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The inherent stochasticity in transmission of hospital-acquired
infections (HAIs) has complicated our understanding of
transmission pathways. It is particularly difficult to detect the
impact of changes in the environment on acquisition rate due
to stochasticity. In this study, we investigated the impact
of uncertainty (epistemic and aleatory) on nosocomial
transmission of HAIs by evaluating the effects of stochasticity
on the detectability of seasonality of admission prevalence. For
doing so, we developed an agent-based model of an ICU
and simulated the acquisition of HAIs considering the
uncertainties in the behaviour of the healthcare workers
(HCWs) and transmission of pathogens between patients,
HCWs, and the environment. Our results show that
stochasticity in HAI transmission weakens our ability to detect
the effects of a change, such as seasonality patterns, on
acquisition rate, particularly when transmission is a low-
probability event. In addition, our findings demonstrate that
data compilation can address this issue, while the amount of
required data depends on the size of the said change and the
degree of uncertainty. Our methodology can be used as a
framework to assess the impact of interventions and provide
decision-makers with insight about the minimum required
size and target of interventions in a healthcare facility.
1. Introduction
Hospital-acquired infections (HAIs) pose a significant threat to
patient safety and are a major burden on the healthcare system.
Approximately 4% of hospitalized patients in the United States
acquire an HAI during their stay, resulting in more than 1.7
million HAIs annually in the USA [1]. HAIs prolong hospital
stays and increase rates of mortality, with the estimated annual
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cost of the most common HAIs to the US healthcare system ranging from $8 to $12 billion [2]. The

emergence of multidrug-resistant organisms (MDROs) has further magnified the challenge of HAIs by
increasing the complexity and cost of treatment [3]. Despite the significant costs and negative
consequences for patients from HAIs, uncertainty remains regarding the pathways of transmission of
HAI-causing organisms. Although it is widely believed that organisms spread in hospitals due to
poor infection control practices by healthcare workers (HCWs), e.g. non-compliance with
handwashing, the complexity of HCW–patient networks, constant movement of HCWs, and frequent
contact with surfaces and devices make nosocomial transmission pathways for HAIs a challenge
to investigate.

The uncertainty regarding transmission of HAI-causing organisms can be categorized into two types:
(1) epistemic uncertainty, which refers to the uncertainty due to lack of knowledge or noise in data, and (2)
aleatory uncertainty, which refers to the inherent variability in certain parameters. Epistemic uncertainty
can potentially be reduced by collecting more data and improving the accuracy of data collection, e.g.
improving estimates of prevalence of colonization on admission. However, aleatory uncertainty is
intrinsic to the nature of events, e.g. length of stay or HCW hygiene compliance. Aleatory uncertainty
is more commonly referred to as stochasticity, and increased data collection cannot reduce the inherent
uncertainty in these variables. For clarity, hereinafter, we refer to aleatory uncertainty as ‘stochasticity’,
and we use ‘uncertainty’ when referring to randomness, in general.

Uncertainty analysis techniques have been developed to analyse the impact of uncertainties on
system outcomes in parameters for which the true values are not known (i.e. epistemic uncertainty)
[4,5], while stochastic modelling techniques, such as agent-based modelling (ABM) and Markov
chains, have been used to account for stochasticity in systems [6]. Accounting for stochasticity in the
study of complex systems is crucial to help understand the behaviour of such systems under different
circumstances, such as environmental or operational changes or interventions. Furthermore, dynamical
effects of stochasticity may result in variations to a deterministic response such that deterministic
models would be incapable of explaining the data. For example, Rohani et al. [7] showed that
stochasticity could have surprising impacts on the dynamics of whooping cough and measles—two
common infectious diseases with relatively similar natural history and reproductive potentials. Their
analyses showed that due to the differences in the epidemiological time scales of these two diseases,
whooping cough epidemics could be strongly stochastic such that deterministic approaches may fail
to explain the observed incidence data, while measles could be well explained using deterministic
models as its dynamics are less sensitive to the variability in the infectious period.

In addition, simulations have shown that inherent stochasticity can cause dynamics similar to what
external deterministic forces can cause. For example, when considering spatial correlations in epidemics,
demographic stochasticity has been shown to be able to cause both small post-outbreak waves and major
secondary outbreaks. This implies that in highly connected contact networks, recurrent epidemics can be
due to endogenous stochasticity, rather than exogenous factors, such as seasonality or introduction of
new variants [8,9].

