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Nano energetic materials have attracted great attention
recently owing to their potential applications for both
civilian and military purposes. By introducing silicon
microchannel plates (Si-MCPs) three-dimensional (3D)-ordered
structures, monocrystalline MnMoO4 with a size of tens of
micrometres and polycrystalline MnMoO4 nanoflakes are
produced on the surface and sidewall of nickel-coated Si-MCP,
respectively. The MnMoO4 crystals ripen controllably forming
polycrystalline nanoflakes with lattice fringes of 0.542 nm
corresponding to the (1̄11) plane on the sidewall. And these
MnMoO4 nanoflakes show apparent thermite performance
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which is rarely reported and represents MnMoO4 becoming a new category of energetic materials
after nanocrystallization. Additionally, the nanocrystallization mechanism is interpreted by ionic
diffusion caused by 3D structure. The results indicate that the Si-MCP is a promising substrate for
nanocrystallization of energetic materials such as MnMoO4.

1. Introduction
Energetic materials (explosives, propellants and thermites) have attracted more and more attention
recently due to wide applications in both civilian and military. Not only traditional explosives but
also the variety and number of materials with good thermal stability and insensitivity have been
required intensely. In the past, the traditional crystallite materials played the primary roles, such
as amino/aminonitro heterocycles [1], azides [2] and polynitrogen compounds [3,4]. With the rapid
development of nanoscience and nanotechnology, morphology is one of the important factors for the
sensitivity of energetic materials [5]. In particular, nano energetic materials show dramatic improvement
of the energy release, the reliability in initiation, detonation velocity and charge density. In addition, it
also causes the decrease in the explosion critical radius [6,7]. Nanocrystalline compounds are known
as metastable intermolecular composites (MIC) in the class of thermite materials [8,9], which are
pyrotechnic compositions of metal powder fuels and oxidizers. Aluminium is the most common choice
for fuels because of its low cost and high boiling point. And oxidizers are generally metallic oxides, such
as iron [10], molybdenum [11] and manganese oxides [12]. Combined with aluminium, these thermite
materials have high combustion efficiency, fast energy-releasing rate and good safety performance.
Sun et al. [13] composed aluminium and molybdenum trioxide nanoparticles which indicate that the
reactivity of nanoparticles is significantly higher than that of micrometre-size samples with a reaction
range of 200–300 kJ mol−1. Comet et al. [14] mixed MnO2 and Al nanoparticles in hexane solution
as high-energy thermite. Granier & Pantoya [15] studied the ignition and combustion behaviours of
nanocomposite Al/MoO3.

Recently, binary metal oxides have attracted much interest due to their novel chemical and physical
properties. As we know, molybdenum metal has the ability to form stable oxides with a series of metals
(Mg, Mn, Fe, Co, Ni, Zn, etc.). The reports on these molybdates reveal the extraordinary performance
of binary metal oxides which represents an interesting group of properties [16,17]. Minakshi et al. [18]
synthesized nanoscale ternary molybdate (Mn0.33Nio0.33Co0.33MoO4) using biopolymer as a precursor
to improve the energy storage performance. Currently, since both manganate-oxides and molybdate-
oxides materials are common MIC materials, nanocrystalline manganese molybdate is proposed in an
application as an energetic material. Combined with Al as fuel, nanocrystalline MnMoO4 is the oxidizer
of thermite materials. MnMoO4 has the wolframite structure with the smaller bivalent manganese
cations and molybdenum atoms having an overall sixfold coordination [19]. Manganese molybdate
obtained by previous methods (such as sol–gel method, a solid-state reaction at high temperature and
hydrothermal process) was often crystallized with crystal size larger than few tens of micrometres
rather than nanocrystalline materials [20,21]. Lei et al. [22] prepared manganese molybdate rods and
hollow olive-like spheres in micrometre-scale. Senthilkumar et al. [21] reported MnMoO4 with the size
of about 20 µm. Watcharatharapong et al. [23] prepared manganese molybdate rods with a length of
10 µm. These MnMoO4 obtained are large crystallite materials with micrometre dimension. Nevertheless,
Mu et al. [24] reported ultrathin manganese molybdate nanosheets of about 200 nm grown on Ni
foam. Cao et al. [25] reported MnMoO4 nanoplates grown on a Ni foam substrate with the size of
500 nm. It was found that MnMoO4 grown on three-dimensional (3D) substrate is preferred to be
nanocrystalline structure. However, the specific mechanism was barely studied. Hence in this study,
a patterned 3D substrate, silicon microchannel plate (Si-MCP), is proposed to act as a substrate due
to larger aspect ratio and better orderliness than Ni foam. Si-MCP is arranged with large aspect ratio
lattices with length of 5 µm and depth of 300 µm. Manganese molybdate polycrystalline nanoflakes
are synthesized on this ordered substrate. The growth mechanism is analysed and discussed more
easily. Then, MnMoO4 polycrystalline nanoflakes exhibit novel properties of energetic materials. To
research the crystal growth mechanism, a plane substrate is adopted as comparison. Otherwise,
different concentrations of solution are prepared to contribute to analysing the growth process of the
nanoflakes. Last but not least, the nanocrystallization mechanism based on 3D substrate is expounded
in detail.
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Figure 1. (a) XRD pattern of the MnMoO4/Ni/Si-MCP and (b) Raman spectrum of the synthesized MnMoO4/Ni/Si-MCP.

