
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1997

Database access from the Web

Dean, Andrew S.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/31929

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DATABASE ACCESS FROM THE WEB
by

Andrew. S. Dean

Thesis Advisor:
Thesis Co-Advisor:

March, 1997

C. ThomasWu
Monique P. Fargues

Approved for public release; distribution is unlimited.

19970905 134

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instruction, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate
or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for
Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paoerwork Reduction Proiect (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES
blank) March 1997 COVERED

Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
DATABASE ACCESS FROM THE WEB

6. AUTHOR
A. S. Dean

7. PERFORMING ORGANIZATION NAME AND ADDRESS 8. PERFORMING
Naval Postgraduate School ORGANIZATION

Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSORING/MONITORING
ADDRESS(ES) AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or
I position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)
Determining the best method for granting World Wide Web (Web) users access to remote relational databases is

difficult. Choosing the best supporting Web/database link method for implementation requires an in-depth understanding
of the methods available and the relationship between the link designer's goals and the underlying issues of Performance
and Functionality, Cost, Development Time and Ease, Serviceability, Flexibility and Openness, Security, State and
Session.

This thesis examined existing methods for enabling Web-client access to remote relational databases and found that
most fall within the general categories of Common Gateway Interface scripts, Server Application Programming Interfaces,
Web-enabled Database Management Systems exporting query results in Hypertext Markup Language, and independent
client-based processes such as Java applets. To determine the best database access category we compared each one to the
underlying link issues and conducted a case study for the IEEE Signal Processing Society.

The results of this thesis are: (1) a taxonomy of existing Web\database linking methods, (2) a thorough listing and
examination of the underlying issues as they relate to each link method, (3) recommendation and specification of the
proper link method and hardware/software support system for the case study link'!,g_e JlfOblem.

14. SUBJECT TERMS
Internet, Relational Database, World Wide Web

17. SECURITY CLASSIFI- 18. SECURITY 19.
CATION OF REPORT CLASSIFICATION OF
U nclassifi.ed THIS PAGE

Unclassified
NSN 7540-01-280-5500

i

15. NUMBER OF
PAGES 130

16. PRICE CODE

SECURITY CLASSIFI- 20. LIMITATION OF
CATION OF
ABSTRACT

Unclassified

ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

ii

Author:

Approved for public release; distribution is unlimited.

DATABASE ACCESS FROM THE WEB

A. S. Dean

Lieutenant Commander, United States Navy

B.B.A., University of Texas, 1982

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

1997

A. S.Dean

Approved by:

Momque P. Fargues, Thesis Co-Advisor

Ted Lewis, Chairman

Department of Computer Science

111

iv

ABSTRACT

Determining the best method for granting World Wide Web (Web) users access to

remote relational databases is difficult. Choosing the best supporting Web/database link

method for implementation requires an in-depth understanding of the methods available and

the relationship between the link designer's goals and the underlying issues of Performance

and Functionality, Cost, Development Time and Ease, Serviceability, Flexibility and

Openness, Security, State and Session.

This thesis examined existing methods for enabling Web-client access to remote

relational databases and found that most fall within the general categories of Common

Gateway Interface scripts, Server Application Programming Interfaces, Web-enabled

Database Management Systems exporting query results in Hypertext Markup Language, and

independent client-based processes such as Java applets. To determine the best database

access category we compared each one to the underlying link issues and conducted a case

study for the IEEE Signal Processing Society.

The results of this thesis are: (1) a taxonomy of existing Web\database linking

methods, (2) a thorough listing and examination of the underlying issues as they relate to

each link method, (3) recommendation and specification of the proper link method and

hardware/software support system for the case study linkage problem.

v

vi

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. OBJECTIVES AND RESEARCH QUESTIONS 1

B. THESIS ORGANIZATION 1

IT. BACKGROUND ... 3

A. A HISTORY OF DATABASE MANAGEMENT SYSTEMS 3

1. Evolution of DBMS Architectures 3

a. Flat-files . 3

b. The Relational Model 4

c. The Object Model 5

2. Interconnecting DBMS's 5

a. Essentials of a Distributed DBMS 6

b. Client/Server ; 7

c. Tier ... 9

B. EMERGENCE OF THE WORLD WIDE WEB 9

1. Web Architecture- J 0

a. Client/User-Interface Architecture 10

b. Server/System Architecture 11

2. Standard Internet Protocols 12

3. Current Web Status 14

vii

------ ------------~--------------

C. CONVERGENCE OF DBMS's AND THE WEB 14

ill. COMPONENTS IN THE WEB/DBMS LINK 17

A. INTRODUCTION .. 17

1. The Data Access Cycle . 17

2. Example Database 18

B. CLIENT COMPONENTS 19

1. Browsers . 19

a. Plug-ins and Fat-clients 20

b. Client Record Storage 22

2. Independent Processes 23

a. Java Applets 23

b. Active-X 25

C. SERVER COMPONENTS 26

1. The Relational Database 26

a. Extended HTMIJEmbedded SQL 26

b. Templates 28

2. Database Gateways 29

a. Common Gateway Interface 29

b. API' s and DLL' s 32

3. Providing Security 33

a. Firewalls and Proxy Servers 35

viii

D. MIDDLEW ARE COMPONENTS 36

1. Protecting Data En-route 37

2. Common Object Request Broker Architecture And Internet Inter-

ORB Protocol .. 37

3. Open Database Connectivity 38

4. Java Database Connectivity 40

E. COMBINING THE COMPONENTS 41

IV. WEB/DBMS LINK ISSUES AND TRADEOFFS 43

A. MARRIAGE OF TWO TECHNOLOGIES 43

B. OVERARCHING ISSUES 44

1. Performance and Functionality 44

2. Cost ; ... 45

3. Development Time and Ease 45

4. Serviceability .. 46

5. Flexibility and Openness 46

6. Security .. 47

7. State and Session · 48

C. DBMS ISSUES .. 48

1. Interface Usability and Control 48

2. Transactions ... 49

3. Concurrency ... 50

ix

4. Extensibility ... 51

D. RELATING THE ISSUES 51

1. Tradeoffs ... 51

2. Assessing the Combination Categories 53

a. CGI Gateway 53

b. API (including ODBC) 54

c. Web-enabled DBMS's 54

d. Independent Processes 55

e. Other Solutions 55

3. The Ideal Solution 55

V. CASE STUDY .. 57

A. BACKGROUND ... 57

1. Current Review Process 57

2. Changes In Work 60

a. New Database 61

3. Database System Support 61

a. Hardware 62

b. Software 62

c. Database 62

4. Other Plans .. 67

B. CASE ANALYSIS .. 67

X

1. Review Process Problems 67

2. Solving the Problems : 69

a. Attracting More Reviewers 70

3. Using The Web 71

VI. DESIGNING THE LINK ... 75

A. USER REQUIREMENTS 75

1. Expected Benefits 75

2. Specific In-variants 76

3. Information Flow 77

a. Web Input/Output 77

4. Summary ... 78

B. CHOOSING AN APPROACH 79

1. Issues for Consideration 79

a. Overarching Issues 79

2. Approach Alternatives 80

3. Recommended Approach 82

C. SYSTEM SPECIFICATION 82

1. System Support 82

a. Software Applications 82

b. Platform Selection 86

c. Cost of Upgrading 86

xi

d. Migrating to the Web 87

2. System Design 89

a. Sample Queries 89

3. Potential New Features 90

4. Imp~ct of Planned Software Upgrades 91

Vll. SUMMARY AND CONCLUSION 93

A. SUMMARY ... 93

B. ADDITIONAL RESEARCH AND DEVELOPMENT 94

APPENDIX A. SUMMARY OF CONVERSATION 95

A. THE REVIEW PROCESS 95

1. Current Situation 95

2. Problems ... 96

3. Changes Underway 97

4. Future Plans ... 98

APPENDIX B. USER QUESTIONNAIRE ; 101

A. HARDWARE .. 101

B. SOFTWARE ... 102

C. DATABASE ... 102

D. FINANCIAL ... 106

xii

E. PEOPLE ... 106

F. TIMING ... 107

G. MISCELLANEOUS 107

LIST OF REFERENCES .. 109

INITIAL DISTRIBUTION LIST .. 115

xiii

I. INTRODUCTION

A. OBJECTIVES AND RESEARCH QUESTIONS

The main objective of this thesis is to exam the issues surrounding linkage of a

database management system (DBMS) to the World Wide Web (Web) in support of dynamic

data access. All DBMS's in the DBMS/Web linkage discussion are assumed to follow the

relational model (still the most widely used)[Plain96] unless otherwise stated.· Morever, only

currently available and utilized methods, protocols and standards are examined and thus,

those links requiring radical changes to the Web or the DBMS's themselves are not covered.

Secondary objectives supporting this thesis include an investigation, analysis, and

creation of a taxonomy of existing dynamic DBMS linking methods, a discussion of related

issues and tradeoffs, and the design of a solution to a prototypical case study. The case study

offers the opportunity to further investigate the alternative link methods, weigh them against

the related connectivity issues, and illustrate the decision processes relevant to designing and

implementing a Web/DBMS link.

B. THESIS ORGANIZATION

Chapter IT introduces the database and Internet concepts which serve as the

foundation to the discussions in this thesis. Chapter ill surveys common Web/DBMS link

software components and discusses how they work together in building links. Chapter IV

lists link related issues and analyzes required tradeoffs between them which underlie every

link approach. Chapter V introduces and analyzes a case study while Chapter VI redefines

the case study problems in terms of user needs and functional requirements. The chapter

1

then discusses the potential use of the specific linkage approaches previously compared and

concludes by outlining the actual design for implementing the most appropriate of the

potential approaches. Chapter Vll contains the thesis summary and conclusion, an analysis

of data obtained, and thoughts for future work and potential applications. Appendices

summarize two separate discussions between the thesis author and case study personnel.

2

II. BACKGROUND

A. A HISTORY OF DATABASE MANAGEMENT SYSTEMS

The term database [Rob95] refers to both the electronic storage of data (raw facts)

in such data structures as linked lists, trees and hash tables, and the associated meta-data or

data about the raw facts. A DBMS [Rob95] includes the database plus the combination of

programs controlling access and allowing manipulation of the data. Generally, DBMS's are

categorized by the functions supported and the architecture with which they maintain data

relationships. Functionally, DBMS's range from the local, stand-alone DBMS's found on

personal computers and mainframes to the distributed, shared DBMS's supporting the large

numbers of multiple users and simultaneous queries commonly associated with large data

processing applications.

1. Evolution of DBMS Architectures

Beginning with the use of flat-files in the 1950's and continuing with the relational

and object-oriented DBMS's of today, DBMS architects have sought to provide robust

solutions to ubiquitous data storage and manipulation needs [Burleson94]. As time passed,

each subsequent method brought additional functionality and solutions to the problems or

constraints associated with its predecessors.

a. Flat-files

Flat-file systems were the original DBMS [Burleson94]. Primitive direct data

access methods used by these early systems included simplistic sequential searching of sorted

3

listings or, at best, hashing algorithms that mapped files to specific disk or tape storage

addresses. Problems associated with these methods included an inability to recognize,

establish, or manage data relationships, the development of "information islands" within

organizations as different departments stored duplicate information in different types of file

structures written in different languages, and the tight coupling of data and programs that

always led to maintenance, concurrency, and recovery problems.

b. The Relational Model

To address flat-file system problems, Dr. E. F. Codd, a researcher at IBM in

the 1960's, developed the relational database model in which data resides in two-dimensional

tables representing entities such as Customers, Inventory, Airplanes, etc [Burleson94]. Each

row, or tuple, in the table holds data pertaining to one particular entity instance (Susy,

hammer, B-52, etc). Additionally, one column in the table contains entity-unique data called

a primary key that has two purposes. First, it serves to uniquely identify specific tuples

within the table, or; secondly, when the primary key column is redundant to two or more

tables, it provides links, or relationships, between the tables that can be navigated and

manipulated with ease.

Improvements offered by relational databases included a simple conceptual

framework, data independence in which data relationships were no longer hard-linked by the

supporting data structures, control of relationship cardinality via the enforcement of

constraints upon addition and deletion of data, and declarative data access utilizing relational

set theory encapsulated within the mechanics of structured query language (SQL). SQL

4

initially offered only three classes of operators [Burleson94] SELECT, which shrunk the

tables vertically by eliminating rows; PROJECT, which shrunk the table horizontally by

removing columns; and JOIN, which dynamically linked two tables together via common

column values.

Problems associated with the relational model include the inability to store

business rules that constrain and affect the behavior of data, and persistent difficulties in

handling recursive relationships.

c. The Object Model

The Object Model of the 1980's and 1990's seeks to address the relational

model's drawbacks and, by utilizing the properties of encapsulation, abstraction, and

polymorphism, to more effectively model and replicate relationships in the real world

[Burleson94]. By storing the behavior of the data within the DBMS alongside the data and

their relationships, object technology promises to be less maintenance-intensive since all

changes to data attributes and behaviors are handled within the DBMS instead of by the

programmer.

2. Interconnecting DBMS's

As the amount of stored data increased, the need arose for different entities in

different geographic locations to share data in a collaborative fashion. It was at this point

that the limitations of monolithic DBMS' s became apparent, leading DBMS architects to

create the initial distributed DBMS's of the 1970's which later evolved into the inter

connected networks of distributed DBMS's in use today.

5

a. Essentials of a Distributed DBMS

All successfully interconnected DBMS's share certain characteristics. At the

highest level, distributed DBMS's should easily handle geographic dispersion and

heterogeneous hardware/software. To be ideal they must also include the following traits

[Burleson94]:

• local autonomy, meaning all data in the distributed network is owned and

managed on a local. basis independent of the overall system.

• no reliance upon a central site, i.e, all sites are equally "remote" with no one

site having governing authority over another's data dictionaries or security.

• continuous operation supporting seamless, around-the-clock access.

• location independence, since end-users don't care or need to know about the

physical location ofDBMS's comprising the system.

• hardware/operating system independence with no queries tied to specific

proprietary systems.

• network independence where network protocols are invisible to the end-user

and differences in topologies are accommodated.

• DBMS independence allowing non-DBMS-specific retrieval and update

operations.

• data integrity management of concurrent updates, ensuring the ability to

handle transaction-type computing.

6

b. Client/Server

Because of the similarity between desired traits for distributed DBMS' s and

those of the client/server paradigm, today' s distributed DBMS products predominantly use

client/server [Orfali94] to link decoupled entities just long enough for them to accomplish

pre-specified units of work. Client/server (Figure 1) is predicated upon two independent and

autonomous processes working together (usually over a network) [Orfali94]; client processes

which request specific services, and server processes which respond to the requests.

~=~~ ~~·

Service I Y
Response ~ I

Service
Request

Middleware

Service I Y Service
Response ~ I Request

~
Figure 1. Client/server architecture

Client/server seeks to optimally distribute these processing activities via

many-to-many relationships over different computer platforms, using the best characteristics

of each platform to the most advantageous end. The anticipated benefit of client/server is

the ability to abstract hardware and software concerns and focus on developing and building

user-friendly, cost-effective systems.

7

All client/server systems have the following distinguishing characteristics

[Orfali94]:

• service: client/server primarily involves a two-process relationship with the

server on one machine providing services to the client which is (most

probably) running on a separate machine.

• shared resources: one server can service many clients at the same time and

regulate their access to shared resources.

• asymmetrical protocols: clients always initiate the many-to-one relationship

by requesting a service from the passively waiting server.

• transparency of location: the server process can reside on either the same

machine as the client or on a different machine across the network.

• message-based exchanges: clients and servers interact via a loosely-coupled

message passing mechanism.

• encapsulation and integrity: the server uses centrally-maintained code to

perform the services in a manner transparent to the client.

