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The structure of cucurbit[6]uril (CB[6]), as a fascinating
supramolecular receptor, is regarded as ‘indestructible’. Herein,
we investigated the hydrolysis of CB[6] catalysed by alkali.
Our results showed that CB[6] was easily hydrolysed in 30%
NaOH at 160°C within 3 h. Separation and purification of
hydrolytic products demonstrated the presence of NH3, CO2,
HCOONa, glycine and hydantoic acid. Based on the studies
of the hydrolysis of substances similar to CB[6] including
4,5-dihydroxyethyleneurea, glycoluril and glycoluril dimer,
we proposed that a plausible reaction mechanism involved
a Cannizzaro reaction, which is supported by HPLC, mass
spectrometry data and previous reports. Further studies are
dedicated towards a controlled hydrolysis of CB[6], which will
provide a new route for direct functionalization of CB[6].

1. Introduction
Cucurbit[n]urils (CB[n]) were first synthesized in 1905 and
characterized by X-ray diffraction in 1981 [1,2]. Subsequently,
the CB[n] family rapidly expanded with the discovery of
new members including CB[10] [3,4], CB[14] [5], CB[13] and
CB[15] [6]. Because of their robust structure and hydrophobic
cavity, CB[n] compounds hold great promise in supramolecular
chemistry. For instance, they have been applied in molecular
machines [7], sensing ensembles [8,9], drug delivery [10–12]
and biomimetic systems [13,14]. However, poor solubility of
CB[n] compounds in water and common organic solvents has
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hydrolysis nitration

CB[6] HHMXhexa-tetraazacyclooctane

Scheme 1. Designed route for the preparation of HHMX from CB[6].

limited their practical applications [15–17]. Thus, numerous analogues and derivatives of CB[n] have
been designed and synthesized [18–22]. Nevertheless, it has proved challenging to achieve direct
functionalization of CB[n] compounds due to their high stability. In 2003, Kim and co-workers [22]
first reported the reaction of CB[6] with K2S2O8 producing perhydroxycucurbit[6]uril. Based on Kim’s
research, Li and co-workers further investigated the type of oxidant and optimized the reaction
conditions, but it was still very difficult to control the depth of oxidation [23]. The synthesis of
monofunctionalized CB[n] in a controlled environment also has several successful examples. With the
help of guest molecules and theoretical calculation, Scherman and co-workers [24,25] and Bardelang and
co-workers [26] were able to produce monohydroxylated CB[n], which possessed better solubility and
modificability, and thus have been successfully used in protein extraction [27], adhesives [28] and drug
transportation [29]. Although there are many reports about direct oxidation of CB[n], hydrolysis of CB[n]
for further modification has not been reported directly.

Hexamer octogen (HHMX), a derivative of CB[6], possesses a macrocyclic crown structure. It
also exhibits, in theory, a detonation velocity of 10 500 m s−1, a detonation pressure of 50 GPa
and a density of 2.11 g cm−3, representing a better choice than one of most powerful explosives
hexanitrohexaazaisowurtzitane (CL-20) [30,31]. As an excellent precursor for the preparation of HHMX,
CB[6] was designed to produce HHMX by hydrolysis and nitration (scheme 1). In this work, we
report investigations for the hydrolysis of CB[6] using a number of catalysts. Our research showed that
strong base was able to hydrolyse CB[6] to give NH3, CO2, HCOONa, glycine and hydantoic acid, and
accordingly, a feasible reaction mechanism was proposed and verified. Although no expected products
were obtained, the results still provide a great amount of valuable information to aid further research on
the controlled hydrolysis of CB[6].

2. Material and methods
2.1. Chemicals and instruments
All materials were used as analytical pure grade or higher and purchased from local suppliers
without further purification. Urease was purchased from Sigma (SP, 100 KU g−1). NMR spectra were
recorded on a Bruker Avance II 600 MHz spectrometer with TMS as an internal standard. High-
resolution mass spectroscopy (HRMS) was performed on an Agilent Q-TOF-MS 6520. The X-ray crystal
structure determinations were performed on a Bruker D8 Venture. HPLC analyses were performed
using a Shimadzu LC-20 system equipped with an auto-sampler and a diode array detector. Glycoluril,
4,5-dihydroxyethyleneurea, glycoluril dimer and CB[6] were readily prepared according to our previous
work [32], Kim et al. [18] and Svec et al. [33].

