$\begin{gathered} \text { Value. } \\ \$ 2,815,986 \\ 3,1+5,248 \\ 1,566,584 \end{gathered}$	$\begin{gathered} \text { Num- } \\ \text { ber- } \\ \hline \mathbf{3 0} \end{gathered}$	$\begin{gathered} \text { Value. } \\ 85,335,951 \\ 4,252,163 \\ 3,549,181 \end{gathered}$	$\begin{gathered} \text { Num- } \\ \text { ber } \\ 123 \end{gathered}$	Value.$\$ 13,335,330$$13,01,013$$8,035,224$
$\begin{aligned} & \text { ower, over } \\ & \text { tons....... } \end{aligned}$	202	1,457,616		799,385	79	1,526,263	69	3,783,261
Sailing.......	1	45,000	7	360,000		1,148,740	15,977	740
Net to	1,974		10,900		48,561		61,435	10
${ }_{\text {Barges }}^{\text {Net }}$ t		71,871						7i,87i
Launches, under	2,70						2,770	
Boats, row and	66	68,063	145	179, 169	57	143,	268	390, 421
sail.	78	188,077	709	102, 415	1,265	505, 108	2,752	795,600
Lighters, scows	320	307, 834	168	188, 181	186	477,874	674	73,889
Pile drivers and pile pullers....	49	336, 236	34		23		06	
Apparatus:								5,836
Beach sein		37,210		38,226		1,500		76,936
Purse seines.	255	i5i, 530		13,250	17	27,700	95	195,530
Gill nets.....	41, 263		2,915		4,150 1,937	446, 871	48,515	
Gill Fathoms.	27,325		69,350	9,	267,335	440,31		564,782
	$\begin{aligned} & 137 \\ & 109 \end{aligned}$	$\begin{aligned} & 855,5 \\ & 301,973 \\ & 30 \end{aligned}$		$\begin{array}{r} 60,317 \\ 2,000 \end{array}$	9	35,000		- $1,798,973$
Wheels.........					2	00	1	304,773 400
Total	17,032,03.5		10,373, 114		17,801,708		45,207,557

Persons engaged in the Alaska salmon-canning industry in 1922.

Occupation and race.	Southeast Alaska.	Central Alaska.	Western Alaska.	Total.
Fishermen:				
Whites..	930	994	2,365	4,259
Natives.	1,044	401	66	1,511
Japanese.......	18	8		26
Total..	1,992	1,404	2,431	5,827
Shoresmen:				
Whites..	1,232	912	1,511	3,655
Natires.	1,260	639 313	219 526	2,118
Japanese	444	345	96	1,885
Filipinos.	645	300	575	1,520
Mexicans.	67	92	1,203	1,362
Negroes.	6	20	121	147
Miscellaneous ${ }^{1}$.	5	19	77	101
Total.	4,039	2,640	4,328	11,007
Transporters:				
Whites.. Natives.	356	215	229	
Natives.	17	24	1	42 5
Miscellaneous ${ }^{\text {i }}$.	15	i		16
Total.	3×8	240	235	863
Total:				
Whites..	2,518	2,121	4,105	8,744
Natives.	2,321	1,064	236	3, 671
Chinese.	350	313	526	1,219
Japanese	444	346	96	S86
Filipinos.	645	300	575	1,52)
Mexicans.	67	92	1,203	1,362
Negroes.	6	20	126	152
Miscellaneous ${ }^{1}$.	38	28	77	143
Grand total.	6,419	4,284	6,994	17,697

${ }^{1}$ Koreans, Porto Ricans, Kanakas, etc.
Output and value of canned salmon in Alaska in 1922. ${ }^{1}$

Product.	Southeast Alaska.		Central Alaska.		Western Nlaska.		Total.	
Coho, or silver:	Cases.	Value.	Cases.	Value.	Cases.	Value.	Cases.	Value.
起-pound flat.	20, 013	\$151, 666	2,224	\$17,039			22, 237	\$168,705
1-pound flat	10,773	63,515	1,291	8,00.		\$166	12,099	71, 686
1-pound tall	91, 861	462, 365	36,919	192, 234	12, 877	67, 800	141,657	722,399
Total.	122,617	677,546	40, 434	217,278	12,912	67,966	175,993	962, 790
Chum, or keta:								
$\frac{1}{2}$-pound flat.	3,698	21, 228					3,698	21,223
1-pound flat.	6,185	25, 693					6,185	25,693
1-pound tail	414,383	1,640, 135	91, 239	362, 410	50,413	202,044	556, 035	2, 204,619
Total	424, 266	1,687, 056	91,239	362, 440	50,413	202,044	565,918	2,251,540
Humpback, or pink:								
1-pound flat.	28,148	134, 268	2, 731	13,655			30, 879	147,923
1-pound tall	1,273, 679	5, 461,536	295, 226	1,251, 399	12,903	54,938	1,584, 808	6,767, 873
Total.	1,332,552	5,793,757	312,968	1,340,799	12,903	54,938	1,658,423	7,189, 491
King, or spring: $=-$								
-pound flat	2,695	30,640	1,022	13,341	53	742	3,770	44,723
1-pound tall	1,735 1,703	15,209 11,448	2,067 7,076	$\begin{array}{r}\text { 20, } \\ \text { 53, } \\ \text { 168 } \\ \hline\end{array}$	165 14,144	2,002 100,585	$\begin{array}{r}3,967 \\ 22,923 \\ \hline\end{array}$	$\begin{array}{r}47,749 \\ 165,201 \\ \hline\end{array}$
Total.	6,133	57,297	10,165	87,047	14,362	103, 329	30,660	247,673
Red, or sockeye:								
1 1-pound flat.	17,579	171,509	59,799	1,614,403	44, 071	437, 530	121, 449	1,223,442
1-pound tall	57,783	530,278	383, 935	3,447, 679	1,335, 595	11, 512, 270	1,777, 313	15, 490,227
Total.	133, 145	1,481,369	533, 337	5,319,626	1,404, 176	12,334, 701	2,070,658	19,135,696
Grand tot	2,018,743	9,697,025	988, 143	7,327, 190	1,494,766	12,762,978	4,501,652	29,787,193

[^14]Output of canned salmon in Alaska, 1916 to 1922. ${ }^{1}$

Product.	1916	1917	1918	1919	1920	1921	1922	Total.
Coho, or silver: $\frac{1}{2}$ pound flat. 1-pound flat. 1-pound tall.	Cases. 13, 115 240, 573	Cases. 30, 412 162,457	Cases. 26.23s 179,93!	Cases. 9,719 212, 713	$\begin{gathered} \text { Cases. } \\ 8,915 \\ 10,746 \\ 172,424 \end{gathered}$	Cases. $\begin{array}{r} 4,084 \\ 7,918 \\ 94,553 \end{array}$	Cases. 22.237 141, 657	$\begin{aligned} & \text { Cases. } \\ & 114,750 \\ & 62,540 \\ & 1,204,311 \end{aligned}$
Total. Chum, or keta: $\frac{1}{2}$ pound flat..... 1-pound flat...... 1-pound tall. Total.	261,979	193, 231	218, 958	232, 870	192, 085	106,555	175, 993	1,381,601
	1,423 722,692	$\begin{array}{r} 26,760 \\ 2,5.30 \\ 877,457 \end{array}$	$\begin{array}{r} 3,559 \\ 2,996 \\ 1,358,405 \end{array}$	3,981 $1,361,582$	$\begin{array}{r} 53 \\ 46,167 \\ 987,297 \end{array}$	608 251,887	$\begin{array}{r} 3,608 \\ 6,185 \\ 556,035 \end{array}$	$\begin{array}{r} 40,082 \\ 57,878 \\ 6,118,365 \end{array}$
	724, 115	906, 747	1,364,960	1,365, 563	1,033,517	255, 495	565, 918	6,216, 315
Humpback, or pink: $\frac{1}{2}$ pound flat. 1-pound fla 1-pound tall......	41,491 14,796 $1,681,506$	$\begin{array}{r} 91,403 \\ 6.014 \\ 2,199,559 \end{array}$	$\begin{array}{r} 63,557 \\ 20,215 \\ 2,355,152 \end{array}$	$\begin{array}{r} 28,185 \\ 7,553 \\ 1,575,570 \end{array}$	$\begin{array}{r} 18,970 \\ 76,017 \\ 1,495,133 \end{array}$	$\begin{array}{r}1,292 \\ \hline \times 22,692\end{array}$	$\begin{array}{r} 42,736 \\ 30,879 \\ 1,584,808 \end{array}$	$\begin{array}{r} 287,634 \\ 155,474 \\ 11,317,750 \end{array}$
Total	1,737, 793	2, 296,976	2,438, 954	1.611,608	1, 593, 120	423,984	1,658, 423	11,760, 858
King, or epring: tpound flat...... itpound flat. 1-pound tall. Total	$\begin{array}{r} 2,617 \\ 3,804 \\ 59,452 \end{array}$	$\begin{array}{r} 12,793 \\ 5,133 \\ 43,845 \end{array}$	$\begin{array}{r} 6,0 \cap 0 \\ 5.297 \\ 37,959 \end{array}$	$\begin{array}{r} 7,594 \\ 11,532 \\ 76,570 \end{array}$	$\begin{aligned} & 10,196 \\ & 18,319 \\ & 81,488 \end{aligned}$	$\begin{gathered} 4,061 \\ 19,192 \\ 21,741 \end{gathered}$	$\begin{array}{r} 3,770 \\ 3,967 \\ 22,923 \end{array}$	$\begin{array}{r} 17.201 \\ 67,214 \\ 344,278 \end{array}$
	65,873	61,951	49,226	95,986	110, 003	44,991	30,660	458,693
Red, or sockeye: 妾-pound flat...... 1-pound tlat. 1-pound tall. 2-pound nominals	$\begin{array}{r} 81,565 \\ \begin{array}{r} 6,395 \\ 1,936,971 \\ 6,006 \end{array} \\ \hline \end{array}$	$\begin{array}{r} 121,309 \\ 99,612 \\ 2,274,460 \end{array}$	$\begin{array}{r} 137, \text {, } 08 \\ 151,861 \\ 2,24,, 865 \end{array}$	$\begin{array}{r} 122,236 \\ 110,491 \\ 1,044,934 \end{array}$	$\begin{array}{r} 101,716 \\ 120,147 \\ 1,278,875 \end{array}$	$\begin{array}{r} 60,831 \\ 71,108 \\ 1,633,859 \end{array}$	$\begin{array}{r} 171,896 \\ 121,119 \\ 1,777,313 \end{array}$	$\begin{array}{r} 799,561 \\ 751, \text {, } 6.66 \\ 12,191,277 \\ 6,006 \end{array}$
	2, 110,937	2, 488,3S1	2, 533, 737	1,277, 661	1,50n, 738	1,765,798	2,070,658	13, 747,910
Grand total.	4, 900, 627	5, 94T, 2, 6	6,605, 835	4,583, 688	4, 429, 463	2, 596, 826	4,501,652	33, 565 , 377

${ }^{1}$ The number of cases shown has been put upou the common basis of 48 one-pound cans per case.
Average annual price per case of 48 onc-pound cans of salmon, 1912 to 1922.

Product.	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922
Coho, or silver	\$1.44	\$3.45	\$1. 39	\$4.31	\$5.34	\$8.76	\$9.15	\$11.27	\$9.13	85.63	§5. 47
Chum, or keta.	2.37	2.21	3. 37	2.59	3.34	6.14	6.27	6.82	4.19	3.6.	3.93
Humpback, or p	2.55	2.58	3. 50	2.78	3.61	6. 44	6.58	8.35	5. 47	4.21	4.31
ling, or spring.	5.37	4.04	5. 01	4.63	5.36	10. 40	9.55	13.13	10.97	10.22	8.158
Red, or sockeje..	5.45	4.51	5.58	5. 82	6.01	9.48	9.44	12.98	13. 05	8.96	9.24

MILD CURING OF SALMON.

In 1922 there were employed in this industry 1,243 whites and 61 natives, exclusive of the independent trollers of southeast Alaska. This is an increase of 855 persons. The southeastern district, because of its nearness to market, produced the bulk of mild-cured salmon. The industry in 1922 showed an investment of $\$ 1,572,025$, as compared with $\$ 613,516$ in 1921, an increase of $\$ 958,509$, and produced a total of 5,283 tierces of mild-cured salmon, valued at $\$ 821,169$, of which 5,200 tierces were kings and 83 cohos. Corresponding figures for 1921 were 3,556 tierces, valued at $\$ 608,218$, of which 3,530 tierces were kings and 26 cohos.

Investment, persons engaged, and products of Alaska salmon mild-euring industry in 1922.

${ }^{1}$ Includes 1,000 trolling launches, valued at $\$ 1,000,000 . \quad{ }^{2} 83$ tierces. $\quad{ }^{3} 5,200$ tierces.

SALMON PICKLING.

In 1922 the investment in salmon pickling was $\$ 510,998$, a gain of $\$ 77,003$ over 1921, when the investment was $\$ 433,995$, the greater part being in western Alaska. The investment in 1922 was confined to central Alaska, $\$ 123,779$, and western Alaska, $\$ 387,219$. In 1922 there were employed 250 persons as compared with 195 in 1921. The production increased from 10,082 barrels in 1921, with a value of $\$ 179,414$, to $17.925 \frac{1}{3}$ barrels in 1922 , with a value of $\$ 284,015$, an increase of approximately 77 per cent in quantity and 58 per cent in value.

Investment, persons engaged, and products of Alaska salmon-pickling industry in 1922, by districts.

${ }^{1}$ Each barrel holds 200 pounds of fish.

SALMON FREEZING.

In 1922 the four companies reporting the preparation of frozen salmon in southeast Alaska produced $3,791,634$ pounds, valued at $\$ 255,343$, and one in western Alaska produced 57,519 pounds, valued at $\$ 5,751$, a total production of $3,849,153$ pounds, valued at $\$ 261,094$. 'There were no operators in central Alaska. The total production for 1921 was $1,506,074$ pounds, valued at $\$ 127,442$, making an increase for 1922 of $2,343,079$ pounds, or approximately 156 per cent in quantity, and of $\$ 133,652$, or approximately 105 per cent in value.

Quantity and value of salmon frozen in Alaska in 1922, by species.

Species.	Pounds.	Value.
Crho, or silver.	839,640	\$48, 137
Chum, or keta.	236,679	9,467
Humpback, or pink.	1, 023,707	20,474
King, or spring....	1,548, 474	162,951
Red, or sockeye.	200,653	20,065
Total..	3,849,153	261,091

FRESH SALMON.
There was a material decrease in the fresh-salmon trade in 1922 as compared with 1921. The number of persons engaged dropped from 20 to 7 and the production from $9,103,104$ pounds, with a value of $\$ 418,265$, to $3,802,729$ pounds, with a value of $\$ 271,869$. This is a decrease of approximately 58 per cent in the number of pounds and 35 per cent in value. The investment was $\$ 35,541$ in 1922 as compared with $\$ 55,027$ in 1921 , a decrease of $\$ 19,486$.

Investment, porsons engaged, and products of the Alaska fresh-salmon industry in 1922.

DRYING AND SMOKING OF SALMON.

In 1922 nine firms reported a production of 815,550 pounds of dried salmon, valued at $\$ 145,544$, as compared with 8,533 pounds in 1921, valued at $\$ 979$. The Juneau Cold Storage Co. reported a production of 10,000 pounds of kippered salmon, with a value of $\$ 1,500$, and two operators produced 1,600 pounds of beleke, valued at $\$ 480$. Two firms dry-salted 79,400 pounds, with a value of $\$ 940$. The total quantity of dried, kippered, and dry-salted salmon and beleke was 906,550 pounds, with a value of $\$ 148,464$.
U. S. B. F.-Doc. 951.

Fig. 9.-Herring station and homestead, Halibut Cove, Cook Inlet.

Fig. 1i.-Cannery in Cook Inlet district.
(Mantit!y and ralue of dricd, kippered, and dry-salted salmon in Alaska in 192.., by species.

Species.	Dried.		Kippered.		Dry salted.	
Coho, or silver..	Pounds. 11,750	Value. $\$ 620$	Pounds.	Value.	Pounds.	Value.
Chum, or keta.....	546,250 40,600	105,275 1,624		\$180		8500
lumpback, or pin	40,600 7,950	1865	${ }^{2} 11,000$	1,800	4,400	${ }^{84}$
Red, or sockeye.	209,000	37,160				
Total.	815,550	145, 544	11,600	1,980	79,400	940

${ }^{1}$ Beleke.
${ }_{2}^{2}$ Includes 1,000 pounds beleke, valued at $\$ 300$.

SALMON BY-PRODUCTS.

The two firms produsing oil and fertilizer from salmon offal and scrap fish in 1921 continued their activities in 1922 with an increaséd investment and output. They are the Alaska Reduction Co., at Hawk Inlet, and the Petersburg By-Products Co., at Scow Bay. The total investment in 1922 was $\$ 183,017$, and 29 persons were employed. The products were 357 tons of fertilizer, valued at $\{23,438$, and 12,989 gallons cí oil, valued at $\$ 5,015$. The investment in 1921 was $\$ 141,319$, with 27 persons employed, and the products were 232 tons of fertilizer, valued at $\$ 13,920$, and 15,010 gallons of oil, ralued at $\$ 1,102$. The value of the products in 1922 was $\$ 10,431$ more than the value in 1921.

HERRING FISHERY.

This industry shows a further expansion in 1022 as compared with 1921 , not only in number of operators but in volume of products. Practically all the pickled herring was Scotch cured, the pack was of better quality, and sales were better and more promptly made than in past seasons. There is still room for improvement along this line, and the market will be better as the products meet the requirements of the trade.

The tendency of the present packers engaged in this business has been to locate in proved localities, which has, in most instances, resulted in congestion. Scarcely anything in the way of prospecting for new fishing grounds has been done.

STATISTICAL SUMMARY.

In 1222 the herring industry of Alaska showed an investment of $\$ 3,367,841$, as compared with $\$ 1,512,02$ in 1921 , an increase of $\$ 1,855,812$. Nine plants were operated in addition to those in operation in 1921, making a total of 22. Employment was given to 1,280 persons, while in 1921 only 445 were employed. The total value of the output in 1922 was $\$ 2,329,116$, as against $\$ 934,044$ in 1921, an increase of $\$ 1,395,072$, or approximately 149 per cent. Scotch-cured herring increased from 14,523,441 pounds in 1921 to 35,995,450 pounds in 1922. Losses in this industry aggregated $\$ 25,000$, of which $\$ 10,000$ was a vessel owned by the Alaska Sea Food Products Co., and $\$ 10,000$ the saltery of the Nildenrich Packing Co., which was destroyed by fire.

Investment, persons engaged, and products of Alaska herring fishery in 1922, by districts.

${ }^{1}$ Gallons.

HALIBUT FISHERY.

Owing to an oversupply of halibut at the beginning of the year, heavy storms, and a decrease in the productivity of some of the fishing grounds the halibut catch for 1922 did not total as much as in 1921. British Columbia ports received part of the catch, which was shipped thence to central and eastern markets.

STATISTICAL SUMMARY.

The investment in the halibut industry in 1922 was $\$ 1,839,910$, an increase of $\$ 4,653$ over that reported for 1921. Employment was given to 569 persons, compared with 452 in 1921. Independent ves-
sels making deliveries to Alaskan ports and their crews and property must be estimated in compiling these figures. The products of the halibut fishery entered through the ports of Alaska in 1922 were $11,075,237$ pounds, valued at $\$ 1,034,967$, as compared with $17,176,274$ pounds in 1921 , valued at $\$ 1,476,450$.

Investment, persons engaged, and products of Alaska halibut fishery in 1922.

Items.	Number.	Value.	Items.	Number.	Value.
INVESTMENT.	$\begin{array}{r} 106 \\ 2,383 \\ 9 \\ 1 \end{array}$	\$1,114,000	PERSONS ENGAGED	4551122	
Vessels: Stesm and mas			Whites..		
			Natives........................		
Net tonnage.			Miscellaneous Total		
Launches.		8,800		569	
Scows..		4,000 $21,72.5$			
Shore property		393, 935	PRODUCTS (POUNDS).		
Cash capital...		297, 450	Fresh (including local)	7, 8S6, 764	\$772, 610
Total.	1,839,910	Froz	3,158,473	262,357
			Total.	11, 075,237	1,034, 967

COD FISHERY.

The cod industry of Alaska in 1922 partially recovered from the shrinkage in 1921. In the vessel fishery the Robinson Fisheries Co. restored the Wawona to the cod fleet and the Pacific Coast Codfish Co. put into service the Charles R. Wilson, but withdrew the Maid of Orleans. The North Star Fish Packing Co. used the power schooner Northern King. The Union Fish Co. withdrew the Sequoia from the fleet.

The only important shore stations operated in Alaska in 1922 were those of the Union Fish Co. and the Alaska Codfish Co. in the Shumagin Islands.

Alaska cod fleet in 1922.

STATISTICAI, SUMMMARY.

The cod industry in 1922 showed an investment of $\$ 778,376$, as compared with $\$ 781,665$ in 1921. The number of persons employed was 357 , or 25 more than in 1921 . The production of cod was

6,134,649 pounds and 100 gallons of oil, all valued at $\$ 464,169$, an increase over 1921 of $1,346,818$ pounds in quantity and $\$ 6,849$ in value.

Intestments, persons engaged, and products of Alasla cod fishery in $192 .$.

Item.	Number.	Value.	Item.	Number.	Value.
investment.			Products (POUNDS).		
Value of shore stations.		\$150,930	Vessel eateh:		
Cost of operations.		133, 817	Dry-salted cod.	3,719,145	\$243,601
Wages paid.		136,316	Pickled cod..	16,800	, 925
Vessels:			Tongues.	11, 860	1,185
Power, over 5 tons. Net tonuage..	310	102, 134		${ }^{1} 100$	100
Sailing.	13	194,357	Total.	2-15, 812
Launches.	91	12, 161	Shore station catch:		
Dories.	306	9,350	Dry-salted cod..	2, 3önt, 844	215,357
Pile driv	2	250	Stockfish.	20,000	3,000
Seines (75 fathoms).	1	250	Total.	2,386,844	218,357
Gill nets (75 fathoms)	1	195			
Lines..	1,420	8,616	Recapitulation:		
Total.		778,376	Pickled cod.	16,800	458,958
			Stockfish.	20,000	3,000
Persons engaged.			Tongues	11,850	1,185
Fishermen: White.	313			${ }^{1} 100$	100
Shoresmen: White	19	-...	Grand total.		464,169
Transporters: White.	25			
Total.	357				

${ }^{1}$ Gallons.

WHALE FISHERY.

Whaling in Alaska in 1922 was carried on by two companies, the United States Whaling Co., at Port Armstrong, and the North Pacific Sea Products Co., at Akutan. The industry gave employment to 166 whites, 24 natives, 27 Japanese, and 3 Filipinos. The investment, consisting of plants, vessels, wages, and other operating costs, was $\$ 801,950$. The number of whales captured was 445 , of which $20 \pm$ were finbacks, 95 humpbacks, 77 sulphur bottoms, and 69 sperm. The products were 904,359 gatlons of oil, valued at $\$ 328,944 ; 3,092,480$ pounds of fertilizer, valued at $\$ 78,974 ; 14,000$ pounds of whalebone, valued at $\$ 1,400$; and 500 pounds of ivory, valued at $\$ 200$. ?e total value of all whale products was $\$ 409,618$.

CLAMS.

In 1922 the production of clam products was 32,290 cases, valued at $\$ 185,007$, as compared with 1,420 cases, valued at $\$ 9,940$, in 1921, an increase of 30,870 cases in quantity and $\$ 175,067$ in value.

Products of the Alaska clam industry in Alaska in 1922.

U. S. B. F.-Doc. 951.

Fig. 11.-Whaling gun mounted at bow of vessel.

Fig. 12.- Hauling out whale at shore station, western Alaska.

SHRIMPS.

Three companies, the Alaskan Glacier Sea Food Co., Olympic Fisheries Co., and Ness Fish Co., located at Petersburg, were engaged in the preparation of shrimps. The entire product consisted of fresh shrimp meat packed in 5 -pound tin containcrs, which are filled by hand, sealed in a hand machine, and shipped in cold storage to Seattle. Immediately upon delivery at the packing houses the shrimps are immersed in hot water for a few minutes, thus cooking them slightly and facilitating removal of shells. The shelling is done by hand by Japanese and natives, who are paid by the pound for the meat prepared.

Employment was given to 16 whites, 79 natives, 3 Chinese, 11 Japanese, 3 Mexicans, and 1 Filipino, a total of 113, as compared with 111 in 1921. Wages aggregated $\$ 59.689$, and other costs of operation totaled $\$ 53,902$. The value of plants, vessels, and fishing apparatus was $\$ 49,520$. The total investment in the industry in 1922 was $\$ 163,111$, as compared with $\$ 147,814$ in 1921. The output was 336,380 pounds of meat, valued at $\$ 126,690$, as compared with 344,986 pounds in 1921 , valued at $\$ 132,077$. Losses in this industry in 1922 amounted to $\$ 7,648$, of which $\$ 7,348$ represents the value of products that spoiled for lack of cold-storage shipping facilities.

CRABS.

Three canneries handling crabs exclusively were operated in Alaska in 1922 and four other operators handled crabs incidental to other activities. The reported investment in the industry in 1322 was $\$ 129,976$, as compared with $\$ 43,848$ in 1921. Employment was given to 152 persons, as against 44 in 1921. The products consisted of 4,619 cases canned, valued at $\$ 46,231 ; 120$ pounds fresh, valued at $\$ 48$; and 383 dozen whole crabs in shell, valued at $\$ 1,100$; a total of $\$ t 7,379$. The value of products in 1921 was $\$ 33,180$.

TROUT.
Although there was no separate investment in the trout industry in 1922 there was reported a production of 64,727 pounds of fresh trout, valued at $\$ 5,266$, and of 134 cases of preserved trout, valued at \$648. Dolly Varden and steelhead were the only species taken. The total production in 1922 was 133,504 pounds, valued at $\$ 18,925$.

Products of Alaska trout fishery in 1922.

Species.	Fresh.		Canned.	
Dolly Varden.	Pounds. 49, 483	Value. $\$ 4,275$	Cases.	Value.
Steelhead.....	$15,244$	991	…134	\$648
Total.	64,727	5,266	134	648

MISCELLANEOUS FISHERY PRODUCTS.
Several products, incidental to other fishing operations, deserve mention. These inclurle sablefish, flatfish, and ling-cod. In 1922 the total catch of sablefish was 49,167 pounds, valued at $\$ 1,538$; of flatfish 12,255 pounds, valued at $\$ 367$; and of ling-cod 1,327 pounds, valued at $\$ 26$.

FUR-SEAL INDUSTRY.

PRIBILOF ISLANDS.

GENERAL ADMIINISTRATIVE WORK.

In the calendar year $1922,31,156$ sealskins were taken on the Pribilof Islands. With the exception of the year 1918, when 34,890 skins were secured, the take was the largest since 1889. The washing and blubbering of sealskins on St. Paul Island, which was first undertaken on a commercial scale in 1921, was continued more extensively in 1922, when nearly 16,000 were so treated. Extensions were made to the washing and blubbering plant and to the St. Paul salt houses. Work on the new water system for St. Paul village was continued, and the building of a road suitable for motor trucks from that village to Northeast Point was undertaken. On St. George Island improvements were made to the village landings. nerv building construction was undertaken, and the electric lighting system was extended to include the entire village. The practice of feeding foxes on St. George Island was continued, and steps were taken to secure the services of an experienced man to develop the fox herds on both islands. The regular annual supplies were transported to the islands by a commercial vessel instead of by a Navy vessel. The Coast Guard maintained a patrol of the waters of the North Pacific Ocean and Bering Sea and in addition rendered the fur-seal service valuable aid by transporting passengers, miscellaneous freight, and mail. The bureau's vessel Eider made a number of trips from Unalaska to the Pribilofs in the winter and was kept steadily employed throughout the regular sealing season. The usual seal census was taken and included this season a count of all the pups on both islands.

OFFICIAL VISIT BY ASSISTANT SECRETARY OF COMMIERCE.

In connection with a general trip to Alaska, an official party headed by Hon. C. H. Huston, Assistant Secretary of Commerce, visited the Pribilof Islands in July. Mr. Huston, accompanied by Ward T. Bower, field assistant, Bureau of Fisheries, Dr. Leonhard Stejneger, United States National Museum, Lieut. Ellis Reed-Hill, engineer officer, United States Coast Guard cutter Mojave, Joe L. Baker, special assistant, and Capt. C. E. Lindquist, arrived at St. George on the United States Coast Guard cutter Algonquin July 11 and after making an inspection of the station and seal life, proceeded to St. Paul Island where they arrived July 12. Dr. Stejneger and Captain Lindquist left on the Algonquin the same day. The others remained at St. Paul Island until July 19 when they took passage on the U. S. Coast Guard cutter Mojave. During the week at St. Paul Island close attention was given to all the details of the
station's work, particularly to sealing operations, which were at their height. A number of other members of Mr. Huston's party who did not go with him to the Pribilofs on the Algonquin arrived on the Mojave and were ashore at St. Paul for a brief period July 19.

PERSONNEL.

Superintendent A. H. Proctor, who had been detailed to the Washington office for a part of the winter of 1921-22, returned to the Pribilofs early in the spring by the Coast Guard cutter Haida, arriving at St. Paul Island April 25. Accompanying him were E. C. Johnston, storekecper; A. Christoffersen, by-products expert; William A. Carter and Theodore C. Vick, sealing assistants; Charles Roof, Albert Harland, Joseph Movilla, Benjamin P. Gale, and Andrew Pearson, carpenters; and two Chinese cooks.
W. C. Allis, sealing assistant, left in May. Dr. Daniel L. Roland, who had been employed as dentist on St. Paul Island through the winter of 1021-22, went to St. George Island on duty in May and in June left for the States. Henry Mygatt, assistant to agent, and Edna C. Mygatt, school-teacher, left St. Paul Island for the States also in June.

William P. Zschorna, of the Fouke Fur Co., which dresses and dyes the Govermment's sealskins, and 12 assistants were detailed to St. Paul Island during the active sealing season to assist with the washing and blubbering of sealskins. G. Donald Gibbins, vice president of the Fouke Fur Co., was also at St. Paul Island for a few weeks in June and July.
In September the steamship Broolidale landed Lois L. Proctor and Harold W. Lashier, school-teachers, and Paul E. Moran, assistant to agent, at St. Panl Island, and Dr. George S. Lesher, physician, at St. George Island. Mr. Moran was later detailed to St. George Island for duty during the winter of 1922-23.

Leaving on the steamship Brookdale for the States in September were Henry D. Aller, agent and caretaker, E. C. Johnston, storekeeper, and two Chinese cooks, from St. Paul Island, and H. C. Scudder, storekeeper, and Dr. Wm. M. Murphy, physician, from St George Island. A. Christoffersen left on the U. S. Coast Guard Cutter IIaida in October. Four of the five carpenters left at various times during the season. Richard Culbertson was transferred from the position of school-teacher to that of sealing assistant. In December Dr. George B. Bowlby, who had tendered his resignation, was relieved by Dr. Robert E. Davis, who arrived on the Eider. Mrs. Catherine Davis was appointed nurse. Dr. Bowlby left St. Paul on the Eider.

PURCHASE AND TRANSPORTATION OF SUPPLIES.

The method of securing competitive bids for the general annual supplies recuired for the Pribilof Islands through the use of printed schedules, which has been followed uniformly for a number of years, was again employed in 1922. The supplies were shipped to the islands by the commercial steamer Brookdate, the vessel leaving Seattle August 21. The annual supplies for the bureau's ressel Eider were shipped at the same time and were delivered at Unalaska.

Unloading was accomplished speedily and the vessel left the Pribilofs September 24. It is estimated that the cargo consisted of approximately 2,500 tons.

Early in the year the bureau contracted with the Alaska Commercial Co. for delivery from the States to the Pribilof Islands of approximately 325 tons of salt, 600,000 feet of lumber, 310,000 shingles, 5,200 sacks of cement, 5 tons of bricks, and 20 tons of miscellaneous supplies. The salt was transported from San Francisco to the Pribilofs by the Apollo. The balance of the materials was shipped from Seattle on the steamship Brookdale to the Unalaska station of the Alaska Commercial Co., whence it was taken to the Pribilofs by the Apollo.

Other miscellaneous supplies were transported from Seattle on Coast Guard entters through the courtesy of the U. S. Coast Guard and landed either at the islands or at Unalaska for transportation to the islands by the Eider.

POWER SCHOONER " EIDER."

The Eider has rendered very useful service in connection with activities at the Pribilof Islands, and during the calendar year 1922 made 13 trips to the Pribilofs, 1 to King Cove, 1 to Umnak, 2 to Belkofsky, and 2 to Akutan. The total number of miles cruised was 8,749 in 96 days. The actual running time was $1,228 \frac{1}{2}$ hours. Two hundred and three passengers, 320 tons of freight besides mail, 14 cases of fox skins, 50 barrels of sealskins, and 12 live foxes were carried.

CONSTRUCTION WORK.

St. Paul Island.-Construction was continued on the new watertank house, and the four 40,000 -gallon water tanks were set up. The roofing laid in 1921 was damaged in a gale in the fall of that year, and as the building is in a very exposed place it was deemed best to lay shingles over the original roof rather than to attempt repairs.

The roadway from the village to Northeast Point has never been in condition to permit more than lightly loaded wagons to make the trip. The distance between the places is about 12 miles, about 4 of which are over sand dunes. In bringing to the village sealskins taken at Northeast Point it is necessary to transport them by boats on the open sea, a hazardous undertaking, practicable only when the weather conditions are favorable, and subject to frequent delays. In order that these sealskins may be washed and blubbered at the village, as is now being done with the skins taken elsewhere on the island, they must receive attention within a few hours after removal from the seals. Material to lay wooden tracks for automobile trucks and tractors over the worst stretches of sand was shipped to St. Paul in 1922, and the work of grading and laying out those portions of the roadway that could be made usable without tracks was begun in the spring of that year and pushed vigorously until sealing operations demanded all the energies of the working force. It was decided to abandon the old bridge, now in a state of collapse, across
U. S. B. F.-Doc. 951.

Fig. 13.-Unalaska, nearest port to Pribilof Islands.

Fig. 14.-Drying seal meat for natives, Pribilof tslands.
the slough near Halfway Point and to carry the new road far enough inland to avoid the slough.

A building in which to wash and blubber sealskins was begun in 1921 and completed with two extensions in 1922. Work was continued on the new village salt house, which was used in its entirety in the sealing season, and on the addition to the old village salt house. The old salt house itself was torn down, and a more modern structure was begun on its site. There will thus be two large salt houses at the village. Work was begun on enlarging the "company" house, which is used as a mess house and living quarters for a part of the station employees.

A new boatway was begun at the warehouse at the village landing preparatory to replacing that warehouse with a building more suitable for the requirements. The work of building 20 privies for the use of the natives was carried to a point where all were available for use.

St. George Island.-A number of improvements were made to the landing facilities at the village on St. George Island. The solid rock floor of the slip was deepened about 18 inches for a distance of approximately 30 feet. A large amount of blasting was done to deepen the channel leading to the slip. Since the work was done under water it is difficult to determine accurately how much was accomplished, but it is known that boats can be operated at lower stages of the tide than formerly. About 1,000 pounds of 40 per cent dynamite were used. A concrete bulkhead was built across the inner end of the landing slip and provides valuable space for temporary storage of cargo and for the placing of boats. In December, 1921, the tramway leading from the wharf was destroyed by heavy seas. It was rebuilt in 1922 , concrete replacing the previous frame and stone construction.
A dispensary and physician's quarters was built. The building has ground dimensions of 24 by 32 feet and provides an office, living room, bedroom, bath, and a large surgery on the lower floor and space for two small bedrooms on the upper floor. A building formerly used as a gun house was moved to a position adjoining the new dispensary, with which it will be connected by a vestibule and used as a hospital. A 20 -foot addition was made to the schoolhouse.
The first concrete native dwelling was completed and occupied this year and a second building of this type was erected. Each of these contains a roomy vestibule, kitchen, living room, and three bedrooms on the first floor and space for two small bedrooms on the second floor. The work of installing a permanent water-supply system for the rillage was continued. The source of water will be Upper Lake.

WELL DRILLING.

The bureau cooperated in 1922, as in 1921, with the Navy Department in an effort to secure on St. Paul Island a supply of fresh water from a drilled well. Drilling was begun August 8 at a point between the radio-station buildings and the village cove and was continued until October 10. A depth of 415 feet was attained, but a supply of water was not located.

BY-PRODUCTS PLANT.

Early in the season the by-products plant was placed in readiness for active operations, and some improvements were made. The machinery was tested out the latter part of May, and oil remaining from 1921 was stored in barrels.

Actual operation of the plant was begun July 5 and continued every day until August 10, primarily for the production of oil from blubber to be used in preparing sealskins for the market. Fifteen cookings of seal blubber and two of seal carcasses were made, the latter for the purpose of securing required data.

In the season of $1922,8,546$ gallons of oil-consisting of 7,078 gallons blubber oil, 1,368 gallons press oil, and 100 gallons oil foots-and 1,935 pounds of seal meal were manufactured. The following shipments of fur-seal oil were made:

Shipments of fur-scal oil to Fouke Fur Co., 1922.

Kind of oil.	$\begin{gathered} \text { Year } \\ \text { manu- } \\ \text { factured. } \end{gathered}$	Date of shipment.	Vessel on which shippod.		$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { gallons. } \end{aligned}$
Blubber.	1921	July 31	U. S. S. Gold Star.	11	493
Do.	1922			19	905
Press.	1921	Sept. 24	Steamship Brookda	24 18	1,084
Blubber	1922	- .-.do.	do	125	6,173
l'ress..	1922	do.	.do.	27	1,368
Total.				224	10,943

NATIVES.

CENSUS.
An annual census is taken of the natives of the Pribilof Islands, including such details as are deemed of value for purposes of record. For several years the census has been taken as of March 31. This date has now been changed to December 31. The total number of natives actually residing on St. Paul Island on December 31, 1922, was 193, on St. George Island, 127, a total for both islands of 320 .

Recapitulation of census of natives, Pribilof Islands, December 31, 1922.

St. Paul Island:	
Arrivals, Apr. 1, 1921, to Dec. 31, 1922---------------------19	
Departures, Apr. 1, 1921, to Dec. 31, 1922_--------------------14	
Resident population on Dec. 31, 1922	193
Other natives away from St. Paul Island	11

Total natives accredited to St. Paul Island

Recapitulation of census of natives, Pribilof Istands-Continued.
St. George Island:

Births, Apr. 1, 1921, to Dec. 31, 1922 11
133
Deaths, Apr. 1, 1921, to Dec. 31, 1922
131
Arrivals, Apr. 1, 1921, to Dec. 31, 1922
138

Other natives away from St. George Island but considered residents_ $\quad 6$

Both islands:

Other natives away from islands but considered residents_-_-_-_-_ 17
Grand total natives accredited to Pribilof Islands_-.................... 337

HEALTH CONDITIONS.

There were no features of special importance in respect to the health conditions of the natives. Numerous cases of impetigo occurred on St. Paul Island, and late in the summer and through the fall months there were many cases on St. George Island. There were no other epidemics and no serious accidents. Taking their race into consideration, the health of the Pribilof natives during 1922 may be considered to have been normal. A Unalaska native temporarily employed on St. Paul Island died there in the summer of 1922 .

DENTAL WORK.
Dr. D. L. Roland, amployed by the bureat as dentist for the natives, arrived at St. Paul Tsland August 4, 1921, and was continuously engaged in professional work there until May 13, 1022, when he left for St. George Island, arriving there Mav 14. He left the latter station for the States June 18. A large amount of the more necessary work wals accomplished, but much remained to be done. It is hoped that in the future the bureau will be able to send a dentist to the islands for temporary duty on alternate years at least.

SCHOOLS.

St. Paul Island.-The school term of 1921-22 opened September 12 and closed about May 1. The senior school began with an enrollment of 13 boys and 13 girls. The pupils were divided into six classes, and individual instruction was given as far as possible. The course of instruction was similar to that of previous years. Particular emphasis was placed on the use of English. Attention was given to the subject of personal hygiene, and the dentist temporarily at the station through the winter gave weekly instruction in the care of the teeth and inaugurated tooth-brush drills. At the junior school 30 pupils were in attendance, their ages ranging from 5 to 10 years.

Special emphasis was placed on conversations in English, simple arithmetic, and writing. For the youngest pupils modified kindergarten methods were followed. Fair progress was reported for both schools.

St. George Island.-The senior school opened September 6, 1921, and closed April 10, 1922, having been in session 1221 days. The enrollment consisted of 16 boys and 22 girls, a total of 38 . The average daily attendance was 37.5 and percentage of attendance about 99 . The subjects taught were reading, arithmetic, spelling, writing, history, and geography. The junior school opened September 6, 1921, and closed May 15, 1922. The session opened with an enrollment of $6 ; 2$ were dropped subsequently on account of their youth, and 1 was added from the senior school. Kindergarten methods were followed. A sewing class attended by 22 girls, divided into three classes, was conducted by the teacher of the junior school.

ATTENDANCE AT SALEM INDIAN TRAINING SCHOOL, CIIEMAIVA, OREG.

All the Pribilof Islands natives who were reported employed at the Salem Indian Training School or in attendance there on December 31, 1921, including Mrs. Akalina Fratis, Iuliania Fratis, Nicolai Stepetin, and Vasilii Stepetin, of St. Paul Island, and George Lekanof and Laurence Merculief, of St. George Island, left during 1922. Mrs. Akalina Fratis and Iuliania Fratis were at Marshfield, Oreg., according to last reports. Nicolai Stepetin returned to his home on St. Paul Island. George Lekanof, who it has developed was dropped from the school in 1921, returned to his home on St. George Island. Laurence Merculief left the school but did not return to his home. Vasilii Stepetin returned to St. Paul Island, where he was given employment as a temporary laborer. Inasmuch as his father has permanently given up his residence on the Pribilofs it is probable that he will not regard the islands as his home in the future. The only person to enter the school from the Pribilofs in 1922 was Serge Shaisnikoff, a 16 -year-old boy of St. Paul Island, who entered the school on November 7 .

SAVINGS ACCOUNTS.

Certain of the Pribilof Island natives have personal funds in the custody of the United States Commissioner of Fisheries. Through the year 1922 these funds were kept on deposit with the Washington Loan and Trust Co., Washington, D. C., and interest was paid at the rate of 3 per cent per annum, calculated on monthly balances. New accounts for two natives were opened during the year. A summary of the accounts as a whole for the year 1922 is shown in the statement that follows:

Balance on hand, Jan. 1, 1922	\$2, 726. 23
	303. 23
Interest earned from Jan. 1 to Dec. 31,192	8, 910.48
	11, 939. 94
Withdrawn by natives in 1922	106. 00
Balance on hand, Dec. 31, 1922	11, S33. 94

An itemized statement of the account showing the individual balances of the natives follows:

Pribilof 1slands natives' savings accounts in custody of U. S. Commissioner of Fisheries, as trustce, December 31, 1922.

St. Paul Island:

Bourdukofsky, A lon ${ }^{1}$ \qquad	\$95. 02
Bourdukofsky,	
Fratis, Agrippina	98. 57
Fratis, Akalina ${ }^{2}$	477.58
Fratis, Martha ${ }^{2}$	98.55
Fratis, Iuliania	98. 55
Gromoff, Iuliania	370.21
Kochutin, Alexandra ${ }^{3}$	4,516. 02
Krukoff, Ekaterina	209.98
Krukoff, Iuleta	43
Mandregan, Alexandra	10. 83
Melovidov, Alfey	45.73
Melovidov, Anton	3. 89
Meluvidov, Iosef	45. 73
Merculieff, Agafia	40.99
Merculieff, Dosofe	40.99
Merculieff, Makary	40.99
Ierculieff, Marian	68.31

St. Paul Island-Continued.
Merculieff, P'aul A. ${ }^{1}$----- $\$ 16.07$
Pankoff, Agrippina _---- 250.10
Pankoff, Maria M_-_-_-_ 45.74
Sedick, Feofania ${ }^{1}$ _---- 14.26
Sedick, Lavienty _-_---- 14.26
Sedick, Leonty _-_----_ 14.26
Sedick, Marina__-_-_-_ . 38
Tetoff, Vikenty M_-_--- 45.73
St. George Island:
Borenien, Zoya ${ }^{1}$ _-_-_-_ 250.47
Galanin, Mary _-_------ $3 \overline{5} .53$
Lestenkof, Michael _----- 13S. 67
Merculief, Agrippina _-_ 19.40
Merculief, Joseph _----- 35.78
Merculief, Polyxenia_-_ 19.70
Merculief, Stefanida ${ }^{3}--4,618.52$
Shane, Michael_-_-_-_-_ 41.45
Zacharof, Emanuel_---- . 45
Total
11, 833.94

Continuing the practice of preceding years payments to certain persons engaged in the taking of sealskins in 1922 were made from funds adranced by the department's selling agents, the Fouke Fur Co., who were reimbursed subsequently from proceeds of sales of skins. The funds were deposited in a bank in Seattle and made payable to the order of the bureau's authorized and bonded agent at the Pribilofs. From these funds the natives of the Pribilofs were paid at the rate of 50 cents for each sealskin taken, four native foremen were given $\$ 200$ for additional services, and the salaries of a number of sealing assistants and the wages of some natives from Unalaska and elsewhere temporarily employed at the islands were paid, the amounts earned by these persons being as follows:

Amount earned by St. George natives
2, 660.50
Total
48, 871.95
St. Paul Istand.-For the 20,035 sealskins taken on St. Paul Island in the calender year 1922 the resident natives received 50 cents per skin and in addition two foremen received $\$ 50$ each for special

[^15]services. The natives were divided into classes according to their ability and work, and payments were made as follows:

Payments to St. Paul natives for sealing operations, calendar year 1922.

Classification.	Number of men.	Share of each.	Total.	Classification.	Number of men.	Share of each.	Total.
First class. Second class Third class. Fourth class. Fifth class. Sixth class.	2755342	$\begin{array}{r} \$ 343.50 \\ 274.00 \\ 222.50 \\ 171.50 \\ 137.50 \\ 85.50 \end{array}$	$\begin{array}{r} \$ 9,274.50 \\ 1,370.00 \\ 1,112.50 \\ 514.50 \\ 550.00 \\ 171.00 \end{array}$	Special class............ Two foremen (additional compensation) Total.	1	\$25.00	\$25.00
							100.00
					47		13,117.50

St. George Island.-For the 5,121 skins taken on St. George Island in the calendar year 1922 the resident natives received 50 cents per skin, and in addition two foremen received an aggregate of $\$ 100$ for special services. As on St. Paul Island payments were made in accordance with rated ability and work.
Payments to St. George natives for sealing operations, ealendar year 1922.

Classification.	Number of men.	Share of each.	Total.	Classification.	Number of men.	Share of each.	Total.
First class. Second class Third class. Fourth class Fifth class.	18463	$\begin{array}{r} \$ 93.00 \\ 75.00 \\ 65.00 \\ 55.00 \\ 21.50 \end{array}$	$\begin{array}{r} \$ 1,674.00 \\ 300.00 \\ 390.00 \\ 165.00 \\ 21.50 \end{array}$	Boy's class. \qquad Two foremen (additional compensation) Total \qquad	1	\$10.00	\$10.00
							100.00
					33		2,660.50

PAYMENTS FOR TAKING FOX SKINS.
The natives of the Pribilof Islands are paid $\$ 5$ for each fox skin taken. The take in the trapping season of 1921-22 was 159 on St. Paul Island and 574 on St. George Island, a total of 733, which accordingly yielded the St. Paul natives \$795 and the St. George natives $\$ 2,870$, a total of $\$ 3,665$. On St. Paul Island the foxes are caught in steel traps, set at various places. Each native who participates in the trapping looks after a definite number of traps and receives $\$ 5$ for each skin that he secures. On St. George Island no steel traps are used, and since almost all the fox skins taken are secured from foxes that enter the corral at the village trappinghouse the work is necessarily a joint operation on the part of those participating. Consequently, the total payment for skins taken on St. George Island is divided among the workmen in accordance with what is considered the proper share of each. The funds for making the payments are adranced by the Fouke Fur Co., which recovers the outlay from the proceeds of sales of skins.

FUli-SEAL HERD.

qUOTA FOR Killing.
On May 25, 1922, the Assistant Secretary of Commerce approved the bureau's recommendation that the quota of seals to be killed in the calendar year 1922 should be 25,000 three-year-old males. Of this number 21,500 were assigned as the St. Paul Island quota and

3,500 as the St. George Island quota. It was provided that the interisland quota might be modified and that an increase or change in the aggregate total might be made if circumstances during the progress of the season should indicate such changes desirable.
On July 17 the Assistant Secretary of Commerce, who was then at the islands, increased the year's quota to 30,000 three-year-old males. This change was made after personal observation of conditions and after taking into account the increasing number of seals appearing on the hauling grounds. It was felt that the action in question was entirely compatible with the future welfare of the herd. For determination of the comparative market values of skins from 2-year-old and 3 -year-old seals the Assistant Secretary also directed the killing of 200 two-year-old males, as far as practicable the larger animals of this class-that is to say, seals whose lengths are from 39 to $40 \frac{3}{4}$ inches.

KILLINGS OF SEALS.

The total number of seals killed on both islands in 1922 was 31,156 , of which 30,002 were 3 -year-old males. The other 1,154 consisted in part of the 200 large 2 -year-olds taken by direction of the Assistant Secretary and the balance almost altogether of 2 and 4 year-old males taken incidentally with the killing of the 3 -yearolds. The 3 -year-old class of males varies only 5 inches in length from the smallest to the largest, and as the length of the seal has to be judged by the eye before it is killed it is impossible to avoid killing a few that measure slightly under or over the desired size. Details regarding the killings are shown in the table below.
St. Paul Island.-In the calendar year 97 drives were made and 26,035 skins, including 1 from a seal found dead and 4 from seals killed at odd times, were secured.

St. George Island.-In the calendar year 33 drives were made and 5.121 skins, including 1 from a seal found dead and 2 from seals killed for fox food, were secured.

Scal killings on Pribilof Islands in 1922.
ST. PaUl ISLaND.

Date.	Serial No. of drive.	Hauling ground.	Skins secured.	Date.	Serial No. of drive.	Hauling ground.	Skins secured.
Fcb. 4	1	Sea Lion Rock (Sirutch)	31	June 26	16		
Apr. 28	do..........	1			rocks 64 and 70)	312
May 22	2	.do.	75	June 27	17	Tolstol...............	171
May 27		Vostochni.	2	Do...	18	Gorbatch and	483
May 29	3	Sea Lion Roc	100	June 2 S	19	Zapadni..	202
June 9		Vostochni.	1	June 29	20	Vostochni (vicinities of	
June 15	4	Sea Lion Rock (Sivutch)	124			rocks 43, 49, and 53)	
June 20	5	Polovina and Polovina Cliffs.	70			and Morjovi (vicinity of rock 40).	433
Do...	6	Vostochni (vicinities of		Do...	21	Little Polovina.............	46
		rocks 49 and 53).......	304	Do	22	Polovina.	282
June 21	7	Lukanin.................	17	June 30	23	Tolstoi...	157
Do...	8	Tolstoi..................	143	Do...	24	Lukanin	48
Do...	9	Vostochni (vicinities of rocks 64 and 70)	185	July 1	25	Vostochni (vicinities of rocks 64 and 70).......	583
June 22	10	Gorbatch.	105	July 2	26	Reef.......	1,700
Do...	11	Reef.	16	July 3	27	Vostochni (vicinities of	
June 23	12	Tapadni.	81			rocks 49 and 53) and	
June Do...	14	Lukanin	72 95			Morjovi (vicinity of rock 40)	160
Do...	15	Vostochni (vicinities of		Do..	28	Little Zapadni............	64
		rocks 49 and 53) and		Do...	29	Zapadni..................	221
		Morjovi (vicinity of		July 5	30	Lukanin.	63
		rock 40)	269	Do.	31	Tolstoi	307

Seal killings on Pribilof Islands in 1922-Continued.
ST. PAUL ISLAND-Continued.

Date.	Serial No. of drive.	Hauling ground.	Skins secured.	Date.	Serial No. of drive.	Hauling ground.	Skins secured
July 6	32	Vostochni (vicinities of rocks 64 and 70)		July 23	67	Lukanin and Kitori.... Polovina and Polovina	423
Do.	33	rocks 64 and 70)........ Little Polovina.	554	July 24	68	Polovina and Polovina Cliffs.	320
Do.	34	Polovina..	541	Do..	69	Vostochni (vicinities of	
July 7	35	Reef and Gorbatch	893			rocks 64 and 70).......	463
July 8	36	Vostochni (vicinities of rocks 49 and 53) and Morjovi (vicinity of		July 25	70	Vostochni (vicinities of rocks $43,49,53$) and Morjovi (vicinity of	
Do...	37	rock 40).................	251	Do...	71	rock 36$)$ Gorbatch.....................	${ }_{6} 170$
Do.	38	Zapadni.	241	Do.	72	Reef.	435
Do.	39	Tolstoi.	249	July 26	73	Zapadni and Little Za-	
${ }_{\text {Do... }}$	40	Lukanin..	24			padni.................	222
$\begin{gathered} \text { July } 10 \\ \text { Do... } \end{gathered}$	42	Little Polov	44 289	July 27	74	Vostochni (vicinities of rocks 64 and 70$) \ldots . .$.	40
July 11	43	Vostochni (vicinity of		Do.	75	Tolstoi...................	242
		rock 64).	692	Do.	76	Lukanin.	82
Do...	44	Gorbatch..	372	July 28	77	Vostochni (vicinities of	
${ }_{\text {Duly }}{ }^{\text {D }}$	45	Reef.....	558			rocks 43, 49, 53) and	
July 12		From seal found dead on Gorbatch...............	1			Morjovi (vicinity of rock 36	127
July 13	46	Vostochni (vicinity of		Do.	78	Polovina Cliffs..........	19
		rock 49) and Morjovi (vicinity of rock 36)	555	Do.	79	Polovina Polovina	49
Do...	47	Tolstoi.....	230	July 29	\$0	Gorbatch..	471
Do.	48	Lukanin.	138		81	Reef.	230
July 14	49	Polovina, Little Polovina and Polovina Clifis	141	July 30	82	Vostochni (vicinities of rocks 64 and 70).	24
July 15	50	Vostochni (vicinities of rocks 64 and 70)	506		83	Zapadni and Little Zapadni.	406
Do...	51	Gorbatch................	512	July 31	84	Vostochni (vicinities of	
${ }_{\text {Do... }}$	52	Reef.	477			rocks 43, 49, 53) and	
July 16	53	Zapadni	227			Morjovi (vicinity of	
July 18	54	Reef.	313			rock 36)................	239
Do...	55		163			Tolstoi...................	103
Do...	56			$\text { Dug. } \quad \text { i }$	86 87		22
		rocks 43, 49, 53) and Morjovi (vicinity of		Aug. 2	87	Vostochni (vicinities of rocks 64 and 70)	357
		rock 36$).$.	225	Do.	88	Reef and Gorbatch.....	544
Do...	57	Lukanin.	122	Aug. 3	89	Vostochni (vicinity of	
Do..	58	Tolstoi.	230			rock 49) and Morjovi	
July 20	59	Vostochni (vicinities of				(vicinity of rock 36)...	137 382
Do..	60	racks 64 and 70)... Polovina Clifis.......	587 50	$\begin{aligned} & \text { Do.... } \end{aligned}$	91	Zapadni	382 59
Do...	61	Polovina and Little		Do...	92	Tolstoi....................	38
		Polovina.	205	Aug. 5	93	Vostochni (vicinities of	
July 21	62	Reef.	142			rocks 49, $53,64,70$ and	
	63	Gorbatch.	412			Morjovi (vicinity of	
July 22	64	Vostochni (vicinitics of				rock 36).............	170
		rocks 43, 49, 53) and		$\begin{array}{\|c} \text { Do... } \\ \text { Oct. } \end{array}$		Reef and Gorbatch...... Gorbatch	329 201
		Morjovi (vicinity of rock 36)	335	Oct. Oct. 26	95	Reef	215
Do...	65	Zapadni and Little Za-		Nov. 1	97	Vostoch	208
July 23	66	Tolstoí.	$\begin{aligned} & 497 \\ & 229 \end{aligned}$			Tota	26,035

ST. GEORGE ISLAND.

June 8	1	North, Staraya Artil and East Cliffs.	28	$\begin{array}{ll}\text { July } \\ \text { July } & 15 \\ \\ \text { Jun }\end{array}$	19 20	East Cliffs	596 144
June 13	2	North and Staraya Artil	21	July 19	21	Northaud East Clifis....	606
June 16	3	Staraya Artil..............	14	July 20	22	Zapadni.................-	40
Junc 17	4	North......	17	July 22	23	North, East Clifis, and	
June 20	5	East Clills	42			Staraya Artil...........	586
June 21	6	Zapadni.	8	July 26	24	North......................	185
Junc 23	7	Northand Staraya Artil.	73	July 27	25	Zapadni..................	50
June 26	8	East Cliffs.	81	July 28	26		217
June 28	9	Northand Staraya Artil.	86	July 29	27	North, East Reef, and	
June 29	10	Zapadni...................	23 103			East Clitis. \qquad	303
June 30 July 3	11	Nast Cliffs..............i-	103 118	Aug. 2	28	North, Staraya Artil, and East Reef.	498
July 5	12	From seal found dcad...	1	Aug. 5	29	East Reef...........	61
July 6	13	East Clifis	294	Sept. 11			12
July 7	14	Zapadni...................	63	Oct. 20	30	North....................	18
July 8	15	North and Staraya Artil.	132	Oct. 21	31	East Clifis and East Reef	119
July 10	16	East Clifls	135	Oct. 26	32	North and Staraya Artil.	130
July 12	17	Northand Staraya Artil.	284	Nov. 9	33	Zapadni	-
July 13	18	Zapadni....................	35			Total	5,121

[^16]AGE CLASSES OF SEALS.
The method by which the sizes of male seals of the various age classes have been determined has been described in previous reports. For convenience the limits of these age classes are shown in the following table:

Age standards of body lengths of male seals, Pribilof Islands.

Age.	Lengths of summer seals.	Lengths of fall seals.	Age.	Lengths of summer seals.	Lengths of fall seals.
Yearlings	Inches. Up to 36.75	Inches. Up to 38.75	4-year-olds..	Inches. 46 to 51.75	Inches. 48 to 53.75
2-year-olds	37 to 40.75	39 to 42.75	5-year-olds.	52 to 57.75	54 to 59.75
3 -year-olds	41 to 45.75	43 to 47.75	6-year-olds..	58 to 63.75	60 to 65.75

Ages of seals killed on Pribilof Islands, calendar year 1922.

Age.	$\begin{gathered} \text { Summer } \\ \text { (Jan. } 1 \text { to Aug. 5). } \end{gathered}$			$\begin{aligned} & \text { Fall } \\ & \text { (Aug. } 6 \text { to Dec. 31) } \end{aligned}$			Total for year.		
	$\begin{gathered} \text { St. } \\ \text { Paul. } \end{gathered}$	St. George.	Total.	$\begin{gathered} \text { St. } \\ \text { Paul. } \end{gathered}$	$\begin{gathered} \text { St. } \\ \text { George. } \end{gathered}$	Total.	St. Paul.	$\begin{gathered} \text { St. } \\ \text { George. } \end{gathered}$	Both Islands.
Yearlings.	8		8				8		8
2-year-olds.	510	26	536	17	13	30	527	39	566
3 -year-olds.	24,398	4,755	29,153	602	247	849	25,000	5,002	30, 002
4 -year-olds.	416	45			10	10	416	55	471
5 -jear-olds.	8	1	9				8	1	9
6 -year-oldds..	4		2				4		4
7 -year-olds ar Cows	67	20	$\stackrel{2}{87}$	5	1	1	72	21	$\begin{array}{r}3 \\ 93 \\ \hline\end{array}$
Total.	25,411	4,849	30, 260	624	272	896	26,035	5,121	31, 156

${ }^{1}$ The few cows reported above, less than one-third of 1 per cent of the total taken, were accidentally and unavoidably killed. Every possible effort is made to avoid the killing of cows, but persons familiar with couditions at the islands will readily appreciate that in handling such a large number of seals a small number of cows will be killed.

BRANDED SEALS.

Only one of the seals branded when pups in 1912 was secured in 1922. The animal was taken on St. George Island at North rookery, October 20, 1922. Data were secured as follows: Length, $76 \frac{3}{4}$ inches; total weight after bleeding, 283 pounds; dimensions of green skin, 80 by 51 inches; weight of skin, 41 pounds.

WASHING AND BLUBBERING SEALSKINS.

In 1922 the Fouke Fur Co. carried on its work of washing and blubbering sealskins on St. Paul Island on a more extended scale than in previous years. A permanent building, 70 by 42 feet, constructed for this work, was nsed. It is known as the washhouse and contains five large wooden tanks, in which the skins to be blubbered are first washed and cooled in salt water pumped from the beach near by, facilities for 10 men to work at blubbering, and a power wringer to extract surplus water from blubbered skins.

The freshly taken sealskins are brought to the washhouse, where they are placed in the tanks and quickly chilled by running sea water to below $40^{\circ} \mathrm{F}$. All dirt and other foreign matter are removed by
the free use of a pressure hose. The blubber is removed from the pelts by dull, curved knives, the operation being called blubbering. The skins are then run through a large wringer to extract surplus water and are then packed in salt for curing.

The blubbering of the skins before they are salted makes it possible to skin the seals in a more expeditious manner. Formerly the skins had to be removed by cutting away every portion with a knife. They could not be pulled off without leaving too much blubber on the pelts to permit their being cured in salt. When the pelts are blubbered before they are salted, however, the amount of blubber adhering to the skins at the time of removal from the animals is immaterial. Skins that are to be blubbered before salting are now removed by pulling them off the carcasses after a few cuts have been made along the lines that become the edges of the pelt, thus eliminating the former more or less frequent and practically unavoidable cutting of pelts. Another advantage claimed for the blubbering of skins before salting is that the time required for curing is greatly reduced, thus insuring complete curing before any decay starts.

In 1022 there were washed on St. Paul Island 15,752 skins. Of these 15,748 were blubbered and 4 were placed in salt without blubbering for experimental purposes. The washing and blubbering of sealskins was not undertaken on St. George Island in 1922. It was thought best to derelop the work thoroughly on St. Paul Island first.

CENSUS.

The census of the Pribilof fur-seal herd was again taken by Edward C. Johnston in 1922 . His report is printed in full on pages 111 to 118. The two counting towers used on Reef rookery in 1921 and nine more erected in the spring of 1022 -two on Little Zapadni (St. Paul), three on Zapadni (St. Paul), three on Vostochmi (St. Paul), and one on Staraya Artil (St. George)-were used. For the first time in a number of years the pups were counted on all the rookeries. Conditions made it impossible to enmerate every pup, but at least 95 per cent of all were actually counted.

The following is a comparative statement of the numerical strength of the various elements of the herd in the years 1912 to 1922, inclusive :

General comparison of recent censuses of the seal herd on Pribilof Islands.

Classes.	1912	1913	1914	1915	1916
Harem bulls.	1,358	1,403	1,559	2,151	3,500
Breeding cows	81, 984	92, 269	93, 250	103,527	116, 977
Idle bulls.	113	105	172	673	2, 632
Young bulls (chiefly 5 -year-olds)	199	259	1,658		
6 -year-old males .					11, 167
4-year-old males		2000		11, 271	15, 494
3 -year-old males.	2,000	10, 000	13, sso	18, 2¢2	19, 402
2-year-old males.	11,000	15, 000	17, 222	23, 990	24, 169
Yearling males..	13,000	20.000	23,05.	30, 307	33,645
2 -year-old cows.	11,000	15,000	17, 422	23,990	24,245
Yearling cows.	13,000	20,000	23,067	30,306	33, 646
Pups....	81,984	92, 269	93,250	103, 527	116,977
Total.	215,738	268, 305	294,687	363, 872	417, 281

U. S. B. F.-Doc. 951.

Fig. 15.-Delivering sealskins at washhouse, St. Pauk Isiand.

Fig. 16.-Blubbering sealskins, st. Paul Isiand.

Gencral comparison of recent censuscs of the seal herd, etc.-Continued.

Classes.	1917	1918	1919	1920	1921	1922
Harem bulls..	4,850	5,344	5,158	4,066	3,909	3,562
Breeding cows.	128, 024	142,915	157, 172	167, 527	176, 6,55	185, 914
Surplus bulls..	8,977	17, 110	9,619	6,115	3,301	2,346
Idle bulls..	2,706	2,444	2,239	1,161	747	508
6 -year-old males.	15,397	13,755	8,991	4,153	3,991	3,771
5-year-old males.	14, 813	11,941	5,282	5,007	4,729	6,080
4 -year-old males.	16,631	7,114	5,747	5,667	6,780	11,807
3 -year-old males.	19,507	9,117	13,596	10,749	14, 668	7,459
2-year-old malcs.	26, 115	30, 159	33,081	39, 111	41, 893	40,920
Yearling males.	38,013	41,595	46, 444	51, 074	50, 249	52,958
2-year-old cows.	26,917	30, 415	33, 287	39,480	43, 419	46, 2s0
Yearling cows	38,018	41,608	46, 447	51,0ヶ1	54,447	57,413
Pups..	128,024	142,915	157, 172	167, 527	176,655	185, 914
Total.	468, 692	496, 432	524, 235	552, 718	581,443	604,962

CHARTING OF HAREM AREAS.
In commection with the census the harem areas were platted on the Coast and Geodetic Survey charts of the rookeries. This was done at the time the harem counts were made, which was at the height of the breeding season. A comparison of the extent of these areas with that of the corresponding areas platted in 1916 shows no great change in size. It is not the total number of seals on the breeding grounds that determines the area occupied but the positions taken up by the harem bulls at the beginning of the breeding season. The number of harem bulls 1922 was practically the same as in 1916, and it is entirely consistent that the breeding areas should be about the same in the two years regardless of the fact that the number of breeding cows increased from 116,977 in 1916 to 185,914 in 1922. The increased number of cows simply increased the number of breeding animals per unit of breeding area.

The stations used in taking photographs in 1917 were reoccupied and a comparable set of views was obtained. Unfavorable landing conditions made necessary the omission of Sea Lion Rock (Sivutch rookery) from the series in 1922. Although satisfactory views as a whole were obtained, the maximum results were not possible because of rain and fog just at the time when the photographs had to be taken if the views were to be comparable with previous ones.

To serve as an index to the location and direction from which these photographs were taken these data were platted on photographic reductions of the rookery charts. No chart is available for South Rookery on St. George, as it has originated since the series of charts was made.

It is expected that from the counting towers already erected for the census work and from additional ones to be erected a comprehensive series of panoramic views of the herd may be secured, which will better serve the purpose of photographic records of these rookeries.

Sl'ECIMEN SEALS.

In 1922 from among seals found dead 16 were selected and preserved as specimens, including 2 bulls, 2 five-year-old males, 2 three-
year-old males, 2 two-year-old males, 2 yearling males, 2 black pups, 2 gray pups, and 2 three-year-old females. The specimens were sold to the Fouke Fur Co., St. Louis, for $\$ 56$.

FOXES.

FOX-TRAPPING SEASON OF 1922-23.

The season's take of fox pelts on both islands consisted of 888 blue and 29 white pelts, a total of 917.

On St. Paul Island trapping began December 18 and ended December 30, 1922. Forty-four native men engaged in the work, and 532 traps were used. In all 233 pelts were secured, of which 205 were blue and 28 white.

On St. George Island trapping began in December, 1922, and continued until March 8, 1923. Trapping to secure pelts ceased, however, on February 18 when signs of mating were observed, trapping thereafter being solely for the purpose of securing additional data in regard to the breeding reserves. Including 2 bluefox pelts secured in November, 1922, from animals found dead, the take of pelts for the season consisted of 683 blue and 1 white, a total of 684 pelts. The total number of foxes marked and released as breeders was 304, of which 147 were males and 157 females. The actual breeding reserve was considerably more than 304 , since many animals did not enter the traps at all.

Trapping on St. George Island was again very much handicapped by the prevailing warm and wet weather. Foxes will enter the trapping corral at the village only under the mge of hunger. Snow and ice cut off the natural sources of food to a large extent, and under those conditions the foxes enter the corral much more readily than when open weather makes available considerable food at other places on the island.

To assist private enterprise in blue-for farming the bureau sold 12 live animals from the Pribilof herds in 1922. They were secured on St. George Island and delivered at Unalaska by the fisheries vessel Eider in September. The price was $\$ 175$ per animal, which was somewhat above the current market for pelts. The animals were sold to the following persons: John Mattick, Seward, Alaska, 4 pairs; H. Whittlesey, Seward, Alaska, 1 pair; ancl Charles Williamson, Unalaska, Alaska, 2 females. From the $\$ 2,100$ received in payment $\$ 60$ ($\$ 5$ per fox) was divided among the St. George natives employed in capturing and shipping the animals. The balance, $\$ 2,040$, was available for the United States Treasury.

REINDEER.

The reindeer herds on St. Paul and St. George Islands are a valuable source of fresh meat for both the bureau's personnel and the natives. The herds are being drawn upon for food purposes to an increasing extent, but the number remaining at the end of each year, with the exception, for reasons unknown, of St. Paul Island in 1922, has increased. The forage is ample to support herds much larger than those existing at present. The animals run at large and are
very wild, the native men of the islands not having much aptitude for handling them. In 1922 on St. Paul Island 38 reindeer were killed for food and on St. George Island 22, a total of 60.

Reindeer herd on the Pribilof Islands, 1911-1922.

PRIBILOF FUR-SEAL SKINS.

SHIPMENTS AND SALES.

In the calendar year 1922 three shipments of sealskins, consisting of 31,381 commercial skins, and 16 specimen skins, were made from the Pribilof Islands. On July 31 there were placed aboard the U. S. S. Gold Star at St. Paul Island 48 barrels, containing 2,358 sealskins, of which 718 were of the 1921 take and 1.640 of the 1922 . They arrived at Seattle August 11 and were at once forwarded by freight to the Fouke Fur Co., St. Louis, arriving there September 9.

On August 12 there were placed aboard the fisheries vessel Eider at St. Paul Island 50 barrels, containing 2,601 sealskins, which were taken to Akutan and placed aboard the steamship Cordova. This vessel left Akutan August 22, and the skins were received at St. Louis September 19.

A third shipment, made on the steamship Brookdale, consisted of 334 barrels containing 21,170 commercial sealskins and 2 barrels containing specimen sealskins from St. Paul Island, and 103 barrels containing 5,252 skins from St. George Island. The St. George shipment consisted of 403 skins taken in 1921 and the 4,849 taken in 1922 through August 5. The Brookdale left the Pribilofs September 24 and landed the skins at Seattle October 26. They were immediately forwarded by freight to the Fouke Fur Co., arriving at St. Louis November 9.

Two sales of fur-seal skins from the Pribilof Islands--some dressed, dyed, and machined, and others that had not been passed through the full process of dressing, dyeing, and machining-were held in St. Louis, Mo., during the calendar year 1922. In all 30,172 skins were sold at auction for $\$ 924,343.05$. The table below gives the details regarding the prices secured for each lot of skins at each of
the sales. and the table on page 99 is a summary showing the prices obtained for the skins in the various trade classes and the percentages that the number of skins in these several classes bore to the totals in each sale.
April 3, 1922.-At the sale on this date 12,198 dressed, dyed, and machined Pribilof skins were sold for $\$ 388,069.75$, an average price per skin of $\$ 31.81$, a decrease of 3.6 per cent as compared with corresponding skins sold at the last previous sale September 28, 1921. There were also sold 579 culls and rejects, consisting of 249 dressed and dyed, 11 T dressed, 121 washed and dried, and 92 raw skins, which brought \$218.25.

October 9, 1922.-At the sale on this date 17,194 dressed, dyed, and machined Pribilof skins were sold for $\$ 535,967.50$, an average price per skin of $\$ 31.17$, a decrease of 2 per cent as compared with corresponding skins sold at the last previous sale April 3, 1922. There were also sold 164 raw, washed, and dried skins and 37 raw salted skins, which brought $\$ 87.55$.

Sales of Pribilof fur-seal skins at St. Louis, Mo., 1922.
SALE OF 12,198 DRESSED, DYED, AND MACHINED SKINS, Al'RIL 3, 1922.

$\begin{aligned} & \text { Lot } \\ & \text { No. } \end{aligned}$	Number of skins.	Trade classification.	Price ner skin.	Total for lot.	$\begin{aligned} & \text { Lot } \\ & \text { No. } \end{aligned}$	Number of skins.	Trade classification.	$\begin{aligned} & \text { Price } \\ & \text { per } \\ & \text { skin. } \end{aligned}$	Total for lot.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	504050	Wigs.do.	$\begin{array}{r} \$ 16.00 \\ 47.00 \end{array}$	\$2,300. 00	46	90	Medium.............	\$37.00	\$3,330.00
				1,880.00	47	90do...............		$3,240.00$
		Wigs; cut, scarred, etc.	29.0029.50	1,450.00	48	90	do.do.	$\begin{aligned} & 36.50 \\ & 36.50 \end{aligned}$	
									$\begin{aligned} & 3,285.00 \\ & 3,285.00 \end{aligned}$
	60			1,475.00	50	90	- do. do..................	38.00 3.00	$\begin{aligned} & 3,420.00 \\ & 3,330.00 \end{aligned}$
,		Extra extra large..	63.00 6.300	3,780.00	$\begin{aligned} & 51 \\ & 5: \\ & 53 \end{aligned}$	90 90		37.00	
6	6050	Extra extra large; cut, scarred, etc.	63.00	3,780.00		90do.............	37.0037.00	$\begin{aligned} & 3,420.00 \\ & 3,330.00 \end{aligned}$
			42.50	2,125.00	51	do-..		$\begin{aligned} & 3,330.00 \\ & 3,330.00 \end{aligned}$
	70	Extra large...........	52.0054.00	$3,610.00$$3,7 \times 0.00$	5.556		…..... do	$\begin{aligned} & 36.60 \\ & 3.50 \end{aligned}$	
9	70								
10		$\begin{aligned} & \text {. do. } \\ & \text {. } \end{aligned}$	53. 50	3, 8 S5. 00		90 90do...........................	$\begin{aligned} & 3 \wedge .50 \\ & 39.00 \end{aligned}$	$\begin{aligned} & 3,465.00 \\ & 3,510.00 \end{aligned}$
11	70 70do. do.....................	55. 0955.00	$3,850.00$	58	$\begin{aligned} & 90 \\ & 90 \end{aligned}$do...................		$\begin{aligned} & 3,510.00 \\ & 3,375.00 \end{aligned}$
12	70			$3,850.00$$4,130.00$	59	do.do....................		3,375.00
13		0	5.00 59.00			$\begin{aligned} & 90 \\ & 90 \end{aligned}$		37. 50	$3,330.00$$3,330.00$
14	70		61.0060.00	$\begin{aligned} & 4,200.10 \\ & 4,200.00 \end{aligned}$	61		.	37.00 37.00	
15	d.do.................			6263	90do..................	${ }^{37.50}$	$\begin{aligned} & 3,375.00 \\ & 3,330.00 \end{aligned}$
16	70	Extra largc; cut, scarred, etc........	43. 00	3,010.00		90		37.00	
					6465		.do.		$3,420.00$
17	70do	43. 0044.00	$3,010.00$		90	do	37.00$3 i .00$	$3,330.00$$3,330.00$
18	70				66				
19	80	Large..................	44.00 50.00	$\begin{aligned} & 3,050.00 \\ & 4,000.00 \end{aligned}$	68	90d.do........................	$\begin{aligned} & 36.00 \\ & 37.50 \end{aligned}$	$3,240.00$
20	80	-....d do....................	50.00	$4,000.00$$4,1<0.00$					
2			51.50		79	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & \text { Medo........................ } \\ & \text { scarred, ctc........ } \end{aligned}$	37.00	$\begin{aligned} & 3,375.00 \\ & 3,330.00 \end{aligned}$
22	80	…..d.do.................	47.0049.00	3,760.00					2,700.00
23				4,000.00	71				
24	s0	….do................	$\begin{aligned} & 50.00 \\ & 50.50 \end{aligned}$					-6. 00	$2,340.00$, 340.00
25	80			$4,010.00$$4,0 \div 0.00$	727372	90	do		$\stackrel{2}{2}, 340.00$
26			$\begin{aligned} & 50.50 \\ & 50.50 \end{aligned}$			90		26. 50	2,385.00
27	80		50.00	$4,000.00$ $4,320.00$	74 75	90 90	do	-6.00	$2,340.100$ $2,340.00$
28	80	do	51.00	4.320 .00	75	90 90		${ }_{\text {cter }}$	$2,340.00$ 2,34000
20	80		53.00	$4,240.00$ $4,080.00$	76 77	90 90		-6.00	$2,340.00$ $2,340.00$
30	80	do	51.00	$4,080.00$ $4,400.00$	77	90	d	${ }_{26.00}^{26.50}$	$2,340.00$ $2,385.00$
31	80		55.00	4,4	78 79	90		${ }_{-}^{-6.50}$	$2,385.00$ 2,34000
32	80	Large; etc.	39. 00	3,120.00	80	90		-6.50	$\stackrel{2}{2,385.00}$
${ }^{3}$	80		41.00	3,280.00	81	90		¢6. 50	2,385.00
34	80		41.50	3,320.00	82	90	do	-6. 50	2,355. 00
35	90	Medium	41.00	3,690.00	83	90		¢6.00	2,340.00
36	90		39. 50	3,555. 00	84	90	d	23. 50	2, 385.00
97	90		37.50	3,375.00	85	90	d	26. 50	2,355.00
38	90		37.50	3, 375.00	86	90		26.50	${ }_{2}^{2,385.00}$
39	90		36.00	3,240.00	87	90	. do	26. 50	$2,385.00$ $2,565.00$
40	90	do	36.50	3, 28.5 .00	88	90	Small	28.50	
41	90		36. 50	3,285.00	89	90do.	27.50 28.50	2, 2 275.00.00
42	90		37.50	3.375. 00	90	90	do	28.50	2,565.0
43	90		36.50 37.00	$3,285.00$ $3,330.00$	91 92	90		28.50	2,565.0
4.	- 90		3 S .00	3,420,00	93	90		28.50	2,565.00

Sales of Pribilof fur-seal skins at St. Louis, Mo., 1922-Continued.

SALE OF 12,198 DRESSED, DYED, AND MACHINED SKINS, APRIL 3, 1922—Contd.

$\begin{aligned} & \text { Lot } \\ & \text { No. } \end{aligned}$	Number of skins.	Trade classification.	Price per	Total for lot.	$\begin{aligned} & \text { Lot } \\ & \text { No. } \end{aligned}$	Number of skins.	Trade classification.	$\begin{aligned} & \text { Price } \\ & \text { per } \\ & \text { skin. } \end{aligned}$	Total for lot.
94	90	Small medium.	\$28. 50	\$2,565.00	139	37	Large; cut, scarred,	\$37. 50	\$1,387. 50
95	90do.	29.00	2,610.00			etc.		\$1,387. 5
96	70	- ...do..............	28.00	1,960.00	140	80	Medium..............	35.00	2,800.00
97	90	Small medium; cut, scarted, etc........	23.50	2,115.00	141	80	Medium; cut, scarred, ete.	26.50	2,120.00
98	90		22. 50	2,025.00	142	37	22 medium, 15 small		2,120.00
99	90do	22. 50	2,025.00			medium...........	26.50	980.50
100	90		22.50	2,025.00	143	28	16 medinm; cut,		
101	90	d	22. 00	1,980.00			scarred. etc., 12		
102	90	do	22.50	2,025.00			small medium;		
103	90	do	23.00	2,070.00			cut, scarred, ete...	21.00	588.00
104	90	(10	22.50	2,025.00	144	50	III Wirs.	6. 50	325.00
105	90	do	22.50	2,025.00	145	50do.	6.00	300.00
106	90	do	22.00	1,980.00	146	50	d	5. 50	275.00
107	90	.do	22.00	1,980.00	147	50	.do	5. 50	275.00
108	50	III Wi	10.50	525.00	148	50	. do	5. 50	275.00
109	50	do	10.00	- 500.00	149	50	. do	5. 50	275.00
110	30	do.	10.00	300.00	150	50	do	5.50	275.00
111	50	III, 31 extra large,			151	50	.d	6.00	300.00
			15.50	775.00	152	50	do	6.00	300.00
112	80	III, 37 medium, 43			153	50	d	6.50	325.00
113	20	small medium.	11.00 5.00	880.00 100	154	50	do	6.00	300.00
114	50	Wigs..	60.00	3,000.00	155 156	50	do	6. 50	325.00
115	50	...do	58.00	2,900.00	157	50	.	6. 50	${ }^{325.00}$
116	50	.do	58.00	2,900.00	158	50	d	7.00	350.00
117	58		53.00	3,074.00	159	42	do	6. 50	273.00
118	50	Wigs;cut,scarrcd, ete	29. 50	1,475.00	160	55	III, 14 extra extra		
119	50	do.	28. 50	1,425.00			large, 4 extralarge,		
120	50	do	${ }^{25} 50$	1,425.00			7 large, 5 medium,		
121	50	.do	29. 00	1,450.00			25 sr all mediunt.	13. 50	742.50
122	50	d	28.00	1,400. 00	161	50	IV Wigs	1.50	75.00
123	50	do	28.00	1,400.00	162	50	..do.	2.00	100.00
124	50	do	28.50	1,425. 00	163	50	.do.	2.00	100.00
125	50		29.00	1,450.00	164	50	do	1. 50	75.00
126	50	do	30.00	1,500.00	165	50		2.25	112.50
127	50	do	29.00	1,450.00	166	50	.do	3.00	150.00
128	50	..do...............	29.50	1,475.00	167	50		2.25	112. 50
129	22	do	31.50	693.00	168	50	d	2.25	112. 50
130	33	Extra cxtra large	62.00	2,046.00	169	50	do	1. 50	75. 00
131	50	Extra extra large:			170	50	.do	1. 50	75.00
		cut, scarred, etc...	44. 00	2,200.00	171	50		1.75	87.50
132	27		43.50	1,174.50	172	50	. do	1. 50	75.00
133 134	44	Extra larg	57.00	2,508.00	173	50		1. 75	87.50
134	50	Extra large; cut, scarred ctc..........	41.00	2, 050.00	174	40	IV, 28 wigs, 8 extra extra large, 2 extra		
$\begin{aligned} & 135 \\ & 136 \\ & 137 \\ & 138 \end{aligned}$	23502550	. .do...	40.00	920.00	175		large, 2 large	1. 50	60.00
		Large	48. 00	2, 400. 00		27	Skins, damaged.......	8.25	222.75
		Largc: cut, scarred,		$\text { 1, 337. } 50$		12,198			388, 069.7
		etc.................	35.00	1,750.00					38,009.75

SALE OF 379 MISCELLANEOUS SKINS, APRIL 3, 1922.

$\begin{aligned} & 176 \\ & 177 \end{aligned}$	$\begin{array}{r} 72 \\ 177 \\ 117 \end{array}$	Dressed and dyed... do. Dressed	$\begin{array}{r} 80.50 \\ .50 \\ .50 \end{array}$	$\begin{array}{r} \$ 36.00 \\ 85.50 \\ 58.50 \end{array}$	$\begin{aligned} & 179 \\ & 180 \end{aligned}$	121	Washed and dried. Raw.	$\begin{array}{r} \$ 0.25 \\ .054 \end{array}$	$\$ 30.25$5.00
						92			
						579			218. 25

SALE OF 17,194 DRESSED, DYED, AND MACHINED SKINS, OCTOBER 9, 1922.

1	50	Wigs.	\$51.00	\$2,550.00	12	70	Extra	\$59.00	\$4, 130.00
2	50		51.00	2,550.00	13	70		56.00	$3,920.00$
3	50	Wigs; cut, scarred,			14	70	do	56.00	$3,920.00$
			32. 00	1,600.00	15	70		56.00	3,920. 00
4	50	do	32. 50	1,625.00	16	70	do	59.50	4,165.00
5	39	,	34. 50	1,345. 50	17	70do	60.00	4,200.00
6	60	Extraext	59.00	3,540.00	18	44	do	61.00	2,684.00
7	60do.	60.00	3,600.00	19	44		59.00	2,596.00
8	68	Extra	62.00	4,216.00	20	70	Extra large; cut,		
9	60	Extra extra large; cut, scarred, etc...	39.00	2,340.00	21	70	scarred, etc.......	39.00	2,7000 $2,540.00$
10	50	- ${ }^{\text {dos. }}$	41.00	2,050.00	22	70		36.00	2,520.00
11	22do..	43. 00	946.00	23	70		40.00	2,800.00

Sales of Pribilof fur-seal skime at St. Louis, Mo., 1922—Continued.
SALE OF 17, 194 DRESSED, DYED, AND MACIIINED SKINS, OCTOBER 9, 1922—Contd.

$\begin{aligned} & \text { Lot } \\ & \text { No. } \end{aligned}$	Numher of skins.	Trade classification.	$\begin{aligned} & \text { Price } \\ & \text { per } \\ & \text { skin. } \end{aligned}$	Total for lot.	$\begin{aligned} & \text { Lot } \\ & \text { No. } \end{aligned}$	Number of skins.	Trade classification.	$\begin{aligned} & \text { Price } \\ & \text { rer } \\ & \text { skin. } \end{aligned}$	Total for lot.
24	70	Extra large: cut,			100	90	Medium.	834. 50	\$3, 105. 0 O
		scarred, etc........	539.00	\$2,730. 00	101	90	...do	33.00	2,470.00
25	62		3x. 00	2,356.00	102	90		33. 00	2,970.00
26	s0	Large	48.00	3,810.00	103	90	do	33. 50	3,015. 00
27	80	.do	47.00	3,760. 00	104	90	do	33. 00	2,970 00
28	80	do	48. 00	3,810.00	105	90	. do.	32.50	2,925.00
29	80	do	48.50	3,880. 00	106	90	do	32. 00	2,880.00
30	80	(10	50.50	4,010.00	107	90	.do	32.50	2,925.00
31	80	do	47.00	3,760. 00	108	90	d	31. 50	2,835.00
32	80		16.00	3,680. 00	109	90	d	31.50	2, 3 35 07
33	80	do	50.00	4,000.00	110	90	d	30.50	2, 74.5.09
34	80	do	48.50	$3,880.00$	111	90	d	30.50	2,74.00
35	80	do	46.00	3,680. 00	112	90	d	30.50	2,74. 0 ח
36	80	do	48.00	3,840. 00	113	90	d	30. 50	2,745.09
37	80	do	17.00	3,760.00	114	90	d	30. 5	2, 74.509
38	80	do	46.00	3,680.00	115	90	d	3501	3, 150.00
39	s0	do	4S. 00	3, 810.00	116	90	do	32.50	2,925. 00
40	80	do.	49. 50	3,980. 00	117	90	do.	31.50	$2,835.00$
41	80	do	45. 00	3,600.00	118	90	do	31. 5 (1)	2, 835.09
42	80	do	48.00	3,840.00	119	90	. do.	30.50	2,74.) 00
43	so	do	45. 50	3,640.00	120	90	.do	31.in	2,835.09
44	80	do	46.50	3,720. 00	121	90	do	31.00	2, 790. 00
45	80	do	46.00	3,680. 00	122	90	d	30. 50	2, 34.500
46	s0	do	45. 00	3,600.00	123	90	do	30.50	$2,74.500$
47	80	do	47.00	3,760.00	124	90	d	30. 16	2, 700.07
48	80	do	46.00	3,650.00	125	90	do	31. 00	2,790 07
49	81)	do	47.00	3,760.00	126	90	do	31.50	2, 83.500
50	81	do	47.50	3,800. 00	127	90	.do.	30 m	2, 700.00
51	81	do	49.00	3,920. 00	128	90	do	41.50	3, 73.5.00
52	80	do	4.800	3,840. 00	129	50	do	33.50	1,67. 00
53	80	do	46.00	3,680. 00	130	50	-	33. 50	1,675.00
54	80	do	48.50	3,880. 00	131	90	Mcdium; cut,		
55	80	do	47.50	3, 800.00			scarred, etc.	20. 00	1, 80900
56	80	do	46. 00	$3,680.00$	132	90	do	21.00	1,890 00
57	80	do	47.50	3, 800.00	133	90	do	21.00 21.50	1,890 1,93500 1000
58	80	do	57.00 48.00	$4,560.00$ $3,504.00$	134	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	d	21.50 20.50	1,93500 $1, \$ 45.00$
$\begin{aligned} & 59 \\ & 60 \end{aligned}$	$\begin{aligned} & 73 \\ & 80 \end{aligned}$	- Large: cı	48.00 36.06	$3,504.00$ $2,880.00$	135 136	$\begin{aligned} & 90 \\ & 90 \end{aligned}$.do	20.50 20.50	1,845.00
61	80do.	36.50	2,920.00	137	90	.do	20.50	1,845.00
62	80	d	35. 00	2, 800.00	138	90	do	19.00	1,710.00
63	80	do	34.00	2, 720.00	139	90	do	22.00	1,980.00
64	80	.do	34. 00	2, 720.00	140	90	d	20.00	$1,800.00$
65	s0	.do	32.50	2,600. 00	141	90	.do	20.00	1,800.00
66	80	do	33. 00	2,640.00	142	90	do	21. 50	1,935.07
67	80	do	32. 50	2,600. 00	143	90	,	21. 00	1,890.07
68	\% 0	do	32.00	2,560. 00	144	90	do	21. 50	1,935.00
69	80	do	33.50	2,680. 00	145	90	do	21. 00	1,890.00
70	80	do	33.00	2,640. 00	146	90	do	19. 50	1,75.5. 00
71	80	ho	32.50	2,600. 00	147	90	do	22. 10	1,980.00
72	80	do	32. 50	2,600. 00	148	90	do	2n. 10	1,800.0.
73	80	do	32.50	2,600. 00	149	90	do	19. 50	1,755. 09
74	80	do	32.50	2,600. 00	150	90	do	19.50	1,75.5. 00
75	80	do	33. 00	2,640.00	151	90	do	19.50	1,755.00
76	80	do	34. 50	2, 760.00	152	90	do	19. 50	1,755.00
77	80	do	33. 00	2,640.00	153	90	do	21. 50	1,935. 00
78	80	do.	35. 00	2,800 00	154	90	do	20. 00	1,800. 00
79	80	do.	34.50	2, 760.00	15.5	90	do	21.50	1,935.00
80	80	do	33. 50	2,650.00	156	90	do	19.50	1,755.00
81	80	do	33.00	2,640.00	157	90	d	20. 50	
82	80	do	33. 00	2,640.00	158 159	90	do	19. 00	$1,710.00$ $1,755.00$
83 84	48	do	32.50 34.50	$1,560.00$ $1,621.50$	159 160	90	do	19.50	1, 855000
85	90	Medium	35.00	3, 150.00	161	90	do	21.00	1, 590 00
86	90	do	34. 50	3, 105. 00	162	90	do	20. 00	1,800.00
87	90	do	36.00	3, 240.00	163	90	do	20.00	1,800.00
88	90	do	34. 00	3,060. 00	164	90	do.	20.00	1,800.00
89	90		35. 00	3, 150. 00	16.5	90	do	20.00	1, 800.00
90	90	do	34.00	3,060.00	166	90	d	20. 00	1,800.00
91	90	do	33. 50	3,015. 00	167	90		20. 50	
92	90	do	34.00 33.50	3,060.00 3,015.00	168 169	90	do	20.50 20.50	$1,845.00$ $1,845.00$
93	90		33.50 33.00	$3,015.00$ $2,970.00$	169 170	90	do	20.50 21.00	$1,845.00$ $1,890.00$
95	90	.do.	32.50	2,925. 00	171	90	do	21. 00	1, 890.00
96	90do.	34. 00	3,060. 00	172	90	do	21.50 20.50	1,935.00
97	90	. ${ }^{\text {do. }}$	32.50	2,925. 00	174	90	dor	20.25	1,822. 59
98	90	do.	34.00	3,060.00	175	90	d	20.50	1,845.00
99	90	.do.	34.00	3,060.00	176	53	-	21.00	1,113.00

Sales of Pribilof fur-seal skins at St. Louis, Mo., 1922-Contimued.
SALE OF 17,194 DRESSED, DYED, AND MACHINED SKINS, OCTOBER 9, 1922--Coutd.

$\begin{aligned} & \text { Lol } \\ & \text { No. } \end{aligned}$	Number of skins.	Trade classification.	$\begin{aligned} & \text { Price } \\ & \text { per } \\ & \text { skin. } \end{aligned}$	Total for lot	$\begin{aligned} & \text { Lot } \\ & \text { No. } \end{aligned}$	Number of skins.	Trade classification.	$\begin{aligned} & \text { Price } \\ & \text { per } \\ & \text { skin. } \end{aligned}$	Total for lot.
177	90	Small medium.	\$21.00	\$1,890.00	199	90	Strall medium; cut,		
178		do	21.00	1,890.00			scarred, ct	\$17.00	\$1,530.00
179	90		23. 50	2,115.00	200	90	do	1.5. 50	1,395. 00
180	90	do	24.00	2,160.00	201	90	do	17.00	1,530.00
181	90	do	25. 00	2,250.00	202	90	. ${ }^{\text {do }}$	16. 50	1,485. 00
182	90	do	24. 50	2,205. 00	203	90	do	16. 50	1,485. 00
183	90	do	25. 00	2,250. 00	204	53	. ${ }^{\text {do }}$	16. 25	861.25
184	90	do	20. 00	2,340:00	205	53	.do	16. 75	887. 75
185	90	do	27. 50	2,475. 00	206	50	III v igs	10. 50	525.00
186	90	do	27.00	2, 430.00	207	39	-	14. 50	565. 50
187	41	do.	27.00	1,107.00	208	52	III, 16 extra exira		
188	90	Small medinn: cut, searred, elc........	16. 00	1,440. 00	209	63	large, 36 extra large III large.	16.50 12.50	858.00 787.50
189	90 do.	15. 00	1,350.00	210	60	III medi	13.00	780.00
190	90	do	16. 00	1,440.00	211	57		11.50	655.50
191	90	do	17.25	1,552. 50	212	63	iif small medium.	8.50	535.50
192	90	do	17.50	1,575. 00	213	33	IV, 22 wigs, 1 extra		
193	90	-	16. 50	1,485.00			extra large, 2 extra		
194	90	do	16. 00	1, 440.00			large, 5 large, 1		
195 196	90	do	17.75 16.50	$1,597.50$ $1,485.00$			medium, 2 small medium	7.50	247.50
197	90	do	17.00	1,530. 00					247.50
198	90	...do................	17. 25	1,552. 50		17, 194			535,967. 50

SALE OF 201 MISCELLANEOUS ~KINS, OCTOBER 9, 1922.

$\begin{aligned} & \text { Lot } \\ & \text { No. } \end{aligned}$	$\left\|\begin{array}{c} \text { Num- } \\ \text { ber } \\ \text { of } \\ \text { skins. } \end{array}\right\|$	Description.	Price per skin.	Total for lot.	$\begin{aligned} & \text { Lot } \\ & \text { No. } \end{aligned}$	Number of skins	Description.	$\begin{aligned} & \text { Price } \\ & \text { per } \\ & \text { skin. } \end{aligned}$	Total for lot.
215	164	Raw; washed and dried	\$0.50	\$82.00	216	37	Raw; salted.	\$0. 15	\$5. 55
						201			87.55

Com:parative valnes by siaes and arades, with percentages each size, of lribilof sealshins sold in 1922.

Classes and sales.	Grade.	Number.	High.	Low.	Average.	Total.	Total number.	Average.	Total price.	$\begin{aligned} & \text { Per- } \\ & \text { cent- } \\ & \text { age. } \end{aligned}$
Wigs:							2,590		843,074. 50	20.27
Apr. $3 \ldots$	(I and II.	298	\$60. 00	\$46. 00	\$53. 81	\$16, 054. 00		\$16.63		
	$\left\{\begin{array}{l}\text { Cunt, ete } \\ 111\end{array}\right.$	672 922	31.50 10.50	28.00 6.50	29.01 6.67	$19,493.00$ $6,148.00$				
	$1 \mathrm{IV}^{\text {d }}$	698	5. 00	1. 50	1.98	1,379.50				
	(1) and II	100	51.00	51.00	51. 00	5, 100.00				2.01
Oct. 9.	$\left\{\begin{array}{l}\text { Cut, etc } \\ \text { III..... }\end{array}\right.$	139 89	34. 50 14.50	32.00 10.50	32.85 12.25	$4,570.50$ $1,090.50$	350	31.22	10,926. 00	
		22	7.50	10.507	7.50	$\begin{array}{r} 1,090.59 \\ 165.02 \end{array}$				
Extra extra large:										
	f and II	153	63.00	62.00	62.78	9,606. 00				
Apr. 3.	$\left\{\begin{array}{l}\text { Cut, etc } \\ \text { III.... }\end{array}\right.$	127	44. 00 13. 50	42.50 13.50	43.30 13.50	$5,499.50$ 189.00	302	50.68	15,306. 50	2. 36
	IV	8	1.50	1.50	1.50 1.50	12.00				
	fl and It	188	62.00	59.00	60.40	11,356. 00				
Oct. 9...	$\left\{\begin{array}{l}\text { Cut, et } \\ \text { III.... }\end{array}\right.$	132	43. 00 16.50	39. 00 16. 50	40.42 16.50	$5,336.00$ 264.00	337	50.34	16, 963. 50	1.94
		1	r. 7 70	1.50 7.50	16.50 7.50	26.00 7.50				
Extra large:										
	$\left\{\begin{array}{l}\text { I and II. } \\ \text { Cut, etc }\end{array}\right.$	604 283	60.00 44.00	52.00 40.00	56.36 42.65	$34,043.00$ $12,070.00$	924	50. 49	46,650. 50	7. 23
Apr. 3...	$\left\{\begin{array}{l}\text { cut, etc } \\ \text { III.... }\end{array}\right.$	283 35	44. 00 15.50	40.00 13.50	42.65	$12,070.00$ 534.50				
	IIV.	2	1.50	13.50	1.50	33.00				
	(1 and ii	508	61. 00	56. 00	58.14	29,535. 00	9.8	47.88	45, 870.00	5. 51
Oct. $9 .$.			40. 09		38.17	$15,726.09$				
	IV11.......	36 2	16. 30	16.50 7.50	16.50 7.50$\|$	$\begin{array}{r} 591.0^{\prime 7} \\ 15.00 \end{array}$				

Comparative values by sizes and grades, with percentages each size, of Pribilof sealskins sold in 1922-Continued.

Classes and sales.	Grade.	Number.	High.	Low.	Average.	Total.	Total number.	Average.	Total price.	Per centage.
Large:										
Apr. 3.	fl and II.	1,115	\$55. 00	\$47.00	\$50.81	\$56, 657. 50				
	Cut, ete......	327	41.50	35.00	39.32	12, 857.50				
		26	15.50	13.50	14.95	$12,889.00$	1, 470	\$47. 56	\$69,907.00	11.51
	IV	$\stackrel{2}{2}$	1.50	1.50	1.50	3.00				
	(I and 11.	2,713	57.00	45.00	47.62	129,184.00				
Oct. $9 .$.	Cut...........	1,935	36.50	32.00	33.54	64, 901. 50				
	IIII............	63	12.50	12.50	12.50	787.50	4,716	41.33	194,910. 50	27.11
		5	7. 50	7.50	7.50	37.50				
Medium:	II and II.	3,252	41.00	26.50	37.18	120,923.00				
Apr. 3...	Cut, etc:	1,716	30.00	21.00	26.42	45, 341.00	5,010	33. 28	166, 738. 50	39.21
	III.	42	13.50	11.00	11.30	474.50				
	[1 and 1I.	4,060	41.50	30.00	32.69	132, 725.00				
	$\left\{\begin{array}{l}\text { Cut. ete } \\ \text { III }\end{array}\right.$	4, 103	22.00	19.00	20.44	83, 845.50	8, 281	26. 33	218, 013. 50	47.61
Oct. 9.	IIII...........	117	13.00	11.50	12.27	1,435.50	8, 281	26.33	215,013. 50	47.61
Small medium:	IV	1	7.50	7.50	7.50	7.50				
	(l and	805	29.00	26. 50	28.36					
Apr.	Cut, etc	1,002	23. 50	21.00	22.48	22, 527.00	1,875	24.62	46, 170.00	14.68
	[III...........	68	13. 50	11.00	11.92	22, 810.50			5,170.00	
Oct. 9.	(1 and II.	941	27. 50	21.00	24.56	23, 112. 00				
	Cut, cte	1, 546	17.75	15.00	16.57	25,621. 50	2, 552	19.31	49,284. 00	14.67
	111...........	63	8.50	8.50	8.50	535.50	2, 532	19.31	49, 284.00	14.67
	1 V	2	7.50	7.50	7.50	15.00				
Skins damaged. Apr. 3...		27	8.25	8.25	8. 25	222.75	27	8.25	222.75	. 21
	Description.									
Culls and rejects:	(Dressed and									
	dyed.......	249	. 50	. 50	. 50	124.50				
Apr.3...	Dressed	117	. 50	. 50	. 50	58.50	579	. 38	218. 25	4. 53
	Washed and dried.......	121	. 25	. 25		30.25		. 38	218.25	4. 5
	Raw.........	92	. 054	. 054	. 054	5. 00				
Oct. 9	$\left\{\begin{array}{l} \text { Raw, washed } \\ \text { and dried. } \end{array}\right.$	164	. 50	. 50	. 50	82.00				
	Raw, salted..	+37	. 15	. 15	. 15	5. 55	\} 201	44	87.55	1.15
All classes:										
Apr. 3..								30.39		100.00
Oct. $9 .$.							$17,395$	30.82	536, 055. 05	100.00

disposition of sealskins.

The grand total of all fur-seal skins on hand at the Pribilof Islands and at St. Louis on January 1, 1921, was 53,878 . In 1922 a total of 31,156 skins was secured and 30,172 were sold, leaving a balance on hand on December 31, 1922, of 54,862 . The followng two tables show the skins on hand both at the keginning and end of 1922 at the Pribilofs and at St. Louis, the numbers taken and shipped from the Pribilofs, and the numbers received and sold at St. Louis.

Summary of all fur-scal skins handled on Pribilof Islands, calendar year 1922.

${ }^{1}$ The preceding report for 1921 gave the number on hand as 717 , but when the skins were packed for shipment in 1922 one more skin was found, thereby increasing the number to 718.

Summary of reccipts and sales of Pribilof fur-seal slins by Fouke Fur Co., St. Louis, Mo., and balance in firm's custody, calendar year 1922.

Date of shipment from Pribilofs.	Receipts.		Sales.		Balance on hand.
	Date.	Number of skins.	Date.	Number of skins.	
	Jan. 1				52,757
July 31	Sent. 9	2,3\%	Apr. 3	12,777	39,950 42,338
Aug. 12.	Sept. 19	2,601			44,939
Sept. 24.	Nov. 9	26, 422			71,361
			Oct. 9	17,395	${ }^{1} 53,966$
Total.		31,381		30,172

${ }^{1}$ Includes 7 at Washington.

PRIBILOF FOX SKINS.

SHIPMENTS AND SALES.

The fox skins, 138 blues and 21 whites, taken on St. Paul Island in the season of 1921-22 were shipped on the U. S. S. Gold Stur July 31, 1922, and reached Seattle August 11. The skins were then forwarded by express to the Fouke Fur Co., St. Louis. The fox skins, 574 blues, taken on St. George Island in the season of 1921-22, were transferred by the fisheries schooner E'ider in August to the steamship Cordova at Akutan for transportation to the States. The skins were consigned to the Fouke Fur Co. and were received at St. Louis on September 19. All were sold there at public auction October 9, 1922. The total amount bid for the 712 blue fox skins was $\$ 66,344$, the maximum bid being $\$ 165$ each for a lot of four and the average bid $\$ 93.18$ per skin. The 21 white fox skins brought $\$ 966$, an a verage of $\$ 46$ per skin. The average price at the last preceding sale, September 28 , 1921 , was $\$ 96.83$ for blue and $\$ 33$ for white fox skins.

Sale of 712 blue and 21 white fox skins at St. Louis, October 9, 1922.

$\begin{aligned} & \text { Lot } \\ & \text { num- } \\ & \text { ber. } \end{aligned}$	Number of skins.	Trade classıficaticn.	Price per skin.	Total for lot.	Lot number.	Num ber of skins	Trade classification.	Frice per skin.	Tot? for lot.
		Blue for skins.					Bluefox skins-Con.		
220	4	Extra extra fine.	\$165.00	\$660.00	263	12	II bla	\$82. C. 0	981. 00
221	4	Extra fine, extra			264	10	I da k	¢6.00	(6). 00
		large.......	135.00	540.00	265	12	II datk	$8) .90$	960.00
222	6	Fine dark	136.00	816.00	266	8	I blue	100.00	S00. 09
223	6	I fine dark silvery. .	136.00	816.00	267	12	Blue	86.00	1,032.00
224	10	I silvery............	134,01	1,340.00	268	12	II low	4. $\therefore 00$	S 50.00
225	10	I blue.	98. 00	1,980.00	269	11	ckins.	38.00	41.00
226	10	1 dark	102.00	1,020.00	270	4	Extra extra fine.	161.00	656.00
227	8	. il do.	120.00	1960.00	271	4	Extra extra fine,		
228	6	Il dark.	84.00	504.00			extra large.	122.00	$4 \mathrm{4Q8} 00$
229	10	1 and 11 blue	96.00	960.00	272	4	Extra fine.	145.00	580.00
230	4	Extra extra fine...	162.00	648.00	273	4	Extra fine, extra		
231	4	Extra fine, extra large.	121.00	496.00	274	6	large. Fine, extra large..	114.00 111.00	456.00 684.00
232	6	Fine dark	130.00	780.00	275	8	I dark...	96.00	768.00
233	6	Dark silv	$1+1.00$	846.00	276	14	II dark	97.00	$1, \quad$ 1)
234	10	Dark.	116.00	1,160.00	277	10	I blue	100.00	1,00.0)
235	5	Fine dark silvery..	137.00	6\%.5. 00	278	12	II blue	- 0,00	9 , wo
236	10	I, pt. II, dark....	10.5. 00	1,050.00	279	10	-...d	8). 00	860.00
237	5	Dark...	128,00	610.00	2×0	16	II low blue	5. 5.00	92 x .00
238	14	I, pt.II, blue......	110.00	1,540.00	281	14	I dark	111.00	1,534. 00
239	4	Extra extra line...	145.00	580.00	282	12	II dark	79.00	918.00
240	4	Extra extra fine,			283	14	I and II	6.5 .00 $1+6.00$	910.00 58.00
241	4	extra large....... Extra fine.	130.00 127.00	520.00 508.00	284	4	Extra extra fin	146.00 120.00	584.00 480.01
242	8	I fine dark	115.00	920.00	286	10	I dark	114.00	1,140. 10
243	6	Extra dark	112.00	672.00	287	16	II dark	89.00	1,424.00
244	8	I dark.	108.00	864.00	288	10	I blue	103.00	1, 0330.00
245	10	II dark	77.00	770.00	289	12	Blue	86.00	1,032.0)
246	10	I blue.	95.00	950.00	290	8	Silvery	116.00	928.00
247	12	II blue	78.00	936.00	291	4	-do.	80.60	320.00
248	12	II low blue	62.00	744.00	292	8	I and II dar	90.00	720.00
249	8	II	67.00	536.00	293	14	II dark	S0. 00	1,120. C 0
250	20	III.	30.00	600.00	294	8	II extra lar	71.00	592.00
251	9	skins.	7.00	63.00	295	6	I silvery.	106.00	636.00
252	10	I dark	100.00	1,000.00	296	12	II dark	80.00	960.03
253	12	11 dark.	88.00	1,056.00	297	16	Dark	70.00	1,120.00
254	8	I blue.	100.00	800.00	298	8	I silver	$10 \pm .00$	832.00
255	8	II blue	76.00	608.00	299	10	I and II	85.00	880.00
256	12	II low blue.	67.00	801.00					
257	4	Extra extra fine	145.00	580.00		712			66,344.00
258	6	Extra fine.	129.00	774.00			White for skins.		
259	8	I fine dark.	125.00	1,000.00					
260	10	I and II dark	110,00	1,100.00	339	21	I and II, white fox	46.00	966.00
261	12	II dark.	78.00	1936.00					
262	10	I blue.	100.00	1,000.00		733			$67,310.00$

FUR-SEAL PATROL BY UNITED STATES COAST GUARD.

An active patrol for the protection of fur seals was maintairred by the Coast (uard in 1922. The cutters engaged were the IIaida, Algonquin, Mojave, Snohomish, Unalga, and Bear. The Haida and Algonquin patrolled both in the North Pacific Ocean and Bering Sea. The Algonquin also made a trip to Asiatic waters frequented by fur seals. The Mojave was used chiefly in transporting an official party headed by the Assistant Secretary of Comnerce. The Snohomish patrolled the waters between the Columbia River and Dixon Entrance, southeast Alaska. The Unalga paid particular attention to southeast Alaska between Dixon Entrance and Yakutat Bay. The Bear made its usual cruise northwird to the Arctic Ocean. The burean is under many obligations to the Coast Guard for assistance furnished incidentally to the patrol work in the transportation of passengers, mail, and freight to and from the Pribilof Islands.

The following extracts are taken from information furnished by the Coast Guard in regard to the season's work. In connection with the patrol the cutters perform a great many duties of a public nature aside from those concerned with fur seals and the fisheries. The extracts have been selected only as they relate to fur-seal matters and occasionally to the fisheries industry.

Bear.-Preparatory to proceeding on her annual Alaskan cruise, the Coast Guard cutter Bear left Oakland, Calif., May 2, 1922. * * *. Having received on board mail and certain supplies, the vessel sailed from Seattle at 7 p. m. May 16, stopping at Port Townsend and in the Straits of Juan de Fuca, and arrived at Unalaska at $7.40 \mathrm{p} . \mathrm{m}$. May 27. Throughout the voyage from Seattle a close observation was kept for fur seals, but none was sighted.

* * *. En route from Nome to Unalaska the Bear stopped at St. Paul Island on September 18. * * *. Having completed her duties in Alaskan waters, the vessel sailed from Unalaska October 5 and arrived at Seattle, Wash., October 17.

Haida.-On April 15, 1922, at 10 a. m., the Haida left Seattle, Wash., on her Alaskan cruise. On board the cutter were 13 persons from the Bureau of Fisheries desiring passage to the Pribilof Islands and a native student for passage to Unalaska. Stores for the radio station at St. Paul Island and for the Attu schoolhouse were packed on board. All holds and storerooms were filled from the keel to the lower deck. The trip from Seattle to Unalaska was made in less than seven days, the cutter arriving at Unalaska at 8.30 p. m. April 21. * * *. Having received on board mail for points to be visited and several passengers, the Haida cast off from the dock at Unalaska at $8.30 \mathrm{a} . \mathrm{m}$. April 24, proceeded to St. Paul Island, anchoring in Village Cove at $5.45 \mathrm{a} . \mathrm{m}$. April 25 . Landing at Village Cove being unfarorable, the cutter got under way, stood around Reef Point, and at 9.35 a . m. anchored in Lukanin Bay, St. Paul Island, where mail, 13 passengers, and freight were landed. After receiving on board mail for St. George Island and Unalaska at 4.15 p. m. April 25 , got under way and at 7.15 anchored off St. George Island, where freight for the Bureau of Fisheries, mail, passengers, and baggage were landed. After receiving on board mail for St. Paul and Unalaska got under way at $8.40 \mathrm{p} . \mathrm{m}$. April 25, and at 8 a. m. April 27 anchored off Sarichef Lighthouse. During the trip encountered thick mist, heavy snowfall, and rough sea. There being no assistance needed at this point, got under way and arrived at Unalaska at 4.30 p. m. * * *.

On May 3, at 7 a. m., got under way and continued patrolling. At $2.05 \mathrm{p} . \mathrm{m}$. anchored in Ugamak Bay, under the lee of Ugamak Island on account of heavy weather. No vessels passed through nor were any vessels sighted. A large herd of sea lions, about 400 in number, was observed on Round Island. * * *.

On May 27, at 4.35 p. m., cast off from dock at Dutch Harbor and stood over for Unalaska, making fast to the dock at $5.55 \mathrm{p} . \mathrm{m}$. Having taken on board mail and stores and 24 passengers, got under way at 9.15 a . m . Tune 1 for St. George and St. Paul and came to anchor off St. George village at 9.30 a . m. June 2. Delivered the mail for this point and took on mail for other points and at $9.50 \mathrm{a} . \mathrm{m}$. got under way for St. Paul Island. Stood various courses around Reef Point into Village Cove, where anchored at $2.15 \mathrm{p} . \mathrm{m}$. Delivered mail and stores and landed passengers. On June 3, at 11 a. m., stood out of Village Cove to take up the patrol within a radius of 100 miles around the Pribilot Islands. On June 7, at $12.40 \mathrm{a} . \mathrm{m}$., anchored off St. George Island, and at $7.50 \mathrm{a} . \mathrm{m}$. stood for St. George Village. Took on board six passengers for transportation to St. Paul Island and mail for that point and Unalaska. At $8.55 \mathrm{a} . \mathrm{m}$. stood for St. Paul Island, anchoring off Village Cove at $12.30 \mathrm{p} . \mathrm{m}$., where the six passengers left the ressel. Patrol of the islands was continued from June 7 until the 15th, on which date stood in for St. George Island, anchoring off the village at $3 \mathrm{p} . \mathrm{m}$. At $7.50 \mathrm{p} . \mathrm{m}$. stood offshore and continued the patrol of the island. Boarded the schooner Fox, inspected the vessel, and sent message for master. On June 17, at $7.15 \mathrm{p} . \mathrm{m}$., anchored in Village Cove, St. Paul Island. Receired on board three persons for transportation to Akutan. After taking on board mail got under way at 8.30 a . m. June 18 for St. George Island; at 12.25 p. m. anchored nff North Anchorage and took aboard mail and six persons for transportation to Akutan. At 1 p . m. got under way for Akutan and monred at the dock of the Akutan whaling station at 11.20 a. m. June 19 ; discharged passengers, delivered the mail, and at $2 \mathrm{p} . \mathrm{m}$. cast off and proceeded
to Unalaska, arriving there at $7.25 \mathrm{p} . \mathrm{m}$. While on this cruise sighted 23 fur seals, boarded two vessels, and afforded medical treatment to eight persons. * * *.

On June 20, 21, and 22 remained at Unalaska, cleaning boiler and performing various other duties. On June 23, 24, 26, and 27 executed certain other duties in connection with the command of the Haida. On June 28, at 8.50 a . m.. having received on board mail for the fishing fleet in Bristol Bay and for other places, got under way and at $9.15 \mathrm{a} . \mathrm{m}$. made fast to the dock of the Alaska Commercial Co. at Dutch Harbor. At 8.05 a . m. June 29 cast off from the dock and stood to eastward and along the north side of Unimak Island and at 9.10 p . m . anchored off Cape Lapin, Unimak Island. On June 30, at 4.35 a . m., stood various courses in the vicinity of Amak Island, then stood to the eastward along Unimak Island and the Alaskan Penisusula. At 5.35 p. m. anchored off Cape Lieskof, the dense fog making further cruising unsafe. On July 1, at $7.30 \mathrm{a} . \mathrm{m}$. got under way and stood various courses to rendezvous with Algonquin. At $2.30 \mathrm{p} . \mathrm{m}$. proceeded toward the cannery at Nelson's Lagoon. At $6.10 \mathrm{p} . \mathrm{m}$. boarded the American schooner Wawona, of Anacortes. delivered mail to her, and received mail for the schooners John A and Fanny Dutard. At 7.45 p . m. boarded the Japanese schooner Bering Maru, of Tokyo. At 8.45 p. m. stood for Port Moller and anchored off that place at 10.20 p. m. On July 2, at 8.15 a. m., got under way and stood various courses into Port Moller and at 12.05 p. m. anchored off Entrance Point. The medical officer vaccinated 40 natives and gathered statistical information, and the dental surgeon gave treatment to 13 natives. On July 3, at 11.15 a. m., got under way and stood various courses. Boarded schooner Fanny Dutard, delivered mail, and gave medical and dental treatment to two members of her crew. At $6.20 \mathrm{p} . \mathrm{m}$. boarded schooner Charles R. Wilson, of Seattle, afforded medical treatment to two men, delivered mail, and examined vessel. Took on board a sick seaman for transportation to Unalaska. At $8.50 \mathrm{p} . \mathrm{m}$. anchored near schooner John A. boarded her, and delivered mail. Got under way and at $9.55 \mathrm{p} . \mathrm{m}$., anchored off Cape Seniavin. On July 4, at 4.15 a. m., got under way and stood various courses to Port Heiden. Anchored off Christakof Island at 8.55 a . 1it. The medical officer vaccinated 30 natives and rendered aid to 2 others. Collected statistics at this point. On July 5 the medical officer went ashore and treated 12 more natives at Port Heiden. At $2.55 \mathrm{p} . \mathrm{m}$. got under way and stood various courses to westward. On July 6 continued cruising and at 1.05 p . m., anchored in the lee of Operl Island on account of stress of weather.

On July 7, at 6.10 a . m., got under way and set course for Pribilof Islands. On July 8, at 9.15 a. m., anchored off the village, St. George Island. Received mail for Unalaska and delivered mail for this place. Vessel remained at anchor owing to inclement weather. On July 9, at $8.3 \overline{5}$ a. m., proceeded for St. Matthew Island. * * *. At $8.35 \mathrm{a} . \mathrm{m}$. got under way and set course for point on the one hundred and seventieth meridian, 150 miles north of St. Paul Island, to take up the patrol. Continued the patrol above mentioned throughout July 15. Continued patrol on July 16 and sighted 21 seals during the day. On July 17 continued patrolling. Upon receipt of a message that a native was in a critical condition and needed medical assistance got under way at $10 \mathrm{a} . \mathrm{m}$. and proceeded to St. Paul Island. At 6.35 p . m. anchored off the village, St. Paul Island, where medical officer went ashore to treat the above-mentioned native. Landed mail and took on mail for Unalaska. Sighted 36 seals. On July 18, at $3.15 \mathrm{p} . \mathrm{m}_{\text {., }}$ got under way and stood to the westward to continue the patrol. Sighted 32 seals this day. On July 19 continued the patrol. On July 20 proceeded to westward of the Pribilof Islands. On July 21 stood for Unalaska. While on this cruise boarded five vessels, sighted 111 seals, and the medical officer rendered treatment to 14 persons and vaccinated 70 . On July 22 delivered mail to postmaster at Unalaska.

Up to July 30 the Haida lay in harbor undergoing inspection by a board. On July 30 proceeded to Dutch Harbor and filled fresh-water tank. At $8 \mathrm{p} . \mathrm{m}$. cast off, and on July 31, at 7.50 p. m., anchored in Delarof Harbor, Unga Island. On August 1 shifted to dock at the Pacific American Fisheries cannery in Baralof Bay. * * *. Proceeded to Anchorage Bay, Chlgnik Bay, and on the morning of August 5 proceeded to Lazy Bay, Alitak Bay, Kodiak Island, arriving there at 7.50 p . m., to investigate a report of illegal possession of sealskin. Boarded the vessel Lina K, which was anchored in Lazy Bay, but found no evidence. On August 6 a searching party proceeded to Aiktalik Village to make an investigation; meantime the commanding officer with party made search of the village
of Akhiok for evidence of poaching fur-bearing animals; also of stolen articles from Perryville; no evidence was obtained. * * *. On August 9, at 10 a. m., arrived at Unga and delivered prisoner to United States Commissioner. At 2 p. m. got under way for Unalaska and at 3.15 p. m. Angust 10 made fast to dock at Dutch Harbor. While on this cruise boarded four vessels, sighted three seals, and afforded medical aid to seven persons. On the morning of August 11 moved to the dock at Unalaska.

On August 12, at 1.50 p . m., cast off from the dock and proceeded to the eastward and patrolled the fishing banks. On August 13 remained at anchor from $1.34 \mathrm{p} . \mathrm{m}$. to $3.05 \mathrm{p} . \mathrm{m}$. in order to repair machinery. The Japanese fishing schooners Okhotsk Maru and Bering Maru, found at anchor off Port Moller, were boarded, but no evidence of illegal operations was found. On August 14, at $7.55 \mathrm{p} . \mathrm{m}$. , arrived at Naknek anchorage, notified all cannery superintendents of the vessel's arrival, and offered assistance. On August 15, upon request of the superintendent of the Red Salmon Canning Co., settled a dispute between five Mexican laborers and the camery officials, with the result that the offending persons resumed their work. On August 16, at 8.30 a . m., got under way for Sarichef, fell in with the tender Curlew, of the Alaska Packers Association, and took of that vessel an insane man who, having attempted suicide, was in need of immediate medical attention. On August 18, at 6 a. m., anchored off Sarichef. It being deemed necessary to operate on the man taken aboard from the tender Curlew, the Haida got under way and anchored in Dutch Harbor at 5.39 p. m. August 18. While on this cruise boarded 30 vessels, sighted two seals, and rendered medical assistance to one person.

On August 19, at $4.25 \mathrm{p} . \mathrm{m}$., having sent patient ashore, cast off from dock at Dutch Harbor and proceeded to Akutan Harbor; anchored off the native village at $4.40 \mathrm{p} . \mathrm{m}$. Party went ashore and searched the entire village for sealskins, but found none. After completing search the IIaida shifted to berth at dock of Akutan whaling station. Thoroughly searched whaling station, but found no sealskins. Questioned several prominent persons under testimony, but gained no information of value as to illegal sealing. * * *.

On August 29, at 11.30 a. m., left Attu, standing for vicinity of Pribilof Islands to take up patrol, and arrived in patrol limits on September 1. On September 2 patrolled around islands. On September 3 patrolled area about Pribilof Islands. Stood in, and at $1.40 \mathrm{p} . \mathrm{m}$. anchored close to steamship Brookdale, off Tolstoi Point, St. George Island. At $3.15 \mathrm{p} . \mathrm{m}$. got under way and resumed patrol. On September 4, 5, and 6 patrolled about islands. On September 7 set course for Unalaska, and at $7.20 \mathrm{p} . \mathrm{m}$. September 8 secured to dock at Unalaska. While on this cruise sighted 90 seals.

The Haida remained in the vicinity of Unalaska until September 29. During this time repairs were being made to the ressel's machinery. Having received on board mail and supplies for St. George Island, cast off from dock at Dutch Harbor at 11.10 a. m. and stood out of harbor, but, owing to severe gale, accompanied by rough sea, was compelled to lay to. On September 30, at 4 a. m., the gale having abated, set course for St. George Island, and at $3 \mathrm{p} . \mathrm{m}$. anchored off the village. On October 1 delivered mail and stores from Unalaska. At the request of the agent, Bureau of Fisheries, took on board nine passengers for transportation to St. Paul Island. Received on board mail for St. Paul Island. On October 2 remained at anchor, owing to unfavorable weather conditions. On October 3, at 8.30 a . m., the gale having ceased, got under way and stood for St. Paul Island, anchoring in Lukanin Bay at 12.50 p . m. Delivered mail and packages of hardware received from St. George Island. The nine passengers went ashore. Got under way at 2.15 p. m. and stood to the northward. * * *.

Received from the postmaster at Nome mail for Juneau, Seattle, and Tacoma. Got under way at $2 \mathrm{p} . \mathrm{m}$. (October 26) and stood to the southward. Arrived at St. Paul Island, anchoring in Lukanin Bay at 2.35 p. m. October 28. On the morning of October 29 slifted anchorage to Village Cove. Received mail for Seattle and Unalaska. At the request of superintendent, St. Paul Island, took aboard three persons for transportation to Seattle. Also took on board two radio men for transportation to Seattle. Twenty-two others came on board for transportation to Unalaska and one for St. George Island. Received on board 67 packages of provisions from the Naval Radio Station, St. Panl Island, for transportation to the Navy Yard, Puget Sound, Wash. Got under way at $12.45 \mathrm{p} . \mathrm{m}$. (October 29) and stood for St. George Island, anchoring in Garden Cove at 4 p. m. Having received on board mail for Unalaska and Seattle, got under way at $4.40 \mathrm{p} . \mathrm{m}$. and moored to the dock at Dutch Harbor
at $8.35 \mathrm{a} . \mathrm{m}$. October 30. Delivered mail to postmaster at Unalaska and took on board mail for Seattle. One passenger, a native student, came on hoard for transportation to Seattle. On Octoher 31, at $5.35 \mathrm{a} . \mathrm{m}$., cast off from the lock at Dutch Harbor, strod various courses ont of the harbor and through Akutan Pass, then headed for the Strait of Juan de Fuca. Arrived at Port Townsend, Wash., at 1.06 p. m. November 5, 1922.

Algonquin.-On April 15, 1922, at 10.10 a. m., the Algonquin, in company with the Haida, left Seattle, Wash., on her Alaskan cruise. Proceeded up the coast of Vancouver Island, and on the morning of April 16 boarded 22 small vessels engaged in fishing off Barclay Sound, then continued up the coast at at distance of 30 miles off. * * *. Boarded three ressels off Forrester Island on April 27. * * *. Arrived at Unalaska on June 3 at 3 p. m. During this cruise sighted 24 seals. * * *.

During the period from July 4 to 9 the Algonquin remained at Unalaska cleaning boiler and making necessary repairs to the vessel's machinery. Received on board C. H. Huston, Assistant Secretary of Commerce, Ward T. Bower, of the Bureau of Fisheries, and four others to be trinsported to the Pribilof Islands in the interest of the Department of Commerce; also took on board six natives to be sent to St. George Island as laborers for the Bureau of Fisheries. After receiving on board stores and mail for the Pribilof Islands got under way at f.05 p. m. July 10 and arrived at St. George at 11.50 a. m. July 11. The official party left the ressel to transact certain business. Landed mail, stores, and native workmen. Took on board five natives for transportation to St. Paul Island. Upon return of the official party got under way at 4.40 p . m. for St. Paul but owing to thick fog was forced to anchor at 8.15 p . m., near Halfway Point. Got under way at $4.45 \mathrm{a} . \mathrm{m}$. July 12 and steamed for Village Cove, coming to anchor at $5.40 \mathrm{a} . \mathrm{m}$. The official party left the ship at $7.30 \mathrm{a} . \mathrm{m}$. All mail, stores, and passengers for this point were landed. Got under way at 1.15 p . m. and arrived at Dutch Harbor at $12.45 \mathrm{p} . \mathrm{m}$. July 13 . During the vessel's stay in port stores were obtained, fuel-oil and fresh-water tanks were filled, and passengers whose transportation was authorized were taken on board. At 10.05 a . m. July 14 got under way, but owing to heavy sea and threatening storm was forced to return to Dutch Harbor. Made a second start, however, at 2.55 p. m. July 15 but was again forced to return to Dutch Harbor, owing to unfavorable weather conditions. Remained in port until July 17, at which time sailed at $12.40 \mathrm{p} . \mathrm{m}$. and made fairly good progress against the heavy sea. Arrived at Glinka, Copper Island, at 10.30 p . m. July 22 . The official party visited Glinka Village in the forenoon of July 23. Only the native guards were found at this place. Got under way at $11.45 \mathrm{a} . \mathrm{m}$. same day for Preobrajeniya, Copper Island. arriving at $2.15 \mathrm{p} . \mathrm{m}$. A party was sent ashore to interview the superintendent. Finding the food and tobacco supply to be very limited, made up a purse among the officers, crew, and passengers, with which certain staples were purchased from the various messes for presentation to the natives. Necessary work having been completed left Preobrajeniya at 10.45 p . m. July 23 anchoring near North Rookery, Bering Island, at 9.35 a. m. July 24 to await better weather conditions. At $5.30 \mathrm{a} . \mathrm{m}$. the following day proceeded to Nikolskoe, arriving there at $9.50 \mathrm{a} . \mathrm{m}$. July 25 . Landed several passengers. Made another donation of supplies at this point. Got under way at 12 noon July 25 and anchored in Chichagof Harhor, Attu, at 8.15 p. m. July 26. * * *.

From the erening of September 12 until the next date of sailing the Algonquin remainert in port at Unalaska, her personnel prosecuting such duties as completing the annual inspection, serving on boards, transferring stores from storehouses to ship, making minor repairs to vessel, cleaning boiler, and fueling. Having received on board several passengers and mail for delivery at Seattle, the Algonquin got under way from Unalaska at $11 \mathrm{a} . \mathrm{m}$. September 24 and proceeded, via Unalga Pass, for Seattle, where she arrived at 8 p . m. September 30, 1922.

Mojave.-While the Mojave was not assigned to duty as a unit of the regular patrol force, this cutter made an extended cruise within the limits of the scope of operations of the patrol vessels and performed certain duties similar to those devolving upon the vessels of the regular patrol. The Mojave saliled from Seattle. Wash., at 2.30 p . m. June 20, 1922, having on board Assistant Secretary of Commerce C. H. Huston and party, and proceeded, via the inside passage, to Juneau, Alaska. During the trip numerous stops were made in southeastern Alaski. From Juneau the Mojave proceeded to Unalaska, stopping at various places desiguated by Assistant Secretary Huston, and
arrived there at $3.30 \mathrm{p} . \mathrm{m}$. July 10. The Mojave remained at Unalaska until July 16. Assistant Secretary Huston and party had gone aboard the Algonquin for a cruise to the Pribilof Islands. On July 16, at 6 a. m.. the Mojave left Unalaska and proceeded to Dutch Harbor. After taking on board a supply of fuel oil sailed for the Pribilof Islands at $3.35 \mathrm{p} . \mathrm{m}$. July 17. A stop was made at St. George Island, where mail was delivered. Then proceeded to St. Paul Island, where came to anchor at 12.15 p. m. July 19. All mail and supplies from Unalaska were delivered. Assistant Secretary Huston and party having returned on board, the Mojave got under way at $3.30 \mathrm{p} . \mathrm{m}$. and stood for Nome. The Mojave visited such points in northern Siberia as were designated by Assistant Secretary Huston, after which she proceeded to the southward and eastward from Anadir, Siberia, and again entered the patrol zone at $1 \mathrm{a} . \mathrm{m}$. July 31. Arrived at Dutch Harbor at $3 \mathrm{p} . \mathrm{m}$. August 1. At $9 \mathrm{a} . \mathrm{m}$. August 2, having filled tanks with fuel oil, the Mojave steamed out of Dutch Harbor on her return journey. While on this cruise the Mojave maintained a vigilant lookout for seals and seal poachers. A few fur seals were sighted, but no indications of illegal sealing were observed.
l'nalga.-P'ursuant to her orders, the Unalga left Juneau, Alaska. on April 12, 1922, and on April 15 commenced the patrol off Dixon Entrance for the protection of the seal herd and sea otter. Stood to the northward about 30 miles offshore, arriving at Sitka on April 16. On account of inclement weather remained in Sitka Sound until April 23. The first fur seals were sighted on April 19, while the Unalga was anchored in Symonds Bay. On this occasion 35 fur seals were seen close to the entrance of the bay. In this locality it was discovered that Sitka natives had established a sealing camp. On April 23, left Sitka and cruised to the northward, standing offshore during the day and anchoring at night. A considerable number of fur seals were sighted offshore and a few inshore. Seals also were observed in Salisbury Sound, Fortuna Strait, and at the entrance to Khaz Bay. No vessels were sighted offshore and only one in the harbors visited by the cutter. On April 26 the Unalga stood into Cross Sound and proceeded to Juneau for coal and provisions, arriving there on April 28. On May 3 left Juneau and on the 4 th stood out of Cross Sound for a cruise to the westward. Anchored at Yakutat on the night of the 5 th and proceeded to the westward on the morning of the 7 th. On May 8 cruised in the vicinity of Middleton Island for the purpose of boarding fishing vessels. On the evening of May 8 stood to the eastward and arrived at Sitka on May 10. On May 12 investigated the conditions at the natires' sealing camp at Symonds Bay, Biorka Island. Ascertained on arrival that. owing to continuous inclement weather, the natives had only a few opportunities for sealing and, therefore, had taken only 34 skins. It was also learned that the natives who were sealing from a camp on a neighboring island had obtained approximately the same number of skins. An examination of certain sealskins at Biorka Island disclosed the fact that none of the seals had heen shot. On the afternoon of May 12 proceeded to the northward from Sitka Sound, anchoring in Nakwasina Passuge that night. On May 13 visited Kalinin Bay and Leo Anchorage. On May 14 visited Dixon Harbor for the purpose of boarding fishing vessels which frequent these harbors. During this cruise numerous fur seals were sighted along the 100 -fathom curve to the eastward of Yakutat Bay. Very few seals were sighted west of Yakutat, however, and none was seen at a considerable distance offshore of the 100 -fathom curve. Such fishermen as were questioned claimed to have seen numerous seals in April but very few in May. They were of the opinion, however, that the main body of the seal herd had passed to the westward of Prince William Sound early in May. On May 15 the Unalga proceeded to Cross Sound, arriving at Juneau on May 16. On May 20 the Unalga left Juneau, standing out of Cross Sound on the 21st, and cruised to the westward as far as Yakutat Bay. A few fur seals were seen near the 100 -fathom curve off Cape Spencer and Cape Fairweather, but in much smaller numbers than seen on previous occasions. On May 23 proceeded to the southeastward. On May 24 sighted six sealing boats from the mative camps in Sitka Sound, about 15 miles southwestward of Biorka Island. At that time weather conditions were such as to make sealing impossible. Sighted no seals. On May 24 arrived at Sitka. From observation and from the most reliable information obtainable it was decided that the seal herd, with the possible exception of a few stragglers, had passed west of the Unulga's cruising ground. Therefore, on May 25, the patrol was d.scontinued and the cutter leti Sitka for Juneau. During these cruises all fishing vessels fallen in
with were boarded and examined, but no infractions of law were found. The fishermen were closely questioned as to illegal killing of seals, but no evidence in this regard was obtained. Government and Territorial officials, residents. and natives of the towns visited were interviewed for the purpose of verifying rumors of illegal killing of seals, both by natives and by fishermen, but no one advanced any information with regard to these supposed violations of law. Very few fishing vessels were found on the fishing banks. It was reported, however, that, owing to a poor market for fish, an unusually small number of vessels were engaged in fishing operations during the spring. So far as could be determined no sea otters have been seen in the waters of southeast Alaska for a number of years.
Snohomish.-The Snohomish maintained an active patrol of the waters between the Columbia River and Dixon Entrance for the protection of the seal herd during its migration northward. The cutter left Port Angeles, Wash., on April 8, 1922, and arrived at Astoria, Oreg., on April 9. On the following day began the patrol off the Columbia River entrance. From that date until June 1 the Snohomish maintained a continuous patrol of the waters named. The patrol was not discontinued, however, until it was ascertained beyond doubt that the seal herd had passed the section of the coast which the Snohomish was assigned to patrol. While engaged in the patrol duties the commanding officer of the cutter interviewed various persons with regard to sealing along the coasts of British Columbia and Washington. Among those consulted were the Indian agent, the Weather Bureau observer, and the general storekeeper, all of Neah Bay, the Indian agent and school-teacher at Quillayute, Wash., various Indians engaged in sealing off the coast of Washington, the collector of customs at Port Alberni, British Columbia, the commanding officer of the Canadian fisheries steamer Thiepval, and various fishermen. It appears that the Quillayute Indians of Qaillayute, Wash., and the Makah Indians of Neah Bay, Wash., are the only tribes that engage in sealing along the Washington coast. Both of the above-mentioned villages were risited and investigations conducted. The Makah Indians seal from Ozette, which is more advantageously located to the sealing grounds than Neah Bay. It was ascertained that only two Indians remain of the Ozette tribe. During the current season 18 canoes were sealing out of Quillayute and 10 out of Ozette. When the weather is favorable the natives leave their villages abot $3 \mathrm{a} . \mathrm{m}$., paddle out to sea for a distance of 20 to 30 miles, hunt for four or five hours, and return to their villages by dark. From 10 to 12 hours each day is spent going to and from the sealing ground. The commanding officer of the Snohomish reports that, owing to the treacherous waters in the vicinity of Cape Flattery, canoes are caught frequently offshore in a gale, and being unable to land through the surf the sealers' lives are thus endangered. The commanding officer heartily concurs in the recommendation made not long ago by an official of the Indian Service, namely, that the Indians be permitted to take seals with firearms from motor boats, and that their total catch be limited. It appears that the natives are very jealous of their exclusive prerogative of taking sealskins and are quick to report any vessels that they suspect are conducting illegal sealing operations. No evidence has been found that persons other than Indians are engaged in sealing or that the Indians are employing illegal methods in killing the animals. The commanding officer of the Canadian fisheries steamer Thiepcal reports that the bulk of the seal herd passed the British Columbia coast during the first two weeks of May. He also reports that the only sealing operations conducted along the British Columbia coast is between Clayoquot Sound and Kyuquot Sound, such operations being carried on by the natives in that locality, aud that very little sealing has been done this year, as the Indians can obtain better pecuniary returns by fishing. He further states, however, that he has no evidence to substantiate the belief that seals are being taken illegally.

Summary.-In summarizing the season's operations the Bering Sea patrol commander reports that a number of trips were made over the fishing banks in the southeastern part of Bering Sea (Slime and Baird Banks), also Bowers and Petrel Banks, in the southern part of Bering Sea, and over Portlock, Albatross, Sanak, and Davidson Banks, in the North Pacific Ocean, for the purpose of determining whether vessels engaged in fishing were operating In accordance with the terms of the convention for the preservation and protection of fur seals; also for the purpose of rendering medical aid and other assistance to the fishing vessels. While on these cruises mail received from the
postmaster at Unalaska was delivered to the fleet of fishing vessels. In a number of cases medical assistance was afforded to the fishermen. One man in need of hospital treatment was transported to Unalaska and transferred to the Jesse Lee Home, which institution maintains a hospital for the treatment of sick seamen and others. All assistance possible was given to the fishing fleet without neglecting other important duties required of the patrol force. During the cruises of the several cutters all vessels fallen in with were boarded and examined, but no evidence was found of illegal sealing. The patrol vessels at all times cooperated with the Government agents on the Pribilof Islands while cruising in the vicinity. In April mail, supplies, and passengers were transported from Seattle, Wash., to St. Paul Island and St. George Island. During the season mail and supplies for the islands were delivered as promptly as possible after each arrival of the mail steamer at Unalaska. On request of the agent of St. Paul Island transportation between St. Paul Island and St. George Island and between Unalaska and the islands was afforded to various officials, working parties, and natives. All villages on the Aleutian Islands were visited several times during the season and conditions investigated, vital statistics recorded, and medical assistance afforded to the sick. Aside from various other duties performed by the cutters assigned to patrol duty in Alaskan waters, there were transported for other departments of the Government 163 tons of freight, consisting of general merchandise, lumber, provisions, oil, gasoline, etc. During the cruise of the various cutters 38,729 miles were covered and 143 vessels boarded.

SEALING PRIVILEGES ACCORDED ABORIGINES.

Early in the year the form of certificate used in authenticating sealskins lawfully taken by Indians dwelling on the Pacific coast of the United States was revised. A certificate in triplicate is prepared for each skin by the officer authenticating the same, the original going to the owner of the skin, one copy to the office of the Bureau of Fisheries at Seattle, Wash., and one copy to the Washington (D. C.) office. When authenticated skins are shipped the original certificates must accompany them, and when the skins arrive at a port of entry the customs authorities will forward the original to the bureau's Seattle office, which will advise in regard to the legality of the shipment and forward copies of the certificates to the consignee. When the skins are dressed and dyed, the company doing the work shall indorse the owner's copy of each certificate to show the date and by whom each skin was dressed and dyed and shall then send them to the owner of the skin. The dresser and dyer will, before returning any skin to the owner, plainly and indelibly stamp it as follows: "U. S. Authenticated Certificate No. -", and the trade-mark or name of the dresser and dyer. Provision is made on the certificates for recording transfers in ownership of the skin. When the skins are authenticated, a numbered leather tag is attached to each skin, the number on the tag corresponding to that placed on the certificate. The tag will be removed by the dresser and dyer and forwarded to the Commissioner of Fisheries, Washington, D. C., together with the name and address of the person from whom the skin was received.

A total of 1,633 fur-seal skins was authenticated as having been lawfully taken in 1922 by Indians in the waters off the coasts of Washington and of southeast Alaska. Of the 1,633 skins 1,107 were taken during May and June by the Indians of Washington and were authenticated by A. D. Dodge, superintendent, United States Indian School, Neah Bay, Wash. Of these 641 were reported as having been taken from male seals and 462 from females. The sex of the remaining 4 seals from which skins were taken was not reported.

The rest of the 1,633 skins, 526 in number, were taken in the vicinity of Sitka, Alaska, mostly, if not entirely, by Indians who resided in that general locality. Of these 409 were reported as having been taken from male seals and 116 from females, while the sex of one was not determined. The earliest reported take was April 26 and the latest June 3.

Japanese sealskins delivered to the united states.

The United States Government's share of the sealskins taken on Robben Island in 1920 was 56. These were received at St. Louis A pril 26, 1921, and after having been dressed, dyed, and machined were sold April 3, 1922. They brought $\$ 1,276$, an average of $\$ 22.79$ each.

The United States Government's share of the sealskins taken on Robben Island in 1921 was 55 skins and in 1922, 60 skins. These were shipped to St. Louis to be dressed, dyed, and machined and sold for the account of the United States. The 55 skins of the 1921 take were received at St. Louis in the latter part of October, 1922, the 60 of the 1922 take in February, 1923.

FUR-SEAL CENSUS, PRIBILOF ISLANDS, 1922.

By Edward C. Johnston.

The annual census of the fur-seal herd resorting to the Pribilof Islands in 1922 was taken at the height of the season. The harem count was made on St. Paul Island first; the count of pups on St. George Island first. Only one round trip between the islands was necessary. The pups were counted on all rookeries on both islands for the first time since 1916.
J. M. Orchard, school-teacher on St. George Island, assisted in the pup count on both islands. H. A. Peterson, sealing assistant on St. Paul Island, aided in the pup count at Northeast Point on St. Paul Island. The superintendent and the agents of both islands cooperated in providing assistance for the erection of the counting towers and in assigning to the census work the most intelligent natives. On St. Paul Island all but one of the native assistants were taken from the temporary employees, both because of their better understanding of English and their willingness, due to comparative ignorance of seal life, to obey orders. The fisheries vessel Eider furnished transportation between St. Paul and St. George Islands.

In 1917 the rookery areas were plotted upon the series of rookery charts. In 1922, in conjunction with the harem count, the rookery areas were again charted. A new series of photographs of the rookeries was made also, using the same stations as in 1917.

In addition to the two counting towers already in position on Reef rookery nine new ones were erected in the spring of 1922-two on Little Zapadni rookery, three on Zapadni rookery, and three on Vostochni rookery, all on St. Paul Island, and one on Staraya Artil rookery on St. George Island. Wooden markers were placed on various rookeries where they would be of service in the harem count. Construction of the towers and the placing of the markers were completed before the seals arrived.

PUPS.

Since 1916, when the last complete pup count was made, the total number of pups and of cows (by inference) had been estimated from actual counts made upon a few rookeries only. Due to the great yearly variation in the number of seals present on any one rookery, it would be possible for the herd, as a whole, to increase, while the number of seals upon the rookeries where pups were counted decreased. The estimate of pups on the uncounted rookeries had been based partly upon the average harem of all counted rookeries and partly upon field observations extending over a number cf years.

In order to check the accuracy of these estimates since 1916, it was considered advisable to make another complete pup count, and, because of the increasing size of the seal herd, further delay would have been disadvantageous.

The pup count began on St. George Island on July 26, four days earlier than in 1921. There was no difficulty from the harem bulls, as the large average harem made it safe to go over the rookeries at such an early date. The count was completed on August 7 on St. Paul Island. Although the harems were not counted on Sivutch rookery, it was possible to make the pup count there. The results were more than satisfactory in every way.

Up to July 15 the weather on St. Paul Island was the driest that had occurred in recent years. Had the dryness continued through the pup count the fatalities due to suffocation would have been extremely large. It was, indeed, fortunate that only six pups were killed as a result of the counting. To balance this loss there were rescued from crevices and holes during the count 11 cows and about twice that number of pups, all of which would have died had they not been discovered and released. Six albino pups were noticed during the count.

Of the total of 185,914 pups in the seal herd in 1922, 95 per cent were actually counted. The remaining 5 per cent were necessarily estimated. On some of the rookeries there are areas made up of large bowlders under which the pups when they are disturbed pack themselves as closely as their strength allows. If the hole is a small one, they can be pulled out and counted, but otherwise there is no way to determine their number accurately. On one rookery on St. Paul Island a section was found with round rocks 2 to 3 feet in diameter. The holes between these rocks were 2 to 4 feet deep and pups falling into them were unable to climb out. To have counted the pups over this section would have caused many of them to fall into the holes where they would have starved to death. During the latter part of the count small groups of pups were on the edge of the water and it was impossible to make a perfect count of them. The number of pups thus estimated, however, was less than 10,000 , conservatively figured.
C. E. Crompton reports, in the St. George Island journal, under date of November 3, 1921, the occurrence of the birth of a seal pup in the month of October. As practically all seal pups are born before August 7 such a late birth is remarkable. The journal entry follows:

* * * During the work on the rookeries to-day a very young pup was noticed. The age of this pup was estimated at from 2 to 3 weeks and the writer feels certain that it was not more than 3 weeks of age at the most. It is to be regretted that this birth was not observed, as it is probably the latest one on record. The pup seen to-day could not yet swinn and will most certainly have difficulty following the migrating seals in their journey south at the end of this month

Distribution of pups on Pribilof Islands in 1922 and comparison with distribution in 1921.

The results of the complete pup count show conclusively that the estimates of pups made annually since 1916 have been, in general, correct. In fact, the largest differences between the percentage of increase in 1921 and that in 1922 are found on the rookeries that have been counted both years. Polovina and Polovina Cliffs rookeries, counted in 1920 and 1921, showed a percentage of increase of 1.08 and 8.24 , respectively, in 1921. In 1922 the increase was 44.46 per cent for Polovina and 41.8 per cent for Polovina Cliffs. Reef rookery, next to Vostochni the largest rookery on the islands, was estimated in 1920 to have increased 5.26 per cent and in 1921 to have increased 4.23 per cent. The count of 1922 showed an increase of 3.3 per cent. The estimate of pups on Vostochni rookery in 1921 showed an increase of 22.33 per cent, but the count in 1922 showed a decline of 7.18 per cent. It may be that the 1921 figure was too high, but the difference between the 1921 and 1922 figures for this rookery is less than the difference between those for Polovina (counted in both years), proving that it is possible for Vostochni to vary as the figures show.

Since the variation in the annual rate of increase on one rookery and the variation in the increase of the different rookeries in the same year are so great, a constant rate of increase can not be given for any one rookery nor can the same rate of increase be applied
to every rookery. The figure must be based largely upon yearly observations of rookery life.

The number of pups on St. George Island in 1922 is but little more than was estimated in 1921, the increase being 0.89 per cent. In 1921 the per cent gain was estimated to be 10.47, which was probably a little high. The total count of 1922 for both islands showed an increase of 5.24 per cent over the estimated figures of 1921.

That the number of dead pups on the rookeries was small was noticed early. In 1921 the percentage of dead pups was estimated to be 2.48 for both islands. In 1922 it dropped to 1.73, derived from actual counts. It is not believed that the 1921 figure was too high. From the top of the counting tower near rock 17 on Reef rookery in 1921 there were counted 22 dead pups just before the census of harems was taken. In 1922 at approximately the same time only 8 dead pups could be seen from the same tower. Of the 22 rookeries on both islands 9 show small increases and 13 show decreases in the percentage of dead pups. On Zapadni Reef rookery, St. Paul Island, the percentage of dead dropped from 3.19 (actual count) to 0.8 (actual count). On Gorbatch rookery it dropped from an estimated percentage of 2.74 to an actual percentage of 0.86 . It is believed that the absence of rain and the constant temperature during June and the greater part of July tended to reduce the death rate of pups on the rookeries. The increase in the average harem also tended to decrease the percentage of dead pups.

cows.

The table showing the distribution of pups will show the number of cows on the various rookeries, since the number of breeding cows is the same as the number of pups. The various percentages of increase or decrease of total pups will also apply to the cows. In all 90 dead cows were found during the pup count. This is a decrease of 29 from the number estimated in 1921. It is a little less than 0.05 of 1 per cent of the total number.

BRANDED SEALS.

Cows that as pups were branded with a single bar across the back between the years 1900 and 1903 continue to reappear on the rookeries of St. George Island. Four animals of this series were observed and each was raising a pup. These animals were at least 19 years old. When it is understood that seals born in 1903 passed through eight years of pelagic sealing, the continued presence of these cows is all the more remarkable.
Several cows bearing the 1912 brand appeared on St. George Island, and probably some were present on St. Paul, although none was observed there. Four bulls branded as pups in 1912 with the T-brand on the top of the head were also seen on St. George Island, each in charge of a harem.

HAREM AND IDLE BULLS.

The count of harem and idle bulls was made on St. Paul Island from July 16 to 20 and on St. George Island from July 22 to 23. The harems had begun to break up before the count was entirely
finished and the harem masters had begun to leave their positions for the hauling grounds to rest and recuperate. As long as the average harem remains large there will be an early loss of harem formation with the consequent influx of idle bulls. In the future the counting dates on St. George Island should be the same as on St. Paul (July 16 to 20), or if there is no one on St. George available to make the count the census should start on St. Paul July 14 instead of 16, as at present. For the second successive season inclement weather has prevented a harem count on Sivutch rookery.

Harem and idle bulls and percentage of idle bulls to harem bulls compared to average harem, Pribilof Islands, 1922.

Rookery.	Date.	Harem bulls.	Idle bulls.	Total bulls.	Per cent idle to harem bulls.	A verage harem.
St. Paul Island:						
Kitori...	July 20	158	10	168	6. 33	37. 56
Lukanin.	-do.....	96	12	108	12.50	36. 92
Gorbatch.	July 16	219	13	232	5. 94	64.46
Ardiguen.	. do.....	24	3	27	12.50	41. 83
Reef...	do	425	40	465	9.41	59.89
Sivutch		${ }^{1} 171$	${ }^{1} 27$	${ }^{1} 198$	15. 79	47. 73
Lagoon.	July 20			8		34. 13
Tolstoi.	July 19	365	22	387	6. 03	53. 42
Little ¿apadni	.do.....	169	29	198	17.16	52.61
Zapadni Reef.	do.....	17		17		29.24
Polovina.	July 17	174	52	226	29.89	50.40
Polovina Cliffs	. .do.....	103	19	122	18. 45	38.34
Little Polovina	do.-	43	17	60	39. 53	35.26
Morjovi.	July 18	103	50	153	48.54	38.04
Vostochni.	.do.....	803	169	972	21.05	46.46
Total.		3,184	493	3,677	15.48	49.90
St. George Island:						
North.......	July 22	132	5	134	1.52	78.52
Staraya Artil	July 23	83 21	5	88	6.02	85. 01
South...	. d do.....	4	5	9	125.00	58.00
East Reef	July 22	49	2	51	4.08	48.57
East Cliffs.	. .do..	89	1	90	1.12	68.55
Total.		378	15	393	3.97	71.50
Total (both islands).		3, 562	508	4,070	14.26	52.19

${ }^{1}$ Weather had prevented a count of bulls on this rookery since 1920 , when the number was 190 . Applying the average decrease of harem bulls on all other rookeries on St. Paul lsland (10 per cent) there should have been approximately 171 harem bulls in 1922. In the same manner the number of idle bulls is estimated to have been 27 .

