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PREFACE.

This manual represents the latest step in the development of a

course in physics for Freshmen at the University of California under

the direction of Professor Slate; the modifications of previous texts

are not radical, but reflect the present instructor's views of what is

suitable for the freshman class at this time. There is no serious

claim to originality, either in subject matter or in method of pres-

entation, both of which are largely those of the late Professor

Whiting, and of Dr. A. C. Alexander, who, until recently, gave the

instruction in this course.

The course has been modified by decreasing the time of instruc-

tion in the laboratory from two three-hour periods a week to two

periods of two hours, and instead of one lecture there are now two
recitations a week. By this change it is hoped that the students will

get a better grasp of the principles involved in the experiments.

Among the main points by which this manual . differs from its

predecessors are the following:

Because the laboratory period has been reduced from three to

two hours, some of the exercises have been shortened.

The details of a considerable number of exercises differ from those

of previous texts, and many of the experiments have been entirely

rewritten, although treating in general of the same principles as

heretofore, v/ith a few exceptions.
More emphasis is given to the graphical representation of results.

Where possible, the principle of an experiment is summarized in

an equation by the student.

Optional experimental parts of an exercise have been removed,
due to the shorter laboratory period, and also because in practise
this has been found by the author to be of questionable benefit in

large elementary classes for which the ratio of the number of students

to the number of instructors is great.

In place of the optional portions are put questions or problems
that the student may solve outside of the laboratory, if he finishes

the experimental part only in the regular period.

Questions are occasionally appended to an exercise that require
a knowledge of principles developed in the class room, or reference

to some standard descriptive work.

Finally, the exercises have been arranged in four groups of eleven

(iii)
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IV PREFACE.

each, the exercises of each group being so written that the student,

with the aid given in the recitations, may intelligently begin with

any one. Although in certain instances there is an apparent lack of

sequence, yet, on the whole, this system seems more efficient than

the one previously in vogue, in which the students were started by

eights in succession, when in a section of eighty students some were

six weeks late in starting. By the new arrangement two weeks are

gained in every eight, when all the students may devote their time to

back work.

The author is indebted to the members of the Physical Depart-
ment for helpful advice, and especially to Mr. C. A. Kraus, who has

aided in many ways the preparation of these notes.

GEORGE K. BURGESS.
Berkeley, July, 1902.
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GENERAL DIRECTIONS.

BEGINNING WORK. The class will be divided into four sec-

tions, each having two laboratory periods per week of two hours,

preceded by a recitation, for which each section will be divided

into halves.

The laboratory work includes forty-four exercises, divided into

sets of eleven. As soon as registered, each student will report

at the laboratory in East Hall and will be assigned to one of the

first eleven experiments. He will then perform in succession at

the following exercises the cycle of eleven experiments. Exam-

ple: A student assigned to the yth experiment will perform the

first eleven in the order 7, 8, 9, 10, n, i, 2, 3, 4, 5, 6. Two
weeks will be allowed at the close of this cycle for the correction

and completion of work. A new set of experiments will then be

mounted, and it will then be impossible to reperform any of the

first eleven experiments this year.

IN THK LABORATORY. The following directions are necessi-

tated largely by the size of the class.

Students will work in pairs and may choose their partners.

Each student however will be required to take a separate set of

observations for each experiment and to write up his notes inde-

pendently. All data must be recorded at the time of observation

in the note-book and not on scrap paper.

In general, at least three independent observations of each

quantity measured are to be taken and every observation recorded

when it is taken. Notes are to be neatly arranged (see sample

note-book) and observations recorded so as to be distinct from

descriptive or other written matter, and when practicable results

should be tabulated.

Concise but clear answers are wanted to questions asked; all

inferences should be in the words of the student, and demonstra-

tions should be complete. Fractions are to be expressed as

decimals, and calculations given in detail.

(vii)



8 GENERAL DIRECTIONS.

For the heading of sheets, name, date, etc., consult sample

note-book; the arrangement there indicated must be exactly

followed. Separate sheets of a single exercise are to be fastened

securely together; turned over corners will not be accepted.

PLOTTING. In several exercises the results are to be expressed

graphically on plotting paper. When the data permits, such

scales for plotting should be chosen as will give a line extending

diagonally across the paper. Observed points on the curve

should be indicated by crosses and not by dots or circles. The
known quantity is to be plotted horizontally and the quantity to

be studied, vertically. Plots should be carefully drawn and

properly labeled. In general, a smooth line drawn among the

points corresponding to observations best represents these obser-

vations. For further details of construction of a plot, see sample
note-book.

PROBLEMS. A certain number of problems will be assigned

during the year. They are to be worked on laboratory paper
and the carbon prints are to be handed in.

TRIGONOMETRICAL RELATIONS. For those students who are

not familiar with the elements of trigonometry, the following

definitions will suffice.

A

Consider a right-angled triangle ABC of sides a, b, and c.

The various trigonometrical functions are most conveniently

defined in terms of the parts of such a triangle.

The sine (written sin) of an angle is the ratio of the opposite

side to the hypothenuse.

sin A = ~ and sin G=*
b b
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The cosine (written cos) is the ratio of the adjacent side to the

hypothenuse.
. c

,
~ a.

cos A = r and cos C = .-

b b

Evidently also

cos A=sin C and sin Ar=cos C.

a=b cos C=b sin A, c=b cos A=b sin C.

The tangent (written tan) is the ratio of the side opposite to

the side adjacent.

a c.
tan A=- and tan C -

c a

Also
sin A sin C.

tan A=--- -and tan C~ >

cos A cos C
For very small angles the sine and tangent may be replaced

by the angle itself.

UNFINISHED WORK. At the close of a laboratory period the

student will present the carbon print of his notes to the instructor,

-and if the exercise has not been finished, the records will be

stamped with the date, and the exercise may be completed later,

but is to be handed in complete within two weeks after the date

last stamped upon it, otherwise it must be repeated. All experi-

mental data taken out of the laboratory must be stamped.
In general, a student will have ample time to complete the

experimental part of any exercise in a laboratory period; but if

pressed for time, calculations, inferences, demonstrations, and

answering of questions may be performed outside of the labora-

tory, as above indicated. No experiments which are taken home

and for which the data have been changed will be accepted.

Corrections are to be made in the manner indicated in the sample
note-book.

GRADES. The following system of marking will be used:

i . Excellence.

2. Satisfactory.

3. Deficient in inferences, proofs, or answers to questions.

4. Repetition of part of experimental work required.

5. Repetition of whole exercise required.
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Unsatisfactory work will be returned for correction. All defi-

cient exercises are to be raised to grade 2, otherwise the grade

INCOMPLETE will be given for the term's work.

ORDER AND BREAKAGE. Those working at any exercise will

be held responsible for the apparatus used and will be expected

to leave it in good order when through. Breakages should be

reported to the instructor.

GROUP I.

In some of these experiments mercury is used. Care must be

taken not to spill it, and all metals should be kept away from it.

Refer to the sample note-book for suggestions as to arrangement

of data and writing of notes. In general, seek to finish the

experimental work in the time allowed, leaving computations and

answers to questions to be done outside of the laboratory if

pressed for time.

i. LIQUID PRESSURE AND DENSITY.

I. Clamp a U-tube in a vertical position to a burette stand,

with the bend of the tube resting on the table. Pour into this

tube enough mercury to stand about 5 cm. above the table in

each arm. Then pour into the longer arm enough water to

stand about 13.6 cm. above the end of the mercury column.

Work out all air bubbles with a fine wire, and mop up any

water resting on the mercury in the short arm with a bit of

blotting-paper tied to the end of the wire. Measure the

heights above the table of the ends of the mercury and water

columns, measuring as nearly as possible to the center of the

meniscus in each case. Are the liquids in the two branches

at the same level? If not, why? What differences are

there between the shapes of the free ends of the two columns?

Account for these differences.
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Find the length of the mercury column that balances the

water column, and also the ratio of the two balancing columns

(water column to mercury column).

II. Fill the longer arm of the U-tube nearly full of water,

and measure the length of the water column, and also of the

mercury column that balances it. Find again the ratio of the

balancing columns. Is it the same as in I? This ratio will be

shown to be equal to the specific gravity of mercury.
III. Fill one of the two beakers, or jars, with water, and the

other with a saline solution. Place a leg of an inverted Y-tube

in each of the liquids Cautiously draw the liquids up in both

legs by suction, and close the stem of the Y air tight. Why
is the liquid higher in either branch than in the corresponding

open vessel? Measure the height of each column of liquid

above the level of the liquid in the open vessel. Is it the same

for both liquids, or not? Why?
Does it make any difference if the branches of the Y-tube

are not of the same diameter, or are not held vertically ?

Calculate the specific gravity of the saline solution.

IV. Fill the two branches of a W-tube, one with water and

the other with wood-alcohol. This should be done by pour-

ing the liquids into them alternately, a small quantity at a

time. Why is it necessary to observe this precaution in

filling?

Make the proper measurements and calculate the specific

gravity of the wood-alcohol. Draw diagram in illustration.

Why is it unnecessary to have the ends of the columns at the

same level?

V.' Answer the following questions:

1. To what class of liquids is the method of the U-tube

inapplicable? Why?
2. In the case of highly volatile liquids, what advantage has

the method of the W-tube over that of the Y-tube ?

3. Which of the three do you consider to be the most general
method?
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VI. Distinguish between specific gravity and density.

If pressure is defined as force per unit area, form an equation

expressing the equality of pressures of the two liquids in the

arms of the U-tube and show that the heights are inversely as the

densities; and that when water is used in one arm, the ratio of

the heights is the specific gravity of the other liquid. Show that

for a liquid, pressure is proportional to depth.

VII. Calculate the total outward pressure of a cube of mercury
20 cm. on a side. What is the weight of this mercury?

2. VAPOR PRESSURE AND DALTON'S LAW.

I. Take a closed tube, at least 80 cm. long, and wipe it clean

and dry with a swab tied to a long and stiff wire. Then fill it

with mercury by means of a small funnel.* Close the open end

with the thumb and invert the tube in a reservoir of mercury.

After removing the thumb, does the mercury in the tube fall to

the same level as the mercury in the reservoir? If not, why
What is meant by the barometric pressure?

* Observe the following directions in filling the tube and removing air

bubbles:

Fill to within a couple of cm. of the open end. Close with the thumb
and invert a number of times, gathering all the air bubbles adhering to

the sides into one large bubble. Then hold erect and fill completely,

pouring the mercury in slowly and working out all air bubbles with a

fine wire. Again invert in the reservoir. (The amount of air in the tube

can be observed by tilting it until the closed end is about 70 cm. above

the table.) To further remove the air, place the thumb tightly ov.er the

open end of the tube while in the reservoir, and then raise and carefully

invert it a number of times, letting the partial vacuum pass slowly from

one end of the tube to the other, and finally, holding it erect with the

open end up, take the thumb off and fill completely, as directed above.

This operation should be repeated until the air bubble seen when the

tube is tilted has been reduced to the smallest possible size. The height
of the mercury column ought now to agree, writhin one cm., with the

barometric reading for the day. If it does not so agree, repeat.
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Measure the height of the mercury in the tube above that in

the reservoir. Is it the same as the height of the barometer? If

it is not, explain why.
II. Having measured the height of the mercury column

above the level of the mercury in the reservoir, draw as much
ether as possible into a medicine dropper, and, inserting it

into the reservoir under the open end of the tube, introduce a

few drops into the tube, taking great care not to introduce any
air. Introduce enough so that some of the liquid will remain

unevaporated on top of the mercury column. Describe in detail

what takes place when the ether is introduced. Does the ether

all evaporate, or does it cease to evaporate after a certain amount

has been introduced? Explain why. When is a vapor said to

be saturated ?

After waiting 10 minutes for the ether vapor to come to the

temperature of the room, measure the height of the mercury
column. Why is it less than before the introduction of the ether?

What do you find to be the pressure of the ether vapor, in cm. of

mercury, at the temperature of the room ? (Record this tem-

perature.)

III. (.) Pour more mercury into the reservoir, leaving

enough space for the mercury in the tube when it is taken out.

With the tube resting on the bottom of the reservoir, measure

again the height of the mercury column, and also the length of

the tube occupied by the ether vapor.

(.) Raise the tube so that its lower end is just below the level

of the mercury inthe reservoir and after a few minutes repeat

the measurements of (a).

(V.) Answer the following questions:

1. Was the pressure of the ether vapor in (a) the same as

in ()?
2. Was its volume the same ?

