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We show that the recent proposal to describe the Nf ¼ 1 baryon in the large number of the color limit as
a quantum Hall droplet can be understood as a chiral bag in a (1þ 2)-dimensional strip using the Cheshire
Cat principle. For a small bag radius, the bag reduces to a vortex line which is the smile of the cat with
flowing gapless quarks all spinning in the same direction. The disk enclosed by the smile is described by a
topological field theory due to the Callan-Harvey anomaly outflow. The chiral bag naturally carries the unit
baryon number and spin 1

2
Nc. The generalization to arbitrary Nf is discussed.
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Introduction.—In the large number of the color limit,
’t Hooft suggested that QCD is dominated by planar
diagrams, with infinitely many weakly interacting mesons
and glueballs [1]. Witten argued that, in this limit, baryons
are heavy solitons made out of the interacting mesons. The
coupling of the mesons is weak and of order 1=Nc, while
the coupling of the baryons is strong and of order Nc [2].
Chiral solitons made solely of nonlinearly interacting

pions are a prototype of these solitons, an idea put forth
decades ago by Skyrme [3] well before the advent of
QCD. Chiral solitons are topologically protected in 1þ 3
dimensions, and their quantum numbers emerge through
semiclassical quantization. However, their masses and
“charges” depend sensitively on the truncated chiral effec-
tive action, and somehow less through the more elaborate
chiral holographic constructions [4].
Recently, Komargodski [5] pointed at the peculiar

character of the QCD baryons for Nf ¼ 1, where the chiral
effective theory is dominated by the axial U(1) anomaly for
the η0 meson, and where the soliton construction no longer
applies since, for instance, the standard topological charge
cannot be identified. He noted that the effective theory has a
conserved topological current Jαβγ ¼ ϵαβγλ∂λη0=2π. These
currents are carried by (1þ 2)-dimensional charged sheets
with the η0 field undergoing a 2π jump across the sheet.
Remarkably, when these sheets are finite dimensional

with a boundary, Komargodski noted that they can carry

massless edge excitations with baryon quantum numbers.
They are identified with fast spinning baryons. These
sheets are described by a topological field theory through
a level-rank duality argument [6], much like in the frac-
tional quantum Hall (FQH) effect [7]. The baryons are
analogous to the gapless edge excitations in quantum Hall
(QH) droplets. Arguments were put forth for their gener-
alization to arbitrary Nf.
In sum, QCD with Nf ¼ 1 admits baryons for any

number of colors Nc, which behave as solitons in the large
Nc limit. But these solitons cannot be topological since the
effective field in this limit is solely the η0 with trivial
homotopy. So what are these baryons? Komargodski
suggested that these baryons emerge from patches of
domain walls bridging different θ vacua. In this Letter,
we will show that these baryons are chiral bags with quarks
trapped in a patch of domain wall that leaks a baryon
number, with a topological cloud that acts like a QH
droplet. Our construction will unravel a new relationship
between a bag model of a baryon and a soliton for any Nf,
and it will reveal a new relationship between topological
field theory and quark-hadron continuity. These are new
paradigms in hadron physics, shared in concept by con-
densed matter physics, and potentially useful in addressing
compact-star physics, as we argue below.
We now suggest that these baryonic QH droplets can be

understood using the Cheshire Cat principle (CCP) [8].
More specifically, we show that a chiral bag with a single
quark species of charge e (electric charge or fermion
number) confined to a (1þ 2)-dimensional annulus leaks
the most quantum numbers. For all purposes, the bag radius
is immaterial thanks to the CCP. In particular, when the bag
radius is shrunk to zero, only the smile of the cat is left with
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spinning gapless quarks running luminally, explaining the
edge modes and their spin [5].
A current transverse to the smile is shown to appear,

embodying the Callan-Harvey anomaly outflow [9]. This
transverse current is shown to be analogous to the Hall
current typical of the QH effect through the emergence of
an effective U(1) gauge field. This U(1) gauge field lives
in the disk enclosed by the Cheshire Cat smile and is
described by a purely topological field theory in 1þ 2
dimensions. The quantum numbers of this baryon as a QH
droplet follow readily from the chiral bag construction.
The generalization to many species is discussed.
Bag in a domain wall.—Consider a (1þ 2)-dimensional