• scalability: client/server systems can be scaled horizontally by adding new

clients, and vertically by migrating to newer, faster and more machines.

• tier: client/server implementations can be classified by the location of the

split between user interface, application logic, and data repository functions.

8

c. Tier

The three basic client/server functions of d~ta reservoir, user interface, and

application logic are predominantly classified and divisible into two or three tiers

[Finkelstein96]. Two-tier client/server systems are recognized by the division of the three

DBMS's functions between the client and only one server. In other words, all logic not

actually on the client is co-located on the server. Two-tier implementations are themselves

divisible into fat and thin client implementations [Orfali94], with fat clients holding both

presentation logic and application logic and thin clients simply having presentation logic

alone.

With three-tier implementations a thin client presents DBMS interaction

results while residing separately are the data reservoir on a data server and the application

logic on the application server. The benefits of spreading the three functions among multiple

tiers include [Centura96] faster performance because complex application logic can be

executed on more powerful machines, and the improved ability to support end users by

adding additional software or hardware to improve performance in those sites sustaining

large numbers ofsimultaneous queries.

B. EMERGENCE OF THE WORLD WIDE WEB

The World Wide Web, also known as the Web or WWW [Marshall95], is a

client/server implementation comprised of all the inter-networked (sic Internet) software and

hardware information-retrieval components required to for around-the-clock access by

anybody· to any available information, located anywhere in the world. The WWW was

9

originally developed at CERN in March 1989 to facilitate information dissemination and

sharing between collaborative groups across the world. At that time most users worked for

the government or large universities and information was available primarily via anonymous

File Transfer Protocol (FTP) using a simple line-mode browser. In January of 1993, access

was made much easier with release of the alpha version of the X-MOSAIC browser and

WWW use exploded to the high levels evident today.

1. Web Architecture

As previously stated, the architecture of the Web simply represents another step in

the evolution of client/server technology. Distinguishing features of the Web client/server

version include the extreme thinness of clients utilized simply to render documents for

viewer consumption and the sheer number and variance in platforms participating in the

network. Evident from the beginning, though, is that many of the Web's underlying

technologies directly mirror the desired traits for distributed DBMS implementations.

a. Client/User-Interface Architecture

From the user point of view the Web is a series of documents written in

hyper-text markup language (HTML) [Schulzrinne96]. A Web document, also known as an

HTML document, consists of special "tags" embedded in the document text which direct the

user interface application in rendering the document into usable format.

At the client end is the browser, a universally supported, ultra-thin user

interface that supports the user view of the Web as a series of pages to be quickly rendered

10

into a digestible format. A special attraction of the browser is that it is easily and

inexpensively deployed to very large numbers of users.

Web pages are connected in many-to-many relationships by universal

resource locator (URL) [Schulzrinne96] specified hyperlinks exemplified by the fictional

URL "http://www.nps.navy.mil/-asdeanlindex.html." A hyperlink contains all data

necessary for the browser to locate and render the document since it indicates the connection

method (hyper-text transfer protocol, e.g. http), the server's name (www.nps.navy.mil), the

resource's name (-asdeanlindex.html) and the resource data type (.html). Resources named

"index.html" usually indicate the homepage [Lynnworth96], a term referring to a Web site's

initial visitor starting page that includes welcoming data and hyperlinks leading to other

pages located at the site or elsewhere in the Web.

b. Server/System Architecture

From the system viewpoint the Web consists of a world-wide network utilized

to briefly connect clients to multitudes of servers, each of which is holding HTML

documents made available for access. The network supports Web client/server

implementations by establishing a connection between the requesting application (browser)

and the responding application (Web server) when users click upon URL's. During the

connection, the server receives information from the browser regarding connection method

(FTP, HTTP, etc.), resource URL code, resource data type, and client-specific browser

type/model data. It then responds to the request with a protocol version status line, resource

11

access success/error code, relevant entity meta-information and the appropriate HTML

resource, and then closes the connection.

2. Standard Internet Protocols

In the Internet protocol hierarchy [Stallings94] shown in Figure 2, a client request

flows down from the browser application to the application layer, then on to the transport

and Internet layers till it reaches the network access layer just prior to crossing the physical

infrastructure.

To ensure client requests work properly, the browser must work with the host

machine's operating system and connection hardware to ensure client requests are in proper

format and to correctly process each server response.

HTTP (1.0) [Schulzrinne96], as the application layer protocol, determines the

beginning, duration, and ending of a single communication session. For this reason, a solid

understanding of HTTP's stateless nature and its ultimate effect on Web communications is

absolutely vital to this discussion of Web/database connectivity solutions. An analogy for

stateless communications would be a telephone conversation where the called party hangs

up after answering each of the caller's questions, and when called again, has no recollection

of previous answers and conversations. Because of statelessness, each client/server session

must stand alone as a complete entity unless special measures are taken to retain records of

the transaction somewhere in the loop.

12

Browser

Application Layer
(FTP,HTTP)

Transport Layer
(TCP)

Internet Layer
(IP)

Network AccessLayer Physical infrastructure

Figure 2. Internet Protocol Hierarchy

Below the application layer, and above the network card or modem, is the

Transmission Control Protocol/Internet Protocol (TCPIIP) [Jordan94] transportation layer

and the Internet layer that work together to facilitate all WWW traffic by abstracting

individual network hardware protocols. TCPIIP is characterized by connection-less (no-

dedicated conduit) communications where each message is composed of multiple uniformly-

sized packets of data, each of which making its way alone to and from the server. When the

packets arrive and are re-assembled at the server, they allow reconstruction of the original

message. This process works the same in reverse when the server application sends its

response back to the client.

13

3. Current Web Status

Estimates of current Web usage vary, but Informix Cmporation [Informix96]holds

that there will be over 200 million Web users by the year 2000 and that the Web-related

software market will grow from $260 million in 1995 to $4 billion by the end of 1996, a

sixteen-fold increase. Along with this explosive growth in use is a corresponding revolution

in content since Web pages have changed from static representations of archived files to

extravagant multimedia productions. These newer sites allow intuitive user navigation of

Web sites and offer such innovative mixed-media combinations of color, sound, and

animation that sites not providing this level of service tend to be avoided [Informix96].

C. CONVERGENCE OF DBMS's AND THE WEB

DBMS products have now demonstrated the capability of managing mixed-media in

a collaborative workflow environment [Frank95]. Vendors are selling rapid application

development (RAD) tools incorporating pre-written question/answer "wizards" that abstract

underlying technical details and guide developers through the development process. These

tools, which are common for either monolithic or LAN-based client/server environments,

have not completely solved all the problems associated with the uneasy linkage of proprietary

versions of SQL and other protocols and so they limit DBMS's ability to cheaply scale up

to the inter-networked level of distributed computing. It is because of this that DBMS's need

to find an easy method of disseminating rich content on a massive scale without the high

costs associated with proprietary solutions.

14

From the Web perspective, it is content that is king, and site builders have irrevocably

moved from presenting static text to allowing the user to !nteract with rich, dynamic and

fluid multimedia sites. Interactive [Stormcloud96] in this sense means collecting and

processing user input that is more complex than simply choosing from among a set of static

links. Throughout the world and throughout the day, a growing number of users demand

interactive access with photographs, graphics, text, audio and video, all of which must be

archived for real-time retrieval and editing. The problem with this demand is that traditional

HTTP servers are incapable of supporting this level and type of interaction [Rowe96], let

alone facilitating quick, easy, and innovative customization of content.

Given the current and projected levels and methods of Web use, the marriage of

DBMS's and the Web is a natural one. The Web is a compelling platform for database

driven interactive applications because it offers platform independence and instant global

access along with the possibility of significantly lowering development, deployment,

training, maintenance, and upgrade costs. Concurrent with DBMS products handling new

data-types and developing new distributed processing capability is the Web-driven demand

for increasing quantities of these new data-types along with new, richer ways to manage and

interact with them.

The bottom line is that DBMS's need for low-cost, widespread connectivity and the

Web's need for robust tools to manage dynamic interaction with multimedia content has

caused the two technologies to converge. Key to this convergence is discovering and

15

creating a link between the two that leverages their respective strengths without unduly

restricting each other's ability to address and resolve important issues.

16

III. COMPONENTS IN THE WEB/DBMS LINK

A. INTRODUCTION

A Web/DBMS link component is any identifiable (e.g., self-contained and/or

standalone) software program utilized to dynamically generate data. These components,

though wide-ranging in complexity and purpose, all have the common goal of enabling

Web/DBMS linkage.

This chapter begins with an explanation of the basic data access cycle common to all

approaches and an introduction to a fictional database that will be used throughout the

chapter for illustration purposes. The following sections explore a taxonomy of components

commonly used to build Web/DBMS links. The taxonomy is grouped into client, server and

middleware categories and we will provide a brief discussion of the mechanics of each one.

We conclude the chapter with an introduction to the main Web/DBMS approach categories

that we further discuss in Chapter III when the issues surrounding Web/DBMS links are

more fully explored.

1. The Data Access Cycle

All Web/DBMS links have the common data access cycle since, regardless of which

software products are used to build a W eb/DBMS link, all approaches fundamentally rely

upon a message-based form of interaction called remote procedure calls (RPC) [Orfali94]

for data access. As demonstrated in (Figure 3), on the calling (client) side of the RPC is the

browser serving as the graphical user interface caun that accepts user inputs and renders

17

HTML documents. Each remote call commences when the user clicks on a URL displayed

by the browser, opens a connection with the remote server site via middleware

communication processes, and sends a request for data.

The remote server, which listens passively for client connection calls and data

requests, completes the cycle by parsing, interpreting and acting upon the request, encoding

the response in HTML for browser rendering, sending the results back to the client via

middleware, and finally closing the connection.

RPC request

1 User clicks on URL

2 Bros-wer sends request

RPC response

6. Bro-wser renders HTML

3 Server hears request
and opens connection

4 Server passes request
to data service

S Server passes results
back to the client

Figure 3. Data Access Cycle

2. Example Database

To illustrate how respective component characteristics and mechanics are used to

execute the data cycle, a relational database comprised of two tables will be used throughout

18

this chapter. The database pertains to a fictional campus food stand called "THAI SHACK"

that is owned and operated by its owner "Ralph Thai." Ralph manages his menu and

customer lists with a Web-linked database containing "MENU" (Table 1) which tracks

menu-item ingredients, and "CUSTOMERS" (Table 2) used to track customer menu

preferences. For both tables the primary key is "Name."

Name (key) Gender Graduation-Date Favorite

Suzy Female Mar 1997 Tiger Cry

Dewey Male Oct 1998 Spicy Soup

Gidget Female Dec 1998 Red Curry

Table 1. CUSTOMERS

Name (key) Meat Coconut Hot Peppers

Tiger Cry Beef No Yes

Spicy Soup Chicken Yes Yes

Red Curry Chicken No No
Table 2. MENU

B. CLIENT COMPONENTS

1. Browsers

In the simplest method of Web/database interaction the tasks of a "standard" Web

browser are limited and the data access cycle begins with the user clicking on a URL to

render fill-in-the-blank "forms." The forms capture the user input for such pre-fabricated

database queries as the following SQL pseudo-code:

19

SELECT
FROM
WHERE

Names
CUSTOMERS
Favorite = "X"

The cycle continues when the user selects a specific Favorite (for example "Red

Curry"), and clicks on a submit button to send the data request to the server. At the server

the "X" is replaced with the selected favorite, the query is executed, and the results are

formatted in HTML. The cycle is complete when the browser renders the HTML-formatted

data returned by the server.

Advantages of using standard browsers include simple, standardized functionality and

universal Web server support without the additional costs associated with proprietary

software. A major limitation in relying upon standard browsers (as opposed to fat clients,

discussed next) is the dependence upon the pre-fabricated queries stored on the server, and

the large number of network accesses required to receive client input, return error messages

for incomplete or inaccurate entries, and then respond again with the correct query results.

a. Plug-ins and Fat-clients

In an attempt to limit the number of network accesses, tailor the query process

for each user, and reduce server workload, some developers have created variations on the

standard browser. These variations, called browser plug-ins, rely upon the browser knowing

about a server-side database's existence and interacting with it in some proprietary fashion

to fetch and interpret results on the client side. Plug-in's [Netscape96] are software modules

that extend the standard browser's capabilities. Plug-in's accomplish such tasks as guiding

the user through the query process or performing rudimentary business logic with respect to

20

form completion. They also ensure data type/query language compliance prior to actually

submitting the request to the network. An example would be if a THAI-SHACK database

user input "Susy" in a fill-in form field supporting a query based upon Graduation Date. The

plug-in would know that "Susy" is not an alphanumeric and could provide immediate

feedback to prevent the erroneous database query from crossing the network.

Fat-clients take browser variations to the extreme and are exemplified by the

classical client/server distributed DBMS, whereupon the DBMS runs on the client side and

needs no WWW support other than to provide a connection to the server-side data reservoir

[Orfali94]. An example of this situation is when an entire query similar to the following

SQL pseudo-code:

SELECT
FROM
WHERE

Names
MENU
Meat = "CHICKEN"

is created on the client side, checked for syntactical and data-type errors, and then a fetch

routine listing specific tuples to be gathered is sent across the network to the server-side data

reservoir. These fat-clients, or database front-ends, usually require proprietary licensing

agreements and are restricted in their capability to work with anything other than vendor-

specific products except for lowest common denominator middleware products

[DataRamp96] like ODBC (discussed in the middleware·section of this chapter). The

advantage to using fat-clients is that DBMS/user interaction no longer depends upon pre-

formatted queries and the supported functionality approaches that of a stand-alone database

on a PC. The disadvantage with fat clients is that they routinely cost more, are problematic

21

with respect to upgrades and maintenance due to wide dispersion of multiple copies.

Additionally, fat clients can, require users in some cases to have a high degree of familiarity

with database specifics and query languages.

b. Client Record Storage

Some browsers incorporate the ability to store records in client permanent

memory. When users click on a URL, downloaded pages are stored (cached) permanently

in client memory so subsequent accesses only require the downloading of updates. The

usefulness of caching is inversely proportional to the richness and interactive/dynamic nature

of page content since, unlike static text pages, those pages containing dynamically generated

information such as links to other URL's or multimedia files that were generated in response

to queries do not readily lend themselves to caching. This is true because the data that was

gathered and used to build the page may have been changed or deleted subsequent to the last

access. Utilizing the example database, the results of the SQL pseudo-code:

SELECT
FROM
WHERE

Names
CUSTOMERS
Favorite = "Red Curry"

once cached would not change from one page load to another despite database entries which

may have changed relevant information held at the server.

To counteract the static nature of caching, browsers can store, along with the

page itself, another record type commonly known by the Netscape Corporation's term

"cookie." Cookies [Netscape96-2] record such data as time stamps or other indications of

previous user input, and whenever the users make subsequent requests, the information

22

written in the cookie is transparently sent to the server to facilitate interactive responses.

With respect to the example database, the browser could compare the date and time of

cached Red Curry query results against a server-supplied time of last database update and,

if cached results have been superseded, new results could be generated. This guarantees that

users are always presented with information reflecting the most recent database state.

2. Independent Processes

Essentially a hybrid plug-in, independent processes are client-resident entities

working within the browser to dramatically extend client functionality in the Web/DBMS

link. Despite their dependence on browser hosting, these processes are considered

independent since they are self-contained and not part of the browser itself.

a. Java Applets

Created by Sun Microsystems, Java applets [Hamilton96] are small, self

contained, object-oriented, platform-independent, multi-threaded processes downloaded by

the client browser to deploy application logic services on the client side of the connection.