3. The temperature being kept constant, do you find the

pressure of saturated ether vapor to depend on its volume,
or not?
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IV. Remove the ether from the mercury by wiping its surface

with a piece of clean blotting-paper and then passing it through
a pinhole at the point of a paper filter. Pour the mercury into a

I5o-cm. bottle with a rubber stopper, to a depth of 2 or 3 cm.

Be sure that the bottle is clean and dry and free of ether vapor.

(If there is any ether vapor in the bottle, it can be removed by

inserting a tube and blowing it out.) Insert the short arm of a

U-tube, at least 50 cm. long, through the rubber stopper. See

that the stopper fits closely into the mouth of the bottle and press

it in as tightly as possible. Invert the bottle, taking care not to

entrap any air in the mercury column. Resting the bend in the

tube on the table, measure the height of the mercury in the tube

above, or below, its level in the bottle. Four ether into the tube

so as to stand in an unbroken column 15 or 20 cm. deep, and

attach a rubber bulb to the open end of the tube. By pressing

the bulb, force a little of the ether into the bottle, taking care not

to force in any air. What is the effect of introducing the ether?

V. Force in about 15 cm. of the ether in the tube so that the

ether in the bottle is at the same level as the mercury had been

before, or a trifle above this level. The volume of the mixture of

air and ether vapor being approximately the same as the volume

of the air before the introduction of the ether, how does the

pressure within the bottle compare with the pressure when it

contained air alone ? Did the evaporation cease immediately

after the introduction of the gasoline, as in III? If it did not,

explain why. What do you find to be the effect of mixing ether

vapor with air, the volume being kept constant ?

Watch the mercury column and see that its height becomes

constant before taking the measurements in VI. The mercury

ought to become stationary in 15 minutes.

VI. Find by appropriate measurements the increase of pressure

within the bottle over the pressure before the introduction of the

ether. What does this increase of pressure represent? How
does it compare with the pressure of ether vapor when unmixed

with air as determined in II ?
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Observe and record the temperature of the room. Is it the

same as when II was performed? How would any difference in

temperature affect the pressure of the ether vapor?

According to Dattori s law the pressure of any vapor, or gas,

in a gaseous mixture* is the same as it would be if it occupied
the space alone. Do the results obtained in VI and in II tend to

confirm the truth of this law ?

VII. Calculate in dynes per square centimeter the barometric

pressure, also the pressure of the ether vapor in II, in the same

unit.

Is evaporation a cooling or a warming process? Explain.

3. VARIATION OF VAPOR PRESSURE WITH
TEMPERATURE.

I. Fill a deep hydrometer jar with water at about 55. When
the water has cooled to 48 (not before) set in the jar a closed

U-tube with a few cm. of ether, free of air bubbles, f in the closed

end, and at least 50 cm. of mercury in the rest of the tube.

The mercury before inserting in the water should stand a few cm.

lower in the open arm than in the closed, and there should be

enough water to completely cover the ether. Describe what takes

place when ether is warmed in this way.

Suspend a thermometer in the jar on a level with the ether and

read the temperature of the water. J At the same time measure

*Dalton's law does nut apply to a mixture of gases, or vapors, that

act on each other chemically, or to a mixture of vapors from liquids that

are mutually soluble.

flf there is any air above the ether, ask to have it removed.

JTo read a thermometer accurately, the observer's eye should be

placed so that the first degree mark below the top of the mercury coin-

cides with its reflection in the mercury. The fraction of a division

above this mark should be carefully estimated and recorded in tenths of

a degree.



16 VAPOR PRESSURE AND TEMPERATURE. [3

the difference in level between the mercury in the two arms of the

U-tube. Do this as accurately as you can by placing a metre rod

against the side of the jar and sighting across the top of each

mercury column. It will injure the rod to put it into the water.

Using this last measurement and the barometric pressure for the

day, find the pressure, in cm. of mercury and in dynes per square

centimetre, of the ether vapor within the closed arm of the tube.

Stir thoroughly when taking readings.

II. If necessary, siphon off a small quantity of the water and

replace it with enough cold water to lower the temperature about

3 or 4 degrees, not more. Repeat the measurements of the last

section.

In this way make a series of some ten observations of the tem-

perature and pressure of the ether vapor, cooling it down to the

temperature of the room or lower.

III. Plot the results of I and II on co-ordinate paper and draw

a smooth curve to show the relation between the pressure and

temperature of ether vapor.

Do you find the pressure of the ether vapor to vary uniformly
with the temperature or not ?

IV. Take some ether in a small test-tube and immerse it in

water at about 30, adding hot water gradually until the ether

begins to boil. A small, clean tack or other sharp-pointed object

placed in the ether will facilitate boiling. Record the tempera-
ture of the ether when it first begins to bubble as the boiling

point.

Find from the plot obtained in III the temperature of ether

vapor when its pressure is equal to the barometric reading for

the day. How does this agree with the boiling point of ether

just found ? What relation may one infer exists between the

temperature at which a liquid boils and that at which the pres-

sure of its vapor becomes equal to the atmospheric pressure?

Explain.

V. Write not less than one hundred words on the properties of

saturated vapors. Explain the phenomenon of boiling.
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4. BOYLE'S LAW AND VOLUMENOMETER.

I. With the Boyle's law apparatus take a set of five readings

of pressure and of corresponding volumes, covering the range of

the apparatus. To the difference in mercury levels what quantity

must be added to give the total pressure on the inclosed gas?

Assuming the tube to be of i cm. section, plot applied pressures,

i. e., the difference in mercury levels, in terms of reciprocals of

volumes. What does this plot show to be the relation between

the pressure and volume of a gas when the temperature is con-

stant? Produce the line drawn until it cuts the pressure axis

and compare the intercept on the pressure axis with the barom-

eter reading.

II. Unscrew the iron cap of the volumenometer and by raising

or lowering the open tube adjust the level of the mercury in the

other tube to some point between the middle and the upper
marks. See that the iron cap is empty and replace it, screwing

it down air-tight.

Test the apparatus to see that it is air-tight. (Describe how

you do this.)

Notice that there are three horizontal marks on the closed tube

and that the mass of mercury that fills this tube between each

pair of marks is recorded on the apparatus, so that the volumes

between the marks may be calculated. The density of mercury
is 13.6. Find the volume of the air enclosed above the middle

mark by noting the change in volume when the mercury is set at

the upper and at the middle marks and also the accompanying-

change in pressure. Two equations may thus be formed, one

giving the difference in volumes between the upper and lower

marks and the other the ratio of these two volumes (in terms of

the ratio of the pressures).

Write these equations and find volume called for.

III. Introduce a piece of iron into the iron cap and find as in

II the volume of the inclosed air to the middle mark. Calculate

2



1 8 PRESSURE OF GAS AT CONSTANT VOLUME. [5

the density of the piece of iron, after finding its mass, explaining

the process you use and writing out the equations.

IV. Repeat II and III, using the middle and lower marks,

and compare results.

5. PRESSURE OF GAS AT CONSTANT VOLUME.

I. Set a metre rod in a vertical 'position alongside the open
tube of a simple constant-volume air thermometer with a fixed

bulb. Fill the space about and above the bulb with water at

about 5 or 10, and stir continuously. Allow ten minutes for

the, inclosed air to come to the temperature of the bath, and then

raise or lower the open tube so as to bring the mercury in the

stem of the bulb to the bottom of the tube through which the

stem is thrust. Read on the metre rod the heights of the two

mercury columns, and take the temperature of the bath, stirring

all the while.

II. Draw off some of the water and replace it with warmer

water so as to raise the temperature of the bath about 10.*

After waiting ten minutes, repeat the operations and measure-

ments of I.

In this way make a series of observations on the pressure and

temperature of the inclosed air, raising the temperature about to

at a time, and carrying it as high as can be conveniently done

with boiling water. Arrange the results in tabular form. How
did the pressure of the inclosed gas (air) alter as its temperature

increased? Was the rate of change uniform?

III. Calculate the average increase in pressure for a rise of one

degree in temperature. If no observation was made at o, calcu-

late from your results, using the atmospheric pressure for the day,

the pressure that the gas would have at o, if its volume was kept

*Do not try to obtain a rise of exactly 10 in temperature. Better

results can be obtained and time saved if the bath is raised a trifle over

10 and then stirred till the inclosed air has had time to come to the

same temperature as the surrounding water, whatever that may be.
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constant. Find the ratio of the average increase in pressure per

degree to the pressure at o.

Calling P the pressure at o, Pt the pressure at /, and a the

ratio just found, write the equation connecting the pressure and

temperature of a gas when the volume is constant.

IV. Plot the results of II, plotting the temperatures as abscissae

and the pressures as ordinates.

Draw the straight line that agrees most nearly with the points

located on the plot. Find the rise of this line (/. e. ,
the increase

in pressure of the gas) for the change of 100 in temperature, and

also, from the plot, the pressure of the gas at o. From these

calculate the ratio of the increase in pressure per degree to the

pressure at o. How does this agree with the result found in

III? Why should this last be the more reliable of the two

results?

V'. What would be the pressure of a gas at 273 C.
, suppos-

ing there was no change of state or volume ? If the pressure

of a gas depends on the motion of its molecules, would the mol-

ecules have any motion at 273 C.? Then, as heat is the energy
due to molecular motion, according to this reasoning could a gas
be cooled below 273 C.?

This temperature is called absolute zero. The temperature
measured in Centigrade degrees from absolute zero is called the

absolute temperature.

6. EXPANSION OF GAS UNDER CONSTANT
PRESSURE.

I. Fill the space about the closed tube, or bulb, of the air

thermometer with ice-cold water. Set the slider at the zero of

the vertical scale, and adjust the mercury columns so that the

mercury in both tubes is at the level of the lower end of the

stuffing box. (The mercury column can be set quite accurately

by sighting across the end of the brass tube surrounding the

glass. ) Read the volume of the inclosed gas (air) and take the

temperature of the water bath, stirring thoroughly.
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II. Raise the temperature of the bath as in Exercise 5, II,

about 10 at a time, and repeat for each temperature the opera-
tions and measurements of I, waiting ten minutes between suc-

cessive temperatures to allow the air to take on the temperature
of the bath. What was the pressure of the inclosed air in each

case ? Was it the same ? Was the expansion of the air uniform ?

Arrange the results in tabular form.

III. Calculate the average expansion for a rise of one degree in

temperature. If no observation was made at o, calculate from

your results the volume that the gas would have had at o. Find

the ratio of the average expansion per degree to the volume at

o, in other words, the cubical coefficient of expansion between

o and i.

Calling V the volume of a gas at temperature o, V
t
the

volume at t, and a the coefficient just found, write the law of

expansion of a gas at constant pressure in the form of an equation.

This is called the law of Charles or Gay-Lussac.
IV. Plot the results of I and II on co-ordinate paper, plotting

the temperatures as abscissae and the volumes as ordinates.

Find from this plot, by the method of Exercise 5, IV,

the expansion for a change in temperature of 100 and the

volume of the gas at o. Calculate from these the coefficient of

expansion between o and i. Is the result the same as that

obtained in III ?

V. When experiments 4, 5 and 6 have been performed, hand in

a paper of at least two hundred words on the properties of gases.

7. SPECIFIC HEAT.

I. Weigh out about 300 gr. of lead shot and heat it in a

double boiler. After the water begins to boil, stir the shot thor-

oughly with a wooden paddle, continuing until the temperature
of the shot becomes constant.

Have ready about 75 gm. of water (weighed to 0.5 gm.) at a

temperature of 5 to 10, in a calorimeter of known mass.
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Note carefully the temperature of the shot (stirring) and of the

water (stirring), and as quickly as possible pour the shot into the

water, stirring vigorously all the while and note the rise in tem-

perature of the water. Read the temperature of the mixture

every half minute for five minutes, counting from the instant of

mixing.

From the results obtained calculate:

1. The number of heat units gained by the water, using as

heat unit the calorie or the heat required to raise the temperature

of one gramme of water one degree.

2. The number of heat units lost by the shot (in terms of s,

the specific heat of lead) or the ratio of the heat required to raise

i gm. of lead one degree to that required to raise i gm. water

i.

Assuming that the shot and water are alone concerned in the

transfer of heat, what relation exists between the heat lost and

gained by the shot and water respectively ? Write the equation

representing this relation and calculate the specific heat of lead.

II. Calculate from this result, using above equation, the mass

of water which would have brought the mixture to a temperature

two degrees higher than that of the room.

Repeat I, using this mass of water and the same amount of

shot as before and other conditions also the same as in I.

Why should the latter result be the better ?

III. The result found in II is to be corrected for the heat lost

to cup, assuming the specific heat of the cup to be 0.095; a d

also corrected for radiation as follows:

Construct a plot with times as abscissae and temperature of

water and mixture as ordinates; project the line (which should

be straight if the stirring has been thorough), representing the

temperatures of the mixture, back until it cuts the ordinate at the

instant of mixing. This ordinate will be approximately the true

temperature of the mixture. Why ?