AVERAGE HAREM.

The average harem is computed by dividing the number of cows (females 3 years of age or over) by the number of harem bulls. The number of cows is obtained from the pup count, there being one cow for each pup.

The following table shows the average harem in 1922 for each rookery, for each island, and for the herd as a whole. For convenience the numbers of cows and harem bulls are also shown. The average harem on St. Paul Island increased from 43.53 in 1921 to 49.90 in 1922, on St. George Island from 57.49 in 1921 to 71.50 in 1922, and for the entire herd from 45.19 in 1921 to 52.19 in 1922.

Average harem in 1922 for all fur-seal rookeries on Pribilof Istands.

Rookery.	Breeding cows.	Harem bulls.	Average harem	Rookery.	Breed ing cows.	Harem bulls.	Average harem.
St. Paul Island: Kitovi.	5,934	158	37.56	St. Paul Island-Con. Vostochni. \qquad	37,308	803	46.46
Lukanin	3,544	96	36.92				
Gorbatch	14,117	219	64.46	Total	158,886	3,184	49.90
Ardiguen	1,004	24	41.83				
Reef.....	25, 452	425	59.89	St. George lsland:			
Sivutch	8, 161	171	47.73 34	North................	$\begin{array}{r}10,364 \\ 7 \\ \hline 056\end{array}$	132	
Lagoon.	273 19.497	8 365	34.13 53.42	Staraya Artil.........	7,056 895	83 21	85.01 42.62
Zapadni	16,100	306	52.61	South.	232	4	58.00
Little Zanadn	8,846	169	52.34	East Reef	2,380	49	48.57
Zapadni Reef.	497	17	29.24	East Cliff	6,101	89	68.55
Polovina....	8,770	174	50.40				
Polovina Clifis	3,949 1,516	103 43	38.34 35.26	Tot	27,028	378	71.50
Morjovi.......	3,918	103	38.04	Total (both islands)	185,914	3,562	52.19

ANNUAL INCREASE OF THE FUR-SEAL HERD.

The increase in the total number of seals in 1922 over 1921 was 23,519 , or 4.04 per cent, as compared with an increase of 28,725 , or 5.2 per cent, in 1921 over 1920.

The minimum reserve of 5,000 three-year-old males for breeding purposes as required by law will be wholly inadequate in the future for the proper upbuilding of the fur-seal herd. Not less than 10,000 seals of this class must be reserved annually in order to provide sufficient male strength.

COMPLETE CENSUS.

The figures given below are as nearly correct as it has been possible to make them. They are based upon a complete pup count on all rookeries, a harem count in which 11 elevated counting stations were used, and a close approximation of the numbers of those classes of seals that can not be counted. The seal herd shows a satisfactory growth, although the decrease in number of breeding bulls and the increase of average harem should be corrected as soon as possible. This can be done, of course, by reserving a large number of 3 -year-old males.

Details of census of fur seals, Pribilof Islands, as of August 10, 1922.

RECAPITULATION.

FISHERY INDUSTRIES OF THE UNITED STATES.

REPORT OF THE DIVISION OF FISHERY INDUSTRIES FOR $1922 .{ }^{1}$

By Marden F. Taylor, Assistant in Charge. ${ }^{2}$
(With the collaboration of the division staff.)

CONTENTS.

[^17]
INTRODUCTION.

- The depression that existed in the fishery industries in 1920 and 1921 was, in some respects, relieved in 1922. The vessel landings in New England showed a slight increase in quantity, but because of lower prices the aggregate value was slightly less than that of 1921. At Seattle both quantity and value were about the same as for 1921, although the distribution of catch among the species was considerably different. The products of the fisheries of California amounted to $168,969,733$ pounds, an increase of 32.3 per cent over the 127,728,623 pounds in 1921. The amount of fish frozen was $75,453,674$ pounds, a decrease of 4.9 per cent from the amount frozen in 1921. The coldstorage holdings, especially in the latter part of the year, were smaller than they had been for several years. The indications are that this decrease in freezing and cold storage is due to a better market demand rather than to poorer supply.

There were some gratifying increases in the canning of fishery products. There was a decrease in canned shrimp; all other canned fishery products for which statistics are available increased. The canned salmon increase was due entirely to Alaska; there was a sharp decrease in the pack in the Pacific Coast States. The total pack of canned salmon was $5,234,898$ cases, valued at $\$ 38,420,717$, an increase of 45.4 per cent in quantity and 53.1 per cent in value over 1921. The pack of all canned fishery products amounted to $10,094,549$ cases, valued at $\$ 60,464,947$, an increase of 35.2 per cent in quantity and 29.6 per cent in value. The exports of canned fish in 1922 were $88,416,266$ pounds, valued at $\$ 10,271,740$, which is equivalent to 18 per cent in quantity and 17 per cent in value of the total pack.

The market surveys of Boston and Seattle brought forth some interesting and significant facts. Particularly significant is the fact that over half of the total amount of fish landed at Boston is consumed in Massachusetts, and over 80 per cent is consumed in Massachusetts and neighboring States. This indicates that little advantage is taken of the potential markets inland by the New England fisheries. From Seattle, however, the bulk of the shipments are to the interior and eastern markets.

SUMMARY OF OPERATIONS.

During the year, statistical canvasses were made of the fisheries of New York, New Jersey, Pennsylvania, and Delaware for 1921, and the take of shad and alewives in the Potomac and Hudson Rivers in 1922, and of the canned fisheries products and by-products of the United States for 1922. The last was confined to the number of plants operated, the raw products utilized, and the quantity and value of the finished products. The landings of the vessel fisheries at the ports of Boston and Gloucester, Mass., Portland, Me., and Seattle, Wash., have been collected as heretofore, and published as monthly and annual bulletins. In addition, there have been published monthly bulletins showing the amount of the several species of fish frozen and held in cold storage in the several sections of the country. The results of the canvasses mentioned, and summary analyses of the freezing and cold-storage data are embodied in the present report, together with quantity of fishery products taken in

California in 1922, the fishery products received at the Municipal Fish Wharf and Market, Washington, D. C.

Market surveys were made of the two primary producing markets of Seattle and Boston, and the results published as documents of this bureau.

In fisheries technology, notable progress has been made in net preservation, brine freezing of fish, and in the methods of canning sardines.

PUBLICATIONS OF THE DIVISION.

During the calendar year 1922 the following publications, prepared in this division, were issued. This list does not include the monthly statistical bulletins for Boston and Gloucester, Mass.; Portland, Me.; and Seattle, Wash.

DOCUMENTS.

Principles involved in the preservation of fish by salt; by Harden F. Taylor, 8°, 22 pp., Document No. 919.
Deductions concerning the air bladder and the specific gravity of fishes; by Harden F. Taylor, royal $8^{\circ}, 6$ pp., Document No. 921.

Trade in fresh and frozen fishery products and related marketing considerations in Seattle, Wash.; by L. T. Hopkinson, $8^{\circ}, 16$ pp., Document No. 930.

Fisheries and market for fishery products in Mexico, Central America, South America, West Indies, and Bermudas; by Lewis Radcliffe, $8^{\circ}, 105 \mathrm{pp} ., 1$ text fig., Document No. 931.

Fishery industries of the United States. Report of the division of statistics and methods of the fisheries for 1921; by Lewis Radcliffe, \mathcal{S}°, 136 pp., 8 figs., Document No. 932.

ECONOMIC CIRCULARS.

Trade in fresh and frozen fishery products and related marketing considerations in Minneapolis and St. Paul, Minn.; by L. T. Hopkinson, 8°, 21 pp., Economic Circular No. 55.

STATISTICAL BULLETINS.

Statement, by fishing grounds and by months, of quantities and values of certain fishery products landed at Seattle, Wash., by American fishing vessels during the calendar year 1921. Statistical Bulletin No. 516.

Statement, by months, of the quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American and Canadian fishing ressels, during the calendar year 1921. Statistical Bulletin No. 517.

Statement, by fishing grounds, of the quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American and Canadian fishing vessels, during the calendar year 1921. Statistical Bulletin No. 518.

Fisheries of Maryland and Virginia, 1920. Statistical Bulletin No. 520.
Canned fishery products and by-products of United States and Alaska, 1921. Statistical Bulletin No. 526.

IMPROVEMENTS IN MERCHANDISING FISHERY PRODUCTS.

There has been evident, particularly for the past year or two, an increasing perception by the fish industry of the necessity for better methods of merchandising fish. This field of activity includes not only technical methods of preparing, shipping, and handling fish, but also favorable publicity that will increase the demand for and consumption of fish.

FILLETING FISII.

Perhaps the most conspicuous expression of this growing demand for better technical methods is to be found in the recent development of filleting fish at the point of production. The practice began in New England, by way of an effort to stimulate a better demand for haddock, and has since been taken up at New York and other points.

The haddock are split, the backbone is removed, and the fillets are brined about 20 minutes in strong brine. Some cracked ice is added to the brine, if necessary, to keep it cool. After having been brined, the fillets are each wrapped in a vegetable parchment paper and are laid in pans or other vessel to be stored over night in a cold room. The temperature of the room is above $32^{\circ} \mathrm{F}$., so as not to freeze the fillets. Pans of fillets, without lids, are stacked one above the other so as to press the fillets firmly, but not excessively.

Next morning the fillets are packed in tinned lard cans, each can containing about 30 pounds of the fillets. The lid is put on and the can is put into a wooden packing case, surrounded by cracked ice. These cans are shipped to retailers, delicatessens, butchers, and others, who dispose of one or more cans in aach week's trade.

A variation in this practice is, instead of wrapping each fillet individually, to pack the fillets in the can in layers, following each layer with a cut circle of parchment paper.

Among the advantages of filleting fish are: (1) The entire piece purchased by the housewife is edible, and the price charged for it is fully competitive without making any allowance for waste; (2) there is no scaling, gutting, and cleaning to be done-a very disagreeable task to most women; (3) the shipping weight of the fish is reduced; (4) the waste, which is usually around 50 per cent of the round fish, remains in the hands of the producer, where it may be possible to use it economically; (5) fillets receive a more careful and cleanly handling all along the line, from producer to consumer, for the reason that they are wrapped, are more delicate, and will not endure the rough handling that round fish are subjected to.

It might be supposed that the retail customer would object to this method of distributing the fish, on the ground that he has little or no means of determining the identity of the fish, or judging its quality, since the distinguishing marks of both identity and quality are gone. Yet such an objection, if it exists, has not prevented a very rapid growth in the past year of this method of distributing fresh fish.

MARKET SURVEYS.

During 1922 the bureau continued its surveys of the fish industry of important or representative cities. In 1921, the surveys were of consuming markets; in 1922, two primary producing markets, Scattle and Boston, were studied, Seattle for 1921, and Boston for the month of September, 1922.

Seattle, with a population of 315,312 , is the principal landing port for the northern Pacific fisheries. More than 83 per cent of the fish business is in salmon and halibut. The remaining business is in sablefish, rockfish, smelts, crabs, oysters, and shrimp, with 26 others in moderate or limited demand. There are 19 wholesalers and 48 retailers in Seattle, a ratio of 1 retailer to each 6,569 people. The pro-
duction of fish (that is, fish landed) at Seattle amounted to $45,246,000$ pounds. Of fresh and frozen fish, $29,778,000$ pounds were shipped to points in the United States and foreign countries. Part of this was in less-than-carload shipments, but 635 full carloads went forward from Seattle in 1921, 78.5 per cent of which went to seven cities-Chicago, New York, Kansas City, Boston, Omaha, St. Louis, and Buffalo. Fish were frozen in Seattle in 1921 to the extent of $12,025,501$ pounds. Thirteen carloads of oysters were received into Seattle from eastern points.

Boston, with a population of 748,060 , is the principal landing port for the fisheries of the North Atlantic. It is also the greatest fishing port in the United States and is one of the world's fishing ports. More than 80 per cent of its fishing business, on the basis of quantity, is in cod, haddock, halibut, mackerel, swordfish, and lobsters, a very different group of fish from those prominent in Seattle. A moderate or limited business is also done in alewives, butterfish, carp, flounders, salmon, smelts, suckers, clams, crabs, oysters, and some 54 other species. In Boston there were 108 wholesale fish dealers and 171 retailers, there being 1 retailer for each 6,926 people. The production or landings of fish in the year ended September 30, 1922, was $101,949,725$ pounds, valued at $\$ 4,051,350$. In the month of September, 1922, the following products were landed at Boston: Fish, 13,244,074 pounds; lobsters, 616,355 pounds; clams, 338,964 pounds; oysters, 10,068 gallons or 80,554 pounds; scallops 478 gallons or 3,824 pounds. The amount of fish frozen during 1922 was $8,946,183$ pounds, and the amount distributed from Boston during September, 1922 , was $11,056,709$ pounds. In the month of September, 56 per cent of all Boston's fish was consumed in Massachusetts; and in Massachusetts, Rhode Island, Connecticut, New York, and Pennsylvania, 89 per cent of Boston's fish was consumed. Boston is thus unlike Seattle in this respect, where the great bulk of shipments goes to distant cities.

TECHNOLOGICAL INVESTIGATIONS.

As has been pointed out in previous reports of this division the need for technological investigations is urgent. This fact is evident both from the consumer's and the producer's standpoints. The former may wonder why, when the fisherman spends no money to raise his crop of fish, the price approaches that of meats produced at much expense; the producer, on the other hand, readily recognizes that the serious limits set upon his business by the perishable character of his goods and by the large overhead expense prevent an economic and profitable operation and an increase in the demand.

Fish are about 50 per cent edible, the remaining 50 per cent being heads, fins, viscera, etc. In the case of cattle and swine such waste is kept and utilized at a considerable profit. There is little doubt that similar use can be more extensively made of waste from fish, if processes are made arailable by technological research. It is also evident to the producer of fish, if not to the consumer, that the great total losses in transportation increase the price of fish without increasing its value; much of the loss resides in inferior quality after transportation, which stifles demand. The obvious remedy for this condition is to devise methods of transportation of fish that will prevent both
the total losses and the losses of quality in transit, so that the consumer may be offered a more attractive article at a competitive price, and that will stabilize the business generally. A reduction in the fisherman's overhead expense for nets will make the business more profitable and stable at its foundation and help to compensate for the arduous character of the fisherman's calling. We are concerned here, not so much with the immediate profits of the fish business, how large they are, and who gets them-important as these questions arebut with the more significant fact that one of our large natural resources stands poorly developed, because of waste, excessive overhead expenses, and difficulty in reaching the great inland markets with a first-class product. The waste can not be avoided, the overhead expenses can not be reduced, and the distant markets can not be reached except through scientific technological investigations. These have been conducted as far as possible during the year with such funds and personnel as were available, as will now be discussed inore particularly.

BRINE FREEZING.

In the report of this division for 1921 mention was made of the status of brine freezing at that time; it was pointed out that in principle brine freezing seemed to have received sufficient test and approval by various scientific investigators and that the chief problem ahead was the engineering one of constructing a plant that would freeze fish on a large commercial scale, with a minimum of labor and expense and in a sufficiently simple way to be practicable in the ordinary fish freezer. The requirements of such a plant are: (1) It should apply brine at the lowest possible temperature to the entire surface of the fish; (2) the brine should move at the highest practicable speed past the surfaces of the fish; (3) the fish should be held straight and trim during the freezing; (4) operation should preferably be continuous and automatic; (5) the other necessary operations of washing and glazing should be performed, if possible, without additional handling. The prospects of meeting these requirements seem good in an experimental plant that has been constructed in the Fishery Products Laboratory in Washington. Fish are suspended on a horizontal bar and while so suspended are conveyed by mechanical means successsively through a shower of water for washing, through a violent shower or rainstorm of brine at a very low temperature for freezing, and again through a shower of water that washes off the brine and applies a glaze. The fish enacrge from the apparatus frozen and glazed, ready for storage or shipment. During 1922 the plant was constructed and to some extent tested. Its operating characteristics appear promising, but it will need to be given more thorough trial before definite conclusions can be reached.

PRESERVATION OF NETS.

Mention was made in the report of this division for 1921 of the work undertaken on the preservation of fish nets. Extensive experiments brought out interesting and useful data concerning many preservatives in common use, and also concerning materials not hitherto used
as net prescrvatives. These data are published in a separate document. ${ }^{3}$

Perhaps the most significant result of the work was the discovery of the valuable properties of copper oleate as a net preservative. This substance, from its fundamental properties, seemed to offer good prospects as a net preservative and was accordingly included in various combinations among the substances tested. It was dissolved in gasoline or benzol and the twine was dipped in the solution. By testing before and after various periods of exposure it was found to preserve lines well, to reduce if not entirely prevent fouling by barnacles and the like, and in addition to these two fundamental essential properties, to affect stiffness and increase weight of twine very little. It does not diminish mechanical wearing quality of twine, as many other preservatives do, does not shrink the line appreciably, and is not very expensive or difficult to apply. Announcement of the results was made at the annual meetings of the American Fisheries Society at Madison, Wis., September 6, 1922, and the United States Fisheries Association at Atlantic City, N. J., September 22, 1922, followed by short publications of summaries of results in the fishery trade journals. The interest of the fishing industry in this work was immediate and widespread. The next step in the investigation was a practical trial of the material by several fishermen in different localities, to whom the bureau supplied a sufficient amount of copper oleate for the tests, with directions for use. About 700 pounds of copper oleate were made for this purpose in the Fishery Products Laboratory.
Meanwhile, several companies entered into the manufacture of copper oleate for a fish-net preservative, and much of it has been sold and is in use by fishermen. The 1923 season will probably be conclusive of its actual value. Further experiments are in progress on a still larger scale, including several other proposed preservatives and also combinations of copper oleate designed to make it more suitable for use in fresh water, since earlier experiments were less satisfactory in fresh water than in salt water.

CANNING SARDINES.

By far the greater part of sardines canned in California are packed in sauce, principally tomato. The usual procedure is to clean the fish, brine, dry, fry in oil, cool and pack the fish, exhaust, seal, and retort the cans.

In this process, the most objectionable feature is the frying in oil. This part of the process was studied at the San Pedro (Calif.) laboratory in 1921, and the results of that investigation were discussed in the division's report for that year. The results hare since been published by the California Fish and Game Commission. ${ }^{4}$ The principal conclusion arrived at in that work was that the fry bath is responsible for the existence in canned sardines of a rancid, indigestible oil, which greatly detracts from the quality of the goods. Since the primary purpose of the fry bath is to cook out the excess water from the fish before canning, the problem resolved itself into one of removing the

[^18]water by some other means. Three methods of doing this were tried at the San Pedro laboratory, namely, steaming, cooking in brine, and packing raw after brining and drying.

Steaming has been tried before-in fact, the method was at one time practiced on a considerable scale in California, but the practice was discontinued. Later, the method was practiced at Santa Cruz and Monterey, and the product found favor with the public. Steaming causes the skin to break, both during the processing and after the cooling. This effect was diminished by brining and drying, and oiling the trays helped to prevent the fish from sticking to the trays. A product was thus prepared that was apparently the equal, if not the superior, of the usual fried-in-oil product.

Good results were obtained also by precooking the fish in strong brine instead of oil. The usual operation of brining the fish is omitted. Preliminary drying was necessary, however, to prevent the skins from breaking during the cooking, and precautions were also necessary to prevent the fish from sticking to each other and to the trays.

The third method of removing the water consisted of brining in saturated brine, drying, canning, and processing. The brining is carried as far as possible without excessively salting the fish. A thick tomato sauce is used to take up the excess moisture released in the processing. Certain common losses are prevented by this method, but there is a disadvantage in the necessity of carrying out the process within a few hours after the fish are landed.

The investigator who did this work also visited the Maine sardine industry during the summer in order to acquaint himself with the problems in that field and to throw any possible light on the methods employed in California.

SALTING OF PACIFIC COAST MACKEREL.

Attention was also given by the San Pedro laboratory to the salting of the Pacific coast mackerel (Scomber japonicus). The fish is, in general, less fat than the Atlantic mackerel, and its flesh is more likely to be dark in color. It was found, however, that the method that had previously been found in the bureau's salting experiments to be applicable in warm climates was here successful. This process consists in using high purity salt, applied dry to perfectly fresh fish that have been thoroughly cleaned of all blood and viscera. These points all seem to be essential. Packers who have themselves hit upon most of these points have found by experience that salt of inferior quality produces inferior fish and that any blood left in the fish darkens the fish. Freshness is also important, so much so that salting aboard the boats seems advisable.

PEARL ESSENCE.

Pearl essence, an incidental product of the fisheries, has continued to attract considerable attention, perhaps more because of its spectacular beauty and novel application than because of its real importance. Nevertheless, the business of manufacturing imitation pearls, which was at one time an exclusively European and Japanese industry, has migrated to America to a very large extent. New York city and environs are now the center of a considerable imitation-pearl
Fif. 1.-View of the fisheries exhibit at the Brazilian Centennial Exposition.
1J. S. B. F. Doc. 954.

Fig. 2.-View of the fisheries exhibit at the Brazilian Centennial Exposition.
industry, based largely on the supply of pearl essence produced in the United States, principally from herring and alewife scales.

A process of making a pearl essence has been elaborated in the Fishery Products Laboratory, which in technique is a radical departure from any methods known to have been used hitherto. By this method, the lustrous material from the scales is removed in water, together with any dirt, blood, slime, etc., that may accompany the scales. The crude suspension is then treated chemically in such a way that the lustrous or nacreous particles are removed bodily from the crude liquor, leaving all else behind, and are transferred to ether and then to ethyl or amyl acetate. These latter substances are solvents of nitrocellulose, which, when dissolved in the suspension, makes a pearl lacquer. This, applied to glass beads, makes the "indestructible" pearl of commerce. "Essence" has been prepared by this process from the alewife, herring, gizzard shad (Dorosoma cepedianum), shad, silver carp or quillback (Carpiodes velifer), and no doubt could be prepared successfully in large quantities from. the California pilchard or sardine and from many other fishes. The details of the process will be published in a separate document.

FISHERIES EXHIBIT AT THE BRAZILIAN INTERNATIONAL CENTENNIAL EXPOSITION.

The act of Congress authorizing the United States to participate officially in the Brazilian International Centennial Exposition at Rio de Janeiro, contained the following clase:

> Sec. 6. That the Secretary of Commerce is hereby authorized to collect and prepare a suitable exhibit of the fisheries industry of the United States for exhibit at the said exposition and accompany the sime with a report respecting such industry, to be printed in the English, Spanish, and Portuguese languages, the expense of the same to be paid out of the appropriation hereinafter provided for.

Under authority from the Secretary of Commerce, the Bureau of Fisheries prepared and managed that part of the exhibit that related to the fisheries of the United States. (See figs. 1 and 2.)

The organization and functions of the Bureau of Fisheries were shown by a chart and an automatic projection machine, which showed successively 70 slides. The salmon industry was exhibited by means of an illustrated chart, showing life history of the salmon, the methods of propagation, the fishery, and methods of canning and salting the salmon. The chart was supplemented by an exhibit of salmon eggs in various stages of development, a model salmon-pile trap, a display of camned salmon, a projection machine showing 20 slides, and 2 motion-picture films.

The New England bank fisheries were represented also by illustrated charts, dealing with fish-cultural and industrial aspects of the fishery, two vessel models, and 120 implements, and a varicty of exhibits of canned, smoked, and salted fishery products, nets, lines, twine, models of fish, and several large transparencies showing New England fishing operations, hatchery work, etc. An exhibit was made also of the bureau's work on the preservation of nets.

The sardine industry was represented by two large illustrated charts, supplemented by a model of a sardine weir and a display of canned sardines. Seventy-five pictures of the oyster industry were shown successirely by an automatic projection machine. The chief
implements and prorlucts of this industry were on exhibition. The menhaden industry was shown by an illustrated chart and a comprehensive assembly of oils, fertilizers, fish meal, and other by-products of the fisheries.

An exhibit of canned fishery products was comprehensive and of a variety that might surprise anyone who was not familiar with the field. Other exhibits included oceanographic apparatus, the mother-of-pearl industry, retail marketing methods, fishery colleges, and an assembly of publications of the Bureau of Fisheries, including one specially prepared for the purpose and printed in English, Spanish, and Portuguese, being a general description of American fisheries.

AGREEMENT BETWEEN BUREAU OF THE CENSUS AND BUREAU OF FISHERIES RELATIVE TO COLLECTION OF STATISTICS ON FISX AND MARINE ANIMAL OILS.

According to an agreement reached on May 18, 1922, between the Bureau of the Census and the Bureal of Fisheries, the statistics of production and consumption of fish and marine animal oils in the United States are now taken by the Bureau of Fisheries. Cards are sent out quarterly to all producers, who are asked to fill out and return to this bureau the data required. The data are tabulated and sup)plied to the Bureau of the Census. The agreement is as follows:
The Burean of the Census is required to collect quarterly reports on the production, consumption, and stocks of animal and vegetable fats and oils. The Bureau of Fisheries his been collecting annual statistics concerning the commercial catch of fish, the pack of fish, and the manufacture of by-products, which includes fish oils. The collection of these statistics by the two bureaus results in the duplication in the same department of the collection of similar reports on the production of fish oils from the same concerns. In order to avoid this condition it is agreed that the Bureau of the Census will discontinue the collection of statistics concerning the production of fish oils and stocks held by the producers.

It is further agreed that the Bureau of Fisheries will canvass the producers of fish oils quarterly and furnish these statistics to the Bureau of the Census to be incorporated in the quarterly reports on the production, consumption, and stocks of animal and regetable fats and oils.

The Bureau of the Census will furnish the Bureau of Fisheries its list of producers of fish oils. The Burean of Fisheries will canvass the estabishments listed as well as any others which may be added from time to time from any available sources. The Bureau of Fisheries will be responsible for the completeness of the canvasses and the accuracy of the statistics, and if desired will furnish the Bureau of the Census a list of the producers of fish oils.

Every effort will be made by the Bureau of the Census to expedite the issuance of the preliminary press bulletins showing the production, factory consumption, and stocks of fish oils. Due credit is to be given to the Bureau of Fisheries for its collection of the data.

Details not covered by this agreement can be adjusted by the two bureaus.
THE PRODUCTION OF CERTAIN FISHERY PRODUCTS IN 1921 AND 1922.
The following table has been prepared to show the general trend of the fish industry in so far as changes can be shown by data available that apply to 1921 and 1922:

Production and ralue of certain fishcry products in 1921 and 1922, compared.

Products.	1921		1922		Increase (+) or decrease (-).	
	Quantity.	Value.	Quantity.	Value.	$\begin{aligned} & \text { Quantity } \\ & \text { (per } \\ & \text { cent). } \end{aligned}$	Value (per cent)
Fish landed by fishing vessels at Boston and Gloucester, Mass., and Portland, Me						
Trips..................pounds.	150, 865, 106	\$5, 722,629	159, 875, 391	\$5, 465, 932	$+6.0$	-4.5
Fish landed by fishing and col-					-11.9	
lecting vessels at Seattle, Wash................. pounds..	26, 095, 225	2, 202, 181	26, 415, 440	2,214,654	$+1.2$	+. 6
Trips..................number..						
Products of the fisheries of California................ pounds..	127, 728,623		168, 969, 733		+32.3	
Fish received at Washington, D. C., Municipal Fish Wharf................pounds.	9,066,744		6,442,663		-28.9	
Sponges sold at Sponge Exchange, Tarpon Springs, Fla.....................pounds..	386,390	540, 093	526,885	699, 092	+36.4	+29.4
Canned salmon: Pacific Coast States. .cases. . Alaska..................do.	$\begin{aligned} & 1,002,948 \\ & 2,596,826 \end{aligned}$	$\begin{array}{r} 9,234,425 \\ 19,632,744 \end{array}$	733,246 $4,501,652$	$\begin{array}{r} 8,633,524 \\ 29,787,193 \end{array}$	-26.9 +73.3	-6.5 +51.7
Total, canned salmon	3, 509, 774	28, 867, 169	5,234, 898	38, 420, 717	+45.4	+33.1
Canned sardines:						
Maine................ do.	1,350,631	3,960, 916	1,775, 878	5,750,109	+31.5	+45.2
California.............do.	415,587	2,346,	728 ,	3,361,	+75.4	2
	1,766,218	6, 307, 362	2, 504, 857	9,111, 589	+41.8	+44.4
Canned albacore and tuna, bluefin, yellowfin, and striped.....................cases.	418, 821	3,073,681	614, 926	4,294,912	+46.8	+39.7
	667, 558	3, 804, 781	586, 691	3,064,087	-12.1	-19.4
Canned clams, hard, soft, and						
Canned oysters...........d. do...	455, 550	2, 179, 271	522, 549	2, 423, 616	+14.7	+11.2
All canned fishery products						
Menhaden industry:	210	40,63x,	10,094,5	60, 404, 94		
Fish utilized......number.. 1, 031, 540, 831		1,929, 219	1, 212, 450, 669	2, 457, 600	+17.5	$+27.4$
duced.................tons..	82,662	2,286, 095				
Oil.....................allons..	6,260,478	1, 719, 892	7,102,677	2, 304,833	+13.4	+68.9
Fish oils, other than mentiaden						
Fish meal and scrap, other	1,017,074	264, 011	1, 185,651	441, 213	+16.6	+67.1
W than menhaden........tons..	24,611	1, 271, 047	22,590	1,114,919	-8. 2	-12.3
Liquid glue...........gallons..	347, 048	, 364, 415	323, 003	278, 424	-6.9	-23.6
All by-products.................		8, 351, 827		11, 390,693		+36.4
Fish, frozen............pounds..	79, 173, 802		75, 453, 674		-4.7	

CANNED FISHERY PRODUCTS AND BY-PRODUCTS OF THE UNITED STATES AND ALASKA, 1922.

The bureau has made a canvass of the canned fishery products and by-products of the United States and Alaska for 1922, and the statistics were published and distributed to the trade as Statistical Bulletin No. 570. The total value of canned products in 1922 amounted to $\$ 60,464,947$ and of by-products to $\$ 11,390,693$. As compared with 1921 there was an increase in the ralue of canned products of $\$ 13,830,241$, or 29.65 per cent, and in the value of by-products of $\$ 3,038,866$, or 36.38 per cent. The canned products consisted principally of canned salmon, sardines, shad, alewives, albacore, tuna, shrimp, crabs, clams, and oysters, and the by-products of fish scrap,
fish meal, and fish oil, and ground oyster shells for use as poultry grit and lime. The fish scrap, fish meal, and fish oil prepared in the menhaden industry are also included under by-products of the fisheries.

CANNED FISHERY PRODUCTS.

canned salmon.

In 1922 there were 179 plants engaged in camning salmon in the Pacific Coast States and Alaska. Of this number 123 were operated in Alaska, 34 in Washington, 20 in Oregon, and 2 in California. The pack of eanned salmon in 1922, on the basis of 48 pounds to the case, amounted to $5,234,898$ cases, valued at $\$ 38,420,717$.

In the Pacific Coast States the pack amounted to 733,246 cases, valued at $\$ 8,633,524$, as follows: Chinook, 314,126 cases, valued at $\$ 4,572,607$; coho or silver, 204,262 cases, valued at $\$ 1,533,173$; sockeye, 97,927 cases, valued at $\$ 1,816,901$; chum, 87,583 cases, valued at $\$ 365,303$; humpback or pink, 3,551 cases, valued at $\$ 18,546$; and steelhead, 25,797 cases, valued at $\$ 326,994$. The pack in Washington amounted to 441,667 eases, valued at $\$ 4,823,074$; in Oregon, 279,748 eases, valued at $\$ 3,614,140$; and in California, 11,831 eases, valued at $\$ 196,310$. The pack in California consisted entirely of chinook salmon.

In Alaska the pack amounted to $4,501,652$ cases, valued at $\$ 29,787,193$, divided as follows: Red or sockeye, $2,070,658$ eases, valued at $\$ 19,135,696$; humpback or pink, 1,658,423 eases, valued at $\$ 7,189,494$; chum or keta, $565,91 \mathrm{~S}$ cases, valued at $\$ 2,251,540$; coho or silver, 175,993 cases, valued at $\$ 962,790$; and king, chinook, or spring, 30,660 cases, valued at $\$ 247,673$.

Compared with the previous year there was an increase of 42 salmon canneries in Alaska and a decrease of 1 cannery in the Pacifie Coast States, or a total increase of 41 canneries. There was an increase in the pack of canned salmon of $1,635,124$ cases, or 45.42 per cent, in quantity and of $\$ 9,553,548$, or 33.09 per cent, in value. There was an increase in the pack in Alaska of $1,904,826$ eases, or 73.35 per cent, in quantity and of $\$ 10,154,449$, or 51.72 per cent, in value. In the Pacific Coast States there was a decrease of 269,702 cases, or 26.89 per cent, in quantity and of $\$ 600,901$, or 6.51 per cent, in value. This decrease was due to a falling off in the pack in Washington of 312,379 cases, or 41.43 per cent, in quantity and of $\$ 1,201,515$, or 19.94 per cent, in value. There was an increase in the pack in Oregon of 40,142 eases, or 16.75 per cent, in quantity and of $\$ 537,914$, or 17.49 per cent, in value, and also in the pack of California, of 2,535 eases, or 27.26 per cent, in quantity and of $\$ 62,700$, or 46.93 per cent, in value.

Pack of canned salmon of the Pacific Coast States and Alaska in 1922.

Products.	Pacific Coast States.								Alaska.	
	Washington.		Oregon.		California.		Total.		Southeast.	
Coho or silver: s-pound flat... i-pound flat.. 1-pound tall...	Cases.	Value.								
	48.551	\$470,494	25,706	\$215,445			74,257	\$685, 939	20, 013	\$151,666
	49,244	337, 320	27,618	194, 877			76, 862	532,197	10,773	63, 515
		892						315, 037	91,861	462,365
Total.	143,499	1,079,66	60,763	453.505			201, 262	1,533,173	122,617	677, 546
Chum or keta:										
1-pound flat.		, 532							6,185	21,228 25,693
1-pound tall.	78,387	317.745	3,857	15.917			82,24	333, 662	414,383	1,640,135
Total.	-3,090	345, 570	4,493	19, 733			87,583	365, 303	424,266	1,687,056
Humpback or pink: t-pound flat. 1-pound flat. 1-pound tall...	1,506	9,779					1,506	9,779	30,725	197,953
									28,148	131,268
	2,045	8,767					2,045	8,767	1, 273, 679	5, 461,536
Total	3,551	18,546					3,551	18,546	1,332, 552	5,793, 757
King, chinook, or spring:										
$\frac{1}{2}$-pound flat t-pound oval.	69,086 300	$1,097,429$ 7,440	105, 475	$\begin{array}{r}1,772 \\ 1,959 \\ \hline 185\end{array}$	7,669	\$138,042	$\begin{array}{r} 182,230 \\ 376 \end{array}$	$\begin{array}{r} 3,008,430 \\ 3,325 \\ \hline \end{array}$	2,695	30,640
i-pound flat..	36, 036	446, 488	51,356	652,707	4,162	58, 268	91,554	1,157,463	1,735	15,209
1 -pound oval	2,998	56,961	19, 552	207,679			22,550	264, 640		
1-pound tall	11,304	87,701	6,112	to. 048			17,416	132,749	1,703	11,448
Total.	119,724	1,696,019	182,571	2,680,278	$\underline{11,831}$	196,310	314,126	$\underline{4,572,607}$	6, 133	57,297
Red or sockeye:										
$\frac{1}{2}$-pound flat.	70,625	1,332,887	12,972	231,755			83, 597	1,564,642	57,783	779,582
1-pound flat.	13, 440	238,236					13, 440	238,236	17,579	171,509
1-pound tall.	575	9,550	315	4,473			890	14,023	57, 783	530,278
Total	84,640	1,580,673	13,257	236, 228			97,927	1,816,901	133, 145	1, 481,369
1-pound flat.	1,551	21,714	6,675	61,783			8, 226	83, 497		
1 -pound tall.	87	1,183	15	156			102	1,339		
Total.	7,163	102, 598	18,634	224,396			25,797	326,994		
Grand total.	441,667	4,823,074	279,748	3,614, 140	11,831	196,310	733,246	8,633, 521	2,018,743	9,697,025

Products.	Alaska-Continued.						Grand total.	
	Central.		Western.		Total.			
Coho or silver:	Cases.	Value.	Cases.	Value.	Cases.	value.	$\begin{gathered} \text { Cases, } \\ 96,491 \\ 88,961 \\ 194,800 \end{gathered}$	$\begin{array}{r} \text { Value. } \\ \$ 854,644 \\ 603,883 \\ 1,037,436 \end{array}$
1-pound flat.	1,291	8,005	35	\$166	12,099	-71,686		
1 -pound tall.	36,919	192, 23.4	12,877	67,800	141,657	722, 399		
Total	40, 434	217,278	12,912	67,966	175,993	962, 790	380, 255	2,495,963
Chum or keta:								
1-pound flat.					6,185	25,693	6,261	26,225
1-pound tall	91, 239	362, 440	50, 413	202, 044	556,035	2, 201,619	638, 279	2,538,281
Total.	91, 239	362,440	50, 413	202,044	565, 918	2, 251, 540	653,501	2,616,8+3
IIump back or pink:							44,242	283,477
1-pound flat..	2,731	13,655			30, 879	147,923	30,879	147,923
1-pound tall.	298, 226	1,251,399	12,903	54,938	1,584,808	6, 767, 873	1,586, 853	6,776,640
Total.	312,968	1,340, 999	12,903	54,938	1,658,423	7,189,494	1,661,974	7,208,040

Pack of canned salmon of the Pacific Coast States and Alaska in 1922-Continued.

Products.	Alaska-Continued.						Grand total.	
	Central.		Western.		Total.			
King, chinook, or spring: -pound flat. \qquad 童-pound oval. \qquad 1-pound flat. \qquad 1-pound oval. \qquad 1-pound tall. \qquad Total. \qquad	Cases.	Value.	Cases.	Vralue.	Cascs.	Value.	Cases.	Value.
	1,022	\$13,341		\$742	3,770	\$41,723	186, 090	\$3, 053, 153
							- 376	9,325
	2,067	20,538	16.5	2,002	3,967	37,749	95,521	1, 195, 212
							22,550	264.610
	7,076	53,168	14,144	100,585	22,923	165, 201	40,339	297,950
	10,165	87, 047	14,362	103,329	30,660	247,673	344,786	4,820,280
Red or sockeye:								
1-pound flat.	59,799	614,403	44, 071	437,530	121,449	1,223, 412	134, 889	1, 161,678
1-pound tall.	383, 935	$3,447,679$	1,335,595	11,512, 270	1,777,313	$15,490,227$	1,778, 203	15, 501, 250
Total	533, 337	5,319, 626	1, 404, 176	12,334, 701	2,070,658	19, 135, 696	2,168,585	20,952,597
Steelhead:								
1-pound flat.							8,226	83, 497
l-pound tall......							102	1,339
Total.							25,797	326,994
Grand total.	988, 143	7,327,190	1,494,766	12, 762,97S	4,501,652	29,787,193	5,234,898	38,420,717

CANNED SARDINES.
In 1922 there was a marked increase in the pack of sardines in both Maine and California. In Maine, 1,775,878 cases were packed, valued at $\$ 5,750,109$, an increase of 31.5 per cent in the number of cases and 45.2 per cent in value over the pack in 1921, when 1,350,631 cases, valued at $\$ 3,960,916$, were packed. Of the 1922 pack, $1,454,146$ cases were quarter oils, valued at $\$ 4,645,436$, an average of $\$ 3.19$ per case, an increase of 10.4 per cent over the average value per case of quarter oils in 1921, which was $\$ 2.59$. The quantity of herrings utilized was $96,458,400$ pounds, valued at $\$ 623,198$.

In California, 728,979 cases of sardines were packed, valued at $\$ 3,361,480$, an increase of 75.4 per cent in number of cases and 43.2 per cent in value over the pack in 1921, when 415,587 cases, valued at $\$ 2,346,446$, were packed. Of the 1922 pack, 697,643 cases, valued at $\$ 3,078,760$, were pound ovals, with an average value of $\$ 4.41$ per case, a decrease of 18.4 per cent from the value per case in 1921, when 379,928 cases of pound ovals, valued at $\$ 2,056,367$, were packed, the average value per case being $\$ 5.41$.

Pack of sardines in Maine and California, 1922.

Sardines (herring). ${ }^{1}$	Mainc.		Sardines (pilchard).	California.	
In oil: Quarters (100 cans)...	$\begin{gathered} \text { Cases. } \\ 1,454,146 \end{gathered}$	Value. $\$ 4,645,436$	1-pound oval (48 cans)	Cases. 7,239	Value. \$32, 182
In mustard: ${ }_{\text {Quarters (}} \mathbf{1 0 0}$ cans).......			1-pound oval (48 cans): In tomato sauce...	601,111	2,518,843
Three-quarters (48)........	213,276	$\begin{array}{r} 389,008 \\ \hline \end{array}$	In mustard....	53,993	2,595,111
In tomato sauce: Quarters			All others.	42,539	264, 506
(100 cans).................	7,166	37,502	1-pound tall (48 cans).	, 78	
			t-pound square (100 cans	21, 124	217,953 32,353
			2-pound square (100 cans)	2,800	
Total.	1,775, 878	5, 750,109	Total.	728,979	3,361,480

[^19]CANNED SHAD AND ALEWIVES.
The pack of canned shad and shad roe is confined to the Pacific Coast States. In 1922 the pack of shad amounted to 2,257 cases, ralued at $\$ 9,961$, and of shad roe to 433 cases, valued at $\$ 8,517$. In 1921 the pack of shad was 841 cases, valued at $\$ 2,455$, and the pack of shad roe was 53 cases, valued at $\$ 142$.

The pack of alewives and alewife roe was prepared in Maryland, Virginia, and North Carolina, mostly in the Chesapeake Bay district. In 1922 the pack of canned alewives was 1,043 cases, valued at $\$ 1,994$, and of canned roe 38,298 cases, valued at $\$ 137,514$. In 1921 the pack of canned alewives was 312 cases, valued at $\$ 813$, and of canned roe, 40,530 cases, valued at $\$ 157,841$.

Pack of shad and alewives, 1922.

Shad.	Washington, Oregon, and California.		Alewives.	Maryland, Virginia, and North Carolina.	
-pound flat (48 cans)	Cases. 779	Value. \$1,620	No. 2 (24 cans).	Cases. 1,043	Value. \$1,994
-pound oval (48 cans)	174	3,480	Roe:		
1-pound tall (48 cans).	1,304	4,861	No. $\frac{1}{2}$ (48 cans)	768	4.608
Roe:	283		No. 1 (48 cans)		4,134 128,772
í-pound oval (48 cans)	150	2,472	No. 2 (24 cans)		128,772
Total.	2,690	18,478	Total.	39,341	139,508

CANNED ALBACORE, TUNA, AND MACKEREL IN CALIFORNIA.
The total pack of tuna of all rarieties in California, where this industry is located, was, in 1922, 614,925 cases, valued at $\$ 4,294,912$, an increase of 46.8 per cent in number of cases, and 39.7 per cent in value over the pack of 1921 , which was 418,821 cases, valued at $\$ 3.073,681$.

Data are also given in the table for the pack of bonito, yellowtail, and miscellaneous. which includes fish flakes, abalone, mackerel, squid, and "tonno." "Tonno" is striped, bluefin, and yellowfin tuna, canned Italian style, and sold under the Italian label.

Pack of albacore, tuna, bonito, and yellowtail in California, 1922.

Products.	One-fourth pound round cans (48 to case).		Onc-fourth pound round cans (100 to case).		One-half pound round cans (48 to case).		One-half pound round cans (50 to case).	
Albacore	$\begin{gathered} \text { Cases. } \\ 24,962 \end{gathered}$	Value. 8126, 139	$\begin{array}{r} \text { Cascs. } \\ 14,820 \end{array}$	Value. $\$ 222,300$	$\begin{array}{r} \text { Cases. } \\ 188,235 \end{array}$	Value. $\$ 1,368,883$	$\begin{gathered} \text { Cases. } \\ 9,436 \end{gathered}$	Value. \$108, 51
Tuna,bluefin and yellow	37,537	151,757	2,390	24, 083	101,764	613,344		
Tuna, striped.	34,772	126,678	3,162	33,690	122,310	622,565		
Bonito.			5,223	34,879	5,368	24,021		
Miscellancou.	22,557	115,785	1,467	14,670	4,088 4,049	17, 104		

'Includes fish fakes, abalone, mackerel, squid, and "tonno."
$50904-23-\because$

Pack of albacore, tuna, bonito. and yellowtail in California, 1922-Continued.

Products.	One-pound round cans (48 to case).		One-pound tall cans (48 to case).		One-pound oval cans (48 to case).		Four-pound tall cans (12 to case).		Total.	
	$\underset{\substack{\text { Cases. } \\ 34,475}}{\substack{\text {. }}}$	$\begin{array}{r} \text { Value. } \\ \$ 166,399 \end{array}$	Cases.	Value.	Cases.	Value.	Cases. 635	Value. \$12,700	$\begin{gathered} \text { Cases. } \\ 272,563 \end{gathered}$	Value. $82,304,935$
Tuna, bluefin and yellowfin.		255,437								
Tuna, striped........	17,502	159,423							177,746	942.356
Bonito..									10,591	58,900
Misclowtail....			3,051	$\$ 1,890$ 22,883					4,403 31,548	18,994
unscelaneous	219	1,861	3,051	22,883	205	\$1,610			31,548	182,033

${ }^{1}$ Includes fish flakes, abalone, mackerel, squid, and "tonno."

CANNED SHRIMP AND CRABS.
In 1922 the pack of shrimp was 586,691 cases, valued at $\$ 3,064,087$, a decrease of 12.1 per cent in number of cases and 19.4 per cent in value from the pack in 1921, which was 667,558 cases, valued at $\$ 3,804,781$. The pack of crabs in 1922 was 9,111 cases, valued at $\$ 104,171$, also a decrease from the pack of 1921 , which was 11,960 cases, valued at $\$ 115,800$.

Pack of shrimp in South Atlantic and Gulf States, 1922.

states.	No. 1 cans (4 dozen).		No. 1娄cans (2 dozen).		No. $2 \frac{1}{2}$ and No. 10 cans (2 dozen and $\frac{1}{2}$ dozen).		Total.	
Georgia and North Carolina..	Cases. 71,001	Value. \$360,161	$\begin{gathered} \text { Cases. } \\ 6,2 \times 9 \end{gathered}$	Value. \$33, 078	Cases.	Value.	Cases. $77,293$	Value. \$393, 239
Florida.......................	93, 094	512,054	1,724	9,310			94, 818	521,364
Alabama.	56,434	290,676	3,704	19,333	812	85,784	60,950	315, 793
Mississippi	166, 198	840,319	8,268	42,070			174, 466	882.389
Louisiana.	158,672	840,306	20,492	110,996			179, 164	951,302
Total.	545, 402	2, 813,516	40, 477	214,787	812	5,784	586,691	3,064,087

Pack of crabs, 1922.

States.	71 -ounce, s-ounce, and 9-ounce cans (4 dozen).		15 -ounce and 16 ounce cans (2 dozen).		Total.	
Virginia, Washington, Maine, and Alaska.	$\begin{gathered} \text { Cases. } \\ 8,101 \end{gathered}$	Value. \$95,364	Cases. 710	Value. \$8,807	Cases. 9,111	Value. \$104, 171

CANNED CLAMS.
The total pack of hard clams, soft clams, and razor clams in 1922 was 308,640 eases, valued at $\$ 1,716,365$, which compared with the total pack of $1921-226,130$ cases, valued at $\$ 1,166,507$-was an increase of 36.5 per cent in number of cases and 47.1 per cent in value.

Pack of clams, by States, 1922.
RAZOR CLAMS.

Sizes.	Washington.		Oregon.		Alaska,		Total.	
Whole:	Cases.	Value.	Cases.	Value.	Cases.	Value.	Cases.	Value.
No. 1 cans (4 dozen).	9, 134	\$78, 185	500	\$5, 500			9,634	\$83,685
No. 2 cans (2 dozen).	1,394	9,061	300	1,950			1,694	11,011
No. 10 cans ($\frac{1}{2}$ dozen).	138	966					138	
I-pound cans (4 dozen)					1, 434	\$11,601	1,434	11,604
1 pound flat cans (4 doze	51,099	291, 422	1,907	11,349	18,078	74,520	71,084	377, 291
No. 1 cans (4 dozen)....	33,677	238,622	3,971				37,648	268, 198
No. 2 cans (2 dozen).	3,209	19,027	909	5,699			4,118	24,726
10-ounce cans (4 dozen)					11,732	89, 634	11,732	89,634
1-pound cans (4 dozen)					1,046	9,249	1,046	9,249
No. 2 cans (2 dozen)								
No. 10 cans ($\frac{1}{2}$ dozen)		3, 364					52	364
Total.	99,779	640, 875	7,587	54, 074	32, 290	185, 007	139, 656	879, 956

HARD CLAMS.

Sizes.	Florida and Washington.		Sizes.	Florida and Washington.	
Whole:	Cases.	Value.	Bouillon, chowder, and juice:	Cases.	Value.
No. 1 cans (4 dozen).	15,018	\$104, 633	No. 1 cans (4 dozen)	9,015	\$42,078
No. 1 cans (2 dozen).	291	61 989	No. 2 cans (2 dozen)	2,391	7,699
No. 2 cans (2 dozen).	11,423	61, 664	No. 3 cans (2 dozen)	2, 854	15,902
No. 10 cans (3 dozen)	2,048	12,775	No. 10 cans ($\frac{1}{2}$ dozen).	650	4,168
Minced:			$1 \frac{1}{2}$ and 3 ounce bottles...	1,102	2, 371
S-pouud flat cans (4 dozen)..	358	1,792	7 and 14 ounce bottles (2		
No. 2 cans (2 dozen)	2,883	14, 4,415		3,874	24, 554
No. 10 cans ($\frac{1}{2}$ dozen).	87	783	Total.	52,349	298, 042

SOFT CLAMS.

Sizes.	Maine, Massachusetts, and Rhode Island.		Sizes.	Maine, Massachrisetts, and Rhode Island.	
	Cases.	Value.	Bouillon, chowder, and broth: 8,10 , and 16 ounce cans (4 dozen)	Cases.	Value.
	33, 589	\$157, 809			
6 and 8 ounce cans (2 dozen).	6, 155	22,916		14,334	\$74, 320
8 and 10 ounce cans (4			- 32-ounce cans (2 dozen)......	15, 267	81,760
dozen)...................	14,099	81,015	- -gallon cans (2 dozen)	1,126	$\begin{array}{r}6,000 \\ \hline 9,000\end{array}$
$8 \frac{1}{2}$ and 10 -ounce cans (2 dozen)	4,110		No. 1 cans (2 dozen)	20,000	49,000
l-pound cans (4 dozen)......	4,212 3,743	25,000 18,000	Total	116,6.35	538, 367

CANNED OYSTERS.
In 1922 the pack of oysters was 522,549 cases, valued at $\$ 2,423,616$, an increase of 14.7 per cent in number of cases and 11.2 per cent in value orer the pack of 1921, which was 455,550 cases, valued at $\$ 2,179,271$. The industry is located in the States of Maryland, Virginia, North Carolina, South Carolina, Georgia, Florida, Alabama, Mississippi, and Louisiana. There was a noteworthy decrease in the pack of Maryland, where 80,872 cases were packed, as compared with 156,431 cases in 1921.

Packs of oysters, by States, 1922.

Sizes.		land.	North	Carolina.	South C	Carolina.	Geor	gia.
4-ounce cans (4 dozen)	Cases. 9, 710	Value. \$47,023	Cases. 3, 756	Value. \$16,526	Cases. 7,601	Value, \$28, 797	Cases.	Volue.
5 -ounce cans (4 dozen)	39,312	203,093	$18,881$	78, 924	84, 710	369, 240	17, $\ddagger .39$	78,308
6 -ounce cans (4 dozen).	11, 320	119,747			9196	768	500	4,00\%
S-ounce cans (2 dozen).-	2,411	11,927	2, 500	9,500	3,425	12,127		
10-ounce cans (2 dozen).	16,657	85,352	3, 863	16, 117	24,065	100,933	648	2,863
12-ounce cans (2 dozen).	1,459	12, 424					2.5	200
Total	80,872	470,572	29,000	121,067	119,897	511, 865	18,812	85,371
Sizes.	Florida.		Alabama.		Louisiana and Mississippi.		Total.	
4-ounce cans (4 dozen)	Cases.	Value.	Cases. 568	Value. \$2.386	Cases. 46,381	I'alue. $\$ 199,250$	Cases. 65, 016	Value. $3293,982$
5 -ounce cans (4 dozen)	14,019	\$66,357	27, 168	117,607	117,650	534, 544	319,379	1,448, 079
6-ounce caus (4 dozen) 8 -ounce cans (2 dozen)			816	3,2	19,		11,916 28,267	124.515 113.103
10-ounce cans (2 dozen).	15	68	10,745	48,485	37,494	171,495	93,487	425,313
12-ounce cans (2 dozen).							1,484	12,624
Total.	14, 034	66, 425	39,297	171,707	220,637	987,609	522,549	2,423,616

MISCELLANEOUS CANNED FISHERY PRODUCTS.

In addition to the products shown in the tables, there were packed in Maine, Massachusetts, New York, New Jersey, Maryland, Virginia, North Carolina, and Washington, 224,304 cases of miscellaneous fishery products, valued at $\$ \$ 40,329$. The pack of preserved salmon eggs in Washington amounted to 79,976 pounds, valued at $\$ 55,976$, and in Oregon, to 33,130 pounds, valued at $\$ 16,080$.

EXPOR'S OF CANNED FISHERY PRODUCTS IN 1922.
Data showing the amount of canned fish exported from the United States during the calendar year 1922, collected and compiled by the Bureau of Foreign and Domestic Commerce, are given in the following table:

Domestic exports of canned fish from the United Slates, by countries, 1923.

Countries.	Canned salinon.		Sardines.		Flaked fish.		Other canned fish.	
Azores and Madeira Islands.	Pounds. 360	Dollars.	Pounds.	Dollars. 39	Pounds.	Dollars.	Pounds.	Dollars.
Belgium..........	2, 608,391	250,333	221,300	16,625			110,020	12, 370
Denmark.	102,144	10,301	29, 000	2,409			3, 405	2,22§
France.			180		39		1,363	50,879
France..	32,540 93,431	2,743 11,768	42,000	1,956			-116	
Greece.	11, 350	1,200	8,235	901			11,9:9	2,263
Hungary.	48	6						
Iceland, and Faroe Islands.	150	8						
Italy................	1,212,351	108, $90 \pm$	96,081	9,458			1,160	675
Malta, Gozo, and Crprus Islands...	14,400	1,400						
Netherlands........	618,028	77,002					3,465	852
Norway	36, 590	3, 909						
Poland and Danzig. Rumınia	107	22					\$25	165
Russia in Europe...	33,000	4,329						
Spain Sweden	214 69,506	13,912					14,639 4,360	1,260
Switzerland.........	75,998	10, 127						
Turkey in Europe..	48,760	4,640					70,030	7,500

Domestic exports of canned fish from the United States, by countries, 1922-Continue

Countries.	Canned salmon.		Sardines.		Flaked fish.		Other cauned fish.	
Ukraiue. England Scotland	$\begin{gathered} \text { Pounds. } \\ 329,80 \\ 23,937,667 \\ 3 \div 6,200 \end{gathered}$	$\begin{gathered} \text { Dollars. } \\ 28,134 \\ 3,732,859 \\ 67,107 \end{gathered}$	$\begin{array}{r} \text { Pounds. } \\ 16,450 \\ 244,727 \end{array}$	Dollars. $\begin{array}{r} 705 \\ 17,740 \end{array}$	Pounds.	Dollars.	$\begin{gathered} \text { Pounds. } \\ 1,974 \\ 252,761 \end{gathered}$	Dollars. $\begin{array}{r} 309 \\ 54,612 \end{array}$
Canada:	346, 200	67, 407					, 619	${ }^{232}$
Maritime Provinces	25, 439	3, 537	1,734,662	126,327				
Qucbec and	25, 38	3, 337	1,734,662	126,327	450	105	51,928	9,037
Prairie Prov-	599, 834	67, 4S7	4,492	1,101	452	86	104, 169	21,933
inces.......	79,840	14,211	4, 861	454			8,546	2,306
bia and I'u-								
kon.........	3, 175, 943	321, 872	2,561	567	1,412	189	82, 101	13,491
British Honduras..	27,234 187,848	3,193	40,740	1, ${ }^{1}, 551$	1, 276	53	1,307	151
Guatemala...........	187,848 50,271	17,193 5,168	1134, ${ }^{1330}$	12,415			23,359	2, 157
Honduras.	66,924	9,168	113,903 142,708	12,354	15		29,351	3,514
Nicaragua.	42, 033	4,309	44,818	15,54 5 595	456 30	9	6,347	1,345
Panama...	283, 390	35,599	160, 474	17,798	1,547	126	23,315	689
Salvador	8, 564	994	45,110	4, 573			18, 628	5,997 2,033
Mexico...	2, $219,24$.	227, 649	2, 736, 099	251, 103	956	207	-556,312	2,033 59,399
Miauelon and St. Pierre Islands...	2, 2,400	200 20	2,736,09		956	207	556,312	59,399
Nerfoundland and Labrador.								
Bermuda.	41,302	6,440	17,053	2,764			1,20s	40 489
Barbados	22, 262	3,450	-7¢0	, 102			1, 44	15
Jamaica-..........	85, 548	10,038	235, 979	20,851			1,888	450
Tobago...........	117,3S1	18,670	62,073	5,875			1,528	490
Other British West Indics.............	284	8,048	28,225	3,966	136	28		944
Cuba...............$~$	434, 803	38,397	1,122,349	96,433	2,006	290	139,390	13,445
Dominicau Re- public..............	167,784	15,417	322,66S	39,181	169	33	4,250	0
Dutch West Indies.	32,418	5, 5.53	26, 158	2,866	30	5	2,658	553
French West In- dics.................	912	73	725	90				
Haiti..	2,356	398	1,343	227	12,299	1,200	406	187
Virgin Islands of the C.S...........	42,014	5,178	20,163	3,148	12, 230	11	1,408	301
Argentina	477, 872	48,188	333, 035	23,124			1.13, 700	12,440
Bolivia	125,560	10,483	114, 156	10,260			32, 410	2,953
Brazil	14,400	3,075	3, 762	, 360			2,476	2,013
Chile.	1, 893,557	181, 242	177, 148	15,979			1,810	261
Ecuador	290, 178	31, 592	175,396	20,020	277	43	16,690	3, 860
British Guiana	237, 99.38	23,317 $.17,144$	265,640 77,479	23,973	2	40	77,266	6, 814
Dutch Guiana..	76, 928	9,517	2S, 715	4,324	240	40	5, 1470	830 45
French Guiana	2,783	${ }^{4} 400$	2, 610	4,02				
Peru.....	42, 353	4,312	497, 397	44,716	204	41	8,641	1,7200
Truguay	3,120						, 218	113
Venezuela	555, 873	56,473	57,622	5,757	625	79	6,596	1,756
Armenia and	24,000							
Kurdistan........		36						
British India.	769,867	95,127	119,989	15, 895				
Cevion	89,276	10,292	1,290	149	375	\$2	$\begin{array}{r} 2,223 \\ 1,749 \end{array}$	$\begin{array}{r} 2,339 \\ 277 \end{array}$
Straits Settlements. Other British East	1, 593, 504	160,220	2,653,713	236, 536			231, 162	20,812
Indies............	16	88	5,371	570				
China..	83,459	13,321	281, 863	31,049				
Choscn.	1,692	343	${ }^{281}, 365$	31,48				
Java and Madura. Other Dutch East	1,687,365	149,187	1,385,590	128,496	1,750	109	54, 047	5,805
Indies........	249.466	25, 830	211,657	21,760				
Far Eastern Republic.			3,640				40,867	4,173
French Indo-China.	9,168	1,187	$\begin{aligned} & 3,640 \\ & 6,750 \end{aligned}$	506	40	28		
Greece in Asia.	9,600	1,940		637			$\begin{array}{r} 75 \\ 44,000 \end{array}$	$\begin{array}{r} 38 \\ 1,760 \end{array}$
Hongkong.	86, 364	13,297	351, 410	33,337			26,758	2, 865
Japan.	5,606	714	9,070	1,559			47.637	3,060
Palestineand Sirria.	54, 321	5,076	140,776 3,644	12,976 388				
Philitppine Islands .	7,719,124	610, 114	5, 405, ${ }^{3,643}$	441,096	777	173	$\begin{array}{r} 147 \\ , 573,122 \end{array}$	$143,750$
Russia in Asia.			768	100				
Sum.	158,53S	13,775	2,734	329			508	114
Australia..	4,800 $6,663,952$	1,045,545						
British o pania....	¢9, 472	-8,487	5,916	220	4	11	072	, 319
French O-taria....	164.122	18,547	25,942	3,957			4, 848 4.867	132

Domestic exports of canned fish from the United States, by countries, 1923-Continued.

Countries.	Canned salmon.		Sardines.		Flaked fish.		Other canned fish.	
New Zealand..	Pounds. 149, 598	Dollars. 26,413	Pounds.	Dollars. 12	Pounds.	Dollars.	Pounds. 537	Dollars. 230
Other Oceania.	108,454	10,674	1,741	239			1,644	247
Belgian Kiongo.....	1,268	205	600	50				
British West Africa	59,998	6,363	8,042	1,109			12,265	2,616
British $S o u t h$ Africa..............	1,724,923	181,061	11,600	1,579			31,689	5,964
British East Africa.	15,360	1,591						
Canary Islands.....	44, 792	4,586						
Egypt.	73,408	9,193					3f, 024	3,630
Africa............	732	75	167	47				
Liberia...	3,930	403					1,563	69
Morocco..............	4,925	606	25	5			1,120	260
Portuguese East Africa..............	88,973	8,814	8,662	1,161			5,467	1,393
Other Portuguese Africa.	48	11					68	18
Spanish Africa	2,475	355					2,400	465
Total.	63, 797, 279	7,962,375	20,059,845	1,780,956	24,869	3,075	4,534,273	525,334

BY-PRODUCTS OF THE FISHERIES.

The utilization of waste products of the fisheries to produce valuable by-products continues to hold the attention of the fish trade. In this direction lies a possibility of reducing the excess overhead expense in the fish industry. The principal by-products are fish oils and fish meal and scrap. The total value of all by-products of the fisheries in 1922 was $\$ 11,390,693$, an increase of 36.4 per cent over the value of the production in 1921 , which was $\$ 8,351,827$.

FISH OILS.

The fish-oil production in the United States and Alaska in 1922 amounted to $8,2 \$ 8,328$ gallons, valued at $\$ 3,346,046$. This does not include the production of whale oil, which in 1922 was $1,863,015$ gallons, valued at $\$ 731,000$, nor sperm oil, which was 384,130 gallons, valued at $\$ 153,714$. The largest item of fish oil is menhaden oil, of which $7,102,677$ gallons were produced, valued at $\$ 2,904,833$. In 1921 the total production of fish oil was $7,446,281$ gallons, valued at $\$ 2,078,670$. There was thus in 1922 an increase of 11.3 per cent in the total quantity of fish oils (exclusive of whale and sperm) and 61 per cent in the value. The oils produced in 1922 include besides menhaden, whale, and sperm oils, salmon. 25,989 gallons; sardine. 428,859 gallons; tuna, 86,099 gallons; herring, 450,362 gallons; liver, 67,459 gallons; cod liver, 4,080 gallons; miscellaneous fish oils, 122,803 gallons.

FISH SCRAP AND MEAL.

The total value of all fish scrap and meal, green and dry, including that prepared from shrimp and menhaden, was, in 1922, 116,166 tons, valued at $\$ 4,336,677$, an increase of 8.29 per cent in quantity and 21.9 per cent in value over the production in 1921, which was 107,273 tons, valued at $\$ 3,557,142$. Of the total amount 93,576 tons, or 80.5 per cent, was produced by menhaden, and 22,590 tons, or 19.5 per cent, by all other fish, the latter amount, valued at $\$ 1,114,919$. representing a decrease of 8.2 per cent in quantity and
12.3 per cent in value from the amount produced by all other fish in 1921 , which was 24,611 tons, valued at $\$ 1,271,0 \pm \grave{7}$. Included in the production of meal and scrap in 1922 are 21,638 tons of dried scrap or meal, 390 tons of crude or green scrap, and 562 tons of shrimp bran.

LIQUID FISH GLUE.

In 1922 the production of liquid fish glue was 323,003 gallons, valued at $\$ 278,424$, a decrease of 6.9 per cent in quantity and 23.6 per cent in value from the production of 1921, which was 347,048 gallons, valued at $\$ 364,415$.

poultry griv and hime.

The production of poultry grit from oyster shells in 1922 was 236,021 tons, valued at $\$ 2,005,838$; in 1921, 185, 474 tons, valued at $\$ 1.759,120$. The production of lime in 1922 was 93,168 tons, valued at $\$ 431,213$, an increase of 26.3 per cent in quantity, but a decrease of 14.2 per cent in value over the production in 1921, which was 73,764 tons, valued at $\$ 502,634$. This industry is carried on on the Atlantic coast from Massachusetts to Texas.

Production of various by-products of the fisheries, 1922.

Products.	Massachusetts and Maine.		Maryland.		New York, Virginia, North Carolina, and Florida.	
Fish scrap and meal: Dried....................tons. Crude or green...........do....	$\begin{array}{r} \text { Quantity. } \\ 3,455 \\ 390 \end{array}$	Value. $\$ 146,103$ 9,175	Quantity. 1, 236	Value. \$28,970	Quantity. 1, 593	Value. \$52, 521
Oil: Herring \qquad gallons..	25,121	5,726				
Sperm....................do....	152, 986	81,052				
Liver...................... do.	67, 459	31,774				
Cod-liver.................. . do	3,980	1,792				
Miscellancous.............. do.	${ }^{39} 9$	1,150	3, 500	595	11, 877	3,469
Liquid glue..............................		278, 424				
Miscellaneous by-products.................	291, 421	58,198			87,335	8,733
Total.		613, 424		29, 565		64,723
Products.	Louisiana.		Washington, Oregon, California, and Alaska.		Total.	
Fish'serap and meal: Dried.......................... .tons. Crude or green. do.	Quantity.	Value.	Quantity. 15, 354	Value. \$862, 752	$\begin{array}{r} \text { Quantity. } \\ 21,638 \\ 390 \end{array}$	$\begin{array}{r} \text { Value. } \\ \$ 1,090,346 \\ 9,175 \end{array}$
Oil: Shrimp bran..............do....	562	\$15, 398			562	15,398
Salmongallons. .			25,989	9,435	25,989	9,435
Sardine \qquad do.			428,859 86,099	145, 668	428, 859	145, 668
Herring..................... do.			425, 241	144,413	85,099 450,362	62,702 150,144
Whale..................... do			1,863,015	731,000	1,863,015	731, 000
Sperm.			231,144	72,632	384,130	153, 714
Liver...					67,459	31, 774
Miscellaneous............... do			107, 327	34,384	122, 803	1,892
Liquid glue.....................do.					123, 003	278, 424
Miscellaneous by-products².pounds. .			1,256,500	40,850	1,635, 256	107, 781
Total.		15,398		2, 103, 941		2, 827,051

[^20]Production of poultry grit and lime from ground oyster shells, 1922.

States.	Poultry grit.		Lime.		Total.	
Rhode Island, Pennsylvania, and New	Tons. 20,493	Value. $\$ 200,831$	Tons. $7,799$	Value. $\$ 31,873$	Tons. $28,292$	Value. \$232, 704
Maryland	90,249	803, 388	38,211	155,119	128, 460	958, 507
Virginia.	26,173	230, 115	27,445	182, 680	53, 618	412,795
North Carolina, South Carolina, and Georgia.	6,740	56, 165	1, 815	9,075	8,555	65, 240
Florida.	13, 800	96,400	112	1,008	13, 912	97, 408
Alabaina.	7,154	56, 987	510	760	7,664	57, 747
Mississippi	32,646	251,872	780	780	33, 426	252, 652
Louisiana.	34,684	274, 944	15,956	47,218	50,640	322, 162
Texas.	4,082	35,136	540	2,700	4,622	37, 836
Total.	236, 021	2,005,838	93,168	431,213	329,189	2,437,051

THE MENHADEN INDUSTRY.
In the menhaden industry in 1922 substantial increases were made in the amount of fish utilized and in the quantities and values of all the important products. Forty-five factories were engaged in the manufacture of products from menhaden, as compared with 39 in 1921. These 45 factories were located as follows: Massachusetts, 1 ; Connecticut, 1; New York, 2; New Jersey, 3: Dclaware, 1; Virginia, 18; North Carolina, 15; Georgia, 1; Florida, 2; and Texas, 1.

The number of fish utilized was $1,212,450,669$, or $747,470,402$ pounds, valued at $\$ 2,457,690$, as compared with $1,031,540,831$ fish, or $618,924,499$ pounds, valued at $\$ 1,929,219$, produced in 1921, an increase in 1922 of 17.5 per cent in number of fish and 27.4 per cent in value. The amount of fish meal and scrap produced from menhaden in 1922 was 93,576 tons, valued at $\$ 3,221,758$, an increase of 12.2 per cent in quantity and 40.9 per cent in value over the $\delta 2,662$ tons produced in 1921, valued at $\$ 2,286,905$. The 1922 production of meal and scrap was 67,821 tons of dry scrap, valued at $\$ 2,665,441$, of which 7,172 tons, valued at $\$ 390,667$, were reported sold as fish meal; 25,712 tons of acidulated scrap, valued at $\$ 555,973$; and 43 tons of crude or green scrap, valued at $\$ 344$. The meal and scrap derived from menhaden was 80.5 per cent of all the fish meal and scrap produced in 1922.

The amount of menhaden oil produced in 1922 was $7,102,677$ gallons, valued at $\$ 2,904,833$, as compared with $6,260,478$ gallons, valued at $\$ 1,719,892$, produced in 1921, an increase of 13.4 perecent in quantity and 68.9 per cent in value. The oil derived fromenhaden was 85.7 per cent of the total quantity of fish oils produced in 1922 and 86.8 per cent of the total value.

Products of the menhaden industry, by Staies, 1922.

Products.	Massachusetts, Connecticut, and New York.		New Jersey and Delaware.		Virginia.	
Fish utilized: Menhadennumber..	Quantity. 258,086, 285	Value. \$515, 344	Quantity. 169,504, 000	Value. \$358, 994	Quantily. 460, 612, 000	Valuc. $\$ 947,995$
Manufactured products: Dry scrap and fish meal		500				
Acidulated scrap.........dons	18,024	530,606	$\begin{array}{r} 690 \\ 15,097 \end{array}$	$\begin{array}{r} 30,538 \\ 311,632 \end{array}$	34, 244	1,526,864
Crude or green scrap..do.	43	344				
Total.	18,067	530,950	15,787	342, 170	3i, 244	1,526,864
Oil......................gallons..	2,066,461	904, 252	916,570	416, 169	2,560,065	95¢, 831
Grand total		1,435,202		758,339		$\overline{2,485,695}$

Products of the menhaden indusiry, by States, 1922-Continued.

Products.	North Carolina.		Georgia, Florida, and Texas.		Total.	
Fish utilized: Menhadennumber.	$\begin{aligned} & \text { Quantity. } \\ & 188,162,430 \end{aligned}$	Value. \$376, 320	Quantity. $136,085,954$	Value. \$259, 037	$\begin{gathered} \text { Quantity. } \\ 11,212,450,669 \end{gathered}$	Value. $\$ 2,457,690$
Manufactured products: Dry scrap and fish meal						
Acidulated scrap................... Crude or green scrap	¢,783 6,615	320,817 100,341	6,080 4,000	256,616 84,000	$\begin{array}{r} 67,821 \\ 25,712 \\ 43 \end{array}$	
Total.	15,398	481,158	10,080	340,616	93,576	3,221,758
Oil...................gallons. .	967,696	396, 055	591, 885	229, 526	7,102,677	2, 904, 833
Grand total.		877, 213		570, 142		6,126,591

1 747,470,402 pounds.

FROZEN FISH.

COLD-STORAGE HOLDINGS IN 1922.

The year 1922 was the first year of publication by the Bureau of Fisheries of the statistics on frozen fish collected by the Bureau of Markets and Crop Estimates of the Department of Agriculture. Monthly bulletins were issued, showing the holdings, by sections of the country, of the several species. The following table shows the total holdings of all the freezers, 274 in number, which are devoted wholly or in part to the cold storage of fish, together with the totals for the years 1917 to 1921, inclusive, for comparison. It will be seen that the holdings were very much smaller in 1922 than they had been on corresponding dates in several previous years. The time of least holdings was in May, and of greatest holdings in Norember.

Monthly holdings of frozen fish in the United States in 1922, by species, and in 1917-1921, by totals.

Species.	Month ending-					
	Jan. 15.	Feb. 15.	Mar. 15.	Apr. 15.	May 15.	June 15.
Bluefish (all trade	Pounds. 560,281 (1)	$\begin{aligned} & \text { Pounds. } \\ & 288,842 \\ & 392,633 \\ & \text { (1) } \end{aligned}$	Pounds. 154,308226,769 (1)	Pounds. 84, 573 174, 142 (1)	$\begin{aligned} & \text { Pounds. } \\ & 76,625 \\ & 311,974 \\ & \text { (1) } \end{aligned}$	Pounds. 65,731 ${ }_{(1)}^{45,869}$
Butterfish (all trade sizcs)						
Catfish......................						
Ciscoes (including bluefin, blackfin, chub, lake herring, etc.)	5, 561, 416$1,563,492$	$4,431,776$$1,919,122$				
Ciscoes (tullibees)................			$3,110,959$ $1,398,898$	2,022, 514	$1,420,733$ $1,228,155$	1, 080,265
Cod, haddock, hake, pollock	1,361, 438	1,136, 103	-912, 639	-673,813	501,345	-391, 435
Croakers.	72, 555	22, 802	12,431	27,455	36,916	24, 395
Flounders .-........	$6,306,402$	$\begin{aligned} & (1) \\ & 4,804,504 \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & 3,792,067 \end{aligned}$	(1)$2,552,146$	(1)$2,879,457$	$\text { (1) } 3,877,505$
Halibut (all trade sizes)..						
Herring, sea (including alewives and bluebacks)		$\begin{aligned} & 2,493,750 \\ & 1,256,408 \\ & 1,333,111 \end{aligned}$	$\begin{array}{r} 1,157,587 \\ 700,022 \\ 907,933 \end{array}$	$\begin{aligned} & 756,686 \\ & 262,413 \\ & 381,666 \end{aligned}$	$\begin{aligned} & 595,294 \\ & 400,243 \\ & 670,695 \end{aligned}$	$\begin{array}{r} 1,121,368 \\ 497,994 \\ 1,929,491 \end{array}$
Lake trout......................	$\begin{aligned} & 4,147,828 \\ & 1,866,261 \\ & 1,480,099 \end{aligned}$					
Mackerel (excenting Spanish).						
Pike perches and pike or pickerel.	$\begin{array}{r} \text { (1) } \\ 2,939 \\ 1,234,932 \\ 2,392,677 \\ 549,797 \\ 2,817,996 \\ 74,398 \\ (1) \\ 279,235 \\ 22,391 \end{array}$	$\begin{array}{r} (1) \\ 34,209 \\ 1,069,903 \\ 1,532,008 \\ 525,122 \\ 2,255,775 \\ 661,340 \\ (1) \\ 250,562 \\ 10,564 \end{array}$	$\begin{array}{r} \text { (1) } \\ 62,690 \\ 934,365 \\ 1,129,168 \\ 526,350 \\ 1,501,731 \\ 53,123 \\ (1) \\ 85,334 \\ 4,008 \end{array}$	(1) -42,489 707,126 535, 507 868,091 47,320 (1) 62,289 37,374	(1) 39,044 651, 426 406, 181 1825, 315 49, 009 ${ }^{1}$) 65, 719 55, 013	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & 580,391 \\ & 343,956 \\ & 117,643 \\ & 718,773 \\ & (2) \\ & \text { (2) } \\ & 272,814 \end{aligned}$
Rockfishes..................						
Sablefish (black cod)						
Salmon, silver and fall						
Salmon, stelhead						
Salmon, all other						
Sea bass.						
Scup (porgies						
Shad roe.						

[^21]Monthly holdings of frozen fish in the United States in 1922, by species, and in 1917-1921, by totals-Continued.

peci	Tonth ending-					
	Jan. 15	eb.	Kar. 15	Apr.	May 15	une 1
Shellfish. Smelts, eulachon, etc. Squeteagues or "sea trout squid. Sturgeon and spoonbili cat Suckers Whitefish Whiting. Miscellaneous frozen fish	$\begin{gathered} \text { Pounds. } \\ \text { (1) } \\ 383,769 \\ 1,481,601 \\ 1,879,09.1 \\ \text { (1) } \\ \text { (1) } \\ 3,201,436 \\ 3,440,123 \\ 8,093,511 \end{gathered}$	$\begin{gathered} \text { Pounds. } \\ \text { (1) } \\ 982,110 \\ 1,150,765 \\ 1,438,138 \\ \text { (1) } \\ (1) \\ 1,990,535 \\ 1,971,639 \\ 6,390,541 \end{gathered}$	Pounds. 1, 153, 317 1,008, 871 (1) 1,413,991 939,166 $3,629,918$	Pounds. 447, 520 415,236 513,843 (1) 1,633, 224 3,076,583	Pounds. 360, 663 359,431 640,205 (1) 1, 488, 930 381, $3,528,104$	
	$\begin{aligned} & 48,320,212 \\ & 53,51,, 000 \\ & 61,510,357 \\ & 80,683,761 \\ & 51,116,037 \\ & 32,234,530 \end{aligned}$	$37,7+2,262$$42,116,000$$47,904,057$$67,617,473$$3,907,071$$14,727,099$	$\begin{aligned} & 25,474,714 \\ & 33,404,000 \\ & 29,958,132 \\ & 50,036,475 \\ & 28,457,301 \\ & 13,374,429 \end{aligned}$	$\begin{array}{r} 17,484,975 \\ 28,444,000 \\ 20,63,283 \\ 37,110,856 \\ 26,548,272 \\ 9,516,217 \end{array}$	$\begin{aligned} & 17,075,917 \\ & 26,346,000 \\ & 19,803,817 \\ & 37,174,104 \\ & 31,403,425 \\ & 14,040,024 \end{aligned}$	$20,821,345$ $32,311,000$ 27, 779, 230 $48,840,359$ 50 5029 27, 791, 047
Total						
Total						
Tota						
Species	Ionth ending					
	July 15.	ug. 15	pt.	Oct. 15	ov. 15	ec. 15.
Bluefish (all trade sizes). Butterfish (all trade sizes) Catfish.	Pounds.146,56013,01193,850	Pounds.217,3627,914226,1852	Pounds.412,499331,408223,067	Pounds. 616,902 413,172 286, 840	$\begin{aligned} & \text { Pounds. } \\ & 822,088 \\ & 69,298 \\ & 294,897 \end{aligned}$	$\begin{aligned} & \text { Pounds. } \\ & 750,217 \\ & 560,308 \\ & 276,165 \end{aligned}$
Ciscoes (including bluefin, blackfin, chub, lake herring, etc.)						
Ciscoes (tullibees Cod, haddock, hake, pollock Croakers Flounders				1, 102,933	726,353467,872	
						578, 3
				82	5,74	
Halibut (all trade sizes). Herring, sea (including alewives and bluebacks).......		$\begin{aligned} & 1,584,969 \\ & 496,89 \\ & 2,866,563 \end{aligned}$	$\begin{aligned} & 1,939,373 \\ & 2,966,471 \\ & 2,982,542 \end{aligned}$	$\begin{aligned} & 6,426,45 \\ & 59,295 \\ & 5,021,591 \end{aligned}$	$\begin{aligned} & 4,064,862 \\ & 1,616,778 \\ & 1,616 \end{aligned}$	$2,936,146$ $1,853,804$ 4, 953,093
Mackerel (excepting Spanish) Pike perches and pike or pickerel.	2, 425, 336				${ }_{5}{ }^{2}, 602,906$	
		309,971	326,227(2)(20,289	(544,572	1,221, 608	2, 284,614
Rockfishes. Sablefish (black cod) Salmon, silver and fall. Salmon, steelhead trout Salmon, all other Scup (porgies)	(3) 488	(2)527,4459			904 ,	
				808,067$3,391,007$		813,479$3,414,927$
	20, 593	$\begin{array}{r}969,76 \\ 4916 \\ \hline\end{array}$	2,000, 681$4,389,009$		4, 6850,250$5,932,880$	
	1,193,740	${ }_{\text {1, }}^{1,795}$ (2) ${ }^{\text {a }}$		3, 674,078 $5,973,497$		$\begin{array}{r} 709,85 \\ 4,175,559 \\ (2) \end{array}$
	(2) ${ }_{\text {(2) }}^{1,043} 186$		${ }_{\text {4, }}^{\text {(2) }}$, 3898	5, ${ }_{\text {(27) }}(2,497$	5,392,880	
		1,994, 110	-337, 193	-349, 533	1,837, 128	$1,695,801$214,34520,
Scup (porgies).......	300,415	316,930			- 350,019	
Shellfish		$\begin{array}{r} 207,485 \\ 132,124 \\ 18,590 \\ 1,03,814 \\ 319,535 \\ 14,385 \\ 1,44,187 \\ 3,780,791 \\ 3,439,898 \end{array}$	$\begin{array}{r} 196,044 \\ 36,185 \\ 493,231 \\ 81,271 \\ 389,402 \\ 7,7+739 \\ 7,75,583 \\ 4,090,602 \\ 3,316,526 \end{array}$			
Shellfish Smelts, eulachon, etc Squeteagues or "sea trout" Squid.						
Sturge						
Suckers						
Whitefis						
Whiting						
Miscellaneous frozen fish......						
	25, 620, 042 40, 160,000 59, 674,301 $64,864,532$$38,431,221$ 38, 431, 221	32, 226, 170 $47,431,000$ $47,140,132$ 65, 145, 234 44, 024, 666	$\begin{aligned} & 41,141,144 \\ & 54,499, \text {,000 } \\ & 56,295,975 \\ & 69,580,555 \\ & 89,203,946 \\ & 47,197,660 \end{aligned}$	$\begin{aligned} & 54,756,783 \\ & 58,999000 \\ & 647,730,531 \\ & 76,763,253 \\ & 93,811,909 \\ & 60,676,722 \end{aligned}$	54, 502, 283 $61,228,000$ $67,549,377$ 78,769, 101 $99,631,789$ $70,938,957$	48, 689, 830 $59,125,646$$65,841,000$ 74, 202, 339 69,986,671

[^22]
QUANTITIES FROZEN IN 1922.

The following table shows the amount of fish frozen in the United States in 1922, by months, with totals for 1920 and 1921 for comparison. If we reckon the total catch of edible fish in the United States and Alaska as $1,600,000,000$ pounds, the total amount of fish frozen-75.4.53. 674 pounds-is about 4.7 per cent of the total.

Fish frozen monthly in 1922, by species, and in 1920 and 1921, by totals.

Species.	Month ending-						
	Jan. 15.	Feb. 15.	Mar. 15.	Apr. 15.	May 15.	June 15.	July 15.
Blucfish (all trade sizes)	Pounds.	Pounds. 87	Pounds. $3,038$	Pounds. $3,184$	Pounds. $4,710$	Pounds. 96,53 .	Pounds. 107, 860
Butterfish (all trade sizes)			3,9.54		20,477	82, 516	153,349
Catfish.......................			${ }^{(1)}$			32,995	144, 875
Ciscoes (including bluefin, blackfin, chub, lake herring, ctc.).	1,495	16,111	54,955	14,995	9, 035	167,351	2, 160, 231
Ciscoes (tullibees)...............	20,551	21,655	5,352		54	1, 883	100, 794
Cod, haddock, hake, pollock	7,240	38, 814	121,318	51,615	81,415	26, 135	140,489
Croakers..			15,245	11,490		64,720	22, 527
Flounders.	(1)		(1)	(1)	(1)	22,608	52, 854
Halibut (all trade sizes)	366,656	132, 730	86,702	60, 016	327,932	742,023	602, 336
Herring, sca (including alewives and bluefins) \qquad	237, 800	118, 170	180,085	116,995	413,227	127,355	
Lake trout..............	16, 771	16,767	3,914	100, 725	164,412	109, 125	39,228
Mackerel (excepting Spanish)	59,566	38, 077	6,268	272,610	1,332,917	624,264	502,729
Pikeperches and pike or pickerel	(1)	(1)	(1)	(1)	${ }^{(1)}$	27,941	23,684
Sablefish (black cod)	9,115	20,363	27,696	89,569	10,300	56, 114	126,593
Salmon, silver and fall	113,716	66,106	10,639	11, 740	79,488	345,895	441, 724
Salmon, steelhead trout	2, 339	11,320	31, 723		4,015	103,436	300, 391
Salmon, all other	10,295	11, 991	17,718	148,786	286, 177	785,093	687, 818
Scup (porgies).	(1)	(1)				912,682	991, 728
Shad and shad	1,312	1,029	36,639	50, 806	167,699	22,329	38, 644
Shellfish.	(1)	(1)	(1)		(1)	32, 194	36, 558
Smelts, culachon, et	151, 053	116,021	33, 407	1,381		900	2, 865
Squeteagues or "sea trout"	7,748		6,753	9,507	15,175	40, 3×3	9,030
Squid...	5,000	1,164		207, 013	422, 219	91, 845	124,291
Sturgeon and spoonbill cat	(1)		(1)	(1)	(1)	88,032	97, 009
Suckers..	(1)	${ }^{(1)}$	$\left.{ }^{1}\right)$				151
Whitefish.	4,885	8, 410	18,781	8, 135	4,235	50,273	49,133
Whiting.	67,271	308, 484	220, 225	104, 547	953, 820	1,856,675	910,336
Miscellaneous troz	369,987	437, 143	612, 126	717, 321	1,551, 433	S64, 929	686,058
Total frozen fish, 1922.	1, 452,801	1,363,942	1,496,538	1,950,435	5, 849,537	7,376,237	9,121, 160
Total frozen fish, 1921.	2, 443,000	1,770, 000	2, 413,000	$\frac{2}{3}, 698,000$	9,624, 0000	10, 151, 000	9, 845,000
Total frozen fish, 1920.	2, 273, 744	$2,630,482$	2,465,375	3,687, 538	10, 094, 3671	12, 761, 791	13,620,232

Specios.

Bluefish (all trade sizes).
Butterfish (all trade sizes).
Ciscoes (including bluefin, blackfin, chub,
lake herring, etc.)
Ciscoes (tullibees)
Cod, haddock, hake, pollock.
Croakers.
Halibut (all trade sizes)
Herring, sea (including alewives and bluefins)

Mackerel (excenting spanish)
Pike perches and pike or pickerel.
Sablefish (black cod).
Salmon, silver and fall
Salmon, steelhead trout
Salmon, all other
Scup (porgies)
Shad and shad roe
Shellfish.

Squeteagues or "sea trout".
Squid..........................
Suckers.
Whitefish
Whiting
Miscellancous frozen fish.
Total frozen fish, 1922
Total frozen fish, 1921
Total frozen fish, 1920

Month ending-

Aug. 15.	Sept. 15.	Oct. 15.	Nov. 15.	Dec. 15.	Total.
Pounds.	Pounds.	Pounds.	Pounds.	Pounds.	Pounds.
185, 485	218, 183	191, 012	2,067	3, 056	815, 220
88, 069	106, 410	328, 709	85, 437	330	869, 251
8,069	102,91㧊	44,338	15, 443	214,550	563, 184
2,823, 391	2,094,303	534, 432	1,397,871	921,082	0, 245, 252
55, 278	13, 747	91,512	290, 976	139, 217	741,019
60,515	112,131	201, 621	170,562	33, 604	1,045, 462
9,999 36,829		12,691 88,017			136,672
36,828 $1,260,915$	52,326 $1,001,999$	88,017 234,217	48,482 145,975	4,372 160,895	305,487 $5,122,396$
397,892	4,696, 844	645, 882	403, $228{ }^{1}$	58,425	7,964,778
57, 219	174,429	1,036, 142	434,674	26, 204	2,178,610
354, 543	2,016, 323	606, 200	160,424	191, 297	6,165,248
30,539	248,609	605, 551	1,175,429	43, 074	2, 154, 827
164, 715	282, 358	228, 486	122,806	17,243	1,115,358
93., 467	1,583,684	1,247,996	74, 517	93,203	5,007, 175
122,472	85,983	11,081	16,175	2,485	691,420
2,287, 400	1,767,568	328,967	86,795	26,490	6,444, 599
93,559	50,861	2,829	10,890	782	2,063,331
18,066	27,925	4,886	139	1,009	370,483
63, 550	192,902	240,625	222,797	123, 762	912,388
10,103	6,910	8, 144	25,211	28,200	384,962
303, 168	115,169	87, 481	1,898	2,275	599, 587
1,370	19, 102	31,461	8,796		912, 261
73,208	77,024	16, 113	12963	3,550	355, 899
398	892	5,679	12,480	833	20,433
280, 189	172,720	276, 228	301, 446	80,463	1,254, 898
382, 197	381, 168	-323,837	317,680	231, 886	6,058, 126
719,338	1,227,596	1,860,332	1,576,834	333, 251	10,956,348
10,826,942	16,830, 080	9,314, 469	7,069,995	$2,741,538$	$5,453,674$
9,356,000	9,990,000	9,869,000	8,173,000	$2,441,892$	$79,173,892$
11,803,606	11, 168,810,	9,711,800	9,750,844	4,005,000	33, 973,589

The amounts of the different species frozen are shown graphically in Figure 3, in which it will be observed that salnon (of all species) stands first in the amount frozen.

QUANTITIES FROZEN IN 1921 AND 1922 COMPAPED.

The following table compares the amounts of fish frozen in 1922 with those of the previous year. It will be observed that some

Fig. 3.-Amounts of different species of fish frozen in 1922.
striking changes took place. In 1921 halibut stood first in the order of amount frozen, while in 1922 it dropped to sixth place; salmon changed from second to first place: ciscoes, which were fourth in 1921, were second only to salmon in 1922. Mackerel showed the most phenomenal increase of 129 per cent and moved from seventh place in 1921 to fourth in 1922. This was caused by the unusually large run of tinker mackerel on the New England coast in the fall of 1922. Only the four groups, salmon, ciscoes, mackerel, and whiting increased; all others showed a decrease in quantity frozen.

Comparison of amounts of fish frozen in 1922 with those frozen in 1921.

Sp ecres.	1922	1921	Increase (+) or decrease (-).
Salmon, all species	Pounds. $12,143,194$	Pounds. 10,033, 619	$\begin{aligned} & \text { Per rent. } \\ &+21.0 \end{aligned}$
Ciscoes, all species.	10,245, 252	8,649,315	+ 18.4
Herring, sea (including alewives and b	$7,964,778$ $6,165,248$	$9,827,671$ $2,694,681$	18.9 +128.8
Whiting......................	6,058, 126	5, 527,047	+ $+\quad 9.6$
Halibut (sill trade cizes)	5, 122, 396	10,773, 813	- 52.4
Lake trout.	2,178,610	2,501, 995	- 12.9
Pike parches and pike or pic	${ }^{1} 2,154,827$	${ }^{(2)}$	
Scup (porgies)	1 $1,063,331$ $1,254,898$	2, ${ }_{(203}^{2}, 900$	- 47.8
Sablefish (black cod)	1,115,358	1,677,548	-33.5
Cod. haddock, hake, polloek	1, 045,462	1,992,154	- 47.5
Shellfish	1912,388		
Squid.	912,261	2, 9+3, 311	- 69.0
Butterfish (all trade sizes)	869, 251	959, 112	- 9.4
Bluefish (all trade sizes).	815,220	932, 727	- 12.6
Tullibees.	711.019	(2)	
squetcagues or "sea tront"	598,587	2,230, 253	- 73.0
Catfish.	${ }^{1} 563,184$		
Smelts, eulachon. etc	381,962	610,753	- 36.9
Shad and shad roe.	370,483	428, 400	- 13.5
Sturgeon and spoonbill cat	${ }^{1} 355,899$	${ }^{(2)}$	
Flounders.	1305,487	${ }^{(2)}$	
Croakers	136, 672	3.41,439	-60.0
Suckers	${ }^{1} 20,433$	$\left({ }^{2}\right)$	

${ }^{1}$ From June 15 to Dec. 15 only.
2 Included in "Miscollaneous frozen fish" prior to June 15, 1922.

QUANTITIES FROZEN IN 1922, BY GEOGRAPHICAL SEC'TIONS.

The distribution of the fish-freezing bisiness among the several geographical sections of the country by months and by species is shown in the following tables. Eighty per cent of all freezing was in the New England, Middle Atlantic, and North Pacific Coast States. (The Great Lakes fish frozen in New York and Pennsylvania are included in the Middle Atlantic section.) The percentages of the total amount frozen for the different sections are: New England States, 24.67 per cent; Middle Atlantic, 27.12 per cent: South Atlantic, 0.34 per cent; North Central, East, 10.88 per cent; North Central West, 5.11 per cent; South Central, 0.88 per cent; Western, North. 27.94 per cent; Western, South, 3.04 per cent. The smallest amount frozen in any one month was 1,980,435 pounds, or 1.32 per cent of

(r. 4.-Perentazes of the total amnunt of fish rozen by the several sections of the ountry. the total, in April; the largest amount frozen in any one month was $16,830,080$ pounds, or 22.30 per cent of the total, in September. The distribution of the fish-freezing business is also shown graphically in Figure 4.

Fish frozen in 1922, by geographical sections. ${ }^{\text { }}$
BY MONTHS.

Month ending the 15th of-	New England.	Middle Atlantic.	South Atlantic.	North Central, East.	North Central, West.
January	Pounds. 267, 709	Pounds. 400,050	Pounds. 4, 242	Pounds. 53, 251	Pounds. 158,068
Februar	307, 300	237, 530	13,214	131,968	440,979
March	361, 124	287, 765	22,956	188,171	321,180
April	402,727	414,591	29, 44.5	297, 643	222,824
May.	3, 085,487	787, 601	22,245	918,406	198,601
June.	3, 884, 579	929,973	15,691	393, 032	163,298
July	3,419, 877	2, 491,997	13,115	510, 319	301,028
August	1,439.n81	3,606,289	2,300	777, 609	189,581
Scptembe	3,705,641	3, 825, 968	46,850	768, 849	352,664
October	1,303,363	3,062,085	83, 250	1,955,076	486, 513
Novembe	212,941	3,301, 666	6,740	1, 742, 806	506,431
Dccembe	227, 819	1,123, 376	215	482,679	513,979
Total	18,617,648	20,468,891	260, 263	8,209,809	3, 855,146
Per cent of total.	24.67	27.12	0.344	10.88	5.11
Month ending the 15th of-	South Central.	Western, North.	Western, South.	Total.	
January	Pounds. 28, 094	Pounds. 335,375	Pounds. 206, 012	Pounts. 1,452,801	$\begin{array}{ll} P_{c} & \text { cent. } \\ & 19.2 \end{array}$
February	16,262	73, 817	112, 872	1,363, 942	1s. 1
March	95,000	103, 010	117,332	1,496, 538	19.8
April	35.026	282, 225	295, 954	1,980, 435	1.32
May.	22,526	569,633	245,038	5, 849,537	7.75
	63, 342	1,722,917	203, 405	7,376, 337	9.77
July.	67, 570	2, 175, 550	151,704	9,121, 160	12.09
August	127,446	4, 565,569	119. C67	19, 326,942	14.35
Scptemb	91, 223	7, 883,660	155. 225	16, 830,089	22.30
October.	11, 919	2.337, 223	105, 040	9,344,469	12.38
Novembe	25, 871	957,341	316,199	7.069,995	9.37
Dccembe	82,319	76,236	234,915	2,741, 538	3.63
Total.	666,598	21,082,556	2,292,763	75, 453,674	100
Per cent of total	0.88	27.94	3.04		

BY SPECIES.

Species.	New England.	Middle Atlantic.	South Atlantic.	North Central, East.	North Central, West.
Bluefish (all trade sizes)	Pounds. 4, 851	Pounds. 775, 849	Pounds.	Pounds. $14,151$	Pounds. $1,480$
Butterfish (all trade sizes)	191, 681	674,544	2,600		
Catfish ${ }^{2}$ - ${ }^{\text {a }}$ (including bluefin, blackfin, chub,		7,590		33,514	507,648
Ciscoes (including bluefin, blackfin, chub, lake herring, etc.)	113, 586	7, 962, 830		1,995, 430	169,506
Ciscoes (tullibees)..........................		738, 799		152, 733	148,787
Cod, haddock, hake, polloc	342, 127	443, 409	4,965	56,714	26,594
Croaker....		136,672			
Flounders ${ }^{2}$	71,435	212, 381			74
Halibut (all trade sizes)......................	603, 923	241, 244	150	299, 060	112, 513
Herring, sea (including alewires and bluebacks).	3, 293, 073	924, 166	2,900	70, 234	75,355
Lake trout..	1,238	52S, 455		1,405, 133	243, 394
Mackerel (excepting Spanish)	4,291,906	1,324, 435	21,200	42,968	35, $57 ¢$
Pike perches and pike or pickerel	5,467	1,501, 202		629, 748	15, 26.
Sablefish (black cod) Salmon,		138		9,049	8,876
Salmon, silver and fall.	301,759	216,443	215	62, 574	73,133
Salmon, steelhead trout		37, 407		10, 101	
Salmon, all othe Scun (porgies)	182, 2×2	140,331		411,091	19,752
Scup (porgies) ${ }^{2} \ldots$ Shad and shad roe.	2, 023, 704	39,627			
Shad and shad roe	33,295	88, 777	1,583	45,689	10,698
Shellfish ${ }^{2}$.........	71,012 273,490	525, 069	81, 740	28, 572	76,710
Smelts, eulachon, etc......"	273, 490	36,717 598,111		20,228	4,673

${ }^{1}$ New England includes the six States of that section: Middle Atlantic-New York, New Jersey, and Pennsylvania South Atlantic-Delaware, Maryland, District of Columbia, Virginia, Wect Virginia, North Carolina, South Carolina, Georgia, and Florida; North Central, East-Ohio, Indiana, Illinois, Michigan, and Wisconsin; North Central, West-Minnesota, Iowa, Missouri, North Dakota, South Dakota, Nebraska, and Kansas; South Central-Kentucky, Tennessee, Alabama, Mississippi, Louisiana, Texas, Oklahoma, and Arkansas; Western, North-Montana, W yoming, Idaho, Washmgton, Orcgon, and Alaska; Western, South-Colnrado, New Mexico, Arizona, I'tah, Nevada, and California.
${ }^{2}$ Figures show amount frozen after June 15, 1921. Prior to that date, thls species was included in " Niscellaneous frozen fish."

Fish frozen in 1922, by geographical sections-Continued.
BY SPECIES-Continued.

Species.	New England.	Middle Atlantic.	South Atlantic.	North Central, East.	North Central, W est.
Squid.	Pounds. 805, 709	Pounds. 96, 156	Pounds. $1,164$	Pounds. $1,340$	Pounds. 7, 892
Sturgeon and spoonbill cat	749	192, 032		12,897	2, 265
Suckers ${ }^{2}$.		490		19,792	
Whitefish	26,000	351, 777		768, 648	109, 423
Whiting.	4,282,956	499, 509		- 400	1,274, 461
Miscellaneous frozen	1,696,929	2,471, 731	142,946	2,119,319	931,927
Total.	18,617,648	20, 468, 891	260,263	8, 209, 509	3, 855,146
Species.	South Central.	Western, North.	Western, South.	Total.	
Bluefish (all trade sizes).	Pounds. 18, 899	Pounds.	Pounds.	Pounds. 815,220	Per cent. 1.08
Butterfish (all trade sizes)				869,251	1.15
Catfish ${ }^{2}$-.................	14,432			563, 184	. 75
Ciscoes (including bluefin, lake herring, etc.).........	3,900			10,245, 252	13.58
Ciscoes (tullibees)..........				741,019	. 98
Cod, haddock, hake, pollo		24,018	147,635	1, 045, 462	1.38
Croakers..				136, 672	. 18
Flounders ${ }^{2}$.	475	9,547	12,050	- 305, 487	. 40
Halibut (all trade sizes).		3, 724, 940	140,091	5, 122,396	6. 79
Herring, sea (including alw backs).		3,597,470	1,580	7,964,778	10. 55
Lake trout.	390	3, 507,1		2, 178, 610	2. 89
Mackerel (excepting Spanis		7,819	441,348	6,165, 248	8.17
Pike perches and pike or pis	150			2, 151, 827	2.85
Sablefish (black cod)		937, 990	159, 305	1,115, 358	1.48
Salmon, silver and fall		3, 927, 881	425, 170	5, 007,175	6. 63
Salmon, steelhead trout	$\begin{aligned} & 2,985 \\ & \times, 300 \end{aligned}$	635,410	5, 517	691, 420	. 92
Salmon, all other		5, 493, 970	182, 873	6, 444, 599	8. 54
Scup (porgies) ${ }^{2}$...				$2,063,331$ 370,483 0,	2.73 .49
Shellfish ${ }^{2}$.	1, 734	$\begin{array}{r} 52,516 \\ 49,809 \end{array}$	75, 005	912,388	1.21
Smelts, eulachon, etc.				381, 962	. 71
Squid...............	45			912, 261	1.21
Sturgeon and spoonbill ca	4,130	143,826		355, 899	. 47
Suckers ${ }^{\text {a }}$				20, 433	. 03
Whitefish	50			1, 254,888	1. 66
MiscellaneouTotal	608, 512	2,315, 931	669,053	$\begin{array}{r}\text { 6,058, } \\ 10,956 \\ \hline 1248\end{array}$	$\begin{array}{r}\text { 8. } \\ 14.52 \\ \hline\end{array}$
	666, 298	21,082,5:6	2, 292, 763	75, 453, 674	100

[^23]
NEW ENGLAND VESSEL FISHERIES.

GENERAL STATISTICS.

In the ressel fisheries at Boston and Gloucester, Mass., and Portland, Me., during 1922 there was a decrease in the number of trips with an increase in the quantity and a decrease in the value of the products as compared with 1921. The decrease in the number of trips at Boston was 6.01 per cent, at Gloucester 20.26 per cent, and at Portland 12.26 per cent. At Boston there was an increase in the products landed of 1.74 per cent in the quantity and a decrease of 4.05 per cent in the value: at Gloucester, an increase of 14.34 per cent in the quantity and a decrease of 11.61 per cent in the value; and at Portland, an increase in the products landed of 18.2 per cent in the quantity and 3.3 per cent in the value. Statistics of these fisheries have been collected by the local agents and published in monthly bulletins, showing by species and fishing grounds the quantities and values of fishery products landed by

American fishing vessels during the vear at these ports. Two annual bulletins have been issued, one showing the catch by months and the other by fishing grounds.

The fishing fleet at these ports during the calendar year 1922 numbered 338 sail, steam, and gasoline screw vessels, including 28 steam trawlers. These vessels landed at Boston 2,893 trips, aggregating $106,190,403$ pounds of fish, valued at $\$ 4,020,105$; at Gloucester, 1,653 trips, aggregating $37,751,223$ pounds, valucd at $\$ 813,353$; and at Portland, 1,S03 trips, aggregating 15,933,765 pounds, valued at $\$ 632,474$. The total for the three ports amounted to 6,349 trips, aggregating $159,875,391$ pounds of fresh and salted fish, having a value to the fishermen of $\$ 5,465,932$.

Compared with the previous year there was a decrease of 857 trips, or 11.89 per cent, in the total number landed at Boston, Gloucester, and Portland, and an increase of $9,010,285$ pounds, or 5.97 per cent, in the quantity, with a decrease of $\$ 256,697$, or 4.48 per cent, in the value of the products landed. There was an increase in the quantity of all the important species except pollock and halibut, and a decrease in the value of ail cxcept hake, herring, and swordfish. The catch of cod increased $1,665,151$ pounds, or 3.11 per cent, in quantity and decreased $\$ 95,488$, or 5.51 per cent, in valuc; haddock increased $2,783,289$ pounds, or 4.12 per cent, in quantity and decreased $\$ 236,770$, or 11.57 per cent, in value; cusk increased 149,035 pounds, or 7.10 per cent, in quantity and decreased $\$ 3,277$, or 8.66 per cent, in value; and mackerel increased $1,342,567$ pounds, or 39.67 per cent, in quantity and decreased $\$ 59,127$, or 17.61 per cent, in value. Hake increased 838,139 pounds, or 18.47 per cent, in quantity and $\$ 1,728$, or 15.76 per cent, in value; herring, 30,814 pounds, or 1.10 per cent, in quantity and $\$ 40,747$, or 100.84 per cent, in value; and swordfish, 1,684,103 pounds, or 105.41 per cent, in quantity and $\$ 128.610$, or 40.39 per cent, in value. Pollock decreased $1,847,926$ pounds, or 26.60 per cent, in quantity and $\$ 46,636$, or 28.32 per cent, in value, and halibut, 41,879 pounds, or 0.73 per cent in quantity and $\$ 19,017$, or 2.36 per cent, in value. The catch of Newfoundland herring increased from 551,400 pounds, valued at $\$ 19,584$, in 1921 , to $2,302,420$ pounds, valued at $\$ 76,855$, in 1922. In the various other species combined there was an increase of $2,406,992$ pounds, or 77.73 per cent, in quantity and of $\$ 32,533$, or 23.90 per cent, in value.

The catch of scrod cod landed at these ports decreased from $1,150,577$ pounds, valued at $\$ 10,844$, in 1921 , to $\$ 15,371$ pounds, valued at $\$ 9,200$, in 1922, and the catch of scrod haddock increased from 30,562 pounds, valued at $\$ 535$, in 1921. to 253,283 pounds, valued at $\$ 4,261$, in 1922 . The small quantity of these grades landed, as compared with other grades of these species, is said to be due to the fact that the price is so low that the fishermen do not save all that are caught.

The following tables present in detail, by fishing grounds and aloo by months, the fishery products landed at Boston and Gloucestar, Mass., and Portland, Me., by American fishing vessels for the calendar year 1922. The weighits of fresh and salted fish given in these statistics represent the fish as landed from the vessels, and the values are those received by the fishermen. The grades, or sizes, given for certain species are those recognized in the trade.

Statement, by fishing grounds, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the calendar year $19 z 2$.

Statement, by fishing grounds, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the calendar year 1922-Continued.

Statement, by fishing grounds, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during有 the calendar year 1922-Continued.

Fishing grounds.	$\begin{aligned} & \text { Num- } \\ & \text { ber } \\ & \text { of } \\ & \text { trips. } \end{aligned}$	Haddock.						Hake.				
		Large (over $2 \frac{2}{2}$ pounds).				Scrod (1 to $2 \frac{1}{2}$ pounds).		Large (6 pounds and over).				
		Fresh.		Salted.		Fresh.		Fresh.		Salted.		
Landed at boston												
East of $66^{\circ} W$. longitude.												
La Have Bank.	28	137,475	\$2, 836									
Cape Shore.		- $\begin{array}{r}\text { 2, } 291,038 \\ 93,965\end{array}$	49,921 2,55									
West of $66^{\circ} \mathrm{W}$. longitude.												
Mrowns Bank.		7, 433,658	249, 408			300	\$2					
Peorges Bank: $70913,308,265$ 330,041................. 9,000												
FippeniesBank		1 1,045	81									
Nantucket shoals....... 492,005,$590 \quad 62,352 \ldots \ldots . . \ldots .$.												
Light........ 1 4,050 162												
Off Chatham..	39	771,640	28,982			920	18	5,595	321			
Seal Island....	1	26,400	792									
Shore, general.	694	361,131	10,691			640	9	280				
Total...	2,893	52, 664,489	-501, 570			198,425	3,855	97, 810	3,330			
$\begin{aligned} & \text { LANDED AT } \\ & \text { GLOUCESTER. } \end{aligned}$												
East of $66^{\circ} W$. longitude												
La Have Bank.	20	230,896	2,156					26,990	268			
Western Bank.	81	2,976,910	29, 574	130, 055	\$2,710			25, 975	653	3,010	\$35	
Quereau Bank.	24	3,960		465				9,730			5	
Green Bank...	25	220						4,155	54	5,950	104	
Grand Bank... St Peters Bank				310 555	11			4,555	45	9,735	152	
The Gully.....	6							1,850	14			
West of $66^{\circ} \mathrm{W}$. longitude.												
Georges Bank.	202	5,349, 130	53,828.					43, 825	450	1, 135	${ }_{13}^{5}$	
South Channel.	22	1,548,820	16,184.			675	7	8,330	84			
Shore, general.	1,133	2, 004,140	57,744.					698,345	18, 739	1,615	$2 \dot{8}$	
Total.	1,653	12,453,416	162,922	131,385	2,736	675	7	838,655	20,556	21,950	342	
LANDED AT PORTLAND.												
East of $66^{\circ} \mathrm{W}$. longitude.												
West of $66^{\circ} W$. longitude.												
Fippenies Bank	2	39,630	1,540			+750	4					
Platts Bank...'	56	91, 598	4, 851			7,'885	65	24, 515	699			
Jeffreys Ledge.	174	891,079	41, 749			30,883	216	10,405	366			
Shore, general.	1,464	550,723 !	29, 108			13, 230	106	5,280	97	300	5	
Tot	1,803	4,693, 425	137, 911			54,183	399	40,200	1,162	300	5	
Grand total	6,349 68	69, 811, 3301 ,	802, 4031	131,385	2,736 .	253, 283;	4. 261	976,665	25,048	22, 250	347	

Statement, by fishing grounds, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the calendar year 1922-Continued.

Statement, by fishing grounds, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the calendar year 1922-Continued.

Fishing grounds.	$\begin{gathered} \text { Num- } \\ \text { ber } \\ \text { of } \\ \text { trips. } \end{gathered}$	Cusk.				Halibut.			
		Fresh		Salt	ed.	Fresh		Salt	ed.
LANDED AT BOSTON.									
$6{ }^{\circ}$		Pounds.	Value.	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.
La Have Bank	28	14, 135	\$174			73,975	\$10, 14.		
Western Bank.	73	16,315	204			153, 458	26,535		
Querean Bank	25	9,6×5	160			682, 498	95,160		
Green Bank.	6					186,349	27, 311		
Grand Bank.	41.	1,000	20			1,371,081	162,977		
St. Peters Bank	3.					115, 440	15, 167		
Cape Shore.	36	4, 445	35			869	1.5		
The Gully.	4	150	3.			111, 294	16,2331		
West of $66^{\circ} \mathrm{W}$. longitude.									
Browns Bank	289	687,010	9,602			244,015	43, 139		
Georges Bank	709	-16,392	843		...	788,260	115, 131		
Cashes Bank.	1	2,250	45			610	95		
Fippenies Bank	1	2,100	32			138	26		
Middle Bank.	51	47, 530	785			3,042	476		
Platts Bank.	4	27,145	257			255	29		
Jeffreys Ledge	159	196,870	3,944			6, 594	1,411		
South Channel.	674	116, 230	1,829			177, 184	32,007		
Nantucket Shoals..........	49	2,500	25			2, 265	415		
Off Lighland Light......... Off Chatham	11					90 2,849	23		
Off Chatham	39	8, 855	230			2, 819	618		
Seal Island..	11	3,700	37			- 30	, 3		
Shore, general	694	10,020	192			28, 160	3,477		
Total.	2,893	1, 196,932	18, 417			3,948,456	550,735		
LANDED AT GLOUCESTER.									
East of $66^{\circ} \mathrm{W}$. longitude.									
I. Have Bank	20	53,685	510					60	\$3
Western Bank.	81	112,810	1,102	2,550	\$31	180	,	3, $\times 50$	230
Quereau Bank	24	17,725	214	4,325	96	160	${ }^{4}$	380	27
Green Bank.	25	2,169	s0	2,480	48	14,982	2,624	310	29
Grand Bank.	57	17,620	220	12,855	376			6,495	376
St. Peters Bank	5							1,820	91
Cape Shore.	1.8	2,550	30	200	5	1,810	453		
The Gully.	6	3, 460	40	2,085	36				
West of $66^{\circ} \mathrm{W}$. longitude.									
Browns Bank.	47	129, 400	1,260	3,4,5	53			- 190	17
Georges Bank.	202	123,950	1,219	25,050	531	25, 220	3,693	2,601	143
south Chamel	22	810	10						
shore, general	1,133	1,200	13					
Total.	1,653	465.779	4,69:	53.030	1.196	42,352	6.781	15.706	915
LANDED AT PORTLAND.									
East of $66^{\circ} \mathrm{W}$. longilude.									
La Have Bank	5	7,650	119			108, 150	16. 415		
Western Bank.	29	5, 06.5	89			24.4,984	32,537		
Quereau Bank	17	3.600	66			393,090	56, $05 \frac{7}{7}$		
Green Bank..	11	3, 190	44			-96, 837	42,373		
Grand Bank..	10					-64, 724	35, 114		
St. Peters Bank	4			245	5	73,249	11, 836		
The Ginlly.	4					130,632	16,516		
West of $66^{\circ} \mathrm{H}$: longitude.									
Browns Bank.	2	2, 230				15,507	2,010		
Georges Bank	1.5	2,000	40	160	3	73,903	10,090		
Fippenies Bank	4	6,100	49			752	115		
Platts Bank.	56	9., 49.5	1,733			3,359	450		
Jeffreys Ledge	174	213, 20.5	3,756			i, 176	726		
Shore, general..............	1,464	1sヶ, 969	4,215			7,265	997	-
Total.	1.803	231.301	10.233	405	8	1,617,635	225.62.6	
Grand total.	$\stackrel{\text { 6,349 }}{ }$	2,194,015	33.34	53,435	1,20t	5,60s, +43	783, 142	15.706	915

Statement, by fishing grounds, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during
the calendar year 192?-Continued.

[^24]Statement, by fishing grounds, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the calendar year 1922-Continued.

Fishing grounds.		Total.				Grand total.	
		Fresh.		Salted.			
East of 66° W. longitu		Pounds.	Value.	Pounds.	Value.	Pounds.$867,111$	Value. \$33, 09
La Have Bank	28	867, 111	\$33, 094				
Western Bank	73	4, 744, 869	149, 819	21,000	\$731	4,765, 869	150, 550
Quereau Bank	${ }_{2}{ }_{6}$	748,949	98, 016	3,000	105	751,949	98,121
Green Bank.		199,949 $1,390,775$	r 28,191			199, 949	28,191
Grand Bank...	41	$1,390,775$ 115,440	164,384 15,167	5,000	175	1, 395, 715	164,559 15,167
Off Newfoundlan	41	410, 000	20,500			410,000	20,500
Cape Shore..	36	1,233, 753	78,918	64,400	4,019	1,298, 153	82,937
Gulf of St. Lawrenc	30	65, 105	7,979			65,105	7,979
The Gully	4	121,634	16,764			121,634	16,764
West of $66^{\circ} \mathrm{W}$. longttude.							
Browns Bank.	289709	$16,170,363$$31,142,370$	1, 551, 234	$\begin{array}{r} 2,000 \\ 51,300 \end{array}$	$\begin{array}{r} 70 \\ 1,424 \end{array}$	$\begin{aligned} & 16,172,363 \\ & 31.193,670 \end{aligned}$	$\begin{array}{r} 551,304 \\ 1,302,162 \end{array}$
Georges Bank							
Cashes Bank.	1	16,36018,513				16,360	627
Fippenies Ban	51		4548			18,513	488
Middle Bank	51	914,55689,635	35, 302			914,556	35, 302
Jeffreys Led			1, 36			89,635	1,506
South Channe	$\begin{aligned} & 159 \\ & 674 \end{aligned}$	2, 3 , 483,990	1,062, 611	300	183	2,480,990	102, 428
Nantucket Shoals		$2,512,273$9,315	84, 320			2,512, 273	1,062,794
Off Highland Lig	$\begin{aligned} & 49 \\ & 1 \end{aligned}$					- 9,315	84,320 292
Off Chatham	3911	1,085,414	41,983			1, 085, 414	41,983
Seal Island.		41,630	1,215			41,630	1,215
Shore, genera	694	5, 979, 424	217,696	2,200	126	5,981, 624	217, 822
Total.	2,893	106,032, 203	4,013, 211	158, 200	6,894	106, 190, 403	4,020,105
Landed at gloucester. East of $66^{\circ} \mathrm{W}$. longitude.							
La Have Bank.	20	1,962,146	31,792111,664	$\begin{array}{r} 83,100 \\ 2,202,940 \end{array}$	$\begin{array}{r} 3,292 \\ 80,166 \end{array}$	$\begin{aligned} & 2,045,246 \\ & 9,986,432 \end{aligned}$	35,084191,830
Western Bank	24	- 294, 590					
Quereau Bank			4,990	318,385152,085	12,515	612,975	17,505
Green Bank.	57	63, 131	3,722		5,538	215, 216	9,260
Grand Bank.		170,120	3,209	1,128,815	41, 633	1,298,935	44, 842
St. Peters Bank				146,575	15,607	416,575	15,607
Off Newfoundla	18			1, 892, 420	56,355	1, 892, 420	56,355
Cape Shore.		84,215	4,592	311,815	21,365	396,030	25,957
Gulf of St. Lawr				75, 665	11, 472	75, 665	11, 472
St. Anns Bank.		22,895	89		6,372	207, 195	6,372
The Gully.				42,425	1,342	65, 320	1,731
W. of $66^{\circ} \mathrm{W}$. longitude.							
Browns Bank.	$\begin{array}{r} 47 \\ 202 \\ 22 \\ 1,133 \end{array}$	1,636, 820	$\begin{array}{r} 24,438 \\ 150,983 \\ 20,764 \\ 181,132 \end{array}$	$\begin{array}{r} 62,300 \\ 458,321 \end{array}$	2,23417,683	$1,699,120$$11,499,319$	$\begin{array}{r} 26,672 \\ 168,666 \\ 20,764 \\ 181,236 \end{array}$
Georges Bank		$\begin{array}{r} 1,000,82 \\ 11,040,998 \\ 1,840,425 \\ 5,496,785 \end{array}$					
South Channe						1, 840, 425	
Shore, geners				3,565	104	5,500, 350	
Total. \qquad LaNDED at portland. East of $66^{\circ} \mathrm{W}$. longitude.	1,653	30,395,617	537,675	7,355,606	275,678	37,751,223	813,353
La Have Bank.	5	$\begin{array}{r} 124,595 \\ 4,718,627 \end{array}$	$\begin{array}{r} 16,969 \\ 120,373 \end{array}$	$\begin{aligned} & 10,285 \\ & 39,810 \end{aligned}$	$\begin{array}{r} 433 \\ 1,539 \end{array}$	134,880$4,758,437$	17,402121,912
Western Bank.	17						
Quereau Bank		436,094	57, 295	34,38016,125	1,557629	470,474331,070	58, 852
Green Bank.	10	314,945265,231					
Grand Bank			35, 504	14,55513,670	613	279, 786	43, 368
St. Peters Ba	48	84, 749	12,013		488	98,419	12, 501
Cape Shore		176, 810	9,060	$14,285$	844	191,125	9, 904
The Gully.	4	133, 772	16,60s			133, 772	16,608
West of $66^{\circ} \mathrm{W}$. longitude.							
Browns Bank	2	70,372	4,28326,122			70,372	4,283
Georges Bank.	15	214, 876		3,965	165	218, 841	- 1,753
Fippenies Ban	56	55, 532	1,753			55,532	
Platts Bank.	56	2, 234, 867				2, 234, 866	17,725
Jeffreys Ledge	174		78, 883	$\cdots 24,920$			178,883186,879
Shore, genera	1,464	6,321, 104	185, 962		917	6,346, 024	
Tota	1, 803	15, 761, 770	625,289	171,995	7,185	15,933, 765	632,474
Grand total.	6,349	152, 189, 590	5,176,175	7,685, 801	289, 757	159, 875, 391	5,465,932

Statement, by months, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the year 1922.

Months.	Number of trips.	Cod.				
		Large (10 pounds and over).				
		Fresh.		Salted.		
LANDED AT BOSTON.	158	Pounds. 521, 773	Value.$\$ 40,895$	Pounds.	I'alue.	
January						
February	228	2,042,393	73, 832			
March	239	2,951,045	73,694	17,000	$\$ 595$ 105	
April	261	1,900,605 55,959		3,000	105	
June.	232	1,594,337	63, 624	10,000	350446	
July.	296	$\begin{aligned} & 1,231,524 \\ & 1,466,591 \end{aligned}$	56,315	12, 750		
August	272		71, 360		446	
September	256	$\begin{aligned} & 1,466,591 \\ & 1,413,465 \end{aligned}$	58,72559,473			
Oetober	242	1, 123, 724		5, 000	175	
November.	256	1,018, 607	54, 474			
December.	185	881,633	54,331			
Total.	2,893	17, 718, 297	719,118	47,750	1,671	
TANDED AT GLOUCESTER.		$\begin{array}{r} 23,370 \\ 165,040 \end{array}$	931	80523,420	24	
January	111					
February.	79		4,22534,125		977	
March	371	1, 633, 893		90, 245	3,237	
April	191	717, S64	15,154	120,545	4,366	
May.	59	597,921	11,955	207, 530	8, 197	
June.	76	1,247, 155	24, 878	512,315	19,31917,342	
July..	59	904, 015	17, 483	440,980		
Anginst	75	1,019,278	19,886	860,465	$\begin{aligned} & 17,342 \\ & 34,412 \end{aligned}$	
September	72	584,590	11,927	448, 3535	$\begin{aligned} & 31,412 \\ & 18,813 \end{aligned}$	
October.	184	751, 875	20,750		$\begin{array}{r} 14,752 \\ 715 \\ 90 \end{array}$	
November.	234	815, 485	23, 179	17, 205		
December	142	245,428	8,750	1,635		
Total.	1,653	8,705,914	193, 243	3,081,385	122,244	
LANDED AT PORTLAND.						
January	129	$\begin{aligned} & 104,169 \\ & 132,806 \end{aligned}$	8,697			
February	136		6,113			
March.	127	669, 622	14,1288,966 365 14		
April.	162	$\begin{aligned} & 392,959 \\ & 623,029 \end{aligned}$				
May..	208		15, 234	$\begin{aligned} & 25,425 \\ & 21,580 \end{aligned}$	1,001	
June.	193	348, 866	33, 850			
July.	241	294, 654	13, 123	5,090	179	
Angust	169	193, 678	9,553	17,085	735	
September.	150	13S, 550	5,806	15,350	$\begin{array}{r} 629 \\ 1,086 \end{array}$	
Oetober.	129	91,664111,972	4,918	25,565		
November.	97		6, 732	12,925	1,086	
December.	62	71, 304	5, 063		711	
Total	1, 803	3,173, 273	132, 183	123, 385	5,199	
Grand total	6,349	$29,597,484$	1,044,544	3, 252, 520	129,114	
Grounds east of $66^{\circ} \mathrm{W}$. longitude	558	7,066, 800	179, 473	2,789,155	110,613	
Grounds west of $66^{\circ} \mathrm{WV}$. longitude	5,791	$22,530,684$	865, 071	463,365	18,501	
Landed at Boston in 1921...	3,078	$19,439,796$$7,777,379$	815,904188,094	r 23,110		
Landed at Gloucester in 1921	2, 073				$\begin{array}{r} 143,488 \\ 10,097 \end{array}$	
Landed at Portland in 1921..	2,055	2, 345, 199	92, 116	213,931		

Statement, by months, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the year 1922-Continued.

Statement, by months, of quantities and values of certain fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by American fishing vessels during the year 1922-Continued.

Statement, by months, of quantities and values of certain fishery products landed at Boston and Gloucestre, Mass., and Portland, Me., by American fishing vessels during the year 1922-Continued.

Statement, by months, of quantities and values of eertain fishery products landed at Boston and Cloucester, Mass., and Portland, Me., by American fishing ressels during the year 1922-Continued.

Months.	$\begin{aligned} & \text { Num- } \\ & \text { ber } \\ & \text { of } \\ & \text { trips. } \end{aligned}$	Cusk.				Halibut.			
		Fresh.		Salted.		Fresh.		Salted.	
landed at boston.		Pounds.	Value.	Pounds.	Value.	Pounds.	Value.	Pounds.	1alue.
January	158	113, 155	\$2, 750			38,692	88, 889		
February	228	132,445	2, 653			188, 834	32,115		
March.	239	163,438	1,859			483, 722	76, 255		
April.	238	157, 295	1, 805			486, 342	57,171		
May..	261	97, 415	1, 102			479, 871	64, 920		
June.	232	33, 520	562			395, 476	56, 84		
Jaly...	296	35, 407	538			614,356	68, 277		
August....	${ }_{256}^{272}$	57,905 45,790	726			549,087 404,696	67,383 59,709		
September	246	45,790 112,302	1, 6735			404,696 230,620	59, 39,231		
November	286	89, 145	1, 392			47,091	11, 310		
December	185	159, 085	2,592			29,669	8,632		
Total.	2, 893	1,196,932	18,417			3, 948, 456	550, 735		
anded at gloucester.									
January .	111	210							
Febrinary	79	3,899	35	1,385	\$26				
March.	371	18, 860	188	980	22	14,982	2,624		
April.	191 59	89,915 47 145	871 496	1,685 4,490	28	140	1,043	180	22
June	76	46, 920	513	22,470	485			2,050	231
July.	59	60, 185	624	§, 125	165	340	11	5,190	190
August	75	86, 530	813	5,900	232			6,366	344
Septembe	72	44,409	510	5, 400	111	16,050	2,650	1,480	97
October	184	36, 385	367	1,785	36			36.5	26
Novembe	234	21,760	207.	810	16			75	5
Decembe	142	9, 570	72			1, 810	453		
Total.	1,653	465, 779	4,698	53, 030	1,196	42,352	6.781	15, 706	915
January	129	65, 105	2,049			1,090	154		
February	136	s0, 711	1,425			31, 822	4,888		
March	127	74,625	807			65., 964	11,971		
April.	162	51, 110	720			91, 141	12,654		
May.	208	14,283	340			313,62s	42, 043		
June.	193	10,632	245	405	8	186, 854	26, 351		
July	241	12,778	364			243, 168	29, 207		
August	169	16,992	619			260, 358	30, 373		
Septembe	150	20, 137	508			211,581	30,595		
October.	129	56, 596	1,020.			197, 472	33, 569		
Novembe	97	$81,0.55$	1,095			2,767	347		
Decem	62	46,950	1,041			11,760	3,444		
Total	1, 803	531, 304	10,233	405	8	1,617,635	225,626		
Grand total	6,349	2, 194, 015	33.348	53, 435	1. 204	5,608,443	783,142	15, 706	915
Grounds east of $66^{\circ} \mathrm{W}$. longitude.	558	275, 5 \%	3,110	24, 740	617	4, 223, 766	56x, 211	12,915	755
Grounds west of $66^{\circ} \mathrm{W}$. longitude.	5,791	1,918,461	30, 238	28,695	587	1,384, 677	214,931	2, 791	160
Landed at Boston in 1921..	3,07S	881, 288	16,111	S00	16	3, 808, 468	556, 592		
Landed at Gloncester in 1921	2,073	576,995	7,368	37, 550	761	385,040	39,447	48,321	7,063
Landed at Portland in 1921.	2,055	601,699	13, 369	83	4	1, 424, 059	199,959	110	13

Statement, by months, of quantities and ralues of certain fishery products landed at Boston and Cloucester, Mass., and Portland, Me., by American fishing vessels during the year 1922-Continued.

Includes herring from Newfoundland, 410,000 pounds frozen, value $\$ 20,500$, and $1,592,420$ pounds salted, value $856,355$.

Statement, by months, of quantities and values of certain fishery products landed at Bostor and Gloucester, Mass., and Portland, Me., by American fishing vessets during the year 1922-Continued.

The greater part of the fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by fishing vessels each year are taken from fishing grounds off the coast of the United States. In the calendar year 1922, 78.96 per cent of the quantity and 75.27 per cent of the value landed by fishing vessels were from these grounds: 4.16 per cent of the quantity and 8.17 per cent of the value, consisting mostly of cod, halibut, and herring, were from fishing banks off the coast of Newfoundland: and 16.88 per cent of the quantity and 16.56 per cent of the ralue from fishing grounds off the Canadian

Provinces. There was some falling off from the previous year in the percentage of products from grounds off the United States, with a small increase in that for Newfoundland and the Canadian Provinces. Newfoundland herring constituted 1.44 per cent of the quantity and 1.4 per cent of the value of the fishery products landed at these ports during the year. The herring were taken from the treaty coast of Newfoundland, and the cod, haddock, hake, halibut, and other species from that region were obtained from fishing banks on the high seas. All fish caught by American fishing vessels off the coast of the Canadian Provinces were from offshore fishing grounds. The catch from each of these regions is given in detail in the following table:

Quantity and value of fish landed by American fishing vessels at Boston and Gloucester, Mass., and Portland, Me., in 1922, from fishing grounds off the coast of the United States, Newfoundland, and Canadian Provinces.

Species.	United States.		Newfoundland.		Canadian Provinces.		Total.	
Cod: Fresh.	Pounds. 39, 177, 495	Value. $\$ 1,204,889$	Pounds. $233,510$	Value. \$5,367	Pounds. 10,762,990	Value. \$236,471	Pounds. 50, 173, 995	Value. $\$ 1,446,727$
Salted	520, 120	20,467	1,701,610	63,401	2,781,440	104,684	5,006, 170	188,552
Fresh.	61,195,629	1,658,823	220	2	8, 868,764	147, 839	70,064,613	1,806,664
Salted	5, 6 6,900	109,108	15,740	257	10, 270	1, 190	5, 32, 910	110, 555
Pollock: Fresh		109,462	70	1				117,068
Salted	4,625	76	4,405	82	40,270		$49,300$, 938
Cusk: \qquad	1,914,761	30,201		364	254, 975	2,783	2,194,015	33,348
Salted	28,695	587	15, 580	429	9,160	188	53,435	1,204
Halibut: Fresh		214,928	2,322,666	297, 932	1,901,130	270,282		783,142
Salted	1, 2,791	160	8, ${ }^{\text {8,625 }}$	${ }^{495}$	1, 4,290	260	15,706	${ }_{915}$
Mackerel:		151, 049				88,062	4,266 367	
Salted	$\begin{array}{r} 091,301 \\ 11,140 \end{array}$	151,496			1,449,240	36,892	4, 460,380	-37,388
Herring:								
Fresh.	341,934	4,299	410,000	20,500				$24,799$
Salted..... Swordfish: Fre		370	1, 892, 7,810	56,355 1,072		4,574	$\begin{aligned} & 1,892,420 \\ & 3,281,748 \end{aligned}$	$\begin{array}{r} 56,355 \\ 447,016 \end{array}$
Miscellaneous:		370	7,810	1,072		4,574		
Fresh. Salted.	$\begin{array}{r} 5,436,857 \\ 43,600 \end{array}$	$\begin{array}{r} 167,083 \\ 1,073 \end{array}$			22,496	441 41	$\begin{array}{r} 5,459,353 \\ 44,095 \end{array}$	$\begin{array}{r} 167,524 \\ 1,114 \end{array}$
Total.	126,232, 804	4,114, 176	6,653,585	446,467	26,989,002	905,289	159,875,391	5,465,932

SPECIES.

COD.
In 1922 there was a decrease of 60 vessels in the fishing flcet landing fish at Boston, Gloucester, and Portland, as compared with 1921. There were 17 vessels in the salt-bank fishery, or 6 fewer than in 1921, and 94 in the market fishery, or 4 fewer than in 1921. These vessels landed their fares of cod and other ground fish at these ports during the year, and large quantities were also landed by vessels fishing on the shore grounds. The catch of cod landed at these ports during the year was $55,180,165$ pounds, valued at $\$ 1,635,279$, of which $50,173,995$ pounds, valued at $\$ 1,446,727$ were landed fresh, and $5,006,170$ pounds, valued at $\$ 188,552$, were landed salted. Cod ranked sccond in both quantity and value among the various species landed.

HADDOCK.

The catch of haddock ranked first in both quantity and value, exceeding that of cod by $15,015,833$ pounds in quantity and $\$ 174,121$ in value. The quantity of haddock landed at these ports by fishing vessels during the year was $70,195,998$ pounds, valued at $\$ 1,809,400$, all landed fresh except 131,385 pounds salted, valued at $\$ 2,736$. These fish were taken chiefly from Western Bank, Browns Bank, Georges Bank, and South Channel, and the greater part of the catch, or $52,862,914$ pounds, valued at $\$ 1,505,425$, was landed at Boston.

HAKE.

The catch of hake amounted to $5,374,2 \pm 7$ pounds, valued at $\$ 111,331$, all landed fresh except 32,910 pounds salted, valued at $\$ 555$. Of this catch, $3,519,546$ pounds, valued at $\$ 71,473$, were landed at Boston, 860,605 pounds, valued at $\$ 20,898$, at Gloucester, and 994,096 pounds, valued at $\$ 18,960$, at Portland.

POLLOCK.

The catch of pollock amounted to $5,097,085$ pounds, valued at $\$ 118,006$, all landed fresh, except 49,300 pounds salted, valued at $\$ 938$. The greater part of this catch, or $3,416,051$ pounds, valued at $\$ 78,662$, was landed at Boston. The catch was obtained principally from Browns Bank, Georges Bank, Jeffreys Ledge, South Channel, and shore grounds.

CUSK.
The catch of cusk was $2,247,450$ pounds, valued at $\$ 34,552$, all fresh except 53,435 pounds salted, valued at $\$ 1,204$. More than half of the catch was landed at Boston. There was an increase in the catch of cusk of 149,035 pounds in quantity, with a decrease of $\$ 3,277$ in value as compared with 1921.

HALIBUT.

The catch of halibut was $5,624,149$ pounds, valued at $\$ 784,057$, all landed fresh except 15,706 pounds salted, valued at $\$ 915$. There was a small decrease in the catch in both quantity and ralue as compared with 1921. The quantity landed at Boston was $3,948,456$ pounds, valued at $\$ 550,735$; at Gloucester, 58,058 pounds, valued at $\$ 7,696$; and at Portland, $1,617,635$ pounds, valued at $\$ 225,626$.

MACKEREL.

The total catch of fresh mackerel taken by the American fishing fleet in 1922 was 53,703 barrels, compared with 40,323 barrels in 1921, an increase of 13,380 barrels. The total catch of salted mackerel was 2,749 barrels, compared with 3,242 barrels in 1921, a decrease of 493 barrels. The quantity of mackerel landed at Boston, Gloucester, and Portland during the year was $4,726,747$ pounds, valued at $\$ 276,499$, of which $4,266,367$ pounds, valued at $\$ 239,111$, were fresh and 460,380 pounds, valued at $\$ 37,388$, were salted. There was an increase in the total catch of mackerel landed by fishing vessels at these ports of $1,342,567$ pounds in quantity and a decrease of $\$ 59,127$ in value, as compared with 1921.

In 1922 the total catch of mackerel up to July 1 was 25,000 barrels fresh and 2,344 barrels salted, compared with 33,632 barrels fresh and 3,143 barrels salted for the same period in 1921. In the southern mackerel fishery both the purse-seine vessels and the gill-net vessels had a poor season. The weather was favorable for fishing, but the mackerel were not abundant. The fish landed were practically all of large and medium size and sold from 9 to 30 cents per pound, according to market conditions. The first mackerel landed sold at 60 cents per pound. The southern fleet was about the same size as in 1921. The Cape Shore fleet was larger than last year but less successful. The first arrival was on May 25 and consisted of large and medium fish, which sold at 18.6 cents per pound. On June 2, fresh mackerel sold at $6 \frac{1}{2}$ cents per pound from the vessel, the lowest price since 1919. Cape Shore salted mackerel sold from $\$ 12$ to $\$ 13$ per barrel.

SWORDEISH.

The catch of swordfish amounted to $3,281,748$ pounds, valued at $\$ 447,016$. There were 50 vessels engaged in this fishery, or 16 fewer than in the previous year, but there was an increase in the catch of 105.41 per cent in quantity and 40.39 per cent in value.

FLOUNDERS.

The catch of flounders in the vessel fishery was $3,281,327$ pounds, valued at $\$ 134,749$, an increase of 676,670 pounds, or 25.97 per cent in quantity and of $\$ 22,793$, or 20.35 per cent, in value, as compared with 1921. The catch taken by boats under 5 tons net tonnage is not included in these statistics.

HERRING.

The catch of herring amounted to $2,644,354$ pounds, valued at $\$ 81,154$. Of this quantity, 341,934 pounds, valued at $\$ 4,299$, were taken off the coast of the United States and landed fresh, and the remainder, including 410,000 pounds, fresh, frozen, valued at $\$ 20,500$, and $1,892,420$ pounds, salted, valued at $\$ 56,355$, were Newfoundland herring.

OTTER-TRAWL FISHERY.

In 1922 there were 578 trips landed at Boston, Gloucester, and Portland by otter-trawl vessels, amounting to $50,804,604$ pounds of fish, valued at $\$ 1,259,487$, or 31.78 per cent of the quantity and 23.04 per cent of the value of the total catch landed by fishing vessels at these ports during the year. The catch included cod, $11,161,947$ pounds, valued at $\$ 279,585$; haddock, $35,878,524$ pounds, valued at $\$ 824,963$; hake, 576,370 pounds, valued at $\$ 11,288$; pollock, 919,177 pounds, valued at $\$ 19,181$; cusk, 3,785 pounds, valued at $\$ 30$; halibut, 157,813 pounds, valued at $\$ 28,446$; mackerel, 120,960 pounds, valued at $\$ 13,202$; and other species, $1,986,028$ pounds, valued at $\$ 82,792$. The catch by otter trawls consists principally of haddock, which in 1922 amounted to 51.11 per cent of the quantity and 45.59 per cent of the value of the entire catch of this species landed. The greater part of the catch by otter trawls was taken from Georges Bank and South Channel.

The following tables give, by fishing grounds and by months, the catch landed by otter trawlers at these ports in 1922, ánd also the catch of cod, haddock, and hake landed by them in various years:

Fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by otter trawlers in 1922.

Fishery products landed at Boston and Gloucester, Mass., and Portland, Me., by otter trawlers in 1922-Continued.

	Numtrips.	Mackerel.		Miscellaneous.		Total.	
by fishing grounds. East of $66^{\circ}{ }^{W}$. longitude. Western Bank Cape Shore \qquad Wist of $66^{\circ} \mathrm{W}$. longitude.	913	$\begin{gathered} \text { Pounds. } \\ -108,990 \end{gathered}$	Value. \$12,776	$\begin{aligned} & \text { Pounds. } \\ & \quad 20,551 \end{aligned}$	Value. $\$ 379$	Pounds. $13,650,631$ 108,990	Value. \$266,601 12, 776
Browns Bank.	2					70,198	2, 855
Georges Bank.	217			973,657	42,762	17, 273, 229	438,457
South Channel.	228	245	74	861,558	33, 817	17, 430, 766	467, 951
Nantucket Shoals	29			107, 837	5,159	2, 237, 355	69, 725
Shore, general.	5	11,725	352	19,425		33, 435	1,122
Total	578	120,960	13, 202	1,986, 028	82,792	50, 804, 604	1, 259,487
January.	40			40, 986	4,663	2, 319, 361	130, 421
February	48			72, 206	5, 146	3,644, 131	102,688
March.	61	100	61	116,976	5, 895	5, 940,996	115, 678
April.	33			87, 430	3,433	3, 703, 213	86,635
Mane.	48	39,400	7,320	283, 768	5, 776	5,440, 436	113,490
June.	55 46	69,735	5,469	183, 521	5,331	4,706,568	94,624
August	52	- 11,20		178, 338	7,412	4,433, 4838	81, 861
September	43			252, 110	8, 320	4, 167, 649	75, 709
October.	41			353, 242	13,445	3, 977, 513	115,443
November	54			186, 482	11, 295	3, 830,623	120,659
Decembe	57			65, 182	6,701	3,885, 961	140,001
Total.	578	120,960	13, 202	1,985, 028	82,792	50, 801,604	1, 259,487

Cod, haddock, and hake landed at Boston and Gloucester, Mass., and Portland, Me., by otter trawlers in various years, 1908 to 1922.

Y̌ear.	Trips.	Cod.	Haddock.	Hake.	Year.	Trips.	Cod.	Haddock.	Hake.
	No.	Pounds.	Pounds.	Pounds.		No.	Pounds.	Pounds.	Pounds.
1909	44 47	209,800 159,800	1, $1,712,0000$		1913.	${ }_{3} 326$	1, 667, 806	12,488,992	209,485 259,913
1910	59	125, 850	2,775,000	46,600	1920	646	6,311,389	51,962,457	259,913
1911	178	564, 500	7, 367, 100	151, 700	1921	346	2, 482, 833	26, 734,893	241,650
1912	295	1,952,950	12,966, 700	105, 500	192	578	11,161,947	35, 878,524	576.370

Vessel landings of Cod, haddock, and malibut.

The following tables give the catch of cod, haddock, and halibut landed at Boston and Gloucester, Mass., and Portland, Me., by fishing vessels in 1922, taken from each fishing bank each month by otter trawls and by all other forms of fishing apparatus. The landings include both fresh and salted fish, but the latter have been converted to the equivalent weights of fresh fish in the condition landed.

Vessel landings of cod, haddock, and halibut at Boston and Gloucester, Mass., and Portland, Me., for cach month of 1922, shown by apparatus and fishing banks.
[Salt fish have been reduced to the basis of weights of fresh fish.]
JANUARY.

FEBRUARY.

BY OTTER TRAWLS. East of $66^{\circ} \mathrm{W}$. longitude.								
W estern Bank............ West of 66° W. longitude.	2	40,000	\$1, 200	200,550 19,500	\$6,017	1	2,000	\$200
Browns Bank............. Georges Bank.	$\begin{array}{r}1 \\ 3 \\ \hline\end{array}$	16,400 474,625	749 16,760	19,500 $2,480,715$	900 58,951	1 37	${ }_{2} 213$	-44
South Channel	5	34, 045	1,245	-223,965	6,666	4	1,791	- 407
Nantucket Shoals	1	1,990	42					
Total.	48	567, 060	19,996	2, 924, 730	72, 534	43	13,680	3,062
BY OTHER APPARATUS. East of $66^{\circ} \mathrm{W}$. longitude.								
Western Bank.	1	12,168	188					
Quereau Bank.	6	30, 277	1,397			3	117, 191	19,500
Green Bank.... St. Peters Bank	2	8,477	128	105	1	31,988 28,813	4,500 4,535
The Gully.......	3	44,433	1,154			1	17,068	$\stackrel{4}{2,411}$
West of $66^{\circ} \mathrm{W}$. longitude.								
Browns Bank.	29	550,065	18,938	1, 090, 365	37, 532	23	3,755	1,002
Georges Bank.	35	1,503,252	45, 872	923, 900	21, 037	25	3,992	1, 172
Middle Bank.	14	34, 120	1,415	137, 115	5,620	4	407	53
Jeffreys Ledge.	70	169,786	5,687	662,350	25, 477	35	1,774	323
South Channel	18	60, 294	2,403	420, 125	15, 885	9	1,409	283
Off Chatham.		31, 162	1,245	232,575	8,486	5	517	155
Shore, general.	205	240,060	8,059	316, 375	9,379	3	62	7
Total.	392	2,684,094	86,486	3,782,910	123, 417	110	206,976	33,941
Grand total.	440	3,251,154	106,482	6,707,640	195, 951	153	220, 656	37,003

Vessel landings of cod, haddock, and halibut at Boston and Gloucester, Mass., and Port land, We., for each month of 1922, shown by apparatus and fishing banks-Continued.

MARCH.

APRIL.

by otter trawls. East of 66° W. longitude. Western Bank.............	14	587, 770	\$12, 010	1,500,605	\$31,602	5	746	\$77
West of 66° W. longitude.								
Georges Bank. South Channel Nantucket Shoals	$\begin{gathered} 10 \\ 6 \\ 2 \end{gathered}$	$\begin{array}{r} 173,855 \\ 51,940 \\ 16,565 \end{array}$	$\begin{array}{r} 3,779 \\ 985 \\ 350 \end{array}$	$\begin{aligned} & 650,265 \\ & 316,500 \\ & 163.050 \end{aligned}$	$\begin{array}{r} 17,816 \\ 8,082 \\ 5,005 \end{array}$	9 6 2	$\begin{aligned} & 6,055 \\ & 2,523 \\ & 521 \end{aligned}$	818 445 61
Total.	32	830, 130	17,124	2,720,420	63, 405	22	9,858	1,401
BY OTHER APPARATUS. East of $66^{\circ} \mathrm{W}$. longitude.								
La Have Bank.	3	88,320	1,939	35,700	759	4	52,940	6,928
Western Bank	4	123,446	2,325	46, 553	940	3	1,196	
Quercau Bank	2	14,080	263			7	198,670	24, 105
Green Bank.	4	47,551	830					
Grand Bank						1	45,205	5,872
The Gully..	3	20,029	355			1	17, 167	2,419
West of $66^{\circ} \mathrm{W}$. longitude.								
Browns Bank.		1,809,795	42,976	997,025	28,686	32	61, 227	6,411
Georges Bank.	21	-625, 200	11, 963	51, 180	1,107	13	162,920	19,113
Fippenes Ban	1	10, 800	247	1,045	84	1	- 138	- 26
Middle Bank.	14	96,955	2,513	109,640	4,327	10	1,493	240
Platts Bank.	8	30, 155	, 600	16,305	4, 419	3	-185	21
Jefireys Ledge	9	58,265	1,380	38,575	1,488	4	499	80
South Channel	16	185, 322	4,867	374, 815	15,690	15	2,040	324
Nantucket Sho Off Chatham.	14	490 83,190				10	10	140
Shore, general	369	624,788	$\begin{array}{r} 2,248 \\ 19,599 \end{array}$	$\begin{aligned} & 359,805 \\ & 381,597 \end{aligned}$	$\begin{aligned} & 11,478 \\ & 15,965 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	22,972	2,529
Tota	518	3, 818, 386	92,084	2,412, 240	80,943	120	567,625	68, 424
Grand total.	550	4,648,516	109, 208	5,132,660	144, 348	142	577, 483	69,825

Vessel landings of cod, haddock, and halibut at Boston and Gloucester, Mass., and Portland, Me., for each month of 1922, shown by apparatus and fishing banks-Continued.

MAY.

JUNE.

Vessel landing of cod, haddock, and halibut at Boston and Gloucester, Mass., and Portland, Me., for each month of 1922, shown by apparatus and fishing banks-Continued.

JULY.

AUGUST.

Vessel landings of cod, haddock, and halibut at Boston and Gloucestcr, Mass., and Portland, Me., for each month of 1922, shown by apparatus and fishing banks-Continued.

SEPTEMBER.

BY OTTER TRAWLS. East of 66° W. longitude.	Trips.	Cod.		Haddock.		Trips.	Halibut.	
	$\begin{gathered} \text { Num. } \\ \text { ber. } \\ \hline \end{gathered}$	Pounds. 301,070	Value. \$5, 444	Pounds. 478, 161	Value. $\$ 5,103$	$\underset{{ }_{\text {Bcr }}}{\text { Num- }}$	$\begin{array}{r} \text { Pounds. } \\ 320 \end{array}$	Value.
Western Bank............. West of $66^{\circ} \mathrm{W}$. longitude.								
Georges Bank South Channel	20	572,635	11,219	936,045	14,301	9	5,190	611
	20	311,015	7,059	1,169,165	21,277	18	3,598	461
Total	43	1,184,720	23, 722	2,583, 371	40,681	28	9,108	1,082
by other apparatus. East of 66° W. longitude.	277671	$\begin{array}{r} 43,150 \\ 1,233,400 \\ 209,136 \\ 107,020 \\ 81,816 \\ 44,164 \end{array}$	$\begin{array}{r} 1,792 \\ 27,168 \\ 4,498 \\ 2,277 \\ 1,781 \\ 1,050 \end{array}$	$\begin{array}{r} 19,000 \\ 35,461 \\ \cdots \cdots \\ \cdots \quad . \quad . \\ \hline 639 \end{array}$	490396	24459	$\begin{array}{r} 1,268 \\ 40,044 \\ 87,697 \\ 124,901 \\ 239,056 \end{array}$	$\begin{array}{r} 234 \\ 6,374 \\ 12,855 \\ 16,821 \\ 34,282 \end{array}$
La Have Bank. .								
Western Bank								
Quereau Bank								
Grand Bank.								
Cape Shore..								
West of $66^{\circ} \mathrm{W}$. longitude.								
Browns Bank.	3	143,744	5,966	43,135	1,144	3	2,960	561
Georges Bank	71	2,106,535	51, 141	806, 935	11,283	34	106,057	16,838
Platts Bank.	3	5,303	181	5,735	297	1	45	
Jeffreys Ledge.	7	12,847	395	16,280	861	1	300	32
South Channel.	67	656,854	20,694	2,726, 065	53,400	50	23,575	3,924
Nantucket Shoal	1	12,810				1		14
Shore, general.	98	155, 207	6,579	12,947	546	5	253	32
Total.	280	4, 861,996	123, 910	3,728,697	63,433	119	626,209	91,969
Grand total	323	6,046,706	147, 632	6,312,068	109,114	147	635,317	93,051

OCTOBER.

Tessel landings of cod, haddock, and halibut at Boston and Gloucester, Mass., and Portland, Me., for each month of 1922, shown by apparatus and fishing banks-Continued.

NOVEMBER.

DECEMBER.

Vessel landings of cod, haddock, and halibut at Boston and Gloucester, Mass., and Portland, Me., for each month of 1922, shown by apparatus and fishing banks-Continued.

GRAND TOTAL.