2.2. General procedure for the hydrolysis reaction and separation
Cucurbit[6]uril, glycoluril, 4,5-dihydroxyethyleneurea and glycoluril dimer (2.0 g) were added to sodium
hydroxide solution (6 g of NaOH in 14 ml of H2O). The mixture was then heated in a sealed hydrothermal
synthesis reactor at 160°C for 3 h. After the reactor was cooled to room temperature, the reaction mixture
was acidified with 37% HCl aqueous solution to pH 7. The mixture was then concentrated under reduced
pressure until no more solvent could be distilled off; to afford a yellow solid. The resulting solid was
dissolved in methanol and concentrated in a vacuum, this was repeated three times (30 ml each time) to
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Table 1. Results of hydrolysis reaction of CB[6] in the presence of different catalysts. C, concentration (mole or mass fraction);
T, temperature; t, time.

entry class catalyst conditiona products

1 enzyme catalysis urease T : 37°C;
t:> 7 days;
pH 7.4

none

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 acid catalysis HCl C: 2 M – Mmax; none

3 H2SO4 T : 100 – 180°C;

4 HNO3 t: 6 – 12 h
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 base catalysis NH3·H2O C: 27%;
T : 10 – 180°C;
t: 6 – 12 h

none

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 NaOH C: 30%;
T : 180°C;
t: 6 h

irritant gas, suspension became clear
orange solution

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aH2O as a solvent was used in each reaction and sealing tubes were used when T ≥ 100°C.

remove NaCl and NH4Cl. The residue was purified by column chromatography with CH3OH/CH2Cl2
(1 : 1.5) as the eluent to give HCOONa, glycine and ammonium hydantoate as end products. Structural
characterization of the above-mentioned three products was confirmed by X-ray structure, NMR spectra
and HRMS spectra (see electronic supplementary material).

3. Results and discussion
3.1. Hydrolysis of CB[6]
Generally, hydrolysis is carried out under enzyme catalysis, acid catalysis or base catalysis. As the
hydrolysis of CB[6] has not been reported yet, we tried the above methods systematically. The results
are shown in table 1.

Urease can specifically hydrolyse urea and its derivatives such as hydroxyurea, releasing CO2 and
NH3 [34]. Herein, urease was used as catalyst to hydrolyse CB[6]. The reaction was carried out at 37°C
for more than 7 days at the optimum pH, but no product was obtained and hardly any weight loss of
CB[6] was detected at the end.

Acid is a common hydrolysis catalyst, and thus the effects of different acids concentrations at different
temperatures and reaction times were studied. Not surprisingly, there was no indication of a hydrolysis
reaction occurring, because CB[6] was prepared from concentrated HCl and concentrated H2SO4 at high
temperature. Hence, this is strong proof that CB[6] is extremely stable in acidic solution, even at high
temperature (180°C), high pressure and strongly acidic conditions.

Base hydrolysis also was investigated. Only reaction using NaOH as catalyst resulted in
transformation of the raw material. Thus, the effects of different factors on this reaction were investigated
(table 2).

As shown in table 2, no hydrolysis occurred when the concentration of NaOH was lower than
20% and temperature was lower than 100°C. When the temperature was increased to 140°C and the
concentration was increased to 30%, the reaction time was significantly shortened and the conversion
rate was significantly increased. Finally, the reaction conditions were established as follows: 30% wt
NaOH aqueous solution at 160°C for 3 h.

3.2. Separation and characterization of hydrolytic products
We have studied the separation of hydrolytic products (scheme 2). Irritant gas G1 caused the pH test
paper to turn blue and made the glass rod soaked with concentrated HCl generate white smoke which
was identified as NH3. There were white precipitates when gas G2 was bubbled into the Ba(OH)2
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Scheme 2. Separation flow chart of CB[6] hydrolysate.
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Figure 1. Molecular structure of HCOONa shown with 30% probability thermal ellipsoids.

Table 2. Hydrolysis of CB[6] at different conditions in NaOH solution.

entry C(NaOH) (% in mass) Ta (°C) time (h) productsb

1 10 180 12 none
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 20 180 12 small amount of irritant gas
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 30 80 12 none
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 30 100 12 small amount of irritant gas
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 30 120 12 irritant gas, colour of the reaction solution is deepened
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 30 140 5 lots of irritant gas, the reaction became dark brown
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 30 160 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 30 180 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aH2O as a solvent was used in each reaction and sealing tubes were used when T ≥ 100°C.
bReaction was monitored by thin layer chromatography to determine whether the reaction was carried out or completed.

solution. Simultaneously, the phenomenon of litmus solution turning red upon the inlet of G2 definitely
indicated that G2 was CO2. The crude product S was obtained by repeatedly concentrating and
dissolving L2 to remove NaCl and NH4Cl using methanol as solvent. Ultimately, three solid products
S1, S2 and S3 were obtained after purification by column chromatography.

NMR and mass spectrometry were applied to characterize the above products. As the results shown
by NMR and mass spectrometry were relatively few and uncertain, their basic structures cannot be
confirmed. However, single crystals suitable for X-ray crystal structure determination of compound S1

were obtained by slow evaporation in H2O–CH3OH solution. The X-ray structure revealed S1 to be
HCOONa (figure 1), which was in agreement with NMR and MS analysis.

So far, the three known products are NH3 (was certainly from the only nitrogen atom), CO2 (was
likely to come from the carbonyl) and HCOONa (may be from methylene). To unravel the identity
of products S2 and S3, we studied the hydrolysis of three compounds, 4,5-dihydroxyethyleneurea (1),
glycoluril (2) and glycoluril dimer (3) (scheme 3) that serve as precursors for producing CB[6], because
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1 2 3 CB[6]

6

Scheme 3. Synthetic route of CB[6].
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Figure 2. Molecular structure of ammonium hydantoate (a) and glycine (b) shown with 30% probability thermal ellipsoids.