Write the complete equation involving all of the above quanti-

ties and recalculate the specific heat of lead.
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IV. If the water at the start had a temperature higher than

that of the room, would the value of s found have been high or

ow ? Explain.

If one gramme of water were spilt in stirring, what would be

the effect on the value of s ?

8. LATENT HEAT.

I. Weigh out in a metal cup, which has been previously

weighed, at least 500 gm. of water at about 30. After record-

ing the exact temperature of the water, take a piece of ice (about

loo gm.) and place it in the cup, first wiping it carefully with

damp cotton. Stir the mixture thoroughly and take its tempera-
ture just as the ice disappears.

Having previously weighed the water, the mass of the dry ice

used can be found by weighing the mixture and subtracting the

mass of the water.

II. Calculate in order the following quantities, using the same

unit of heat as in Exercise 7 :

1. The heat lost by the water surrounding the ice.

2. The heat lost by the cup. (In calculating this quantity

it will be sufficiently accurate to take the specific heat of the metal

as 0.095.)

3. The heat required to raise the water from the melted ice

from o to the temperature of the mixture.

4. The total heat absorbed by the ice in melting.

5. The heat absorbed by each gramme in melting.

The latter quantity is called the latent heat of fusion of

water.

III. Fill a small copper boiler about two-thirds full of water

and insert through the cork stopper a safety-tube with an opening
about 2 cm. from its lower end. Connect to the boiler a rubber

tube with a trap for collecting the water condensed in the tube

and a delivery-tube 4 or 5 cm. long. Bring the water in the

boiler to a boil. (If at any time steam issues vigorously from the
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safety-tube, it means that the water is low and the boiler needs

refilling.)

Weigh out about 500 gm. of ice-water in a metal cup of known

mass, and take its temperature. Empty the water out of the trap

and hold it so that the end of the delivery-tube is immersed

in the ice-water. Stir and observe the temperature as it rises.

When the temperature reaches a point two-thirds as much above

the temperature of the room as the original temperature of the

ice-water was below, remove the delivery-tube. Stir and take

the temperature again carefully. Replace the cup on the balance,

and find the increase in the mass of the water due to the steam

that has been condensed.

IV. If the temperature of the water was two-thirds as much
above the temperature of the room after the condensation of the

steam as it was below before the introduction of the steam, we

may safely neglect the effect of the air and surrounding bodies, for

the cup will lose to the room, by radiation and conduction, as

much heat in the latter part of the experiment as it gains from

it in the first part. Using the same unit of heat and the same

value for the specific heat of the metal cup as in II, calculate in

order the following quantities:

1. The total amount of heat imparted to the water and the

cup.

2. The heat given out by the water from the condensed steam

in cooling from 100 to the temperature of the mixture.

3. The total amount of heat given out by the steam or water

vapor in changing from the state of a vapor to that of a liquid.

4. The heat given out by each gramme of water vapor in

changing from the gaseous to the liquid state.

The latter quantity is called latent heat of vaporization of

water.

5. Write the equations representing this experiment.
V. Write at least one hundred words on the phenomena of

fusion and evaporation.
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9. MECHANICAL EQUIVALENT OF HEAT.

I. Take two bottles and put in each of them a kilogramme of

lead shot. Place these bottles in a mixture of ice and water.

When the shot in one of the bottles has cooled about 3 below

the temperature of the room, shake it thoroughly, and pour it

into the tube provided, about one metre long, and close the end

of the tube securely after taking the temperature of the shot by

inserting a thermometer. Raise the end of the tube containing

the shot with sufficient velocity to keep the shot from falling, and

when it reaches a vertical position, let the shot fall vertically, like

a solid mass, through the length of the tube. Repeat this again
and again, keeping count of the number of times the shot falls.*

After the shot has fallen through the length of the tube a

hundred times, insert a thermometer through a side opening, and

take its temperature again. Why has the temperature of the

shot risen above that of the room ?

II. Replace the shot in the ice-water to cool, and while the

tube is still warm, repeat the operations and measurements of I,

using the shot from the other bottle, which should be about 3

below the temperature of the room. (Its temperature can be

raised by shaking the bottle, if it is too low.) Repeat the

experiment in this way, cooling one bottle of shot while using

* PRECAUTIONS, ETC. The shot should not be raised too suddenly, so

as to throw it violently against the side of the tube, nor should the tube

be raised or lowered so as to lengthen or shorten the distance fallen

through by the shot.

It is well, also, to hold the tube about a foot from each end, so that

there is no danger of any heat being imparted to the shot from . the

hands. The following method of raising the shot and reversing the tube

is recommended: Lay the tube on the table, and raise the end contain-

ing the shot, while the other end rests on the table. Let the shot fall,

and then lower the raised end. Raise the other end, which now con-

tains the shot, and let the shot fall again. Then lower this end, and

again raise the end which contains the shot; and so on.



ID] SURFACE TENSION. 25

the other, making five determinations and using the average

result in what follows.

III. Remove the stopper and measure the distance from the

inner end of the stopper to the top of the shot. What is the

average distance fallen through by the shot in each reversal of

the tube? Explain. In one hundred reversals? How far would

the shot have to fall to raise its temperature one degree? How
for would one gramme have to fall to raise its temperature the

same amount (one degree) ? How much work, in ergs, would

be required to raise one gramme of shot one degree in tempera-

ture? The specific heat of lead is about 0.032. Using this,

calculate, in the ergs, the amount of work necessary to raise one

gramme of water one degree in temperature. This last quantity

is called the mechanical equivalent of the heat unit.

IV. Write the equation representing this exercise.

What are the chief sources of error in the experiment?
V. Power is the rate of doing work, and may be measured in

ergs per second, or in watts, which is io
7

ergs per second.

io
7

ergs is a joule. Calculate the work done in joules by the

shot falling 100 times the length of the tube, and if this operation

akes 3 minutes, calculate the power developed in watts.

io. SURFACE TENSION.

It is of capital importance that the rectangles and beakers used

in this exercise be clean. They should be thoroughly washed in

hot water before being used and for every change from one liquid

to another.

The Jolly balance should be read by bringing a definite point,

as the lower end of the spring, in a horizontal line with its image
in the mirror. The reading is facilitated by bringing a card

pierced with a small hole (3 mm. in diam.) close before the eye
and standing in front of the scale at such a distance that the

object and image are seen sharply focused at the same time.

I. Fill a beaker, about 7 cm. in diameter, with a solution of
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soap in water. Replace the pans of a Jolly balance by a wire

rectangle 2 cm. wide, hung vertically, and hold the beaker so

that the rectangle is immersed to a certain definite depth in the

soap solution. See that there is no soap film within the rectangle,

and read the balance.

Let the rectangle dip in the soap solution so that a film is

formed within it. Raise or lower the beaker so that the rect-

angle is immersed to the same depth as before and again read

the balance. What difference does the presence of the film make

in the reading of the balance ? To what force is the elongation of

the spring due?

Take four independent sets of readings.

II. Repeat the measurements of I, using rectangles about 4

and 6 cm. wide. How do you find the tension of the film to

vary with its width ?

III. Find the elongation of the spring produced by a small

known weight, some fraction of a gramme. How does the

elongation vary with the force producing it? Test this.

Calculate the tension in dynes (980 dynes=weight of one

gramme) of each of the three films in I and II. As a film has

two surfaces, the width of the surface in apparent tension,

neglecting that about the wires, will be equal to twice the width

of the rectangle. Using this, calculate in dynes the average
tension of the soap solution across each cm. of the surface.

The tension across a unit length of the surface of a liquid is

called the surface tension of that liquid.

IV. Clean the beaker and rectangle thoroughly, and repeat

the measurements of II with water fresh from the faucet.

As a film can not be formed with pure water, take the reading

of the balance when the upper side of the rectangle is just above

the surface of the water and again when it breaks away from this

surface. The force measured in this way may be regarded as due

entirely to surface tension, although this is not strictly true.

Take four sets of readings.

Calculate the surface tension of the water. How does it com-

pare with that of the soap solution?



Il] PRINCIPLE OF MOMENTS. 2J

V. Using the same rectangle, find the surface tension of hot

water from the heater at the sink. Does the temperature affect

the surface tension appreciably, and how ?

VI. If the rectangle 4 cm. wide carries a soap film 2 cm. high,

what is the work done in forming this film? What is the energy

per square centimeter of this film ? How does this quantity

compare with the surface tension?

ii. PRINCIPLE OF MOMENTS.

I. (#.) Attach a light metal frame to the table so that it can

rotate freely about a pivot.
'

Fasten two spring balances to the

frame with twine, at equal distances on opposite sides ol the

center, and draw them out so that they are parallel. Read the

balances. Does a force produce the same effect if transferred

along its line of action ? How test this?

Pull one of the balances out until the tension is doubled,

keeping them still parallel. What does the other balance regis-

ter? When a force tends to produce rotation about a pivot,

what is the effect of doubling this force upon the force opposing
the rotation ?

(<5.) Move one of the balances to a point twice the distance

from the center as in (a) and pull it (parallel to the other balance)

until it registers the same tension as before. Read both balances.

The perpendicular distance from the center of rotation to

the line of action of a force is called its lever arm. When a

force tends to produce rotation about a point, what do you find

to be the effect of doubling the lever arm upon the force oppos-

ing the rotation ?

(V.) The tendency of a force to produce rotation about a point,

according to (a) and (^), is proportional to. the product of what

two quantities ? This product is called the moment of the force

about the point considered, and is usually taken positive in sign

when the force tends to produce rotation in a counter-clockwise

direction, and negative when it tends to produce rotation in the

opposite direction.
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II. (a.) Take a beam suspended so as not to rub the surface of

the table, and connect its middle point to a nail in the table by
means of a spring balance. Attach two balances to two screw-

eyes, one metre apart, on the opposite side of the beam at

unequal distances from its middle point and to corresponding
nails in the table. Tighten the cord attached to the first balance.

Read all three balances, and measure the distances between their

points of attachment to the beam.

(<.) Loosen, or tighten, the cords a little and read the balances

again.

(V.) Calculate the moment of each of the forces in (a) about

some point of the beam. Give these moments their proper

signs, and find their algebraic sum. Do the same for the

forces in (6). What is your conclusion as to the value of

the sum of their moments when a number of parallel forces in

the same plane act on a rigid body so that it is held in

equilibrium ?

III. Attach three balances at random to the frame used in I,

and to nails in the table. Tighten the cords and read the

balances. Draw, on a sheet of paper laid underneath the frame,

a line parallel to the line of action of each of the forces measured

by the balances. Remove the frame and measure carefully the

lever arm of each force about the pivot as a center. Calculate

the moments of the forces about the pivot and find their algebraic

sum. In addition to finding the sum of the moments about the

pivot, find also the sum of the moments of the forces about some

point outside the pivot. Do you find the sum of the moments to

be approximately the same wherever the center of moments is

taken, or not? Explain.

IV. Repeat III, removing the pivot, so that the frame is free to

move in any horizontal direction. Make the proper measure-

ments and calculate the sum of the moments of the forces about

some point on the table taken at random. Do the same for some
other point on the table. Do you find the sum of the moments
to be approximately the same wherever the center of moments is

taken ?
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V. If any number of forces in the same plane act upon a rigid

body so that it is held in equilibrium, what do you conclude from

the results of this exercise must be the algebraic sum of their

moments about any point in that plane? The correct answer to

this question is called the principle of moments.

VI. Two equal, parallel forces in opposite directions constitute

a couple. The perpendicular distance between them is called the

arm of the couple.

Let a be the arm, and F one of the component forces of a

couple. Find the moment of this couple about any point. Is it

the same for all points ? Demonstrate this for any point within

and one without the lines of action of the forces.

GROUP II.

In general, students will begin with the exercise corresponding

to that they began with in Group I. Thus he who started with

the 5th exercise will now take the i6th, and so on.

12. COMPOSITION OF FORCES.

I. Take a stout beam, over a metre long, and find its weight

(in Ibs. ) by means of a spring balance.

Attach cords of equal length to screw-eyes near the ends of the

beam, and suspend it by these cords from two 3O-lb. spring

balances hung from nails in the wall, at the same distance apart

as the screw-eyes in the beam. Read the balances. What
relation exists between the combined readings of the balances

and the weight of the beam ?