chiral bag in the form of an annulus of radius R lying in the
xy plane and clouded by an η0 field with a monodromy of
2π or a U(1) winding number of 1. We will refer to x as the
radial direction and to y as the tangential direction, as
illustrated in Fig. 1. The bag consists of free two-dimen-
sional quarks, say, of charge e, and subject to a chiral bag
boundary condition along the radial x direction. We now
suggest that this (1þ 2)-dimensional U(1) chiral bag in the
limit of the zero bag radius is the pancake baryon suggested
by Komargodski thanks to the CCP. Note that in the limit of
zero bag radius, the chiral bag reduces to a vortex line.
The essence of the CCP lies in the fact that the charge e of

the chiral bag leaks through an anomaly. This leakage is best
described by noting that, in the presence of the η0 cloud along
the x direction, the Dirac spectrum in the bag undergoes
a spectral flow. Since the discussion is about leakage of
charge along the x direction and flow of charge along the y
direction, the shape of the bag as an annulus is topologically
equivalent to an infinite strip along the y direction with
periodic boundary condition, and the U(1) chiral boundary
condition along the x direction as illustrated in Fig. 2.
For a single quark species, the chiral bag model on the

strip is described by

ði∂t þ iσ2∂x − iσ3∂yÞqðt; x; yÞ ¼ 0; jxj < R;

ðe−iσ2θðt;xÞ − σ3ϵðxÞÞqðt; x; yÞ ¼ 0; jxj ¼ R; ð1Þ

with ϵðxÞ ¼ x=jxj being the outside normal to the bag, and
ðγ0; γ1; γ2Þ ¼ ðσ1; iσ3; iσ2Þ. The η0 field acts only at the
boundary through the chiral angle θ ¼ η0=fη, which is in
general time dependent but y independent. fη is the η0

decay constant. Throughout, the reference to chirality in
1þ 2 dimensions will be a slight abuse of language for
a discrete parity transformation x1, x2 → −x1; x2, and
q → σ2q with the mass term q̄q ¼ qþσ1q → −q̄q breaking
parity. It becomes chirality in 1þ 1 dimensions only under
dimensional reduction. The anomaly in 1þ 2 dimensions is
the parity anomaly [10].
With this in mind, the spectral flow is seen by consid-

ering the case of a static boundary condition for the η0 field.
In this case, the mode solution to Eq. (1) is of the form

qnðt; x; yÞ ¼ e−iEntþikyyφnðxÞ; ð2Þ

with En following from the transcendental equation

tan
�
2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
n − k2y

q �
¼ 1þ tþt−

t−
ffiffiffiffiffiffiffiffiffiffi
Enþky
En−ky

q
− tþ

ffiffiffiffiffiffiffiffiffiffi
En−ky
Enþky

q ð3Þ

with t� ¼ tan½θð�RÞ=2Þ�. Note that the spectrum is now
twisted through t�.
For the special case of 1þ 1 dimensions with ky ¼ 0, the

twist is manifest as Eq. (3) simplifies to

tanð2REnÞ ¼ tan

�
π

2
þ Δθ

2

�
ð4Þ

with Δθ ¼ ½θðþRÞ − θð−RÞ� as the jump of the η0 field
across the chiral bag. The twisted spectrum is now

En ¼
ð2nþ 1Þπ

4R
þ Δθ

4R
; ð5Þ

FIG. 1. (1þ 2)-dimensional chiral bag surrounding a QH
droplet. The bag is an annulus of width 2R clouded by an η0
with a monodromy of 2π. In the limit of the zero bag radius, the
chiral bag reduces to a vortex string with unit baryon number.