One area that needs further investigation, particularly in the context of HAI transmission, is the effect
of stochasticity on the detectability (i.e. inferability using data analysis techniques) of underlying
deterministic trends (e.g. long-term continuous increase in antibiotic consumption leading to an
increase in colonization susceptibility) and epistemic variabilities, such as seasonality in admission
prevalence or the long-term impact of infection prevention and control interventions. Here, admission
prevalence refers to the proportion of patients who are already colonized when admitted to ICUs (i.e.
pre-admission colonization). For example, the impact of seasonality on the outcome may diminish
when the amplitude of stochasticity increases, such that for a highly stochastic process, it may become
difficult to detect the seasonal component (see electronic supplementary material, figure S1). These
issues are compounded when the event is a relatively low-probability event, such as an HAI.

Data compilation (i.e. compiling data from multiple sources) is a common approach when dealing
with highly stochastic events. While collecting more and better data generally does not reduce
aleatory uncertainty, with highly stochastic events, such as acquisition of HAIs, compiling data from
multiple sources can help to detect underlying deterministic patterns, such as seasonality, that may be
concealed by strong stochasticity (electronic supplementary material, figure S2). Although data
compilation can be a solution, given such data are available, certain precautions about spatio-temporal
heterogeneities in the data have to be considered, particularly when studying the dynamics of disease
transmission [10].

One of the main principles of systems engineering is the necessity of understanding the underlying
structure and dynamics of a process if one wants to implement effective changes. When it comes to
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complex processes such as nosocomial transmission of HAIs, this means we need to understand the

underlying deterministic and stochastic drivers of pathogen transmission, and their interconnections,
before we can decide what intervention would be effective and estimate or measure its impact after
implementation. We need to quantify the effects of seasonality and possible trends in admission
prevalence, which is arguably one of the main drivers of nosocomial transmission of HAIs. In simple
words, how can we measure the impact of interventions if we do not know how many (or what
proportion of) patients are already colonized when they are admitted to ICUs, and how this may
change through time (i.e. seasonality patterns) and affect the effectiveness of interventions. If we see a
decrease in infection rate, we need to know whether it has been due to an intervention, the effects of
seasonality, or just randomness. Accordingly, investigation of the seasonality patterns in the drivers of
nosocomial transmission of HAIs precedes the analysis of intervention impacts.

In this study, we investigated the impact of sources of uncertainty (epistemic and aleatory) on
nosocomial transmission of HAIs. Specifically, we evaluated the effect of stochasticity on the
propagation of seasonality from admission to acquisition. We demonstrate how varying levels of
stochasticity and seasonality could collectively affect the acquisition rate. Additionally, we demonstrate
the amount of data needed to overcome the stochasticity effects and detect underlying deterministic
patterns, which can improve our understanding of transmission pathways and would provide insight
on targeted and more effective interventions to mitigate acquisition.
i.10:230277
2. Methods
We developed an agent-based model of an ICU to study the effects of uncertainties on the dynamics of
transmission of HAIs. We simulated the transmission of HAI-causing pathogens under different
seasonality and admission prevalence scenarios, considering the uncertainties in the behaviour of the
healthcare workers (HCWs) and stochasticity of the transmission of pathogens between patients,
HCWs, and the environment. Finally, we trained a logistic regression to infer the parameter space in
which seasonality effects is likely to be observed.

2.1. The agent-based model

2.1.1. Agents

We explicitly defined two types of human agents: patients and HCWs. HCW agents are further divided
into two categories of nurses and physicians. Other HCWs, such as health technicians and nonclinical
staff, were not included in the model as nurses and physicians constitute the majority of patient visits
[11]. Patient rooms in the ICU were also modelled as agents. Visitors were not included.

In the model, patients can be in one of four disease states: susceptible to colonization (S), highly
susceptible to colonization due to antibiotic use (X ), colonized (C) and infected (I ). Upon admission,
each patient’s disease state is assigned using a multinomial trial with defined probabilities for
admission status distribution. To address the role of infection prevention, infected patients and those
identified as colonized are put on contact precautions, which affects the interaction with HCWs and
transmission potential (see Process overview).

Each patient stays in a single room and has a primary nurse and a primary physician. Nurses in the
ICU are only assigned to ICU patients. Physicians can potentially visit patients from multiple units in the
hospital; however, as there is only one unit simulated in this study, this feature of the model is not used
and is reserved for future expansions of the study.

Patient rooms are modelled as single-bed rooms. A history of all patient movement in/out/between
rooms is maintained. Rooms can become contaminated by the residing patient or visiting HCWs. Room
contamination is characterized using a binary variable. Other spatial characteristics of the ICU, e.g. room
dimensions and corridors, were not modelled.