Table 3. NMR (D2O) and HRMS data of compounds S2, S3, P1 and P2.

compounds 1H NMR (ppm) 13C NMR (ppm) HRMS (m/z), I (%)

S2 3.53 (s, 1H) 175.06, 44.09. 76.0402 [M+H]+(6), 330.3374(100)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S3 3.70 (s, 1H) 188.35, 175.46, 44.52 117.0302 [M−H]−(69), 193.0319(100)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P1 3.79 (s, 1H) 183.91, 174.34, 43.82 74.0258(16), 117.0308 [M−H]−(100)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P2 3.51 (s, 1H) 176.23, 44.61 64.0166(17), 76.0396 [M+H]+ (100)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

these compounds have the basic structural unit of CB[6]. The hydrolysis of glycoluril (2) was readily
completed in 20 min, and the hydrolysates were separated and purified via a separation method similar
to scheme 2. In addition to NH3 and CO2, two main products P1 and P2 were also obtained. Single
crystals of P1 and P2 were obtained in solutions of CH3OH by slow evaporation. X-ray crystal structures
showed that P1 was ammonium hydantoate and P2 was glycine (figure 2). By comparing and analysing
the NMR and HRMS data (table 3), it was not difficult to conclude that S2 was glycine and S3 was
hydantoic acid. At the same time, we also found glycine and hydantoic acid in the hydrolysis of 1 and 3,
and that 3 produced HCOONa.

We detected the formation of urea by HPLC combined with HRMS upon the addition of xanthydrol
into the hydrolytic mixture (see electronic supplementary material). At room temperature and acidic
conditions, xanthydrol could readily react with urea to form a urea derivative with strong UV absorption
[35]. This confirms that hydrolysis of glycoluril produces urea, which is another reaction intermediate.

3.3. Research on the mechanism of hydrolysis
In the presence of acid, CB[6] can be synthesized via intermediates 1, 2, 3 step by step (scheme 3).
Considering the fact that 1, 2, 3 and CB[6] have the same products under the same hydrolysis reaction
conditions, they must have experienced a similar reaction process. Therefore, CB[6] may also gradually
hydrolyse to 1, 2 and 3 under alkaline conditions. CB[6] has a great steric hindrance and the inert
tertiary amine. Hence, it is the most difficult material to hydrolyse among the above-mentioned
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Scheme 4. Designed hydrolysis mechanism for CB[6].
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Figure 3. HRMS spectra of unseperated hydrolysate of glycoluril.

three compounds. HCOONa was only produced in the hydrolysis of 3 and CB[6], which indicated
that it was derived from bridged methylene groups. Generally, C–C bonds are difficult to break, so
the C–C bonds in glycine and hydantoic acid may only derive from the waist C–C bonds in the
glycoluril unit.

These observations led us to postulate a mechanism for the hydrolysis of CB[6] by NaOH
(scheme 4). Under high temperature conditions, alkali first attacks the bridged methylene group, yielding
formaldehyde and 2. Formaldehyde can be oxidized by means of Cannizzaro reaction to produce
HCOONa in the presence of concentrated NaOH. Subsequently, 2 undergoes ring-opening to form 1
and urea. Urea is easily decomposed into NH3 and CO2 at high temperature. Upon degradation of 1 into
glyoxal and urea, NH3 and urea can condense with the glyoxal to give imide (4), thus resulting in glycine
and hydantoic acid (Cannizzaro reaction), respectively.

Oxidation of CB[6] could produce oxalic acid [23], and we found urea during the hydrolysis of
glycoluril. These were both solid proof that these compounds were able to be hydrolysed to give glyoxal.
As both glyoxal and imide (4) are extremely unstable under the reaction conditions, it is difficult to
trap these intermediates. In addition to our main products, they would be quickly further converted to
more stable compounds, such as hydroxyacetic acid, which can be synthesized from the intramolecular
Cannizzaro reaction of glyoxal. Not surprisingly, under more moderate conditions, [M−H]− ion peaks of
hydroxyacetic acid were observed based on HRMS analysis during the hydrolysis of glycoluril (figure 3),
which was indirect evidence of the appearance of glyoxal.
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................................................
4. Conclusion
The catalyst urease cannot hydrolyse CB[6]. In reality, under high temperature (180°C) and high pressure,
CB[6] can be stabilized in strong acid and weak alkaline solution, and only in strong alkaline solution
will it slowly hydrolyse. Hydrolysis of CB[6] in 30% NaOH at 160°C for 3 h produces CO2, NH3,
HCOONa, glycine and hydantoic acid. Combined with the results on hydrolysis of glycoluril, 4,5-
dihydroxyethyleneurea and glycoluril dimer, a reasonable and feasible hydrolysis mechanism was
proposed and verified by the related literature and HRMS. However, strong alkali hydrolysis destroys
the skeleton structure of the whole CB[6], and research on controlled hydrolysis of CB[6] to achieve direct
modification and obtain the target precursor for producing HHMX is still in progress.
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