FIG. 2. (1þ 2)-dimensional chiral bag as an infinite strip in the
y direction (out of the page) with periodic boundary condition
and U(1) chiral boundary condition along the x direction.
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with the level E−1 crossing zero at the magic angle Δθ ¼ π
and requiring a vacuum redefinition. This redefinition
implies that the charge Q in the chiral bag fractionalizes
with the result [11]

ΔQ ¼ eΔθ
2π

; ð6Þ

as the rest of the charge is now located in the U(1)
topological charge carried by the outside η0 field, i.e.,

Q ¼ e
2π

f½π − θðþRÞ� þ ½θð−RÞ − ð−πÞ�g þ ΔQ ¼ e:

ð7Þ

At the magic angle, half of the charge is in and half is out.
The in charge is solely carried by the crossing state

q−1 ¼
1ffiffiffiffiffiffi
4R

p
� −1
þ1

�
ð8Þ

with σ1q−1 ¼ −q−1. The spin can be read by embedding
Eq. (8) in a (1þ 3)-dimensional spinor ΨT ¼ ðqT−1; 0Þ,

Sx ¼
Z þR

−R
dx

1

2
Ψ̄γ5γxΨ ¼ 2Rq†−1

−1
2
σ1q−1 ¼

1

2
; ð9Þ

with here (1þ 3)-γ matrices. If the monodromy is flipped,
2π → −2π, the charge and the spin are flipped.
The explicit description of the present chiral bag

model with space-time dependent boundaries is involved
for general R and finite ky, but around the magic angle the
spectrum becomes CP symmetric with gapless modes of
energy E−1 ∼ ky running in the y direction with fixed spin.
For this choice, the physics becomes more transparent
thanks to the CCP, with the emergence of low-dimensional
anomalies and bosonization as we now detail.
Anomaly outflow.—When viewed in 1þ 1 dimensions,

the preceding result is the consequence of an exact
bosonization which captures the essence of the CCP—
namely, that the bag radius R is immaterial (the smile of the
Cheshire Cat). More specifically, Eq. (6) is the first of
the two standard Abelian bosonization relations in 1þ 1
dimensions:

ρ1þ1 ¼ eq†q →
e∂xθ

2π
≡ e

2π

∂xη
0

fη
;

j1þ1
x ¼ eq†σ3q →

e∂tθ

2π
≡ e

2π

∂tη
0

fη
: ð10Þ

These observations are now important for the (1þ 2)-
dimensional chiral bag and its mapping on the baryon as a
QH droplet.
When the bag radius is increasingly small, the chiral bag

is more like a vortex line. At the magic angle, a gapless

mode with half fermion number (the other half is sitting on
the wall) and momentum ky flows along the y direction.
More importantly, the vortex line carries a charge per unit
length ρ and is leaking radially a current jx, as given by
Eq. (10), irrespective of how small R is. An observer along
the vortex line will see e-charge increasing or decreasing
and would conclude that his or her tangential current jy is
anomalous and not conserved. In other words,

∂tρþ ∂yjy ¼
e2

2π
Ey; ð11Þ

as if an emergent U(1) effective electric field Ey were acting
on his or her vacuum. However, this increase or decrease
is caused by the leaking current in the radial direction
noted earlier so that jx ¼ jy in magnitude, leading to the
identification of the emergent electric field Ey as

e2

2π
Ey ¼

j1þ1
x

Ly
¼ e∂tθ

2πLy
ð12Þ

after using Eqs. (10) and (11) with Ly as the y length of the
chiral bag as a strip. We note that the emergent U(1) gauge
field is Ay ∼ θ=e. A close reading of Eq. (12) shows that
jx ∼ Ey, which is reminiscent of the Hall current, hence the
immediate analogy of the present chiral bag construction
with the QH effect. This is the Callan-Harvey mechanism
for anomaly outflow [9], now realized for a proposed
baryon. It is a physical realization of the descent equation
between anomalies in even and odd dimensions (see
Refs. [12,13] and the references therein).
Emergent effective action.—The anomaly outflow to the

outside disk formed by the chiral bag as an annulus can be
captured in a (1þ 2)-dimensional effective action describ-
ing the outside of the bag. Indeed, since the leaking and
radial current to the chiral bag is jx, its extension in 1þ 2
dimensions defines the variation of the effective action S1þ2

with respect to the emergent U(1) gauge field Ax as

δS1þ2

δAx
¼ j1þ1

x

Ly
: ð13Þ

Inserting Eq. (12) into Eq. (13) and solving gives

S1þ2 ¼
Z
1þ2

e2

2π
AxEy ¼

e2

4π

Z
1þ2

AdA; ð14Þ

where covariance was subsumed in the 3-form. This is the
topological field theory describing the FQH droplet outside
the bag illustrated in Fig. 1. One of the chief purposes of the
emergent U(1) field Aμ in the (1þ 2)-dimensional droplet
is to enforce the anomaly outflow—hence its topological
rather than dynamical character. This emergent gauge field
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outside the bag is the dual of the U(1) gauge field inside the
bag that mediates the e-charge.
In Eq. (14), the Chern-Simons coupling or flux attach-