2.1.2. Process overview

2.1.2.1. Simulation setup
At the beginning of each simulation, the hospital is initialized by creating one ICU with a pre-determined
patient capacity and the physicians as their primary working area is the entire hospital. The number of
physicians is determined based on the doctor-to-patient ratio and the capacity of the ICU. Upon
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initializing the ICU, the patient rooms are created based on the ICU capacity, and the ICU nurses are

created based on the nurse-to-patient ratio. Next, an initial group of patients is created. Each patient
gets assigned to the least busy nurse and physician. If more than one nurse (or physician) has the
same number of patients, the new patient is randomly assigned to one of the nurses (or physicians).
The patient is then randomly assigned to an empty room, and its length of stay is randomly
determined from a lognormal distribution. At admission patients are randomly selected for pathogen
testing, and given the test accuracy (sensitivity), colonized patients may be identified and put under
contact precautions. Contact precautions, as a type of transmission-based precautions, are a set of
second tier infection control measures for patients with known (or suspected) infectious agents.
Patients under contact precautions are placed in single-patient rooms, have limited movements and
visits for medically necessary purposes only, and must use disposable or dedicated patient-care
equipment. For all interactions that may involve contact with the patient or the patient’s environment,
personal protective equipment (PPE), such as gloves and gown, must be used [12].

2.1.2.2. Daily initialization procedure
At the start of every day, patients that have completed their stay are discharged. After a patient is
discharged, the terminal disinfection protocol is executed in the room, which can clear the room
contamination based on the room disinfection probability. Second, based on the bed utility rate, sampled
for each empty bed (i.e. room), the number of admitted patients for the day is calculated, and new
patients are initialized and assigned to their primary HCWs and rooms, as explained in setup.
Afterward, the nurses’ (and physicians’) daily visit schedules are determined by generating a random
number of visits that each patient receives from nurses (and physicians) during a day (24 h). Patients
under contact precautions receive fewer visits from the HCWs [13]. While each patient has a primary
nurse, there may be a few random visits by other nurses. Accordingly, based on the primary nurse visit
rate, a proportion of these visits are assigned to the primary nurse, where the visits take place randomly
at different times during the day. The remaining nurse visits are randomly assigned to other nurses.
Physician visits are assigned similarly, except that all visits for a patient are from a single primary physician.

2.1.2.3. Daily routine
The simulation is run for 360 days with a one-hour time step. The simulation is segmented into four 90-day
quarters where the third quarter is the high season during which admission prevalence is higher (figure 1).
Every hour, the nurses and physicians conduct their scheduled visits to the patients. During each visit, the
HCW wears PPE if the patient is under contact precautions. Therefore, a contaminated HCW wearing PPE
will not transmit to the patient, but the HCW will remain contaminated. If the patient is not under contact
precautions, the HCW may wash their hands, given the nurse’s hand hygiene compliance probability on
entry. If the HCW complies, hand washing may clear any possible contamination based on the hand
washing efficacy rate. Before the HCW comes in contact with the patient, they will interact with the
environment of the patient’s room. This allows for both environmental shedding by contaminated
HCWs and HCW contamination from a contaminated environment. If the HCW is wearing PPE, this
will prevent environmental shedding, but the PPE can become contaminated when coming in contact
with a contaminated environment. This increases the risk of transmission for the patient; however, since
the HCWs discard PPE after each visit, the risk of transmission for the next patient will remain unchanged.

During contacts with the patient, if the HCWor their PPE is contaminated, the pathogens may transmit
and colonize the patient. Similarly, a colonized patient can contaminate the HCW or their PPE. It is
assumed that after contacting the patient, the HCW contacts the environment again, which may
contaminate the environment itself. However, if the PPE becomes contaminated before the HCW leaves
the room, this will not increase the risk of transmission as the PPE will be discarded. The HCW may
comply with hand washing when exiting the room, based on the hygiene compliance probability on
exit. Environmental contamination and patient colonization occur based on probability of environmental
contamination by a contaminated HCW ðbheÞ, probability of HCW contamination from a contaminated
surface ðbehÞ, probability of patient colonization from a contaminated HCW ðbhpÞ, and probability of
HCW contamination from a colonized patient ðbphÞ. It is assumed that bhe ¼ beh ¼ bph ¼ 2bhp [14]. To
account for direct environmental transmission in a contaminated room, a Bernoulli trial is conducted
every hour with a success probability equal to 1/24 (one twenty-fourth) of bhp, i.e. the probability of
direct environmental transmission for each patient for 24 h is the same as the probability of transmission
from a contaminated HCW during one visit. HCWs’ interactions were not modelled due to lack of
evidence for the contribution of such interactions to transmission [15].
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Figure 1. (Caption overleaf.)
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Figure 1. (Overleaf.) Schematic representation of the research methodology: (1) sampling seasonality and transmission parameters
to create 1000 scenarios; (2) performing single ICU simulations for 300 times for each seasonality-transmission scenario (with other
parameters sampled per each simulation); (3) compiling the results of 300 000 simulations including the values of sampled
parameters into a pool of synthetic acquisition data; (4) examining seasonality detection rate using the Mann–Whitney U test
for each seasonality-transmission scenario by incrementally increasing the size of samples drawn from our data pool; (5)
training a logistic regression to identify the parameter space (seasonality strength, mean probability of transmission, and
sample size) for which seasonality is statistically more likely to be detectable.
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2.1.2.4. Infections
A patient’s colonization status may deteriorate into an infection based on a probability of infection from
colonization. This is implemented using a Bernoulli trial every day with a success probability equal to the
probability of infection. When a patient becomes infected, they will be put under contact precautions and
a 7-day course of antibiotic treatment, which may extend the patient’s length of stay. The antibiotic
treatment period may extend over seven days until the patient clears the infection with a negative
culture test. After clearing the infection, the patient will be removed from contact precautions.