Applets come over the futemet in partially-compiled Java-specific binary code that is fully

interpreted upon download so they can immediately start running on a virtual machine inside

the browser. The virtual machine [Hamilton96] is a software process residing inside the

browser application's memory space that emulates the instruction set of specific computer

hardware. Since the Java byte code is interpreted instead of compiled, and the virtual

machine is a plug-in, they offer the benefit of complete portability. fu other words, the

23

specific type and instruction set of client hardware is irrelevant since the applets run on the

virtual machine inside the browser instead of on the client host.

Applet hosting on the client computer can solve many of static HTML's

limitations. This is especially true for database applications since applets enable database

servers to concentrate on serving data while the independent process authenticates users,

provides business logic such as data-range checking or form completion, and then obtains

data from the DBMS on the server.

Returning to the example database, an applet would execute upon download

to capture a user's data request and error-check such complex tailored queries as the

following SQL pseudo-code:

SELECT
FROM
WHERE

Names
CUSTOMERS

SELECT
FROM
WHERE

*
MENU
CUSTOMER.Favorite = MENU.Name
and
Meat = "Chicken"
and
Graduation Date's <"Red Curry"(erroneous input)

When the applet error-checks the request for data type and SQL syntax

agreement, it notices that Red .Curry is not a proper entry for the Graduation Date column.

The applet then informs the user to make changes, and once Red Curry is changed to a proper

date such as "Dec 1997," the applet builds a JOIN between the CUSTOMER and MENU

24

tables, sends the data request to the server, and aids the browser in rendering the returned·

output.

The primary benefits of applets are portability and the savings in lag-time

associated with conducting all business and application logic prior to network transmission.

The portability benefit comes at the potential expense of a 30-fold speed deficit to compiled

processes [Y ourdon96] since there is an additional layer of processing required to translate

between virtual and actual host machines.

An additional downside associated with applets concerns security and the fear

of malevolent processes potentially accessing client files and hardware. These possible

security infractions include [Dean96] stealing passwords, copying or destroying files, spying

on client hardware and software configurations, attacking flash BIOS, or copying more and

larger malicious programs from Internet-connected computers.

b. Active-X

Active-X [Murdoch96] is very similar to Java in concept and, as an

evolutionary technology based on object linking and embedding (OLE) technology, is

Microsoft's approach to thin-client Internet computing. On a Web page, Active-X can

accomplish a wide variety of tasks and extend normal HTML coding by incorporating into

Web applications small object-oriented programs called "custom controls" [Microsoft96].

These controls can seamlessly handle repetitive and/or complicated functions such as menus,

scroll bars, buttons, pre-loaders, and timers. The true power of these controls, though, comes

from their ability to perform traditional server-side functions by downloading at runtime

25

functional modules from the network and contacting other hosts outside of the client/server

link. Active-X is envisioned by Microsoft [Murdoch96] to be a method of standardizing web

site development and making data available transparently no matter where it is located. On

the downside, there is a strong security concern with Active-X that mirrors the concerns with

Java.

C. SERVER COMPONENTS

1. The Relational Database

The relational database is the basis for most Web/DBMS links [Plain96] and it

remains fundamentally the same regardless of whether it is a stand-alone or Web-connected

application. Web/DBMS link applications differ in what the relational database can offer,

and it is the implementation of SQL within the application that determines robustness of

query requests and such additional functions as protection of data integrity, user

authentication, or limited data access based upon multiple security levels.

a. Extended HTMUEmbedded SQL

Some database applications utilize Web pages seeded with special HTML tags

and the SQL code required to conduct pre-formatted database queries and create the

corresponding responsive Web page [Frank96]. When a data request is received by the

HTTP server, it utilizes a special program or set of macros to map specific extended-HTML

form fields to corresponding place holders located within an SQL statement. The same

program then submits the SQL query to the database server, formats the results in HTML,

and releases the results to the Web server.

26

With embedded SQL [Frank96], it is the query itself and form fields that are

sent by the browser. A special server-side parsing applicatiop strips an embedded SQL query

and related data from the browser-generated input stream, executes the query, merges the

results with the original or stored Web page, and then passes the output back to the Web

server for HTML encoding and return to the client. Almost invariably the use of embedded

SQL code requires extensions to standard HTML tags to signal the HTTP Web server that

a database query must be conducted.

code:

With respect to THAI SHACK, a query similar to the following SQL pseudo-

SELECT
FROM
WHERE

Names
X
y = "Z"

would be stored in the server-side DBMS. The user would be offered the opportunity to see

and select food made with different items, and if they selected "Coconut," then X becomes

MENU, Y becomes Coconut and Z becomes Yes. These entries are swapped into the correct

place in the query statement, the query is conducted, and the results formatted into HTML

and passed to the HTTP server for return to the client.

Although various HTML extension and embedded SQL codes

implementations are proprietary, and therefore limit the openness of the total solution, they

are useful in customizing page content in response to a user's identifier or computer Internet

address captured by the Web server [Gundavaram96]. Additionally, they perform faster than

applications requiring the execution of more complicated methods and can be easier for

27

developers to use since they dispense with requirements for writing, compiling, and

maintaining multiple programs.

One note of caution with the use of HTML extensions is that Web pages

containing proprietary tags may not be properly displayed by some browsers [McGee96].

This means users may miss some of the content, since only those pages conforming to the

standards issued by the WWW Consortium (and do not contain proprietary extensions) can

be universally read.

b. Templates

Another way to lighten developer workload is to reduce the amount of time

spent writing the HTML code used to format database output. Some DBMS products are

"Web enabled," meaning both data and the programs for embedding HTML code into the

data output are located within the database [Dobson95]. In operation, when the browser calls

the HTTP server with its request, a stored program is actually called instead of a specific

HTML page. The stored program executes a database query, reads in a generic template

serving as the basis for the web page, and populates areas marked by predefined tags with

values retrieved from the query. Once the program has completed the request query and

HTML formatting, it sends it to the HTTP Web server for shipment back to the browser.

in the case of templates, the results of the previous Coconut query are

individually mapped to specifically-marked places on pre-formatted pages stored in their

entirety within the database. This allows additional flexibility in page presentation since a

28

query that results from inputting Yes under Coconut, for example, could map to a page with

a palm tree motif, while the results of No under Coconut would not.

Advantages of Web-enabled databases are the familiarity of the development

environment, bypassing the use of scripting languages (discussed in the following section),

and the simplification of web page organization since the web page logic, graphics, HTML

encoder, and other resources are all stored together. The primary disadvantage of templates

are their proprietary nature.

2. Database Gateways

The function of the basic HTTP server is to listen for incoming connection requests

and either return a file or pass the request on to another application [Rowe96]. Since

database queries are not included in these rudimentary services, developers have created

interface programs to stand between the HTTP server and the database and facilitate the

enhanced translation and communication capabilities. Approaches to these interface

programs range from open interface standards called gateways to proprietary

implementations known as application program interfaces (API's).

a. Common Gateway Interface

Common Gateway Interface (CGn, called the "poor man's client/server"

[Varney96], is an open interface standard enabling clients to initiate and pass information to

server-based programs that generate responsive information in the form of dynamically

created Web pages [Gundavaram96]. CGI's key service is providing client access to

information that would otherwise be unreachable without the Web server running these

29

external programs. With a simple file, the Web server's job is to respond to the http request

by returning a file and when CGI is involved, its additional. responsibility is to generate the

file's content dynamically. As illustrated in Figure 4, clicking on the URL hyperlink

executes a stored CGI program and begins the access process.

BROWSER Input SERVER Input CGI PROCESS

~ data

Accept data input Fork CGI process I-f> Parse input
Submit to server Forward. data inpu Process input

Display HTML Send HTML Create HTML
HTML <J--- HTML <J--- Return to server

Figure 4. The CGI Process

It is the Web server itself that runs the program by forking a new process,

passing client-submitted data to the new process, giving up CPU cycles to the new process,

formatting the returned results in HTML, sending results to the client and then killing the

process [Gundavaram96]. CGI is single threaded, meaning servers must create a separate

process for each request received, with increased numbers of requests leading to increased

numbers of processes.

Sites utilizing CGI must provide guidance to the HTTP server and

differentiate between static pages and those generated dynamically. One convention is to

have static pages end with the ".html" suffix and dynamic pages end with ".cgi." so that a site

30

would have a static homepage provide welcoming information, site "how-to's," and form

fill-ins along with links to the other pages at the site offering more robust interaction.

In the example case, a user desiring to "see the names of female customers

who eat beef' would utilize the static homepage "THAI-SHACK.html" to access a

dynamically generated page called "THAI-SHACK-PROFILE.cgi." Once the user completes

the fill-in form and clicks on "Submit," the browser assigns the values Gender=Female and

Meat=Beef, sending the query input to the HTIP server which in tum spawns a CGI process

and hands off the input. The CGI process would generate a query similar to the following

SQL pseudo-code:

SELECT
FROM
WHERE

Names
CUSTOMERS

SELECT*
FROM
WHERE

MENU
CUSTOMER.Favorite = MENU.Name
and
Gender = "Female"

Query results are then formatted into HTML by the CGI process and passed back to· the

HTTP Web server for transmission to the client.

One benefit of using CGI is the large base of pre-written programs available

for free from the Internet and other sources. Other benefits are extreme flexibility in

providing page content, almost universal support among commercial servers (ergo, highly

portable), and compatibility with almost any database application language. In fact, CGI

programs can be written in any language that can create an executable for the given operating

31

system [Lynnworth96] despite the fact that most CGI programs are UNIX based and

therefore the CGI programs are normally Unix shell scripts or Perl scripts [Y ager96]. These

scripts are unique in that they are runtime "interpreted languages" as opposed to compile

time "compiled languages" that generate binary executable files in the host machine's native

hardware language code [Brenner96]. Care must be taken with respect to choice of

languages since interpreted languages run more slowly than compiled languages and can thus

slow server performance. Tediously created CGI applications can't handle rich data types

easily [Gaffney96] and they require the programmer to code in both HTML and the

supporting scripting language to make processes that contains the database application logic

required to execute the query. These processes offer poor performance due to the continual

forking of a new process with each request and the repeated database opening/closing that

overtaxes server CPU cycles. CGI is adequate for simple queries but is unable to handle

rigorous compound transactions where the results of one operation are required to determine

the next one.

b. API's and DLL's

One way around the performance penalty of open gateways and interpreted

languages is to use native code (proprietary to specific vendors) to provide translation

services. This natively compiled code, or API, provides the fastest way to access a database

via the Web [Rowe96] because it does not need a run-time interpreter and because, for each

request, it can load and run much faster than interpreted code and remain in memory if

desired. An API works by providing a library of function calls, usually written in C or C++

32

[Rowe96], that allow a link programmer to make function calls on the database without

knowing the specifics of the database implementation.

An example API is the Microsoft dynamic link library (DLL). A DLL is one

or more functions created from the ground up to provide run-time support to the server.

DLL's are compiled, linked, and stored separately from the processes that use them and are

loaded (once) into the same memory space as the server. When a user clicks on a URL that

requires the DLL, the server first checks to see if it is already in memory. If not, it is loaded

and used, but if it is so, then there is zero overhead associated with loading. Because of this

co-location in memory, DLL's have access to all the resources available to the HTTP server

and, since DLL's only need to be loaded once and they avoid the added overhead of repeated

loadings or request calls to external scripts, DLL's gain a five to ten-fold increase in

performance over CGI [Microsoft96-2].

Data access is accomplished in a manner similar to the CGI methodology

discussed earlier.

3. Providing Security .

Surrounding all data access methods is the need for security. This need transcends

all components of the Web/DBMS link primarily because the Internet was originally created

to support a benign network of mutually-supportive academic and government entities.

Internet protocols are thus inherently insecure. Because of this, web servers and client hosts

require Web/DBMS link components to additionally provide robust protection capabilities,

but without overwhelming usability and performance requirements.

33

The most common security vulnerabilities associated with the Internet [Hughes96]

include:

• hazardous traffic: meaning traffic associated with any attempt by

unauthorized users to enter and harm the Web site.

• lack of confidentiality: the Internet protocols assume networked computers

will only acknowledge traffic meant for them and ignore all other.

• unidentified systems: since there is no reliable manner to permanently bind

a specific computer to a specific IP address, it is difficult to reliably identify

networked computers.

• unidentified users: most user authentication schemes rely on a password that

is passed in the clear and thus available for copying and re-use.

• unidentified servers: it is difficult to reliably identify the actual server

performing an application service.

• modified data: because of the open nature of the Web, it is easy for

malevolent entities to capture, copy and alter data packets prior to arrival at

ultimate destination.

Most Web applications address this situation by using server-side components to

prevent the unwanted release of personal data or unauthorized data manipulation both at the

server and en route to or from the client.

34

a. Firewalls and Proxy Servers

For the Web site itself, the most common way to provide basic user

authentication and authorization security procedures is with frrewalls and specialized HTTP

servers called proxy servers [Hughes95]. In their simplest form, firewalls are screening

mechanisms that discriminate between valid and invalid users or processes depending upon

passwords or client host Internet addresses. The successful [Hughes96] firewall utilizes the

philosophy of "those not known to be a friend are considered foe and denied access."

Considering the example database, if Ralph wanted to ensure only he could

make changes to MENU or CUSTOMERS, a firewall could be programmed to forbid access

to anyone who did not access THAI-SHACK from Ralph's computer and type his password

in correctly.

Proxy servers contain additional functionality extending basic firewall

security by straddling the firewall to "focalize application traffic" [Hughes96] via processes

that listen for and respond to client page requests coming over the Internet. Conventional

use of a proxy server [Hughes95] would have it compare the user's identity to a list of pre

approved users with passwords, client TCPIIP addresses, or client host names against a pre

approved list on file in the server.

Once the authentication and authorization service has been completed, the

proxy server forwards the request to the database application for processing and then returns

the query results via the HTTP server to the client. Proxy servers can also be used to perform

such other duties as caching heavily used documents that don't need to be created on-the-fly

35

or converting the database output into HTML, and supplementing audit capabilities by

logging transactions as they occur.

D. MIDDLEWARE COMPONENTS

As shown in Figure 1, facilitating the interaction between client and server processes

is middleware, a vague term covering all distributed software such as communication stacks,

distributed directories, authentication services, remote procedure calls, and queuing services

[Orfali94]. Middleware is the "glue" that provides inter-operability between proprietary

entity or process protocols that would otherwise be unable to communicate. What

middleware does not include is the DBMS or other applications providing the actual service,

the user interface or any logic that supports the application.

Middleware can be divided into the two main classes of service-specific functions

which enable a particular client-requested service and general functions such as

communication stacks, the RPC' s, queuing services, and other services that comprise the

enabling substrate for the service-specific functions [Orfali94].

Database middleware represents more than half of the entire middleware market

[Freeman96] and can be either open or proprietary. Developers must therefore choose a

particular middleware component based upon whether their link will be optimized for a

specific application or standardized to provide "lowest common denominator" [Orfali94],

or cross-vendor, access to multiple applications. In other words, to provide broad-based

support middleware must forgo some of the performance and functionality enhancements

that vendor-focused solutions are able to provide.

36

This section looks at the most prevalently utilized Web/DBMS link middleware

components and discusses how they try to finesse the limitations of standard Internet

middleware protocols and add the concepts of state and connection-oriented communications

to database transactions.

1. Protecting Data En-route

If basic firewall authorization and authentication schemes don't provide enough

security, then encrypting the data prior to passing it over the wire may be required. Server

Sockets Layer (SSL) [Hughes95], developed by Netscape, is an encryption scheme that

provides a secure client and server connection along with guaranteed message authenticity

and server identity authentication services. What SSL does is scramble the data at the

application layer prior to passing it down to the network layer. This renders any intercepted

packet unreadable by unauthorized readers.