II. Suspend a mass of metal, weighing over 30 Ibs., from the

middle of the beam and read the balances again. Do the

balances read alike ? Why? How can you find the weight of

the metal from the readings of the balances? What is the

weight as thus found?
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III. Hang the mass of metal from a point to one side of the

middle of the beam and read the balances again. Why do they

not read alike now ? Does the relation found in I between the

total suspended weight and the combined readings of the balances

still hold true ? Measure the horizontal distances from the cord

by which the weight is hung to the cords to which the balances

are attached. How do the products formed by multiplying each

distance by the reading of the corresponding balance (less one-

half the weight of the beam) compare?
In general, what is the resultant of two parallel forces in the

same direction equal to: what is its direction: and how is its line

of action situated with reference to the component forces?

IV. Hang two 3o-lb. spring balances from two nails above the

blackboard, at least one metre apart, and connect the balances by
a cord somewhat over a metre long. From the middle point of

this cord suspend the mass of metal used in II and III. Draw

on the blackboard lines parallel to the two parts of the cord and

lay ,orT on these lines, from their intersection, length? proportional

to the tension in each part of the cord as registered by the proper

balance. Construct a parallelogram with these lines as sides and

draw the vertical diagonal. Measure the length of this diagonal

in Ibs., using the same scale as was used for the sides of the

parallelogram. How does this diagonal compare in direction

and length with the downward force (weight) of the mass sus-

pended from the cord? What is the value of the weight as found

by this method ?

V. Hang the mass of metal to one side of the middle of the

cord, and construct another similar parallelogram of forces. Is

the relation between the diagonal and the weight of the suspended
mass the same as in IV? What is the value of the weight as

found from this parallelogram?

VI. Hang the mass of metal by a single cord from one of the

nails. Attach a spring balance to the cord, near the bottom of

the blackboard, and pull it horizontally one foot from the vertical.

Note the reading of the balance, and measure the vertical distance

from the nail to the line of action of the horizontal force.
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By what two forces was the cord acted upon, and in what

direction was their resultant ? Which one of these two forces was

measured directly? Find the value in Ibs. of the other force.

(As the two forces are at right angles, this may be done either

graphically by constructing a triangle of forces, or by calculation

from similar triangles.) Find also the tension in the inclined part

of the cord.

VII. Repeat VI, drawing the cord two feet to one side instead

of one foot and find again the value of the weight.

, VIII. If three forces are in equilibrium about a point, show that

they may be represented in magnitude and direction by the three

sides of a triangle taken in order.

13. ELASTICITY: LAWS OF STRETCHING.

I. (a.) Attach a spring balance to the finer of the wires hang-

ing freely from the ceiling. Set the scale immediately behind

this wire and adjust the index on the wire, if necessary, until this

index is opposite the upper part of the scale, and read its position

on the scale by means of a lens, taking care that the index, lens,

and eye are in a horizontal line. Read the spring balance also.

(b.) Hang on a weight putting it gently into place and re-

peat (a). Add successively three other weights, noting the

index and balance readings in each case.

(c.') Remove the weights one by one, taking the same readings

as in (d) and (a). Average the corresponding results of (a), (6),

and ().

(d.) Find the length of wire used, measure its diameter in four

places and compute its mean cross-section.

II. Clamp the wire used in I at about midway its length and

repeat I, taking care to use the Weights in the same order as

before.

III. With a wire of greater diameter but same material, repeat

I, noting the precautions of I and II.

IV. Make a plot of the results, in I with weights in dynes'
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(453.6 grammes are equivalent to a pound Avoirdupois) as

abscissae and elongation of the wire as ordinates. What relation

do you find to exist between the stretching force and the resulting

elongation ? The statement of this relation is known as Hooke* s

Law.

V. (a.) Show from I and II the relation between the length

and elongation.

(.) From land III, show the relation between the diameter

and elongation; between the cross-section area and elongation.

(c.) Form an equation giving the elongation in terms of length,

cross-section, force applied, and a constant K.

VI. Stress is defined as force per unit area; strain is the

elongation per unit length; and the measure or modulus of

elasticity is the ratio of the stress to the strain. Find the ex-

pression for the modulus of elasticity in terms of the quantities in

V and calculate its value in C. G. S. units for the substance used.

What relation exists between the modulus M (called Young's

Modulus) and the constant K in V (c) ? Is the value of M the

same for all substances? (Compare results with your neighbors'

who used wires of different material. )

VII. If a very considerable weight were hung on a wire, would

the conclusions of IV, V, and VI hold? Explain. Why does

no correction have to be made for the position of the spring-

balance ?

14. ACTION OF GRAVITY.

I. (a.) Find the time of a quarter-vibration by counting and

timing 100 complete vibrations of a rod pendulum freed from any

weights that may have been attached to it.

(.) Fasten a strip of impression paper, dark side out, and on

it a piece of white paper, to the lower end of the pendulum.

Suspend a metal ball by a thread passing over two nails above the

pendulum, another at the base, and attach to the lower end of the

pendulum, pulling the latter aside. The weight of the ball and
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friction will be sufficient to hold the pendulum aside. Burn the

string near the ball after it is at rest and find by trial to what

height the ball must be raised so as to hit the paper when falling.

Make three determinations of this distance, measuring from the

center of the ball above to the corresponding mark on the paper

in each case.

II. Clamp the weight provided to the pendulum near the lower

end at the place marked and repeat I (a) and ().

III. Repeat with the weight clamped near the top of the

pendulum.

IV. (.) Find in each of the above cases, for the time of a

quarter vibration, the average velocity of the ball, and its final

velocity. Show that the final velocity is twice the average

velocity if the ball starts from rest and increases its velocity at a

constant rate.

(.) Deduce from the results of I, II, and III the relation

between the space passed over by the ball and the time, indicat-

ing clearly the process you use.

(/-.) Calculate the distance the ball would have passed over in

one second, averaging the results of I, II, and III.

(d. ) Show to what power of the time the acquired velocity is

proportional; see (a) and (c).

(<?.) Calculate the velocity acquired in one second, i. e., the

acceleration (usually denoted by the letter g) , averaging results as

before.

V. (.) Express IV () in the form S=Kt x and calculate the

value of the constant K. What relation does it bear to the value

of g ? What then is the equation for the space passed over in

terms of the time and acceleration ?

(b. ) Similarly find the value of the constant in the relation found

in IV (d) and write the corresponding equation.

(c.) Deduce the expression for the velocity of a body, starting

from rest and moving under the action of gravity, in terms of the

acceleration and space.

3
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VI. If a ball of greater mass had been used, would the same

results have been obtained for the final velocities and for the

acceleration? Explain.

Distinguish between mass and weight.

15. THE PENDULUM. I.

I. (a.) With a metal ball attached to the longest wire that the

apparatus allows, pulling aside the bob not more than iocm.,
find the period of the pendulum to o.oi second by the following

method:

First find the approximate period* by timing about twenty
vibrations. (Be careful to count "one" when the bob passes the

middle of the swing at the end of the first vibration.) Next note

the time that the bob passes to the right (say) through the center

of swing, the eye being in line with this position; wait about three

minutes and note again the time of transit in the same direction;

repeat this timing two or three times. Between each pair of

observations there was a whole number of vibrations. Divide

the first interval by the approximate period found above; if this

period were the true one the quotient would be an integer.

Divide the interval by the nearest integer to the quotient last

found and the result will be a closer approximation to the true

period. Repeat this operation for the other observed intervals

and take the mean as the best value for the period. (Note:

The computations may be done after the whole experiment has

been performed.) Measure the length of the pendulum, i. e.,

from point of suspension to center of ball.

(.) Repeat (a), pulling aside the bob not more than 5 cm.

(<:.) Repeat (a), pulling aside the bob some 50 cm.

(d.) What is the effect of increasing the amplitude on the

period of a pendulum ? Which is the best value to take for the

period, that given by (a), (), or (<;)? Why?

*The period is the time of a complete vibration, or the time between

two successive transits in the same direction.
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II. (<2.) Repeat I (a) or (b), using- two shorter pendulum

lengths.

(.) Substitute a wooden ball of same size as the metal one

and repeat, using any length of pendulum, but measuring it.

III. (a.} From I and II (a) find the relation existing between

the length and period of the pendulum. Indicate clearly your
method.

(<.) Show whether or not the relation III (a) applies to II ().
What is the effect on the period of changing the mass of the

bob?

IV. From the results of I and II and the relation of III (a)

calculate the length of the seconds pendulum at Berkeley. (A
seconds pendulum is one whose half-period is one second.)

16. THE PENDULUM. II.

I. (a.) Find the period of the pendulum, to a hundredth of a

second, when set so that it vibrates in a vertical plane. (See
Ex. 15.)

(<.) Find the period when the plane of vibration makes an

angle of 60. 35 with the vertical, (cos. 60. 35=0. 49.)

(c.) Find the period when the plane of vibration makes an

angle of 75. 5 with the vertical, (cos. 75. 5=0.25.)

(d,} What is the vertical force acting on the pendulum bob?

What is the vertical force acting on unit mass of the bob?

Suppose this vertical force acting on unit mass to be resolved into

two components, one perpendicular to the plane of vibration of

the pendulum, and the other in the direction of its length when

at rest. If a pendulum is constrained to vibrate in a particular

plane, as in this case, would a force perpendicular to its plane of

vibration affect its period or not? Why? Draw a diagram

showing forces acting on bob.

What is the ratio between the force per unit mass in the

direction of the length of the pendulum in (#) to that in (<); in

(#) to that in (^)? (Express these ratios as reciprocals.) What
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is the ratio of the period in (a) to that in (); in (a) to that in

(r)? (Calculate these ratios in decimals.) By comparing these

results, find the law connecting the period of a pendulum with the

force on unit mass, or the acceleration, in the direction of its

length when at rest, assuming that the period varies as some

integral root, or power, of the acceleration.

II. (To be done when Ex. 15 has been completed.) (a.) From
the law deduced in III (a) of Ex. 15 find the length of the

simple pendulum equivalent to the physical pendulum of I (a),

Ex. 1 6, using the seconds pendulum as comparison.

(.) Express the period P of a simple pendulum in terms of a

constant k, its length, L, and acceleration in the direction of its

length. The latter quantity is g (see Ex. 14) if the pendulum
vibrates in a vertical plane.

(f.) Calculate the values of g and of k as follows: The equation
of II (&) applies to the case of the seconds pendulum of Ex. 15

and to the simple pendulum of II (a}. Form two simultaneous

equations for the values of k and g in terms of the known quanti-

ties L and P, for each pendulum, and solve fork and g.

III. Is the length of the seconds pendulum the same over the

surface of the earth? Why ? Write not less than one hundred

words on the uses of the pendulum.

17. RESONANCE TUBE.

The resonance tube to be used consists of a long vertical glass

tube connected at its lower end by a rubber tube and siphon with

a jar of water, so that when the jar is raised and lowered, the

water flows in and out of the tube. The siphon can be started

by setting the jar on the floor and pouring water into the tube

until it flows into the jar. The water in the tube may be kept at

any desired level by turning the cock at the base.

Tuning forks are to be set in vibration by striking with rubber

hammer, and in no other way.
I. Hold a vibrating A-fork over the nearly full tube, and mark
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with a rubber band as the jar is lowered the level of the water

when the air in the tube vibrates in unison with the fork and

causes a marked increase in the intensity of the sound.

Raise the jar, and as the water rises readjust the rubber band

to the level of the water when the sound swells out again. Let

the water rise and fall past this point a number of times and

determine the level when the air in the tube vibrates in unison

with the fork, as accurately as you can, recording each measure-

ment.

As the air has no freedom of motion in a vertical direction at

the surface of the water, this plane where the column of air may
be cut off without prejudice to its rate of vibration must be one

of minimum vibration, i. e., a nodal plane.

What is the condition of the air at the open end of the tube ?

Find all the prominent nodal planes you can. Measure the

distances between them and between the highest one and the

open end of the tube. Is the latter the same as the distance

between two consecutive nodal planes ? Can you account for the

fact that the ratio of these distances is not exactly 1:2? How
are these distances related to the wave-length in air of the

particular note sounded ? Explain and draw diagram in illustra-

tion.

II. Repeat I with the two C-forks, and also with a G- or D-

fork.

Find the ratio of the distance between the nodes when the

A-fork was used to that when the large C-fork was used. This

gives the ratio between the wave-lengths. How is this ratio

related to the ratio between the vibration frequencies of the two

notes? The latter ratio measures the musical interval between

the notes.

Calculate from your results the musical intervals between the

lower C-fork and each of the others.

III. If the larger C-fork makes 256 complete vibrations per

second, calculate the velocity of sound in air in the tube used.

Find the vibration number of each of the other forks.
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IV. Explain why the column of air emits a note.