2. Material and methods
2.1. Synthesis and crystal growth
Analytical grade chemical reagents were used without further purification. Manganese chloride (MnCl2),
ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O) and other reagents were purchased from
Sinopharm Chemical Reagent Co. Ltd. The de-ionized (DI) water used to prepare the solutions had
a resistivity of 18 MΩ cm.

The Si-MCP was fabricated by electrochemical etching and details about the preparation procedures
are available in Yuan et al. [26]. A nickel film was deposited on the surface and inner wall of the Si-MCP
by flow deposition to produce the MECN (macro and electrically conductive network) in which the Ni
film plays the role of improving the adhesion and electrical properties [27].

Then, 1 M (NH4)6Mo7O24 · 4H2O and 7 M MnCl2 solutions were prepared with DI water at room
temperature. The (NH4)6Mo7O24 solution was added slowly to the MnCl2 solution under stirring to
form a homogeneous solution and the pH was adjusted to about 7 by an NH3 solution [28]. After the
precursor solution was transferred to a Teflon-lined stainless steel autoclave liner, the Ni/Si-MCP was
added into the solution after immersing in 0.1% Triton X-100 solution for 30 s. The autoclave was then
sealed and heated to 140°C for 15 min to produce a deep-brown precipitate containing MnMoO4 on the
surface of the Ni-coated Si-MCP. After cooling to room temperature in air, the product was taken out,
rinsed ultrasonically with DI water and ethanol sequentially three times and vacuum dried at 80°C for
6 h. An aluminium film was deposited on the MnMoO4/Ni/Si-MCP as fuel by electroplating which is
reported in Shi et al. [29].

2.2. Sample characterization
X-ray diffraction (XRD) was performed with a Rigaku RINT2000. The surface morphology and
microstructure of the MECN and MnMoO4 were examined using field-emission scanning electron
microscopy (FE-SEM; JEOL, JSM-7001F, Japan) equipped with an energy-dispersive X-ray spectrometer.
The Raman spectra were recorded from 200 to 1000 cm−1 on an Olympus BX41 Raman Microprobe using
a 524.4 nm argon ion laser. Transmission electron microscopy (TEM) was conducted with a JEOL JEM-
2100 FEF. The onset temperature and energy release were monitored by differential scanning calorimetry
(DSC) and thermogravimetric analysis (TGA) (Mettler Toledo, TGA/DSC 1).

3. Results and discussion
3.1. Characterization of the hierarchical MnMoO4/Ni/Si-MCP
To analyse the phase structure of the sample, XRD measurement is conducted. The XRD pattern in
figure 1a (MnMoO4: JCPD card 72-0285) indicates the formation of manganese molybdate with a
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Figure 2. (a) FE-SEM image of top surface of MnMoO4; (b–d) magnified images of that in (a); (e) FE-SEM image of the cross section of
MnMoO4; (f ) magnification image of that in (e).