S-HTTP is a standardized form of the HTTP protocol [Hughes95] that also encrypts

data above the network layer in order to guarantee data integrity, non-repudiation and user

authentication. Working alone or together, SSL and S-HTTP and components like them are

the most prevalent middleware method of protecting users.

2. Common Object Request Broker Architecture And Internet Inter-ORB
Protocol

The basic Common Object Request Broker Architecture (CORBA) is a message-

based middleware specification [Vinoski93] that provides high-level object-oriented support

of applications inter-networking across diverse architectures and infrastructures. In

37

CORBA's case the high-level support is an additional abstraction layer superimposed over

underlying network and application layer protocols. CORBA is implemented with client

side proxies and server-side skeletons via an "object-dot-method" nomenclature that allows

a client object to call the procedures of an object located on the server. The server-based

object responds by invoking the requested procedure and returning the results in CORBA

specified format.

The Internet Inter-ORB Protocol (IIOP) [House96] addition to the CORBA

specification offers the advantage of having Internet-based CORBA server objects retain

state and bypass HTML and CGI. This offers the advantage of reducing HTTP server

overhead and extending database application functionality but comes at the cost of some

extra CPU cycles used for messaging formatting, data-copying and parameter marshaling

[Schmidt96]. It has been suggested that this may limit CORBA IIOP' s use in high-speed

applications [House96], but for the average Internet connection, ease-of-use and data-type

extensibility overcome any performance penalties.

3. Open Database Connectivity

Some vendor-specific middleware protocols are rapidly becoming de-facto standards

for Web/database connectivity. These proprietary "standards" are utilized primarily in a

three-tier architecture and stand between the database and the API or gateway to enable

cross-vendor and multi-DBMS access by Web servers.

Open Database Connectivity (ODBC), a proprietary (Microsoft Corporation)

specification [Lambert96], is one standard that attempts to solve the problems associated

38

with accessing data from multiple proprietary databases in the heterogeneous Web/DBMS

environment. As illustrated in Figure 5, the ODBC architecture has four major components:

(Application)

I

ODBC Driver Manager
I

I Drivu I EJ 8 ln~rl
D D D D

~ ~ ~ ~
Figure 5. ODBC Architecture

the data source, which can be almost any DBMS; the driver, which modifies application

requests to conform to data source syntax; the driver manager, which loads specific data

source drivers when needed; and the ODBC application, which performs functions required

for submitting queries and retrieving results.

Together these components provide a call-level interface (CLI) that allows Web site

developers to make calls in a generic database interface language and have ODBC translate

the call into specific database driver syntax.

ODBC problems abound, with the most serious one being that the standard is

controlled by Microsoft and thus constantly evolving. Furthermore, experience has shown

that the ODBC driver/layer interfaces are difficult to build and maintain, introduce a lot of

39

overhead to simple SQL queries, and can never be as fast as native API' s that bypass the

additional layers of any CLI [Orfali94].

4. Java Database Connectivity

Similar to ODBC in nature, JAVA Database Connectivity (JDBC) is a specification

and API of the JavaSoft division of Sun Microsystems [Linthicum96]. JDBC was built to

give Java a database connection and also to be implemented as an additional layer on top of

ODBC so it can work with ODBC-compliant databases without change. JDBC consists of

a series of abstract Java interfaces addressing standard database query requirements and it

uses a simple two-tier architecture (Figure 6) for applet-database connectivity in which

applets executing within the browser environment connect back to a database server located

somewhere else on the Internet.

JAVA Application

JDBC API
------------------------------~

JDBC Manager
JDBC Driver API

JDBC-ODBC

atabase Driver

Proprietary DBMS Protocols

Figure 6. JDBC Architecture

40

The JDBC API connects the Java application to the JDBC manager, which in tum

uses the Driver API to connect the JDBC manager to either a JDBC-specific database driver

or to the ODBC database driver via a JDBC-ODBC bridge. In addition to traditional two-tier

implementations, JDBC also provides three-tier access to database servers in which an applet

can call a middle tier service layer (such as a CGI or API process) to make the call to the

database server. By sitting on top of ODBC, JDBC is well positioned to provide database

neutral communication services, but it must address other issues before it can be considered

a mature technology. These issues include database and host computer security, database

recovery from interrupted or dropped transactions, and performance issues relating to the

addition of another abstraction layer.

E. COMBINING THE COMPONENTS

After looking at the most common link components, a choice must be made regarding

which of them to use when building a Web/DBMS link. The correct combination of client,

server and middleware link components is ultimately in the eye of the builder, since the

choice of which to use depends upon such questions as the stated purpose of the site,

anticipated usage levels, available resources, and the emphasis each developer places on the

different and competing link issues.

Given the large number of components available, the numerical possibilities for

combining them are quite high, but if an assumption is made that the client will utilize a

simple browser with the possible addition of a widely used plug-in, then the number of

possible combinations drops. In light of this assumption, closer inspection shows most

41

Web/DBMS link server implementations actually fall into one of the following general

categories [Reichard96]:

• CGI gateway

• API (including ODBC)

• Web-enabled DBMS's

• Independent processes

• Other solutions

Chapter IV introduces issues surrounding all Web/DBMS links and discusses the

tradeoffs required between them when choosing one of these general link implementation

approaches.

42

IV. WEB/DBMS LINK ISSUES AND TRADEOFFS

A. MARRIAGE OF TWO TECHNOLOGIES

The technology behind the Web/DBMS link basically represents a new marriage of

old technologies. As stated in Chapter I, the WWW is a client/server implementation built

upon insecure, connection-less, and stateless protocols, and most Web-connected databases

are variations of the relational database model. Since each of these two technologies'

strengths and weaknesses are well understood, the novelty and excitement surrounding the

Web/DBMS link results from connecting these technologies in manners at odds with their

underlying precepts. Examples of this inherently non-symbiotic linkage include the usage

of relational databases in an operating environment lacking total control of access method

and duration and the use of native WWW protocols to support interactive sessions of long

duration.

The creation of a Web/DBMS link additionally involves deciding and committing to

such mutually exclusive development paths as the use of tediously hand-written code

specifically tailored to user needs, or the use of integrated RAD software packages that may

entail limitations to flexibility or complexity. Other issues include considering whether the

site should grant secure or secured access to remote users, the use of freeware instead of

commercial products to save money, and the ability of normal site administrators to support

the final link product instead of requiring the expense of hiring of skilled technicians. The

43

one constant throughout all link approaches is that each has its own advantages and weakness

relative to these issues and so any approach chosen must involve trade-offs.

B. OVERARCHING ISSUES

1. Performance and Functionality

Time delay between user input and system output is an issue that can be affected by

such diverse factors as network load, server computational power, and limitations placed

upon the number of simultaneous client accesses. Regardless of the cause, as delays increase

more and more users begin to consider the delay excessive and start to seek alternative

interaction methods [VisualWave96].

In the early stages of the Internet, high-performance content delivery was easily

accomplished with quick and simple file servers that could also provide caching of heavily

used pages that, since they were static text, did not change from user to user. As the Web

has evolved, though, server capabilities have had to change in response to the need to

dynamically generate web pages and tailor page content for each user. These changes in

server capabilities must still keep Web/DBMS link access time down, and do it without

negatively impacting flexibility in design or content complexity. In other words, the ability

to handle additional media and data types or unpredictable peak loads in usage must come

without loss of usability or functionality.

The DBMS itself can affect performance [Francett96]. In addition to the DBMS's

ability to support multiple simultaneous users, the DBMS must be able to generate pages

comprising disparate and rich data types without perceptibly slowing. For this reason, some

44

corporations are choosing to provide only text-based data instead of richer data utilizing

graphics or other such bandwidth and computation-intensive types [Francett96]. Finally, the

machinations required to retain DBMS state information in the face of standard Internet

protocols can also negatively impact site throughput.

2. Cost

These evolutionary changes in server capabilities must also be made with an eye on

the resources required to implement the change. Since money is needed to buy hardware and

software, create content, and maintain the site as it grows and reacts to changes in access

levels or content, it is fair to say that funding availability affects a Web site throughout its

life. If funds are limited, tradeoffs must be made between fund availability and the

integration of solution approaches. For instance, a content provider looking for low-cost

solutions could initially choose to piece together shareware and freeware components. With

additional resources, though, it is possible to use the more expensive integrated Web/DBMS

development and maintenance suites or even to commission highly expensive consultant

provided turnkey solutions. Basically, the more money that is available, the easier it is to

rapidly field a complete solution.

3. Development Time and Ease

Competition is fierce among content providers trying to attract ever larger numbers

of visitors, and so any Web site desiring to continually improve must have rapid development

and revision ability. Given adequate funding, integrated RAD Web-server development

products can be used to dramatically reduce site development time by offering "wizards" that

45

insulate developers from arcane scripting languages and quickly guide them through the

creation of complex applications. These Fourth Generation Language (4GL) GUI tools such

as Borland Corporation's Delphi are intuitive to use and are re-defining the word "rapid," but

since each one can lock a developer into a specific set of proprietary languages and protocols,

the decision of which of them to use is a paramount issue that can significantly impact

Web/DBMS link viability.

4. Serviceability

Along with content evolution, the Web-associated protocol standards are also

continually evolving. Because of this, the maintenance of Web server and client software

must be considered up-front and early to ensure that addressing and incorporating these

evolutionary changes doesn't become a money and time sink. Basically, the easier the

Web/DBMS link is to service, the easier it is to ensure costs remain low. Site owners must

therefore have the ability to reconfigure or upgrade the Web/DBMS link easily, and to make

content changes quickly without high levels of training or hiring the services of outside

consultants.

5. Flexibility and Openness

Once cost, schedule and performance requirements have been defined, the

Web/DBMS link builder should look to the creation of an "open" link using flexible

Web/DBMS products that support cross-commercial and cross hardware/operating system

architectures. The benefits of this flexibility, or openness, is multi-vendor support, platform

independence, and the ability to rely upon standard browsers that avoid proprietary (and

46

therefore expensive) client software. Openness is indicated by the number of different

database models and specific DBMS's supported, along with the ability to "multi-home" data

and spread access across multiple DBMS's using different application logic protocols. On

the opposite of openness are single-vendor turnkey products requiring total commitment to

one link vendor, one hardware instruction set, and thus one set of proprietary protocols.

6. Security

Contrasting with the need for openness and requirements for users to query a DBMS

and submit their own content is the need to protect Web site assets and provide this world

wide access to only those users with proper permission. Traditionally, databases have relied

largely on the operating system for security [Bina94], but linking to the Web changes that

and requires either the DBMS or another system to substitute in this role and deal

appropriately with requests from unknown or unauthorized individuals.

No Web-related issue has received more press than security, and industry concerns

include user authentication and authorization, multi-level access based upon privileges,

prevention of identity spoofing or forced entry, navigation control while users are within the

Web site, and of course, database security and the protection of privacy or personal data.

That this protection of data within the DBMS must be guaranteed for a Web/DBMS link

approach to be viable is certain: What is equally certain is that this protection cannot come

at the expense of the product's ability to support client requests.

47

7. State and Session

State is the other troublesome issue associated w~th Web/DBMS linkage and we

cannot avoid addressing it since the WWW was built with the stateless HTTP session-layer

protocol placed over the connection-less TCPIIP transportation-layer protocol. As previously

discussed, state addresses the question "where in a series of related computations (e.g.,

"session") are we?'' In traditional client/server the session begins at logon and ends at logoff,

and almost all advances in the development of the relational database model presupposed an

ability to progress through a transaction (session) in a serial fashion, with each step being

cognizant of what had previously transpired. HTTP's inability to support retention of place

or state within a transaction has led site builders to such "work-around's" as limiting users

to one-shot DBMS queries, creations such as Netscape Corporation's "cookies" to store a

record of state on the client end, or the pushing of user identity and session state through

hidden intra-web site hyperlinks. Regardless of how the site builders address the state issue,

they must address it.

C. DBMS ISSUES

1. Interface Usability and Control

In contrast to previously discussed issues, certain Web/DBMS link issues such as

usability, transactions, concurrency and data type extensibility are specific and internal to the

DBMS. The DBMS portion of the link should be the least problematic since the relational

database has been in use since the 1960's, but problems can still arise if the underlying issues

are not properly considered prior to development. Foremost among these issues is interface

48

"usability" and the level of control users have over their own sessions. The interface should

support intuitive Web site navigation and personal tailoring of robust database queries,

rapidly giving end users their data in desired formats.

This issue of usability as it relates to the intricacy of database queries to be supported

(i.e., the decision of whether the client will conduct simple searches or whether initial query

results will be utilized in forming subsequent queries in a cascading fashion) affects Web

sites from the outset. To be independent of the server, complex query support requires the

use of a fat client, and yet the two "standard" browsers (Microsoft Internet Explorer and

Netscape Navigator) that currently dominate the Web market [Ayre96] are thin clients. A

decision must be made with respect to the level of DBMS interactivity end users will enjoy

and how that interactivity will be supported.

2. Transactions

Properly supporting complex interactivity requires the builder to know and

understand the limitations associated with specific transactions. A database transaction can

be one of two types: conversational and pseudo-conversational [Finkelstein96]. In

conversational transactions a dedicated server process is created for each browser user and

maintained until the end-user terminates the connection or a time-out occurs. In other words,

the unit of work to be accomplished is extended to include the entire duration spent on the

transaction. The advantage of this approach is that the server maintains information about

the user's previous data requests and proceeds without interference from other transactions

since the database is reserved for the exclusive use of the transaction for its entire duration.

49

The disadvantages are the serial nature of transactions and the resulting requirement for

server dedication of limited resources to each browser client that has recently submitted a

request regardless of whether any further processing is needed. This can quickly overload

the server and degrade performance, especially if numerous transactions are initiated and

then abandoned, leaving the server to wait for them to time out.

Pseudo-conversational transactions partition the work into subunits. This division

of work allows the database to be reserved and released more often, but with the penalty of

the added effort required to ensure inter-woven transactions do not adversely affect each

other's accuracy and data integrity.

With either type of transaction the continual opening and closing of the database has

an effect on server performance.

3. Concurrency

Concurrency [Burleson94] addresses the problem of users affecting each other's

transactions by the reading or writing of data during the other's transaction. Problems that

can arise include dirty reads in which a retrieved record is held by another transaction with

intent to update, non-reproducible results when queries are run against a database in the

middle of an update, or bad pointers arising during active updates when previously indexed

records no longer exist due to inserts or deletes. In all cases, the number of simultaneous

DBMS connections that will be allowed affects the granularity and complexity of DBMS

concurrency. The Web/DBMS link should support the same level of transaction concurrency

50

required in other distributed database applications and do it with a well-conceived locking

procedure.

Locking protects data integrity and ensures that a database transaction properly

retrieves and updates information by limiting the number of transactions having database

access at the same time. Locking can take place at different levels, e.g. rows, tables, or even

the entire database, and can be either exclusive to one process or shared by two or more

processes depending upon the nature of database access required.

4. Extensibility

The final DBMS-specific issue, extensibility, addresses the inherent capability of the

DBMS to easily and quickly adapt to new data forms. As the Web continues to evolve, new

data types such as graphic files or audio clips will become more prevalent and, if keeping

pace with other sites is an issue, the developers' chosen DBMS must extend to include the

ability to store and retrieve these data types. As mentioned before, restriction in data types

can lead to restrictions in site growth and adaptability.

D. RELATING THE ISSUES

1. Tradeoffs

The challenge to all site builders is to design Web/DBMS links producing the

relevant information (no more or less), at the right time (no delay), in the appropriate form,

and at an acceptable cost [Jeffery95]. In a perfect world there would be no downside in

financial, performance, or lost opportunity terms to having every link address every link issue

adequately.