	Trips.	Co		Hadd	ock.	Trips.	Hali	
BY OTTER TRAWLS. East of 66° W. longitude. Western Bank.	$\begin{gathered} \text { Num- } \\ \text { ber. } \\ 93 \end{gathered}$	Pounds. 5, 541,716	Value.$\$ 125,209$	Pounds.$7,696,371$	Value.$\$ 129,285$	Number. 47	Pounds. 29, 518	Value. $\$ 5,021$
West of $66^{\circ} \mathrm{W}$. longitude.								
Browns Bank	2	29,500	1,030	37,000	1,741	1	213	44
Georges Bank	217	3, 919,720	103, 883	12,110,375	276, 132	159	64,399	11,360
South Channel	226	1,592, 256	46,915	14,063, 788	357, 667	177	6i, 650	11,639
Nantucket Shoals.........	28	78,755	2,548	1,970,990	60,138	16	2,024	382
	566	11, 161,947	279, 585	35, 878, 524	824,963	400	157, 813	28,446
BY OTHER APPARATUS.								
East of $66^{\circ} \mathrm{W}$. longitude.								
La Have Bank	46	2,431, 574	52,002	368, 371	4,992	32	182, 245	26, 566
Western Bank	80	6,323,026	125, 083	947,611	12,888	39	376,804	54, 288
Quereau Bank	43	1,019,020	22,105	4,918	47	41	1,076,508	151,278
Green Bank.	28	366,828	7,787	220	2	20	498,788	72,536
Grand Bank.	61	2, 290, 609	44, 818	639	8	54	1,648,799	198,797
St. Peters Ban	6	828,766	16, 163	1,143.	- 11	7	192, 329	27, 094
Cape Shore.	10	28.5, 159	7, 598	93,965	2,552	3	2,679	607
St. Annes Ban	1	392, 304	6,314					
The Gully ..	8	101,386	2,165			8	241, 926	32,779
West of $66^{\circ} \mathrm{W}$. longitude.								
Browns Bank	322	8,506, 561	256,281	7,776,678	252, 607	248	259, 689	45,122
Georges Bank	482	14, 385, 093	379, 961	6,556, 020	107,979	265	828, 186	117,697
Cashes.......	1	9,500	405			1	610	95
Fippenies Ban	5	28,305	890	14,755	787	3	890	141
Middle Bank.	45	198,845	6,567	409, 540	15, 745	21	3,042	476
Platts Bank	60	190, 454	7,146	107, 763	5,164	29	3,614	479
Jeffreys Ledge	303	917,784	38, 064	1,788,817	80,908	155	11,770	2,137
South Channel............	467	4, 754, 412	164,367	12, 583, 029	370, 477	355	115, 525	20,368
Nantucket Shoals.........	14	144, 180	5,385	70,400	2,658	3	241	33
Off Highland Ligh	1	1,975	-75	4,050	162	1	90	23
Off Chatham..	35	193, 142	7,726	772, 560	29, 000	23	2, 849	618
Seal Island.	1	11,300	779	26,400	792	1	30	3
Shore, general.	2, 713	5, 217, 541	204, 113	2, 929, 864	97,658	141	35,428	4,474
Total	4,732	48, 597, 764	1,355,694	34, 456, 743	984, 437	1,450	5,482, 042	755, 611
Grand total.	5,298	59, 759, 711	1,635, 279	70,335, 267	1,809,400	1,850	5,639,855	784,057

VESSEL FISHERIES AT SEATTLE, WASH.

In the vessel fisheries at Seattle, Wash., there was a decrease, as compared with 1921, in the total quantity and value of products landed by the fishing fleet, and an increase in the total quantity and value of products landed by collecting vessels, the increase being due chiefly to an increase in the landings of salmon. Statistics of the vessel fisheries at Seattle have been collected by the local agent and published as monthly and annual statistical bulletins, giving the quantity and value of fishery products landed by American fishing and collecting vessels at that port.

In 1922 the fishing fleet at Seattle landed 836 trips, amounting to $11,332,050$ pounds of fish, haring a value to the fishermen of $\$ 1,249,-$ 822. This catch was taken from fishing grounds along the coast from Oregon to Portlock Bank, Alaska. The fishing areas from which the largest quantities of fish were taken were Flattery Banks, west coast of Vancouver Island, and Hecate Strait. The products included
halibut, $9,938,150$ pounds, valued at $\$ 1,196,390$; sablefish, $1,014,100$ pounds, ralued at $\$ 46,652$; ".lingcod," 258,200 pounds, valued at $\$ 4,509$; and rockfishes, 121,600 pounds, valued at $\$ 2,271$. Compared with 1921 there was a decrease of 30 trips by fishing vessels, and of $2,334,650$ pounds, or 17.08 per cent, in the quantity and of $\$ 173,481$, or 12.18 per cent, in the value of the products landed. There was a decrease in the catch of halibut of $1,542,850$ pounds, or 13.43 per cent, in quantity and of $\$ 139,268$, or 10.42 per cent, in value. The catch of sablefish decreased 505,300 pounds, or 33.25 per cent, in quant ty and $\$ 17.033$, or 26.74 per cent, in value. The catch of "lingcod" decreased 205,100 pounds, or 44.27 per cent, in quantity and $\$ 11,882$, or 72.49 per cent, in value; and the catch of rockfishes decreased 81,400 pounds, or 40.09 per cent, in quantity and $\$ 5,298$, or 69.99 per cent, in value.

The fishery products taken in Puget Sound and landed at Seattle by collecting vessels during the year amounted to $15,083,390$ pounds, ralued at $\$ 964,832$. The products included salmon, $13,615,780$ pounds, ralued at $\$ 882,481$; herring, 261,890 pounds, valued at $\$ 3,158$; sturgeon, 1,100 pounds, valued at $\$ 130$; steelhead trout, 122,820 pounds, valued at $\$ 12,542$; smelt, 192,350 pounds, valued at $\$ 16,795$; perch, 30,800 pounds, valued at $\$ 2,114$; rockfishes, 115,490 pounds, ralued at $\$ 6,720$; "lingcod," 8,000 pounds, valued at $\$ 160$; flounders. 94,100 pounds, valued at $\$ 1,683$; sole, 163,500 pounds, ralued at $\$ 5,679$; and crabs, 477,560 pounds, valued at $\$ 33,370$. Compared with 1921 there was an increase in tbe products landed by collecting vessels of $2,654,865$ pounds, or 21.36 per cent, in quantity and of $\$ 185,954$, or 23.87 per cent, in value.

Statement, by fishing grounds and months, of quantities and values of certain fresh fishery products landed at Seattle, Wash., by American fishing vessels, 1922.

	Number of trips.	Hal	ut.	Sabl	
BY Fishing grounds.	$\begin{array}{r} 2 \\ 342 \\ 195 \\ 35 \\ 237 \\ 5 \\ 2 \\ 2 \\ 10 \\ 3 \end{array}$	$\begin{array}{r} \text { Pounds. } \\ 12,000 \\ 2,455,500 \\ 1,819,500 \\ 512,000 \\ 4,385,150 \\ 7+, 000 \\ 36,000 \\ 43,000 \\ 420,000 \\ 151,000 \end{array}$	$\begin{array}{r} \text { Value. } \\ 82,430 \\ 326,059 \\ 226,752 \\ 67,061 \\ 500,507 \\ 7,120 \\ 2,981 \\ 4,350 \\ 47,950 \\ 11,180 \end{array}$	Pounds.$\begin{array}{r} 3,500 \\ 805,400 \\ 99,000 \\ 10,500 \\ 93,200 \end{array}$	$\begin{aligned} & \text { Value. } \\ & \$ 195 \\ & 37,962 \\ & 4,635 \\ & 450 \\ & 3,285 \end{aligned}$
Oregon Coast					
Flattery Banks.................					
Queen Charlotte Islands grounds					
Heeate Strait....					
Noyes Island grounds.					
Forrester Island ground					
Coronation 1sland.					
Yakutat grounds.				2,500	125
Portlock Bank..					
Total.	836	9,93S, 150	1,196,390	1,014,100	46,652
BY MONTHS.					
January .	20	493,500	50,720	22,000	740
February	34	379,000	50,190	18,000	700
Mareh.	53	543,200	72,059	7,000	340
April.	94	841,500	101, 153		
May-	118	1,252,300	141,967	7,500	375
	113	1,720,500	162,373	20,000	940
July-	88	1,423,000	149,834	69,700	2,481
August.	80	910,200	113,681	234,000	8,270
September	80	917,600	127,321	128,200	6,721
October.	86	853,000	137,841	291,200	13,815
November	51	345,600	59,121	155,000	8,855
Decembe	19	195,750	30,130	61,500	3,415
Total.	836	9, 938, 150	1,196,390	1,014,100	46,652

Statement, by fishing grounds and months, of quantities and values of certain fresh fishery products landed at Seattle, Wash., by American fishing vessels, 1922—Continued.

	Number of trips.	" Ling	od."	Rockf	hes.	To	
BY FISERNG GROUNDS.							
Oregon Coast	2					15,500	\$2,625
Flattery Banks.	342	122,900	\$1,961	42, 800	\$787	3,426,600	366,769
West Coast, Vancouver Island.	195	80, 800	1,508	67,800	689	2,067, 100	233, 584
Queen Charlotte Islands grounds.	38	25,500	470	6,500	130	554, 500	68,111
Hecate Strait.	237	21,000	410	29,500	565	4,528,850	504,767
Noyes Island grounds.	5	8,000	160	4,000	80	S6,000	7,360
Forrester Island grounds	2			1,000	20	37,000	3,001
Coronation Island...	2					43,000	4,350
Yakutat grounds.	10					422,500	43,075
Portlock Bank.	3					151,000	11,180
Total.	836	258, 200	4,509	121,600	2,271	11,332,050	1,249,822
BY MONTHS.							
January -	20.	11,000	220	4,000	80	530,500	51,760
February.	34	27,000	600	11,500	230	435, 500	51,720
March.	53	33,500	560	8,500	150	592, 200	73,109
April	94	60,900	709	17,000	200	922,400	102,062
May.	118	17,500	175	7,200	72	1,281,500	142,589
June	113	43,000	750	27,500	530	1,811,000	164, 593
July.	88	34,300	603	30,000	535	1,557,000	153,453
August	80	3,600	116	3,600	190	1,181,400	122,257
September	80	4,700	47	2,000	20	1,082,500	134, 109
October.	86	9,700	409	1,500	30	1,155, 400	152,095
November.	51	9,500	240	8,300	224	518,400	68,440
December	19	3,500	80	500	10	261,250	33,635
Total.	836	258, 200	4,509	121,600	2,271	11,332,050	1,249, 822

Fishery products, by months, taken in Puget Sound and landed at Seattle, Wash., by collecting ressels, 1922.

Fishery products, by months, takcn in Puget Sound and landed at Seattle, Wash., by col lecting vessels, 1922—Continued.

Species.	October.		November.		December.		Total.	
	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.	Pounds. $1,100$	Value. $\$ 130$
Herring					40,000	\$390	261,890	3,158
Salmon:								
Humpback or pin	12,000 $1,400,000$	8240 25,000	464,000	\$18,560			$\begin{array}{r} 242,000 \\ 2,096,680 \end{array}$	6,620 49,789
Fing or spring	108,500	10, 850	14,500	1,160			5,367, 400	534, 850
Coho or silver	1,320,600	26,412	304, 200	18,252			5,857,700	286, 902
sockeye or red							52,000	4,320
Trout: Steelhead	10,450	1,045	6,270	627			122, 820	12,542
Smelt.	32,300	2,740	14,070	1,407	55,000	3,800	192,350	16,795
Perch.					8,000	650	30, 800	2,114
Rockfishes	10, 140	800	8,300	498	12,500	735	115, 490	6,720
"Lingcod'	8,000	160					8,000	160
Flounders			6,800		8,000		94,100	1,683
Crabs	63,800	4,350	70,840	4,830	93,000	7,200	${ }^{1} 477,560$	33, 370
Total.	2,973,390	71,901	892,980	45,590	235,000	13,290	15, 083, 390	964,832

${ }^{1} 21,590$ dozen.

FISHERIES OF CALIFORNIA IN 1922.

Through the courtesy of the California Fish and Game Commission the bureau has received copies of its monthly sheets showing the catch of fish, by species and by counties, for California, and also the quantity of fish imported into California from Mexico, during the calendar year 1922. These statistics have been compiled by species and br months, as shown in the appended tables.
In 1922 the catch of fish for California amounted to $168,969,733$ pounds, an increase of $41,241,110$ pounds, or 32.28 per cent over the catch of 1921. The species taken in largest quantities were pilchard, $93,399,900$ pounds; albacore and tuna, $17,920,019$ pounds; flounders, $11,341,262$ pounds; bonito or skipjack, $10,998,855$ pounds; salmon, 7,235,124 pounds; barracuda, 4,710,753 pounds; rockfishes, 4,238,480 pounds; yellowtail, 3,111,198 pounds; mackerel, 2,466,762 pounds; white sea bass or squeteague, 2,195,932 pounds; abalones, 1,523,394 pounds; and shad, $1,109,445$ pounds.

The imports of fresh fish from Mexico in 1922 amounted to $12,146,066$ pounds, an increase of $5,446,249$ pounds, or 81.29 per cent, as compared with 1921 . The principal species imported were albacore and tuna, $6,179,754$ pounds; barracuda, $1,528,770$ pounds; bonito or skipjack, $1,792,592$ pounds; flounders, 817,304 pounds; white sea bass or squeteague, 736,220 pounds; sea crawfish or spiny lobster. 640,466 pounds; and yellowtail, 303,292 pounds.

Products, in pounds, of the fisheries of California, 1922.

Species.	January.	February.	March.	April.	May.	June.	July.
Albacore and tuna.	695	1,440	296		149	875, 364	9,386,822
Anchovies.	32,613	27,633		7,375	96,717	27,511	37, 470
Barracuda.............	25, 220	115,880	554, 140	527,589	1,213,656	634, 650	369, 462
Bluefish, California or squeteague. \qquad	3,352	3,422	17,806	1,440	925	1,735	5,677
Bonito or skipjack.....	17,947	2,853	9,591	4,190	695	5,580	31,471
Carp...........	2,851	5,835	10,776	3,367	16,723	4,140	3,894
Catfish	18,374	14,547	28,648	7,114	8,206		
Flounder	988, 803	1,022,552	1,174,570	879, 955	867,028	1,253,309	838,590
"Hake"	345	870	260	4, 424	3,600	13,998	7,537
Hardhead	5,644	3,160	14,685				

Products, in pounds, of the fisheries of California, 1922-Continued.

Products, in pounds, of the fisheries of California, 1922-Continued.

Species.	August.	September.	October.	November.	December.	Total.
Split-tail	206	812		16	803	10,408
Steelhead t		2,345		145		2,490
Striped bass.	90,590	52,279		64,049	94,937	684,198
Suckers.....				14	234	1,352
Swordfish	8,190	11, 921	328	485	323	23, 256
Tomeod.	11, 911	5,332	319		33	32, 114
Whitebait.	12,390	7,365	4,451	2,503		84,007
Whitefish.		2,308	375	2,028	1,845	27,789
Ycllowtail	424,997	637, 364	757, 430	418,850	44, 139	3,111, 198
Other fish	10,620	8,405	27,010	52,803	18,836	251,218
Crabs.				102, 806	120, 274	788,634
Shrimps.	74,659	112,602	88,935	58, 607	39, 103	990, 349
Sea crawfish or spi			65,420	99,651	93, 830	376,310
Abalones...........	214, 277	202,731	63, 371	84,739	65, 661	1,523, 394
Clams...	50,616	48,890	42,655	41,427	39, 108	571,819
Cockles.	1,269	1,631	1,484	3,223	2,973	31,564
Mussels	5,218	4,114	463	2,060	650	43, 872
Oysters, eastern	3, 578	4,964	6,394	6,557	6,534	59, 121
Octopus..	2,891	1,956	3,270	6,605	6,834	$98,588$
Squid..			70	219	39,661	209,533 10
Frogs.						640
Total.	19, 103, 771	19, 785, 998	16, 175, 383	12, 814, 649	15, 427, 074	168,969,733

Mexican fishery products, in pounds, imported into California, 1922.

FISHERY PRODUCTS RECEIVED AT MUNICIPAL FISH WHARF AND MARKET, WASHINGTON, D. C. ${ }^{5}$

The receipts of fishery products at the Municipal Fish Wharf and Market, Washington, D. C., in 1922 amounted to $6,442,663$ pounds, a decrease of $2,624,081$ pounds, or 28.94 per cent, as compared with 1921. The five most important products in quantity were squeteagues or "sea trout," 1,138,730 pounds; oysters, $1,744,918$ pounds, or 249,274 bushels; croaker, 779,776 pounds; river herring, 559,070 pounds; and shad, 438,148 pounds; total of $4,660,642$ pounds, or 72.34 per cent, of the receipts at this market. The species ranking next in abundance include bass, butterfish, catfish, halibut, perch, striped bass, and crabs.

Fishery products, in pounds, received at Municipal Fish Wharf and Market, Washington, D. C., 1922.

Species.	January.	February.	March.	April.	May.	June.	July.
Bass, black or sea.	29,500	25,850	25,400		6,800	4,600	400
Baffalofish.	800	1,200			700	1,600	400
Butterfish	9, 700	4,600	2,000	3,480	15, 200	16, 100	14, 700
Carp.	17, 881	10,900	15, 835	6, 400	8,787	4,440	1,850
Catfis	18, 060	21, 300	64, 545	21,285	9,442	7, 529	1, 540
Cod.	4,700	4,300	2,600	. 800	100	800	400
Crappie.	20, 200	800 13,100	78, 708	148, 408	120, 100	117, 305	135,955
Eels.			7, 415	1456	-130		
Flounders	16, 900	10,300	21,450	3,003	4,066	6, 760	2,050
Gizzard sha	7,400 1,600	3,300	9, 950	1,200	1,240	5,200	4,100
Hake.	15,300	7,400	1, 300		1,240	5, 20	4,100
Halibut.	26,000	16, 400	15, 250	- 9,345	9,502	6,600	5,250
Herring, river;	6,000	33, 200	261, 835	206, 955	50,050	1,030	
Hickory shad or "jacks"			950	400			
Mackerel.	12,300	7,900	-9,600	3,400 17,608	4,900 4,420	10,000 1,828	3,650 725
Pike or pi	1,180		72, 250	17,00			725
Pollock..	5,200	5,300	800			400	
Redfish or re		800				1,000	
Red snapper	500	1,000					
Salmon...	4,200	3,700	6,100	1,100	100	4,550	800
Scup or porg					2,500	600	
Shad...	17, 900	27,900	84, 590	224, 828	80,903	27	
Spot..				2,100	$\cdots 3,200$	3,400	5,810
Squeteagues or "sea tro	80,000	66,700	34,000	87,400	294, 700	165,300	67,330
Striped bass	10,530	9,375	54, 995	2S, 335	5,890	11,751	7,385
Sturgeon.		1,100	2, 025	850	400	200 200	
Whiting.	8,300						
Clams, hard	2,176	2,048	7,136	31,264	5,376	6,688	6,528
Oysters: ${ }^{1}$ In the shell	338, 800	250,600	240, 289	1,736	560		
Opened...	261,525	170, 775	162, 731	1, 454			
Scallops.				110			
Crabs..				1,995	15, 345	57,398	50,875
Crab meat			895	2, 250	6,900	8,460	7,965
Frogs..				600	611		
Lobster Shrimp	1,250	800	150	750	700	$\begin{array}{r} 50 \\ 400 \end{array}$	300
Turtles.				16	851		
'Total.	919, 002	712, 948	1,178,599	806,39S	653, 623	444, 266	320,013

[^25]Fishery products, in pounds, received at Municipal Fish Wharf and Market, Washington, D. C., 1922-Continued.

Species.	August.	September.	October.	November.	Decem- ber.	Total.
Bass, black or sea.	600	5,600	640	3,400	12,245	115,035
Butialofish. Bluefish....	5,400	6,250	6,600	7,000		1, 200
Butterfish.	21,000	12,200	8,400	12,400	1,200	120,550
Carp	1,100	4,850	4,200	2,350	2,150	80,743
Catfish	1,240	18, 220	17,110	18,720	11,320	210,311
Cod		1,200	1,200	3,300	2,200	21,600
Crappie						800
Croaker	59, 200	55, 100	17,96.	11, 600	2,200	779,776
Eels...		800	55.5	1,300	3,065	6, 521
Flounders	2,600	5,200	4,400	7,200	2,800	86,729
Gizzard sh		5, 200	600	5,600	9,000	22, 800
Haddock.	2,600	5,400	6,500	4,400	6,300	51,790
Halibut.	3,401	4,050	3,900	6,200	27,000	41,000 132,901
Herring, river					27,000	559,070
Hickory shad or "jacks"						1, 350
Kingfish.			200			200
Mackerel	200	2,610		5,600	7,000	54, 860
Mullet.		245			430	675
Perch..	900	5, 100	13,750	16, 515	8,870	166, 616
Pike or pick		350	100		890	2, 870
Pollock.		400				12, 100
Redfish or red						1, 800
Red snapper						1, 500
Salmon.....		1,600	3,275	1,500	11, 400	38, 325
Scup or porgy		1,400 200	1, S00			4,500
Smelt			1,80		600	438,148 4,200
Spot.		6,655	12,700	4,200		38,065
Squeteagues or "sca trout	78,000	163,900	68,100	19,000	14,300	1, 138, 730
Striped bass..	1,000	16,325	23, 675	17, 400	5,975	192, 636
Sturgeon.						, 250
Tilefish.						4,575
Whiting.					400	8,700
Clams, har	3,392	4,256	2,304	2,464	1,344	${ }^{2} 74,976$
Oysters: ${ }^{1}$ In the shell.						
In the shell.		18,837	68, 600	70,672	52,955	${ }^{3} 1,043,049$
Opened Scallops....		5,858	13,332	38, 882	48,312	$\begin{array}{r} 1701,869 \\ 110 \end{array}$
Crabs...	26,790	39,810	9,900			202,143
Crab mea	4,900	6,025	2,250	152	240	40,037
Frogs.. Lobster						1,211
Shrimp		175°			800	5,325
Turtles.						867
Total	212,326	392, 816	292, 391	264,655	245, 596	6, 442, 663

[^26]
NOTES ON SPONGE FISHERY.

In 1922 the quantity of sponges sold at the Sponge Exchange, Tarpon Springs, Fla., was 526,885 pounds, valued at $\$ 699,092$, of which 248,475 pounds, valued at $\$ 596,199$ were large wool; 70,478 pounds, valued at $\$ 42,286$, small wool; 115,455 pounds, valued at $\$ 37,637$, yellow; 84,892 pounds, valued at $\$ 20,379$. grass; and 7,585 pounds, valued at $\$ 2,588$, wire. It is estimated that sponges to the value of $\$ 50,000$ were sold outside of the Exchange at Tarpon Springs.

FISHERIES OF NEW YORK, NEW JERSEY, PENNSYLVANIA, AND DELAWARE IN 1921.

The statistics of the fisheries of New York, New Jersey, Pennsylvania, and Delaware contained in this report are based on a canvass of the coast fisheries of these States for the calendar year

1921, and have been published already in condensed form and distributed to the trade as Statistical Bulletin No. 569. The statistics given for the oyster product are for the oyster season beginning in 1921, and those of the shad fishery of the Hudson River are for the calendar years 1921 and 1922 in accordance with the previous practice of making an annual canvass of this fishery. The statistics for New York and Pennsylvania do not include any fisheries of the Great Lakes or other inland waters of those States.

EARLIER PUBLICATIONS.

Some of the earlier publications relating to the fisheries of New York, New Jersey, Pennsylvania, and Delaware, published in Washington, D. C., follow:
1887. New York and Its Fisheries. By Fred. Mather. In The Fisheries and Fishery Industries of the United States, by George Brown Goode and associates, 1880 (1887), Section II, Part VI, pp. 341-377.
New Jersey and Its Fisheries. By R. Edward Earll. Ibid., part VII, pp. 379-400.
Pennsylvania and Its Fisheries. By R. Edward Earll. Ibid., part VIII, pp. 401-405.
Delaware and Its Fisheries. By Joseph W. Collins. Ibid., part IX, pp. 407-419.
1890. The Sturgeons and Sturgeon Industries of the Eastern Coast of the United States, with an Account of Experiments Bearing upon Sturgeon Culture. By John A. Ryder. Bulletin, U. S. Fish Commission, Vol. VIII, for 1888 (1890), pp. 231-328.
1892. IV. Fisheries of the Middle Atlantic States [1887 and 1888]. In Statistical Review of the Coast Fisheries of the United States, prepared under the direction of J. W. Collins. Report, U. S. Commission of Fish and Fisheries, 1888 (1892), pp. 323-351.
1894. Notes on the Oyster Industry of New Jersey. By Ansley Hall. Report of the Commissioner of Fish and Fisheries for 1892° (1894), pp. 463-528.
1895. A Statistical Report on the Fisheries of the Middle Atlantic States [1889-1893]. By Hugh M. Smith. Bulletin, U. S. Fish Commission, Vol. XIV, 1894 (1895), pp. 339-467.
1898. Shad and Alewife Fisheries [1896-1897]. In Report of the Division of Statistics and Methods of the Fisheries. By Hugh M. Smith. Report of the Commissioner of Fish and Fisheries for 1897 (1898), pp. cxxy-cxxx.
1899. Statistics of Certain Fisheries of the New England and Middle Atlantic States and the Great Lakes [1897]. In Report of the Division of Statistics and Methods of the Fisheries. By C. H. Townsend. Report of the Commissioner of Fish and Fisheries for 1898 (1899), pp. clxvi-clxxv.
Notes on the Extent and Condition of the Alewife Fisheries of the United States in 1896. By Hugh M. Smith. Appendix to the Report of the Commissioner of Fish and Fisheries for 1898 (1899), pp. 31-43.
1899. The Shad Fisheries of the Atlantic Coast of the United States. By Charles H. Stevenson. Appendix to the Report of the Commissioner of Fish and Fisheries for 1898 (1899), pp. 101-269.
1900. The Sturgeon Fishery of Delaware River and Bay [1890-1898]. By John N. Cobb. Report of the Commissioner of Fish and Fisheries for 1899 (1900), pp. 369-380.
1901. Statistics of the Fisheries of the Middle Atlantic States [1897]. By C. H. Townsend. Appendix to the Report of the Commissioner of Fish and Fisheries for 1900 (1901), pp. 195-310.
1904. The Lobster Fishery [1900]. In Report of the Division of Statistics and Methods of the Fisheries. By C. H. Townsend. Report of the Commissioner of Fish and Fisheries for 1902 (1904), pp. 156-158.
Statistics of the Fisheries of the Middle Atlantic States [1901]. By Barton W. Evermann. Report of the Commissioner of Fish and Fisheries for 1902 (1904), pp. 433-540.
1905. Statistics of the Fisheries of the Middle Atlantic States for 1904. Report, U. S. Commissioner of Fisheries, 1905, 122 pp. Bureau of Fisheries Doc. No. 609.
1911. Shad and Alewife Fisheries [1909]. Report, U. S. Commissioner of Fisheries, 1910 (1911), pp. 27-28.
1913. Shad Fisheries [1910]. Report, U. S. Commissioner of Fisheries, 1911 (1913), pp. 35-37.
1914. The Oyster Industry [1911]. Report, U. S.. Commissioner of Fisheries, 1912 (1914), pp. 7-23.
1915. The Menhaden Industry [1912]. Report, U. S. Commissioner of Fisheries, 1914 (1915). pp. 18-22.
The Sturgeon Industry of Delaware River [1914]. Ibid., p. 23.
1917. The Lohster Fishery [1913]. Report, U. S. Commissioner of Fisheries, 1915 (1917), pp. 37-43.

Coastal Fisheries of New York and New Jersey [1915]. Report, U. S. Commissioner of Fisheries, 1916 (1917), pp. 72-75.
Shad Fishery of the Hudson River [1915-1916]. Ibid., pp. 76-77
1920. Coastal Fisheries of New York and New Jersey [1917]. Report, U. S. Commissioner of Fisheries, 1918 (1920), pp. 66-70.
Shad Fishery of the Hudson River [1917-1918]. Ibid., p. 72
Statistics of the Wholesale Fish Trade of New York rity [1918]. Ibid.. pp. 73-76.
1921. Shad Fishery of the Hudson River [1919]. In Fishery Industries of the United States. Report of the Division of Statistics and Methods of the Fisheries for 1919. By Lewis Radcliffe. Appendix X to the Report of the U. S. Commissioner of Fisheries for 1919 (1921), pp. 49-50. Bureau of Fisheries Doc. No. 892.
Shad Fishery of the Hudson River [1920]. In Fishery Industries of the United States. Report of the Division of Statistics and Methods of the Fisheries for 1920. By Lewis Radcliffe. Appendix V to the Report of the U. S. Commissioner of Fisheries for 1921 (1922), p. 51 . Bureau of Fisheries Doc. No. 908

COMMON AND SCIENTIFIC NAMES OF FISHES.

Following is a list of the common and scientific names of the fishes of New York, New Jersey, Pennsylvania, and Delaware to which reference is made in this report:

GENERAL STATISTICS.

In 1921, the total number of persons engaged in the fisheries of New York, New Jersey, Pennsylvania, and Delaware was 14,483 as compared with 23,898 in 1904, a decrease of 9,415 , or 39.4 per cent. The total investment was $\$ 20,498,498$, as compared with $\$ 16,075,122$ in 1904, an increase of $\$ 4,423,376$, or 27.52 per cent. The products of the fisheries of these States amounted to $332,931,742$ pounds, valued at $\$ 11,667,393$, as compared with $375,412,398$ pounds, valued at $\$ 10,043,062$, in 1904, a decrease of $42,480,656$ pounds, or 11.32 per cent, in quantity and an increase of $\$ 1,624,331$, or 16.17 per cent, in value.

Fisheries of New York, New Jersey, Pennsylvania, and Delaware, 1921.

Items.	New York.		New Jersey.		Pennsylvania.		Delaware.	
PERSONS ENGAGED.	Number. 1,799$\begin{array}{r} 62 \\ 2,365 \\ 2,919 \end{array}$	Value.	Number. 2,164	Value.	Number. 42	Value.	Number. 279	Value.
On vessels fishing....								
On vessels transporting.			28		2		2	
In shore fisheries.			2,982		105		540	
- Shoresmen.			597		442		155	
Total.	7,145		5,771		591		976
Vessels, fishing,steam.	$\begin{array}{r} 31 \\ 1,555 \end{array}$	\$3, 270,000					492	\$165,382
Outfit......		242,057						7,59i
Vessels, fishing, gasoline.	229	791,515		\$830,100	3	\$26,000	12	38,900
Tonnag	2,775		2,493		93		135	

Fisheries of New York, New Jersey, Pennsylvania, and Delaware, 1921-Continued.

Items.	New York.		New Jersey.		Pennsylvania.		Delaware.	
investment-con.	Number.		Number.	Value.	$\begin{aligned} & \text { Num- } \\ & \text { ber. } \end{aligned}$	Value.	Number.	e.
Vessels, fishing, sail.	${ }_{5}^{7}$	$\$ 5,150$	Namber 127	\$300,600			Number 13	\$26,200
Tonnage.........	55	1,525	1,818	56,295			133	
Vessels, transporting,				56,295				6,920
steam............. Tonnage......	$4{ }^{2}$	13,000						
Tonnage.........	41	$\ddot{2,380}$						
Vessels, transporting,								
gasoline............	48	182,300	24	49,500			1	600
Tonnage.	733		252				7	
Outfit............		30,249		2,175				
Vessels, transporting, sail.	2	13,500	4	850	1	\$800	3	2,000
Tonnage..........	103		27		10		21	
Outfit.-		1,100				75		100
Boats, sail, row, etc. .	1,249	61,005	1,135	36,759	37	1,205	303	7,770
Boats, power, etc.....	838	443,980	1,551	647,920	8	3, 100	113	31, 265
Apparatus, vessel fisheries:								
Purse seines.....	37	86,600	20	23,000	1	1,000	- 4	6,000
Gill nets.	26	2,375	991	17, 165				
Pound nets.	8	27,000	82	315,850				
Fyke nets..	180	960						
Drag nets........	2	15						
Otter trawls......	46	3,655	23	1,630				
Lines, hand, trawl and set...		4,710		1,296		250		
Harpoons		150						
ECl pots..	150	300	50	125				
Lobster pots	1,175	2,543	350	450				
1redges..........	848	11,302	520	10,605			4	90
Apparatus, shore fisheries:								
iny traps, and weirs.	414	163,285	217	135, 220			5	
Gill nets.	918	52,442	3,657	100, 742	13	1,370	156	6,930
Fyke nets.	2,757	22, 235	1,285	9, 530	25	35	431	1,629
Haul seines.	155	14,185	184	13, 550	22	1,912	93	9,000
Purse seines.			1	600				
Drag nets.	30	192						
Scap nets.	138	3,281						
Dip nets.........	22	25						
Stop nets.........	14	1,405	86	12,365	5	625		
Bag nets....			58	1,160				
Otter trawls....	50	3,140	8	540				
trawl.............		4,678						
Eel pots.....	3,780	8,537	4,102	4,632			101	101
Lobster pots	13,363	33,700	10,345	10,944			150	180
Harpoons.		185						
Spears....	46	224						
Dredges........	1,236	7,838	52	775				
Tongs, rakes, and hoes.	765	5,088	1,321	6,728			208	
Other apparatus..		93		143				
Shore and acessory								
Cash capital........		$\begin{aligned} & 170,497 \\ & 936,200 \end{aligned}$		1, 313,100		$\begin{aligned} & 074,156 \\ & 260,200 \end{aligned}$		$\begin{aligned} & 153,400 \\ & 108,500 \end{aligned}$
		13, 836,455		4,701,704		375, 778		5S4, 561
PRODCCTS.		Value.		Value.	Pounds.	Value.	Pounds.	Value.
Albacore.	$29,354$	\$1, 420	$125,6 \pm 2$	\$3,985	Powns.	Valuc.	Pounds.	Calue
Alewives.	377,793	11,243	408,193	11,914	20,085	\$ 105	351, 590	\$6,431
Bluefish. Bonito	1,082,917	176, 726	2, 243, 425	390, 947	600	10 S	1,325	265
Bonito.	255, 887	30,350	1,503,253	91,046				
Butterfish	630, 076	64, 109	2, 662,491	159, 256	200			
Carp..	421, 642	63, 678	329,555	53, 184	9,712	1,511	87, 820	13,166
Catifish	43,435	6,722	101,067	5,976	2,125	128	35, 291	2,574
Cod....	667, 660	37,783	687, 277	37,353				
Croaker \qquad Drum, black			3,815,554	126, 700	2,400	48	418, 873	18,682
Drum, red..				$\begin{array}{r} 1,365 \\ 10 \end{array}$				
Lels, fresh.	463, 552	58,008	274, 75	26,450	220	22	16,012	1,598
Eels, smok			4,650	1,497				
Flounders.	4,471, 161	283,412	1,985,340	140,586	200	10	31, 429	1,798
Gizzard sha							7,320	292

Fishcrics of New York, New Jersey, Pennsylvania, and Delaware, 1921-Continued,

Items.	New York.		New Jersey.		Pennsylvania.		Delaware.	
PRODUCTS-con.	Pounds.	Value.	Pounds.	Ialue.	Pounds.	Value.	Pounds.	V'alue.
Haddock	18,515	\$576	6,300	\$338				
Hake	35, 906	1,430	\$21,018	25, 563				
Herring	6,575	206	172,732	4, 464				
Hickory sh	23, 455	1,444	28, 145	1,582				
King whiting	70, 447	13,589	24,119	3,334				
Mackerel.	282,075	40,356	584,386	100,556				
Menhaden.	179, 447, 799	1,117, 235	30, 405, 093	121, 451			8,082, 000	\$67,970
Mullet, fresh.	1,250	85	18,460	1,136			513	25
Mullet, salted	64,041	7,578	1,200 130,970	18,791			6,923	922
Perch, whito	25,500	2,896	130,970 31,282	18,791			2,758	273
Pigfish....					2,000	\$80		
Pike or pickerel	215	48	500	100			272	27
Pollock	84,300	2,325	4,540	127				
Pompano.	35							
Scup or po	1,297, 375	76,253	4,115,552	200, 046	142,000	7, 100		
Sea bass.	148, 434	21, 112	1,378,330	86, 823	135,000	12,500	250	12
Sea robi	38, 419	1, 140	63, 610	1,340				
Shad.	115,692	27, 128	168,637	41, 460	18,872	5, 834	86, 936	16,312
Sharks	10,659 75,550	2 C 4	60,459 43,100	1,232				
Smelt	6,200	1,185	450	335				
Spanish mack	25		3,982	979				
Spot.	43,757	3,728	189,548	11,502			14,600	925
Squeteagues or weakfish.	1,921,036	228,524	11,651,735	902,439	240,000	14,400	886,550	53, 317
Striped b	- 94,525	18,662	70,348	21,691			4,915	1,426
Sturgeon.	33,917	9,199	45, 825	7,120			12,090	1,813
Sturgeon caria	940	1,706	74	194				
Sturgeon roe.			3,572	10,746			1, 972	5,139
Suckers	132, 618	16,731	50,66t	5,139	21, 199	2, 169	953	118
Swordfis	44,865	9,125						
Tautog.	54,722	4,362	41,043	2,650			1,500	75
Tilefish	1,133,000	76,981						
Tomeod	57, 200	2,083	1,950	97				
Tuna.	32, 413	2,745	87,734	3,493				
Whitebai	13,561	1,335						
Whiting	939,287	12,212	3,280, 833	64, 371				
Other fis	171, 240	7,652	789	-34				
Lobster	1,037,395	196,762	397, 811	88,588			10,400	2,800
Shrimp	88, 450	28,890	20,000	- 400				
Crabs, hard	477, 242	17, 807	119,244	7, 290				
Crabs, soft.	5,885	1,855	16, 800	6,132			4,600	1,150
Crabs, king	750	11	3,313,174	10,416			630,000	1,890
Squid.................	330, 117	18,500	433,902	20,008				
Clams, hard, public..	1764,824	214,528	${ }^{2} 782,088$	364,548			3 4, 040	2,340
Clams, hard, private.	$\begin{array}{r}45,400 \\ \hline\end{array}$	1,950						
Clams, soft, public...	${ }^{6} 186,150$	32, 670	${ }^{6} 143,500$	20,650				
Clams, soft, private.-	72,000	325						
Skimmers, or surf clams.................	8 48,160	11,300						
Mussels.	- 50,000	2,500	10791,000	6,070				
Oysters, market, public.	11292, 453	41,790	1269,300	10,190			13870,219	74, 140
Oysters, market, private.	14 9, 131,017	1,733, 663	1510,977,855	2,060,306			$161,942,563$	293,975
Oysters, seed, public.	1769,825	9,710	1811,638,900	666,905			$191,502.949$	82,758
Ovsters, seed, private.	20 7,000	217 750	${ }^{21} 311,500$	22,529				
Scallops.	22 1, 235, 760	217, 108	${ }^{23} 540$	90				
Turtles.	800	19	13,715	334			2,250	112
Terrapin	600	350	225	225			300	300
Shells..................	1,760,000	1,480						
Miscellaneous products..................	14,099	9,780	7, 500	159				
Total	210, 377, 152	4,986,918	96,936, 784	5,983, 106	594,613	44,621	25, 023, 193	652,448

195,603 bushels.
297761 bushels.
3505 bushels,
1675 bushels.
618,615 bushels.
${ }^{6} 14,350$ bushels.
7200 bushels.
86,020 bushels.
95,000 bushels.
1079,100 bushels.
${ }^{11} 41,779$ bushels. $\quad 10277,509$ bushels. ${ }^{21} 44,500$ bushels. ${ }^{12} 9,900$ bushels. $\quad 179,975$ bushels. $\quad 22205,960$ bushels ${ }^{13} 124,317$ bushels. ${ }^{18} 1,662,700$ bushels. ${ }^{23} 90$ bushels.
${ }^{14} 1,304,431$ bushels. ${ }^{19} 214,707$ bushels.
$151,568,265$ bushels. 201,000 bushels.

Note.-The above statistics do not include any fisheries of the Great Lakes or other inland waters. The statistics for New York include 83,718 bushels of market oysters from private grounds, valued at $\$ 83,718$, taken by ressels owned and employed, mainly in Connecticut.

SHAD FISHERY OF THE HUDSON RIVER.

In 1921 there were 307 persons engaged in the fishery of the Hudson River in New York and New Jersey. The investment amounted to $\$ 44,607$, and the catch was 35,448 shad in number, or 130,803 pounds, valued at $\$ 30,623$. Of this quantity 28,948 shad in number, or 104,883 pounds, valued at $\$ 24,329$, were taken in New York and 6,500 in number, or 25,920 pounds, valued at $\$ 6,294$, in New Jersey.

In 1922 there were 272 persons engaged in this fishery, the investment amounted to $\$ 40,342$, and the catch was 48,336 shad in number, or 175,186 pounds, valued at $\$ 39,706$. The catch in New York was 36,111 shad in number, or 128,324 pounds, valued at $\$ 27,451$, and in New Jersey 12,225 in number, or 46,862 pounds, valued at $\$ 12,255$.

Compared with 1920 there was a decrease in 1921 of 61 persons and of 13,867 shad in number, or 69,041 pounds, and of $\$ 25,706$ in the value, but an increase of $\$ 4,256$ in the investment. In 1922, as compared with 1920 , there was a decrease of 96 persons and of 979 in the number of shad, 24,658 in the number of pounds, and $\$ 16,603$ in the ralue, with practically no change in the amount of capital invested. In 1922 the number of persons engaged and the investment in the fishery were not as large as in 1921, but there was an increase in the catch of 4,888 shad in number, or 44,383 pounds, and of $\$ 9,103$ in the value. The statistics for 1921 and 1922, and also comparative statistics of the catch from 1915 to 1922, are given in the following tables:

Shad fishery of the Hudson River, 1921 and 1922.

Items.	1921								
	New York.			New Jersey.			Total.		
Fishermen	Number. 286	Pounds.	Value.	Number.	Pounds.	Value.	Number. 307	Pounds.	Value.
Rowboats.	185		\$8,560	13		\$1,000	198		\$9, 560
House boats	1		-150				1		150
Gasoline boats	34 159		5,300	8		200	38		5,500
Haul seines.	15		19, 590	8		2,910	1		22,597 590
Shore and accessory property.			2,635			3,575			6,210
Total.			36,922			7,685			44,607
Shad caught: With gill nets...	27,991		23,469	6,500	25,920	6,294	34, 491	127,385	
With seines....	747	2,603	601				747	2,603	-601
With other apparatus incidentally	210	815	259				210	815	259
Total.	28, 948	104, 883	24,329	6,500	25,920	6,294	35,448	130, 803	30,623

Shad fishery of the Hudson River, 1921 and 1922-Continued.

Items.	1922								
	New York.			Now Jersey.			Total.		
Fishermen.	Number. 251	Pounds.	Value.	Number.	Pounds.	Value.	Number. 272	Pounds.	Value.
Rowboats.	164		\$7,680	13		\$1,000	177		\$8,680
House boats.	1		150				1		150
Gasoline boats.	22		4,050	4		200	26		4,250
Gill nets. .	133		17,532	8		2,910	141		20,442
Haul seines..............	5						5		610
Shore and accessory property			2,635			3,575			6,210
Total.		32,657			7,685			40,342
Shad caught: With gill nets........	34,763	123, 469	26,327	12, 225	46, 862	12, 255	46,988	170,331	38, 582
With seines..........	1,318	4,855	1,124				1,348	4,855	1,124
Total.	36, 111	128, 324	27,451	12, 225	46, 862	12, 255	48,336	175, 186	39, 706

Comparative statistics of shad fishery of the Hudson River, 1915-1922.

Year.	New York.			New Jersey.			Total.		
	Number.	Pounds.	Value.	Number.	Pounds.	Valuc.	Number.	Pounds.	Valuc.
1915.	11,606	48,564	\$5, 969	4,249	20, 104	\$2,674	15, 355	68, 668	\$8,643
1916	7,787	32,923	4, 540	1,500	7,250	925	9,287	40, 173	5,465
1917	10,615	38,344	5, 810	1,400	5,040	720	12,015	43, 384	6, 540
1918	63, 104	220,602	44,784	3,999	14.000	3,400	67,403	234, 602	48, 184
1919	76, 501	301, 306	60,690	13, 800	73,668	23, 034	90, 301	374, 974	83, 724
1920	39, 692	157, 715	43. 882	9,623	42, 129	12, 427	49,315	199, 844	56,309
1921	28,948	104, 883	24,329	6,500	25, 920	6, 29.1	35, 448	130,803	30,623
1922	36, 111	128, 324	27,451	12, 225	46, 862	12,255	48,336	175, 186	39,706

FISHERIES OF NEW YORK.

In 1921 the number of persons employed in the fisheries of New York was 7,145 , of whom 1,799 were on vessels fishing, 62 on transporting vessels, 2,365 in the shore or boat fisheries, and 2,919 on shore in wholesale establishments and other fishery industries.

The investment in the fisheries and fishery industrics amounted to $\$ 13,836,455$ and included 319 fishing and transporting vessels, valued at $\$ 4,275,465$, with a tonnage of 5,262 net tons, and outfits valued at $\$ 518,170 ; 2,087$ boats, valued at $\$ 504,985$; fishing apparatus valued at $\$ 461,138$; shore and accessory property valued at $\$ 7,140,497$; and cash capital amounting to $\$ 936,200$.
The products of the fisheries amounted to $210,377,152$ pounds, valued at $\$ 4,986,918$. The principal species taken, arranged in the order of their value, were: Oysters, $9,500,295$ pounds, or $1,357,185$ bushels, valued at $\$ 1,785,913$; menhaden, $179,447,799$ pounds, valued at $\$ 1,117,235$; flounders, $4,471,161$ pounds, valued at $\$ 283$,412; clams, $1,006,538$ pounds, or 121,113 bushels, valued at $\$ 260,773$; squeteaques, "sea trout," or weakfish, $1,921,036$ pounds, valued at $\$ 228,524$; scallops, $1,235,760$ pounds, or 205,960 bushels, valued at $\$ 217,108$; lobster, $1,037,395$ pounds, valued at $\$ 196,762$; and bluefish, $1,082,917$ pounds, valued at $\$ 176,726$.

Compared with 1904 there was a decrease in the number of persons employed of 4,348 , or 37.83 per cent, and an increase in the investment of $\$ 3.214,839$, or 30.26 per cent. There was a decrease in the products of $67,272,595$ pounds, or 24.23 per cent, in quantity and of $\$ 1,243,640$, or 19.96 per cent, in value.

The following table gives the number of persons employed, investment, and products of the fisheries of New York, by counties, in 1921:

Persons engaged, investment, and products of the fisheries of New York in 1921, by counties.

Persons engaged, investment, and products of the fisheries of New York in 1921, by counties-Continued.

Items.	Dutchess.		Greene.		Kings.		Nassau.	
investment-continued.	Number.	Value.	Number.	Value.	Number.	Value.	Number.	Value.
Vessels transporting: Gasoline.							5	
Tonnage.							53	
Outfit...								13
Boats:								
Sail, row, elc.	94 10	\$4,235	38	\$2,170	37	\$1,370	133	9, 595
4 pparatus, vessel fisheries:				1,000	91	54,025	11	53, 275
Purse seines..					2	2,200		
Gill nets.							12	350
Otter trawls.					5	440	5	330
Lines, hand and traw						710		
Harpoons..........						100		
Lobster pots					90	158		
Dredges...					2	50	41	1,375
Tongs...							2	
A pparatus, shore fisheries:								
Pound nets, floating traps, and weirs.	:.....						2	
Gill nets.................	48	4,952	8	1,110	2	600	268	12,975
Fyke nets.	75	1,054	35	- 430				
Haul seines.	3	200	5	400	8	575	4	415
Drag nets..							3	25
Scap nets. Dip nets	21	495	15	320			12	14
Stop nets.			5	725			12	14
Otter trawls					5	400		
Lines, hand		40				310		1,660
Eel pots..	26	66			80	145	120	315
Lobstcr pots					5,265	14,435	225	550
Spears...							32	168
Dredges.							66	1,195
Tongs.					18	171	119	964
Rakes..					19	210	16	77
Hoes....					45	45	36	37
Other apparatus. .								
Shore and accessory property		790		125		224,685 66,300		60,660 5 5
Cash capital.						66,300		5,500
Total.		13,307		6,280		446, 470		271,243
PRODUCTS	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.	Pounds. 6,000	Value. $\$ 300$
Albacore.								
Alewives.	13,740	\$1,267	21, 425	\$1,522			2,685	125
Bluefish.					201, 233	\$32,225	40,425	9,390
Bonito...							42,060	5,150
Butterfish							23, 400	2,600
Carp.	16,518	1,998	25,655	3,158				
Catfish and bullheads	3,130	601	1,794	320				
Cod...	6,514	723		16	69,500 13,335	2,800 1,600	88,950 68,925	5,815 8,605
Flounders				10	438, 050	21,960	233,025	13,735
Haddock.					7,000	, 100	6,490	1,400
Hake. .					3,150	250	4,375	205
Hickory shad.							900	52
King whiting.							600	120
Mackerel.							60,105	7,700
Perch, yellow	2,938	350	1,415	168				
Pickerel..	10	2						
Pollock.							2,850	160
Scup..					426,000	21,300	22,400	1,940
Sea bass					17,050		7,650	1,525
Shad..	35,449	7,982	80	25	2,757	1,000	1,200	240
Sharks							800	30
Spot..							1,600	145
Squeteagues..					28,575	950	350, 325	46,708
Striped bass..							2, 450	570
Sturgeon.......	3,335	716	150	10			1,200	410
Sturgeon cavair		945		358				..
Swordfish	8,760		2,845		30,000	6,000		
Tautog.					1,400	1200	200	18
Tilefish.					300,000	21,000		
Tuna...							12,000	1,000
Other fish	751	75			16,140	2950	32,570	
Lobster..				406, 300	62,880	10,450	2,425

Persons engaged, investment, and products of the fisheries of New York in 1921, by counties-Continued.

Persons engaged, investment, and products of the fisheries of New York in 1921, by counties-Continued.

I'ersons engaged, investment, and products of the fisheries of New York in 1921, by counties-Continued.

[^27]Persons engaged, investment, and products of the fisheries of New York in 1921, by counties-Continued.

Persons engaged, investment, and products of the fisheries of New York in 1921, by counties-Continued.

Items.	Ulster.		Westchester.		Total.	
Products-Continued	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.
Flounders.					4, 471, 161	\$283, 412
Haddock.					18,515	876
Hake.					35, 906	1,430
Herring					6,575	206
Hickory shad.					23,455	1,444
King whiting.					70,447	13,589
Mackerel.....					282,075	40,356
Menhaden.					179,447, 799	1,117, 235
Mullet.					1,250	
Perch, white			900	\$95	64, 041	7,578
Perch, yellow	5,186	\$549	7,441	766 3	25,500	2, 896
Pickerel. Pollock	79	16	21	3	215 84,300	48 2,325
Pampano						
Scup..					1, 297, 375	76,253
Sea bass.					148,434	21,412
Sea robin.					38, 419	1,140
Shad.	43, 866	9,853	8,197	1,950	115, 692	27,128
Sharks.					10,659	284
Skates.					75, 550	1,149
Smelt.					6,200	1,185
Spanish mackerel						
Spot........					43,757	3,728
Squeteagues.					1,921, 036	228, 524
Striped bass.			3,340	896	94,525	18,662
Sturgeon...	3,744	984	6,150 345	1,257	33,917 940	9, 199 1,706
Suckers.	18,870	2, 263	18,703	2,038	132,618	16,731
Swordfish					44, 865	9,125
Tautog.					54,722	4,362
Tilefish.					1,133, 000	76,984
Tomcod.			3,500	85	57, 200	2,083
Tuna.					32, 413	2,745
Whitebait					13,561	1,335
Whiting.					939, 287	12, 212
Other fish	10,555	224	692	82	171,240	7,652
Lobster. Shrimp.					$1,037,395$ 88.450	196,762 28,890
Crabs, hard			14,000	700	477, 242	17, 807
Crabs, soft.					5, 885	1,855
Crabs, king.						11
Squid.					330,117	18,500
Clams, hard, public			400	300	${ }^{2} 764,824$	214,528
Clams, hard, private.					${ }^{3} 5,400$	1,950
Clams. soft, public.			21,000	+,500	-186,150	32,670
Clams, soft, private.					5 2, 000	325
Skimmers or surf clams.					${ }^{6} 48,160$	11.300
Mussels.					${ }^{7} 50,000$	2,500
Oysters, market, public			7,000	1,900	${ }^{8} 292,453$	41,790
Oysters, market, private.					${ }^{9} 9,131,017$	1,733, 663
Oysters, seed, public.					1069,825	9,710
Oysters, seed, private					${ }^{11} 7,000$	750
Scallops, bay.					12 1, 152,528	192, 376
Scallops, sea.					1383,232	24, 732
Turtles...					800	35
Terrapin					600	480
Shells.					${ }^{14} 1,760,000$	1,480
Miscellaneous products.					14,099	9,780
Total.	174, 154	25,726	147, 454	21,498	210, 377, 152	4,986,918

${ }^{2} 95,603$ bushels. ${ }^{3} 675$ bushels. ${ }_{5}^{4} 15,615$ bushels. ${ }^{5} 200$ bushels. ${ }^{6} 6,920$ bushels.
${ }^{7} 5,000$ bushels.
841,779 bushels.

- 1,304, 431 bushels.

109,975 bushels.
11 1,000 bushels.
${ }^{12}$ 192,088 bushels.
${ }^{13} 13,872$ bushels.
1444,000 bushels.

VESSEL AND SHORE FISHERIES.

The products of the vessel and shore or boat fisheries of New York are shown separately in the following table. The catch taken by ressels amounted to $194,276,310$ pounds, valued at $\$ 3,478,037$, and by boats in the shore fisheries to $16,100,842$ pounds, valued at $\$ 1,508,881$.

Products of the vessel and shore fisheries of New York, 1921.

Specles.	Vessel fisheries.		Shore fisheries.		Total.	
Albacore	Pounds. 10,000	Value. - $\$ 500$	Pounds. 19, 354	Value. $\$ 920$	Pounds. 29, 354	Value. 81,420
Alewives	7,070	299	- 370, 723	10,984	29, 354	81,420
Bluefish	902, 508	144, 473	180, 409	32, 253	1,082,917	176,726
Bonito	95,000	14,050	160, 887	16,300	255, 887	30, 350
Butterfis	55,000	6,500	575, 076	57,609	630, 076	64, 109
Carp.			421, 642	63, 678	421, 642	63, 678
Cod.	75,0000	2,720	592, 860	35,063	667, 860	6, ${ }^{67,782}$
Eels.	8,390	1,170	455, 162	56, 838	463, 552	58,008
Flounders	1,577,370	116, 597	2, 893, 791	166, 815	4, 471, 161	2S3,412
Haddock.	7,000	100	11,515	, 776	18,515	876
Hake..			35, 906	1,430	35,906	1, 430
Herring.			6,575	1206	6,575	, 206
Hickory shad	1,600	95	21, 855	1,349	23,455	1,444
King Whiting	1,115	240	69,332	13,349	70,447	13,589
Mackerel.	50, 500	7,400	231, 575	32, 956	282, 075	40, 356
Menhaden	178,683, 105	1,113,057	764, 694	4,178	179,447, 799	1,117, 235
Mullet...					1,250	1, 85
Perch, white			64,041	7, 578	64, 041	7,578
Perch, yello			25, 500	2, 896	25, 500	2, 896
Pickerel.			215	48	215	48
Pollock.	1,600	s0	82, 700	2, 245	84, 300	2,325
Pompano						
Scup..	1,046,750	55, 933	250,625	20,320	1,297,375	76,253
Sea bas	29,250	3, 584	119, 184	17,828	148, 434	21,412
Sea rob			38,419	1,140	38, 419	1,140
Shad..	1,950	389	113, 742	26,739	115, 692	27,128
Sharks	2,800	111	7,859	173	10,659	284
Skates			75, 550	1,149	75, 550	1,149
Smelt.			6,200	1,185	6,200	1, 185
Spanish			25		25	
Spot.	2,000	159	41,757	3,569	43,757	3,728
Squeteague	831, 165	104,897	1,089, 871	123,627	1,921,036	228, 524
Striped bas	100	30	94,425	18,632	94,525	18, 662
Sturgeon.	2,200	769	31, 717	8,430	33,917	9,199
Sturgeon c	200	400	740	1,306	940	1, 706
Suckers			132,618	16,731	132,618	16,731
Swordfis	35, 800	7,000	9,065	2,125	44, 865	9,125
Tautog.	900		53,822	4,274	54, 722	4,362
Tilefish	1, 133, 000	76,984			1, 133,000	76,984
Tomcod	1, 300	18	56,900	2,065	- 57, 200	2, 083
Tuna-	15,500	1,300	16,913	1, 445	32,413	2,745
Whitebai			13, 561	1,335	13, 561	1,335
Whiting	59,000	668	580,287	11,544	939, 287	12,212
Other fish	3,000	90	168,240	7,562	171, 240	7,652
Lobster.	47, 100	10, 400	990, 295	156, 362	1, 037,395	196, 762
Shrimp.	2,325	775	86,125	28, 115	88,450	28,890
Crabs, hard	29,850	1,334	417,392	16,473	477, 242	17,807
Crabs, soft.			5, 885	1,855	5, 885	1,855
Crabs, king			750	11	750	11
Squid.	13,000		317, 117	17,660	330, 117	18,500
Clams, hard, public	146,352	66,243	618,472	148,285	2764,824	214,528
Clams, hard, privat			5,400	1,950	${ }^{3} 5,400$	1,950
Clams, soft, public.			186, 150	32,670	${ }^{1} 186,150$	32, 670
Clams, soft, private.			2,000	325	5 2, 000	325
Skimmers or surf cla			48,160	11,300	${ }^{6} 48,160$	11,300
Mussels.	30,000	1,500	20,000	1,000	750,000	2,500
Oysters, market, publi	80, 122	12,960	212, 331	28, 830	8292,453	41,790
Oysters, market, priva	18,790, 803	1,648, 235	340, 214	85,428	${ }^{9} 9,131,017$	1,733, 663
Oysters, seed, public.	44, 275	6,260	25,550	3,450	1069,825	9,710
Oysters, seed, private	7, 000	$\begin{array}{r}750 \\ 62 \\ \hline 69\end{array}$			427,000 $121,152,528$	192, 776
Scallops, bay	422, 790	62,369	729, 738	. 130, 007	${ }^{12} 1,152,528$	192, 376
Scallops, se	22,920	6,320	60, 312	18, 412	${ }^{13} 83,232$	24, 732
Turtles.			800	19	800	19
Terrapin	600	350			600	350
Shells.			1,760,000	1,480	141,760,000	1,480
Miscellaneous produ			14,099	9,780	14,099	9,780
Total.	194, 276, 310	3,478,037	16, 100, 842	1,508, 881	210,377, 152	4,986,918

${ }^{1}$ Includes 83,718 bushels, valued at $\$ 83,718$, taken up by vessels owned and employed mainly in Connecticut.

2 95,603 bushels.
${ }^{3} 675$ bushels.
${ }_{5}^{1} 18,615$ bushels.
${ }^{5} 200$ bushels.
${ }^{6} 6,020$ bushels.
${ }^{7} 5,000$ bushels.
841,779 bushels.
${ }^{2} 1,304,431$ bushels. $\quad 1444,000$ bushels.

The most important forms of fishing apparatus used in the fisheries of New York in 1921 were purse and haul seines, with a catch of $180,655,920$ pounds, valued at $\$ 1,262,217$; pound nets and trap nets, with $6,756,423$ pounds, valued at $\$ 529,844$; otter trawls, with $2,941,095$ pounds, valued at $\$ 205,717$; lines, with $3,348,876$ pounds, valued at $\$ 297,640$; dredges, tongs, rakes, etc., with $13,514,532$ pounds, valued at $\$ 2,259,493$, consisting chiefly of oysters, clams, and scallops; and lobster pots, with 1,028,460 pounds, valued at $\$ 194,952$, of which $1,021,710$ pounds, valued at $\$ 193,602$, were lobsters, and the remainder sea bass. There were also 7,985 pounds of lobsters, valued at $\$ 1,615$, taken in otter trawls, and 7,700 pounds, valued at $\$ 1,545$, in pound nets. The catch with fyke nets, consisting chiefly of flounders, amounted to 917,568 pounds, valued at $\$ 41,279$, and with gill nets, to 607,077 pounds, valued at $\$ 93,517$. Considerable quantities of products were also taken with dip nets, scap nets, stop nets, harpoons, drag nets, eel pots, spears, and minor forms of apparatus. The entire catch of swordfish, amounting to 44,865 pounds, valued at $\$ 9,125$, was taken with harpoons. The products taken with each form of fishing apparatus in the vessel and shore fisheries combined are shown in the appended tables.

Field of the fisheries of New York in 1921, by counties, apparatus, and species.
BY PURSE SEINES AND HAUL SEINES.

Yield of the fisheries of New York in 1921, by counties, apparatus, and species-Continued.
BY PURSE SEINES AND HAUL SEINES-Continued

Yicld of the fisheries of New York in 1921, by counties, apparatus, and species-Continued.
BY GILL NETS.

Yield of the fisheries of New York in 1921, by counties, apparatus, and species-Continued.
BY POUND NETS, TRAP NETS, AND WEIRS.

Species.	Broome.		Delaware.		Nassau.		Orange.	
Albacore	Pounds.	Value.	Pounds.	Value.	$\begin{array}{r} \text { Pounds. } \\ 6,000 \end{array}$	Value. $\$ 300$	Pounds.	Value.
Alewives					2,400	115		
Bluefish					10,000	1,975		
Bonito...					32,000	4,300		
Butterfis					23,400 2,500	2,600		
Eels..	4,200	$\$ 690$	4,300	\$387			4,150	\$485
Flounders					12,400	1,000		
Hickory shad					${ }^{900}$	52		
King whiting					600	120		
Mackerel...					30,000	4, 000		
Pollock.					1,200			
Scap ba					22,400 900	1,940		
Shad.					1,200	240		
Sharks					800	30		
Spot.					600	45		
Squeteague					250,000	36,000		
Sturgeon.					1,200	410		
Tautog..					200	18		
Tuna.					12,000	1,000		
Whiting					32,400	400		
Squid..					4,500	285		
Total.	4,200	690	4,300	587	447,600	55,265	t,150	485
Species.	Suffol		Sulliv		Tioga		Tota	
Albacore	Pounds. 23, 354	Value. $\$ 1,120$	Pounds.	Value.	Pounds.	lue.	Pounds. 29, 354	Value. $\$ 1,420$
Alewives.	107, 120	2,655					109, 520	2,770
Bluefish	89,792	13, 803					99,792	15,778
Bonito	213,627	25, 180					245,627	29, 480
Butterfi	606, 676	61,509					630, 076	64,109
Cero.								
Cunne	37, 240	1,703 10					39, 240	1,903 10
Eels..	104,579	13,182	23,500	\$2,945	1,700	\$230	142,429	18,119
Flounder	S77, 911	66,998					890, 311	67,998
Grayfish	7, 487	$17+$					7,4×7	174
Hake.	18,916	392					18, 916	392
Herring	6,575	206			,		6,575	206
Hickory shad	22,555	1,392					23, 455	1,444
King whiting	66,982	13,023					67, 582	13, 143
Lance.	5,625 160,435	50 25,320					5, 1905 1935	29, 320
Mackerel frig	-184	- 10					184	- 10
Menhaden.	778,936	4,004					778,936	4,004
Mullet.	1,250	85					1,250	85
Perch, wh	3,535	358.					3,535	388
Pilotfish	280	18					230	18
Pollock.	22, 450	930					23,6.50	990
Pompano....	35	7					$\xrightarrow{35}$	7
Round herring	1,700	185					1,700.	185
Salmon, Atlantic Scun...........	40	18					40	18
Scup...	245, 055	20, 228					267,455	22, 168
Sca bass. Sea robin	28,054	4,787					28,954	4,962
Sea robi	38,019	1, 130					38,019	1,130
Shad.	5, 8.52	1,359					7,052	1,599
Sharks	9, 859	254					10, 6.59	284
Silversides, or spearin	33,750	900				33,750	900
Skates.	51,850	349					51, 250	349
Spanish mackerel	25	5						5
Spot	40,907	3, 471					41,507	3,516
Squeleagues.	1, 273, 396	159, 190					1,523,396	195, 190
Striped bass	29, 726	6, 478					29,726	6,478
Sturgeon.	3,449	1,177					4,649 4×0	1,587
Swellfish......	450	550					30.875	550
Swellitish.	30, 875	3, 399						3, 122
Tomeod	13,500	-419					13,500	3, 419
Tuna..	20,413	1,745					32, 413	2745
Whitlng	906, 717	11, 807					939, 117	12, 207
Other fish	1,238	58					1,238	
Squid.	325, 617	19,215					330, 117	1, 500
Crabs, hard	365	46					365	46
Crabs, king.	750	11					750	1,545
Turtles	7,700 800	1,545					7,700 800	$1,54.5$ 19
Tot	6,270,973	469,642	23,500	2,945	1,700	230	6,756,423	529,844

Yield of the fisheries of New York in 1921, by counties, apparatus, and species-Continued.
BY FYKE NETS.

Species.	Albany.		Columbia.		Dutchess.		Greene.	
Bullheads.	Pounds. $3,550$	Value. $\$ 788$	Pounds. $1,914$	Value. $\$ 479$	Pounds. 2, 676	Value. \$531	Pounds. 1,232	Value. $\$ 230$
Carp.	5,625	933	15,100	1,296	4,926	581	1,020	123
Eels.	210	50	765	165	200	37	, 86	16
Perch, yellow	1,495	161	2,089	306	1,993	244	1,075	130
Pickerel..								
Suckers.	12,945	2,033	12,993	1,092	3,849	395	2,050	263
Total.	23, 875	3,980	32,911	3,343	14,305	1,860	5,463	762
Species.	Orange.		Rensselaer.		Rockland.		Suffolk.	
Alewives.	Pounds.	Value.	Pounds.	Value.	Pounds. 200	Value. $\$ 10$	Pounds. 22, 000	Value. $\$ 330$
Bullheads.	1,453	\$261	2,659	\$454				
Carp.	1,483	230	2,631	343				
Eels. Flounders	456	104	33	9			14,670 678,800	15, 200
Perch, white.					50	5	14,000	2, 200
Perch, yellow Pickerel.....	890	118	762 45	85 9				
Shad...					50	10		
Suckers.	15,817	2,428	4,737	585	30	3		
Tautog.							600 2,000	35 30
Tomeod.	4,800	219					33,700	1,160
Terrapin							600	350
Total.	24, 899	3,360	10, 867	1,485	330	28	766,370	22,199
Species.			Ulster.		Westchester.		Total.	
Alewives.			Pounds. 180	Value. \$18	Pounds. 300	Value. \$15	Pounds. 22, 680	Value. $\$ 373$
Bullheads.			3,076	622	1,693	230	18,253	3,595
Carp.			2,971	333	3,170	392	36,926	+,231
Eels..			64	9	533	92	17, 017	2,682
Flounders...							678, 800	15,894
Perch, white.					300	35	14,350	2,240
Perch, yellow			4,606	468	1,737	188	14,647	1,700
Pickerel.			75	15	21	3 4	211	47
Shad. Striped ba					20 275	74	70 275	14 73
Suckers.			7,404	798	7,713	791	67, 338	8,388
Sunfish.			518	59	392	32	1,601	163
Tautog.							600	35
Toadfish					3,500	85	2,000 42,000	- $\begin{array}{r}30 \\ 1,464\end{array}$
Terrapin.								350
Total			18, 894	2,322	19, 654	1,940	917,568	41,279

BY DIP NETS, SCAP NETS, HARPOONS, AND MINOR APPARATUS.

Apparatus and species.	Albany.		Columbia.		Dutchess.		Greenc.	
Scap nets:	Pounds.	Value.	Pounds.	Valuc.	Pounds.	Value.	Pounds.	Value.
Alewives.	60	\$12	150	\$1.5	\$60	\$96	425	\$ 12
Bullheads	13.5	19	158	29	360	51	112	22
Carp	13,410	1,722	7,584	1,139	5,097	653	6,135	786
Eels.	3,323	372	10	2				
Perch, yellow			655	S4	325	56	120	15
Shad...							80	25
Suckers	2,718	312	5, 3^0	815	4,001	429	575	73
Sunfish.			75	9	100	5		
Total.	19, 651	2, 437	14,012	2,093	10, 743	1,290	7,447	963
Miner apparatus: Carp..							16,000	1.985

Yield of the fisheries of New York in 1921, by counties, apparatus, and species-Continued. BY DIP NETS, SCAP NETS, HARPOONS, AND MINOR APPARATUS-Continued.

Yield of the fisheries of New York in 1921, by counties, apparatus, and species-Continued. by otter trawls, drag nets, lobster pots, eel pots, and spears.

Yield of the fisheries of New York in 1921, by counties, apparatus, and species-Continued.
by Hand lines and trawl lines.

Species.	Dutchess.		Kings.		Nassall.		New York.		Orange.	
Bluefish.	Pounds.	Value.	Pounds. $198,533$	Value. $\$ 31,125$	Pounds. $11,020$	Value. $\$ 2,680$	Pounds. $663,100$	Value. $\$ 104,923$	Pounds.	Value.
Bonito.					, 560	- 50				
Bullheads.	94	\$19							100	\$12
Cod.			31, 500	2,100	86, 450	5,615				
Eels.	1,211	169							1,696	274
Flounders			9, 850	800	8, 100	900				
Haddock.					6,490	400				
Hake.			3,150	250	4,375	205				
Pollock					1,650	100				
Sea bass			11,050	1,165						
Squeteagues.			1,250	100	4, 800	700				
Striped bass.					850	170				
Tautog.-			1,400	-200						
Tilefish.			300, 000	21,000			833, 000	55, 984		
Whiting.					170	5				
Total.	1,305	188	556, 733	56, 740	124,465	10,825	1,496, 100	160,907	1,796	286

Species.	Queens.		Rensselaer.		Richmond.		Rockland.	
Bullheads.	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.	Pounds. 110	Value. $\$ 11$
Cod.	31,000	\$2,100	260	852	26,000	\$1, 400	750	125
Flounders.	7,755	1,315	260	852			750	12.
Squeteagues. Striped bass. Sturgeon	5,000 60	1,150 20					$\begin{array}{r} 250 \\ 20 \\ 50 \end{array}$	75 5
Sturgeon...	500	100						
Tomeod.	1,700	200						
Total..	46,015	4,885	260	52	26, 000	1,400	1,160	216

Species.	Suffolk.		Ulster.		Westchester.		Total.	
Bluefish.	Pounds. 4, 600	Value. $\$ 783$	Pounds.	Value.	Pounds.	Value.	Pounds. 877, 253	Value. \$139,511
Bonito.	${ }^{200}$	20					760	70
Bullheads			70	87			374	49
Carp			160	26			585 160	${ }^{26}$
	410, 240	23,750					585, 190	34,965
Cunne	100 1,450	80	1,310	253	2,035	\$363	8,712	1,316
Flounders	300	24					26, 005	3, 039
Haddock.	5,025	376					11,515	776
Hake..	9,465	583					16,990	1,038
Mackerel.	19,575	2,070					19,575	2,070
Perch, yel					100	10	100	10
Pollock.	59, 000	1,235					60,650	1,335
Seup...	22, 870	11,695					22,870 94,600	12, 2 , 860
Sea robin.	8, 250	1, 5					${ }^{250}$	
Skates.	23,700	800					23,700	800
Squeteague	11,010	1,127					22,060	3, 077
Striped bas							1,160	265
Sturgeon					300	45	350	50
Tautog.	6,825	610					8,725	-910
Tilcfish.							1,133, 000	76,984
Tomcod.							1,700	200
Whiting...							170	5
Crabs, hard	432, 907	16,117					432,907	16,117
Total.	1,091,067	61,437	1,540	286	2,435	418	3,348,876	297,640

Yield of the fisheries of New York in 1921, by counties, apparatus, and species-Continued.
BY DREDGES, TONGS, RAKES, HOES, AND FORKS.

Apparatus and species.	Richmond.		Suffolk.		Westehester.		Total.	
Dredges:	Pounds.	Value.	Pounds.	Valve.	Pounds.	Value.	Pounds.	Value.
Crabs, hard.			29,850	\$934	14,000	\$700	43, 8.50	\$1,634
Clams, hard, public..					400	300	3,600	1,300
Clars, hard, private..							3,000	1,500
yster, market, publie.	10,500	\$1,600					18, 270	2,925
Oysters, market, private.	${ }^{1} 2,534,714$	514, 741	4,949, 070	849,009			8, 914, 283	1,678, 585
Orsters, seed, public.	19,950	2, 850					25,550	3, 650
Oysters, seed, private. Mussels.			7,000	750			7,000 50,000	750 2,500
Scallops, ba			1, 138,668	190,276			1,138,668	190, 276
Scallops,			15,996	7,052			45,012	16,562
Shells.			1,760, 000	1,480			1,760,000	1, 480
Total.	2, 565, 164	519, 191	7,900, 584	1,049, 501	14, 400,	1,000	12,009, 233	1, 901, 162
Tongs:								
Clams, hard, public.. Clams, soft, public..	960	500	281,976 2,700	129, 149			$\begin{array}{r} 329,776 \\ 2,700 \end{array}$	$\begin{array}{r} 148,259 \\ 375 \end{array}$
Skimmers or surf elams.							22, 560	5,100
Oysters, market, public.			171, 528	25,495	7,000	1,900	178, 528	27, 395
Oysters, market, private.			17,500	4,600			216, 734	55,078
Oysters, seed, public.			44, 275	6,060			44,275	6,060
Total.	960	500	517, 979	165,679	7,000	1,900	794,573	242, 267

[^28] neeticut.

Yield of the fisheries of New York in 1921, by counties, apparatus, and species-Continued. BY DREDGES, TONGS, RAKES, HOES, AND FORKS—Continued.

Apparatus and species.	Richmond.		Suffolk.		Westchester.		Total.	
Rakes, hoes, and forks: Clams, hard, public.	Pounds. 8, 280	Value. \$3,900	Pounds. 405,976	Value. \$53, 369	Pounds.	Value.	Pounds. 423,352	Vayu. \$60, 819
Clams, hard, private..							423, 1,600	60, 100
Clams, soft, public...			43, 550	8, 495	21,000	84,500	148, 350	27, 420
Clams, soft, private...							2,000	325
Skimmers orsurf clams.							25,600	6,200
Oysters, market, public.	2, 800	400	92, 855	11,070			95,655	11,470
Scallops, bay..........			270	100			270	100
Miscellaneous (for bait)							13,899	9,630
Total.	11,080	4,300	542, 651	73,034	21, 000	4,500	710,726	116,064

INDUSTRIES.
Wholesale trade.-In 1921 there were 132 wholesale establishments in New York City and 21 in localities outside of the city engaged in handling fishery products. The investment amounted to $\$ 3,929,404$, and the cash or working capital to $\$ 749,200$. There were 1,748 persons engaged, who received $\$ 2,910,864$ in wages. There were 90 firms in the city handling fresh and frozen fishery products and 42 firms handling prepared products. The 21 firms in localities outside of the city handled fresh and frozen fish.

Smoked fish, etc.-In 1921 there were 22 establishments, 21 in New York City and 1 outside of the city, engaged in preparing smoked fish and various other products, as pickled herring, miscellaneous canned products, oil and scrap from menhaden and other fish, and crushed oyster shells for poultry grit. The value of these establishments was $\$ 637,735$, and the cash capital amounted to $\$ 157,000$. There were 302 persons engaged, who received $\$ 385,128$ in wages. The products included $10,216,625$ pounds of smoked fish, valued at $\$ 2,971,796$, and miscellaneous products, valued at $\$ 71,937$.

Menhaden industry.-The statistics of the menhaden industry given in the appended table for 1921 include 3 factories, 2 for New York and 1 for Delaware, valued at $\$ 2,397,000$, with a cash capital amounting to $\$ 105,000$. The number of persons engaged was 490 , who received $\$ 182,603$ in wages. The quantity of menhaden utilized in the factories was $171,973,400$ pounds, valued at $\$ 662,910$. The products prepared included 9,906 tons of dry scrap and fish meal, valued at $\$ 396,240 ; 23,000$ tons of acidulated scrap, valued at $\$ 460$,000 ; and $2,377,824$ gallons of oil, valued at $\$ 688,897$.

Statistics of the wholesale fishery trade and smoked fish and miscellaneous fishery products in New York City and vicinity, and of the menhaden industry for New York and Delaware are given in the following tables:
Investment, persons engaged, and wages paid in the wholesale fishery trade of New York City and vicinity in 1921.

Items.	Greater New York.		Outside of Greater New York.		Total.	
Establishments	Number. 132	Value. \$3, 505, 633 683,400	Number. 21	Value. \$424,271 65,800	Number. 153	$\begin{gathered} \text { Value. } \\ \$ 3,929,904 \\ 749,200 \end{gathered}$
Cash capital....	1,457	$\begin{array}{r} 683,400 \\ \cdots \quad . \quad . \end{array}$	$29 i^{\circ}$	$65,800$	1,748	
Wages paid...		2,773,055		137,0809		$2,910,864^{\prime}$

Smoked fish and other fishery products prepared in Vew York City in 1921.1

Items.	Number.	Value.	Items.	Pounds.	Value.
Establishments.	22	\$637, 735	Smoked fish-Continued.		
Cash capital.		157,000	Kippered herring...	43,000	\$5, 300
Persons engage	302		Mackerel.	35,000	7,000
Wages paid..		385, 128	Salmo	3,462,125	1,169,640
Smoked fish: Buffalofish	Pounds.	Value.	Spoonbill	70, 000	58, 700
		$\$ 153,700$105,600	Sturgeon.	886,600	621, 800
Carp..	$\begin{aligned} & \text { } \begin{array}{l} 495,000 \\ 374,000 \\ 322,800 \end{array} \end{aligned}$		Other fish	93,000	25, 440
Ciscoes.		476, 490	Total	10,216,625	2,971,796
Eels.	54,600$1,432,000$	17,200			
Finnan hadd		147,000	Miscellaneous products.		71,937
Herring.	450,500	72,600			

${ }^{1}$ Includes 1 firm outside of New York City engaged in preparing miscellaneous fishery products.
Menhaden industry of New York and Delaware in 1921.

Items.	Number.	Value.	Items.	Number.	Value.
Factories Cash capital. Persons engaged Wages paid. Menhaden utilized. 	3	\$2,397,000	Products prepared:		
		105,000	Dry scrap and fish		
	490	182,603	mealulated scrap. ${ }^{\text {modo. }}$.	9,900 23,000	$\$ 396,240$ 460,000
			Oil.gallons..	2,377,824	688, 897
	171, 973,400	662,910	Total		1, 545,137

FISHERIES OF NEW JERSEY.
The fisheries of New Jersey in 1921 gave employment to 5,771 persons, of whom 2,164 were on fishing vessels, 28 on transporting vessels, 2,982 in the shore or boat fisheries, and 597 on shore in the wholesale fishery trade, menhaden factories, and other fishery in dustries.

The investment in the fisheries and fishery industries amounted to $\$ 4,701,704$, which included 370 fishing and transporting vessels, valued at $\$ 1,181,050$, with a net tonnage of 4,590 tons, and outfits valued at $\$ 262,410 ; 2,686$ boats, valued at $\$ 684,679$; fishing apparatus valued at $\$ 672,703$; shore and accessory property valued at $\$ 1,587,762$; and cash capital amounting to $\$ 313,100$.

The products of the fisheries amounted to $96,936,784$ pounds, having a value to the fishermen of $\$ 5,983,406$. The principal species in the order of their value were oysters, $22,997,555$ pounds, or $3,285,365$ bushels, valued at $\$ 2,759,930$; squeteagues, "sea trout," or weakfish, $11,651,735$ pounds, valued at $\$ 902,439$; bluefish, $2,243,425$ pounds, valued at $\$ 390,947$; clams, 925,588 pounds, or 112,111 bushels, valued at $\$ 385,198$; scup or porgy, $4,115,552$ pounds, valued at $\$ 200,046$; butterfish, $2,862,491$ pounds, valued at $\$ 159,286$; flounders, $1,985,340$ pounds, valued at $\$ 140,586$; croaker, $3,815,554$ pounds, valued at $\$ 126,700$; menhaden, $30,405,093$ pounds, valued at $\$ 121,451$; and mackerel, 584,386 pounds, valued at $\$ 100,556$.

Compared with 1904, there was a decrease in the number of persons employed of 3,323 , or 36.54 per cent, but an increase in the investment of $\$ 2,015,908$, or 75.06 per cent, and in the products of $6,828,716$ pounds, or 7.57 per cent, in quantity, and of $\$ 2,597,991$, or 76.74 per cent, in value.

The following table gives the number of persons engaged, investment, and products of the fisheries of New Jersey, by counties, in 1921 :

Persons engaged, investment, and products of the fisheries of New Jersey in 1921, by counties.

Persons engaged, investment, and products of the fisheries of New Jersey in 1921, by counties-Continued.

Persons engaged, investment, and products of the fisheries of New Jersey in 1921, by counties-Continued.

Persons engaged, investment, and products of the fisheries of New Jersey in 1921, by counties-Continued.

Persons engaged, investment, and products of the fisheries of New Jersey in 1921, by counties-Continued.

	Monmouth.		Ocean.		Salem.		Total.	
						Value.		
Albacore.	Pounds. 65,392	$\$ 2,158$	$55,600$	$\$ 1,699$	600	\$18.	$125,642$	\$3,985
Alewives	22,15S		308, 700	9,375	6,000	180	408, 193	11,914
Bluefish	685,331	125, 860	345,397	62,258	5,000	800	2, 24, $3,42.5$	390,947
Bonito	192,929	11,613	1,008,077	60, 476	5,000	250	1,503,253	91, 046
Butter	754,226	38,193	1,602,412	88, 888			2, 862, 491	159,286
Carp					190,480	31,218	329,555	53, 184
Catfi			1,430	112	56,027	2,931	101,067	5, 976
Cod.	177, 132	S, 968	91.245	5,361			687, 277	37, 353
Croaker	317, 604	10,249	1,228, 335	40, 349	80,000	2,500	3, 815,554	126, 700
Drum, black	27,934	558	39,125	792			67,659	1,365
Drum, red.								10
Eels, fresh	129, 735	13,562	31,656	3,164	13,975	1,678	274, 754	26,450
Eels, smok	4,680	1,497					4,680	1,497
Flounders	198, 349	14, 262	542,343	38,669	5,650	395	1,985, 340	140.586
Haddock	1,000 632,942	19,904	167, 469				6,300 821,018	338 25,563
Herring	36, 825	1,167	73,707	2,053			-172,732	25,563 4,464
Hickory sh	6,574	293	21,571	1,289			28, 145	1, 582
King whitin	5,340	819	7,567	1,204	50	8	24,119	3, 334
Mackerel.	116,019	23,787	15,200	3,620			584,386	100,556
Menhaden	24, 218, 727	91, 717	69, 331	804			30, 405, 093	121,451
Mullet, fres	4,060	204	2,400	112			15,460	1,136
Mullet, salte	2, 353	353		14,078			1,200 130,970	240
Perch, yello	2,353		20,210	3, 031	10,387	1,596	+31,282	4,708
Pike or picker							- 500	100
Pollock.	1,240	52	300	15			4,540	127
Scup or po	183,467	11,033	547,469	29,741	2,850	142	4,115, 552	200, 046
Sea bass.	34, 067	2,285	31, 244	2,005	2,630	131	1,378, 330	86, 823
Sea robin	43, 740	866	19,500	466			63,640	1,340
Shad..	6, 820	1,651	30,839	7,649	40,160	9,793	168, 637	44,460
Sharks	22,559	450	35, 900	752			60,459	1,232
Skates	23, 600	616	11,600	356			43, 100	1,186
Smelt Spani			2,808	703			450 3,982	
Spot..	51, 612	3,167	77, 800	4,668	395	20°	189, 548	11,502
Squeteagues or weak- fish	1,982,975	160,050	6,008, 632	479,165	14,000	940	11,651, 735	902,439
Striped bass...	2,990	- 554	5,306	1,521			70,348	21,691
Sturgeon.	1,964	287	1;140	342	11, 425	1,718	45, 825	7, 120
Sturgeon cav			74	194				
Sturgeon roe	241	715			1,685	5, 055	3,572	10,746
Sucker			492	39	2,978	479	50,664	5, 139
Tautog	37,192	2,310	1,500	96			44,043	2,650
Tomeo	1,750		200	10			1,950	97
Tuna.	44, 164	1,764	34,900	1, 565	370	14	87, 734	3,493
Whiting	1,720,403	34, 408	1, 509, 030	29,190			3,280,833	64,371
Other fi	, 275	14	- 50	3			789	
Lobster	390,941	87,088	1,400	350			397, 841	88, 588
Shrimp.	20, 000	400					20, 000	- 400
Crabs, har	110,644	6,720	1,000	60			119, 244	7, 290
Crabs, sof	14,560	5,464	1,800	475			16,800	6,132
Crabs,	28, 000						$3,313,174$	10,416
Squid.	104, 302	4,398 16	307, 600	14,510			433, 902	20,008
Clams, hard, put	95,576	+6,737	309,400 4,500	139,240 450			782,088 143,500	364,548 20,650
Clams, soft, pu Mussels.	128, 000	19, 100	4,500	450			1431, 000	20,650 6,070
Oysters, market, public	10,500	1,550	2, 800	140			69,300	10, 191
Oysters, market, private	160,293	28,600	180,600	26, 685			10,977, 855	2, 0600,306
Oysters, seed, public...			2, 100	150			11,638, 900	666,905
Oysters, seed, private	15,400	1,760	178, 500	12,500			311, 500	22,529
Scallops.							540	
Turtles Terrapi	8,015	160	4,500	90			13,715 225	334 225
Winkles	7, 700	159					7,800	159
Total.	32,853,025	789,327	15, 038,621	1,096, 002	449,912	59,904	96, 936, 784	5,983,406

VESSEL AND SHORE FISHERIES.
The products of the vessel and shore or boat fisheries of New Jersey are shown separately in the appended table. The catch taken by vessels amounted to $55,168,849$ pounds, valued at $\$ 4,179,742$, and by boats in the shore fisheries to $41,767,935$ pounds, valued at \$1,803,664.

Products of the vessel and shore fisheries of New Jersey, 1921.

Species.	Vessel fisheries.		Shore fisheries.		Total.	
	Pounds.	Value.	Pounds.	Value.	Prunds.	Value.
Albacore	5S, 650	\$1,795	66,992	\$2,190	125, 642	\$3, 985
Alewives	10,000	100	398, 193	11, 814	408, 193	11, 914
Bluefish.	1,060,748	172,194	1,182, 677	218, 753	2, 243, 425	390,947
Bonito	857, 224	52,661	646, 029	38, 385	1,503, 253	91,046
Butterf	2, 104, 917	120,975	757, 574	38,311	2,862,491	159, 2 S 6
Carp			329, 555	53,154	329,555	53, 184
Catf			101,067	5, 976	101,067	5,976
Cod	119, 845	5,116	567, 432	382, 237	687, 277	37, 353
Croaker.	1,803,400	59,440	2,012,154	67,260	3,815, 554	126, 700
Drum, blac	1, 39, 725	807	27,934	508	67,659	1, 365
Drum, red		10			500	
Eels, fresh	7,000	699	267, 754	25,751	274, 754	26,450
Eels, smok			4,680	1,497	4, 680	1,497
Flounders	1,305,668	91,658	679, 672	48,928	1,985, 340	140,586
Haddock	2,200	124	4, 100	214	6,300	${ }^{3} 38$
Hake.	183, 776	5,430	637, 242	20,133	821,018	25,563
Herring.	135, 907	3,297	36, 825	1,167	172, 732	4,464
Hickory sh	21,571	1,289	6,574	293	28, 145	1,582
King whiting	13,057	2,027	11,062	1,307	24,119	3,334
Mackerel.	326,477	54, 636	257, 909	45, 920	584, 386	100,556
Menhaden	10, 147,631	48, 760	20, 257, 462	72,691	30, 405, 093	121,451
Mullet, fresh	400	32	18,060	1, 104	18,460	1,136
Mullet, salte			1,200	240	1,200	240
Perch, white			130, 970	18,791	130, 970	18,791
Perch, sell			31, 282	4,708	31,282	4,708
Pike.			500	100	500	100
Pollock.	3,300		1,240		4,540	127
Scup or por	3,765, 135	181,940	350, 417	18, 106	4, 115, 552	200, 046
Sea bass.	769, 533	48,620	608, 797	38, 203	1,378, 330	86, 823
Sea robin	19,900	474	43,740	866	63, 640	1,34C
Shad.	32,007	7,941	136, 630	36,519	168, 637	44,460
Sharks	37,500	774	22,959	458	60,459	1,232
Skates and ray	18,700	538	24,400	648	43, 100	1,186
Smelt.			450	335	450	335
Spanish m	3,358	833	624	146	3,982	979
Spot.	114,065	7,177	75,483	4,325	189, 548	11,502
Squeteagues	8,475,963	655, 850	3,175,772	246, 589	11,651, 735	902,439
Striped bas			70,330	21,686	70,348	21,691
Sturgeon..	1,680	498	44, 145	6,622	45, 825	7,120
Sturgeon cavia	74	194				194
Sturgeon			3,572	10,746	3,572	10,746
Suckers.			50,664	5,139	50,664	5,139
Tautog.	3,350	256	40,693	2,394	44,043	2,650
Tomeod			1,950	97	1,950	97
Tuna.	31, 100	1,449	56,634	2,044	87,734	3,493
Whiting	1, 554, 030	29,835	1,726, 803	34, 536	3,280, 833	64,371
Other fis			, 275		789	34
Lobs	30,000	6, 000	367,841	82, 588	397, 841	88,588
Srabs, ha	20,000 94,999	5,700			20,000	400
Crabs, sof	94,999	5,700	24, 245 16800	6,132	119,244	7, 6132
Crabs, kin			3, 313,174	10,416	3,313, 174	10,416
Squid.	329,600	15,610	104, 302	4,398	-433, 902	20,008
Clams, hard	46,000	23,600	736,058	340, 948	782, 088	364,548
Clams, soft			143,500	20,650	143,500	20,650
Mussels.			791,000	6,070	791, 000	6,070
Oysters, market, pub	10,500	1,550	58,800	8,640	69, 300	10, 190
Oysters, market, priva	10, 178,987	1,915, 214	798,868	145, 092	10, 977, 855	12,060,306
Oysters, sced, public..	11,361,000	649,800	277,900	17, 105	11, 638,900	666,905
Oysters, sced, priva	56, 000	4,000	255, 500	18,529	311, 500	22, 529
scallops					${ }_{7} 715$	90
Turtles.	4,500	90	9,215	244	13,715	334
Tertapin Winkles.	7,800	159	225	225	225	225
Total.	$55,168,849$	4, 179, 742	41, 767, 935	1,803,664	96, 936, 784	5,983,406

${ }^{1}$ In addition $1,543,059$ pounds (220,435 bushels), valued at $\$ 232,850$, were taken by New Jersey vessels in Delaware waters and are shown under that State.

FISHERIES BY APPARATUS.

The most important forms of fishing apparatus used in the fisheries of New Jersey include purse seines and haul seines, the former with a catch of $14,022,400$ pounds, valued at $\$ 282,750$, consisting chiefly of menhaden, scup or porgy, and squeteague, and the latter with a
catch of 903,660 pounds of various species, valued at $\$ 77,239$; gill nets, with $3,770,625$ pounds, valued at $\$ 355,972$; pound nets and weirs, with $46,663,590$ pounds, valued at $\$ 1,448,822$; hand lines and trawl lines, with $4,523,537$ pounds, valued at $\$ 401,510$; dredges, with $22,348,286$ pounds, valued at $\$ 2,676,244$, consisting chiefly of oysters: and tongs, rakes, hoes, etc., with $2,468,881$ pounds, valued at $\$ 481,038$, consisting chiefly of oysters and clams. Other forms of apparatus that took considerable quantities of products were fyke nets, bag nets, stop nets, dip nets, cast nets, otter trawls, eel pots, lobster pots, and spears. The lobster catch, amounting to 379,841 pounds. valued at $\$ 88,588$, was all taken in lobster pots. The products taken with each form of fishing apparatus in the vessel and shore fisheries combined are shown in the appended tables:

Yield of the fisheries of Nell Jersey in 1921, by counties, apparatus, and species.
BY PURSE SEINES AND HAUL SEINES.

Apparatus and species.	Atlantic.		Burlington.		Camden.		Cape May.	
Purse seines:	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.
Albacore		$\begin{aligned} & \$ 20 \\ & 460 \end{aligned}$					13,000	190
Butterfish							13,000 9,000	, 532
Croaker.	89,000	1,850					170,000	8,300
Flounders	2,100	135					5,400	368
Menhaden	3,480,000	16,000					2, 280,000	9,500
Scup or porgy	1,115, 000	49, 8.55					1,230,000	69,000
Sea bass....	25, 600	2, 2,100					57,000	3,330
Squeteagues............	475,000 200	29,700 12					1,054,285	68,800 12
Total.	5,191, 250	100,132					4, 818,885	162,032
Haul seines:								
Alewives.	17,000	360	5,000	\$100			6,400	132
Bluefish.	250	50					225	55
Carp...			3,009	431	2,430	4401 290		
Croaker	37,500	1,520				290	20,100	1,034
Eel.	2, 800	282					2,000	200
Flounders	4,100	390					4,300	344
King whiting	550	61					3,000	30
Mullet, fresh							12,000	820
Mullet. salted							1,200	240
Perch, white Perch, yellow	2,000	195	3,250	550			300	30
Perch, yellow			60 500	12 100				
Shad.	500	125	625	150	600	146	150	38
Spot.	4,150	208					6,600	380
Squeteague	24, 200	2, 220					40, 300	3,580
Striped bas Suckers	$\begin{array}{r} 3,000 \\ 400 \end{array}$	$\begin{aligned} & 750 \\ & \hline \end{aligned}$	38,000 27,609	13,200 2,525			100	25
					100			
Total.	97,050	6,233	85, 223	17,599	7, 955	849	96,675	6,908
Apparatus and species.	Cumberland.		Hunterdon.		Mercer.		Middlesex.	
Haul scines: Alewives:	$\begin{aligned} & \text { Pounds. } \\ & 10,000 \end{aligned}$	Value. $\$ 300$	Pounds.	Value.	$\begin{array}{r} \text { Pounds. } \\ 3,950 \end{array}$	Value. $\$ 75$		
Bluefish.							6,800	\$1,60\%
Carp.	5,500	780	1,205	\$143	8,194	1,225		
Croaker	5,600 9,000	270				28		
Flounders	, 170	2.						
Menhaden							30,000	50
Perch, white	500	50						
Shad. Smelt	2,640	744	1,459	461	12,546	4,473	$\begin{aligned} & 435 \\ & 450 \end{aligned}$	190 335
Spot.	400	20						
Squeteague	6,000	300					10,600	765
Striped ba	2,000	300						
Sucker	700	78	3,330	399	13,075	1,480		
	42,510	3,146	5,994	1,003	38,081	7,281	48,285	2,940

Yield of the fisheries of New Jersey in 1921, by counties, apparatus, and species-Con. BY PURSE SEINES AND HAUL SEINES-Continued.

Apparatus and species.	Monmouth.		Ocean.		Salem.		Total.	
Purse seines: Albacore	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.
Bluefish.							16,700	2.650
Butterfish							9,000	532
Croaker.							259,000	10,150
Flounders.							7,500	503
Menhaden	4,005, 265	820,026					9,765, 265	45,526
Scup or porg							2, 345,000	118,855
Sea bass..							82,600	5,430
Squeteagues	7,000	560					1,536,285 400	99,060 24
Total.	4, 012, 265	20,586					14,022,400	282,750
Haul seines:								
Alewives.			290,000	88,700			332,350	9,667
Bluefish.	1,500 100	270 6					8,775 100	1,975
Carp...					37,130	\$6,255	57,468	9,235
Catfish.			1,430	112	38,600	2,060	58,541	3, 369
Croaker							66,600	2,824
Eel....							4, 825	- 485
Flounders.....	500	40	1,050	63			10,120	845
King whiting							3,550	91
Menhaden.	15,000	150					45,000	200
Mullet, fresh	4,000	200	2,000	80			18,000 1,200	1,100
Perch, white.			57,780	8,666	250	38	64,080	9,529
Perch, yellow			3,710	557	7,882	1,221	11,652	1,790
Pike..							, 500	100
Shad.							18,955	6,327 335
Spot	6,000	480					17,150	1,088
Squeteagues	1,500	144	6,000	420			88,900	7,429
Striped bas			3,430	1,000			46, 530	15,275
Suckers. .					1,750	315	46, 964	4,829
Tomcod.. Crabs, hard	150	90	200	10			200 150	10 90
Crabs, soft.			1,600	400			1,600	400
Total.	29,075	1,383	367, 200	20,008	85,612	9,889	903,660	77,239

BY GILL NETS.

Yield of the fisheries of New Jersey in 1921, by counties, apparatus, and species-Con.
BY GhLL NETS-Continued.

Species.	Monmouth.		Ocean.		Salem.		Total.	
Alewives	Pounds.	Value.	Pounds. 16,200	Value. $\$ 600$	Pounds. 6,000	Value. $\$ 180$	Pounds. $24,200$	Value. $\$ 860$
Bluefish.	268,785	\$51,393	21,300	4,398	1,000	160	459,510	90,228
Bonito	1,350						10,350	621
Butterfish	20,400	1,020					20,400	1,020
Croaker.	162,700	5,472	48,600	2,316	75,000	2,250	1,548,750	49, 874
Mackerel.	103,403	21, 233	3,600	720			557,470	94,448
Menhaden			5,000	50			14,000	950
Perch, white			31,282	4,692			31,282	4,692
Perch, yellow			3,300	495			3,300	495
Scup or porgy							1,000	54
Shad......	3,384	789			40,160	9,793	113,184	29, 069
Spot...	2,600	176					4,600	276
Squeteagues	133,872	10,677	130,100	9,748	9,000	540	935, 122	66,543
Striped bass	167	16	1,583		11,425	1,718	1,583 42,148	6,321
Sturgeon, roe	83	258			1,685	5,055	3,334	10,049
Suckers..			392	31			392	31
Total	696,744	91,115	261,357	23, 491	144,270	19,696	3,770,625	355, 972

BY POUND NETS AND WEIRS.

Species.	Atlantic.		Cape May.		Cumberland.	
Albacore.	Pounds.	Value.	Pounds. $2,400$	Value. $\$ 76$	Pounds.	Value.
Alewives.	2,985	\$60	24,000	380		
Bluefish.	206	52	30, 035	5,158		
Bonito.			42, 210	3,736		
Butterfish.	3,348	118	493,505 200	31,555		
Cod.			500	44		
Croaker.	29,500	885	442,665	13,183		
Drum, black			600	15	
Drum, red..			500 900	10 90		
Flounders.	5,283	423	87,345	6,699		
Hake...			16,507	${ }^{4} 416$	
Herring.			62, 200	1,244		
King whiting	1,622	324	5,690 2,700	$\begin{array}{r}843 \\ 654 \\ \hline\end{array}$		
Menhaden.			318,035	2,480		
Perch, white	385	38	1,200	24		
Pollock.			3,000	60		
Scup or porgy			844,916	31,986		
Sea bass.....			96, 404	8,636 8		
Shad...	55°	ii	2,168	542		
Sharks..			1,600	22	.	
Skates and rays.			7,100	182		
Spanish mackerel			550	130		
Spot...	4,326	130	42,265	2,809		
Squeteagues.	4, 169	334	1,230,396	99,155	
Stripcd bass.	684	171	718	180		
Sturgeon....			740 80	186		
Tautog......			1,450	136		
Whiting.	6,400	128	45,000	645		
Other fish.						
Crabs, king			2,762,174	8,287	523, 000	\$1,569
Squid.			22,000	1,100		
Total..	58,963	2,674	6,592, 417	220,928	523, 000	1,569

Yield of the fisheries of New Jersey in 1921, by counties, apparatus, and species-Con.
BY POUND NETS AND WEIRS-Continued.

Species.	Monmouth.		Occan.		Total.	
	Pounds.	I'alue.	Pounds.	Valuc.	Pounds.	Valu.
Albacore	65,392	\$2,158	55,600	\$1,699	123, 392	\$3,933
Alewives.	20,658	812			47,643	1,2 2
Bluefish.	156, 391	27,918	296,697	53,610	483,329	86 :3x
Bonito.	50, 02S	3,001	775,577	46,958	870,815	53, 95
Butterfish	733,726	37, 167	1,602, 412	8S, 888	2, 832,991	15\%,724
Cero.					200	14
Cod.	33,732	1,686	45, 445	2,376	79,977	4,106
Croaker	151,904	4,657	1, 179,435	38,015	1,803,504	56,740
Drum, blac	27,934	558	39,125	792	67, 659	1,365
Drum, red.					500	10
Eels....	450	46	100	9	1,450	145
Flounder	171,699	12,310	453, 823	31,929	718, 150	51,361
Hake.	610,342	19,000	166, 469	4,978	793,318	24, 394
Herring	36,825	1,167	73, 707	2,053	172,732	4,454
Hickory shad	6,574	293	21,571	1,259	28, 145	1,582
King whiting	5,340	819	7,567	1,204	20,219	3.190
Mackerel. .	12.616	2,554	11,600	2,900	26,916	6,103
Menhaden	20, 194, 712	71,456	64,331	754	20,577, 078	74, 700
Mullet	60	4	400	32	-460	36
Perch. whi					1,585	62
Pollock.	1,240	52	300	15	4,540	127
Scup or porg	182, 225	10,934	531,619	28,819	1,558,760	71,739
Sca bass.	13, 117	807	20,244	1,386	130,095	10,829
Sea robin	43, 740	866	19,500	1,466	63,640	1,340
Shad..	3,361	842	30,839	7,649	36,423	9,044
Sharks.	22,559	450	35,900	752	60,059	1,224
Skates and rays	12,600	286	11,600	356	31, 300	824
Spanish mackere	624	146	2,808	703	3,982	979
Spot...	42,112	2,439	77,800	4,668	166,503	10,046
Squeteagues.	$1,831,9.53$	148, 001	5,777,282	462, 177	8, 843,800	709,667
Striped bass.	${ }_{1} 140$	42			1,542	393
Sturgeon.	1,797	271	1,140	342	3,677	799
Sturgeon caviar			74	194	74	194
Sturgeon roe.	158	457			238	697
Tautog...	25,465	1,595	1,500	96	28,415	1,527
Tuna..	34, 0041	1,366	30,900	1,445	64, 904	2,811
Whiting.	1,720,403	34,409	1,509, 030	29,190	3,280, 833	64,371
Other fish.	1,275	14	50	3	589	20
Crabs, hard	2,562	154			2,562	154
Crabs, king.					3,285, 174	9,556
Squid..	104, 302	4,398	307,600	14,510	433, 902	20,008
Turtles.	8,015	160	4,500	90	12,515	250
Total.	26,329,365	393,304	13,159,845	830,347	46,663,590	1,448, \$22

BY FYKE NETS AND BAG NETS.

Apparatus and species.	Atlantic.		Burlington.		Camden.		Cape May.	
Fyke nets:	Pounds.	Value.	Pounds. 302	Value.	Pounds.	Value.	Pounds.	Value.
Catish	6,000	\$000	1,406	85	850	\$5i	2,200	\$176
Eels..	1,250	125	1,651	185	785	93	5,000	400
Flounders,	3,000	300	4,000	360				
Perch, white	10,000	1,080	5,000	600			500	50
Striped bass.	3,400	850	300	90	2,000	500	500	50
Suckers...	1,900	95	80	12				
Total.	25, 550	3,050	12,739	1,378	3,635	644	7,700	626
Bag nets: Flounders.			7,800	624				
Perch, white	1,000	150	10,370	1,555				
Striped bass.	500	150	10,950	3,320				
Total.	1,500	300	29,120	5,499				

Yield of the fisheries of New Jersey in 1921, by counties, apparatus, and species-Con. BY FYKE NETS AND BAG NETS-Continued.

Apparatus and species.	Cumberland.		Gloucester.		Hudson.		Monmouth.	
Fyke nets: Alewives.	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.	Pounds. 1.500	Value. $\$ 60$
Bluefish..							75	15
Carp.	4,000	3600	4,950	8891				
Catfish..	5,600	320	8,593	464				
Eels. Flounders	350	35	2,452	291	4,000	8400	6,000 3,900	720 312
Menhaden.							3,750 3,700	$\begin{array}{r} \\ 75 \\ \hline\end{array}$
Perch, white...	500	50					2,353	353
Perch, yellow.			125	19				
- Shad.........							75	20
Squeteagues.							900 2,100	72 168
Striped bass.							2,850	512
Tautog....							75	6
Tomcod..							1,750	87
Crabs, hard							$\begin{array}{r} 600 \\ 28,000 \end{array}$	36 560
Total.	10,450	1,005	16,120	1,665	4,000	400	53,928	2,996
Apparatus and species.			Ocean.		Salem.		Total.	
Fyke nets: Alewives.			Pounds. 2, 500	Value. 875	Pounds.	Value.	Pounds. 4, 000	Value. $\$ 135$
Bluefish...								${ }_{15}$
Carp.							9,252	1,537
Catfish					13, 954	$\$ 698$	38,603	2,394
Flounders			44,340	3,587	5,975	718	27,463 55,240	2,967 4,559
Menhaden.			4,310				35,750	, 75
Perch, white.			4, 800	720			22,653	2, 803
Perch, yellow			13, 200	1,979	375	56	14,200	2,104
Shad....								20 72
Squeteagues							2,100	168
Striped bass.			293	80			8,843	2,032
Suckers.			100	8			2,080	115
Tomeg.								6 87
Crabs, hard							1,600	36
King crabs.							28,000	560
Total.			65, 233	6,449	20, 304	1,472	219, 659	19,685
Bag nets:								
Flounders...							7,800	, 624
Perch, white							11, 370	1,705
Striped bass.							11,450	3,470
Total							30,620	5,799

BY STOP NETS, DIP NETS, CAST NETS, OTTER TRAWLS, EEL POTS, LOBSTER POTS, AND SPEARS.

Yield of the fisheries of New Jersey in 1921, by counties, apparatus, and species-Con.
BY STOP NETS, DIP NETS, CAST NETS, OTTER TRAWLS, EEL POTS, LOBSTER POTS, AND SPEARS-Continued.

Apparatus and species.	Cumberland.		Gloucester.		Hudson.		Middlesex.	
Stop nets:	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.
	26, 100	\$3,420						
Catfish. Striped bass.........								
Tot								
Dip nets: Crabs, hard. Cast nets: Carp.	2, 800	210						
			3, 250	585				
Otter trawls: Flounders.	18, 400	1,720						
Eel pots: Eels, fresh... Lobster pots: Lobster.	40,000	2,000			6,000	\$600	9,500	\$950
					5,000	1,000	500	150
Apparatus and species.	Monmouth.		Ocean.		Salem.		Total.	
Stop nets: Carp. Catfísh. Perch, yellow Striped bass. \qquad Suckers. \qquad	Pounds.	Value.	Pounds.	Value.	Pounds. 141, 000	$\begin{aligned} & \text { Value } \\ & \$ 22,740 \end{aligned}$	Pounds. 247, 235	Value. \$39, 604
					2,153	107	2,603	147
					1,935	290	1,935	290
							400	80
					975	125	975	125
Total.					146, 063	23,262	253, 148	40, 246
Dip nets:								
Crabs, soft	8,333 14,560	5,464	1,000	860 75			$\begin{aligned} & 12,133 \\ & 15,200 \end{aligned}$	5,732
Total	22, 893	5,964	1,200	135			27,333	6, 502
Cast nets:								
Catfish					1,320	66	1,320	66
Perch, yel					195	29	195	29
Suckers.					253	39	253	39
Total.					14, 118	2,357	17,368	2,942
Otter trawls: Flounders								
Shrimp.	20,000	400					20,000	400
Scallops.							540	90
Total	20,000	400					1,038, 140	71,359
Eel pots: Eels, fresh. .	112,010	11,668	31,556	3,155	8,000	960	219,766	20,728
Eels, smoked	4,680	1,497					4,680	1,497
Total.	116,690	13, 165	31,556	3,155	8,000	960	224, 446	22, 225
Lobster.	390,941	87,0¢8	1,400	350			397, 841	88,588
Crabs, hard	4,000	240					4,000	240
Total.	396, 941	87, 448	1,400	350			403, 841	88,948
Spears: Eels..........	11,250	1,125					21,250	2,125

Yield of the fisheries of New Jersey in 1921, by counties, apparatus, and species-Con.
BY HAND LINES AND TRAWL LINES.

BY DREDGES, TONGS, RAKES, HOES, ETC.

Yield of the fisheries of New Jersey in 1921, by counties, apparatus, and species-Con.
BY゙ DREDGES, TON゙GS, RAKES, HOES, ETC.-Continued.

Apparatus and species.	Middlesex.		Monmouth.		Ocean.		\cdots Total.	
Dredges: Crabs, hard Oysters, market, public.. Oysters, market, private. Oysters, seed, public.... Oysters, seed, private... Total.	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.
			91, 999 10,500	85, 1, 1			94,999 10,500	\$5,700
			14T,000	26,100	130,900	\$19,5000	110,628,387	2, 1, $\begin{array}{r}1,550 \\ \hline\end{array}$
	7,000	31,000					11, 376,400	2, 650,880
			15,400	1,760	152,600	10,720	238,000	17, 480
	7,000	1,000	267, 899	35, 110	283,500	30,240	22, 348, 286	2,676,244
Tonss, rakes, hoes, etc.: Clams, hard. Clams, soft. Oysters, market, public Oysters, market, private Oysters, seed, public Oysters, seed, prirate. Mussels. Winkles. \qquad Terrapin. \qquad Total. \qquad	1,500	910	95,576	46,737	309,400	139, 240	782,088	364,548
			123, 000	19, 200	4,500	- 450	143, 500	20,650
					2, 800	- 440	58, 800	8,640
			13,293	2,500	49,700	7,165	349, 46 S	59,672
	7,000	500			2,100 25,900	1,780	262,500 73,500	16,025 5,049
					25,900		73,500 791,000	5,049 6,070
			7, 900	159			7, 800	159 225
	8, 300	1, 400	244,669	68,596	391, 400	149, 22 د	2, 468, 881	481, 038

1 In addition $1,543,059$ pounds (220,435 hushels), valued at $\$ 232,850$, were taken by New Jersey vessels in Delaware waters and are shown under the latter State.

INDUSTRIES.

Wholesale trade. - In 1921 there were 61 wholesale establishments in New Jersey, valued at $\$ 722,220$, engaged in handling fresh fish, oysters, clams, and other fishery products. This number included 2 firms manufacturing scrap from king crabs, 1 firm manufacturing poultry grit from oyster shells, and 1 firm engaged in canning sturgeon caviar. The number of persons engaged was 480 , who received $\$ 273,774$ in wages, and the cash capital amounted to $\$ 230,100$.

Menhaden industry.-In 1921 there were 3 menhaden factories operated in New Jersey, ralued at $\$ 409,196$, with a cash capital amounting to $\$ 78,000$. There were $\$ 9$ persons engaged in the factories, who received $\$ 24,485$ in wages. The number of menhaden utilized in the factories was $33,600,000$, or $20,160,000$ pounds, valued at $\$ 109,000$, and the products prepared included 7,238 tons of acidulated scrap, valued at $\$ 141, \$ 03$, and 459,600 gallons of oil, valued at \$107,340.

Statistics of the wholesale fishery trade and menhaden industry are given in the following tables:

Investment, persons engaged, and wages paid in the wholesale fishery trade of New Jersey in 1921, by counties.

Items.	Atlantic.		Cape May.		Cumberland and Salem.	
Establishments	Number.	Value. 820,900	Number. 7	Value. \$48,300	Number. 27	Value. \$200, 233
Cash capital.....	17	11,000	34	14,100	196	146,000
Wages paid....		5,600		3,200		123,610

Investment, persons engaged, and wages paid in the wholesale fishery trade of New Jersey, in 1921, by counties-Continued.

Items.	Essex and Hudson.		Monmouth.		Ocean.		Total.	
Establishments.	Number. 6	Value. \$270, 535	Number. 4	$\begin{array}{r} \text { Value. } \\ \$ 169,072 \end{array}$	Number. 12	Value. \$13, 180	Number. 61	Value.
Cash capital....		30,500		19,000		9,500		S722, 220 230,100
Persons engaged	134		71		28		480	
Wages paid....		87,287		49,427		4,650		273, 774

The menhaden industry of New Jersey in 1921.

Items.	Number.	Value.	Items.	Number.	Value.
Factories.	3	\$409, 196	Gasoline vessels fishing.	7	\$99,800
Cash capital.		78,000	Tonnage.	134	
Wages paid factory employees.	89	24,485	Outit..... Purse seine	7	9,600 6,800
Persons on vessels	106		Purse seine	7	
Menhaden caught by vessels. .	16, 275, 442	45,526	Products:		
Menhaden caught in shore fisheries................	33, 897,437		Acidulated scrap...tons. .	7,238	141,803
Menhaden utilized in factories.	33,600,000	109,000	Oil...............galions..		107,340

${ }^{1}$ This includes 3,800,000 menhaden taken incidentally by fishing vessels.

FISHERIES OF PENNSYLVANIA.

The fisheries of Pennsylvania in 1921 gave employment to 591 persons, of whom 42 were on vessels fishing, 2 on vessels transporting fishery products, 105 in the shore or boat fisheries, and 442 on shore in the wholesale fishery trade and other fishery industries.

The investment in the fisheries and fishery industries amounted to $\$ 1,375,778$, and included 4 fishing and transporting vessels, valued at $\$ 26,800$, with a net tonnage of 103 tons, and outfits valued at $\$ 5,125$; 45 boats, valued at $\$ 4,305$; fishing apparatus, valued at $\$ 5,192$; shore and accessory property, valued at $\$ 1,074,156$; and cash capital amounting to $\$ 260,200$.

The products of the fisheries amounted to 594,613 pounds, having a value to the fishermen of $\$ 44,621$. The most important species taken were alewives, 20,085 pounds, valued at $\$ 405$; carp, 9,712 pounds, valued at $\$ 1,511$; scup, 142,000 pounds, valued at $\$ 7,100$; sea bass, 135,000 pounds, valued at $\$ 12,500$: squeteagues, "sea trout" or weakfish, 240,000 pounds, ralued at $\$ 14,400$; and suckers, 21,199 pounds, valued at $\$ 2,469$.

Compared with 1904, there was a decrease in the number of persons engaged of 821 , or 58.14 per cent, in the investment of $\$ 721,937$, or 34.41 per cent, and in the products of $1,451,681$ pounds, or 70.94 per cent, in quantity, and of $\$ 122,878$, or 73.36 per cent, in value.

The following table gives the number of persons engaged, investment, and the quantity and value of the products of the fisheries of Pennsylvania in 1921:

Persons engaged, investment, and products of the fisheries of Pennsylvania in 1921, by counties.

VESSEL AND SHORE FISHERIES.
The products of the vessel and shore fisheries of Pennsylvania are given in the appended table. The products taken by vessels amounted to 522,400 pounds, valued at $\$ 34,252$, and by boats in the shore fisheries to 72,213 pounds, valued at $\$ 10,369$.

Products of the vessel and shore fisheries of Pennsylvania, 1921.

Species.	Vessel fisheries.		Shoro fisheries.		Total.	
	Pounds	Value.	Pounds, $20,085$	Value. $\$ 105$	Pounds. 20,085	Value. $\$ 405$
Bluefish.	600	$\$ 108$			600	108
Butterfish	200	6			200	6
Carp...			9,712	1,5i1	9,712	1,511
Catifish.			2,125	128	2,125	128
Croaker	2,400	48			2,400	48
Elounders.			220	22	220	20
Flounders.	${ }_{2}^{200}$	10			200	10
Pigfish.	2,000	80			2,000	80
Scup..	142, 040	7,100			142,000	7,100
Sea bas	135, 000	12,500			135,000	12, 510
Shad			18,8:2	5,834		5,834
Squeteagues or weakfish Suckers...............	240,000	11,400			240,000	14,400
Suckers.			21,199	2, 469	21, 199	2,469
Total.	522, 400	34, 252	72, 213	10, 369	594, 613	4 4,621

FISHERIES BY APPARATUS.
The most important forms of fishing apparatus used in the fisheries of Pennsylvania in 1921 included purse seines, with a catch of 398,400 pounds, valued at $\$ 22,472$, of which squeteague was the principal species taken; haul seines, with 58,770 pounds, valued at $\$ 7,503$; and hand lines, with 124,000 pounds, valued at $\$ 11,780$, consisting mostly of sea bass. The remainder of the catch was taken with gill nets, stop nets, and fyke nets. The catch taken with each form of fishing apparatus in the vessel and shore fisheries combined is given in the following table:

Yield of the fisheries of Pennsylvania in 1921, by counties, apparatus, and species.

Apparatus and species.	Bucks.		Delaware.		Philadelphia.		Total.	
Haul seines:	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.
Alewives	20,085							8405
Carp.	4,677	642	125	88			4,677	642
Shad.	12, 68.	3,979					12,684	3,979
Suekers	20, 199	2,349	1,000	120			21,199	2,469
Total.	57,645	7,375	1,125	128			58,770	7, 503
Purse seines:								
Bluefish.					600 200	$\$ 108$ 6	600 200	108
Croaker.					2,400	48	2,400	48
Flounders					200	10	200	10
Scup..					140,000	7,000	140,000	7,000
Sea bass.					15, 000		15,000	
Squeteague or weak					240,000	14.400	240, 000	14,400
Total					398,400	22,472	398, 400	22,472
Gill nets: Shad	2,143	683	4.045	1,172			6,188	1,855
Stop nets: Carp	1,535	239	3,500	630		5, 035	869
Fyke nets:								
Eels.			-220	22			2, 220	22
Total			2,220	142			2,220	142
Hand lines:								
Scup...					2,000	100	2,000	100
Seabass					120, 000	11,600	120,000	11,600
Total.					124,000	11,780	124,000	11,780
Grand total.	61,323	8, 297	10, 890	2,072	522, 400	34,252	594,613	44,621

Prepared products.-In 1921 there were 15 establishments in Philadelphia, Pa., engaged in preparing smoked fish and other products, having a value of $\$ 566,800$, with cash capital amounting to $\$ 87,300$, and employing 118 persons, to whom $\$ 119,919$ were paid in wages. The quantity of smoked fish prepared was $1,185,328$ pounds, valued at $\$ 215,436$. Other products prepared amounted to $\$ 84,480$ in value. Statistics of these products, by species, are given in the table below.

Wholesale trade.-In the wholesale fresh-fish trade of Philadelphia and Chester, Pa., in 1921, there were 52 establishments engaged, valued at $\$ 503,486$, with a cash capital of $\$ 167,900$, and employing 324 persons, to whom $\$ 357,787$ were paid in wages.

Smoked and salted fish and other fishery products prepared in Philadelphia in 1921.

${ }^{1}$ Includes lime and poultry grit from oyster shells.

FISHERIES OF DELAWARE.

The number of persons engaged in the fisheries of Delaware in 1921 was 976 , of whom 279 were on ressels fishing, 2 on transporting vessels, 540 on boats in the shore or boat fisheries, and 155 on shore in the wholesale fishery trade and other fishery industries.

The investment in the fisheries and fishery industries amounted to $\$ 585,616$ and included 29 fishing and transporting vessels, valued at $\$ 230,482$, with a net tonnage of 760 tons and outfits valued at $\$ 23,561 ; 416$ boats, valued at $\$ 39,035$; fishing apparatus valued at $\$ 27,938$; shore and accessory property ralued at $\$ 153,400$; and cash capital amounting to $\$ 108,500$.

The products of the fisheries amounted to $25,023,193$ pounds, having a ralue to the fishermen of $\$ 652,448$. The most important species in value were alewives, 351,590 pounds, valued at $\$ 6,431$; carp, 87,820 pounds, valued at $\$ 13,166$; croaker, 418,873 pounds, valued at $\$ 18,682$; menhaden, $18,082,000$ pounds, valued at $\$ 67,970$; shad, 86,836 pounds, valued at $\$ 16,312$; squeteagues, "sea trout," or weakfish, 886,550 pounds, valued at $\$ 53,317$; and oysters, $4,315,731$ pounds, or 616,533 bushels, valued at $\$ 450,873$.

Compared with 1904 , there was a decrease in the number of persons engaged of 923 , or 48.6 per cent, and also in the investment of $\$ 84,379$, or 12.59 per cent, but an increase in the products of $19,414,904$ pounds, or 346.18 per cent, in quantity and of $\$ 392,858$, or 151.33 per cent, in value. This large increase in the products was due to the fact that a considerable catch of menhaden was taken in 1921 and none in 1904.

The number of persons engaged, investment, and products of the fisheries of Delaware in 1921 are given in detail in the following table:

Persons engaged, investment, and products of the fisheries of Delaware in 1921.

VESSEL AND SHORE FISHERIES.
The products of the vessel and shore fisheries of Delaware are given in the following table. The products taken by vessels amounted to $21,462,331$ pounds, valued at $\$ 456,518$, and by boats in the shore fisheries to $3,560,862$ pounds, valued at $\$ 195,930$.

Products of the vessel and shore fisheries of Delauare in 1921.

Species.	Vessel fisheries.		Shore fisheries.		Total.	
	Pounds.	Value.	Pounds.	Value.	Pounds.	Value
Alewives.			351,590	\$6,431	351, 590	\$6, 431
Bluefish.			1,325	265	1,325	265
Carp			87, 820	13, 166	87, 820	13,166
Catfish.			35, 291	2,574	35, 291	2,574
Croaker.			418, 873	18,682	418,873	18,682
Drum, black			1,150	22	1,150	12
Eels.			16,012	1,598	16, 012	1,598
Flounders			34,429	1,798	34,429	1,798
Gizzard shad			7,320	292	7,320	292
Menhaden.	18,056,000	\$67,710	26,000	260	18, 0<2,000	67,970
Mullet.			513	25	- 513	- 25
Perch, white			6,923	922	6,923	022
Perch, yellow			2,758	273	2,758	273
Pike.			272	25	272	25
Sea bas			250	12	250	12
Shad.			86, 836	16,312	86, 836	16,312
Spot.			14, 600	928	14,600	928
Squeteagues or			886, 550	53,317	886, 550	53, 317
Striped bass..			4,915	1, 426	4,915	1,426
Sturgenn.			12,090	1,813	12,090	1,813
Sturgeon ro			1,872	5,139	1,872	5, 139
Suckers.			, 983	118	-983	-118
Tautog.			1,500	75	1,500	75
Crabs, soft			4,600	1,150	4,600	1,150
Kintr crab			630,000	1,890	630,000	1,890
Lobster.....			10, 400	2,600	10, 400	2,600
Clams, hard............	3, 400	1,700	640	640	4, 040	2,340
Oysters, market, public Oysters, market, privat	72,919	13,750	797,300	60,390	870, 219	74,140
Oysters, market, privat Oysters,	${ }^{1} 1,942,563$	293, 975			${ }^{1} 1,9+2,563$	293,975
Oysters, seed, public	1,387, 449	79,383	115, 500	3,375	1,502, 949	82, 758
Turtles...			300 2,250	300 112	300 2,250	300 112
Total	21, 462, 331	456,518	3,560,862	195,930	25, 023, 193	652, 448

${ }^{1}$ Inslu les $1,543,057$ pounds (220,437 bushels) taken up by New Jersey owners.
FISHERIES BY APPARATUS.
The principal forms of fishing apparatus used in the fisheries of Delaware in 1921 included gill nets, with a catch of 275,840 pounds, valued at $\$ 30,406$; purse seines, with $18,056,000$ pounds, valued at $\$ 67,710$, consisting entirely of menhaden; haul seines, with $1,578,466$ pounds, valued at $\$ 81,882$; and dredges, tongs, etc., with $4,949,771$ pounds, valued at $\$ 455,103$. The remainder of the catch was taken with pound nets, fyke nets, hand lines, pots, and minor nets. The catch taken with each form of fishing apparatus in the vessel and shore fisheries combined is given in the following table:

Yield of the fisheries of Delaware in 1921, by counties, apparatus, and species.

Apparatus and species.	Kent.		New Castle.		Sussex.		Total.	
Gill nets:	Pounds.	Value.	Pnunds.	Value.	Pounds.	Value.	Pounds.	Value.
Alewives.	11,230	8224	13, 200	$\$ 1980$	1,950	\$39	13, 180	\$263
Catisish.	1,150	80	13,200 1,350	$\$ 1,980$ 108			13,200 2,500	1,980
Croaker.....					76,550	3,062	76,550	3,062
Gizzard shad			7,320	292			7,320	292
Mrullet..					6,	260		260 10
Perch, white	800	96					800	96
Pike.	163	14					163	14
Shad.	329	85	10,123	2,803	63, 88.8	1i, 058	74,337	13,996
Spot........					9,650 36,275	532 2,236	9,650 36,275	5, 2,236

Yicld of the fisheries of Delauare in 1921, by counties, apparatus, and specics-Continued

Apparatus and species.	Kent.		New Castle.		Sussex.		Total.	
Gill nets-Continued. Striped bass.	Pounds.	Value.	Pounds.	Value.	Pounds. 1, 750	$\begin{aligned} & \text { Value. } \\ & \$ 525 \end{aligned}$	Pounds. 1,750	Value. $\$ 525$
Sturgeon...........	520	878	11, 570	\$1,735			12,090	1,813
3turgeon roe.	165	453	1,707	4,686			1,872	5,139
Total	14,510	1,040	45, 270	11,654	[216,060	17,712	275, 840	30,405
Pound nets:								
Carp			1,760	264			1,760	264
Catfish			5,595	447			5,595	447
Eels.			209	21			209	21
Perch, white			352	35			352	35
Perch, yellow			288	24			288	24
Squeteagues.			300	24			300	24
Total.			8,504	815			8,504	815
Haul seines:								
Alewives.	51,760	1,835			276,650	4,133	328,410	5,968
Barp....					1,325		1,325	265
Catfish	2,196	1,063	17,426	2, 488	5,995	899	28,055	4,202
Croaker	141, 848	7,591			189,375	-,585	331, 223	-812
Drum, black					1,150	- 22	1,150	1, 22
Flounders					6,219	381	6,219	381
Mullet.					360	15	360	15
Perch, white	1, 524	228			3.017	416	4,541	644
Perch, yellow					220	24	220	24
Pike..					109	11	109	11
Shad.	905	222			11,594	2,094	12,499	2,316
Spot.					4,950	396	4,950	, 396
Squeteagues	492,625	29,556			352, 000	21, 120	844,625	50,676.
Striped bass	973	24			2,042	612	3,015	856
Suckers.			983	118			983	118
Total.	698,962	40,901	22,338	2,816	857, 166	38,135	1,578,466	81,882
Purse seines: Menhaden.					18,056,000	67,710	18,056,000	67,710
Fyke nets:								
					10,000	200	10,000	200
Carp....	1,150	172	9,320 12,420	1,398	1,850	277	12,320 14,328	$\begin{array}{r}1,847 \\ \hline 969\end{array}$
Croaker					6,000	240°	6,000	240
Eels.....	335	33	5,927	591			6,262	624
Flounders.					27,960	1,402	27,960	1,402
Perch, white					1,230	147	1,230	147
Perch, yellow					2, 250	225	2,250	225
Squeteagues.					600 150	36	600	36
Striped bass.					150	45	150 2	45
Turtles....	2,250	112					2,250	112
Total.	5,643	464	27,667	2,811	50,040	2,572	83,350	5,847
Hand lines:								
Croaker Eels					5,100	204 20	5,100 200	204
Flounders					250	15	250	15
Sea bass.					250	12	250	12
Squeteagues					4,750	345	4,750	345
Tautog.					1,500	75	1,500	75
Terrapins.					300	300	1300	- 300
Total.					12,350	971	12,350	971
Pots:								
Eels. Lobst	1,865	156	4,476	44	$\begin{array}{r} 3,000 \\ 10,400 \end{array}$	$\begin{array}{r} 300 \\ 2,600 \end{array}$	$\begin{array}{r} 9,341 \\ 10,400 \end{array}$	$\begin{array}{r} 933 \\ 2,600 \end{array}$
Total	1,865	186	4,476	47	13,400	2,900	19,741	3,533
Minor nets:								
Carp...	$\begin{array}{r} 11,105 \\ 1,123 \end{array}$	1,666 81	$\begin{array}{r} 21,380 \\ 983 \end{array}$	$3,207$			32,485 2 ,	4, ${ }^{1573}$
Crabs, soft					4,600	1,150	4,600	1,150
Total.	12,228	1,747	22,343	3,284	4,600	1,150	39,171	6,181

Yield of the fisheries of Delaware in 1921, by counties, apparatus, and species-Continued.

A pparatus and species.	Kent.		New Castle.		Sussex.		Total.	
Dredges, tongs, etc.:	Pounds.	Value.	Pounds.	Value.	Pounds,	Value.	Pounds.	Value.
King crabs....	500,000	\$1,500			130,000	\$390	630,000	\$1,890
Clams, hard	3,400	1,700			640	640	4,010	2,340
Orsters, market, public.	324,919	31,750			545,300	42,390	870, 219	74, 140
Oysters, market, private.	${ }^{1} 1,942,563$	293, 975					1,942,563	293,975
Oysters, seed, public..	1,376,949	75,55S			126,000	7,200	1,502,949	82,758
Total	4, 147, 831	404, 483			801,940	50,620	4, 319,771	455, 103
Grand total.	4,881,039	448, 821	130,598	\$21, 857	20,011, 556	181, 770	25,023,193	652,448

${ }^{1}$ Includes $1,543,057$ pounds (220,437 bushels) taken up by New Jersey owners.

INDUSTRIES.
Wholfsale trade.-In the wholesale fishery trade of Delaware in 1921, there were 9 establishments, ralued at $\$ 38,950$, with a cash capital of $\$ 33,500$, employing 112 persons, to whom $\$ 19,480$ were paid in wages. Of these firms, 7 handled oysters, 1 handled fresh fish, and 1 manufactured scrap from king crabs. Statistics of the in restment, persons engaged, and wages paid in the wholesale fishery trade of Delaware are given by counties in the appended table.

Menhaden industry.-There was one establishment in Delaware engaged in the menhaden industry. The statistics for this plant have been included with the statistics of the menhaden industry for New York, page 88.

Wholesale fishery trade of Delaware in 1921, by counties.

ltems.	Kent and New Castle.		Sussex.		Total.	
Establishments.	Number_{4}	Talue. \$22,150	Number. 5	Value. \$16, 800	Number.	Value. \$38,950
Cash capital....		7,500		26, 000		33,500
Persons engaged	25		87		112	
Wages paid....		4,280		15,200		19,480

55904-23--8

ARTIFICIAL PROPAGATION OF BROOK TROUT AND RAINBOW TROUT, WITH NOTES ON THREE OTHER SPECIES. ${ }^{1}$

Revised and enlarged by Glen C. Leach, Assistant in Charge of Fish Culture.

CONTENTS.
Page.
Brook trout 2
Description 2
Size 5
Food 6
Commercial importance 6
Range and spawning season 7
Character of the eggs 9
Propacation 9
Water supply 9
The hatchery site 11
Dams 12
Water-supply intake 13
Capacity of water pipes 14
Aeration 16
Hatchery equipment 17
Field operations 18
Traps 19
Taking the spawn 20
l'acking the eggs for shipment 23
Transportation of green eggs 25
Incubation of the eggs 26
Care of the fry 27
Planting the fry 27
Rearing and feeding 28
Distribution of fingerlings 30
Eggs from commercial hatcheries 30
Rainbow trout 31
Description 33
Range and variation 33
Transplanting 33
Size and growth 34
Iropagation 35
Water supnly 35
Spawning ponds 37
Taking the spawn 39
Production of eggs 43
Hatching troughs and trays 43
Care of eggs and fry 47
Rearing ponds 49
Stocking the riffle pond 49
Food 50
Preparing eggs for shipment 52
l'acking eggs for shipment 52
Distributing and planting fry and fingerlings 54

[^29]Page.
Black-spotted, Loch Leven, and brown trout 55
Black-spotted trout (Salmo lewisi) 55
Varieties and description 57
Growth and egg production 58
Parasites 59
Loch Leven trout (Salmo levenensis) (i0)
Description 60
Range, size, and food 61
Propagation 62
Brown trout (Salmo fario) 63
Range, size, and food 63
Breeding habits and propagation 63
Description 65
Diseases common to trout under domestication and their treatment 66
White spot disease 69
Blue sac disease 72

BROOK TROUT.

The propagation of the brook trout is conducted under widely differing conditions throughout the natural and acclimated range of the fish. While the general principles on which the work is based are essentially the same everywhere, the details connected therewith must necessarily be modified to meet the varying conditions of climate, water supply, location, and the purposes in view. The aim of this article is to outline only those general principles, as it is manifestly impossible to enter minutely into all the details that would apply in any given section of the country. The material for the description of the methods outlined has been drawn from wide personal experience and observation.

DESCRIPTION.

The brook trout or speckled trout (Salvelimus fontinalis) is one of the most beautiful, active, and widely distributed of the American trouts. It prefers clear, cold, rapid streams, and belongs to that group of trouts known as charrs. characterized by the presence of round crimson spots on the sides of the body. Other members of this class are the saibling or charr (S. alpinus) of Europe and (S. stagnalis) of Greenland; the red charr (S'. Marsioni) of eastern Canada; the Sunapee trout (S. aureolus) found in parts of New Hampshire, Maine, and Vermont; the blueback trout (S. oquassa) of the Rangeley Lakes in Maine, and Dolly Varden, red-spotted, or bull tront (S. bairdii) of the Pacific States and Alaska. The lake trout (Cristivomer namaycush) also belongs in this group.
The general form of the brook trout's body varies considerably, sometimes being elongated and sometimes rather short, but the usual depth is about one-fourth or one-fifth of the length. The head is large and blunt, and is contained four and one-half times in the body length. The large terminal mouth is provided with teeth on the jaws, tongue, and palate bones, and also with a small patch on the vomer. The eye is placed high in the head; its diameter is about one-sixth the length of head. The gillrakers on the first arch number about 17, of which 11 are on the lower arm. The scales are very small and numerous; about 230 are in the lengthwise series and 35 above and 35 below the lateral line. The dorsal and anal rays are 10 and 9 , respectively. The tail is square or slightly lunate in the adult; forked in the young.

There is considerable variation in the color of this trout, dependent on local conditions, sex, and age. The head, back, and sides of the body, dorsal and caudal fins are of a grayish or greenish color; the back, head, dorsal, and base of caudal are mottled with dark green or black. Along the middle of the side are numerous round, lightred spots surrounded by whitish or light-brownish circular areas. The lower fins are dusky, with a pale or cream-colored anterior border bounded by a black streak; remainder of fin often red in breeding males. The brook trout may be distinguished from the other charrs by the dark-brown or black marblings on the back and the general absence of spots on the back.

The parr marks, which are always present in young trouts and salmons, are often found in large brook trout. These marks, which in the brook trout are about eight in number, are large, dark, vertical blotches or bars extending along the sides.

The brook trout is closely related to the other charrs mentioned, but it has quite distinct color markings and is usually less slender in form. Individual brook trout, however, vary greatly in form and color; not only those of different waters, but often those of the same body of water or different parts of the same lake or stream. Modifications of both form and color also appear during the breeding season.

The brook trout exhibits such a variation in color under the varying conditions of sex, age, size, and locality, that it has been given many local names by fishermen under the impression that it was a distinct species. This variation is a protection provided by nature which permits the fish to change its color and markings rapidly when passing from one environment to another. The appearance of brook trout under various conditions of environment may be described, in general, as follows:

Slender, light-colored, and silvery in lakes, ponds, and swift streams that are clear and sandy, or in parts of other bodies of water where such conditions obtain. Stout and dark-colored in lakes or ponds or localities of lakes or ponds having muddy bottom and considerable vegetable growth and particularly water discolored by vegetable stain. The same may be said of streams, and it may be added that the swifter the flow of water where the trout occurs the slenderer it is likely to be.
As in external markings, there is likewise a great variation in the color of the flesh of brook trout. Although in most instances the flesh is white, trout with yellow or rich, red flesh are not rare. Several reasons have been assigned as the cause for this characteristic. W. C. Kendall, on page 543 of his paper on the Rangeley Lakes, Me. ${ }^{2}$ gives the following as the probable cause:

[^30]it is the amount permeating the fish that gives the color its intensity. A wellfed, comparatirely inactive adult trout will present a more intensive shade of the flesh than a fish of the same age living in running water, where its livelihood depends upon its activity, although it may be a well-conditioned, shapely fish. In the latter instance the food has been assimilated and utilized in the development of energy.

SIZE.

The size of the brook trout varies in different localities and probably is influenced by the abundance of natural food and the characteristics and range of the water in which it is found. A trout will not attain a very large size in a restricted environment no matter how much food it has. The average size, as taken from time to time in any given body of water, is remarkably uniform. It is generally true, and particularly as regards waters of small extent, that the size of the fish decreases in proportion to the numbers occupying a given body of water. Referring again to Kendall's Rangeley Lakes paper, we read on page 550 :

As previously stated, trout grow faster and larger in the larger bodies of water when food is plentiful than in smaller or more circumscribed places. Given plenty of room and plenty of food, it is a question to what size a trout might not attain. There are at least two natural conditions aside from those of environment just mentioned that probably affect trout. There is, doubtless, a natural size limit beyond which the trout could not go if it lived to be 200 years old; but even if, there were no size limit, the species doubtless has a more or less definite life tenure that would in any case limit its growth.

The comparatively recent development of the study of scales has shown that rarely, if ever, is a greater age than 10 years attained by European trout (S. fario), and probably not that; the lake trout of Scandinavia probably not over 12 years.

Allowing, then, an arerage growth of 1 pound a jear, as suggested by Mr. Page's experiment, the record fish would be only $12 \frac{1}{2}$ years old. It is quite probable that trout seldom live longer than 12 or 15 years.

The largest brook trout taken in American waters whose weight has been reliably authenticated was from Rangeley Lakes, Me., its weight being $12 \frac{1}{2}$ pounds, while from the Nepigon River, a Canadian tributary of Lake Superior, an example weighing $14 \frac{3}{4}$ pounds is recorded. From other streams brook trout weighing 10 and 11 pounds are recorded, but individuals of these sizes are by no means common.

The rate of growth also varies with the surrounding conditions, and is more rapid in water having a fairly uniform temperature throughout the year. The most favorable temperature for this fish is from 45 to $65^{\circ} \mathrm{F}$. In the waters of the Rocky Mountain States where it has been successfully introduced, the brook trout grows rapidly and attains a large size. At present probably the largest examples are to be found in certain of the natural and artificial lakes of the lower altitudes of Colorado, though in the colder waters of the State, in altitudes ranging above 4,000 to 5,000 feet, it probably does not average more than 6 to 8 inches in length. Under favorable condititons the average growth is about as follows:

Inches.

[^31]At 3 years the average weight should be about 1 pound. It is probable that fish under congenial artificial environment, receiving food regularly, will somewhat exceed this rate of growth. Because of the flavor and fine quality of its flesh the brook trout is highly esteemed as a table delicacy, and, as it is very game, it is much sought after by sportsmen. Those from clear, swift streams do not grow as large as those found in quiet and deeper waters but are superior in quality and appearance.

FOOD.

The brook trout has a voracious appetite and takes advantage of every opportunity to satisfy it. Some observers believe that brook trout do not feed during the spawning season. This may be true, in a measure, of wild fish, but fish that are kept under domestication and regularly cared for continue to feed throughout this period. In the wild state the species is no doubt largely carnivorous, its food consisting chiefly of Crustacea, Mollusca, and various forms of insects and worms. When pressed by hunger, it does not hesitate to devour its kind. Under domestication, however, it can readily be induced to eat mush made of various cereals. Kendall (loc. cit.) has the following to say regarding the feeding habits of the brook trout:

> The trout seems to avail itself of whatever animal life is a vailable, and vegetable food is not always eschewed. A detailed list of what trout have been known to eat would be more astonishing than valuable. However, the general and principal food supply upon which the adult fish depends may be divided into two classes- fisles and insects.
> The trout of brooks subsist largely upon insects, particularly the aquatic larve of numerous species, such as caddis flies, Mayflies (Chironomus), and dragonflies, and also upon insects that fall upon the water or hover the water while depositing their eggs. The food of trout of larger streams, ponds, and lakes, of course, consists of the particular kinds that the waters afford, and these often differ materially from each other and seasonably in the same water. In all waters there is a seasonal supply of insects that varies with the season and locality; but where food in the form of fishes is available the insect food appears to be more or less neglected, particularly by the larger fish.
> The diet of the trout, however, varies not only with the season but with the age of the fish. The seasonal variation, however, may be one of convenience, but that of different stages of growth is influenced by suitability. The first food of trout fry consists largely of minute crustaceans and small insect larve, such as Chironomus, black fly, etc., and that of the fingerling of larger insect larve, worms, and small insects, which diet, however, is not exclusive and is controlled more or less by the habitat and environment.

COMMERCIAL IMPORTANCE.

While not to be compared in this respect with most of the fishes prominent in our market fisheries, there has been developed in recent years an important and apparently growing industry in connection with the brook trout. The comparative ease with which it may be brought under domestication, the constantly increasing demand in this country and elsewhere for the eyed eggs and fingerlings for the stocking of public and private waters, and the ready sale in many sections of the country for the adult fish at high prices as a table delicacy has induced a number of fish-culturists to undertake their artificial propagation on a commercial basis in New England, Pennsylvania, New York, and in many sections of the Western States. As the brook trout usually will spawn during
the second year, many of the commercial breeders hold their fish through the first spawning period only and are able to dispose of both the eggs and parent fish at a profit.

RANGE AND SPAWNING SEASON .

The natural range of the brook trout in the United States is in the eastern section of the country. In Canada it occurs in many streams and tributary waters of the Great Lakes, the St. Lawrence River, and the Gulf of St. Lawrence, at least as far north as Hamilton Inlet on the Labrador coast. Its northern limit is not definitely known, but it extends southward in the Alleghenies to headwaters of streams in the mountains of Georgia and Alabama. It was also found naturally originally in the Great Lakes region of the United States ar far winnesota.

Owing to its hardy nature and ability to adapt itself to new surroundings, the species may be successfully transplanted into suitable streams, and it has become established in nonindigenous waters in Michigan, Wisconsin, Minnesota, many of the waters of the Rocky Mountains and the Pacific coast, in the Eastern States, and in creeks and rivers of the Allegheny Mountains. With the possible exception of the rainbow trout and steelhead it is the hardiest member of the salmon family and will make a brave struggle for existence even with adverse surroundings.
All streams can not be successfully stocked with this species. The flow must not be too sluggish nor the temperature of the water too high, although an unfavorable temperature, if not excessively high, is no serious obstacle where the current is swift enough to insure thorough aeration of the water or where the fish can run into spring-fed creeks flowing into the main stream. The ideal brooktrout stream receives numerous spring-fed tributaries throughout its course, so that its temperature does not exceed $65^{\circ} \mathrm{F}$. in summer and by the same means is maintained at a relatively high temperature during the winter months. It has stretches of gravelly botton, clear, shallow water, and a steady current. It should also contain large bowlders or projecting points of land at intervals for the formation of quiet eddies and deep pools.

Any stream having a summer temperature greater than 65° can hardly be considered suitable for brook trout unless it has large spring tributaries accessible to the fish during the heated period. Through the cutting away of the forests and the cultivation of the land many streams in the eastern part of the United States have become unsuited to brook trout. Wash from cultivated land during periods of heavy rainfall roils the streams and destroys much of the natural food contained in them. The rainfall on cultivated slopes drains rapidly into the adjacent streams, causing alternate periods of freshets, with turbid water, and drought. In wooded or uncultivated sections the rainfall is retained by the soil and returns to the streams in a uniform flow of cool, sparkling spring water, extending through periods of little rainfall. Streams flowing through open or cultivated areas are subject to high summer temperatures, influenced by the direct rays of the sun, and evaporation is increased proportionately. It may therefore be said that the best trout streams are to be found in wooded, hilly, or mountainous sections.

Remarkable results have been attained in introducing this fish into new waters in many sections of the country and in foreign lands, one of the most noteworthy instances being in connection with the Au Sable River in Michigan. This stream originally was the home of the grayling, a spring spawner. The utilization of the river by the lumber interests for the passage of logs at the time of the year when the grayling were spawning resulted in the destruction of the sparning beds and the consequent gradual disappearance of that species. The brook trout was suggested as the proper substitute because its spawning season is in the fall when the river is undisturbed. The work of stocking this river with brook trout was undertaken by the Michigan Fish Commission in 1885, during which year 20,000 fry were planted. This plant was followed from time to time by others, and the outcome of the attempt was so successful that during the spawning season of 1895 about 10,000 trout were captured on the spawning beds by means of a small seine and their eggs taken for artificial propagation. Many other Michigan streams where this fish was not indigenous have since been successfully stocked.

The most remarkable results of this work of acclimatization have been attained in the Black Hills and the Rocky Mountains. In these regions beautiful lakes and rivers hundreds of miles in extent, which formerly were either devoid of fish life or inhabited by coarse species of little value have been stocked so successfully with brook trout by the Bureau of Fisheries that they now constitute its chief source of supply for collections of wild eggs of that species.

In its native haunts, whether in lake or stream, the brook trout is always found in clear, cold spring water when it is accessible. When freshets occur, it pushes from lakes or rivers into the spring brooks of the upper waters, seeking out deep pools and eddies where it can lie concealed beneath the shelter of grassy banks or accumulations of drift and see without being seen. Throughout its range the brook trout spawns in autumn during the falling of the water temperature, the season beginning earlier in the north than in southern latitudes. In the Colorado region the first eggs are deposited in September and sometimes in August, while in New York and New England the season usually begins about the middle of October. Generally speaking, the spawning period does not last more than three or four weeks, thongh in some parts of the country, where the fish live in a copions flow of spring water subject to little change of temperature, it may cover three months or more.

As the spawning time approaches the fish seek suitable gravel beds for the deposition of their eggs. Those inhabiting lakes and ponds may find suitable nesting spots in those waters, or they may enter tributary streams, sometimes pushing long distances up to their headwaters. A favored nesting locality in a stream is at the head or the foot of a large pool, where the water ripples gently over gravel bars. The males usually precede the females, and they frequently have the beds well cleaned before the latter appear. The nests are formed by working ont little depressions in the gravel and scrupulously clearing them of all sediment. In lakes or ponds such nests are made on gravelly shoals or bars where seeping water is present, either in the form of springs entering the pond or lakes or water seeping from the pond through a porous section of its bottom.

The fish usually pair on the nests, the males fighting viciously for the possession of the females. A few eggs are deposited at a time by a female and fertilized by the milt which the male simultaneously deposits. This process of spawning and impregnation by a pair of fishes is repeated many times until all the eggs have been deposited, and through the constant working of the fish on the beds the eggs become buried in the gravel. After a sparning bed is once occupied it is hard to drive the fish away, the female, especially, returning to it despite all hindrances. A female taken from her nest, marked, and placed in the water a mile downstream was found occupying the nest the following morning. The males remain on or near the beds for some time after the last females have spawned and left.

CHARACTER OF THE EGGS

Brook trout eggs will average about one-sixth of an inch in diameter, but there is a great variation in the size of eggs taken from fish of different localities. Frequently lots are found of which little more than 300 eggs are required to make a fluid ounce, while other eggs are so small as to measure 700 to the ounce. Fish-culturists favor the larger eggs, as it is generally believed that they produce stronger and better fish than the smaller ones. The time necessary for dereloping the eggs is dependent on the temperature of the water, varying from about 125 days in water at $37^{\circ} \mathrm{F}$. to about 50 days in water at $50^{\circ} \mathrm{F}$.

PROPAGATION.

The first attempt to artificially propagate trout in America was made in Ohio in 1853 with marked success. Further satisfactory trials were made in 1855 and 1859 in Connecticut and New York, and in 1864 a hatchery was established in New York which carried on the work on a large scale. Somewhat later trout propagation was taken up by other State authorities and by the Federal Government, and it is now extensively conducted in many parts of the country.

WATER SUPPLY.

In selecting a location for a trout hatchery the first consideration is an ample supply of suitable water so situated with reference to the proposed hatchery that it can be brought completely under control. In this matter there is a rather wide range of choice. Perhaps the rery best sources of water supply are deep-seated and well-protected springs, lakes of considerable depth, or spring-fed brooks.

In many instances spring water as it issues from the ground is quite unsuited to fish-cultural purposes, and before introducing it into the hatchery it should be exposed to the air for the correction of possible faults in aeration. Sometimes it may be possible to excavate a small, deep pool to form a reservoir, inclosing it to protect the water from sunlight, leaves, and débris of various kinds and to prerent small animals from entering it. Outside the spring house should be a ditch deep enough to convey all surface water away from the spring into a waste ditch. The inside of the reservoir should be protected by a foundation wall of loose masonry, the point above the water line being made substantial with mortar, building the
house or cover above it, with a suitable overflow cut through the side of the masonry to provide an outlet for surplus water. The best results are obtained where the supply pipe leading from the spring to the hatchery is placed 2 feet or more below the surface of the spring and is continued underground at as great a depth as possible in order to insure a uniform temperature as it enters the hatchery. The most favorable temperature is 48° where the water leaves the ground, though no harm will result if it varies 3 or 4° either way. The entrance to the intake pipe should be covered with a wire screen inside the spring house.

If lake water is selected, the supply should be taken at a short distance below the outlet of the lake with rapids intervening if possible. The temperature of the water in lakes is influenced by the depth, and a deep lake, as a rule, affords water of more uniform temperature than a shallow one. Such water is generally quite even in volume and temperature. It is cold in winter and warms up slowly in the spring, assuring a slow normal development of the eggs, which is more conducive to the health and vigor of the resulting fry than rapid development.
A water supply obtained from a brook or stream is usually inferior to that from a spring or lake by reason of its susceptibility to floods, turbidity, and droughts, although a brook fed largely by springs may to some extent be free from these objections. In cold climates anchor ice at the intake is a serious cause of annoyance in connection with brook water. If the flow from a spring is not sufficient and lake water is not available, it would be advantageous, if possible, to have a combination of spring and river or brook water. Water from both sources should be brought to the hatchery in such a way as to permit of their use either separately or in combination, so that a temperature between the maximum of the spring and the minimum of exposed water may be maintained during cold weather. Under this arrangement the spring water may be utilized to force early hatching when desirable and the water from the exposed stream used for retarding development. This is a matter of importance in northern latitudes where the winters are long and cold and the waters locked with ice until late April or early May, conditions unfavorable for the distribution of fry. Farther south, where the waters remain open all or nearly all of the year, it is not such an essential factor.

Between these different sources of supply there is, of course, a great number of gradations. Water from boggy and stagnant ponds or marshes is objectionable, for although water of excellent quality, capable of bringing out the most vigorous of fish, may sometimes be had in such places, yet when not supplied by springs it is dependent for its freshness on rainfall, an unreliable source. Furthermore, bog water, particularly that from sphagnum bogs, is often excessively acid, and therefore deleterious to trout.