2.1.2.5. Active surveillance
Active surveillance is conducted once every 7 days on selected patients starting from day 1 in every
simulation. Given the test accuracy (sensitivity), if a patient’s test is positive, the patient will be put
under contact precautions for the rest of their stay.

2.1.3. Design concepts

The model includes HCW-mediated and environmental transmission during HCW visits. HCW-to-HCW
transmission was not included. Patient-to-patient transmission was not considered as patients are highly
unlikely to have direct interactions with other patients in ICUs. We assumed that it is more likely for a
HCW to become contaminated from a colonized patient than for a susceptible patient to become
colonized from a contaminated HCW, as it is easier for pathogens to transfer to hands (of a HCW)
than to establish within the microbiome of a patient and cause colonization [14]. We assumed the
HCWs work multiple shifts per day. For the sake of computational performance, when a HCW’s shift
is over, the contamination status of the HCW is removed to account for the starting shift of a new
HCW, instead of creating a new HCW agent.

Patients that have been or are receiving antibiotics have been shown to be more susceptible to
colonization, particularly with MRSA [16,17]. The risk of colonization for more susceptible patients is
modified by an increase factor p . 1, so the probability of colonization from a contaminated HCW for
more susceptible patients is pbhp.

2.2. Parameterization
We defined the constant parameters and the statistics of random variables of the model based on the
findings from the literature. While the mean probability of transmission and seasonality are assumed
not to vary across ICUs, other parameters can vary for different ICUs, the probabilities of which are
specified in table 1. We have represented parameter uncertainty with uniform distributions as they
allow random parameters to vary equally within reasonable bounds.

The event probabilities for the multinomial distribution of admission status are established based on
the highly susceptible (PX) and colonization importation (PC) ratios. After sampling PC and PX from their
respective distributions, the probability of admission as susceptible, assuming no infection importation
ðPI ¼ 0Þ, can be calculated as: PS ¼ 1� PX � PC. Given all event probabilities, the admission status of
each patient is determined using a multinomial trial, defined as Multinomial (1, {PS, PX, PC, PI}).

2.3. Stochasticity and seasonality measures
The parameters that control the direct transmission (i.e. force of infection) during a HCW–patient contact
are the probability of environmental contamination by a colonized/infected patient, the probability of
transmission from a contaminated HCW to a susceptible patient, the probability of transmission from a
colonized/infected patient to an uncontaminated HCW, the probability of HCW contamination from the



Table 1. Summary of the model parameters and their probability distributions or values.

parameter distribution/value source sampled per

capacity 25 assumed —

physician-to-patient ratio 0.1 per [18] —

nurse-to-patient ratio 0.5 per [18] —

initial population 20 assumed —

bed utilization rate uniform (a = 0.55,

b = 0.9)

[19,20] day

highly susceptible ratio ðPX=PSÞ uniform (a = 0.5,

b = 0.9)

assumed, based

on [21]

simulation

admission prevalence (colonization importation

ratio)

uniform (a = 0.01,

b = 0.15)

assumed simulation

infection importation ratio 0 assumed —

length of stay lognormal (m = 0.693,

s = 1.058)

[21,22] patient

patient testing rate on admission 100% assumed —

patient testing accuracy (sensitivity) 80% assumed —

nurses’ shift length 8 h assumed —

primary nurse visit rate uniform (a = 0.5,

b = 1.0)

assumed, based

on [23]

simulation

physician hygiene compliance probability on entry uniform (a = 0.3,

b = 0.5)

[23–26] physician

physician hygiene compliance probability on exit uniform (a = 0.4,

b = 0.7)

[23–26] physician

nurse hygiene compliance probability on entry uniform (a = 0.5,

b = 0.7)

[23,25] physician

nurse hygiene compliance probability on exit uniform (a = 0.6,

b = 0.9)