51

In truth, though, some of the issues conflict with each other, requiring a site builder

to consciously decide to give one or the other more emphasis. Some of the more common

tradeoffs include:

• cost versus development time/ease: the absolute cheapest way to create a

dynamic web site is to use freeware and shareware in "hand programming"

a tailor-made link. The problem is that the money saved on software could

ultimately be spent on labor since programming the complete solution can be

time intensive, require a lot of programming experience, and the testing and

de-bugging can also be difficult. Integrated 4GL development packages

avoid these problems but in general are quite expensive to purchase initially.

• openness versus perfonnance: the best performance comes from code that is

vertically integrated from the beginning to offer a complete solution with no

extra functionality or abstraction layers. As the capability to support more

protocols and functions are added, more abstraction layers are added that can

adversely impact performance speed.

• cost versus serviceability: closely related to the first bullet, the more hand

programming involved in the initial creation of a link, the more hand

programming involved in the servicing and upkeep of the site. Time is

money.

• security versus perfonnance: just as more abstraction layers can negatively

impact performance, the addition of more gate-guard requirements can also

52

be of significance. This is especially true when the additional layers are

themselves computation intensive or requir~ additional use of network links.

• transactions control versus performance: time and effort spent on controlling

simultaneous DBMS access to prevent mutual interference between clients

can delay the production and transmission of results.

• data-type versus performance: as previously mentioned, the richer the data

type, the more network bandwidth and server computational power required

to maintain rapid results.

2. Assessing the Combination Categories

Now that the more common trade-offs have been highlighted, a close look can now

be taken at how these common tradeoffs apply to each of the aforementioned general link

categories. This will allow conclusions to be drawn on the relative advantages,

disadvantages, and tradeoffs associated with each one. The first three categories discussed

assume the use of a standard browser client. Then the use of a plug-in to facilitate

independent process is discussed and finally, a brief discussion of fat clients and certain

proprietary middleware solutions concludes the chapter.

a. CGI Gateway

CGI' s primary advantages are its ubiquitous support among Web servers and

programming languages, and the large body of previously-written software modules that can

be pasted together by experienced programmers to provide tailored solutions to almost any

link problem. CGI' s biggest downfall, aside from the requirement for strong programming

53

skills, is the performance deficit it displays in relation to code written and compiled to

support a DBMS in its native language, and the load it places on the Web server to spawn

a process and open and close the DBMS. Use of CGI is a tradeoff of performance for cost.

b. API (including ODBC)

API' s are the new wave in Web/DBMS linkage offering dramatic

improvements in performance. These speedy links come at the expense of openness and the

lack of universal standards and Web server support. To utilize a specific link, proprietary

software products must be purchased, thus locking the site builder into a long-term

relationship with a specific vendor. The middleware "API' s" like ODBC attempt to address

this proprietary nature of API' s but they impose the performance burden of an additional

software abstraction layer. API' s represent a tradeoff between performance and openness,

and they come at a greater financial expense than CGI.

c. Web-enabled DBMS's

Utilizing the DBMS itself to produce the HTML file for the Web server to

ship is an innovation that offers promise. Templates and special HTML code or embedded

SQL can all be used alone or together to relieve the server of the computational burden of

gateways. Some of these solutions are proprietary and they can cause problems for standard

browsers that don't recognize and properly handle special tags. The primary benefit of these

methods is the retention of the standard browser for the client and the centralizing of the

solution at the server. Financially these solutions can be prohibitive for the small enterprise.

54

d. Independent Processes

With the addition of a browser plug-in, the size and capability of the client

software is moving back in the direction of the traditional distributed DBMS fat client. The

gain in putting some of the application logic back on the client is the spreading of work

across all participating entities and the associated possibility for a reduction in network

transmissions. These processes represent the newest link solution and are therefore the least

understood with respect to their impact on all the issues. Initial indications are that

additional client capability comes at the expense of performance and the possible

compromise of security.

e. Other Solutions

In this category are fat clients and special middleware like CORBA that

successfully resolve state and session issues at the expense of openness. Problems primarily

revolve around the decentralized nature of these solutions requiring special client-based

components and functionality. These components bring with them all the traditional

problems of upgrade and serviceability that accompany any non-standard browser based

solution.

3. The Ideal Solution

In the absence of technological limits, the ideal WWW /database link would offer the

scalability of traditional client/server systems along with browser independence, robust

queries on a secure database, speedy response times, 4GL rapid application development

techniques, persistent state and session management, and multiple, cross-DBMS support that

55

allowed for easy integration with emerging technologies. In reality, due to the tradeoffs that

must be made among the underlying issues, no single linkage approach offers a perfect

solution. The remainder of this thesis, by covering the steps in designing a Web/DBMS link

for a prototypical case study, serves to further illustrate the complexity and nuances

surrounding each issue, and the tradeoffs between them.

56

V. CASE STUDY

This case study focuses on the process whereby The Institute of Electrical and

Electronics Engineers (IEEE) Signal Processing (SP) Society reviews the format and content

of technical papers submitted for publishing in the Society's journal, IEEE Transactions on

Signal Processing.

The Society currently receives approximately 700 papers a year from authors desiring

their papers to be published in the Society's journal [Moura96]. For each of these 700-plus

papers, the Society requires two or three qualified reviewers to be found, and their services

enlisted, to review the paper's format and content. The administrative logistics required to

find, solicit, and support enough reviewers to complete approximately 2100 reviews per year

is difficult.

A. BACKGROUND

1. Current Review Process

As outlined in Appendix A and illustrated in Figure 7, authors desiring publishing

must first suggest an appropriate Editors' Information Classification Scheme (EDICS)

number for their paper based upon its subject matter. The EDICS [IEEE96] is a SP sub

subject numbering system which is used to categorize and map a paper's subject matter to

the most appropriate sub-area within the overall SP subject. It is also used for assigning

areas of responsibility to respective Associate Editors (AE's). Of note, each EDICS is

57

associated with several AE's and each AE is responsible for several EDICS, so overlaps are

possible.

Once the author has chosen an appropriate EDICS code for his paper, he mails seven

copies of the manuscript, abstract and references to the Society. Then, based upon the

suggested EDICS code, Society staff chooses one of the code's associated AE's and forwards

to him six of the seven manuscript copies.

* Submit paper

' ::~~~~~onrent ;;;~;.:;:'·:;;~~~:.:-~/::::::::::,
~ : :'!:.,

* Receive paper
* Choose AE, send 6 copies

Reviewer Reviewer J
#1 #2

Reviewer
* Review paper #3
* Negotiate content

throughAE

* Choose Reviewers~ send copies
*Facilitate Author-Reviewer

negotiations
* Decide to Publish/Reject
*Notify Author, Society of decision

Figure 7. Paper Submission and Review Process

Upon receiving the paper copies, the AE must find the two or three reviewers that

most appropriately match the paper's content and who also have the time and inclination to

participate in the review process. Although the Society will sometimes suggest the names

58

of some potential reviewers, most of the time the AE alone is responsible for identifying and

negotiating the services of qualified reviewers for each of the papers he is assigned.

The most common method utilized by AE's for reviewer identification is to build an

ad-hoc list of names from personal acquaintances, word-of-mouth references, conference

attendee lists, published paper references, journal subscription lists, etc. Then, to solicit

reviewers from the lists, the AE's conduct a blanket mailing of solicitations. This mailing

is generally expected to yield a fifty-percent success rate in terms of responders willing to

review the paper [Fargues96]. When enough of the contacted reviewers have acknowledged

the solicitation favorably, the AE mails them copies of the manuscript. Of note, some

reviewers use students in a mentor-apprentice relationship to perform "ghost reviews" for

the reviewers subsequent check.

Each of the reviewers reads the manuscript, annotates comments and suggested

changes, and then mails the papers back to the AE for forwarding to the author (who remains

"blind" to the identities of his paper's reviewers). The author responds to the suggested

changes by either incorporating them outright or debating them (via the AE) with the

reviewers. This "negotiation stage" may go through several iterations prior to all parties

reaching complete agreement. Once the author and reviewers have finally agreed upon the

paper's content, the AE must decide whether to publish or reject the paper and then notify

the author and the Society of his decision.

Currently, about half of the submitted papers are eventually published after

negotiations lasting 14 months on average but, in some cases, extending up to two years.

59

The remaining papers are rejected for reasons including incompatibilities with format or

length restrictions, paper-Journal audience mismatch, work ,overlap between authors, or even

disagreement over the importance and relevance of the paper's material.

2. Changes In Work

Several changes to the current process are being implemented. First, to alleviate

some of the AE's workload, the Society plans to wait until the AE has provided a list of

reviewers and then it will mail the manuscript copies directly to the reviewers. This will be

done instead of forwarding six copies of each manuscript to the AE for his subsequent re

mailing to reviewers and therefore allows the Society to monitor time-lag associated with

reviewer assignment.

The second change [Moura96] contemplated by the Society is to create the position

of "designate reviewer." A designate reviewer is an approved reviewer who enters into a

relationship with an AE agreeing to accept, for prompt review, a limited number of

manuscripts for review per year. It is hoped that this pre-agreement will greatly streamline

the reviewer solicitation process, protect the reviewers from being over-utilized, and

additionally serve to create a database of reviewers with relevant biographical and review

related data.

The third, and relatively minor, planned change is to require the reviewers to pre

agree to completing their review within six weeks of manuscript receipt in order to reduce

the length of the negotiation stage and help ensure that manuscripts are published on a timely

basis.

60

a. New Database

Lastly, as discussed in Appendix A, the Society has hired an outside

consultant to create a Microsoft Access95 database application to hold data relevant to the

manuscripts and personnel associated with their review. The application is currently being

implemented on a standalone PC (that is not dedicated solely to the database) but it will

eventually be moved to a dedicated PC server so all of the appropriate Society staff can have

unrestricted access. The database is designed to do/aid the following:

• Log in submitted manuscripts as they arrive

• Automatically generate a receipt letter to send to the author

• Automatically generate a list of AE's responsible for the manuscript's EDICS

code

• Track AE assignments and limit AE responsibilities to no more than three

manuscripts per month

• Provide AE's with suggested reviewer names

• Keep statistics such as author and reviewer periodicity, or in other words, the

number of papers an author has submitted or the number of times a reviewer

has been used.

3. Database System Support

The new application can be broken into the three main sub-components of hardware,

software, and the data/data organization contained within the software.

61

a. Hardware

The database is implemented on the following computer hardware:

• CPU: 133 MHZ Pentium
• RAM: 16MB
• Hard Drive: 1GB
• CD-ROM
• TAPEBIU
• MODEM
• NETWORK INTERFACE CARD (Ethernet)

The computer is currently connected to an internal, cross-departmental,

Ethernet-based, Windows peer-to-peer LAN that is connected to the Internet. This

connection may change slightly in the near future since the journal staff wants to separate

from the enterprise-level LAN for privacy reasons and to facilitate an impending move to

another physical location.

b. Software

Software support for the reviewer database includes Access95, a Microsoft

Corporation implementation of the relational database model, and the Microsoft Windows95

operating system. The current plan is to give only three staff members password-enabled

access to the database. An additional requirement exists for remote access via modem due

to one staff member requiring the ability to work from home.

c. Database

The relationships captured by the new relational database are illustrated in

Figure 8. Although only three main entities (PAPERS, PEOPLE, and EDICS) exist, the

relationships between them are somewhat complex because of the multiple many-to-many

62

relationships between PAPERS and PEOPLE. Since all personnel related to the review

process are members of the PEOPLE entity, a single paper can have many relationships with

the PEOPLE entity; one for each author, one for each reviewer, and one for the AE.

Additionally, each author, reviewer and AE can be associated with more than one paper.

With respect to PEOPLE and EDICS, each AE can be responsible for multiple

EDICS codes while each EDICS can be associated with multiple AE' s. The same many-to

many relationship should be included between the reviewers and the respective EDICS codes

but neither the conversations recorded in the Appendices nor careful scrutiny of [IEEE96-2]

reveal this relationship to exist within the database. The resulting effect of this "non

relationship" is that no capability currently exists for categorizing and sorting reviewers

according to EDICS.

EDICS

Figure 8. E-R Diagram

63

The three main database tables are named to match the relational entities. The

first of these called PAPERS, is for the submitted manuscripts; the second, called PEOPLE,

is for the review-related personnel, reviewer, author, and AE, and the third; called EDICS,

contains all journal-related information. Tables 3, 4, and 5 list the actual database tables

[IEEE96-2] and their respective fields. Explanatory notes are included for some of the fields

as appropriate.

64

Field Notes

ld# Primary Key

Title

Contact Author Foreign Key (PEOPLE.ID#), primary negotiation author

Authors Foreign Key (PEOPLE.ID#), up to 6 additional authors

Date Rec'd

EDICS Foreign Key (EDICS.Code#)

Status AE/reviewer assignment complete, paper type/accept, etc.

Last Changed date status changed last

Over-length yes/no, yes = auto reject

Inc Format yes/no, yes = auto reject (incorrect format)

AE Foreign Key (PEOPLE.Editor)

Ace Type, Pub Type correspondence/paper

#Pages

SDATE2 date AE assigned

Rev Date

Pub Date

Copyright Date

Artwork Rec'd yes/no

BioRec'd yes/no

#Figures

DISC media type (diskette, email, unknown)

#Rev negotiation revisions

Pub Page #pages in final version

ABSTR yes/no, yes=abstract to be printed

AbstrRec'd date

Table 3. PAPERS

NOTE: A record is created for each manuscript received whether it is kept for review

or rejected outright by the staff for format reasons.

65

Field Notes

ld# Primary Key

First

Last

Title

Salutation

Phone

Address actually 5 fields, ADD1...ADD5

FAX

Email

Editor yes/no

Term Start

Term End

Reviewer yes/no

Contact Author yes/no

Table 4. PEOPLE

NOTE: approximately 40 AE's are activated on a daily basis for each of three

Transactions (Digital, Audio, Image).

Field

Code#

Transaction

Description

Editors

Table 5. EDICS

Notes

Primary Key

(The three Transaction journals share the
same code numbers but the subject matter
of each code number changes from
Transaction to Transaction)

Subject of the EDICS code

Repeating Field

66

4. Other Plans

The database is not the only change the Society has planned for the review process

(Appendix A). Also being considered is the acceptance of electronically submitted abstracts

and reference lists that can be forwarded to the AE's to offer them a head start in identifying

reviewers. Once reviewers are identified, the AE will simply send their names to the Society

so it can, in turn, mail each reviewer a manuscript copy. It is hoped that this new procedure

will reduce the amount of time that manuscripts spend awaiting reviewer assignment or in

transit between the AE and reviewer, thereby speeding up the entire review process.

As an aside, in January of 1997 the Society will also begin publishing letters to the

editor on the Internet with the hope of eventually offering online subscription/access to the

journal itself. What is not known at this time is how the current income from subscription

fees will be replaced. Since the subscription fees are the lifeblood of the journal, this is a very

serious concern.

B. CASE ANALYSIS

1. Review Process Problems

The current reviewer solicitation process and the resultant time drag it imposes upon

the entire review process is one of the top areas targeted for improvement by the Society

[Fargues96]. Soliciting reviewers imposes an inordinate administrative burden upon AE's

and they are simply spending too many hours in relation to their other professional

responsibilities in an attempt to find and communicate with enough new and current

reviewers. Due to the self-generated nature of their reviewer lists, multiple AE's are

67

soliciting and utilizing the same reviewers repeatedly, thereby causing the reviewer

workload mismatch which bums out the most willing of reviewers.

Despite the AE's best attempts to properly support the reviewer solicitation process,

the sheer volume of papers submitted and the ensuing difficulty in finding enough qualified

reviewers is causing many AE's to short-circuit the solicitation process. As a result, the

AE's simply mail copies of the manuscripts to potential reviewers who they hope will accept

the responsibility, and the first time many reviewers know of a paper's existence is when it

comes in the mail [Fargues96].