In some localities a meager flow of spring water may be successfully augmented by artesian wells. The suitability of such water for fish-cultural purposes should be determined in advance of extensive preparations, as water from such wells is frequently lacking in certain elements vital to fish life.

It is best to select a site for a hatching establishment in time of extreme drought, and if there is then an ample supply of pure sweet water the first requisite is fulfilled. It is also well to visit the place in time of flood, and during severe winter weather if in a cool climate, to learn what dangers must be guarded against. The volume of water necessary will depend upon its temperature, character as to aeration, the facilities existing for its aeration and repeated use, and the capacity of the proposed establishment. With water of the highest quality, low temperature, and adequate facilities for aeration, possibly 3 to 5 gallons per minute, or even less, will be sufficient for the incubation of 100,000 eggs. As the temperature rises or the facilities for aeration are curtailed a larger volume will be necessary. In the case of spring water having a temperature ranging between 48 and $52^{\circ} \mathrm{F}$., aerated only by exposure in a pool and with no facilities in the hatching house for aeration, the amount necessary to incubate eggs in a trough of any given dimensions will be from 5 to 8 gallons per minute. As the number of eggs in a trough will vary from 40,000 to 50,000 , or even more, no set rule can be applied. The proposition is different with relation to fry. A hatching trough 14 to 16 feet long and holding from 25,000 to 40,000 fry will require 6 to 8 gallons of water per minute. On the basis of 100,000 fish it may be figured that the following amounts of water will be required:

Gallons.

Fingerlings, 4 to 6 months old

These amounts are ample and probably even half as much would suffice if it were necessary to economize in the use of water.

If the water supply is drawn from a small brook or spring, it is necessary to measure the volume approximately, which is easily done. With a wide board 1 inch thick and having a smooth 1 -inch hole bored through the middle, a tight dam is made across the stream so that all the water will have to flow through the hole in order to escape. If the water above the board rises just to the top of the hole, it indicates a volume of 2.3 gallons per minute. A rise of one half inch above the top of the hole indicates a volume of 3.5 gallons per minute; a rise of 2 inches, 5 gallons per minute; 13 inches, 12 gallons per minute. If two 1 -inch holes are bored twice the volume will be indicated in each case, of course. The quantity of water flowing through holes of different sizes is in proportion to the squares of their diameters. Thus, a 2 -inch hole permits the passage of four times as much water as a 1 -inch hole. A tube whose length is three times its diameter will allow 29 per cent more water to pass than a hole of the same diameter through a thin plate or board.

THE HATCHERI SITE.
When a satisfactory supply of water has been found, a site that affords facilities for creating a head of water to provide the requisite fall into and through the troughs, security against inundation and severe freezing, and for general safety and accessibility must be selected for the hatchery. The extent of fall from the source of the water supply to the hatching house can hardly be too great. The
minimum is as low as 3 inches, but only under circumstances in other respects extremely favorable will this answer the purpose, and then it is permissible only where there is an ample supply of aerated water, where the hatching troughs are less than standard in length, and where there is no danger of inundation. One disadvantage of a 3 -inch fall is the impracticability of utilizing any form of aerating apparatus; another is the necessity of placing the troughs below the level of the hatchery floor. This makes the work of attending the fish and eggs very laborious. A fall of 1 foot will do fairly well if there is entire safety from inundation, as then the troughs may be placed on the floor, which is better than below it though still inconvenient, and some of the simpler aerating derices can be introduced. A fall of 3 feet is better, but a 10 -foot fall is much better still as it permits the placing of the lowest hatching troughs 3 feet above the floor and leaves ample room for complete aeration. Everything depends upon the volume and character of the water, however, and upon its aeration before reaching the hatchery. In a small establishment there is no necessity for additional aeration in the building, and therefore a 3 -foot fall is adequate.

Inspection of the site during flood season will suggest the safeguards necessary to proride against inundation. If located by the side of a brook, the building should not obtrude too much on the channel, and below it there should be ample outlet for everything that may come in the way of floods or freshets. Often much can be done to improve a poor site by clearing out and enlarging a natural watercourse. In a cold climate it is an excellent plan to hare the building partly under ground for greater protection against cold. When spring water is used, there is rarely any trouble from the formation of ice in the troughs, even in a cold building, but in the latitude of the northern tier of States the water from lakes, rivers, or brooks is so cold in winter that if the air of the hatchery is allowed to remain much below the freezing point ice will form in the troughs and on the floor to such an extent as to be a serious annoyance. In very cold climates stoves are needed to warm the air sufficiently for the comfort of the attendants, but the building should be so located and constructed that it may be left without a fire for weeks without any dangerous accumulation of ice, and if the site does not permit of building the house partly under ground, the walls must be thoroughly constructed and well banked with earth, sawdust, or other material. In warmer climates no trouble will be experienced from that source. The type of building will, of course, be governed by the exigencies of each individual case. The location selected, extent and character of the fish-cultural work proposed, and the funds available, are all to be considered. The foregoing suggestions would apply to a small establishment in a more or less remote section and where strict economy in construction and operation are important.

DAMS.

The required head of water can often be obtained by throwing a dam across a stream and locating the hatchery near by. The dam will cause a small pond to form, serving the double purpose of aerating and settling the water. Unless the bed and the banks of the stream are of such character as to insure safety from under-
mining or washing out it is not wise to attempt more than a 2 -foot head in this way. With any bottom except one of solid ledge there is always danger, and washouts are very troublesome and difficult to control. Methods of dam construction and the materials used must depend on local conditions. Other conditions being equal, a concrete dam offers advantages in permanency and low cost of upkeep. In any case a spillway to care for flood waters and avoidance of the danger from washouts mentioned above are important considerations.

If there is a scarcity of water, or if it be desirable for aerating or other purposes to secure a considerable fall, it will be advisable to construct the dam on higher ground, some distance above the building site, where a low dam will suffice to turn the water into a conduit in which it may be carried to the hatchery at the desired level. A square conduit made of planks, carefully jointed and nailed, in nearly all cases is satisfactory and a small one will suffice for an ordinary establishment. A thorough coating of hot tar inside and out previous to use acts as a preventative of leaks and decay. Pipe is generally more desirable than the conduit, and galvanized iron is preferable to black. Perhaps the most durable and otherwise satisfactory material for a water supply conduit for a permanent establishment is wood stave pipe. Such pipe properly installed and constantly carrying its full capacity gives satisfactory service for a long period of time. It deteriorates when exposed and not full of water.

WATER-SUPPLY INTAKE.
If the water supply is to be taken from a stream, and a dam has been constructed to create the required head, the extension of the conduit through the dam is an important point to be observed. Unless this is done and the intake end of the conduit is properly screened and protected there is bound to be serious trouble from clogged or damaged pipes, resulting in the cutting off of the hatchery water supply.

A rery satisfactory intake for meeting the conditions mentioned consists of a rectangular box of concrete construction of any desired dimensions to meet the requirements of the case. The upstream face of the dam forms one end of the box, and the shoreward side extends upstream parallel with the bank for 15 to 20 feet, or any required distance. The upstream end of the box is projected into the stream, and the wall forming the remaining side is so placed as to present an angle of 20° to the flow of the stream. In this position it serres effectively to deflect ice or other drift from the screen guarding the entrance to the intake.

Between the downstream end of the outside wall of the box and the dam is a space sufficiently large to permit the free passage of water to the intake. This space is protected by a screen consisting of a frame of 2 by 4 material of the proper size, in which is inserted a grating of $\frac{3}{4}$-inch galvanized pipe spaced 2 inches apart. Inside the inclosure thus formed, and midway between the walls, a deflecting partition extends upstream from the dam to a point some 3 to 5 feet from the unstream erd of the inclosure. This aperture is guarded by a second screen placed at an angle of about 45°, the bars being spaced about 1 inch apart.

In operation water enters the intake box through the screen in the outside wall adjacent to the dam, reverses its flow, passes through the inner screen, around the head of the deflecting wall, and thence into the supply pipe. An intake box constructed in this manner and provided with a cement top, with the necessary openings and covers for access to the inner screen and pipe, may be entirely submerged during flood periods without interrupting the flow of water. To insure the greatest efficiency from the pipe line, the section entering the intake box should be several sizes larger than the main line. Thus, if an 8 -inch pipe is used the pipe entering the intake box should be 12 or 14 inches and taper to 8 inches in the course of the first 8 or 10 feet of its length. The end of the pipe in the intake box should be submerged to a depth of at least 18 inches.

CAPACITY OF WATER PIPES.

The amount of water conveyed by pipes of various sizes is dependent on the head of water, length, kind, and quality of pipe used, and the manner in which connecting joints are made and the pipe is laid. Unavoidable imperfections in the work of installation of the water supply in a hatchery make it advisable to allow liberal safety factors in applying hydraulic formulas to the work. The " head" or "total head," as applied to the flow of water through pipes or other conduits, means the vertical distance from the level surface of the water at the source of supply to the center of the opening through which the discharge takes place freely in the open air. Theoretically and in practice it makes no difference, as regards the quantity of water discharged, whether the pipe is inclined downward or upward, provided the total head and the length of pipe remain the same.

The following table indicates approximately the velocity in feet per second and the supply delivered in imperial gallons ${ }^{3}$ per minute for long pipe lines flowing full:

Table 1.-Velocity in feet per second and supply in gallons per minute, long cylindrical pipes flowing full. ${ }^{a}$

Diameter of pipe.	Head of water divided by length of pipe.							
	$\frac{1}{1000}$		$\frac{3}{1000}$		$\frac{5}{1000}$		$\frac{9}{1000}$	
	Velocity per second.	$\begin{aligned} & \text { Supply } \\ & \text { per } \\ & \text { inute. } \end{aligned}$	$\begin{gathered} \text { Velocity } \\ \text { per } \\ \text { second. } \end{gathered}$ second.	$\begin{aligned} & \text { Supply } \\ & \text { per } \\ & \text { minute. } \end{aligned}$	$\begin{aligned} & \text { Velocity } \\ & \text { per } \\ & \text { second. } \end{aligned}$	$\begin{aligned} & \text { Supply } \\ & \text { per } \\ & \text { minute. } \end{aligned}$	Velocity second.	$\begin{aligned} & \text { Supply } \\ & \text { per } \\ & \text { minute. } \end{aligned}$
2 inches.	Fect.	Gallons.	Fect.	Gallons.	Feet.	Gallons.	Feet.	Gallons. 15.65
${ }_{21}^{1}$ inches.	. 600	7.64	1.16	14.76	1.56	19.85	2.18	27.75
3 inches.	. 670	12.30	1.29	23.64	1.73	31.73	2.41	44.29
4 inches.	. 798	26.03	1.52	49.63	2.04	66.46	2.83	92.51
5 inches.	. 911	46.48	1.73	88.14	2.31	117.80	3.21	163.69
6 inches	1.02	74.64	1.92	140.83	2.56	187.95	3.55	260.81
7 inches.	1.11	111.09	2.09	209.22	2.79	278.90	3.87	386.57
8 inches.	1.20	156.92	2.26	294.70	3.01	392.46	4.16	543.49
9 inches.	1.29	212.71	2.41	398. 58	3.21	530.36	4.44	733.83
10 inches	1.37	279.16	2.56	522.08	3.40	694.24	4.71	959.88

[^32]Table 1.-Velocity in feet per second and supply in gallons per minute, long cylindrical pipes flowing full-Continued.

Diameter of pipe.	Head of water divided by length of pipe.							
	$\frac{1}{100}$		$\frac{3}{100}$		$\frac{5}{100}$		$\frac{9}{100}$	
	Velocity second.	$\begin{aligned} & \text { Supply } \\ & \text { per } \\ & \text { minute. } \end{aligned}$	Velocity per second	Supply per minute.	Velocity per second.	$\begin{aligned} & \text { Supply } \\ & \text { per } \\ & \text { minute. } \end{aligned}$	Velocity second.	Supply minute.
	Fect. 2. 04 ar	Gallons.	Fect. 3.76	Gallons.	Fcet.	Gallons.	Fect.	Callons. 56.01
2 2 inches.	2.31	29.45	4.25	54.35	5.63	71.79	7.74	98.73
3 inches.	2.56	45.99	4.71	86.39	6.22	114.15	8.54	153.85
4 inches.	3.01	99. 60	5.51	179.73	7.27	237.17	9.97	325.41
5 inches.	3.40	173. 70	6.22	317.08	8.2	418.02	11.24	572.99
6 inches.	3.76	277.10	6.86	504.05	9.04	663.96	12.38	909.42
7 inches.	4.09	408. 45	7.50	749.83	9.82	981.68	13. 44	1,343. 7
8 inches	4.41	575.83	8.02	1,046.8	10.55	1,377.3	14.43	1, 584. 3
9 inches.	4.71	777. 50	8.54	1,411.6	11.24	1, 8556.4	15. 33	2, 538. 6
10 inches.	4.99	1,016.9	9.04	1,844.3	11.89	2,424.5	16.25	3,314.2

Diameter of pipe.	Head of water divided by length of pipe.							
			$\frac{3}{10}$		$\frac{5}{10}$		$\frac{9}{10}$	
	Velocity per second.	$\begin{aligned} & \text { Supply } \\ & \text { per } \\ & \text { minute. } \end{aligned}$	Velocity second.	$\begin{aligned} & \text { Supply } \\ & \text { per } \\ & \text { minute. } \end{aligned}$	Velocity per second.	$\begin{aligned} & \text { Supply } \\ & \text { per } \\ & \text { minute. } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Velocity } \\ \text { per } \\ \text { second. } \end{gathered}\right.$	$\begin{aligned} & \text { Supply } \\ & \text { per } \\ & \text { iuute. } \end{aligned}$
	Fcet. 7.27	Gallons. 59.29	$\begin{aligned} & F_{\sim}^{r}, \\ & 13.10 \end{aligned}$	Gallons. 106.64	Fect. 17.18	Gallons.	Fert. 23.43	Gallons. 191. 16
$2 \downarrow$ inches	8.20	104.50	14.75	188.42	19.33	246.46	26.34	335. 86
3 inches.	9.04	165.99	16.25	298.28	21.28	390.73	28.99	532.18
4 inches	10.55	344.23	18.92	617.47	24.76	808.21	33.70	1,099.9
5 inches	11.89	606.13	21.28	1,085. 4	27.81	1,419.8	37.87	1,931.1
6 inches.	13. 10	959.72	23. 43	1,720.4	30.63	2,248. 9	41.65	3,058. 2
7 iaches	14.22	1,421.2	25.41	2,539.4	33.21	3,319.2	45. 13	4,510.7
8 inches	15.26	1,992.7	27.25	3,557.6	35.60	4,647.9	48.38	6,315.4
9 inches	16.25	2,684. 5	28.99	4,789.7	37.57	6,256. 8	51.44	8,499.2
10 inches	17. 18	3,504.5	30.63	6,246.9	40.01	8,161.0	54.33	11,081.3

In using these tables divide the head of water by the length of pipe. Example: Required the flow of water in a 5 -inch pipe 200 feet long under a 10 -foot head. $10 \div 200=.05$. Referring to the table, under $5 / 100$, it is seen that under these conditions a 5 -inch pipe affords a relocity of 8.2 feet per second and supplies 418.02 gallons per minute.

A square conduit conveys approximately 25 per cent more water than a crlindrical pipe of the same diameter under similar conditions. Excepting in very unusual circumstances, a pipe less than 3 inches in diameter should not be used. Avoid sharp bends and the use of fittings as far as possible in laying the pipe line, as they tend by friction to reduce the flow of water. Forty-five-degree fittings are better than 90° fittings, but bending the pipe is most satisfactory. Pipes up to 6 inches in diameter and sometimes larger usually can be bent after heating. Abrupt bends in large pipe will require flanged joints.

If the water completely fills the conduit, air will be shat out entirely, while if the conduit is larger the quality of the water may be improved by aeration before it reaches the hatchery. If wood
stave pipe is used, however, it should carry its full capacity of water, as otherwise it deteriorates rapidly.
In installing a long pipe line the expense involved in carrying it at an even grade over depressions or through high places is frequently excessive, and it is usually better to follow the general contour of the land over which the pipe is laid. This method, however, has the disadvantage of reducing the flow of water through increasing the length of the pipe. There is also danger of "air pockets" forming at the highest points in such a line, greatly reducing or even entirely cutting off the flow of water. To guard against such a contingency, vent cocks should be placed at all such high points.

AERATION.

Fishes, like all animals, require an abundant amount of air-oxygen-for their well-being. Unlike land animals, however, they do not obtain their supply of oxygen directly from the atmosphere, but it is absorbed from the water passing over their gills, organs performing a function similar to that of the lungs of land animals. It is obvious, therefore, that water suitable for the maintenance of fishes must carry in solution a sufficient amount of gaseous oxygen to meet the requirements of the fishes in this respect. Water from springs, wells, or sometimes deep lakes is quite deficient in this vital requirement, or such water may contain an excess amount of air or gases inimical to fish life. The remedy in either instance is the sameintimate contact with the atnosphere. Water readily absorbs oxygen whenever it comes in contact with the atmosphere, and by the same process it readily gives off any surplus oxygen or other gases that it may contain. The necessity for ample aeration of the water to be used in a hatching house has already been mentioned as a consideration of first importance, and some of the devices by which it is accomplished have been alluded to.

Water from a brook or stream that has been torn to from by dashing down a steep stream bed will be saturated with the lifegiving oxygen, but such water, after supplying 16 to 48 feet of hatching trough space, will have lost a part of its oxygen and will need further aeration before it enters another series of troughs. As mentioned above, water from other sources may be entirely deficient in this respect, and it is therefore desirable to resort to all practicable means for the correction of such possible faults in the water supply.
If the hatchery site commands a fall of 5 feet or more, sultable aeration may be accomplished by a series of miniature riffles in the conduit outside the building. The broader and thinner the sheet of water provided the more thoroughly will it be exposed to the air. If it must fall through the air instead of flowing down the face of a perpendicular board, both surfaces of the sheet of water will be exposed to the air, thus doubling the effect. When circumstances permit, it is best to aerate in the conduit, which, as already suggested, should be made wide and open for that purpose.

If sufficient aeration can not be accomplished outside the building, much may still be done as the water enters. While an open water supply trough in the hatchery is somewhat unsightly perhaps, it has

Fig. 2.-St. Johnsbury (Vt.) station hatchery.
U. S. B. F.-Doc. 955.

Fig. 3.-Hatching trough and trays of eggs.
advantages for aeration over a closed pipe. For a hatchery containing 20 hatching troughs a supply trough 10 inches wide by 10 inches deep, inside measurements, will carry sufficient water. As it enters this inside supply trough from the main conduit the water should have as great a fall as possible, and a number of rifflesthroughoutits length will aid aeration further. The hatching troughs should, if possible, be set some 6 inches lower than and 3 to 4 inches distant from the supply trough. A satisfactory method of regulating the flow of water to the hatching troughs is by means of a 2 -inch brass-faced molasses gate, set about 3 inches above the bottom of the supply trough. The horizontal screens and blocks on which the water falls as it leaves the supply trough, mentioned in connection with the propagation of rainbow trout, are recommended. The same results may be obtained by causing the water to pass through a pan (a 6-quart size is satisfactory) with a perforated bottom before entering the hatching trough or through a series of such pans in a rack one above the other, spaced a ferm inches apart. In cases where the water from a hatching trough is used again in troughs at a lower -level one of these or a similar device is desirable.

In most instances, temperature and other conditions being equal, the more perfect the aeration the smaller the volume of water required, and, conversely, the greater the volume the less aeration is needed. In any event exposure to the atmosphere under the conditions mentioned can not result harmfully, and it may be very beneficial to water from any source intended for fish-cultural purposes. The use of all practicable means of aeration is recommended.

HATCHERY EQUIPMENT.

The troughs and other equipment used in the incubation of trout eggs rary considerably as to dimensions. All of the various kinds in general use have meritorious features, and in many instances they were designed to meet peculiar local requirements. The general principle in each case remains the same. The eggs are placed on trays or in baskets which are installed in the troughs and supplied with a free circulation of water.

The standard trough used at stations of the Burean of Fisheries is 14 feet long, 14 inches wide, and 8 inches deep inside. It is constructed of white pine, cedar, or cypress, from 1 to 2 inches thick (usually $1 \frac{3}{8}$ inches) and is coated inside with asphaltum. Hatching troughs are usually arranged in pairs with aisles between, and, when desirable, the water may be passed through two or more series of troughs standing on different levels.

Each hatching trough is usually divided by galvanized iron dams into compartments large enough to accommodate the particular type of egg tray or basket in use. The dams are arranged in such a manner as to cause the water to flow over the dam at the head of the compartment, under the succeeding dam, then up through the trays or basket of eggs, and so on throughout the length of the trough. By placing the trays or baskets alternately, the first against the upper dam, the succeeding one close to the lower, and so on, all of the water is forced up through the eggs and utilized instead of passing around them.

The trays more generally used consist of frames 16 inches long by 14 inches wide, made of pine strips 1 inch by $\frac{4}{4}$ inch. To these frames galvanized wire cloth of an oblong mesh is fastened. The cloth is usually woren 8 theads to the inch, with a mesh seven-eighths inch long, galvanized after weaving, although it is ganged to retain the eggs and permit the newly hatched fry to fatl through.

White the basket method was devised to meet adverse conditions at some of the Federal tish hatcheries and at such stations is considered to have meritorious features commending it for general adoption, many fish-culturists prefer the tray system, while still others use from choice the Clark hatching box, which insures a good water circulation. Perhaps the most compact and economical methed is fomed in the Williamson trough, which has compartments divided by galvanized iron partitions as deseribed in this article. From 8 to it trays are placed in each compartment, according to the depth of the trongh. The flow of water is always up through the state of egegs, which are held down in the compartment by a crossbar or binder. To facilitate their removal from the trough, a strap made of 28 -gatuge galvanized iron and having wooden handes on eachend is plated around the stack of trays. This also serves to hold the trays logether and prevents the escape of the fry, which would ocem if the trays were lifted out singly. The troughs described in the section on rainbow trout, with trays 28 inches long, may be very successfully used in brook-trout culture. The eqgs on such trays are always under the immediate observation of the fishculturist, and dead eggs are easily discemible.

FIELD OPERATIONS. ${ }^{5}$

While a very large pereentage of the brook-trout eggs handled in fish culture is obtained from domesticated fish, the burean still operates a momber of profitable field stations where eggs are obtained from wild fish. Where natural spawning on a sutliciontly large seale to make the gathering of wild eggs profitable oceurs within reasonable distance of a hatehery, it is customary to establish temporary stations in the immediate vicinity of the spawning grounds. After taking and developing the eggs to a point where they will bear transportation they are shipped to the central station to be hatehed. In certain instances green eggs may be shipped for a considerable distance without serions loss, though whenever praticable it is desirable to develop them to the eyed stage before subjecting them to a long journey. Brook tront work of this character is extensively conducted in Colorado, Utah, Wyoming, and Vermont.

If lakes or ponds constitute the sparwing grounds, their bottoms must be cleared for seining operations. Where the lakes are artificial and retaining dams have been built, the water usually may be drawn and the fish collected easily. However, this process may involve the carrying away of most of the natural food contained in the

[^33]U. S. B. F.-Doc. 955.

Fig. 4.-Racks and traps.
ponds, making artificial feeding necessary for the maintenance of the stock.

The capture of the brood fish is greatly facilitated where they enter tributary streams at or before the spawning season. Such migrations are very common in lakes and ponds having reasonably large inlets whose sources are at some distance, especially if they are subject to frequent increase in flow from rains. Such conditions often are met in the east and north. Here the fish may leave their common habitat as soon as high summer temperatures prevail or when the streams are affected by heavy showers or protracted rains. A larger movement usually will occur during periods of heavy rains in the fall, immediately before or a few weeks in advance of the spawning season. As it is not desirable to retain the brood fish in close quarters longer than is absolutely necessary, the tributary streams may be kept closed by racks during the early summer, thus preventing their ascent until near the approach of the spawning season. At. that time traps are installed in the streams in which the fish are known to spawn.

TRAPS.

The general principles of trap construction for the capture of trout and salmon are identical, though the details, which are simpler in the case of trout because of the smaller sizes of the streams operated, must necessarily vary in each individual instance. The successful operation of a trap depends largely upon the ingenuity of the builder in so locating it that the fish will lead in rapidly and not escape easily through the entrance.

The simplest form of trap is built in the stream. It consists of a framework of poles or timbers supported by stakes driven in the bed or, if the foundation is of such coarse rocks as to preclude flood shifting, by means of three-legged horses weighted with stones. To these frames 1 -inch square pickets are mailed sufficiently close together to prevent the passage of any fish it is desired to retain. Before nailing the pickets should be driven as deeply into the stream bed as its character will permit and must project 2 feet or more above high-water mark, so that the fish can not leap them. To form the entrance or lead, a rack is run from either bank diagonally upstream to a point in mid channel to form a V, with an opening at its apex large enough to permit the fish to enter. A rack of similar material crossing the stream in a straight line a short distance above the lead racks completes the pound. If the stream is large, however, the capture of the fish can be facilitated by running side racks from either lead rack at a point well above the apex of the V to the cross rack above, thus forming a pound in the shape of a reentering polygon. For greater convenience in sorting and handling the fish several retaining pens of similar material are frequently built above the rack.

A trout trap which has been successfully operated at stations of the Bureau of Fisheries for many years is built in the lower section of a retaining raceway through which the normal flow of the stream is diverted. From this raceway trap at the point where the water is returned to the stream the main channel is closed by a rack which extends to a point somewhat lower downstream on the
opposite side to give greater rack surface. It is well to operate a somewhat coarser rack than that required to stop the small trout at a suitable point above where floating leaves and other débris may be stopped and removed, thus reducing the liability of the trap racks to dam up and undermine. The location selected for the trap is very important. Other conditions being favorable, it should be placed as near the mouth of the stream as the character of the banks will permit with the V -shaped entrance lead toward deepening water.

The fish run most freely on clark, rainy nights when the stream is rising, but during the spawning season ripe fish will enter night after night in times of normal stream flow. The majority of the fish are usually taken while one or two heavy rains are bringing the streams to flood stage. At such times it is necessary that the attendant have an assistant to keep the racks free from débris, as the fish often enter the trap as fast as one person can readily transfer them with a large dip net from trap to pens. Not infrequently as many as 1,000 to 3,000 fish are taken in a night. If ample rains are lacking at the height of the spawning season and the water is very low, only a few fish will ascend to the traps, and the egg collections will be relatively small unless the fish can be taken by seining the lower stretches of the stream. An abundance of rain late in the season will have little influence in bringing spawning fish to the traps.

A comfortable cabin in close proximity to the traps is a necessity, as the constant care of the racks and the work of guarding the fish against predacious animals and malicious persons often subject the attendants to great hardships during inclement weather.

TAKING THE SPAWN.

When the fish are rumning briskly, no attempt is made to separate them, but as soon as the run slackens they are carefully assorted and segregated in pens according to their degrees of ripeness. This saves much time and possible injury to the fish through constant handling for the purpose of ascertaining their spawning condition. A percentage is kept of the ripe fish taken from each pen so that the proper time for handling those in the various inclosures may be determined. It is sometimes necessary to examine every day or every other day the fish that appear to be nearly ripe and others from once to twice a week.

Eggs are not ripe enough to be taken until they flow readily under very slight pressure. In some instances a fish may by muscular contraction retain its eggs for a few seconds, deceiving the spawn taker for the moment, but if the eggs are ripe they will begin to flow as soon as the muscles relax.

The eggs are taken in pans or other metal vessels which have been thinly coated with asphaltum to prevent rust or in receptacles made of pressed fiber, the advantage of the latter being that they do not require painting and do not transmit cold as readily as the metal vessels. Just before the eggs are taken the vessel is dipped into cold water and drained.

The spawn taker holds the fish as firmly and gently as possible at such an angle as will cause the ripe eggs to flow naturally toward the
vent. With the thumb and forefinger he then gently presses out the eggs, beginning the pressure just forward of the vent. The hand is then moved forward toward the head of the fish, and further gentle pressure is applied as necessary to assist the natural flow of eggs until all that will come freely from the fish are obtained. Pressure should never be applied forward of the ventral fins, as even slight pressure applied over the vital organs is very apt to result in injury to the fish. The above seems to be the logical and rational method of spatin taking, as the egs nearest the vent are taken first, leaving a clear passage for those that follow.

As the eggs fall into the dampened vessel milt is immediately applied, being obtained by the manipulation of the male fish in a similar manner. The next step is to add enough water to cover the eggs and agitate the vessel sufficiently to thoroughly mix eggs and milt, or a feather may be used to effect the mixing prior to the introduction of water. The excess milt is then almost immediately discarded by adding and pouring off water until it becomes clear, when the vessel is half filled with clean water and is protected from temperature changes by placing it in running water or inside of a larger vessel of water. It is then left entirely unmolested until the adhering stage has passed and the eggs separate, the time required for separation being from 30 to 60 minutes, according to the temperature. Some spawn takers consider it advisable to delay washing the eggs until after separation occurs, while others use no water at all until that stage is reached. In general practice, however, the method herein described is most satisfactory. If the eggs remain in the ressel long after separation, the water must be changed frequently.

The work of spawn taking should be done only by thoroughly experienced persons. While the test of efficiency along this line is frequently based on the percentage of fertile eggs obtained, the numbers of fish stripped and not injured is a point of equal importance. Proper methods of spawn taking carefully applied will result in no injury to the adult fish, either females or males; but unless the spawn taker understands something of the anatomy of the fish and exercises the utmost care serious, if not fatal, injuries are very likely to be inflicted. Some of the more common mistakes made by spawn takers in handling fish during the egg-taking process are mentioned below:

Grasping the fish by the tail and holding it head downward while it struggles violently, or similar handling in a dip net. Such treatment is very apt to result in rupture of the delicate ova-containing membrane, causing the eggs to fall into the abdominal cavity, from which they can not be extruded. An injury of this nature may result in barrenness or even death. The proper method of removing a fish from the water is described under the section on rainbow trout.

After stripping a fish spawn takers sometimes throw it from a distance into the retaining inclosure or pond. This procedure is so obviously wrong that it should need no comment. Perhaps the most common cause of injury in spawntaking is the practice of certain spawntakers of squeezing the fish several times, beginning well forward near the gill opening, until blood and fecal matter are extruded, in order that every egg may be secured. This is sure to re-
sult in expressing some immature eggs that are incapable of more than imperfect fertilization, and it is very liable to injure the ovaries or other organs of the fish. The eggs in the ovaries of a trout do not all ripen at the same time. Those in the posterior end mature first, and it is good practice in all cases to take only such eggs as come freely from the fish by very gentle pressure, which should extend very little, if at all, forward of the ventral fins. In some instances it may be desirable to retain the fish for a second stripping a few days later.

Eggs taken in close proximity to a regularly established hatchery may, of course, be transferred there immediately for development, but when secured at distant field stations it is necessary to hold them at the point of collection until they reach the eyed stage, as green trout eggs are so tender that they rarely can be subjected with impunity to the rough treatment incidental to a long journey.

As a rule, an eyeing station consists of a small building equipped with a number of troughs patterned after the standard hatching trough described elsewhere. A gravity water supply should be provided and, where it is available, spring water of a volume not seriously affected by the falling temperature of late antumn is selected for this partial development work, as such a supply insures the rapid advancement of the eggs, making it possible to ship them to the main hatchery before the beginning of winter.

The troughs and equipment should be standard size. Trays 14 by 16 or 14 by 28 inches, as described, are satisfactory. In cases where the eggs are to be incubated and the fry held in a limited space until ready for planting, trays covered with wire cloth 14 to 16 meshes to the incli, as described on page 28, are useful.

As manv as eight trays may be stacked in a trough compartment, one compartment being reserved for the reception of trays from the other compartments when the eggs are picked over and cleaned. As the trays of eggs are picked over one by one they are transferred to the empty space in the trough, and each compartment emptied becomes in turn the depositing place for another stack of trays until all occupy new space. Four small blocks one-half inch in thickness are tacked to the rough bottom in the corners of each compartment on which the trays rest, thus permitting a flow of water underneath.

When the eggs are brought in from the stripping place, they are measured in a tin cup or glass graduate, the capacity of which has been established by count, and are then placed on the trays. As each tray is filled it is gently settled in place in one of the compartments. When there is an ample amount of water, as great a quantity is admitted into each trough as will flow through the eggs without disturbing them, but in case of a limited supply the eggs may be carried to the eyed stage in good condition with a flow of not over $2 \frac{1}{2}$ gallons per minute to a trough of 200,000 .

During the early stages of incubation the eggs should be handled as little as possible, but in order to prevent the development of fungus it will be necessary to pick them over at intervals, removing all white eggs and those that are known to be dead. The lengths of these intervals can be determined only by close observation, as the necessity for frequent picking will be governed largely by the vary-
ing conditions of the water supply. However, they should be carefully gone over at least once a week. One attendant at a field station can care for a million eggs unless the percentage of fertilization is excessively low.

Trout eggs are extremely sensitive to shock during the period extending from two to four days after they have been laid down in the hatchery up to the time when the eyes of the developing embryo are discernible to the unaided eye, and any movement of the trays of eggs at this stage is liable to result in heavy loss. The exact length of this period is dependent on the water temperature. It is known to fishculturists as the "tender stage," and until it is past it is advisable to leave the eggs undisturbed so far as possible. If it becomes necessary to remove dead eggs to prevent the spread of fungus, as indicated above, it should be done with the utmost care.

PACKING THE EGGS FOR SHIPMENT.

At the proper stage of development the eggs may be transported for long distances without material loss if skillfully packed. Cases of a great variety of shapes and sizes with an equal variation in the styles of trays and the methods of insulation have been used. The essential requirements for the successful transportation of trout eggs are, (1) a package so insulated that it will preserve a uniformly low temperature on the eggs; (2) protection from undue jars or shocks; (3) the maintenance to the end of the journey of a reasonable amount of moisture. Any package that will accomplish all of these things may be considered fairly satisfactory, although as such shipments are usually sent by express the weight of the package also becomes an important item. In this way the so-called bulk method of packing trout eggs is more economical than the use of trays, and for shipments involving not more than 48 hours' time it may be satisfactorily applied in most cases to the transfer of eyed eggs from the collecting fields to the main hatcheries. For journeys of longer duration the mode of packing described on page 25 is preferable.

As regards the bulk method, the size of the case will depend upon the number of eggs to be shipped. The case consists of one or more inner boxes for eggs and an outer box of sufficient size to hold them and allow 4 inches of space all around for packing. The inner boxes are made of one-half-inch lumber with the bottoms left partially open to permit the surplus water to drain off and to allow for swelling of the lumber when wet. An egg box 12 by 15 inches and 4 inches deep will carry from 80,000 to 100,000 eggs, the actual number depending on their size. Three of these boxes packed in a single case, containing approximately 300,000 eggs, will weigh about 12.5 pounds.

While a great variety of materials, including leaves, straw, sawdust, shavings, etc., have been used as an insulating medium in packing fish eggs for shipment, probably nothing superior to sphagnum moss for the purpose has been found. When saturated with water, it retains the moisture for a long time and is thus valuable for use on the egg trays or boxes. When dry, it packs closely around the egg trays and is a most excellent nonconductor of heat or cold. Further, it has not the tendency to "heat " that certain other materials possess.

Brook-trout eggs are in condition to bear transportation as soon as the eyes of the embryo are visible. Before packing the eggs for shipment they are thoroughly washed. This is accomplished by removing them from the trays to a tub of water and introducing a stream of water among them with sufficient force to slightly agitate them for several minutes. This treatment not only removes all sediment from the eggs, but it causes all infertile eggs to change color, thereby facilitating their removal. Unless this is done a considerable number of infertile eggs is likely to be inchuded in the shipment, as such eggs will frequently retain the color and general appearance of good eggs for a long period. The same results may be attained by passing a feather brush among them. After washing, the eggs are again placed in a tub of water, the temperature of which is very gradually reduced several degrees.

The bottom of an egg box is covered to a depth of one-half inch with sphagnum moss freshly wrung from ice water. A mosquito netting large enough to fold in from the sides and ends, entirely covcring the eggs, is laid over the moss. The water is drained from the eggs and the required number placed in the box. In folding the netting over them it is drawn in a little from the sides and ends of the box and a thin layer of moss is tucked around to prevent the eggs from coming in contact with the wood. The box is next filler with moss, so that when closed by the cover the eggs will be retained in place should the case receive rough handling en route. If more than one box is used they are stacked and cleated one above another and only one cover is used, the bottoms of the upper boxes forming the covers of the ones below. Dry moss to a depth of 4 inches is placed on the bottom of the outer case, the stack of egg boxes installed. and the remaining spaces tamped tightly with dry moss to keep the stack in place and to provide the necessary insulation against temperature changes. For short distances no ice is necessary, provided the eggs, moss, and netting used in the inner boxes are near the freezing point when the packing is done. If the weather will permit, the egg boxes may advantageously be left in a freezing temperature until the moss stiffens slightly before placing them in the outer case or a quantity of snow or grated ice may be sprinkled over them. In most instances an ice hopper is desirable, and this is made to occupy the 4 -inch space immediately over the egg boxes, forming the cover of the upper box of eggs. Where ice in any form is used in the package ample drainage through the bottom of the box must be provided.

Brook-trout eggs have been shipped successfully to many foreign countries. For shipments of this nature, where the eggs will be in transit for an unusually long period and will require replenishing of the ice chambers and possibly the removal of dead eggs, a more elaborate case is necessary. A so-called refrigerator case has been used with good results in making foreign shipments. ${ }^{6}$ A case simi lar to this in some respects but more compact and of less weight has recently been designed by G. C. Leach, assistant in charge of the division of fish culture, United States Bureau of Fisheries, and has been successfully used in European shipments. Figure 17, page 53.

[^34]This case is 2 feet 4 inches square by 1 foot 7 inches deep, outside measure. It has double walls and bottom made of 1 -inch lumber, and the 2 -inch space betreen is filled with dry sphagnum moss or gramulated cork, closely tamped. Two cleats are fastened to the bottom to give free rent to the iron drain tube, which extends through the insulation to the egg compartment as shown. The case has handles for convenience in moving and is closed by a hinged corer. The inside walls and bottom are lined with galvanized sheet iron to exclude moisture from the insulating medium as far as possible. After the lining is in place, two cleats 1 inch in thickness and $2 \frac{1}{2}$ inches wide are fastened to each inner wall of the case, eight in all, as shown in the cut. These cleats extend from the bottom to within 4 inches of the top and to them is fastened galvanized iron wire screen of $\frac{1}{4}$-inch mesh, thus forming a space about $2 \frac{1}{2}$ inches wide extending from the bottom of the case to within 4 inches of the top between the galranized iron lining and the wire mesh, which is filled with chopped ice when the case is in use. Thin strips of wood are tacked orer the wire mesh at the points of contact with the cleats. These serve to hold the wire mesh in place and facilitate the placing or the removal of the egg trays.

The remaining space in the center of the case is devoted to the egg trays. These are frames 14 inches square, made of five-eighth by three-eighth inch strips halved together at the corners and covered with linen scrim firmly stretched and securely tacked to the frames. The space prorided will accommodate 15 such trays, learing a space of 4 inches above for an ice tray. This is of galvanized iron 21 inches square by 4 meshes deep and occupies the entire space above the ice chambers and egg trays. The bottom of this tray has a double row of one-eighth inch perforations along each side, permitting drainage from melting ice down through the ice chambers and not over the egg trays. To the bottom of the egg tray compartment are fastened half-inch cleats, which hold the egg trays that distance from the bottom. The trays are intended to carry eggs in a double layer, and the case has a capacity for between 150,000 and 160,000 brook trout eggs, or more, according to their size.

TRANSFORTATION OF GREEN EGGS.

While the transportation of green trout eggs can not be recommended, it is sometimes necessary, and with great care it can be accomplished successfully provided the shipping destination is not more than 48 hours distant. The eggs should not be packed until they are thoroughly water-hardened, which will be within a few hours after stripping if they are maintained at a temperature of 48 to $55^{\circ} \mathrm{F}$. Moderate success has been attained in shipping young eggs on trays, but ordinary fruit jars are probably best adapted to the purpose, and this is the form of container in general use. The jars are first filled with water and the eggs are poured in gently in sufficient quantity to replace about three-fourths of it. They are then sealed and packed in dry moss to guard against changes in temperature.

A satisfactory method of shipping green brook-trout eggs has been developed at the Rocky Mountain trout stations of the bureau. This
method involves the use of a case of suitable size, with the usual provision for insulation and ice-hopper. The trays are divided into compartments or pockets 2 to 4 inches deep into which the eggs, wrapped in cheesecloth or mosquito bar, are placed. The dimensions of this type of case used at the Leadville (Colo.) station are $15 \frac{1}{2}$ by 22 by $13 \frac{3}{3}$ inches deep, outside measure. Each case contains four trays $8 \frac{1}{4}$ by $19 \frac{1}{2}$ inches and $2 \frac{1}{2}$ inches deep. These are divided by cross partitions into three pockets 6 by $7 \frac{5}{8}$ inches, with an ice hopper 11 by $19 \frac{1}{2}$ inches and $2 \frac{1}{2}$ inches deep. Such a case will carry from 100,000 to 150,000 eggs.

The superintendent of the Springville (Utah) station has described a method of packing the green eggs as follows:

In putting the eggs on the hatching trays at the field station a 2 -quart dipper is filled with water and orer it is laid a piece of mosquito netting or cheesecloth about 18 inches square. Into this a measured lot of eggs-enough to fill one pocket in the shipping tray, between 20 and 30 ounces-is poured. The cloth is then lifted by the four corners and deposited, with the eggs, on the hatching tray. Here they remain until the time for shipment arrives. In shipping, wet moss is first placed on the bottom of each pocket, the shipping tray is submerged in water, and the eggs are lifted from the hatching tray as described and deposited thereon, a light layer of moss being placed on top. If desirable, the eggs may be shipped as soon as "water hardening" is completed.

INCUBATION OF TIIE EGGS.

When eggs are received from a collecting station or other source, their temperature is compared with that of the water in the hatchery, and before installing them in the troughs any wide difference is equalized by slowly adding and pouring off the hatchery water in small amounts. A quantity of the eggs, sufficient to register at the 32 -ounce mark, is poured into a graduate full of water. The eggs are settled together by shaking the graduate, and enough are added to make up the deficiency thus caused. One such measure is placed on each tray, and any remainder is put into another tray to comprise a broken lot. As soon as it is convenient to count 32 fluid ounces of the eggs and ascertain the number contained in each tray, those in the broken lot are drawn upon and counted into the separate trays until the count of each is the eren number decided upon for a tray unit. Owing to variation in the size of the cggs this may be any number from 10,000 to 15,000 .

The incubation of the eggs beyond the eyed stage does not differ materially from the eying process. While the equipment at different stations varies somewhat to meet local conditions, the general principles of the work are the same. From this time on the care of the eggs consists in removing the dead ones and keeping the good ones free of silt, which is dislodged by raising the tray slightly and settling it back into place. In the event that the eggs become very dirty they may be removed from the trays or baskets, cleaned as described on page 24, and then returned to the trays. The fry are hatched in the troughs in which the eggs are incubated and are retained there until ready for distribution. The original number of eggs in each receptacle is maintained by the systematic daily addition of eggs from the broken lots to make up for any losses that may occur.

Fig. j.-Interior of St. Johnsbury station.
\llcorner

CARE OF THE FRY.

With the approach of the hatching period great care must be taken to guard against the clogging of outlet screens by accumulations of eggshells. As the eggs hatch the fry drop through the trays to the bottom of the troughs and remain there during the sac stage, which varies in length from 25 days in water with a temperature of 50° to 50 days in a water temperature of 33° to 35°. As the young fish develop they will show a tendency to congregate near the head of the trough. To guard against suffocation of the fry, the troughs should be subdivided into compartments by the insertion of screens. The use of baskets for the retention of the fry also obviates this difficulty.

PLANTING THE FRY.

When the weight of the yolk sac has diminished sufficiently to permit the fish to rise in the water, they begin taking food, and under normal conditions are feeding freely by the time the sac has entirely disappeared. When very young fry are transferred to open waters, where there is natural food only, the planting should be done 8 or 10 days before the sac is entirely absorbed, for if delayed till after the sac disappears many will die before they become accustomed to finding food in their new environment. Very good results may be expected from the planting of fry if they are properly handled and carefully deposited in small spring-fed tributaries not frequented by larger fish.

Brook-trout fry are usually transported in ordinary round-shouldered milk cans of 10 gallons' capacity, the number of fish per can depending entirely upon the temperature of the water in which they have been held, the distance they are to be carried, and the facilities for taking care of them en route, such as opportunities for changing the water, supplying fresh ice, etc. From the fact that water absorbs air more rapidly at a low temperature it can readily be seen that more fish can be transported per can when the water is cold. However, trout may not be subjected to great and sudden changes with safety, and it is not wise to lower the temperature in the transportation cans more than 10° below that of the water in which they have been carried in the hatchery. In making trips of from 5 to 10 hours' duration between 2,500 and 3,000 fry may be carried in each can if the temperature of the water is not above 50°, but where they are to be on the road more than one day it is not safe to carry more than 1,500 per can.

The distribution work of the Bureau of Fisheries is accomplished mainly by means of cars especially built for the purpose and equipped with pumps for forcing air currents through the cans in which the fish are carried. Small shipments, however, are made by a special messenger in a baggage car, the railway companies usually offering every available opportunity for securing fresh supplies of water and ice. In the case of public plants, the fish upon arrival at the railway point nearest their destination are transported to the stream where they are to be planted and liberated in small lots in different places where there is shallow water and a good bottom or
in small spring-fed tributaries when possible. Where deliveries of fish are to be made to individuals or organizations on formal application, the applicant is expected to meet the shipment at the railroad station and effect the necessary arrangements for their final planting. The demand for fingerling fish for stocking streams far exceeds the available supply.

The methods outlined on page 47 for handling fry may be applied advantageously to brook trout, and where it is necessary to economize, either in space or in the flow of water, the fry may be carried through the sac stage on trays stacked one above another in the trough compartments as is done with the eggs. In employing this method it is customary to transfer the eggs from the hatching trays to trays similar in size but covered with wire cloth 16 meshes to the inch just prior to the time of hatching. The more open mesh is desirable during the incubation period, as it gives a freer circulation of water, but the smaller mesh must be used to hold the fry successfully. This method of carrying fry is practiced extensively in fish-cultural operations addressed to such important commercial species as the Pacific-coast salmons and the lake trout of the Great Lakes.

REARING AND FEEDING.

If the fry are to be reared for breeding, one week before the food sac is absorbed they should be changed from the trays to a large pan and removed to the rearing troughs. Gravel may be used in these troughs, but in general practice it is undesirable, as the unconsumed food works down into it and, becoming fungussed there, causes a great spread of disease and increases the labor of caring for the fish.

Trout firy are ready to be fed regulariy when they rise to minute particles of food thrown upon the water. The time and frequency of feeding young fish, the kind of food, and the manner of feeding them are of the utmost importance. A difference of opinion exists among fish-culturists as to how often young trout should be fed, but the majority is in favor of feeding them from five to six times a day until they are a few weeks old and after that giving them larger quantities of food at less frequent intervals. Only such an amount as the fish will eat readily at one time should be spread upon the surface of the water with a feather until they are accustomed to taking it.

While various foods have been fed more or less successfully, it is beliered that beef heart and beef liver give better results than any artificial food, and their preparation is very simple. A less expensive and very satisfactory substitute is beef melts or spleen. The meat is first ground fine by running it through a meat chopper several times, using a plate with perforations five sixty-fourths of an inch in diameter, a little water is added, and the meat beaten to give it the proper consistency. An egg beater is used by some fish-cuIturists in preparing the food. The finely ground meat is placed in a deep pan, with sufficient water to bring it to the proper consistency, and then thoroughly mixed with the egg beater. This removes practically all the small particles of connective tissue and muscle which ordinarly pass through the finest plate of the meat chopper and cause trouble by clogging the screens and fouling the troughs.

The introduction of beef liver into the troughs causes a milky discoloration of the water. This may be overcome, however, by washing the prepared material before giving it to the fish. The washing process is accomplished by introducing a stream of water into the vessel containing the meat, which is screened to prevent loss of the food, and allowing the milky substance to escape with the overflow. This treatment does not in any way lessen the nutritive value of the food.

At this stage the young fish hare such a precarious hold upon life that too much attention can not be given to their care. Not more than 20,000 can be held with success in a feeding or rearing trough, and a constant circulation of water through the troughs must be kept up to prevent disease, while the fish should be properly thinned out in order to prevent loss by suffocation when they increase in size. About 3 to 5 gallons of water per minute are sufficient for 20,000 fry, although this quantity must be increased as the fish grow stronger and are able to breast a heavier current.

In the spring when the water begins to grow warm the fish require more room than the feeding troughs afford and it is necessary to transfer them to other troughs or ponds. At some of the Federal hatcheries the young trout are held in troughs or nursery ponds until they attain a length of 3 or 4 inches before they are distributed. It has been demonstrated that raceways arranged as described on page 31 possess many advantages over troughs for the rearing of such fish. Among the most successful rearing ponds are those from 5 to 8 feet wide and not more than 100 feet in length, modeled after the ponds described on page 37. A water supply of about 200 gallons per minute and having a temperature of between 48 and 55° is desirable. Ponds of such shape and dimensions may be constructed with natural earth sides from the top of the bank to the water's edge and of cement from the water level to the bottom. The bottoms, with the exception of a feeding area of cement near the outlet, are of gravel. A rearing pond 5 by 20 feet, having a gravel bottom and a flow of not less than 50 gallons of water per minute, will accommodate from 10,000 to 20,000 fry till midsummer, when the number must be reduced to not more than 5,000 . A raceway 4 feet wide and 100 feet long, with a strong current, will carry 100,000 fry, and as the fish develop the number can be reduced and the surplus distributed in other waters or shipped.

At this stage they are usually fed at regular intervals three times a day, and, as they do not take food readily during the first few days, a great deal of patience is necessary in their treatment and care must be taken to see that no unconsumed portions are allowed to remain at the bottom of the pond and pollute the water. At this time the food should be given in small amounts, and considerable time should be taken to see that it is properly administered. Three-fourths of an hour is not too long for feeding 5,000 fry. The time occupied in feeding should be diminished and the amount of food increased according to the judgment of the fish-culturist as the fish grow older, but their appetites should never be completely satisfied.

By early winter all fish reserved for brood stock should have attained a length of from 3 to 5 inches. If they have been held in troughs or small ponds, arrangements should be made for their transfer to more commodious quarters. A breeding pond 20 feet by 75 feet
will accommodate 10,000 yearlings, 5,000 2 -year-olds, and about 3,000 from 3 to 5 years old, though much better results will be attained with half this number. The water supply should be from 100 to 150 gallons per minute. For adult fish the pond may be any size from 1 acre up to 20 acres or more, provided it has a very large water supply entering at one end and flowing through its longest dimension to an outlet. A 20 -acre pond should have a flow of 5,000 to 10,000 gallons of water per minute for best results. A raceway or channel should be arranged where the water enters the pond, with a trap to catch the spawning fish as they try to ascend the stream.

Less care is required in the preparation of food for adult trout. It may be given to them in pieces half an inch in diameter, may consist of almost any kind of raw meat or fish, and the flesh may be mixed with cooked mush made of a low grade of flour. Meat meal and fish meal in combination with meat and flour also have been used successfully.

DISTRIBUTION OF FINGERLINGS.

Fish which have attained a length of 1 inch are termed "fingerlings No. 1 "; those which are $1 \frac{1}{2}$ inches long are designated as "fingerlings No. $1 \frac{1}{2}$ ", and so on. Small fingerlings are distributed from the eastern hatcheries in May and June and at a later period in the west. Larger fingerlings are sent out in the autumn. Assignments of fingerling fish are necessarily much smaller than assignments of fry. In shipping fingerlings No. 1 to No. 2 the number carried in a can ranges from 500 to 1,000 , the actual number varying with weather conditions and the length of the trip to be made. Not over 200 No. 3 fingerlings can be safely carried in a $10-$ gallon can, even under the most favorable conditions.

EGGS FROM COMMERCIAL HATCHERIES.

The collections of brook-trout spawn from wild fish, even when supplemented by eggs taken from brood fish under domestication, are totally inadequate to meet the present demand for eggs of that species, and but for the supply resulting from the raising of trout for the market by commercial fish-culturists the production of this fish would be curtailed considerably. The business of growing trout for the market was undertaken in this country more than half a century ago, but within the past 20 years it has developed so rapidly that it is now an industry of considerable importance.

The main object of the private hatchery usually is the production of adult trout. The eggs, which, as a rule, are stripped from the fish just prior to marketing, are a secondary consideration. As New York and Boston are the best markets for the fish, it is natural that the most successful commercial hatcheries in the east should be located within easy reach of those cities.

The methods followed by private plants in handling eggs and fry during the early stages of development do not differ materially from those employed at the Federal and State hatcheries. As the end in view is not the same, however, there is necessarily some variation in the treatment of the fish beyond the fry stage.

At some of the commercial establishments ponds more or less irregular in size and shape are used for rearing, but, as a rule, the growing fish are held in long narrow raceways, some of them half

Fig. 6.-Commercial trout farm, West Buxton, Me.

Fig. 7.-Section of a raceway, commercial trout farm, West Buxton, Me.
a mile or more in length, though never more than 8 feet wide and with a water depth rarely exceeding 2 feet. Where there is an abundant supply of water a strong current flows through the raceways, sometimes broken at short intervals by partition boards extending half way from the surface of the water to the bottom, with openings somewhat narrower than the raceway. The refuse swept downstream by the current and the actions of the fish is deposited in the eddies formed above these riffles and may be removed easily. If the fish are uniform in size, no screens are placed between the compartments formed by the partitions, but if different sizes are carried in the same race screens form the partitions. Usually the upper sections of the raceways are screened for retaining the fry and the lower sections are used for holding the larger fish. As soon as the fry in the hatching troughs begin to take food freely they are transferred to the raceways and fed systematically.

While such packing-house products as the livers, hearts, melts, and lungs of cattle, hogs, or sheep form the principal food, quantities of small waste fish, especially small herrings, are utilized at hatcheries located in the vicinity of the New England coast fisheries.

The tront market demands fish known as "thirds," "quarters," and "fifths," designations for fish running, respectively, 3, 4, and 5 to the pound. Many of the fish attain these sizes by the time they are 20 months old, at which age they produce their first eggs. After taking the spawn the fish are again placed in the raceways or in special ponds or pools and fed all they will eat until they are in proper condition for marketing, when they command 50 to 60 cents per pound, net.

Some commercial fish culturists raise fish especially for an egg supply, holding them in ponds until they weigh from 2 to 3 pounds. Such fish yield eggs of better quality than are usually obtained from fish spawning for the first time, especially if a certain amount of natural food is available in the ponds in which they are kept.

The eggs produced in 1922 by commercial establishments were sold at from $\$ 1$ to $\$ 1.50$ per thousand, depending upon their quality and the number contracted for. As a rule, eggs are purchased subject to their condition upon receipt, and it is generally stipulated that they shall be shipped as soon as they have reached the stage when infertile eggs can be removed. Consignments of eggs that are very near the point of hatching upon arrival at their destination are likely to suffer heavy loss both in the egg and in the fry stage.

RAINBOW TROUT. ${ }^{7}$

The following discussion relates to the rainbow trout, which has received the attention of fish-culturists throughout the country. The earliest work along this line was concerned with the rainbow trout of the McCloud River and later was extended to include the trout of the Klamath River basin. Subsequently eggs of the steelhead from the Rogue River in Oregon and certain streams in Washington were shipped east, and in many instances the fish resulting therefrom have been distributed in public waters under the name of

[^35]
rainbow or have been included in brood stocks at the various hatcheries, Federal, State, and commercial. The technical name, Salmo shasta, is used since it appears to be the name of the trout of the McCloud River, from which the original stocks were derived.

DESCRIPTION.

The body of the rainbow trout (Salmo shasta) is comparatively short and deep and is more elongate in males than in females. The average depth is contained about three and four-fifths times in the body length. The short head, which is obtusely ridged above, is about one-fourth the total length. The mouth is smaller than in other species of Salmo, the maxillary reaching scarcely beyond the eye, which is rather large and is contained five times in the side of the head. The caudal fin is distinctly but not strongly forked. On the vomer are two irregular series of teeth. The dorsal rays number 11 and the anal 10. In the typical species there are about 135 scales in the lateral series, with 20 rows above and 20 below the lateral line. In the several subspecies the number of rows of scales along the side is from 120 to 180 . The color is variable, depending on ses, age, and character of water. Typical adult fish are bluish above, silvery on the sides, profusely and irregularly dark spotted on the back and sides, the spots extending to the vertical fins, with a red lateral band and blotches and a nearly plain belly. The searun fish are nearly plain silvery. The chief distinguishing color characteristics of the varieties are in the number and position of the spots.

RANGE AND VARIATION.

The rainbow trout is not indigenous to eastern waters. The natural home of Salmo shasta is in certain tributaries of the Sacramento River, and originally it was particularly abundant in the McCloud River, Calif. Other species of the rainbow trout (S. gilberti, etc.) occur in the upper San Joaquin River and its tributaries. S. gilberti appears to be very similar to S. shasta.

The rainbow trout is subject to considerable variation in form and color in different parts of its range. Salmo shasta has smaller scales than S. irideus, a species of steelhead trout inhabiting coastwise streams, and appears to be distinct from the Klamath River trout, which are probably either S. irideus or S. newberri. S. shasta has more than 145 scales in the lateral series, S. irideus has less than 135 , while S. newberri has about the same number as the lowest count of S. shasta. The proper classification of the so-called rainbow and steelhead series has been the cause of much discussion among ichthyologists, ${ }^{8}$ but it has no place here.

TRANSPLANTING.

The rainbow trout was introduced into eastern waters by the United States Fish Commission in 1880, but specimens of it, or its spamn, probably had been brought east by State commissions or private enterprise prior to that time. Previous to this date the State of New York had established a brood stock of trout from eggs taken in tributaries of the Sacramento River. They were known as California mountain trout (Salmo irideus). In certain streams of the East

[^36]repeated plants of rainbow trout have failed to give results, the fish apparently seeking an outlet to the sea. Whether unsuitable conditions in the streams are responsible for this failure or whether it is due to some extent to a possible cross with the anadromous steelhead is a matter for conjecture.

The theory has been held that this species would serve for stocking streams formerly inhabited by the brook trout (Salvelinus fontinatis), in which the latter no longer thrives owing to the clearing of the land at the sources of the streams, which has changed conditions in and along the waters, so that they are not agreeable to the brook trout's wild nature. It has been believed generally that the rainbow trout is adapted to warmer and deeper waters and therefore is suited to many of the now depleted streams which flow from the mountains through the cultivated lands of the valleys. This theory is disputed by Meehan, Bean, and other fish-culturists, however.

Rainbow trout, particularly the smaller sizes, differ from brook trout and other predacious fishes in that they feed principally upon worms, larve, Crustacea, and the like, and do not take readily to minnows as food. They should be planted in spring or early summer, when their natural food is abundant, as they will then grow more rapidly and become accustomed to life in the stream, and when worms, larvæ, etc., are no longer to be found their experience and size will enable them to take a minnow or anything that may present itself in the shape of food.

SIZE AND GROWTH.

The size of the rainbow trout depends upon its surroundings, the volume and temperature of the water, and the amount of food it contains. The average weight of those caught from streams in the East is probably less than a pound, but some weighing 63 pounds have been taken. In the Ozark region of Missouri they are caught weighing 5 to 10 pounds. In some of the cold mountain streams of Colorado their average weight is not more than 6 or 8 ounces, but in lakes in the same State, where the water becomes moderately warm in summer and food is plentiful, they reach 12 or 13 pounds and a length of 25 to 28 inches. In the Au Sable River, in Michigan, they attain a weight of 5 to 7 pounds. In their native streams of California they are often caught ranging from 3 to 10 pounds, but average from 1 to 2 pounds. The largest specimen ever produced in the ponds at Wytheville and fed artificially weighed $6 \frac{1}{2}$ pounds, but many others in the same ponds weighed from 1 to 3 pounds. It is possible that Salmo shasta might be more successful in the southern range of the rainbow trouts, and that "steelhead" rainbows might thrive better in the northern range.

Under favorable artificial circumstances rainbow trout hatched January 1 should absorb the yolk sac in about 30 days in a mean water temperature of $55^{\circ} \mathrm{F}$. At this time feeding begins, and if properly cared for and supplied with a sufficient amount of suitable food the young trout should attain the following sizes: 1 year old, 8 to 10 inches; 2 years old, 12 to 14 inches; 3 years old, 16 to 18 inches. In the open waters of natural lakes and streams their sizes probably would average about 2 inches less per year. They grow until they are 8 or 10 years old, the rate diminishing with age. Some grow much faster than others under the same circumstances,
but the rate of growth is largely a question of food, temperature of water, and extent of the range. In water at 55°, with plenty of food, fish 1 or 2 years old will double their size several times in a single season, while in water at 40° with limited food the growth is scarcely perceptible.

The rainbow, like the brook trout, will live in water with a comparatively high temperature if it is plentiful and running with a strong current, but sluggish and shallow water, even with a temperature of $70^{\circ} \mathrm{F}$., is dangerous for brook trout. Rainbow trout will live in warmer water than brook trout and are found in swift, rapid streams at $85^{\circ} \mathrm{F}$., especially where there is some shade, but in ponds that temperature is dangerous even with shade and a good current. In its natural condition this trout is usually found in water varying from $38^{\circ} \mathrm{F}$. in winter to $70^{\circ} \mathrm{F}$ in summer, and in selecting a site for a trout hatchery spring water with a temperature of 42° to 58° is required.

The rainbow trout is a superior game fish, a vigorous biter, and fights bravely for liberty, though in the east it is somewhat inferior to the brook trout in these respects.

PROPAGATION.

WATER SUPPLY.

The best water supply for a trout hatchery is that taken from a well-protected and deep-seated spring. The fall between the spring and the hatchery should be sufficient to permit the hatching troughs to be placed about 30 inches above the hatchery floor and to aerate the water as it enters the trough. Water obtained from a springfed stream or lake is apt to vary considerably in temperature and to carry much sediment and other foreign matter. While an open supply trough in the hatchery is somewhat unsightly and cumbersome, it seems to produce better results than a closed pipe. For a hatchery with 20 troughs a supply trough 10 inches wide and 10 inches deep, inside measurements, will carry sufficient water. A 2 -inch molasses gate with a brass face set about 3 inches above the bottom of the supply trough is the best means of regulating the flow of water to the hatchery troughs. The water should have a drop of from 10 to 12 inches as it enters the hatchery supply trough from the main conduit, and it should be further aerated as it enters the hatching troughs. For this reason the supply trough should be set about 6 inches above the top of the hatching troughs with a space of 3 or 4 inches from the ends. When local conditions will not permit such means of aeration, the water supply must be aerated as thoroughly as possible by some other means.

The main water supply at the Wytheville (Va.) hatchery is obtained from a spring such as is described above. After heavy rains the water becomes very turbid and much discolored from the yellow clay soil characteristic of the locality. At times the water supply carries sufficient sediment to smother both eggs and newly hatched fry. While this condition is not permanent, it causes much labor and a considerable loss of eggs and fish.

As the water level from the spring is about 12 feet above the water level in the hatchery supply trough, it was a comparatively easy matter to construct a settling tank and filter. The settling tank was built near the spring. Water is conducted from the spring
to the head of the tank through a 6 -inch pipe controlled by a gate valve. It enters an end compartment in the tank 4 feet wide and 20 feet long, from which it flows into a second compartment 10 feet wide and 70 feet long, returning through a similar compartment and discharging into a compartment 5 feet wide and 70 feet long. Near the lower end of this compartment is a sand filter bed 20 feet long. The water passes down through the gravel and sand and is conducted to the discharge chamber through five lines of 3 -inch tile. These drains are about 12 inches in length, with broken joints about $\frac{1}{8}$ inch apart, and they extend into bulkheads in either end of the compartment. The hatchery supply pipe is extended into this compartment and receives only water that has passed down through the filter bed, and since there is a fall of approximately 12 feet between the filter and the hatchery supply trough, this pipe carries a satisfactory head.

Arrangements are provided for cleaning the sand and gravel used as a filtering medium. To reach the filter bed, the water passes over a cement bulkhead built across the compartment. Near the bottom of this bulkhead is a 6 -inch valve whereby the water is admitted for cleaning the filter. The water used for cleaning passes up through the sand bed and discharges through a gate valve in the lower end into the waste ditch. While the water is passing up through the filter bed a rake, made by driving spikes into a 2 -inch plank, is moved back and forth, by means of a sprocket and chain, over the surface of the sand. This rake is manipulated easily by one man operating a crank on the outside. This action loosens the sediment contained in the sand and the flow of water carries it into the waste ditch. About 10 minutes' work is required, twice each day, to keep the filter in perfect working order.

To assist the percipitation of sediment and to relieve the sand filter an alum dropping device was installed between the spring and the settling tank. The alum solution is lifted by means of a hand pump to an elevated tank of 60 gallons' capacity; after remaining in this tank for 24 hours it is drawn off by means of a valve into a tank at a lower elevation. This gives a clear solution for use in the water supply. From the second tank the solution passes through a brass pipe to a copper-lined closet tank, in the bottom of which a $\frac{1}{2}$-inch sight-feed oil dropper is fitted. The float in the closet tank maintains a uniform level therein, and the solution is constantly discharged through the oil dropper into the water supply pipe. A constant rate of flow through the oil dropper is maintained- 60 gallons per 24 hours-but the strength of the solution varies in proportion to the turbidity of the water. In extreme cases a mixture of 1 part of alum to 50,000 parts of water will supply the hatchery with practically clear water. From this misture the solution is reduced to as low as 1 part of alum to 120,000 parts of water. As a rule, 4 pounds of sulphate of alumina per 24 hours, applied as described above, to each 20 gallons of water per minute used in the hatchery is sufficient to clarify the muddiest water. The untreated water carries in solution sufficient alkali to react completely with the small amount of sulphate of alumina used, leaving a sufficient amount of alkaline nitrate to prevent any "after coagulation" in the filtered water. It is doubtful if any of the alum is carried into the hatching troughs. Experiments conducted in Washington demonstrated that neither the eggs nor young

Fig. 9.-Wytheville (Va.) station hatchery.
U. S. B. F.-Doc. 955.

FIG. 10.-Spawning ponds, Wytherille (Va.) station.
fish of the rainbor trout were affected by an alum solution below a strength of 1 part of alum to 8,000 parts of water. Rainbow trout 2 inches long were held in a 1 to 20,000 solution for a period of two weeks without apparent harm.

SPAWNING PONDS.
In constructing ponds one of the first considerations is to place the fish absolutely under control, that they may be handled without delay or inconvenience. The ponds at Wytheville formerly were constructed of wood, but when they were rebuilt recently concrete was used. They are 15 by 50 feet and 3 feet 4 inches to 3 feet 6 inches deep, shaped as shown in Figure 11, page 38, and have proven very satisfactory. The length of the ponds may be increased up to 100 feet without impairing their efficiency, though the width should not exceed 12 to 15 feet. Much depends upon the rolume of water available, but ponds more than 100 feet in length are difficult to clean and care for. Excellent water circulation is obtained in all parts, there being no corners in which refuse can lodge. From the outlet the bottom has a gradual rise of 6 inches in its entire length, making it practically self-cleaning. Most of the refuse will pass off, and any remaining can be disposed of readily by lowering the water level for a short period and then flushing the pond with fresh water. This method obviates the necessity of handling the fish, an important point, especially at the approach of the spawning season.

A guard rack made of thin narrow slats is arranged on an incline of about 45°, as shown at A, Figure 11. If the water is to be used again in ponds below, a " receiver" is built underneath the bottom of the pond, at the lower end, between the foot of the guard rack and the dam boards, and the floor of the pond immediately over the receiver is cut away and fitted with a grating. This allows all waste to fall through into the receiver. From there it is washed through the sluicerray by opening the gate valve. The sluiceway, D, is of 8 -inch terra-cotta pipe and connects with a 12 -inch drain of the same material.

The pond is provided with a spawning race about 14 inches deep, 4 feet wide, and 25 feet long, placed at the upper end of the pond, as shown in Figure 11. Three division boards (shown at E), about 12 feet long and of suitable width to come within 1 or 2 inches of the surface of the water when the pond is filled, are firmly fixed at the bottom. The object of these boards is to form four entrances to the racerray, so that one or two pugnacious fish can not command the approach and keep back spawning fish inclined to enter. There is a dam across the raceway about 4 inches high for the purpose of bringing the water to that depth in the lower end, so that when trout enter the raceway they will find sufficient water in which to swim freely and not be inclined through fear to return to the pond.

At the approach of the spawning season the water level of the pond is raised to within 6 inches of the top of the dam in the raceway, which will give the fish in entering the raceway a jump of 7 inches, allowing 1 inch for the depth of water on the dam in the raceway. This distance has been found the most satisfactory, as under such conditions only spawning fish will ascend. If a jump

of less than 7 inches is provided, other fish can enter the raceway without much exertion and will ascend and disturb the breeding fish, which, when spawning, should be kept strictly by themselves.

There is no rule regarding the supply of water that applies to a spawning pond at all times and in all places. It is necessarily governed by the temperature of the water, size and shape of the pond, size of the fish to be supported, the amount of shade, and other factors. For a pond such as has been described, where water is plentiful, at least 200 gallons per minute should be provided, with not less than 75 gallons per minute as a minimum, even where the temperature is from 50 to 55° and all other conditions are favorable. While the former amount is not absolutely necessary for the support of the fish, it insures the pond being kept clean and the fish are more inclined to enter the raceway at spawning time. In order to maintain an even temperature of water, earth is banked against the sides and ends of the pond, the embankments being made broad enough on top to permit ample footway around the ponds. Such a pond can accommodate from 800 to 1,000 breeding fish. Fish must not be crowded, and in estimating the capacity of a pond several factors must be considered, such as the size of the fish, volume and temperature of water, and shade. In stocking the spawning pond a good. proportion is tro females to one male. The brood stock must be selected carefully each year, and only sound and perfect fish retained.

All pond bottoms should be cleaned frequently to prevent the accumulation of undesirable matter. A method recently devised permits the cleaning of ponds without subjecting the fish to the usual more or less protracted period of turbid water while the cleaning is in progress. About 10 feet from the intake end of the pond a cement bulkhead about 18 inches high extends into the pond from either side, leaving an opening in the center 4 feet wide. Each open end of this bulkhead is provided with slots in which boards may be inserted to complete the dam as required. In cleaning the water level is reduced and the section of the pond above the bulkhead thoroughly cleaned. The fish are then driven, by means of a seine, through the opening to the cleaned section and dam boards are inserted as described. The outlet valve is then opened and the remaining portion of the pond cleaned.

TAKING THE SPAWN.

The spawning season varies with the locality and the temperature of the water. It is usually from two to four weeks later in streams than in ponds where the fish are confined in spring water. At Wytherille the spawning fish may be found in the ponds any time after October 1 ; the season is well started by October 20, and generally closes about January 25, the height of the season being between November 1 and December 15. At the Neosho (Mo.) station the season usually begins about November 1 and extends to the 1st of March; at Manchester, Iowa, it occurs between November 15 and March 15. In California the season extends from February to May; in Montana from April 15 to June 1; and in Colorado from May to July.

The natural nests of these fish are made on gravelly bottoms and are round or elongated depressions about the size of a dinner plate.

The work of preparing the nest is performed chiefly by the male fish; upon completion the male and the female enter it together and by a rolling spasmodic tremor they deposit eggs and milt, which are brought together and mixed by agitation of the water. For a short period after they have been deposited the eggs are slightly adhesive, and during this time they absorb the impregnated water. When filled they fall apart and settle down between the gravel and stones of the nest, where they lie protected until hatched.

Under domestication the fish rarely will deposit their eggs of their own accord unless conditions are favorable. Swift, well-aerated water of suitable temperature, gravelly bottom, and a male consort seem to be necessary, although instances have been recorded where female rainbow trout have deposited their eggs on the cement bottom of the stock pond without a male fish in attendance. On the other hand, adult fish in an aquarium have been observed to make nests and apparently attempt to sparn, failing in the effort and later dying with the eggs still retained. Instances have been reported, also, where fish (rainbow trout and landlocked salmon) have been taken from native waters several months after the spawning season, apparently still retaining their full quota of eggs in the ovaries. In every case the eggs were hard and "glassy," though as far as could be observed the fish had suffered no ill-effects as a result of their umnatural condition. Under any circumstances, however, retention of the eggs beyond the spawning period is, of course, unnatural and undesirable. In practical fish-cultural operations easy access to a suitable spawning race will invariably permit the fish to spawn or to indicate that they are ready to spawn. Overlong retention of eggs undoubtedly results in "glassy "eggs, probably caused by their coming in contact with a serious ovarian exudation present in the fish under these conditions, and may also result in serious permanent injury or even death to the fish. Eggs that absorb this fluid become hard and incapable of fecundation. Similarly, freshly extruded eggs if immersed in water which lacks the male element of fecundation for even a short period become hard and "glassy."

When spawning ponds are provided with suitable raceways, the fish will ascend from the ponds into them in search of a place to nest and may then be taken out and stripped of their spawn. To remore the fish from the raceway, a square net (B, fig. 11) is dropped in on cleats bolted against the side walls in the approach, the dam in the month of the raceway is raised, and the fish driven back into the net. The net is then lifted out of the water, and if it contains too many fish to handle conveniently a landing net is used to take out part of them before the square net is moved. The ripe fish are then placed in tubs or other vessels provided for the purpose, but care should be taken not to put too many in the tub at one time, as they will become restless or sick before they can be stripped of their spawn. While being held in this way the water in the ressel should be renewed frequently.

There are two methods of taking and impregnating the spawn of fishes-the "wet" and the "dry" methods. By the wet method the eggs are taken in a pan containing sufficient water to cover them and allow them to mix freely with the milt, which is added immediately. After the contents of the pan has been stirred for a few

seconds with the hand or a feather, the eggs are set aside and left undisturbed during fertilization. The dry or "Russian " method is now in general use; the eggs and milt are taken in a moist pan, and it makes little difference which is taken first, but one should immediately follow the other, and the contents of the pan is mixed thoroughly. In freezing weather it is advisable to use two pans, one set in the other, with water in the bottom pan to prevent the eggs from being chilled.
After the eggs and milt have had time for contact and before the eggs begin to adhere to the bottom of the pan, water is added to a depth of about an inch, the eggs being kept in gentle motion by turning the pan to prevent adhesion. After 2 or 3 minutes the milt is poured off and clear water is put in the pan, in which the eggs are allowed to remain until they separate, which will be in from 15 to 45 minutes. When eggs are held in a deep vessel capable of holding several layers of eggs, those at or near the top will harden in the time indicated above, but those in the lower layers will remain soft for a much longer period. Most fish-culturists consider the temperature of the water a factor in this connection and believe that the hardening process is hastened by higher temperatures. This theory is not held by others, and as far as is known no really authentic data on the subject have been recorded. A vessel was devised at the Wytheville (Va.) station especially for holding the eggs during this period of water hardening. It consists of a 6 -quart tin bucket in which is fastened, about 1 inch above the bottom, a circular piece of perforated tin. A funnel-shaped spout, soldered to the outside of the pail, admits water between the bottom of the bucket and the perforated tin. About 4 quarts of eggs are placed in each bucket, and a small flow of water, about 1 gallon per minute, is supplied.

In taking spawn the manipulation of the fish without injury is a very delicate and exacting task, full knowledge of which can be acquired only by experience, as it is difficult to squeeze the spawn from the fish without injuring or even killing it. In taking hold of the fish in the spawning tub the operator catches it by the head with the right hand, the back of the hand being down and the nose of the fish Tell in the palm, with the fingers extending under and along each side of the fish in the direction of the tail. At the same time the fish is grasped between the dorsal and caudal fins with the left hand, the back of the hand being up. A fish caught in this way can be brought out of the water easily, and when held gently but firmly against the body will struggle only for a moment. The operator leans forward slightly, bringing the vent of the fish over the spamning pan and holding the head of the fish higher than the tail, its body at an angle of about 45°. The fish should be held well down in the pan, which is usually of 2-quart capacity, so that the eggs will not drop more than 2 inches. Some operators turn the abdomen of the fish upward with the tail bent backward. This method is not recommended, however, since the bending of the tail may cause serious injury and the eggs are subjected to a greater drop into the pan. A large fish may be held with its head under the right arm.

When the struggle is over, the hand is passed down the abdomen of the fish until a point midway between the pectoral and ventral fins
is reached, then with the thumb and the index finger the abdomen is pressed gently, and at the same time the hand is slipped toward the vent. If the eggs are ready to be taken, they will come freely and easily. If they do not come freely after the first pressure, the hand is moved toward the head of the fish and a very gentle pressure is applied to assist the natural flow of eggs until all that will come readily are obtained. Pressure should never be applied forward of the ventral fin, as even slight pressure over the vital organs is very apt to result in injury.
By this method all of the eggs that have fallen from the ovaries and are ready to be expressed will fall into the abdomen near the vent, so that it will not be necessary to press the fish again over its vital parts, the eggs having left that portion of the body. An experienced operator can tell almost at a glance whether or not a fish is in spawning condition as soon as it is lifted from the water. By grasping the fish as described, holding the head highest, if ripe eggs are in the ovaries they may be observed to roll slightly toward the rent. If this movement can not be detected, the right hand may be passed lightly down the abdomen, and if the egg mass is soft and yielding to the light touch the eggs will flow freely from the vent with but slight pressure. Examination of a large number of specimens has proven beyond doubt that serious injury, resulting in barrenness or death, is very likely to result from improper handling of fish at sparning time.
Recent studies ${ }^{9}$ tend to correct the long accepted belief that the mature eggs of trout and certain other salmonoid fishes fall loosely into the abdominal cavity and from there are extruded. As a matter of fact the ovaries of the Salmonidæ are inclosed in a delicate membrane, and the eggs are conveyed to the genital pore through an open membranous trough. The ova do not fall naturally into the abdominal cavity, and it seems probable that they can not be extruded if they are inadvertently displaced into it, and their presence there can not be advantageous to the fish.

Careless fish-cultural methods are responsible for displacing the eggs. Some of these are dipping the fish head first into a dip net, causing it to flop about, and grasping the fish by the tail and holding its head until its struggles cease. The dip net should always be large enough to permit the fish to lie extended. If the fish is ripe or partly ripe, the mass of eggs may be seen to sag toward the head, and inevitably any free eggs settle in the forward end of the abdominal cavity outside of the ova-containing membrane. It is after the stripping process has begun, however, that the danger of displacement is greatest, and particularly after some eggs have been expressed and the tenseness of the supporting abdominal wall is relaxed. Displacement is largely responsible for failure to secure all of the ripe eggs, and even though the fish may emit retained eggs later it is impossible for it to rid itself of displaced eggs.

Another disadvantage from which the fish may suffer is rupture of the membranes and injury to the ovaries from forcible pressure, so that the eggs falling into the abdominal cavity are not secured.

[^37]When injured in this way, the ovary may not recover its natural function and may become sterile. If, however, simple precautions are observed, no injury to the fish will result. As an illustration it may be mentioned that fish have been kept for 14 years and their full quota of eggs extracted each season during the egg-producing term, which is normally from 10 to 12 years. The male fish is to be treated very much in the same manner as the female, except that the milt must not be forced out, as only that which flows freely is of value.

After stripping, the fish are not returned to the spawning pond, but spent females are placed in one pond and males in another. The males are very pugnacious at this season and sometimes fight for an hour or more at a time until they are entirely exhausted; they run at each other with open mouths, lock their jaws together, and in that position sink to the bottom of the pond, where they lie for a short time, each holding the other in his grasp until rested, when they rise and resume the combat. As their teeth are abnormally long, they scar each other and even bite pieces of skin and flesh from the sides of their antagonists.

From 15 to 25 per cent of the females yield eggs the second year, about 60 per cent the third year, and from 80 to 90 per cent each season thereafter. From 10 to 15 per cent of the fully matured females are barren each season. At one time it was thought that the same individuals were barren each year, but experience has shown that such is not the case, as fish that were barren one season have been held over in a separate pond until the following year when a large proportion, if not all, produced eggs. The sterility may be the result of injuries received during the progress of spawning. The males are good breeders when 2 years old.

PRODUCTION OF EGGS.

The number of eggs produced by a fish depends upon its size and age. The maximum from one 2 -year-old fish, weighing from 6 to 12 ounces, is from 500 to 800 ; from one 6 -year-old, weighing from 2 to 4 pounds, it is 2,500 to 3,000 . The average of fish from 3 to 6 years old is 1,200 to 1,500 . The eggs vary in size from $4 \frac{1}{2}$ to 5 eggs to the linear inch, and from 300 to 360 per fluid ounce, according to the age of the fish, though in some localities larger eggs, averaging not more than 220 to 240 per fluid ounce, are not uncommon. They are of a rich cream color when first taken, changing to a pink or flesh tint before hatching. Eggs from wild fish are of a pink or salmon color, and as a rule average somewhat smaller than those from domesticated fish.

HATCHING TROUGHS AND TRAYS.

The eggs are incubated on trays placed in troughs of wood, metal. or concrete and of various shapes and sizes. Standard troughs are 14 feet long, 14 inches wide, and $8 \frac{1}{2}$ inches deep, inside measure. They are set in pairs, as shown in Figure 13, page 44. Six inches from the lower or outlet end inside is a guard screen of perforated zinc or wire mesh, fastened on a frame exactly fitted across the trough. Zinc with perforations one-sixteenth of an inch in diameter for very young fry, and larger ones as the fish increase in size, is preferable to wire cloth.

The screen is arranged to slide vertically between beveled cleats, so that it may be cleaned more readily. An iron standpipe of suitable length to give the desired water level in the trough is screwed into the discharge pipe from the inside of the trough. Each trough should be provided with two of these standpipes of different lengths, mak-

Fig. 13.-Hatching troughs, guard screen, and egg trays. A, guard sereen ; B, horizontal sliding screen; C, hatching tray; D, position of hatching trays; E, tin tray for use in muddy water ; F, block for water to fall on ; G, brackets; H, feet.
ing it possible to reduce the water level in the trough when desired for reasons which will be discussed in subsequent pages.

In the upper end of the trough a horizontal screen made of perforated tin, shown at B (fig. 13) is used. This is so constructed that it can be slipped forward or raised up (as shown in the illustration) when the fry are fed or the troughs cleaned. The water falling upon a small wooden block in the center of the screen is thoroughly aer-
ated before entering the trough. This arrangement possesses many advantages over the old method, where the screens were vertical, or nearly so, as it permits fish to ascend to the head of the trough and receive the water as it falls from the screen, which is very beneficial. Its use not only keeps the fry clean even in muddy water, but also reduces the loss of fry from suffocation in the early stages, caused by their banking around the vertical screens, and obviates the necessity for trough covers to prevent jumping, as trout rarely jump where the horizontal screen has been adopted.
The horizontal screen and deflector are exceptionally valuable where the water supply is somewhat limited, and when used with the spreaders hereafter described the fish may be held under ideal conditions. The bureau's latest troughs have a pocket at the head, followed by a screen on a frame 6 inches from the upper end. Threefourths of an inch below this is a dam board made of three-fourthinch material extending from the top of the trough to within onehalf inch of the bottom; a similar screen and dam board is placed in the middle of the trough. This system causes the current of water to pass close to the trough bottom, and a greater number of fish may be held in a trough divided in this way than otherwise. The tin spreaders, however, give the same effect; some fish-culturists are careless and do not use these until there has been a loss of fish. The young fish like to fight the current of water as it comes under the dam boards or spreaders, and it gives them exercise and good appetites.
The hatching trays, C (fig. 13), are convenient to handle and adjust in the troughs when made about twice as long as wide; that is, 28 by $13 \frac{1}{2}$ inches. The sides of the frame are made of good pine lumber, dressed, $1 \frac{1}{4}$ by $\frac{7}{8}$ inch. The ends are dressed $\frac{1}{2}$ by 1 inch and are cut into the sides to form a smooth surface on the bottom for the wire cloth. The wire used on the trays is woven with eight threads to the inch, with a mesh seven-eighths inch long, and should be well galvanized after it is woven in order to prevent rusting at the laps. The inside of the troughs, the egg trays, and all other equipment used in the trough are given a coating of asphaltum, thinned with turpentine, prior to use and each successive season thereafter. This acts not only as a preventative of rust and decay, but aids materially in keeping the trough and fittings in a sanitary condition.

Four hatching trays are placed in each trough and secured by keys or wedges and should be from 1 to 2 inches lower at the end next to the head of the trough, as shown at D, D, D, D (fig. 13). When so placed, a tray will hold from 14,000 to 16,000 eggs of average size. Muddy water during the hatching season necessitates the use of a perforated tin tray 32 inches long and $13 \frac{3}{4}$ inches wide, with perforations one-tenth of an inch in diameter in the bottom (shown at E, fig. 13). This rests on feet inside the trough, 1 inch above the bottom. The hatching tray containing the eggs is placed inside and rests on brackets shown at G. As they hatch the fish fall from the hatching tray upon the perforated bottom of the tin tray and by their movements work the sediment through so that they are left on a clean bottom and are in no danger of smothering. The tin trays are useful, also, in counting fish or for holding small lots of different
species in the same trough. Where supplementary trays are not used the fry fall directly into the troughs.

A trough 14 feet long will carry 56,000 eggs safely on four hatching trays in a single row, 14,000 eggs to the tray, but if it is necessary to make more room a double row of trays may be put in, one tray resting on top of the other. Thus the trough could contain 112,000 eggs as its full capacity. By inclining the trays as described above a trough will carry this number up to the time of hatching.

When the hatching stage arrives, two trays of 14,000 eggs each are as many as should be left in one trough. With this number, by using the horizontal sliding screen in the upper end and several spreaders in the body of the trough at intervals of 2 or 3 feet, there is but little danger of the alevins congregating and smothering in any part of the trough. If it is necessary to hatch a much larger number of fry in one trough, the sliding screen should be so arranged that the water will fall well up toward or nearly against the end of the trough. This is done by raising the screen and turning it back against the supply trough. When danger from smothering has passed, the screen is again laid flat.

The spreaders are tin strips about 4 inches wide and 2 inches longer than the width of the trough, and when placed in the trough they are bowed toward the upper end, their excess length giving this effect. Three "feet " made of six penny finished nails are soldered to the bottom, giving the spreader a half-inch clearance above the bottom of the trough while the top extends just above the water level. The current created by this device near the bottom of the trough prevents the fry from congregating-a natural tendency-and serves to keep them well spread on the bottom.

The amount of water required for hatching and rearing depends upon its temperature and the manner in which it is applied. It should receive as much aeration as possible before entering the troughs or ponds containing eggs or fish. At the Wytheville (Va.) station each molasses gate in the supply trough furnishes water for two hatching troughs so placed that the water from the trough nearest the supply falls about 8 inches as it enters the trough below. In cleaning the higher troughs it is important that the plugs near the outlet end be removed in order that any refuse may pass directly into the drainage pipes. Under this arrangement eggs or fish in the lower troughs develop and thrive equally with those receiving water directly from the supply trough.

The volume of water at a mean temperature of $53^{\circ} \mathrm{F}$. generally used in the troughs at this station, with their capacity for eggs and young fish of varying sizes, is indicated in the following statement. The figures given are for two troughs set end to end and supplied with water from one gate as described above:
Capacity of troughs : Gallons per minute.
112,000 eggs $3 \frac{1}{2}-4$
56,000 fry, up to feeding stage 5
40,000 fingerlings, No. 1 to $1 \frac{1}{2}$ 5
30,000 fingerlings, No. $1 \frac{1}{2}$ to 2 7
20,000 fingerlings, No. 2 to $2 \frac{1}{2}$ 8
10.000 fingerlings, No. $2 \frac{1}{2}$ to 3 S
6,000 fingerlings, No. 3 to 4 S

Fig. 14.-Care of eggs and fry.

Fig. 15.-Rearing ponds, Wytheville (Va.) station.

The riffle ponds, 50 feet long by 5 feet wide (fig. 16, p. 48), carrying 40,000 No. 1 fingerling fish, receive from 20 to 40 gallons of water per minute. Yearlings and older fish in the brood or rearing ponds receive from 200 to 500 gallons of water per minute. A strong current of water is desirable in both the troughs and ponds, as it necessitates constant activity on the part of the fish, producing stronger fish than can be obtained in more sluggish water. The volume of water given here for fingerlings No. 1 and larger may be reduced without material disadvantage if the water temperature does not exceed 54°, but where water is plentiful and there is no need to economize in its use the amounts given can be used advantageously. In rearing ponds more water is required, as the circulation is not so good, and the outdoor exposure causes the temperature of the water to rise.

CARE OF EGGS AND FRY.

After the eggs are placed on the trays the only attention necessary until hatching begins is to keep them clean; dead eggs, which may be known by their turning white, must be picked out at least once each day. After the eyespot is plainly visible it is well to run a feather through the eggs for the purpose of changing their position on the trays and to disclose any dead eggs or foreign matter that may be hidden underneath. The greatest care should be exercised in handling the eggs at any time to aroid injuring them, especially from the first or second day after collection until the eyespots appear, and then only when absolutely necessary. During this period the eggs are very delicate and they should not be disturbed except to carefully remove the dead ones. This may be accomplished with wooden or metallic tweezers. A moderate amount of sediment has no harmful effect, since it covers one side of the eggs only. In cases where sediment is deposited on the eggs in sufficient quantity to solidify the mass and thus impair water circulation, the tray may be shaken gently, keeping the eggs well submerged during the operation.

In a. water temperature of 53° the eyespots appear in about 13 days and at this time the eggs should be feathered carefully. In water of this temperature hatching occurs in from 35 to 38 days. A higher temperature shortens the incubation period, while a lower temperature lengthens it. As a rule, the best results are obtained in temperatures from 48 to 54°. A lower temperature prolongs the incubation period unduly, while higher temperature encourages the growth of fungus.

After the fry hatch they require but little attention until the umbilical sac is absorbed and the time for feeding arrives. They are examined daily and the dead fish and decayed matter removed from the troughs, which must be kept perfectly clean to keep the fish in healthy condition. As the fish grow they should be thinned out in the troughs from time to time as their size may require. When they first begin to feed, 20,000 to 25,000 fish per trough are not too many, but when they have attained a length of $1 \frac{1}{2}$ inches the number should be reduced to not more than 15,000 , while from 3,000 to 4,000 three-inch fish are as many as one trough will accommodate advan-
tageously. It is advisable to give them as much room as is practicable and to provide exercise for them several hours each day by lowering the water level in the troughs to a depth of about 1 inch. The extra overflow pipe previously mentioned is used for this purpose.

REARING PONDS.

Ponds for rearing trout from fry to fingerlings should be from 4 to 8 feet wide and of any desired length up to 60 feet, which, for convenience in drawing off the water and feeding the fish, is about the extreme limit. Between the advanced fry and No. $1 \frac{1}{2}$ fingerling stages it is of the utmost importance that the fish have several hours of exercise each day. This can be provided for best by having the bottom of the pond perfectly level across its width but with a slope of about three-fourths of an inch to each 5 or 6 feet from the head of the pond to the foot, with riffles 1 inch high at intervals (fig. 16, p. 48). There should be a sufficient water supply to allow the riffles to work effectively, and this will be evident from the formation of water beads and air bubbles immediately beneath them. When the water is drawn down to exercise the fish, it should be about $1 \frac{1}{4}$ inches deep above the riffle and one-half of an inch deep below the riffle. It is very important that the pond have ample screen surface, otherwise the water will dam and destroy the effectiveness of the riffles. The screen may be placed vertically or inclined, and where it is possible a horizontal screen from 10 to 12 inches wide should be placed level with the bottom of the pond in front of the vertical or inclined screen, with a pit underneath for the reception of excrement. This insures an even depth of water in the pond and affords an effective means of ridding it of waste matter, which must be flushed out of the pit every few days to guard against pollution. Under such an arrangement the water supply enters the pond at the shallow end and discharges at the opposite end at a point several inches below the bottom of the pond. A successful means of preventing the fish from entering the supply pipe is shown in Figure 16, page 48.

STOCKING THE RIFFLE POND.

A pond 60 feet long and 5 feet wide will safely carry from 30,000 to 40,000 fish of No. 1 to No. 3 fingerling size. Larger ponds may be stocked with a proportionately larger number of fish. One-fourth of the pond area should be shaded with a frame made of 1 by $2 \frac{1}{2}-$ inch strips over which 2 -inch poultry wire is stretched and then covered with tarred roofing paper. This makes a cheap and satisfactory cover, and with proper care it will last through several seasons.

Young fish in a riffle pond may be easily trained to take food. Simply break up the material into small particles and allow it to enter the pond with the water. As it passes over the riffles the fish will seize it, and after having been fed a few times in this way the food may be given to them by the usual method when the pond is filled with water.
Srand Pipe Droin

FIG. 16.-Plan of Seagle riflle rearing pond for trout.

FOOD.

Beef or sheep heart ground or chopped to a pulp seems to be the most satisfactory artificial food for young trout. Second to this in value is sheep liver, which is drier and more granular than beef liver, and it can be used to good advantage for the first two or three months or until the fish are large enough to thrive on a mixed diet. European fish-culturists have achieved at least partial success in producing a natural or living food, such as insect larvæ and small crustaceans, for artifically reared trout, ${ }^{10}$ but nothing better than the meats mentioned has been found.

The proper method of feeding young fry should be understood thoroughly, as the losses resulting from improper feeding are frequently great. If there is undue haste, the water becomes polluted or the food is so distributed that some fish do not receive their share. Polluted water is very injurious to the young fish, sometimes causing inflammation of the gills and other ailments, which often result in heavy mortality. It may also produce .undersized fish.

The fry are ready to take food as soon as the sac is absorbed, the time required for this depending upon the rate of growth, which is governed by the temperature of the water. In a uniform temperature of 53° they will take food in about 30 days after hatching, and the time to begin feeding may be closely estimated by observing the movements of the fish.

It is preferable to feed artificially reared rainbow trout on meat entirely if it is plentiful and cheap; otherwise a combination of liver and mush will give satisfaction. The mush is made by stirring wheat shorts or middlings in boiling water and cooking it until the misture becomes thick. After the mush is thoroughly cool the finely ground heart or liver is added, the proportion usually being 20 to 25 per cent mush to 75 or 80 per cent meat. In some localities rye shorts are obtainable in better grades than wheat shorts and at a lower price, and the rye seems to be quite satisfactory as food for the young fish. Enough of the mush for several feedings may be made at one time, as it keeps well in a cool place, but the meat should not be added at one time, but only as needed.

Before the sac is entirely absorbed the school of fry at the bottom of the trough will begin to break up and scatter through the water, rising higher from the bottom each day until they can balance themselves gracefully in a horizontal position, all of them heading against the current and swimming well up in the water. By dropping small bits of cork or prepared food on the surface of the water it can be determined if they are ready for food. If they strike at the pieces as the current carries them down, it is evident that they are hungry.

The food is prepared by chopping it very fine and mixing it with water, in order that it may be distributed evenly. It should be given to the fish by dipping a feather into the food and gently

[^38]skimming it over the surface of the water. After the fish have grown to be $1 \frac{1}{4}$ to $1 \frac{1}{2}$ inches long, they begin to take food that settles on the bottom of the trough, and it may then be given with a spoon. The young fry are fed five times a day, the food being given slowly and sparingly. After they learn to take their food from the bottom of the trough it is necessary to feed them only three times a day, but the amount given at each meal must be increased. Fish that are being fed artificially should not be carried in troughs that overflow into other troughs containing eggs or newly hatched fry, as particles of food will pass through the screen and cause trouble.

When the fish are first fed, the meat is prepared very carefully. The liver is usually "skinned" and all fat and connecting tissue removed from the heart. It is then passed through the finest plate of a meat chopper several times. These machines are provided with plates having holes from one-twelfth to one-half inch in diameter, so that the meat can be prepared fine or coarse, according to the size of the fish to be fed. At the bureau's stations the Enterprise food chopper No. 42 , driven by a two or three horsepower gasoline engine, is employed.

The practice of throwing food into the pond by handfuls is entirely wrong, as it causes the fish to rush together violently, with open mouths, struggling to get a bite of food. They often hurt each other and injure one another's eyes, sometimes even plucking them from their sockets. This is probably one of the main causes of blindness among pond-fed fish.

The most approved method of feeding is to walk along the entire length of the pond to the upper end and then scatter a handful of food along the surface of the water so that it will fall to pieces. The fish quickly learn to follow and take up the food and then return to watch for the next handful. The operation is repeated until sufficient food has been given. This method of feeding induces all the fish to head in the same direction while eating, thus reducing the danger of injury.

The proper amount of food for a given number of trout depends upon their size, the temperature of the water, and to some extent on the kinds of food used. More food is required when the water temperature is comparatively high than when it is low. With water from 50 to $60^{\circ} \mathrm{F}$. and food consisting of meat and wheat or rye mush, as described, the following daily ration for 1,000 fish will be found to be approximately right: Fingerlings, 3 to 5 inches long, 2 to 3 pounds per day; yearlings, 8 to 12 inches long, 4 to 8 pounds per day; adults, 8 pounds per day.

As the fish increase in size the amount of food should be increased proportionately and the number of feedings per day reduced until at the yearling stage they should receive food only in the morning and evening at regular hours. Some fish-culturists find one feeding per day satisfactory for year-old and older fish. In the table below are indicated the kind and amount of food per month per 1,000 rainbow trout of different sizes at some of the bureau's stations.

Table 2.-Kind of food fed and amount required for 1,000 rainbow trout of various sizes.

Station.	Size of fish.	Kinds of food.					Mean water temperature.
		Beef heart.	Beef liver.	Sheep liver.	Mush.	Fresh fish.	
Wytheville, Va.....	Fingerlings No. $3 .$.	Lbs.$\ldots \ldots . . .12$2727	Lbs. 342660	Lbs.	Lbs. ${ }_{21}$	Lbs.	${ }^{\circ} \mathrm{F} .{ }_{52}$
	Adults				120		
Neosho, Mo........	Fingerlings No. $3 . .$.			105	157		58
Springville, Utah...	A Yearlings	31		130	150 25		53
	Adults.	27			183	860	

PREPARING EGGS FOR SHIPMENT.

Trout eggs are in condition to bear transportation when they have developed sufficiently to show the eyespots but are not too old to reach their destination before the time for hatching. Allowance is made for changes in temperature on the road that would cause them to hatch too soon. Best results are obtained by selecting eggs after they have reached the "tender" stage, or when the eyespots are first discernible by holding the egg up to the light. Twenty-four hours in advance of shipment the eggs selected are transferred from the trays to pans or buckets. They are thoroughly washed with a stream of water of sufficient force to cause some agitation among them or by stirring them with a feather brush. This treatment not only removes all sediment from the eggs but causes all infertile eggs, which up to this time may have retained the color of good ones, to turn white and thus facilitates their removal. Unless this is done infertile eggs are very likely to get into the shipment. The eggs are then accurately weighed or measured (1 ounce may be weighed and counted or the eggs for one tray counted and then weighed), and the total number needed may be estimated from the result thus obtained.

To facilitate the work of packing the trays are sometimes placed in a trough in which there is no current of water and the eggs poured on them from the graduate or measure. The trays are then shaken gently to settle the eggs evenly into place. If trough room is not a vailable, a tub of water may be used. All trays and moss should be soaked in cold water for several hours previous to use, and when dry moss is used it is well to expose it to frost. If this is not practicable, shaved ice may be sprinkled through it. It is also desirable that the packing be done in a room with a low temperature.

PACKING EGGS FOR SHIPMENT.

The method of packing trout eggs on deep trays with a cushion of wet sphagnum moss over each tray is no longer practiced to any great extent with rainbow trout. The egg tray now in use has a cheesecloth or linen scrim bottom, it is about three-sixteenths of an inch thick, has a depth varying with the diameter of the eggs to be shipped, and has such other dimensions as may be required. For shipping 50,000 eggs 25 trays are used; for 100,000 eggs 33 trays, and so on,
each tray being proportioned to contain its quota of eggs, reckoning 25 eggs to a square inch of tray surface one layer deep in the shallow trays, as shown in Figure 17 on this page.

After the trays have been filled with eggs they are placed one on top of another in stacks of from five to eight trays, and in order to keep the eggs moist a tray of the same dimensions but three-fourths

Fig. 17.-Plan of Seagle egg-shipping case.
of an inch deep is packed with wet moss and fastened on top of the stack with strong wrapping twine. First, a tray of moss is placed in the bottom of the shipping case, serving as a foundation for the trays containing eggs, then the stack of egg trays is placed on top of this and another tray of moss is set on top of the stack.
The outside shipping case has double side walls, with $1 \frac{1}{4}$-inch compressed cork insulation between, extending up as far as the ice chamber, which occupies about 4 inches at the top of the case. In-
side of the case, around the sides, and at the bottom of the stack of trays, is a one-half-inch air space, the air entering through four holes bored through the walls, one on either side near the bottom, one at the front, and one at the back under the ice pan. The case is provided with strong iron handles, and the lid is put on with four hinge hasps with drop fastenings, these being more satisfactory than common hinges.

The trays of eggs are held in place by V -shaped grooves formed by nailing cleats of suitable size in the corners of the case and are supported by four small blocks nailed to the bottom in the corners. Covering the bottom of the case and extending up 1 inch on all sides is a lining of tin, and through the center of the bottom is the drain tube. The ice pan, of galvanized iron and about 4 inches deep, fits the inside of the case. Its bottom is perforated to correspond with the inside dimensions of the egg trays, so that water from the melting ice contained in the pan must pass downward through the trays of eggs and escape through the tube at the bottom of the case.

After arranging the stacks of egg trays in the case the ice pan is set in position over them, filled with broken ice, and covered with a piece of oilcloth. A cushion or pillow of dry sphagnum moss is fitted into the space between the ice and the lid of the case; the lid is then closed and the eggs are ready for shipment.

DISTRIBUTING AND PLANTING FRY AND FINGERLINGS.

Rainbow trout from the bureau's hatcheries are distributed to applicants either as advanced fry immediately preceding the feeding stage or as fingerlings, after two or three months of artificial feeding. They may, however, be planted successfully at any time after the absorption of the yolk sac in waters where conditions are favorable. In the Southern States the best time for planting is the middle of March. In the more Northern States the springfed streams and open lakes are usually in condition to receive plants of fish in April. In any locality where the new green of the meadows and woods indicates the advent of spring the young fish may be safely planted. In their natural habitat the rainbows spawn during the early spring, and the young have absorbed the sac and are ready for food late in May or by June. Practically all of the fish hatched during the winter months at stations of the bureau are held and fed until weather conditions are favorable.

In making deliveries of fish to applicants, the ordinary 10 -gallon milk can of the commercial dairyman is used. The number of fish that may be carried safely, per can, is dependent on the size of the fish, temperature of water, and the distance to be covered. In wellaerated water of a temperature ranging between 48 and 55°, the following numbers may be carried safely in a 10 -gallon milk can:
Advanced fry, at feeding stage 2, 500
Fingerlings No. 1 1, 000
Fingerlings No. $1 \frac{1}{2}$ 600
Fingerlings No. 2 300
Fingerlings No. $2 \frac{1}{2}$ 150
Fingerlings No. 3 100

Too frequently plants of fish in public waters fail to give the best results because of careless and improper methods used in making the plants. The Bureau of Fisheries delivers fish to applicants free of charge at the railroad station designated in the application. It devolves on the applicant to see that the fish thus furnished are carefully and properly planted in the waters for which they are assigned. Many times the fish are taken to the place most easily accessible and the entire lot poured into water where there is but slight chance of their escaping large fish or finding congenial surroundings. The most suitable planting places in streams are to be found near the headwaters or in small tributaries. The fish should be scattered over as wide a stretch of stream as possible, in quiet, shaded, shallow backwaters and eddies. Deep pools where large fish are apt to be lurking should be avoided; also quick water, where the little fellows could not maintain themselves or find the food that is essential to their well-being. In stocking lakes or ponds the best places for planting are to be found in the small tributaries, as described above. Whenever possible avoid planting directly in the lake, but if it is impossible to do otherwise, select the shallow weedy margins or other places affording the greatest protection from enemies. Such places are the first to warm in the spring and they are sure to produce the greatest amount of natural food for young trout.

BLACK-SPOTTED, LOCH LEVEN, AND BROWN TROUT.

The methods employed in taking and fertilizing the eggs, the incubation thereof, and the care of the fry, fingerlings, and adult fish in the artificial propagation of the various trouts are practically interchangeable, and for this reason it is unnecessary to dwell again on the fish-cultural processes. In the following pages the three species of trout mentioned above are briefly described. Of these only the black-spotted trout (Salmo lewisi) of the Yellowstone National Park is artificially propagated to any extent by the Bureau of Fisheries.

The brown trout is not propagated by the bureau, and the Loch Leven trout is handled only incidentally at one or two of the Rocky Mountain trout stations. Propagation of the latter two species was discontinued because evidence was obtained from various sources to the effect that almost without exception these fishes offered nothing of advantage to the natural fish of the regions where they were introduced, and in many cases their introduction proved to be a serious detriment to the more valuable native species.

BLACK-SPOTTED TROUT (SALMO LEWISI).

Several varieties of the black-spotted trout have at various times been artificially propagated. In the past the more important operations were conducted at the Leadville (Colo.) station of the bureau and dealt with the black-spotted trout (probably Salmo pleuriticus) of the Grand Mesa Lakes, in Delta County, Colo. The Manual of Fish Culture ${ }^{11}$ mentions the work of the Leadville station and that

[^39]of the California Fish and Game Commission addressed to S. henshawi of Lake Tahoe. The same publication makes the following reference to the spawning season and incubation period of the eggs:

In the vicinity of Leadrille the spawning season extends from May 1 to July 15. The eggs are hatched in the same troughs and under the same conditions as those of the brook and rainbow trouts. In water ranging from 42 to 60° and areraging about $52^{\circ} \mathrm{F}$., the eyespots appear in 20 days and hatching ensues in 30 to 45 days.

At the present time artificial propagation of this troutisconfined to the fish of the Yellowstone National Park (Salmo lewisi), and a limited amount of work is done at the Springville (Utah) station, where a small brood stock is maintained. Some information relative to the spawning season and incubation period of the eggs at these points is given in the following table:

Table 3.-Spawning season of black-spotted trout (Salmo lewisi), showing egg production and period of incubation.

Station.	Spawning season.	Average numeggs fer	$\begin{gathered} \text { Num- } \\ \text { ber of } \\ \text { eggs } \\ \text { per } \\ \text { ounce. } \end{gathered}$	Minimum egg production.		Incubation period.		Fry.
				Weight of fish.	Number of eggs.	Eyespots appear.	Incubation completed.	Yolk sac absorbed.
Yellowstone Lake, Wyo. Sprlng ville, Utah.	June 10 to July 20. May 27 to June 30 . June 30	950 2,000	350 320	2 pounds..	1,600	$\begin{gathered} 14 \text { days at } \\ 47^{\circ} \mathrm{F} . \end{gathered}$	$\begin{gathered} 22 \text { days at } \\ 47^{\circ} \mathrm{F} . \\ 23 \text { days at } \\ 54^{\circ} \mathrm{F} \text {. } \end{gathered}$	$\begin{gathered} 15 \text { days at } \\ 47^{\circ} \mathrm{F} . \end{gathered}$

Smith and Kendall ${ }^{12}$ have the following to say regarding the black-spotted trout in Yellowstone National Park waters:

In its numerous varietal, subspecific, or specific forms the redthroat, cutthroat, or black-spotted trout is of extensive distribution on the Pacific slope. In the park a form designated as Salmo lewisi is found naturally in both upper Snake and upper Missouri waters, having doubtless gained access to the latter from the Snake River by the way of Two Ocean Pass, and it is not unlikely that an interchange of individuals still takes place. Yellowstone Lake and Fellowstone River from its source to many miles beyond the park are inhabited by it. The abundance of trout above the falls is remarkable. At almost any time as one passes along fish are seen breaking water.

The size attained by trout in park waters, as elsewhere, varies much with locality and conditions. Fish of over 4 pounds have been reported.
In some waters this trout is highly esteemed as a game fish and can be taken in all sorts of ways-spoon, phantom, natural bait, artificial fly, etc. Mary Trowbridge Townsend (loc. cit.) writes of it in the Firehole River:

The father of the Pacific trout, the black-spotted "cutthroat," with the scarlet splotch on his lower jaw, was most in evidence, with long, symmetrical body, and graduated black spots on his burnished sides. He is a brare, dashing fighter, often leaping salmon-like many times from the water before he can be brought to creel. We found him feeding on the open riffs or rising on the clear surface of some sunlit pool.

[^40]U. S. B. F. - Doc. 955 .

Fig. 19.-Trap for the capture of spawning black-spotted trout, Yellowstone National Park.
U. S. B. F.-Doc. 955.

Fig. 20.-Collecting the eggs of black-spotted trout, Yellowstone National Park

Ralph E. Clark wrote (loc. cit.) that " the dark, silver-gray trout of the West seem to favor flies more in harmony with their own coloring," and mentioned the gray hackle, brown hackle, coachman, grizzly king, Seth Green, black gnat, and white moth :

The junction of Fellowstone and Lamar Rivers is noted for fine fishing. If you find the waters high, swift, and roily, you will probably try your flies in rain. Put on a spinner or a little spoon and watch the fish rise to it, almost touch it, and then go away. They are after live bait and won't touch anything else. The grasshoppers are abundant. Catch a few, bait your hook carefully, and let it float down with the current. A large trout will rise to it, and if you are not very careful he will steal it away from you.

VARIETIES AND DESCRIPTION.

It has been said that there are two varieties of native trout in the park, the larger ones of the Yellowstone, with bright yellow bellies, and the smaller kind more silvery in appearance and exhibiting much greater activity and game qualities, of which Tower Creek fish are examples. Also trout of Yellowstone Lake seem to differ from those of Heart and Henry Lakes in having more distinct and rather less numerous black spots. However, in this respect very much individual variation is shown. It has also been suggested that the silvery color is a juvenile characteristic, while the "yellow bellies " are older fish. Who knows?

This is the principal fish artificially propagated by the Bureau of Fisheries at the hatcheries on Yellowstone Lake and Soda Butte Creek. From $3,000,000$ to $20,000,000$ eggs are taken annually. After the local park waters are liberally stocked the remaining young are supplied to suitable waters in the adjoining States. The park, however, should have and does have first claim on the hatchery output.

Jordan and Evermann ${ }^{13}$ give the following description of the fish and other information concerning it:

The Yellowstone or Lewis trout (Salmo lewisi) inhabits the Snake River Basin abore Shoshone Falls and the headwaters of the Missouri. It is abundant throughout this whole region in all accessible waters and is particularly numerous in Yellowstone Lake. As already stated the trout of Yellowstone Lake certainly came into the Missouri Basin by way of TwoOcean Pass from the upper Snake River Basin. One of the present writers has caught them in the very act of going over Two-Ocean Pass from Pacific into Atlantic drainage. The trout on the two sides of the pass can not be serarated and constitute a single species.

The cutthroat trout (Salmo clarkii) * * * is found in all the coastwise streams and lakes from northern Califoruia to British Columbia and possibly in southeastern Alaska. In the Columbia River Basin it is found as far up the Snake River as Shoshone Falls and in the headwaters of the Pend d'Oreille. In the waters about Puget Sound it is very abundant, as it is, in fact, throughout most of its range. It is known variously as cutthroat trout, black-spotted trout, Columbia River trout, and by many other local names.

In the earlier books this species was identified with the Mykiss of Kamchatka and was called Salmo mykiss or Salmo purpuratus, but recent inrestigations have shown that it is not identical with the Kamchatkan species, and that there is a wide region between Kamchatka and southeast Alaska in which no trout are found.

The cutthroat trout and all of this series spawn in the spring and early summer. Those in the streams seek the shallow waters of the smaller creeks, while those of the lakes come to the shallow waters near shore or upon the bars; in many cases they ascend tributary streams. * * *. The cut-

[^41]throat trout and its different derived forms vary greatly in the sizes at which they reach maturity, the chief factors being, of course, the size of the body of water they inhablt and the amount of the food supply.

Those species or individuals dwelling in lakes of considerable size, where the water is of such temperature and depth as to insure an ample food supply, will reach a large size, while those in a restricted environment, where both the water and food are limited, will be small directly in proportion to these environing restrictions. The trout of the Klamath Lakes, for example, reach a weight of at least 17 pounds, while in Fish Lake in Idabo mature trout do not exceed 8 to $9 \frac{1}{4}$ inches in total length, or one-fourth pound in weight. In small creeks in the Sawtooth Mountains and elsewhere they reach maturity at a length of 5 or 6 inches and are often spoken of as brook trout under the impression that they are a species different from the larger ones found in the lakes and larger streams, but as all sorts of gradations between these extreme forms may be found in the intervening and connecting waters the differences have not even subspecific significance.

The various forms of cutthroat trout vary greatly in game qualities. Even the same species in different waters, in different parts of its habitat, or at different seasons will vary greatly in this regard. In general, however, it is perhaps a fair statement to say that the cutthroat trout are regarded by anglers as being inferior in gameness to the eastern brook trout. But while this is true it must not by any means be inferred that it is without game qualities, for it is really a fish which possesses those qualities in a very high degree. Its vigor and voraciousness are determined largely, of course, by the character of the stream or lake in which it lives. The individuals which dwell in cold streams about cascades and seething rapids will show marvellous strength and will make a fight which is rarely equalled by its eastern cousin, while in warmer waters and larger streams and lakes they may be very sluggish and show but little fight. Yet this is by no means always true. In the Klamath Lakes, where the trout grow very large and where they are often very loggy, one is occasionally hooked which tries to the utmost the skill of the angler to prevent his tackle from being smashed and at the same time sare the fish. An instance is on record of a most enthusiastic and skilful angler who required one hour and three-quarters to bring to rest a 93 -pound fish in Pelican Bay, Upper Klamath Lake. * * *. The typical cutthroat trout (Salmo clarkii) may be described as follows:

Head 4 ; depth 4 ; D 10 ; A 10 ; сœса 43 ; scales small, in 150 to 170 cross series. Body elongate, compressed; head rather short; mouth moderate, the maxillary not reaching far beyond the eye; romerine teeth as usual set in an irregular zigzag series; teeth on the hyoid bone normally present, but often obsolete in old examples; dorsal fin rather low; caudal fin slightly forked (more so in the young). Color, silvery olivaceous, often dark steel color; back, upper part of side and caudal peduncle profusely covered with rounded black spots of varying sizes and shapes, these spots often on the head and sometimes extending on the belly; dorsal, adipose, and caudal fins covered with similar spots about as large as the nostril; inner edge of the mandible with a deep red blotch, which is a diagnostic mark; middle of side usually with a diffuse pale rosy wash, this sometimes quite bright and extending on to side of head; under parts silvery white. The red blotches or washing on the membrane joining the dentary bones of the lower jaw are usually constant, probably always present in the adult, and constitute a most important character. This species has been called Salmo mykiss in various publications by the writers and others, but the true Salmo mykiss is allied to Sulmo gairdnerii and has never been taken outside of Kamchatka.

GROWTH AND EGG PRODUCTION.

The superintendent of the Bozeman (Mont.) hatchery gives the following information regarding the growth and egg-production of the black-spotted trout of the Yellowstone National Park waters:

Even with domesticated trout on the hatchery grounds, fed and reared in the same ponds and with the same opportunity for growth, there is a very wide range of development. In the case of wild fish we have reason to believe that this development presents even a greater range owing to food conditions, range, and number of fish in proportion to the previously named conditions. From
observations in connection with the Yellowstone Park operations we believe that the following figures are approximately correct:

	Age.	Length (inches).	Egg production.
Yearlings.		3-5	
Two-year-old.		5-8	
Three-year-old		8-12	800-1,200
Thereafter....		13-18	1,000-1,600

On several occasions when we kept count of the fish spawned the average production was found to run from 900 to 1,000 eggs per spawned fish. There are rery few undersized spawning fish as compared with brook trout, where we find them producing spawn at 7 and 8 inches, and occasionally when even smaller. It is believed that very few females spawn under 3 years of age in the Yellowstone watershed. The season is short, due to both latitude and high altitude, hence the rate of growth is somewhat slower than in many sections more favored climatically.

PARASITES.

This is an excellent food fish when fresh from cool waters, but the trout from some parts of the Yellowstone Lake, Upper Yellowstone River, and Heart Lake are generally reputed to be infested with a parasitic worm. In his book pertaining to the fish of the park, General Chittenden says:

The trout of Yellowstone Lake are to a slight degree infected with a parasitic disease that renders then unfit for eating. Many efforts have been made to discover the cause of this condition and a suitable remedy for it, but so far without success. An explanation sometimes adranced is that the excessive number of these fish and the absence of sufficient food reduce the vitality and they become easy prey to parasites which a more vigorous constitution would throw off. Later investigations have shown that reports of the prevalence of this condition were much exaggerated.

The parasite referred to is a tapeworm, of which only the larval or intermediate form occurs in the trout, the host of the adult being an entirely different animal, as is the case with all tapeworms of this kind. Briefly, its life cycle has been found to be as follows: Starting with the egg in the water it develops into a ciliated embryo. This passes into the fish, probably by way of the mouth, and becomes established and assumes the form usually observed. The fish is eaten by the pelican, and in the intestinal tract of that bird the parasite attains its adult and reproductive stage and its round of life is there completed. The eggs pass into the water and a new generation is begun.

General Chittenden's statement that the parasite renders the fish unfit for food involves a matter of prejudice rather than actual unfitness for food or danger to the consumer. Cooking destroys the vitality of the worm, and it may be said that this particular worm is not harmful to man. Probably no one would knowingly eat an infected fish, but if he should there would be absolutely no danger in doing so. Beyond doubt the presence of this parasite is greatly exaggerated, as General Crittenden says, and lean, cadaverous, unsightly trout, the condition of which is commonly attributed to parasitism, are often fish which are run down from breeding, although they may carry
some parasites. There is scarcely a fish that swims that is not more or less infected by some sort of parasitic worm, and in this respect the Yellowstone fish do not appear to be worse than the fish of many other lakes in the country.

LOCH LEVEN TROUT (SALMO LEVENENSIS).

The Loch Leven trout ${ }^{14}$ of Great Britain was introduced into the United States from Scotland in 1885 and subsequent years. It is somewhat closely related to the European brown trout (Śalmo fario), and has been artificially crossed with that species in the United States, so that it is sometimes difficult to find the purebred Loch Levens in fish-cultural establishments at home.

DESCRIPTION.

The body of the Loch Leven is more slender and elongate than that of the brown trout, its greatest depth contained four and one-fourth to four and one-half times in the total length without caudal. Caudal

Fig. 21.-Loch Leven trout (Salmo levenensis).
peduncle slender, its least depth three-eighths of the greatest depth of the body and equal to length of snout and eye combined. The head is rather short and conical, its length two-ninths to one-fifth of the total length without caudal. The snout is one-fourth or slightly more than one-fourth as long as the head. The interorbital space is somewhat convex, its width equal to three-fifths of the length of postorbital part of head. The eye is of moderate size, its long diameter contained five and one-half to six times in the length of the head and equaling about twice the greatest width of the maxilla. The maxilla reaches to or slightly beyond the posterior margin of the eye. Teeth rather strong, those in the intermalillary and mandible the largest, triangular head of vomer with two or three in a transverse series at its base, teeth on the shaft of the vomer usually in a single, partially zigzag, persistent series. Mandable without a hook and but little produced even in breeding males.

Anterior end of dorsal base distant from tip of snout about as far as posterior end from base of caudal; the dorsal fin higher than long, its base one-eighth of total length without caudal, its longest ray equal to longest ray of anal fin. The anal fin is much higher

[^42]than long, its distance from the base of the ventral equaling length of the head. The anterior end of the base of the ventral is nearly under the middle of the dorsal, the fin being as long as the postorbital part of the head. Pectoral equals length of head without the snout. Adipose fin very small, its width one-half its length, which is about equal to eye. The caudal when fully extended is square or truncate; in natural position it is somewhat emarginate. The outer rays are about one-seventh of the total length of the fish including the caudal.

Upper parts brownish or greenish olive, or sometimes with a rectdish tinge; sides silvery with a varying number of X-shaped black spots, or sometimes rounded brown spots or rounded black spots which may be ocellated; occasionally red spots are seen on the sides, and the adipose fin may have several bright orange spots, or it may show a red edge and several dark spots; sides of the head with round black spots; dorsal and adiposed fins usually with numerous small brown spots; tip of pectoral blackish; anal and caudal fins unspotted, but the caudal sometimes has an orange margin and the anal a white edge with black at its base; a similar edge may sometimes be observed on the ventral.

RANGE, SIZE, AND FOOD.

The Loch Leven trout is a nonmigratory species, inhabiting Loch Leven and other lakes of southern Scotland and the north of England. Its range in Great Britain and on the continent of Europe has been greatly extended by fish-cultural operations, and the fish is now fairly well known in the United States, though mixed to some extent with the brown trout, as remarked above. Examples weighing 18 pounds have been recorded, but the average weight at 6 years of age is about 7 pounds, though some individuals of that age may reach 10 pounds. The natural food of this species includes fresh-water mollusks (snails, Buccinum, etc.), crustaceans, worms, and small fish. In captivity it is reared on liver, horse flesh, chopped clams, and various other meats.

As a food fish the Loch Leven is highly esteemed because of the red color and delicate flavor of its flesh when obtained from suitable waters. In some localities the flesh often becomes white from lack of proper food or from other causes.

The spawning season begins late in September or early in October and continues until December. In Michigan it corresponds with that of the brook trout. The egg varies from about one-fifth to onefourth of an inch in diameter. A trout weighing 2 pounds contained 1,994 eggs, the weight of which was one-half pound.

The Loch Leven will take the artificial fly as readily as the brown trout and the brook trout. Its great size and strength add to its attractions for the angler.

Smith and Kendall ${ }^{15}$ make the following comments on the Loch Leven trout as it occurs in waters of Yellowstone National Park:

[^43]This trout originated in Loch Leven, the lake made famous by Scott's poem, "The Lady of the Lake." Typically it was peculiar to this loch, where it seldom, if ever, attained much over 1 pound in weight. The claim has been made that it is merely an ontogenetic development of the common brown trout, and that when transferred to other waters its progeny can not always be distinguished from the common brown trout. On the other hand, information derived from persons familiar with Loch Leven indicates that both this trout and the brown trout exist in the same lake, and that in that body of water they can always be distinguished.

It is not impossible that confusion has arisen by brown trout from that lake having been propagated under the supposition that they were Loch Leven trout. There are parallel instances of such mistaken identity in this country in respect to other species, and so-called Loch Leven trout have been propagated for a long time in this country. In the early years the progeny of Loch Leven eggs could easily be distinguished from brown trout hatched at the same time, especially when they had attained a few inches in length. Recently, however, there is reason to suspect that many of the so-called Loch Leven plants have been brown trout.

PROPAGATION.

The Burean of Fisheries makes no special effort to artificially propagate the Loch Leven trout for reasons stated elsewhere. At two of the hatcheries-Leadville, Colo., and Spearfish, S. Dak.-very limited numbers of eggs are handled each year. At the former point the egg collections are obtained from the Arkansas River, and such work is incidental to the more important brook trout egg collections annually undertaken in the same region. At the latter station a small brood stock of the species is maintained, numbering 82 female fish sexnally mature at the end of the fiscal year 1922. The distribution of the output in each case is limited to local waters.

The information regarding the spawning season, incubation period of the eggs, etc., contained in the following table, is taken from the reports of the superintendents of the stations:

Table 4.-Spamning scason of Loch Leven trout, cgy production, and period of incubation.

Station.	Spawning season.	Aver age numeggs per fish.	Number of eggs per ounce.	Maximum egg production.		Incubation period.		Fry.
				Weight of fish.	Number of eggs.	Eyespots appear.	Incubation completed.	Yolk sac absorbed.
Spearfish, S. Dak. Leadville, Colo.	Oct. 10 to Dec. 10. Oct. 8 to Dec. 31.	920 1,500	300 260	6 pounds..	3,000	$\begin{aligned} & 25 \text { days at } \\ & 41^{\circ} \mathrm{F} \text {. } \\ & 2 \text { days at }^{\circ} \mathrm{F} \text {. } \end{aligned}$	112 days at $39^{\circ} \mathrm{F}$. 150 days at $33^{\circ} \mathrm{F}$.	35 days at $39^{\circ} \mathrm{F}$. 60 days at $34^{\circ} \mathrm{F}$.

The superintendent at Spearfish (S. Dak.) station comments further on the Loch Leven trout, as follows:

The Loch Leven trout has proven to be the hardiest trout in the Black Hills, for, while the numbers planted each year have been small as compared with plants of brook and black-spotted trouts, the numbers taken by fishermen would seem to exceed those of both the other species. Very few blackspotted trout were ever taken in this section.

BROWN TROUT (SALMO FARIO). ${ }^{16}$

The fish better known in this country as brown trout was first introduced under the name of von Behr trout, after the man through whose instrumentality the eggs were obtained from Germany. It was later called German brown trout and finally just brown trout, also having many other local names. In Germany it is the Bachforelle (brook trout), but it is not exclusively a brook tront any more than the eastern brook trout of the United States (Salvelinus fontinalis) is such.

> RANGE, SIZE, AND FOOD.

The brown trout also inhabits lakes, in some of which it reaches a large size, even 50 pounds, if the British Salmo ferox is the same species. Day, in his "British and Irish Salmonidae," 1887, gives the habitat of this trout as the colder and temperate portions of the Northern Hemisphere, descending into Asia as far sonth as the Hindu Kush, but not normally present in any portion of Hindustan.

This trout has been introduced into many United States waters, in some of which it has thrived. It is a good game fish, but Hen-

Fig. 22.-Brown trout or von Behr trout (Salmo fario).
shall says it is not as gamy in this country as the eastern trout (Salmo fontinalis). It will endure warmer water than S. fontinalis and may be suited to depleted trout streams which, owing to change of conditions, are unsuited to the brook trout. Day says:

The food which trout consume is of rarious descriptions. One of about $1 \frac{1}{2}$ pounds weight, taken in June, 1882, in the Tweed, was found to contain 11 small trout and 1 minnow. They do not object to little fish, as the minnow, loach, sticklehacks, etc., water rats, young birds, frogs, snails, slugs, worms, leeches, maggots, flies, beetles, moths, water spiders, and even a lizard (Field, October, 1885). They will swallow one of their own kind two-thirds as large as themselves. In Mr. Buckland's museum was an example, the stomach of which was distended by 2,470 eggs of apparently the salmon.

BREEDING MABITS AND PROPAGATION.

Regarding their breeding labits, Day continues:
Tront commence breeding in their second year or prior to their attaining 24 months of age, and often later in the season than their parents. The males are more forward than the females, but at this early period of their

[^44]lives the probabilities of the ova being healthy and fertile are less than in somewhat older examples. At first the number of males appears to be in excess of the females, but the mortality among them is greater than those of the other sex, until at 3 or 4 years of age the proportion may be expected to be about the same, and subsequently the females predominate. The number of eggs produced by each female trout has been roughly estimated at 800 for every pound's weight of fish, which computation has been observed at the Howietoun breeding ponds to be fairly accurate. * * *. The period at which these fish breed varies in different rivers and districts, extending from October until February, and even, although rarely, to March. * * *. Although trout generally migrate into the smaller contiguous brooks to breed. large ones are more frequently found forming redds in the broader streams than are smaller fish; but it is by no means rate to find large examples having taken possession of pools in burns. The trout's redd or nest is a mound of gravel which would fill one or even two wheelbarrows, and when by probably causing a shallow may assist in aerating the water. The eggs themselves lie loose among the grarel at from 1 to 2 feet below the surface.

From the foregoing account of the brown trout it would not seem to be a very desirable acquisition in waters where the indigenous fish fauna is wholly satisfactory.

In connection with the foregoing comment on the probable undesirability of the brown trout in American waters the following extracts from opinions expressed by fish-culturists concerning the predacious habits of the fish are of interest: ${ }^{17}$

The largest trout caught in 1894 were (1) a German brown weighing $8 \frac{1}{2}$ pounds, (2) a rainbow weighing $3 \frac{1}{2}$ pounds, (3) a fontinalis weighing 2 pounds 9 ounces.

Some years ago the club planted as an experiment some German brown trout (Salmo fario) and a few of the rainbow variety (Salmo irideus). The former have proven to be very undesirable tenants of the stream. They grow to an enormous size, are very coarse, and are very destructive to the other fish. For the past two years a continuous effort has been made to rid the streams of these Germans. The rainbow trout are more beautiful and more desirable in every way, but they do not compare favorably with the fontinalis. In the future foreigners will not be encouraged in these waters.

Speaking before the American Fisheries Society at Grand Rapids, Mich., in 1906, Dr. Tarleton H. Bean, at that time fish-culturist for the State of New York, said: ${ }^{18}$

The State propagates the brown trout to a much less extent than formerly, and its present policy is that it should never be planted in any waters containing brook trout. An expert angler friend of mine told me he got 10 brown trout to 1 brook trout in the Beaverkill River. The cause of that is unquestionably (at least in the minds of the anglers, and it seems reasonable) that the brown trout destroy the brook trout. If they do not they at any rate destroy the food of the brook trout, which amounts to the same thing. There is now a continual desire on the part of the New York commissioner to refuse applications for brown trout, and he does refuse them for waters already containing brook trout. They are suitable for some waters, undoubtedly waters which contain no other trout, and they have done very well there.

The following is extracted from a letter written November 2, 1905, by State Fish Commissioner W. E. Meehan, of Pennsylvania.

We have had a great deal of trouble, and much disaster has followed the planting of brown trout in some of our brook-trout streams.

[^45]In a letter written January 7, 1921, John W. Titcomb, at that time fish-culturist of the New York Conservation Commission, stated:

I personally feel a pang of regret every time I see a German trout introduced into a new field to compete with the fontinalis.

DESCRIPTION.

The following description of the brown trout is taken from "Food and Game Fishes of New York," by Tarleton H. Bean, in the seventh report of the Forest, Fish, and Game Commission of the State of New York, 1901:

The body of this trout is comparatively short and stout, its greatest depth being contained about four times in the length without the caudal. The caudal pectuncle is short and deep, its depth equal to two-fifths of the length of the head. The length of the head in adults is one-fourth of the total length without caudal or slightly less. The diameter of the eye is about one-fifth the length of the head, and less than length of snout. The dorsal fin is placed nearer to the tip of the snout than to the root of the tail; the longest ray of this fin equals the distance from eye to the end of the opercle. The ventral is under the posterior part of the dorsal; its length is about one-half that of the head. The adipose is placed over the end of the anal base; it is long and expanded at the end. The caudal is emarginate in young examples, but nearly truncate in specimens 10 inches long. The pectoral is nearly one-sixth of the length without the caudal. In the male the jaws are produced, and very old ones hare a hook. The maxilla extends to the hind margin of the eye. The triangular head of the vomer has a transverse series of teeth, and the shaft of the bone bears two oprosite or alternating series of strong persistent teeth. * * *.

On the head, body, and dorsal fin usually numerous red and black spots, the latter circular or X -shaped and some of them with a pale border; yellowish margin usually present on the front of the dorsal and anal and the outer part of the rentral. The dark spots'are few in number below the lateral line. The ground color of the body is brownish or brownish-black, varying with food and locality.

Names.-In European countries in which this species is native it bears the name of trout or brook trout or the equivalents of these terms. In Germany it is bachforelle; in Italy, trota; in France, truite. In the United States it is known as the brown trout and ron Behr trout, the latter in honor of Herr von Behr, president of the Deutscher Fischerie Verein, who has been very active in the acclimation of the fish in America.

Distribution.-The brown trout is widely distributed in continental Europe and inhabits lakes as well as streams, especially in Norway and Sweden. Tributaries of the White Sea, the Baltic, the Black Sea, and the Caspian contain this species. In Great Britain it lives in lakes and streams and has reached a high state of perfection ; in Germany and Austria, however, the trout is a characteristic fish, and our supply has been drawn principally from the former country. Morean found it at an elevation of 7,000 feet in the Pyrenees, and a color rariety is native to northern Algeria in about 37° north latitude. In the United States the brown trout has been successfully reared in Colorado at an elevation of nearly 2 miles above sea level; it is now well established in New York, Pennsylrania, Maryland, Missouri, Michigan, Wisconsin, Nebraska, Colorado, and several other States. This trout has proved to be well adapted to the region east of the Rocky Mountains, which has no native black-spotted species, though the western streams and lakes contain many forms in a high state of development.

Sice.-Linder farorable conditions the brown trout has been credited with a weight of 22 pounds and a length of 35 inches. In New Zealand rivers, where it was introduced with unusual success. it now approximates equal size; but in most localities 10 pounds is about the limit of weight and 5 or 6 pounds is a good average, while in some regions the length seldom exceeds 1 foot, and the weight ranges from $\frac{1}{2}$ pound to 1 peund. In the United States a wild specimen 7 years old weighed about 11 pounds. In a well in Scotland an individual aged 15 years measured only about 1 foot in length. These illustrations will
serve to show how much the growth of a brown trout is affected by its surroundings and food supply. The species has been known to become sexually mature when 2 years old and 8 inches long.

Habits.-The brown trout thrives in clear, cold, rapid streams and at the mouths of streams tributary to lakes. In its movements it is swift, and it lears over obstructions like the salmon. It feeds usually in the morning and evening, is more active during evening and night, and often lies quietly in deep pools or in the shadow of overhanging bushes and trees for hours at a time. It feeds on insects and their larvæ, worms, mollusks, and small fishes, and, like its relative, the rainbow trout, it is fond of the eggs of fishes. In Europe it is described as rising eagerly to the surface in pursuit of gnats, and it is said to grow most rapidly when fed on insects.

Reproduction.-Spawning begins in October and continues through December and sometimes into January. The eggs are from one-sixth to one-fifth of an inch in diameter and yellowish or reddish in color: they are deposited at intervals during a period of many days in crevices between stones, under projecting roots of trees, and sometimes in nests excarated by spawning fishes. The parents cover the eggs to some extenf with gravel. The hatching period varies according to temperature from 40 to 70 days. Females aged 3 years furnish on the arerage about 350 eggs each, but individuals of this age have yielded as many as 700 , and even at the age of 2 years some females produce from 400 to 500. When they are 4 to 5 years old, the number of eggs has reached 1,500 to 2.000 . The young thrive in water with a temperature of about $50^{\circ} \mathrm{F}$. Sterility in the females is common, and breeding females have been observed to cease reproduction when 8 years old.

Qualities.-The brown trout is in its prime from May to the last of Sentember. Its flesh is very digestible and nutritious and deeper red than that of the salmon when suitable food is furnished. The flavor and color, however, vary with food and locality. Insect food produces the most rapid growth and best condition. This species has been so long known as noe of the noblest of the same fishes, and its adaptability for capture with artificial flies because of its feeding habits is so well understood that I need not dwell on these familiar details.

DISEASES COMMON TO TROUT UNDER DOMESTICATION AND THEIR TREATMENT.

Trout in artificial environment are subject to various ailments, and little definite knowledge is available as to the causes or prevention of such ailments. The more simple and obvious preventive measures are (1) the utmost cleanliness in and about the hatchery, troughs, and ponds, and all equipment used in connection therewith; (2) careful handling of eggs, fry, fingerlings, and adult fish at all times; (3) a carefully selected diet of materials free from contamination of any kind: (4) an abundant flow of uncontaminated water through all ponds and troughs.
Most of the diseases to which trout fingerlings and adults are susceptible may be traced to some form of parasitic animal. Where these parasites attack the fish externally a number of methods of treatment, all more or less effective, have been prescribed. One of the most simple of these consists in immersing the affected fish in a solution of salt or cider vinegar. More recently certain chemicals, including copper sulphate and potassium of permanganate, ${ }^{19}$ have been used with success. In certain instances bicarbonate of soda, applied with a brush to the affected parts of adult fish, has proven efficacious.

Parasites occurring in the intestines or other internal organs are less responsive to treatment. and internal medication of fish of any

[^46]size or age is hardly practicable, and hope of eradication must lie along other lines. Sanitary conditions in and about the hatchery are undoubtedly important in this connection, and it has been suggested that some of these diseases may be carried in the eggs of fish that are "carriers" of disease. Eggs taken from such trout would seem almost certain to have mixed with them matter from the intestinal tract that would contain these organisms. It is possible that these might survive and develop in such a manner as to infect the fry.

The Twelfth Annual Report of the New York Conservation Commission for 1922 contains a description of some of the parasitic diseases common to trout under domestication, and the following notes on the subject are extracted therefrom: ${ }^{20}$

Hatchery diseases.-All fish hatcheries suffer annual losses of fish from disease. The combating of these maladies and the keeping of the losses from them within bounds presents one of the most serious problems of fish culture. There is wide variation between hatcheries as to trouble with disease. Some are practically free from epidemics, in others disease conditions are so serere as to restrict the kinds of fish which can be reared in them. The most obvious difference between hatcheries is the water supply, and it was decided to make a study of that feature as throwing valuable light on the water conditions most farorable to fish life. Such information is needed for the setting up of standards for the permissible pollution of streams.

Ground covered.-Recurrence of an epidemic of "whirling sickness" among the brook trout fry at Bath hatchery was reported early in the season, and the whole problem at that hatchery was given intensive study. Later the other hatcheries were examined for this and other diseases. Most diseases found were given some study, but special efforts were directed toward the particular disease above mentioned.

OCTOMITIASIS.

[^47][^48]tected in fish that have been dead for more than a few hours. It forms cysts and in this form may survive outside the fish for long periods. It seems probable that the disease is transmitted by such cysts in the excrement, which, if eaten by other fish, might become active and infect the new hosts. It is evident that hatchery water should be protected from infection by keeping it free from fish when this is possible. It was thought that it might be derived from frogs, but, though these animals are plentifully infested by a somewhat similar form, this particular one was not found in them.

COSTIASIS.

Occurrence-Costiasis, a disease rapidly fatal under hatchery conditions to many species of fish and to which trout are particularly susceptible, appeared at one of our hatcheries early in June. Early recognition enabled remedial measures to be taken promptly and it was stamped out. Delay would have doubtless cost us hundreds of thousands of young trout. This disease was also found in other hatcheries.

Symptoms.-Fish die suddenly at any point in the trough. Loss of appetite and a frayed, slimy, and grayish appearance of the fins are the most readily recognized symptoms. Viewed against a piece of glass the attacked fin shows a clear area where the outer surface of the skin is sloughing away. Unfortunately, when these symntoms become evident to the unaided eye, the disease is far advanced.

Costit. necatrix.-Costiasis is caused by a small protozoan parasite (Costia necatrix) which destroys the cells of the skin and other membranes. Once established it rapidly covers the entire body of the fish. In the final stage the gills are attacked and the fish dies of suffocation. Costia attach themselves under the edges of the epithelial cells and multiply with great rapidity. An exudation of slime issues from the diseased skin, marking the affected areas.

Transmission.-Costia appear to have a free swimming stage, during which they may pass from fish to fish. They also form resistant cysts, both on the fish and on the bottom of the troughs. It has been suggested that the use of fresh-water fish as food for hatchery trout may result in the introduction of the disease. Further study is necessary.

Remedy.-Remedial measures suggested in the literature on the subject have been tried out with success. The process consists in placing the fish in a $2 \frac{1}{2}$ per cent solution of salt in water (21 pounds of table salt to 100 gailons of water). Fish are left in this bath from 10 to 15 minutes, or a less time if distressed. This kills the attached and free-swimming forms. Four treatments at intervals of three days are required to kill the young as they emerge from the cysts. Best results are obtained by adding sufficient salt to the water in the trough in which the infected fish are. This treatment must be applied to both fish, infected troughs, and utensils. Additional work on these measures and the life history of the caustive organism is needed.

GYRODACTYLIASIS.

Fin disease. Two of our hatcheries were infected with fin disease. or Gyrodactyliasis. This disease is probably widespread, frequently epidemic in hatcheries among fish of all species and all ages. Trout, particularly the brook trout, are especially susceptible. It is caused by a flatworm or fluke (Gurodactylus), so called from its resemblance to a gyrating finger as it protrudes from the layer of slime over the affected skin. The animal itself is equipped with an anchor disk, by which it attaches itself to the fish, and a sucking organ for feeding.

Symptoms.-Affected surfaces are covered with a bluish gray slime, most conspicuous on the fins. This copious production of slime may cause confusion between this disease and Costiasis. Fins are ant to be most sererely affected; in advanced stages they become frayed so that the rays project as spines, or may be reduced to mere stubs. The disease is not always fatal. At times onen sores are produced at the bases of the fins, a condition which causes death in a short time. With a microscone dingnosis is simple and certain, as slime scraped from affected parts will contain adults, young, or both forms of the parasite. The worm itself is transparent and exceedingly active, moving backward or forward, looping along like an inch worm, or gyrating.

Remedial measures.-No cure for this disease has yet been found. External application of some solution is indicated. Salt solutions are not efficacious; thorough sanitation may be of assistance. Diseased fish should be isolated or destroyed; infected troughs and implements sterilized. Experiments with curative measures are in progress.

At the Neosho (Mo.) station of the bureau a 1 to 15 solution (approximately) of cider vinegar has been found effective in treating this tromble. The solution is prepared in a tub or any suitable ressel; the affected fish are removed from the trough with a dip net, immersed in the solution for a period not to exceed 8 to 10 seconds, and are returned immediately to fresh running water. The fish should be watched closely while in the solution and not retained in it beyond the point where they manifest undue distress by turning on their sides. Because of the variation in the strength of cider vinegar a 1 to 15 solution will not always give the best result. It would be well, therefore, for the practical fish-culturist to note the effect of his solution on a limited number of fish before treating the entire lot.

Trout eggs and fry, as well as fingerling and adult trout, are subject to disease. Perhaps the more common affections are the socalled " white spot disease " and the "blue sac," some notes on which are appended. The discussion pertaining to the white spot disease is quoted from a report on the subject by Dr. Franz Schrader, while the discussion of the blue sac is taken from a memorandum by Dr. Adrian Thomas.

WHITE SPOT DISEASE.

This trouble manifests itself by the appearance of an opaque or white area in some part of the embryo, very generally the yolk. There the gradually expanding milky white area is very noticeable in its semitransparent surroundings, and the affected eggs are easily recognized, even in the early stages of the disease. Any stage of development up to the complete absorption of the rolk sac may show the infection, and its appearance has come to be recognized as certain death to the affected specimen. Although by no means confined to the eggs, it is in the eggs of salmonoid fishes that it is most conspicuous and most easily observed.

The hypotheses of fish-culturists as to the canse or causes of white spot are more or less indefinite. Weakness of the parent fish, water temperatures, rough handling, holding of the adult fish under unfavorable conditions during the spawn-taking period, are some of the more common causes ascribed. In connection with the last one mentioned the belief is held by some experienced fish-culturists that the transfer of spawning fish from one pond to another just prior to the spawning period may be conducive to white spot, and that such contemplated transfers of adult fish should be made well in adrance of spawning or not until after that function has been accomplished.

More serious attempts to clear up the nature of the white spot were made by Bataillon (1894) and Hofer (1892). The former was concerned with what was apparently an epidemic of the disease and obtained pure cultures of several hacteria from the dying eggs, one of which proved pathogenic from coldblooded animals. Hofer also attributed the disease to bacterial agency, although he was unable to obtain pure cultures and found Bataillon's account too indefinite to render a comparison of the organisnis concerned of much use. He was inclined, however, to believe that infection occurred through the agency of unclean packing material or the water from contaminated ice, since he observed disease only in eggs that had undergone shipment. Shipment might also weaken the eggs so that they would be more susceptible to bacterial invasion than untransported ova. According to him both single isolated eggs, as well as the entire contents of hatching troughs, may be affected.

It must be recomized at the outset that any disturbance that will cause a refraction of light at any location in the homogeneous transparant yolk will
give rise to an opacity or white spot at that place. It is therefore entirely possible and even probable that the disease may have more than one cause, and that its progress is variable. Certainly the ordinary occurrence is not epidemic in character, differing thus from Bataillon's case and some encountered by Hofer.

General morphological features.-The yolk of trout fry that have just started the absorption of the sac presents a characteristic appearance under normal conditions. Beneath the enveloping layer of cells are located the embryonic blood vessels and what might be called an absorption area. The latter harbors periblast cells more or less irregularly distributed and surrounds the yolk, which is structureless and homogeneous under ordinary magnification, and takes a dense stain.

In yolk affected by white spot the diseased region showed uneven extent of the absorption area. Various stages of disintegration characterized such pictures, tracts of transformed yolk and yolk spheres of various sizes penetrating into the still unaffected material. Blood vessels follow the advancing disintegration, so that they are often found in the center of the yolk, whereas under normal conditions at such a stage of development they are entirely at the surface. Location of the white spot in the yolk sac is rariable, but in a general way the following may give some idea of the distribution. The cliseased specimens were Loch Leven fry from Saratoga, Wyo. (early stage of sac absorption), 42 being examined.
Diseased area close to liver- 9
Touching or surrounding oil globule 8
Close to both liver and oil globule 12
Near heart 3
Posterior tip of yolk 10

In no case was the spot located entirely in the interior of the yolk; that is, it always came in contact with the yolk enveloping cell layer at some point.

The question of bacterial agency.-In some cases bacteria are certainly involved. Examples were furnished by rainbow-trout eggs from Cape Vincent, N. Y. (stage shortly before hatching), which had been shipped there from Wytherille. Va., some weeks previously. Microscopic examination showed at least two kinds of bacteria present in the disintegrating yolk, and these were found side by side in the individual cases or also in seemingly pure cultures. The affected yolk had broken up as usual, and the bacteria were clustered most thickly around the yolk spheres. Similar conditions were observed in the few cases of the disease present in brook-trout eggs from a hatchery at Taunton, Mass.

But this serves to show only that bacteria may be involved in the progress of the disease-not that they are to be considered as causative agents. The random distribution of diseased eggs among healthy eggs is a fair proof in itself that the infection is not contagious or, better, that normal and healthy eggs are not attacked by the bacteria. There must, then, be a predisposition in some eggs that renders them liable to infection. It is of some note to observe that eggs with high mortality rates had generally (not always) undergone shipment from a more or less distant station. Naturally they had, therefore, undergone a certain amount of rough handling, and this made it rery possible that the primary cause of the disease was to be found in some injury thus sustained by means of which the bacteria gained access to the yolk. To gain some data on this point, 200 brook trout in the fry stage (yolk sac at early stage of alosorption; fry, 18 mm .) were isolated and the yolk sac of each pricked to a slight depth with a sharp needle. In a few cases the fishes were injured in the operation, and in still others the wound caused partial loss of the yolk. In what may be called successful. operations the wound caused no loss of yolk and appeared only as a very small white area at the surface of the latter, the fishes showing no immediate ill-effects on liberation. One hundred uninjured fry were kept under similar conditions for control purposes. After 10 dars a little more than 25 per cent of the operated fishes had entirely recovered and showed no signs of the injury, and somewhat less than 50 per cent showed a growth of the artificially produced white opaque area. A third of the latter died in the course of these 10 days. Development of fungus eliminated a greater part of the remaining 25 per cent. Of the control 2 per cent died during this period, neither they nor the survivors showing a definite
development of white spot. Twelve of the fishes experimented upon that showed a growing white spot were examined and all showed serere bacterial infection. Several kinds of bacteria were involved, one of which seemed identical with one of the forms observed in natural infections. However, all of them were apparently effective in the destruction of the yolk. Similar infections were also observed in the eggs of landlocked salmon which had been subjected to the same treatment.

The difficulty of making exact bacteriological tests is apparent, since the injection of any pure cultures into healthy eggs will also cause the wound that opens a pathway for the general bacterial fauna in the water. The use of sterile water in the hatching operations of such experimental eggs would, of course, solve this difficulty, but practical difficulties in the use of such water have heretofore made these tests impossible.

Sufficient data is furnished by the observations and experiments set forth, howerer, to indicate that bacteria are not to be regarded as primary agents in the common form of white spot. That various bacteria are instrumental in the disintegration of the yolk is not to be doubted, but the yolk must be regarded only in the light of so much inert organic matter which, once deprived of its protective covering, is open to the atiack of all saprophytic and holophytic bacteria. It is a rupture of the yoke envelone that furnishes the primary cause, and only the growth and spread of the spot is due to the bacteria.

Periblast activity.-The white spot cases involving bacteria furnish only one group, a group which, peculiarly enough, does not seem as large in numbers as that which is now to be discussed. In these cases the most careful microscopic scrutiny revealed no indication of bacteria, although the disintegration phenomena do not differ materially. The most remarkable feature is furnished by the periblastic cells. They are found throughout the disintegrating region, augmented in number as compared with normal eggs and embryos, but extremely active, judging from their lengthened form. It may be repeated that diseased eggs are generally found side by side with healthy ones. The affection is therefore not transmissible to normal eggs, and periblastic action just as much as bacterial infection must have the ground prepared for it by another factor, which is therefore the primary agent. Eggs showing such periblastic actirity were obtained from Hartsville, Mass.; Saratoga, Wyo.; La Crosse, Wis. ; and St. Johnsbury, Vt. Those from the two last-named points had undergone railroad transportation. The Saratoga occurrence was attributed by the superintendent of that hatchery to chilling of the freshly stripped eggs, something which might also hare taken place in the case of the Hartsrille eggs (the weather was cold at the time of egg taking), although no definite data was obtainable. It was of some significance that the eggs from La Crosse showed cases of bacterial infection, other cases wherein periblasts alone were active, and, finally, a few cases that showed bacteria and periblasts side by side in the disintegrating yolk. If mechanical disturbance was instrumental in introducing bacteria, and if it consisted in actual rupture of the yolk enrelope, it could not have been responsible for the periblastic activity. In other words, since the bacteria incolred mere undoubtedly present at La Crosse, a rupture should give access to bacteria in one case as well as in another. Mechanical injury without runture of the envelope-that is, shock or concussion-is then left as a possibility. An attempt was made to duplicate the conditions produced through concussion by dropping a wooden box containing 200 landlocked salmon eggs from a height of 3 feet. Two hundred normal eggs were kept for control. At the end of 10 days 10 of the former lot showed indications of white spot, while
 significant enough to admit of any conclusions, sare that eggs at that stage of development (immediately before hatching) are extremely resistant to concussion. A renetition of the experiment with younger eggs is therefore necessary, especially in riew of the fact that experience has prored the early stages more susceptible to injury of any kind.

Unfortunately no experiments could be conducted in connection with the possible effect of chilling and freezing the eggs. The temperature factor is liable to be rery important in clearing up the periblastic activity, and there should be little difficulty in the future in working out the relations.