Is more or less energy used by the fork and air column sound-

ing together than when the fork is sounding alone? Explain.

18. VELOCITY OF SOUND IN SOLIDS.

I. Clamp a long brass rod exactly at its middle point in a vice.

Take a long glass tube, provided with a piston at one end and

containing powdered cork, and set its rubber-covered end

against one end of the rod. A cardboard disc of some -2 cm.

diameter should be glued to this end of the rod.

Set the rod in vibration by stroking it from the center out

slowly and with but slight pressure, with a cloth wet with wood

alcohol or rubbed with resin. The piston should be adjusted by
trial until the cork-dust takes up its characteristic arrangement.

Describe the behavior of the cork dust. Where are the nodes ?

The loops? Which is found at either end of the tube ? Explain.

Measure the length of the tube and find the wave-length of the

sound in air. What is the wave-length of the sound in the rod?

Explain. Make three determinations.

Calculate the ratio of the wave-length in brass to the wave-

length in air for the same note. How is this ratio related to the

relative velocity of sound in brass and air? Calculate the velocity

of sound in brass,* and write out the equations involved.

II. Repeat the measurements of I with a glass rod and find the

velocity of sound in glass.

III. Repeat with an iron rod.

IV. How with this apparatus might the velocity of sound in

gases be found? Write the equations involved.

V. Write at least one hundred words on the subject of station-

. ary waves.

*The velocity of sound in air is:

V=33i i/ 1+0.0041 metres per second, where t is the temperature in

centigrade,
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19. LAWS OF A VIBRATING STRING.

I. (#.) Attach two piano steel wires (No. 27 and No. 22

B. & S. gauge) to a sonometer and stretch the lighter wire over

the sounding-board with a weight of 4 Ibs. Move the sliding

bridge until the note given out by the wire when plucked is in

unison with the tuning-fork provided. (The note of the fork can

be made more audible by holding the end of its handle on the

sonometer board. ) Measure the length of the vibrating part of

the wire.

(&.) Move the sliding bridge so that the note given out by the

wire is in unison with the note an octave * below that of the

tuning-fork, and again measure the vibrating part of the wire.

(<:.) What is the relation between the vibration frequency of

two notes separated by an interval of an octave? What, by

comparing the results of () and ($), do you find to be the law

connecting the length of the vibrating wire (or string) with its

vibration frequency?
II. With additional weights increase the tension of the wire to

four times its tension in I, and adjust the sliding bridge, if neces-

sary, so that the note given out is in unison with that of the tun-

ing-fork. How does the length of the vibrating part of the wire

compare in this case with its length in I (b) ? What do you con-

clude to be the law connecting the vibration frequency of a

stretched wire with its tension ?

III. (a.) Repeat the experiment of I with the heavier wire, and

by comparison with the result of I (a} find the ratio between the

lengths of the two wires when their vibration frequencies are

equal. From this find the ratio between the vibration frequencies

of the two wires when their lengths are made equal ? (See law

found in I.)

(b.) Measure the length of a piece of each kind of wire and find

the ratio of their masses per unit length, using a Jolly balance for

weighing.

*Two notes have an interval of an octave where one has twice the

pitch of the other.



40 PHOTOMETRY. [20

What do you find to be the relation between the vibration

frequency and linear density of a stretched wire, the length and

tension being constant?

IV. Form an expression for the pitch of a wire in terms of its

length, tension and linear density. What does this equation

assume regarding the elastic properties of the wire and the nature

of its motion?

20. PHOTOMETRY.

I. Set a diffusion photometer, two rectangular blocks of paraf-

fine separated by a sheet of tin-foil, so that the two blocks of

paraffine are equally illuminated by the diffused light of the room.

Light a set of four simple gas jets and a single separate jet of the

same form, and regulate the flow of gas so that the jets are all of

the same height and brightness. Place the single jet at a

distance of 50 cm. on one side of the photometer, so as to

illuminate one block of the paraffme, and the set of four jets on

the other side at such a distance that the two blocks of paraffine

will be equally illuminated. Measure the distance from the

photometer to the four jets.

How does the illumination of the paraffine due to the single jet

compare with that due to the four jets? How does the intensity

of the illumination due to a single jet at 50 cm. compare with

that due to a single jet at the distance of the four jets ? The

intensity of the illumination is proportional to an integral power
of the distance; what, from your results, do you conclude the

power in question to be? Is it direct or inverse?

II. Place the four jets at 50 cm. from the photometer and the

single jet on the opposite side at such a distance that the blocks

of paraffine are again equally illuminated. Are the conclusions

drawn from the results of I corroborated, or not, by the results

thus obtained ? Record measurements.

III. Light a candle and place it at a certain distance from the

photometer. Light a coal-oil lamp and place it on the opposite

side of the photometer, so that the candle and lamp illuminate
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the blocks of paraffine equally. (The height of the lamp wick

should not be altered during the course of this experiment, and

the lamp should burn at least five minutes before taking read-

ings.) How can you find the ratio between the illuminating

power of the candle and that of the lamp ? (Take four readings

with varying distances of the candle.) What is this ratio as

derived from your measurements?

Weigh the lamp and the candle. Let them burn for 30

minutes. Reweigh and find the mass of the coal-oil and of the

paraffine, or candle substance, consumed. For one gramme of

matter consumed by the candle, how many grammes were con-

sumed by the lamp ? Calculate the relative illuminating power of

coal-oil and paraffine for equal masses consumed, assuming that

the illuminating power varies directly as the amount of matter

consumed.

IV. Alter the height of the lamp flame and repeat III.

Calculate again, from the result obtained, the relative illuminating

power of coal-oil and paraffine for equal masses consumed. How
does the value found compare with that found in III? Is the

assumption made above, that the illuminating power varies

directly as the amount of matter consumed, corroborated by the

results of III and IV, or not?

V. Form an equation expressing the candle power of any
source of light in terms of the proper variables. Distinguish

between intensity of illumination and illuminating power.

21. REFRACTION.

I. Take a rectangular cell, having one side of plate glass and

containing a mirror revolving on a vertical axis, and fill it about

half full of water. Set this cell so that the axis on which the

mirror revolves is over the center of a large circle drawn on the

table. Adjust the cell so that its glass side is perpendicular to 2t

radius of the circle drawn parallel to the end of the table. This

may be done by stretching a white string along this radius, and
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moving the cell until the image of the string in the plate glass

coincides in direction with the string itself. (A piece of blackened

tin held back of the plate glass will help in locating the image of

the string.)

Move your eye along the edge of the table until you see the

image of the string in the mirror above the water. With another

white string locate the direction of this image, and stick a pin in

line with it on the circle drawn on the table. In the same way
look for the image of the string seen through the water, and mark

with another pin on the circle the direction of this image.
Measure the perpendicular distance from each of these pins to

the radius represented by the first string.

Answer the following questions:

1. Does the light from the first string undergo any change in

direction on entering the cell ?

2. Will it, therefore, strike the mirror at the same angle within

the liquid as without, i. e.
,
above the liquid ?

3. Will it be reflected at the same angle within as without the

liquid ?

4. Will the reflected light, passing through the liquid, have the

same direction after leaving the liquid as that which does not

pass through the liquid? What do you find by experiment ?

Remembering that the first string is perpendicular to the sur-

face of the water at which the light is refracted, how are the

sines of the angles of incidence and refraction related to the

distances measured above?

The ratio of the sine of the angle of incidence to that of refrac-

tion when the light is incident in air, or, more properly, in a vac-

uum, is called the index of refraction of the substance. (If the

light is incident in the substance and refracted in air, the index of

refraction, on the contrary, is equal to the ratio of the sine of the

angle of refraction to that of the angle of incidence.) Calculate

from your results the index of refraction of water.

II. Repeat I with the mirror at a slightly different angle and

calculate again the index of refraction of water.
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III. Rotate the mirror a little more and repeat I, calculating

again the index of refraction.

Do you find the index of refraction to vary with the angle of

incidence, or not ?

IV. Take a cubical block of glass and lay it on a sheet of

brown paper. Mark on the paper the position of two of its

opposite edges, and continue the lines with a ruler held against

the face of the cube. Stick a pin in the table about 30 cm. from

the cube, and as far to one side as it can be placed without

becoming invisible when looked at diagonally through the oppo-
site faces of the cube. Looking at this pin through the cube,

place three pins in line with it, one on the same side close to the

cube, and two on the side of the observer. Remove the cube

and draw lines on the paper to show the direction of the light

from the first pin before entering the glass, after passing through
the glass, and within the glass. How did the direction of the

light before entering the glass cube compare with its direction

after passing through the cube ?

Draw a perpendicular to the face of the cube through the point

where the light entered, make the proper measurements, and cal-

culate the index of refraction of the glass. Turn the cube through
1 80 and repeat.

V. How with the rectangular cell, if the dimensions of the

apparatus permitted, might the critical angle for water be found ?

Explain, giving a diagram.

22. REFRACTION AND DISPERSION.

I. Set a mirror in a small rectangular cell, and fill it about half

full of water. Place the cell with its glass side perpendicular to

the line formed by a linear source of light (an electric lamp with
' ' hofseshoe

' '

filament) and a narrow slit and at a distance of

100 cm. from the scale of a metre rod set at right angles to the

line of the light and slit. Move your eye along the metre rod

until the image of the light in the mirror above the water becomes
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plainly visible and read the scale. Look in the same way for the

image of the light in the mirror as seen through the water. Is

this image similar in appearance to that seen above the water ?

Describe and explain the difference. Can you locate its direction,

as was done for the image seen above the water ?

Locate the direction of the extreme red of the spectrum seen

through the water. As the distance of the scale from the cell is

one metre (100 cm.), the respective readings of the scale in

metres will be equal to the tangents of the angles of incidence

and refraction. The source of light may be considered as at the

surface of the mirror, hence the light is incident in the dense

medium. Show by diagram the angles of incidence and refrac-

tion. Using a table of natural sines and tangents, find the sines

corresponding to these tangents, and calculate the index of

refraction of water for red light. (See Expt. 21 for definition of

index of refraction.)

Find in the same way the index of refraction for blue light,

using the extreme blue of the spectrum; and also for yellow

light.

II. Repeat I with a saline solution instead of water. What
effect do you find salt in solution to have upon the index of

refraction of water?

The angle between the rays of red and blue light after refraction

is called the dispersion for red and blue light. What is the

dispersion for these rays for water and for the salt solution ?

III. Show how from this experiment the velocity of light in the

salt solution may be computed, if the velocity in water is known,

and demonstrate the relation between the index of refraction and

velocity.

GROUP III.

23. IMAGES IN A SPHERICAL MIRROR.

I. Place a concave spherical mirror so as to form as clear an

image as possible of the window-sash on a screen, and measure

the distance from the mirror to the screen.
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Repeat, using- some distant object, as the tops of the trees

across the road, instead of the window-sash, and measure again

the distance from the mirror to the screen. Was this distance

greater or less than when the window-sash was focused on the

screen ? The principal focus is the point through which all

parallel rays are reflected. Its distance from the mirror is called

the principal focal length of the mirror. Which of the meas-

urements above may be taken as the principal focal length of the

mirror ?

II. Place an upright rod at a distance in front of the mirror

equal to twice its principal focal length. Adjust the position of

the rod by the method of parallax, so that some definite point

on it will coincide in position with its image in the mirror. Do
this by adjusting the rod first so as to coincide with its own

image*, and then sliding a piece of paper up or down the rod

until it meets its image. This will give the required point on the

rod. (Do not confound the image formed by the front, plane

surface of the glass with that formed by the spherical mirror on

the back.) What measurement will now give the radius of

curvature of the mirror ? Why ? How does this compare with

the principal focal length?

III. (a.) Place the screen at as great a distance from the mirror

as the table will allow, and place two gas jets so that their images

formed on the screen will be as distinct as possible. To obtain

images beyond the center of curvature of the mirror, where did

the gas jets have to be placed, between the mirror and the prin-

cipal focus, between the principal focus and the center of curva-

ture, or beyond the center of curvature?

(^.) Measure the distance from the mirror to the gas jets and

the distance from the mirror to the screen; also the distance

between the gas jets and the distance between their images.

*This can he done by changing the position of the observer's eye and

adjusting and readjusting the position of the rod until it will always
coincide in direction with its own image from every point of view.
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How does the ratio between the first two distances compare with

the ratio between the last two? Find the ratio between the

distance of the object and that of its image from the center of

curvature of the mirror instead of from its surface. How does

this ratio compare with the other two?

(Y.) Reduce to decimals the reciprocals of (i) the distance

from the mirror to the gas jets; (2) the distance from the

mirror to their images; (3) the principal focal length; (4) the

radius of curvature. Of these four reciprocals find two whose

sum is equal to a third, and also equal to a simple multiple of

the fourth.