[23,25] nurse

physician PPE compliance probability uniform (a = 0.7,

b = 0.9)

[23,27] nurse

nurse PPE compliance probability uniform (a = 0.8,

b = 0.9)

[23,27] nurse

physician contacts per patient per day uniform (a = 5, b = 10) [13,23] day

physician contacts per patient per day (under

contact precautions)

uniform (a = 3, b = 6) [13,23] day

nurse contacts per patient per day uniform (a = 20,

b = 39)

[13,23] day

nurse contacts per patient per day (under contact

precautions)

uniform (a = 13,

b = 26)

[13,23] day

hand hygiene efficacy uniform (a = 0.7,

b = 0.99)

[28] simulation

terminal room disinfection efficacy uniform (a = 0.4,

b = 0.6)

[25] simulation

infection treatment length 7 days [29,30] —

(Continued.)
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Table 1. (Continued.)

parameter distribution/value source sampled per

transmission increase factor for highly susceptible uniform (a = 1.5,

b = 3.5)

[31,32] simulation

mean probability of room contamination by

colonized patients per day

uniform (a = 0.01,

b = 0.05)

assumed, based

on [14]

simulation

mean probability of transmission from

contaminated HCW to susceptible patient

uniform (a = 0.005,

b = 0.025)

assumed, based

on [14]

simulation

mean probability of transmission from colonized

patient to uncontaminated HCW

uniform (a = 0.01,

b = 0.05)

assumed, based

on [14]

simulation

mean probability of HCW contamination from

contaminated environment

uniform (a = 0.01,

b = 0.05)

assumed, based

on [14]

simulation

mean probability of environmental contamination

from contaminated HCW

uniform (a = 0.01,

b = 0.05)

assumed, based

on [14]

simulation

probability of natural progression from colonization

to infection

uniform (a = 0,

b = 0.02)

assumed simulation

probability of direct infection from exposure uniform (a = 0,

b = 0.05)

assumed simulation

probability of patient direct environmental

colonization

uniform (a = 0,

b = 0.05)

assumed simulation

shedding increase factor for infected patients uniform (a = 1, b = 2) assumed, based

on [14]

simulation

pathogen natural clearance rate from dry surfaces

per day

uniform (a = 0,

b = 0.01)

[33,34] simulation

seasonality strength in admission prevalence uniform (a = 0%,

b = 100%)

assumed simulation
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environment, and the probability of environmental contamination from a contaminated HCW. Other
parameters, such as hand hygiene, PPE compliance, and number of visits per day, affect the overall
probability of transmission through time. In total, the random variables of the model, represented using
distributions listed in table 1, constitute the stochastic behaviour of the model. Given that the objective
of the simulations is to evaluate the impact of stochasticity on seasonality effects, acquisition rate,
expressed as the number of acquisitions per 1000 patient-days, is calculated and reported as the main
outcome of interest, which essentially measures the overall likelihood of transmission.

We modelled the seasonality effect as an increase in admission prevalence of colonization during the
high-season period using a Gaussian-modulated sinusoidal function to generate a Gaussian pulse:

Phs
C ¼ Pb

C þ Se�1=2s2(t�tc)2 ,

where Phs
C is the admission prevalence during the high season, Pb

C is the average admission prevalence
during the baseline period, S is the seasonality strength, tc is the peak day of the high season
(assuming the symmetrical shape of the Gaussian pulse), and s is the pulse relative half-duration,
which corresponds to the standard deviation of the unit pulse (Tp ¼ 2ps ! s ¼ 90=2p ¼ 14:324 days).
Seasonality strength is expressed in percentages, e.g. a 50% seasonality strength implies that the peak
of admission prevalence during the high season is 50% higher than that of the baseline.

The seasonality impact on quarterly acquisition rate (i.e. significance of seasonality) is assessed using
the Mann–Whitney U-test [35]. Since the distribution of acquisition rate is highly right-skewed (figure 3),
the non-parametric U-test provides a more robust assessment than the Student’s t-test typically used for
hypothesis testing.

There is a potential relationship between the detectability of seasonality in acquisition rate, the
seasonality strength of admission prevalence, and the baseline acquisition rate. However, because of the
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uncertainties in transmission, this relationship is not deterministic, so the U-test may or may not show
seasonality in acquisition rate across simulations with similar parameters. As the amplitude of the
seasonal signal in admission prevalence and the baseline acquisition rate increase, seasonality effect in
acquisition rate is magnified and is more likely to be detected. We used a logistic regression predictor to
define the parameter space for which the seasonality effect is most likely to be detected. The logistic
regression predictor is trained with seasonality strength of admission prevalence and baseline
acquisition rate as the predictor variables and the binary outcome of the U-test as the response variable.