The necessity of more experimental data is thus plainly apparent. Sufficient evidence is availahle, however, to point to physical injury of some kind as the causative agency of the common occurrence of white spot. It seems more or less of a truism to recommend more careful handling of fish eggs, but such a recommendation points only toward the greatest nossible elimination of distance shipments at present. Although so crude at the first glance, the "bulk"
method of shipping eggs may possibly be more safe than the careful tray method, simply because it confines scratching of the eggs to the outer layers, keeping the inner ones intact. On the trays, howerer, each egg is carefully placed on cloth, which, of course, exposes it to friction with rough places in the latter and also stray bits of packing material. Careful statistical scrutiny of shipping records should decide this, however, since no reliance can be placed on individual shipments, wherein the amount of rough handling is so exceedingly variable.

Summary.-(1) Both bacteria and periblastic activity are instrumental in the progress of white spot as it commonly occurs. (2) Neither of these features can be considered as the primary canse, however, since either can occur only in "predisposed" eggs. (3) "Predisposed" eggs are those which hare been subject to physical injury of some kind.

BLUE SAC DISEASE.

This disease is otherwise known as Hydrocele embryonalis or yolk-sac dropsy. Dr. Bruno Hofer, in his "Handbuch der Fischkrankheiten," treats of this affection, and in doing so says that many breeders agree that it is probably due to shock or pressure to the eggs, though nothing appears to be certain conceruing the etiology.

The disease appears sporadically, the first symptoms being an enlarged sac, which after a time becomes so weighty that the fry are unable to rise to the surface. After a few days the sac usually bursts, resulting in the death of the fry in a few hours.

The sac appears to contain a serous fluid, which surrounds the yolk and at times assumes a bluish tinge, hence the name blue sac. The disease seldom appears after the yolk sac has been nearly absorbed but usually attacks the fish during the first week after hatching.

Hofer seems to think that the disease is caused by rough handling of the eggs. whereby they receive shocks or jars or are injured by too much pressure during stripping. He also mentions the probability of the disease being caused by the taking of eggs from brood fish that are too young, and says that precaution should be taken against the taking of eggs from very young females; also that care slould be exercised in handling and packing for transportation, fund that eggs prepared for shipment should be packed in an abundance of soft insulating material, such as moss, etc.

It has been suggested that improper fertilization may be responsible for the disease. Improper fertilization may not be exactly the correct term, but it is well known that any injury to eggs or sperm will produce monstrosities or diseased offspring.

Up to this point no definite cause of or remedy for the disease is known, though several possible causes and their prevention have been mentioned.
I. von Betegh has made a study of the disease. Its sporadic occurrence led him to believe it infectious, and he attempted to isolate the specific organism causing the malady.

In the serous fluid of the yolk sac he found a diplobacillus in pure culture. This organism he proposed to name Diplobacillus liquefaciens piscium. Von Betegh concluded that the organisp he found may be regarded as the specific cause of the disease. Though he states that further experiments will later be reported on, it cloes not seem that the mere presence of this diplobacillus is evidence that it causes the disease, yet it is mot improbable that it does.

We must look for all diseases of young fish to arise from one of two causes, namely, infection or injury to the eggs. It is highly probable that this disease may be prevented in a hatchery if the hatching apparatus is kept perfectly clean, all fish suspected of disease are immediately removed and destroyed, and care is exercised in handling the eggs and fish. The stripping of eggs from rery young brood stock should also be avoided.

George A. Seagle, former superintendent of the bureau's Wytheville (Va.) hatchery. speaks of the diseases occurring among the rainbow trout at that station, as follows:

The diseases most frequently occurring among rainbow-trout fry under domestication are an inflammation of the gills and a slimy skin affection. The causes of these diseases are not well known, but improper food, water pollution, or insanitary conditions of any kind are among the most probable. By
closely watching the movements of the fish the symptoms can usually be detected before an alarming stage is reached.

When the gills are affected, the fish as a rule swim high in the water in an uneas. restless manner, as if gasping for breath. As soon as such a condition is detected the gills should be examined for inflammation or swelling. In the case of a skin disease the fish ordinarily indicate its presence by rubbing on the bottom of the trough or against any convenient surface. They dive with a quick twisting motion against the trough bottom. If the disease is not promptly checked it will soon reach a stage where nothing can be done.

One of the best remedies known for both these disorders is salt, which is sprinkled through the ponds or troughs after the water has been drawn low, about half a pint of salt being used to each gallon of water. In extreme cases the fish are always treated in the troughs, and in addition to the salt a half pint of apple vinegar is allowed to each gallon of water. These are the proportions for large fish; for lots which are small and weak the proportion of both salt and vinegar must be reduced. The fish are closely watched and allowed to remain in the solution only until they begin to turn on their sides, showing plainly that they have stood all they can endure. Fresh water is then turned on freely and distributed among the fish with the hand. As the fresh water fills the trough a slimy white scum rises and floats on the surface of the water.

Fungus, "blue-swelling," and other affections sometimes occur, but the most serious diseases of fry are those just described.

During the dry weather of summer fry and fingerling fish are frequently aftected by external parasites, which usually make their appearance immediately after a rain following a drought. They first attack the tail and fins of the fish, sometimes forming a fringe around the outer fin edges, and after consuming the slimy coating within reach they move up toward the body of the fish, leaving nothing behind them apparently except the bony sinews of the fins. Under such conditions the fish soon weaken and die, when the parasites leare them for other victims.

Under the microscope the parasites appear to be small white worms, almost transparent, about 0.4 mm . or one-sixtieth-inch long and larger at one end than the other. The mouth is at the small end, and at the other are clawlike tentacles with which they fasten themselves to the fish. They appear to be continuously feeding upon the slimy coating of the fish, stretching themselves at full length and then drawing up until they resemble tiny rice grains. Their presence is indicated by the following symptoms: The color of the fish changes to a dark bluish-black; the fish swim high, dart around restlessly, and in the last stages turn their tails to the current or seek quiet corners and remain there until they die.

At some of the bureau's stations where it has been found necessary to treat fish for parasites from one to three times each season it is customary to turn the fish from two adjoining troughs into one. The empty trough is then thoroughly cleaned, wiped with a cloth or sponge saturated with vinegar, and allowed to fill with water. If proper care is exercised in making the solution and the fish are handled carefully, this remedy will be found to work perfectly. The salt treatment alone merely causes the parasites to abandon the fish for a short time; it does not kill them, and they will resume their attack when the water supply again becomes normal.

A very serious disease is sometimes encountered with adult rainbow trout. Very dark spots, ranging in number from 2 or 3 up to. 20 or 30 and in size from one-fourth inch to 1 inch in cliameter, appear on different parts of the body; a light spot about the size of a green pea forms on the head immediately over the brain. The fish refuse food and become restless; they jump and dart around as though frightened, settling back on their tails; they hide among the plants, seek shallow water in the corners of the pond, and finally sink to the bottom, dying within 24 hours after the appearance of the first symptom.

This disease was first encountered among a lot of von Behr (brown) trout that had been delivered at the burean's Wytheville (Va.) station on November 29, 1895. The first symptom was noted six days after their arrival, and by December 12, one week later, 455 of them had died. During its first stages the fish were in the nursery, and the water in which they were being held passed through an empty pond into a second one containing about a thousand large rainbow trout that had sparned recently. On the morning of December 23 the disease was apparent among the rainbow tront, and by \pm o'clock of that day 56 had died. The water in the pond was drawn down promptly to about 300 gallons, and 150 pounds of common salt was sprinkled through it. After holding the fish in this brine for 15 minutes fresh water was turned on freely and good results were at once noticeable. The fish became quiet and improved steadily, making a second application unnecessary. The final outcome of the experiment was that the mortality among the rainbow trout amounted to only 30 per cent, whereas the death rate on the untreated von Behr fingerlings exceeded 71 per cent.

Foul ponds cause disease, and when fish become affected from that cause they must be removed at once to a clean pond and given a salt and clay bath, applying it in the following manner: While the salt bath previously described is being given, from 2 to 3 bushels of clay are placed in the reservior or supply trough, and when fresh water is turned on after the salting the pond is flushed for about 30 minutes with roily water from the clay, and after the clay water has passed an increased supply of water is maintained for 10 days or more.

Adult fish which have been bruised or scarred or have become emaciated are very liable to develop fungus. If the trouble originates from an injury, it can often be cured before it spreads to the sound flesh, but after the growth has spread like a slimy web over the entire body of the fish the case is hopeless. During the spawning season fish are especially susceptible to fungus, and they must be handled very carefully to avoid bruising or scarring in any way. If fungus makes its appearance, the affected fish should be caught and the diseased part treated with salt and with the vinegar solution. It should then be placed in a separate pond or tank with the view of giving it further treatment a day or two later. Any fish that are affected over the entire body should be removed from the pond at once and killed.

Thyroid tumor is not an uncommon ailment among artificially reared trout. It affects the gills and may be encouraged by a generally run-down condition of the fish or by insamitary conditions in and about the ponds and troughs. As preventives of disease, plenty of fresh water. scrupulous cleanliness, and the utmost care in handling eggs, fry, or adults are all-important factors. Many of the ailments to which the eggs under incubation and the fry in the early stages of development are subject-" white spot," "blue sac," etc.may be traced, as a rule, to careless and improper methods of taking the spawn or handling the eggs during the incubation period. Sand sprinkled generously on trough or pond bottoms will facilitate the removal of the coating of slimy substance that frequently forms, and a small amount of salt occasionally mixed with the food is beneficial.
PROGRESS IN BIOLOGICAL INQUIRIES, 1923.
REPORT OF THE DIVISION OF SCIENTIFIC INQUIRY FOR THE FISCAL YEAR $1923 .{ }^{1}$
By Willis H. Rich, Assistant in Charge of Scientific Inquiry. (With the collaboration of investigators.)
CONTENTS.
Page.
Introduction 1
Investigations of fish and fisheries 3
Atlantic coast 3
Fishes of the Gulf of Maine 3
Studies in fish migration-tagging operations 4
Chesapeake Bay 5
Salmonidæ and smelts 5
Larval fishes of the Woods Hole region 5
Fishes of Key West 6
International Committee on Marine Fishery Investigations 6
Interior waters 7
Coregoninæ of the Great Lakes 7
Mississippi River fishes 7
Destruction of trout by pelicans in Yellowstone Park 8
Pacific coast and Alaska 9
Alaska salmon 9
Salmon of the Pacific Coast States 10
Investigations of shellfish and terrapin 11
Oysters 11
Clams and crabs of Alaska 13
Fresli-water mussels 13
Terrapin 15
Ecological and oceanographic studies 16
Control of mosquitoes by means of fish 16
Oceanographic work 17
Studies of marine plankton in relation to the fisheries 18
Ecology of fresh-water lakes 19
Fouling of ships' bottoms 20
Investigations pertaining to fish-cultural operations 20
Pathology of fishes 20
Physiology and nutrition of fishes 23
Experimental work in fish culture 24
The biological laboratories 26

INTRODUCTION

The work of the division of scientific inquiry consists primarily in the investigation of the biology of those species of fish and shellifish that form the basis of the fishery industries. In common with much scientific work the service of this division is, in the main, one step removed from direct contact with the business man. The biological

[^49]facts pertaining to the fisheries, which are discovered through scientific investigation, are essential for the reason that adequate measures of conservation must be based on a knowledge of the biology of the fish. The actual administration of measures of conservation, however, devolves upon other governmental and State agencies, and it is these agencies that directly perform the very necessary service of conserving the various fishery resources. Without scientific investigation, however, this direct service could not be properly conducted.

The utilization of the fishery resources of the United States has gradually increased since the Colonies were first established, and the past decade or two has witnessed a remarkable growth in many of our fishery industries. Certain fishery resources have shown more or less marked signs of depletion for years; more of these resources are showing evidences of depletion each year: and, with the increased exploitation, which we can observe and which will in all probability continue, we can only look forward to the depletion of resources at present apparently maffected and to the more serious affection of those already showing evidences of depletion. Such exhaustion does not necessarily become obvious to everyone while the process is going on, and it is only through careful scientific investigation that it may be determined before it has reached a dangerous stage. The work to be done is of a distinctly practical nature but must be interpreted and conducted by means of biological and oceanographical knowledge. Such investigations were never so essential to the preservation of our fishery resources as they are to-day.

The depletion of a fishery resource is not always the result of overfishing, although this usually is an important factor and in some instances apparently is the only one. Other factors of greater or less importance are the pollution of coastal and inland waters and the obstruction of streams by dams or other similar structures. Without regulation it is to be expected that the amount of pollution and the number of dams will tend to increase along with our increasing population and industrialization. Efforts to combat the various factors tending to deplete a fishery resource have been confined mainly to artificial propagation and to various legal restrictions affecting the seasons in which, and the means whereby, the fish may be taken, the discharge or treatment of pollutants, and the construction of fishways over dams or of screens in irrigation ditches.

It is the primary function of the division of scientific inquiry to determine, if possible, when depletion is taking place-or, still better, to determine when the condition of a fishery resource is such that depletion is likely to occur-and then to devise and propose means whereby such depletion may be prevented. Both of these are biological problems and, to be adequately solved, require a reasonably complete knowledge of the biology of the species in question. The more complete our biological information, the more perfect can be made the work of artificial propagation, and the better may the legal regulations be adjusted to the normal life of the various species of fishes so as to permit of the fullest possible exploitation of the resource without endangering the continuation of the supply.

It is with these things in mind that the scientific activities of the bureau are being directed more and more into studies pertaining to the biology, or life history, of the various fish and shellfish of com-
mereial importance. In years past the burean has sponsored much scientific work of the highest order but not bearing directly upon problems connected with the conservation of our important fisheries. Valuable as this work in "pure science" is, it is felt at the present time, and in view of the limited funds available, that precedence must be given to investigations relating to fishes of economic importance. Happily, these practical investigations yield a considerable measure of results of interest and value from the viewpoint of " pure science," just as research in "pure science" has so frequently an ultimate, though often unexpected, practical application.

The general plans for the scientific investigation of our fisheries are being made on as broad a foundation as possible. The fundamental problem is to determine the factors affecting the abundance of any given species. One of the most important of these factors obriously is the abundance of food. The food of all fish and shellfish is, either directly or indirectly, those minute forms of animals and plants found floating in both fresh and salt waters and collectively known as plankton. The abundance of plankton, however, is directly determined by various physical factors, such as temperature, light, salinity, etc., and in the ocean the abundance of both fish and plankton in any given locality is dependent in great measure upon the oceanic currents in which drift the plankton and the eggs and young of many fishes. It is evident that the abundance of fish is determined to a considerable extent by various physical factors acting, in part indirectly, through the medium of the plankton. A comprehensive plan for the biological investigation of the fisheries must therefore include a study of these physical conditions, a study of the plankton, and finally a study of the fish and fisheries themselves. By this means we may hope eventually to understand the ultimate and proximal causes of fluctuations in the abundance of any given species, and this is the end of practical importance for which economic fishery investigations should be designed. All of these lines of inquiry are being given consideration, although emphasis is naturally placed on those investigations dealing most immediately with the fishes.

During the past year many important investigations heretofore begun were continued and some new ones were inaugurated. Outlines of the various studies that have been conducted will be found in the following pages.

The division has suffered a serious loss through the resignation of Dr. R. E. Coker, who had been in charge of the division since 1915. Doctor Coker had been connected with the bureau since 1902 and was thoroughly familiar with the various problems pertaining to the fisheries. The administration of the division has been aided greatly during the year by the advice and help that he has freely given.

INVESTIGATIONS OF FISH AND FISHERIES.
ATLANTIC COAST.
fishes of the glle of mane.
For a number of years the bureau, in cooperation with the Museum of Comparative Zoology of Harvard University, has been conducting an oceanographic and biological survey of the Gulf of Maine.

Special attention has been given to the fishes and the floating plants and animals (plankton) that compose the food of the fishes, as well as to the physical and chemical condition and the circulation of the waters of the gulf. Several reports on special phases of the survey have been published, but not until recently did the body of data warrant undertaking a general account of the fish fauna. During the past year such an account has been completed by Dr. H. B. Bigelow and is now in course of publication.

The aim has been to prepare a handbook for the ready identification of the fish occurring in the Gulf of Maine, and to present a concise statement of what is known of the distribution of each, their relative abundance, and the more significant facts in their life histories. The descriptions have been made as simple as is compatible with scientific accuracy, and are limited chiefly to such external features as may suffice for identification in the field. As a further aid to identification, keys to all species have been provided. The area covered by the report includes the oceanic bight from Nantucket and Cape Cod on the west to Cape Sable on the east, thus including the shore lines of northern Massachusetts, New Hampshire, Maine, and parts of New Brunswick and Nova Scotia. The Gulf of Maine has a natural seaward rim formed by Nantucket Shoals, Georges Bank, and Browns Bank, but the 150 -fathom contour has been taken as an arbitrary boundary because this includes all the species apt to be caught by commercial fishermen.

STUDIES IN FISH MIGRATION゙S—TAGGING OPERATIONS.

As a part of a plan to investigate the biology of the important food fishes of the cod family (Gadidæ), an extensive experiment in tagging these fishes off the coast of New England had been inaugurated. The tagging is intended primarily to throw light on the movements of the various species of fish batween the different fishing banks and between the banks and the shore. The bureau's steamer Halcyon is being used for this work and has been outfitted with appropriate fishing gear. The ressel left Gloucester for the first tagging cruise on the 16th of April and the first tags were attached on Nantucket Shoals. By June 30, 2,396 fish had been tagged. It is planned to attach a total of not less than 10,000 tags during the season. Cod, pollock, and haddock have been tagged, but by far the greater number has been cod. Some few returns have been obtained, but at this early date not even tentative conclusions can be given. The work has been conducted mainly by William C. Schroeder, with the advice and aid of Dr. H. B. Bigelow and Willis H. Rich.

The tags used are small and made of a noncorrosive metal so that they will withstand the action of sea water, as it is expected that returns will be obtained over a number of years. Each tag bears a serial number and the initials U. S. B. F. As the fish are caught a tag is attached, a record is made of its length, and the fish is then released. A reward of 25 cents is being offered for each tag returned, together with information as to when and where it was obtained.
In addition to the tagging experiment there are being collected material and data that will be used in other phases of the study of the fishes, such as the rate of growth, spawning habits, and age at maturity.

Work on a report on the fish and fisheries of Chesapeake Bay has been continued during the year by S. F. Hildebrand and W. C. Schroeder. Gratifying progress has been made. A large collection of fishes is on hand, and much of it has been worked over and identifications made. Many of the more important species are represented by large series of specimens, and from these considerable information is being derived as to the life histories, rate of growth, etc. Important data bearing on the extent and nature of the commercial fisheries have been collected and are being put into shape suitable for publication.

SALMONIDE AND SMELTS.
In the fall of 1922 work on the completion of important studies on the Salmonidx and smelts of the Atlantic coast and coastal fresh waters was undertaken by Dr. William C. Kendall, a former assistant of the bureau. The greater part of this work involved the assembling and arranging of notes and the study and tabulation of data of several years accumulation. Most of the time was devoted to the smelt problem, with the result that work on it is somewhat further advanced than that on the Salmonidæ. The question of the relationship of trouts (Salmonidæ) was also taken up from time to time. The problem is a complicated one and requires careful examination of many specimens from various localities and the tabulation of statistical measurements and counts. The studies so far indicate that many of the supposed rainbow trout of the Northwestern States are steelheads.

The smelts of the region referred to for years have afforded, and still afford locally, a valuable fishery in themselves as well as a valuable food supply for other important fishes, but they are suffering gradual depletion. These studies have been undertaken with a view to developing information that may be utilized in the conservation of the species. In a popular account that has been completed during the past year regard has been given to geographical distribution, labits, breeding, food, rate of growth, sizes attained, mortality, enemies, history of the fisheries, methods of the fisheries (both commercial and angling), and to legislation and protection. A more technical account has been begun. To throw light on the life history of the smelts, the scales are being studied and many proportional measurements made to determine the relationship between the marine and fresh-water forms. The relationship of the fresh-water smelts from various localities has also been given consideration, and studies of their evolution, embryology, and anatomy, and classification as to families, genera, and species, have been made.

LARVAL FISHES OF THE wOODS HOLE REGION.

A study of the larval fishes of the Woods Hole region has been begun by Marie D. P. Fish, and a considerable quantity of interesting material has been collected. The study of larval fishes has been greatly neglected, rery little information on the subject being available. With the increased attention that is being given to biological studies of the various fishes, this sort of knowledge becomes of increasing importance. Attention is being devoted to the collection
and classification of larval fishes and also to certain features in their life history, especially their food and feeding habits, distribution, and growth. A large collection made over a number of years by the late Vinal N. Edwards is available for study. The seasonal variation in abundance of 36 species has been studied during the year.

FISHES OF KEY WEST.

At the Key West station Isaac Ginsberg, the director, made an effort further to build up the collection of a representative series of fishes of that vicinity that was started several years ago. Many specimens were added to the collection and progress was made in the identification and labeling of the specimens. Data concerning the occurrence, seasonal distribution, and abundance of the local fishes also were collected.

INTERNATIONAL COMMITTEE ON MARINE FISHERY INVESTIGATIONS.

Two meetings were held during the year-the first in Washington on November 10, 1922, and the second in Toronto on May 4, 1923. It is gratifying to record that at the second meeting the newly elected member from France was present. The purpose of the committee is to secure coordination of the various investigations pertaining to marine fisheries conducted by the several member countries. Among the more important topics discussed are the following:
Statistics of the deep-sea fisheries.-Information was given to the effect that the collection of the Canadian statistics is becoming more thorough. In the opinion of the committee it is desirable that each country represented should publish an annual statement of the total yield of the bank fisheries of the western Atlantic, and that the representatives of the several countries undertake to exchange the data for such annual statement.

Tagging of fish.-Interest was expressed by the committee in the tagging of codfish, pollock, and haddock, which is being undertaken by the bureau on the banks off the coast of New England.

Drift bottle experiments. - It was reported that a preliminary statement covering the more important results of the experiments of 1922 had been prepared and that the account in its final form would be furnished the various countries represented for publication if desired. A plan for the season of 1923 was presented, which involved the putting out of drift bottles along 14 lines covering the coast from the Strait of Belle Isle to Vineyard Sound.

Oceanographic investigations by the ice patrol service.-Appreciation was expressed of the work accomplished by the ice patrol service. In the opinion of the committee this work should be extended considerably in the future.

Mackerel investigation.- The committee went on record as considering it most desirable in the near future to initiate a comprehensive investigation of the mackerel.

At the close of the year the committee consisted of the following members: For Newfoundland, D. James Davies; for France, E. LeDanois: for Canada, W. A. Found, Dr. J. P. McMurrich, and Dr. A. S. Huntsman; for the United States, Dr. H. F. Moore, Dr. H. B. Bigelow, and W. H. Rich.

COREGONINE OF THE GREAT LAKES.

The investigations on the Coregoninæ, or whitefishes, of the Great Lakes have been continued; the field work was completed early in the fiscal year, and the attention of the investigators has for some months been directed toward the examination and comparison of collections arrd the compilation of data to be included in the final report. Dr. Walter Koelz is engaged in work on the systematic relations and natural history of the various species, while John Van Oosten is working on age determinations from the scales, the rate of growth, and allied problems. The problems involved in this investigation are difficult and will require considerable time for solution, but the progress made is regarded as most encouraging.

The studies on the systematic relationships and natural history of the Coregoninæ were continued on Lake Superior and Lake Nipigon. In Lake Superior an additional form was discovered and data on the distribution of the coregonine fauna in the eastern section of the lake were collected. In Lake Nipigon seven species were found, all but one of them with representatives in the Great Lakes, and some ecological data were secured. The preparation of the report on the whitefishes and lake herrings of the Great Lakes is well advanced.
Much additional material pertaining to the study of the life histories has been collected and our knowledge of the species materially adranced. Important information as to rate of growth, age at sexual maturity, average length of life, maximum age attained, and average length and weight at any year have been obtained. Where possible the variations in rate of growth in different localities are noted with a view to the planting of fry from hatcheries to the greatest advantage.

By obtaining two large representative collections of the lake herring taken from the same locality at the same season of different years, it has been possible to answer with confidence certain critical questions relative to the scale method of age determination as applied to the whitefish.

During the year a report on experiments carried out on whitefish of known age and life history was completed and is now in press. This report presents evidence to show that the correspondence between the known age of the fish and the number of annuli, or yearly rings, observed on the scales is exact and holds for old fish as well as for the young.

Much aid has been given to these investigations by the University of Michigan, particularly by Dr. Jacob Reighard, and also by the State department of conservation. A fine spirit of cooperation is manifested, which will materially aid and advance the work.

> MISSISSIPPI RIVER FISHES.

The investigation of the fishes of the Mississippi Basin has been continued by members of the scientific staff at the Fairport laboratory under supervision of the director, R. L. Barney. The work has been confined largely to the hackleback sturgeon, rock sturgeon, and sheepshead. A considerable amount of material on the growth, food, sexual cycle, habits, etc., of both the rock and hackleback
sturgeons has been collected. There is evidence in both of these species that sexual maturity is not reached as early as in the case of the "scaled" fishes, and that, unlike these fishes, the reproductive cycle is not an annual one. If these observations are corroborated by future work it will explain to a considerable extent the ease with which the sturgeon fishery has been depleted. A large collection of dermal plates of both species of sturgeon has been made, together with data on weight, length, and the condition of the sex organs.
The study of the natural history of the sheepshead has included observations on their habits in Lake Pokegama, Minn., and the collection of otoliths and scales (to be used in age determination), with records of length, weight, and sexual condition. These data have been supplemented by other data of similar character obtained from fishes taken at Fairport, Iowa.

Some observations have been made on the habits and natural history of the channel catfish.

Tagging experiments have been conducted at several localities in the Mississippi Basin for the purpose of obtaining information as to the migrations of several of the more important fishes. Over 150 small hackleback sturgeon were tagged and liberated in the Mississippi River. A great many sheepshead were tagged and liberated at Lake Pokegama and at Fairport, Iowa. In cooperation with the Louisiana State Conservation Commission some 300 small paddlefish were tagged at Lucas, La. These fish were seined from a large borrow pit outside the river levee, tagged, and transported to the river. The fish were all of small size, presumably of the year, none being longer than 12 inches. In Lake Pepin, a wide section of the Mississippi River between Minnesota and Wisconsin, 1,660 fish were tagged and liberated. These tagged fish were distributed among the various species as follows: Wall-eyed pike, 728; saugers, 771; sheepshead, 16; carp, 42; buffalo, 103. At the close of the fiscal year comparatively few of the tagged fish had been recovered and no significant results had been obtained. It is hoped and expected that future returns will be sufficient to give the information desired.

DESTRUCTION OF TROUT BY PELICANS IN YELLOWSTONE NATIONAL PARK.

During the summer of 1922 the bureau, in cooperation with the National Park Service, began an investigation of the pelicans in the Yellowstone National Park to determine their destructiveness in relation to the trout, the supply of which the bureau helps to maintain by artificial propagation. The services of Dr. H. B. Ward, of the University of Illinois, were secured for this work. The results of this investigation indicate that the pelican is a highly specialized predatory bird, and that its breeding period in the park is so precisely synchronized with that of the trout that its depredations effect maximum losses.

The pelican colony on Yellowstone Lake in 1922 was found to number between 500 and 600 birds. from which about 200 young resulted. For the six weeks of their sojourn on the lake they subsist almost entirely upon the black-spotted trout, the toll taken by each pelican during the season amounting to about 350 fish, and in-
rolving. besides a large loss in trout eggs through the destruction of the breeding fish.

The pelican represents a strange and interesting ancient type of bird life and it is not desired to exterminate it in the Yellowstone Park. where it is of much interest to tomists. Measures have been recommended, however, for the regulation of its numbers through the destruction, by proper authorities. of a percentage of the eggs deposited on the breeding grounds in the park. The recommendations are now under consideration by the Bureau of Fisheries and the National Park Service.
It was originally suggested that attention be directed rather definitely to the problem presented by the parasites of the pelicans and of the trout in Yellowstone Lake. Some data were secured on this point. but the general problem of the destructiveness of the birds. with respect to the trout was considered to be of such immediate importance that the question of parasites was temporarily relegated. to the background and was not made the subject of special attention.

PACIFIC COAST AND ALASKA.

IL.ASKA S.AIMON.
Especial attention was given during the summer and fall of 1922 to a study of the salmon in the Alaska Peninsula fisheries reservation. The work was conducted by Dr. C. H. Gilbert, of Stanford University, and Willis H. Rich, assisted by W. P. Studdert. During June and July 4.000 red salmon were tagged with numbered aluminum tags in an effort to learn something of their migrations. The results of this experiment were striking and gave information of the greatest value. A report was prepared by Doctor Gilbert and has been published.

The tags were attached at four localities near the end of the Alaska Peninsula, where several large canneries are located. Of the 4,000 tags attached, 861 were put on at Unga Island. 200 in Morzhovoi Bay, 2,300 in Ikatan Bay, and 639 in the vicinity of Port Moller. A total of 709 , or 18 per cent, was reported recaptured either in the vicinity where tagged or at more distant points.

Of the 639 fish tagged near Port Moller 174 were recaptured, all of them close to the point where they had been liberated after tagging. It is evident that the Port Moller fishery is sustained largely, if not entirely, by local rums.

The general trend of the migration of the fish tagged in the vicinity of Unga Island was to the westward. Furthermore, they proceeded directly to Morzhovoi and Ikatan bays withont entering on their way the minor red salmon streams to be found along the southern side of the peninsula. A few of these fish moved eastward along the south shore of the peninsula, one being captured at the mouth of the Ozernoi River and four on the eastern shore of Cook Inlet. Other captures were reported from Bristol Bay.

The results obtained in Ikatan and Morzhovoi Bays indicated an extensive movement of salmon back and forth between these two bays. A purely haphazard movement of the fish seemed to be indicated. It was made abundantly clear that Ikatan and Morzhovoi Bays form parts of the same fishing grounds and deal with the same
schools of fish, which pass back and forth from one to the other. No conclusive evidence was obtained, however, that any considerable proportion of the commercial run frequents either the local spawning grounds tributary to these bays or other local spawning grounds on the south side of the Alaska Peninsula.

A most important feature of the Ikatan, Morzhovoi, and Shumagin tagging experiments consisted in the considerable number of marked salmon that passed into Bering Sea and were recaptured in the Port Moller district and on the various fishing grounds of Bristol Bay, including those off the mouths of the Ugashik, Egegik, Naknek, Kvichak, and Nushagak Rivers. These amply demonstrate a movement throughout the season from the North Pacific into Bering Sea, and indicate that a considerable contingent of the red salmon that form the great run on the northern shores of the Alaska Peninsula have their feeding grounds in the North Pacific and enter Bering Sea only when on their final spawning migration. It is felt that this is one of the most important contributions ever made to our knowledge of the oceanic migrations of fishes.

The investigation of the salmon run in the Karluk River was continued. The count of red salmon entering the stream was much below that of 1921, and an investigation of the spawning ground made by Doctor Gilbert and Mr. Rich showed a corresponding scarcity of spawning fish.

SALMON OF PACIFIC COAST STATES.

Progress has been made in the investigation of the life histories of the salmon of the Pacific coast. Very satisfactory results were obtained during the year from one of the extensive salmon-marking experiments in progress on the Columbia River. During the spring of 1920 the bureau and the Oregon Fish Commission, in cooperation, marked 100,000 young sockeye salmon (Oncorhynchus nerlia) at the Herman Creek hatchery of the Oregon commission. These fish were reared from eggs brought from the Yes Bay hatchery of the burean in 1918 and had been hatched at the Bonneville hatchery of the Oregon commission and reared at the Herman Creek hatchery. The marking was under the supervision of Willis H. Rich, of the bureau, and consisted in the removal of the adipose and both of the ventral fins.

A considerable number of these fish, grown to maturity, were recovered this year in the Cohmbia River, and scales and data from approximately 1,200 were obtained by H. B. Holmes, temporary assistant. Mr. Holmes was greatly aided in this work by the Oregon Fish Commission, which offered a reward of $\$ 1$ for the return of the scars from each fish accompanied by the necessary data and scales.

These returns are far the most satisfactory that have ever been obtained from the marking experiments that have been conducted on the Cohmbia River during the past six years. It is especially interesting that the results obtained this year are quite comparable with those obtained in 1918 from a similar experiment begun in 1916, and the estimated per cent of the total number of returned fish is very similar. The results this year further support those obtained in 1918 in that the adult fish were distinctly different from the typical Columbia River fish of the same species, locally known as
bluebacks, and resembled the parent fish of Yes Bay. This resemblance is not only external but involves also the quality of the flesh, that of the Yes Bay fish being inferior to that of the Columbia River blueback. This confirms the earlier conclusion that heredity is more important than environment in determining the general appearance and quality of the flesh of salmon.

An investigation of the spawning grounds of the blueback salmon of the Columbia River was made by Harlan B. Holmes during the fall of 1922.

Up to the present there have been no accurate data as to where this species of salmon now spawns in the Columbia Basin. All of the well-known areas formerly used have been rendered inaccessible by the construction of dams and irrigation ditches. Notable among these old spawning grounds are the large lakes of the Yakima Basin of Washington, the Payette Lakes of Idaho, and Wallowa Lake of Oregon, all of which are now closed to salmon. The especially large rum of bluebacks in the Columbia River during the season of 1922 made this year a very favorable one for the study of the present spawning grounds. The results of the investigation show that a run of these fish passes up the Salmon River in Idaho at least as far as Sumbeam Dam, about 12 miles east of Stanley. The series of lakes known as the Red Fish Lakes are above this point and were visited for evidence of spawning fish. No direct evidence that the fish got above this dam was obtained, but it is not at all impossible that many of the fish were on their way to the sparning streams risited but at the time were in the lakes or at points in the river that were not visited. The evidence that there is still a run of bluebacks in the Red Fish Lakes seems sufficient to justify providing a certain passageway over the dam for the returning fish in future years. The present fishway over Sumbeam Dam is considered inefficient.

INVESTIGATIONS OF SHELLFISH AND TERRAPIN.

oysters.

Investigations relating to oyster culture were conducted during the fiscal year by J. S. Gintsell and H. F. Prytherch, scientific assistants, aided during the summer months by J. G. Scott. Dr. P. S. Galtsoff also carried on some special oyster investigations. As in recent years, the "setting" problems of Long Island Sound and Great South Bay, Long Island, received chief attention.

In the summer of 1921 there had been an oyster "set" of exceeding abundance in Great South Bay. Before the summer was over it was nearly all dead. The work of that summer and fall and of the following spring showed that where the spat had attached well above the bottom, as on "pound" stakes and boat bottoms, good growth and no excessive mortality had occurred. The discovery that $\mathrm{H}_{2} \mathrm{~S}$ was being generated by decomposing organic material over a large part of the bottom seeined to accomit for the loss of bottom set and the survival of that which was elevated. It was hoped that in 1922 definite evidence might be obtained for or against this hypothesis and especially that the degree of elevation required for the survival of the set might be determined and a way opened for improvement in commercial practice to meet the special needs of this area. Unfor-
tunately, however, complete failure of the oyster set made it impractical to add to our knowledge in regard to the minimum or optimum elevation for growth and survival, but data of value for the determination of the correlation of temperature and oyster spawning and setting were obtained. Later, at Milford, Comn., it was found that the presence of very minute amounts of $\mathrm{H}_{2} \mathrm{~S}$ causes spat to stop feeding, and from this it follows that the presence of the gas is, at the very least, highly disadvantageous.

The work in the New Haven-Bridgeport area of Long Island Sound, where once an important supply of northern "seed" oyster's was produced and where the sets have become alarmingly reduced, consisted in the collection of data regarding temperatures; spawning of oysters; the occurrence, distribution, and development of larvæ and spat; and the effects on spat of various chemicals known to be important pollutants. Data concerning the age and growth of spat also were collected. The investigations revealed the fact that the set of oysters was much above the average following a season in which the oysters in harbors and inshore areas of the Sound spawned comparativelý early.

Oyster larvæ were found in the Housatonic River for the first time in the five seasons during which these investigations were carried on. For a number of years there had been no oysters in this river until a planting was made in the spring of 1922. The set was comparatively good, but a very large proportion was destroyed by starfish and drills, and to a considerable but uncertain extent by other adverse factors. The set of oysters at the mouth of the Housatonic River occurred during a time of lessened trade-waste pollution due to decreased manufacture and when water conditions presumably were temporarily much better than usual. Because it was believed that improved water conditions may have had a great influence on the set, it seemed desirable that a survey be made at this time for comparison with conditions obtaining during periods of greater industrial activity. In October, therefore, in cooperation with the Bureau of Chemistry, an investigation was made of water conditions in the Housatonic River and New Haven Harbor with regard to tradewaste pollution with heavy metals, and also with regard to oxygen content and alkalinity. From this work it appeared that conditions were chemically decidedly worse in the optically clean Housatonic River than in the obviously fouled New Haven Harbor. This was most notably true with regard to copper, but also held for zinc and dissolved oxygen.

In the experiments with pollutants a copper salt was found most destructive. A solution of copper chloride containing 10 parts per $1,000,000$ of copper gave complete mortality of oyster spat under conditions in which other metallic salts gave less mortality and the control experiments nearly complete survival.

An inquiry into the relationship between spawning and water temperatures has been carried on for a number of years. At this stage of the investigation the evidence indicates that fairly satisfactory temperature conditions, viz, the attainment of $70^{\circ} \mathrm{F}$., or higher, by late July or early Angust, and the maintenance of about this temperature for the few weeks required for spawning and setting, are generally to be expected not only in estuaries but also in inshore areas in the sound. Therefore, until conditions in the estuaries can be
greatly improved, in so far as pollution is concerned, the general planting of inshore lots with oysters (where this will not result in loss from storms, etc.) is to be urged as the most hopeful method in sight for the improvement of oyster sets in the sound.

In September there came to the attention of Dr. P. S. Galtsoff, in the course of his hydrographic surveys, the matter of the death of large numbers of "set," especially in the neighborhood of New Haven. He found that in addition to those being killed by the drill, many were dying from some unknown cause. Attempts, by histological methods, to connect this mortality with some parasite were unsuccessful. When, in October, he again visited this region he found that although the drill was still active the mortality from the unknown cause or causes had ceased.

CLAMS AND CRABS OF ALASKA.
In connection with the administration of fishery reservations in Alaska, an investigation of the clams and crabs has been undertaken. The utilization of these shellfish has only just begun in Alaska, and while there is no immediate danger of depletion it is desired to obtain all the information that may be needed later to properly control the utilization of the resource. For this work the bureau has obtained the services of Dr. F. W. Weymouth, of Stanford University, who has made extensive studies of the life histories of both clams and crabs in California and British Columbia. Some preliminary work has been done in the way of compiling information as to the present state of the industry and active field work will be begun soon after the close of the present fiscal year.

FRESH-WATER MUSSELS.

Investigations of the factors affecting the survival and growth of juvenile mussels conducted at Fairport and at Lake Pepin have been characterized by important results, which have appeared sufficiently favorable to warrant the establishment of a small rearing system at Fairport. This system consists of 140 metal troughs fed by a gravity supply of water, twice sedimented in ponds before reaching the troughs. The elasticity of this system, and its apparent efficiency, mark it as a distinct step toward the conservation of fresh-water mussels. One of the main features of the system is the exclusion of light from the troughs. Experiments have proved that the dark trough, probably because it simulates natural conditions on the bottom of mussel-bearing streams, will produce about 25 times as many mussels as the open trough.

Similar noteworthy results have been produced experimentally at Lake Pepin, Minn., by the use of a totally different apparatus. There a floating basket with wooden floor approximately 8 feet below the surface was used. A second smaller basket, in which the infected fish are held until the mussel embryos are liberated, was suspended within the larger inclosure. This style of pen and bottom was used in an effort to avoid losses caused by enemy organisms living on the lake bottom. Its value is evidenced this year by the fact that on the bottom of one experimental float 10 feet square more than 23,700 young mussels, all at least half an inch long, and many longer, were
recovered. These mussels spent their parasitic life on wall-eyed pike and saugers and represent an 84.6 per cent survival of the glochidia, constituting the total experimental infection. The production of these juveniles averaged 237 per square foot of bottom surface. The mortality of mussels after having reached this length is approximately nil.

The results of these experiments stand as an indication of the possible usefulness of controlled methods over the present method of artificial propagation in which infected fish are liberated in natural bodies of water to drop the juvenile mussels on bottoms, where it is unlikely that more than a 2 or 3 per cent survival results. These results are particularly significant if, based on the apparatus used, artificial mussel propagation may be carried on more effectively than formerly with results more tangible, cheaper, and less limited by natural physical, chemical, and biological factors.

During the year two undescribed parasites of fresh-water mussels, ciliates of the genus Conchophthirius have been observed. One of these has no particular significance as it is apparently harmless. The other, however, evidently is the canse of the mortality of large numbers of larval mussels while they are still held in the marsupia of the adults. Mussels seriously infected have been taken in Lake Pepin and from the ponds at Fairport.

Statistical and biological surveys of mussel beds have been carried on during the year at Lake Pepin and at Lake Pokegama, Minn. Artificial culture of mussels by the inoculation of the host fishes has been carried on for several years in both bodies of water. At Lake Pepin there has also been in operation for some time a five-year alternate sectional closure of the lake to commercial mussel fisheries. The surveys, therefore, especially in the case of Lake Pepin, have provided important data regarding the benefits derived from artificial mussel culture and the advantages to be expected from protective closure of streams. The survey of Lake Pepin indicates, though not conclusively, that the important commercial mucket (Lampsilis luteola) has increased in the lake. This apparently is due to the artificial culture of this species that has been carried on by the bureau since 1913. The noncommercial species and other commercial species that have not been propagated apparently have decreased during the same period of time.

The presence in the lake of a large number of mussels under 10 years old further corroborates the value of the work. The returns from this survey are the best indication of the value of artificial mussel culture so far obtained. The protective closure, as inaugurated in 1918 through the cooperation of the States of Minnesota and W isconsin, is unquestionably a desirable aid in perpetuating the mussel fisheries of the country.

Physiological and anatomical studies of the mussel embryo and its fierelopment, and experimental efforts at metamorphosis induced mithout the normal stage of parasitism on fishes, were conducted by Dr. Edgar Allen at the fisheries biological station, Fairport, Iowa. Obestrvations were made on a number of mussels, but particularly on the species Anodonta imbecillis and Strophitus edentulus.

Dr: L. B. Arey continued his investigations of (1) the history and structure of the normal cyst of fish tissue surrounding the mussel glochidium, its relations to the surrounding host tissues, mutual
adjustments, mutritive relations, etc.; (2) the morphological study of the glochidia of a large number of fresh-water mussels; (3) the nutrition of the encysted glochidium; and (4) the histological changes in tissues of the host due to an immunity reaction of the fish to inoculation with glochidia.

Dr. E. P. Churchill, jr., during the summer of 1922 was engaged in a continuation of his study of the food and feeding of fresh-water mussels. His attention was confined chiefly to feeding reactions and requirements of jurenile mussels.

Activities looking toward adequate protection for the commercial mussels in order that the industry might be perpetuated have been of a cooperative and advisory character. During the year, as a result of endeavors along this line, the fish and game authorities of the States of Minnesota, Iowa, Wisconsin, and Illinois have cooperated to close to commercial fishing for a period of five years alternate sections of the Mississippi River between Brownsrille, Minn., and Keokuk, Iowa.

TERRAPIN.

A series of cultural and breeding experiments with the diamondback terrapin was continued at Beaufort, N. C., by Charles Hatsel, the acting director of the station. Careful records were kept of the reactions obtained by varying methods of feeding, size of range, etc., and special experiments in selective breeding were begun. Further attention has been given to the determination of the cause or causes of a bacterial disease among young winter-fed terrapin and to methods of combating the disease.

Terrapin from a wild brood stock have been grown in confinement under various conditions for the purpose of determining the environment under which the best results may be obtained. It has been found that at least one year's growth can be gained by placing young terrapin in a hothouse, keeping them warm, and feeding them regularly for the first winter of their lives. Winter feeding for older terrapin has not proved to be of much value. The young that received this winter treatment the first year have also invariably reached sexual maturity and produced eggs one year earlier than those of the same age that were permitted to hibernate. Diseases among the winter-fed stock, however, are more prevalent than they are among the hibernating terrapins and constitute a problem that requires further study. Several experiments have been conducted in the past and others are now under way looking toward the successful control of these diseases. Fortunately, diseases among terrapin of one or more years of age are very rare.

The oflispring of wild stock have been reared to sexual maturity in captivity in four years. Several lots of young, hatched from eggs baid by terrapins reared in the pounds at the Beaufort station, are now being held, and their rate of growth is compared from time to time with that of terrapins of the same age hatched from eggs of the wild brood stock. To date the rate of growth in the offspring of the " domestic" stock invariably has exceeded that of the "wild " stock, indicating that as early as the second generation after confinement these animals are becoming adapted to the changed environ-
ment. Certain lots have been separated for selective breeding. The terrapins in these lots were selected for rapid growth, size, and general healthy and vigorous appearance. The third generation of domestic terrapins probably will result during the next breeding season from this series of experiments. The results attained show beyond a doubt that it is entirely practical to grow diamond-back terrapins in confinement for commercial purposes, and, indeed, this appears to be the only hope of maintaining a supply of this animal, which is nearing extinction.

ECOLOGICAL AND OCEANOGRAPHIC STUDIES.

CONTROL OF MOSQUITOES BY MEANS OF FISH.

Investigations of fishes in relation to mosquito control were conducted at Augusta, Ga., during the mosquito-breeding season of 1922 by Samuel F. Hildebrand, ichthyologist, working in cooperation with the United States Public Health Service. Particular attention was devoted to a study of the relationship that various plants bear to mosquito control by the use of fish. A single plant-the duckweed Spirodela-was found to prevent mosquito production in a measure. All other plants used in the experiments appeared to favor mosquito breeding. The extent to which plants favored mosquito breeding and to what extent they formed "barriers" between the fish and the wiggle-tails was arrived at through the creation of fishless areas in ponds supporting various types of vegetation in which mosquitoes were permitted to breed unmolested for a time. Later such areas were restocked and the results were checked.
Extensive studies of sex ratios in Gambusia (the most important of the fishes used for mosquito control) were made, from which it was determined that the males are proportionately fewest in August, when among the specimens examined only 1 male occurred among about 8 females. In October the males had become much more numerous and the proportion was about 1 male to 2 females. The conclusion is that the male is the weaker sex, and in August, just before the early young of the season become sexually mature, so many of the males have died or have been destroyed by enemies that the disparity is very great. In October, when many of the young of the previous spring and summer have become sextally mature, the young males greatly increase the proportionate number of that sex. Microscopic studies of the sexual organs of a limited number of young fish showed a sex ratio of about 1 to 1 .

It is well known that in the northern part of its range Gambusia spawns only during the summer, but it had previously been noticed that gravid females may be taken at Key West at all seasons of the year. Consequently the director of the Key West station, Mr. Ginsberg, was requested to confine females in the aquarium and make careful observations relative to the period and frequency of spawning. These observations show that at Key West Gambusia spawn the year round at more or less regular intervals of four weeks.

Extensive experiments relative to the proper handling of Gambusia in confinement and shipment were conducted. It was shown that a larger proportion of the fish survived when approximately 3 inches of water was placed in a vessel of a given diameter than if s to 10 inches of water were used in the same container.

During the year Mr. Hildebrand visited several localities in the South in an advisory capacity, offering suggestions for the best use of top mimnows for the control of malaria and for the propagation of these fish for distribution.

OCEANOGl:Al'HIC WORK.

During the fiscal year 1923 laboratory work on the collections made in the hydrographic and biological survey of Chesapeake Bay was inaugurated, the field work in the main having been completed early in June, 1922. The special collections have been segregated and assigned for study by specialists in the National Museum and biologists in various parts of the United States and Canada, and a comprehensive report on the fish and fisheries of the region is well advanced. The data relating to the physical and chemical features have been compiled, and a report on this phase of the investigation is also well under way.

In this investigation the bureau has received cooperation and assistance from the United States Geological Survey in the determination of the salinities of the water, and from these results most of the densities have been calculated. The Geological Survey has also furnished important information concerning the average amount of fresh water that drains into Chesapeake Bay, and this, together with valuable information prepared by the United States Coast and Geodetic Survey as to the total area, areas of cross sections, and volume of sea water entering the bay, will have an important bearing on the study of the movements of the water and the organisms contained in the water. The United States Weather Bureau has cooperated by furnishing information on the daily precipitation during the last few years in drainage basins that feed Chesapeake Bay. These important data have been found very valuable in the study of the variations in position of the water layers of different density in the bay.

The survey of Chesapeake Bay was begun in 1912 by Lewis Radcliffe and William W. Welsh primarily for the study of the Clupeidæ. The work was later extended to include the general fauna and flora of the bay, with the exception of the birds and the higher plants. Dr. R. P. Cowles, of Johns Hopkins University, undertook the superrision of the work and personally conducted numerous cruises on the bay during 1920 to 1922 . William C. Schroeder made extensive collections of fishes and obtained many data on the commercial status of the fisheries of the region. The fisheries steamer Fish Hawh was used in making the survey.

To supply fundamental data for the elucidation of oyster-cultural problems, especially the failure of the set, Dr. Paul S. Galtsoff, naturalist on the fisheries steamer Albatross, has been conducting a hydrographic and microbiologic surver of Long Island Sound and adjacent waters. The program included a series of Richter and Negretti-zambra reversing thermometer readings and Eckman cur-rent-meter readings, salinity and dissolved oxygen titrations, colorometric hydrogen-ion determinations, color and transparency determiniations, qualitative and quantitative plankton studies, and quantitative bacteriological tests. Fourteen cruises were made with the
fisheries steamer Fish Hourk, and observations were taken at 299 stations.

Although at the end of the fiscal year the work was not completed, Doctor Galtsoff was able to make an interesting progress report. The Sound receives salt water throngh both ends, but by far the most, probably nine-tenths or more, enters through the east end known as the "race." The entering sea water is diluted by the discharge from numerous rivers, particularly on the north shore, so that there is a marked decrease in salinity from the race to the head of the sound. There is also a seasonal variation. From July to November the salinity rose and thereafter it gradually decreased. Highly polluted water enters from East River and from many industrialized and sewage-polluted streams and harbors. Accordingly, at the head of the Sound the bacterial content was high, up to 4,000 per cubic centimeter, and in certain harbors very high, indeed, up to 20,000 per cubic centimeter. However, so great is the dilution in the Sound that within 2 or 3 miles off the mouths of the worst polluted harbors the bacterial content was reduced to 100 per cubic centimeter or less. Corresponding with the evidences of pollution afforded by the bacterial examinations, the dissolved oxygen content was low at the head of the Sound and in the harbors but fairly high a short distance a way from these polluted areas.

Being less affected by ocean conditions, the waters of the western part of the Sound show much higher summer temperatures than were found at the month. An increase also occurs in inshore waters. The hydrogen-ion studies revealed comparatively little variation from place to place, day to day, or season to season. Except for the one river, the pH values for the Sound and estuaries ranged only from 8 to 8.3. In the Honsatonic River, which receives an extreme amount of acid pollution, values of 7.6 and 7.8 were recorded. "Mnch of this information is of great interest in the study of the oystercultural problems of the region. When the examination of the material is completed and the work of another year added, a fine basis for the study of specific problems will have been laid.

STUDIES OF MARINE PLANKTON IN RELATION TO TIE FISHERIES.
During the past year an investigation of the seasonal variation in the plankton of the Woods Hole region was carried on by Dr. Charles J. Fish, assisted by Marie D. P. Fish. The purpose of the work was to make an exhaustive investigation of the plankton, the seasonal variation of the various species, their interrelationships. and the general factors governing their distribution. As planktonic organisms form the sole food of the pelagic larval fish and are important factors, both directly and indirectly, in the diet of the adults, the results of the present investigation will serve as a basis for a future study of the factors governing the seasonal variation of both the fry and the adult fishes.
Examinations of collections taken daily were made throughout the year, together with records of temperature, salinity, and other physical governing factors. The seasonal variation of 291 species of plankton organisms, of which 36 were larval fish, were recorded. It was found that salinity has little or no effect on the plankton of the immediate region. No fresh-water streams of any size enter

Great Harbor, the salinity a veraging about 31.5 throughout the year. Water temperature is the dominant factor in governing the seasonal distribution and the breeding periods of all local pelagic animals. It also determines whether oceanic species entering the region shall perish at once or live long enough to become an important factor in the local fauma.

As in the case of the bottom-living amimals, the plankton of this region is made up of a complex of faunas. The region about Woods Hole forms the northern limit of many southern species, the southern limit of many northern species, and a pocket where oceanic animals blown in by strong sontherly winds are deposited. The arm of Cape Cod forms a permanent northern barrier for the southern coastal plankton, but only a summer barrier for northern pelagic animals. A distinct periodicity in the occurrence of all common animals of the region is clearly noticeable. The succession of species remains the same each year, the only variation being in the time of their appearance and disappearance. The planktonic animals of the region, with one exception, may be placed in two general groups-the summer community and the winter community. The coelenterates form the exception: for the most part these have a long spring period of maximum frequency and another short one in the fall.
Three general conditions affect the appearance of the pelagic ani-mals-winds, tides, and the food supply. Salinity forms barriers in some localities, but not at Woods Hole. Once introduced into the region, the organisms remain until the temperature becomes unfavorable or the food supply is exhausted; then they must leave or perish. Food is also an important factor in causing the disappearance of a species during a period of favorable physical conditions.

Temperature governs the breeding seasons of the plankton and benthonic animals of this region. The temperature prevailing at the time of the extrusion of the eggs is not often the important factor, for the eggs are usually thrown off as soon as ripe provided the conditions are not too unfavorable. After being deposited in the waters the existing temperature plays a controlling part in determining whether the incubation period will be long or short. The determination of an early or late breeding season depends on the temperature at some previous date when a warming or cooling of the water started the derelopment of the sex products. These facts must be considered when interpreting the appearance of certain larro in the plankton.

The distribution of the plankton of the western Atlantic coast is little understood, and the number of animals new to the region taken during the past year indicates that most of the eastern Atlantic coast pelagic species will probably be found here also.

A full report of the work of the year. compiled with complete records of plankton collections by the late Tinal N. Edwards covering the years 1893-1907, inclusive, is nearly completed.

ECOLOGY OF FRESH-WATER LAKES.

Cooperation with the Wisconsin Geological and Natural History Surver in important investigations of the fundamental conditions of fish life in lakes has been continued. These studies are directed by Dr. E. A. Birge, president of the University of Wisconsin, and the work was executed by Chancey Juday and Dr. H. W. Rickett, assisted
by students from the university. The aquatic plants, the plankton, bottom fauna, and mussels of Green Lake were studied during the past year, with reference to quantity and distribution, and a report on, the aquatic plants has been completed and will appear in Volume XXI of the Transactions of the Wisconsin Academy of Sciences. Arts, and Letters. Arrangements have been made for the continuance of these investigations during the fiscal year 1924.

FOULING OF SHIPS BOTTOMS.

In September, 1922. in cooperation with the Navy Department, the bureau began an investigation of the marine growths on the bottoms of ships to determine, if possible, the conditions governing the amount and character of such growths and the possible seasonal and regional factors affecting them. The work was undertaken with a view of securing further data on the problems of preventing the attachment of the fouling organisms to ships' bottoms, as well as to determine the proper docking intervals for ships in various kinds of service. J. Paul Visscher, of Johns Hopkins University, was placed in charge of the work. Through the Nary Department he has been kept in touch with the docking of vessels in the navy yards of the Atlantic coast and has made examinations of more than 70 vessels in dry dock.

While the results so far obtained are not entirely conclusive, sufficient data have been collected to indicate that the color of the paint used is an important factor in determining the extent of fouling. In the tests made with submerged plates painted, respectively, white, black, vellow, red, green, and blue, it was found that there was much more fouling on the dark plates than on those of lighter colors. These results apparently are explained by the fact that at the time of attachment of the larve to the plates the organisms are negatively phototropic: that is, they tend to go away from the source of light. It would seem, therefore, that there is an important and specific relation between light and the nature and extent of the fouling of shipss bottoms.

The investigation has also indicated rather conclusively that fouling in the North Atlantic waters is caused, in the order of their importance, by barnacles, hydroids, algae, bryozoa, ascidians. and by numerous other growths of much less importance. and that most of the organisms attach while the ships are in harbor. It has been shown that vessels in commission, which never stay more than six or seven days in any port and travel between ports a considerable distance apart, do not foul seriously, at least during the period from August to March in the North Atlantic Ocean. On the other hand, it is found that vessels that lie at anchor continuously in any one port for the five or six winter month become heavily coated with hydroids but not with barnacles.

INVESTIGATIONS PERTAINING TO FISH-CULTURAL OPERATIONS.

PATHOLOGY OF FISHES.

Studies have been continued by Dr. H. S. Davis, pathologist, on Octomitus salmonis. an intestinal parasite of trout. In the course of these investigations visits were made to a number of hatcheries
in different parts of the country. The parasite has been found to be widely distributed and probably occurs at most of the bureau's trout hatcheries. It is strictly an intestinal parasite, usually being most abundant at the anterior end, but may be found throughout the entire length of the intestine. It occurs in two quite distinct forms that evidently represent different stages in the life cycle.

The most common form of Octomitus is the flagellate stage that lives in the lumen of the intestine and under certain conditions may be present in large numbers. In addition there is also an intracellular stage that is quite different in appearance and occurs in the epithelial lining of the pyloric cæca and the anterior end of the intestine. This stage first makes its appearance as a small rounded body lying in a vacuole in an epithelial cell. It grows rapidly, producing hypertrophy of the infected cell, which eventually is destroyed. After a time the parasite undergoes schizogony and the resulting schizonts invade other epithelial cells and repeat the process. On the other hand, some of the schizonts, instead of again undergoing schizogony, after a short period of growth become metamorphosed into the free-swimming flagellate. Usually both intracellular and fagellated forms are found in the same host, but under some conditions, which are not well understood, one form may greatly predominate. This is especially true of the intracellular stage, which may become very abundant without any corresponding increase in the flagellated form.

The effect of the parasite on the host varies greatly and is apparently largely dependent on local conditions. Under ordinary circumstances the injurious effects appear to be confined to the fingerlings, older fish being affected little if at all. In the young trout the parasite is often present in great numbers, the flagellates usually being more abundant than the intracellular stages. The flagellates do not ordinarily cause a severe mortality, but may seriously interfere with the proper nutrition of the host. The fish become greatly emaciated and instead of growing steadily may even lose weight for a number of weeks. The disease usually is more pronomiced in the spring and apparently is associated with a slight rise in the temperature of the hatchery water. In some instances, for reasons not well understood, the intracellular stages may become very abundant, producing an inflammation of the intestine that often terminates fatally. There can be little doubt that many, if not most, of the epidemics among young fish, which occasionally break out in trout hatcheries in early spring, are due to this cause. The intracellular stages are also the cause of an excessive mortality that sometimes occurs when fish are being transported from the hatcheries. Usually there is little loss for the first 24 hours, but if the fish are held in cans for a much longer time the mortality is sometimes very high. It has been found that for some reason the intracellular stages multiply very rapidly when the fish are placed in cans, producing a fatal enteritis.

Since Octomitus is so widely distributed and occurs in the brood fish as well as fingerlings it will doubtless be very difficult, if not impossible, to eradicate it in the hatcheries. It is believed, however, that the parasite can be controlled and its injurious effects reduced to a minimum. Although it has been found in wild fish,
there is no evidence that it is very abundant or produces serious injury to the host under natural conditions. However, the unnatural conditions under which the fish are necessarily kept at the hatcheries appear to furnish an ideal opportunity for the development of the parasite, and consequently it has come to be one of the most serious pests with which the fish-culturist has to deal. Overcrowding undoubtedly is one of the conditions that favor its rapid development, and wherever the fish have been given more room there has been a noticeable improvement in their condition. It is believed that improvement in the food would also help in alleviating the injurious effects of Octomitus, and experiments have been planned with this object in view.

It has been found recently that excessive mortality, which often occurs during distribution, can be greatly reduced by keeping the fish at a much lower temperature than formerly. In fact, fish from the White Sulphur Springs (W. Va.) station, which in previous years had shown the greatest mortality, were carried at a temperature of $40^{\circ} \mathrm{F}$. with very little loss.

A preliminary paper dealing with this parasite was published in the Journal of Parasitology for March, 1923.

For a number of years the Neosho station has experienced great difficulty with brood fish. The number of eggs produced often was below normal and of such poor quality that a considerable percentage failed to develop. This was most noticeable among the black bass, especially the smallmouth. Many of these fish failed to spawn, and in some of the ponds practically no fry were produced. This station was visited by the pathologist in May, and it was found that the trouble is, in all probability, due to a cestode, Proteocephalus ambloplitis. The plerocercoid larve of this tapeworm were found in large numbers in the ovaries of the smallmouth bass, while the ova had failed to develop normally. The larve occurred thronghout the connective tissues of the viscera, but were much more abundant in the ovaries than in the other organs, and in a number of fish examined were so numerous as to effectually prevent the development of the ova. The same parasite was found in the largemouth bass, rock bass, and blue-gill sunfish, but was not as abundant in these fish as in the smallmouth. Evidently the ponds furnish exceptionally favorable conditions for the development of the parasite, which has seriously curtailed the output of the Neosho station.

A small percentage of the halibut taken on the Pacific coast are referred to as "wormy," from the fact that the flesh contains many long, white, wormlike structures that render the fish unsalable. These so-called worms are in reality hypertrophied muscle fibers that are infected with an undescribed species of myxosporidian. These parasites live only within the muscle fibers that become greatly enlarged and eventually filled with a glistening whitish mass of spores, which accounts for its wormlike appearance. A description of the parasite and its effect on the fish has been prepared for publication. This condition should not be confused with the so-called mushy halibut, which is apparently due to a small bacterialike organism that develops in the connective tissue surrounding the muscle fibers. The investigations on mushy halibut are being continued and will be reported on later.

An outbreak, in the bureau's aquarium, of the disease caused by Ichthyophthirius, provided a favorable opportunity for studies on the life history of the parasite and methods of control. These inrestigations were carried on by H. F. Prytherch, scientific assistant, who found that alum sulphate possesses certain advantages over chemicals previously used in the treatment of the disease. A brief bulletin on the disease is being prepared.

An outbreak of a "gas bubble" disease in developing trout at La Crosse, Wis., was investigated by the Fairport station. The disease was found to be characterized by the diffusion of yolk through the surrounding tissues and in some cases by the formation of a bubble of gas in the yolk. Since it was known that there was an excess of carbon dioxide dissolved in the water, it was suspected that this was the primary cause of the trouble. This diagnosis was borne out by the fact that elimination of the gas before the water entered the troughs caused a disappearance of the abnormal condition although the fish affected failed to recover.

At the invitation of the Minnesota State Game and Fish Commission an investigation was made of the mortality of pike perch at Cut Foot Sioux, Minn. The fish found dead had apparently been trapped some weeks before for the collection of eggs and, owing to improper handling, had been scratched and bruised, resulting in a fatal infection with Saprolegnia.

In June a severe mortality of crappie and sunfish in Lake Pokegama, Minn., was investigated by R. L. Barney, director, and H. O. Hesen, superintendent, of the Fairport station. The cause of the mortality was diagnosed as a heavy infestation of the gills by the worm Dactylogyrus with a secondary bacterial infection that usually killed the fish. This mortality at Pokegama is of particular interest in view of its regular annual occurrence in May and June for the past 15 years. Its original appearance seems to have been connected with the lowering of the water level of the lake by the blowing out of a dam, which resulted in cutting off a broad connection with Snake River. The mortality affects several species of fish, but the crappies and sunfish suffer most severely.
During June a heavy mortality of gizzard shad occurred in lakes in the suburbs of Des Moines, Iowa, and at the invitation of the State game warden an investigation was made by the Fairport station. The disease was characterized by inflation of the pectoral fins, and the study of sectioned material led to the conclusion that it was due to bacterial infection, probably by a gas-forming organism.
At the request of Representative Sweet, of Iowa, an investigation of conditions in the Iowa River was made by C. N. Blystad, of the Fairport station. A serious mortality of fishes occurred in this river during the late fall and early winter, and although fish were not dying at the time of the investigation it was possible to gather sufficient data to warrant a definite conclusion as to the cause. It was found that the mortality was due to large amounts of chemical and organic wastes allowed to pass into the stream from a sugar factory located on the river.

> PHYSIOLOGY ANO NE゙TRITION OF FISHES.

Prof. A. S. Pearse, of the University of Winconsin, and his graduate students continued their studies on the physiology and nutrition
of fishes, assisted to a limited extent by the bureau. These studies include investigations on the amount of natural food consumed, the chemical composition, the functions of the swim bladder, and the digestive enzymes of fishes. In the investigations on the chemical changes in trout and perch during growth the protein, fat, water, and ash have been determined for fish of various ages taken at intervals throughout the year. The composition of fed and starved pumpkinseeds (sunfish) has also been determined and compared with individuals caught fresh from Lake Mendota.

Studies on the function of the swim bladder have demonstrated that it is primarily a hydrostatic organ that has secondarily taken on respiratory functions. The effects of temperature and pressure on the gaseous content of the organ have been thoroughly investigated.
A study of the digestive enzymes of fish has been begun and promises to yield results of great value. Up to the present the work has been confined to pickerel, carp, and perch, but it is planned to broaden the scope of the investigation in the future.

Professor Pearse and his students have also started investigations directed at certain fundamental problems relating to the metabolism of cold-blooded vertebrates that promise to be of exceptional interest. It is planned to use turtles for these investigations, and special attention will be paid to the relation of various rations to the rate of growth; the relation of temperature to pulse, respiration, and hibernation; the basal metabolism ; the amount of food required per day; the chemical composition of turtles at various seasons and ages; and the degree of activity at various temperatures.

During the latter part of the fiscal year a series of experiments for developing a more satisfactory diet for trout was inaugurated at the Manchester (Iowa) station. For many years there has been little change in the character of the food used at trout hatcheries, although in the light of the more recent knowledge of animal nutrition that has attracted much attention in late years it is evident that the standard rations are deficient in certain essential food requirements. They are especially lacking in salts and vitamines, and it is not impossible that many of the difficulties experienced at the hatcheries are in reality primarily due to an inadequate diet. For this reason it was thought advisable to undertake an extensive series of feeding experiments in the hope that it would be possible to work out a more satisfactory ration than those in use at present. Milton C. James, scientific assistant, has been assigned to this work, which was just getting under way at the end of the fiscal year.

EXPERIITENTAL WORK IN FISH CULTURE.
A number of investigations relating to the development and improvement of methods of artificial culture of some important food fishes have been conducted at the Fairport biological station. Observations on the culture of buffalofish seem to indicate that the fish will not lend itself to cultivation on a commercial scale on account of the large acreage necessary for it to attain an optimum growth. Efforts to artificially propagate the paddlefish have not yet succeeded owing to the fact that the young fish placed in one of the ponds several years ago have not yet reached the age of sexual maturity. They
will continue to be held, however, in anticipation that at some future time they may ripen and spawn. This species is of particular value commercially, and its perpetuation is a matter of concern in view of the great decrease in its numbers in recent years. Experiments in the culture of the channel catfish have been continued. Considerable light has been thrown on the natural history and essential factors for success in the pond culture of this species, and several ponds have been set aside for a practical demonstration of these experiments. At the close of the fiscal year quite a number of nests were observed, and it seems quite possible that the pond culture of this fish may be taken up on a practical basis next year. An effort at the pond culture of the hackleback sturgeon was made at the Fairport station and a large mass of data was collected, on which it is hoped to base recommendations for protective legislation for the species. The fishery for this species is of value and one that is carried on intensively because of the high prices paid for both the flesh and the eggs.

Observations on the production of the "farm pond" at Fairport have been continued with significant results. The purpose of the study of this pond production has been to obtain useful data regarding the possible value of small ponds on farms or large estates. With this end in view the pond has been handled just as one would be managed in practice; that is, the fish have not been fed but have depended on the natural "fish food," the small animals and plants that normally form the diet of food fishes and that are naturally produced in the pond.

Year.	Net production per acre.	Production of edible fish per acre.		Year.	Net production per acre.		Production of edible fish per acre.	
	Pounds. Ounces.	Pounds.	Ounces.		Pounds.	Ounces.	Pounds.	Ounces.
1919.	203 14	94		1921.	374	11	92	
1920.	$333-8$	54	0	1922	440	14	101	11

The production of the pond has been obtained by computing the difference between the weight of the fish at the time of their introduction into the pond in spring and the weight of the same fish and their offspring as occasionally caught out during the summer or when removed from the pond at the autumn inventory. This method of computation gives the increased weight of fish in the pond due to the "turnover" of small plants and animals. The fish used (the bluegill) feeds primarily on insect larvæ, cladocerans, copepods, and plants. This anmual net "turnover" of food organisms of the pond into fish flesh is here tabulated. The table includes also the weight of the fish of edible size taken from the pond.

The annual production of fish of edible size in 1919 and 1920 was based on the weight of fish removed from the pond by hook and line during the summer. In 1921 and 1922 line fishing was not carried on in the pond and the data on the production of edible-sized fish were collected when the fall inventory was made. The use of the fall measurements for this computation necessarily tends to hold down the total possible " turnover" and the total possible production of fish of edible size. The computation, however, as made for 1921 and 1922 , can not be far from accurate, though the total net "turn-
over" and the production of food fish mould probably have been somewhat greater had the larger fish been removed at interrals during the summers of those years.

The effort in manipulating the stock of this pond has been to so control the number of fish of different ages in it that an association might result that would give continual maximum production of fish of edible size year after year. The tendency of the manipulation for the last three years has been to decrease the number of fish constituting the spring plant, so that the small fish produced by them during the current year might not make up an undue proportion of the total amnual production of fish flesh. It has been observed that too great a production of young fish in a given year prevents many of the half-grown fish from attaining edible size through too serious competition for the available food.

THE BIOLOGICAL LABORATORIES.

The biological laboratory at Woods Mole, Mass., was reopened during the summer of 1922 under the direction of Dr. R. E. Coker, then assistant in charge of the division of scientific inquiry. The laboratory was again opened in June, 1923, and was made available during the summer for investigators working on fishery problems. Doctor Coker was secured as director for the season. The policy of extending the use of the laboratory to the Marine Biological Laboratory of Woods Hole with the understanding that no charge be made by that institution for the use of the facilities provided the burean has been continued. The laboratory has been used throughont the year by Dr. P. S. Galtsoff, naturalist of the Albatross, who has conducted here the laboratory work comected with the hydrographic and biological survey of Long Island Sound. Dr. Charles J. Fish and Marie D. P. Fish have also made use of the laboratory facilities in the work they have been doing on the study of the plankton and larval fishes of the Woods Hole region.

On account of the inadequate salary provision, the Beaufort Biological Laboratory has continued without a scientific director, and, with the exception of the diamond-back terrapin experiments, has remained inactive so far as the investigation of fishery problems is concerned. The facilities of the laboratory were used by several investigators during the season, among whom were Dr. L. F. Shackell, of the University of Utah; Dr. H. V. Wilson, of the University of North Carolina: and Dr. Bert Cumningham, of Trinity College, Durham, N. C. The Nary Department also made use of the laboratory in continuing its investigations on the fouling of ships' bottoms, and in October a conference was held there by the naval officers and investigators concerned. This burean was represented at the conference by J. Paul Visscher, whose work on the fouling of ships' bottoms is referred to elsewhere in this report. The acting director has supervised the necessary repairs to buildings, sea wall, and grounds, and has carried out instructions for the conduct of the terrapin experiments, which have been intrusted largely to his care for several years past.

The work at the Key West biological station for the fiscal year has been, for the most part, of a preliminary nature. Owing to the lack of equipment and a laboratory building, together with an insufficient
personnel, little in the way of scientific work could be accomplished. Early in the year Isaac Ginsberg was appointed director of the station. His attention has been given mainly to directing much needed work in improving the grounds and the condition of the buildings, although some time has been found in which to add to the collection of Key West fishes. Observations have been made also on the natural history of the top minnow. Gambusia, in connection with the important work of distributing these fish for the purpose of controlling mosquito breeding. The station is greatly in need of a fully equipped laboratory building in which the investigation of problems relating to the important fisheries of the Gulf of Mexico and the southern Atlantic States may be carried on. At present the only space arailable for this work is a small room in the power house, which is also used for storing the collections and as an office.

The biological laboratory at Fairport, Iowa, has been operated during the entire year. The work has been devoted in the main to mussel and fish culture and to investigations on the natural history of some of the more important food fishes. This has been discussed in more detail in other parts of this report. The director has participated, in an advisory capacity, in various conferences with State legislative bodies with a view to the enactment of legislation for the protection of mussels. The laboratory has also been called upon frequently to render aid and advice to clubs, individuals, and State fisheries organizations in the handling of fish, in planning, building, and stocking ponds, and in pointing out the needs, care, and possible improvement of the fisheries of certain sections. Members of the staff conducted a statistical survey of the fisheries of the Illinois River for the year 1921, and a report was submitted early in the fall of 1922. The work was done in cooperation with the Illinois State Natural History Survey, the United States Public Health Service, and the Chicago Drainage District. It is the intention of the inrestigators to try to discover the effects of pollution and of reclamation of submerged lands along the Illinois River upon public health and recreation, agriculture, and the aquatic resources of the river. The study of the relation of the Hemiptera to the pond culture of fishes was continued by Dr. C. B. Wilson.

During the year two of the station's investigators, Dr. A. D. Howard and Barry J. Anson, resigned. The superintendent, H. L. Canfield, was transferred to the Mississippi River rescue station in August, 1922, and his place was filled by H. O. Hesen, jr.
.

A NEW MYXOSPORIDIAN PARASITE, THE CAUSE OF "WORMY" HALIBUT. ${ }^{1}$

Dy H. S. D.avis, Fish Pathologist, I. S. Bureau of Fisheries.

The extensive halibut fishery of the Pacific coast is subject to a material ammal loss owing to the fact that in a considerable percentage of the fish the flesh is abnormal and unsalable. In the great majority of the abnormal fish the flesh is soft and "mushy" and readily falls apart when cut, but in a small percentage it has a very different appearance. Instead of being soft the muscles are hard and firm as in normal fish but contain large numbers of white, wormlike structures, whence the name "wormy" halibut. A comparison of the flesh of "mushy" and "wormy" fish has convinced the writer that they are caused by very different organisms, the "wormy" condition eridently being due to an undescribed myxosporidian parasite for which the name Unicapsula muscularis n. gen. et n. sp. is proposed.

The appearance of the flesh in the "wormy" fish is well described by Thompson (1916), as follows: "There is no external evidence of the infection by the parasite which canses 'worminess.' A cut through the trunk muscles parallel to the grain exposes the parasites as silvery threads lying among the muscle fibers. These threads lie with the fibers in a regular way and extend from septum to septum of the myomeres but not through them. The muscles of the head are apparently less liable to infection than those of the trunk, and usually none are to be seen in the head of even a heavily infected specimen. The density of the infection varies somewhat in different individuals."

The writer has had no opportunity to examine halibut on the Pacific coast. but the appearance of the flesh of an infected fish that was sent to Wrashington in cold storage agreed in every respect with Thompson's description. In this fish the white opaque "worms" were rery common and presented a sharp contrast to the smaller translucent fibers that made up the great bulk of the muscles. A closer examination confirmed Thompson's observation that the "worms" are simply hypertrophied muscle fibers filled with a whitish gramular mass. This gramular material, which is composed of the spores of a myxosporidian, is surrounded by a relatively thin, transparent envelope made up of muscle fibrils embedded in sarcoplasm and surrounded by the sareolemma. The diameter of the infected fibers in material preserved in formalin was about 0.6 to 0.8

[^50]mm.. while that of the minfected fibers was about 0.2 to 0.4 mm . These measurements are somewhat greater than those given by Thompson. Possibly the discrepancy may be due to a difference in the size of the fish, that examined by the writer having a total length of about 5 feet.

Figs, 1, 2, AxD 3-Portion of muscle fibers showing the arrangement of the parasites within the filers. $\times \geq 0$.
Fif. 4.- Cross section of a small portion of an infected musele fiber. The cut ends of the fibrils are shaded black. Within the fibrillar layer can be seen a portion of the trophozoite surrounded by a distinct ectoplasmic layer. $\times .575$.
FIG. 5.-Cross section of a portion of an infected fiber showing the overlapping ends of two trophozoites. This is a somewhat later stage than Figure 4, and the fibrils are beginning to degenerate. $\times 575$.

When examined under the microscope, the infected fibers were seen to contain a number of elongated trophozoites arranged in a single row within the fiber but usnally overlapping more or less at the ends (figs. 1 to 3). In every case the parasites extended practically the entire length of the fiber: This condition was also noticed by Thompson, who suspected they were trophozoites of a sporozoan buit was unable to definitely determine their nature.

It is a remarkable fact that the trophozoites never extend to the sarcolemma, there being always a thin layer of sarcoplasm and muscle fibrils between the two. This is well shown in Figures 4 to 6, where the peripheral layer of fibrils and sarcoplasm can be distinctly seen. As shown in the figures the trophozoites vary considerably in size, some being several times the length of others. The length of those measured varied from 2 to 6 mm . The size of the mature trophozoite appears to be dependent on the number present in a fiber, since the diameter of the fibers containing fully developed trophozoites is remarkably uniform. There may be as many as six trophozoites, or possibly even more, in a fiber. In all cases observed by the writer they were arranged in a single row extending from one end of the fiber to the other, but in Thompson's figures several trophozoites are shown lying side by side.

Fig. 6.-Cross section of an infected fiber showing the trophozoite filled with spores and surrounded on all sides by a portion of the muscle fibel. $\times 190$. Figs. 7 AND 8.- Spores viewed from the side. $\times 2,500$. Figs. 9 AND 10.-Polar views of spores. $\times 2,500$.

Only sporulating trophozoites were found in the fish examined by the writer, the spores forming the whitish, granular mass previously referred to. Surrounding the spores is a thin but distinct layer of ectoplasm (figs. 4 and 5). Just within the ectoplasm can be seen numerous free nuclei and pansporoblasts in different stages of development. Eridently, as in many other myxosporidia that form cysts in the tissues, the development of the spores takes place in a comparatively narrow zone just within the ectoplasm.

The spores (figs. 7 to 10) are subspherical, asymmetrical, and contain but one capsule. The shell is thin and the sutural line indistinct. There is usually a slight indentation along the sutural line on the postcapsular side. The shell valves are very unequal in size, that containing the capsule being much larger than the other, which is evidently degenerate. The capsule is relatively large and appears spherical in shape except when viewed from the side, when a short neck can be distinguished connecting it with the shell (figs. 7 and 8).

The coiled filament is indistinct but can usually be made out by careful focusing. The nucleus of the capsulogenous cell can often be distinguished attached to one side of the capsule. The sporoplasm is finely granular and fills practically all of the spore not occupied by the capsule. Two nuclei are present, and the sporoplasm is often more or less distinctly divided into two parts of approximately the same size, each containing a nucleus. There is no evidence of the presence of andodophile vacuole. The diameter of the spore is about 6μ, that of the capsule 3μ.

The spore was seen and figured by Thompson (1916). His Figure 8 is evidently that of a mature spore, the large eosinophile body being the capsule. Thompson also found a spore shaped like a "fourpointed star with four polar capsules," which he thought might have some relation to the "wormy "condition of the flesh. . These spores are not uncommon in both "wormy " and " mushy" halibut and belong to an undescribed species of Chloromyxum, which evidently occurs in the connective tissue in the form of "diffuse infiltration" and has nothing to do with the " wormy" condition.

The systematic relationship of this species is somewhat uncertain. The vegetative stages and method of sporulation are very similar to many of the Myxobolidæ, but the structure of the spore is quite different. Under the circumstances it seems best to assign this species to the Sphærosporidæ, at least provisionally. In the writer's opinion, the present classification of the Myxosporidia is unsatisfactory in several respects, and it is hoped that the attention which the group is receiving will enable a more logical rearrangement of the genera to be made in the near future.

Considering the abundance of the parasites, it is remarkable that the muscle fibers show so little signs of injury. Only the infected fibers appear to be affected in any way, and even in these the fibrils do not seem to be seriously injured until the inclosed trophozoites have reached a comparatively late stage of development. In late stages there is a noticeable tendency for the fibrils to swell up and undergo a hyaline degeneration (fig. 5), but no fibers have been observed in which the fibrils were entirely destroyed. According to Thélohan (1895) and Kevsselitz (1908), a somewhat similar hyaline degeneration is produced by Myobolus pfeifferi in the muscles of the barbel.

Since the spores are formed only within the muscle fibers and apparently remain there indefinitely, it is obvious that they can only be released by the death or injury of the host. From our knowledge of the life cycle of other Myxosporidia we may assume that the spores are taken into the digestive tract of the halibut with the food and germinate in the intestine. The minute amoboid sporoplasm then makes its way into the blood vessels and is carried to the muscles. where it leaves the capillaries and enters the muscle fibers. The large number of infected fibers indicates that, in all probability. there is a multiplicative stage before the young trophozoites enter the fibers. After entering the fibers the trophozoites evidently divide several times. for in no other way can we explain the presence of several trophozoites in each fiber.

It is interesting to note that although a number of Myxosporidia are known to occur in the muscles of various species of fish the great
majority is found only in the connective tissues. Only a very few species ever enter the muscle fibers, and even in these forms the principal seat of infection is the connective tissues. The present species appears. therefore to be unique among the Myxosporidia. since so far as known it develops only within the muscle fibers and never in the surromading connective tissues. In this respect it resembles the Sarcosporidia and lends additional interest to Darling's theory that these muscle parasites are simply aberrant Cnidosporidia.

For convenience a brief description of the genus Unicapsula nov. gen. is appended:

Spores rounded: asymmetrical, withont processes of any kind. only one large rounded capsule present: valve of shell containing capsule much larger than the other; tissue parasites. polysporous.

BIBLIOGRAPHY.

Keysielitz, G.
1908. Die Entwicklung von Myxobolus pfeifferi Th. II Teil. Archiv für Protisteukunde. Elfter Band, 190S, pp. $276-308$. Taf. XV u. XVI, 7 Textfiguren. Jena.
Thélohas. P.
180\%. Recherches sur les Myxosporidies. Bulletin scientifique de la France et de la Belgique, Vol. 26, pp. 100-394. Paris.
Thompson. Willam F.
1916. A Note on a Sporozoan Parasite of the Halibut. Report. Commissioner of Fisheries, Province of British Columbia, 1915. pp. 127-129, 3 plates. Victoria.
U. S. B. F.-Doc. 959
(1)

THE ICHTHYOPHTHIRIUS DISEASE OF FISHES AND METHODS OF CONTROL. ${ }^{1}$

By Herbert F. Prytherch, Scientific Assistant, U. S. Bureau of Fisheries. ${ }^{2}$

INTRODUCTION.

The unusual occurrence of the parasitic ciliate, Ichthyophthirius multifiliis (Fouquet), on fish in the Washington aquarium during the cold winter months led to a series of experiments to determine more efficient methods of combating the disease. Catfish, bass, bream, and sunfish that were brought in from Maryland waters and the Potomac River in the late fall were found, after a week's confinement in the aquaria, to be heavily infected with the parasite. The steadily lowering temperature did not halt the disease, but only served to render its treatment more difficult.

OCCURRENCE OF THE DISEASE.

The parasitic protozoan Ichthyophythirius is found on fish in their natural environment as well as on fish in aquaria and artificial ponds. In nature fish seldom are killed by the disease, as the possibility of heary infection by the young parasites is greatly reduced by the large expanse of water and the movements of the fish.

Serious epidemics have occurred from time to time in France, Holland, and Germany, and in various sections of the United States. The disease was first recorded in 1869 in the Zoological Garden in Hamburg. Germany, and in France in 1876, where careful observations were made and the name Ichthyophthirius multifiliis proposed by Fouquet. In America the parasite is prevalent in small ponds, reservirs. and aquaria, where it spreads rapidly, causing a heavy mortality of most of our common fresh-water fishes.

[^51]
SYMPTOMS OF THE DISEASE.

The first symptoms of the presence of Ichthyophthirius are the queer actions of the fish and the appearance of small, whitish-gray, sharply defined pimples sticking out over the surface of the body. When the fish are first infected they rub themselves continually against the bottom and sides of the tank in an attempt to brush off the young parasite. In a short time they will be seen to hang listlessly in the water with drooping fins, or gasping at the surface due to the impaired condition of the gills. All parts of the body, head, sides, fins, and especially the mouth and gills, may be hearily infected by these organisms.

As the parasite grows it becomes visible as a raised light-colored spot on the fish, and if these are numerous the adjacent ones may tonch each other and unite to form a large spot, giving the skin a mottled appearance. As the disease spreads the raised spots often occur by the hundreds and thousands, covering the entire external surface of the fish. Fish that become heavily infected soon stop eating, and in the last stages of the disease they are covered with a heavy slime and red blotches or "scalded " areas. Fungus soon derelops on the raw parts of the fins and body, and the fish live but a short time.

DESCRIPTION OF THE PARASITE.

The adult parasite may be identified by gently scraping off one of the "spots" from the fish and carefully examining it under the microscope. It may be necessary to separate the animal from the tissue surrounding, in which it is generally found in active rotating movement. The adult parasites range in size from one-half to slightly less than 1 millimeter in diameter. The body is round or elongate oval in shape when it is inactive, but will assume almost any form when in motion. Covering the outer surfaces are numerous short threadlike cilia arranged regularly in rows, which serve to propel the animal through the water. The protoplasm of the body contains numerous opaque granules, a large crescent-shaped nucleus. a small oval opening or mouth, and many fine contractile vacuoles. (See fig. 7.) In warm water the animal soon surrounds ịtself with a semitransparent membrane or cyst and there undergoes many successive divisions, forming thousands of young parasites.

LIFE HISTORY OF THE PARASITE.

In order intelligently to combat the disease, a thorough knowledge of the life history is necessary. The young parasite is a microscopic. free-swimming form, which revolves rapidly through the water in search of a host. Upon coming in contact with a fish it endeavors to burrow into the epidermis, especially in the gills, fins, and unscaled regions. At this time the fish is irritated the most and tries hardest to brush it off. If the young parasite is unable to find a host, it will die within a few days, as it seems incapable of taking food from the water. Fish that have been previously infected are covered with a layer of slime, which offers an unusually favorable medinm for attachment for the young parasites. When once embedded in the skin of the fish, the parasite begins to grow rapidly with the nourishment
it absorbs from the tissues and is soon a visible white spot on the outside of the fish. The small white body increases in size and in warm water (65 to $75^{\circ} \mathrm{F}$.) will leave the fish in two to five days as an adult free-swimming form.

Upon leaving the fish it drops to the bottom, and after swimming around for a short time forms a cyst. Generally the cyst remains on the bottom, though in some cases it may be brought to the surface by suspended matter and air bubbles that collect around it. Within the wall of the cyst multiplication takes place, resulting in the for-

Fig. 2.-Life cycle of the parasite. A, adult parasites on catfish; B, parasite after learing fish as a free-swimming form and settling to the bottom: C, division of adult into many smaller individuals after formation of a cyst; D, bursting of cyst, releasing hundreds of minute parasites, which in turn reinfect the fish.
mation of large numbers of minute individuals that are invisible to the naked eye and about 30μ. (.03 millimeter) long. When reproduction is completed, the wall of the cyst bursts open (see fig. 5), releasing thousands of young parasites, which immediately go in search of a host.

The parasites that drop from the fish are of various sizes, some being much larger than others. A corresponding variation is noticed in the numbers of young formed within a cyst. which range from approximately 500 to 2,200 minute individuals. This is the
usual method of reproduction, though the parasite may undergo one or two stages of division while embedded on the host or as a free-swimming form after leaving the fish. The rapidity with which the parasite goes through its life cycle depends on the temperature of the water, the kind of fish infected, the region in which it becomes embedded, and the metabolic activity of its host.

Under general conditions the parasite will remain on the fish for five or six days in warm water of $65^{\circ} \mathrm{F}$. or higher, and, on the other hand, in water of 35 to $40^{\circ} \mathrm{F}$. it may not leave the fish for a month or more. The parasite is not killed when it leaves the fish in water at a freezing temperature but continues to develop and multiply very slowly and is ready to reinfect the fish in three or four weeks. The logical time to begin treatment is when the first symptoms of the disease appear, and the whole fight in controlling the disease should be directed against reinfection.

TREATMENT AND CONTROL OF THE DISEASE.

There are two general methods for treating the disease-first. by killing the parasites while they are attached to the fish, and, second, by destroying them after they leave the fish and are free-swimming in the water. The first general method can be used to hold the disease in check but will not completely wipe it out.
The external application of various chemicals in solution is helpful to a certain degree, as it kills and removes those parasites that are about to leave the fish as well as the smallest forms that have burrowed into the mucous coating. Past experiments with chemicals, such as copper sulphate, formaldehyde, sodium bicarbonate, sodium chloride, and others, have been successful in killing the parasite but have so weakened the fish that they either die or soon develop fungus growths and bacterial disease, which eventually prove fatal. For external treatment of parasitized fish the use of aluminum sulphate (alum sulphate) in solution is most satisfactory. The slime and mucus covering the fish become congealed and are soon shaken off, and the healing effect of the alum leaves the skin in a less weakened condition than do the effects of other chemicals. The fish may either be dipped or rubbed with the alum solution. In dipping a 5 per cent solution is used and the fish are allowed to remain in it for one minute. For mixing a large quantity of the solution use $6 \frac{1}{2}$ ounces of alum sulphate to 1 gallon of water, store in a glass, wood, or porcelain container and change every five days. For rubbing or brushing the fish a 3 per cent solution is used, or 4 ounces of alum sulphate to 1 gallon of water. The fish are laid in a shallow pan with about half an inch of the solution in the bottom of it, and the affected parts are gently rubbed with saturated cheesecloth or a brush. These chemical applications have been used successfully nn carp, catfish, bass. sunfish, goldfish, Fundulus, bream. and trout, but were only helpful as a means of holding the disease in check by killing those parasites that were about to leave the fish. Alum sulphate has also given excellent results in the treatment of Saprolegnia when applied in a 3 per cent solution to the diseased parts of the fish.

The second general method for combating the parasite is the most practical and should be put into effect in every possible case. It

Fif. 3.- 1 dult narasite as it appears by transmitted light. Highly magnified.
FIG. 4.-Cyst filled with minute young parasites about to burst open. Highly magnified.
Fig. 5.-Bursting of eyst and escape of large numbers of young parasites. Highly magnified.

Flg. 6.-Cross section of skin and external muscles of small eatfish, showing the parasite lying beneath the epithelium. 1, epithelial layer; I3, outer ecll wall of parasite; C, nueleus of parasite. Highly magnified.
Fig. 7.-Portion of the gill of a buffalofish, showing large parasite within the epithelinm. Symbols the same as in fig. 6. Highly magnified.
FIG. s.-Section through a portion of the gill filament, showing embedded parasite. Symbols sante as in fig. 6. Highly magnified.
Fig. 9.-Several parasites after removal from a fish, viewed by reflected light. Magnified 30 diameters.
(Matcrial for photographs in figs. 6, 7, and 8 was furnished by Dr. H. S. Davis.)
consists in removing or destroying the large adult parasites after they have dropped off the fish. This may be accomplished by placing the fish in swiftly running water, which carries away the parasites before they have time to multiply and reinfect the fish. Long troughs or cylindrical tanks can be easily equipped for this purpose. The inside of the receptacle used should be coated with asphalt paint, so that the surface will be smooth and not likely to prevent the parasites from being washed away. The intake must be constructed in such a way as to maintain a steady flow of water throughout the length of the trough. At the overflow the water must be drained off from the bottom as well as the top in order to insure removal of the parasites whether they sink or are carried to the surface of the water. In the case of cylindrical tanks (see fig. 10) the rotation of the water causes the parasites to settle at the center of the tank, where they are immediately carried away. The treat-

Fig. 10.-Apparatus for the removal of parasites by a continuous flow of water. A, intake; B, water-spreader for inducing rotary circulation; C, drain from surface and bottom outlets.
ment may be made even more positive by scrubbing the trough or tank every day with a strong salt solution after removing the fish. In warm weather infected fish may be cured by this method in 7 to 10 days, and further epidemics can be prevented by quarantining newly brought in stock in this way. Successful treatment in any case depends upon combating the disease when the first symptoms are noticed and continuing it until all the parasites have had a chance to drop from the fish.

In some instances swiftly flowing brooks or small streams might be utilized by fencing off a suitable section and placing the fish in it until cured. Fish in aquaria can be cured of the parasite. first, by removing all sand and dirt so as to have the bottom of the tank clean; second, by using about five large tadpoles to each square foot of bottom surface; third, by siphoning off each day all waste material that settles at the bottom: and. fourth, by adding a level
tablespoon of salt to each gallon of water about every other day. Goldfish and tadpoles will eat the parasites and by so doing prevent a rapid spread of the disease.

Nets and siphons used around infected fish should be sterilized each time they are used in a strong brine solution lest the parasites be transferred to other tanks.

ECONOMIC IMPORTANCE.

The parasite Ichthyophthirius has proven fatal to catfish, sunfish, smallmouth black bass, goldfish, buffalofish, trout, bowfin, carp, tench, bream, crappie, white bass, pike perch, pickerel, pike, and whitefish, as well as to many tropical aquarium fishes. Other freshwater species, such as perch, largemouth black bass, roach, sturgeon, gar pike, and eels seldom are killed by the disease or affected to any noticeable degree.

At fish farms, aquariums, and hatcheries the disease has often caused a considerable loss of valuable brood stock and fry, the damage in many instances amounting to hundreds of dollars. Fishes that are imprisoned in pools and ponds by the receding of flood waters become infected with this disease and others under the crowded conditions and warm temperatures. The practice of rescuing these fish and transferring them to other ponds and aquaria is likely to result in serious epidemics unless the fish are quarantined and kept under observation for a short time.

OYSTER-CULTURAL PROBLEMS OF CONNECTICUT.

By J. S. Gutsell, Scientific Assistant, U. S. Bureau of Fisheries.

That the situation in the northern oyster fields is a serious one has been evident for a number of years. In the Long Island Sound region, upon the seed production of which so much of the northern oyster industry has depended, where cultural methods had early and great development, and where orster growing long ago became one of the big, highly organized industries, the "sets" or annual crops of young orsters have become light and irregular and production has greatly fallen off. Eren the most successful growers have had to curtail their forces and equipment and reorganize on a reduced scale. If loss in volume had not in some measure been counteracted by an increase in price, many, if not all, of the concerns would have been put out of business.

From the early days of the industry up to the end of the last century, "sets" in the oyster areas along the north shore of the Sound were generally heary and almost unfailing. At first the seed oysters obtained from these "sets" were used for planting various inshore growing or conditioning areas, particularly bays, harbors, etc., in the region. Later such plantings were extended more and more into the Sound, and finally into the deep-water, offshore areas, the use of which has made this region famous. As its reputation for vitality and growing qualities became established, Connecticut "seed " came into great demand wherever in the north there existed areas adapted to growing or conditioning oysters but where the locally produced supply was insufficient or unsatisfactory. Thus a special stimulus was given to the production of seed.

Gradually another set of factors helped to strengthen this situation and increase such demand. In the early days of almost pristine purity of the waters. the oysters of Connecticut bore an excellent reputation for edibility and were readily and profitably marketable. The principal supply and all the more highly prized varieties came from harbors, small stream-fed bays, and the lower reaches of rivers. As industrial and sewage pollution increased in these estuaries, however, the quality of the oysters deteriorated. Growing became more and more difficult. In time production was almost limited to the Sound. The Sound oysters, never having had the reputation possessed by the harbor and river oysters, suffered less in quality than the latter but failed fully to take their place in the markets. This situation, combined with the reputation of the Sound oysters as seed, helped to make the orster industry of Connecticut more and more one of "seed" production.

[^52]An examination of the following table will show that after 1900 "sets" in this region became generally light or scattering until 1911, when an excellent "set" was obtained, and that thereafter there was only one important "set"-that of 1914. Such was the situation in the Connecticut oyster-growing region when the burean's investigations were begun in the spring of 1917. This state of affairs, which has continned up to the present time with slight modifications, was, of course particularly menacing to an industry so largely one of seed production. What was the explanation of this lack of set, and what could be done to restore it? Intelligently to answer either of these questions, even in part, there is required an understanding of the development or life history of the oyster, particularly the early life history, and a due appreciation of the factors, local and general, that affect its development and distribution.

Table showing the extent of oyster sets in Connceticut uaters from 1885 to 1923, inclusive. ${ }^{1}$

Year.	Set.	Year.	Set.	Year.	Set.
1885.	Cood.	1598.	None. ${ }^{2}$	1911.	Good.
18×6.	Unknown.	1899.	Excellent.	1912.	None.
1887.	Excellent. Light	1900.	Fair.	1913.	Do.
18889.	Light. Do.	1900.	Pight.	1914.	Fair. None.
1890.	Excellent.	1903.	Very poor.	1916.	Do.
1891	Very good.	1904.	Excellent.	1917.	Do.
1892.	Do.	1905.	Scattering.	1915.	Fair.
1893	Fair.	1906	Very poor.	1919.	None.
$\begin{aligned} & 1894 . \\ & 1895 . \end{aligned}$	Very good. Do.	1907	Scattering.	1920.	Poor.
1896	Good.	1909	Poor.	1922	Light.
1897	Uneven.	1910	Do.	1923	Poor.

${ }^{1}$ Compiled chiefly from reports of rarious oyster houses, and since 1917 from personal observations.
${ }^{2}$ It is reported that there was a good set in this year, but that it was destroyed by storms.
In its final stage the oyster is a sessile bivalve, fixed to one spot and taking from the water only such minute food as comes within the reach of the current produced by means of the wave action of its infinitely numerous cilia. In the younger stages its life is quite different.

As Brooks ${ }^{2}$ discovered many years ago, the sexes of the oysters of the Atlantic coast of the United States (Ostrea elongata Solander) are contained in different individuals-not combined in one, as is the case with the European oyster, Ostrea edulis. The female oyster produces many millions of minute eggs or female reproductive cells; the male, countless millions of still more minute actively swimming sperms. With the warming of the water in the spring the oyster feeds more and more actively, and the development of the sexual products takes place. Finally, when these are matured, eggs and sperms are cast into the water under the influence of an increase in water temperature. If eggs and sperms are cast at the same time from oysters near one another, the sperms find the egos and development of the oyster begins. If neighboring oysters do not spawn at the same time, union of male and female cells fails to occur. and whatever spawn is cast is wasted.

[^53]From the fertilized egg the oyster develops rapidly into a swimming embryo containing its own nourishing material, and from that, within a day or so, depending upon the temperature, it develops into another, more vigorously swimming stage-the microscopic, actively feeding larva with a double or two-value shell somewhat like that of a clam. This stage continues much longer than the previous one.

Although the larva's habit of occasionally settling to the bottom tends, to a limited degree, to check the influence of the tide, during these early stages the oyster is practically at its mercy. Aside from this settling habit only the back-and-forth or reciprocal action of the tide and whaterer collecting or stationary effect it may produce by means of eddies prevent the larve from being carried hopelessly about and broadcasted, as it were, in the most wasteful and destructive mamer. Finally, a very small proportion of the oysters complete the larval stage, "set" by attachment to firm, hard objects such as oyster shells, and attain the spat or first sessile stage.

Experience and the science known as ecology teach us that for any proper understanding of the life of any organism-plant or animalwe must study it in relation to its enviromment-organic and inorganic, drnamic and passive. The environment of the oyster, obviously, is an aquatic one, but not all aquatic environments are suitable for it. Fresh-water areas are, of course, ruled out, and so are those of full ocean saltness. Between these two extremes are the moderately salty or brackish areas. It is in such areas, which embrace so many sounds, bays, harbors. and estuaries of all sorts, that the orster finds its proper environment: but here, again, qualifications must be made. Eood organisms must be sufficiently plentiful, enemies not too abundant, the bottom neither too soft nor too shifting, the chemical content of the water such that no serious poisonous effect will be produced, and the water temperatures those to which the oyster may easily adapt itself.

That both salinity and temperature are important factors in Long Island Sound oyster cultivation is apparent from consideration of the sitnation. The Sound is almost the northern range limit of the oyster along the Atlantic coast of the United States. Being a very large body of water with a tremendous tidal flow from the ocean, its salinity is reduced comparatively little by the generally small if rather numerous rivers that flow into it. It therefore approaches the range limit both as to salinity and temperature. Although the salinity of the Sound is rather high for the development of orsters of the rery best " meat," it by no means shows an unfavorable effect on reproduction. Summer temperatures, however, have a very important bearing in this regard.

It has long been known that water temperature is an important factor in oyster spawning, a fact which the work of the bureau's investigators has served to emphasize. This does not mean that any hard and fast rule can be laid down for the relationship between water temperature and spawning, nor does it follow that temperature is the only influence involved, but it is an observed fact that oyster spawning can be held back by low temperature and induced or "forced " by an increase in water temperature. Under natural conditions the really vigorous and extensive spawnings almost, if not quite always, are coincident with a marked rise in temperature.

Although, as before stated, no exact rule as to the effect of temperature on the spawning of oysters can be formulated, something of the relationship between the two can be given. At temperatures below 70° such spawning as occurs is almost invariably of the slow, little at a time, or dribbling sort, but under certain circumstances ripe oysters, previously deterred from spawning by low water temperatures, will spawn vigorously when a rise comes, even if this rise stops somewhat short of attaining 70°. In general, however, spawning at temperatures appreciably below 70° is of the dribbling sort, which does not produce heavy sets. If temperatures approaching 70° have been maintained sufficiently long to insure seasonal sexual maturity, but not long enough to allow the dribbling of most of the spawn, an increase to 70°, if maintained for a day or two, will produce active concerted spawning. Under similar circumstances an increase in temperature markedly above 70° will cause extremely rigorous and almost universal spawning. In northern waters abundant larræ and "heary "sets are produced only by these vigorous concerted spawnings.

The accompanying maps (figs. 1 and 2) make clear the historic fact that the great natural oyster areas of Connecticut were harbors, lower reaches of rivers emptying into the Sound, and sections in the Sound just off the mouths of these estuaries and so situated as to be affected by the flow from them. These were the great selfmaintaining areas and the natural producers of seed oysters. As they became depleted and were turned over in greater or less measure to private enterprise they, with some extensions in the Sound, became the great private seed-producing grounds.

The principal reason for this condition is to be found in the early and high warming of the water in the estuaries. This warming produced concerted and vigorous spawning, which in turn produced vast numbers of embryos and then laryæ. Coming at an early date it gave excellent opportunity for the larre to develop and set and for the set to make a good growth and pass through the more delicate early stages before the September storms set in. These sets were not confined to the estuaries themselves but extended naturally some distance into the Sound. By planting shells for the larve to set on, oyster-culturists increased these Sound setting areas.

Under private culture, as long as conditions in the harbors and rivers made oyster growing or conditioning profitable, fairly large beds were maintained. As conditions became worse, fewer and fewer oysters were planted on the private harbor or river grounds, and those grounds that were still public became depleted. With the general passing of harbor and river production came the general failure of "sets." With the failure of "sets" came such an extended depletion of Sound areas that the chance of good "sets" from the spamning of Sound oysters was reduced. Obviously, if the Connecticut oyster industry is to be kept going, either effective estuarial spawning beds must be maintained or oyster planting in the Sound must be of such a type that reasonably good sets may occur at reasonably frequent intervals. ${ }^{3}$

[^54]In general, ${ }^{4}$ conditions became so bad that the planting of oysters in harbors and rivers was no longer profitable except as to such set as might be produced; so bad, in fact, that it was difficult even to maintain oyster beds in these places, and the chance of set production was very poor. Indeed, water collected in 1918 at various

locations in one of the more highly industralized harbors mas found by Dr. E. P. Churchill, formerly in charge of the bureau's oyster investimations, to be quickly fatal to oyster larve even when diluted one-half with unpolluted water. This means that to get any ap-

[^55]preciable relief either conditions in the estuaries would have to be greatly improved or attention turned to the Sound. ${ }^{5}$

Improvement in harbors and estuaries is very greatly to be desired, and their restoration to conditions really favorable to oyster culture would be a wonderful boon to the oyster industry. Not

only would seed production be improved, but the finest of the growing and conditioning areas would be returned to productivity, the oyster business of the State increased, and the country's total of high-class market orsters augmented to a marked degree.

[^56]The chief factor to be corrected in order to bring this about is trade-waste pollution. Domestic sewage pollution is, of course, undesirable, and when sufficiently great it makes necessary the transfer of oysters to pure water for cleansing. Where such pollution is excessive, it may produce such a degree of depletion of dissolved oxygen as to be harmful or even deadly to oysters or other aquatic forms. If rapid sedimentation from contact of the sewage with salt water ("salting out") occurs over an oyster bed, much damage may be wrought. Moreover, in these days of the automobile, even if trade wastes in the sense of discarded by-products of manufacture be kept from the municipal sewers, many poisonous petroleum products are inevitably present in untreated sewage. Therefore, from the standpoint of oyster production as well as from that of health, municipal sewage discharge into oyster waters should be prevented or properly controlled. However, as before stated, the principal factor to be corrected in this highly industrialized region is trade-waste pollution. Many of these trade wastes are actively poisonous to oysters or other edible forms, or to the organisms on which they feed. The prevention of the discharge of harmful trade wastes is the great problem to be solved in the restoration of the most valuable of Connecticut's oyster waters.

In order to shed light on some of the specific improvements needed, the bureau's investigators tested the effect of various important industrial pollutants ${ }^{6}$ on oyster larvæ and spat. Doctor Churchill, in 1920, used various solutions of metallic salts, which, in strengths of 10 parts of copper, 20 parts of zinc, and 45 parts of lead per million parts of water, were quickly fatal to small oyster larvæ. He also found various dyes to be highly poisonous. More recently the author conducted experiments with salts of these heary metals and with a few other substances to test their effect on embryos, larvæ, and spat. The results of these experiments were tested by means of "controls," in which embryos, larvæ, or spat were kept under the same conditions except that pure water, lacking the chemicals, was used. Where experiments were prolonged the water was changed from the same source, both for the controls and for the poisoning experiments, with a renewal of the chemicals for the latter. Except where otherwise indicated there was approximately 100 per cent survival in the controls. This consistent high survival shows that the loss in the poisoning experiments was due to the addition of the chemicals.

Although spat, because of their ability to remain tightly closed for hours and probably days at a time, are difficult to poison quickly, yet they are satisfactory subjects for most tests because of the ease with which they may be kept alive. In the tests of the effect of metallic salts upon spat, the copper salts have consistently proved most deadly. A copper-salt solution containing 1 part of metal per million was fatal in 5 days to 70 per cent of the spat exposed to it. A solution of slightly less than 2 parts per million was fatal in four days to all spat exposed to it. Solutions of zinc and lead salts of 10 parts of the metal per million exhibited no greater toxicity than did solutions of 1 and 2 parts of the copper per million. With

[^57]sulphuric acid in a. 0.01 per cent solution, 18 per cent mortality occurred in 5 days. Logwood in a 0.1 gram per liter solution exhibited only a moderate fatality- 25 per cent in 12 days-but was evidently more harmful than the rate of fatality indicated, for it proved so obnoxious to the spat that they remained closed a large portion of the time. Such an effect would be very harmful to oysters in any stage, and probably would be fatal to the larre.

Larra succumb to poisoning more readily than do spat, but they are much more difficult to manipulate and observe. With large larre. copper-salt solutions in strengths varying from 10 to 0.5 parts of copper per million, and zinc or lead salts in solutions of 10 parts of the metal per million proved fatal in less than a day. In the controls the greater portion of the larva lived into the second day and frequently many of them survired for several days longer.

Embryos were used in only one poisoning experiment with a copper-salt solution of 10 parts of the metal per million. In this the embryos suffered no apparent ill effects for a little over an hour. The next morning, howerer, all were dead and disintegrating. \boldsymbol{n} No marked mortality was observable at this time in the control, in which considerable numbers of the embryos lived until night.

These experiments make it clear that copper, even in very small amounts. is a serious menace to the oyster industry, and especially to that vital part of it-seed production. If anything is to be done to bring the estuaries back to their former high productivity the prerention of the discharge of copper-containing wastes should be the first step taken. Zinc, lead, strong acids, and logwood, among the substances tested, should also be guarded against. J. W. Sale, water and bererage laboratory, United States Department of Agriculture, while inrestigating for the bureau, found all of these substances in, or being discharged into, the waters of industrialized rivers and harbors opening into the Sound. The metals, in particular, have not only been found in the effluents from industrial plants, but have also been revealed by analyses of tater samples taken from the rivers and harbors of the region. Copper, indeed, has been found in solutions of just under 0.5 parts per million where oysters formerly abounded. It is altogether probable that at some stage of the tide this strength may. on occasion, be equaled or even slightly exceeded.

Although something can be and has been accomplished by planting oysters in harbors and rivers solely for spawning purposes, yet unless the pollution of these waters can be prevented the source of any really extensive set must be sought in the Sound, where far the greater portion of the oysters is located.

In the Sound, oyster lots are roughly graded into two classesinshore and offshore. Offshore lots frequently possess advantages over inshore lots as holding grounds, as otherwise. with the increased depth and other drawbacks, they would not be kept stocked with orsters when inshore lots are arailable. However, from the fundamental standpoint of seed production-that is, as a location for oysters to produce the great and early abundance of larre needed for "heary" and sufficiently early sets-they are almost hopeless.

The bureau's investigations have shown ${ }^{7}$ that the time elapsing between fertilization of the egg and setting is approximately two weeks. Another two weeks is required to bring the spat to about onefourth of an inch in diameter. Spat should have attained this size early in September to be commercially valuable, able to withstand shifting from starfish or drill-infested grounds, or capable of withstanding the September storms. If September 7 (about the latest reasonable date) is allowed for the attainment of this size, then setting should occur by August 24 and spawning by August 10. This eliminates deep-water offishore lots, over which the bottom water warms slowly, to no very high degree, and for a brief season only, for on these active oyster spamning at such an early date is almost unknown.

With the inshore lots the story is a different one. On these, even in the colder summers, spawning begins in earnest only a little too late to be effective. In the warmer, more favorable summers it begins two weeks or more before the limit chosen. Spawning on these lots has, therefore, in so far as time is concerned, an excellent chance to be effective. For it really to be effective, however, large plantings of orsters should be maintained on inshore lots-that is, lots within three-quarters of a mile or eren a mile of shore. Although the danger from storms prevents the use of quite a portion of the inshore lots, especially those nearest shore and therefore most desirable for the location of orsters for spawning, many of them are available. To keep these well stocked, all planters should cooperate so that one planter may not feel that he is supplying the set for somebody else instead of for himself. With such action properly and continuously carried out. there is, from the data available, substantial evidence that improved sets would result.

CONCLUSIONS.

The chief conclusions as to improvement in oyster production in Connecticut are as follows:

1. For the restoration of the Connecticut oyster industry, in both quantity and quality, to its former productivity, it will be necessary greatly to improve water conditions, especially in the almost barren harbors and rivers from which formerly came the more highly prized oysters and in which were produced the vast numbers of orster larve so largely responsible for the "heavy sets" of the past. To accomplish this, municipal sewage discharge should be controlled, and the discharge of harmful trade wastes, especially those from copper and brass works. should be prevented.
2. Until a change of conditions in estuaries makes oyster growing in them generally and extensively profitable, any great improvement by methods available at present must be produced by increased "sets" derived from the spawning of Sound oysters. Oysters on offshore Sound lots spawn too late to be effective. On the other hand,

[^58]oysters on inshore lots (those within three-quarters of a mile or even a mile of shore) quite frequently spawn early enough to produce usable and hardy set. Therefore special and concerted action should be taken by the growers to keep such of the inshore grounds as are at all satisfactory well stocked with oysters. The evidence strongly indicates that by this means an improvement-small in comparison to that which would result from a thorough reestablishment of harbor and river growing, but still a considerable and much needed one-could be brought about.

EXPERIMENTS IN THE ARTIFICIAL PROPAGATION OF OYSTERS.

By Herbert F. Prytherch, scientific Assistant, U. S. Bureau of Fisheries.

CONTENTS.Page
Introduction 1
Life history of the oyster 2
History of artificial oyster culture 3
Object and scope of the investigation 4
Equipment used in the investigation 4
Successful method of hatching and rearing young oysters द
Reproduction and derelopment 5
Selection of the oysters 5
Spawning 6
Embryonic development 7
Setting 7
Growth of spat S
Factors of environment 9
Temperature 9
Density of water !
Light !)
Water supply 10
Food and enemies 10
Aeration 11
Running water 11
Filtration 11
(ollection and transplanting 13
Summary 13

INTRODUCTION.

The great oyster fisheries of the Atlantic coast hare in the past few years experienced an alarming decline in productiveness. Though the extensive methods of oyster culture practiced by many of the oyster gromers have assisted greatly in maintaining a constant supply, they have not been sufficiently reliable to guarantee a crop from year to year. The rapid decline of this valuable industry has been brought about by a constant depletion of the oyster beds from various factors, such as pollution, overfishing, unfavorable climatic and hydrographic conditions, natural enemies, and use of shells for various commercial purposes.

Careful scientific studies of the life history and environment of the orster have assisted greatly in improving the cultural methods now in use but have not perfected them to such an extent that an annual harvest can be relied upon from year to year. Briefly stated,

[^59]oyster culture in the United States consists of (1) acquiring suitable submerged bottom, (2) cleaning and preparing that bottom for the growth of oysters, (3) sowing thereon shells or other material (cultch) for the attachment and growth of the young oysters, (4) insuring the production of larval oysters by the proximity of natural or planted beds of adult oysters, (5) protecting the oyster beds from enemies, (6) transplanting as occasion requires to prevent overcrowding and to facilitate growth and fattening, and (7) culling and sorting for market. ${ }^{2}$

To conduct oyster cultivation along such lines a considerable investment of capital is necessary, and the yearly program involves a heayy expense in preparing to catch a " set" of the young oysters. In the event of a failure to obtain a good "set," which unfortunately has been the common occurrence of late years, the expenditure that has been made is a total loss, and is further increased if the cultch is taken up and dried out for use the following year.

Consequently the aim of oyster growers and biologists interested in this work is to place oyster culture on such a basis that a harvest may be expected each year from the capital expended in planting and cultivating the beds.

In view of existing conditions, experiments were undertaken at Nilford, Conn., during the summer of 1923 to perfect a method of artificial propagation by which oysters could be raised from the egg in sufficiently large numbers to make the process one of practical value, and to determine under controlled laboratory conditions the most important factors necessary and favorable for growth.

The author wishes to acknowledge his appreciation of the valuable and cordial cooperation rendered by the Connecticut Oyster Farms Co. in carrying on these investigations, and especially the help and suggestions given by Capt. Charles E. Wheeler of that company relative to various studies of the oyster situation and for generously supplying oysters, laboratory facilities, men, and boats for this work.

LIFE HISTORY OF THE OYSTER.

The common oyster (Ostrea elongata Solander) of the Atlantic and Gulf coasts of the United States is bisexual; that is to say, each individual possesses only one kind of reproductive organs, either male or female, which do not change during the life of the individual.

During the summer millions of eggs are discharged by the female oyster, which, after fertilization by the elements from the male, develop after a day or two into free-swimming larvae. These float and swim about with the tides and currents for a period of two or three weeks, depending upon the existing conditions, such as temperature, density, food, and tides. At the end of this free-swimming period they attach themselyes, if possible, to such suitable objects as shells, rocks, brush, etc., which offer a clean hard surface to which they may adhere (see figs. 7,8 , and 9). Though ten to sixty million eggs are produced by a single full-grown oyster, only a few survive and grow to a size suitable for market. A fter the young oyster has attached itself, or "set," it is incapable of changing its position,

[^60]and if successful in surviving its natural enemes and occasional unfarorable conditious it will mature to marketable size in two to four years.

HISTORY OF ARTIFICIAL OYSTER CULTURE.

The idea of artificial oyster culture is not a new one. Since the first attempts in France in 1858 by Professor Coste to raise oyster's by artificial means, very much has been done and written concerning the oyster and its culture. Unusual accounts of the immense production that might result from the artificial culture of the oyster have appeared from time to time in papers and books, of such plausibility that even practical oyster growers were led for a time to believe that with little labor great sums might be realized by raising oysters for the table. The first experiments in France were for the most part complete failures, but gradually, from a study of the localities where favorable results were obtained, a method such as may be found in use along the shores of France to-day was perfected. This method of artificial oyster culture comprised two very distinct branches-one being production, and the other rearing and fattening.

Production consists in placing adult oysters on the beds as a source of spawn and collecting the spat or embryo oysters that attach to suitable objects in the water after swimming about for a short time. These objects or collectors save vast numbers that otherwise would be lost and enable the oyster growers to harvest a crop each year on the grounds they have prepared.

Rearing consists in placing the spat, when sufficiently developed, in the best locations possible, where they will grow rapidly and be sheltered from the attacks of their natural enemies. When large enough for market the oyster is kept under such physical conditions as will fatten it and render it most suitable for the table. This method, as developed along the shores of France, is the most perfect and thorough system of oyster culture in the world. However, though methods similar in principle to those of the French have been carried on to some extent in the United States, they have been limited necessarily by the high cost of labor, different tidal and climatic conditions, and the difference in the species of oyster. In order to improve upon the methods of cultivation as practiced in the United States at present, attempts have been made since 1880 to develop a process whereby the oyster larvæ can be hatched and reared in receptacles or tanks until they set. These studies in artificial propagation were first carried on by Brooks, Ryder, Rice, and Winslow, but proved unsuccessful after several years of endeavor.

In carefully reviewing the results of their work the reason for failure is attributed mainly to one thing-filtration. The oyster eggs and larre are microscopic in size, and the greatest problem has been to find a means of permitting a flow of water and yet retaining the larra.

Later, in 1920, oyster larve were reared to setting size by TY. F. Wells, of the New York Siate Conservation Commission, by the use of a milk separator for renewing the water in which the young oysters were kept. The process again proved successful in 1923, when a greater number of oysters was produced by artificial means,
but as yet this method has not been perfected to such an extent that it is commercially practicable. Further experiments with a new method of artificially propagating the oyster were conducted by the U. S. Bureau of Fisheries at Milford, Conn., during the summer of 1923, the results of which will be described in the following work.

OBJECT AND SCOPE OF THE INVESTIGATION.

The various reasons for undertaking experiments in artificial propagation are, first, to determine a reliable method for obtaining healthy, vigorous spawn in quantities; second, to devise a means for rearing the free-swimming oyster larve until they reach the setting stage; third, to make more extensive studies of the oyster larve under controlled conditions in regard to embryonic development, habits, food, and most favorable envirommental conditions; fourth, to produce larve for tests in regard to the effect upon them of various chemicals in solution; fifth, to try out new materials for collecting and handling "set"; and sixth, to determine from the results obtained the possibilities of making artificial propagation successful on a practical commercial scale.

The many steps involved in artificially propagating oysters consist briefly of (1) obtaining natural spawn from the adults, (2) rearing the larvæ during the long free-swimming period, (3) placing suitable collectors in the water at the proper time for the attachment or "setting" of the larvæ, and (4) transferring the young attached oysters or "spat" to protected beds where conditions are most favorable for growth and development.

EQUIPMENT USED IN THE INVESTIGATION.

Careful observations of salt-water aquaria have indicated that, in general, metallic apparatus is unsuitable if a pure and natmal water supply is to be maintained. The corroding action of the sea water upon brass, copper, galvanized iron, etc., renders them unfit as receptacles for the storage and conveyance of salt water. For this reason the equipment used in this investigation was constructed of wood, hard rubber, and glass when possible, in order that nearly natural conditions might be produced. The apparatus used consisted of one cylindrical 500 -gallon wooden storage tank, one rectangular 100gallon wooden spawning tank with trays, four rectangular 25gallon rearing tanks, two small cylindrical rearing tanks, an aircompressor, rotary water pumps, glass pipe, and hard rubber and wood fancets. The problems of filtration were solved to a great extent by the use of a new material known as "filtros." It is a white, rigid, porous, artificial stone, composed essentially of silica, and is similar to a sand filter in block form. The various grades of uniform porosity in which it is made make it suitable for retaining materials or orgamisms of any definite size and still allow a good flow of water. The filtros blocks used in the experiments were 12 inches square and $1 \frac{1}{2}$ inches thick and were fitted into grooves in the rearing tanks as shown in Figure 1. Blocks of various densities were used in accordance with the growth and size of the larva, and after being in use for five or six days were easily cleaned with
U. S B. F.-Doc. 961.

Fig. 1.-Experimental oyster hatchery, showing outdoor equipment consisting of one large spawning tank and threc rearing tanks with filter blocks in place.

Fig. 2.-Artificial spat collectors coated with paraffin and sand, which allows beavy sets to break up into single oysters after one or two months.

Fiti. 3 - Idult oysters spawning naturally on tray in large spawning tank.

Fig. 4.-Artificially propagated oyster spat collected on sea-seallop shells for observation. Lower row, spat 7 weeks old; upper row, spat 3 weeks old. The three shells on ihe lefi in the upper row were kept in the rearing tank while the others were placed in the harbor.
a garden hose. For retaining the larvæ when 10 days old, fine monel metal screen was used and proved quite satisfactory for use in salt water.

SUCCESSFUL METHOD OF HATCHING AND REARING YOUNG OYSTERS.

In order that the varions important factors affecting the artificial propagation of the oyster may be clearly understood, a résumé will first be made of the method that proved successful in hatching and rearing the young oysters. The brood stock of adult oysters used for producing spawn consisted of native oysters grown at Milford and southern oysters planted there by the burean in 1919 . These oysters were planted on shallow inshore beds in Gulf Pond, where the warm temperatures would mature them for spawning at an early date.

Numbers of the large oysters were placed on trays in the spawning tank, and the temperature was gradually increased until the water was filled with the spamn ejected by the adults (see fig. 3). Immediately after spawning had ceased, the oysters were removed and the eggs allowed to develop to the swimming stage in the warm water. Then the embryo oysters were transferred to the rearing tanks, and when supplied with running water they developed shells in 40 to 48 hours. The use of a mechanical agitator at this time helped greatly in bringing about a natural and rapid development of the oyster larva. For retaining the embryos a combination filter of loose, fine sand and filtros was used until the embryo oysters had reached the shell stage. From that time on the larva were held in by the filtros blocks of various grades, which were changed to suit the growth and size of the forms. When the larve were 10 days old, or older, they were held in by means of fine monel metal screens, which permitted an unusually good flow of water.

After a period of from 15 to 20 days the larra were ready to "set," and collectors of various materials were placed in the tanks for their attachment. In the first successful test over 150 spat were found "set" on the collectors, and in the last over 1,000 spat became attached (see fig. 4). The loss in numbers from the countless eggs produced by the adult oysters was traced to mechanical defects in making the filters fit closely and not to a mortality of the larve. After the spat had grown for a day or two in the rearing tanks they were transferred to favorable places in the harbor, where a maximum growth might be obtained. 'The care of the oyster after attachment is easily accomplished by the modern methods of culture.

REPRODUCTION AND DEVELOPMENT.

SELECTION OF THE OYSTERS.

The adult oysters used for the production of spawn were taken from the inshore beds early in the summer and from the deep-water offshore beds later in the season. In this way it was possible to obtain mature spawn from oysters in Long Island Sound from early in July until September, as the genital products of the oysters in the warm, shallow waters mature earlier than those of oysters in deep water.

The quantity of spawn found in the oysters is determined largely by the time of spawning and the previous weather conditions. Oysters one year old are capable of producing mature spawn, though for artificial propagation oysters three to five years old are considered the best. In sorting over the brood stock to be placed on the trays in the spawning tank only those oysters are selected that are free from the boring sponge, drill spawn, mussels, barnacles, hydroids, and tube-building worms, and which, from a noticeable amount of new growth around the edges of the shell, appear to be healthy. If necessary they can be scrubbed with a stiff brush to remove any excessive growths that may cover them.

SPAWNING.

The act of spamning consists in the discharge of the ripe reproductive elements into the surrounding water by both sexes of the oyster. The actively moving spermatazoa swarm about and fertilize the eggs, a single spermatazoon penetrating each egg membrane, the head of the spermatazoon passing on in after the tail has dropped off. The material of the head unites with that of the egg and causes the development of the egg cell into an embryo oyster.

The general method, since Brooks's initial experiment, for obtaining fertilized eggs has been to artificially mix the spermatazoa and eggs after stripping them from the ripened oysters, which have been opened. This method is unreliable, crude, wasteful, unnatural, and in most cases unnecessary, and undoubtedly accounts for many of the failures in the various attempts to artificially propagate oysters. It is impossible to determine how nearly ripe the spawn may be in any group of oysters without opening them, and consequently many are wasted before specimens apparently suitable for stripping are found. The experiments conducted at Milford have proved without a doubt that an enormous number of fertilized eggs can be produced by a natural process and the adults saved for future use. This process consists in placing the oysters in tanks of slowly running water, in the sunlight, where spawning is induced by the rising temperature. In every attempt made from July 10 to September 1 the oysters spawned readily and produced a greater amount of spawn than could be taken care of with the small-scale equipment. The spawning occurred at temperatures ranging from 68 to $75^{\circ} \mathrm{F}$., and lasted over intervals of 15 to 30 minutes (see fig. 3). At higher temperatures than 75° the spawn was released slowly and immediately settled to the bottom of the tank, whereas normally it would be forcibly ejected into the water and would float about for some time. It was observed that the female oyster discharged the eggs in puffis at intervals of about 30 to 50 seconds, while the products from the male were emitted continuously in a slender, white, thread-like stream. In this way, when the trays of oysters were placed near the surface of the water, it was possible to proportion the numbers of each sex when spawning began, and one male was found to produce sufficient spermatazoa to fertilize the eggs from four females. The genital products can also be distinguished with the naked eye as the eggs appear as clouds of tiny white specks when discharged into the water, while the spermatazoa appear to fade away almost immediately after leaving the oyster. From these experiments it is evident that if oysters have reached sexual maturity, it is far better to have
them release the spawn naturally than to sacrifice the parent oysters by stripping it from them together with considerable débris and unripened eggs, which quickly foul the water. When spawning first begins the running water is shut off and in some cases the spawning is temporarily arrested by draining and flushing out the tank and refilling with a fresh supply, after which spawning takes place more vigorously than ever.
When the oysters have ceased spawning they are immediately removed from the tank and the eggs allowed to remain in the warm water until the first swimming stage is reached. The transfer of the swimming embryos to the rearing tanks may be accomplished in either one of two ways-first, by pouring them through No. 20 bolting silk to remove any possible débris or enemies which may have gotten into the water; or second, by having a steady stream of water from the surface of the spawning tank to the rearing tanks, which will carry over only the most vigorous of the swimming embryos and leave any unfertilized eggs, débris, etc., behind.

In one instance (on July 26) a group of 11 month-old oysters spawned for over five minutes at a temperature of $69 \frac{1}{2}^{\circ}$. A sample of this observed in a watch glass developed as normally as that of the older oysters.

EMBRYONIC DEVELOPMENT.

The young oyster that develops from the egg is extremely unlike the adult and undergoes a variety of changes until some time after it sets, when it acquires the asymmetrical characteristics of the adult. The fertilized egg develops into a swimming form in from 6 to 10 hours at moderate temperatures, and when about two days old acquires two tiny shells that continue to grow and surround the body of the larva. This early stage is characterized by a straight hinge where the shells are joined together, and precedes the most critical period in the development of the larva. At the time that the straight hinge disappears and the larva becomes more rounded in shape, it has apparently used up the yolk supply from the egg and is beginning to take in microscopic food from the water. If it survives this period, it can be reared through the succeeding stages without difficulty.

As the larva increases in size one valve becomes much deeper than the other and has a more prominent umbone, which enables one to distinguish the oyster larva from that of any other bivalve. ${ }^{3}$ The deeper valve is the left one and that by which the oyster later becomes attached. After swimming about for a period of two or three weeks the larva becomes about one-third of a millimeter (one seventy-fifth of an inch) long, and if the proper conditions are present it " sets."

SETTING.

The terms " fixation," "spatting," and "setting" are applied to the attachment of the larva to some firm, clean surface with which it comes in contact. The left valve becomes attached by means of a shelly secretion of the left lobe of the mantle, which serves to cement it to the surface the larva has selected. In artificial propagation the

[^61]various collectors are placed in the tanks previous to the setting stage and become quite evenly covered with the spat. The number of spat desired on any particular collector can be regulated by the length of time they are left in the tanks and by observing the numbers that have become attached from time to time.

GROWTH OF SPAT.

The growth of the oyster spat after "setting" is quite rapid under favorable conditions. Observations made in 1922 of the growth from the time of setting showed that in 13 days the spat attained an average size of one-fourth of an inch (6 mm .) when placed just below the surface of the water. The daily average sizes (maximum diameters) of set measured in Angust, 192.2, are given below in millimeters:

Just attached only)	(larval shell 0.38
1-day-old spat	402
2-day $\mathrm{y}^{\text {cold spat }}$	603
3 day-old spat	737
4-day-old spat-	- 1.005
ctay-old spat	1.13:
(i-day-old spat	1.27:

[^62][f-lay-old s]at 1. $27: 8$

Average
 diameter
 in mm .

FIG. 5.-Average rate of growth of spat after setting, from August 2 to August 25, 1922, Milford liarbor, Conn. a, Size of spit at time of setting.

Artificially grown spat that set on sea-scallop shells placed in the rearing tanks on August 2, 1923, attained an a verage growth of 27 mm . ($1_{1}^{1} \frac{1}{6}$ inches) in two months. Some of the others, which set on August 18, 1923, were kept in the rearing tanks, while the rest were placed in the harbor: The average growth, for a period of three weeks, was 12.5 mm . for those in the harbor and 14 mm . for those kept in the tanks (see fig. 4). The temperature of the rumning water in the tanks was generally higher than that found in the harbor and undoubtedly accounts for the better growth. In one year the oysters attain an average length of 3 inches and width of $1 \frac{3}{4}$ inches when placed on inshore beds in Milford Harbor. In two years they can be taken up for the half-shell trade, and measure on the average $4 \frac{1}{4}$ inches in length and 23 inches in width, and are much deeper. This rapid development occurs only on the inshore flats where food is abundant and the temperature of the water is high. On the deepwater beds of the Somd it requires about four years for an oyster to attain a length of 4 or 5 inches, or a marketable size.

FACTORS OF ENVIRONMENT.

TEMPERATURE.

The temperature of the water during the development of the oyster from the egg to the spat is of considerable importance. It is undoubtedly the greatest influence in determining the rate at which growth and development take place and is coincident with the success of the experiments. The life processes of the egg, embryo, and larral oyster are hastened by a high temperature and retarded by a low one. A violent change or extreme high or low temperature will kill the young oysters or considerably impair their vitality. Several attempts were made to hasten the development of larve by keeping the temperature from 80 to $85^{\circ} \mathrm{F}$., but this invariably resulted in a total loss of the forms. In the successful experiments the temperature ranged from 65 to 75°, and was kept as near 70° as possible.

DENSSITY OF WATER.

The water used for rearing the larve was pumped on the flood tide and had a density ranging from 1.019 to 1.0218 during July and August. Just how great an influence the density of the water has on the oyster embryos can not be stated, though it seems probable that any considerable change in this respect would be detrimental to such a delicate organism. Changes in density and temperature are closely correlated so that it is hardly possible to state the exact influence of either without allowing for the other. Due to the supply of fresh water from the land the density of the water in the harbors and on the inshore beds is generally lower than that found offshore, and when within a range of density between 1.011 and 1.022 is most suitable for oyster growth.

LIGHT.
A comparative study of conditions in the rearing tanks that were placed in the sunlight with those that were kept in indirect light
strongly indicates that for the purpose of artificial propagation the latter are more desirable. The tanks receiving less light maintained a more even temperature, kept clean longer, and developed the larve more rapidly than those placed in the sunlight. Sunlight and high temperatures do not accelerate the development of the larva but promote the growth of bacteria, infusoria, and minute plants which foul the water and necessitate frequent changes of tanks and filters. The setting of the larve occurred as heavily on the light side of the collecting shells as it did on the darkened side as both sides were equally clean.

WATER SUPPl.Y.

A pure and uncontaminated supply of salt water is essential and necessary for the propagation of any marine animal. By pumping on the flood tide the water in Milford Harbor was found suitable but not ideal for experimental work. Each year a small scattered set occurs in the harbor, which indicates that in general conditions there are favorable for the development of oyster larve. The water was pumped to the 500 -gallon reservoir at every flood tide when possible, in order to maintain a good quality in storage for distribution to the spawning and rearing tanks. The reservoir was drained and cleaned occasionally though very little sediment was found to have settled in the bottom.

From the reservoir five glass pipe lines with separate wood valves conveyed the salt water to the various tanks where it was projected through fine sprays in order to create a circulation. The water level in the rearing tanks was controlled by hard-rubber overflow valves that were located at one end of the tanks outside of the filters.

FOOD AND ENEMIES.

The food of the oyster larvæ consists of ultra-minute organisms or nannoplankton, which are found in abundance in ordinary sea water. The plankton was excluded from the water supply by means of a net made of No. 20 bolting silk through which the water was pumped before going into the reservoir. This also removed all large known enemies of the larve and allowed only the nannoplankton to pass through.

The presence of infusoria in abundance in the tanks is an indication that conditions are becoming unsatisfactory and foul as a result of the death and decomposition of many of the embryos. To separate the healthy embryos from these organisms, which collected at the bottom of the tanks, was at first a problem but by allowing a good overflow of water to a new tank the more vigorous ones soon swam out to the new quarters. As the larve increase in size and pass the straight-hinge stage they can be readily separated from infusoria, sediment, etc., by the use of bolting silk. However, a troublesome growth of infusorians was experienced only in the tanks placed in sunlight and with spawn taken from artificially fertilized eggs, when making various tests with it in comparison with natural spawn under the same conditons.

ERATION.

Eration as a means for producing conditions favorable to the development of the eggs and larrex was tested out in many experiments. Apparatus of many designs with varying degrees of æration proved useless when tried out with the young oysters at every stage of development. It was hoped to carry the minute embryo oysters through the first stages in water that was purified and agitated by compressed air, as the filtros blocks were not fine enough to restrain them until they had developed shells, but their development in ærated water was slow and generally resulted in an early death of the embryos or produced shell forms of such decreased vitality that they lived only a short time. Winslow's experiments in 1822 to oxygenate the water by æration likewise proved unsuccessful, and this factor as a necessary step to success is questionable.

RUNNING WATER.

The most important result of the summer's investigation into the controlling factors necessary for success in artificial propagation is that oyster eggs and larro will develop and grow in salt water aquaria as fast and as vigorously as they will in nature if supplied with munning water. The first batch of spawn placed in the unseasoned apparatus was given a constant supply of water from the beginning in spite of the fact that many got around the filters and were lost. They developed normally from day to day and "set" with practically no mortality 15 days after spawning. In the succeeding experiments the water supply was diminished and every attempt made to retain all of the larre, with the result that stagnation and fouling occurred and all of the forms died. The next successful experiment was accomplished by providing a good supply of running water and would have yielded a greater crop of spat had it been possible to prevent the soft embryonic forms from passing through the filters.
By introducing the water into the rearing tanks in fine jets it was easy to produce a circulation and agitation throughout the tanks similar to that found in nature. For carrying the embryos through to the shell stage, a glass rod agitator proved effective for use with a very slight flow of water. This prevented a heavy loss of the forms up the shell stage but was not perfected in operation until September, when it became too cold to conduct the experiment further.

FILTRATION.

Oyster eggs and embryos are so extremely small that they will pass through felt or the finest bolting silk and consequently it can readily be seen that it is a difficult problem to create a flow of water and at the same time prevent the passage of such minute organisms. A method for accomplishing this was not found until the first week in September, when thousands of healthy straight-hinge larvæ were produced but could not be reared to setting size because of the cold weather when water temperatures dropped overnight to 50 and 54° F. and soon killed them.

The apparatus that solved this perplexing problem consisted of a half barrel equipped as shown in Figure 6. The filtros plate was
covered with a 2 -inch layer of fine white sand and the rate of flow through it was regulated by the valve e. The half barrel was filled with water up to about 6 inches over the sand and freshly fertilized eggs placed in it. A fine stream of water from the fancet a kept up a constant circulation in the barrel from the time the eggs were put in. Tests from time to time at the drain e indicated that none of the eggs were passing out through the sand or filtros, but as no trace could be found of the embryos in the barrel above the sand layer it

Fig. 6.-Barrel equipped for developing oyster embryos to the shell stage. a, Fine stream for supplying salt water and circulation in the barrel; b, salt water containing embryos; $c, 2$-inch layer of fine sand; d, filtros block; c, drain pipe with control valve.
was thought at first that they had died and that the apparatus was a failure. However, after a period of 48 hours, it was decided to wash out the sand and try a new batch of spawn. In turning a heavy stream of water into the barrel and opening wide the valve e it was found that thousands of vigorous larver with well-developed shelis were washed out into the triple layers of bolting silk placed there. This was indeed encouraging, as the filtros blocks were suitable for rearing them once they had developed shells. This experiment was repeated several times with success and it is to be regretted that the lateness of the season prevented carrying the larve through to setting and making the summer's work one of production as well as theory.
U. S. B. F.-Doc. 961.

[^63]

Fta. 7.-One-year-old ovsters that set on tar-coated pound nets in
Great South Bay, Long Island, 1921. Such a collector is suitable for prorlucing excellent single oysters from heavy sets, with little mortality from overcrowding.
U. S. B. F.-Doc. 961.

COLLECTION AND TRANSPLANTING.

An important consideration in placing artificial propagation on a commercial scale is that of collecting and transplanting heavy "sets" by a method that would be practical and efficient. A variety of collecting materials was tried out in Milford Harbor to determine just how certain ones would weather unfavorable conditions on the beds. A new type of collector for handling artificially propagated orster spat was made from cardboard egg-crate partitions, which were dipped in hot paraffin and then covered with coarse sand (see fig. 2). They quickly sank to the bottom and were heavy enough to withstand tides and storms in a moderate depth of water. The partitions remained in place for over a month when suspended at the surface of the water, and longer when placed on the bottom, and regardless of how they are dropped into the water they settle in such a way that there is no chance of smothering the spat. They are cheap collectors, capable of collecting thousands of spat and in two or three months will break up, producing large numbers of small single oysters, the most desired product in oyster culture to-day. The degree of spat concentration that is most suitable will be determined by future experiments.

Other objects, such as brush, rope, netting (fig. 7), shells (fig. 9), tin cans, etc., coated with paraffin and sand, asphalt, cement, and plaster of Paris were also found suitable to some extent as collectors. The artificially propagated spat were caught on a sea-scallop, clam and oyster shells, and small clay flower pots, as there were not sufficient numbers to warrant using the larger collectors. The loss of spat from handling or other agencies was less than 1 per cent, and in transplanting them to the most suitable grounds no greater loss should be sustained if they are properly handled. The problem of catching and handling the set is insignificant in comparison with that of producing larre ready to attach themselves, and improvements in this respect will quickly come when a dependable method for the latter has been perfected.

SUMMARY.

The primary object in writing this paper is to lay before practical oyster growers and biologists the various problems that have made artificial propagation of the nyster a difficult task, and to briefly describe experiments used in finding some solution for them. The summer's work was conducted for the purpose of studying these problems more thoronghly and to make detailed observations of the many natural conditions in the environment of the oyster to determine the influence they exert upon the eggs, embryos, and freeswimming larve. The continuation of this work in the future will aim to develop this method on a production basis so that it may be perfected to such an extent as to be of value to the practical oyster industry.

Northern oyster growers are to-day paying as high as $\$ 1,000$ for $1,000,000$ year-old orsters, or for one-fiftieth of the number that a single full-grown female oyster is capable of producing.

Surely a system of artificial propagation that can produce the same results with a smaller expenditure can be perfected in the future if natural conditions are studied, imitated, and placed under control. Such an important object can hardly be attained at a single leap, but eventually it will be reached after a series of careful and painstaking experiments and the accumulation and study of facts have broadened our knowledge in regard to the habits and requirements of the oyster throughout its life history.

U. S. B. F.-Doc. 962
(ancer

FISHERIES OF KEY WEST AND THE CLAM INDUSTRY OF SOUTHERN FLORIDA. ${ }^{1}$

By William C. Schroeder, Scientific Assistant, U. S. Bureau of Fisheries.

CONTENTS.

Page.
Key West fisheries 1
Smaller reef fishes 2
Larger reef tishes 3
Annotated list of commercial food fishes found in the ricinity of Key West 4
Mullet fishery 3.
Kingfish fishery 38
Spanish-mackerel fisher! 40
Spins-lobster fishery 43
Stone crab 49
Turtle fishery 50
Sponge fishery 54
Florida conch 59
Clam industry of southern Florida 59
Bibliography 68

Key West was settled in 1822, and from the rery beginning of its existence fishing formed one of its principal industries. At the present time fishing is, perhaps, of first importance to the inhabitants, although in value of output it is exceeded by the cigar industry.

The fishermen's equipment and their methods of fishing and disposing of their catches are practically the same to-day as they were 40 or 50 years ago. Indeed, many of the small fishing boats now in use are at least 40 years old. The only fisheries which have shown noteworthy developments during the last half century are those of the spiny lobster and the Spanish mackerel.

The Bureau of Fisheries' statistical canvas of 1918 shows that 458 persons were engaged in the fisheries of Monroe County at that time, and nearly all of these were credited to Key West. This number is considerably angmented in winter, however, during the height of the mackerel and kingfish season. In 1918 fishing vessels not engaged in shore fishing, together with outfits and various apparatus, were valued at $\$ 38,435$: transporting vessels with their outfits at $\$ 14,450$: 311 sailboats, power boats, and rowboats, together with various equipment and apparatus, at $\$ 80,837$: and shore and accessory property amounted to $\$ 56,287$ in value-a grand total of $\$ 190,009$. The

[^64]various fishery products credited to Monroe County in 1918 totaled $3,752,355$ pounds, which represented a first value to the fishermen of \$290,170.

Most of the wholesale trade in fish is carried on from November to April, when perhaps 90 per cent of the annual catch of fish is taken. Several dealers operate during the entire year, but others are actively engaged in Key West only during the winter. Dealers in sponges and turtles operate throughout the year. All the wholesaling is done with dealers outside the city.

It was not until 1920 that an ice-making and cold-storage plant was built to take care of excess catches of fish. Previous to that time, notably early in 1919, the fishing indust ry suffered severe losses when the one small ice-making plant in the city became disabled.

The retail fish trade is taken care of at the wharves, where the fishermen keep their catches alive in boat wells or in live cars, selling direct to the consumer. There are no local retail stores that sell fish, but small quantities are peddled in pushcarts throughout the city. A person desiring to buy fish goes to the wharves, looks over the stock in the various live cars, and selects the fish he wants. The fisherman then removes the fish selected from the live car with a dip net and cleans and strings them withont severing their heads. This method of keeping fish is especially desirable in such a warm climate, as it eliminates icing and insures fresh fish at all times. The variety of fish sold in Key West is probably greater than in any other locality in the United States. A string of fish as sold at the fish wharves usually consists of from 2 to 4 species, but if one so desired one would have no difficulty in buying a string containing 20 fish of different kinds.

The fishing fleet is composed mainly of small boats, some of which are equipped with sails only, some with gasoline engines, and some with a combination of the two. These hoats seldom travel far from land and are used chiefly in fishing on near-by reefs, which are numerous about Key West. Very few boats of the larger and better type are owned locally, but a number of such ressels come from the east and. west coasts of Florida to lish at Key West during the winter.

The most important products of the Key West fisheries are reef fishes, Spanish mackerel, kingfish, mullet, sponges, turtles, spiny lobsters (Panulirus argus), and stone crabs (Menippi mercenaria). The catch of conchs, although small, is peculiar to the Atlantic coast of the United States, and while the hard clam, or quahang. (Tenus mercenaria mortomi), docs not occur at Key West, the clam industry of southwest Florida is of great importance. Each of these furnishes an individual fishery that will be described in the following pages.

SMALLER REEF FISHES.
The small fishes inhabiting the reefs among the Florida keys are caught at all seasons of the year. They comprise, for the most part, grunts, snappers, yellow-tail, porkfish, porgies, turbot, jacks, and small groupers.

The boats used in this fishery are from 20 to 40 feet in length, with cockpit aft, fish well in the center, and with space for sleeping quarters, if so utilized, forward below deck. Generally but one
person, or at the most two, constitutes the crew. Fishing is done entirely with hook and line. The general equipment consists of numerous fish hooks and lines, a small minnow seine or cast net with which to secure fish bait, a pair of "grains" for spearing spiny lobsters also for bait, a small dip net for removing fish from the well when desired, a barrel of fresh water, a supply of food, an opengrate wood stove, some dry firewood, and the necessary bedding for accommodation over night.

Some of the fishermen return from the day's fishing by late afternoon, while others remain away for one or more days, fishing at more distant points where somewhat larger or perhaps more desirable fish may be found. The fishery is of local importance only, as these fish rarely are shipped from the city. Because of the regularity of the fishing throughout the year the value of the annual catch is quite large and assumes a prominent place among the other fishery resources of the region.

Practically all of these smaller fishes are kept alive until sold. Each boat, as already stated, is equipped with a fish well, where the fish are retained after they are removed from the hook. At the wharf the fisherman has one or more live cars in which the fish are placed in order to display them for sale, leaving the boat's well empty for the next fishing trip. A well-stocked live car is a pretty sight, as many of the reef fishes are beautifully colored.

A fishing boat without a well would be quite useless for reef fishing in this region, as the fish would spoil long before they could reach the market. Ice is used to preserve only those species that will not live in confinement, such as the mullet, kingfish, or Spanish mackerel. The fish well is carefully constructed of from 2 to 4 inch lumber, according to the size of the boat, and the seams are caulked with the same care that is given to the outer hull. At the base the four sides fit snugly with the contour of the boat and converge toward the top like a frustum of a pyramid, which the well diagrammatically resembles. The top of the well fits flush with the deck and is covered with a trapdoor, which is removed during actual fishing. The floor of the well, which is part of the hull, is pierced with numerous 1 -inch holes to permit a constant interchange of water.

The necessary equipment for reef fishing is simple, the rumning expenses are small, the fishing grounds are near by, and the fish are readily caught and quickly sold. The fishery, however, does not appear to be overcrowded, for the markets are more liable to be without fish than to be overstocked.

LARGER REEF FISHES.

The larger reef fishes consist mostly of groupers, jewfish, hogfish, large porgies, and large snappers. They are taken throughout the year, although each at certain seasons furnishes better fishing than at other times. Larger boats are used, and fishing is carried on in deeper water than for the smaller reef fishes.

The few Key West boats that engage in this fishery range in length from 30 to 75 feet, or from the half-cabin dory type to the small schooner. Since hand lines only are used, the equipment is similar to that of the smaller boats. A crew of from two to five is
usually carried, and the boats remain away from several days to a week, or until the fish wells are sufficiently stocked to warrant a return to port. Cuban boats often fish near Key West, and sometimes they land at that city and dispose of their fish.

A portion of the catch is sold locally in Key West, but much the greater part is shipped to Cuba and to various cities in this country. The fish are brought in alive by the fishermen, but they are iced in the markets. Large boxes weighing about 200 pounds each, and holding 900 pounds of fish and 400 pounds of ice, are used in shipping fish to Cuba. The fish are transported to Cuba by large freight and passenger steamers that sail almost daily during the winter and several times a week during the summer. Each box is heavily constructed, and a number is painted on the side in large figures, so that a consignment can be checked and a record made of the empty boxes when returned. Shipments within the United States are made in barrels containing 200 pounds of fish and about 100 pounds of ice.

ANNOTATED LIST OF COMMERCIAL FOOD FISHES FOUND IN THE VICINITY OF KEY WEST.

In the following annotated list of fishes an attempt has been made to include every species found within the general vicinity of Key West that is locally considered a food fish. Some of the species mentioned are too scarce to be of much importance, while others are not regarded very favorably, but, nevertheless, these are included in order to make the list as complete as possible. Other species, such as sharks, rays, morays, and salt-water catfish, are taken but are excluded here because they are not locally regarded as food fish. All of the fishes listed are to be found within Monroe County, which includes the islands or keys from Key Largo sonth and a small area in the southwestern part of the Florida peninsula.

1. Tarpon atlanticus (Cuvier and Valenciennes). Tarpon; Silverfish.

The tarpon visits Key West during the winter months, but is not as common there as along the western coast of Florida. It is primarily a game fish and is rarely eaten. However, it is sometimes seen in the Key West markets, where it is sold in steaks at a low price. Because of its great game qualities the tarpon attracts many sportsmen to the State and is directly and indirectly a source of large annual revenue to the inhabitants. It is a very powerful fish and is caught only with hook and line, generally by trolling, using mullet for bait. It is most common in Florida and the West Indies. Maximum length about 8 feet; a verage, about 5 feet.

Range--lsaacs Harbor and Harrigan Cove (Nova Scotia) to Brazil.
2. Albula vulpes (Linnæus). Ladyfish; Bonefish.

This fish is not rare among the Florida Keys and is sometimes found in the markets. However, it is not highly regarded as a food fish, and its commercial value is negligible. Maximum weight, about 5 pounds; average, $1 \frac{1}{2}$ pounds.

Range.-Tropical seas. Generally common on our coasts north to San Diego (Calif.) and Florida. Stragglers have been recorded as far north as Woods Hole, Mass.
3. Tylosurus marinus (Walbaum). Houndfish; Garfish; Needlefish.

The houndfish is common about Key West and other Florida keys. It is not highly regarded as a food fish and therefore is but rarely eaten. Usually only large examples, about 3 feet in length, are to be found in the markets. Several smaller species (T. notatus and T. timucu) are common, but never appear in the markets. T. raphidoma and T. acus, each attaining a length of 4 feet or more, are sometimes utilized for food. Although unimportant in the markets, all these species are good food fishes. On a dark and quiet night when rowing or poling a small boat these fish are commonly struck while swimming at the surface. On such occasions they rather startle one with their vigorous splashes over the surface gradually dying out in the distance, like stones skittered over a pond. Houndfish are taken in seines and with hook and line, but they take only a moving bait.

Range.-T. marinus is found from Casco Bay (Me.) to Texas, and is generally common from Chesapeake Bay southward. The other species mentioned are common from the Florida keys to Brazil, sometimes straying to North Carolina and northward. T. acus is recorded from as far north as Nantucket, Mass.
4. Mugil curema Cuvier and Valenciennes. White mullet; Silver mullet.
The silver mullet is abundant about Key West and all the other Florida keys, where the annual catch is nearly as great as that of the striped mullet (M. cephalus). It is taken with gill nets in brackish or salt water throughout the year. It prefers protected regions in bays, rivers, and about islands, and generally travels in schools over shallow bottoms. stirring up the mud in a search for food. Sometimes schools of a few hundred or a thousand fish simultaneonsly leave the water with a single jump, falling back with a resounding splash. Most of the spawning is believed to occur during May and June along the Florida keys, but no gravid fish have been observed. The silver mullet is a food fish of some importance in Key West, where it is sold either salted or fresh. Maximum size, about 14 inches; a verage, about $10 \frac{1}{2}$ inches.

Range.-Cape Cod to Brazil; Lower California to Chile.
5. Mugil cephalus Linnæus. Mullet; Jumping mullet; Striped mullet.