monoclinic crystal system with the C2/m (12) space group. The obtained diffraction peaks at 12°, 22°,
26°, 28°, 32° and 33° are indexed to the corresponding crystallographic planes of (110), (021), (002), (310),
(022) and (−222), respectively. At the same time, the pattern also presents three Ni peaks: (111) at 44°,
(201) at 52° and (222) at 76°; and one strong Si peak: (400) at 69° (Ni: JCPD card 70-0989 and Si: JCPD
card77-2109). The structure of MnMoO4 was further measured by Raman spectroscopy. Figure 1b reveals
a high-intensity line at 926 cm−1, medium-intensity lines at 812 and 857 cm−1 and low-intensity lines
at 330 cm−1, 353 cm−1 and 796 cm−1, which are the characteristic bands of MnMoO4 [30]. The highest
intensity band corresponds to the Mo(1)O(2) symmetric stretching vibration [31].

Figure 2a–f displays the FE-SEM images of the MnMoO4/Ni/Si-MCP. Figure 2a reveals large
crystallite MnMoO4 with micro size on the surface of the Ni/Si-MCP similar to previous results [28].
The higher magnification FE-SEM images in figure 2b–d show that the MnMoO4 on the microchannel
has the shape of a half moon or arched willow leaves. The nanoflakes on the Ni layer are interconnected
with each other forming an ordered array with an open network. The MnMoO4 nanoflakes on the inner
side wall of the Ni/Si-MCP shown in figure 2e,f disclose smaller and denser nanoflakes. Three different
morphologies of MnMoO4 are present on the microchannel at the same time. And they can be classified
into two kinds of materials: large crystallite MnMoO4 and MnMoO4 nanoflakes.
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Figure 4. (a) EDS spectrum of Al/MnMoO4/Ni/Si-MCP. (b) DSC and TGA curves acquired from Al/MnMoO4/Ni/Si-MCP.

To further analyse the difference between the large crystallites on the surface and nanoflakes on
the microchannels, MnMoO4/Ni/Si-MCP is measured by TEM. Two different materials are separated
into two samples. The sample with the crystallites shown in figure 3a is prepared by ultrasonication in
ethanol for a sufficiently long time to make sure the crystallites are detached from the surface. And the
nanoflakes sample shown in figure 3b is separated centrifugally from the fragments after etching in KOH
solution. Figure 3a,c shows that the crystallites are monocrystals with an interplanar spacing of 0.502 nm
corresponding to the (200) plane of MnMoO4. The selected-area electron diffraction pattern in figure 3a
confirms the monocrystals as diffraction spots can be clearly observed [32]. Figure 3b,d depicts the TEM
images of the nanoflakes. The nanoflakes are polycrystalline with a spacing of 0.542 nm corresponding
to the (1̄11) plane. Figure 3b reveals the polycrystalline nature of the nanoflakes.

After coating aluminium film, the composite sample is verified by energy-dispersive X-ray
spectroscopy (EDS) as shown in figure 4a. According to the inset SEM image Al film is deposited on the
MnMoO4/Ni/Si-MCP. By comparison with figure 2c, the Al film is deposited uniformly on the MnMoO4
nanoflakes without destroying the morphology of MnMoO4. The elements at the position marked by the
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Figure 5. (a) FE-SEM image of the Ni/Si plane; (b) FE-SEM image of theMnMoO4/Ni/Si plane; (c) FE-SEM image of Ni/Si-MCP; (d) FE-SEM
image of MnMoO4/Ni/Si-MCP (25% concentration); (e) FE-SEM image of MnMoO4/Ni/Si-MCP (50% concentration); (f ) FE-SEM image of
MnMoO4/Ni/Si-MCP (75% concentration).

red cross are analysed as shown in the table. It discloses the presence of Mn, Mo, O, Ni, Si and especially
Al. To study the performance of the sample as energetic material, DSC/TGA experiments are conducted
at a temperature from 50°C to 1100°C with a heating rate of 10°C min−1 in 50 sccm N2. The thermal
analysis results are presented in figure 4b based on the mass-corrected values. As the temperature rises,
weight loss occurs gradually and at 730°C, the weight curve rises because of the thermite reaction
between Al and oxygen/vapour in the sample and environment. The energy generated by the thermite
reaction is quite obvious at 960°C. The peak in the heat flow curve reveals the activation energy of the
thermite reaction [33].The prominent thermite performance in the DSC/TGA analyses reveals that the
nanocrystallization improves the properties of MnMoO4 and makes it to be a new kind of energetic
material successfully and meaningfully.