2.4. Simulations
The main outcome of interest is quarterly acquisition rates, in terms of number of acquisitions per 1000
patient-days. To evaluate the combined effect of uncertainty in transmission and seasonality on
acquisition rate, 1000 transmission-seasonality scenarios were created by sampling the mean probability
of transmission and seasonality strength from their respective distributions using Latin hypercube
sampling (LHS), assuming that mean probability of transmission and seasonality strength do not vary
across ICUs. For each scenario, a single ICU was simulated, and the simulation was repeated 300 times
using Monte Carlo methods. The number of simulation repetitions (i.e. 300) was determined by sampling
error minimization, which showed that the distribution statistics (sample mean and standard deviation)
converged when sample size was 300 or larger (electronic supplementary material, figure S3). In other
words, repeating ICU simulation for each of the transmission-seasonality scenarios for more than 300
times does not add more information to the mean and variance of model outputs, i.e. acquisition and
infection rates. Each ICU was simulated for 360 days after a 60-day burn-in period. An overview of the
methodology is illustrated in figure 1.
3. Results
3.1. Baseline results and validation
At baseline, with no seasonality effect, the mean acquisition rate was 45.55 (SD, 8.35) cases per 1000
patient-days. The 95% highest density interval (HDI) of acquisition rate extends from 30.55 to 62.05
cases, which agrees with the literature [23,36,37]. These statistics translate into an acquisition risk of 0
to 12.5% with an average of 9% per ICU hospitalization. Mean infection rate was 1.90 (SD, 0.57) cases
per 1000 patient-days (HDI: 0.76–2.76). Infection risk was 0 to 0.6% with an average of 0.4% per ICU
hospitalization (figure 2).

3.2. Simulation results
The effect of importation seasonality on the acquisition rate depends on the likelihood of transmission.
Importation seasonality may not have a significant effect on incidence when transmission is a low-
probability event (figure 3).

To better investigate the patterns in the effects of seasonality and stochasticity on acquisition rate, first
we categorized the simulations by the admission prevalence range, i.e. 0–5%, 5–10% and 10–15%
(figure 4). For comparable values of seasonality strength and acquisition rate, when admission
prevalence is higher, the effect of seasonality on acquisition rate increases. When admission prevalence
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is less than 5%, seasonality effects could only be detected when the seasonality strength was more than
50%, regardless of the acquisition rate value (figure 4a). For admission prevalence between 5 and 10%,
seasonality effects could only be detected when the seasonality strength was more than 40%
(figure 4b). Similar patterns were observed for higher admission prevalence values (10 to 15%).
Seasonality effects were detectable when the seasonality strength was more than 25% and acquisition
rate was more than 30 cases per 1000 patient-days. As acquisition rate decreased, the minimum
detectable seasonality strength increased such that for acquisition rates below 5 cases per 1000 patient-
days, the minimum detectable seasonality strength was 40% (figure 4c). The accuracy of the logistic
regression predictor of the detectable seasonality region (highlighted in figure 4) was 72–79%. In other
words, when the seasonality strength and baseline acquisition rate fall within the predictable
seasonality region, there is still an approximate 20–30% chance that the seasonality effect will not be
detected in the data. The reason is the effects of stochasticity which add noise to the observed
acquisition rate and weaken the seasonality signal in the data.

Theeffect of sample sizeon seasonalitydetection foradmissionprevalenceof less than5% is shown in figure5
(see electronic supplementarymaterial, figures S4 and S5, for the results for higher admission prevalence ranges).
In general, as the sample size increased, the detectable seasonality region expanded to smaller seasonality
strengths and acquisition rates. When admission prevalence was less than 5%, the detectable seasonality
region only appears when at least 80 ICU simulations were used in the U-test, i.e. for sample sizes of smaller
than 80 ICUs, no specific pattern was identified in the parameters of interest between the seasonality-
detectable and undetectable simulations. The detectable seasonality region did not change for sample sizes of
250 and larger. The accuracy of the seasonality detection predictor ranges from 69 to 75%.

For admission prevalence of 5–10%, the minimum sample size for seasonality detection was 50 ICUs,
while this was only limited to seasonality strength of 90% and more. The detectable seasonality region did
not change for sample sizes of 250 and larger. The accuracy of the seasonality detection predictor was 71–
79%. For simulations with an admission prevalence of more than 10%, similar patterns were observed.
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Figure 4. Detectability of seasonality effects as a function of baseline acquisition rate (cases per 1000 patient-days) and seasonality
strength of admission prevalence. Each data point represents a 365-day ICU simulation with the corresponding seasonality strength
and resulting baseline quarterly acquisition rate, where the green circles represent those simulations for which the seasonality effect
was detectable during the high season using the U-test, and the blue ones are simulations in which seasonality was undetectable.
The shaded area shows the results of the logistic regression predictor (the parameter space corresponding to the ‘true’ seasonality
detection predictor).
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Overall, when seasonality strength was less than 25%, no statistically significant relationship was
found between acquisition rate, seasonality strength, and seasonality effect detectability, regardless of
sample size and the level of acquisition rate. For seasonality strength of 20–40%, the seasonality effect
was only statistically detectable when admission prevalence was higher than 10% and sample size
was larger than 200 ICUs and acquisition rate was higher than 5 cases per 1000 patient-days.