The striped mullet is fairly common among the Florida keys, but is not taken in large quantities in the immediate vicinity of Key West. The bulk of the catch is taken with gill nets. The striped mullet is an excellent food fish, and commercially it is the most valuable fish caught within the State of Florida. The mullet fishery is described elsewhere in this paper. Maximum size, 10 pounds; average size among Florida keys, $1 \frac{1}{2}$ pounds.

Range.-Widely distributed. Coasts of southern Europe and northern Africa: Atlantic coast of America from Casco Bay (Me.) to Brazil, and in the Pacific from Monterey to Chile. Abundant from Virginia to Texas.
6. Sphyræna barracuda (Walbaum). Barracuda; Picuda.

The barracuda is rather common among the Florida keys, where it is taken throughout the year, generally by trolling. It is a game fish of some merit and is much sought after by sportsmen. It is a large voracious fish, attacking prey larger than itself, and is much feared by bathers. At Key West it is a food fish of some importance, although its flesh is considered inferior. It is not sold in large quantities, but as many as 2 dozen may be seen in the market on certain days during the winter. Maximum size, about 8 feet; average, about 4 feet.

Range.-Cape Cod to Bahia, Brazil; Bermuda; Gulf of Mexico, north to Pensacola. Generally common in the West Indies and among the Florida keys; not common north of Florida.
7. Upeneus maculatus (Bloch). Red goatfish.

The goatfish is comparatively rare along the Florida keys, but is occasionally seen among the smaller fishes brought in by the hand-

Fis. 2.-Striped mullet (Mugil cephalus).
line fishermen. In Porto Rico it is a food fish of considerable importance. Maximum size, about 12 inches; average, about 9 inches.

Range.-North Carolina to the West Indies: Bermuda, Cuba, Porto Rico, and Martinique. Rare north of Key West.
8. Sarda sarda (Bloch). Bonito.

The bonito is taken as a straggler along with the Spanish mackerel. It is a pelagic species inhabiting the Atlantic Ocean and is found both in Europe and in this country. It is a food fish of some importance, although inferior to the mackerel. The annual catch along the Florida keys is negligible. The maximum weight is about 15 pounds; a verage, 3 pounds.

Range.-Atlantic Ocean. Found along the European coast and on the North American coast from Casco Bay (Me.) to Florida, or perhaps farther sonth; not definitely recorded from Central or Gouth America.

9. Scomberomorus maculatus (Mitchell). Spanish mackerel.

The Spanish mackerel is now the most valuable food fish taken in the immediate vicinity of Key West. However, it is only during recent years that large numbers have been caught in sonthern Flor-
ida. It is taken from November to April in this locality and is caught with gill nets, purse seines. and hook and line. It is one of the choicest food fishes taken on the Atlantic coast. A description of the fishery is included elsewhere in this paper. Maximum size, 25 pounds, which, however, is very exceptional, as individuals weighing 10 pounds are rare; average size of Key West fish, 2 pounds.

Range.-Monhegan (Me.) to Brazil. Not common north of Maryland. Small quantities taken in lower Chesapeake Bay from June until October: rather common off the North Carolina coast from May until October; most abundant in southern Florida. Distributed throughout the Gulf of Mexico, where its movements are irregular. Recorded from Jamaica, Porto Rico, and Panama. In Cuba it is rare. Found also on the Pacific coast from California southward.
10. Scomberomorus regalis (Bloch). Kingfish; Cero; Spotted cero; Sierra; Pintado.
The sierra, or kingfish, is a food fish of considerable importance among the Florida keys, but is somewhat less common than S. cavalla, with which it is closely associated. It is caught exclusively by trolling from motor or sail boats. The fishing season for this species extends from November to March. The kingfish fishery is described elsewhere in this paper. Maximum weight, about 35 pounds; average, about 5 pounds.

Range.-Monomoy (Mass.) to Brazil. Uncommon north of Florida : known from Cuba, Jamaica, Martinique, and Porto Rico.
11. Scomberomorus cavalla (Cuvier). Kingfish; Cero; Cavalla; Sierra.
This species is taken during the same season and under the same conditions as is the sierra (S. regalis), but because of its larger size and somewhat greater abundance it is the more important of the two. Considerable confusion has arisen over the common names of these two species, and the terms used appear to be interchangeable. As a rule, however, in the Key West markets S. regulis is known as "kingfish" or "sierra," while S. caralla is called "kingfish" or "cero." Maximum weight about 75 pounds, but examples over 50 pounds are comparatively rare. Notwithstanding the many large fish caught, the a verage weight is only about 7 pounds.

Range-Cape Cod to Africa and Brazil. Not common north of North Carolina; found in open seas of tropical Atlantic.

12. Seriola dumerili (Risso). Amberfish; Amber jack.

The amber jack is caught about Key West by trolling and is taken incidentally only during the winter along with the kingfish. It is considered a fine game fish. Its occurrence is irregular, and it appears never to be taken in large numbers in this region. Several hundred were brought to the Key W'est market during one week in January, 1919, and 35 fish were seen during the last week of February of the same year. The fish taken near Key West generally weigh from 20 to 70 pounds. In the markets the fish are dressed and cut into steaks for the local trade. Maximum weight, about 100 pounds; average, about 35 pounds.

U. S. B. F.-Doc. 962.

With regard to this species the following is stated in "Fishes of Panama," by Meek and Hildebrand, now in press: " A study of material arailable in the National Musemm indicates that this genus is in need of revision. We have included Seriola latandi in our synonymy, believing it to be identical with the present species. There is a difference in the depth of body, but this appears to be only a variation among individuals. It also seems probable that the banded forms may yet prove to be the young of this species."

Runge.-Cape Cod to Africa and Brazil. Not common north of North Carolina : found in open seas of tropical Atlantic.

13. Decapterus punctatus (Agassiz). Scad; Cigar-fish.

The scad is said to be rather common on the coasts of Florida, but its appearance in the Key West markets is only occasional. The amnual catch does not exceed a few hundred pounds. The maximum size is not definitely known, but probably does not exceed 2 pounds, with an average of one-half pound.
Renge.-Woods Hole (Mass.) to Brazil. Common in Bermuda and Trest Indies; small fish sometimes rather common about Woods Hole, Mass., and Long Island, N. Y.
14. Selar crumenopthalmus (Bloch). Big-eyed scad.

This fish is not common in the Key West markets. It is taken from time to time by the hook-and-line fishermen and is considered a fair food fish. Maximum weight, about 8 pounds; average, 1 pound.

Range.-Both coasts of tropical America and in tropical seas generally; on the Atlantic coast it is extremely rare north of southern Florida.

15. Caranx bartholomæi Cuvier and Valenciennes. Yellow jack.

This species is less abundant than the several other species of "jacks" commonly seen in the fish markets at Key West. It is common in the West Indies. The maximum weight is not definitely known, but it probably does not exceed 3 pounds; average, one-half pound.

Range. - Usual range Florida to West Indies and Panama. Known from Porto Rico, but not common there; common in Cuba; rare north of Florida, but sometimes straying to Woods Hole, Mass.

16. Caranx hippos (Linnæus). Jack; Runner; Crevalle.

This species is the most abundant of the varions species of "jacks" or " rumners" that are found about Key West. It is a good food fish and commands a ready sale in the markets. Fish weighing 5 or 6 pounds are not rare. It is taken by bottom fishing or by trolling and is worthy of mention as a game fish. It is found throughout the rear, but is most common during the winter. Its maximum weight is 20 pounds, but it seldom weighs more than 10 pounds, and its a verage is 1 pound.

Range.-Both coasts of tropical America, north to Lynn, Mass., and Lower California; East Indies.

Fig. 6.-Jack (Caranx hippos).
17. Caranx crysos (Mitchill). Hard-tail; Jurel; Runner; Jack; Crevalle.
This species is taken throughout the year about Key West under the same conditions as is C. hippos. It is a food fish of importance locally but is smaller in size than C. hippos. Large numbers of halfpound fish are commonly found in the live cars about the fish wharres. Maximum weight, about 3 pounds; average, one-half pound.

Range- - Ipswitch Bay (Mass.) to Brazil. Common south of Maryland, entering lower Chesapeake Bay, where it rarely takes the hook but is rather common in pound-net catches.

18. Caranx latus Agassiz. Horse-eye jack; Jurel ; Runner.

This species is less common about Key West than C. hippos or C. crysos. It is taken in small numbers by trolling, and sometimes a small school is captured in a Spanish-mackerel net. As a food fish it is not as highly regarded as the other species of Caranx. The maximum size is not known, but the average is not over one-half pound at Key West.

Range.-Virginia to Brazil.

19. Vomer setipinuis (Mitchill). Moonfish.

This little fish is caught very infrequently and only during the winter. It is taken on the bottom with hook and line and is esteemed as a food fish. The maximum weight is about 1 pound, and the average is one-third of a pound.

Range.-Halifax (Nova Scotia) to Uruguay; not common north of Virginia. The young are common in lower Chesapeake Bay during the summer and fall.

20. Selene vomer (Linnæus). Moonfish; Lookdown.

This species is often confused with Tomer setipinnis but may be distinguished from the latter at a glance by the prolongation of the first rays of the dorsal and anal fins. Around Key West it is somewhat more plentiful than Vomer. It is taken chiefly in the winter and is highly esteemed as a food fish. The annual catch is very small. Maximum weight, about 2 pounds; a verage, one-half pound.
Range.-Casco Bay (Me.) to Uruguay; not common north of Chesapeake Bay.

21. Trachinotus glaucus (Bloch). Gaff-topsail pompano.

This species is seldom taken at Key West and is confused by fishermen with other species of pompano. It may be identified by the long anterior rays of the soft dorsal and anal and by the presence of four black vertical bars on the back and sides. It is utilized for food, but the annual catch is negligible. Maximum weight, about 2 pounds; average, one-half pound.

Range.-Virginia to Panama; generally common along east coast of Florida and in Porto Rico.
22. Trachinotus falcatus (Linnæus). Round pompano.

This species, like T. glaucus, is seldom seen in the Key West markets. The few fish caught are called "pompano" and are utilized for food. Maximum weight about 3 pounds; average, one-half pound.

Range.-Woods Hole (Mass.) to Brazil. Adults not common north of Florida; young, 1 to 2 inches long, taken in southern Massachusetts and lower Chesapeake Bay, whence they are transported by the Gulf Stream. Rather common in Bermuda.
23. Trachinotus goodei Jordan and Erermann. Great pompano; Permit.
The great pompano is taken with hook and line near Key West during the winter. The annual catch, however, is small. It is a fair food fish, but inferior to the common pompano (T. carolinus). Maximum weight, abont 40 pounds; a verage, 8 pounds.

Range.-Usual range North Carolina to West Indies; rare north of Florida. The young (about 3 inches long) have been recorded from Woods Hole, Mass.

24 . Trachinotus carolinus (Linnæus). Common pompano.

This species is the most valuable of the pompanos and is considered one of the choicest of all salt-water fishes. About Key West it is taken in small numbers during the winter, but the amual catch is small. It is more common along both coasts of Florida, preferring sandy bottom, where it feeds near shore on small mollusks and crustaceans. At Key West it is taken with hook and line and, incidentally, in mullet geines. It always commands a high price and is esteemed for its rich flavor in all parts of its range. Maximum weight, 8 pounds; average, $1 \frac{1}{2}$ pounds.
Range.-Woods Hole. Mass., along the South Atlantic coast and Gulf of Mexico to Brazil. Not common north of Chesapeake Bay, in the West Indies, or Brazil.

25. Pomatomus saltatrix (Linneus). Bluefish.

The bluefish is taken along the Florida keys only during the winter-generally between December 15 and February 15. A few are caught by trolling, but the greater part of the catch is taken along with the Spanish mackerel in gill nets or purse seines. During the past 10 years the annual catch has been from 10,000 to 15,000 pounds. The entire eatch is shipped to New York, where it commands a high price, for fresh bluefish are searce in northern markets during the winter. The bluefish is one of the best American food fishes. Its maximum weight is given as 27 pounds, but examples weighing more than 12 pounds are uncommon. The usual weight of the Key West fish is between 2 and 4 pounds, while 6 pounds is about the maximum.
Range.-Wide distribution; Atlantic and Indian Oceans; occasionally enters the Mediterranean Sea; Malay Archipelago; Australia; Cape of Good Hope; Natal; Madagascar. Not recorded from the Atlantic coast of Europe or from Bermuda. On our coast it has been recorded as far north as Mount Desert, Me.
26. Rachycentron canadus (Linnæus). Sergeant fish; Crab-eater ; Black bonito.
This species is rarely caught along the Florida keys. It is a good food fish and has some commercial importance in the West Indies and along our Middle and South Atlantic States. It is taken with hook and line on rocky bottom, generally in 40 to 80 feet of water. In Chesapeake Bay, where it is called "black bonito," it is canght in small numbers from May until October, but it is most abundant during June. The largest fish recorded weighed 84 pounds and was taken in Chesapeake Bay during June, 1921. The average weight is about 10 pounds.

Range.-New Jersey to Brazil; East Indies.
27. Centropomus undecimalis (Bloch). Snook; Rabalo; Sergeant fish.

The snook is rarely taken in the immediate vicinity of Key West, but is common on the southwest coast of Florida, where it is one of the principal game fish taken during the winter. There it is taken by trolling, close to shore, from a rowboat that is operated as noislessly as possible. At Fort Meyers and Marco large snook are fre-

Fig. 7.-Bluefish (Pomatomus saltatrix).
quently seen swimming within a few feet of the shore. It ascends streams but does not stray far from brackish water. The snook is rather uncommon among the Florida keys and is too scarce in the Key West markets to be of local commercial importance. It is considered a fair food fish. The maximum weight is about 30 pounds, while the a rerage is about 3 pounds.

Range.-Atlantic coast of tropical America. Recorded from Florida: Porto Rico: Cuba; Haiti : Jamaica; Martinique; Barbados; Vera Cruz, Mexico; Belize, British Honduras: Toro Point, Colon. Mindi, New Gatun, and Porto Bello, Panama: British Guiana: French Guiana; and Bahia, Sao Mathews, and Rio Janeiro, Brazil. (Meek and Hildebrand.)
28. Epinephelus adscensionis (Osbeck). Rock hind; Cabra mora.

This beautiful species is less common than most of the other groupers found about Key West. Its habitat is restricted to rocky bottoms in rather deep water, and it is seldom caught on shallow reefs along with grunts and snappers. Generally not more than half a dozen are to be seen on any one day at the fish markets, but when a deep-water fisherman comes to port this fish is usually well repre-
sented in his catch. In Key West it is esteemed as a food fish. Maximum weight, about 15 pounds; average, 2 pounds.

Range.-Usual range southern Florida to Brazil. Known from Ascension and St. Helena Islands and Cape of Good Hope; rare north of Miami. The young are reported from Katama Bay. Mass.

29. Epinephelus striatus (Bloch). Nassau grouper; Cherna criolla.

This grouper is one of the large and important food fishes of Key West. It is caught on the bottom with hook and line and is taken throughout the year. Market fish are seldom found in water less than 30 feet in depth. Very small examples of about 1 pound are seldom seen, and most of the market fish range from 3 to 35 pounds. Large fish will live for some time in the live cars attached to the Wharves. The Nassau grouper closely resembles the red grouper (E. morio), but it is easily separated from the latter by the presence of a persistent black spot between the dorsal and upper part of the tail fin. Maxinium weight, about 50 pounds; average, 5 pounds.

Range.-North Carolina to Brazil: rave north of the Florida keys: common in Porto Rico and Bermuda.
30. Epinephelus guttatus (Linnæus). Red hind.

This is one of the most strikingly colored of the groupers, the body being marked everywhere with vivid scarlet spots. It is fairly common among the Florida keys and is a valuable market species, although much less so than the red grouper. It is caught with hook and line at moderate depths. Maximum weight, about 5 pounds; average, 2 pounds.
Range.-South Carolina, Florida, Bermuda, throughout the West Indies to Brazil.
31. Epinephelus morio (Cuvier and Valenciennes). Red grouper.

The red grouper is the most abundant and best known of the Key West groupers. It is most common during the winter, but is taken throughout the year on rocky, coral, and grassy bottoms. This fish is widely distributed over the fishing grounds and may be taken in
U. S. B. F.-Doc. 962.

Fti. . . - Nassau grouper ($E_{p i n e l p h e l u s ~ s t r i a t u s) . ~}^{\text {a }}$
from 10 to 20 feet of water along with grunts, porgies, etc.. or it may be canght on the deeper rocky reefs. The fish taken in shallow water usually are small, weighing from one-half to 2 pounds, while those from deeper water generally range from 2 to 15 pounds. Fish weighing more than 20 pounds are not common. The red grouper bears transportation well and is shipped north and to Cuba. It will live for long periods in live cars and fish wells and is one of the farorite food fishes of Key West. Maximum weight, 40 pounds; average, 5 pounds.

Range.-Massachusetts to Brazil: common in the Gulf of Mexico and at Bermuda; uncommon north of Florida, and found only as a rare straggler north of North Carolina.
32. Epinephelus nigritus (Holbrook). Black jewfish.

This large grouper is reported as fairly common off the coast of Florida, but it is rarely seen in the Key West markets. Maximum weight, 500 pounds.

Range.-South Carolina to Brazil ; Mediterranean Sea.

Fig. 10.-Spotted jewfish (Promicrops itaiara).
33. Promicrops itaiara (Lichtenstein). Jewfish; Spotted jerfish.

The spotted jewfish is the largest food fish caught in the vicinity of Key West and is one of the largest of all fishes. This fish is not plentiful in the Key West region in point of numbers, but because of the large size attained the comparatively few fish taken are of some commercial importance. During the greater part of the years 1918 and 1919 from two to six jewfish were brought to the Key West market each week. Spawning occurs during July and August, when the fish become gregarious and are caught in greatest numbers. During six weeks of July and August, 1918, there were brought to market 74 jewfish, ranging in weight from 35 to 350 pounds, with a mean average of 125 pounds. Nearly all of these were taken off Knights Key, about 40 miles above Key West.

The jewfish is caught with hook and line on very strong tackle. Regardless of its large size, it is placed in the well of the boat after capture and is brought to market alive. At the market the fish are transferred to commodious live cars, and as an extra precaution to preclude their escape, a large hook is placed in the mouth of each
big fish and each is securely hitched to a pile by means of a strong line. The fish are removed from the live cars as wanted. When the fish are dressed, the scales are shaved off with a sharp knife, and the flesh is cut into steaks and strips. The flesh sells for about 20 cents a pound and always finds a ready sale, the entire catch being consumed locally.

The jewfish prefers moderately deep water with rocky or coral bottom. Small individuals weighing from 1 to 10 pounds, however, are frequently taken in shallow water close to shore. The species is particularly common on the south west coast of Florida. The largest fish of which there is a reliable record weighed, according to a measurement formula, 693 pounds. This fish was caught with shark tackle on January 23, 1923, about 35 miles south of Miami, and it was 8 feet long and 6 feet 4 inches in girth.

Range.-Both coasts of tropical America, north to Florida and the Gulf of California.
34. Mycteroperca venenosa (Linnæus). Yellow-finned grouper; Yellow grouper.
This grouper is uncommon about Key West and is seen only occasionally in the fish markets, but it is somewhat more plentiful in the Habana markets. Maximum weight, 20 pounds; average, 5 pounds.

Range.-North Carolina to the Bahamas; southern Florida, Bermuda, and the West Indies; rare north of Miami.
35. Mycteroperca bonaci (Poey). Black grouper.

The black grouper is rather common about the Florida keys and Key West. It is not taken in large numbers, but its great size makes it one of the most important market fishes. It is generally caught in water more than 25 feet in depth, but small fish are occasionally taken in shallow water near shore. This grouper is taken throughout the year, but it is most common during February, March, and April. The usual market fish weigh from 5 to 50 pounds; fish weighing more than 50 pounds are uncommon though not rare. Large or small fish can be kept in live cars for long periods. Maximum weight, about 100 pounds; average, 10 pounds.

Range.-Tsual range Florida to Brazil. The young have been carried by the Gulf Stream as far north as Woods Hole, Mass.

36. Mycteroperca microlepis (Goode and Bean). Gag.

This species is rather common about Key West and may be canght there throughout the year. It is generally taken on the shallow reefs in 10 to 25 feet of water and on rocky, coral, or grassy bottoms. When hooked, it puts up a somewhat better fight than do most of the other groupers. It is a good food fish. Maximum weight, 20 pounds; average, $1 \frac{1}{2}$ pounds. Fish weighing more than 10 pounds are rare, and the weight of the market fish usually ranges from onehalf to 3 pounds.

Range.-Beaufort (N. C.) to Florida; on the Gulf coast to Pensacola,
37. Mycteroperca falcata phenax Jordan and Swain. Scamp.

This species is rather common about the Florida keys, although much less so than the red grouper. It is caught with hook and line and is present in the markets throughout most of the year. Another species (M. fulcata) closely resembling this one is common in the Habana markets. As a food fish it is well regarded and ranks higher than many of the other groupers. Maximum weight, 10 pounds; averiage, 2 pounds.

Range.-Southern Florida.
38. Lobotes surinamensis (Bloch). Triple-tail.

This fish is rave at Key West but occasionally is seen in the markets. A 20-pound individual was observed in the market during January, 1919, and was considered an oddity by the fishermen, who had no name for it. The triple-tail is considered a good food fish, but it is not common anywhere. A specimen 6 inches long was caught near the Bureau of Fisheries' biological station at Key West. Maximum weight, about 35 pounds; average, 8 pounds.

Range.-Massachusetts south to Uruguay; taken sparingly in lower Chesapeake Bay pound nets, where it is called "strawberry bass."

39. Lutianus griseus (Linnæus). Gray snapper; Mangrove snapper.

The gray snapper is the most abundant species of snapper found at Key West. The fish always travel in schools, generally containing from a fers hundred to a thousand fish of various sizes, and prefer the sloping ledges of reefs and channel ways. If not alarmed, they will hover in one place for hours and afford a beautiful sight in the clear water. Under certain conditions it is extremely difficult to catch adult gray snappers with hook and line, but fish of less than 6 inches are less wary and can be taken without difficulty. Many attempts to catch one were made by the writer, with various lures. Pieces of bait thrown into the water were readily taken by the larger fish, but as soon as fishing tackle was introduced the fish looked askance at the bait and kept their distance. A tiny hook and black sewing thread were tried without much success. The best snapper fishing was found to occur when the weather was cloudy and the water not very clear.

This snapper has the peculiar habit of lying in a few inches of water among the roots of the mangroves, especially where the tide flows swiftly between small islands, hence the name "mangrove snapper." The writer has found five or six fish within half an hour under such conditions.

The gray snapper is an abundant species but because of its wariness is not canght in large quantities by the fishermen. Enough are caught, however, to make it an important market species. It is a good food fish and is taken throughout the year. It is caught along the west coast of Florida as far north as Bay County and is especially common on the southwest coast. It is also found along the east coast of Florida and as far north as Woods Hole, Mass. It is rare above North Carolina, however. Market fish usually range in weight from one-half to 5 pounds. Large fish weighing fully 10

pounds are often seen in the water, but fish of this size are seldom caught. The maximum weight is said to be 18 pounds.

Range.-Usual range both coasts of Florida to the West Indies. 'The young, a few inches long, have been recorded from North Carolina, lower Chesapeake Bay, New Jersey, Rhode Island, and Woods Hole, Mass.; common in Bermuda.
40. Lutianus jocu (Bloch and Schneider). Dog snapper.

This snapper is not common about the Florida keys. . It is caught chiefly in the fall and winter, and only an occasional fish is seen thronghout the summer. It is taken with hook and line along with other snappers and grunts and is a good food fish. Maximum weight, 20 pounds; a verage, 2 pounds.

Range.-Usual range Miami to Bahia, Brazil. The young have been tiken at Woods Hole, Mass.

41. Lutianus apodus (Walbaum). Schoolmaster.

This species is rather common in the vicinity of Key West, but its commercial value is relatively small. The young are abundant about the shores of Key West and all the Florida keys. Small fish are sometimes found lying motionless at the base of rocks close to shore. Fish of about one-third to one-half pound are taken on the shallow reefs along with grunts, porgies, etc. Larger fish, weighing 2 to 6 pounds, are taken in small numbers in deeper water. Maximum weight. 8 pounds; a rerage, three-fourths of a pound.

Range.-Usual range Florida to Bahia, Brazil; Bermuda. It occurs as a straggler north of Florida. The young have been taken at Beaufort. N. C., and Woods Iole, Mass.

42. Lutianus aya (Bloch). Red snapper.

The red snapper is one of the most aboudant and valuable fish caught within the State of Florida, but near Key West it is comparatively scarce. At times a few are taken in deep channels near certain of the keys. Several million pounds are caught amnally in the Gulf of Mexico, where the greater part of the catch is landed at Pensacola. It is caught with hand lines in 15 to 50 fathoms of water, and the bait used generally consists of pieces of meat or fish. The red snapper bears transportation well and is shipped to all the important fish markets of the north. It is considered a choice food fish. Maximum weight, 79 pounds; average, 6 pounds.

Range.-Woods Hole (Mass.) to Brazil; Bermuda; rare north of North Carolina; taken in commercial quantities off Cape Fear (N. C.), Georgia, easteriu Florida, Gulf of Mexico, Porto Rico, and Central America.
43. Lutianus analis (Cuvier and Valenciennes). Muttonfish; Pargo.

The muttonfish is one of the most important species of snappers caught about Key West, ranking close to the yellowtail (Ocyurus chrysurus). It is found thronghont the year but is scarcest during July and August, which is the spawning period and at which time it schools. The muttonfish is an excellent food fish and is always in demand. It takes the baited hook freely and is quite gamey. Near Key West it is taken on rocky or coral bottom in 3 to 9 fathoms
of water, but small fish of one-half to 2 pounds are sometimes taken on the shallow reefs, in 2 to 4 fathoms, along with grunts, porgies, etc. The average size of deep-water fish is about 3 pounds, but examples weighing 15 and 20 pounds are not rare. It is reported that a. 25 -pound fish was caught off the railroad pier at Key West by an angler using rod and reel. Maximum weight, 25 pounds; average, 3 pounds.

Range.-Usual range both coasts of Florida to Brazil. The young have been recorded from Beaufort, N. C., and Woods Hole, Mass.
44. Lutianus synagris (Linnæus). Lane snapper; Red-tailed snapper.

The lane snapper is a beautiful and abundant fish about Key West. It is usually caught on rocky, coral, or grassy bottoms in water ranging in depth from 2 to 6 fathoms. It is found in company with various species of grunts, porgies, snappers, and groupers. Although the average size is only about one-half pound, it is rather gamey when hooked. It is caught in greatest numbers during the winter and spring. Spawning is said to take place in October, at which time the fish gather in schools. Maximum weight, 4 pounds; average, one-half pound.
Range.-Pensacola and Indian River, Fla., southward to Brazil; known from the Bahamas, Cuba, Martinique, Jamaica, Santo Domingo, Porto Rico, and Panama.
45. Ocyurus chrysurus (Bloch). Yellowtail; Rabirubia.

The yellowtail is perhaps the most important of all the snappers found about Key West. It is one of the most esteemed of the local fishes and is abundant throughout the year excepting during the winter when the cold drives it away to deeper water. It may be caught at depths of 2 or more fathoms, and it is especially abundant on the rocky edges of the outer reefs near Key West. This fish is rather gamey and is caught with crawfish or sardine bait. Fish weighing 3 and 4 pounds are not uncommon; the maximum size is ${ }_{6}$ pounds and the average 1 pound.
Range.-Usual range southern Florida to Brazil; known from Bermuda, Cuba, Martinique, St. Kitts, Jamaica, Porto Rico, and Brazil. The young are recorded from Katama Bay, Mass.
46. Hæmulon album Cuvier and Valenciennes. Margate fish; Margaret grunt.
This species is not as common about Key West as are several other grunts, but is one of the largest of the grunts and a good food fish. It is taken in rather deep water on rock or coral reefs. Spawning occurs during the early summer. Its food consists chiefly of crabs, crawfish, worms, etc. Maximum weight, 10 pounds; average, 2 pounds.

Range.-Southern Florida to Brazil; reported from Bermuda, the Bahamas, Habana, Jamaica, Porto Rico, and St. Thomas.
47. Hæmulon macrostomum Gïnther. Gray grunt; Striped grunt.

This grunt is common among the Florida Keys but because of its small size is considerably less important than various larger species. Young fish 4 to 6 inches long are sometimes abundant close to shore

Fig. 12.-Yellow-tail (Ocyurus chrysurus).
in shallow water. Like all the grunts, it is caught with hook and line, and fish taken for market purposes are at least 7 inches long. Maximum weight, 1 pound; average, one-third pound.

Range.-Southern Florida to Panama; known from Bermuda, Jamaica, St. Thomas, Porto Rico, and Panama.
48. Hæmulon parra (Desmarest). Sailor's choice; Grunt; Ronco prieto.
This is a common species about Key West. It is generally found in schools close to shore in company with the gray snapper. Apparently but few are taken offshore as far as even 1 mile. Fish 5 and 6 inches in length are very abundant and readily take the baited hook but are too small to be of commercial importance. However, many are taken weighing from one-half pound to a pound, or more. Maximum weight, 2 pounds; average, one-half pound.

Range.-Southern Florida to Brazil; recorded from Cards Sound, Marco, Lemon Bay, Biscayne Bay, Tortugas, Habana, Jamaica, Porto Rico, Panama, and Brazil.
49. Hæmulon sciurus (Shaw). Yellow grunt; Boar grunt; Ronco amarillo.
This species is perhaps the most beautiful of all the grunts and is marked by numerous longitudinal yellow stripes. It is very common about Key West, ranking next to H. plumieri in abundance. It is generally caught near the roots of mangrove trees in 6 to 15 feet of water, but some are taken farther offshore on hard bottom. The best bait is a long worm, which the fishermen get from the stem of a tall grass that grows on certain bars near shore. These "podworms" are certain to attract yellow grunts if there are any in the vicinity. If the most favorable places to fish are known, it is possible to catch 50 to 100 fish in a few hours. One fisherman reports that he has caught as many as 600 yellow grunts in a single day. The best fishing obtains during the summer. The yellow grunt is an important food fish in Key West. Maximum weight, about 1 pound; average, one-half poind.

Range.-Sonthern Florida to Brazil; recorded from Biscayne Bay, the Tortugas, Bermuda, Cuba, Jamaica, Panama, and Bahia.
50. Hæmulon plumieri (Lacépède). Common grunt; White grunt; Ronco.
This is by far the most abundant of all the grunts, and in point of numbers it is probably not exceeded by any other food fish in the vicinity of Key West. It is canght with hook and line baited with crawfish or "sardines" in 8 to 40 feet of water. It is found on bottoms of sand, marl, coral, or rock, which may be open or covered with vegetation. The best fishing, however, is found on rocky bottom. The common grunt is caught all the year round but is particularly abundant in the late summer and fall. After sparming (during August and September), the large schools break up and scatter but the fish are usually found in small schools on the bottom. Maximum weight, 3 pounds: arerage, one-third to one-half pound.

Range.-Cape Hatteras and Pensacola to Brazil; recorded from Panama.

Fig. 13.-Commou grunt (Hamulon plumieri).
51. Hæmulon flavolineatum 'Desmarest). French grunt; Ronco condenado.
This little grunt is not very common at Key West and is only occasionally seen in the fish wells. Maximum weight, 1 pound; average, one-third pound.

Range.-Bermuda, Florida Keys, Tortugas, south to Brazil; recorded from Panama.
52. Bathystoma rimator (Jordan and Swain). Tom-tate; Red-mouth grunt.
The young (4 to 6 inches long) are abundant about Key West, but fish of marketable size are uncommon and for this reason the annual catch is comparatively small. They are seen occasionally in the live cars and are sold along with other grunts and small snappers. Spawning takes place in May and June. Maximum weight, about 1 pound; average, one-third pound.

Range.-Cape Hatteras and Pensacola, southward through the West Indies to Trinidad; recorded from Panama and Bermuda.
53. Anisotremus surinamensis (Bloch). Black margate-fish.

This is a comparatively rare species about the Florida keys and is seen only occasionally in the live cars about the wharves. Probably not more than 1,000 pounds are brought to Key West annually. Maximum weight, about 20 pounds; average, 2 pounds.

Range.-Florida and Mobile to Brazil; known from Surinam, Martinique, Porto Rico, Jamaica, Cuba, and Panama.
54. Anisotremus virginicus (Linnæus). Porkfish.

This brightly marked species is common about Key West and is one of the important small food fishes. From June to August, when it schools to spawn, it is found about the shoals but soon retires to deep water. About a month after the spawning season large numbers of young may be seen about the shoals. When fishing in comparatively deep water (30 to 40 feet), it is not uninsual to catch fish of a pound or a little more in weight. However, fish of one-half a pound or less comprise the bulk of the annual catch. It is a good food fish. Maximum weight, 2 pounds: average, one-third pound.

Range.-Florida to Brazil: known from Biscayne Bay, Santo Domingo, Jamaica, Porto Rico, Martinique, Panama, and St. Catherines Island, Brazil.
55. Orthopristes chrysopterus (Linnæus). Pigfish; Hogfish.

This species is fairly common about Key West and is taken with hook and line on shallow reefs along with other grunts and snappers. It is an important species in lower Chesapeake Bay and along the South Atlantic coast, where it is considered an excellent food fish. Maximum weight, 2 pounds; average, one-half pound.

Range.-New Jersey to Mexico; recorded from Bermuda.

56. Calamus calamus (Cuvier and Valenciennes). Saucer-eyed porgy.

This is a common species about Key West and is found throughont the year, but it is most abundant during the winter. It is taken with hook and line on coral bottom in 12 to 40 feet of water. This and other species of porgies all are important food fishes in Key West. Maximum weight, $1 \frac{1}{4}$ pounds; average, one-half pound.

Range.-Florida keys to Brazil; known from Bermuda, Martinique, Jamaica, Cuba, Porto Rico, and Panama.
57. Calamus proridens Jordan and Gilbert. Little-head porgy.

A common species in Key West and always present in the live cars. This and other species of porgies found here are sold together without respect to species. Maximum weight, 2 pounds; average, onehalf pound.

Range.-Florida keys to West Indies.
58. Calamus bajonado (Bloch and Schneider). Jolt-head porgy; Bajonado.
This is the largest of the porgies and because of its size is the most important member of the group found at Key West. It is found on rocky, coral, and grassy bottoms at a depth of 15 to 40 feet or more. Spawning takes place during July and August. Fishermen catch it with hook and line all the year round. Maximum weight, 10 pounds; average, 2 pounds.

Range.-Southern Florida to West Indies.
59. Calamus penna (Cuvier and Valenciennes). Sheepshead porgy.

The sheepshead porgy is a common species and is most abundant in the winter. It frequents shallow water near the keys. Maximum weight, 4 pounds: a verage, 1 pound.

Range.-Southerm Florida to Brazil; known from Charlotte Harbor, St. Thomas, Habana, Panama, Camamu, Rio de Janeiro, and Rio Grande do Sul.

60. Calamus arctifrons Goode and Bean. Grass porgy.

This is an abundant species locally, especially in shallow water and on grassy bottom. It is found in company with other species of porgies. Maximum weight, 2 pounds; average, one-half pound.
R'conge.-Pensacola and Biscayne Bay south to Key West and Porto Rico; not common in the West Indies.
61. Lagodon rhomboides (Linnæus). Pinfish; Sailor's choice; Bream.

This little fish is abundant about the shores and wharves of Key West and is one of the most common species taken with hook and line in the vicinity of the Burean of Fisheries biological station. It is a ready biter and will take a hook baited with fish, spiny lobster, hermit crab, and many other kinds of bait. It is seldom canght out on the reefs away from shore. It is a good pan fish, but becanse of its small size its commercial value in Key West is slight. A fish

13 inches long, taken by the writer, is the largest recorded. Its average size is 6 inches.

Range.-Cape Cod to Texas; Bermuda and Cuba; common in lower Chesapeake Bay and abundant off the Carolina coast.

62. Archosargus unimaculatus (Bloch). Brim; Bream; Salema.

This species is not common about Key West, although a few are scen from time to time in the live cars at the wharves. It is a good food fish, but because of the small catch its commercial value is very limited. In Porto Rico it is an abundant and important food fish. Maximum weight, about 2 pounds; average, one-half pound.

Range.-Charleston to Rio de Janeiro, Brazil; rare north of Florida Keys; reported from Charleston, Cuba, Jamaica, Porto Rico, Panama, and Brazil.
63. Archosargus probatocephalus (Walbaum). Sheepshead.

The shecpshead is not common in the immediate ricinity of Key West, where the annual catch is only a few hundred pounds, but it is one of Florida's most important food fishes and is caught in large numbers on both consts. However, it is most abundant off the southwest coast along the shores of Lee, De Soto, and Manatee Counties. At Marco the writer canght many sheepshead while fishing directly from the shore. It is found chicfly about wharves, wrecks, and mangrove roots. The greater part of its food consists of crabs and mollusks, which it can easily crunch with its strong teeth. Maximum weight 30 pounds, but individuals over 15 pounds are comparatively rare; arerage weight, 3 pounds.

Range.-Atlantic and Gulf coasts, from Cape Cod to Texas; formerly rather common, but now rare north of Cape Henry, Va. In Chesapeake Bay, where it was once common, it is now very scarce.
64. Xystæma cinereum (Walbaum). Broad shad; Majarra.

This small fish is taken in limited numbers abont the Florida keys, where it is caught with hook and line in water 8 feet or more in depth. The annual catch is perhaps not over a few hundred pounds. It is an excellent food fish, and in Porto Rico it is an important market fish. Maximum weight, 2 pounds; average, onehalf pound.

Range.-Both coasts of tropical America, north to Lower California, and southern Florida.
65. Kyphosus sectatrix (Linnæus). Rudder-fish; Bermuda chub.

This species is not commonly seen in the markets of Key West, and it is found only sparingly about the keys thronghout the year. It is known for its peculiar habit of following vessels at sea, presumably for the waste food thrown-overboard. It is said to be a worthy game fish. Maximum weight, 9 pounds; average, 2 pounds.

Range.-Cape Cod to Panama; not common on the Carolina coast, north of which it is a rare straggler; recorded from Bermuda and Porto Rico and said to occur in the Canary Islands and rarely in the Mediterranean,
66. Cynoscion nebulosus (Cuvier and Valenciennes). Spotted trout; Speckled trout; Spotted squeteague.
This important food fish is rarely, if ever, taken within the immediate vicinity of Key West. It is a valuable and abundant species on both coasts of Florida, however. Small numbers are taken among the Florida keys, near Cape Sable, while fishing for mullet, and it is seen in the Key West markets in company with this species. Various methods are used in catching the spotted sfueteague. In lower Chesapeake Bay, where it is an important food fish, it is caught in pound nets, haul seines, and set seines; in southern Florida it is taken in mullet nets and with hook and line. Among the Ten Thousand Islands a fisherman was observed fishing from a flatboat with hook and line attached to a long bamboo pole. He drifted over grassy flats, repeatedly casting with mullet bait, and succeeded in catching many squeteagues. In St. Andrews Bay, Fla., the writer caught many "speckled trout" while trolling from a boat and using artificial lures. The largest fish recorded weighed $16 \frac{1}{2}$ pounds and was taken in the Neuse River, N. C. Two 16 -pound fish were observed in Chesapeake Bay during 1922. The average weight is about 2 pounds.

Range.-New York to Texas; rare north of Chesapeake Bay.
67. Sciænops ocellatus (Linnæus). Redfish; Channel bass; Red drum.

This species, called "redfish" in the South, is not caught in the immediate vicinity of Key West, but it is occasionally taken among some of the Florida keys, and at times small numbers are seen in the local markets. On both coasts of Florida it is a food fish of considerable value. In traveling from one coast to the other it appears evident that the channel bass rounds Cape Sable and does not stray very far south among the keys. It is a good game fish, and large individuals are caught by surf-casters along the New Jersey coast and elsewhere. Maximum weight, 75 pounds: average, 2 to 35 pounds.

Range.-Massachusetts to Texas; not common north of Chesapeake Bay.

68. Pagonias cromis (Linnæus). Black drum.

The black drum is not caught in the immediate vicinity of Key West but, like the red drum, is occasionally taken among the keys. It is seldom seen in the local markets. As a food fish it is rather inferior, the flesh being coarse and stringy. Maximum weight, 146 pounds; a verage, about 25 pounds.

Range.-Massachusetts to Texas.

69. Lachnolaimus maximus (Walbaum). Hogfish; Capitan.

The hogfish is common about Key West and is caught the year round on rocky reefs in rather deep water. It is a fairly good food fish, though not choice, and is always present in the fish wells and live cars. When the fish is dressed, the scales are shaved off with a sharp knife in the same manner as with groupers and jewfish. Maximum weight, 20 pounds. Fish weighing 10 pounds or more are not

uncommon, but the arerage weight is about 3 pounds. Fish weighing less than 1 pound are rarely seen in the markets.

Range.-Beaufort (N. C.) to West Indies; Bermuda; rare north of Florida.

70. Sparisoma viride (Bonnaterre). Parrot-fish.

This fish is occasionally caught by hook-and-line fishermen and is eaten to a small extent locally. Very little is known of its habits, and its value is very slight. It is a rich bluish-green in color. Maximum weight, 10 pounds; average, 2 pounds.

Range.-Bahamas and Florida Keys to West Indies; known from Bermuda, Jamaica, Porto Rico, St. Thomas, and St. Croix.

71. Sparisoma flavescens (Bloch and Schneider). Parrot-fish.

This parrot-fish is common in the vicinity of Key West. It is found in shallow water, chiefly on grassy bottom. Its color is mostly olivaceous, flushed with pink or orange. Its flesh is soft and rather poor, but it is used to a limited extent as food. Maximum weight, 1 pound; average weight of market fish, one-half pound.

Range.-Southern Florida to Brazil; found in the Bahamas and throughout the West Indies.
72. Pseudoscarus guacamaia (Cuvier). Green parrot-fish.

Of the large parrot-fishes this is the most common species found about Key West. In color it is mottled or barred with brown and blue; its teeth are green. It is not held in high esteem as a food fish, but is eaten sparingly in Key West. Maximum weight, 10 pounds: a verage, 1 pound.
Range.-Florida to Rio de Janeiro, Brazil; recorded from St. Augustine, Habana, Porto Rico, and Panama.

T3. Chætodipterus faber (Broussonet). Spadefish; Angelfish.
The spadefish is found about Key West during most of the year and is especially common during the summer and fall. It is generally found close to shore in shallow water and travels in small schools. It is frequently taken in wire crawfish traps. After hauling crawfish traps daily for a long time and catching no spadefish at all the writer suddenly one day caught 18 of the fish in one trap, which illustrates their habit of schooling. The young (less than 1 foot long) are marked along the sides with six prominent black vertical bands on a silvery ground, but in the adult the entire body coloration is darker and the bands are less conspicuous. As a food fish it is held in high esteem, but the annual catch at Key West is not large. Maximum weight, 20 pounds; average, three-fourths pound. In Chesapeake Bay, where this fish is known as "porgee" and where small numbers are taken from spring until fall, they generally weigh between 3 and 12 pounds.

Range.-Cape Cod to Rio de Janeiro, Brazil; rare north of Chesapeake Bay; known from Cuba, Santo Domingo, Jamaica, Martinique, Porto Rico, and Panama.

```
833570-24-3
```

74. Pomacanthus arcuatus (Linnæus). Black angelfish.

This beautiful species is rather common about Key West. It is found throughout the year but is not taken in large numbers. By visiting the markets a few may be seen at almost any time among the many species of fish held in the live cars. It is caught in wire crawfish traps and with hook and line. It is a food fish of some importance locally. Maximum weight, 6 pounds; a verage. $1 \frac{1}{2}$ pounds.

Range.-New Jersey to Bahia, Brazil; comparatively rare north of Florida; known from Tortugas. Cuba, Jamaica, Porto Rico, and Martinique.

Fig. 17.-Black angelfish (Pomacanthus arcuatus).
75. Angelichthys isabelita Jordan and Rutter. Yellow angel; Blue angel.
The yellow angel is very similar to the black angel (Pomocanthus arcuatus) in size, local abundance, and food qualities. It is taken in wire crawfish traps or with hook and line. Maximum weight, 6 pounds; average, $1 \frac{1}{2}$ pounds.

Range.-Florida Keys to Brazil; known from Tortugas, Bahamas, Cuba, Jamaica, Lesser Antilles, and Bahia.
76. Hepatus cœruleus (Bloch and Schneider). Blue tang.

The blue tang is a very beautiful fish and is fairly common about Key West. It is generally taken in water from 15 to 25 feet in depth on grassy or rocky bottom. It is caught with hook and line or in crawfish traps, and is used for food purposes, but the amual catch is small. Maximum weight, $1 \frac{1}{2}$ pounds; average, one-half pound.

Ranqe.-Usual range from the Florida keys to Brazil; recorded from Bermuda, Tortugas, Cuba, and Jamaica. The young are recorded from Woods Hole, Mass.
77. Hepatus hepatus (Linnæus). Tang; Doctor-fish.

This tang is rather common about Key West, where it is a food fish of slight importance. It is taken with hook and line, in crawfish traps, and with crawfish "grains." It is the most abundant of the tangs. Maximum weight, 2 pounds: average, one-half pound.

Range.-Usual range from North Carolina to Brazil; uncommon north of Florida: recorded from Beaufort, Sharleston, Tortugas, Bermuda, Habana, Jamaica, Martinique, and Bahia. The young have been recorded as far north as Woods Hole, Mass.
78. Hepatus bahianus (Castehau). Ocean tang.

The ocean tang is less common about Key West than is either the common tang (H. hepatus) or the blue tang (H. ceruleus). It is

Fig. 18.-Turbot (Balistes carolinensis).
considered a good food fish but is seen ouly occasionally in the local markets. Throughout the West Indies this species is the most important of the tangs. Maximum weight, about 4 pounds; average, 1 prund.

Range.-Usual range from North Carolina to Brazil: rare north of Florida; found throughout the West Indies and common in Bermuda. The young have been recorded as far north as Woods Hole, Mass.
79. Balistes carolinensis Gmelin. Turbot; Trigger-fish; Leatherjacket.
The turbot is common about Key West, where it is canght with hook and line throughout the year. It is nearly always present in the live cars about the wharves and is a food fish of importance locally. Maximum weight, 2 pounds; average, 1 pound.

Range.-Banquereau Bank off Canso (Nova Scotia) to West Indies; also found in Bermuda and the Mediterranean Sea; uncommon north of Florida; recorded from Massachusetts, Rhode Island, New Jersey, Chesapeake Bay, and North Carolina.
80. Balistes vetula Linnæus. Turbot; Trigger-fish.

This species is fairly common at Key West although somewhat less so than B. carolinensis, with which it is closely associated. Locally it is a food fish of some importance. The maximum size is not definitely known but is believed to be 2 or 3 pounds; average, 1 pound.

Range.-Usual range from Florida to West Indies; known from Kermuda, Bahamas, Jamaica, Ascension Island, and Porto Rico. The young have been recorded from Nantucket and Woods Hole, Mass.

Fig. 19.-Cowish (Lactophrys triqueter).
81. Lactophrys triqueter (Linnæus). Trunkfish.

This species is less common in the vicinity of Key West than either L. trigonuts or L. tricornis. All three species are esteemed alike for food. Maximum size, 12 inches: average, 9 inches.

Range.-Usual range from North Carolina to Brazil; Pensacola; rare north of Florida; known from Bermuda and Porto Rico, where it is common. The young have been recorded from Katama Bay, Mass.
82. Lactophrys trigonus (Linnæus). Trunkfish.

This trunkfish is comparatively common about Key West and is taken throughout the year, hook-and-line fishermen catching this species while fishing for grunts, porgies, and other small fishes. It is sometimes found very close to shore amid sponges and other bottom growths. While using a 100 -yard collecting seine near the island of Key West, about 15 adults of this species and L. tricornis were taken in one haul. It is a good food fish and is esteemed locally. Maximum size, 18 inches: a verage, 10 inches.

Range.-Usual range from North Carolina to Brazil; rare north of Florida. The very young, about 1 inch long, have been taken at Woods Hole, Mass.

83. Lactophrys tricornis (Linnæus). Trunkfish; Cowfish.

This species, sometimes called cowfish because of the two horn-like spines extending from the head, is about equally as common as L. trijonus, with which it is closely associated, and its habits and food qualities are rery similar to the latter species. Maximum size, about 15 inches; a verage, 9 inches.
Range.-Usual range from Florida to Brazil and eastward to the Cape of (lood Hope; recorded from Jamaica, Porto Rico, and Panama. The young have been taken in Katama Bay, Mass.

Table 1.-Wstimated catch of various species of fish landed in Key West during 1918 and caught within about 50 miles of the city.

Species.	Pounds.	Species.	Pounds.
Amberfish	2,000	Parrot-fish.	500
Angelfish	5,000	Pigfish..	2,000
Barracuda	3,000	Pompano.	545
Bluefish.	16,614	Porgies.	60,000
Bonito.	350	Porkfish......	10, 000
Cowfish, or trunkfish	1,000	Sailors' choice	500
Groupers.	200, 000	Sheepshead.	300
Grunts.	150, 000	Snappers:	
Hogfish...	10,000	Mangrove	15,000
Houndfish	500	Red...	9,000
Jurel, runners, or jacks	15,000	Spadefish.	5,000 1,000
Kingfish and cero ${ }^{1}$....	373,500	Spanish mackerel 1 .	1, 734, 200
Margate-fish.	1,000	Tang......	600
Moonfish	300	Tarpon..	500
Mullet:		Turbot...	4,000
White.	27,313	Yellowtail	50,000
Striped.	85, 000	Miscellaneous	1,000
Mutomish	25,00	Total.	2, 829, 722

[^65]Table 2.-Estimated catch and first ralue to the fishermen of various products landed in Key West during 1918. ${ }^{2}$

Products.	Pounds.	Value.
Fish.	2, 829, 722	\$141,486
Spiny lobsters.	345, 518	33,335
Stone crabs..	15,000	2, 750
Turtles..	150,000	15,000
Sponges.	107, 743	82,377
Conchs.	1,265	760
Conchs	2,000	100
Total.	3,454,248	275,808

${ }^{2}$ The total catch given herewith varies somewhat from that listed in the Bureau of Fisheries statistical report for 1918, owing to the inchusion of the kingfish and Spanish mackerel catches for the season 1918-19 instead of for the year 1918 alone.

MULLET FISHERY.

The striped mullet (Mugil cephalus) is not caught in large quantities in the immediate vicinity of Key West, but it is one of the principal fish to be found in the local markets during the late summer. The season when this mullet is abundant generally lasts from July until November. In 1918 about 85.000 pounds, worth $\$ 3,000$ to the fishermen, were landed during this period. The total eatch
of striped and silver mullets (M. curema) landed in Key West during 1918 was 112,313 pounds, valued at $\$ 4,531$.

The mullet is by far the most valuable fish caught in the State of Florida. During 1918 the catch on the west coast amounted to $25,023,666$ pounds, worth $\$ 1,151,103$, and on the east coast to $10,417,-$ 889 pounds, worth $\$ 397,147$. In addition 86,285 pounds of salted roe, worth $\$ 17,593$, were prepared, making the total weight of the fish $35,527,840$ pounds, with a value of $\$ 1,565,843$.

Mullets are found in large numbers along the entire coast line of Florida. They are particularly abundant in or about bays, rivers, or creeks, and the greater part of the catch is taken in brackish water within almost a stone's throw of land. Large numbers are found in the vicinity of Cape Sable, doubtless because the schools pass there going from one coast to the other, but among the Florida keys they decrease in numbers southward or as Key West is approached.

Nearly the entire catch of mullet is taken with gill nets of $1 \frac{1}{2}$-inch bar mesh. To make a catch in open water, two dories are used. The best type of dory has a plat form in the stern, which is raised several inches from the bottom of the boat, and on this the net is stowed, payed out, and hauled in. It is essential that the woodwork of the loat, edges of the gunwale, and such places where the net is liable to touch be smooth, so that the net may not catch or impede operations. In each of the dories is placed a net 150 yards or more in length, properly corked and leaded, and with a staff at each end. When a school of fish is located, the boats come together and the fishermen connect their nets and from this point quickly surround the mullets, describing a semicircle and bringing the staffs of the nets together at another point. After sufficient time has been given for the fish to gill themselves each net is hauled aboard its respective dory and the fish are removed as they come aboard.

When mullets are caught in close quarters, such as in rivers or creeks, the operations of the fishermen are more simple and large catches are often made under such conditions.

A river bank often proves an effective aid in netting, as the fishes' chances of escape are considerably lessened by such a barrier. As a school of mullets advances along the shore the net staff is planted near the water's edge, and at the proper time the net is set around the fish and returned to the shore some distance up or down stream. Sometimes it is umnecessary to use all of the net, in which case the unused portion is distributed either within the inclosure or around the outside in order to effect additional obstruction for the fish. Often from 5 to 10 per cent of the fish escape by jumping over the outer edge of the net, and many others gain their freedom by swimming under the lead line at some point where it does not lie close on the bottom. It would be far more difficult to make large catches of mullets if they did not jump from the water or cause a disturbance at the surface, thereby betraying their presence. Catches made otherwise are the result only of chance. However, under ordinary conditions schools of mullet follow close along the shore and give evidence of their presence to the fishermen. A school swimming along at a speed of 2 or 3 miles an hour can be sighted in sufficient time for all preparations to be made for their capture. As a rule the fishermen lie in wait at selected points and sometimes remain for hours on the lookout for the fish. The mullet is a very elusive fish,
and at the slightest opportunity an entire school will evade capture or escape from a seine.

A large part of the fishing is done at night, fishermen selecting certain localities where the mullets are known to occur and where the water is free of snags. On moonlight nights the fish can be seen approaching, and on very dark nights they are located by their noisy splashes. Sometimes, also, a large net is set on a chance of surrounding a school that may be swimming deep, as they do on certain occasions. The fishery is rather uncertain, and sometimes the fishermen return without a fish. On the other hand, large catches are frequently made.

The greater part of the catch of striped mullets brought into Key West is taken at or near Cape Sable. During the fall of 1919 from 10 to 20 sloops and power boats operated in this vicinity. A run boat collected and iced the combined catch and made trips back and forth to Key West. Sometimes as many as 30,000 pounds of striped mullets are landed on one day in this locality, but generally the quantity is less.

In order to protect the mullet during the principal part of its spawning season, the State of Florida has enacted a law prohibiting the catching of striped mullet (Mugil cophalus) within the waters of the State from November 20 to January 20. During this closed season some of the fishermen resort to fishing for kingfish and Spanish mackerel.

Both fresh and salted mullets are shipped from Key West. Fresh mullets are packed in barrels, similarly to other species of fish, and the greater part of the catch is sent to points in this country. In dry-salting mullets the fish are split and several incisions made in the flesh in order that the salt may "take" better. They are placed in piles until part of the liquid drains off and are then packed in slack barrels topped with burlap. The greater part of the salted fish is shipped to Cuba.

Market fish generally range from 12 to 22 inches in length, with 16 inches as a fair average. The females, or roe fish, usually average about 2 inches longer than the males. It is not unusual to find large numbers of fish weighing 3 or 4 pounds each.

The silver mullet (N. curema) is abundant at Key West and throughout the Florida keys. It is common on both coasts of Florida. As the average length of this species is about $10 \frac{1}{2}$ inches, it is less sought after and of considerably less importance than the striped mullet. It is a good food fish, however.

On almost any day of the year schools of silver mullets can be found about Key West. They seem to prefer shallow water, 2 to 12 feet in depth, and as they more along the bottom is stirred up, probably in their search for food. An area of cloudy water surrounded by clear water invariably betrays the presence of silver mullets. 'They are captured in the same manner as the striped mullet, excepting that it requires a net of $1 \frac{1}{4}$-inch bar mesh.

The fishermen distinguish the two species of mullet in the water by the way they jump, for, as a rule, the striped mullet jumps clear of the surface, while the silver mullet merely flips its tail out of the water. There are exceptions, however, when most or all of a school of silver mullets will jump out of the water simultaneously. This
jumping in unison has not been observed with the striped mullet, and only one or two individuals of a large school appear to leave the water at the same time.

Although the silver mullet is abundant, the catch landed in Key West is small and the greater part of it is dry salted and shipped to Cuba.

KINGFISH FISHERY.

Kingfish (Scomberomorus cavalla and S. regalis) are canght in southern Florida from early November until late March. The season usually covers the same period as that of the Spanish mackerel, but the fishing is somewhat more uncertain. In some years very few kingfish are caught before December 1, but it is the custom of the fishermen to commence operations about November 10. The catch of kingfish in Florida for the season 1917-18 is given in the report of the Commissioner of Fisheries for 1919, Appendix X, as follows:

Table 3.-Catch of kingfish in Florida for the season 1917-18.

West coast.		East coast.	
County.	Pounds.	Countr.	Pounds.
Pinellas..	25, 537	Palm Beach.	1,298, 161
Me Soto..	42,367 3,011	Droward	973,331
Monroe.	394,945	Total	2, 271, 792
Total...	465,860		

The total catch for both coasts was $2.737,652$ pounds. The entire catch of Monroe County was landed at Key West. Monroe County includes a portion of the extreme southwestern part of Florida and the Florida keys, which extend southwestward from the mainland forming the line dividing the Atlantic Ocean and the Gulf of Mexico. The major part of the fishing is done on the Atlantic side of the keys. The kingfish, therefore, are found in greatest abundance from Palm Beach County to Key West.

In this country the kingfish fishery is confined almost entirely to Florida, the only other State where it may be considered as of importance being North Carolina, which reports a catch of 211,781 pounds for the season of 1918. Off the Carolina coast kingfish are caught from May until October or during the months when they are not found in Florida.

Table 4.-Catch of kingfish, by months, taken along the Florida keys and landed at Key West during the seasons from 1918 to 1920.

	Month.	1918-19	1919-20
November.		Pounds. $1,000$	Pounds. 25,000
December.		25,000	28,000
January..		168. 200	248,000
February		154,300 25,000	45,000 103,000
Total		373,500	449,000

The first two fish of the 1918-19 season were landed at Key West on November 20, 1918, and the fishing ended abruptly on March 10, 1919, owing in part to the breakdown of the city's only ice plant.

The first fish of the 1919-20 season was landed at Key West on November 6, the second on November 7, and the third, weighing 30 pounds, on November 10. Favorable weather during March permitted an unusually good catch for that month. The fishing ceased on March 25.

For kingfish fishing a seaworthy power boat is of first importance. The majority of those seen in Key West range in length from 24 to 50 feet. The most serviceable boats are of the half-cabin type, for on these sleeping accommodations may be provided and the boats are in many way's more satisfactory. A few open boats generally are employed for near-by fishing. Sometimes sailing vessels are seen, but without auxiliary engines they prove rather unsuitable except under unusually farorable weather conditions, as the speed of the boat must be evenly regulated in order to travel in any direction the fish may choose to take. As kingfish die soon after capture the fish well, if present in the boat, is not utilized.

With the exception of the boat the necessary equipment for kingfish fishing is very simple and inexpensive. A small supply of heavy cotton trolling lines, wire leaders, and metal squid hooks are all that is needed. After the first fish has been landed by the bare squid strips of flesh and skin are cut from the belly of this fish and are used as bait for other fish.

At least two men are required to man a boat-one to attend exclusively to fishing and one to manage the boat and fish when opportunity affords. Two or more lines are trolled, according to the size of the boat. Slipknots are made on the lines, and when one of these pulls out it is a good indication that a fish has taken the hook. After hauling in fish for several hours this fishing seems more like work than sport, but an element of excitement and expectancy is always present.

It is not unusual for a boat to cruise about for most of a day without catching a fish, and often the catch scarcely pays for the fuel consumed, but in the long run the fishing is usually profitable, as a catch of several thousand pounds now and then more than offsets the days of loss.

The fish usually range in weight from 4 to 40 pounds. Occasional examples reach 50 pounds or more, but such fish are rare. During the early part of the season when fish are scarce the few taken as a rule are large, weighing from 10 to 40 pounds, but when the schools strike in the weight of individual fish usually varies from 4 to 15 pounds. Fish of about the same size are generally found in a school, as it was observed that certain boats brought in fish weighing from 5 to 8 pounds, others brought fish weighing 6 to 10 pounds, and still others had fish weighing 8 to 12 pounds, etc. It is probable that each of these boats caught their fish from a single school.

A large part of the kingfish catch is exported to Cuba or consumed locally. Some shipments are made to points in this country where the kingfish, however, are not regarded as favorably as the Spanish mackerel. The Key West markets are never glutted, and the annual catch is easily disposed of. The fishermen receive a uniform price
for their fish, as the rate is fixed at the begimning of the season. During the 1919-20 season the price was the same as for Spanish mackerel, 6 cents per pound. The retail price is generally about 25 cents per pound.

The kingfish is an excellent food fish when fresh, and its few bones and good flavor place it in great demand in Florida and Cuba. It is a fine game fish and is eagerly sought after by sport fishermen.

SPANISH-MACKEREL FİSHERX.

On the Atlantic coast the Spanish mackerel is found from Monhegan, Me., to Brazil and in the Gulf of Mexico. It is taken in commercial quantities south of Sandy Hook, N. J. As a food fish it is held in high esteem and commands a good price at all times. The retail price during the last few years has ranged from 25 to 50 cents a pound.

It is only in recent years that the migrations of the Spanish mackerel have been partly understood. Less than 50 years ago it was not known where the fish spent the winter months, and it was only from April until early November that they were caught and brought to market. At that time Spanish mackerel apparently were not known to be in abundance in the waters of southern Florida during the winter. ${ }^{2}$

The following table shows the quantity of Spanish mackerel taken in 1880, by States, and the total catch for the United States:

> Pounds.

Massachusetts	60
Rhode Island	2, 000
Connecticut	1, 200
New York	25,000
New Jersey	200, 000
Maryland	18, 000
Virginia	1, 609, 663
North Carolina	10, 000
South Carolina	1, 000
Eastern Florida	500
Gulf of Mexico	20,000

It is noteworthy that at the present time Spanish mackerel are caught and shipped to market in greatest abundance from November to March or during the months when 50 years ago the fish were seldom seen. It is now believed that these fish migrate southward and spend the winters in warmer waters. In 1880 the total catch for Florida and the Gulf of Mexico was recorded as only 20,500 pounds. The entire catch for the United States in that year only slightly exceeded the Key West catch for 1918-19 (1,734.200 pounds), and it was less than the Key West catch for 1919-20 (2,322,000 pounds). The distribution of the mackerel along the coasts of Florida is shown by the following statement giving the catch for the season 1917-18:

[^66]East coast counties : Pounds.
St. John 1,510
St. Lucie 696. 721
Palm Beach 1, 493. 31.9
Dade 870,415
Total 3, 061, 965
West coast counties:
Escambia 124, 076
Okaloosa 147, 297
Bay 508. 784
Calhoun 19, 994
Franklin 53, 809
Wakulla 750
Lery 23, 950
Pinellas 8. 176
Manatee 147, 463
De Soto278,355
Lee 57, 971
Monroe 2, 065, 276
Total. 3, 435, 901

The total catch for the State of Florida was $6.49 \overline{7}, 566$ pounds, with a value to the fishermen of about 6 cents a pound. Practically the entire catch of Monroe County was landed at Key West.

During each of the seasons 1918-19 and 1919-20 the first commercial catch of Spanish mackerel was brought in to Key West on about Norember 20. The season 1918-19 ended March 1, and only a few fish were caught after that date. This, together with the small catch for February, was partly due to a shortage of ice caused by the disability of the city's only ice plant. The catches, segregated according to months, were as follows:

Table 5.-Catch of Spanish mackerel, by months, landed at Key West during the seasons from 1918 to 1920.

Gill nets and purse seines are used for catching Spanish mackerel in the vicinity of Key West. A few are caught with trolling lines, lout the catch from this source is small. At other points along the coast, particularly in Virginia and North Carolina, a large part of the catch is taken with pound nets. The gill net is more extensively used than the purse seine. The usual net is 20 feet in depth, 150 to 175 yards in length, having a stretched mesh of $3 \frac{3}{8}$ to $3 \frac{5}{3}$ inches built of 6 -thread cotton seine twinesand tarred. In the fishery several shorter nets are joined together to form one 500 to 1,800 yards in length, according to conditions and the facilities of the boat.

The boats employed are usually from 30 to 50 feet in length, gasoline driven, and of the open or half-cabin type. In order that fishing may be done at night, a searchlight is carried on the bow. Most of
the fishing is done between sunset and sunrise, owing to the fact that many more mackerel gill themselves in the darkness than in the daylight, when they are able to see the net.

Gill netting appears to be an effective method of fishing, as a crew of two men often makes large catches. Some of the fishermen work independently, owning their own equipment, while others are attached to an individual or company and are supplied with the necessary boats and nets. At least one company that employs a small fleet of boats has a houseboat, which is anchored in a protected locality near the scene of operations and on which the men eat and sleep. Racks for drying the nets are built on the roof of the houseboat.

The schools of fish are found at night by searchlight. When located, the mackerel are surrounded as rapidly as possible, and the direction of the net is indicated by lanterns mounted on cork floats placed at convenient intervals along the cork line. After the fish have been trapped the dories encircle the net, splashing the water to frighten the fish into gilling themselves. Sometimes the boats enter the inclosure to agitate the fish. As the bottom of the net is entirely open the fish could easily escape by sounding, but apparently the greater part of them remain at the surface, where they either gill themselves in the net or succeed in jumping over the top.

During the 1919-20 season Key West had only one purse-seine boat, but several vessels came down from the mainland to operate in the vicinity of the keys. The local vessel was 90 feet in length with a 20 -foot beam, and carried a crew of about 15 men . It was formerly schooner rigged, but it had recently been overhanled by having its topmasts removed and an auxiliary engine installed. The mackerel purse seine is about 600 yards in length. The upper part of the seine near the cork line is made of $3 \frac{3}{8}$ to $3 \frac{3}{4}$ inch stretched mesh, while the bunt is of 3 -inch mesh.

Purse seining.is an effective method of fishing for Spanish mackerel, and large catches are often made. However, during the 1919-20 season the gill netters, becanse of their greater number, took the major part of the catch.

The advantages of gill netting over purse seining, especially to fishermen with small capital, are: (a) The gill netters can operate with a small power boat and with a crew of two or three men, whereas the purse seiners require a larger boat and more men. If one company owns a number of gill-netting boats, these can operate in several localities at the same time, and thus cover more territory with the reasonable assurance that one or more of the boats will make a good catch. (b) The cost of equipment and operating expenses is smaller for the gill netters than for the purse seiners. When fishing some distance from Key West, the catch of the gill netters is coliected by a run boat, which brings the fish to the city and saves the fishermen much valuable time, and in addition the run boat transports necessary supplies and food. The purse-seine boats generally bring their own fish to market and restock for the next trip. On the other hand, the purse seiners sometimes make large catches that prove very profitable.

In packing mackerel for shipment the fish are iced in barrels containing 200 pounds net, and in shipping they are removed from the market as quickly as possible to make room for subsequent receipts. The fish are delivered by the fishermen with the entrails removed, and
at the markets they are washed, weighed, and immediately packed for shipment. During the height of the season as many as 100,000 pounds of fish must be disposed of within one day in one fish house, and considering the relatively few men who execute this work it can only be accomplished by the speed, dexterity, and cooperation of the entire force.

At times as many as 10 small boats are lined up at one of the fish wharves waiting to dispose of their cargo. In unloading the fish a 2-bushel basket is lowered into the boat, filled, hoisted to the dock, and dumped into a wire-meshed, semicylindrical basket that rests in a tub of water. In this basket they receive a superficial washing by being raised and lowered several times in the tub of water. The fish are then dumped on a large table, from which they are thrown on a scale and weighed in 100 -pound lots. A barrel with broken ice on the bottom of it is always in reardiness near the scale, and the fish are packed so as to form alternate layers with the ice, which is added as necessary. When 200 pounds of fish have been placed in a barrel it is rolled away, the remaining space being filled with ice well tamped. A wooden cover is nailed on, the barrel is properly consigned, and is then ready for shipment.

Most of the mackerel are shipped to points east of the Mississippi River, New York being the principal market. As a rule a ghut seldom oceurs on the market, but when heavy catches are received at Key West and other points in Florida simultaneously the price tends to drop until the heavy run is over. The fishermen receive a uniform price throughout the season, which in 1919-20 was 6 cents per pound to fishermen owning their own equipment and $3 \frac{1}{2}$ cents to those who were furnished equipment by the dealers. When the gill-net fishermen deliver their catch to the rum boat that visits the fishing grounds, a slight reduction-usually one-half cent a pound-in the price paid is made. To the fish dealers the mackerel bring the highest prices in November and March, when catches usually are small. For a number of seasons past a representative from Fulton Market, New York, has been stationed in the largest fish house in Key West, where he supervises the packing and shipping of all fish consigned to his market. He purchases probably one-half of the Key West catch of mackerel. The quantity of mackerel sold to the local trade in Key West is negligible.

Florida has the only special fishery for Spanish mackerel, although in North Carolina about 100,000 pounds were caught with gill nets during 1918. From New Jersey to North Carolina it is eaught in pound nets along with other species of fish. In Chesapeake Bay the first fish are caught in pound nets during the last week in May or the first week in June. The fish leave the bay the latter part of September or early in October.

SPINY-LOBSTER FISHERY.

The Florida spiny lobster (Panulirus argus) differs considerably from the northern lobster (Homarus americanus), the chief differences visible at a glance being the very long legs, the long whiplike antenne studded with spines, the spines of the cephalathorax, or body, two of which protrude over the eyes like a pair of horns, and the absence of the great claws. Its flesh has a delicate flavor, and it
is said to equal that of the northern lobster. Aside from being an important food for man, it is extensively used as bait by the hand-line and fish-trap fishermen. Besides the name "spiny lobster," this crustacean is known as " crawfish," "sea crawfish," "langouste," and "rough, thorny, or rock lobster." The name in general use among the fishermen is crawfish, but dealers ship the animal under the name "Florida lobster." Spiny lobster is perhaps the most suitable name, but for the sake of brevity the name crawfish has been most generally used in this paper.

Within recent years the crawfish has found an important place in the fishery industry of Key West. Shipments to Cuba and cities of the eastern United States have steadily increased during the past decade, whereas prior to 1910 few crawfish, if any, were sold outside of the State.

For many years the crawfish has found a ready sale in the city of Key West, and the price has been as low as 25 to 50 cents for one dozen, according to the season and the weather. The retail price during 1922 ranged from 75 cents to $\$ 3$, with a general a verage of $\$ 1.50$ a dozen, depending upon the available supply. They are sold at retail by the piece or by the dozen and are seldom weighed.

The average market size thronghout the year is 9 to 10 inches in length, exchusive of the long antenne, and the weight of a 9 -inch crawfish is about 1 pound. The males grow larger than the females, and adult males are heavier than females of the same size, partly because of the longer legs. A comparison of the following weights indicates the difference: Males, 8 inches, $10 \frac{1}{2}$ ounces; 9 inches, 1 pound 1 ounce: 11 inches, 2 pounds. Females of these same sizes weighed $10 \frac{1}{2}$ ounces, $15 \frac{1}{2}$ ounces, and 1 pound 11 ounces, respectively. During two years of intensive market observations it was found that the weights of about 99 per cent of the crawfish sold for food would fall between the extremes of one-half and 6 pounds. Very small crawfish are common in their natural habitat, but they are used only for fish bait. Crawfish weighing more than 6 pounds are rarely seen. The largest of which the Bureau of Fisheries has an authentic record was caught the latter part of January, 1922, with hook and line in 8 fathoms of water about 8 miles off the coast of Sarasota County, Fla. This specimen, which weighed over 8 pounds when canght and the total length of whose body and tail was 17 inches, is now in the United States National Museum collection.

The crawfish is found close to shore, and most of the fishing is carried on within a mile of land. Rocky reefs and their adjacent territories are the most favorable fishing grounds. Its range in the United States extends from Beaufort, N. C., to the Florida Keys, principally on the Atlantic side, and among the islands of the Dry Tortugas. However, it is not mumerous enough north of Miami, Fla., to be of commercial importance. Large numbers are reported from the Bahama Islands, and it is known to occur as far south as Rio de Janeiro, Brazil. A spiny lobster resembling P. argus in general appearance is found on the Pacific coast, but it is of a distinct species.

The same type of boat is employed in the spiny-lobster fishery as that used in the hand-line fishery. Fishing lines are always kept aboard, so that if crawfish fishing proves unsuccessful the fishermen may return to port with a fare of fish. All boats in the vicinity of

Fig. 23.-Spiny lobster (Panulirus argus).
U. S. B. F.-Doc. 962.

Fig. 21.-Spiny-lobster trap, also utilized for catching stone crabs and fish.
$41-2$
U. S. B. F.-Doc. 962.

Fig. 22.-Dulley net used for catching spiny lobsters.

Key West are equipped with fish wells, which, according to their size, may accommodate from several hundred to about 1,000 crawfish. When using the bully net or the grains a small flatboat is utilized in making the catch. The typical flatboat has a rather blunt bow, to afford sufficient room for standing. This is an important feature, as the operator always works in the extreme bow of the boat. Some flatboats are equipped with a small fish well, but this is not absolutely essential for cratifish fishing, as the catch can be deposited from time to time in the well of the larger boat. Crawfish fishermen often remain away for a week or more at a time and seldom leave port with less than a 10-day supply of staple food products.

Three methods are employed in catching the crawfish-trapping, "bullying," and striking. The method of trapping crawfish differs in no special way from that used in trapping the northern lobster (Homarus americanus), except that the trap itself is of a distinct type. The traps are handmade and are built of heavy galvanized wire. It requires considerable skill to manufacture a good trap, and in 1919 only one person made them for sale. The price at that time was $\$ 7$. The trap is somerhat elbow-shaped and measures about 4 feet in length, 2 feet in width. and is $1 \frac{1}{4}$ feet in depth. Crawfish. crabs. and fish can enter through an opening made in the center of the rertical apex. The traps are baited with fish and placed in favorable localities, generally within 1 mile of the shore. Buoys are usually attached to the offshore traps, but are dispensed with when fishing is done near land in shallow water. The traps are lifted every morning when the weather is favorable. The crawfish are taken out through a small door located on the upper part of the trap. Stone crabs and fish are often caught along with the crawfish; the crabs and larger fish are retained for market, while the smaller fish are used to rebait the traps. The principal advantages of trap fishing for crawfish are (a) one fisherman can work alone and independently, (b) the traps will fish in deep water where at times most of the crawfish migrate, and (c) fishing can be done during moderately heary weather when other methods of crawfish fishing are curtailed.

While trap fishing is somerwat of a success on a small scale, as yet no one has specialized in this method. It is not uncommon to catch from 6 to 15 good-sized crawfish in one trap over night, while 4 per trap might be considered a very fair average. The fishermen do not lift their traps during periods of rough weather, and at times they remain down for a week or more. When lifted at the termination of such a period, they do not contain many more crawfish, if any, than if they had been down but one night, and it is evident that some of them must escape after being trapped. According to the fishermen, the disadvantages of trap fishing are the high cost of the traps and the labor required for making them, the frequent repairs that are necessary when corrosion begins, the loss of traps through storms, theft, or otherwise, and the fact that they must continually be baited with fish.
"Bully" fishing for crawfish is done chiefly at night. Two men generally work together, but some fishermen work alone and independently. Besides the small flatboat, the necessary equipment consists of a bully net and a lantern. The bully net resembles a long-handled dip net, but differs in having the iron hoop placed at
right angles to the pole. The pole is 12 feet or more in length, and the pocket of the net is about 24 inches deep. The lantern is placed in a glass case as a protection from the wind and is set in the bow of the boat.

When a "bully" fisherman discovers a crawfish crawling on the bottom he gives his partner directions for maneuvering the boat to a point of vantage, whereupon the bully net is carefully but swiftly placed over the crawfish. With due caution the animal can be approached without its becoming alarmed, but upon the slightest touch of the net it makes a desperate effort to escape. The hoop of the net must entirely surround the crawfish and touch upon even bottom or the animal will escape. When the crawfish finds that it can not escape beneath the hcop it thrusts itself back into the bunt of the net, and it is then that the fisherman raises the net to the surface with the crawfish secure in the bunt, which hangs over the side of the hoop. A fisherman working alone must push his boat along with the bully pole and is at a great disadvantage, especially in a strong tide.

During the course of a night one boat may capture as many as a thousand crawfish, but frequently only a few dozen are taken. The average catch probably ranges between 50 and 100 .

Striking is perhaps the most productive as well as destructive method of catching crawfish. The weapon used, known locally as the "grains," is a two-tined barbed spear, each prong being about 3 inches long. By means of a ferrule it fits on the end of a pole 15 feet or more in length. This fishing is pursued in the daytime and when the sea is smooth. The crawfish, which can usually be distinguished by its long whiplike antennæ protruding from the shelter of a rock or sponge, is located by the use of a mater glass. ${ }^{3}$ By touching the antenne the animal is usually frightened from its shelter, and at the crucial moment it is speared with the grains. Many badly injured animals escape and soon die, while most of those canght do not survive long, and if the fishermen remain out too long a part of their catch is liable to spoil and can not be used as food. This method of fishing, therefore, is destructive and wasteful.

Several Key West dealers ship relatively large quantities of crawfish out of the city. The principal markets are hotels and restanrants located in Miami, Jacksonville, Atlanta, Washington, Philadelphia, New York, and Boston. The restaurants utilize the crawfish to prepare various fancy dishes calling for lobster meat other than in the shell. For long-distance shipments two methods are employed in preparing crawfish-some are shipped alive and some are shipped after being cooked.

When shipping live crawfish they are carefully packed in sugar barrels. They must not be overcrowded, and therefore not more than 6 dozens are placed in one container. A substantial layer of ice is first placed in the bottom of a barrel, and on the ice is put a layer of sponge clippings-a waste material obtained when prepar-

[^67]ing sponges for the market. The crawfish are then placed in a single layer on the sponge and covered with more clippings and ice. Thus, when completely packed, a barrel contains alternate layers of ice, sponge, crawfish, and sponge. The sponge clippings are used to absorb moisture and to keep the crawfish from direct contact with the ice. The barrels are conspicuously marked "re-ice," and it is sometimes necessary for transportation companies to re-ice a shipment several times when it is consigned to a distant point.

During the experimental stage of shipping live crawfish many of them were received in a spoiled condition, and it was thought that shipments could not be made with profit. It developed, however, that the most unsatisfactory shipments were caused by poor packing, and by experimenting the system just described was established and reduced losses to a minimum. It is very important that the crawfish be handled with great care from the time they are removed from the water until they reach their final destination. No injured crawfish are shipped alive, which fact excludes all those captured with the grains.
More crawfish are shipped in a cooked state than alive. More labor is required to prepare cooked crawfish, but shipping losses are very small and considerable packing space is saved by the elimination of the waste parts of the animal. Crawfish that are to be shipped in the cooked state are prepared as follows: The live animals are placed in a steam cooker and cooked until they are sufficiently well done to be eaten. After they have cooled sufficiently to be handled with umprotected hands the abdomen, or tail, is removed and the remainder of the animal is thrown away. The tail is split open and the meat is remored from the shell. Four or five tails are placed in a No. 2 friction-top can, which is perforated with small holes to admit air. These cans are then packed in a slack barrel, iced as in the case of fish, and are ready for shipment. A standard barrel contains 64 cans of 105 pounds net weight, representing the meat of 24 dozen crawfish. The barrels, however, vary somewhat in the weight of the crawfish they contain. One dealer dispenses with the cans entirely and packs the tails, without removing the shell, in barrels with an abundance of broken ice. He has used this method for a number of years with satisfactory results.

The trap and bully furnish the most select crawfish and the only ones that can be retained in captivity or shipped alive for long distances. Fortunately for the industry, many of the fishermen and most of the dealers look with disfaror upon the "striking" of crawfish. The abdomen or tail of a "struck" crawfish is usually removed from the body before it is cooked, and by this operation much space is saved in the cooking kettle or pot. Owing to the rapid deterioration of the flesh it is a question, however, whether this practice is a good one, as crawfish, lobsters, and crabs are in the best condition when killed in the cooking process.

No crawfish are canned in Key West at the present time (March, 1920). Several attempts to do so have been made during the past 10 years, all of which failed because of the tendency the meat has of turning dark. It is believed, however, that by experimenting along these lines and carefully studying the methods used in canning shrimp, lobsters, and crabs that the crawfish can be successfully
cammed. It is very probable that properly canned crawfish could readily establish itself on the market.

Because of the large numbers of crawfish used for fish bait it is difficult to estimate the amnual catch with much exactness. The approximate catches made in previons years are as follows: 1895, 157,500 pounds; 1897, 161,500 pounds; 1902, 57,664 pounds; 1918, 345,518 pounds. During the month of December, 1918, shipments sent out under the trade name of "Florida lobsters" totaled about 500 barrels. This amount established a record up to that time, but this record was exceeded several times during 1919. During the year 1919 about 360,000 crawfish, weighing approximately 375,000 pounds, were canght. Of these about 40 per cent were shipped, 40 per cent were consumed locally, and 20 per cent were used as bait by the fishermen. On September 10, 1919, a severe hurricane visited Key West, wrecking many of the boats and paralyzing the fishing industry for several weeks; but for this incident the catch of crawfish would have reached 400,000 pounds.

The crawfish is taken at all seasons of the year, but the period of greatest abundance is from November to June. Most of the spawning occurs during the spring and summer, but occasional eggbearers are found as late as early winter. Unlike the northern lobster (Homarus americanus), whose eggs are carried for about 10 months before hatching, the incubation period of the eggs of the Florida spiny lobster is only about three weeks.

Large numbers of crawfish congregate along the shores during the spring for the purpose of spawning, and they are easily captured there. To conserve the supply of crawfish, the State of Florida has enacted a law, approved May 23, 1919, and effective for the first time during 1920, protecting the crawfish during the principal part of its spawning season. The text of this law is as follows:

Section 1. It shall be unlawful for any person, firm, or corporation, or association of persons to take or catch any salt-water crawfish from the waters of the State of llorida for commercial purposes, or to have in their, of its, possession between the first day of March and the first day of June of any year: Provided, That salt-water crawfish may be caught or taken at any time for purposes of lait, for catching fish, or for purposes of propagation or research by any State or biological station.

Sec. 2. It shall be unlawful for any common carrier, agent, or employee of such carrier to receive for carriage or permit the carriage of any such crawfish between the first day of March and the first day of June of any rear.

SEc. 3. Any person, persons, firm, or corporation, or association of persons violating any provision of this act shall be deemed guilty of a misdemeanor, ant upon conviction shall be punished by a fine of not more than two hundred and fifty ($\$ 250$) dollars, or by imprisonment in the county jail for not more than six months, or both.

The future of the crawfish industry appears to be promising. A large commercial enterprise could hardly be supported by the demands of southern Florida, but there is almost unlimited opportunity for expansion by introducing this delicacy into the hotel and restanrant trade and even as a familiar object in the fishmonger's store. The crawfish has already been put to the test and has been accepted by some of the foremost epicures in this comntry.

At the present time one of the chief drawbacks to the crawfish industry is the irregularity of the supply owing to weather conditions. During windy weather, with its resultant high seas, it is impracticable to bully or strike crawfish and the small catch of the
traps at such times is usually insufficient to supply even local demands. Thus it happens that at times dealers are unable to secure a good supply for one or two weeks at a time. While crawfish can be retained in live boxes for long periods of time, it appears that dealers do not make a practice of accumulating large supplies.

STONE CRAB.

The Florida stone crab (Menippe mercenaria) is the only species of crab that is of commercial importance in sonthern Florida. It is found from Beaufort, N. C., to Matagorda Bay, Tex., and has been recorded from Yucatan. A closely related species (M. nodifrons) is found from Cuba throughout the West Indies to Brazil, with a single record from Cameron, La.

Judging from the small numbers to be seen in the markets throughout the year, the stone crab is not found in great abundance. The flesh of this crab may, indeed, be considered a delicacy, and it is doubtful if there is any animal caught among the Florida keys that surpasses it in excellence. The fishery is pursued almost entirely with traps, although a few crabs are caught by hand and with nets. Stone crabs do not necessarily inhabit rocky places, and they are frequently found on bottoms of sand, marl, or clay, and among corals, sponges, and other bottom growths.

These crustaceans are caught throughout the year, but the most favorable fishing obtains during February, March, and April. They are found rather near the shore and generally not farther than 1 mile from land. Very few fishermen specialize in catching crabs, and most of those caught are taken incidently with crawfish. During periods of stormy weather when the traps are inaccessible the markets are sometimes without crabs. Unlike the crawfish, stone crabs are not shipped out of the State, but during the winter small numbers are supplied to seaside hotels in southern Florida.

When the weather is favorable the Key West catch varies from about 10 to 50 dozens a day during the winter and spring season, but no doubt more could be caught if they were more keenly sought after. The estimated annual catch of crabs is recorded for the following years: $1895,4,680 ; 1902,8,160 ; 1918,18,400$; and $1919,22,000$.

Small crabs, measuring about 3 inches in width across the carapace, sell at retail for about $\$ 1$ a dozen, while those 4 or more inches in width bring from $\$ 1.50$ to $\$ 2$. The size of the claws, rather than the size of the body, determines the value of the crab, for the body meat is not eaten except in the very largest ones, because of the tedious process of picking out the edible parts. Large crabs with small claws are therefore classed with the small animals, and those without claws are returned to the water without injury. It is not unusual to find large crabs with claws weighing nearly half a pound each. The maximum size attained by the stone crab is about 6 inches in width across the carapace. Since they have no large lateral spines, such as the blue crab has, an individual of this size with its great claws is larger than might be supposed. A crab having a carapace 4.8 inches in width was found to weigh 13 ounces, and one of 5.1 inches weighed 1 pound and 3 ounces. These specimens both possessed claws of normal size.

Stone crabs do not live long out of water and on a warm day probably would not survive more than several hours. When dead they deteriorate very rapidly, and in preparing them as food they should by all means be killed in the cooking process. Stone crabs, however, can be held in captivity for a long time, as a number were retained in pens at the Key West biological station for over two years, when they were finally lost in a hurricane.

TURTLE FISHERY.

Key West is one of the principal markets for marine turtles in the United States. Three species are seen in the markets-the green turtle (Chelonia mydas), the loggerhead (Thalassochelys caretta), and the hawksbill (C. imbricata).

The green turtle is by far the most important, the loggerhead is considered inferior and is eaten only by the fishermen, while the hawksbill is searce and used only for its shell. Most of the turtles are brought in by foreign boats, making Key West principally a receiving station from which the turtles are forwarded to other markets in this country.

The green turtle inhabits the Atlantic, Indian, and Pacific Oceans, its preference being for the tropical and subtropical parts, although it sometimes strays to the northern part of the 'Temperate Zone. It is found in greatest abundance about the island of Ascension, the West Indies, and the Atlantic coast of Nicaragua, between latitudes $11^{\circ} 30^{\prime}$ and $14^{\circ} 10^{\prime} \mathrm{N}$.

The three external characteristics by which the green turtle may be distinguished from the loggerhead are the front flippers, head, and coloration. The green turtle has but one mail on each of its two front flippers, its head is considerably smaller than that of the loggerhead, and the color of the carapace or back is not miform but may be a mixture of olive, olive green, and brown, which is usually mottled or streaked with yellow, somewhat resembling that of the hawksbill. Pleasing designs are often found, although the carapace is not used commercially in Key West. The under parts are pale yellowish. The turtle gets its name from the green color of its fat. At the present day the maximum size is 4 feet, with a weight of about 500 pounds, but examples weighing over 300 pounds are seldom taken. In its natural habitat this turtle is herbivorous, feeding on algæ and turtle weed, but in captivity it is said to show a preference for fish.

The egg-laying period is from April to July, at which time the female leares the water to deposit her eggs on a sandy beach above the high-water mark and in a locality that receives the sun's rays. With her flippers she scoops a hole in the sand, 12 to 18 inches in depth, and after depositing her eggs replaces the sand, instinctively leaving the nest almost undetectable to the eye. This is accomplished by crawling over the freshly filled-in sand and blinding her trail so that the identity of the act is lost. A female is said to deposit about 100 or more eggs in a nest and to repeat this act two or three times during the several months of the egg-laying period. Many turtles are captured after they have come ashore to lay their eggs.
U. S. B. F...-Doc 962.

Fig. 23.-Stone crab (Menippi merccnaria).

Fig. 24.-Green turtle (Chelonia mydas).
$50-2$
U. S. B. F.-Doc. 962.

Fig. 25.-Loggerhead turtle (Thalassochelys caretta). (Illustration taken from "Reptiles of the World," by R. L. Ditmars. Courtesy of
50-3

There is but one dealer in Key West who buys green turtles, and besides making shipments to the north he operates a small soup cannery.

The turtles are landed by fishing schooners known as "turtle boats," most of which fly the British flag. As soon as they are receired in Key West the turtles are placed in a turtle crawl. This crawl - the only one in this region-is an inclosure of about 40 by 70 feet, which is surrounded by palmetto logs placed close together in water 15 feet in depth. It is divided into a number of smaller crawls in order that the turtles may be separated into different size groups. In these pens or crawls the turtles will live for a long time, and there is practically no loss to the dealer through mortality. As many as 800 turtles occasionally are held in captivity at one time.

Most of the turtles are landed during the spring and early summer, which is the egg-laying season. During May, 1919, five vessels landed 1,250 green turtles in Key West, each cargo containing from 225 to 300 animals. Many more were received throughout the summer, but by the end of November deliveries practically ceased. Very few turtles are received from December to March, but a good supply is kept on hand in the late fall to last throughout the winter. It is estimated that 170,000 pounds of green turtles were landed in Key West during 1919.

To remove a turtle from the crawl, a loop of manila rope is dropped into the water for the purpose of catching the flipper of a turtle when the animals come to the surface to breathe. When a flipper has been thus caught, the rope is at once made tant and several men haul the turtle up to the dock, where it is turned over on its back to prevent its escape and the rope is removed.

Turtles that are used for camning purposes are slaughtered on the turtle dock. Each day during the greater part of the year five or six are killed at 3.30 p. m., at which time an inspector is present to see that the butchering is done in a sanitary manner. No turtles are killed until the desired number has been removed from the pens and laid about 1 foot apart on the dock. Then one person takes a sharp ax and strikes the head and four flippers off each turtle, going from one to the other with great rapidity. In each case the appendages are almost completely serered, allowing the animals to bleed freely. Immediately after the axman finishes, two men commence cutting away the plastron and then remove the entrails. During the operation sea water is thrown over the carcasses to wash away the blood and slime. The edible portions of the turtle are removed in four large pieces, each of which contains one of the flippers. The flesh is cut away from the carapace and thrown into a barrel of sea water. where it is thoroughly washed. It is then taken to the cannery, where it is hung on hooks and allowed to remain over night for use the next day. The following day a small portion of the meat may be sold for local consumption, but the greater part is used in preparing canned turtle soup.

At least one prominent chef has stated that the carapace is one of the best parts of thie green turtle for the making of soup, but the Key West cannery disposes of that part as well as the plastron and entrails by dumping them into the sea some distance from shore.
During May, June, and .July the females contain eggs in various stages of development, which greatly enhances their value, as there
is a great demand for the eggs. The white or mature eggs sell for 25 cents a dozen, while the yellow or immature ones bring about 50 cents a pound and are considered a great delicacy. The turtle has two ovaries, and the immature eggs are found in a large cluster in each one. The mature eggs, which are somewhat smaller than a golf ball, are found practically unattached inside the ovaries and have tough parchmentlike shells, which will not break even though the eggs are thrown down with force. A female is said to contain from 6 to 30 pounds of eggs, according to its size and condition.

The smaller turtles are shipped alive to the North, as they command a somewhat higher price per pound than do the larger ones. The following quotations are taken from the New York wholesale market prices of December 29, 1919: Turtles (green) under 100 pounds, 18 cents per pound; 100 to 150 pounds, 17 cents; 150 to 200 pounds, 16 cents; over 200 pounds, $13 \frac{1}{2}$ cents. New York, however, obtains only a part of its green turtles from Key West, for many are brought by steamship direct from the West Indies and Central America.

In preparing turtles for shipment on the coastwise steamships the four flippers are pierced and tied together, and the animals are placed back down. This method of shipping turtles has been branded as cruel, but it appears to be a necessity. The piercing of the flippers, however, is not absolutely essential. Because the marine turtles live almost entirely in the water the plastron is developed in such a way that it is not capable of sustaining the weight of the body withont injuring the internal organs. Placing a green or a loggerhead turtle in its "natural" position when out of water results in pressure from the plastron against the lungs, causing death from suffocation.

The loggerhead turtle is recorded from all tropical and subtropical seas. The writer has observed one in New York Bay, one off Long Island, and several off the New Jersey coast. Since the loggerhead turtle is of much less commercial value than the green turtle, it has been fished for less aggressively, and for that reason it is probably the more abundant of the two.

The front flippers of the loggerhead are supplied with two nails, except occasionally in old examples, which have but one. The head of the loggerhead turtle is larger than that of the green turtle. The color of the carapace is usually a uniform brown, but sometimes it is faintly marked with yellow. The under parts are yellowish. Loggerheads weighing more than 700 pounds are comparatively rare, the usual size ranging between 40 and 400 pounds. This turtle is mostly carnivorous in its habits, but is said to feed also on a certain grass that fishermen call "turtle weed."

Most of the egg laying takes place during May and June. During the egg laying season one female, according to size and condition, may lay from 50 to 1.000 eggs. The eggs, which hatch in from six to eight weeks, are deposited in the same manner as those of the green turtle. The loggerhead is strictly a marine animal and, like the green turtle, the female forsakes the sea only to lay her eggs.

The loggerhead turtle is fairly plentiful in Florida waters, but it is most abundant on the southwest coast. Compared with the green turtle its value is slight, but it is utilized for food to some
extent in the small fishing villages, and it is not infrequently found in the markets of certain large cities.

Tiro methods are employed in catching both the green and the loggerhead turtle in the vicinity of Key West-netting and pegging. There are well recognized localities that turtles are known to frequent in search of food, and it is at these places that the turtle fishermen look for them. The senses of smell and taste appear to be well developed, and they will travel long distances in search of their favorite food and feeding grounds.

In netting turtles a large-meshed net is used, and when one or more turtles are discovered in one locality the net is set in a straight line at a favorable place to intercept their progress. As all turtles must rise to the surface for air at more or less frequent intervals they are very liable to be seen in smooth water, and on calm days they can be located several hundred feet away by the sound made when they forcibly exhale air at the surface. While a turtle can not gill itself as fish do, the net nevertheless acts very much in the manner of a gill net. Upon striking the net the turtle usually becomes entangled in the meshes by its head and flippers, and after a futile struggle it rises to the surface where the fishermen are ready to haul it aboard their dory. Some of the turtles, of course, avoid the net, and others that strike it fail to become entangled, but a large percentage of those that strike the meshes are captured.

Pegging turtles is somewhat similar to spearing swordfish. A small sharp barbed spear, to which a line is attached, is fitted loosely on a staff, and upon approaching within a suitable distance of the turtle the spear is plunged into its back. The spearhead usually separates from the staff when it becomes embedded in the back of the turtle, and the animal is held by the line. If the spear is firmly embedded, the capture of the animal in a short time is assured. Fishermen living in isolated places and who desire turtles for food usually employ this method.

In the West Indies and off Central America the greater part of the catch is made during the egg-laying period in the spring, when the turtles are captured on sandy beaches upon which the females have emerged for the purpose of laying their eggs. The marine 1 urtles are poorly equipped for travel on land, and their movements are slow and laborious. For this reason if carefully approached they are easily captured, and by being placed on their backs they are renclered helpless to escape.

The hawksbill turtle is found in the Gulf of Mexico and in the West Indies southward to Brazil. This species is easily recognized by its small size and hard, imbricated shields, of which there are 13 large ones normally surrounded by 24 marginal plates. The carapace shields overlap each other like shingles on a roof, differing in this respect from the green and loggerhead turtles whose shields are smooth. The fore and hind flippers each have two nails, and the horny covers of the jaws form a sharp hooked beak, from which the name "hawkshill" is derived. The carapace of the adult is beautifully mottled with yellow on a dark brown background. The tortoise shell of commerce is obtained from the carapace of this turtle. The shields can be fused by pressure and heat to form pieces of any desired size.

The hawksbill turtle is too scarce about Key West to be considered of much commercial importance. The shells of the few that are caught by local fishermen are kept or sold as novelties. The size of those that are seen ranges from 10 to 15 inches, measured over the longest distance of the back. In Key West these turtles bring from $\$ 1.50$ to $\$ 10$ each, according to the size and condition of the plates. The largest specimen of which there is a record measured 34 inches.

SPONGE FISHERY.

Detailed accounts of the Florida sponge fishery have already been published, ${ }^{4}$ and therefore the subject will be treated only very briefly in this paper. The old methods of buying, selling, and packing sponges used 30 and 40 years ago are still in vogue, and the fishery of to-day is much the same as it was many years ago. The publication by Dr. H. F. Moore gives an exhaustive account of the sponge fisheries and has been drawn upon liberally in securing data for this chapter.

Florida sponges had a limited domestic use among the inhabitants as far back as the early part of the nineteenth century, or soon after Key West was settled in 1822. It was not until 1849, however, that these sponges became of commercial value. In that year a cargo of sponges was sent to New York on a venture and resulted in the gradnal building up of this industry in Florida.

Until 1891 Key West held almost an absolute monopoly of the trade in the United States, but at that time a small sponge mart was established at Tarpon Springs. Because of more advantageous local conditions, the waning of the catch on the Key grounds, and especially because of the development of diving for sponges, Tarpon Springs has become the leading sponge center, relegating Key West to a poor second.

Table 6 shows the extent of the sponge fishery ${ }^{5}$ on the Gulf Coast of Florida for the years indicated, from 1895 to 1918 . The weights used are taken after the sponges have been cleaned and dried and before they are baled for shipment. The average weights of different grades are as follows: Glove, wire, and yellow, each $1 \frac{1}{2}$ pounds per bunch; grass and large wool, $2 \frac{1}{2}$ pounds per bunch; small wool, 1 pound per bunch.

Table 6.-Quantity and value of sponges taken on the Gulf coast of Florida in certain years from 1895 to 1918.

Kinds of sponges.	1895		1897		1900		1902		1918	
	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.	Pounds.	Value.	Pounds.	Vahe.
Sheepswool	231, 272	\$363, 107	157, 476	\$240, 599	181, 311	\$183, 263	133, 518	\$297, 727	276, 168	8675,781
Yellow	29,509	11, 798	32, 362	13, 082	74,466	44, 045	56,787	31, 113	91, 641	34,187
Grass	21,357	5,464	128, 622	29, 188	143, 112	33, 263	140,682	29,765	73, 033	12,125
Other	23, 952	6,502	13, 086	3,171	19, 236	7,114	15,902	5,817	11, 346	3,062
Total.	306, 120	386, 871	331,546	286,010	418, 125	567, 685	346,889	364, 422	452,188	725, 155

[^68]Table 7.-Relative importance of Key West and Tarpon Springs as sponge centers from 1888 to 1918.

Locality.	18s8		1895		1597		1900		1902		1918	
	Number of pounds landed.	Per cent of total catch.	Number of pounds landed.	Per cent of total catch.		Per cent of total catch.	Number of pounds landed.	Per cent of total catch.	Number of pounds landed.	Per cent of total catch.	Num- ber of pounds landed.	
Key West	238, 038	94	280, 372	92	270,906	82	359, 854	86	266, 841	77	107, 743	24
Tarpon			16,344	5	56,000	16	53,173	13	67,218	19	344, 445	76
Others...	15,652	6	9,404	3	4,640	2	5,098	1	12, 830	4		

In 1919 the quantity of sponges sold at the Tarpon Springs exchange amounted to 424,075 pounds, valued at $\$ 707,964$, and in 1920 the quantity sold was 409,746 pounds, valued at $\$ 678,209$. The catch at Key West for these years is not available, but it is probable that it did not exceed 125,000 pounds for either year.

In 1921 the quantity of sponges sold at the sponge exchange, Tarpon Springs, Fla., was 386,390 pounds, valued at $\$ 540,093$, of which 173,723 pounds, valued at $\$ 463,170$ were large wool; 63,786 pounds, valued at $\$ 28,705$, small wool; 70,218 pounds, valued at $\$ 30,428$, yellow; 65,745 pounds, valued at $\$ 12,623$, grass; and 12,918 pounds, valued at $\$ 5,167$, wire. The prices of the small wool sponges were so low in the latter part of 1920 that several thousand bunches were held over for sale in 1921. For this reason the 1921 totals were larger than for the preceding year. It is estimated that sponges amounting in value to $\$ 40,000$ were sold outside of the exchange at Tarpon Springs. ${ }^{\text {. }}$

In 1922 the quantity of sponges sold at the sponge exchange, Tarpon Springs, Fla., was 526,885 pounds, valued at $\$ 699,092$, of which 248,475 pounds, valued at $\$ 596,199$ were large wool ; 70,478 pounds, valued at $\$ 42,286$, small wool; 115,455 pounds, valued at $\$ 37,637$, yellow; 84,892 pounds, valued at $\$ 20,379$, grass; and 7,585 pounds. valued at $\$ 2,588$, wire. It is estimated that sponges to the value of $\$ 50,000$ were sold outside of the exchange at Tarpon Springs. ${ }^{7}$

The principal kinds of sponges brought into Key West, in the order of their importance, are the sheepstrool, yellow, and grass. These are divided into numerous subvarieties and grades. Glove sponges, although generally common throughout the Florida keys, have but a small commercial value and are sold only in limited quantities. Other kinds, such as velvet and wire sponges, are of minor importance in the Key West market.
"The sponging grounds as at present developed are broadly divided into two widely separated areas-the 'bay grounds,' lying in the open waters of the Gulf of Mexico from about Johns Pass to St. Marks, and the 'key grounds,' stretching along and among the reefs and keys from Cape Florida to Boca Grande Key." (Moore, 1908.) Doctor Moore states further that "the grounds as exploited and

[^69]worked by the hookers up to the time of the introduction of diving apparatus, in April, 1905, covered an area of 4,350 square miles, of which the bay grounds contained about 3,400 and the key grounds about 950 square miles. It must not be considered, however, that all of this area is productive, for, on the contrary, the actual spongeproducing bottom in any given field is far less than the barren areas with which it is mingled." Since the introduction of diving a considerable area has been added to the sponge grounds, because operations can be carried on at greater depths.

In Florida two methods are used in gathering sponges-diving and hooking. A sponge-diver's outfit generally consists of a schooner of between 10 and 20 tons register and one or two machine boats. The schooner is used as living quarters for the crew and a place of deposit for the sponges. The machine boats carry the usual diving apparatus and are of the Grcek type, with high bows and sterns. The diving dress consists of a helmet, rubber suit, breastplate, shoes, and weights. Generally seven to nine men are carried, consisting of a captain, deckhand, cook, and a diving crew. The great majority of divers' boats operate from Tarpon Springs.

The divers generally operate at a depth of 60 feet or less and remain down for about two hours at a time. As there are two divers to a boat, each man works about two hours and rests for a like period. At greater depths the working time is shorter and the rests longer. The sponges are gathered by hand and placed in a net basket, which is pulled to the surface from time to time to be emptied. The divers often work in places that are inaccessible to the "hookers," and it is probable that the sponges found in such localities could not be obtained by any other method. The daily catch varies considerably, but it usually arerages from 10 to 15 bunches for each boat. Occasionally a prolific bed is found, resulting in a catch of 40 or 50 bunches in one day. The boats often remain away for one to two months, but sometimes a good catch is made in one week.

The Key West fishermen use the sponge hook almost exclusively. Prior to 1905 all sponges in this country were taken with hooks. but diving has proven so much superior that the old method is now of small importance in the fishery.

The sponge hook has the one advantage that it can be used by one or two men and at practically no expense. The hook is attached to a pole of convenient length and has three tines bent at right angles to the handle, so that a sponge may be lifted perpendicularly from the bottom. The typical hook fisherman has a sloop 25 to 40 feet long on which he lives and a 12 or 14 foot dory in which he works. Sails are generally depended upon in going to and from the grounds, as only a few of the boats used are equipped with auxiliary engines.
The hook fisherman usually operates among the keys where the water is clear and about 6 to 15 feet in depth. Except when the water is very smooth a sponge glass (that is, a wooden bucket with a glass bottom) is used for locating the sponges. When two men work together, the hooker remains in the bow with the sponge glass and directs his companion in the movements of the boat. Sometimes one man works independently, in which case he weights the stern of the dory with iron and propels the boat by pushing on the bottom
with his sponge hook. It is seldom that a fisherman working alone is able to use the sponge glass.

A few larger boats of the small schooner type engage in hooking. Two or three dories are carried, each of which is manned by two men. Fishing is done in water ranging from 12 to 30 feet in depth, necessitating long poles that are difficult to handle.

When removing sponges from the bottom care must be taken not to mutilate them. Sometimes they are firmly attached, and the sponge hook either fails to dislodge them or tears them in such a way that their value is materially reduced. The diver, since he gathers them by hand, is able to take most of his sponges in perfect condition.

The sponge as an article of commerce is merely the skeleton of the living animal and is of very different appearance than when first removed from the water. When first taken, it is a comparatively heavy mass of living matter, most of the porousness of the market sponge being filled with live animal tissue. The color of live commercial sponges is usually dark brown or black.

After the sponges have been taken aboard the deposit boat they are laid on deck, where they undergo a three or four day exposure to the air to kill all of the living tissue. In this state decomposition sets in and some of the liquid organic matter drains away. It is advantageous to shade the sponges, or the sun will quickly dry the outside skin and render the subsequent cleaning more difficult. After sufficient exposure the sponges are beaten with a short heavy club to loosen the remaining skin, dead tissue, and foreign matter. They are then strung on strong cord and thrown overboard, where they are allowed to remain for several days to macerate by the action of the tide. Another method of cleansing sponges by tide action is to place them in crawls. Crawls are small inclosures made with stakes set closely together in shallow water generally very near to shore. "Usually on Friday night the vessels run in to the crawls, and Saturday is spent in 'crawling' the dead sponges of the recent catch and cleaning those deposited on the Saturday previous." (Moore.)
With a dull knife the remaining particles of the outside skin are scraped off, and with a stout club the small pieces of shell, coral, and other matter, together with the remaining dead tissue, are pounded out of the skeleton. Finally, water is taken up and squeezed through them a number of times, and after being strung in bunches they are ready for the auction market.

Sheepswool sponges canght on the Key grounds are usually small in size and of weak fiber as compared to those taken in the deeper water of the bay grounds. Inferior sponges can be distinguished readily by the red-brown color of the inner fiber. In some sponges this reddening is found only at the root, but in the most inferior it penetrates well into the body. The best quality sponges are of a grayish hue throughout, although some may show a reddish spot at the point of attachment to the ocean bed. The color itself is one of the least important factors in determining the value of a sponge, however. A fine sponge is determined by the following characteristics: Size and shape, softness, fineness, toughness and durability, resiliency, and absorptiveness.

The fishermen sell their eatch by the bunch-a piece of cord $4 \frac{5}{6}$ feet in length being strung with sponges placed end to end. As far as
practicable, sponges of the same grade and size are bunched together. In order to display them to the best advantage they are dampened and laid out on the sponge wharf, where they may be critically examined by the buyers.

The method of selling is rather unique. The auction is carried on in comparative silence, as the buyers are men of experience and require no advice as to the value of the various lots of sponges. The hour before the sale is spent by the buyers in examining the merchandise and making note of the highest price they will pay per bunch for each of the various lots. During the sale the anctioneer announces the number of bunches in the lot being offered and receives the offer of each bidder written on a small piece of folded paper. The highest bidder is awarded the sponges without argument, providing the owner considers the amount sufficient. No more ceremony enters into a $\$ 5,000$ sale than in one of $\$ 5$. The prices paid for any one variety of sponge may vary considerably according to quality and size. Selecting the extremes, the wide variation of prices is illustrated from the following data collected at Key West on January 21, 1920, during the morning's auction sale:

Sheepswool sponges: One lot of 200 bunches, $\$ 1,427$; one lot of 226 bunches, $\$ 1,587$; one lot of 17 bunches, $\$ 12$; one lot of 5 bunches, $\$ 4$. The best quality brought $\$ 7.13 \frac{1}{2}$ a bunch for a lot of 200 bunches. while the most inferior brought only 70 cents a bunch for a lot of 17 bunches. A feature of the sale, aside from the several lots of fine wool sponges, was the disposal of 9 very large wool sponges for $\$ 48$, or $\$ 5.33$ a sponge. These sponges were truly as " large as a bushel basket" and are now quite rare in the market. The highest price paid for yellow sponges was 96 cents a bunch for a lot of 49 , and the lowest price was 56 cents a bunch for a lot of 48 bunches. The only lot of grass sponges (5 bunches) sold at 48 cents a bunch.

After the dealers purchase the sponges they prepare them for the market by trimming and shaping and by removing the remaining foreign matter which the fishermen did not succeed in beating out. The sponges are packed in burlap bales of $15,30,50$, or 60 pounds net weight, and in each bale is placed but one variety and as a rule but one grade. Sponges that have large crab or coral holes and that are badly torn or otherwise imperfect are cut into smaller shapes known as "cuts." Those that have imperfections but do not require cutting are termed "seconds," while the whole perfect specimens are known as "forms."

The production of sponges on the Florida beds has not kept pace with the great demand, and the result is that the shallower grounds have been greatly depleted and in places completely devastated. This has necessitated fishing in deeper and deeper water and has forced many of the fishermen to resort to different occupations. This condition shows clearly that sponges should be allowed to propagate under natural conditions, and that they should be fully protected by law.

In 1917 the State of Florida enacted a law requiring that the minimum size of commercial sponges taken from State waters should be not less than 5 inches in horizontal diameter. A few years prior to that time the United States Government had enacted a similar law with regard to sponges taken from waters under its jurisdiction. This law if rigidly enforced should prove beneficial to the sponge
industry．The law of Florida prohibits sponge divers from operat－ ing in State waters．However，most of the divers＇boats fish not closer than 9 miles from shore．

Sponges have been grown by artificial culture ${ }^{8}$ but comparatively little has been done in this direction during the past 10 years．

FLORIDA CONCH．

The conch of Key West（Strombus gigas）is a large gastropod that is used to a limited extent as food．It is found in shallow water near the shores of the keys and is easily captured with a sponge hook or by hand．It is also found in the Bahamas and the West Indies．It sometimes attains a length of 1 foot and a weight of 5 pounds．The animal itself，which averages about 1 pound in weight， is incased by a large thick shell．Very often the inner lining of the shell is beautifully tinted with pink，and choice specimens are sold in local novelty shops for 25 or 50 cents each．When sold as food， the flesh of the animal is removed from the shell and for convenience in handling is strung on a small stick．It is peddled about the city at about 5 cents for each conch．During 1918 about 2,000 pounds， worth $\$ 100$ ，were sold in Key West．

The conch requires several hours＇cooking to render it palatable． One person in the city prepares a chowder in concentrated form， which is preserved in glass jars or friction－top cans．In this form small quantities of the preparation are sold by mail．In the West Indies and the Bahamas the most desirable parts of the conch shell are exported to Europe，where they are utilized by cameo cutters． Conchs are plentiful enough to supply the present demand，but the supply could easily be depleted by overfishing．

CLAM INDUSTRY OF SOUTHERN FLORIDA．

What is probably the largest bed of hard clams in the United States is to be found off the sonthwest coast of Florida，in the region of the Ten Thousand Islands．The bed is about 40 miles long and 5 miles wide and is estimated to contain an area of nearly 150 square miles that produces clams．The southern part of this bed is about 70 miles from Key West and can be reached in less than 24 hours with a small sailboat．

The hard clam is of minor importance in the Key West fisheries but of considerable importance on the southwest coast of Florida． The small eatch landed in Key West is due to the lack of demand by the local population rather than to the distance of the clam beds from the city．

Since 1889，at least，Key West boats have made occasional trips for clams during the spring，summer，and fall．The journey is seldom made during the winter because more profit can be made at that time in catching kingfish and spiny lobsters．From 1889 to 1915 the annual catch landed in Key West varied from 10,000 to 25,000 clams． During 1918 eleven trips were made by two fishermen，who operated the only boat engaged in this business．The total catch for the year amounted to 38.000 clams．

[^70]The Florida hard clam (Venus mercenaria mortoni) bears a close resemblance to the New England quahang (V. mercenaria). It is difficult to separate the two varieties when comparing specimens 3 or $3 \frac{1}{2}$ inches in length, but in general the southern clam attains a larger size and has a thicker and heavier shell. It is not unusual to find these clams weighing more than 2 pounds each. About 125 clams of a verage size fill a 5 -peck basket, and as a full basket weighs about 125 pounds the average weight of a clam is 1 pound.

The clams may be divided into three types, although they all belong to one species. There is a thick-lipped type, a thin-lipped type, and an intermediate type. The thick-lipped clams are sometimes known as "bullnose," and are said to be somewhat inferior to the thinner-lipped variety. The shell of the thin-lipped clam is somewhat lighter than that of the "bullnose," but it is heavier than the shell of the northern quahaug. It is probable that the thickness of the shell at the lips is due to some extent to age and retarded growth, but the fact remains that small thick-lipped clams may be found in places where the clams are scattered, and large thin-lipped ones are found where clams of all three types are exceedingly abundant. The relative abundance of each type, judged by the averages obtained from numerous examinations made in various parts of the great clam bed, is as follows: Thick-lipped, 50 per cent; thin-lipped, 30 per cent: and intermediate, 20 per cent. The average size of 50 thicklipped and 50 thin-lipped clams selected at random was $3 \frac{1}{2}$ inches for the former and $3 \frac{1}{3}$ inches for the latter variety. Measurements were taken with calipers, the points of which tonched the hinge ligament and the farthest opposite point. Measured in this way about 95 per cent of the clams, whether dug by hand pickers or dredge, ranged between $2 \frac{1}{2}$ and 5 inches in length.

Dead clamshells are found almost everywhere on the clam beds. In some places they are very abundant, while in others they are occasional. It is said that the clam dredge kills many of the clams, but this is improbable for the following reasons: (a) The dead shells are found over almost the entire bar; (b) the dredge has worked over but a small portion of the clam bar and only in two or three restricted localities; (c) nearly all the shells are unbroken, while many of them would likely be mutilated had the dredge been responsible; (d) the writer dug several hundred clams in a locality where the dredge certainly never had operated and found many dead shells: and (e) sometimes a single valve was lying flat on the bottom and sometimes the two valves were intact and filled with mud but were buried in the same position as when living.

It is but natural that many clams should die where their numbers are vast and when they live in a region almost untonched by man. Like all living things, clams must die at some time of old age, if for no other reason, and this may be responsible for the presence of many dead shells. 'Sudden changes in the salinity of the water may also cause a part of the mortality. Fresh water supplied by the numerous small rivers of the Ten Thousand Islands lowers the density of the water on the clam bar, particularly during the rainy season. This brackish condition of the water is especially suitable for the growth of the clams. During the winter, however, when rains are very infrequent, the density of the water increases until it is equal to that of Key West or other points not affected by fresh water.

FIG. 26.-Hook fisherman searching for sponges, aided by a water glass.

Fig. 27.-Sponge yard at Key West. showing the sponges drying
U. S. B. F.-Doc. 962.

Fig. 28.-This dredge was used for digging clams along the coast of the Ten Thousand Islands, Fla., and until September, 1922, when a second dredge was put in operation, it was the only one of its kind in existence. As pictured, the dredge was stationed at Mareo for repairs.

Fig. 29.-The dock of the Marco clam cannery and freight boat ready to leave for Kev West with a cargo of canned clam products. At Rey West the cases of clams are placed aboard a coast wise steamship for delivery in New York.

It is believed that long periods of high salinity have a deleterious effect on the clams.
Clams are found in varying abundance from Gullivan's Bay to Shark Point. The bed gradually widens from Coon Key to Pavilion Key, and thence continues to Porpoise Point, after which it narrows until Shark Point is reached. Below Shark Point the bottom is mostly of firm sand and is unsuitable for the growth of clams.

The clams are very plentiful over a large part of the bed, and no difficulty is encountered in finding a suitable locality for digging. The areas of greatest abundance occur immediately north to northwest of Pavilion Key, between Seminole and Porpoise Points and directly off Clam Point. There are places where few or no clams are found, and as a rule none are present within a few hundred feet of shore.

The following data will illustrate the general abundance of clams in the areas designated. The terms used can be interpreted as follows: "Scattered," where not more than five clams per square yard are present. "Fairly abundant," "abundant," and "very abundant," where from more than five to many clams per square yard are present.

Coon Key.-Two and one-eighth miles southwest of Pyramid Light; depth, 4 feet, mean low water. Clams abundant. One mile WSW. of Pyramid Light; depth, $4 \frac{1}{2}$ feet. Bottom of rather firm gray mud with scattering shell. No clams found. One-half mile SSE. of Pyramid Light; depth, 5 feet. Bottom of sticky mud with much eelgrass. Clams very abundant. One-third mile S. by E. of Coon Key, within a few hundred feet of Pyramid Light; depth, 4 feet. Bottom of mud and eelgrass. Clams abundant. One and one-fourth miles southeast of Pyramid Light; depth, 6 feet. Bottom of shell and hard mud; eelgrass. Clams fairly abundant. One and one-half miles southeast of Pyramid Light; depth, 7 feet. Bottom of mud and shell: eelgrass. Clams fairly abundant. Two miles southeast of Pyramid Light ; depth, 7 feet. Bottom soft; broken shell. Clams scattered.

Horse Key.-One mile S. by W. $\frac{1}{2}$ W. of Horse Key; depth, 7 feet. Bottom of rather hard mud and broken shell. Clams scattered. One mile W. $\frac{1}{2}$ N. of outer shore of Horse Key. Bottom hard; celgrass. Clams fairly abundant. Directly inshore from the last-mentioned locality and 600 feet from the shore of an unnamed island. Bottom hard mud and shell. No clams. One-half mile W. by N. of Horse Key; depth, 6 feet. Bottom soft mud; eelgrass. Clams scattered. Off Horse Key, close to shore; a reef of coon oysters surrounds this key and is exposed at low tide. Tests for clams were made several hundred feet beyond the reef, but none were found.

Panther Key.-One mile SSW. of Panther Key; depth, 7 feet. Bottom hard mud. Clams widely scattered. One-half mile SSW. of Panther Key; depth, 6 feet. Bottom rather hard; eelgrass. Clams fairly abundant.

Round Key.-Close to the shore of Round Key very few clams were found. Offshore 1 mile clams were abundant.

Tiger Key.-Three-eighths of a mile WSW. of the southeast end of Tiger Key; depth, 5 feet. Bottom hard mud. No clams. Onehalf mile S. by W. $\frac{3}{4}$ W. of the southeast end of Tiger Key; depth, 7 feet. Bottom rather hard mud. Clams fairly abundant.

Indian Tey.-One and one-fourth miles SE. by E. $\frac{1}{2}$ E. of Indian Key; depth, 6 feet. Bottom hard mud. No clams.

Chokoloskee Pass.-One mile WNW. of mouth of pass; depth, 4 feet. Bottom hard. No clams. Mouth of pass; depth, $1 \frac{1}{2}$ to 5 feet. Places were found with hard bottom and without eelgrass where no clams were located. Other places where the bottom was somewhat softer and on which eelgrass was growing contained an abundance of clams.

Rabbit Key.-One and one-fourth miles NW. by W. of Rabbit Key; depth, 6 feet. Bottom hard with light stratum of silt; eelgrass sparse. Clams fairly abundant. One-fourth mile NW. by N. of Rabbit Key; depth, 5 feet. Bottom hard. Clams scattered. One-eighth mile SW. by W. of north end of Rabbit Key; depth, 5 feet. Bottom hard mud and broken shell; eelgrass. Clams abundant.

Pavilion Key.-Two miles northwest of Pavilion Key; depth, $4 \frac{1}{2}$ feet. Bottom varies from hard to rather soft mud; eelgrass. Clams abundant. One and one-half miles NW. by N. of Pavilion Key lies a bar 1 mile long and one-half mile wide which contains clams in great abundance. The depth of water varies from 1 to 3 feet, mean ebb tide, and clams can be dug by hand during low tide. The bottom is of sticky mud and eelgrass, which easily bears the weight of a person. One mile N. $\frac{1}{2} \mathrm{~W}$. of the north end of Pavilion Key. In this general locality the clam dredge has been working for several years. Although thonsands of bushels of clams have been dug, they appear to be abundant still. One-half mile west of the center of Pavilion Key; depth, 5 feet. Bottom hard. No clams. One and one-half miles southeast of Pavilion Key; depth, 5 feet. Bottom hard with light stratum of silt. Clams very scattered. Two miles southeast of Pavilion Key; depth, 7 feet. Bottom hard, with stratum of silt. Clams fairly abundant. Two and onehalf miles southeast of Pavilion Key; depth, 7 feet. Bottom rather hard with stratum of silt; eelgrass. Clams abundant.

Clam Point.-One mile WSW. of Clam Point; depth, 6 feet. Bottom rather hard with stratum of silt; eelgrass. Clams abundant. In and about the shore of Clam Point clams are very abundant. The bottom is of sticky mud and eelgrass. At low tide parts of the bar are almost uncovered and the clams can easily be dug by hand. Here the writer obtained 200 clams in 1 hour with but little effort.

Turkey Key.-One-half mile WNW. of Turkey Key; depth, 5 feet. Bottom sticky mud; eelgrass. Clams abundant.

Seminole Point.-One-half mile southwest of Seminole Point; depth, $5 \frac{1}{2}$ feet. Bottom of firm mud; eelgrass. Clams abundant.

Alligator Point to Porpoise Point.-Clams are very abundant nearly everywhere in this territory. An extremely prolific bar lies about three-fourths of a mile off Alligator Point, and it is here that the Key West boats obtain their clams. A white house, one of the few landmarks to be seen on the long stretch of coast adjoining the clam bar, is located on Porpoise Point, locally known as Wood Key.

Lossmans River.--One mile SW. $\frac{1}{2}$ W. of the mouth of Lossmans River: depth, 2 feet. Bottom of mud, broken shell, and eelgrass. Clams fairly abundant. One and one-half and 2 miles southwest
of the mouth of Lossmans River; depth, 3 to 7 feet. Bottom rather hard mud; small broken shells. Clams widely scattered. Dead clamshells were very plentiful.

Highland Point.-One and one-fourth miles southwest of Highland Point; depth, 6 feet. Bottom sticky mud; eelgrass. Clams abundant.

Rodgers River.-One and one-half miles mest of Rodgers River; depth, $4 \frac{1}{2}$ feet. Bottom sandy mud. Clams abundant. Two miles southwest of Rodgers River; depth, 5 feet. Bottom sandy mud. Clams fairly abundant.

Shark Point.-One mile W. by N. of Shark Point; depth, $5 \frac{1}{2}$ feet. Bottom sticky mud. Clams scattered. Two and one-fourth miles SSW. of Shark Point; depth, 5 feet. Bottom hard sand. No clams.

Along the coast of the Ten Thousand Islands the shore slopes very gradually into the Gulf. At 1 mile offshore the depth varies from 4 to $\overline{7}$ feet at mean low tide, and from there to the 5 -mile line the slope is about 2 feet per mile. Because of this small depth of water the clams can readily be taken over the entire bar. The offshore part of the bed, howerer, has never been worked, for clams are to be found in great abundance near shore where the water is very shallow and protection is afforded from the sea.

The bottom of most of the clam bed is of rather firm gray mud, on top of which is a stratum of silt several inches in depth. Eelgrass thrives in nearly all places where clams are abundant. In most places where this grass is absent few or no clams are present.

Two methods are used in procuring the clams-hand digging and dredging. No tongs are used in this region, for the clams are too abundant and accessible to require such apparatus. Furthermore, the consistency of the soil, which is a sticky mud, would render tonging difficult.

Digging clams by hand was the sole method used before the advent of the dredge. After the dredge came into use hand digging was resorted to from time to time only when the dredge became tempolarily disabled. From 1919 to 1922 considerable hand digging was done owing to frequent breakdowns of the dredge and its inability to supply the two canneries with sufficient clams. During this time from 10 to 15 diggers were employed. They received 40 cents for a 5 -peck basket of clams and could dig, according to the individual, from 10 to 20 such basketsful a day.

Hand digging can be done at all times except, perhaps, when the tide is at its highest point. The diggers keep pace with the tides, working away from shore during the ebb and toward the shore during the flood. To work with any degree of comfort, the maximum depth of the water should not be much greater than an arm's length.

The clams are located by wading about in the water. for which reason this method is sometimes called "treading clams." The clams are so plentiful that a digger can work within a small area for days at a time. When a clam is located with the foot it is removed from the mud with a 2 -tined fork having a 6 -inch handle. Each hand digger is equipped with a small flat-bottom boat, in which the clams are deposited after they are dug. The boat is
pushed along with one hand and affords a means of balance while the operator stoops over to disembed the clams. When a boat becomes loaded, it is poled or pushed to shore, where the clams are cached in shallow water to await the arrival of a " run boat," which brings them to the canneries. During the course of a day a hand digger makes several trips to shore with clams.

Dredging is by far the most efficient method of procuring clams. The dredge used in the Key West region is of a unique type, one that is not used in any other part of the world. The first dredge was operated about 1905, but some years afterwards it was destroyed by fire. Later a new dredge was built and was still in use at the time of this writing. In September, 1922, a second dredge was put in operation to supply the increasing demands of the canneries. After the second dredge began working hand digging ceased entirely, for the two dredges have been able to dig sufficient clams to supply all demands. The new dredge has not been observed by the author, but it is understood that aside from a few improvements it was built on the same general plan as the old one, a description of which follows.

In general appearance the dredge resembles a houseboat. It is about 90 feet long and 20 feet wide and has two stories. Dividing it into thirds, the digger is situated in the middle, the machinery and tool room on one end and storage space for the clams on the other end. The second story is devoted to sleeping quarters and mess room.

The machinery is gasoline driven, a 36 -horsepower engine being used, and heavy chain belts drive the various wheels and gears. The digger itself is a rather powerful machine. It has 10 rows of teeth, each row being separated by a distance of about 2 feet. The teeth are detachable in series of two and are attached by bolts to heavy strap iron, 18 teeth forming a complete row. The ends of the strap iron are attached to the chain belt, which revolves the digger. Each tooth when new is 6 inches long and curved, and a complete series of 18 digs an area about 6 feet in width.

The digging apparatus, which resembles a thick rectangular figure rounded on each end where the cogwheels are located, is set at an angle, allowing one row of teeth to dig at a time. The position of the digger is regulated to the depth of water by two heavy counterweights, which are placed at the extreme end of the dredge. The clams, soil, etc., are carried up by the curred teeth, and on the downward turn they are deposited on a moring wooden escalator or conveyor, which is provided with raised strips of wood at convenient intervals to prevent the clams from rolling back into the water. This escalator is an unique appliance-it might better be called a wooden belt convevor. That part of the conveyor upon which the clams are deposited is under water, so that when the clams reach the pickers they are partially cleansed of mud.

At the top of the wooden conveyor two or more men pick the live clams, which are thrown into baskets. One man is employed to remove the filled baskets and to replace them with empty ones, as the pickers can not move from their positions withont missing some clams, which would be carried over and into the water by the conveyor on its downward turn. When three baskets have been
filled they are placed on a small car and rolled to the end of the dredge, where they are piled up until transferred to the run boat.

From two to four men are required to pick the clams from the conveyor, which moves at a speed of about 1 foot per second. At times a moment will pass when there are no clams, but suddenly a dozen or more will appear in a cluster. The pickers are generally kept continuonsly busy, and they are very skilled in picking out the live clams from the masses of débris and dead shells. The fact that all undesired material is automatically cast back into the water, without the slightest physical effort, is one of the principles that made this type of dredge a success. A full crew consists of a captain, engineer, cook, rope man, four clam pickers, and one man to care for the baskets as they are filled.

The dredge moves slowly while digging, traveling 1,200 feet in about one and one-half hours. This slow movement is accomplished by drawing in on a 1,200-foot cable attached to an 800 -pound anchor. The distance traveled when the full length of the cable has been drawn aboard and the dredge reaches the anchor is termed a "run." With the anchor as a center each run of the dredge compares with the radius of a circle. Upon the completion of a run the cable is released and the dredge drifts back with the wind and the tide, and becanse of their rariation the dredge never digs over the same course twice except possibly near the anchor where all the radii meet. Because of the great abundance of clams it is said that the dredge has been able to dig in one locality for several months at a time without shifting its anchor.

It has been claimed that large mounds of mud are left on both sides of the strip of bottom that is being dug over, but from the mechanism and operation of the machine this would seem very improbable, as the soil is not dumped to one side or the other but is merely worked over and deposited again more or less uniformly. The teeth of the dredge dig an area about 5 inches deep and nearly 6 feet wide. As the teeth strike the bottom, part of the muddy soil passes through the interspaces, while whatever mud adheres to the teeth is partly washed away before it reaches the wooden belt conveyor. The conveyor casts the residue back into the water, breaking it up still further before it reaches the bottom, and much of the mud settles back evenly on the bottom from which it was taken. For this reason it is not believed that clams or other animals are smothered by becoming buried beneath a heary layer of soil and débris.

The majority of the clams dug by the dredge are from $2 \frac{1}{2}$ to 5 inches in size, measured from the hinge ligament to the farthest opposite point. Very few small clams are dug, but it is possible that they pass between the teeth of the dredge or are otherwise lost before reaching the woolen conveyor. About 3 per cent of the clams are broken by the digger, and are discarded as they would be decomposed by the time they reach the canneries.

The dredge digs from 80 to 120 five-peck baskets of clams on one run, and from 350 to 450 baskets during a day. As there are now (1023) two dredges in operation, this quantity of clams is utilized by each of the two canneries every worining day. During 1922 the one dredge in operation worked about 300 days, digging continuonsly throughout the year except during part of August and September. which is known as the "gale season."

During 1918 the dredge dug about 28,000 baskets of clams (35,000 bushels). In 1919 it dug 34,439 baskets (43,049 bushels) and hand pickers dug 4,000 baskets (5,000 bushels), making a total of 48.049 bushels for this region. In 1922 one dredge dng 112,500 baskets (140.625 bushels) ; the new dredge dug about 22.000 baskets (27.500 bushels) during October, November, and December, and hand pickers secured about 30.000 baskets (37,500 bushels) during the year. This total of 205,625 bushels is by far the greatest number of clams ever taken from the waters of Florida in one year.

With the exception of the few brought to Key West, all the clams dug in this region are utilized by two canneries, one of which is located at Marco and the other at Caxambas, Lee County. The Marco cannery has an annual capacity of 100,000 cases of clam preparations, but the Caxambas factory is somewhat smaller. The Marco factory canned to its full capacity during 1922 and has continued to pack 2,000 cases a week up until the time of this writing (August, 1923). The following preparations are canned:
"Little-neck" clams.-These clams are not as small as the littleneck variety of the North but they usually measure less than $3 \frac{1}{4}$ inches from hinge ligament to the farthest opposite point. They are packed in No. 1 cans, 2 and 4 dozens to the case, and in No. 2 cans, 2 dozens to the case.
"Steamed" clams.-These are the larger clams, measuring $3 \frac{1}{4}$ inches or more, and they are packed in No. 1 and 2 cans, 2 dozens to the case.

Minced clams.-These are the larger clams that have been chopped up for use in preparing chowder, soups, fritters, etc. Minced clams are packed like " little necks."

Clam chowder.-Minced clams enter into the preparation of clam chowder. Most of the vegetables used in making the chowder are obtained from New York via Key West. Even the potatoes used are shipped from the North. as it is said that the Florida potatoes fall to pieces and do not hold their shape when diced and cooked.

Clam juice, plain.-This is the pure liquor of the clam, and it is packed in No. 1 cans, 2 and 4 dozens to the case, and in No. 2 cans, 2 dozens to the case. It is also packed in glass bottles, 1 dozen to the case.

Clam juice, concentrated.-Packed the same as clam juice plain.
The Marco clam cannery commenced operation in 1909, but was replaced by a more modern structure in 1919. The new building is constructed of corrugated galvanized iron with a cement floor. Within the building has been built a large concrete cistern to hold rainwater, which is obtained from the broad expanse of the roof. Thus far attempts to locate an adequate and dependable supply of good fresh water have met with failure. Considerable water is needed to prepare the varions clam products, making the conservation of the supply furnished by the heary rains during the summer of great importance for the successful operation of the cannery.

The cannery has been equipped with the most modern and efficient machinery peculiar to its needs. The general routing of operations embraces a good example of straight-line production, as the raw material is received at one dock and in the course of preparation passes through the building in an undeviating line and is delivered at another dock in the form of the finished product. packed
and ready for shipment. The various methods of procedure will be briefly described.

When the clams are received aboard the run boat from the dredge they are deposited in a heap on deck, and the baskets are retained by the dredge. The run boat generally starts on the homeward journey about midnight, arriving in the vicinity of Marco about daybreak, and delivery is made early in the morning. A reserve supply of clams is rarely kept on hand, and the cannery, therefore, depends upon a fresh supply from day to day.

The population of Marco in 1919 was about 150 persons, and aside from a small amount of fishing and hunting the cannery furnished the only means of support to the inhabitants. Because of weather conditions and an occasional breakdown of the dredge it is never certain on which days work will be available, and for this reason as soon as a load of clams is sighted from the village the factory whisthe is blown to notify the people that they should come to work.

When the run boat arrives at the receiving dock, the clams are unloaded as quickly as possible. This is accomplished with very little labor by an endless-chain bucket conveyor. The clams are shoveled into a short, heavy, iron chute, which reaches the deck of the boat and is adjustable to the stage of the tide. The clams are gathered up by elongate V-shaped iron buckets and are carried overhead, about 10 feet above the dock, where they are deposited in a large wire-meshed cylinder set at an incline. The cylinder revolves in a tank of water and finally carries the cleansed clams to a chute that empties into iron cars similar to those used in oyster canneries. The dock is corered with a series of tracks and is equipped with a turntable that makes it possible to turn the cars at right angles when necessary.

Three cars at a time, loaded with clams, are pushed into the interior of the cannery and placed inside a large iron cylinder. The cylinder is then sealed by a massive iron door fitted with heavy lugs, after which the steam is turned on in order to kill the clams. The clams die quickly and the shells open and lose their liquid contents, which collects at the bottom of the long cylinder and is carried a way by an underground porcelain-lined pipe, emptying into a large gal-vanized-iron tank set below the floor's level in another room. The liquid is collected from this tank for use in the various products.

After the clams are killed the cars containing them are rolled out of the cylinder. The meats are then removed from the shells, put into buckets, and dumped into a large spray and mashing machine, which is used to thoroughly cleanse them of grit. The washer consists of a large cylinder built of heavy mesh galvanized wire, which revolves in a tank of water, and it also has a spiral track that gradually carries the clams to the exit. Upon leaving the washer the clams are deposited through a short chute upon a wide rubber belt conveyor. which looks like a table with a moving top. Four operators on each side of the conveyor sort the clams. Some of them pick out the small white clams while others select the large dark ones. The sorted clams are thrust into a short offset spout, placed beside each operator, through which they are deposited in buckets beneath. Since the clams are used for different preparations, as already explained, sorting is necessary.

Next to the sorting table lies the clam mincer, which is a large food chopper operated by electricity. The large dark clams, used for chowder and canned minced clams, are minced in this machine. The potato peeler is situated next. After peeling, the potatoes are diced by hand as are the other vegetables. Onions and seasoning are also prepared by hand.

The various cookers, retorts, filling machines, capping machines, etc., are similar to those used in any modern vegetable or fruit cannery. The chowder is cooked in a 400 -gallon glass-lined iron cooking pot and is kept stirred by a glazed propeller that reaches nearly to the bottom of the pot. The canned whole clams are cooked in six large steam retorts, each of which has a capacity of 900 No. 2 cans. After the canned product has been cooled in a tank of water the cans are labeled, packed in boxes, and brought to the opposite end of the building for shipment. The cases of clam products leave the cannery on a ball-bearing declined roller track which delivers them to a freight boat to be carried to Key West for shipment via coastwise steamship.

The State of Florida levies various taxes on the catching and preparing of clams. Besides a tax of 2 cents per barrel on all clams removed from the waters of the State, taxes are payable each year on runboats, dredges, process kettles, etc. The shellfish laws are published in booklet form, and are obtainable from the shellfish commissioner, at Tallahassee, Fla.

The clam resources of southern Florida can bear considerably more fishing. The chief drawbacks at the present time to the further utilization of the product and the expansion of the industry are the inaccessibility of the beds to transportation lines and their remoteness from northern markets.

In the Northeastern States the quahaug has been gradually declining in abundance and rising in value. Along our North Atlantic coast the small clam beds have been far from adequate to keep pace with the ever-increasing demands for this popular mollusk in the fresh state. The large clam beds of the Ten Thousand Islands, Fla., however, are practically virgin and await development.

BIBLIOGRAPHY. ${ }^{\circ}$

FISHES AND FISIIERIES.

Adams, A. C., and William Converse Kendalf.
1891. Report upon an investigation of the fishing grounds off the west coast of Florida. Bulletin, U. S. Fish Commission, Vol. IX, 1859 (1891), pp. 289-312. Washington.

Barbour, Thomas.
1905. Notes on Bermudian fishes. liulletin, Museum of Comparative Zoology, Vol. XLVI, No. 7, pp. 107-134, 4 pls. Cambridge.
Bigelow, Henry B., and Willeam W. Welsh.
1924. Fishes of the Gulf of Maine. Bulletin, U. S. Bureau of Fisheries, Vol. NL, 1924, Part I. Washington. [In press.]
Brice, John J.
1898. The fish and fisheries of the coastal waters of Florida. Report. U. S. Commissioner of Fish and Fisheries, 1896 (1898), pp. 20i3342 . Washington.

[^71]Cobb, John N.
1898. Possibilities for an increased development of Florida's fishery resources. Bulletin, U. S. Fish Commission, Vol. XYif, 1897 (1898), pp. 349-351. Washington.
Collins, J. W.
1887. Report on the discovery and investigation of fishing grounds, made by the Fish Commission steamer Albatross during a cruise along the Atlantic coast and in the Gulf of Mexico; with notes on the Gulf fisheries. IReport, U. S. Commissioner of Fish and Fisheries, 1855 (1887), pp. 217-311, Pls. I-X. Washington.
-18S7a. Notes on the red-snapper fishery. Bulletin, U. S. Fish Commission, Vol. VI, 1886 (1887), pp. 299-300. Washington.
Detwiler, John Y.
1898. Notes on the fishing industry of eastern Florida. Bulletin, U. S. Fish Commission, Vol. XVII, 1897 (1898), pp. 309-312. Washington.
Diaz. Juan Vilaró.
1893. Algo sobre peces de Cuba con cierta extension a los de Puerto Rico y los Estados Unidos. 176 pp. Habana.
Earll, R. Edward.
1883. The Spanish mackerel, Cybium maculatum (Mitch.) ; its natural history and artificial propagation, with an account of the origin and derelopment of the fishery. Keport, L. S. Commissioner of Fish and Fisheries, 1880 (1883), pp. 395-426, Pls. I-III. Washington.
1887. Eastern Florida and its fisheries. In The Fisheries and Fishery Industries of the United States, by George Brown Goode and associates, Sec. II, Pt. XIV, pp. 519-531. Washington.
1887a. The Spanish-mackerel fishery. Ibid., Sec. V, Vol. I, Pt. VIII, $\mathrm{pp} .545-552$. Washington.
1887b. The mullet fishery. Ibid., Sec. V, Vol. I, Pt. IX, pp. 553-582. Washington.
Eigevmant, Carl H.
1890. The barracuda and the fishery for it. In Report on the fisheries of the Pacific coast of the United States, by J. W. Collins. Report, U. S. Commissioner of Fish and Fisheries, 1888 (1892), 1pp. 26-27. Washington.
Evermann, Barton Warren.
1898. The fish fauna of Florida. Bulletin, U. S. Fish Commission, Vol. XVII, 1897 (1898), pp. 201-208. Washington.
Evermann, Barton Warren, and William Converse Kendall.
1900. Check list of the fishes of Florida. Report, U. S. Commissioner of Fish and Fisheries, 1899 (1900), pp. 35-103. Washington.
Evermann, Barton Warren, and Millard Caleb Marsf.
1902. The fishes of Porto Rico. Bulletin, U. S. Fish Commission, Vol. XX. I't. 1, 1900 (1902) , pp. 49-350, 52 pls., 112 text figs. Washington.
Evermany, Barton W., and Barton A. Bean.
1898. The fisheries of Indian River, Fla. Report, U. S. Commissioner of Fish and Fisheries, 1896 (1898), pp. 223-262, pls. 23-59. Washington.
Goode, George Brown.
1877. Provisional catalogue of the fishes of Bermuda. 8 pp . Hamilton, Bermuda.
1882. The carangoid fishes of the United States-pompanoes. crevalles, amber fish, etc. Bulletin, U. S. Fish Commission, Vol. I, 1881 (1882), pp. 30-43. Washington.
1884. The food fishes of the United States. In The Fisheries and Fishery Industries of the United States, by George Brown Grode and associates, Sec. I, Pt. III. pp. 163-682. Washington.
Goode. George Brown, and Tarleton H. Bean.
1884. Notes on some Florida fishes. Proceedings, U. S. National Museum, Vol. VII, 1884 (1885), pp. 42-47. Washington.
Hargreaves. T. Sidney.
1904. The fishes of British Guiana. [An account of the food fishes.] 36 pp., illus. The Argosy Co. (Ltil.). Demerara.

Henshall, James A.
1891. Report upon a collection of fishes made in southern Florida during 1889. Bulletin, U. S. Fish Commission, Vol. IX, 1889 (1891), pp. 371-389. Washington.
1895. Notes on fislies collected in Florida in 1892. Bulletin, U. S. Fish Commission, Vol. XIV, 1894 (1895), pp. 200-221. W:ishington.
1898. A plea for the development and protection of Florida fish and fisheries. Bulletin, U. S. Fish Commission, Vol, XVII, 1897 (1898), pp. $253-255$. Washington.

Jordan, David Starr.
1880. Notes on a collection of fish from east Florida. Proceedings, U. S. National Mustum, Vol. III, 1880 (1881), pp. 17-21. Washington.
1884. The fishes of the Florida keys. Bulletin, U. S. Fish Commission. Vol. IV, 1884, pp. 77-80. Washington.
1884a. List of fishes collected at Key West, Fla., with notes and descriptions. Proceedings, U. S. National Museum, Vol. VII, 1884 (1885), pp. 103-150. Washington.
Jordin, David Stark, and Babton W. Evermann.
1896-1900. Fishes of North and Middle America. Bulletin, U. S. National Museum, No. 47, Pts. I-IV, 1896-1900, 3313 pp., 392 pls. Washington.
Jordan, David Starr, and Charles H. Gilbert.
1885. A review of the species of the genus Calamus. Proceedings, U. S. National Museum, Vol. V II, 1884 (1885), pp. 14-24. Washington.
Jordan, David Stalir, and Joserf Swhin.
1885. A review of the species of the genus Hæmulon. Proceedings, U. S. National Museum, Vol. VII, 1884 (1885), pp. 281-317. Washington.
1885a. A review of the American species of Epinephelus and related genera. Ibid., pp. 358-410. Washington.
1885b. A review of the species of Lutjaninse and Hoplopagrina found in American waters. Ibid., pp. $427-474$. Washington.
Jordan, Dayid Starr, and Joseph C. Thompson.
1905. The fish fanna of the Tortugas Archipelago. Bulletin, U. S. Bureau of Fisheries, Vol. XXIV, 1904 (1905), pp. 229-256, 6 figs. Washington.
La Gorce, John Oliver.
1921. Treasure house of the Gulf Stream. The National Geographic Magazine, Vol. NXXIX, No. 1, January, 1921, pp. 53-68. Washington.
Meek, Alexander.
1916. The migrations of fish. 427 pp., 128 diagrams and mans. London. Meek, Seth E., and Samuel F. Hildebrand.
1924. The marine fishes of Panama. Field Museum of Natural History, Zoological Series, Vol. XV. Parts I, II, and III. Chicago. [Parts II and III in press.]
Moore, Henry Frinis.
1919. Groupers: Fishes you should try, with recipes for cooking them, by Erelyn Spencer. U. S. Bureau of Fisheries Economic Circular No. 44. 8 pp., 1 text fig. Washington.
Mowbray, Loutis L.
1922. Certain citizens of the warm sea. The National Geographic Magazine, Vol. XLI, No. 1, January, 1922, pp. 27-62, 16 pls., 18 figs. Washington.
Musgrate, Anthony, Jr.
1881. Fishes and fishing [in Jamaica], to which is added "The fishes of Jamaica," by the late Richard Hill. Extracted from the Handbook of Jamaica for 1881. Pp. 121-137. Kingston, Jamaica.
Nichols, John Treabwell.
1912. Notes on Cuban fishes. Bulletin, American Museum of Natural History, Vol. XXXI, Art. XVIII, pp. 179-194. New York.
1921. Interesting citizens of the Gulf Stream. The National Gengraphic Magazine, Vol. XXXIX, No. 1, January, 1921, pp. 69-84, 8 pls., 11 figs. Washington.
Phillips, Barnet.
1884. Some notes on the mullet fisheries. Bulletin, U. S. Fish Commission, Vol. IV. 1884, pp. 135-137. W'ashington.

Pierce, H. D.
1SSt. Notes on the bluefish, mortality of Florida fishes, etc. Pulletin, U. S. Fish Commission, Vol. IV, 1SSt, pp. 263-266. Washington.

Poey, Felipe.
185:3. List of food fishes brought from Kes West. Fla. into the markets of Habina. Bulletin, U. S. Fish Commission, Vol. II, 1S82 (1883), p. 11S. Washington.

Iiegan, C. Thte.
1920. Report on the fishes of the Colonies Colonial Reports-Ariscellaneous, No. $92,15 \mathrm{pp}$. London.
Smith, Hégh McCormite.
1907. The fishes of North Carolina. North Carolina Ceological and Economic Surves, Vol. II, 1907, 453 川p., 21 pls., 188 figs. Raleigh.
Stearis. Silas.
18st. Some of the fisheries of western Florida. Bulletin, U. S. Fish Commission. Vol. VT, 1886 (1887), pp. 465-467. Washington.
1SSTa. The fisheries of the Gulf of Mexico. In The Fisheries and Fishery Industries of the United States, by George Brown Goode and associates. Sec. II, I't. XV [Western morida]. pp. 533--i68. Washington.
1SS7b. The red-snapper fishery and the Habana market fishery of Key West, Florida. Ibid., Sec. V. Vol. I, Pt. X, 11. 5se-jå. Washington.
Widren, Andrew F.
1S3S. The red-snapper fisheries: Their past, present, and future. Bulletin, U. S. Fish Commission, Vol. XVII, 1897 (1898), pp. 831-33\%. Washington.
Wilcox, William A.
1900. Notes on the foreign fishery trade and local fisheries of Porto Rico. Report. U. S. Commissioner of Fish and Fisheries. 1899 (1900), pp. 1-34, pls. 1-6. Washington.
1904. The fisheries and fish trade of Porto Rico in 1902. Report, U. S. Commissioner of Fish and Fisheries, 1902 (1904), pp. 367-395. Washington.

TURTLES.

Ditmars, Rayagond Lee.
1907. The reptile book. 472 pp., illus. [The sea turtles, pp. 4-10]. New York.
1910. Reptiles of the world. 373 pp., illus. [Sea Turtles, pp. 43-19]. New York.
Ménroe, Ralph M.
1898. The green turtle and the possibilities of its protection and consequent increase on the Florida coast. Bulletin, U. S. Fish Commission, Vol. XVVII, 1897 (1898), pp. 273-274. Washington.
Trescler, Doxald K.
1923. Marine prortucts of commerce. Chapter 32, Marine turtles and terrapins. M. $596-606$. New York.
Trte. Frederick William.
18St. The useful aquatic reptiles and batrachians of the Enited States. In The Fisheries and Fishery Industries of the United States, by George Brown Goode and associates, Sec. I, Pt. II. (Tortoises, turtles, and terrapins, pl. 147-158.) Washington.
1887. The turtle and terrapin fisheries. Ibid., Sec. V, Vol. II, pp. 493503. Washington.

CRUSTACEANS.

Crawford, Donald R., and W. J. J. De, Smidt.
1922. The spiny lobster (Pauulirus argus) of southern Florida: Its natural history and utilization. Fulletin, U. S. Eureau of Fisheries, Vol. XXXVIII, 1921-22 (1923), pi, 281-310, 14 figs. Washington.

Iidthbun, Richard.
1884. Crustaceans, worms, radiates, and sponges. In The Fisheries and Fishery Industries of the United States, by George Brown Goode and associates, Sec. I, Pt. V. (The stone crab (Menippe mercenarius (ibbbes), pp. 772-774.) Washington.
188\%. The crab, lolister, crayfish, rock lobster, shrimp, and prawn fisheries. In The Fisheries and Fishery Industries of the United States, by George Brown Goode and associates, Sec. V, Vol. II, Pt. XXI. (The stone crab, pp. 650-651.) Washington.
1887a. Ibid. (The rock-hohster [spiny lobster] fishery of California, pp. 798-799.) Washington.
Smith, Hegh McCormick.
1895. Notes on a reconnaissance of the fisheries of the Pacific coast of the United States in 1894. Bulletin. U. S. Fish Commission, Vol. XIV. 1894 (1805). (The spiny lohster or crawfish (Panulirus interruptus), pp. 280-281.) Washington.
Thessler, Dovald K.
1923. Marine products of commerce. (American spiny lobster fishery, pp. 593-594.) New York.

SPONGES.

Cobb, John N.
1904. The sponge fishery of Florida in 1900. Report, U. S. Commissioner of Fish and Fisheries, 1902 (1904), pp. 161-175, pls. 6-9. Washington.
Cotte, Jules.
1910. Sponge culture. Bulletin, U. S. Burean of Fisheries, Vol. XXVIII, Pt. I, 1908 (1910), pp. 587-614. Washington.
Flegel, Charles.
1910. The abuse of the scaphander in the sponge fisheries. Bulletin, U. S. Bureau of Fisheries, Vol. XXVIII, Pt. I, 1908 (1910), pp. 513-543. Washington.
Moore, Henry Frink.
1910. The commercial sponges and the sponge fisheries. Bulletin, U. S. Bureau of Fisheries. Vol. XXVIII. Pt. I. 1908 (1910), pp, 399-511, Pls. XXVIII-LXVI, 4 text figs. Washington.
1910a. A practical method of sponge culture. Ibid., pp. 545-585, Pls. LXVII-LXXVI, 7 text figs. Washington.
1923. Commercial sponges. In Marine products of commerce, by Donald K. Tressler and collaborators, chapter 36, pp. 668-691. New York.