3.2. Nanocrystallization mechanism
When the (NH4)6Mo7O24 solution is mixed with the MnCl2 solution, a supersaturated solution is
obtained and tiny crystalline nuclei are formed initially. As a result of nucleation regularity, these nuclei
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Figure 6. (a) Growth mechanism on planar Si and (b) growth mechanism on Si-MCP.

are transferred to both the surface and inner wall of the Si-MCP evenly. In the supersaturated solution,
the particles connect the crystals formed afterwards. Following hydrothermal crystallization and
ripening, the larger particles grow at the expense of smaller ones in accordance with the Gibbs–Thomson
law [34–37]. Formation of MnMoO4 on the surface has a similar mechanism.

Our results show that there are two different types of crystals on the MCP. To further assess the
crystal growth mechanism, a sample fabricated on a flat silicon substrate is compared. As shown in
figure 5a, the silicon substrate undergoes the electroless process similar to Si-MCP (figure 5c). Tiny nickel
particles are deposited on the silicon substrate uniformly and the morphology is shown in figure 5b.
There are no nano-structured crystals on the plane substrate but instead large MnMoO4 particles are
observed, indicating that the MCP with a large aspect ratio is crucial to the formation of MnMoO4
nanoflakes. Different solution concentrations are also prepared. The samples immersed in solutions
with concentrations 25%, 50% and 75% of the standard one are processed hydrothermally. As the
concentration decreases, there are fewer particles on the sidewall as shown in figure 5d–f. When the
concentration is 25% of the standard one, the deposited product is a thin film in lieu of particles,
indicating that the concentration is also critical to the formation of the nano-structure. The small particles
shown in figure 5d do not morph into large crystallites demonstrating that the structure of the Si-MCP
affects the crystal growth.

The crystal growth mechanism is illustrated in figure 6a. When the substrate is planar, the ions arrive
at the surface from the solution evenly resulting in continuous and stable absorption and reaction. The
particles grow to form large crystallites according to Gibbs–Thomson law. If the time is unlimited, the
crystals grow until they reach the boundaries meaning that there is no effective absorption point. In
comparison, on the channel plate with a large aspect ratio, the ions in the channel decrease as a result
of the reaction in crystal ripening, as shown in figure 6b. The outer ions diffuse into the channels
continuously due to the concentration gradient. The ions flow parallel to the sidewall on the Si-MCP
and the flow direction is along the shearing direction of the crystals on the sidewall. The particles are
separated by the shearing stress. The particles absorb and react on the entire surface evenly rather than
preferentially according to the growth orientation [38–41]. Hence, the crystals cannot capture each other
to form large crystallites thus forming the polycrystalline nanoflakes. The nanoflakes on the orifice of the
microchannel grow by the same mechanism that ion flow obstructs the normal crystal growth. Since the
ion flow on the orifice is not absolutely parallel to the side wall inside the channel, the nanoflakes are
non-uniform.

4. Conclusion
A novel category of nano energetic material is designed and prepared with Al as fuel and MnMoO4
nanoflakes as oxidizer. By introducing the 3D microchannel structure, monocrystalline MnMoO4 with a
size of tens of micrometres and polycrystalline nanoflakes are produced on the surface and sidewall of
the nickel-coated Si-MCP, respectively. The MnMoO4 crystals have good crystallinity and high purity.
The lattice fringes of large crystallite are 0.502 nm, corresponding to the (200) plane of MnMoO4.
The MnMoO4 crystals ripen controllably forming polycrystalline nanoflakes with the lattice fringes of
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0.542 nm corresponding to the (1̄11) plane on the sidewall. The synthesized MnMoO4 nanoflakes display
unprecedented thermite performance which reveals the possibility of new application as energetic
material. Last but not least, to research the growth mechanism, a flat silicon substrate was adopted as
comparison. Samples with various concentrations of ions were also prepared as comparisons, and can be
explained by ionic diffusion caused by 3D structure. The results indicate that the Si-MCP is a promising
substrate for nanocrystallization of energetic materials such as MnMoO4.
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