In summation, the following list details the problems with the current reviewer

solicitation process that have been recognized by the Society [Kowalczyk96] as being among

the first that it wants to address:

• The continual shrinking of the qualified reviewer pool due to reviewer

overload,

• The virtual impossibility of gaining access to individuals outside of the small

pool of previously-published individuals and AE personal acquaintances,

• The fact that AE's usually do not have much administrative support and

therefore tend to sit on the manuscripts,

• The fact that many knowledgeable and potentially willing reviewers such as

Ph.D. candidates, newly hired faculty, and commercial industry

representatives remain unidentified by AE's and are therefore not asked to

68

participate due to lack of publishing experience or association with separate

social/professional circles [Fargues96],

• The fact that some authors publish regularly but are either unwilling to

review the work of others or are not identified as potential reviewers (these

members need to be identified and encouraged to help out),

• The fear that a general call to the public to identify additional reviewers may

generate too many responses from unqualified people or those whose

qualifications would be difficult to vet, thereby overwhelming the small

journal staff.

2. Solving the Problems

As with all problems, there are multiple solutions to those pertaining to the review

process. Though the merits and cost/benefit ratios of each solution are debatable, what can't

be debated is that wasted time equals wasted resources, resources which could be used by the

Society in other venues. In recognition of this, the Society has made the following

modifications and additions to the current reviewer solicitation process.

First, a full effort is being made to expand the database of designate reviewers to

include every reviewer known to the AE's and other Society members. The thought is that

centralizing separately compiled reviewer lists allows the Society to gain control and

standardize the reviewer qualification process, facilitate AE solicitations for reviewer names,

and provide a central point of contact for record update by the authors, reviewers and AE's.

69

This will additionally help the Society track reviewer work assignments to prevent reviewer

overload and burn out and ensure author participation on both sides of the review process.

a. Attracting More Reviewers

The Society is also interested in investigating methods for identifying

qualified candidate reviewers who are unknown to the Society. By registering these

candidates and (once properly vetted) adding them to the pool of reviewers, a win-win

situation is created in which the Society can increase the size of its reviewer pool while

simultaneously allowing SP subject-matter experts who are unknown to the Society to break

out from obscurity. It is by identifying themselves and becoming valued, knowledgeable

partners in the publishing process that both the Society and the new reviewers receive value.

The anticipated procedure for vetting these candidate reviewers would be for

them to submit biographical information to the Society, have the staff conduct an initial

review and then forward the applicant's information to an appropriate AE. The AE would

then verify the applicant's qualifications and inform the Society whether the applicant should

be added to the reviewer database. Specific biographical information to be captured would

include all of the fields in the PERSON table plus those extra fields shown below in Table

6.

70

Field Notes

Education Level Attained MS,PHD,etc

Certifying Educational Institution

IEEE Member Number/status can be targeted for membership if not already a member

Biography suggestions include papers/articles published, special expertise,

etc

References with Contact Information

EDICS Categories Wanting to Review

Table 6. Candidate Reviewer Biographical Data

The most important information that the Society needs regarding the potential

reviewers are references and proof of educational certifications to ensure the motivation,

authenticity, and credibility of the individuals.

3. Using The Web

One possibility for implementing the aforementioned changes to the reviewer

solicitation process would be to link the new reviewer database to the Internet. This would

allow potential reviewers to submit their own biographical data while offering the Society

the potential of dramatically increasing the size of the reviewer pool by tapping into the

continued growth of the Internet. At a minimum, this link would relieve Society staff of the

mundane biographical data-entry tasks associated with new reviewers. Of more importance,

it could also reduce the workload associated with soliciting new reviewers via such

traditional search strategies as blanket application mailings, exhorting current AE's and

reviewers to "rush" new reviewers, and conducting telephone polls.

71

A Web link has yet to be created for the new database due to concerns

[Kowalczyk96] over maintaining data integrity (sic. purity) and maintaining the sanctity of

the review process. Protecting the confidentiality of reviewer identities from the authors

dictates that only the office staff, actually responsible for maintaining the database and

ensuring that data entries are correct, should have read/write access to reviewer, author and

AE data.

AE access to the new database via the Internet is also considered problematic since

AE' s are only appointed on a voluntary basis for a short term lasting just long enough to

oversee the review of 25 manuscripts. In addition to a valid fear of malevolent hacking, it

is this revolving door of appointed AE's (of whom a high percentage are authors) that has

caused the Society to demand total separation of the new database and Internet to date. The

concern is that just one mishap is one too many given the limited number of personnel

available to "fix" bad or incorrect entries, regenerate lost information, and handle the

political fallout associated with the revealing of reviewer identities.

Despite these concerns, the Society's fears are, in fact, not unique and are actually a

subset of the Web/DBMS link issues discussed in Chapter ill. Using the Web as a

communication link between potential reviewers and the database can actually be a viable

tool that the Society staff can use with confidence. This link will specifically alleviate

prospective reviewer identification problems by allowing potential reviewers to submit their

own personal data to the database for Society review. Also, by additionally enabling the

AE's to rapidly find the appropriate reviewers for a particular paper, the link aids the Society

72

in reducing the administrative burden associated with centralizing the manuscript review

process.

In summary, the creation of a Web/database link is a viable solution to the Society's

problems with the current reviewer solicitation process. The remainder of this thesis

discusses the issues, functionality and additional system support required for implementing

this link within the guidelines of the mandatory access constraints. It also details required

changes to the currently implemented database which must be made to facilitate the use of

a Web/database link.

73

74

VI. DESIGNING THE LINK

When currently used systems no longer meet user needs, changes must be

implemented. This chapter assumes the Society's concurrence with the technical viability

of Chapter V' s recommendation to change its current reviewer solicitation and designation

process by modifying its manuscript reviewer database and linking it to the Web. The

chapter provides a framework for implementing the recommended changes and begins by

discussing the expected benefits and required constraints upon the Web/database link.

Following this discussion is a listing of the advantages and disadvantages of using each of

Chapter III's general link approaches. Finally, the chapter concludes by first selecting the

general link approach which best addresses the Society imposed constraints, and then

specifying and discussing the system design to implement the link.

A. USER REQUIREMENTS

1. Expected Benefits

To ensure that the Society's needs and concerns are properly addressed, a thorough

investigation of the expected benefits and user-imposed constraints is required. Primary

among the benefits expected from linking the database to the Web is the Society gaining

access to a larger pool of potential reviewers. This larger pool will reduce workload

requirements for the individual reviewer while simultaneously decreasing the amount of time

AE's spend finding and enlisting the services of new reviewers [Fargues96]. Additionally,

by combining the separate AE reviewer-contact lists the Society will gain:

75

• centralized administrative oversight and control of reviewer qualification

process

• reduction of AE administrative load

• removal of the redundancy between AE lists

• facilitation of the AE turnover process.

In other words, centralization of the reviewer database will remove the AE reviewer

assignment bottleneck from the review process and, via the quick identification of specific

reviewers in response to paper content, ease the building of reviewer teams. This ability

could eventually facilitate the creation of reviewer mentor/apprentice relationships when

appropriate. The end result will be a reduction in the 14-month lag from manuscript

submission to publication.

Another benefit of creating a database link and hosting a reviewer-specific web site

is the fact that it is not a radical departure from currently existing IEEE websites including

the main IEEE page (www.ieee.org) and the SP homepage (www.ieee.org/sp). The new site

could take advantage of existing IEEE-related Internet traffic as it is a fairly simple matter

to make the new site an extension linked to the other sites.

2. Specific In-variants

Due to the small size of the journal's staff, the limited nature of its supporting budget,

and the Society's strong concern for its intellectual and computational assets, certain in

variants were stated [Kowalczyk96] from the onset for the Web/database link.

76

First among equals is the absolute imperative to preserve and protect database

integrity from inadvertent mistakes or malicious intent. Of almost equal importance are

protecting the sanctity and confidentiality of the review process and ensuring that the

Society's intellectual assets (sic. reviewer contact lists) are protected from competitors. This,

in tum, requires that limits be placed upon the AE's ability to search and access reviewer

names and contact information. The AE's access must be limited to just the particular

author-reviewer grouping for which the AE is accountable.

Also understood is that the Society desires complete control over the solution design

and content to ensure that any new system implemented is completely compatible with the

Society's currently used hardware and software systems. Furthermore, flexibility and

scalability for future content and size growth must be guaranteed and the link project must

be inexpensive to maintain and deploy or it will not be implemented.

Finally, when new reviewers register with the Society, registration must be

accomplished in such a manner to facilitate quick and accurate Society verification of

submitted qualifications. Care must also be taken to ensure the new reviewers are familiar

with proper review procedures to protect all parties' legal and privacy interests.

3. Information Flow

a. Web Input/Output

As illustrated in Figure 9, the Web site will initially funnel two separate data

streams into the database. The first stream is the prospective reviewer's biographical data

77

as submitted via an HTML form, while the second contains AE queries submitted to the

database as they search for reviewers associated with a certain EDICS code.

I
N
T
E
R
N
E
T

<l=

INPUT

*reviewer resume data
*AE database queries

*reviewer confirmation
page

*AE query results

OUTPUT

Figure 9. Web Site Data Flow

Web Site

Output of the Web site will also consist oftwo things. The first is a simple

HTML page confirming to the prospective reviewer that their data has been accepted for

investigation and that they will be contacted within a certain time frame regarding their

status. The second output will be for the AE's only and consists of the results of their

submitted query.

4. Summary

The overall requirement for the Web site is that it act as a clearing house for

collecting and disseminating information related to the reviewer solicitation and paper review

process with the end goal of making this process easier for all parties involved.

78

B. CHOOSING AN APPROACH

1. Issues for Consideration

When looking at the case analysis section in the previous chapter and the in-variants

discussed in this chapter, one thing becomes clear: the Society's concerns regarding

connection of its database to the Web are actually real-life manifestations of the overarching

link issues of Performance and Functionality, Cost, Development Time and Ease,

Serviceability, Flexibility and Openness, Security, State and Session discussed in Chapter

IV. This section reviews these issues as they relate to the case study.

a. Overarching Issues

It is understood that the most important issue of concern when choosing a link

approach for this case study is the guaranteed security of the Web site and the database. No

matter how well the other issues are addressed, it is a given that if security is not guaranteed,

no Web link will be created. Therefore, the approach recommended by this thesis holds

security in the forefront of all design decisions.

With Society funds and available personnel a scarce commodity, the cost of

the chosen link approach must include all additional system support purchases plus the

consultant fees for implementation. Therefore, the development of the link must be rapid

and easy, and the actual application must easily support continual re-design as the site

changes and grows over time. Finally, the need to limit expenditures and ensure

compatibility with currently used systems also requires the link to utilize and leverage as

much of the installed system components and user expertise as possible.

79

The easiest issues to grapple with are the performance and functionality

issues. Performance wise, with the limited number of AE's who would have access to the

database at any given time, a high performance server on the order of a catalog or auctioning

service is not needed and a simple system will suffice. Additionally, completing and

submitting a form to a Web site or executing a simple database query are two common

functions which are well within the capabilities of most Web software programs.

From a database perspective, the issues of transaction monitoring and

concurrency limitations are relatively moot since they are "write" related issues, and as

originally envisioned, all case study database writing will be done by the prospective

reviewers. Since each resume constitutes a separate record, the prospective reviewers will

not be accessing the same records and the requirement for concurrent processing is non

existent. With respect to the AE's, although they will sometimes be accessing the same

records simultaneously, concurrency is still not an issue since the records are related to

currently vetted reviewers and all AE queries will be "read" only.

2. Approach Alternatives

To properly address these issues, the Society can choose a Web/database link

approach from the general approach alternatives discussed in Chapter III:

• Common Gateway Interfaces (CGI's)

• Application Program Interfaces (API's) including Open Database

Connectivity (ODBC)

• Web-enabled Database Administrative Systems (DBMS's)

80

• Independent processes

• Other solutions.

A brief scan of the list reveals the following: use of a CGI gateway can be quickly

discarded (despite its offered flexibility) because of its potentially deleterious effect upon

security and the level of programming skills required to use it. With respect to independent

processes, the writing of Java applets or Active-X controls can also be discarded, as writing

them can be too hard for the non-programmer and the computer industry has yet to

completely address all concerns regarding security. The final category to quickly be

discarded is the catch-all category of "Other Solutions." This category includes the

proprietary approaches which suffer from limited openness and security qualities, or are too

expensive to deploy and maintain on a limited budget.

The options actually constituting viable alternatives are the use of API's (including

ODBC) and Web-enabled DBMS's. Either one offers a valid approach to addressing the

Society's link requirements, but as will be shown later in this chapter, API's offer more

flexibility.

One option the Society could take is to convert its new Access95 database into a

Web-enabled database [Simpson96] which actually generates and exports static HTML files

directly to a Web server and on to the Web. This is accomplished via a free add-on called

Internet Assistant for Access95, which is downloadable from Microsoft's Internet site. One

disadvantage to this method is the labor intensive nature of continually creating new static

files every time that the database is updated. Despite the additional labor, if the Society only

81

wants to export static information to the Web without offering the capability of updating

database tables or enumerating dynamic data, then the Internet Assistant for Access95 could

be one avenue worth pursuing. Since the implementation is trivial and the offered capability

is not within the purview of this thesis, the actual use of Internet Assistant for Access95 will

not be explored further.

3. Recommended Approach

We recommend a solution falling within the category of "API (including ODBC)."

The primary reason (outside of the potential for air-tight security) is that it offers complete

compatibility with the Society's installed software/hardware/user-expertise base and

therefore eases the migration of the Society's new database to the Web. This compatibility

also serves to limit the amount of additional cash outlays and the training time required to

bring the link to fruition.

C. SYSTEM SPECIFICATION

This section specifies required components and the system design for the

recommended approach. Sufficient detail is provided to serve as a framework for Society

implementation.

1. System Support

a. Software Applications

Given that the Society is currently implementing its reviewer and paper

tracking database on a ffiM-clone PC with all Microsoft products, the link should be

designed with the Microsoft software applications listed in Table 7.

82

Application URL of Location Extra Reference Material

Access95 www.microsoft.cornlmsaccess

Windows NT Server (3.51 or
www.microsoft.com/ntserver/default.asp

later)

Internet Information Server www .microsoft.com/iis/default.asp

Internet Database Connector, or www.microsoft.com/accessdev/itk/idcfaq.htm
db Web (choose one) www.microsoft.com/intdev/dbweb

Table 7. Microsoft Internet Related Software Applications

Because Access95 is already being used by the Society for its new database,

it is the obvious choice for the database portion of the link. The added benefits of using

Access95 are the user level password security it offers to protect data, and the fact that it

already contains an ODBC driver as shipped.

We recommend switching from the Windows95 operating system to Windows

NT Server (3.51 or later). Windows95 is not sufficient for Web site hosting because it is a

workstation operating system which does have any networking capability outside the

Microsoft peer-to-peer networking service first introduced with Windows for Workgroups

3.11.

Windows NT Server is a complete multi-threaded, multi-tasking operating

system offering centralized user access control, file-level security locks, and robust support

for remote modem access and Internet connectivity [Minasi96]. NT Server scales easily to

support large numbers of users while offering single-point administration of all users and

resources. The Society's security concerns are particularly well addressed because of NT

Server's C-2 security capability which precludes users from granting access rights. NT

Server also has the ability to monitor all security related actions and keep a log for

83

subsequent review. Finally, NT Server offers the ability to selectively grant access to users

(and groups of users with the same needs) for all methods of access including interactive

(user is physically sitting at the computer), over a network, and via a modem. Access type

is also controllable so while Society staff can be given full read, write, and create access,

AE's can be given password-controlled read-only access while prospective reviewers can be

given write access only.