Munroe, Ralph M.
1896. Acconnt of sponge-cultural experiments in Biscayne Bay. Keport. U. S. Commissioner of Fisi and Fisheries, 1895 (1896), pu. 187188. Washington.

Rathbun, Richard.
1884. Crustaceans, worms, radiates, and sponges. In The Fisheries and Fishery Industries of the United States, by George Brown Goode and associates, Sec. I, It. V. (The sponges, pp. 843-850.) Washington.
1887. The sponge fishery and trade. Ibid.. Sec. V, Vol. II, pp. 819-841. Washington.
Rege, J. G.
18S9. The sponge fisheries of Florida. Bulletin. U. S. Fish Commission. Vol. VII, 1887 (1889), 2p. 22-24. Washington.
SMITH, HuGH MCCORMICE.
1898. The Florida commercial sponges. Bulletin, U. S. Fish Commission, Vol. XVII, 1897 (1898), pp. 225-240. pls. 12-31. W'ashington.
1901. Notes on the Florida sponge fishery in 1899 . Bulletin. U. S. Fish Commission, Vol. XIX, 1899 (1901), pp. 149-151. Washington.
U. S. Commissinner of Fisheries.
1902. [Sponge-planting experiments.] Report, U. S. Commissioner of Fish and Fisheries, 1901 (1902), pp. 122-123. Washington.
1904. Ibid., 1902 (1904), pp. 125-127.
1905. Ibid., 1903 (1905), np. 80-8S.
1907. [Experiments in sponge coulture.] Report, U. S. Commissioner of Fish and Fisheries, 1905 (1907), 1. 22. Washington.
U. s. Commissioner of Fisileries-Continued.

190s. Ibid., 1906 (1908), p. 13.
1909. [Experiments in sponge culture.] Report, U. S. Bureau of Fisheries, 1907 (1909), pp. 11-12. Washington.
1910. Ilid., 19018 (1910), p. 10.
1911. Ibid., 1909 (1911), pp. 14-15.

1911a. Iluid., 1910 (1911), p. 17.
1911b. [The Florida sponge law.] Ibid., 1910 (1911), pp. 37-3S.
1913. Ibid., 1911 (1913), p. 52.
1914. Kid., 1913 (1914), pp. 6S-69.

Wilson, Henhy V.
1898. On the feasibility of raising sponges from the egg. Bulletin, U. S. Fish Commission, Vol. XVII, 1897 (1898), pp. 241-245. Washington.

CLAMS.

Belding. David L.
1909. A report upon the molluse fisheries of Massachusetts. 243 pp ., pls., charts. Boston.
Ingersoll, Erxest.
18S7. The orster, scallop, clam, mussel; and abalone industries. In The Fisheries and Fishery Industries of the United States, by George Brown Goode and associates, Sec. V, Vol. II, Pt. XX. (The clam fisheries, pp. 581-615.) Washington.
Kellogg, James Lawrence.
1901. The clam problem and clam culture. Bulletin. U. S. Fish Comurissiom, Vol. XIX, 1899 (1901), pp. 39-44, 1 pl . Washington.
1910. Shell-fish industries. 361 pp. (The hard clam, pp. 321-332.) New York.
Krause. A. K.
1903. Preliminary report on the habits and life-history of the quahaug (Tenus mercenaria). Twenty-third Annual Report, Rhode Island Commissioners of Inland Fisheries, January Session, 1903, pp. 50-54. fig. 19. Providence.
Moore, Henry Frank.
1898. Notes on clam culture. In A Manual of Fish-Culture, by John J. Brice. Report. U. S. Commissioner of Fish and Fisheries, 1897 (1898) , pp. 339-340. Washington.

Schroeder. Williain C.
1920. Clam resources of the Ten Thousand Islands, Fla. U. S. Bureau of Fisheries Economic Circular No. 46. 5 pp. Washington.
Tressler, Dosald K.
1923. Marine products of commerce. Chapter 28 , The clam industry of the Cnited States, pp. 532-547. New York.

STATISTICAL REPORTS.

Alexamder, A. B.
1905. Statistics of the fisheries of the South Atlantic States, 1002. Report. U. S. Commissioner of Fish and Fisheries, 1903 (1905), pp. 343-410. Washington.
1905a. Statistics of the fisheries of the Gulf States, 1902. Ibid.. pp. 411-481. 1905h. Report on statistics and methods of the fisheries. Report, U. S. Bureau of Fisheries, 1904 (1905), pp. 121-162. Washington.
Brice. Joha J.
1898. The fish and fisheries of the coastal waters of Florida. Report, U. S. Commissioner of Fish and Fisheries, 1896 (1898), pp. 263-342. Washington.
Colitiss. J. W.
1892. Statistical review of the coast fisheries of the United States. Report. U. S. Commissioner of Fish and Fisheries, 18SS (1892). (Florida, pp. 3f1-3f4.) Washington.
Collises. J. W.. and Hugh M. Smith.
1803. A statistical report on the fisheries of the Gulf States. Buhletin U. S. Fish Commission, Vol. XI, 1891 (1893), pp. 93-184. Was'. ington.

Radriffie．Letris．
1921．Fishery industries of the Cnited States．Peport of the division of statistics and methods of the fisheries．for 1919．Appendix \mathbf{X} ． Report．L．Š．Commissioner of Fisheries． 1919 （1921）．（Fisheries of the Gulf States in 191S．pp．129－191．）Washington．
1922．Fishery industries of the Enited States．Report of the division of statistics and methods of the fisheries，for 1920．Appendir V ． Report．C．S．Cummissioner of Fisheries． 1921 （1922）．（Fisheries of the south Atlantic states in 1918．pp．20－120．1 Wiashington．
ミ．．ITH．HTGH M．
1593．Renort on the fisheries of the South Atlantic States．Bulletin．U．S． Fish Commission．Vol．NI， 1891 （1893），pp．271－35f．Pls．NLIII－ LKXIV．Washington．
Towrsexid．C．H．
160．Statistics of the fisheries of the Gulf States．Report．L．S．Com－ missioner of Fish aud Fisheries． 1899 （1900），pp．105－169．Wash－ ington．
1000a．Statistirs of the fisheries of the South Atlantic States．Ibid．，pp． 171－2゙った。

FLORIDA STATE REPORTS．

1599．Report of the Fish Commission of the State of Florida．for 1898. $\overline{\mathrm{p}} \mathrm{p}$ ．Tallahassee．
1901．Rerwrt of the Fish Commission of the State of Florida，for 1 San－ 1grof．S pp．Tallahasset．
1903．Report of the Fish Commission of the State of Florida，for 1901－2． 16 pp ．Tallahassee．
1905．Report of the Fish Commission of the State of Florida，for 1903－1． 12 pn．Tallahassee．
1915．First Biennial Report of the Shellfish Dirision of the Department of Agriculture of the State of Florida．for the years 1913 and 1914． 69 pp．Tallahassee．
1917．Second Biennial Report．Shellfish Dirision of the Department of Agriculture of the State of Florida．for the years 1915 and 1916. \＆ 5 pp．Tallahassee．
1919．Third Biennial Report of the Florida Shellfish Commission．Years 1917－1515．109 ए上．Tallahassee．
1922．Fourth Biennial Iieport of the Shellfish Commission．Years 1919－ 1920． 39 pp. Tallahassee．
1923．Fifth Biennial Report of the Shellfish Division of the Department of Aericulture of the State of Florida，for the sears 1921－1922． s．pp．Tallahassee．

GENEPAL．
Tbescler．Dosild K．
152．Marine products of commerce． 7 fi2 pp．， 257 figs．New York．

PROPAGATION AND DISTRIBUTION OF FOOD FISHES, FISCAL YEAR $1923 .{ }^{1}$

By Glen C. Leach. Assistant in Charge. Dirixion of Fish Culture.

CONTENTS.

INTRODUCTION. Page.
Fishes of interior waters 3
Commercial fish culture 4
Cooperation with States, other Federal agencies, and foreign govern- Sentiment in faror of fish protection 5
ments 〒
PART I.-FISH PRODUCTION: PROPAGATION AND RESCUE WORK.
Tabular summaries of operations s
Species of fishes handled S
Output 9
Egg collections 10
Fish-rescue work 11
Stations and substations and output of each 13
Egg-collecting or auxiliars stations 15
Fish food used at hatcheries 20
Hatcherr fish-cultural notes 21
Method of preparing food for roung salmon 21
Test of copper sulphate for eradication of fungus 22
Parasitic affection in whitefish jars 2
Hatching esgs in gravel 23
Commercial fishes 23
Pacific salmons 2
Afognak (Alaska) station 24
Yes Bay (Alaska) station 25
Baker Lake (Tash.) station and substations 26
Baker Lake (Wash.) station 26
Birdsriew (Wash.) substation 27
Brinnon (Wash.) substation 28
Duckabush (Wash.) substation 28
Quilcene (Tash.) substation 29
Sultan (Wash.) substation 29
Quinault (Wash.) station 29
Clackamas (ores.) station and substations 2
Clackamas (Oreg.) station 34
Cpper Clackamas (Ores.) substation 34
Little White Salmon (Wash.) sabstation 34
Bic White Salmon (Wash.) substation 35
Rogue Rirer (Oreg.) substation 35
Applegate Creek (Oreg.) substation 35
Sandy River (Oreg.) substation 36
Washougal Rirer (Wash.) substation 3 n
Salmon (Idaho) substation 37

[^72]Commercial fishes-Continued.
Pacific salmons-Continued. Page.
Baird (Calif.) station and substations 37
Baird (Calif.) station 38
Battle Creek (Calif.) substation 39
Mill Creek (Calif.) substation 39
Great Lakes fishes 39
Duluth (Minn.) station 40
Northville (Mich.) station and substations 41
Northville (Mich.) station 41
Charlevoix (Mich.) substation 41
Alpena (Mich.) substation 42
Put in Bay (Ohio) station $4: 3$
Cape Vincent (N. Y.) station 4.5
Bryans Point (MId.) substation 46
Buffalofish 47
Atchafalaya (La.) substation 47
Marine fishes 47
Boothbay Harbor (Me.) station 48
Gloucester (Mass.) station 49
Woods Hole (Mass.) station 51
Anadromous fishes of the Atlantic coast 53
Shad 53
Bryans Point (Md.) substation $5: 3$
Shad and river herrings 53
Edenton (N. C.) station 53
Striped hass 54
Weldon (N. C.) substation 54
Atlantic salmon 55
Craig Brook (Me.) station 5.
Rescue of stranded food fishes 55
Mussel infection in conjunction with the rescue of landlocked fishes 57
Fishes of minor interior waters 57
Rocky Mountain trout stations 5.8
Bozeman (Mont.) station and substations 58
Bozeman (Mont.) station 58
Meadow Creek (Mont.) substation 59
Glacier National Park (Mont.) substation 60
Leadville (Colo.) station 60
Yellowstone National Park (Wyo.) substation 61
Saratoga (Wyo.) station and substation 62
Spearfish (S. Dak.) station 63
Springville (Utah) station 4;
New England tront and salmon stations 66
Berkshire (Mass.) station 19
Craig Brook (Me.) station and substations 68
Green Lake (Me.) substation (s)
Grand Lake Stream (Me.) substation 69
St. Johnsbury (Vt.) station and substations 70
St. Johnsbury (Vt.) station 70
Holden (Vt.) substation 70
York Pond (N. H.) substation 71
Nashua (N. H.) station 72
Combination trout and pond stations 73
Erwin (Temn.) station 73
Manchester (Iowa) station 74
Nensho (Mo.) station and substations 75
Roaring River (Mo.) smbstation 77
Bourbon (Mo.) substation 77
Greer Springs (Mo.) substation 78
Langdon (Kans.) substation 78
White Sulphur Springs (W. Va.) station 79
Wytheville (Va.) station 80
Fishes of minor interior waters-Contimmed. Page.
Pond fisli-cultural stations S2
Cold Springs (Ga.) station and substations 82
Harris Ponds (Ga.) substation S4
Edenton (N. C.) station 84
Louisrille (Ky.) station and substation 84
Cairo (Ill.) substation 85
Mammoth Spring (Ark.) station 85
Orangeburg (S. C.) station 87
San Marcos (Tex.) station SS
Tupelo (Miss.) station and substation S9
Friars Point (Miss.) substation 90
Central station and aquarium, Washington, D. C_ 90
PART 2.-DISTRIBUTION OF FISH AND FISH EGGS.
Brief review of the work $\Omega 1$
Summaries of distribution 92
Distribution to all applicants 92
Assignments of fish and fish eggs to State and Territorial fish com- missions 95
Methods of distribution 96
Distribution of fishes of interior waters 97
Car No. 3 97
Car No. 4 98
Car No. 7 99
Car No. S 100
Car No. 9 101
New equipment for use in shipping live fish 101
Electric air compressor 101
"Question mark" aerator 103
Jet aerator 103
Aquarium cleaner 104
cost of distribution 104

INTRODUCTION.

During the fiscal year ended June 30. 1923. the burean's fish-cultural activities were confined necessarily to certain well-established fields, it being impossible to extend the work into new territory because funds were not available for the purpose. Unless increased appropriations are allowed for the propagation and distribution of food fishes, the work of the division can hardly be enlarged beyond its present limits, and prospects at this time point to a gradually declining output. Up to the present time the pre-war record of the bureau has been more than maintained without any increase in the funds applied to the work. However, this high standard of efficiency can not be continued indefinitely in the face of an increase in the cost of all materials and labor entering into the work. the prices of practically everything used in connection therewith being approximately $6 \overline{6}$ per cent higher than in 1917.

FISHES OF INTERIOR WATERS.

The demand for fish for stocking interior waters of the country increases at the rate of about 10 per cent a year. The value of these interior fisheries can hardly be orerestimated. They add millions of pounds annually to the Nation's food supply, and in many locali-
ties constitute the only source of fresh fish supply available. They make possible the extension of the fisheries and the establishment of fishing in many formerly unproductive waters. They afford a splendid means of recreation to millions of people, bringing them into contact with the great outdoors.

The increasing use of the automobile and the fact that almost every automobile tourist is a fisherman have had an almost disastrous effect on many waters, however. With their existing facilities the States have not been able to cope with the situation, but in anticipation of future conditions many of them have made preparations for a great increase in their operations. In this respect the State of North Carolina probably leads. The opening up of its wonderful mountain regions through the construction of good roads is sure to result in an influx of tourists and the consequent depletion of many of its waters unless fish-cultural work is prosecuted on an extensive and systematic basis. In recognition of this outlook the State now has plans in contemplation for the establishment of a system of hatcheries and the enactment and enforcement of adequate fishery laws.

The bureau has taken the lead in fish-cultural work, and the activities of the various States along this line have, for the most part. been patterned after its work. In many instances the States have succeeded with their plans by employing the bureau's skilled and experienced men at higher salaries than the bureau has been able to pay. In view of this situation it is felt that the burean is little more than a training school for fish-culturists, and that in turning the services of such men over to the States it is doing a public work of great value. It is fully recognized that the fish-cultural experience of the bureau is for the public benefit. and the results of this experience are constantly being disseminated through the issuance of reports and bulletins and also in letters on special subjects.

COMMERCIAL FISH CULTURE.

While the cultivation of fish for stocking interior waters is an important phase of the bureau's activities, its work in the propagation and distribution of the so-called commercial fishes has a much greater significance so far as its economic ralue to the country is concerned. This work has probably attained its highest efficiency on the Pacific coast, and especially in Alaska, where the salmons constitute one of the most important natural resources. Had it not been for the combined efforts of the bureau and the States to conserve this raluable asset, it is probable that its value would by this time have declined to a point where it would neither have interested the white man as an investment nor served as a means of sustenance to the Indian.

In many instances the spawning beds of the salmon have been ruined by logging operations, while in other cases the ascent of the salmon to suitable spawning grounds has been cut off by the erection of insurmountable power dams. The salmon congregate at the entrance of certain coastal streams at a particular season of the year,
and if they find ascent to their natural spawning grounds in the headwaters cut off by a barrier, the parent fish die, their eggs are wasted, and the supply of salmon is reduced to that extent.

It is part of the work of the bureau's hatcheries to seine these fish from below the barriers and to remove their eggs and incubate them. The vitality and fertility of the salmon egg is wonderful. If carefully handled and cared for, approximately 95 per cent of them will hatch. The young fish resulting from the eggs are held in ponds and troughs in such numbers as is practicable and are fed artificially until they have attained a length of 2 or 3 inches, when they are liberated. Shortly after liberation they descend to the sea and. with the exception of one species, which returns in two years, they remain in salt water for four or five years. At the expiration of that time they seek the headwaters of various coastal streams, where they reproduce and then die, completing the life cycle. It can readily be seen that hatchery work of this character is of the greatest importance if this valuable and extensive industry is to be maintained.

A somewhat different problem is presented by the fishes of the Great Lakes and Atlantic coast. Eggs from these valuable commercial species are taken only from tish caught for the market by men employed to go out with the fishing boats and salvage the eggs as the fish are removed from the nets. Were it not for this work. some three or four billion eggs would be wasted annually being sent to market with the fish and discarded in the process of cleaning. This also applies to the shad, herring, and yellow perch.

In addition to the work of salvaging eggs for propagation in the hatcheries, experienced spawn takers are detailed to accompany the ottishore fishing fleet operating from Gloucester, Mass., going out on the boats for trips of a week or two weeks duration. As the eggs from such fish as the cod, pollock, and haddock can not be held until the return of the vessel, they are carefully removed from the fish. fertilized, and planted on the spawning grounds. As in the case of the other species, these eggs would be a total loss were it not for the burean's intervention. Being exposed to the attacks of natural enemies, the percentage of eggs hatched of those thus treated must be far smaller than that attained in the hatcheries, but as they can not be handled in hatcheries, because of the inaccessibility of the latter, it is beliered even the smaller percentage hatched fully justifies the time and money expended in the work of fertilizing and returning them to the spawning grounds.

COOPERATION WITH STATES, OTHER FEDERAL AGENCIES, AND FOREIGN GOVERNMENTS.

The division of fish culture has pursued its usual policy of working in conjunction with the States so far as possible. This cooperation consists in the interchange of fish and eggs, distribution of fish, joint production of fish, and joint operation of field stations for the collection of eggs. Sometimes State authorities are supplied with eggs of certain species and in return they fill applications for fish sub-
mitted to the bureau. In one or two instances eggs have been purchased by a State for incubation in the bureau's hatcheries, but the most important cooperation is probably in the distribution of fish, as it eliminates to a great extent what would otherwise amount to a duplication of effort in the stocking of waters. The bureau has rendered valuable assistance to the States by lending the services of its experienced men to aid in solving their fish-cultural problems and to give adrice and assistance in the location and establishment of hatcheries.

Such governmental agencies as the Forest, Service, Reclamation Service, and National Park Service have been of much assistance to the bureau in stocking waters with fish and protecting them. In many cases employees of these services have united in an effort to protect the fish life of streams and lakes and have assisted in the propagation of fish without incurring extra expense to the Government. Through these agencies fish are transported to remote sections of the public forests and parks and released in waters where they will be comparatively free from molestation for several years. As such waters become stocked the larger fish tend to work downstream. and in this way the stocking of larger bodies of water is effected.

The bureau's interest in the fish culture of foreign countries has not lessened with the passing years. In response to requests submitted through the State Department eggs of suitable species have been furnished in as liberal numbers as conditions would warrant, and exchanges of eggs have been made with Canada to the benefit of both countries. since it has been the means of replenishing the waters of both with desirable species of fishes not otherwise obtainable.

During the fiscal year 1923 cooperative fish-cultural operations in the waters of Lake Ontario were very satisfactory. The Canadian authorities permitted the force of the Cape Vincent (N. Y.) station to make collections of whitefish and lake-trout eggs in the Bay of Quinte, and the local fishermen were very glad to assist in the work, knowing that the resulting fry would be liberated in Canadian waters. It is the opinion of the bureau that much of the success attained in the Canadian fisheries is due to past activities of the Cape Vincent station. The fisheries of the lake had declined so that no eggs whatever were obtainable at any of the commercial fisheries, and every year the Cape Vincent hatchery was stocked by the transfer of eggs from other stations of the bureau, whitefish eggs being drawn from Lake Erie and lake-trout eggs from the Michigan fields. The bureau is conrinced that the upbuilding of the Ontario fisheries has been brought about through the persistent stocking of the lake through the operations of the Cape Vincent hatchery. In recent years the Canadian authorities have generously permitted the bureai's employees to collect spawn in Dominion waters, but on the other hand the annual release of several hundred million fry from Cape Vincent station in this lake must have been a great factor in the upbuilding of the Canadian fisheries.

SENTIMENT IN FAVOR OF FISH PROTECTION.

One of the bureau's functions has been to impress upon the rarious States having inadequate fishery laws, or none at all, the necessity for taking steps to protect the fish life within their boundaries. It is felt that the bureau can not afford to make large plants of fish in the waters of States that have no laws providing for their protection. Such legislation should not only establish an adequate closed season so that the fish may spawn without molestation but should provide for regulations to cover a bag limit and a minimum size at which fish may be taken. It should rigidly prohibit the dumping of refuse in fish-cultural waters, as the presence of waste matter drives the fish away, destroys their feeding grounds, and makes it difficult ever to restore fishing in waters that have been contaminated.

It is gratifying to note that country clubs and other associations throughout the country are taking more interest in protection than ever before. In many instances such organizations have leased large tracts of land and have incurred considerable expense in stocking the waters located thereon. Some have gone so far as to maintain small hatcheries. while others have sought the aid of the burean in their fish-cultural rentures, with the understanding that after reserving a sufficient supply of the fish produced for their own use the remainder will be planted in public waters.

The effect of the growing sentiment in favor of protection has been far-reaching and beneficial. Large numbers of men and women in different sections of the country are at the present time forming organizations having for their object the adoption of measures for adequately conserving natural resources, and the good results of their efforts along this line are very apparent. This sentiment in faror of the preservation of fish life is probably stronger throughout the Mississippi Valley than anywhere else. The people of that section look upon fish conservation as a matter vitally affecting their personal interests. A diminishing supply means the cutting off of their only means of obtaining fresh fish for food, and they are very urgent in their demand that the fishes stranded in landlocked pools and lakes in the flooded regions of the Mississippi River be transferred to living waters. Before this river became obstructed by power dams it constituted a natural fish hatchery for the great Middle West. but, as these dams are recognized as a national necessity, their greater value than the fish life is not questioned. The construction of the dams has resulted in cutting off the ascent of the fish to headwaters and it is thought to be no more than just that fishes stranded in the overflowed sections should be rescued and returned to the parts of the rivers thus cut off.

The sentiment in favor of this salvage of fishes from the overflowed lands has become so great that the resources not only of the burean but of the States of Minnesota, Iowa, Wisconsin, and Illinois, as well, have been severely taxed in an effort to increase the scope of operations. It is estimated that during the fiscal year 1923 approximately one million pounds of fish were thus saved from destruction.

Part 1.-FISH PRODUCTION: PROPAGATION AND RESCUE WORK.

TABULAR SUMMARIES OF OPERATIONS.

SPECIES OF FISHES HANDLED.

The work as conducted during the fiscal year ended June 30, 1923, involved 58 species of fish, as indicated in the accompanying list, each species listed being the subject of either artificial propagation or rescue work. The majority of the fishes rescued from the overfilowed regions of the Mississippi River are not distributed but are returned to the river. These include some species of the catfishes, sunfishes. suckers, carp, and pike. Very few of the commercial species are supplied on application.

LIST OF SPECIES HANDLED.

The catfishes (Siluride) :
Blue catfish (Ictalurus furcatus). Channel catfish (Ictalurus punctatus).
Horned pout, bullhead (Ameiurus nebulosus).
Mississippi catfish (Ameiurus lacustris).
Yellow catfish (Ameiurus natalis).
Black bullhead (Ameiurus melas).
Mud catfish (Leptops olivaris).
THe suckers (Catostomidex):
Mongrel buffalofish (Ictiobus urus).
Common buffalofish (Ictiobus cyprinella).
Smallmouth buffalofish (I'tiobus dubalus).
The carps (Cyprinide):
Asiatic carp (Cyprimus carpio).
The shads and herrings (Clupeidex):
Shad (Alosa sapidissima).
Glut herring (Pomolobus astivalis).
Skipjack (Pomolobus chrysochloris).
The salmons, trouts, whitefishes, etc. (Salmonide) :
Common whitefishes (Coregonus albus and C. clupcaformis).
Pilot fish (Coregonus quadrilateralis).
Cisco (chiefly Leucichthys artedi).
Chinook salmon, king salmon, quinnat salmon (Oncorhynchus tschauytscha).
Chum salmon, dog salmon (Omeorhumchus ketu).
Humpback salmon, pink salmon (Oncorhymchus gorbuscha).
Silver salmon, coho salmon (Oncorhymchus kisutch).
Sockeye salmon. bluehack salmon, redtish (Oncorhynchus nerka).
Steelhead salmon (Salmo gairdneri).
Atlantic salmon (Salmo salar).
Landlocked salmon (Salmo sebago).
Rainbow trout (Salmo shasta).
Black-spotted tront, redthroat tront (salmo lfurisi).
Loch Leven trout (Salmo levenensis).
Lake trout. Mackinaw trout (Cristoromer namaycush).
Brook trout (Salvelinus fontinalis).
The smelts (Osmeride) :
Smelt (Osmerus mordax).
Wilton smelt (Osmerus mordax spectrum).
The plikes (LUCIIDE) :
Little pickerel (Lucius vermicu7atus).
Common pickerel (Lucius lucius).
The mackerels (S'combrides) :
Mackerel (Scomber scombrus).

The sunfishes, black basses, and crappies (Centrabchidef) :
('rappies (Pomoxis amularis and P. sparoides).
Largemouth black bass (Micropterus salmoides).
Smallmouth black bass (Micropterus dolomieu).
Rock bass (Ambloplites rupestris).
Warmouth bass, goggle-eye (Chenobryttus gulosus).
Green sunfish (Apomotis cyancllus).
led-breasted bream (Lepomis auritus).
Bluegill sunfish (Lepomis pallidus).
Long-eared sunfish (Lepomis megalotis).
Common sunfish (Eupomotis gibbosus).
The perches (Percides):
P'ike perch (stizostedion ritcoum).
Sauger (Stizostedion canadense).
Yellow perch (Perca flavescens).
The sea basses (Serranide):
White bass (Roccus chrysops).
White perch (Morone americana).
Sea bass (Centropristes striatus).
The porgies (Sparide) :
Scup, scuppaug (Stenotomus chrysops).
Jhe drums (Sclentde):
Fresh-water drum. lake sheepshead (Aplodinotus grumiens).
The cods (Gadide) :
Cod (Gadus callarias).
Hatdock (Melanogrommus: aylefimns).
Pollock (Pollachius virens).
The flounders (Pleuronectide) :
Winter flounder, American flatfish (Pseudopleuronectes americamus).

OUTPUT.

The combined work of the fish-cultural stations and the rescue crews during the year resulted in a gross output of $4.315,857,525$ eggs, fry, and fingerling fish for distribution. Losses in transportation amounted to 998,696 , leaving a net total of $4,314,859,029$ fish and eggs actually distributed.
simmmary, by species, of net output of fish and fish eygs. fiscal year 1923.

Species.	Eggs.	Fry.	Fingerlings.	Total.
Catfish			37,092, 979	37, 092, 979
Buffalofish	1f3, 169, 500	5, 925,000	9, 429, 838	178, 524, 338
Carp.	29,000,000	115, 000, 000	14, 226, 110	158, 226, 110
Shad		16,971,000		16, 971, 000
Glut herring		150, 000, 000		150, 000, 000
Whitefish	148, 041, 000	208, 675, 000	3,000	356, 719, 000
Cisco	10,000,000	39, 000, 000		49, 000, 000
Chinook salmo	4, 205, 000	720,000	28,965, 045	33, 890, 045
Chum salmon		8,274, 830	14,997,900	23, 272, 730
Humpback salmon		396,950	1,915, 435	2,312,385
Silver salmon.	100, 000	8,371, 025	5, 910,630	14,381, 655
Sockeye salmon	10, 6-8, 400	31,582, 000	50, 949, 400	93, 209, 800
Steelhead salmon	1, 744, 000	275,000	5, 339, 005	7,358,005
Atlantie salmon.		451, 000	40,038	491,038
Laudlocked salmon	76, 872	727, 670	92, 800	897, 342
Rainhow trout	2, 654, 96,0	754, 000	3, 408, 159	6, 852, 119
Black-spotted trout	10, 127, 100	2, 160, 100	1, 492, 700	13, 779, 900
Loch Leven trout			43, 800	43, 800
Lake trout	7, 253, 300	34, 748, 415	232, 080	42, 233, 795
Brook trout	725, 300	2, 841,400	8,477, 250	12, 043, 950
Smelt	$16,280,000$	$28,000,000$		44, 280, 0c0
Pike and pickerel			905, 395	905, 395
Crappie -			35, ¢02, 522	35, 602, 522
Largemouth black bass		806, 500	1,342, 319	2, 148, 849
Smallmouth black bass		449,400	- 79,007	528, 407
Rock hass. -			64,035	64, 035

Summary, by species, of net output of fish and fish egrs, fiscal year 1923-Con.

Species.	Eggs.	Fry.	Fingerlings.	Total.
Warmouth ba			8,350	8,350
Sunfish_			26, 854, 257	2f, 854,257
Pike perch	37, 275, 060	63, 365, 040		100, 640, 000
Yellow perch	3, 680, 000	136, 325, 000	936, 245	140,941, 295
White perch		16, 341, 000		16,341, ${ }^{675}$
White bass.		1,3,	40,085	40, 085
Fresh-water drum			49,026	49, 026
Cod	650, 980, 000	376, 813, 000		1, 027, 793,000
Haddock	104, 400, 000	2, 960, 000		107, 360, 000
Pollock	33, 960, 000	276, 098, 000		310, 058, 000
Flounder	229, 345, 000	1, 058, 781, 000		1, 288, 126,000
M iscellaneous fishes			15, 818, 142	15, 818, 142
Total	1, 463, 730, 432	2, 586, 812, 290	264, 316, 307	4.314, 859, 029

EGG COLLECTIONS.

The burean's principal source of egg supply is the commercial fisheries. where vast numbers of eggs of raluable fishes would annually be wasted were it not for the burean's work. In most instances they are transported to the hatcheries for incubation; but in the case of the offshore fisheries on the New England coast the spawn takers sent out to salvage the eggs fertilize and plant them on the spawning grounds, as it is impracticable to hold the spawn until the ressels return to port. In some cases eggs are taken from fish caught in nets and traps and are artificially impregnated and incubated in the hatchery, this being done to insure a higher degree of fertility than would be possible under natural conditions of spawning.

A decrease of approximately $991,000,000$ is shown in the total eyg collections as compared with those of the previons year. This decrease is explained partly by the prevalence of unfavorable weather during the spawning season of some of the fishes handled, and partly by lack of funds necessary to take full adrantage of the opportunities for obtaining eges in one or two instances.

Comparison of egg collections, fiscal years 1923 and 1922.

Species.	1923	1922	Species,	1923	1922
Buffalofish	179, 173, 600	199, 906, 250	Loch Leven trout	98, 130	109, 870
Carp	160, 500, 000	98, 000, 000	Lake trout	77, 775, 890	$67,426,500$
Shad	17, 877,000	82, 579, 000	Brook trout	19, 109, 040	17,986, 250
Glut herring	313, 422,620	116,920, 000	Smelt	42,000,000	300, 000
Whitefish	537, 546, 000	$623,100,000$	Mackerel		2, 022,000
Cisco.	76, 800,000	429, 300,000	Pike perch	230, 040, 000	254, 717,50
Pilot fish	255, 000	12,00, 000	Yellow perch	151, 010, 000	277, 501,870
Chinook salmon	30, 889, 000	64, 756, 100	Striped bass	22,084, 000	4s, 745,000
Chum salmon	2f, 513, 500	22, 830, 000	Sea bass		32, 000
Iumpback salmon	1, 099, 200	1,722,000	Scup		3, 425,000
Silver salmon..-	15, 159, 800	13, 618, 500	Cod	1, 279, 769, 000	557, 426, 000
Sockeye salmon	$97,885,000$	119, 214,350	119 ddock	109, 220, 000	543, 110.000
Steelhead salmon.	7,946, 300	7,302,800	Poliock	420, 536, 000	$507,250,000$
Atlantic salmon	7,	572, 010	Winter flounkier	1,391,411,000	2,312,029,000
Landlocked saimon.	852, 350	445, 000	Pole flounde		5,090,000
Rainbow trout	11, $4 \times 8,410$	11, 210, 500			
Black-spotted trout	16, 655.820	4, 220, 300	Total	5, 437, 057, 670	6, 423, 447, 330

FISH-RESCUE WORK.

The part of the burean's work dealing with the salvaging of stranded food fishes from the overflowed lands along the Mississippi River showed a considerable decrease in results as compared with that of 1922. The following table indicates by localities and species the total numbers of fish salvaged, the numbers restored to original waters, and the numbers delivered to applicants. The summary also shows the total numbers of each species handled in all fields and returned to native waters, and the total deliveries of rescued fishes to applicants.

Number and disposition of fish reseued, fiscal year 1923.

Station and species.	Delivered to applicants.	Restored to original waters.	Total.
Homer, Minn.:			
Black bass.	48, 315	78.715 24,593	127,030 24,593
Carp-		1,008, 875	1,008, 875
Cratish	47, 800		11, 013,270
Drum.		18, 950	18,950
Pike and picker		311, 710	311,710
Rock bass		1,010	
Sunfish...-	31,830	$\begin{array}{r}7,810,430 \\ 20,580 \\ \hline\end{array}$	$7,842,260$ 20,580
White bass Yellow percl	11,350	20,580 518,490	20,580 529,840
M iscellaneous		534, 900	534, 900
Total.	187, 820	27, 126, 753	27, 314, 573
Bellerue, Iowa:			
Buack bass	52,495 150	$\begin{array}{r} 20,735 \\ 5,590,900 \end{array}$	5, 591, ${ }^{73,230}$
Carp	290	7, 233, 330	7, 244, 120
Catish	${ }_{\text {\% }}^{1,849}$	4, 651	${ }_{6}^{4,653,375}$
Drum.		194	194
Pike and pickerel	160	21, 110	21, 270
Wunfish--arnouth bass	10,058	2, 639,635	2, 649,693
White bass...			2, 281
Yellow perch	1,950	3,930	5,880
Miscellaneous	740	7, 837 , 392	7, 838,132
Total	143, 227	34, 399, 158	34, 542,385
La Crosse, Wis.:			
Black bass-	131, 545	79, 195	210,740 2
Carp	176	4, 715 , 154	4, 715, 330
Catish.	53,030	18,905, 345	18,958,375
Crıppie.	-33,135	13, 188, 460	13, 521, ${ }^{\text {, }}$, 355
Pike and pickerel		484, 815	484,815
smallmouth bass	$9+$		
Sunfish-	21, 190	11, 474, $\begin{array}{r}\text { 7, } \\ 002 \\ \hline\end{array}$	11, 495, ${ }_{7}^{340}$
Yellow perch.	5,930	340, 3×5	346,315
Miscellaneous.		5, 811, 300	5,841,300
Total.	246,765	58, 135, 611	5ธ, 382, 376
Marquerte, Iowa:			
Black bass..--	61,420	33, 135	94, 555
Butfalofish.		4:3,400	473, 490
Catrish	28, 204	5, 722,0416	5, 7500,250
Crappic.	347, 100	3, 273, 500	3, 620, 600
Drum.		16, 100	16, 100
Pike and	--	70, 850	70, 850
Sunfish.	5,660	2, 292, 130	2, 297, 790
White bass--		1,200	
Yedlow perch.	5,545	44, 460	50, 005
Miscellancous		369, 755	369,755
Total	448, 094	13, 193, 476	13,641, 570

Number and disposition of fish rescued, flscal year 1923-Continued.

| Station and species. | |
| :---: | ---: | ---: | ---: |
| | |

Number and disposition of fish rescued, fiscal year 1923-Continued.

Station and species.	Delivered to applicants.	Restored to original waters.	Total.
Summary by species:			
Black bass..----	300, 534	225, 505	526, 039
Buffalofish	740	9, 206, 498	9, 207, 238
Carp-	- 541	14, 225, 619	14, 226, 160
Catfish	209, 714	36, 123, 394	36, 333, 108
Crappie	433, 976	34, 855, 390	35, 289, 366
Drum.	1,685	47, 341	49, 026
Pike and pickerel	160	905, 235	905, 395
Rock bass	600	2, 855	3, 455
Smallmouth bass	94		94
Sunfish --......-	191, 213	26, 229, 365	26, 420, 578
Warmouth bass	80		80
White bass--	100	39,985	40, 085
Yellow perch	24, 775	911,790	936,565
Miscellaneous	740	15, 861, 102	15,861,842
Total.	1,164, 952	138, 634, 079	139, 799, 031

STATIONS AND SUBSTATIONS AND OUTPUT OF EACH.

During the fiscal year 1923 fish-cultural operations were conducted at 37 main stations and 34 substations, though at several of these work was confined principally to the rescue of stranded fishes from overflowed lands. The following table lists the main stations in alphabetical order, each of them being followed by its auxiliary substations, and includes the period of operation at each point and the number of eggs, fry, and fingerling fish distributed.

Stations and substations operated and output of eich, fiscal year 1923.
[Asterisk (*) indicates that additional eggs were transferred to other stations for convenience in handling. See table, p. 17.)

Stations and substations operated aud output of each, fiscal year 192う-Con.

Station and substation.	Species.	Eggs.	Fry.	Fingerlings, yearlings, and adults.	Total.
Cape Vincent, N. Y...	Brook trout		445, 000		445, 000
	Cisco	0,000,000	$39,000,000$		$49,000,000$
	Lake trout	490, 000	1, 676,000		2, 166, 000
	Pike perch....		600,000		600,000
	Rainbow tront	201, 000	69,000 $85,375,000$		69,000 163,576000
	Yellow perch		800, 000		$163,586,000$ 800
Central station, Washington, D. C.	Black bass...		80,	385	, 385
				4,000	4, 000
	Chinook salmon	5, 000	5, 000	10,000	20, 000
	Crappie		3, 350	450 3,000	450 6,350
	Pike perch.-		750, 000		750,000
	Rainbow trout			18,400	18,400
	Sunfish.			24, 100	24, 100
	Whitefish			3, 000	3,000
Bryans Point, Md_	Shad-......-		16, 771,000		16,771, 000
Clackamas, Oreg .-----	yellow perch Black-spotted tr		128, 525, 000	17,000	$128,525,210$ 17,000
	Brook trout.....			17, 000	17,000
	Chinook salmon	200, 000	716, 000	3, 935, 000	4, 851,000
	Chum salmon		5, 000	95, 000	95, 000
	Rainbow trout		2, 0	59,000	59,000
	Silver salmon.			16,000	16,000
	Steelhead salmon.	90,000		25, 000	115, 000
Applegate, Oreg---	Silver salmon.			2, 423,800	2, 423,800
Big White Salmon, Wash. Little White Salmon, Wash.	Chinook salmon.-	095,000		$1,200,000$ $6,000,000$	6, 2900,000
					6, 0 ,
	----do-.---.-	4,000, 000		12, 427, 000	16, 427, 000
	Chum salmon			257, 500	257, 500
	Silver salmon.-			9,000	9, 5000
Rogue River, Oreg-	Sockeye salmon- Black-spotted tro			50,400 15,500	50,400 15,500
	Chinook salmon.			980, 000	980, 060
	Silver salmon.			80,000	80,000
	Steelhead salmon.			2, 241, 000	2, 241, 000
	Brook trout			2, 99, 000	99, 000
Salmon, Id	Chinook salmon			1, 124, 700	1, 124, 7 CO
	Rainbow trout.-			236, 000	236, 000
Sandy River, Oreg	Black-spotted trou			2, 600	2. 600
	Chinook salmon			383, 500	383, 500
	Silver salmon.			313, 800	313, 800
	Steelhead salmon	125, 000		438, 000	563, 000
Washougal, Wash. Cold Springs, Ga_.....		* 434,000	260,000		694,000
	Black bass Catfish		216, 500	$\begin{aligned} & 55,475 \\ & 12,750 \end{aligned}$	271,975 12,750
	Crappie-			1,500	1,500
	Sunfish			90,400	90. 400
Craig Brook, Me......-	Atlantic salmon		451, 000	40,038	491, 038
	Brook trout		354,000	497, 800	851, 800
	Landlocked salmo	* 76,872	223, 000		299, 872
Grand Lake, Me.. Green Lake, Me.-		(*)	316, 190	91, 400	407,590 110,000
	Landlocked salmo		$\begin{aligned} & 110,000 \\ & 178,480 \end{aligned}$		110,000 178,480
	Smallmouth black			94	
Duluth, Minn.-.....-.	Smelt -...	7,030,000	28,000,000		45, 030,000
	Brook trout			135, 000	135,000
	Lake trout	*525, 000	13, 170,000	85, 000	13, 780,000
	Pike perch-..--		7,630,000	86,000	$7,630,000$ 86,000
	Steelhead salmon		15,000	75,000	90,000
	Whitefish.		2, 700, 000		2, 700,000
	Black bass		25,000	28, 175	53, 175
Edenton, N. C......--	Catfish			575	575
	Crappie----			120	120
	Glut herring		150,000,000		150, 000, 000
	Shad.		200, 000		200, 000
	Sunfish			9, 050	9,050
	Striped bass		16, 341, 000		16, 341, 000
Erwin, Tenn----------	Black bass		39, 500	15,635	55, 135
	Brook trout			278, 200	278, 200
	Rainbow trout	2,000		657, 770	659, 770
	Rock bass			18, 050	18,050
	Smallmouth black			7. 450	7,450
	Steelhead salmon			600	600
	Yellow perch		500, 000	4,645	500, 000

Stations and substations operated and output of each, fiseal year 19.23-Con.

Stations and substations operoted fold output of each, fisctl year $19.33-\mathrm{Com}$.

Station and substation.	Species.	Eggs.	Fry.	Fingerlings, yearlings, and adults.	Total.
Homer, Minn.-Contd. Rock Island, IIl. (Continued).	Sunfish				
	White bass			691, 765	691, 765
	Yellow perch.			4,525	4, 525
	Miscellaneous			886, 055	886, 055
Simmesport, La- -	Black bass			239	, 239
	Buffalofish.			22,550	22, 550
	Catfish.			1,298	1,298
	Carp_-			130	130
	Crappie-			4,725	4, 725
	Fresh-water drum Pike and pickerel			7.725 60	7, 725
	Sunfish			3, 400	60 3,400
	White bass.			5, 170	5,170
Leadville, Colo-.----...	M iscellaneous			192, 500	192,500
	Black-spotted trout	*-75	120,000	551,000	671,000
	Lake trout.-.-.-			120,000	120, 000
	Loch Leven trout			12, 150	12,150
	Steelhead trout.			64, 000	64, 000
Louisville, Ky..........	Black bass..			50,000 1,300	50,000 1,300
	Rock bass			1,750	1,300 1,750
	Smallmouth black bass.		383,000	19, 000	402,000
	Sunfish ...			26, 800	26, 800
	Black bass			150	150
Cairo, Ill...........	Buffaloish			22, 600	22, 600
	Catfish...			755,000	755,000
	Crappie			307, 000	307,000
Mammoth Spring,Ark.	Black bass			123,000 87	123,000 87,500
	Crappie.			, 400	87,500
	Rock bass.			17, 600	17,600
	Smallmouth black bass.			20, 200	20, 200
	Sunfish.....			14, 4 , 000	14, 000
Manchester, Iowa.....	Rainbow trout	*2,000		-98,685	445, 545
	Rock bass.			5,750	5, 750
	Brook trout			614,106	614,106
Nashua, N. H.-	Lake trout			21, 000	21, 000
	Landlocked salmon Pike perch		75,000	1,400	1,400 75,000
	Rainbow trout.-.--......			39,700	39, 700
	Smallmouth black bass...		8,700		8 8,700
Neosho, M10....	Black bass			9, 038	9,038
	Crappie. Rainbow trout	746, 460		$\begin{array}{r} 600 \\ 258,065 \end{array}$	- $\begin{array}{r}600 \\ 1,004,525\end{array}$
	Rock bass	76, 40		258,065 4,415	1,004, 4,415
	Smallmouth black bass.			, 38	38
	Sunfish			17,521	17,521
	Yellow perch	3, 680, 000	3, 500, 000	, 270	7, 180, 270
	Brook trout		110,000	197, 000	307, 000
Northville, Mich.	Lake trout		20,000		20, 000
	Rainbow trout Smallmouth black bass.		30,700	15,000 32,325	15,000 63,025
	Lake trout...............-	*1,958, 000	610, 000		2, 568,000
Charlevoix, Mich	Whitefish.	*17, 440, 0c0	600, 000		18, 040,000
	Lake trout.-...-	4, 250,000	19, 0c0, 000		23, 250,000
	Landlocked salmon		10,000		10,000
	Whitefish.	(*)	20, 000, 000		20, 0000000
Orangeburg, S. C....--	Black bass		101, 000	299, 146	400, 146
	Catish Sunfish.			180 26,030	180 26,030
	Warmouth bass			8,200	8, 200
Put in Bay, Ohio.--..-	Carp.	8,000, 000	115, 000, 000		123, 000, 000
	Pike ferch	*37, 275, 000	51, 800, 000		89, 075,000
	Whitefish...	*52, 400, 000	100, 000, 000		152, 400,000
	Yellow perch--		3, 000,000		$3,000,000$
Quinault, Wash.....--	Black-spotted trout		45, 000		45, 000
	Sockeye salmon.			944, 0c0	944, 000
	Steelhead salmon.			78, 000	78,000
St. Johnsbury, Vt	Brook trout	300	956, 000	274	956, 574
	Lake trout.-...	*300	151,969		152, 2609
Holden, Vt.........	Steeihead salmon. Brook trout-.---		238, 400	8,000 9,050	8,000 247,450
	Lake trout	30,000	95, 446	6,500	131, 946
	Rainbow trout			1,200	1,200
York Pond, N. H.	Steelbead salmon			300	1300
	Brook trout.			1, 264	1,264 80

Stations and substutions operated and output of each, fiscal year 1923-Con.

Transfers of eggs between stations, fiscal year 1923.

Species.	Number of eggs.	From-	T0-
Black-spotted trout...	75.000	Yellowstone Park, Wyo	Clackamas, Oreg.
	1, 332,000	--do.	Glacier Park, Mont. Leadville, Colo.
	50, 000	do	Leadville, Colo.
	100, 000	do	Saratoga, Wyo.
Brook trout	131, 666	Craig Brook, M	Grand Lake Stream, Me. Bozeman, Mont.
	531, 360	Springville, Utah	Bozeman, Mont. Do.
	230, c00	--..-do-.-...-...-	Clackanas, Oreg.
	259, 200	do.	La Cross, Wis.
	259, 200	do	Manchester, Iowa.
	26, 400	do	Salmon, Idaho.
Chinook salmon.	259, 2000	Little White Salmon, Wash	Spearfish, S. Dak. Central station, Washington, D. C.
	1, 750, 000	-...do - .-. - .	Clackamas, Oreg. If ashington, D, C.
Chum salmon.	5, 201, 009	Brinnon, Wash	Duckabush, Wash.
	1,800, 000	do	Quilcens. Wash.
Cod_-...............	30, 480, 000	Woods Hole, Mas	Gloucester, Mass.
Humpback salmon..-	$\begin{array}{r} 270,616 \\ 50,000 \end{array}$	A fognak, Alaska Birdsview, Wash	Birdsview, Wash. Central station, Washington, D.C.

Transfers of eggs betuecn stations, fiscal year 1923-Continued.

EGG-COLLECTING OR AUXILIARY STATIONS.

In many instances the eggs hatched at the main stations are obtained at points established as near as possible to the base of eggcollecting operations. All of these egg-collecting auxiliaries are temporary in character, many of them being mere camps with a tent for the operator to live in, which in many instances serves also as a place where the eggs may be packed for shipment. In other fields the operator may be quartered with the fishermen or at some hotel in the vicinity, in which case a fish house is used for packing operations. During the past fiscal year 75 of these egg-collecting stations were occupied for periods varying from two weeks to approximately three months. The following list of substations of this class shows in each case the main station from which operations were conducted, the period of operation, and the species handled.

Egg-collecting stations, period of operation, and species handled, fiscal ycar 1923.

Station.	Period of operation.	Species handled.
Boothbay Harbor, Me.:		
Casco Bay, Me....	Mar. 14 to May 7--....	Winter flounder.
Ebenecook Harbor,	Mar. 10 to May 1.	Do.
Linekins Bay, Me.	Feb. 27 to May 11	Do.
Outer Y'enobscot B	Mar. 16 to May 10	Do.
Seal Harbor, Me.	-..-do --.-.-.-...	Do.
Southport Coves,	Feb. 27 to May 19.	Do.
Torrnsend Gut, Me	Mar. 10 to May 10.	Do.
Cape Vincent, N. Y.:		
Bygotts Point, Ontario Chaumont Bay, N. Y.	Nov. 1 to Dec. 1. Nov. 12 to Dec. 8	Cisco, whitefish.
Deseronto, Ontario	Nov. 1 to Dec. 1	Do.
Fairhaven Bay, N .	Nov. 25 to Dec.9.	Cisco.
Grass Bay, N. Y	May 1 to 16...-	Yellow perch.
Pigeon Island, Ontario	Oct. 17 to Nov. 12	Lake trout.
Sodus Bay, N. Y.	Nov. 25 to Dec. 8	Cisco.
South Bay, Ontario	Nov. 12 to 24--	Whitefish.
Clackamas, Oreg.:		
Pahsimeroi, 1daho	September to October.	Do.
Sunbeam Dam, Idaho		Do.
Craig Brook, Me.: ,		
Dobsis Lake, Me.	Oct. 21 to Nov. 14	Landlocked salmon.
Duluth, Minn.:		Do.
Au'Train, Mich.	Oct. 16 to Nov. 3.	Lake trout.
Bete Grise, Mich	Oct. 19 to Nov. 8	Do.
Fish Island, Mich	Oct. 18 to Nov. 25	Lake trout, whitefish.
Gay, Mich.........-	Oct. 19 to Nov. ${ }^{\text {- }}$	Lake trout.
Grand Marais, Mich.	Oct. 20 to Nov. 5	Do.
Huron Island, Mich	Oct. 19 to Nov. 8	Do.
Keystone, Mich	Oct. 12 to Nov. 6	Do.
Long Point, Mich	Oct. 18 to Nov. 25	Lake trout, whitefish.
Manitou Island, Mich	Oct. 19 to Nov. 8	Lake trout.
Marquette, Mich	Oct. 17 to Nov. 9	Do.
Munising, Mich	Oct. 16 to Nov. 3	Do.
Ontonagon, Mich	Oct. 20 to Nov. 6	Do.
Portage Entry, Mich	Oct. 19 to Nov. 8	Do.
Portage Lake Canal, Mich	Oct. 20 to 31.	Do.
Rock Harbor, Mich	Oct. 18 to Nov. 25	Lake trout, whitefish.
Siscowit Bay, Mich	do	
Tobens Harbor, Mich	do	Do.
Todds Harbor, Mich	-.-do--	Do.
Traverse Bay, Mich	Oct. 19 to Nov. 8	Lake trout.
Washington Harbor, Mich	Oct. 18 to Nov. 25	Do.
Wrights Island, Mich		Do.
Leadville, Colo.:		
Engelbrecht Lake, Colo	Sept. 24 to Nov. 26	Do.
Fred Neal Lake, Colo.	Nov. 17 to 26.	Do.
Musgroves Lake, Colo	Oct. 26 to Nov. 22	Do.
Turquoise Lake, Colo.	Oct. 19 to Nov.	Do.
Neosho, Mo.:		
Northville, Mich.:		
Cheboygan, Mich	Oct. 22 to 31	Lake trout.
Fairport, Mich	Oct. 26 to Dec. 2	
Frankfort, Mich	Nov. 3 to 23	
Gould City, Mich	Nov. 18 to 27	Whitefish.
Leeland, Mich.	Nov. 3 to 21.	Lake trout.
Manistique, Mich	Oct. 22 to Nov. 16	
Naubinway, Mich	Nov. 18 to 27.	Whitefish.
Northport, Mich.	Nov. 1 to 21.	Lake trout.
St. Ignace, Mich	Oct. 22 to Nov. 27	
St. James, Mich	Nov. 1 to 22.	Lake trout, ${ }^{\text {whitefish. }}$
Put in Bay, Ohio:		
Cataw ba Island, Ohio--.--	Nov. 12 to Dec. 4	Whitefish.
Middle Bass Island, Ohio.	Nov. 12 to Dec. 8	
North Bass Island, Ohio.	Nov. 8 to Dec. 8	Do.
	Apr. 15 to 30..-	Pike perch.
Pelee Island, Ontario Port Clinton, Ohio...	Nov. 28 to Dec. 4 -	Whitefish
	Apr. 12 to June 24	Pike perch.
Toledo, Ohio..	Nov. 8 to 30-...	Whit fish.
St. Johnsbury, Vt.: Apr. 15 to May		
Darling Pond, Vt	October and November	Brook trout.
Lake Dunmore, Vt	Oct. 25 to Nov. 5.	Lake trout.
Lake Mitchell...	October and November	Brook trout.

Egg-collceting stations, period of operation, and species handled, fiscal year 1923-Continued.

Station.	- Period of operation.	Species haudled.
Saratoga, Wyo.:		
Big Creek Lake, Wyo.	October and November A pril to June---.-do.	Brook trout. Rainbow trout. Do.
Canon Creek, W yo		
Springville, Utah: Fish Lake, Utah		
	Nov. 3 to 28 May 2 to June 4	Brook trout. Rainbow trout.
Woods Hole, Mass.:		
Sandwich, Mass	Nov. 1 to Dec. 31 Jan. 18 to Mar. 15 Mar 16 to Apr 5	Cod. Winter flounder. Do.
Wickford, R. I.		

FISH FOOD USED AT HATCHERIES.

The following table indicates the amounts and kinds of food used at the fish-cultural stations of the bureau during 1923, with the cost per pound of each material used.

Pounds and cost per pound of fish food used during the fiscal year 1923.
PACIFIC SALMON STATIONS.

Station.	Beef	liver.	Sheep	liver.	Beef	melts.	Can	$\begin{aligned} & \text { aned } \\ & \text { noo. } \end{aligned}$
Baird and substations, Calif Baker Lake and substations, Wash Clackamas and substations, Oreg Total \qquad	Pounds. 1, 112	$\begin{aligned} & \text { Cost. } \\ & \$ 0.10 \end{aligned}$	Pounds.	Cost.	Pounds.	Cost.	Pounds.	
	1,270	. 0634	676	\$0.08	3,360	\$0.045	$\{1,008$	\$0.06
	770	. 05			6, 221	. 039		
	3, 152		676		9,581.		5,218	
Station.	Salted salmon.		Fresh fish.		Salmon eggs.		Middlings.	
A fognak, Alaska Yes Bay, Alaska Baird and substations, Calif.	$\begin{array}{r} \text { Pounds. } \\ 2,450 \\ 1,725 \\ 9,000 \\ 1,313 \\ 1250 \\ 10,000 \end{array}$	$\begin{gathered} \text { Cost. } \\ \$ 0.0454 \\ .02 \\ .025 \\ .0215 \\ .011 \end{gathered}$	$\begin{array}{r} \text { Pounds. } \\ 2300 \end{array}$	Cost.	Pounds.	Cost.	Pounds.	Cost.
					1,700	\$0.015		
Baker Lake and substations, Wash.			${ }^{2} 120$					
Clackamas and substations, Oreg -					4, 420	. 044	200	\$0.028
Total.	24,738		420		6,120		200	-------

ROCKY MOUNTAIN TROUT STATIONS.

Station.	Beef liver.		Beef hearts.		Sheep liver.		Hog liver.		Sheep plucks.	
Bozeman and substations, Mont	Pounds. $5,910$	$\begin{gathered} \text { Cost. } \\ \$ 0.075 \end{gathered}$	Pounds.	Cost.	Pounds.	Cost.	Pounds. 6, 883	Cost. $\$ 0.06$	Pounds.	Cost.
Leadville, Colo	1,124	. 05	2, 675	$\$ 0.0375$.0425	550	\$0. 0425				
Spearfish, S. Dak.	, 322	. 12	1, 146	. 105	2, 197	. 07			2, 200	\$0.06
Springville, Utah ---	2, 829	. 04	9,594	. 05	4,367	. 06				
Total.	10,185		15, 170		7,114		6, 883		2, 200	

[^73]Pounds and cost per pound of fish food used during the fiscal year 1923-Con.
ROCKİ MOUNTAIN TROUT STATIONS-COntinued.

NEW ENGLAND TROUT AND SALMON STATIONS.

Station.	Beef liver.		Beef heart.		Sheep liver.		Pork liver.		Beef melts.	
Berkshire trout	Pounds.	Cost.	Pounds.	Cost.	Pounds.	Cost.	Pounds.	Cost.	Pounds.	Cost.
hatchery, Mass	364	\$0.08							2,426	\$0. 05
Craig Brook, Me.	892	. 08					526	\$0.06		
Nashua, N. H	1,149	. 065	50	\$0. 045	3,274	\$0.0425				
Total	2,405		50		3,274		526		2,426	

STATIONS PROPAGATING BOTH TROUTS AND POND FISHES.

Station.	Beef liver.		Beef heart.		Sheep liver.		Middlings.		Low-grade flour.	
Erwin, Tenn	Pounds.	Cost.	Pounds. 5, 580	Cost. \$0. 057	Pounds. 9, 815	Cost. $\$ 0.0485$	Pounds. $2,100$	Cost. $\$ 0.0197$	Pounds. 294	Cost. $\$ 0.027$
Manchester, Iow			3,182	. 04	12,840	. 036	2, 400	+0175		
Neosho, Mo.	1,684	\$0.033	959	. 0435	4,610	. 0384	1,500	. 016	3,705	-035
White Sulphur Springs, W. Va	113	. 05	7,584	. 05	20,036	. 0471				
Wytheville, V8.....-	4,609	. 05	6,692	. 06						
Total	6,406		23,997		47,301		4,000		3,999	

POND FISH-CULTURAL STATIONS.

Station.	Beef liver.		Beef heart.		Fresh fish.		Fishotine.		Middlings.	
Cold Springs, Ga., and substations..	Pounds.	Cost.	Pounds.	Cost.	Pounds. $5,087$	$\begin{gathered} \text { Cost. } \\ \$ 0.10 \end{gathered}$	Pounds. 373	$\begin{aligned} & \text { Cost. } \\ & \$ 0.07 \end{aligned}$	Pounds. 420	Cost. $\$ 0.10$
Edenton, N. C	37	\$0. 20			172	. 125				
Louisville, Ky	116	. 10	437	\$0.10						
Mammoth Spring, Ark			1,464	. 052						
Orangeburg, S. C			1,864	. 10						
Tupelo, Miss.			1,688	. 0926						
Total	153		5,453		5, 259		373		420	

HATCHERY FISH-CULTURAL NOTES.

METHOD OF PREPARING FOOD FOR YOUNG SALMON.

In connection with the salmon-rearing operations at the Oregon station and substations, considerable quantities of immature salmon eggs are used as a fish food with very satisfactory results. This spawn is taken in immense quantities in the cominercial fisheries of the Columbia River and is held in cold storage until needed, when it is thawed by immersion in cold water. In preparing the material for food it is first passed through the coarse plate of a meat chopper and is then cooked in a single boiler for about $2 \frac{1}{2}$
hours, during which time it is stirred constantly. Wher cooked the food resembles granulated yellow cornmeal, and when introduced into the ponds and troughs it does not discolor the water.

TEST OF COPPER SULPHATE FOR ERADICATION OF FUNGUS.

The great difficulty experienced in preventing the development and growth of fungus on crappie held for distribution during the summer months impelled the district supervisor in charge of the Mississippi River rescue work to test the copper-sulphate treatment. in an effort to find a cure for the trouble. Owing to the extreme weakness of very small crappie and sunfish in intensely warm weather, it was found that they would not survive even a weak solution of the chemical, those used in the test perishing in large numbers when subjected to it. The results demonstrated that it might be successfully applied to fishes of larger growth and to the stronger individuals among the younger fishes, and also that it is valuable for disinfecting and cleaning the tronghs in which fish are held. Its use for such purposes will hereafter be resorted to at the holding and distributing stations in the rescue fields.

In this connection too much stress can not be laid upon the need for exercising care in the handling of fish to avoid abrasions, which serve as avenues of access for bacteria. In landing seines in the rescue fields special effort is made to prevent hauling the fish over low muddy places, thus filling the gills with mud. For the infection work, also, only the larger and stronger fishes are selected as hosts, all small and weak specimens being carefully culled out.

PARASITIC AFFECTION IN WHITEFISH JARS.

In connection with the parasitic affection that caused so much trouble in the whitefish jars at the Cape Vincent (N. Y.) station during the past season. it is the opinion of the burean that the heavy losses sustained were very largely the result of the additional handling required in order to remove the growth from the jars. In investigating the underlying causes of a heavy loss of shad eggs at Windsor, Conn.. Doctor Mitchell, of Brown University, found that a very large percentage of the loss was due not to lack of fertilization but to scratches and abrasions on the surface of the eggs. The raw surfaces caused by the abrasions formed a fertile ground for the multiplication of bacteria, and later on a white mold appeared, quickly coating the eggs. It is quite possible that the heary mortality experienced in the incubation of whitefish and cisco eggs may be traced to injuries to the shell, many of them being caused by the constant screening and washing of the eggs. This may also explain the higher percentage of hatch attained by fishery employees of the State when using an inverted funnellike bottom on their jar tubes. The effect of this arrangement is to spread out the intake flow of water, thus imparting a slow movement to the eggs. When eggs in circulation are thrown violently against the jar bottoms they are liable to become more or less scratched, especially if the jars contain particles of iron rust, which is often the case. Heavy losses of brook-trout eggs have frequently been noted when they are massed during the expansion period. In the process of separating the eggs:
the protecting film of the shell is apt to be broken, forming a fertile field for bacterial growth. It is believed this subject is worthy of careful study in an effort to overcome the heavy losses of eggs annually occurring at most of the stations of the bureau.

HATCHING EGGS IN GRAVEL.

Some interesting experiments in the hatching of trout eggs in gravel were conducted in the course of the year at the Wytheville (Va.) station. On January 4, 6.600 eyed rainbow-trout eggs were buried in sand and gravel in one of the rearing ponds. This material was obtained from a neighboring creek and was not screened, though the larger stones were removed. No fish having been observed by February 27, the covering was removed and washed and all the eggs were found to be dead.

In another experiment, undertaken on January 5, a trough was prepared with crushed stone sifted through a coarse-mesh screen to exclude the fine particles. Four nests were made with the larger pieces of stone, and in each of these eyed eggs to the number of 944 were scattered and covered to a depth of about 3 inches with the sifted material. A few fry in the advanced stage were observed in the trough on February 10, and the remainder of the hatch came out of the nests within the next two weeks with the sac nearly absorbed. On February 20, when the nests were removed and the fingerlings counted, it was ascertained that 2,736 of the 3,736 eggs planted had hatched.

COMMERCIAL FISHES.

Abstract

Of the 71 stations and substations engaged in the fish-cultural operations of the bureau, the work of 44 was devoted mainly to propagation and to the salvage of certain commercial species. Among the most important fishes handled, from a commercial viewpoint. were the salmons of the Pacific coast, the whitefishes, lake trout, and cisco of the Great Lakes, and the cod. haddock, pollock, and winter flounder of the Atlantic coast. Other species of lesser commercial value were handled on a smaller scale. The results of the work at these stations show a considerable decrease as compared with those of the previous year. most of the falling off occurring among the Atlantic coast species. The principal reason for the decline was the unusually severe weather prevailing during the spawning period. though lack of funds for the efficient prosecution of the work at all points was also responsible in some degree.

PACIFIC SALMONS.

Fish-cultural operations coming under this head are conducted extensively at 19 stations and substations located in Washington. Oregon. California, and Alaska. Operations at this group of stations are deroted almost exclusively to the propagation of the salmons of the Pacific coast. though small numbers of trout eggs, transferred from other stations of the bureau, are usually hatched annually at tro or three points in Oregon to supply the local demands for fish of that character. The results attained in the salmon work during
the year were fairly satisfactory, though the output of the stations in this class was somewhat smaller than that of the preceding year.

AFOGNAK (ALASKA) STATION.

[F. R. Lecas, Superintendent.]

The steady annual increase in the run of sockeye salmon to waters in the vicinity of the Afognak station, frequent mention of which has been made in previous reports, was maintained throughout the past year. Not only were the egg collections larger than in 1922, but fully half the fish counted into Letnik Lake could not be utilized in the propagation work owing to lack of facilities for handling the spawn. This gratifying situation is believed to be due solely to the bureau's efforts to build up and improve the run.

The spawning operations were begun August 1 and extended to the middle of September, by which time a sufficient number of eggs had been obtained to severely tax the fry-holding capacity of the station, the total amounting to $61,790,000$, or nearly $8,000,000$ in excess of last year's collection. During the month of September $10,678,400$ eyed eggs were shipped in charge of an attendant, part of them being delivered at Juneau, Alaska, to fill the application of the fisheries commission of that Territory; approximately half a million were furnished to the fisheries authorities of the State of Washington, and the remainder was turned over to the Oregon State hatchery at Bonneville. From the eggs incubated at the station $47,569,000$ fry, or 93 per cent of those retained, were produced, the hatching period extending from October 15 to April 25. All fry were held on trays until the sac was absorbed, when many of them had to be liberated as the rearing capacity under the present stacked-tray system is sufficient for only about $30,000,000$. Those retained for rearing were held in open troughs and liberated from time to time, the last of them being disposed of shortly before the end of the fiscal year.

In response to a request from the Birdsview (Wash.) station for a consignment of humpback-salmon eggs, a collection of 600,000 of this species was made on August 23. Approximately 278,000 were shipped to that point in the eyed stage, and from the remainder 240,000 fry were produced and liberated in the fingerling stage in one of the branches of Letnik River.

A disquieting feature connected with the propagation work in this region is the presence of the Dolly Varden trout in large numbers. It has been conclusively demonstrated that these fish constitute a serious menace to the welfare of young salmon, which they have been observed to follow in their downstream migrations in May and June, returning with the run of brood salmon in July and later. A dam was recently constructed across Letnik River with the view of excluding this species and other undesirable fishes from Letnik Lake, which it is desired to retain exclusively for the sockere work. As a result of the systematic attempts made to reduce the numbers of Dolly Varden trout. between six and seven thousand were captured during the year in seines and traps. Their flesh was used, so far as it was needed, for feeding the fingerling salmon.

In the course of the year a number of minor repairs were made to station buildings, roads, equipment, and ressels. A 32-volt. 850watt Delco lighting system, equipped with storage batteries, was purchased and installed in an insulated room for furnishing light to the various buildings. A one-half-kilowatt radio transmitting set was also purchased and installed in one of the rooms in the bunk house. This set is capable of sending on a 300,420 , or 600 -meter wave length, and has ample power to permit of communication with the naval radio station at Kodiak. A 5,000-meter crystal detector receiving set was also provided.

Most of the trays used in the stacked-tray system at this station are 1 inch high and are used in the troughs in stacks of fourthree filled ones with an empty one at the top. As an experiment 1,000 trays three-fourths inch high with mitered corners were constructed, and were placed four filled trays to a stack. They were found to work just as successfully as the deeper ones, and by their use the capacity of a fry-holding trough is increased one-third.

> YES BAY (ALASKA) STATION.
[Johi W. Gardxer, Superintendent.]
The fish-cultural work at this important salmon hatchery during the fiscal year 1923 may be considered satisfactory. Notwithstanding the short egg-collecting period, which extended from September 5 to September 22 , sockeye-salmon eggs to the number of $25,000,000$ were taken, and approximately 500,000 eggs of the humpback salmon were obtained incidentally. On September 22 the fishing racks were wrecked by heavy drift washed against them during a sudden rise in the river. The collecting season was thus abruptly ended, though spawning fish in considerable numbers were ascending the river then and for some time afterwards.

For the first time since the general adoption of stacked trays for holding salmon fry through the yolk-sac absorption period a complaint has been registered against the system. The superintendent of the l'es Bay station reports that during the year a loss in excess of 29 per cent occurred among the fish thus held, while the death rate among the firy held in tronghs was merely nominal. He attribates the abnormal loss to an unusual condition of the water supply: at least such a condition had never been observed previously at the station. He states that circulation was almost entirely precluded at times by the presence of quantities of slime, which covered the frames and wires of the trays, forming a jellylike substance. This slime is supposed to have come from the swampy tundra of the surrounding region. The superintendent suggests that the trouble might be overcome by the removal of the 14 -inch mesh from the trays and the substitution of 10 or 12 -inch mesh.

The year's output of the station consisted of $20,000,000$ sockeye salmon, all but 1.500 .000 being fingerlings No. 1; also humpback salmon fry to the number of 393,600 , and upward of $4,000,000$ sockeye fingerlings remained in the troughs at the end of the year.

Approximately $6.500,000$ sockeye fingerlings were placed in McI) onald Slough, an inclosed arm of Yes Lake about 4 acres in area, which has been used for sereral seasons as a rearing pond. Before
placing the fingerlings in this inclosure all other fish that may have collected therein are removed with seines and gill nets and the entrance is screened to prevent their return. The salmon may then be given artificial food in addition to the natural food in the water, and held until such time as it seems desirable to release them.

During the winter months further trouble was experienced from anchor ice, and it appears important that steps be taken to correct this condition and thus avoid the threatened loss of valuable stock each season. During extended periods of cold the water at the intake end of the pipe line falls to a level where the bipe does not carry water to its full capacity. At such times anchor ice causes trouble, and there is always danger of the line freezing completely. Should this occur it would in all probability entail not only the loss of all eggs or fish on hand but it would be liable also to seriously damage the pipe line. As a corrective measure the superintendent recommends certain alterations to the dam at the intake, including an increase of its height to deepen the water at that point, and the protection of the pipe against frost by covering it throughont its entire length.

BAKER LAKE (WASH.) STATION AND SUBSTATIONS.

[J. R. Russell, Superintendent.]

Satisfactory results were achieved in the fish-cultural work in this field during the fiscal year, the egg collections and output of fish eggs and young fish from all points comparing favorably with the work of past years, while the egg collections and output exceeded those of the preceding year by a substantial margin.

In this connection it should be taken into consideration that the Quinault station, which for some years has been an auxiliary of the Baker Lake station, is now being operated tinder the direction of an independent superintendent, and its output does not enter into the total of the Washington group of stations. A review of the year's work in the Quinalt field is contained on page 29 of this report.

The Baker Lake field involves the work of six stations, all in the State of Washington, with the headquarters of the superintendent at Birdsriew. Fish-cultural work in 1923 was addressed to the five species of Pacific coast salmon and the steelhead. Though the humpback salmon does not figure in the year's egg collections, the species is represented in the output by upward of $1,500,000$ of advanced fry, these being the progeny of eggs collected in Alaska waters by employees of the State of Washington, and of a smaller shipment of eggs transferred from the bureats Afognak station. These transfers were made with the view of effecting, if possible. the reestablishment of an annual rum of humpack salmon in Puget Sound waters.

> BAKER LAKE (WASH.) STATION.

Though it has been found more convenient in recent years to maintain executive headquarters at Birdsriew, Baker Lake has always been considered the main station of the Washington group. It is the point at which the bureau first attempted fish-cultural work in the State of Washington, and it has continued to be the most im-
portant station as regards the value of its work to the great salmon industry of the surrounding region.

The construction work at this point during the year included the remodeling and rebuilding of the stable, some needed alterations and repairs to fishing and spawn-taking appliances at the retaining inclosure, and repairs to the trap. The trail and telephone line between the station and the railroad at Concrete, Wash., was kept open throughout the year. Because of the expense involved in packing supplies to this station from the railroad line, 18 miles distant, it has been found profitable to do a considerable amount of farming. Several acres of land adjacent to the buildings are under cultivation, and from this land upward of 6 tons of hay and a sufficient amount of regetables to supply the station mess were produced. A storm channel was excarated for the diversion of flood waters from the creek flowing through the station grounds into a deep ravine, thus reliering the station of a flood menace of long standing.

There were on hand at the first of the rear $5.400,000$ sockeyesalmon fingerlings, all of which were distributed in July, 1922. From the operation of the trap at the outlet of the lake 7,080 adult sockeye salmon were taken between July 1 and August 14, and were held in the inclosure with the usual success until ready to spawn, all of them remaining in splendid condition throughout the period of confinement. Spawn taking was in progress almost daily from October 1 to November 21, and 11,040,000 eggs of excellent quality were obtained from the 3,499 female fish contained in the brood stock.

During the rum of silver salmon-from September 25 to Norember 18 -adult fish to the number of 2,924 were taken. Low water stages in Baker River were detrimental to the work, as large numbers of fish were unable or unwilling to ascend the shallow stretches of the riter and deposited their eggs far below the usual spawning places. Between October 31 and December 15 the 1,033 females in the lot vielded $3,115,000$ eggs. After being eyed, all of these were transferred to the Birdsview station for incubation.

In contrast to the statement of the superintendent of the Yes Bay station with reference to the use of stacked trays for rearing sockeye-salmon fry, the following is quoted from the annual report of the superintendent of the Baker Lake station:

> The fry were thoroughly cleaned when taken from under the baskets and were then placed on the trays, where they remained without further attentiou, aside from the regulation of the water, until they were swimming up. This would seem to indicate that if the fry are healthy when placed on the trays there is no need to molest them during the sac-absorption period, provided, of course, that no unfavorable water or other conditions are encountered.
> Besides the $3,025,000$ eyed silver-salmon eggs transferred to the Birdsview station, the distribution from Baker Lake included $15,175,000$ sockeye-salmon fingerlings, with some 700,000 remaining on hand at the end of the year.

BIRDSVIFW (WASH.) SUBSTATION.
At the beginning of the chinook-salmon spawning season in September the protracted dry weather had reduced the water stages in Grandy Creek to such an extent that successful fish-cultural work seemed impossible. Late in October, however, the greatly needed
rains came, bringing the streams to normal level, and from that date on conditions were generally favorable to good work. The egg collections were therefore successful, and more fish were produced for distribution than for a number of seasons past.

Between September 30 and October 4 . while the drought still prevailed, 38.000 chinook-salmon eggs and more than $4,000,000$ silversalmon eggs were taken, the collecting season extending from October 4 to December 22 . The steelhead work at this point also showed a satisfactory improvement over that of last season, the collections netting 847,000 eggs of excellent quality. No humpback salmon were in evidence in Grandy Creek during the year, but in October approximately 275000 eggs of this species were received from the Afognak station. A small number was sent to central station at Washington, D. C.. for exhibition, while the icemainder was incubated and the young fish liberated locally in continuance of the policy of attempting the reestablishment of the run of humpback salmon in Puget Sound waters during the so-called "off year." No chum-salmon eggs were handled at the station during the year and no fish of this species were taken in the Grandy Creek trap, but it was observed that there was an excellent rim in the Skagit River. large numbers of them appearing on the spawning grounds and apparently in excellent condition.

The output of all species of fish from this station amounted to $8.107,890$ fry and fingerlings, and upward of $1,000.000$ remained in the ponds and troughs at the close of the year.

bRinnon (wash.) substatiox.

This field station was opened on November 2 for the collection of eggs of the late run of chum salmon. During the spawning seasonfrom December 4 to January 8-eggs to the number of $7,410,000$ were taken. After being eyed these were sent to other stations on Hoods Canal to be hatched and the progeny were returned to the Dusewallops River in the advanced fry stage. While such transfers of eggs and fry involve some extra labor, they undoubtedly result in economy, as the expense of operating pumps and maintaining the Brinnon substation during the time required to incubate the eqgs and develop the fry would exceed the cost of the transfers by a wide margin.

> DUCKABUSH (WASH.) SUBSTATION.

There were distributed from this point during the year upward of $14,500,000$ fry and fingerling fish, the species including chum salmon, silver salmon, and steelhead, and approximately $1.250,000$ young fish were left in the ponds and troughs at its close.

In July and August a rack was installed in the Duckabush River near its mouth for the capture of spawning fish from the early run of chum salmon. Because of its low banks rack construction on this river is not an easy matter, and any barrier tending to impede the flow of the stream must be carefully watched to prevent damage from overflow on to adjacent agricultural lands. During the month of September $10,870,000$ eggs were taken, and as this number, together with the eggs expected from the Brimon collecting station, would fill all the hatchery space arailable the collections
were discontinued though spawning fish were still plentiful. Eggs received from Brinnon numbered $5,501,000$, and late in December 80,000 eggs of the late run of chum salmon were taken at the trap on the station grounds.

While the run of silver salmon in Duckabush River appeared from all observations to be greater than that of an average season, the number of eggs secured would seem to indicate the contrary. This is explained by the unfavorable water stages, which interfered with the work to such an extent that only 97 female fish were taken. This stock yielded 260,000 eggs. An additional lot of 780,000 eggs of this species, an orerflow from the Birdsview station, was also incubated. During the spring months 255,000 steelhead eggs were obtained from fish entering the traps.

QUILCENE (WASH.) SU'BSTATION.

The egg collections from fields in the vicinity of the Quilcene station during the year amounted to $9,475,000$, the species including chum and silver salmon and the steelhead. In addition to this stock, eggs to the number of 4,107,290 were acquired by transfer from other fields, 1,657.290 of them being humpback-salmon eggs taken in Alaska waters by employees of the State of Washington. All eggs handled were successfully incubated, and the aggregate output totaled $11,451,200$ advanced fry and fingerling fish divided as to species as follows: Chum salmon, 8.7e9.580; humpback salmon, 1,483,790 ; silver salmon, 752,275 ; steelhead. 545,555 . In addition to the distributions made, $1,310,950$ fingerling fish remained on hand at the close of the year.

SULTAN (WASH.) SUBSTATION.

As at the Birdsview station, low-water stages at spawning time seriously interfered with egg collections during the early fall. 'Thus only 79,000 chinook-salmon eggs could be obtained. these being taken between October 25 and November 4. As at Birdsview, also, the streams reached their normal level before the peak of the silver-salmon spawning season had passed, and under these improved conditions $4,065,000$ eggs were taken, the collections being made between October 25 and January 13. This stock exceeded last year's collection by more than $1,700,000$. Because of lack of hatchery space 650.000 of the eggs were sent to the Quilcene station for incubation. An average collection of steelhead eggs was made during the spring, the spawning season extending from April 8 to June 4.

QUINAULT (WASH.) STATION. [Philo B. Hatwlet, Superintendent.]

In accordance with plans previously outlined for this station, sockeye-salmon propagation, the principal item of the fish-cultural work, was omitted during the fiscal year 1923 except for the distribution of 944,000 fingerlings of that species which had been carried orer from the previous year. The distributions also included 78,000 steelhead fingerlings, the product of the preceding year's egg col-
lections, and 45,000 black-spotted-trout fry, the eggs of which had been transferred from the Yellowstone National Park. The only eggs collected for the station were 410,000 of the steelhead taken at the trap during May in connection with the salmon census. The progeny of these were still on hand at the close of the year.

The counting weir was installed and ready for operation by March 17, 1923. The first count was made three days later, and from then on to the end of June counting was a daily occurrence. The results of the work during this period, together with a record of the daily count for the corresponding portion of the preceding year, are indicated in the following table:

Daily count of sockeye salmon entering Quinault (Wash.) Lake during the fiscal yeur 19.3, showing number of fish marked by gill nets cach day.

Inasmuch as the run of sockeye salmon in Quinault Lake involves a part of two fiscal years, the total run for any one calendar year does not appear in the annual reports. Thus, during the calendar year 1922 fish were running and daily counts were made during the period from March 29 to September 13, 1922, inclusive, and during this time 49,466 salmon passed up the river. These, added to the count up to and including June 30, 1922, give a total of 248,932 fish entering the lake during the full period of the 1922 run. A table showing the daily count for this portion of the calendar year 1922 is herewith appended:

Daily count of sockeye salmon entering Quinault Lake, from July 1 to September 13, 1922.

Date.	Count.	Date.	Count.	Date.	Count.
July 1	1,886	July 27.	818	Aug. 22.	107
		28	728	23.	67
3	2, 191	29	786	24	78
5	1, 446	31.	1,858	${ }_{26}^{25}$	197
6	1,303	Aug. 1	1, 502	27	473
	1,015		1,542		${ }_{2}^{496}$
	1,79	4	682	30.	120
10.	1,092		774	31	135
12.	${ }_{726} 738$		458 300	Sept. ${ }_{2}^{1}$	117 28
13.	922		59		91
14.	1,265	9-..	425		
15.	1,013	10.	483		115
16	${ }_{858}^{694}$	11	${ }_{732}^{416}$		111
18.	891	13.	100		
19.	1,546	14	${ }^{66}$		28
20.		15.			${ }_{40}^{53}$
${ }_{22}^{21}$	1,196	${ }_{17}^{16}$	249 75		40 7
23	1, 459	18.	136		92
	540 1,065	19.	236 158 15	Total.	49,446
28.......	839	21-...-----	176		

An estimate of the probable number of fish that will enter the lake during the full term of the 1923 run, based on a comparison with last year's figures, would place the total for the calendar year 1923 at approximately 150,000 , or about 61 per cent of the large run of the preceding year.

In the census for both the years referred to fully 7 per cent of the fish counted had been marked by the gill nets in use in the commercial fishery near the mouth of the river. Probably not less than 50 per cent of the fish marked were so badly scarred and lacerated that death before spawning time seemed inevitable. This means that one-half of the 9,091 net-marked fish passing through the weir betreen March 20 and June 30, 1923, constituted a total loss not only to the trade but to the work of propagation. Figuring at the current prices for marketable fish, this represents a monetary loss to the Indian fishermen of about $\$ 2,700$.

The escapement for the calendar year 1922-very nearly 250,000 was probably as large as could reasonably be expected, and though comparatively little is known on the subject this number would seem to insure an ample return at the completion of the life cycle
for the maintenance of the species in Quinault Lake, provided the fish find congenial spawning areas and the eggs and resulting progeny are not subjected to untoward conditions. The returns from the natural spawning of these years will be of interest to all observers.

During the spawning season of 1922 conditions were apparently not conducive to the best results from natural spawning. The customary fall rains were much restricted, and neither Quinault Lake nor its tributaries attained the normal high fall levels. At no time in the course of the spawning period did the lake rise to more than 3 feet above the a verage summer stage. As a result the spawning sockeyes were not induced to ascend to the upper reaches of the larger tributaries. Large numbers resorted instead to the smaller streams entering the lake, greatly congesting these limited spawning areas, while the more extensive grounds in the larger streams received only a comparatively few eggs. Never before in the history of the station has such a large number of spawning sockeyes entered Falls Creek, the small tributary on which the hatchery is located. It was estimated that not less than $10,000,000$ eggs could easily have been taken from this stream alone.

Reports having reached the station during December that sockeyes in considerable numbers were returning to the ocean, an investigation was instituted, which indicated that Indians fishing near the mouth of the river for silver salmon and steelheads were taking from 30 to 40 sockeyes daily. All that were examined were typical spawners in a much emaciated condition. It was assumed that becanse of the low-water stages they had remained in Quinault River throughout the spawning season without entering the lake.

During November a five-day trip was made along the upper Quinault River and its tributaries for the purpose of ascertaining the number of fish that had resorted to those waters, the condition of the sparning beds, and other relevant information. Some 12 miles above Quinault Lake the so-called East Fork and the North Fork unite to form the upper Quinault River. The East Fork contains many small sloughs and shallow gravelly stretches, comprising very fair spawning beds. Sockeyes were noted working on these beds as far up as the junction of the Big South Fork with the East Fork, about 18 miles above the lake. At some distance above this point the river contains a succession of rapids and it is doubtful if spawning fish are able to surmount them.

The North Fork appears to be quite lacking in suitable spawning grounds, and no fish were seen in it beyond a distance of 2 miles above its junction with East Fork, though the examination was contimued for a distance of more than 8 miles above that point.

It was estimated that perhaps 25 per cent of the fish reaching Quinault Lake resorted to the upper Quinault for spawning, and that not less than 75 per cent of this number remained in waters below the forks. During the progress of the investigation Big Creek, Merriman Creek, and Inner Creek, all tributaries of the upper Quinault River below the forks and from which egg collections are customarily made, contained large numbers of salmon.

Of special interest in connection with the natural reproduction of salmon in the upper Quinault River are the changing conditions brought about by the destruction of the forests. Local residents
describe this river and its principal tributaries of 20 years ago as streams of moderate breadth flanked by heary timber growth. It the present time this territory is subjected to ever-recurring floods. and the derastated area resulting from the shifting of channels varies in width from one-fourth to one-half a mile, and is noticeable thronghout the entire distance of 12 miles to the main forks.

CLACK.AMAS (OREG.) STATION AND SUBSTATIONS.
[1]crill (. Mrrmelf, superintendent.]
The "pack" of camed salmon from the Columbia River during the calendar year 1922 was one of the lightest in the history of the industry, and the supply of salmon eggs for artificial propagation fell off proportionately at all of the Columbia River hatcheries. both Federal and State. with the single exception of the State hatchery at Kalama, Wash. On the other hand, the number of salmon reaching the spawning areas in the vicinity of the burean's stations was much larger than might have been expected in view of prevailing conditions.

The intensive fishing to which the Columbia River was subjecter during the years 1915 to 1920, inclusive and the comparatively large numbers of fish taken commercially in those years may have been factors in reducing the runs of the past two seasons. Howerer that may be there was a marked improvement in the commercial catcir of chinook salmon at the beginning of the 1923 fishing season, and the greater measure of protection afforded immature fish in the ocean and river by the recent remoral of purse seines therefrom may be expecied to ultimately benefit the fishery.

With the Clackamas station as headquarters, fish-cultural opera1 ions were conducted during the fiscal year 1923 at 12 widely separated points in Washington, Oregon, and Idaho. Seven of these field stations are permanent, being in active operation thronghont the rear. while the others are merely eying stations or egg-collecting anxiliaries.

The aggregate egg collections of the group amounted to $35,3 \mathrm{~h} 1,000$. as against $63,658,000$ the previous year. Of this number 26750.000 were chinook salmon; the remainder comprised such species as silver. chum, sockeye. and steelhead salmon, and the black-spotted trent. Besides the eqges collected in the various fields, $5,000,000$ chinooksalmon eggs were transferred from the State hatchery at Kalama, Wash., and smaller consignments of brook, rainbow, and lake-trout egrs were received at Clackamas from other stations of the burean.

The combined output of the Oregon group of stations in eggs. fry. and fingerling fish amounted to 30540,800 , this number including the fingerling fish carried over from the previous year. The output included three shipments of fish eggs to foreign governments, one of 200,000 chinook-salmon eggs being sent to the Netherlands and two of steelhead eggs going to Germany and Argentina. At the close of the year approximately $1,500,000$ eqgs, fry, and fingerling fish were still on hand.

The use of immature salmon eggs as food for fry and fingerling fish was continued throughout the year on an extensive scale. the station superintendent having found from past experience that this
material. when properly cooked and mixed with beef spleen, makes a highly desirable food for young salmon. As its cost in the Oregon field is very low, arrangements have been made to hold in cold storage upward of 10 tons from the 1923 pack of salmon for the coming year's food supply. The superintendent has also found, after two seasons' trial, that feeding young fish only twice a day produces equally as good results in growth and vigor as are attained by the customary method of administering food more frequently. Aside from large quantities of immature salmon eggs, the principal food materials during the year consisted of salted salmon, camned salmon, and beef spleen.

CLACKAMAS (OREG.) STATION.
Seren species of salmonoid fishes are represented in the fish-cultural work of the year at this station-chinook, silver, chum, and steelhead salmon, brook, black-spotted, and lake trout. Egg collections from the Clackamas River were made between September 23 and November 17, $2,750,500$ of the chinook salmon being taken, together with incidental collections of chum and silver salmon, the numbers amounting to 18,500 and 10,700 , respectively. Transfers from other points included 220,000 brook-trout eggs from Utah, about 75,000 black-spotted-trout eggs from the Yellowstone National Park. 25,000 lake-trout eggs from Minnesota, 45,000 steelhead eggs from the Sandy River auxiliary, and $1,750,000$ chinook eggs from the Little White Salmon substation. A high percentage of fry was produced from all eggs handled except those from Utah. On these a rather heary mortality was experienced and the fry and fingerling fish resulting from them were below the average in vigor.

UPPER CLACKAMAS (OREG.) SI'BSTATION.
In addition to the usual retaining rack constructed in the river just below the milldam, a second rack and a downstream trap were installed at Brions Eddy. Though there was a light run of fish and illegal fishing was prevalent, $85 \pi, 000$ salmon eggs were secured by means of this equipment, and from them a fair percentage of fry was hatched and successfully carried to the feeding stage. On the night of January 6, when the Clackamas River reached the highest stage ever recorded in this region, the hatchery site was practically washed away and the small remaining area covered with logs and débris. The station buildings suffered some damage and it became necessary to abandon the work pending the selection of a new hatchery site. The fish on hand at the time of the flood were all released in the river in good condition.

Considerable work in the line of improvements and repairs to station property was accomplished during the year at this point, the most important being the construction of a new hatchery on the site occupied by the two old buildings that have served in that capacity for a long term of years. Repairs of a rather extensive nature were also made on the water-supply flume, which had been damaged by
snowslides during the past winter, when a serious loss of stock was narrowly averted. The floods occurring throughout the Columbia River Basin in January, 1923, cansed some further damage to this flume and other property. The new hatchery is a frame structure, 40 by 140 feet in dimensions, on a cement foundation. It is equipped with 128 hatching troughs, providing holding capacity for upward of $30,000,000$ salmon eggs during the incubation period.

In the fall of 1922 the usual fishing operations were conducted, and $14,261,000$ eggs were taken between September 22 and October 14. practically all of them being chinook-salmon eggs, though small numbers of chum and sockeye eggs were also acquired. In addition to these collections $5,000,000$ surplus chinook-salmon eggs from the Washington State hatchery at Kalama were handled. Excellent results attended the incubation and rearing operations, and the year's output amounted to $16,743,900$ eggs and young fish. Of this number $12.427,000$ were fingerlings from $1 \frac{1}{2}$ to 3 inches in length. Shipments of eyed eggs were made from the Little White Salmon hatchery to central station, Washington, D. C. . to the State of Oregon, the I'niversity of Washington at Seattle, Wash., to the Netherlands Government. and to other stations of the local group.

BIG WHITE SALAON (WASH.) SUBSTATION.

A considerable amount of work in the line of improvement to property was also accomplished at this point. The hatchery building was moved to a more favorable site, remodeled, and thoroughly repaired. As reconstructed it consists of a frame building, 40 by 100 feet, on a cement foundation. It is equipped with 83 standard hatching troughs, having a capacity for approximately $20,000,000$ salmon eggs.

During the spawning season, extending from September to October 10, 6.237.000 chinook-salmon eggs were obtained from local sparning areas. Five hundred thousand eggs of the silver trout and 235,000 of the brook trout were incubated during the year for the Washington fisheries authorities, and the resulting fry turned back to the State officers for distribution. The total output of young salmon amounted to $6,000,000$ fingerlings, ranging from 2 to 3 inches in length.
liogut river (OREG.) SUBSTATION.
The usual difficulties were encountered in attempting to hold fishing appliances in the Rogue River during the freshets resulting from melting snow in the upper reaches, and conditions would not permit of really profitable work in egg collecting until August 9. From that time until the racks were destroyed by spring floods in the following May fishing operations were diligently prosecuted. The egg collections, including a small number taken in Elk Creek below the dam were:

Fish-cultural operations at this point involved the silver salmon and the steelhead. The spawning season of the former extended from November 28 to January 16, while eggs were taken from the other species between January 16 and May 16, the collections amounting to $2,458,000$ and $3,2666,000$, respectively. The changes made in the fishing racks during the past season proved highly satisfactory, and this improvement, together with the favorable climatic conditions prevailing throughout the season, made it possible to secure a very fair collection of eggs.

The usual transfers of eyed eggs were made, including steelhead eggs, to the Rogue River station, the Oregon State hatchery at Butte Falls, Oreg., and to eastern applicants. The retained eggs produced a remarkably high percentage of fry, all of which were successfully reared to fingerlings No. $1 \frac{1}{2}$ and No. 2 before releasing in local streams. About 600,000 fingerling steelheads remained on hand at the end of the year.

SANDY RIVER (OREG.) SUBSTATION.
The previous year's fish-cultural operations at the sandy River site having proved eminently successful, it was deemed advisable to establish a permanent substation at that point. With this end in view a hatchery building, 29 by 58 feet, of frame construction on a cement foundation, a water supply line, and a fourroom cottage were constructed and made ready for the work in advance of the spawning season.

The numbers of chinook and silver salmon reaching the racks were small as compared with last year's rmo the decline being attributed to the diversion of a considerable portion of the river water supply to the operation of a hydroelectric plant in the vicinity. Notwithstanding this handicap, chinook-salmon eggs to the number of 461,900 were secured, the spawning season extending from August 22 to December 7. Water conditions in the river were improved during the spring months, and between March 31 and the end of the first week in June 832,600 steelhead and 330,600 silver-salmon eggs were collected.

The Sandy River substation is located near the base of Mount Hood, and the winters are sometimes so severe that slush ice occurs in the river. Taking this fact into consideration, provision has been made for the construction of a flume to conduct water from the river and also for an auxiliary flume between the hatchery and Spring Creek. By this means the possible failure of the water supply during periods of intense cold is guarded against.

Tnder normal conditions there is a good run of the highly prized chinook salmon, and also of the steelhead in Sandy Riyer, and the site gives promise of fruitful results at a low cost for maintenance.

WASHOUGAL RIVER (WASII.) SUBSTATION.
This eying station was in operation during the spawning season of the steelhead, from April 13 to May 23. during which period 834,000 eggs were taken. A heary run of fish passed up the river;
but. as in previous seasons, large numbers of them were not sexually mature. All immature fish taken were carried above the dam and released.

> SA1.MON (IDAHO) SUBSTATION.

With the recently constructed buildings near Salmon, Idaho, as headquarters, temporary egg-collecting stations were established in this field on the Lemhi, Pahsimeroi, and Yankee Fork Creeks, and at Sumbeam Dam. The run of salmon was light at all points, but especially so at Yankee Fork, and the work there was abandoned early in the season, it being apparent that eggs could not be obtained in numbers sufficient to warrant the expense of maintaining racks.

A fter being developed to the eyed stage, the eqgs collected from the various streams in this region were transferred to the hatchery at Salmon for incubation. The year's distributions from this substation included $1,124,700$ chinook salmon, 236.000 rainbow trout. and 99.000 brook trout, all fingerlings. The output of the two species of trout was the result of transfers of eggs made from other stations.

A further examination of the Salmon River district was made during the year, and from the evidence obtained on this and previons trips it appears certain that at least a majority of the sockeyes in the Columbia River originates in lakes in the Sawtooth Mountains. The species was first observed in the Salmon River, near Bay Horse Canon, in Angust, and at Sunbeam Dam some 10 days later. It was further noted that salmon entered most of the tributaries of the three rivers inspected. It is not probable that fish enter all these strams in large numbers, but at the time of the inspection each stream appeared to have a run.

BAIRD (CALIF.) STATION AND SUBSTATION.

[W. K. H.л八соск, Superintendent.]
The results of the year's fish-cultural work at all points in the California field were discouraging in the extreme, the egg collections and the output of young fish being the smallest since the inception of the bureau's fish-cultural operations in the State.

While extremely low water stages prevailed everywhere in this region during the spawning season, hampering the run of fish, and other climatic conditions were not altogether favorable, the very unusual scarcity of fish on their wonted spawning areas can hardly be attributed to natural causes alone. The principal reasons for the decline must, for the present at least, be the subject of conjecture. Among the theories advanced have been (1) excessive fishing by purse seines in the lower Sacramento River and (2) loss of fish through their entrance into the numerous irrigating ditches recently constructed.

Peculiarities noted in connection with the season's work at both the substations in the California field were the large size of the few spawning females taken and the excessive numbers of undersized and immature males present. However, at the Baird station, on the McCloud River, the mature females exceeded the males in number.

BAIRD (CALIF.) STATION.

During the month of April, 1922, racks were installed in the McCloud River with the object of securing for incubation eggs of the spring run of chinook salmon. Throughout the spring and summer there seemed to be no well-defined run of salmon, but a few fish reached the barrier every day during the season. Spawn-taking operations extended from September 8 to September 29, by which time 1,521,000 eggs of good quality had been laid down in the hatching troughs. This number compares favorably with the work of the past few years.

Because of the depth of water and the uneven nature of the bottom of the pool in which the fish were held pending the development of their eggs, it was not an easy matter to capture them for spawn taking. They refused to enter the traps, and gill nets were ineffective. Seining after dark proved to be the best method, though a considerable number evaded any method of capture that could be devised, and these were finally permitted to pass the racks to spawning sites of their own selection.

Eren for that arid section of the State the season was an unusually dry one, and water for the hatchery through the gravity supply ditch was not available. To avoid the expense of pumping water from the river an improvised battery of troughs was set up on the grounds and supplied with water from a small spring. By careful management this small amount sufficed until the eggs had about completed hatching, by which time it became necessary to move the stock into the hatchery and start the pumps. From October 6 until the last of the fish had been distributed, in March, the pumps were kept in continuous operation, the necessary amount of water not being available from any other source.

At the close of the spawning season of the spring run of salmon the racks were removed from the river. as appearances did not indicate that the fall run would be of sufficient importance to warrant the cost of egg collections. Furthermore, after the customary fall rains set in it is only with the greatest difficulty that racks can be maintained in the McCloud River, and should the expected rains fail, as proved to be the case, the available water supply is sufficient only for the eggs already on hand. The racks were again installed during April, 1923, for the interception of the spring run of the succeeding season.

A close watch was kept on the dam in the Sacramento River near Redding, to note the effectiveness of the openings in the "splash boards " in permitting the passage of fish. The station superintendent has expressed the opinion that these openings probably serve their purpose as adequately as could the conventional fishway. He states that such fish as find the openings pass readily over the dam, but that a large number fail entirely to find them, and are thus prevented from reaching suitable spawning places.

During the year reports reached the superintendent to the effect that adult salmon in numbers were entering the irrigation ditches. Such reports could not be substantiated, however, and the several visits made to the points complained of indicated that the screens were intact and properly installed.

As at the Baird station, the season at this point was marked by scarcity of rainfall, with low-water stages in all the surrounding streams. The fishing racks were installed as usual, but active fishing operations, conducted from October 19 to Norember 28, resulted unsatisfactorily. Seining on the riffles in the Sacramento River below the mouth of Battle Creek proved equally unremunerative, and when the attempt was finally abandoned there were $1,587,000$ eggs in the hatchery.

As previously mentioned, the season's run of fish was unique, both on account of its small size and because of the nature of the fish comprising it. The few sexmally matured females taken were unusually large, yielding an average of 6,000 eggs per fish. However, the majority of the rim was composed of immature males.

In past years attempts have been made to procure eggs of the spring run chinook salmon at various points on Battle Creek, but the attempts have nerer met with success. The early rum appears in the stream in the spring or early summer, but the fish are not in sparning condition until late Jugust or carly September. The great dificulty thas far encountered in this field has been to find a suitable place with a sufficiently low water temperature for holding the fish throngh the hot summer months pending the maturity of their eggs.

It has been ascertained that the water temperature below the dam of the Coleman Power Co. plant, some 4 miles from the Battle Creek hatchery, averages from 5° to 6° lower throughout the entire summer than at any of the other points investigated. Becanse of this favorable condition it seems probable that successful work may be accomplished below the dam, and with the riew of determining this point racks were installed late in May for holding a limited number of fish for observation.

MILL CREEK (CALIF.) SUBSTATION.
The total take of chinook-salmon eggs at this point amounted to 791.000 , being the smallest secured since fish-cultural work was first inangurated there. The reasons ascribed for the failure of the fish to appear have been mentioned, but they are far from satisfactory. The drought conditions extended to this station, but in August, when the racks were installed. the creek was entirely dry, all of the natural flow having been diverted for irrigation purposes. Spawn taking began October 29 and was continued to December 27. As at Battle Creek, practically the entire run of fish appearing at the racks in Mill Creek was composed of immature males.

GREAT LAKES FISHES.

The territory corered by the wrork in the propagation of the commercial fishes coming under this hearl extends from Lake Su perior on the west to Lake Champlain on the east, and, with the possible exception of salmon propagation. it is the most important branch of the burean's fish-cultural activities. The commercially valuable fishes of the Great Lakes are the lake trout, whitefish,
cisco, and pike perch. In addition to these, carp and yellow perch have become commercially prominent and large numbers of their eggs are hatched annually and the product returned as fry to parent waters. The total egg collections of this group of stations in 1923 was approximately $1,082.000,000$, showing a decrease of about 467 .000,000 as compared with this branch of the work last year. The largest part of this decrease occurred in the cisco and pike perch, and the principal canses for it may be attributed to unseasonably cold weather during the spawning period and lack of sufficient funds for prosecuting the work to its fullest extent in some of the fields occupied. Owing to the latter circumstance the pike-perch hatchery at Swanton. Vt., was not operated.

DULUTH (MINN.) STATION.

[S. P. Wrres, Superintendent.]

Collections of eggs of the lake trout for stocking the Duluth hatchery were made at the usual field stations in Lake Superior during the fall. the spawning period extending from September 25 to November 15. Eqgs to the number of $16,132,000$ were secured, and on November 2.5 this stock was increased by the receipt of $6,000,000$ green egrgs from the Charlevoix (Mich.) field. The eggs from Lake Superior were of good quality, but for some reason the transferred eggs were exceptionally poor. Eyed eggs to the number of 525,000 were furnished to applicants, and 250,000 were forwarded to other stations of the burean; the remainder were hatched and the product returned to the spawning gromeds in Lake Superior, the distributions aggregating 13,170.000 fry and $\dot{8} 5,000$ No. 1 fingerling fish.

The whitefish eggs handled during the year-5,060,000-were collected in connection with the lake-trout work at Isle Royale, Mich. Notwithstanding the fact that they were secured under rather unfavorable conditions. $2.570,000$ fry of excellent quality were hatched from them and returned as fiy to the native spawning grounds.

Is a result of cooperative work bet ween the station and the Minnesota Fish Commission in the collection of pike-perch eggs in the Rat Root River region of Minnesota, the station received as its share of the proceeds $25,000,000$ eggs, $5,000,000$ of which were eyed. The green egge, received May 5, appeared to be in good condition on delivery, but within 48 hours after installation in jars it was discovered that the loss would be heavy as not more than 15 per cent were fertilized. From the entire stock $7,630,000$ fry of good quality were hatched and distributed, going to applicants in Minnesota, Wisconsin, and Michigan.

The brook trout listed in the distributions from the Duluth station resulted from 147,000 eyed eggs acquired by purchase from a commercial breeder, while the rambow tront were carried over from the hatch of the preceding year. A consignment of 100,000 steelhead eggs, received from one of the burear's substations in Oregon on May 24 , yielded a total of 90,000 fry and fingerling fish.

Of passing interest in connection with the incubation of the laketrout eggs was the unusually large percentage of albinos resulting from a lot of eggs obtained at Isle Royale, Mich. These eggs-about

100,000 in number-arived at the station early in October, and approximately 5 per cent of the 70,000 fry hatched from them were albinos. So far as could be learned there was nothing unusual in the appearance of the parent fish. The albinos were reared with the colored fish without undue loss.

NORTIIVLLLE (DICH.) STATION AND SUBSTATIONS.
[IV. W. Thayer, Superintendent.]
NORTHVILLE (MICH.) STATION.
Distributions of smallmouth black-bass fingerlings Nos. 2 and 3 to the number of $1+, 475$ were made during the first month of the fiscal year, and in October the brood stock of this species was increased to a total of 500 by the addition of 100 adult fish derived from collections in Lake Erie. In the spring, when the water in the ponds containing these fish was drawn down, only about 300 could be found. It is impossible to account for the shortage, as no such loss of brood stock has ever occurred heretofore. The available adults were installed in spawning ponds on May 3 and began nesting a few days afterwards. On the evening of May 8 a heary snowstorm of 24 hours duration set in, causing a drop in water temperature from 65° to 41° and destroying all nests of eggs in the ponds at the time. As soon as the temperature returned to normal spawning was resumed, and in the course of the season 75 nests of eggs were deposited. At the close of the year 48.500 bass fry and fingerlings No. 1 had been gathered from these ponds and distributed, and it was estimated that about 50,000 were still a a ailable.

To relieve the conditions existing at the Alpena substation in connection with an unsuitable water supply, part of the green laketrout eggs at that point were transferred to Northville and carried until they were near the hatching stage, when they were returned to Alpena.

During the winter 345,120 eyed brook-trout eggs were received from a commercial dealer in Massachusetts. These were of fine quality and produced a good percentage of healthy fry. All but 28,1000 of these fish had been disposed of before the end of the year. The station also handled 126,000 eyed rainbow-trout eggs furnished by the Miehigan fisheries authorities. The fry produced from these were still on hand at the close of June.

A brood stock of adult bluegill sunfish, collected from a lake near Vicksburg, Mich., was installed in a spawning pond early in May. A few nests were observed in this pond during the spring, but the results of the experiment can not be determined mintil the water is lowered in the fall.

CHARLEVOIX (MICH.) SUBSTATION.
In arranging for the collection of lake-trout eggs for filling the Charlevoix hatchery the procedure of past years was followed so far as was possible, experienced men being stationed at the best fishing ports on Lakes Michigan and Huron to instruct local fishermen as to the proper manner of taking spawn and caring for it during the early stages. However, a sufficient number of men experienced in
the work could not be found to cover all fields and at some points local help had to be employed to perform this important duty. Under such circumstances it was impossible to secure a uniformly good grade of eggs, and while the season's collections-amounting to $55,640,000$-were considerably in excess of the total of any year in the recent past, their quality was far below the desired standard. The collecting season extended from October 31 to December 22, and the incubation of the eggs was completed at the expiration of 140 days in a mean water temperature of 38.5°.

The salt-solution process was employed almost throughout the season for separating poor eggs from the good ones, thereby effecting a large saving in the employment of temporary help. In connection with the work it was discovered that good eggs were being carried out of the troughs with the discarded ones, and a method was at once devised and put in operation by the assistant in charge of fish culture, which conserved practically all good eggs.

Collections of whitefish spawn were made at various points in Lake Michigan between November 16 and December 30. the season's total aggregating $16,660,000$. This stock was augmented in December by the receipt of the partially incubated egge from the Alpena hatchery, though most of the transferred eggs were returned to that point just prior to the hatching stage. The incubation of the eggs was completed at the end of 180 days in a mean water temperature of 39°. In order to effect any considerable improvement in whitefish propagation in this region it will be necessary to provide penning facilities at suitably located points for the holding of the partially ripened fish until their eggs are fully matured. Some investigations are now being made with the view of establishing several of such stations as soon as funds are arailable for the purpose.

Early in April 15,827 eyed eggs of the landlocked salmon were received from the burean's Craig Brook (Me.) station. They were hatched with not more than normal losses and carried in good condition until about the time when the sac was absorbed. at which period the water supply became polluted from the exhaust of the city water-works engine and one-third of the stock was lost. The remainder was delivered to an applicant for that species.

ALPENA (MCH.) SUPSTATION.

While whitefish and lake-trout eggs are collected annually in the Alpena field, for several years past no attempt was made to incubate them in the Alpena hatchery, as the city water supply, upon which the substation is dependent, was so heavily charged with chlorine as to be very injurions to eggs or fry held in it. Having received information that the conditions in this respect had improved someWhat, the hatchery was stocked by the burean during the fall of 1922 with whitefish and lake-tront eggs secured in the immediate region. It quickly dereloped, however, that the water supply was still detrimental, and all stock on hand had to be transferred, being divided between the hatcheries at Charleroix and Northville. Acting on advice from the city authorities that the contemplated operation of a filtration plant in course of construction would obviate the necessity of chlorinating the water after March 1. 1923. the eggs sent to other points earlier in the season were returned to Alpena:
just prior to the hatching stage with the view of effecting some economy in the distribution of the product. Owing to a delay in starting the plant the use of the chlorine was not discontinued, and to aroid the threatened loss of the entire stock all eggs and fry in the hatchery were liberated on March 23 on the local spawning grounds, after which the hatchery was closed.

PUT IN BAY (OHIO) STATION.

[S. W. Downing, Superintendent.]
The season's arrangement for the collection of whitefish eggs in the Lake Erie fields having been completed by early November, it was deemed advisable to place men in the collecting areas around Toledo and Port Clinton in adrance of actual spawn-collecting operations to give instructions to the various fishermen as to the proper manner of taking the eggs and caring for them until they could be turned over to the bureau's agents. Between November 14, when the first eggs were taken, and the close of the season on December 4 the collections amounted to $242,720,000$, approximately $143,000,000$ less than were secured last year. Of this number 104,000,000 were obtained in the Port Clinton field; North Bass Island, the field of next importance, yielded $75,000,000 ; 17,720,000$ were taken in the ricinity of Middle Bass Island; while collections only a little in excess of $15,000,000$ for each field were secured in the neighborhood of Toledo and Catawba Island. Slightly more than $11,000,000$ were taken in the vicinity of Put in Bay, while at Pelee Island, Canada, 3,440,000 were secured.

The comparatively poor results of the work are attributable to the natural conditions existing during the spawning season. The water seemed to contain a great quantity of slime, and the spawning fish and the eggs had a decidedly soft, slimy feeling. The eggs failed to harden properly even under the most careful treatment. Information was received to the effect that the same conditions were met with throughout the Great Lakes region, but the situation is beliered to have been intensified in the Lake Erie fields, both by the unusually high water temperatures prevailing and by the steady westerly winds, the latter resulting in such low water stages at the western end of the lake that the sediment and slime at the bottom were washed up and mingled with the general supply. Late in the spawning season. after the winds had subsided, the water cleared and there was a noticeable improvement in the quality of the eggs taken during that period.

Of the egos. collected, $28,000,000$ were shipped direct from the field to the Erie hatchery of the Pennsylvania Fish Commission, and 22.400 .100 fertilized eggs were planted on reefs near the Put in Bay hatchery: 3,000,000 eyed eggs were forwarded to applicants and other hatcheries of the burean, and from the remaining stock 100 ,000,000 fry were hatched and liberated on the spawning grounds. On account of the poor quality of the eggs as a whole, the percentage of hatch wat about the lowest ever recorded at the station.

Early in the spring all prospects for a good collection of pikeperch eqgs appeared farorable. The ice disappeared from the western end of the lake early in March. and for the first time in several
years the fishermen were able to set their nets at the beginning of the open season. The weather turned cold a few days afterwards. however, and the anchor ice formed by the heary winds and snow became attached to the nets in large quantities, cansing them to float. and some of them drifted away with the current to such a distance that they were never recovered. The sparming seaton extended from April 19 to May 6 , and the storms prevailing throughout this period injured the nets so badly that the time of the fishermen was largely employed in making repairs, to the detriment of egg collections. Of the season's total-aggregating 192.4 40,000 eggs to the number of $37,275,000$ were delivered in the green state to the Ohio Fish Commission, and $4.500,000$ eyed egos were shipped on assignment. The fry resulting from the remainder-amounting to 51.800 .000 -were liberated in the vicinity of the collecting fields in Lake Erie.

In connection with the pike-perch work, 900.000 enges of the sanger (Stizostertion canculense) were obtained from fish taken in a trap net. These were incubated in the hatching jars without any difficulty and almost without loss, yielding orer 90 per cent of healthy firy. The eggs are heary. slightly adhesire and measure 17 to the linear inch after being fully water hardened. Ah previons experience with sanger eggs at this station has been with spawn from fish taken in gill nets, and thongh the eggs have invariably been handled with the utmost care, in no instance have any fry ever been hatrhed from them. This would seem to indicate that the manner of capturing the fish has much to do with the quality of the eggs. The season's collections also inchuded $3.4+0,000$ yellow-perch cogs. from which 3.000 .000 fry were hatched and planted.

Very successful results were obtained in the propagation of carp. Eggs of this species were taken between June 1 and June 20 and a total of $160,500,000$ was secured, this record exceeding that of any previous year since the inauguration of the work in 1918. The field of collection was extended to Sandusky Bay, where spawning fish were found to be rery plentiful, and by this means a far greater number of eggs was secured than would have been possible from the Portage River alone. All eggs taken were of excellent quality and yielded a good percentage of fry. In making the distributions the fry were liberated over a distance of 12 miles in the Portage River. from Port Clinton to Oak Harbor.

A very unusual difficulty was encountered about the middle of December. Ninnows in immense numbers, moving along the shores of the lake, were taken up in the water supply suction and carried against the screens of the tanks, which became so clogged with them as to be of no practical use. A few strokes of the pump would result in complete obstruction. and for three nights the entire station force was occupied in keeping the spigots free of minnows.

During the year the station steamer was placed in dry dock, all barnacles and rust removed, and the bottom painted with two coats of tar thinned with turpentine and applied with a common paint brush. This material has been used for several years for this purpose and has been found to be entirely satisfactory.
[J. I'. Snyder, Superintendent.]
The repair work in progress at this station at the opening of the fiscal year was completed during the summer. Among the more important items accomplished were the following: Construction and installation in the fry building of two plank metal-lined tanks 17 feet long, 36 inches wide, and 30 inches high; removal of a defective hardwood supporting timber in the basement of the hatchery and replacing it with a new one; placing metal plates along the water line forward to protect the planking of the launch Curlew, and installing an electric-lighting plant on this launch. There being an excess of exhaust steam above the amount required for heating the hatchery, an underground exhaust-steam line was run to the residence and connected with the heating plant. The return pipes were carried back to the hatchery, where provision was made to use the hot condensed water in the boiler a gain.

A new 28 -foot pound-net boat was purchased in advance of the fish-cultural season. This boat has a 9 -foot beam and is equipped with a 14 -horsepower, 2 -cylinder, 4 -cycle Regal motor. The shaft is fitted with a universal joint to permit the lifting of the wheel when rumning through shallow water.

The season's fish-cultural operations began on October 17 with the taking of the first lake-trout eggs in the Pigeon Island. Canada. field. The collections extended to November 12, and as they were conducted under favorable weather conditions more eggs than usual were secured, the total amounting to $1,281,000$. Of these, 60,000 were shipped in the eyed stage, and the losses on the remainder to the time the resulting fry were distributed amomnted to 11 per cent of the eggs retained for hatching. Very poor results were attained from a consignment of $4,880,000$ green lake-trout eggs received in November from the Charlevoix (Mich.) substation. Nearly half of them were dead on arrival, and the losses continued heary up to the middle of January. The output from this shipment amounted to 480,000 eyed eggs and 595,440 fry.

Permission having been obtained for the collection of whitefish spawn from nets operating along the Canadian shore of Lake Ontario. work was undertaken on the 1st of November at Bygotts Point and Deseronto, in the Bay of Quinte, and at a later period in the South Bay field. No eggs having heretofore been available on these grounds prior to November 3, it was assumed that the landing of the spawning crew on Norember 1 would be sufficiently carly, but on the arrival of the men it was learned that the fish had been spawning for several days and that considerable numbers of eqgs had been lost. No explanation can be offered to account for this spawning. as the season began later than usual in the field near South Bay. Ontario, and also in Chaumont Bay, in the New York waters of the lake. Notwithstanding these losses of eggs the jars in the Cape Vincent hatchery were filled to capacity before the season closed, and 77.009 .000 additional eggs were furnished to the Canadian and New York fisheries authorities. The total collection for the season aggregated $228,650.000$. of which $214,000,000$ were obtained in the Canadian fields, and $14.650,000$ in Chammont Bay.

In the incubation of these eggs considerable difficulty was experienced from the presence of a parasitic or fungoid growth, which interfered with the proper separation of the dead from the living eggs. As the season advanced the eggs became so coated with this lairlike formation that they would not lie together closely in a uniform mass but were more or less suspended in the water current. To overcome this tendency the jars were taken down and the eggs screened and washed. This improved matters for a short time, but within a few days the treatment had to be repeated. This constant screening and washing, which had to be resorted to throughout the incubation period, not only involved much additional labor but it is believed also to have increased the percentage of mortality.

Cisco eggs to the number of $76,800,000$ were collected between November 22 and December 9 in Fairhaven, Sodus, and Chaumont Bays, in New York waters, the first-named bay furnishing the bulk of the collections. Although the catch of cisco by commercial fishermen during the summer and early fall was above the average, for some unexplained reason the take during the spawning season was far below normal and egg collections were correspondingly reduced. On the development of the eggs to the eyed stage a shipment of 10 ,000,000 was furnished to the Michigan Department of Fisheries, and from the remainder $39,000,000$ fry were hatched and distributed on the spawning grounds in Lake Ontario. Part of the losses on these eggs was due to the fungoid growth referred to in connection with the whitefish work.

During the winter the station received 553,000 brook-trout eggs from commercial hatcheries and distributed the product in the fry stage. A very satisfactory percentage of hatch was attained and the resulting fry did well up to the early part of April, when a weakness developed. Grouped together the young fish presented a whitish cast, and under the magnifying glass patches of mold or fungus became apparent. All except the more badly affected ones were restored to normal condition by applying a salt bath and then placing them in a village water supply.

In the course of the year the station received and hatched 100,000 eyed rainbow-trout eggs received from the Michigan Department of Fisheries, and 1,500,000 pike-perch eggs transferred from the Put in Bay (Ohio) hatchery. Under permit from the New York Conservation Commission several hundred brood yellow perch were captured in the St. Lawrence River and from them 1,000,000 eggs were collected, the adult fish being returned to the river at the end of the spawning season. The eggs were incubated in sunken wire baskets and the resulting fry were returned to the local spawning grounds.

BRYANS POINT (MD.) SUBSTATION.
[I. G. Harron, Superintendent.]
Between the 4th and the 18th of March a total of 17,999 brood yellow perch was collected and installed in live cars near the Bryans Point station to serve as a source of egg supply for the hatchery. The fish spawned daily from March 18 to March 30, yielding 146.560,000 eggs, of which $9,165,000$ were shipped, one consignment of $7,800,000$ going to the Neosho (Mo .) station and the remainder being
divided between the Wytheville (Va.) and Erwin (Tenn.) stations. From those retained $130,525,000$ fry of excellent quality were hatched. With the exception of $2,000,000$ fry, which were forwarded to a fish and game protective association at Phoenix, Pal., the entire output of the station was returned to the spawning grounds in tributaries of the Potomac River.

BUFFALOFISH.

ATCHAFALAYA (LA.) SUBSTATION.

[C . F . Culler, in charge.]

The work of putting this substation in readiness for buftalofish propagation was taken up on January 17 by a force of detailed employees under the immediate direction of the field foreman of the Mississippi River rescue station. Eggs were taken from February 15 to March 5, but natural conditions in general were unfavorable. The spawning of the fish was retarded and the egg supply curtailed by the prevailing cold weather, and the quality of the eggs secured was impaired by the abnormally low temperature of the water in the hatchery, which at no time during the collecting season attained 56°.

Probably because of the unusually high water stages and the low temperatures prevailing, the fish deserted their customary spawning places almost without exception and sought new ones. On March 5 a considerable rise in the Ouachita River resulted in flooding the surrounding lowlands and polluting the hatchery water with the oily and alkaline substances with which this river appears to be charged. Under such conditions the run of fish in the Atchafalaya immediately ceased and the entire stock of eggs in the hatchery was killed. From that time to the end of the season all eggs taken were fertilized and immediately returned to the sparning grounds from which derived, the number thus treated- $128,114,500$-including the bulk of the season's collections. The total output of fry amounted to only $5,925,000$, these being the product of the earlier eggs taken.
In the course of the season an attempt made to incubate eggs in water from the recently constructed artesian well at this station resulted in failure, the eggs proving a total loss within 24 hours after the test was started. The water appeared to be of an oily nature and was rery roily. Its temperature at the well registered $72^{\circ} \mathrm{F}$.

The experience gained as a result of two seasons' efforts on the Atchafalaya River would seem to demonstrate the advisability of abandoning the present site and relocating the station at some point where the quality of the water supply for the hatchery is more suitable and dependable. It is believed that such a site can be found in the section north of the Red River, and it is recommended that an inspection of this territory be made in advance of another spawning season.

MARINE FISHES.

At the stations engaged in the propagation of the marine fishes the work during the year was chiefly concerned with the cod, pollock,
haddock, and winter flounder. The aggregate output of these species amounted to 2,733,337.000 fertilized eggs and fry, this number, as compared with that of the previous year, showing a shortage of about $570,000,000$. Two important spawning grounds of the winter flounder-in the vicinity of Newport, R. I., and Nantucket, Mass.-were not occupied. Some collections have been made in the former field in the past, but in the absence of a suitable boat none was undertaken last season. No egg collections have ever been made in the Nantucket field, but the information at hand would appear to indicate that with proper facilities very profitable returns might be expected, as hundreds of tons of winter flounder are annually caught around Nantucket and shipped to the market.

Despite a tendency in some quarters to the belief that the artificial propagation of the deep-sea fishes is of little practical value, the general trend of opinion among the more prominent fishermen is favorable to a continuation of the work. Speaking generally, the fishermen are deeply interested and in nearly all cases they are zeatous in their efforts to assist the burean in its egg collections. Some years ago most of the fishermen of this region were opposed to the placing of spawn takers on their boats. Now they not only permit the presence of the spawn takers but assist them in many ways in the conduct of their work.

BOOTHBAY HALBOR (ME.) ST.ATION.

[E. E. HAliN. superintendent.]

As in past years, everything possible was done during the spawning season to secure eggs of various marine fishes but without success except in the case of the winter flounder. No pollock were obtainable from the Gloncester field. no haddock or cod could be found anywhere along the eastern Maine coast, while alewives came on to the fishing grounds in very small numbers and none of them was in spawning condition.

The usual preparations were made to take up winter-flounder propagation late in February, but all efforts to secure a brood stock at this time were rendered futile by heavy ice fields on the fishing grounds, abundant snowfall, and freezing weather, these conclitions predominating up to the beginning of the third week in March. On March 20 the first capture of fish was made, and four days afterwards the first eggs were taken, the spawning season being fully two weeks later than in any preceding year since the station was established. From that time on the outlook brightened. Over 60 fyke nets were scattered over an area extending from Casco to outer Penobscot Bay and were vigorously fished to the close of the spawning period on May 10. the steamer Gannet attending the more distant nets, while those within easy reach of the station were looked after by motor boats and dories.

In the course of the season nearly 5,000 brood winter flounder were captured, and as the majority were of unusually large size the egg yield was good, amounting to $943,316,000$. These were of uniformly good quality and from them $866,800,000$ fry were produced and distributed, the percentage of hatch being a trifle under 92. The fry were sent out in ordinary transportation cans and
planted by means of the station steamer and several motor boats on the spawning grounds from which the eggs were derived.

A peculiarity in connection with the work was the scarcity of winter flounder in Linekins Bay, heretofore the most prolific field covered by the station operations. This year practically no results were obtained from the nets set in the bay, while those in eastern waters yielded a large number of fish of greater than average size.

During the year a large amount of minor repair and improvement work was done on station buildings, boats, machinery, and other equipment, practically all of it being accomplished by the statutory employees attached to the station.

A most interesting and educational exhibit of the marine life of the region was maintained in the hatching room of the station during the summer months and attracted a large number of visitors. The exhibit was discontinued early in September to save fuel.

GLOUCESTER (MASS.) STATION.
[C. G. Corliss. Nuperintendent.]
A number of important items of repair work were made at this station during the year. New joists and new double flooring were laid in the hatchery and the roof of the building was reshingled. The boiler and pump house was enlarged to permit of the installation of a new horizontal boiler and a better arrangement of some of the machinery. To increase the amount of working space two small wooden extensions set on concrete foundations and conforming in style to the old construction were annexed to the sides of this building, and a concrete pit, 4 by 11 feet in area and 3 feet deep. was built into the extension of the pump room for the condenser and circulating pump.

The outer end of the wharf was extended 9 feet along its entire front, thus giving greater stability to the entire structure and permitting of the projection of the suction line into deeper water. Other needed repairs were made to the foundation of the wharf, and sereral important changes were made in the steam plant with the riew to increasing its efficiency and effecting economy in coal consumption.

In the prosecution of the pollock work the same adverse conditions contended with last year were again in evidence, operating in some respects with even greater force than in 1922, and as a result the collection of eggs was greatly reduced as compared with the average of recent years. There appeared to be an abundance of pollock on the inshore fishing grounds, but, owing probably to food conditions. the fish were constantly shifting about. This not only curtailed the daily catch of fish, but entailed a serious loss of time in resetting the nets.

The unnsually small force of spawn takers available for making eger collections was compelled by circmmstances to work on smaller. fishing boats than formerly and with a few exceptions these boats were equipped with old nets, which had to be favored in had weather, thus causing the loss of many days when fishing might have been profitably conducted had proper equipment been available. All these factors operated to reduce the egg collections.

The spawning season opened November 11, fully half a montla before pending repairs to the steam plant could be completed, and during this period the $33,960,000$ eggs taken had to be fertilized and returned to the spawning grounds. In all, 418,9:0,000 eggs, were -ecured, the last collection being made on February t, and from the $379,000,000$ incubated $275,+10,000$ fry were hatched and released in suitable coastal waters.

Despite the fact that fishing operations were serionsly curtailecl by the severe weather prevailing during the winter and early spring, the collection of col eggs was the largest erer made for the Cilonrester station. Though small, the daily receipts thronghout Docember, January and February were fairly uniform. In March the -upply was substantially increased, but the majority of the collections were receired in April and May. Inshore fishing was mu h helow the areage in volume, the daily catches for the most part running small, but this decline was more than oftset by the unusually large numbers of ripe fish taken. The receipts of eggs from the beginning of the spawning season (December !) to the closing day of the collections (May 24) aggregated $605,960,000$, besides consigments to the number of $32,970.000$ surphes eggs thansferred from the Woods Hole hatchery.

During the period of the spring freshets it became necessary to discontinue shipments from the collecting fields to the hatchery and plant the fertilized eggs on the spawning gromeds. The number thus treated amounted to $277,500,000$. Including the transiers from the Woods Hole station, 36.,4.0,000 cod eggs were incubated in the hatchery, yielding a total of $245,140,000$ fry for distribution.

The season's collection of haddock egges, made between March 2. and May 11, was the smallest secured in sereral years. The calles, responsible for this were (1) extremely cold weather dmeng the early spring, (2) scalcity of brood fish on the inshore spawning grounds, and (3) the unisually small number of boats engaged in fishing. The spawning season opened extremely late, and while several large captures of fish were made late in March, no ripe ones were among them. At times during the season, weather conditions were so unfavorable that it was impossible to hat the nets for periods of three to five days at a time, and. when finally landed, all the fish taken in them were dead and their eggs a total loss.

Notwithstanding the many difficulties encountered, over 100,000,000 eggs were secured during April and early May, thongh most of them. owing to the unsuitable condition of the hatchery water at this time, had to be fertilized and immediately returned to the grounds where taken. Only $2,960,000$ haddock fry were produced at the station in the course of the season, and these were released in waters near Cape Ann.

There was a great scarcity of winter flounders in Massachusetts Bay during the spring, and in the absence of commercial fishing for that species in the vicinity of Cape Ann, the station was compelled to rely upon fyke nets for its brood stock. The station nets were set as soon as the ice left the harbor, and by this method 194 gravid fish were taken between March 14 and April 27. This stock yielded $78,230,000$ eggs, and from them $68,760,000 \mathrm{fry}$ were obtained for distribution.

WOODS HOLE (MASS.) STATION.
[W. II. Thomas, Superintendent.]
This station experienced the most successful year's work in its hastory in the propagation of cod. the egg collections of that species amounting in round numbers to $670,000,000$, while the output of cogs and fry agregated $505,153.000$, or nearly three times the numher produced the preceding year.

Much difficulty was experienced during the fall in effecting satisfaciory arrangements for the delivery of brood cod as a source of coge supply. An extended search disclosed that all the fishing ressels heretofore performing this service had either been lost or had taken up other lines of work. Howerer, a small ressel suitably equipped for the purpose was finally engaged to transport cod to be furnished hy a trap owner on the commercial fishing grounds, and while the deliveries were sometimes delayed by storms the station secured by this means an! exceptionally fine brood stock of 2.812 cod areraging (6.91 pounds in weight. In past years, when purchasing stock direct from the ressel owners making the deliveries, the bureau has foumd it expedient, in order to retain their full cooperation, to accept ali fish landed regardless of sex. Under this year's arrangement it was deemed advisable to effect an agreement with the trap owner to furnish fish in the proportion of 2 males to 3 females. This plan worked so well that it will be followed hereafter.

During the spawning season, extending from late November to the middle of February, $555,584,000$ eggs of good quality were realized from the brood stock, this being the largest collection ever made from fish spawning naturally in the station cod basin. In an effort to augment the egg supply, a force of temporary spawn takers was engaged to collect cod spawn in Cape Cod Bay. In connection with this undertaking the station steamer was utilized not only as living quarters for the men but to gather up the spawn and transport it to Sandwich. Mass.. from which point it was conveyed to the hatchery by the station truck. As soon as the hatching season opened double service was performed, consignments of fry being taken to Fandwich on the daily trips of the truck and from there transported he the steamer to be planted on the natural spawning grounds from which the eggs were derived. Work in this field extended from October 30 to the end of December, and the egg collections aggregated 114.145.000.

Information was received early in the season to the effect that cod eggs in profitable numbers might be secured in the vicinity of Plymouth and at other points along the Massachusetts coast, but the limited funds available would not permit of the conduct of operations in these areas.

Erery season for some years much additional labor has been entailed and unaroidable losses of cod eggs sustained through the clogging of screens on the inner hatching boxes, the trouble usually being much worse during January and February than at any otherperiod. I careful examination conducted by the scientific assistant last season when the difficulty was at its height disclosed the presence in the water supply of immense quantities of diatoms and other minute organisms of many different forms. Enormous numbers of
diatoms were found throughout this region, Buzzards Bay, and Vineyard Sound, and great numbers were carried into Great Harbor (Woods Hole) by the strong currents and winds. It was noticed that after a thaw or heavy rain a considerable increase in the number of diatoms occurred, while repeated observations indicated that this was not a mere coincidence. A possible explanation may be that the drainage from the land increases the necessary food products of the diatom in these local waters. The particular diatom (Rhizosolenia alata) that usually interferes with propagation of cod at Woods Hole does not ordinarily occur until the temperature of the harbor water drops to about $35^{\circ} \mathrm{F}$. It is not possible to relieve the situation by changing the source of water supply.

The best results are obtained in cod propagation when the water temperature is from 42° to $47^{\circ} \mathrm{F}$. Therefore it is proposed hereafter to heat the water used in cod propagation at times when the temperature falls below $4 \pi^{\circ}$, and to maintain the supply at a point 5° above the temperature of the harbor water until the cod work is completed. Owing to the arrangement of the heating pipes in the hatchery, this undertaking will entail no additional expense.

As in past years, operations were conducted in Waquoit Bay for the purpose of obtaining a brood stock of winter flounder, this work extending from January 16 to March 20. Though prosecuted with the utmost vigor, the efforts to this end were rendered almost negligible by the difficulties met with. Not only were weather and road conditions such that it was often impossible to attend the nets for several days at a time, but there were very few fish on the spawning grounds. It was ascertained that one 42 -foot fishing boat operating just outside the entrance of the bay early in November. just at the time the fish were beginning to enter it. had cleared a profit of $\$ 1,400$ as a result of 10 days' fishing. This boat must have taken approximately 7 tons of winter flounder, representing about 9.000 fish, and it is possible that to the operations of this and other ressels may be attributed the unwonted scarcity of fish in this field. The efforts to obtain a brood stock of this species were also extended to the Wickford (R. I.) field. Work there was undertaken on Mareh 16, but the returns up to April 4 were so poor that the attempt was abandoned. The total collection of eggs from fish taken in these two fields amounted to only $369,865,000$, less than one-third the number secured in 1922.

On February 17, when hatching operations were in full swing, the water supply was shut off by the freezing of the suction pipe. To meet the emergency thus created the Const Guard steamer Acushnet agreed to furnish the water required to keep the hatchery in operation, but at the expiration of 24 hours' service the steamer was obliged to take up other duty and nothing remained to be done but liberate all stock on hand. The plants made at this time consisted of 115,897,000 green eggs, 102,354,000 eyed eggs, 10,000,000 fry, and 400 brood fish, all winter flounder.

The usual efforts were made during the spring to obtain eggs of the mackerel. scup. and sea bass. On several occasions a few eggs of the two first-named species were secured, but in the absence of a fertilizing medium they were of no value.

ANADROMOUS FISHES OF THE ATLANTIC COAST.

The fish-cultural work coming under this head is conducted at three stations and one substation and includes operations with the Atlantic salmon, shad, the river herrings (Pomolobus astivalis and P. pseudoharengus), the humpback salmon, and the striped bass or rockfish. The total output of these species during the fiscal year was $183,803,000$, an increase of approximately $11,500,000$ over that in 1922. The distributions of river herring were nearly doubled as compared with that year, but the production of shad and Atlantic salmon fell short of the usual numbers. This being the off year for the run of humpback salmon introduced in certain coastal rivers of Maine some years ago, no eggs of that species were taken.

SHAD.

BRYANS POINT (MD.) SUBSTATION.

[L. G. Harron, Superintendent.]

Shad propagation at this station was undertaken under very unfavorable conditions. Cold stormy weather prevailed at the beginning and practically to the end of the spawning period, seriously curtailing the run of fish to the spawning grounds in the Potomac River. Only a comparatively few shad were in evidence when the collection of eggs was undertaken on April 20, but the work was vigorously and continuously prosecuted up to the middle of May, when it was recognized that the run was practically over. It is estimated that about $30,000,000$ eggs were delivered at the hatchery, but as it was desired to pay for good eggs only no measuring or recording was done until the second day after their receipt, thus allowing sufficient time for the detection and elimination of any that might be of poor quality. The eggs paid for aggregated 17,627,000 . Practically all were of fine quality and from them 16,700 ,000 fry were hatched, the losses during incubation amounting to only about 3 per cent. All fry hatched were liberated in good condition on the principal spawning grounds in the Potomac River.

During the year a bungalow 14 feet square and 8 feet high was constructed as living quarters for the superintendent. Four new live cars for holding brood yellow perch were built and various minor repairs were made to the hatchery and equipment.

SHAD AND RIVER HERRINGS.
edenton (N. C.) Station.
[W. S. Vincent, Superintendent.]
As the prevailing public sentiment in this region was in opposition to the issuance of licenses for the operation of gill nets for taking shad within certain restricted areas of upper Albemarle Sound, no permits of this character were issued during the spring of 1923. From the information at hand it appears that during the years when gill netters were allowed to operate on these grounds many unripe shad were taken and sent to the market which otherwise would have
spawned naturally. In recent years these nets have constituted a very uncertain source of egg supply for propagation, as the State laws require their removal by April 25 , just when the spawning season is at its height. In view of all the facts in the case it was deemed advisable to discontinue the issuing of licenses and await further developments. As a consequence of this decision the shad work of the Edenton station was limited to the incubation of 250,000 eggs, which were taken while a collection of material was being made for examination by the bureaus scientists. Two hundred thousand fry were produced from this lot and delivered to an applicant at Franklin, Va.

In lieu of the shad work, all efforts were concentrated on the propagation of the river herrings, of which two species, the branch herring (Pomolobus pseudoharengus) and the glut herring (P. astiralis) are avalable. Owing to the cold late spring the spawning season began somewhat later than usual. Egg collections extended from April 9 to May 10, the largest numbers being taken on April 23 and 24 . Variable winds kept the run of her'ing constantly on the move, the fish coming in with the sonthwest winds and rumning back with the offshore wind. Notwithstanding this handicap, however, orer $313,000,000$ eggs were taken, or nearly three times the number secured the previous year.

Very difficult conditions are encountered in the collection of herring eggs. While the owner of a fishing boat desires that the burean obtain all ripe egos available, his main object is to get the fish to market, and the spawn taker is sometimes obliged to work so fast that it is impossible to prevent the taking of some immature egegs with the ripe spawn. For this reason there is often a wide margin of difference between the number of eggs collected and the number hatched, and, while a hatch of 90 per cent was frequently obtained during the season, it was much below that taking the work as a whole.

The herring egg is adhesive during the earlier stages of incubation, and all attempts to overcome this adhesion by the use of the starch solution have been of no avail. For the first 24 hours, therefore, the eggs are held in open-top jars and must be stirred almost constantly with a feather to prevent their forming into a solid mass. By the end of that time the developing fish in the egg seems to overcome the adhesive tendency and an increase in the flow of water at this period will give all the motion required to keep the eggs in good condition until incubation is completed. During the past season the period of incubation was 57 hours in an average water temperature of 67°.

In addition to its work with the anadromons fishes the station produced limited numbers of the various pond species. Mention of this work may be fomnd on page 84 .

STRIPED BASS.

> WELDON (N. C.) SUBSTATION.
[W. S. Vincent, Superintendent.]
For several years prior to the striped-bass spawning season of 1923 the bureau's work in the propagation of this species had been directed by a temporary employee-a resident of Weldon. The
methods pursued by him having aroused much dissatisfaction, it was decided to discontinue his services and detail one of the statutory employees of the Edenton station to assume charge of the work. It was discovered after the arrival of this employee that in past seasons the local fishermen had been paid at the rate of $\$ 20$ per million for eggs furnished and had been allowed additional compensation for the time consumed in delivering them at the hatchery. He at once established a price of $\$ 20$ per million for eggs delivered. This reduction in price, together with the change in management, incurred such ill feeling among the fisherimen that they refused for a time to make any egg collections. However, after being thoroughly convinced that the station would be closed if they persisted in their refusal to cooperate, their attitude changed and they began furnishing egog for propagation, the first delivery being made on May 5.

It was soon discorered, in connection with the prosecution of fish-cultural work at this point, that the waste matter discharged from a paper mill located at Roanoke Rapids was polluting the river water to such an extent that the fry succumbed soon after liberation. Egg collections were at once discontinued and the work was terminated as soon as the stock on hand could be disposed of. During the short period of operations-from May 5 to May 9, inclusive- $22,084,000$ striped-bass eggs were received at the hatchery and $16.3 \pi 0.000$ fry produced and liberated.

ATLANTIC SALMON.

> CRAIG BROOK (ME.) station.

[J. D. Dp locirer, superintendent.]

A small lot of young Atlantic salmon held orer from the hatch of the previous year was carried through the months of July and August, 1922, and then liberated in Dennys River, Me., the distribution comprising 40,000 No. 2 fingerlings. Heavy April rains having washed away the barriers of the Dead Brook inclosure. where brood Atlantic salmon have heretofore been held awaiting the development of their eggs. it was decided to omit the customary purchase of adult stock during June and, in view of the antagonistic attitude of the salmon-weir fishermen, it is believed that very few of them would have been willing to supply the fish even if the burean had been in a position to take them. On March 10 a shipment of 500,000 eyed Atlantic-salmon eggs was received from the Canadian Government in exchange for an equal number of brook-trout eggs, this being the third successive year the station has received eggs from that source. Of the resulting fry 451,000 were liberated in tributary waters of the Penohscot River after the absorption of the food sac, and 14,820 were on hand at the close of the fiscal year.

RESCUE OF STRANDED FOOD FISHES.

[C. F. Culler, in charge.]
With the Homer (Minn.) station as a central directing point. rescue operations on the upper Mississippi River were taken up earlyin July and vigorously prosecuted to the end of October, at which
time shortage of funds compelled the discontinuance of the work though a considerable amount of territory was left wholly untouched. The field in general embraced all lowland areas lying between Prescott, Wis., and Andalusia, Ill. The Hiomer station and the substations at Marquette and Bellevue, Iowa, and at La Crosse, Wis., were employed as holding and distributing points for the fishes collected in their vicinity. A small amount of rescue work was also done in the State of Louisiana in cooperation with the Louisiana Conservation Commission, and at the Friar Point (Miss.) station under the immediate direction of the superintendent of the Tupelo station.

The number of fish handled at all points in the rescue field during the season amounted to $139,799,031$, and all of them were released in suitable adjacent waters with the exception of $1,164.952$, or less than 1 per cent of the whole. These were shipped to applicants in various parts of the United States by means of the bureau's distribution cars and messengers. The most prolific fields were in the vicinity of La Crosse, Wis., the substation at that point handling $58,135.611$ fish in the course of the season and furnishing a material part of the output of rescued fish supplied to applicants. A table showing the number of fish of each species produced and the output from each distributing center may be found on page 11 . The average cost of the work per thousand fish rescued was about 19 cents.

In accordance with an agreement entered into with the Louisiana Conservation Commission cooperative rescue operations were taken up in Mississippi River waters of the State on October 23, 1922. After removing the fish imprisoned in barrow pits near Baton Rouge, the men, boats, and equipment were transferred for further work to Bayou Sara, thence to Angola, and finally to the Atchafalaya River in the vicinity of Simmesport. After a careful survey of the conditions at this latter point it was decided that the probable results of the contemplated operations were too small to justify the expenditure involved, and on November 17 the burean withdrew from the field. As a result of the cooperative work in this territory 451,487 fishes of miscellaneous species were removed from temporary waters and returned to the main channel of the river. For its prosecution the State furnished the use of a launch and a houseboat, to serve as living quarters, and the bureau provided the services of two experienced fish culturists.

The appreciable falling off from the output of the preceding year in the rescue field was the direct result of the natural conditions encountered in the work. Contrary to the usual experience, the flood stage of the Mississippi River was unduly protracted by continuous rains, and the lowlands where spawning occurs were not cut off from the main channel, as in other years, until after a large percentage of the young fish hatched had returned to it of their own accord.

The work was conducted to much better advantage than ever before, as the services of the special rescue personnel recently provided for by Congress were arailable throughout the season. Under present arrangements the work of the fishing crews detailed to rarious parts of the field can be personally supervised and directed by men trained in the rescue operations, thus insuring greater efficiency than has heretofore been possible and at the same time effecting a considerable reduction in cost.

MUSSEL INFECTION INV CONJUNCTION WITH THE RESCUE OF LANDLOCKED FISHES.

[H. L. Canfield, in charge.]

The infection of rescued fishes with the larvæ of commercial freshwater mussels was undertaken on a large scale and resulted in the release of $2,048,97 \pi, 910$ larval mussels (glochidia) in a state of parasitism on the gills of host fishes. This total, representing by far the largest amount of mussel-infection work ever accomplished in a single year, was done at a very considerable reduction in cost as compared with that of the previous year, the average per thousand glochidia being only $\$ 0.0025$. By combining the operations connected with the rescue and the mussel-infection work it has been possible to produce enormous quantities of juvenile mussels at a low cost, and the clam fishermen and others engaged in the industry have cooperated with the bureau to the fullest extent to make the work a success. The following table summarizes the mussel work of the bureau during the fiscal year 1923, showing the fields in which operations were conducted and the numbers and species of mussels handled in each.

Extent of mussel-propagation work in 1923, showing fields of operation and mumbers and species of mussels handled in each.

Field.	Grass mucket. (Lampsilis lutcola.)	River mucket. (Lampsilis ligamentina.)	Pocket-book. ${ }^{1}$ (Lampsilis rentricosa.)	Total.
Minneiska, Minn	Number. $30,209,500$	Number. $14,506,500$	Number.	Number. $44,716,000$
Winona, Minn	70, 060, 000	13, 500, 000		83, 560, 000
Homer, Minn	58, 338, 000	3, 235, 000	1, 798, 300	63, 371, 300
Dakota, Minn	4, 082, 500	5, 343, 000		9, 425, 500
La Crosse, Wis.	61, 853, 750	860, 500		62, 714, 250
Brownsville, Minn	67, 579, 750	21, 193, 350	36, 000, 500	124, 773, 600
Genoa, Wis	97, 070,000	121, 310, 000	64, 375, 000	282, 755, 000
Ferrsville, Wis	63, 800, 000	21, 350, 000		$85,150,000$
Lynxville, Wis.	614, 763, 000	68, 472, 500		683, 235, 500
Marquette, Iowa	13, 600, 000			13, 600,000
Guttenberg, Iowa	20, 565, 000	28, 567, 500		49, 132, 500
Bellevue, lowa	255, 635, 610	143, 451, 100	18, 243, 500	417, 330, 210
Rock Island, 111	67, 275, 500	35, 201, 550		102, 477, 050
Gordons Ferry, Iowa	26, 73\%. 000			26, 737, 000
Total.	1, 451, 569, 610	476, 991, 000	120, 417, 300	2, 048, 977,910

1 This mussel is not first class in quality, and fishes are infected with it only when first-class mussels are not available.

FISHES OF MINOR INTERIOR WATERS.

Under this gemeral head is included the work of the Rocky Mountain trout stations. the New England trout and salmon stations, the combination trout and pond fish-cultural stations, and that group of stations deroted exclusively to the production of warm-water pond fishes. The fishes propagated at these stations are, as a rule, distributed to applicants, but considerable numbers, especially of the black-spotted trout, are returned to the waters from which the eggs are derived. Since the advent of the automobile and the extensive opening up of roads in formerly inaccessible regions, many streams
that originally teemed with game fishes have become practically depleted, while others would become so were it not for the effortmade by the burean and the various state fisheries departments to keep up the supply. This depletion of fish life, especially of the brook trout, in so many of the streams of the country has increased the demands upon the bureau for eggs and fry of this species out of all proportion to its arailable supply.

In comection with its work of propagating the brook trout the burean has found it necessary to purchase from commercial dealer= the bulk of the eggs used for stocking its hatcheries. In many casess eggs from this source are of poor quality and the firy resulting from them lack the vitality inherent in fry desived from wild fish. In riew of the situation the bureau has been endeavoring for the past rear or two to establish, on a promising site at York Pond, N. H., a plant capable of producing sufficient brook-tront eqgs to fill its needs. Work on this plant is being pushed to completion as tast as the arailable funds will permit.

Other fishes for which large demands are annorlly made are the black basses, both the largemouth and the smallmouth species. With the present facilities for their production it is practically impossible to produce them in sufficient mumbers to meet the requirements, and the urgent need for the extension of this branch of the work is clearly apparent.

ROCKY MOUNTAIN TROUT STATIONS.

This important group is composed of eight stations and substations. located in the States of Colorado, Montana, South Dakota. Wroming. and Utah. The year's work of the group was most successful, especially as regards the propagation of the black-spotted trout, the output of which was more than five times as large as that of the preceding year. The total output of these stations in eyed eggs and fry during 1923 aggregated $22,364,540$, the species handled including black-spotted trout, brook trout, rainbow tront. and small numbers of Loch Leven and steelhead trout.

BOZEMAN (MONT.) STATLON AND KUBSTATIONS.

[W. T. Thompson, Superintendent.]

Fish-cultural work at Bozeman station and its auxiliaries consisted in the propagation of brook, rainbow, black-spotted, and lake trout and the steelhead salmon. The majority of the eggs handlerd were taken in outside fields, only $1,610,000$ being secured in local waters, while the rear's output from this group of stations aggregated nearly $2,000,000$ fingerling fish and $1,389,000$ eyed eggs, the latter, at the request of the National Park Service being deposited in waters of Glacier Park which it wonld be impossible to reach with fry owing to their inaccessible location.

> BOZEMAN (MON'T.) STAT1ON.

During the year the Bozeman hatchery received from outside sources $1,285,000$ brook-trout eggs. of which 250,000 were purchased from a commercial dealer. The remainder was contributed by the

Springville (Utah) and Leadville (Colo.) stations. From these eggs, together with 90,000 collected from brood trout in the station ponds, $1,2 \overline{6} 1,000$ fry were hatched, or nearly $92 \frac{1}{2}$ per cent of the original stock. Quite heary losses occurred during the spring, due principally to the impossibility of securing fresh supplies of liver at all times. Notwithstanding this difficulty the output of brook trout exceeded 900.900 , abont two-thirds of them being fingerlings, and nearly 50,900 were on hand at the close of the year.

This station also received $1,450,000$ black-spotted-trout eggs from eollections made in the Yellowstone National Park, 338,000 rainbowtrout eggs from its Meadow Creek anxiliary, 7 ,, 000 lake-trout eggs from the Duluth (Minn.) station, and $58,000^{\circ}$ steelhead egrgs from Oregon. Of this stock eyed eggs of the rambow and black-spotted trouts to the number of 150,000 were reshipped to applicants. The remainder was dereloped with not more than normal losses, furnishing an aggregate output of 981,600 fingerlings and fry and learing on hand at the close of the year a material percentage of the original nmber to be reared to a larger size before distributing.

Quite extensive alterations were made to the ponds at Bozeman station during the year with the view of eventally reconstructing the entire system is funds permit. In pursuance of a carefully devised plan ponds Nos. 1 to 18, located in swampy ground, were converted into six rock and gravel-bottom inclosures, each approximately 90 feet long, 31 feet deep, and 4 feet 7 inches wide at the bottom. with a slope sufficient to give a width of 5 feet 7 inches at the top. These ponds are so arranged that when their dams are drawn all bottom sediment is swept by the heary current toward the lower end, assisting very materially in cleaning operations. Screens extend across the entire pond areas and the outlet boxes in the sides are fitted with both screens and dams. It is intended later to lengthen these ponds to approximately 175 feet by throwing into them the space now occupied by the remaining 18 ponds of the old series. Each of the six ponds will then be provided with fullwidth dams and screens to form two or more inclosures at will, in accordance with the needs of the work. When the entire nursery system has been refonstructed the available supply of spring and creek water will be arranged to flow through the entire length of the ponds.

> MEADOW CREEK (MONT.) SUBSTATION.

Rainhow trout operations at the Meadow Creek substation were greatly obstructed by the preparations being made by the Montana Power Co. to build a bridge across the strean. In connection with this project the water level in the creek was maintained at so low a level throughout the entire spring that many of the ascending trout were forced to turn back and seek spawning grounds elsewhere. Egg collections were therefore curtailed, the total amounting to only $1,520,000$. The spawning season was from two to three weeks shorter than the average, extending only from April 23 to the end of May, and the losses of eggs were unusually heavy, only 810,000 or 54 per cent of the collection surviving to the eyed stage. Three hundred thousand of the eyed eggs were hatched at the substation with the riew of returning the product as fingerling fish to the home
spawning grounds. The remaining eggs were used for stocking the Bozeman and Glacier Park hatcheries.

GLACIER NATIONAL PARK (MONT.) SUBSTATION.

Approximately 215,000 steelhead and rainbow-trout fingerlings. that had been carried over from the hatch of the preceding year in the Glacier Park hatchery were liberated in July in suitable streams within the park, and there were on hand at the close of the year 85,000 eyed eggs and 70,000 fry of the rainbow trout, these being the result of a shipment of eggs from the Madison Valley field early in June. .