IV. Interchange the positions of the gas jets and the screen.

(In the new positions they will, of necessity, have to be placed on

opposite sides of a line normal to the mirror.) Adjust the screen

so as to obtain as definite images as possible, and repeat the

measurements of III (<). Does the proportion found in III ($)

still hold true? Does the relation between the reciprocals in III

(Y) still hold true? When the gas jets are beyond the center of

curvature, are the images formed between the mirror and the

principal focus, between the principal focus and the center of

curvature, or beyond the center of curvature?

V. Place a vertical rod between the mirror and its principal

focus, within 8 or 10 cm. of the mirror, and locate its image by

means of another rod, using the method of parallax. Measure

the distance from the mirror to the object and its image respec-

tively. In order that the relation between the reciprocals found

in III (Y) shall still hold true, what change in sign is necessary?

Write the equations representing the conditions in III and V.

VI. Suppose an object at an infinite distance from the mirror;

where would its image be found, and how would it change in

position as the object approached the mirror, supposing the

object to approach until it touched the surface of the mirror ?

State whether the image would be real, or virtual; erect, or

inverted; larger than the object, or smaller.
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24. CONVEX LENSES.

I. (0.) With a convex lens form an image of the window-sash

on a screen and measure the distance from the lens to the screen.

(<.) With the same lens form an image of some distant object

on the screen, and measure again the distance from the lens to

the screen. Is this distance the same as in (a)? Which of

these distances may be taken as the principal focal length of the

lens? Why?
-II. Light two gas jets and place them at a distance from the

lens equal to twice its principal focal length, and place the screen

so as to form as distinct images of the jets as possible. Measure

the distances respectively from the lens to the screen, and from

the lens to the gas jets. How do these distances compare?
Measure the distances between the gas jets and between their

images. How do these distances compare?
III. Set the gas jets at a distance from the lens equal to about

five times its principal focal length, and place the screen so as to

form as distinct images as possible of the jets.

Measure the distances: (i) From the lens to the screen; (2)

from the lens to the gas jets; (3) between the gas jets; (4)

between their images. Find a relation existing between these

quantities and express it in the form of a proportion.

Reduce to decimals the reciprocal (i) of the principal focal

length; (2) of the distance of either gas jet from the lens; (3) of

its image from the lens. The sum of what two of these recipro-

cals is approximately equal to the third?

IV. Interchange the position of the gas jets and the screen

and adjust the lens, if necessary, so as to make the images as

distinct as possible. Repeat the measurements of III.

Form a proportion, if you can, similar to that formed in III,

and find, if you can, a similar equation connecting certain

reciprocals. Indicate any difference in the two cases.

V. Set an upright rod between the lens and the principal focus.

On which side of the lens is the image of the rod ? Is the image
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real, or virtual; erect, or inverted? Locate this image by means

of another upright rod, by the method of parallax, (Exercise 23,

II.) In order that the relation between the reciprocals previously

found should still hold true, what change in sign is necessary ?

VI. Answer the following questions as applied to a convex or

converging lens:

1 . Where should an object be placed in order that its image

may be real? In order that its image may be virtual?

2. When will the image be erect, and when inverted ?

3 Where should the object be placed in order to form an

enlarged image? In order to form a diminished image?

4. Where should the object be placed in order to use a con-

verging lens as a magnifying glass?

25. CONCAVE LENSES.

I Locate with an upright rod the image formed by a concave

lens of some vertical part of the window-sash, using the method

of parallax. (Exercise 23, part II.) (The rod used in locating

the image should be looked at over, not through, the lens.)

Measure the distance from the lens to the image.

Locate in the same way the image of some vertical object in

the distance, as the corner of a house, or a telegraph pole, and

find the principal focal length of the lens. Explain.

II. (.) Place the vertical rod at a distance from the lens equal

to about twice its principal focal length, and locate its image by

means of another vertical rod. Measure the distance from the

lens to the image.

(.) Repeat with the stationary rod at the principal focus.

(c.) Repeat with the stationary rod between the principal focus

and the lens.

Reduce to decimals the reciprocal: (i) of the distance from the

lens to the image in either (a), (), or (c); (2) of the corre-

sponding distance from the lens to the object; (3) of the princi-

pal focal length. Which one of these distances should be made
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negative in order that the sum of the first two reciprocals should

be equal to the third ?

III. Set two vertical rods attached to the same support at a

suitable distance from the lens (to be determined by the student),

and locate their images by means of two other separate rods.

Measure (i) the distance of the fixed pair of rods from the lens,

(2) the distance of their images from the lens, (3) the distance

between the rods, and (4) the distance between their images.

Find the relation existing between these four quantities and ex-

press it in the form of a proportion, and state it in words.

IV. Answer the following questions:

1 . Can a real image be formed by a concave lens ?

2. Can a concave lens be used as a magnifying glass?

3. Suppose an object at an infinite distance from a concave

lens; where would its image be located, and how would it change
in position as the object approached the lens, supposing the

object to approach until it touched the lens ?

4. Can there be, when a single lens or mirror is used, such a

thing as a real and erect image, or a virtual and inverted image?

V. * When Exercises 23-25 have been done, copy and fill out

the following table.

VI. Also construct geometrically the following:

(i.) The image of an object within the focus of a concave

mirror.

(2.) The image of an object at the center of curvature of a

diverging lens.

(3.) The image of an object between the focus and center of

curvature of a converging lens.

Demonstrate that to produce a real image with a converging

lens the object and image must be separated by a distance of

at least 4/~.

VII. Write what you can of the analogies between a concave

mirror and a converging lens, between a convex mirror and a

diverging lens.

* Parts V and VI and VII may be handed in as a separate exercise.

4
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/}=Distance of object from mirror.

/=Principal focal length.
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26. DRAWING SPECTRA.

The spectroscope should be examined and its construction

understood before proceeding. The instrument should be set so

that the slit in the collimator does not point toward any outside

source of light, as a window. The instrument may be adjusted

for use as follows: Place a colorless Bunsen flame, in which is

held asbestos soaked with salt solution, directly before the slit and

narrow the latter, focusing upon it with the telescope, the

prism being in place, until the slit appears as a sharp, bright line.

Light the gas illuminating the scale in the third arm of the

instrument, and focus the scale by moving it in and out until the

figures upon it can be distinctly read. (The eye-piece should not

be touched during this last operation.) Bring the 5 (or 50)

mark of the scale into coincidence with the yellow line due to

the sodium. If now the adjustment has been carefully done, by

moving the eye slightly back and forth before the eye-piece the

sodium line and the mark 5 will not appear to move with respect

to each other. If there is such motion repeat the adjustment.

I. The spectra of the salts provided are to be examined and

drawn upon plotting paper, the spectroscope scale being plotted

as abscissae and each spectrum on a separate horizontal line.

(See sample note-book.) State in each case the general color

of the flame and the colors of the various lines and bands.

To observe successfully the potassium spectrum it will be nec-

essary to open the slit somewhat and insert a piece of cobalt

glass between the flame and the slit. The sodium spectrum will

probably be ever present, but is readily distinguished from that of

the salt under examination.

II. Draw the spectrum of a luminous flame, and also of the

same flame seen through red, green, yellow, and blue glass. Is

the light transmitted by any of these glasses monochromatic?

Distinguish between absorption spectra and emission spectra.

III. The wave-lengths corresponding to certain spectral lines

are furnished; draw a smooth curve in terms of their position on
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the scale and from this curve determine the wave-lengths corre-

sponding to the calcium lines and the strontium lines.

IV. Draw a diagram representing the optical principles in-

volved in the construction and use of the spectroscope you used.

V. Write not less than one hundred words on the uses of the

spectroscope.

27. LAWS OF MAGNETIC ACTION.

Prove that if a compass-needle is deflected by a horizontal force

acting in an east and west direction, the magnitude of the force

will be proportional to the tangent of the angle of deflection.

I. Place two pocket compasses side by side. Do the like poles

attract or repel each other? Do the unlike?

II. Lay a compass on a large sheet of brown paper, draw a

circle around it, and mark on the paper the center of the circle,

i. e., the position of the center of the compass. Draw a line east

and west through this point and mark off on this line points in

both directions at distances of 10, 15, 20, 30, and 40 cm., re-

spectively, from the center ofthe compass. Remove all magnetic
substances from the neighborhood, replace the compass, and

adjust it so that its needle reads zero degrees. (The compass
should be tapped very lightly as the needle comes to rest, with

the finger or with a rubber pencil-tip.)

Hold a long magnetized steel strip in a vertical position with

its lower end on the table at 10 cm. either east or west of the

compass, and read the deflection of the compass-needle. (Tap
the compass as before, and read both ends of the needle, averag-

ing the readings.) Repeat with the end of the long magnet at

10 cm. on the other side and average the two deflections of the

compass-needle, recording each observation. To what function

of the angle of deflection is the force exerted by the lower pole of

the long magnet proportional, assuming that the needle is com-

paratively short ? (See proposition above.)

III. Repeat the last part of II with the end of the long magnet
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at 15, 20, 30, and 40 cm., respectively, from the center of the

compass, changing sides and averaging as before. Calculate from

your results (using a table of natural tangents) the ratio of the

horizontal force due to the lower pole of the magnet at 10 cm. to

that at 20 cm.
;
at 15 cm. to that at 30 cm.; at 20 cm. to that at

40 cm.
;

etc. Does the force vary directly, or inversely, with the

distance? Assuming that it varies (directly or inversely) as

some integral power of the distance, what do you find to be the

power in question? Arrange results in tabular form.

IV. Take a comparatively short magnet and lay it on the table

on a line drawn east and west through the center of a compass-

needle, at such a distance as to deflect the needle about 40.
Read the deflection and measure the distance from the center of

the magnet to that of the compass-needle. Place the magnet at

double this distance, and read the deflection again. Do you find

the horizontal force to vary with the distance in this case accord-

ing to the law found in III, or not? Was the needle in II and

III acted on in a horizontal direction by both poles of the magnet,

or practically by one alone? Was it in IV?

When a magnet is comparatively short, how do you find the

force exerted by it at any point to vary with the distance of the

point from the center of the magnet, assuming that it varies as

some exact integral power of this distance?

V. A unit magnetic pole is a magnetic pole of such strength

that it will exert a force of one dyne on a similar pole at the dis-

tance of one cm.

The pole strength of a magnetic pole is defined as the force

exerted by it on a unit magnetic pole at the distance of one cm.

What is the force between two magnetic poles at the

distance d apart, the strength of the poles being m v ,
and m^

respectively ?

VI. If in IV the magnet were in the E and W line and the

compass on a line perpendicular to the middle point of the mag-

net, in the same horizontal plane, find geometrically the expres-

sion for the force between a compass pole and the magnet.



54 MAGNETIC FIELDS. [28

28. MAGNETIC FIELDS.

I. Take a magnet 16.5 cm. long, and locate approximately
the mean distance of either pole from the end, by the following
method :

Lay the magnet on a sheet of paper, and trace its outline with

a pencil. Place a compass on the paper so that the compass box

is about one cm. from the magnet. Commencing near the end

of the magnet, move the compass, one or two cm. at a time,

parallel to the magnet, drawing, for each position of the compass,
lines to indicate the direction of its needle. Remove the magnet,
draw a line through the position of its axis, and extend the above

lines until they intersect this line. Find a medium point and

measure its distance from the end of the magnet.
II. Lay the magnet used in I lengthwise on a large sheet

of brown paper. Draw the outline of the magnet with a pencil,

and sprinkle iron filings on the paper around it. Trace the

lines in which the iron filings set themselves when the paper is

tapped.

Brush the iron filings off the magnet, and return them to the

sprinkler, taking care not to scatter and waste them. (In re-

moving iron filings from a magnet, brush them towards the

center, and not towards the ends.)

Replace the magnet, and place a small compass at different

points of the tracing. How does the direction of the compass-
needle at any point coincide with that of the lines of iron

filings ?

III. Take a sheet of cardboard and place it with its sides

parallel to the edges of the table. To the most northerly or

southerly corner of the cardboard fasten a small compass with

wax*, and, after removing all magnetic substances from the

neighborhood, draw a pencil line to correspond with the

magnetic meridian through the compass. On this line place

* Attach t.ie wax to the edge of the compass, and do not put it under-

neath.
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a short magnet with its north pole directed toward the south,

and adjust the distance between it and the compass so that

the compass-needle is in neutral equilibrium (i. e., will point

indifferently in any direction). Fasten the magnet in this

position to the cardboard with wax. The compass-needle will

not be affected now by the earth's magnetic field, while the

sides of the cardboard are parallel to the edges of the table.