ment factor is κ ¼ e2=2π. A coupling of a charge e to the
emergent U(1) field in 1þ 2 dimensions amounts to a flux
attachment of e=κ. The exchange of any pair of particles
will generate a statistical phase e2=2κ ¼ π through the
Aharonov-Bohm interaction. A charged boson coupled to
the emergent U(1) gauge field in 1þ 2 dimensions trans-
mutes to a fermion, and vice versa.
The generalization of these results to many quark

species—say, of different colors Nc—requires the use of
non-Abelian bosonization, but the CCP still holds [8,12].
However, in our case, this is not needed. Indeed, ordinary
quarks carry baryon or fermion number 1=Nc (instead
of the integer e2 → 1 discussed here), and hence a
fraction π=Nc of the fermion statistics. This statistics is
readily enforced through a flux attachment factor
κ ¼ Nc=2π, leading to the emergent Abelian Chern-
Simons contribution

Nc

4π

Z
1þ2

AdA: ð15Þ

This is the QH droplet suggested by Komargodski for
baryons made ofNc quarks andNf ¼ 1, where the negative
of Eq. (15) was argued to follow from the level-rank duality
SUðNcÞ−1 ↔ Uð1ÞNc

. The emergent U(1) gauge field
outside the bag is the dual of the SUðNcÞ gauge field
inside the bag.
For vanishingly small radius, the Cheshire Cat smile

reduces to a vortex line with running gapless quarks all
spinning in concert (recall the magic angle), naturally
explaining the large spin 1

2
Nc. The baryon number is

still 1 and is now lodged in the η0 field through the 2π
monodromy. Antibaryons follow from a −2π monodromy,
with the outflow turning into an inflow.
For arbitrary Nf, the spin and statistics arguments do not

change, as they are solely fixed by Nc. However, the
leaking flavor currents lead to a UðNfÞ flavor-valued
emergent gauge field Aμ. Again, the CCP applies mutatis
mutandis. In particular, the emergent non-Abelian Chern-
Simons action (15) is now

Nc

4π

Z
1þ2

Tr

�
AdAþ 2

3
A3

�
: ð16Þ

Tale of two hotels.—In Ref. [14] a chiral bag model was
constructed to prevent the charge from leaking from the bag
following the CCP. In other words a boundary term was
added to the chiral bag to seal the leaking charge. This
boundary term can be readily obtained by noting that, for
y-independent fields, Eq. (14) describes the outside of the
bag as a line segment in 1þ 1 dimensions with

e
2π

Z
1þ1

Adθ ¼ e
2π

Z
1þ1

θF −
e
2π

Z
B
A0θ ð17Þ

after an integration by parts, clearly showing the leaking of
the e-charge through the boundary. To seal the leak, the
inside of the bag has to be supplemented by the opposite
boundary term,

e
2π

Z
B
nA

η0

fη
≡ −

e
2π

Z
B
ϵμνnνAμ

η0

fη
; ð18Þ

with nν being the spatial normal to the bag boundary, after
enforcing covariance on the 2-form. This is exactly the
surface term suggested in the Cheshire Cat construction in
Ref. [12] [see Eq. (8.24)] and used in Ref. [15]. The present
arguments illustrate the subtle relationship between the
chiral bag in Ref. [14] and the present chiral bag for the
baryon as a FQH droplet. In the former, the e-charge is
absolutely confined, while in the latter, the e-charge is
allowed to flow transversely, with both making use of a
Chern-Simons term. This is the tale of two hotels: the
infinite hotel in our world for the confined anomaly, and the
finite hotel in the other world for the flowing anomaly.
This tale is highly relevant for nuclear and astrophysical

processes involving hadron-quark continuity [15]. For
instance, the role of the η0 for the color charge conservation
is responsible for the Cheshire Cat mechanism for the tiny

flavor singlet axial charge for the proton gð0ÞA . Furthermore
since the η0 is expected to become light at high density, it
could have a strong impact on the stiffness of the equation
of state in compact-star matter required for the observed
massive ≳2 M⊙ stars.
Conclusions and discussions.—QCD in the large number