For the Society staff who require at-home access to the new database, NT' s

Remote Access Server (RAS) offers the user all of the capabilities that they would enjoy

while actually sitting at the computer. The data security capability of RAS is quite strong

and includes the capability to encrypt all transmitted data. Access security via encrypted

passwords and telephone callback features is also quite strong.

Internet Information Server (liS) is the only Web server that integrates fully

with Windows NT Server. liS runs all of the standard Internet services (Web, FfP, Gopher)

and allows the site manager to grant/restrict, monitor and log user access to HTML pages,

data files, and database records. By seamlessly integrating with the security features of NT

Sever, liS provides the ability to require users to input identification and password

information prior to gaining access to "privileged" information. It can even support the use

of SSL if required. Finally, liS works with all standard client browsers hosted on almost any

platform, thereby offering the universal access necessary for the Society's world-wide users.

84

With respect to linking the Web server to the database, Microsoft's Internet

Database Connector (IDC) and db Web, as illustrated in Table 8, are both API applications

which offer complete Web server/database connectivity and "wizard" publishing technology.

The wizards work via a point and click metaphor to abstract much of the mundane

programming required to build a link. Where the two applications differ, though, is that they

are targeted towards two essentially separate types of users.

TRAIT IDC db Web

Wizard interface shields users from complexities of yes yes
Web/database interface programming

Primary Audience developer developer/power user

Uses ISAPI architecture to run as a server process yes yes

Can publish data from any ODBC compliant database yes yes

Creates static pages yes !!2

Creates dynamic pages in response to user input yes yes

Creates files with SQL statements the developer can modify yes !!2

Table 8. IDC and db Web

IDC is a developer-oriented core technology of the Internet Information

Server that provides connectivity between the Server and any ODBC-compliant database.

It also serves as a foundation for developing custom database applications in concert with

Internet Information Server. IDC provides a great deal of flexibility by allowing developers

to directly program custom SQL statements, create their own HTML templates, or generate

static database information "snapshots" which can be quickly loaded by the server in

response to client requests.

85

db Web, while also offering connectivity between the Server and any ODBC

compliant database, uses its wizards to additionally ~bstract the intricacies of SQL

programming. By offering this additional abstraction service, it prevents the user from

having to actually do any programming in SQL. Also, db Web does not allow the generation

of static HTML files and is therefore a little less robust than roc.

b. Platform Selection

Compiling the list of hardware required to use the above applications is very

easy since most of the required hardware components are the ones already owned by the

Society and listed in Chapter V. The only hardware item needed is some additional RAM

in order to bring the system total up to the minimum recommended by Microsoft.

c. Cost of Upgrading

Upgrading the current system is quite inexpensive since all the current

hardware plus Access95 can be kept. The major software expense is replacing Windows95

with Windows NT Server (3.51 or later) since ITS and roc are free add-ons to NT Server.

The hardware upgrade is an inexpensive matter of inserting two more SIMMS (assuming

current configuration is two 8MB SIMMS). Table 9 lists the additional system support items

required and includes an estimation of each item's cost based upon market rates advertised

in the San Jose Mercury during the month of December 1996.

86

Item Cost

Microsoft NT 3.51 (5-client license) $750.00

Internet Information Server free

Internet Database Connector free

16MB RAM $75.00

Table 9. Upgrade Costs

Note: the number of recommended client licenses, although low, is sufficient because

they actually enumerate the number of simultaneous connections the server can support.

d. Migrating to the Web

The switching of the database from one operating system to another is trivial

since NT Server supports all of the Windows95 applications the Society is currently using.

Still, migrating the current database to the Web requires a choice between two options. The

first option is to put aside vulnerability concerns about granting Web access to the database

and to simply use the single database application for staff use, prospective reviewer resume

submission, and AE search queries. This requires extra care when implementing the link so

that integrity control is never lost and no data will need to be re-genera~ed.

The other (and better) option is to actually have two separate database

applications, one for staff use only, and the other a replicate for all Web-related use.

Complete physical separation of the two databases offers greater security than trying to

protect sub-portions of the database from net users. This separation and replication is

possible because Access95 can actually import table data from external sources. Examples

of external data sources include tables from other Access95 databases located on a network,

87

data from other programs such as Microsoft Excel, Microsoft FoxPro, Paradox, and

Microsoft SQL Server, as well as data from other programs and files. In the Society's case,

importing data creates a copy of the information in one Access95 database to a new table in

another Access95 database so the external data source's format is not altered. The Society

staff can therefore continue to use its original program, while Web users use the other

Access95 database to add or edit the copy of their own personal data.

Although imported data can't be appended to existing tables (except when

importing spreadsheet or text files), once a table has been imported, an append query can be

performed to add the data to a pre-existing table. When importing from another Access95

database, the user can choose to import all or just a subset of the database in a single

operation. Additionally, one of the best capabilities of Access95's import feature is that if

the need exists to perform an import operation on an ongoing basis, the user can automate

the process of importing data using macros or Visual Basic for Applications (VBA) code.

In the future, if the Society decides to use another database or scale up to a

different server suite, Access95 can also export data and the information needed to access

that data to programs and databases which support the Open Database Connectivity (ODBC)

protocol. Options include, but are not limited to, Microsoft SQL Server which is the logical

extension to the use of Access95 in large scale operations. Of note, the information required

to define and access an ODBC data source varies depending on the requirements of its

ODBC driver. The developer must therefore create a data source definition for each ODBC

database he wants to import from, export to, or link to the Access95 database.

88

2. System Design

The required software will work together as illustrated in Figure 10. The ITS will

listen on the Internet for incoming client requests and pass them off to NT Server. The

Server will ascertain which URL is requested and forward resume submission requests to the

secondary Access95 database while the AE-generated reviewer-name queries will be

forwarded to the primary database.

NT SERVER

..
,.--

c
L
I ";-

.---
E !

I :f>
N

N \
T

T ==0c:J~ E liS
<}::== IDC <J== ACCESS95

B
R

R

~
N

/1

E =
0 ".

T '----
w
s
E
R

-

Figure 10. Software Hierarchy

a. Sample Queries

The SQL queries that the database needs to support are very simple. After

entering proper user authentication data based upon name and password, the AE will be

presented with a form which allows him to choose (via a list box) one of the EDICS codes.

The database will then perform an SQL query similar to the one below:

89

SELECT
FROM
WHERE

First, Last
PEOPLE
Reviewer = "yes"
And
EDICS_Reviews = "EDICS#"

The database responds with a simple list of reviewer names, each of which is a hyperlink to

specific reviewer contact data (EDICS# is the code number selected by the user). Of more

importance, the current database must be changed to incorporate a new field in the PEOPLE

table that links the reviewers to the EDICS they review.

Once the names have been returned as hyper-links, the AE can then scroll

down the list, click on a few reviewer hyper-links and copy or save the contact data. The

actual SQL code for executing this would be similar to the following pseudo-code in which

"First" and "Last" represent the hyper-link data.

SELECT
FROM
WHERE

*
PEOPLE
First = "First"
And
Last = "Last"

3. Potential New Features

Once the extra system support has been installed and the link between the database

and the Web is operating correctly, the Society may choose to expand the site's capabilities.

Example additions include enabling NT' s FTP service so members can access and download

large review instruction files or authors can download paper format templates. The potential

would then exist for authors to submit their original papers and reviewers to download,

review, and resubmit the annotated papers via FTP instead of by postal mail. The initial use

90

of the FfP service is less important than the fact that NT's FfP capability exists and offers

exciting new opportunities for the Society to expand upon the functionality that is already

offered via other sites linked to the main IEEE homepage.

The incorporation of an AE email address library categorized by EDICS codes that

can facilitate communications between review personnel (Society Staff, reviewers, AE's) is

another potential use of the Web site. Implementation would be a simple matter of extending

the web site by adding another form page which would incorporate the appropriate SQL

query.

As the Internet continues to grow, the Society may even want to consider creating a

subset of the online "virtual" magazine discussed in Chapter V' s "Other Plans" section.

Online publishing of letters to the editor can be fully supported with the system

recommended by this thesis. More importantly, this will serve a test bed for the creation of

a complete online magazine in which all paper submission, review and publishing occurs on

the Web. The bottom line is that the Society must resolve to grapple with Web/DBMS link

issues and begin its transition to providing content on the Web if it is to remain relevant in

the electronic age.

4. Impact of Planned Software Upgrades

Finally, according to information located on its Web site, Microsoft is planning to

release major upgrades to its software in the first quarter of CY97. We have investigated the

press releases surrounding these upgrades and when this occurs, the functions currently

offered by the IDC, db Web and Internet Assistant will be embedded in NT Server and

91

Access97 respectively. This will not change any of this thesis' recommendations and will,

in fact, actually serve to further ease the Society's transition to the Web.

92

VII. SUMMARY AND CONCLUSION

A. SUMMARY

The objectives of this thesis were to

• create a taxonomy of existing dynamic Web\database linking methods

• examine the issues surrounding this linkage of a database to Web

• investigate a case study linkage problem

En-route to meeting these objectives, a thorough review of currently available and

utilized methods, protocols and standards for connecting a relational database to the Web

was conducted. As work progressed, the information collected through the course of this

review revealed that the myriad of link products currently available actually fall within a

small number of general categories, each of which has it own strengths and weaknesses with

respect to the issues underlying the connection of a database to the Web.

The use of a case study and an analysis of its associated problems offered an

opportunity to investigate the potential use of each general link category in a prototypical

situation. The ensuing discussion of an actual design for implementing the most appropriate

of the potential approaches for the case study revealed the validity of the taxonomy and

universal nature of the issues. The suggested design delivered all of the benefits expected

from the creation of a Web/database link while addressing all the underlying link issues.

93

Finally, the database technology research conducted in this thesis may actually

become rather quickly dated due to the speed with which Internet-related technologies are

being developed. This is true because database, operating system, and middleware product

vendors all approach the link issues from different directions and they are all in competition

to strengthen the connectivity between the Web and database applications. With the

marketplace driving the rapid pace, the possibility of new categories for link approaches

being developed is quite high.

B. ADDITIONAL RESEARCH AND DEVELOPMENT

Although this study has amply illustrated the viability of the different Web/database

link approaches and even provided a framework for implementing one of these link

approaches, the possibility exists for further research. By exploiting the power of the

Internet, a change can be made from the postal delivery of paper media to video presentation

of electronic content from points both internal and external to a user's computer. As a result,

it may no longer be necessary for people to gather in one geographic location to create and

maintain a database which is linked to the Web. This thesis provides a framework and

cornerstone for ongoing work which may achieve the goal of developing a DBMS which is

completely disconnected from geographical limitations.

94

APPENDIX A. SUMMARY OF CONVERSATION

On Wednesday, 27 November 1996, the following information was transcribed by

LCDR Dean during a telephone conversation with:

Mercy Kowalczyk,
Executive Director
IEEE Signal Processing Society
445 Hoes Lane
PO Box 1331
Piscataway, NJ. 08855-1331

A. THE REVIEW PROCESS

1. Current Situation

The Society's current manuscript review process is as follows:

• Authors desiring publishing must suggest an appropriate EDICS code for

their paper based upon the manuscript's subject matter and mail seven copies

of their manuscript, abstract and references to the Society.

• Based upon the suggested EDICS code, Society staff chooses one of the

code's associated AE's and forwards six of the seven manuscript copies.

• The AE compiles a list of potential reviewers from related publication

reference lists, word-of-mouth recommendations, and personal acquaintances,

and then attempts to enlist their services. Of note, some reviewers use

students to perform "ghost reviews" that reviewers subsequently check.

95

• Once two or three contactees agree to review, the AE mails them copies of

the manuscript.

• The reviewers read the manuscript, annotate suggested changes, and mail the

papers back to the AE for forwarding to the author who remains "blind" to

his paper's reviewer identities.

• The author responds to the suggested changes by either incorporating them

outright or debating them (via the AE) with the reviewers. This may take

several iterations prior to reaching total agreement.

• Once the author and reviewers agree on the paper's content, the AE must

decide whether to publish or reject the paper, notify the author, and inform

the Society of his decision.

2. Problems

Several problems are associated with the current review process:

• AE's usually do not have much administrative support and therefore tend to

sit on the manuscripts.

• Since reviewers are extremely hard to find, the tendency is for multiple AE's

to repeatedly contact the same reviewers.

• Many knowledgeable and potentially willing reviewers remain unidentified

by AE's due to lack of publishing or separate social/professional circles.

96

• A general call to the public to identify additional reviewers may generate too

many responses from unqualified people or those whose qualifications would

be difficult to vet.

• Some authors publish regularly but are either unwilling to review the work

of others or are not identified as potential reviewers. These members need

to be identified and encouraged to help out.

3. Changes Underway

Several changes to the current process are being implemented. First, instead

of forwarding six copies of each manuscript to the AE for his subsequent re-mailing to

reviewers, the Society plans to wait until the AE has provided a list of reviewers and then

mail manuscript copies directly to the reviewers.

Secondly, the Society has hired an outside consultant to create a Microsoft Access95

database application to do/aid the following:

• Log in submitted manuscripts as they arrive

• Automatically generate a receipt letter to send to the author

• Automatically generate a list of AE's responsible for the manuscripts EDICS

code.

• Track AE assignments and limit AE responsibilities to no more than three

manuscripts per month

• Provide AE's with suggested reviewer names.

97

Finally, reviewers will be required to pre-agree to complete the review within six

weeks of manuscript receipt to ensure manuscripts are pul::!lished on a timely basis.

4. Future Plans

The Society is considering the acceptance of electronically submitted abstracts and

reference lists that can be forwarded to the AE's and thereby offer them a head start in

identifying reviewers. Once identified, the AE will send the reviewer names to the Society

which will mail them manuscript copies. It is hoped that this new procedure will reduce the

amount of time that manuscripts spend awaiting assignment or in transit and thus speedup

the entire review process.

Allowing AE's Web access to the new database is also being considered and thus the

Society's support for this thesis as an initial investigation into the relevant issues. The Web

link has yet to be started due to concerns over maintaining data integrity and reviewer

confidentiality from the authors. This is exasperated by the fact that, in some cases, AE' s

have responsibility for the very EDICS code to which their own papers have been assigned.

Because of these concerns, the following in-variants for any Web/database link were stated:

• AE's need to search for and access reviewer names and contact information

contained in the new database must be limited to protect database integrity

and the confidentiality of the review process.

• Only Society staff and the accountable AE shall know of a particular

author/reviewer grouping.

• The Society's intellectual assets must be protected from competitors.

98

• New reviewers must be able to register with the Society in a manner that will

facilitate Society verification of qualifications and familiarity with review

procedures.

99

100

APPENDIX B. USER QUESTIONNAIRE

On- December 2, 1996, this questionnaire was faxed to:

Mercy Kowalczyk,
Executive Director
IEEE Signal Processing Society
445 Hoes Lane
POBox 1331
Piscataway, NJ. 08855-1331

The purpose of the questionnaire is to re-address (in detail) certain points first

brought to light in Appendix A, specifically those concerning the new database and the

potential use of a Web/database link facilitating the solicitation of new manuscript reviewers.

Her responses on December 5, 1996 are written below each question in italics.

A. HARDWARE

• What computer hardware is the new database implemented on?

CPU: 133 MHZ Pentium
RAM: 16MB
CD-ROM: Yes
Hard Drive: 1 GB
TAPEBU: Yes
MODEM: Yes
NETWORKINTERFACECARD: Yes

• Is the computer currently connected to the Internet?

Yes, via an internal cross-departmental Ethernet-based Windows For
Workgroups 3.11 peer-to-peer LAN. This may change since the Journal staff
desires to separate from the enterprise level LAN for privacy reasons and to
facilitate an impending move to another physical location.