Why?
IV. Take the drawing made in II. Mark the position of the

poles of the magnet, and draw a circle, about 2 or 3 cm. in

diameter, around each. Divide these circles into 12 or more

equal parts, and through each division draw a line, following the

directions in which the iron filings set themselves, as far as these

directions can be determined.

Replace the magnet on the paper, and place the compass-

needle, protected as in III from the influence of the earth's

magnetic field, at the end of one of these lines. Extend this

line an inch or so in the direction indicated by the needle.

Prolong all the lines through the divisions of the circle in this

way, an inch or so at a time, as far as the limits of the paper
will allow.

V. Take a point on one of these lines about 9 or 10 cm. from

one of the poles of the magnet, and 12 or 15 cm. from the other

pole. Suppose a north or south magnetic pole to be placed at

this point. Draw lines in the directions that this pole would be

urged by each pole of the magnet, and lay off on these lines

distances proportional to the forces in these directions due to the

poles taken separately. (Force varies inversely as- the square of

the distance. ) Construct on these lines a parallelogram of forces,

and find the direction of the resultant force due to both poles of

the magnet. How does the direction of this resultant compare
with that of the magnetic line of force at point considered ?

If it were possible to produce an isolated north magnetic pole

and place it in a magnetic field, how would the path along which

it would move be related to the magnetic lines of force ? Deduce
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from this a definition of a magnetic line of force. How is the

strength of the magnetic field due to the magnet indicated by the

distribution of the lines of force at any region in the preceding

diagram ?

The sheet of brown paper used in II, IV, and V is to be signed
and handed in with the other notes. Each student, however,

should make in his note-book a reduced copy of the diagram
before handing it in.

VI. Lay two short magnets on a sheet of white paper with

impression paper and another sheet of white paper underneath

(or they may be laid directly on a page of the note-book). Lay
them parallel, side by side, about 1.5 or 2 cm. apart, with their

unlike poles opposite. Sprinkle iron filings about them, and

trace the lines along which the filings set themselves.

29. INTENSITY OF EARTH'S MAGNETIC FIELD. I.

Caution. Keep the magnet used in this exercise away from

other magnets or magnetic bodies.

I. (a.) Place a magnet in the east and west line east or west

of a compass-needle, at such a distance as to deflect the needle

through an angle of 45. Measure the length of the magnet and

the distance of its nearer end from the center of the compass.

(b.) Reverse the magnet and repeat the measurements of (a),

(c. ) Repeat (a) and (b} with the magnet on the other side of

the compass-needle.

II. (a.) Suspend a carriage for the magnet by two fine parallel

wires of equal length, adjustable from above, so that they are

east and west of each other. Place a brass rod of about the same

size as the magnet in the carriage and carefully draw a line par-

allel to the rod on a piece of paper placed underneath it.

Remove the brass rod and place the magnet in the carriage.

Does the magnet lie, as the rod did, east and west, or not?

Explain why. Mark on the paper the position of the magnet.

(.) Reverse the magnet and mark its position again.
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(V.) Measure the distance between the two wires of the bifilar

suspension, and mark their position carefully on the paper in the

three cases above. Find, by measurement from the drawing, the

average distance that the lower end of either wire is pulled out

from the vertical when the magnet is hung in its carriage.

What forces cause the magnet to be deflected ? What is the

direction of these forces, and where do they act on the magnet,

assuming that the poles of the magnet are at its extremities ?

Measure on the paper the arm of the couple (see Exercise 1 1, VI)
formed by these forces.

Measure the length of the bifilar suspension and also find the

weight of the magnet and carriage. Express these weights in

dynes.

Repeat Part II, using another part of the same paper.

Average the two sets of results.

Preserve the paper diagram for reference.

30. INTENSITY OF EARTH'S MAGNETIC FIELD. II.

This exercise need not be performed in the laboratory, and is

to be done only when the other exercises on magnetism have

been performed.

I. In Exercise 29, I, how did the horizontal force at the center

of the compass due to the magnet compare in each case with that

due to the earth's magnetic field?

Calculate the average force on a unit magnetic pole at the

center of the compass due to the nearer pole of the magnet,

calling the pole-strength of the magnet P (see Exercise 27, V)
and assuming that its poles are situated at its extremities. Do
the same for the farther pole of the magnet. How did these

forces compare in direction? Find their resultant. How does

this resultant compare with the horizontal force (usually denoted

by the letter H) on a unit magnetic pole due to the earth's

field? (See question above.)

Form an equation from these results and find from it the

numerical value of the quotient H/P.
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II. Assuming that the weight in Exercise 29, II, was evenly
divided between the two wires of the bifilar suspension, calculate

the horizontal force on the lower end of each wire tending to pull

it back into a vertical position. Do this by means of a triangle

of forces as in Exercise 12, VI, using the length of the wire and

the deflection from the vertical, as measured in Exercise 29. In

what direction did these forces act, and what was the arm of the

couple (see Exercise 11, VI) formed by them? Calculate the

moment of the couple formed by these forces. Draw diagrams
of forces.

What two forces tended to deflect the magnet ? To what was

each of these forces equal in terms of //and />? Calculate the

moment of the couple formed by these forces.

What relation exists between the moments of the two couples

just calculated? Express this relationship in the form of an

equation, and calculate the numerical value of the product //x P.

III. Combine the results found in I and II so as to eliminate

the unknown quantity P and . find the value of H in dynes.
Calculate also the pole-strength; in what unit is it expressed?

IV. Write not less than two hundred words on the subject:

Terrestrial Magnetism.

31. COMPARISON OF MAGNETIC FIELDS.

I. Suspend a magnet in a horizontal position by a long thread

(a torsionless thread, if possible), and protect it from air currents

by hanging it in a box. When the suspended magnet has been

brought to rest, set it vibrating about a vertical axis by bringing
an open knife blade near it, and determine its period of vibration

within a few hundredths of a second.* Be careful not to touch

the magnet with magnetic substances, and also keep all movable

magnetic bodies away from the neighborhood of the vibrating

magnet.

Find the period by the method of Exercise 15.



32] ELECTRO-MAGNETIC RELATIONS. 59

II. Mark in some way the position of one end of the magnet,
remove it, and place a compass with a short needle at this point.

Place a long magnet at right angles to a line drawn east and west

through the thread with its center on this line and its south pole

towards the south. Move this magnet parallel to itself until the

earth's horizontal field at the center of the compass is as nearly

neutralized as possible. Then turn the magnet through 180,
i. e., end for end. Will the intensity of the horizontal magnetic
field at the compass-needle now be greater or less than the

earth's horizontal field, //? How much greater or less?

Remove the compass, replace the suspended magnet, and

determine its period of vibration again as in I. Calculate the

ratio of the periods in the two cases. How does this compare
with the intensity of the horizontal magnetic fields in the two

cases?

Assuming that the period of a vibrating magnet varies as

some integral root, or power, of the intensity of the magnetic
field parallel to the magnet, what do your results indicate this

root, or power, to be? Is it direct or inverse?

III. Suspend your magnet at two designated places in the

aboratory, determining its period of vibration at each place and

also at a place where //is known. From your results and the

law just found, calculate the value of H at each of the places

where the magnet was vibrated.

IV. If the suspending string were not torsionless, would the

calculated values ofH be too high or too low ? Explain.

What analogies exist between this magnetic pendulum and the

simple gravity pendulum ?

32. ELECTRO-MAGNETIC RELATIONS.

I. Connect the plates of a Daniell cell by a flexible wire cord.

Stretch a portion of this cord out straight and hold it near a

compass-needle placed on the edge of a wooden block. The

electric current is supposed to flow through the external circuit
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from the copper plate of the cell to the zinc plate. In what

direction is the north pole of the compass-needle deflected, or is

it deflected at all, when the current and the needle are in the

following relative positions:

1. Current flowing north, needle below?

2. Current flowing north, needle above ?

3. Current flowing north, needle east or west?

4. Current flowing south, needle below ?

5. Current flowing south, needle above?

6. Current flowing south, needle east or west?

7. Current flowing upward, needle north?

8. Current flowing upward, needle south?

9. Current flowing downward, needle north ?

10. Current flowing downward, needle south?

1 1 . Current flowing east or west, needle above or below ?

12. Current flowing east or west, needle north or south?

II. Answer the following questions:

1. How is the direction in which the compass-needle is de-

flected affected by reversing the direction of the current?

2. How is it affected when its position is changed from one

side of the current to the other, i. e., from above to below and

from east to west ?

3. Is the force exerted by an electric current on a magnetic

pole parallel to the direction of the current or not ? What do the

results of I, i and 2, indicate?

4. What is the direction of this force, with reference to the

plane containing the current and the magnetic pole, as indicated

by the results of I, 3 and 6 ?

5. If the needle was not deflected in I, n, explain why.
6. Suppose the current is represented in position and direction

by the fingers of the right hand and the palm to be turned

towards the compass-needle, which pole was deflected in the

direction indicated by the thumb in I, i; in I, 2; in I, 3, etc.?

Frame a rule including all the above cases.
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III. Connect the plates of the Daniell cell to a rectangular coil

suspended with its terminals in mercury cups so as to turn freely

about a vertical axis. Set the coil with its plane north and south.

Follow the path of the electric current from the copper plate of

the cell through the coil to the zinc plate, and find in what part

of the coil the current flows in a northerly direction, in what in a

southerly direction, in what part upward, and in what part

downward.

Take a magnet and hold its north pole in the following

positions relative to the current, observing in each case the

direction in which the wire carrying the current tends to

move:

1. Current flowing north, north pole below.

2. Current flowing north, north pole above.

3. Current flowing south, north pole below.

4. Current flowing south, north pole above.

5. Current flowing upward, north pole north.

6. Current flowing upward, north pole south.

7. Current flowing downward, north pole north.

8. Current flowing downward, north pole south.

How does the force exerted by a magnetic pole upon an electric

current compare in direction with that exerted by the current

upon the pole? (Compare the results of I and III.)

IV. Trace by means of iron filings the magnetic field due to a

helical coil carrying a current. To the field of what shape mag-
net does this resemble ?

Test the coil with a compass-needle and determine which end

attracts the north pole and which the south pole of the needle.

Could the position of its poles be determined beforehand? How ?

V. What do you conclude from I, II, and III to be the form

of the magnetic field about a wire carrying a current?

How does an electric circuit tend to set itself with respect to

the number and direction of the magnetic lines of force in its

neighborhood? (A magnetic line of force proceeds from the

north pole to the south pole outside the magnet.)
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Does the coil used in III act as if it were itself a magnet? If

so, of what form ?

33. LAWS OF ELECTRO-MAGNETIC ACTION.

I. Take an upright wooden circle about 30 cm. in diameter,

having apiece of insulated copper wire wound once around it,

with two free ends of about equal length twisted together so that

the effect of an electric current in one will be neutralized by that

of an equal and opposite current in the other. Place a compass-
needle at the center of the coil, and set the coil so that its plane
is parallel to the magnetic meridian.

Connect this galvanometer with some source furnishing a

constant electric current. Read the angle of deflection of the

compass-needle. Reverse the direction of the current and read

the angle again. Average the two results.

In what direction is the force tending to deflect the needle?

(See Exercise 32.) To what function of the angle of deflection

is this force proportional? (See Exercise 27, Proposition.)

II. Repeat I with a coil of the same diameter, but having
twice the length of wire as in I, i. e., having twice as many turns

of wire.

III. Take another wire and wind it once around a wooden

circle concentric with and of half the diameter of that used in I.

Connect these two coils so that the same current will flow through
them in opposite directions. Increase the number of turns of the

larger coil until the effect of the smaller coil on the compass-
needle is neutralized. How many turns of wire were necessary

to do this ? How many times did the length of the wire have to

be increased from that of the single turn on the inner coil in order

to neutralize the effect due to the decrease in the diameter of the

coil?

IV. Set up three such galvanometers having coils of the same

diameter and length, placing them as far apart as the table will

allow, and connect them so that the whole current passes through
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one coil and half of the current through each of the other coils.

Read the angle of deflection of each compass-needle. Reverse

the direction of the current and average the east and west deflec-

tions of each galvanometer.

V. Answer the following questions, showing in each case the

numerical process by which you arrived at your conclusion:

1. How does the force at the center of a circular coil carry-

ing an electric current vary with the length of wire in the coil,

according to the results of I and II, assuming that it varies with

some integral power (direct or inverse) of the length ?

2. How with the diameter or radius of the coil, according to

the results of II and III?