An interesting and important feature of the work in this region was the planting of eyed black-spotted trout eggs in the almost inaccessible waters in that part of the park lying along the crest of the Continental Divide and the Canadian border. The trip was made on horseback and the planting was done by the superintendent of the station assisted by two of the park rangers. 111 facilities for the trip having been provided by the National Park Service, including the loan of saddle and pack horses, the start was made from Bozeman on August 4. In the course of the trip, which consumed 16 days, a total of considerably more than a million eggs was planted in the headwaters of numerous lakes and streams that could not otherwise have been reached. Among the waters thus stocked were the St. Mary River and its tributaries. Hidden Lake, Lake Ellen Wilson, Grinnell Lake, Belly River. Lois, Margaret, and Gilems Lakes, and numerous smaller streams.

LEADVILLE (COLO.) STATION.

[C. H. Van Atta, Superintendent.]
In connection with the propagation of brook trout. the principal species handled at this station, the usual egg collections were made on shares from privately owned lakes, the total stock secured during the season amounting to $6,690,000$.

Many of the fish entering the traps in the Engelbrecht field were found to be badly afllicted with fungus, this tromble being due, it is thought, to the abnormally low stage of water in the lake during the summer and fall. However, no bad effects were discernible in either the eggs or the resulting fry, all of which seemed to be of uniformly good quality.

At Turquoise Lake, where nearly half the season's stock of brooktrout eggs was secured, the work was hampered by unusually cold weather. A coating of ice from 4 to 8 inches thick formed on the lake before any collections were made, and in order to gain access to the brood fish a seine had to be threaded through holes cut in the ice at frequent intervals. Some difficulty was also experienced at this point from a scarcity of male fish. Females were in the majority from the beginning, the disparity in numbers increasing as the season progressed, and toward the close of the spawning period females predominated to such an extent that fully 600 brood fish containing partially ripened eggs had to be released because of a lack of fertilizing medium.

When the eggs had reached the eyed stage shipments to a total of $1,225,000$ were formarded to applicants and to other stations of the bureau, one consignment of 50,000 going to Alaska. The incubation period of those held in the hatchery was completed by the end of Λ pril, the number of fry produced amounting to $4 . \pi 6 \pi, \pi \tau 0$, or approximately 88 per cent of the retained stock. In addition to the egg shipments the year's output of this species consisted of $3,345,000$ fry and fingerling fish, and at the close of the year a considerable number of fingerlings were still on hand. The brooktrout fields occupied during the year, the number of eggs secured in each. and the dates between which egg collections were made were as follows:

	Field.	Number of eggs taken.	Spawning season.
Carroll		443, 000	Oct. 29 to Nov. 16.
Engelbrecht		$2,193,000$	Sept. 24 to Nov. 26.
Fred Neal		164,000	Nov. 17 to Nov. 26.
Musgrove.		880, 000	Oct. 26 to Nov. 22
Turquoise		3, 004, 000	Oct. 19 to Nov. 29.
Total		6,690, 000	

An output of 671,000 fry and fingerling black-spotted trout, the product of 750.000 eggs of that species received in the summer of 1922 from the Yellowstone Park station, was distributed during the fall to applicants in Colorado, Arizona, and New Mexico. The rear's distributions also included 196,150 fingerling rainbow, Loch \cdot Leven, and lake trout, the output of the first two resulting from egrgs secured in the brook-trout fields, while the lake trout were derived from a shipment of 150,000 eggs forwarded from the Duluth (Minn.) station the previous winter. From a shipment of 50,000 steelhead eggs forwarded from one of the burean's Oregon substations 45,800 fry were hatched and were on hand at the close of the fiscal year.

YELLOWSTONE NATIONAL PARK (WYO.) SUBSTATION.

[C. B. Grater and C. F. Culler, in coargo.]
The fish-cultural season at this station involves a portion of each of two fiscal years, and the part occurring in June, 1922, has been covered in the report for that year. From July 1 to the close of the season in September, 1922, operations were supervised by C. B. Grater, superintendent of the Leadville (Colo.) station. Very successful work was accomplished during the summer of 1922. The black-spotted trout eqg collections aggregated 16,751,920, and a large proportion of the fry resulting from the eggs were liberated in various streams within the reservation. In connection with the fishcultural operations a considerable amount of repair and improvement work was accomplished, among the most important items being the entire rebuilding of the trap on Clear Creek, which was located 18 inches deeper in the creek than was the one it replaced.

During the spring and early summer of 1923 the park work was directed by C. F. Culler, district supervisor. The Soda Butte hatchery was opened on May 23, as the first eggs of the season are usually obtainable in that field, and work at the main station was taken up two days later. At the close of the fiscal year 4,794,000 black-spotted-trout eggs had been secured, and the indications seemed to point to one of the most successful seasons ever experienced in this region.

SARATOGA (WYO.) STATION AND SUBSTATION.
[O. N゙. I;ALbivix. Superintendent.]
The bureau's fish-cultural work in Wyoming consisted in the propagation of four species of trout-brook, rainbow, Loch Leven, and black-spotted-and, with the exception of the last-named species, all eggs handled during the year were collected either from domesticated stock carried in the ponds at Saratoga or from wild fish captured in the ricinity of its field anxiliaries.

The small number of brook-trout fingerlings on hand at the begimning of the fiscal year was distributed in September, and during the fall the brood trout at the station yielded 307,000 eggs. This stock was supplemented by the collection of eggs from wild trout taken in Big Creek Lakes, 90 miles distant. Thongh located in the Hayden National Forest, these lakes are at the present time under the jurisdiction of the Bighorn Land \& Cattle Co. The manager of this company appeared to resent the bureau's activities, but through the intervention of local officials of the United States Forest Service an arrangement permitting the burean to make egg collections in the lakes was finally effected. However, the work was interfered with later, the racks being removed by unknown persons and large numbers of brood fish allowed to escape. Through this occurrence the egg collections were curtailed from approximately $1,000,000$ to 288,000 . The output of this species for the year amonnted to 138,100 . and nearly 400,000 fingerlings were on hand at its close. It is the intention to return a substantial percentage of these to Big Creek Lakes with the view of building up the field as a future center for egg collections.

Shortly after the beginning of the fiscal year the rainbow-trout fry resulting from the cooperative work of the bureau and the Wyoming fishery department at the Sage Creek auxiliary were planted in suitable waters and the substation closed for the season. As soon as possible after its reopening in April, racks and traps for the interception of the early run of rainbow trout were installed in Lost, Sage, and Canon Ciceks, but owing to the prevailing low water stages the rim of fish was musually light. Between May 1 and June 7 egers to the number of $1,237,1,50$ were taken, approximately 620,000 of which were furnished, when eyed, to the State fisheries departments of Wyoming and South Dakota. The remainder was developed at the substation with the riew of replenishing and increasing the stock in parent streams.

The hatchery erected at Sage Creek last year is a \log structure. 38 by 28 feet in dimensions, with hip roof. It is equipped with 24 wooden troughs, 16 feet long, 14 inches wide, and 9 inches deep. and each trough is divided into eight compartments by saw cuts and
iron dams. The hatchery has a total capacity of $5,000,000$ green uggs or $1,125,000$ fry. As the water supply is derived from the heary snowfall in the surrounding mountains, it is rery roily at times. For this reason the tray system is used, it being necessary to handle the eggs almost daily.

A considerable amount of construction work will be required for the completion of this substation, and the racks and traps in all streams where egg collections are made must have concrete foundations. Thns part of the work will be done before the beginning of next season's fish-cultural operations, prorided funds are available for the purpose.

In addition to its work with the brook trout and rainbow trout, the Saratoga station produced and distributed 87.500 black-spotted trout fingerlings, the product of approximately 100,000 eggs transferred from lellowstone Park, and from a few Loch Leven trout held in ponds 15,000 eggs were taken and hatched. The resulting fingerlings are to be reared and retained for increasing the station brood stock of this species.

All available funds in the special appropriation haring been exhausted by the building operations of the preceding year, no construction work other than minor repairs was possible though much still remains to be done to complete the Sage Creek hatchery and its water-supply system. The matter of improving the station grounds at Saratoga is one that urgently demands consideration. With the exception of a small strip of fenced land along the east side of the railroad these grounds still remain in their original wild condition, cattle roaming over them at will. The reservation should be inclosed by a substantial fence and the grounds planted in trees, shrubs, and grass.

SPEARFISH (S. DAK.) STATION.
[D. C. Bоoth, Superintendent.]
Construction work formed a very important part of the activities at this station during the year. The old plank ponds Nos. 1 to 12, which were built in 1599, had never given satisfactory service even when an abundance of spring water was available, and after the decrease in the supply of water on the upper level of the station reservation these ponds were of no ralue whatever. In order to provide space for storing water to be used during periods when a shortage in the city supply curtailed the amount delivered at the hatchery it was decided to tear out these unsightly plank ponds and utilize the space for the location of a suitable concrete reservoir. In pursuance of this plan ponds Nos. 1 to S mere torn out, the space excarated to a suitable depth. and a substantial concrete wall. reinforced by one-half inch rods laid in cement. was constructed. This reservoir will hold 400,000 gallons of water, or a sufficient amount to tide the hatchery operations over for a period of several days in the event of an accident to the main water pipes or when overflow water from the city reservoir is not obtainable. Another important piece of construction work accomplished was the rebuilding of the large stone bulkhead wall along the southeast corner of the station grounds, the old one having been badly damaged by floods.

The results attained in the fish-cultural work were quite satisfactory, there being no disease among the stock and no abnormal losses. Brook, Loch Leven, and rainbow-trout eggs totaling 1,159,400 were incubated, from which 968,000 fry were hatched, the percentage of hatch being nearly $83 \frac{1}{2}$.

Of the brook-trout eggs handled 262,100 were collected from wild fish secured in local streams, 259,600 were transferred from the Springville (Utah) station, and 00,000 were obtained throngh exchange, the South Dakota fisheries authorities turning over to the station 500,000 eggs that had been purchased by the State from a commercial establishment in Pennsylvania, with the understanding that the State would be furnished an equal number of rainbow-trout eggs from another station of the bureau. These commercial eggs were of fine quality and the fry resulting from then were so exceptionally healthy and vigorous that 100,000 of them were selected and successfully used in the conduct of an experiment made for testing the comparative value of a certain commercial brand of fish food. The year's distribution of brook trout consisted of 792,445 fingerlings Yo. 11 , and 19.46n were on hand at the end of June.

Nearly 6 , 000 Loch Leven trout eggs were taken during the fall12.300 from wild fish secured in connection with the brook-trout egg collection and the remainder from domesticated fish in the station ponds. During January 10.350 were shipped in the eyed stage to the St. Johnsbury (Vt.) station, and the young fish hatched from the remainder will be reared for increasing the station brood stock.

From domesticated rainbow trout held in the station ponds 22.900 eoges were taken. the spawing season extending from January 22 to May 9. Of the resulting fingerlings 35.360 were delivered to applicants late in June. The remainder of the lot was retained for later distribution.

The work at this station also included the handling of 50.935 steel-head-salmon eggs furnished from the Washougal (Wash.) field. This lot was hatched with a loss of about 7 per cent, and all of the resulting fry were being held at the close of the year for distribution in the fingerling stage.

SPRINGYILLE (UTAH) STATION.

[Claddus Wallich, Superintendent.]

Fish-cultural work at this station was confined to the propagation of brook and rainbow trout. the output of which was considerably reduced in comparison with the output last year owing to the limitations imposed upon the bureau's operations in the Fish Lake field. Cooperative work between the bureau and the State was undertaken in this region in late October. On arrival there it was found that large numbers of brook trout had already assembled below the mouth of Twin Creeks, where most of the collections are made, but were prevented from entering the stream on account of the unusually low water level in Fish Lake. This condition was remedied by enlarging and deepening the mouth of the stream, after which racks and traps were installed. Spawn taking began on October 27, and from that date to the end of November eggs were taken almost daily,
the total collection amomnting to $8,250,000$. The State turned over to the bureau $3,200,000$ eggs, of which stock $1,500,000$ in round numbers were shipped in the eyed stage to other stations of the burean, over 500,000 gring to the Bozeman (Mont.) hatchery.

A nmber of the stations receiring these eggs, including Springville, sustained musually heary losses prior to the hatching period, though the fry resulting from them appeared to be normal. The losses may be attributed in part to the fact that many of the eggs were taken late in the season. It has also been noted, with reference to this field, that eges stripped from fish the second time are not of the hest quality. Of the 29,000 eved eggs retained at the Springrille hatchery $\$ 3,000$ were lost in the course of the incubation period, while the losses in the fry and fingerling stages aggregated 128.900. Shipments of fingerling brook tront to the number of 248.850 , in the Nos. 2 and 3 stages, were made before the end of the fiscal year and 61.250 were carried into the succeeding year. The year's output of this species also included 33,600 No. 4 fingerlings, the product of the previons rear's egy collections. These were distributed in July, 1922, most of them being returned to Fish Lake and its tributaries.

The stock of rainbow trout on hand at the beginning of the fiscal rear included 637,000 fingerlings No. 3, which were distributed ir July, 1922, and also 344,000 fry resulting from the spring egg collections. The fry did well until about the second week in August, when an abnormal mortality occurred and continued for some time. No definite cause could be ascribed for it. The entire lot was being carried in the hatchery, which was supplied with intake water, all surface water being excluded, and every efiort was made to keep the stock in a sanitary condition. The food used was beef hearts, inspected, to which a small proportion of mush was added. The trouble first became evident through the fading of the fish to lighter shades. They gradually refused to eat, became emaciated, and assumed a heady appearance. The center of affection did not seem to lie in the gills. As a rule the losses were larger in troughs where water was being used a second time. The subsidence of the disease seemed to be coincident with the admission of surface water into the intake reservoir and the transfer of the stock to the concrete pond system, and by the middle of September, when the distribution of the fish was taken up, the survivors were in good condition. The output from the lot consisted of 169,300 fingerlings Nos. 2 and 3.
With the view to profiting by the experience gained the 508,000 fry resulting from the rainbow brood stock the following spring were transferred to the concrete pond system and subjected to the conditions that seemed to have afforded relief to the former lot, but without avail. Though a remarkably healthy and active lot of fish during the earlier stages of their growth, they were attacked br a somewhat similar epidemic when about $1 \frac{1}{2}$ inches long, but with this difference: Fish that apparently were in good health one day would be lying dead in windrows up and down and through the center of the ponds on the succeeding day. After continuing heavy for a few days the death rate would decrease, but almost every lot of the fish was similarly affected on attaining the length mentioned. The total losses on this stock amounted to 314.000 . Of the remainder 124,000 were distributed as Nos. 2 and 3 fingerlings before the end of the year and 70,000 were on hand at its close.

Under an agreement effected with the Utah fisheries anthorities the station participated with the State in the collection of rainbowtrout eggs from wild fish in the Fish Lake field during May and June and received one-fifth of the proceeds as its share. The quality of these eggs was about the average of the stock secured in this field. After shipping 25,000 eggs to the Manchester (Iowa) station the remainder was hatched, producing 310,000 fry, all of which were on hand at the end of Jme.

Complete failure attended the efforts put forth to collect eggs in the Kyune Reservoir, near Colton, Utah, where the bureau has recently been making annual plants of rainbow trout with the view to building up an egg-collecting source. The two trips made to this point-one in March and the other in May-failed to disclose the presence of any brood fish whatever. It is feared that this 13 -acre lake is almost too small to warrant any profitable returns in eggs, but a few rainbow fingerlings will be liberated there annually for a while and a close watch kept on the results.

Having failed for two successive years to secure any results from the experiment undertaken some time ago with the object of determining the feasibility of holding a brood stock of native tront in the station ponds as a source of egg supply, it was decided to liberate the fish in suitable waters and abandon the attempt. The number of eggs taken in each instance was negligible and their quality was very poor.

NEW ENGLAND TROUT AND SALMON STATIONS.

Included under this head are the stations located at Hartsville, Mass., East Orland, Me., St. Johnsbury, Vt., and Nashua, N. H., together with their several auxiliary substations. During the past year the former station at Green Lake, Me., was reduced to the status of a substation and placed under the direction of the official in charge of the Craig Brook station at East Orland. Although the work in this field was interfered with to some extent by unseasonable climatic conditions the results attained at these stations were very satisfactory, their aggregate outpat being more than 100 per cent greater than in 1922.

BERKSHIRE (MASS.) STATION.

[W. A. Casler, Superintendent.]
The year's fish-cultural work at this station consisted mainly in the incubation of eggs of the brook trout, rainbow trout, and pike perch. and the rearing and distributing of the resulting fish, the aggregate output of which amounted to 754,400 fry and fingerlings.

During the spawning season of the adult brook trout held in the station ponds 203.750 eggs were obtained, of which 149.260 , or about 73 per cent, were hatched. This low percentage of hatch compares favorably with the results of recent years at this point and is attributed by the superintendent to the advanced age of the brood stock. A lot of 247.000 brook-trout eggs purchased from the establishment of a commercial trout breeder was apparently far superior in quality to those produced at the station, fry in excess of 240,000 being
realized on the consignment. The two lots of fish were kept separate to the end of the fry stage, when they were thrown together owing to lack of space and because there appeared to be no advantage in their further segregation. For some time after commencing to feed the fish continued to develop normally, but in the latter part of March mortality suddenly increased, the daily death rate rising from about 134 per day to a maximum of 4,500 per day during April.

The disease could not be checked by any of the methords usially and sometimes successfully employed, and the losses up to the time the disease had run its natural course amounted to 151,255 , or about 40 per cent of the fry hatched. No satisfactory explanation of this heary mortality can be given, though the fish-culturist in immediate charge of the work has advanced the theory that surface drainage from the melting of an unusually heary fall of snow may hare carried into the spring supplying the hatchery water some substance deleterious to young fish. In support of this theory he cites similar conditions as to snowfall that existed in the fiscal year 1919. During that year disease broke out among the trout fry and cansed an even greater mortality.

In December, 1922, two consignments of rainbow-tront eges aggregating 105.500 mere received from the Wrtheville (Va.) station. Being of inferior quality these eggs sustained a loss of almost 40.000 , or about 37 per cent, up to the hatching period, and subsequent losses among the fry and fingerlings so reduced the stock that only 45.900 fingerlings were realized, of which number 1,500 were on hand at the close of the year. Early in May a consignment of 500,000 eyed pike-perch eqges arrived from the Put in Bay (Ohio) station. Though delayed in transit the eggs were of exceptionally fine quality and from them 485.000 vigorous fry were hatched and distributed.

Nothing in the way of the much-needed repairs and altcrations referred to in precious reports has been possible at this station, the only construction work accomplished during the year being of a minor routine character. Since the bureau acquired title to the Berkshire property in 1915 it has not been possible to divert a sufficient amount of the reduced appropriations from other and more important work to place the station in the condition in which it should be maintained. At the present time much of this property, especially the pond system, is rery much dilapidated. The need is for sufficient funds to completely rebuild and rearrange the pond system. which was originally designed for private use and never intended for the production of fish or egos on the extensive scale required in the bureau's work. While it is recognized that the work of this station can nerer be made to compare favorably with that of stations more advantageonsly located with reference to water supply and certain other essentials. it is apparent, nevertheless that if certain changes and improvements can be effected the station can, under skillful management. be made to play an important part in fish-cultural wrork and can be depended upon to produce for local distribution at a morlerate cost certain species of fish that are now being furnished from more distant hatcheries at considerable expense and with some rifficulty.

That part of the fish-cultural work of the Craig Brook station that was addressed to the propagation of Atlantic salmon is discussed in connection with the anadromous fishes of the Atlantic rivers on page 55.

During late December and early January a total of $1,303, \mathrm{~T} 00$ eyed brook-trout eggs was received from three commercial hatcheries located in Pennsylvania and New England. Of the first consignment. received from a hatchery in Maine, 131,666 eggs were reshipped to the Grand Lake Stream substation. The remainder of this lot658,334 -was incubated at the station, producing a hatch of 96 per cent. Later losses were large, however, over 9 per cent of the young fish having perished before the completion of the distribution in late June. From 210,700 eggs of fine quality receired from a Massachusetts hatchery 202,651 fry were hatched. Of these. 155,800 were distributed in the advanced fry and fingerling stages and 24.995 were on hand at the close of the year. The eggs from the Pennsylvania hatchery were too far advanced for shipment when forwarded and some of them hatched on the trays en route. While the percentage of hatch on the remainder was nearly normal the subsequent losses were excessive, the mortality up to the time of distribution amounting to fully 50 per cent.

Fifty thousand rainbow-trout eggs forwarded in December from the Wytheville (Ya.) station appeared, on arrival, to be in fair condition. It developed later that they were of poor quality, nearly half the lot being lost in process of incubation, while the fry hatched were weak and all of them perished within a short time.

During the month of March 380.602 eyed landlocked-salmon eggs were received from the Grand Lake Stream substation, of which number consignments aggregating 117.570 were reshipped to applicants in Vermont. New Hampshire, Idaho, and Michigan. From the remaining eggs 223,000 fry were hatched and distributed and 26,820 were on hand at the end of June.

All of the buildings at this station were wired for electric lights during the year.

> GREEN LAKE (ME.) SL゙BSTATION.

Fish-cultural operations at this substation were concerned principally with the propagation of the landlocked salmon and the smelt, the latter including the American smelt (Osmerns mordex) and a subspecies (O. mordax spectrum) locally known as the "small smelt."

On November 1 traps were placed at the mouth of Great Brook for the capture of brood landlocked salmon, and between the 9th and the 22 d of that month 193,000 eggs were taken. These were of uniformly good quality and from them 178.480 fry were hatched and distributed.

The egg collections of smelt were the largest in several years. The spawning season of O. mordari began on March 2.5 and ended April 15, while the spawning of the subspecies extended from the 5th to the 20th of May. In all, $46,300,000$ eggs were taken, of which
$42,000,000$ were of the subspecies. Heavy rains and melting snow caused the bursting of the supply pipe of the smelt battery on April 29 , necessitating the immediate planting of all eggs on hand. Fortunately, all of them had about reached the hatching stage and planting it that period therefore occasioned little loss.

One hundred adult smallmouth black bass, captured in traps in Green Lake during July, 1922, were held in the station ponds until fall and then delivered to an applicant at Norway, Me. These bass inhabit Green Lake in considerable numbers, and being considered undesirable on account of their tendency to prey upon the landlocked salmon their removal is generally approved of by residents of that section.

Approximately 93,000 landlocked-salmon fry were on hand at the beginning of the fiscal year 1923. Shortly before that date these fish had been placed in the recently constructed ponds in the canal, which was formerly used for the passage of boats in Grand Lake Stream, and immediately afterwards the death rate among them declined noticeably. The young fish were fed as frequently as they would take it readily on a mixture composed of two-thirds beef heart to one-third sheep liver finely ground, and late in July, after 45,000 of them had been liberated, it was observed that the remainder were obtaining sufficient natural food to satisfy them. They continued to grow rapidly and about the last of August all that remained in the ponds were liberated in Grand Lake Stream as fingerlings No. 3, the lot numbering 46,400 . The first landlockedsalmon eggs from Grand Lake Stream were secured on October 31 and the last on November 18, while the collecting season at Dobsis Lake extended from the 1 st to the 14 th of November. In all, 423 female and 818 male fish were captured, from which eggs to the number of 659,350 were taken. Of these, two shipments, aggregating 350,602 eyed eggs, were forwarded to the Craig Brook station. On April 19 the Grand Lake Stream substation received 200.000 eyed landlocked-salmon eggs from the State hatchery at Caribon, Me.. this shipment resulting from an agreement previously made with the Maine commissioner of inland fisheries and game to insure the return to parent waters of at least 75 per cent of the product of all egg collections. Owing to fiood conditions following the breaking of the gate of the dam at the head of the canal on May 6 . all samon had to be disposed of in the fry stage, the plants being made in Grand Lake and tributary waters.

In addition to the work with the landlocked salmon the station handled a shipment of 131,666 commercial brook-trout eggs, which were reshipped early in January from the Craig Brook station. ()wing to the accident referred to above all of them were liberated in the advanced fry stage in Grand Lake and other local streams.

The bureau's present policy of providing brook trout for Grand Lake and neighloring waters has already shown good results. It was very noticeable during the past season that good brook-trout fishing was to be had in all the streams in this section, such waters having formerly been denuded of that species. They now appear to contain young brook trout in abundance, to the intense satisfaction of the local public.

[A. H. Dinsmore, Superintendent.]

The fishes propagated at this station and its auxiliaries at Holden, Vt., and York Pond, N. H., included brook, lake, rainbow, and Loch Leven trout. landlocked salmon, and steelhead, the total annual output for the group amounting to nearly $1,500,000$ eggs, fry, and fingerling fish. Owing to shortage in operating funds the propagation of pike perch at the Swanton (Vt.) substation was omitted.

ST. JOHNSBLRY (NT.) STATION.
Of the $1,323,400$ brook-trout eggs acquired for stocking the St. Johnsbury hatchery 450,000 in round numbers were purchased from a commercial tront establishment. The remainder was collected from fish taken in Darling Pond and Lake Mitchell, in Vermont, on the same terms as last year, the bureau collecting and incubating the eggs and receiving as compensation one-third of the eyed eggs produced. The fry resulting from the remainder were placed at the disposal of the owners of these waters. The work with this species also included the incubation of 100,000 eggs that were purchased and delivered at the hatchery by a local fish and game club whose members distributed the resulting fry in various waters of the region.

Other egg receipts were 238,350 of the lake trout, derived from collections at Lake Dunmore, Vt. ; 20,350 landlocked-salmon eggs, transferred from the Craig Brook (Me.) station; 10,350 Loch Leven trout eggs, acquired by exchange from a commercial fish-culturist; and 49.500 steelhead eggs received from the Washougal (Wash.) collecting station. Some of the lake-trout eggs were reshipped to the Tork Pond auxiliary, and a consignment of 50,000 was forwarded to the Nashua (N. H.) hatchery. The remainder was hatched and distributed as fry in suitable local waters. The fry resulting from the landlocked-salmon eqgs were transferred to York Pond to be reared, and the product of the Loch Leven and steelhead eggs mas on hand at the close of the fiscal year.

On account of limited funds and the need of all possible additional help for the development of the York Pond substation, no work in the propagation of smallmouth black bass was undertaken during the year.

```
HOLDEN (VT.) SUBSTATION.
```

The outcome of the year's work in fish culture at this substation was very satisfactory. Only normal losses of stock were sustained and an entire absence of the affection that in recent years bas caused such heavy mortality among the eggs and young fish gives ground for the hope that the difficulty has been solved throngh the application of the recently devised method of aerating the hatchery water supply.

The small stock of fingerling fish of various species on hand at the beginning of the year was distributed in the early fall, and during October and November the bureau and the State fisheries
department were engaged in cooperative work in the collection of lake-trout eggs in Lake Dunmore. The returns from this work were the largest ever secured, the total collections amounting to 651,620 eggs. of which 580,600 . or nearly 85 per cent. were eyed. Fifty thousand of the bureau's half of this stock were retained at the Folden station for development. and the remainder was forwarded to the St. Johesbury station. Brook-trout eqgs to the number of $2.50,000$. purchased from a commercial fish-culturist and delivered in January, were held in brook water with a small admixture of spring water to keep them from freezing. From this consignment 235,400 healthy fry were hatched and distributed.

YORK POND (N. H.) SUBSTATION.
During the summer months a large amount of work was done at this substation in the way of improvements to the proposed pond stistem. with the view of developing it at the earliest possible date into it source of supply for brook-trout eggs for stocking rarious hatcheries of the bureau.

Diverting witch No. 1 was continued along the south side and orer the point of the separating ridge and then dropped into pond B. It is the intention to pass this whter from pond B into the sparning race at the head of the main pond. In preparation for the coming spawning season, a raceway of planks. 6 feet 2 inches wide and extending 110 fect into the main pond, was provided for conducting water from pond A, a temporary diverting dike having been erected on the natural outlet to throw the water through the 1acewar. Twelse-inch drain tiling was laid from the kettle of pond I to York Pond, and 350 feet of cast-iron pipe, leading from the main lake to the hatchery, was installed. Races Nos. 1 and 2 were put in shape for rearing operations: the sidetrack grade, rumning up Cold Brook. was cleared and work started on a third rearing race, Which. like all the others, will have spring water rising copionsly in it, augmented by water from race No. 1. independent springs, and wells, and water diverted from Cold Brook. Below this race there is opportunitr for the construction of a number of ponds, the flow from which will be to the hatchery flat, where there is space for further pond construction. I fourth raceway has been started along the hillside west of the hatchery flat, and this will later be extended some distance west of Cold Brook.

During the summer months fishermen were employed to catch trout in the closed brooks. These streams are so filled with driftwood and brush that no other practicable method has yet been derised for taking them, and it was found that by filing off the barbs of rather large hooks the fish are not apt to undergo material injury. Of 1.964 captured in this mamer only 12 had been lost at the end of the season. The fish were held in a large inclosure prepared for them on the natural inlet and fed until spawning time. When an examination disclosed that only 2.54 were mature females. These fish were so small that only 42.450 eggs were secured, and to supplement the supply 100.000 brook-trout eggs and 25.000 lake-trout eggs were forwarded from the St. Johnsbury station.

It having become evident that the cement hatchery and pipe line from York Pond could not be completed in time to care for the eggs,
a tent hatchery was installed on the run that is being converted into rearing race No. 3 , and here the eggs were successfully held until the hatchery could be made ready to receire them.

The hatchery water-supply proved well adapted to trout incubation except that it contained large quantities of brown and green algæ, which gave serious trouble even though the eggs were mostly in an advanced stage when removed to the hatchery. After some losses and some experimenting it was discovered that the bad effects of the algæ might be overcome by placing the eggs, when just about to hatch, in the normal salt solution. Contact with the algex appeared to toughen the shell so that the fish could not entirely emerge from it and the effect of the solution was to comnteract the difficulty and restore the shell to its normal condition.

With the exception of 5,000 eggs planted in gravel in small brooks on the reservation no distributions of stock were made. All fish hatched were removed as sac-absorbed fry to the races, where they readily adapted themselves to their enviromment and began feeding readily. In addition to the fish hatched at the substation 77,000 brook trout and approximately 11,000 landlocked salmon were transferred from the St. Johnsbury hatchery.

NASHUA (N. H.) STATION.

[Waldo F. Hubbard, Superintendent.]

The year's output from this station consisted of 675,000 fingerling fish divided as to species among the brook trout, rainbow trout, lake trout, and landlocked salmon; also 83,700 fry of the pike perch and smallmouth black bass. Is in past years, most of these fish were the product of eggs forwarded to Nashua from other sources, the only brood fish maintained at the station being a few each of the brook trout and rainbow trout, which yielded 127,950 and 83,550 eggs, respectively. This stock was augmented during the winter by the purchase of 795.000 brook-trout eggs fiom a commercial fish culturist and the transfer of 50,000 rainbow eggs from the White Sulphur Springs (W. Ta.) station. Heavy losses of both species were sustained in the egg and fry stages, greatly curtailing the distributions. Other transfers of eggs included 46,000 of the lake trout taken in connection with the field work of the St. Johnsbury (Vt.) station, 21.000 landlocked-salmon eggs shipped from the Craig Brook (Me.) station, and $1,500,000$ eyed pike-perch eggs from Put in Bay, Ohio. Owing to a protracted delay in delivery the latter consignment was received in poor condition and yielded only 75,000 firy. The salmon eggs were successfully hatched and most of the resulting fingerlings were being held for later distribution at the close of the year.

An attempt during the first half of June to collect smallmouth black-bass fry from Lake Sunapee, N. II. for supplying applicants in that region was almost a failure, only 8.700 being secured. The outcome of such work in the Lake Sunapee field is very largely dependent upon weather conditions. If it is windy, as it is very likely to be, great difficulty is experienced in locating the nests and collecting the fry. Much trouble has also been encountered in holding the collections of fry even for the period of a day without incurring large losses.

In order to remedy a defect in the original planning of the pond system and to provide for a more economical consumption of water, a part of the year's fish-cultural allotment was diverted to the removal of the earth partitions at the ends of the ponds and rearranging the system so that the water supply will flow through the entire series of ponds instead of through only two, as under the former arrangement. It is plamed to hare this work completed in time for the beginning of fish-cultural work next season.

The conduct of fish-cultural work at the Nashua station is ammally becoming more difficult and uncertain. Shortage in the station's allotment of funds for a long period of years has prohibited all possibility of necessary repairs and improvements, with the result that the hatchery, ponds, water-supply flume, and other equipment have now reached such an adranced stage of dilapidation that it is not considered entirely safe to attempt the handling of a valuable brood stock of eggs or fish. It is estimated that a special fund of at least $\$ 20,000$ would be required to place the station in condition for the conduct of fish-cultural work on an efficient and economical basis.

COMBINATION TROUT AND POND STATIONS.

The stations included in this group are located in the States of Tennessee, Iowa, Missouri, and West Virginia. As compared with last year's production their output of brook trout and rainbow trout was substantially increased, but the unseasonably cold, late spring resulted in a serious reduction in the distributions of the pond fishes. Some of these stations also incubated yellow-perch eggs and used the product for the stocking of local waters.

ERWIN (TENN.) STATION.

[A. G. Keesecker, Superintendent.]

Though eight species of food fishes figure in the output at this point the principal part of the station's production consisted, as in past years, of fry and fingerling rainbow and brook trout, the former species predominating in numbers. Other fishes included in the distributions were largemouth black bass, smallmouth black bass, yellow perch, rock bass, and bluegill brean.

During the period from October 26 to the end of the first week in February 1,309,000 rainbow-trout eggs were taken from the station brood stock. but owing, it is believed, to the abnormally mild weather prevailing prior to and throughout the spawning season their quality was impaired to the extent that the losses to the eyed stage amounted to fully 44 per cent of the original stock. From the 743,740 fry hatched 659.750 fingerling fish were reared and distributed. As the natural conditions at this station are unsuitable for the maintenance of a brood stock of brook trout, all work accomplished with that species must necessarily depend upon the transfer of eggs from other sources. A stock of 285, 00 eggs purchased from a commercial brook-trout hatchery was incubated with a loss of only $2 \frac{1}{2}$ per cent, and from the resulting fry 278.200 fingerlings Nos. 1 to $2 \frac{1}{2}$ were reared and distributed.

The spawning of the largemouth and smallmouth black bass began about April 20 and extended well into June. Twenty-seven nests of the former species yielded 55,135 young bass, of which 15,635 were fingerlings No. 1 , while the distributions of the smallmouth bass included 7,450 fingerling fish. An adverse feature of this work was the loss of a material number of adult fish of both species during the breeding season, greatly reducing the output. The most careful observation failed to reveal the caise of the mortality. So far as could be determined there were no unusual environmental conditions, and the dead fish appearing on the surface of the ponds had apparently not suffered from disease and bore no discernible evidence of bruises or injuries of any kind. The 500 ,000 yellow-perch fry entering into the year's distributions were derived from a consignment of $1,000,000$ eggs supplied from the shad station on the Potomac River.

A number of items of construction work were accomplished during the year, among the most important being the enlargement and deepening of two of the ponds and the construction and installation of a 400 -foot concrete flume to replace the old decayed wooden conduit for supplying the pond system on the lower level of the station reservation. The hatching capacity of the station was increased by the construction of a shed building, 40 by 42 feet in dimensions on an 18 -inch concrete foundation wall and concrete flooring, to house a supplementary series of troughs. Eighteen additional troughs of galvanized iron were purchased and will be set up in this building as soon as the necessary pipe connections can be made.

MANCHESTER (IOWA) STATION.

[F. E. Hare, Superiatendent.]

In the latter part of July, 1922, this station was subjected to a heavy downpour of rain, which flooded the reservation within an incredibly short space of time, transforming the entire pond system into one large lake and permitting the escape of a large percentage of the fish held therein, among them being many of the adult trout that were being counted on as a source of egg supply. One of the direct consequences of this loss was the reduction in the output of rainbow trout to less than one-half that of the preceding year, though the prospects up to the time of this occurrence had promised an increased egg production both of the rainbow and the brook trout. Moreover the quality of the eggs secured from the surviving rainbows was so inferior that only 98,685 fingerling fish were produced and distributed from the 354.700 collected. The greater part of the losses among this stock occurred before the hatching period. With the view of replacing the losses of brood fish, selected lots of young trout of both species are being reared, among them being 8,200 of the finest brook-trout fingerlings and the entire lot of fry produced from a consignment of wild rainbow eggs, the latter having been received during the spring from one of the western stations of the bureau.

The egg collections from the adult brook trout, amounting to 133,000 , were supplemented by the purchase of $358,000 \mathrm{eggs}$ from commercial trout establishments and the transfer of $235,000 \mathrm{eggs}$
from stock collected for the Springville (Utah) hatchery. From this combined stock 649,250 fry were hatched, nearly $89 \frac{1}{2}$ per cent of the eggs handled, and the output for the year consisted of 445,545 fingerlings Nos. 1 and 2 with 30,400 still on hand at the end of the year.

Owing apparently to some peculiarity of the water supply, a disease of the gills has long been persistent among the brook trout held at this station and the many attempts to eradicate it have not thus far afforded much relief. In continuation of past efforts along this line a system of long narrow ponds with earth bottoms was recently constructed and provided with a good flow of water, plant growth, and other conditions in simulation of nature so far as might be possible. While the environment thus provided has not proved particularly effective in overcoming gill disease, it has been found that the ponds are much better adapted to the work of trout rearing than are the old rearing ponds on the reservation.

In addition to trout culture, operations were conducted with the smallmouth and largemouth black bass and the rock bass, though, with the exception of a ferv thousand fingerlings of the latter, no fish of these species were distributed. Judging from the large numbers of fry observed in the ponds the results of the nesting season of the black basses were successful, but the actual outcome of the season at the close of the year was uncertain, the ponds not having been drawn down at that time.

The nesting of the rock bass did not meet with a large measure of success. The actual number of young fish of this species on hand at the end of June could not be determined, but it is doubted if the yield of fingerlings will justify the time and labor expended in their production. It is believed the brood fish have almost outlived their usefulness and steps will be taken to replace them with younger fish in advance of the next spawning period.

Owing to the necessity of conducting all operations on a reduced allotment no construction work other than minor repairs and improvements could be undertaken. However, in recognition of the importance of protecting the station against a recurrence of last year's disastrous flood preparations were in progress toward the end of June for the erection of a cement dike to run parallel to the streams running through the eastern end of the reservation, the actual work of construction to be undertaken in July. As planned, this barrier will extend approximately $2 \frac{1}{2}$ feet above the level of the ground and from 12 to 18 inches beneath the surface. It will be 7 inches in thickness, with a terraced embankment. to be filled in on the side nearest the hatchery.

NEOSHO (MO.) STATION AND SUBSTATIONS.
[Fred J. Fostifr, Superintendent.]
The scope of the work at this station was considerably enlarged during the year by extending its activities into new fields-in one case by the lease of property suitable for pond-fish culture, and in others by effecting agreements for the conduct of trout-cultural operations on a cooperative basis with private fish-culturists. One of the results of such extension has been the establishment during
the year of a record collection of tront eggs, the total in round numbers amounting to 2.056 .000 , or $21 \frac{1}{2}$ per cent more than in any previous year in the station's history.

At the Neosho station 848,000 rainbow-trout eggs were collected between November 16 and February 19. This stock was materially reduced by losses, both in the egg stage and subsequently, and from it 181,965 fingerlings. Nos. 2 and 3 were realized for distribution, with about 10,000 remaining on hand at the end of June.

It having been found that the best eggs at this station are the product of very young fish, a systematic policy of selective breeding and liberal feeding, with the object of increasing the percentage of early spawners, has been in progress for some time. 'The efforts in this direction are apparently bearing fruit, as the proportion of spawning trout under 2 years of age is steadily increasing, being now about double what it was before the experiments were instituted.

A slight deviation from past methods was made in the feeding of fry and small fingerlings. For the purpose of varying the diet the fish were given clabbered milk twice a day and beef heart three times a day. They took the milk readily and seemed to thrive equally as well as when fed exclusively on heart.

No definite cause could be assigned for a slight loss occurring in each lot of rainbow trout as they attained a length of $1 \frac{1}{4}$ inches. A few of the fish showed what appeared to be an extremely minute threadworm in the intestines, but at 375 diameters these were hardly distinguishable. By immediately cutting off all food for a period of 24 hours and then giving nothing but clabbered milk for the succeeding four dars the loss ras reduced to normal proportions.

Late in April a more serions epidemic broke out in the troughs containing rainbow trout 2 or more inches in length, the more prominent symptoms being distortion of the head, faded-appearing gills, and an abnormally dark color, the latter being most prononnced among badly affected individuals. The kidneys showed disintegration with crystals. A carcful examination by the burean's pathologist failed to disclose the cause of the disease, but it is believed it may have been due to the presence of mineral substances in the water supply. There was no evidence of it among fish that had been removed from the hatchery to rearing ponds as fingerlings No. $1 \frac{1}{2}$, and thinning out of the young fish and early removal from the hatchery to rearing pools will hereafter be resorted to in the hope that a recurrence of the trouble may be averted.

The disease gyrodactylus developed in one pool of No. 21 ling trout early in May, but was quickly dissipated by immersing the fish for a fraction of a minute in a $1: 15$ solution of pure cider vinegar. Ichthyoplothirius made its appearance in one pond, but loss from this cause was prevented by immediately transferring the affected fish to another pond where they could be held in a good flow of running water.

Excellent results were attained in the hatching of a lot of 50,000 eggs from wild rainbow trout received on June 10 from the Bozeman (Mont.) station. The product of these eggs will be reared and reserved for a brood stock at Neosho and auxiliary stations.

The result of the season's work in the propagation of pond fishes at Neosho station was the poorest experienced in many years. This is attributed largely to adverse climatic conditions. An almost
steady downpour of rain during May and early June, when the distributions usually occur, roiled the pond water to such an extent as to make the collection of fry impossible, and by the time the water had begun to clear the schools of fish had broken up and become dispersed among the dense regetation in the ponds. Under such conditions it became necessary to carry over the entire erop for distribution as fingerlings in the fall.

An investigation conducted in May by the bareau's pathologist disclosed the prevalence of a parasitic affection among the pond fishes. The tapeworm (Proteocephalus ambloplitis) was found in the sunfish and in both species of black bass, the larral stage of this parasite heavily infesting the ovaries of some of the individuals examined. This trouble is believed to be one of the main eauses for the poor success heretofore attained in the pond fish-cultural work at this station. So little is known of the nature of the organism. however, that prospects for its control do not seem bright, and in view of the circumstances it may be found adrisable to discontinue the efforts to produce the two species of black bass and confine future activities in pond work to the propagation of the blisegill and green sunfish, which appear to be more resistant to the ravages of the parasite than any of the other species.

A consignment of $7,800,000$ yellow-perch eggs was received late in March from the bureau's station at Bryans Point, Md. Of these eggs $3,680,000$ were turned over to the Missouri State hatchery at Springfield, and from the remainder $3,500,000$ fry were hatched and distributed to applicants for that species.

ROARING RIVER (MO.) SUBSTATION.

Work in this field, which is about 50 miles east of Neosho, was conducted on a share basis, the bureau receiving an equitable percentage of the eyed eggs obtained from the orner's stock of brood trout. The egg collections, made between November 27 and February 24 , proved very disappointing, only 959,000 , in round numbers, being obtained from a brood stock large enough to have produced at least twice that number. The small yield was attributed to underfeeding of the fish, and as this was a factor over which the bureau had no control, it was decided that the expense would not justify the results in future operations and the agreement was terminated at the end of the year.

BOURBON (MO.) SUBSTATION.
Bourbon is located in the eastern section of Missouri about 65 miles distant from St. Louis, and the property in which the burean is interested belongs to the von Hoffman Press Association of that city. The cooperative arrangement entered into with this association stipulates that the bureau shall provide the services of a man to conduct fish-cultural work on the property, while the association will bear all expenses of construction and maintenance of the plant, including purchase of fish food and subsistence for the bureau's employees. The bureau is to receive at least two-thirds of all fingerling fish produced, with the understanding that they are to be liberated in Missouri waters.

The outcome of the first season's operations at this point was encouraging, nearly 250,000 eggs being taken from the 1,200 yearling fish comprising the brood stock. The fish had been well fed, and as regards both quality of eggs and number secured the results were far better than at Roaring River. The total cost of the work to the bureau was less than $\$ 115$, and its share of the proceeds was 96,000 fingerling trout Nos. 2 and $2 \frac{1}{2}$, all of which were liberated in waters in the eastern section of the State. One of the most advantageous features of the work in this field is the saving effected in distribution cost, as the stocking of these waters with fish produced at Neosho station would necessarily involve heavy transportation expenses.

> GREER SPRINGS (MO.) SUBSTATION.

This field station, also operated for the first time during the year, is located on land belonging to L. E. Dennig, of Oregon County, Mo., who desires the cooperation of the bureau in developing here a source of supply for rainbow-trout eggs. Apparently there is nothing to interfere with the success of this undertaking, as the flow of spring water is abundant, amounting to approximately $204,000,000$ gallons per 24 hours, and the site appear's to be well suited to fish culture in other respects.

Under the agreement effected with the owner the bureau is to supply not less than 50,000 rainbow-trout eggs annually, to be hatched and reared at his expense in pools which he has constructed, half the product in fingerling fish to be clistributed locally and the other half to be at the disposal of the owner. Of the 70,000 fingerling fish resulting from 100,000 eggs developed at this point during the spring 30,000 were planted as fingerlings No. $1 \frac{1}{2}$ in Greer Springs Branch late in March. The remainder was held to the No. 21 fingerling size and liberated early in June.

LANGDON (KANS.) SUBSTATION.

At this place, about 35 miles east of Hutchinson, Kans., the bureau recently leased from Eugene Catte a pond system approximately $6 \frac{1}{2}$ acres in area which had been successfiully employed by him in past years in the production of black bass, bream, and crappie. These ponds having recently been used for goldfish culture, no brood fish of the various species desired were available, hence collections had to be made from wild fish and transfers arranged for from other stations of the bureau. By the 1st of April a brood stock consisting of 366 black bass, 391 sunfish, 425 crappie, and 58 rock bass had been assembled and installed in the ponds. Nesting and rearing activities progressed favorably to the close of the year, though some of the stock was lost during a heavy rain that flooded the pond early in June, washing away considerable numbers of fry and fingerlings. Owing to shortage of funds no distributions could be made from these ponds prior to the close of the fiscal year.

There are 13 other ponds belonging to farmers in the vicinity of Langdon, and with these men an agreement has been effected whereby the bureau is to collect at stated intervals the fish they are able to produce in their ponds, paying for them at a stipulated price per thousand.

WHITE SULPHUR SPRINGS (W. VA.) STATION.
[Edward M. Haynes, Superintendent.]
The outcome of the year's fish-cultural work was the most successful ever experienced in this field, the distribution of eyed trout eugs being the largest in the station's history while the production of fish compared favorably with the record output established in 1922. In fact, the volume of the work has now reached a point where it can not be further extended without enlarging the hatching and rearing facilities of the station. The results secured were accomplished in the face of unusually difficult conditions. Lack of rain throughout the entire fall reduced the water supply in the hatchery and ponds to such an extent that a considerable number of the brood trout perished though every possible precaution was taken to save them. While this loss did not appear to reflect unfavorably on the egg collections, its full force will be felt in at considerable curtailment of the work next year because of the shortage of brood fish. The year's operations were also unfavorably afiected by adrerse weather conditions during the spawning season of the so-called pond fishes. Sudden and extreme temperature changes of air and water occurred repeatedly throughout the entire spring. causing the parent fish to desert their nests and resulting in heary losses of eggs and fry.

The species handled were the rambow trout, brook trout, largemouth and smallmouth black bass, sunfish, and rock bass, and the grand total of the distributions aggregated $2,653,826$. of which number $1,097,500$ were eyed eggs of the rainbow trout. With the exception of 114,500 black bass, which were distributed in the fry stage, all the remainder of the output consisted of fingerling fish of the various species mentioned, rainbow and brook trout predominating.

Notwithstanding the injurious effect of the abnormally low water stages upon the brood rainbows, some of which succumbed prior to the sparning period and others immediately after being stripped. the egg collections. amounting to $2,316,000$, were the largest in the station's history. Their quality was also good, the percentage of hatch exceeding that of the previous year, while the reports on eyed egg.s shipped to applicants were uniformly farorable. The output of fingerlings from this stock numbered 726,900 . The fish were distributed somewhat earlier than in former years and to this fact is attributed the smaller losses sustained in shipment. The health of young trout is liable to become somewhat impaired when they are held for an extended length of time under the crowded conditions necessitated by the limited rearing facilities available at this station, and for this reason the practice of early distributions should be continued, the work to be started not later than the middle of March if possible.

All brook-trout eggs handled were purchased from commercial fish-culturists, no collections being made or transfers effected from other hatcheries of the bureau. The number received amounted to approximately 923,000 , nearly half of them being paid for by the State of West Virginia with the understanding that the product

```
S8453-24-6
```

hatched from an equal number of rainbow-trout eggs would be turned over to the State for distribution. Though the percentage of hatch was in excess of 96 , the quality of the eggs as a whole was somewhat inferior and the losses of fry prior to the feeding stage were unusually heary, especially on one lot that was badly affected by the disease known as "bluesac." The fish were distributed as fingerlings Nos. 1 and 2, the output amounting to 710,066 not counting 2,000 that were retained for future use as brood fish.

The output of black bass of both species amounted in round numbers to 117,000 , or about 16,000 more than were distributed last year. Most of these were shipped in the advanced fry stage.

WYTHEVILLE (VA.) STATION.
[Chas, B. Grater, Superintendent.]
The output of this station amounted in round numbers to 695,000 eggs and fingerling fish, an increase of 63 per cent over the production of the previous year. About 25,000 of this number represented such pond fishes as the black bass, catfish, rock bass, and sunfish; 243,000 were eyed rainbow-trout eggs, and the remainder consisted of fingerling rainbow and brook trout.

On the stock of $1,044,000$ eggs of the rainbow trout secured during the fall there was a loss of 317,500 owing to the presence of large numbers of defective eggs, known as "pinheads." Some of this heary mortality was doubtless due to the adranced age of many of the hrood fish. but it may also be attributed in large part to the poor physical condition of the brood stock as a whole, brought about by an insufficient water supply during the late summer and early fall when the flow from the spring was at a low ebb.

For the purpose of ascertaining the percentage of hatch a lot of eyed eggs was planted in a mixture of sand and gravel in one of the ponds. There were no results, but in another lot of the same age placed in nests of screened coarse crushed rock in a trough in the hatchery the mortality appeared to be very small, the fry emerging from the stones with the sac well absorbed within a period of two weeks.

At the beginning of the feeding stage two lots of fingerlings, equal as to numbers, size, and weight, were selected for the conduct of an experiment made to test the value of a commercial fish food composed of fish and cereal as compared with beef heart, the material in general use at this station for the feeding of fingerling fish. At the end of 60 days the lot that had been fed on beef heart showed an increased weight of 42.55 ounces as against a gain of 8.35 ounces for the fish receiving the commercial food. A second test was made with two equal lots of fingerlings that had been fed for a period of two weeks on beef heart. At the end of the 30 days' trial the lot that had been changed from the heart to the commercial brand of food showed a gain of only 12.75 ounces while the control lot had increased 24.75 ounces in weight.

Most of the adult fish at this station have been fed on liver and other slaughterhouse products in the past, but recently a change was made to beef heart mixed with rarring proportions of mush. This diet has been found to result in a large production of eggs of good
quality, and it is beliered it will do much toward the eradication of thyroid tumor, which appears to have gained a foothold among the brood stock. The presence of this disease is believed to be due in large measure also to the method employed in cleaning the ponds. Under certain conditions it is necessary to wash all acemmulations of sediment down through a pond containing fish to the outlet at a time when the depth of the water does not exceed 8 to 10 inches. This is not considered conducive to the health of the fish, since a large amount of the waste matter must pass through their gills.

Tith the riew of improring the methods in this respect a bulkhead extending about 6 inches below the surface of the water was recently installed about 12 feet below the upper end of one of the ponds, with a gateway in the center of it. When cleaning this pond the water in the upper section is lowered and that portion cleaned first, after which a seine is passed around the fish, causing them to enter the cleaned portion: the gate is then lowered, and the remainder of the pond cleaned without subjecting the fish to insanitary conditions.

Acting on a suggestion from the fish pathologist, a small quantity of iodine solution was mixed with the food given to one lot of fish in the hope that it might tend to lessen, if not prevent, the development of thyroid tumor. Sufficient time has not yet elapsed to permit of any statement as to its effect upon the fish.

The pathologist discorered that a large number of ailing No. $1 \frac{1}{2}$ fingerling trout were infested with flagellate. It has been noted that the mortality among fingerling trout of this size is considerably greater than among older fish, and also that it is heavier in the spring than at any other season of the year.

The filtering system was used during the incubation period and up to the time the fingerling fish were distributed. By the use of a dropping device for the purpose of introducing sulphate of alumina in the water-supply tank, in varying amounts to meet the requirements, the turbidity of the spring water was greatly reduced, most of the sediment being precipitated to the bottom of the tank. This greatly lessened the work of caring for the eggs and fry and it is believed to have averted a large loss of fry, especially of the brook trout, which do not appear to be able to survive roily water. Considerable trouble was caused by the development of "pop-eye" among one lot of rainbow tront that had been held in water taken direct from the spring, but on transferring them to troughs containing water supplied by the filter the disease lessened and gradually disappeared.

The efficiency of the station was greatly increased during the year by the installation of 18 newly constructed troughs in the old hatchery building and arranging them so that the water supply can be drawn either from the filter or direct from the spring. These tronghs have a capacity for $1,000.000$ trout eggs. 750,000 fry, or 180,000 fingerlings No. 1.

The new hatchery has two hatching rooms. The one in the basement is equipper with 20 tronghs arranged in a single series on iron-pipe supports, each trough being 13 feet 5 inches long, 14 inches wide, and 6 inches deep. The room on the floor above contains 40 troughs arranged in two series, and the water supply. Which may be taken either from the filter or direct from the spring, is
obtained from an open head trough. After passing through the first two troughs the water is carried into the waste ditch, and from there into the ponds containing the adult fish or directly into the creek, as may be desired. These two hatching rooms liave a combined capacity for $3,540,000$ eggs, $2,655,000$ fry, or 590,000 fingerlings No. 1.

Early in the year arrangements were made for the thorough renovation of the bass ponds, which had become so filled with sediment and overrun with lilies as to have their usefulness greatly interfered with. A road scraper and team were employed so far as practicable to remove the sediment, which in many of the ponds was from 12 to 14 inches thick. In the ponds having soft bottoms it was found necessary to provide hard bottoms by first distributing a layer of coarse stones over the soil and filling the interstices with crushed rock.

Cement catch basins or kettles were installed in several of the ponds with the view of discontinuing the practice of drawing the small fish out into a screened box with the muddy water and then dipping them out with nets. This kettle, consisting of a cement basin about 5 feet wide and 12 to 14 feet long, with wide walls extending approximately 12 inches above the pond bottom, is set just ahead of the drain box. When the water has been lowered to a point level with the sides of the kettle all of it must then pass through the shice gate cut into the side of the kettle next to the drain box. Following the water current, the little fish are naturally carried into the upper end of the kettle, where the water is comparatively clear.

POND FISH-CULTURAL STATIONS.

The output of the several stations composing this group was seriously curtailed by unfavorable weather conditions during the spawning season. Though unavoidable, this falling off is to be regretted as under the most favorable circumstances it has been found impossible to fully meet the demands for the so-called warmwater pond fishes, this applying especially to the two species of black bass. The aggregate output by species of these seven stations during the year was as follows:

Largemouth black ba	1, 478.204
Smallmouth black bass_	422. 200
Sunfish	$\because 60,858$
Crappie	6, 980
Catfish	13, 50\%
Rock bass	19, 610
W'armouth bass	8,900

COLD SPRINGS (GA.) STATION AND SUBSTATIONS.
[Charles A. Bulloch, Superintendent.]
The principal species produced at this station is the largemouth black bass and the pond space ordinarily devoted to the work is large enough to accommodate 800 brood fish. The persistent efforts made in advance of the spawning season to secure additional adult bass from various sources in Georgia and Florida to compensate for
the losses that have occurred recently were unsuccessful, and in the face of a shortage of nearly 200 breeders two of the ponds were allowed to remain idle. The bass work was still further curtailed by a total lack of results in two other ponds that had been stocked with adult bass transferred early in the spring from Washington, D. C. Notwithstanding these discouraging factors, however, the station's production of fry and fingerling fish of this species exceeded last year's by 140,000 , while the total output of the station and its Harris Pond auxiliary was nearly two-thirds larger than that of the fiscal year 1922.

Early in the year the pathologist made an effort to discover the cause of the heary mortality occuring among the adult bass. No conclusion was arrived at, but it is the belief of the station superintendent that it is due to some deficiency in the food supply. Chopped mullet constituted the food supply of these fish during the year, and while the losses have been lighter than last year when beef heart was being fed to them, the mortality has, nevertheless, been much heavier than at other stations where the hearts are generally employed as a food for brood fish.

The year's production of crappie was almost negligible, only 1,500 fingerling fish being realized from one half-acre pond. For some unknown reason this species has never responded satisfactorily to artificial propagation at the Bullochville station.

Past experience at this station has demonstrated that ponds containing water throughout the year or remaining dry for only two or three months during the year are apt to produce large numbers of such injurious insects as Dytiscus, Gyrinidæ, and Hydracarina. With this in mind it was decided to drain all ponds immediately after completing the distribution in the late summer of 1922 and allow them to remain empty until late in February. Apparently this change was rery beneficial. Not only were undesirable insects unusually scarce during the spring, but the ponds contained more daphnids, cyclops, chirinomids, and other natural food for young fish than ever before.

As the water from Cold Spring has always been pronounced too deficient in lime for the best results in fish-cultural work, an experiment was started in September with the view of ascertaining if this defect might be orercome by introducing lime in the supply. In a box 4 feet square and 2 feet high a false slat bottom was inserted, 1 inch of space being left below the slats. This was placed in one of the ponds, a layer of coarse gravel distributed orer the slats, a 2-inch layer of sand orer that, and finally a barel of freshly slaked lime. A three-fourths-inch pipe was then installed in such a way as to force water up from beneath the slats and cause it to flow evenly through the gravel, sand. and lime into the pond. On May 1 when the box was removed it was found that all the lime had dissolved. As the results attained in this pond during the succeeding spawning season were not distinguishable from those in the untreated ponds, it is evident that the experiment had no beneficial effect upon the water supply.

In the course of the rear Cold Spring, the main source of the station water supply, was corered with a shingle roof supported on δ-foot studding set in concrete blocks. The exclusion oí leaves and débris was accomplished by inclosing the studding with wire
poultry netting, and through the cutting off of the intense light to which the spring was subjected the growth of alge will be largely prevented. In order to confine the water within the walls of the spring, which has always been difficult owing to the gravelly nature of the soil, a wooden bulkhead was set at a distance of 20 feet from the wall on the lower side and the interyening space filled in with red clay to a depth of 4 feet.

```
HARRIS PONDS (G_A.) SUBSTATION.
```

Operations in this field extended from March 15 to the middle of October and consisted in the propagation of blnegill sunfish (bream) and catfish (Ameiurus nebulosus), the young fish being collected from the ponds in the Nos. 1 and 2 fingerling stages and transferred to Bullochville to be distributed with the fish shipped from that point. The outcome of the season's work was satisfactory, the production of sunfish exceeding that of any previous year, while sufficient numbers of catfish were distributed to fill all applications for that species. Fully 150 terrapin were captured in the ponds and destroyed during the season, and to this fact may be attributed a large measure of the success attained. However, a more serious menace to fish-cultural effort exists here in the form of numerous beetles of destructive species, and no successful method of combating it has yet been devised. The cggs of these beetles are deposited on the leaves of aquatic plants at or slightly above the surface of the ponds, where they are practically inaccessible. The supply of water from the springs is not sufficient to permit of changing levels during the spawning season, and the roiling of the water incident to wading into the ponds to cut the weeds would in all probability result in considerable losses throngh the smothering of the eggs.

At this field station the side ditches connected with the pond system were deepened and widened to exchude freshet waters and the shallow portions of several of the ponds were made deeper, the excavated material being utilized in the improvement of the division banks.

EDENTON (N. C.) Station.

- [W. S. Vincent, Superintendent.]

In addition to the work concerned with the propagation of the anadromous fishes, mention of which may be found on page 54, the Edenton station produced the various pond fishes on a limited scale. Its output of such species during the year amounted to 62,920 , of which the great majority were largemouth black bass fry and fingerlings. The remainder consisted of sunfish, catfish, and crappie. only negligible numbers of the two last named being produced.

LOUISVILLE (KY.) STATION゙ AND SUBSTATION.
[Charles W. Burnilam, Superintendent.]
Though pond fish-cultural activities at this station were concerned with four species of fish, the principal work, as in the past, consisted in the production of smallmouth black bass. Approximately 93 per
cent of the year's distributions were of this species, the remainder' being largemonth bass, rock bass, and smnfish, each of which was produced in about the usual numbers. Adperse weather conditions during the first half of April interfered with the spawning season, and shortly after nesting had begun a sudden cold spell occurred. killing all eggs that had been deposited. Aside from this the season was a normal one and, as four ponds had been devoted to the smallmouth bass work instead of three as in past years, the final results were larger by 57,000 than in 1922 , the previous record year. This extension of the work was made possible by the receipt of 150 adult bass just prior to the spawning season from collections made in the Lake Erie field.

Adult bass for the enlargement and improvement of the brood stock have been received annually from Lake Erie collections for several years, some arriving in the fall and other lots in the early spring. During the past three years these various lots of fish have been segregated and special observations made with the riew of determining whether those acquired shortly before the breeding season might be expected to produce as good results as the others. While no definite conclusion has been reached, it is the opinion of the station superintendent that this question is not a factor of particular importance, and that, other things being equal, sparning may be expected to occur regardless of the exact time the fish are reccived.

During the months of July, August, and September an aquarial exhibit of various species of fish collected from the Ohio River was maintained and proved a great attraction to the large numbers of visitors at the station.

CAIRO (ILL.) SUBSTATION.
The work at this point consists in salvaging food fishes that have become stranded in the sloughs or pools formed by the periodical flooding of the Ohio River. Owing to high water stages in these sloughs the collections could not be undertaken during the early fall. The work was started on November 13 and between that time and December 2 fish to the number of 1,207.750 were remored from temporary waters and returned to the river channel, the predominating species being catfish, crappie, and sunfish, in the order named. The total cost of the operations amounted to $\$ 415$, or an average of less than 35 cents per thousand fish handled.

MAMMOTII SPRING (ARK.) STATION.

[Dell Prown, Superintendent.]

The work of repairing and improving the pond system, undertaken during the past fiscal year at this station, was extended well into the fall of 1922 . Several unfinished pond banks were completed, a new levee was constructed to replace one that had been destroyed br muskrats, and 4 -inch piping was purchased and installed to connect sereral of the ponds with the water supply. I sufficient amount of terra-cotta pipe for extending the supply to some of the unfinished ponds was also provided but not installed. During September and

October two abandoned ponds that had been allowed to grow up in weeds and bushes were cleared, and after plowing, harrowing, and leveling the soil, water was turned in and the bottoms thoroughly puddled by the use of a team and drag. The addition of these two ponds to the existing system will materially increase the pond fish-cultural facilities of the station. All buildings on the reservation, with the exception of the barn, were painted during the year, a number of minor repairs were made, and a considerable amount of grading and leveling was done on the grounds preparatory to sowing them to grass.

The corn receired as rental for the use of a portion of the station reservation, together with the hay grown on the grounds and harrested by the station force. sufficed as feed for the station team practically throughout the year.

In view of the preparations made in advance of the spilwning season for improving and enlarging the brood stock of the largemonth and smallmouth black bass, the results of the season's work were disappointing, the combined production of both species being but little in excess of 100,000 fingerlings. During the preceding fall and winter constant efforts had been put forth to acquire. by purchase and also by collections from open waters, all available adult bass not under 14 inches in length, and on April 15, when the collections ceased. the brood stock had been increased by the addition of 213 fish, giving a total of 500 , of which 300 were largemouth bass. These fish had received as a regular diet throughout the fall and winter all the beef heart they would eat. in addition to about 50,000 common minnows obtained from neighboring streams. When apportioned among the breeding ponds their condition was most excellent.

The nesting of both species of black bass began on April 4 in a water temperature of 58°, and eggs were deposited freely throughout the spawning period in the four ponds devoted to the work. The spawning season of the smallmouth bass was completed by May 2 , but eggs were deposited by the largemouth species up to and including June 10. The small results of the season's efforts were due to various adverse climatic conditions, among them being the cold, backward spring, sudden fluctuations in air and water temperatures, high winds, heary rains, and muddy water. Suffocation of eggs and fry in the excessively muddy water experienced was probably responsible for the greater part of the loss sustained, taiking the season as a whole, though starration is believed to have been an important factor also, due to the inability of the fry to find sufficient natural food in the clondy water. Moreover, it is reasonable to suppose that the natural food supply carried in the water during times of heary rains and freshets is much smaller than when normal conditions obtain. The distribution of the smallmouth bass, consisting of 20,200 fingerlings Nos. 1 and 2, was completed in June, but collections of the largemouth species were still in progress when the year closed. the output up to that time amounting to 85,700 fingerlings. A compensating feature of the work was that all fish shipped were of fine quality, strong, and active.

From the single pond that had been deroted to the production of rock bass 17.600 fingerling fish were collected when the pond was lowered in October, 1922. The late fall distributions also included

14,000 sunfish (Lepomis cyanellus) and 400 crappie. The output of all of these fish was without doubt materially reduced through the ravages of a large number of pike, which were not discovered until the water was lowered to make the collections for distribution. These fish are believed to have gained access to the ponds through the supply pipe from the spring.

OLANGEBURG (S. C.) STATION.
[G. W. N. Brows, Superintendent.]
The output of fish from this station, amounting in round numbers to 435,000 , represents the most successful year in its history. The great bulk of the production consisted of fry and fingerling largemouth black bass, the distributions of which were in excess of 400,000 . Most of the remainder were sunfish, with a few fingerlings each of the warmouth bass and catfish.

The most serious obstacle encountered during the year was the flooding of a portion of the pond system by the heary rains occurring in July, 1922, and the consequent loss of a considerable number of young fish. Other than this, natural conditions were in the main favorable to fish culture and a change in methods is believed to have been a material influence in producing good results. Instead of confining the brood bass in two or three ponds during the winter, as heretofore, involving a second handling in the spring, the fish were apportioned among the breeding ponds immediately after the conclusion of the annual cleaning of the ponds, and were allowed to remain undisturbed to the end of the spring spawning. During the winter they were given all the food they would take, and their condition at the beginning of the spawning period was much better than under the old system of frequent transfer and handling.
A catfish pond, 3 feet by 30 feet in dimensions, divided by screens into three compartments to permit of a free circulation throughout its length, was constructed and 1 pair of catfish placed in each compartment, it being the intention to follow up the experiment of hatching in troughs instituted recently at the Fairport (Iowa) biological station.

The overflow of the levees early in the year necessitated prompt action, the work involving the excavation of a deep ditch and the construction of a levee in order to divert the flood waters and save the pond system. The levees between the two reservoirs were then raised to a height sufficient to guard against a recurrence of damage during periods of excessive rain. Two spillways were con-structed-one at the outlet of the main reservoir leading into the drain and one at the small upper reservoir. The recent erection of a steel-wire fence around the reservation has added greatly to the appearance of the station and will afford pasturage for the station horse.

An interesting experiment was made during the breeding season to test the possibilities of artificial propagation as applied to the black bass. On March 5 a nest of approximately 4,500 freshly laid eggs was carefully removed from one of the ponds and placed in a trough on a cheesecloth-covered tray. The eggs were found to run

3,000 to the liquid ounce, measuring 17 to the linear inch. On March 7 the eye spot was visible and by the 10 th all live eggs had hatched, the number of fry being estimated at about 600 . The heary loss of eggs indicated was doubtless caused by injuries received when they were counted. On March 23 the young fish rose from the tray as sac-absorbed fry and were soon feeding eagerly on beef heart that had been prepared for them by running it through a meat chopper several times, rubbing through cheesecloth, and finally converting it into a thin soupy solution by the addition of water. On April 9 , one month and four days after the removal of the eggs from the pond. they were distributed as adranced fry, their number being 394.

SAN MARCOS (TEX.) STATION.

[Mark Riley, Superintendent.]
There was a serious falling off in the production of fish at this station as compared with the work accomplished in 1922, the total distributions amounting in round numbers to 271.000 , or considerably less than one-third of the record output established that year. The vield of the largemouth black bass, the most important species propagated, numbered 251,918 , and 14,508 green sunfish (Apomotis cyanellus) were distributed. The other species handled during the year included crappie. rock bass, and warmouth bass, all of which were produced in negligible numbers.

The poor showing made in the year's fish-cultural work is attributed to excessive rains and severe cold prevailing prior to and during the early part of the spawning season. Weather conditions throughout the month of February were exceedingly unfavorable, and the sudden temperature changes experienced in March-the extreme range extending from 83° to 27°-proved very destructive to the nests of eggs. A determined effort was made to counteract these violent fluctuations of temperature by pumping into the ponds the warmer water of the San Marcos River, but it proved impossible to avert the disastrons losses of stock which occurred.

The station was compelled to cover the entire State, making many long trips that involved a much greater expenditure of funds than would have been necessary had the State fisheries authorities been able to cooperate as anticipated.

The inadequacy of the San Marcos station to meet the demands made upon it throughout the length and breadth of the State is every year becoming more apparent. Additional hatching centers are greatly needed. At the present time an undue proportion of the funds allotted for the work of the station is expended in shipping fish to applicants located at a great distance. Were it possible to eliminate the large expense annually incurred for transportation the funds thus saved would go a long way toward increasing the productiveness of the station.

In an effort to alleviate the situation the bureau has been negotiating with groups of interested citizens in different sections of Texas in an effort to secure financial cooperation in the construction of ponds where supplies of suitable fish may be raised to meet the
demands of the immediate region, the management of such field work to be under Federal supervision. With this object in riew two ponds have been constructed at New Braunfels, Tex., and funds sufficient for the construction of a small hatchery plant at Medina Lake have been contributed. Several other communities have expressed a desire to cooperate in fish-cultural work, among them being Fort Worth, where an abundant supply of water of good quality is at vailable.

It is a matter of regret that the clear-water ponds at San Marcos are not adapted to the culture of crappie, the popularity of which in Texas is only second to that of the black bass. In an effort to respond in some measure to the urgent requests for this species the burau has for some time been introducing crappie in cattle tanks belonging to stockmen located in various parts of the State, with the understanding that a certain percentage of the young fish produced therein shall be available for its distributions. While some success has been attained along this line the scheme is not an entirely satisfactory one owing to the liability of many of the waters to disappear entirely during the long periods of drought to which they are occasionally subjected.

For a number of years past water for the station ponds has been supplied by the San Marcos Utilities Co. at an amnual expenditure of $\$ 500$. The service was not entirely satisfactory and at the suggestion of the company the agreement was terminated. A pumping outfit was then installed by the bureau with the view of providing its orm water supply and the results of the change have demonstrated its advantages over the old plan. During the last six months of the year the cost of keeping the ponds filled with water has amounted to $\$ 150.90$, showing a saving of practically $\$ 100$ for the period. It is also possible muler the present arrangement to obtain water at any time, whereas $2 t$ hours adrance notice had to be given the company under the former plan.
tUPELO (Miss.) Station and sebstation.
[David Davies, Superintendent.]
The Tupelo station produced a record output of fry and fingerling fish, the total amounting to 492,940 , or more than 100,000 in excess of last year's output. This record was attained in spite of the heary losses of eggs sustained late in March when a sudden cold spell and a drop of 17° in the rater temperature caused many of the fish in the shallower portions of the ponds to desert their nests. $11 l$ of the increase consisted in black bass, the production of both sunfish and crappie being somewhat smaller than in the previous year.

The new pond in course of construction during the past fiscal year was completed during the summer and fall and the pond was used for bass culture during the succeeding spring. This inclosure is of rectangular shape and covers an area of 2.14 acres. A considerable amount of repair work was done on the superintendent's residence and all buildings on the station were painted two coats of lead and oil paint, most of the work being done by the station force.

On September 1 three employees of the Tupelo station with a temporary force of five men undertook the rescue of fish imprisoned in the shallow sloughs along the Mississippi River near Friar Point. Though unfavorable water stages delayed the operations fully 5 weeks beyond the usual time, and the work was hampered by inability to secure satisfactory auto-truck service, the number of fish secured during the season, which ended on November 23, was almost 100 per cent greater than in any previous year. The aggregate collections amounted to $1,644,239$ miscellaneoris fishes, the predominating species being sumfish, catfish, and buffalofish, in the order given. About 8 per cent of the collections were distributed to applicants and the remainder was returned to the main chamel of the river.

CENTRAL STATION AND AQUARIUM, WASHINGTON, D. C.

[L. G. Harron, Superintendent.]

Notwithstanding the limitations imposed upon the bureau's aquarial work in Washington, mention of which was made in the report of the division of fish culture for 1922, every possible effort was put forth to maintain as adequate a display of live fishes as the conditions would permit. So far as could be arranged for the methods of hatching employed at the different stations were illustrated, eggs for the purpose heing forwarded to central station as they were available. The following eggs were received during the year:

A large percentage of hatch was obtained on the salmon and trout eggs, and the resulting fry were healthy and vigorous until January 6, when a fresh supply of chlorine was introduced into the city water supply by the health authorities. Two days afterwards it was apparent that practically all fish and eggs on hand were affected, but the mortality among the rainbow-trout fry was so heary that the lot had to be disposed of and the fry were liberated in the west branch of the Patuxent River. The chinook and humpback salmon seemed to withstand the effects of the chemical much better for a time, but on January 12 they also began dying rapidly and all fry of both species in stock were at once delivered to the Maryland Conservation Commission, at Baltimore, Md. Two thousand eggs of the chinook salmon were held with the view of trying to eliminate the gas from the water supply, but the experiment failed. all fry perishing soon after hatching.

The whitefish eggs, which were of excellent quality, seemed to withstand the presence of the chlorine for about 10 days. A small mortality then occurred and continued until late in February, when
it ceased, the eggs apparently having become immune. Of the 50,000 fry realized from this lot 3,000 were supplied to an applicant in New Jersey. The balance was held with the view of making observations as to their feeding habits, rate of growth, etc. The young fish eagerly took and appeared to thrive on a diet of pulverized beef heart, but in early May they began dropping off, the water temperature having become too warm. The last remnant of this lot survived until May 27, at which time they had attained a length of 1 inch.

A creditable display of adult fresh-water fishes was maintained during the early part of the fiscal year, but a few individuals included in a fresh lot of fishes brought in from outside sources were found to contain the parasite Ichthyophthirius. No heavy losses from this canse occurred during the winter, but with the rising of the water temperature in the spring the parasite multiplied rapidly and soon became so numerous that a large number of the fish were practically devoured by the ravages of the organism. Efforts directed toward the extermination of the affection through the application of strong limewater solutions were made and this work was progressing favorably at the close of the year.

Part 2.-DISTRIBUTION OF FISH AND FISH EGGS.

[E. C. Fearnow, Superintendent of Fish Distribution.]
BRIEF REVIEW OF THE WORK.
The output of the bureau's stations (see table, p. 9) for the fiscal year ending June 30, 1923 (4,314,859,029 fish and fish eggs), was distributed throughout the States and a consignment of eggs of the black-spotted and rainbow trouts was sent to the Territory of Hawaii. Shipments of fish eggs were also made to the Governments of Canada, Argentina, Czechoslovakia, Germany, and the Netherlands. Approximately 90 per cent of the net output consisted of fish and fish eggs of commercial species which, except in instances where the eggs were shipped to State fish commissions (see table, p. $\cap 6$), were planted in waters where the egg collections were made. The species handled in this manner were shad, glut herring, whitefish. cisco, salmons, pike perch, yellow perch, striped bass, cod, pollock, and flounder. The principal species available for stocking interior waters are as follows: Black-spotted. brook, and rainbow trouts, catfish, largemouth black bass, smallmouth black bass, rock bass, crappie, and bream. While only one-tenth of the burean's output is diverted to inland waters, the importance of maintaining a supply of food and game fishes in the waters of the interior States is attaining greater significance with the increased cost of food and the desire of some $7,000,000$ of the population for the wholesome recreation of fishing. The importance of this phase of the bureau's work is recognized by the leading railroad companies, which, in many instances, furnish transportation at a reduced rate for the movement of the burean's distribution cars. and grant special courtesies to distribution employees carrying living fish in baggage cars.

Valuable aid is received from State fisheries authorities, fish and game associations, and public-spirited individuals who arrange for the transportation of the fish from the railroad stations to the waters where they are to be planted. A wholesome effect of such cooperation has been the development of a sentiment against the destructive methods of fishing common in some localities.

SUMMARIES OF DISTRIBUTION.

DISTRIBUTION TO ALL APPLICANTS.

The following table shows in summarized form the numbers and species of fish and fish eggs of the net output of the hatcheries for the fiscal year 1923 that were delivered to applicants:

Summary, by species, of distribution of fish and eggs to all applicants, fiscat year 1923.
[Asterisk (*) denotes eggs; all others are fry, fingerlings, or yearlings.]
UNITED STATES AND TERRITORIES.

State and species.	Number.	State and species.	Number.
Alabama:		Delaware:	
Catfish	8,000	Largemouth black ba	3,731
Buffalofist		Sunfish	5,355
Crappie.	1,255	Yellow perch	500,000
Largemouth black bass	426, 400	District of Columbia:	
Rock bass	550	Steelhead salmon	150
Sunfish	94, 800	Largemouth black bass	75
Alaska: Humphack s	240, 000	Florida:	
Sockeye salmon.	71, 444, 936	Georgia-	2,000.
Brook trout	*50, 000	Georgia. Catfish	5,950.
Arizona:		Rainbow trout	54, 600
Catfish	3, 600	Brook trout	36,000
Rainbow trout	*5, 000	Crappie.	645
Black-spotted trout	24,000	Largemouth black ba	151, 940
Brook trout	70,000	Rock bass.	50
Largemouth black bass	1,165	Sunfish.	52, 900
Sunfish.	210	Idaho:	
Arkansas:		Catfish	1,500
Rainbow tro Crappie	16,800	Whitefish	*1,000, 000
Largemouth black bass.	60, 700	Chinook salmon	1, 100, 700
Smallmouth black bass.	3,200	Randlocked salmon	120, 349
Rock bass.	19,075		*175, 000
Sunn̂sh.	18,525	Black-spotted	31, 500
Yellow per	400, 270	Brook trout	98, 700
California: Chinook salmon	3, 804,400	Illinois:	
Silver salmon..	${ }^{*} 100,001$		$929,320 \%$ $* 3,000,000$
Black-spotted trout	* 100,000	Carp	-344,910
Lake trout.	* 100,000		*22, 230,000
Colorado: Catfish		Buffalofish	157,975
Steelhead salmon	3, 50.000	Rainbow trout	485.
Rainbow trout	*25,000	Brook tront	545
	64,000	Fresh-water drum	16,690
Loch Leven trout.	385,000 12,150	Crappie.	387, 993
Lake trout	*50, 000	Largemouth black has	8,390
Brook trout	120, 000	Rock bass.	739,530
$\stackrel{\text { Brook trout }}{ }$	3,361,050	Yellow perch	4,605
Largemouth black bass	10,250	White bass.--	777
Rock bass..............	1,000	Miscellaneous fishes	886.795
Sunfish	475	Indiana:	
Y'ellow perch	900	Catfish.	7,380
Connecticut:		Brook trout	66, 000
Rainb, ww trout	10, 500	Crappie	${ }^{620}$
Lake trout	*60, 000	Largemouth black	
Brook trout	117, 975	Yunflow perch	1,260
Smallmouth blach bass	600	Iowa:	
Yellow perch	10, 105	Catfish.	10, 188, 038

Summary, b!! species, of distribution of fish alld cgys to all applieants, fiscal yеси 1923-Continued.

UNITED STATES AND TERIITORIES—Contiuued.

Summary, by species, of distribution of fish and eggs to all applicants, fiscal ycar 1923-Continued.

UNITED STATES AND TERRITORIES-Continued.

State and species.	Number.	State and species.	Number.
Montana-Continued.		North Dakota:	
Brook trout.	$\begin{array}{r} 375,000 \\ 849,450 \end{array}$	Catfish	13, 000
Largemouth black bass	500	Crappie	6,425
Nebraska:		Largemouth black bass	1,800
Catfish.	454	Sunfish.	1,965
Brook trout	54, 000	Yellow perch	1,400
Largemouth black bass	800 450	Ohio:	
Yellow perch	450	Catfish	11,000
Nevada: Steelhead sal	* 100,000	Carp	*8, 000, 000
Rainbow trout	18,000		115, ${ }^{22}, 400000000$
New Hampshire:		Whit	100, 0000000
Chiuook salmon.	* 120,000	Steelhead salmon .	*20,000
Steelhead salmon	*50, 000	Rainbow trout	* 60, 000
Landlocked salmon	*20,349	Brook trout	18,000
Rainbow trout	37, 200	Crappie	2,975
Lake trout	$* 50,000$ 52,500	Largemouth black has	8,150
Brook trout	659, 764	Sunfish	4,475 3,650
Smailmouth black bass	400		*37, 275,000
Pike perch..	75, 000	Pike perch	51, 100,000
New Jersey:		Yellow perch	1,300,395
Whitefish	*2, 000	Oklahoma:	
Steelhead salmon		Rainbow trout	119, 000
Rainbow trout	*100,000	Rock bass	200
Brook trout	27, 000	Sunfish	1,860
Largemouth black bass.	1,475	Yellow percl	1, 100,000
Smallmouth black bass	2,000	Oregon:	
Sunfish --	-50, 000	Chinook salmon	*3, 790, 000
Pike perch New Mexico:		Chum salmon	
Catfish...	9,900	Silver salmo	2, 633, 600
Carp-	* 180	Sockeye salm	* 5, 045, 000
Rainbow trout	* 69,500	Ste	* 410,000
Black-spotted tr	284, 000		3, 466, 000
	*300, 000	Rainbow	105, 000
Brook trout	180,000	Black-spotted trout	27, 500
Crappie.	210	Lake trout	25, 000
Largemouth black bas	2,050	Brook trout	25,600
Sunfish --	1,040	Pennsylvania:	
New York:		Catfish	24, 696
Carfish.	4, 075		*28.000.000
Buffalofish	30		* 831, 060
Whitefish	- $34,009,000$	Rainbow	128, 300
	39, 000,000	Brook trout.	318, 259
Steelhead salmon.	*50, 000	Crappie.--.-......	2,354
Landlocked salmon	1,400	Largemouth black bas	26, 410
Rainbow tr	-25, 000	Rock bass	3.5
Black-spotted trout	*10, 000	Suufish--	5,397
Lake trout	* $1,260,000$	Pike perch	1, 201,920
	1, 696, 000	Rhode Island:	
Brook trou Crappie.	607, 1,700	Flounder	32, 949,000
Largemouth black hass	15,710	South Carolina:	80
Smallmouth black bass	7, 394	Rainhow trout	14, 400
Rock has	2,000	Brook trout.	8, 000
Sunfish .-	1,880 600,000	Largemouth hlack bass	227, 864
Yellow perch	801, 115	Smallmouth black bass	1,900
North Carolina:		Warmouth	5,975
Catfish .-.	150, 000.50	Sunfish.-	17,410
Glut herriug	150, 000, 450	South Dakota:	
Rainbow trout	494, 020	Catfish	*310,
Brook trout.	216. 900	Rainbow trout	103, 500
Crappie -	159.682	Loch Leven trout	25, 650
Largemouth black bass	2, 800	Brook trout.	593, 400
Rock bass.	11,675	Crappic---	- 650
Warmouth bass.	2,225	Largemouth black	${ }^{\text {r, }} 570$
Sunfish.	23,340	Sunlish .	
Fellow perch	16, $3+1.000$	Catfish.	5,600

Summary, by species, of distribution of fish and cygs to all applicants. fismall year 1923--Continued.
UNITED STATES AND TERRITORIES-Continned.

State and species.	Number.	State and speries.	Number.
Tennessce-Continued.	*2,000	Washington-Continued. Silver salmon.	11.64ヶ, 055
Rainbow trout	86, 110		* 534,464
Brook trout.	18,800	Sockeye salmon	11. 185, 400
Crappie...-.-.-	60 48,133	Steelhead salmon	* $442,00.1$
Largermouth black bass.	48, 133	Steelhead salmon	1, $963,10.5$
Smallinouth black bass	2,750 5,400	Rainbow trout	53,000 $* 105,000$
Sunfish.	10,275	Black-spotted trout	158,600
Texas:		Brook trout	7, 60\%
Calfish.	400	West Virginia:	
Rainbow trout	1,554	Catfish...-	1,275
Crappie-	4,300	Rainbow tront	*1, 000
Largemouth black bass	249, 168	Rainbow tront	583, 600
Rock bass...	260	Brook trout.	667, 066
Warmouth b	70	Largemouth black bass	68,880
Sunfish	15,503	Rock bass.	1,230
Utah: Catish.		Sunish.	680
Catfish..........	28,400	Yellow perch	340
Black-spotted trout Rainbow trout	1,600 333	Wisconsin:	18,930, 221
Lake trout	* 150,000	Buffalofish	2,998, 99:
Brook trout	270, 400	Carp	4, 715, 160
Vermont:		Rainbow trout	126,400
Steelhead salmon...	$8,300$	Lake trout	$* 3,000,006$ $3,886,500$
Landlocked salmon	20,349		3, 886, 500
Rainbow trout.	1. 200	Pike and pickerel	625,009 484,815
Lake trout	$* 130,100$ 202,787	Crappie.......	13, 529,930
Brook trout _...........	366, 524	Sanfish	11, 475, 59.5
Smallmouth black bass Virginia:	1,100	Yike perch-	6, 380,000
Virginia: Cat fish		White bass.-	351, 870
Catfish	11,925	Fresh-water drum	1,335
Shad	7, 133, 500	Miscellaneous fishes	5, 418, 232
Rainhow trout	146, 050	W yoming:	
Brook trout	153, 600	Steelhead salmon.	$\begin{array}{r}\text { \% } \\ * 75,400 \\ \hline\end{array}$
Crappie...--.-.-....	225		*309, 000
Largemouth black hass.	48,485	Rainbow	531, 160
Rock bass	12,950	Black-spotted trout	* $6,331,400$
Sunfish.....-	22, 830		2, 218, 6,000
Wellow perch	64, 568, 750	Lake trout........	- 6 6,000
Washington: ${ }_{\text {Chinook }}$ Salmon	* 80,000	Brook trout	250, 94.5
Chinook salmon.	18, 727,445	Largemouth black	7,400
Chum salmon....	23, 177, 730	Sunfish	2.5
Humpback salmon	2, 066, 035	Yellow perch	450

FOREIGN COUNTRIES.

Country and species.	Number.	Country and species.	Numbier.
Argentina:		Germany:	
Stcelhead salmon	25, 000	Rainbow trout	65, 19:8
Canada: Black-spotted trout		Netherlands: Chinook salmon	
Black-Spotteत trout Steelhead salmon. Whitefish	$\begin{aligned} & 317,000 \\ & 400,000 \end{aligned}$	Chinook salmon Rainbow troat.	$\begin{array}{r} 240,010 \\ 50,010 \end{array}$
Czeehoslovakia:	44, 000,000		
Rainbow trout.	100,000		

ASSIGNMENTS OF FISH AND FISH EGGS TO STATE AND TERRITORJAI: FISH COMMISSIONS.

The following table gives the numbers and species of fish and fish eggs delivered to State and Territorial fish commissions as applicants:

Lswionments of fish and fish e!gus to s゙tate and Territorinl fish emmmissions. fiscal year 1923.
[Asterisk (*) denotes eggs; dagger (\dagger) fry; all others are fingerlings.]

State and species.	Number.	State and species.	Number.
Alaska:		New Jersey:	
Brook trout	- 50,000	Rainbow tro	* 100, 000
Sockeye salmon	*5.005. 936	Sunfish-	ss
California:	100 000	New Mexico:	
Lake trout	-100, 000	Do...	62,000
Colorado: Lake trout	*50, 000	Brook trout	*300, 000
Connecticut: Lake trout	-30,000	Rainbow trout	*69, 500
Hawaii:		New York:	
Black-spotted trout	*50,000	Lake trout	*1, 250,000
Rainbow trout	-25, 000	Whitefish.	*31, 心35,000
1dañ:		North Dakota:	
Black-spotted trout	* 125.000	Black bass	400
Brook trout	900	Buffalofish	1. 110
Catfish.	1. 500	Catfish.	9. 600
Rainbow trout	4. 500	Crappie	5, 550
Whitefish	${ }^{*} 1,000.000$	Sunfish	1,330
lowa:		Yellow perch	1, 100
Lake trout .	*i5, 000	Ohio: Pike perch .-......	*37. 275, 000
Rainbow trout	*133, 600	Oklahoma: Rainbow trout	119, 151
Lonisiana:		Oregon:	
Black bass	41. 2400	Black-spotted trout	*50,000
Buffalofish	¢1, 200,000	Chinook salmou	* 4.000, 000
Crappie.	$\underline{250}$	Sockere salmon	*5.045,000
Sunfish	1,700	Steelhead salmon	*3i0, 000
Maine: Lake trout	*50,000	Pennsylvania:	
Maryland:		Rainbow trout	*651.000
Brook trout	750	Whitefish	*23.000,000
Chinook salmon	* 15.000	U'tah:	
Do.-	$\dagger \pm, 000$	Catfish..	23, 400
Crappie.--.....-	100	Lake trout	* 150,000
Humpback salmon	†3,350	Vermont:	
lainhors trout...	400	Lake trout	* 130,000
Do-.	*114.000	Landlocked salmon	*20.349
Whitefish	*192,000	Steelhead salmon.	S. 000
Michigan:		Washington:	
Sisco	${ }^{\text {'10, }} 0000.000$	Sockeye salmon.	*534.464
Lake trout	$\dagger 636,000$	steelhead salmon.	* 9.1000
Minnesota:		- Do.	50,000
Black bass	600	West Virginia:	
Catfish.	12,700	Brook trout.	352.000
Crappie.	17,900	Rainbow trout	500, 000
Lake trout	*200. 000	W isconsin:	
Sunfish.	7, 520	Black bass	8, 350
Yellow perch	100	Catfish	16, 150
Missouri:		Crappie...	- ${ }^{\text {7. }}$, 800
Rainbow trout	*50, 000	Lake trout	*3, 000, 000
Yellow perch	*3, 680,000	Do...-	†1, 760,000
Montana:		Wroming:	
Black-spotted trout	*1, 599, 000	Black-spotted trout	*550,000
Lake trout	*50, 000	Do	$\dagger 300,000$
Steelbead salmon	-100,000	Lake trout	${ }^{*} 150,000$
Whitefish	* $1,000,000$	Rainbow trout	*309, 000
New Hampshire: Chinook salmon.	* 120,000	Total	*138, 112, 198
Lake trout	*50, 000		†3.903, 350
Landlocked salmon.	${ }^{2} 20,349$		1, 219, 973

METHODS OF DISTRIBUTION.

Each species of fish spawns at a certain time during the year and the resultant fry and fingerling fish are distributed as soon thereafter as practicable. The product of each season is distributed as the fish attain proper size for shipment, and only brood stock is carried over from year to year.

Applications for fish are filled in the order of their receipt. and the number that can be supplied for a particular body of water depends on the supply of the species desired and the size of the fish at the time of shipment. Owing to the greater value of fingerling fish for stocking purposes it is unnecessary to furnish them in as large
numbers as fry. It is the policy in all cases to furnish a sufficient number of small fish to form a brood stock. The burean refuses requests for black bass and allied predacious species for introduction into waters in California, Oregon, Idaho, Washington, Nevada, and western Wyoming, as their presence in such waters might prove harmful to the trout and salmon fisheries of that region.

Fish are delivered to the applicant's railroad station without expense to him. Formal applications to be properly executed should be indorsed by a United States Senator or Representative. Blanks on which application for fish may be made, together with full particulars concerning the burean's method of distributing living fish, will be furnished upon request.

DISTRIBUTION OF FISHES OF INTERIOR WATERS.

CAR NO. 3.

[E. R. Widmyer, Captain.]
On July 24, 1922, a carload of warm-water fishes was received from the La Crosse (Wis.) station and delivered to applicants in South Dakota, Nebraska, Wyoming, and Montana. On completing this trip the car proceeded to Bozeman, Mont., and took up the distribution of trout from the bureau's station at that place. After making 8 carload trips from Bozeman, the car was placed at the disposal of the Montana State Fish Commission for which it made 8 carload shipments. After completing the State work the car again returned to Bozeman, making a carload shipment of trout to Omaha, Nebr.. from which point it proceeded to Dubuque, Iowa.

Owing to the fact that car No. 3 is of wooden construction, and that practically all main-line trains in Montana are of steel construction, the car was detached from trains frequently and left to lay over for from 12 to 18 hours at a time. However, all deliveries of fish were made in good condition, and from July 24 to October 29 , the date on which it returned to Dubuque, Iowa, the car had made 9 trips for the bureau and 8 for the Montana Fish Commission, traveling 11.987 miles and delivering 2.981,650 fingerling fish.

In handling the Montana State distribution in conjunction with the Bozeman distribution great saving in transportaton can be brought about by cooperation of the Bozeman and State superintendents, and it is suggested that an adranced outline of their work for the season be furnished the captain in charge of the car.

In connection with the Montana distribution the Oregon Short Line was the only road that furnished free transportation for the bureau's car. The Chicago, Milwanke \& St. Panl Railway gave a 5 -fare rate by special request only, all other roads charging 10 full fares.

The car was used in the distribution of warm-water fishes from October 29 until the close of the season, when it was placed in the Milwaukee shops for winter repairs.

The spring distribution of car No. 3 was begım on May 10. 1923, when a carload of trout was received from the La Crosse (Wis.) station and delivered to Wisconsin and Minnesota applicants. The car then proceeded to Duluth. Minn.. where the distribution of tront
and whitefish was taken up from the Duluth station. From May 13 to June 20 the car and its messengers shipped from the Duluth station $2,625,000$ whitefish fry, 11,495,000 lake-trout fry, 7,630,000 pike-perch fry, 90,000 steelhead-trout fry, and 135,000 brook-trout fry, a total of $21,975,000$ fish. On June 21 the car left Duluth for Manchester, Iowa, from which station a carload of fingerling trout was obtained for delivery to Minnesota and Wisconsin applicants, the car returning to La Crosse.

While engaged in the Duluth distribution the Fearnow pails were given a thorough trial and found to be far superior to the 10 -gallon round-shouldered cans for transporting fish, and the car's equipment is being changed to carry a complete set of pails.

During the fiscal year ended June 30, 1923, car No. 3 traveled 14,815 miles and delivered $24,956,650$ fish.

CAR NO. 4.

[Fred W. A. Engelhardt, in charge.]

On July 18, 1922, the initial trip of the season was made from Dubuque, Iowa, to Marquette, Iowa, where the car received consignments of river fishes for distribution en route to Malta, Colo. A part of the load was delivered at Burnham, Colo., but the bulk of it was distributed to applicants at Denver. The car then proceeded to Malta, from which point shipments of trout were to be made, arriving there July 25. Owing to the fact that the black-spotted trouts were not sufficiently developed, the distribution of that species was delayed until August 14. In the meantime the crew was engaged in making messenger shipments of brook and rainbow trouts to various points in Colorado.

During August, 1922, car trips with brook and black-spotted trouts were made from Malta, Colo., to Trinidad, Colo., and to Albuquerque, N. Mex. In the latter part of the month a washout in the road between Florence and Pueblo, Colo., caused a delay of 24 hours in the car schedule. In September a car trip with brook and blackspotted trouts was made from Malta to Las Vegas, N. Mex. While en route, the Colorado Fuel \& Iron Co., at Trinidad, Colo., was supplied with an "owner's share " of brook and black-spotted trouts. Messenger trips with trouts to various points in Colorado were also made during the month.

While en route from Malta to Dubuque, Iowa, the car was detached from an all-steel train. This happens occasionally and sometimes causes a delay of 24 hours or more. During October car trips with river fishes were made from Marquette, Iowa, to Kansas City, Mo., and Williamsport, Pa.

The car then returned to Washington. D. C., to remain during the winter. During part of the time, howerer, it was at the Wilmington (Del.) shops undergoing repairs. In June, 1923, the car proceeded from Washington to Northville, Mich., in order to take up the distribution from that point. While at Northville the car crew made messenger shipments to rarious points in Michigan, and also assisted the station crew in collecting fish, raking moss, and cleaning ponds. Car trips with smallmonth black bass and trout were made from

Northville to Detroit and to Auburn, N. Y., messenger shipments being made en route.

After finishing the Northville distribution the car was prepared to make a trip to La Crosse, Wis., in order to take up the distribution of river: fishes during the fiscal year 1924. The car was furnished with 140 Fearnow ahminum pails with which to carry on future distributions.

During the fiscal year 1923 it was impossible to secure any free transportation. In July, 1922, the Burlington Route agreed to handle the car from Omaha, Nebr., to Denver, Colo., for five full fares. The Denver \& Rio Grande Western Railroad refused free transportation, but agreed to handle the narrow-gange baggage cars that are used to distribute carload lots between Alamosa, Colo., and Durango, Colo., for five full fares.

During the fiscal year 1923 car No. 4 traveled 9,362 miles and distributed 46,355 river fishes and $1,080,500$ tront.

CAR NO. 7.

[E. M. Lamon, Captain.]

On July 20, 1922, the distribution from the La Crosse (Wis.) station was taken up. Approximately 45,000 fingerling pond fishes were distributed in Wisconsin, Minnesota, North Dakota, and South Dakota, by messenger shipments from La Crosse. From July 20 to October $27,128.825$ fingerling pond fishes were distributed to applicants in Wisconsin, Michigan. North Dakota, South Dakota, Missouri, Illinois, Ohio, Indiana, West Virginia, Maryland, and New York. The car left La Crosse on October 25 on its last trip for the season with a carload of miscellaneous fishes for applicants in the vicinity of Washington, D. C., the shipment including a number of specimens for central station. The car arrived in Washington on October 27 , and after the distribution work was completed it was placel in the United States Navy Yard for general repairs. and the messengers were detailed to stations for the winter to assist in fishcultural work.

On March 2, 1023, the car left Washington to take up the trout distribution from the Erwin (Tenn.) station. Between March 2 and April 15, when the Erwin work was completed, 245,000 fingerling brook trout and 465.700 fingerling rainbow tront were distributed in Tennessee. North Carolina, Sonth Carolina, and Georgia. From Erwin the car proceeded to Wytheville, Va., making a trip from the Wytheville station to Pennsylvania with 52,200 fingerling brook tront and 16,000 fingerling rainbow trout, returning to White Sulphur Springs, W. Ta., and taking up the trout distribution from that station. Between May 1 and June 15, 249.850 fingerling brook trout and 156.100 fingerling rainbow thont were distributed from the White Sulphur Springs station in West Virginia, Maryland, Pennsylvania, and New York.

The work at the White Sulphur Springs station could be greatly improved if cooperation could be effected with the Chesapeake i\& Ohio Railway Co. and the hurean's cars given the same service by it that they receive from other leading railroads of the country.

The Fearnow transportation pails have been very successfully used during the year and the car is now fully equipped with them. A trip was made from Manchester, Iowa, to Madison. Wis., just before the close of the fiscal year, and 200 of these pails were very successfully transported on one trip. It is found that by using these pails instead of the standard 10 -gallon cans the carrying capacity of the car can be increased orer 50 per cent, with no increase in weight.

During the fiscal year 173,825 fingerling pond fishes, 614,200 fingerling brook trout, and 1,267,400 fingerling rainbow trout were distributed by the car in 23 trips, 18,685 miles being traveled.

CAR NO. 8.

[E. K. Burnham. Captain.]

At the beginning of the fiscal year fisheries car No. 8 was engaged in the distribution of brook and rainbow trouts from the Duluth (Minn.) hatchery; the season closed with the completion of the salmon and trout distribution from the Craig Brook (Me.) hatchery.

While the car was undergoing general repairs at the Washington Navy Yard during the winter its interior was sufficiently rearranged to permit of the installation of a small dining room capable of accommodating four persons at the table. The dining room has eliminated the annoyances attendant upon the former practice of setting up a table for each meal at the center of the car, thus blocking the aisle.

By the adaptation of the fish compartment on one side of the car for carrying 100 aluminum fish pails, the capacity of the car has been increased from 140 cans to 170 cans of fish. At the close of the fiscal rear the fish compartment on the other side of the car was changed by the car crew to make the total capacity of the car 216 aluminum fish pails. Nearly all minor repairs and many of the changes and improvements in the car are made by the regular car crew while distribution work is not in progress.

The most important improvement made to the car during the year was the installation of an electrically driven air pump. This pump furnishes 5 cubic feet of free air per minute and is operated by a one-half horsepower electric motor, the electricity being obtained from the storage batteries of the car's electric lighting system. An important saving is effected by using this electricity for pumping air for the fish, as during the last fiscal year the car used approximately 8 tons of anthracite coal to generate steam for pumping air.

During the fiscal year 1923 the car was engaged in the distribution of fish from nine of the Federal hatcheries. Fourteen species of food fishes were distributed to suitable waters in 19 States, the farthest west being Ttah. During the year the car handled over $1.500,000$ fingerling and yearling fish. During the course of the year the car traveled on 19 different railroads. the total miles traveled being 18,823 . Nineteen and one-half tons of ice were used during the year for maintaining a suitable water temperature for the fish.

CAR NO. 9.

[A. 11, Kerth, Captain.]

Car No. ? made 17 trips during the fiscal year 1923, covering a total distance of $18,27.5$ miles, and supplying 1,076 applicants in the Middle Western, Southwestern, Eastern, and Sontheastern States. The mmbers and species of fish delivered during the year are as follows:
C'atfish: Number.

Crappie:

Yearlings _--1, 135

Largemouth black bass:

Adults ...--- 160

Sunfish:
Fingerlings-_-- 9,790

Yellow perch, fingerlings_-_------------------------------ 3,250
Crappie and bream, yearlings (carload shipment) _----- 9,000

Total
2, 838, 484

No extensive repairs have been made to car No. 9 during the past year: neither has it been equipped with the Fearnow aluminum transportation pails (for description see U. S. Burean of Fisheries Doc. 941, pp. 90-98) , but a number of these pails are to be forwarded in the near future.

A new style aerator for use by messengers when carrying fish on detached shipments has been furnished by the Washington office (see description, p. 102) and has proven very satisfactory.

An aerating device of the jetting design has also given quite satisfactory results.

The total number of miles traveled by the car during the fiscal year was 18.2 T.

NEW EQUIPMENT FOR USE IN SHIPPING LIVE FISH.

ELECTRIC AIR COMPRESSOR.

During the spring of 192?, there was installed on fisheries car No. s an air compressor operated by a one-half horsepower electrically driven motor. connecter with the storage batteries used for lighting the call: The entire outfit is only 28 inches long. 18 inches wide, and 2 feet in height. and is placed on a shelf in the boiler room. This derice has been usefl successfully on a number of occasions for furnishing compressed air for aeration of the water in the fish contain-
ers, und obviates the necessity of using the steam boiler for this pripose during the summer months, thereby effecting a considerable saving in the amount of coal used. The device has been used to

IIG. 1.-Improved device for aerating water in fish cans and removing sediment theref
aerate 140 cans of fish for 14 hours without producing any apparent deterioration in the batteries, which have a capacity of 375 ampere hours.

"QUESTION MARK" AERATOR.

Within the last year the dipper that was used for aerating water has been largely replaced by the "question mark" aerator-so named on account of the bend in its handle-which is made of one-fourth inch pipe and serves as an air rent and means for suspending the aerator in a fish can when not in use. The cylinder of the aerator is made of galvanized rain spouting and is $4 \frac{1}{2}$ inches in diameter by 6 inches in length. The bottom contains 21 circular openings, which are screened to prevent fish from entering the cylinder. The handle may be unscrewed and the device carried in a small hand bag.

The derice provides quick and efficient aeration, does not injure the fish, can be used to remove sediment or to lower the water in a container, and has a number of other adrantages over the ordinary dipper. This aerator has met with general approval, as it seems to answer the bureau's needs better than any device that has been used heretofore.

JET AERATOR.

During the spring and summer of 1923 a new aerating device that circulates the water in the container and operates by air was used on the distribution cars to a limited extent and with rery satisfactory results. This aerator was devised for the purpose of acrating the water and removing the carbon dioxide gas given off by the fish.

The device consists of a tube placed on the inside of a larger tube, care being taken to allow room enough to permit the water to be forced up in the space between the two tubes. Experiments with this derice are still being carried on, and while its practicability is not generally perceived at the present time it is believed that it will be more fully appreciated when further improvements have been made in other transportation equipment.

Fig. 2.-Device for circulating and aerating water in fish cans by means of compressed air.

AQUARIUM CLEANER.

The principle of the jet aerator may be successfully applied to a device for cleaning aquaria, as shown in Figure 3. It is necessary to use only a small amount of air in order to force waste material from the bottom of the aquarium to a receptacle on the outside. In fact, the air may be regulated so as to remove sand and gravel from the bottom of the aquarium. It is obvious that the lower end or intake should be provided with means for preventing the entrance of pebbles too large to pass through the outlet.

Fus. :3. Aquarinm cleaner operated by air pressure in the same manner as Figure 2.

COST OF DISTRIBUTION.

During the fiscal year 1923 the burean honored 10,939 applications for fish, as compared with 10,376 in 1922. The following table gives comparative figures showing the cost of distribution for the fiscal years 1922 and 1923 :

-		Number miles traveled.		Number of applications honored	Cost of distribution.
		Cars.	Messengers.		
1922		77,128 80,118	306,215 345,387	10,376 10,939	$\$ 62,425.96$ $58,751.71$

During the past 20 years the output of the burean's hatcheries has increased nearly 500 per cent, while the cost per thousand for transporting fish has been reduced 50 per cent during this period. In order to bring about this important reduction in distribution cost at a time when the cost of transportation, material, and supplies was
unusually expensive, it has been necessary to adopt the most improved methods of carrying living fish and at the same time exercise the most rigid economy.

The following table shows the magnitude of the bureau's distribution problem and the gradual reduction of distribution expenses that has been made during the past 20 years:

Comporison of the mumber of miles trateled by the bureau's ears and messengers and the cost of distribution from 1903 to 1923 , inclusive, exclusive of salaries of statutory emploues.

Year.	Total output of fish.	Miles traveled.						Total cost of distribution.	Cost of distribution per 1,000 fish.
		Cars.			Messengers.				
		Paid.	Free.	Total.	Paid.	Free.	Total.		
1903	1,226, 057, 475	52,852	26,526	79,378	174,535	85, 492	260, 027	\$33, 437. 55	\$0. 027
1904	1,267, 343, 025	55, 028	15, 193	70, 221	150, 019	98, 957	248, 976	27, 923.46	. 022
1905	1, 759, 475, 039	68, 532	14, 262	82, 794	184, 249	113, 701	297, 950	35, 405. 74	. 020
1906	1,931, 834, 609	82,308	11,060	93, 368	216, 664	108,757	325, 421	36, 999. 39	013
1907	2, 511, 597, 377	72,014	11, 826	83, 840	182, 380	80,816	263, 196	38, 520.30	. 015
1908	2, $871,456,280$	68, 495	8,581	77,076	299,957	64, 913	364, 870	39, 008. 45	. 013
1909	3, 107, 131, 911	103, 476	5, 403	108, 879	309, 509	100, 085	409, 594	51, 825. 72	. 016
1910	3, 233, 012, 237	93, 413	2,850	96, 263	332, 410	97, 943	430, 353	$50,155.63$. 015
1911	3,646, 294, 535	92,993	7,911	100, 904	336,977	84, 281	421, 258	56, 543. 17	. 015
1912	3, 687, 921, 057	78,957	13,913	92, 870	359,611	90, 661	450, 272	49, 308. 75	. 013
1913	3, 863, 593, 2×2	110, 823	12,294	123, 117	392, 698	85, 837	478, 535	64, 148. 01	. 016
1914	4, 047, 643, 417	128, 156	3, 000	131, 156	387, 072	93, 463	480,535	69, 255. 44	. 017
1915	4, 288, 757,804	125, 553	20,991	146, 544	395, 298	95, 874	491, 172	79, 922. 31	. 018
1916	4, 847, 262, 566	133, 825	15,956	149, 781	521, 158	124, 563	645, 721	77,984. 91	. 016
1917	5, 158, 963, 293	122, 778	15,939	138,717	474, 141	80, 456	554, 597	81, 383. 93	. 015
1918	$4,098,105,159$	92, 306	10,024	102, 330	413, 666	54, 578	468, 244	73, 559. 05	. 017
1919	5, 876, 985, 350	93, 891	3, 680	97,571	421, 202	7, 740	428,942	74, 599. 43	. 012
1920	4, 770, 355, 720	92, 419		92,419	382, 891	10,042	392,933	$73,586.40$. 015
1921	4,962, 489, 405	84, 188	872	85,060	353, 893	32,095	385,988	72, 176. 57	. 014
1922	5, 125, 101, 320	75, 032	2,096	77, 128	285, 807	20,408	306, 215	62, 428.96	. 012
1923	4,314, 859, 029	78, 595	1,525	80,118	307, 983	37,404	345,387	${ }^{1} 58,751.71$	013

[^74]Methorl of distribution, by stations, species, number and size of fish, and costs.
DISTRIBUTION BY CAR MESSENGERS. ${ }^{1}$

	Species.	Number of fish.	Size.	Total cost.	A verage cost per thousand.	Miles paid.	Miles free.
Bozeman, Mont	Trout	23,900	Fry	\$13.07	\$0. 547	161	
	do.	70,750	Fingerlings, 1 -inch.	48. 77	. 689	728	
Craig Brook, Me -	do	216, 150	Fingerlings, 1 to 4 inch	241.45	1. 112	3,923	1,471
	Salmon	682, 500	Fry---......-	104. 55	+ 153	1,717	
	--do	40,000	Fingerlings, 2 -inch..-	81.27	2. 317	919	${ }_{92}^{56}$
	Pond fishes Trout	96 83,200	$\begin{aligned} & \text { Adult } \\ & \mathrm{Fry} \end{aligned}$	54. 19	564.468 .165	690 112	92 32
	--.-.do	469, 000	Fingerlings, 1 -inch	101.97	. 218	2,070	
	do.	110, 200	Fingerlings, $1 \frac{1}{2}-\mathrm{inch}$	41. 20	. 374	573	
Duluth, Minn... Erwin, Tenn.	--do.	23, 000	Fingerlings, 1 -inch	23. 12	1. 005	414	
	Pond fishes	539, 500		92. 26	$\begin{array}{r}.670 \\ .723 \\ \hline\end{array}$	678 1,604	
Leadville, Colo..	Trout.......	190, 150	Fingerlings, , 1-inch....	137.45 365.93	.723 .792	1, 5 , 5204	
	do	275, 500	Fingerlings, 1 - ${ }^{2}$-inch	140.08	. 507	1,615	
	do	36,000	Fingerlings, $2 \frac{1}{2}$-inch --	78. 08	2. 169	907	
Manchester, Iowa		72, 200	Fingerlings, 1 to $1 \frac{1}{2}$ inch.	56. 53	. 783	3,666	
	do	54, 800	Fingerlings, $1 \frac{1}{2}-\mathrm{inch} . .$.	68. 31	1.064	668	
	do	184, 600	Fingerlings, 21 -inch ...	166. 67		2,157	
Northville, Mich							712
	do	7,200	Fingerlings, 2 -incl Fingerlings, 2 to 3 inch	102.00 30.21	14.167	1,325 540	

[^75]Method of distribution, by stations, species, number and siae of fish, and costsContinued.

DISTRIBUTION BY CAR MESSENGERS-Continued.

	Species.	Number of fish.	Size.	Total cost.	Average cost per thousand.	Miles paid.	Miles free.
Upper Mississippi. ${ }^{2}$	Pond fishes .	16,300	Fingerlings, 1 -inch----	\$56. 87	\$3. 428	1,016	
	.do...-	3, 944	Fingerlings, 2-inch -..-	49. 32	12. 505	560	
	do	25,520	Fingerlings, 2 to 3 inch	242. 31	9. 137	2, 781	176
	do...----	46,795	Fingerlings, 3-inch .-.-	362. 21	7. 740	4,878	
	-----do.------		Fingerlings, 4-inch ----	34.26	15. 573		598
	do	103, 053	\{ingerlings, 1 -inch ---	831.55	8. 070	11, 729	
	-do	84, 559	\{Fingerlings, 1 -inch Adults	1,004. 77	11.871	13, 558	
	do.	496	Yearlings	21.45	43. 271	294	94
	Trout	111,000	Fingerlings, 1 -inch----	59. 27	. 534	948	
	-----do--------	28, 800	Fingerlings, $1 \frac{1}{2}$-inch ---	23. 21	. 806	280	
White Sulphur Springs, W. Va.	--do--------	54,000		45. 93	. 851	561	
	-	31, 125	Fingerlings, $1_{2}^{\frac{1}{2}}$ to $2 \frac{1}{2}$	62.81	2.018	855	
	-do	231, 200	Fingerlings, 2-inch----	381.49	1. 217	3, 809	312
	do		Fingerlings, 3 -inch.---	35. 56	47. 413	666	
	do.	43	Adults --------------	27.64	642.791	490	
Wytheville, Va.--	-----do.------	10,000	Fingerlings, 1 -inch...-	10. 62	1. 062	120	
	-.-- do-.....-	51,750	Fingerlings, $1 \frac{1}{2}$-inch - --	48. 54	. 938	698	
	----do-------	17, 500	Fingerlings, $1 \frac{1}{2}$ to $2 \frac{1}{2}$ inch.	25.42	1. 452	195	
	do	81, 100	Fingerlings, 2-inch.---	104. 32	1. 240	1,460	26

DISTRIBUTION BY STATION MESSENGERS. ${ }^{3}$

Bozeman, Mont.-	Trout.	100, 000	Fry	\$31.95	\$0. 320	594	
	do.	133, 000	Fingerlings, 1 -inch	63. 09	. 474	1,148	
	do	99,950	Fingerlings, 1 to 2 inch	72.16	722	1,179	271
$\begin{aligned} & \text { Cape } \\ & \text { N. Y. Vincent, } \end{aligned}$	Lake herring	3, 0000000	Fry	19. 46	. 0406		
	Pike perch.--	600,000 $10,190,000$	do	26. 61	. 045	204	914
	Trout.-...--	1-183, 000	-.do-	165.68	. 284	1,-172	4,153
Central Station.--	Pond fishes -	2,000,000	do	23. 15	012	420	
	-_do.	6,000	Fingerlings, $1 \frac{1}{2}$-inch	24.95	4. 159	511	
	do.	10,000	Fingerlings, 2-inch .-	50.97	5.097	794	
	Trout.	33	Adults	26. 79	811.818	490	
Clackamas, Oreg.	Salmon	6,000	Fingerlings, 1 -inch	55. 53	9. 250	638	
	Trout.	218, 500	Fry to fingerlings, $2 \frac{1}{2}$ inch.	43.24	. 198	863	
	.do.	122, 000	Fingerlings, 1 -inch .-.	127. 58	1. 046	2,291	
	do.	102, 000	Fingerlings, 1^{1}-jinch	101. 17	991	1,614	
	do	7,000	Fingerlings, $2 \frac{1}{2}$-inch	14. 85	2. 120	377	
Craig Brook, Me . Duluth, Minn	do	40, 000	Fingerlings, $1 \frac{1}{2}$-inch.	35. 34	. 893	610	
	Whitefish-.-	2, 700, 000	Fry	24.80	. 009		
	Pond fishes -	5, 715, 000	-do	124. 64	. 022	1,845	
	.do.	1,150,500	Fry to fingerlings, $1 \frac{1}{2}$ inch.	190.75	. 165	2,869	
	Trout	8,890,000	Fry	1, 025.33	. 115	406	
	----do	840, 000	Fry to fingerlings, 1 inch.	72.71	. 087	1,048	
	_do.	115, 000	Fingerlings, 1 -inch	134. 59	1. 169	2,113	
	do	56, 000	Fingerlings, $1 \frac{1}{2}$-inch	65.85	1. 177	1,015	
Edenton, N. C.--	Shad	200, 000	Fry	10. 52	. 052	180	
	Pond fishes.-	34,625	Fry to fingerlings, $1 \frac{1}{2}-$ inch.	118.96	3.435	2, 099	
	do	9, 600	Fingerlings, 1-inch.-	19.91	2. 250	328	
	do.	13,450	Fingerlings, $1 \frac{1}{2}$-inch..-	72.71	5. 406	1,157	
	-.-do	3,745	Fingerlings, $1 \frac{1}{2}$ to 4 inch	38.98	10.410	696	
Erwin, Tenn....-	Salmon			39. 18	65. 300	500	
	Trout	39,800	Fingerlings, 1 to 2 -inch.	17.40	. 438	160	
	--do.-	23, 500	Fingerlings, 2 -inch...-	21. 71	. 924	208	
	do.	126, 000		76. 31	. 616	836	
	do	7, 500	Fingerlings, 3 to 4 inch	71. 86	9. 580	805	
	Pond fishes -	43,862	Fingerlings, 1 to 4 inch.	361.47	8. 240	5,785	
Hartsville, Mass--	do.	325, 000	Adults	28.75 27.29	$\begin{array}{r}326.705 \\ .084 \\ \hline 8\end{array}$	443	
	Trout	261, 400	Fingerlings, 1 inch	81.48	. 031	1,169	
	.do...	4, 400	Fingerlings, $1 \frac{1}{2}-\mathrm{inch} . .-1$	15.88	3. 600	202	178

${ }^{2}$ La Crosse, Wis.; Bellevue, Iowa; Marquette, Lowa; and Homer, Minn.
${ }_{3}$ Distribution by station messengers includes cost of making distribution direct from the station without a car. This distribution is usually to near-by points.

Method of distribution, by stations, species, number and size of ,ish, und costsContinued.

DISTRIBUTION BY STATION MESSENGERS—Continued.

	Species.	Number of fish.	Size.	Total cost.	A verage cost per thousand.	Miles paid.	Miles free.
Leadville, Colo..-	Pond fishes.	39,250	Fingerlings, 1-inc	\$29. 27	\$0. 746	434	
Louisville, Ky...-	Trout.	375, 000	Fry --	215.29	. 574	2,633	40
		1,377, 000	Fingerlings, 1 -inch .-.-	630.21	. 458	7,895	785
	do	118,500	Fingerlings, 1 to $1 \frac{1}{2}$ inch	94.34	. 796	1, 122	
	Pond fishes	309, 750	Fry .-.--.-----------	67.17	. 217	1,263	
	--. - do.------	63, 100	Fingerlings, $1 \frac{1}{2}$ to 2 inch	203. 49	3. 224	4,121	
	-do	1,800	Fingerlings, 2 to 3 inch.	19. 34	10.850	314	
	do	3, 400	Fingerlings, 3-inch....-	26. 77	7.930	518	
	do	3,000	Fingerlings, 4 -inch	21. 77	7.250	448	
Mammoth Spring, Ark.	-do	121, 000	Fingerlings, 1 -inch .-...-	282.23	2. 332	5,892	
	-do	4,000	Fingerlings, 1 to $2 \frac{1}{2}$ inch	47.61	11.903	-814	
		14,000	Fingerlings, 1 2-ineh.---	127. 12	9.080	1,938	
Manchester, Iowa	.do	4,130		47.45	10.156	739	42
Nashua, N. H...-	do	143	Adults.	87.66	365. 454	1,434	
	do	8,400	Fry --..--------------	43. 15	5. 137	747	
	do	4,300	Fingerlings, $13-\mathrm{inch}-.-$	18. 31	4. 258	334	
		7, 100	Fingerlings, 2-inch	26. 36	3.710	472	
	Trout	2,500	Fry	4. 01	1. 740	31	
	-..-.do	120,000	Fingerlings, 1-inch	31.10	. 242	532	
	do	334, 960	Fingerlings, 1?-inch...-	351.68	1. 471	5,914	47
	do	17, 700	Fry to fingerlings, 2 inch.	66.24	3. 790	1,166	13
	do	580	Adults .-	46.36	79.930	862	
	Pond fishes.	1, 700, 000	Fry	17.95	. 010	331	
	----do.	3,600	Fingerlings, 2-inch	6. 60	1. 840	110	
	-- - - do.	4,000	Fingerlings, 3-inch-----	41.97	10.493	837	------
	-...-do	17,774	Fingerlings, 1 to 4 inch.	158. 39	8. 911	3, 064	
	do	1,012	Adults	225.02	221.364	3,927	
	Trout	43,100	Fingerlings, 2-inch.---	98.47	2. 284	1,818	106
	- do	23, 400	Fingerlings, 2 -inch -----	43. 14	1. 416	670	426
		13, 000	Fingerlings, 1 to $4 \frac{1}{2}$ inch	42. 51	3.270	780	119
	do......-	2,700	$\left\{\begin{array}{l}\text { Fingerlings, } 2 \text {-inch....-- } \\ \text { Yearlings............. }\end{array}\right.$	9.30	3. 460	143	
Northville, Mich.	Whitefish..	1.770,000	Fry .-.-.-----	40.61	. 023		1,423
	Salmon-.-.--	10,000	----do	15. 83	1. 583	224	
	Pond fishes.	28,000	---do -....-----	4. 90	+.179		686
	-.-.-do...----	5,650	Fingerlings, 1-inch....-	18.31	3.241	50	424
	do.	4,200	Fingerlings, 1 to 2 inch -	8. 75	2. 083		. 454
	d	5, 300	Fingerlings, 2 -inch - ---	26. 50	5.000		1,620
	,	1, 80	Adults .-.	23. 94 11. 56	19.870 144.500		329 524
	Trout	432, 500	Fry.	122. 45	. 283	710	3, 395
	do	48,500	Fingerlings, 1-inch.	19.37	. 399		861
	---do-...---	99, 000	Fingerlings, $1 \frac{1}{2}-\mathrm{inch}$	57. 50	. 581		4, 246
Orangeburg, S. C.	Pond fishes.	93, 150	Fry ----.-.-.	93.85	1.007	$1,346$	84
		168,850 18,000	Fingerlings, 1-inch	258.33 32.01	1. 529	3,273 351	73
	do	65, 120	Fingerlings, 1 to 6 inch.	295.07	4.531	3,748	160
St. Johnsbury, V't.	Salmon	11,018	Fry --------.--------	1. 75	. 158		${ }^{4}$)
	Trout	734, 000	--. do-.-.----	184. 60	. 252	2, 326	78
	do	6,500	Fingerlings, 2-inch	49.24	7.575	730	83
	do	9, 200	Fingerlings, $2 \frac{1}{2}$-inch	45. 84	4. 983	743	5
	P..do-....-.-	1,100	Fingerlings, 3 -inch - ---	12. 87	11.700	60	
San Marcos, Tex.Saratoga, Wyo....	Pond fishes .	33,900	Fry to fingerlings, 1 inch.	50.91	1. 502	889	------
	10	3,200	Fingerlings, 1 -inch	37.23	11.630	644	
	do	2, 250	Fingerlings, 2-inch...--	(4)			
	do	7, 442	Fingerlings, 3 -inch-- Fingerlings, 4 -inch	$\begin{aligned} & 48.47 \\ & (4) \end{aligned}$	6. 513	698	------
	1	235	Fingerlings, 5-inch_	(4)			
-do...-.-.	700	Fingerlings, 6-inch-.-.-	29.61	42.300	584	
	_do	225, 442	fingerlings, 1 -inch Adults	1,088. 43	4. 775	16,871	
	do	1,238	-. do.	2. 67	2. 157	18	
	Trout	71,800	Fingerlings, 1 -inch....-	17. 34	. 120	327	61
	do	36,000	Fingerlings, 1 '-inclı	22. 31	. 620	213	21
	do	14, 100	Fingerlings, 1^{\prime} to 2 inch	11. 21	. 610	212	20
Spearfish, S. Dak.	do	40, 000	Fingerlings, 2-inch	32.91	. 919	544	96
	do.	649, 500	Fingerlings, 1 '-inch - --	165. 68	. 255	1. 824	
	do	136, 601	Fingerlings, 1 to 3 inch_	65. 12	. 477	938	
	- do	2,600	Fingerlings, 2-inch.....	(4)			
Springville, Utah	do	135, 000	---do.	121. 55	. 901	1,395	2,629
	do	54,750	Fingerlings, 2 -inch....	160.59	2. 903	2,263	1,92?
	do	10,700	${ }^{-}$Fingerlings, $1 \frac{1}{2}$ to 4 inch	25.28	2. 362	275	266
	do	234, 150	Fingerlings, 3 -inch...--	202. 07	. 862	2,540	6. 205
	do	27,000	Fingerlings, 4-inch.....-	83.44	3. 090	1,198	470

Method of distribution, by stations. species. number and size of fish, and eostsContinued.

DISTRIBUTION BY STATION MESSENGERS-Continued.

	Species.	Number of fish.	Size.	Total cost.	Average cost per thousand.	Miles paid.	Miles free.
Tupelo, Miss.-.--	Pond fishes.-	307, 500	Fry	\$205. 61	\$0.668	3,867	36
	---do.	112, 200	Fingerlings, 1 -inch...	280.45	2. 491	4,821	44
	do.	15, 600	Fingerlings, 2 -inch	60.16	3.856	1,101	26
	do	176, 841	$\left\{\begin{array}{l}\text { Fingerlings, } 1-i n c h . \\ \text { Adults }\end{array}\right.$	1,084. 78	6.134	18,472	90
	do	140	Adults.	33.35	238.210	701	
Upper Mississippi. ${ }^{2}$	- do	2,100,000	Fry ----.-.-.........-	36. 99	. 017	722	
	- do	23, 805	Fingerlings, 2 to 3 inch-	232. 17	9. 753	3, 875	
	do	46, 185	Fingerlings, 2 to 6 inch.	288.76	6. 252	5, 648	
	do	17,461	Fingerlings, 3 -inch .--	145.99	8. 361	2, 211	
	do	1,980	Fingerlings, 3 to 4 inch	64.99	32.166	1,148	
	do	18,468	Fingerlings, 1 to 6 inch.	86.37	4. 677	1,128	------
	do	263	Adults.-	5.08	19.316	42	
	Trout	144, 000	Fingerlings, 1-inch.	50.74	. 345	598	------
	do	33, 600	Fingerlings, 1矢-inch.	13. 63	. 406	238	
White Snlphur Springs, W. Va.	Pond fishes	46,500	Fry	45.30	. 975	724	-.--
	- do.	32,000	Fingerlings, 1-inch	31.47	. 980	520	
	Tront.	31,500	F-. do --..--	11.81	. 375	245	
	. do	42, 500	Fingerlings, $1 \frac{1}{2}$-inch	64.01	1. 506	1,056	
	do	47, 330	Fingerlings, 2-inch...-	90.15	1. 925	1,370	
	do	3,130	Fingerlings, 2 to 3 inch	46.13	14. 738	869	
	do......-	450	$\left\{\begin{array}{l}\text { Fingerlings, 3-inch } \\ \text { Adults }\end{array}\right.$	28. 22	62.711	572	
	Pond fishes.-	475	\{ Fingerlings, 4-inch	47. 29	99.547	391	622
Woods Hole, Mass.	Flat fish	31, 949,000	Fry	36.34	. 001	460	
W ytheville, Va.--	Pond fishes.-	15,562	Fingerlings, 1 to 3 inch.	229.62	14. 755	3,792	
	---do.	800	Fingerlings, 2-inch....	19.13	20.380	276	-----
	. do	8,725	Fingerlings, 2 to 3 inch.	121.65	14.456	2, 109	-----
	Trout	54, 000	Fingerlings, 1 -inch ...	49.46	. 916	760	-----
	do	28,000	Fingerlings, 1 to 2 inch_	40.57	1. 449	694	-----
	do	9,000	Fingerlings, 2 -inch	11.77	1. 307	-229	
	d	64,350	Fingerlings, $1 \frac{1}{2}$ to $2 \frac{1}{2}$ inch.	142.19	2. 209	1,888	----
$\begin{aligned} & \text { Warm Springs, } \\ & \text { Ga. } \end{aligned}$	Pond fishes..	163, 800	Fry	254.49	1. 553	4,169	
	- do	31,800		113.68	3. 575	1,557	
	do	56, 600	Fingerlings, $1 \frac{1}{2}$-inch	307.01	5. 424	5,015	-----
	do	73,425	Fry to fingerlings, 4inch.	379.34	5. 165	6, 223	-..-.

DISTRIBUTION BY CARS. ${ }^{5}$

Bozeman, Mont.- Bucksport, Me..-	Trout Salmon	974, 150	Fry to fingerlings, 4 -	\$2, 165. 53	\$2. 223	5,264	722
		371, 000	Fry to fingerlings, $1 \frac{1}{2}-$ inch.	112.	. 304	8	
	Tro	869, 900	- do.	665.35	763	1,976	
Duluth, Minn	do	2, 533,000	Fry	1,201. 45	. 474	2, 671	1,523
Erwin, Tenn	do.	710,900	Fingerlings, 1 to 2 inch.	1, 191. 74	1. 676	2, 811	
Langdon, Kans	Pond fishes.	$9,000$	Yearlings...-.-.-.-.--	138. 40	15. 380	685 4.250	
Leadville, Colo...	Trout.	$1,050,500$	Fingerlings, 1 to $1 \frac{1}{2}$ inch Fingerlines, 1 to 2 inch	1, 405. 99	1. 340 1.780	4, 250	
Manchester, Iowa	---do	536,000 38,000	Fingerlings, 1 to 2 inch Fingerlings, 1 to $2 \frac{3}{3}$ inch	954.05 328.21	1.780 8.611	2, 4 252	
Upper Mississippi. ${ }^{2}$	Pond fishes..	2,912, 527	Fingerlings, 1 -inch, to adults.	13, 423.85	4.610	38, 243	
	Trout	156, 275	Fingerlings, 1 to $2 \frac{1}{2}$ inch	359.00	2. 290	1,080	
White Sulphur	---. -d	439, 450	Fingerlings, 1 to 2 inch_	2, 505. 61	5.701	6,558	
Wytheville, Va...	-do..	257, 650	Fingerlings, 1 -inch, to yearlings.	1,061.30	4.119	2, 709	

[^76]--
-

[^0]: ${ }^{1}$ Appendix I to the Report of the U. S. Commissioner of Fisheries for 1923. B. F. Doc. 947.
 ${ }^{2}$ The Bureau of Standards, Department of Commerce, through its division of textiles, cooperated freely with the Bureau of Fisheries in furnishing and testing the apparatus used for tensile strength, in providing facilities in a room of constant temperature and humidity for making the tests and the measurements of tensile strength, in preparing graphs, and in making valuablo suggestions and criticisms.

[^1]: ${ }^{1}$ These figures, obtained in the regular canvasses of the fisheries, represent not new value but values of the gear owned by the fishermen at the time of the canvass.

[^2]: ${ }^{3}$ Seo footnote 2, p. 1.

[^3]: ${ }^{1}$ A verage of 60 breaks; every other figure in this table is the a verage of 15 breaks.

[^4]: 1 Average of 60 breaks; every other figure in this table is the average of 15 breaks.
 ${ }^{2}$ Line was disintegrated and gone.

[^5]: 4 Net and twine manufacturers, or others who might be interested in the regular application of this combination, should take notice that continued breathing of the vapors of benzol are harmful, and workers should be proteeted accordingly by adequate ventilation of workrooms.

[^6]: ${ }^{1}$ Appendix II to the Report of the United States Commissioner of Fisheries for 1923. B. F . Doc. 948 . The first edition of this paper, Bureau of Fisheries Document No. 643. was published in 1909, and various reprints have been issued.

[^7]: ${ }^{2}$ It may not be amiss here to point out the distinction between trout culture by American methods and pand culture proper by reference to the procedure and the conditions at an American trout hatchery. Trout are not dependent upon natural food and do not require a natural environment. It is customary to rear them in wooden troughs or in small rectangular ponds of earth, wood, or concrete, through which there is a constant flow of water containing no visible plant or animal life. The water supply may come directly from a spring or from an artesian well. At many of the most successful commercial trout establishments in the United States the troughs and rearing ponds are supplied with water from artesian wells from 25 to 100 feet in depth. As the daily feeding of a large number of fish in a confined area necessitates frequent cleaning, any seeds or spores of vegetation introduced by the water supply have little or no opportunity to obtain a foothold. The trout fry will eat artificial food from the time the yolk sac has been absorbed, and by a judicious arrangement of troughs, tanks, or small ponds the trout raiser can maintain a very large number of fish within a comparatively small compass until they are of satisfactory size for distribution or for market. His dependence is artificial food or the artificial introduction of natural food, and without these means be would be powerless to conduct operations on an extensive scale. In American trout culture aquatic vegetation, so essential in pond culture, is but a negative factor.

[^8]: ${ }^{8}$ Dwight Lydell in Transactions of the American Fisheries Society for 1905, p. 193.
 ${ }_{4}$ Report U. S. Flsh Commission 1903 (1905), pp. 483-526.

[^9]: ${ }^{5}$ Dr. Emmeline Moore: The Food Which is Eaten by the Food Which the Fish Eat. Paper read at the Forty-ninth Annual Meeting of the American Fisheries Society, Louisville, Ky., Oct. 10, 1919.

[^10]: - Moore and Kellerman: Copper as an Algicide and Disinfectant in Water Supplies. Bulletin 76, Bureau of 1lant lndustry, Department of Agriculture. (See p. 12.)
 ${ }^{7}$ Marsh and liobinson: The Treaiment of Fish-Cultural Waters for the Removal of Algæ. Bulletin, U. S. Bureau of Fislieries, Vol. XXXVIII, 1908 (1910), part 2, pp. $871-890$.

[^11]: ${ }^{1}$ Appendix III to the Report of the U. S. Commissioner of Fisheries for 1923. B. F. Doc. No, 949. This document represents a revision and enlargement of the chapters on "The W"litefish," "The Graylings," and "The Lake or Mackinaw Trout" from A Manual of Fish-Culture, Based on the Methods of the Tinited States Commission of Fish and Fisheries, with Chapters on the Cultivation of Oysters and Frogs, revised edition, published in 1900.

[^12]: ${ }^{2}$ Excepting the interruption of one season (1914), these yearly tallies were continued for 11 consecutive years.
 ${ }^{3}$ Alaska Salmon Investigations in 1900 and 1901, by Jefferson F. Moser. Bulletin. U. S. Fish Commission, Vol. XXI, for 1901 (1902), pp. 163-398. Washington.

[^13]: ${ }^{1}$ These figures represent the value of the manufactured product. It is estimated that the value of the catch to the fishermen was approximately $\$ 10,000,000$.

[^14]: 1 Cases containing one-half-pound cans have been reduced one-half in number, and thus, for the purpose of affording fair comparison, all are put upon the basis of 48 one-pound cans per case.

[^15]: ${ }^{1}$ Deceased.
 2 Not living on island in 1922.
 New account.

[^16]: ${ }^{1}$ Seals killed for food for foxes awaiting shipment.

[^17]: ${ }^{1}$ Appendix V to the Report of the U. S. Commissioner of Fisheries for 1923. B. F. Doc. 954.
 ${ }^{3}$ Lewis Radcliffe was in charge of the Division of Fishery Industries until November 15, 1922.

[^18]: ${ }^{3}$ Taylor, Harden F., and Arthur W. Wells: Properties and Values of Certain Fish-net Preserratives. Appendix' 1 , Report of the U. S. Commissioner of Fisheries for 1923 , Document $947,69 \mathrm{pp}$., 35 figs. Washington, 1923.
 iBeard, Harry R.: Changes in Oil used for Frying Sardine, State of California, Fish and Game Commission Cireular No. 1, March, 1922, 8 pp.

[^19]: 1 The quantity of herring utilized was $96,458,400$ pounds, ralued at $\$ 623.198$.

[^20]: ${ }^{1}$ Includes shark hides, agar-agar, pearl or fish-seale essence, shark fins, whale bones (skeletons), whale tails, ambergris, herring skins, and alewife scales.

[^21]: 1 Included in "Miscellaneous frozen fish", previous to July 15, 1922.
 2 Included in "Miscellaneous frozen fish" after June 15, 1922.

[^22]: ${ }^{1}$ Included in "Miscellaneous frozen fish", previous to July 15, 1922.
 2 Included in "Miscellaneous frozen fish" after June 15, 1922.

[^23]: ${ }^{2}$ Figures show amount frozen after June 15, 1922. Prior to that date, this species was included in "Miscellaneous frozen fish."

[^24]: ${ }^{1}$ Herring. Other items under "Miscellaneous" include bluebacks, 90,300 pounds, value 8760 ; bonito; 50 pounds, value $\$ 5$; butterfish, 44,416 pounds, value $\$ 3,172$; flounders, $3,281,327$ pounds, value $\$ 134,749$, herring, 341,934 pounds, value $\$ 4,299$; menhaden, $1,699,600$ pounds, value $\$ 16,888$; rosefish, 18,970 pounds, ralue $\$ 473$: shad, 540 pounds, value $\$ 55$; sharks, 8,203 pounds, value $\$ 153$; skates, 1,150 pounds, value $\$ 20$; smelt, 3,973 pounds, value $\$ 347$; sturgeon, 1,050 pounds, value $\$ 207$; swordfish, $3,281,748$ pounds, value $\$ 447,016$; wolffish, 209,422 pounds, value $\$ 3,705$; lobster, 107 pounds, value $\$ 27$; livers, 1,650 pounds, value \$21; spawn, fresh, 98,595 pounds, value $\$ 6,942$; spawn, salted, 43,600 pounds, value $\$ 1,073$; and tongues, salted, 495 pounds, value $\$ 41$.

[^25]: ${ }^{6}$ Daily reports of the quantity of fishery products received at this market are received by the bureau for tabulation through the courtesy of the health department of the District of Columbia.

[^26]: ${ }^{1}$ The clams have been reduced to pounds on the basis of 8 pounds of meat to a bushel, the oysters on a basis of 7 pounds of meat to a bushel and $\$ \frac{1}{4}$ pounds to a gallon.
 29,372 bushels.
 ${ }^{3} 149,007$ bushels.

 - 85,075 zallons.

[^27]: ${ }^{1}$ Lncludes 83,718 bushels, valued at $\$ \$ 3,718$, taken up by vessels owned and employed mainly in Connecticut.

[^28]: ${ }^{1}$ Includes $\$ 3,718$ busheıs, valued at $\$ 83,718$, taken up by vessels owned and employed mainly in Con-

[^29]: ${ }^{1}$ Appendix VI to the Report of the U. S. Commissioner of Fisheries for 1923. B. F. Doc. No. 90 . This document represents a revision and enlargement of the chapters on "The brook trout," "The rainbow trout," and "Minor. trouts" from A Manual of Fish Culture, Based on the Methods of the United States Conmission of Fish and Fisheries, with Chapters on the Cultiration of Oysters and Frogs, revised edition, published in 1900.

[^30]: After taking everything into consideration it would seem that the character or quantity of food influences the color of the flesh only in its fattening effects, and it is only the intrinsic fat or oir in the fish which produces the red flesh and delicious flavor of the red-meated trout. The oil or fat is maturally red as that of some other animals is naturally white or some other color, and
 ${ }^{2}$ The Rangeley Lakes, Me., with Special Reference to the Habits of the Fishes, Fish Culture, and Ingliig. By William Converse Kendall. Bulletin. U. S. Bureau of Fisheries, Vol. XXXV, 1915-16, pp. 485-594, l'ls. XL-XLVI. Bureau of Fisheries Document No. 861, issued 'May 25 , 1918 . Washington.

[^31]:

[^32]: ${ }^{a}$ Pocket-Book of Useful Formulæ and Memoranda for Civil and Mechanical Engineers. By Sir Guilford L. Molesworth. 23d edition. Page 285. E. and F. N. Spon. London.
 ${ }^{3}$ Imperial British gallon, 277.274 cubic inches; American gallon, 231 cubic inches.

[^33]: - Arittclat Propagation of Whiteflsh, Lake Trout, and Grayling. liy G. C. Leach, assisamt in ehargh of tish culture. Appendix 11 I to the Report of U. S. Commlssioner of Fisherles for 1923 . Kurean of Fisheries Dochment 949.
 ${ }^{8}$ Notes on the capture of wild brook trout and collection of their eggs were contributed by A. 11. Dinsmore, superfatendent of the st. Johnsbury (V't.) statlon of the bureau of lysherles.

[^34]: ${ }^{6}$ Artificial Propagation of the Salmons of the Pacific Coast. By Henry OMalley. Appendix II to the Report of the U. S. Commissioner of Fisheries for 1919. Bureau of Fisheries Document No. 879, pp. 26-28.

[^35]: ${ }^{7}$ The notes for the section on Rainbow Trout were contributed almost entirely by George A. Scagle, superintendent of the Wytheville (Va.) station of the Bureau of Fisheries from 1880 to 1922 , who has very ably described the methods employed at that station in the artificial propagation of this species.

[^36]: ${ }^{8}$ What are Rainbow Trout and Steelhead Trout? By W. C. Kendall. Transactions of the American Fisheries Society, 1920.

[^37]: ${ }^{9}$ Peritoneal Membranes, Ovaries, and Oviducts of Salmonoid Fishes and Their Significance in Fish-cultural Practices. By William Converse Kendall. Bulletin, U. S. Bureau of Fisheries, Vol, XXXVIII, 1919-20. Bureau of Fisheries Document No. 901. Some Previously Únrecognized Anatomical Facts and Their Relation to Fish-cultural Practices. By William Converse Kendall. Transactions, American Fisheries Society, 1920.

[^38]: ${ }^{10}$ Fresh-water Crustacea as Food for Young Fishes. By William C. Kendall. Appendix I, Report U. S. Commissioner of Fisheries, 1922. Bureau of Fisheries Document No. 914, 1921.

[^39]: ${ }^{11}$ A Manual of Fish Culture, Based on the Methods of the U. S. Commission of Fish and Fisheries, revised edition, p. 181. Washington, 1900.

[^40]: ${ }^{12}$ Fishes of the Yellowstone National Park, With Description of the Park Waters and Notes on Fishing. By Hugl M. Smith and William C. Kendall. Appendix III to the lieport of the U. S. Commissioner of Fisheries for 1921. Bureau of Fisheries Document 940 , p. 18.

[^41]: ${ }^{13}$ American Food and Game Fishes. Pp. 176 and 179. By David Starr Jordan and Barton Warren Evermann. Doubleday, I'age \& Co., New York, 1902.

[^42]: ${ }^{14}$ Food and Game Fishes of New York. By Tarleton H. Bean. In the Seventh Report of the New York Forest, Fish, and Game Commission, 1901 (1902), p. 336. Albany.

[^43]: 15 Fisles of the Yellowstone National Park. With Description of the Park Waters and Notes on Fishing. By Iugh M. Smith and William C. Kendall. Appendix III to Report of U. S. Commissioner of Fisheries for 1921. Dureau of Fisheries Document 904, p. 2.

[^44]: ${ }^{16}$ Fishes and Fishing in Sunapee Lake. By William Converse Kendall. Report of the Commissioner of l'isheries for 1912. Lureau oí Fisheries Document 783 , p. 45 .

[^45]: ${ }^{17}$ From a book of the Castalia Trout Club, Castalia, Ohio. By Frank C. Hubbard, Published in 1905.
 ${ }_{13}$ Transactions of the American Fisheries Society, 1906.

[^46]: ${ }^{18}$ A New Bacterial Disease of Fresh-Water Fishes. By H. S. Davis. Bulletin of the Bureau of Fisheries, Vol, XXXVIII, 1921-22. Bureau of Fisheries Document 924.

[^47]: "Whirling sickness" or "gill trouble."-This disease is of long standing and practically universal. It attacks all kinds of trout and may cause heavy mortality. It is caused by a minute parasite of the intestine (Octomitus salmonis). The symptoms of what appears to be this disease have been described and the causative organism, or one closely allied to it, has been figured, but the two seem heretofore not to have been connected.
 symptoms of the disease.-Apparently this disease is confined to the intestines, and no external lesions have been thus far observed. Badly infected trout fingerlings have a characteristic behavior which aids in diagnosing the disease. Balance seems easily lost, and the fish turn over repeatedly with a "whirling" or "corkscrew" motion in the water. Too weak to make headray against the current, numbers of them are found in the corners at the foot of the trough or nosing along the sides near the surface. They lie on their backs with gills distended and in feverish action. The walls of the intestines themselves become translucent, whitish or yellowish in color. They are filled with a watery fluid, in which the active organisms swim about. * * *.

 Distribution.-Probably this disease exists in wild fish, but under natural conditions causes little harm or inconvenience. In the crowded condition of a fish hatchery the disease seems to be aggravated and may assume the proportions of a deadly epidemic. It was found in all our trout-rearing hatcheries, but was not serious in all. Until more is known of the disease this difference cau not be explained with certainty. Adverse conditions in the water supply may well contribute to the intensification of the malady. Thus. water low in dissolved oxygen, or high in deleterious substances, might lower the degree of resistance of the fish to the disease. Further study of this relation is needed.

 Transmission.-Octomitus salmonis in ordinary form probably can not long exist outside of the intestinal tract of the fish. It can not readily be de-

[^48]: ${ }^{20}$ Diseases of Fish in State Hatcheries. By Emmeline Moore. Twelfth Annual Report of the New York Conservation Commission for 1922 (1923), p. 66. Albany.

[^49]: ${ }^{1}$ Appendix VII to the Report of the U. S. Commissioner of Fisheries for 1923. B. F. Doc. No. 956.

[^50]: ${ }^{1}$ Appendix Vlll to the lieport of the [. S. Commissioner of Fisheries for 1923 . B. F. Hoc. 9.7.

[^51]: ${ }^{1}$ Appendix 1 X to the Report of "the U. S. Commissioner of Fisheries for 1923 . B. F. Doc. No. 959.
 ${ }^{2}$ The author is particularly indebted to Dr. H. S. Daris, fish pathologist of the Bureau of Fisheries, for criticism in reviewing the manuscript and for suggestions during the course of the work.
 81178°-24

[^52]: ${ }^{1}$ Appendix X to the Report of the U. S. Commissioner of Fisheries for 1023. B. F. Doc. No. 960 .

[^53]: ${ }^{2}$ Brooks, W. K.. "Development of the American oyster." Report of the Commissioners of Fisheries of Maryland, January, 1880 (for 1879), pp. 35-37. Annapolis.

[^54]: ${ }^{3}$ This consideration of the question takes no notice of the possible success of "artificial " set production, but even if this were developed, it is questionable how much it would benefit Connecticut with its best oyster areas so largely destroyed.

[^55]: ${ }^{4}$ New IIaven is the principal exception, but even there much trouble is experienced.

[^56]: ${ }^{5}$ See footnote 3 on p. 4.

[^57]: ${ }^{6}$ Determined by the investigations of J. W. Sale, now chemist in charge, Water and Beverage Laboratory, Bureau of Chemistry, U. S. Department of Agriculture.

[^58]: ${ }^{7}$ Annual mannscript reports of Doctor Churchill and the author. Also the work of Drs. Julius and T. C. Nelson (see report of the department of biology of the New Jersey Agricultural College Experiment Station, New Brunswick, N. J., for 1922, p. 330), and experiments by H. F. Prytherch, of the Bureau of Fisheries.

[^59]: ${ }^{1}$ Appendix XI to the Report of the U. S. Commissioner of Fisheries for 1923. B. F. Doc. 961.

[^60]: 2 "Orsters: The world's most valuable water crop." By Hugh M. Smith. National Geographic Magazine for March, 1923. Washington.

[^61]: ${ }^{2}$ The oyster and the oyster industry of the Atlantic and Gulf coasts. Br E. P. Churchill, jr. Appendix VIll, Report U. S. Commissioner of Fisheries, 1919 (1921). Washington.

[^62]: T-elay-old spat
 1.675

[^63]: Fig. 8.-Pound stakes covered with a heavy set of year-old oysters from Great South Bay, 1921 . The eonvex surface of brush1, stakes, tarred rope,
 covered with spat.

[^64]: ${ }^{1}$ Appendix XIl to the Report of the U. S. Commissioner of Fisheries for 1923. B. F. Doc. No. 962.

[^65]: ${ }^{1}$ Winter of 1918-19.

[^66]: 2 The Fisheries and Fishery Industries of the United States. By G. Brown Gerode and associates, 1887. Section V^{2}, History and Methods of the Fisheries, Vol. I, pp. 543-552.

[^67]: ${ }^{3}$ A water glass such as is used in the Key West sponge and crawfish fisheries is simply a wooden bucket, the bottom of which has been replaced by glass, all joints being made water-tight. It is used when the water is choppy and the bottom could not otherwise be seen. The operator holds it in the water with one hand, thrusts his head into the pail, and with the other hand holds his implement of capture, whether it be spmge hook or grains. In very rough water it can not be used because of the violent action of the boat.

[^68]: ${ }^{4}$ Commercial Sponges and the Sponge Fisheries. By H. F. Moore. Bulletin, U. S. Bureau of Fisheries, Vol. XXVIII. 1908 (1910), Part I. B. F. Doc. No. 667.
 ${ }^{5}$ Fishery Industries of the Uniterl States. Report of the Division of Statistics and Methods of the Fisheries for 1919 . By Lewis Radchiffe Appendix X, Report. U. S. Commissioner of Fisheries for 1919 (1921), pp. 160-161. B. F. Doc. No. 892.

[^69]: ${ }^{6}$ Fishery Industries of the United States. Report of the Division of Fishery Industries for 1921. By Lewis Radcliffe. Appendix 1X, Report, U. S. Commissioner of Fishezies for 1922 (1923), p. 70. B. F. Doc. No. 932.
 ${ }_{7}$ Fishery Industries of the United States. Report of the Division of Fishery Industries for 1922. By Harden F. Taylor. Appendix V, Report. U. S. Commissioner of Fisheries for 1923, p. 63. B. F. Doc, No. 954.

[^70]: ${ }^{8}$ A Practical Method of Sponge Culture．By H．F＂．Moore．Bulletin，U．S．Bureau of Fisheries，Vol．ざざVII， 1908 （1910）．B．F．Doc．No． 669.

[^71]: ${ }^{2}$ This bibliography was prepared to include those publicatlons that relate directly to the Florida fisheries or that will serve a useful purpose in amplifying the information given in this paper.

[^72]: ${ }^{1}$ Appendix KIII to the Report of the C. S. Commissioner of Fisheries for 1923. B. F. Doc. No. 964.

[^73]: ${ }^{1}$ Donated by State fish and game commission.
 ${ }^{2}$ No cost.

[^74]: ${ }^{1} \$ 4,000$ of this amount was spent for new equipment.

[^75]: ${ }^{1}$ Detached messenger shipments from cars. Cost in addition to "distribution by car."

[^76]: ${ }^{2}$ La Crosse, Wis.; Bellevue, Iowa; Marquette, Iowa; and Homer, Minn.
 ${ }^{5}$ Distribution by cars shows cost of transporting fish to destination or until delivered to car messenger.