101

• How much hard drive disk space is available for additional Web/database

link software?

Unknown

B. SOFTWARE

• Assumed: the reviewer database is implemented with Microsoft Access95.

Yes

• Assumed: Windows95 is the operating system.

Yes

• Is any other software being used to implement the database?

No

• Will the computer be dedicated solely to the database?

It is not now. The database may be moved to a dedicated PC server so the
appropriate staff can have unrestricted access. Ultimate plan is to give only
three staff members password enabled access to the database. An additional
requirement will be for remote D.B.A. access due to one staff member
requiring the ability to workfrom home.

C. DATABASE

• What data are held in the database for each reviewer, author, and Associate

Editor (AE), and how are they individually identified?

Note: the fields listed below differ from the ones actually documented in
[IEEE96-2] but are included for transcription accuracy purposes.

102

NAME (Last, First) ==>Primary Key
AUTHOR (yes/no)
REVIEWER (yes/no)
AE (yes/no)
MAIL ADDRESS
TELEX
PHONE
EMAIL
FAX
MISC (this is where the associated Editor's Information

Classification Scheme (EDICS) codes are entered)

• How many of each type of person will be entered in the database?

Approximately 40 AE's activated on a daily basis for each of three
Transactions (Digital, Audio, Image). This equals approximately (?)for the
whole database.

• What other TABLES are in the database and what are their fields?

There are at least two other tables. Neither one appears to be normalized as
described by Ms. Kowalczyk.

For the EDICS table (Primary Key unknown) the fields are:
TRANSACTION (the three Transaction Journals share the same code

numbers but the subject matter of each code number
changes from Transaction to Transaction)

EDICSCODE
EDICS SUBJECT
AENAME

For the MANUSCRIPT table (Primary Key unknown) the fields are:
AUTHOR
TITLE
CONTROL NUMBER ==>Primary Key (5-digit number preceded by A, I,

D to signify associated Transaction)
DATE RECEIVED
INITIAL PAGE COUNT
AEASSIGNED
DATE FORWARDED TO AE
DATESENTTOREVIEWERS

103

REVIEWER NAMES
PUBLISH DECISION (yes/no)
DECISION REASON
DATE OF DECISION
DATE TO BE PUBLISHED
FINAL PAGE COUNT
DATE FINAL MANUSCRIPT RECEIVED

NOTE: a record is created for each manuscript received whether it is kept for
review or rejected outright by the stajjfor format reasons.

• Are EDICS/AE relationships captured by the database?

Yes, by a JOIN(?) between the EDICS and PERSON tables

• Are AE/reviewer relationships captured by the database?

Yes, by a JOIN(?) between the MANUSCRIPT and PERSON tables

• What specific data for reviewers, authors and AE's must be accessible

only by office staff?

All

• What specific information must be captured on people signing up to be a

reviewer?

All fields in the PERSON table plus:
EDUCATION
IEEE MEMBER NUMBER/STATUS
BIOGRAPHY? (suggestions include papers/articles published, special

expertise, etc.)
REFERENCES WITH CONTACT INFORMATION
EDICS CATEGORIES WANTING TO REVIEW

104

• What are the top pieces of information the Society would like to have on

newly signed up reviewers to ensure credibility, authenticity, and motivation

of the individuals?

References, educational certifications, and which EDICS categories they are
willing to review for. The latter is important because there are trends and
fads in DSP subject matter such as fuz.zy logic. wavelets. and multimedia
while other areas such as underwater are rather esoteric, all leading to the
continual changing of EDICS specific workload.

• What information will be made available to the Internet?

None. total separation of database and Internet is desired. Anticipated use
is to have potential reviewers submit information and then have the staff
conduct an initial review, forward the applicant's information to an
appropriate AE, and have the AE vet the applicant and inform the Society
whether the applicant should be added to the reviewer database.

The problem with giving AE's access to the database is that they are only
appointed (on a voluntary basis) for a short term (long enough to oversee the
review of 25 manuscripts). Since there is a revolving door of AE's and a
high percentage of them are authors, access becomes problematic.
Furthermore, due to the small nature of the staff and supporting budget, it is
absolutely imperative that the database not be sullied by inadvertent mistakes
or malicious intent. The two absolutes are:

1- to preserve/protect database integrity
2- to protect sanctity and confidentiality of review process

• Will the information be tailored to specific types of accessors?

No. This question is irrelevant since the Society does not desire to connect
its database to the Internet.

• Are there any statistics that the database must keep?

Author, reviewer periodicity, ergo, how many times reviewer has been used.

105

• Can I have a copy of the database tables with fictitious data?

Possibly forthcoming, time-line unknown

• ASSUMED: Web connected database information will be READ only and

no direct WRITE capability will be granted.

This is the crucial matter that is addressed by this thesis. Although Mercy
feels personally that the answer should be FALSE, and that no link should be
allowed between her database and Internet, she is willing to discuss the
matter as she recognizes that others within the IEEE organization may feel
differently.

• ASSUMED: Individually submitted reviewer information will be checked

and entered by office staff to maintain database integrity.

FALSE, after initial Society review for completeness, the data will be
forwarded to an appropriate AE for vetting. This will potentially require an
additional field in PERSON table to enter the reviewer's qualifying AE' s
name.

D. FINANCIAL

• If the decision is made to make certain information available from. the

Internet, will additional money be available, and if so, how much?

Unknown, depends upon the worthiness of the project, will not be a large
sum.

E. PEOPLE

• Who will access the database in the office?

Appropriate staff

• Who will maintain the database and ensure that the data is correct?

Appropriate staff

106

• Who does the Society want to access the database from the Internet?

Nobody (see discussion in next question)

• Who does the Society not want to access the database from the Internet?

As stated in section C. above, this a contentious point. Mercy feels that
everybody should be excluded. What is not clear at this time is whether
there truly are a lot of people out there who are ready, willing and able to
review and yet they are unknown to the Society. As an aside, a lot of people
are uncomfortable putting personal information on the Internet and this may
impact the willingness of potential reviewers to submit a resume over the
Internet.

F. TIMING

• Does a deadline exist for Internet connectivity?

No

G. MISCELLANEOUS

• How is an EDICS code assigned to a newly submitted paper?

Suggested by the author

• Does the Society foresee extensions to the currently planned use of the

database as a central reservoir of reviewer information. In other words, what

else is planned?

In January of 1997 the Society will begin publishing the letters to the Journal
on the Internet with the hope of eventually offering online subscription/access
to the Journal itself. What is not known at this time is how the current
income from subscription fees will be replaced. Since the subscription fees
are the lifeblood of the Journal, this is a very serious concern.

Finally, Ms. Kowalczyk re-iterated her desire and willingness to aid this case
study's research phase, and also stated her understanding and willingness
to work within the time constraints of the thesis completion schedule.

107

108

[Ayre96]

[Bina94]

[Brenner96]

[Burleson94]

[Centura96]

[DataRamp96]

[Dean96]

[Dobson95]

[Elmsari94]

[Fargues96]

LIST OF REFERENCES

Ayre, R., Mace T., Just Browsing, PC Magazine, March 1996.

Bina, E., et al., Secure Access to Data Over the Internet, National
Center for Supercomputing Applications, University of lllinois at
Urbana-Champaign, ll..,, 1994.

Brenner, S. E. & Aoki, E., Introduction to CGI/PERL, M&T Books,
New York, NY, 1996.

Burleson D. K., Managing Distributed Databases, Building Bridges
to Database Islands, John Wiley & Sons New York. NY, 1994.

Challenges in Next-Generation Client/Server Application
Development and Deployment, Centura Corporation, http://
www.gupta.com /centweb /wp_int /wp_inet.htm, October 1996.

DataRamp Inc., White Paper, http:// dataramp.com /white /white.htm,
May 1996.

Dean, D., and others, Java Security: From HotJava to Netscape and
Beyond, Princeton University, Princeton NJ, 1996.

Dobson, S.A., Burrill, V.A., Lightweight Databases, Rutherford
Appleton Laboratory, Chilton, DIDCOT, UK, 1995. http://
www.cis.rl.ac.uk /people/sd/sd_refs.html, October 1996.

Elmsari R., Navathe, S. B., Fundamentals of Database Systems, 2nd
Edition, Benjamin/Cummings Publishing Company, Redwood City,
CA, 1994.

Conversation between Professor M. Fargues and LCDR A. Dean,
October 1996.

109

[Finkelstein96]

[Francett96]

[Frank95]

[Freeman96]

[Gaffney96]

[Gundavaram96]

[Gutierrez96]

[Hamilton96]

[House96]

[Hughes95]

[Hughes96]

[IEEE96]

[IEEE96-2]

Finkelstein, R., The Need for Versatile Application Development
Tools In The Changing World of Client/Server and !NET
Development, Performance Computing Inc., http://
www .arborsoft.com /papers /finkTOC.html, October 1996.

Francett, B., DBMS Response Time Tempers Web Strategies,
Software Magazine, September 1996.

Frank, M., Database and the Internet, DBMS Online, December
1995. http:// www.dbmsmag.com, October 1996.

Freeman, E., Middleware: Link everything to anything, Datamation,
October 1996.

Gaffney, J., /lustra's Web Datablade Module, About lnformix White
Papers, http:// www.informix.com, October 1996.

Gundavaram, S., CGI Programming on the World Wide Web, O'Reilly
and Associates, Sebastopol, CA, 1991.

Gutierrez, D. D., Java-Boost Your Databases, Databased Advisor,
November 1996.

Hamilton, M. A., Java and the shift to Net-Centric Computing,
Computer, August 1996

House, B., The New Life of Middleware, Databased Advisor, October
1996.

Hughes, L. J., Actually Useful Internet Security Techniques, New
Riders Publishing, Indianapolis, IN, 1995.

Hughes, L. J., Guarding the Castle, Internet Security, a supplement
to INFO Security News, October 1996.

IEEE Transactions on Signal Processing, IEEE Signal Processing
Society, Piscataway, NJ, 1996.

User Manual of Publications Administration Database System, IEEE
Signal Processing Society, Piscataway, NJ, 1996.

110

[Inforrnix96]

[Jeffery95]

[Jordan94]

[Lambert96]

[Lemay96]

[Linthicum96]

[Lynnworth96]

[Marshall95]

[McGee96]

[Microsoft96]

[Microsoft96-2]

[Microsoft96-3]

The Web Changes Everything, About Inforrnix White Papers,
Inforrnix Corporation, http://www.inforrnix.com, October 1996.

Jeffery, K. G., Database: Introduction to Problems, Rutherford
Appleton Laboratory, Chilton, DIDCOT, UK., 1995,
http://www .cis.rl.ac. uk/people/sd/sd_refs.html, October 1996.

Jordan, L., Churchill, B., Communication and Networking For The
PC, New Riders Publishing, Indianapolis IN, 1994.

Lambert, C., ODBC: Architecture, Performance, and Tuning,
Microsoft Corporation, http:// www.microsoft.com /odbc /wpapers
/odbcperf.htm, October 1996.

Lemay, L., teach yourself Web Publishing with HTML 3.0, Sams.net
Publishing, Indianapolis, IN, 1996.

Linthicum, D. S., The JDBC Connection, Internet Systems, October
1996.

Lynnworth, A., excerpt from Delphi 2 Unleashed, http://
www .href.com, October 1996.

Marshall, V.A., The World Wide Web, Rutherford Appleton
Laboratory, Chilton, DIDCOT, UK, 1995. http:// www.cis.rl.ac.uk
/people /sd /sd_refs.html, October 1996.

McGee, M., Web Pages: A Programmer's Perspective, Microsoft
Corporation, http:// www.microsoft.com /intdev /prog-gen
/webpage.htm, November 1996.

Custom Controls, Microsoft Corporation, http:// www.microsoft.com
/msdnlsdklplatforms/doc/sdk/win32/ctrl/src/controls_ 4, October
1996.

Internet Server API Overview, Microsoft Corporation, http://
www .microsoft.com /win32dev/apiext/isalegal.htm, October 1996.

Microsoft dbWeb, in a Nutshell, Microsoft Corporation, http://
www.microsoft.com /intdev /dbweb/dbweb.htm, October 1996.

111

[Minasi96]

[Murdoch96]

[Netscape96]

[Netscape96-2]

[Orfali94]

[Plain96]

[Ranade96]

[Reichard96]

[Rob95]

[Rowe96]

[Schmidt96]

[Schulzrinne96]

Minasi, Mark, et al., Mastering Windows NT Server 3.51, Sybex
Network Press, San Francisco, CA, 1996.

Murdoch, J., Active-X and Thin-Client Computing, Databased .
Advisor, October 1996.

Inline Plugins, Netscape Corporation, http:// home.netscape.com
/comprod /products /navigator /version_2.0 /plugins /index.html,
October 1996.

Persistent Client State- HTTP Cookies, Netscape Corporation, http://
home.netscape.com /newsref/ std /cookie_spec.html, October 1996.

Orfali, R., et al, Essential Client Server Survival Guide, John Wiley
& Sons, New York, NY, 1994.

Plain, S. W., Web Database Tools, PC Magazine, September 1996.

Ranade, J., Network Security Data and Voice Communications,
McGraw-Hill, New York, NY, 1996.

Reichard, K., Web Servers for Database Applications, Internet
Systems, October 1996.

Rob, P., Coronel, C., Database Systems, 2d ed, Boyd & Fraser
Publishing Company, Danvers MA, 1995.

Rowe, J ., Building Internet Database Servers with CGI, New Riders
Publishing, Indianapolis, IN, 1996.

Schmidt, D. C., and others, Measuring the Performance of
Communication Middleware on High-Speed Networks, presented to
the Symposium on Communication Architectures and Protocols
(SIGCOMM), Stanford University, ACM, http:// www.cs.wustl.edu
/-schmidt/corba-research.htm, October 1996.

Schulzrinne, H., World Wide Web: Whence, Whither, What Next?,
IEEE Network, March/ April 1996.

112

[Simpson96]

[Stallings94]

[Stormcloud96]

[Varela94]

[Varney96]

[Vinoski93]

[VisualW ave96]

[Yager96]

[Y ourdon96]

[Wall91]

Simpson, A., Olson E., Mastering Microsoft Access for Windows 95,
Sybex Inc., San Francisco, CA, 1994.

Stallings, W., Data and Computer Communications, 4th ed,
MacMillan Publishing Co., New York, NY, 1994

Adding Dynamic Intelligence to your Web site, Stormcloud
Development Company, http:// www.ndev.com:80 /ndc2/products
/reviewer.htp, October 1996.

Varela, C. A., Hayes, C. C., Providing Data on the Web: From
Examples to Programs, Department of Computer Science, University
of lllinois at Urbana-Champaign, IL, 1994.

Varney, S. E., Datawebs! Link the Web to Your Legacy Data and
Apps, Datamation, April1996.

Vinoski, S., Distributed Object Computing With COREA, Hewlett
Packard Company, Chelmsfird, MA, 1993.

Building Client/Server Web Applications, How Fast can your
business respond? ParcPlace-Digitalk Inc., http://
www.parcplace.com, October 1996.

Yager, T., NT and the Net, Byte Magazine, July 1996.

Yourdon, E., Java, the Web, and Software Development, Computer,
August 1996

Wall, L., Schwartz, R. L., Programming PERL, O'Reilly and
Associates, Sebastopol, CA, 1991.

113

114

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center .. 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library .. 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Chairman, Code CS ... 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

4. Dr. C. Thomas Wu, Code CS/KA .. 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

5. Dr. Monique P. Fargues, Code EC/Fa .. 1
Electrical and Computer Engineering Department
Naval Postgraduate School
Monterey, California 93943

6. LCDR A. Dean .. 2
628 E. Bismark
Seguin, Texas 78155

115