of colors and Nf ¼ 1 does not admit a representation of
baryons as chiral solitons since π3½Uð1Þ� ¼ 0. In this limit,
Komargodski suggested that baryons are edge excitations
of a (1þ 2)-dimensional QH droplet, and he concluded that
these baryons are heavy and highly spinning.
We have shown that the nature of these baryons follows

from an anomaly outflow (inflow for antibaryons) in a
(1þ 2)-dimensional chiral bag model as an annulus of
shrinking size thanks to the CCP. The outflow from the bag
is captured by an emergent U(1) gauge field and described
by a topological field theory. The normalization of the latter
is fixed by the quark fractional statistics. The emergence of
a QH description in the outside of the bag is an illustration
of the Callan-Harvey mechanism for the parity anomaly in
1þ 2 dimensions.
When the bag is shrunk to zero size, the baryonic charge

1 is lodged in the 2π monodromy. The chiral bag reduces to
a vortex line (the smile of the Cheshire Cat), with running
gapless modes of fixed spin as edge excitations carrying net
spin 1

2
Nc. In this limit, the baryon is mostly the outside of

the bag as a QHD droplet. Its size is fixed by the overall size
of the droplet, a balance between the boundary and bulk
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tensions of the sheet as suggested in Ref. [5]. For Nf ¼ 1

and various Nc, the present description of baryons can be
tested using current lattice simulations.
These observations generalize to arbitrary Nf, but

admittedly they also lead to more questions. Since these
pancake baryons are highly spinning at large Nc, do they
really correspond to the large spin states in the hadron
spectrum as suggested in Ref. [5]? It is quite conceivable
that high spinning skyrmion states which are usually
ignored as spurious are less stable than deformed sky-
rmions, and they may even centrifuge to pancakes or
strings. While we do not have answers to these interesting
questions,we do think that with more work answers can be
reached. In fact skyrmions simulated on a crystal lattice, a
description known to be reliable at high density and in the
large Nc limit, indicate the formation of sheets of stability
with fractionalized baryon charges on the surface of sheets
resembling FQH droplets [16]. These are open problems
that need to be solved.
These facts prompt us to ask about the relationship of

these highly spinning baryons, with the lowest spinning
skyrmions in the spin-isospin tower J ¼ I ¼ 1=2;…;
Nc=2. As both descriptions rely on QCD in the large
number of colors, a dynamical relation may be at work that
selects one from the other. Also, domains of various forms
and shapes made of η0, or even the lighter π0, are likely to
form at a few times the nuclear matter density—say, in the
crust of neutron stars or deeper—making the baryons as
QH droplets potential candidates. To answer quantitatively
these questions requires a more detailed dynamical descrip-
tion of the bag model as a QH droplet. In particular, the
thickness and tension of the droplet need to be considered
and modeled, including the effects of the Dirac sea in the
bag contribution.
The present interplay between the QH effect and QCD

baryons is much in line with the recent suggestion between
quantum magnetism and QCD confinement [17], showing
the intricate interplay between concepts of particle physics
and condensed matter physics at strong coupling. More
insights can be achieved by perhaps using holography
since, for instance, baryons and the QH states find common
ground for an explanation [4,18].
Finally and more speculatively, axion quark nuggets are

suggested as candidates for dark matter [19]. In the cosmic
QCD phase transition, axion domain walls are argued to
form copiously and decay, trapping antimatter in the form
of (1þ 3)-dimensional nuggets. It is tempting to suggest
that breaking cosmic axion domain walls can also result
in (1þ 2)-dimensional pancakes much like the ones dis-
cussed here, trapping topological fields instead, with
confined hypothetical quark fields circling the boundary.
Both the axion (boundary) and the topological fields (disk)
are topologically stable and carry energy but are so far
invisible, a good combination for dark matter. Conversely,

(1þ 3)-dimensional η0 or even neutral π0 domain walls
instead of axions can be used to trap few quarks in the more
standard baryon configuration with low spin, or in the
superconducting diquark phase in QCD matter at moder-
ately high density, with tangible consequences for the
neutron star equation of state. We hope to return to these
and some other issues next.
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