The effects of sample size on seasonality detectability can also be studied based on the law of small
numbers [38]. For small sample sizes, the distribution of the consequent increase in acquisition rate due
to seasonality in admission prevalence has a higher variance. For example, when baseline admission
prevalence was 10–15%, a 100% seasonality strength was associated with an average of 2.57 cases (per
1000 patient-days) increase in acquisition rate and a standard deviation of 3.45 cases, when the
sample included only 5 ICUs. When 50 ICUs were considered, the mean and standard deviation were
2.06 and 1.96 cases, and for 250 ICUs, the statistics were 2.04 and 1.72 cases. Looking at the
cumulative probability distribution functions (CDFs) of the seasonal increase in acquisition rate due to
a 100% seasonality strength in admission prevalence (figure 6), the probability of an increase of more
than 5 cases was 83 to 91% when baseline admission prevalence rate was less than 5%, for different
sample sizes. However, when admission prevalence rate was 10–15%, the probability of an increase of
more than 5 cases was 20%, 7%, and less than 1% when sample size was 5, 50 and 250 ICUs, respectively.
3.3. Uncertainty analysis
We used partial rank correlation coefficients (PRCC) to evaluate the contribution of variability of input
parameters to the variability of outcome variables. The results show that the stochasticity in acquisition
rate is mainly due to the stochasticity in admission prevalence, probability of transmission between



100

ba
se

lin
e 

ad
m

. p
re

v.
 =

 0
–5

%
cu

m
ul

at
iv

e 
pr

ob
ab

ili
ty

80

60

40

20

0

100

ba
se

lin
e 

ad
m

. p
re

v.
 =

 5
–1

0%
cu

m
ul

at
iv

e 
pr

ob
ab

ili
ty 80

60

40

20

0

100

ba
se

lin
e 

ad
m

. p
re

v.
 =

 1
0–

15
%

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

80

60

40

20

0

0 2.5 5.0

5 10 50

7.5 10.0

absolute seasonal increase in acquisition rate
(cases per 1000 patient-days)

12.5 15.0 17.5 20.0

no. datasets

Figure 6. Cumulative probability distribution of the absolute increase in acquisition rate due to a 100% seasonality in admission
prevalence (i.e. a 100% increase in admission prevalence during the peak of the high season with respect to the baseline), for
different sample sizes (number of ICUs).

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230277
13
HCWs and patients, and probability of environmental contamination or colonization by HCWs and
patients. While for infection rate, admission prevalence and the probability of progression (from
colonization to infection) mainly contributed to stochasticity. Refer to the supplementary materials for
details.
4. Discussion
The distinction between epistemic and aleatory (stochasticity) uncertainties has important implications in
understanding the transmission of HAIs, as it helps to identify the sources of uncertainty which are
potentially reducible. Our simulations demonstrate that the inherent stochasticity in HAI transmission
weakens our ability to detect the effects of deterministic forces, such as seasonality, on the acquisition
rate. From a broader perspective, the amount of stochasticity is a critical driver in our ability to detect
the impact of an intervention on reducing the acquisition rate from baseline. Here, we used
seasonality in admission prevalence as an example of a (short-term) deterministic change to the
dynamics; however, our methodology and findings are intended to represent a framework for
evaluating the ability to detect the impact of interventions intended to alter the acquisition rate of HAIs.
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The core message of our findings is that due to the highly stochastic nature of HAI transmission, the

impact of changes in the environment (whether short-term seasonality effects or long-term interventions)
may not be readily detectable unless the size of the change is larger than a certain threshold (which
depends on the likelihood of acquisition) or more longitudinal or cross-facility data are compiled to
enable a more statistically reliable estimation of the impact. The fact that stochasticity is such an
important feature of transmission of HAI-causing pathogens helps to explain why interventions may
have different results through time and location. The underlying stochasticity in transmission of HAI-
causing pathogens also makes the impact of a change stochastic. In other words, it is difficult to
understand the characteristics of a random event with a highly irregular probability distribution by
taking only a limited number of observations. For example, for an infection control intervention that is
implemented in one or more ICUs, the corresponding impact on acquisition rate may vary across the
ICUs or for any single ICU through time. For evaluation purposes, longitudinal data from all the
ICUs should be analysed using uncertainty analysis techniques, such as our proposed framework, to
understand the probabilistic impact of the implemented intervention.

As our simulations suggest, to overcome the seasonality detection problem, we need to collect a
greater amount of data. Our framework presents a mechanism to assess the amount of required data
to detect the impact of changes in the environment on the acquisition rates in ICUs. For example, our
simulations show when the baseline acquisition rate is lower than 20 cases per 1000 patient-days, the
impact of seasonality in admission prevalence on the acquisition rate is more likely to be detected
when the seasonality strength is at least 30% (i.e. 30% increase in admission prevalence during the
high season). More accurately, our framework can be used to estimate the probability distribution of
the potential impact of environmental changes (see figure 6 for an example). Again, here, seasonality
is taken as an example measure of a change in the environment; however, we could model the
potential impact of any intervention in a healthcare facility and calculate the probability distribution
of detection for a given intervention size.

To demonstrate the application of our methodology to intervention evaluation, we simulated an
intervention that affected the mean probability of transmission. For generalizability, we did not
implement a specific intervention, rather we changed the mean probability of transmission after a pre-
determined intervention time. As the baseline acquisition rate, intervention size, and the number of
ICUs in the analysis (sample size) increased, the impact of the interventions became more statistically
detectable (figure 7). As an example, for an intervention that could reduce the probability of
transmission by 50%, the impact of such an intervention could not be detected with a sample size of 10
ICUs or smaller. With a 20-ICU sample size, the impact of the intervention could only be detected
when baseline acquisition rate was at least 30 cases per 1000 patient-days. Increasing the sample size to
50 ICUs could successfully increase our statistical power to detect the impact of the intervention even
when acquisition rate was lower than 15 cases per 1000 patient-days. Furthermore, with a 5-ICU sample
size, the expected (median or 50-percentile) and 95-percentile impact of the intervention was estimated
to be 5.5 and 0.0 cases per 1000 patient-days reduction in acquisition rate, respectively, while increasing
the sample size to 300 or more ICUs revealed that such an intervention should be expected to reduce
acquisition rate by 7.5 and 2.8 cases per 1000 patient-days, at 50- and 95-percentile, respectively (figure 8).

Understanding the amount of data needed to overcome the stochasticity effect and detect the impact
of interventions on lowering the acquisition rate is crucial for deciding what types of interventions to
invest in. This is not hospital or ICU independent but depends crucially on the epistemic uncertainty
in operations at the healthcare facility. Greater data capture of facility operations, including items such
as HCW–patient contact rates, colonization prevalence, and handwashing adherence and effectiveness,
can reduce the epistemic uncertainty, which may reduce the data compilation needs. For example,
based on the uncertainty in the model and the inherent stochasticity in the system, our simulations
suggest that data from at least 50 ICUs would be needed to detect seasonality effects with statistical
robustness. However, the ICUs in this case were fairly generic representations of actual ICUs. Though
based on data from actual hospitals, there was still a significant amount of uncertainty in many
parameters, such as the probability of room and hand colonization and even the rate that nurses visit
patients. Development of a more accurate synthetic population would reduce the epistemic
uncertainty, and studies that can provide greater understanding of the actual colonization prevalence
would likely reduce the required number of ICUs needed to detect a change in the underlying
dynamics. Future work will assess the potential of utilizing hospital specific data to better understand
the requirements for detecting the impact of interventions.

In conclusion, our findings help explain why certain interventions show inconsistent results through
time or across different ICUs. In addition, our framework can be used to provide decision-makers with
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insights about the minimum required size of interventions given the estimated rate of acquisition in a
healthcare facility. The framework can also be used to understand which data elements have the
greatest impact on epistemic uncertainty and can be leveraged to reduce the threshold for intervention
detection. Furthermore, it can help justify (or invalidate) the application of simpler deterministic
macro-scale models, such as compartmental models, to study transmission at the community–hospital
interface and evaluate the long-term impact of interventions, given the level of stochasticity in the
system. The compartmental susceptible–infected–recovered (SIR) models have been extensively used
to study the transmission of infectious diseases. While these models are great tools that are simple to
understand and use, they disregard the effects of stochasticity and heterogeneity by assuming
deterministic parameters and homogeneous populations. Therefore, they are not suitable for the study
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of HAI transmission at the facility level due to the underlying high degrees of stochasticity. Our

framework can be used to inform the scale (number of ICUs) at which the collective patterns in HAI
data converge (e.g. effects of seasonality or impacts of intervention), hence, potentially enabling the
application of simpler macro-scale deterministic SIR models.
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