3. How with the current, according to the results of IV?

Assuming that the force F on a unit magnetic pole at the

center of a circular coil depends only on the length, L=2.nRN,
of wire in the coil, its radius, R, and the current, C, express this

force in terms of these three quantities and a constant K.

VI. Draw diagrams of all electrical connections.

Represent graphically the magnetic field at the needle when the

latter is deflected 45.

GROUP IV.

In all the electrical experiments, diagrams of electrical connec-

tions are to be made.

Instruments of the tangent galvanometer type a loop of wire

about a magnetized needle should be set with the plane of the

coil in the magnetic meridian and leveled so that the needle

swings freely. Wires leading to such an instrument, or near it,

should be twisted or laid side by side so that the magnetic fields

of currents in opposite directions neutralize each other. Two
instruments should never be nearer each other than one metre.

To take an observation, read both ends of the pointer, reverse

the direction of the current, read both ends of the pointer again,
and average the four readings. Reading both ends of the
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pointer eliminates eccentricity of mounting of the needle with

respect to the scale. Reversing the current corrects for the

imperfect orientation of the coil in the magnetic meridian. Note

that the pointer is usually mounted at right angles to the needle.

In the case of needles mounted on pivots slight tapping of the

instrument may be necessary to insure a correct reading. The
influence of one instrument upon "another may be tested by

reversing the current through one of them.

It is important in all electrical work that the connections be

tight. Always disconnect from batteries when through.

In all cases the above methods are to be used and the indicated

precautions taken.

34. CURRENT DETERMINATION.

I. Connect a tangent galvanometer, such as was used in

Exercise 33, in series with an ammeter and a source of constant

current, following the preceding directions for setting up and

reading. Take five sets of readings on different parts of the

scale of both instruments simultaneously, varying the current by

introducing into the circuit various lengths of German silver

wire. Record all readings and take the proper averages.

II. From the laws of electro-magnetic action studied in

Exercise 33 we may calculate the value of the current for the

various readings of the galvanometer, and comparing these values

with the ammeter readings, both expressed in the same unit, we

may calibrate or test the ammeter.

The C. G. S. unit of current in the electro-magnetic system is

the current that will act with a force of one dyne on a unit mag-
netic pole at the center of an arc i cm. long of i cm. radius.

If C in the equation of Exercise 33, V, was measured in terms of

this unit, F in dynes, and R and L in cm., the constant K may
be eliminated. How? Solve the resulting equation for C.

Also F=H tan 6 where H is the horizontal component of the

earth's magnetic field and the angle of deflection of the needle.
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Now F is the same quantity in the above two equations. The

two values of F may therefore be equated and an expression for

the current through the galvanometer found in C. G. S. units in

terms of the four measurable quantities: the radius R of the coil,

the length L=27rRN of wire in fhe coil (where N is the

number of turn,s), the horizontal component H of the earth's

field, and the tangent of the angle of deflection 6. (The value

of H will be given.)

III. Measure the radius of the galvanometer coil and find its

length. Calculate the values of the current, in C. G. S. units, for

the readings of the galvanometer taken in I.

How do the calculated values agree with the ammeter readings

of the current ? What, then, is the ratio between the C. G. S.

unit of current and the ampere the practical unit indicated by
the ammeter?

IV. Make a table of corrections to the readings of the ammeter

in terms of the current as calculated.

V. Explain what reversing the current in a tangent galvano-

meter eliminates?

35. ELECTRICAL RESISTANCE.

I. (a.) Connect an ammeter directly with the battery terminals

and read the current. Disconnect as soon as possible.

(. ) Introduce 50 cm. of No. 25 German silver wire into the

circuit in series with the ammeter. Read the current. How was

its value altered, by introducing this wire into the circuit?

(c.) Repeat with 100 cm. of No. 25 German silver wire, at

the same time introducing into the circuit a wire equal in size and

length to the wires leading to the battery. What is the effect on

the current of doubling the length of the wire in the circuit?

If we consider that the wire offers resistance to an electric

current, and assume that the resistance varies as some integral

power of its length, what do the results of ($) and (<:) show this

power to be ? Is it direct, or inverse ?
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II. (a.) Repeat I (<:) with two No. 25 German silver wires,

each 100 cm. long, connected in parallel, instead of the single

wire. What is the effect upon the current of paralleling the

resistance wire with another wire of the same material and of

equal diameter and length ?

(.) Remove the extra wire inserted in the circuit in i (V), and

adjust the length of the two wires, so that the current through

the ammeter is the same as in I (). How does the resistance of

the two wires in parallel, after this adjustment, compare with the

resistance of the single wire in I (b) ? How do their lengths

compare? What do you find to be the ratio of the resistance of

a single wire to that of two wires of the same material, length, and

diameter connected in parallel?

III. (0.) Connect a No. 25 German silver wire 20 cm. long in

series with the ammeter and read the current.

(.) Replace the No. 25 German silver wire by a No. 20

German silver wire of the same length, and measure the current

again. What do you find to be the effect of increasing the cross-

section of a wire upon the current ?

(V.) Adjust the length of the No. 20 German silver wire so that

the current through the ammeter is the same as in III (a). How
does the length of the No. 20 wire compare with that of a No.

25 wire having the same electrical resistance ?

(d.) With a screw gauge meaure the diameter of the No. 25

and also of the No. 20 wire. What is the ratio of the diameters

of the two wires? What is the ratio of the resistance of a No.

25 wire to that of the same length of No. 20 wire ? Explain.

Assuming that the electrical resistance varies as some integral

power of the diameter of a wire, what do you find the power in

question to be ? Is it direct, or inverse ? How must the resist-

ance vary, then, with the cross-section of the wire ? How do the

results of II () confirm your answer to this last question ?

IV. (a.) Introduce 50 cm. of No. 25 nickel wire into the cir-

cuit, instead of the German silver wire, and measure the current.
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What is the ratio of the resistance of the German silver and nickel

wires of the same length and diameter?

(.) Replace the brass wire by the No. 20 German silver

wire and adjust its length so that the current through the

ammeter is the same as in IV (a).

Having found a certain length of No. 20 German silver wire

equal in resistance to 50 cm. of No. 25 nickel wire, and knowing
the diameters of these wires, calculate the relative resistance of

nickel and German silver wires of the same diameter and length.

V. The resistance of a cubic centimeter is called the specific

resistance of a substance. If the specific resistance of German

silver is known, show how that for nickel may be calculated from

your results. Write the equation representing this.

36. ELECTROMOTIVE FORCE.

I. (a. ) Connect a low-resistance galvanometer (an ammeter)

directly to a Daniell cell and note the reading. Introduce

another Daniell cell into the circuit in series with the first cell,

connecting the copper plate of one cell to the zinc plate of the

other, so that the currents due to both flow in the same direction

through the ammeter. What change did the second cell produce
in the reading of the ammeter, if any ?

(.) Repeat (a) with a high-resistance galvanometer, con-

structed so that the effect on the deflection due to diminishing the

current is offset by having a great number of turns in the coil.

How did the change in the reading produced by introducing an

additional cell into the circuit compare with that produced by the

additional cell when an ammeter was used ? Should a galva-

nometer of high or low resistance be used to show the effect of

connecting two battery cells in series?

The effect of connecting two cells in series is to double the

electromotive force* tending to produce an electric current in

*The practical unit of electromotive force is called a volt, and a high-

resistance galvanometer graduated to give the electromotive force
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the circuit. What sort of a galvanometer (high or low resistance)

do your results indicate should be used to measure the electro-

motive force due to any source of electric currents, or between two

points of a circuit carrying a current ? What is the objection to

using a high-resistance galvanometer to measure the current in a

circuit?

II. With a voltmeter measure the electromotive force of the

following cells and combinations of cells, anal answer the questions
asked. (The directions for using a galvanometer apply also to a

voltmeter.)

1. A Daniell cell.

2. Two Daniell cells in series, connected copper to zinc.

3. Two Daniell cells in series, connected copper to copper.

4. Two Daniell cells in parallel.

Are the electromotive forces of the individual Daniell cells

equal? (Compare i, 2, and 3.) How does the electromotive

force of two Daniell cells in parallel compare with that of a single

cell? With that of two cells in series? (Compare 1,2, and 4.)

5. A Leclanche cell. (Zinc and carbon plates in a solution of

sal ammoniac, ammonium chloride.)

6. A Leclanche and a Daniell cell in series, connected carbon

to zinc and copper to zinc.

7. The same cells in series, connected carbon to copper and

zinc to zinc.

Is the electromotive force of a battery cell altered in any way
when it is connected to another cell of different construction ?

(Compare 1,5, 6, and 7.)

8. Any other cells or sources of electromotive force provided.

III. Measure the electromotive force of a Daniell cell, and of a

Leclanche cell, after being short-circuited for fifteen or twenty
minutes. Was the electromotive force of the Daniell cell the

between its terminals in volts is called a vo'tmeter. The instruments of

this class used in (b) were designed for use as voltmeters and will be

designated as such hereafter. The electromotive force of a Daniell cell

is 1.07 volt.
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same as that found in II? Was that of Leclanche the same? If

not, why? Which cell do you conclude is unsuitable for use

where a constant current is required, as in telegraphing ? Give a

reason why the other cell would be unsuitable for use where the

circuit would only be closed for a moment at a time and at long

intervals, as on a bell circuit. Disconnect all wires from cells.

Is electromotive force a force? Explain.

37. OHM'S LAW.

I. (.) Connect a single Daniell cell in series with a rheostat

and an ammeter. Take out enough plugs from the rheostat to

introduce a resistance of 5 ohms* into the circuit. Read the

ammeter carefully, reversing as usual. (Do not be surprised if

the current is small.)

(3.) Introduce another Daniell cell into the circuit in series with

the first cell. Read the ammeter again.

(The electromotive force in. (6) is twice that in (a). (See
Exercise 36, II.) What relation do you find to exist between

the electromotive force and the current when the resistance is

constant ?

II.. (a.) With the connections as in I () take out enough

plugs from the rheostat to increase the introduced resistance to 7

ohms. Read the ammeter.

(<.) Repeat II () with all the rheostat plugs out. (Resist-

ance=io ohms.)
How do the currents through the ammeter in I (), II (a),

and II ($), compare? How do the resistances of the circuits

compare, neglecting the comparatively small resistance of the

battery cells ? What relation do you find to exist between the

resistance and the current when the electromotive force is

constant ?

*The ohm is equal t the resistance at o C. of a column of mercury
106.3 cm. long and i sq. mm. in cross section.
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What, from the results of I and II, is the relation between

the current in a circuit (or part of a circuit), the electromotive

force acting through the circuit (or between its terminals, if it is

not a complete circuit), and the resistance of the circuit (or part

of a circuit)? This relation, when written correctly in the form

of an equation (assuming the units of current, electromotive force,

and resistance to be so related that the constant factor is unity),

is called Ohm' s Law.
III. Connect the ammeter in series with a rheostat and two

Daniell cells in parallel. Vary the resistance by steps of one

ohm over the range of the rheostat. Read the corresponding
currents. Make a plot with values of resistance as abscissae and

products of current by resistance as ordinates. Also plot resist-

ances and currents on the same paper. Explain by Ohm's law

the forms of the lines drawn.

Show how the resistance varies with the electromotive force

when the current is constant.

38. DIVIDED CIRCUITS AND FALL OF POTENTIAL
ALONG A CONDUCTOR.

I. (a.) Join two rheostats in parallel and connect them in

series with the battery provided and an ammeter. Cut out the

resistances in the rheostats, leaving but one ohm in one branch of

the circuit, and two ohms in the other. Read the current through

the ammeter.

(.) Place the ammeter in the branch circuit of one ohm's

resistance, and measure the current in this branch.

(<:.) Measure in the same way the current in the branch circuit

of two ohms' resistance.

(d.^) Answer the following questions:

1. How does the current in the main circuit compare with the

sum of the currents in the two branch circuits?

2. Does the greater current flow through the circuit of greater

or less resistance?
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3. The currents in a divided circuit are proportional to an

integral power of the resistances of the branches. What do your
results indicate this power to be? Is it direct, or inverse?

II. Connect the two rheostats with a third so as to form 'three

parallel circuits of one, two, and three ohms' resistance, respect-

ively. Measure with an ammeter, as was done in I, the current

in the main circuit and in each of the branch circuits. Measure

with a voltmeter the electromotive force between the two junctions

of the parallel circuits.

Is the relation found in I between the currents in the

branch circuits and the resistances of the circuits confirmed by the

results of II ? Explain.

III. Connect an external resistance of 10 ohms having steps of

2 ohms, in series with the battery.

Connect one of the voltmeter terminals to one plate of the

battery and the other terminal to points on the rheostat separated

from this plate by resistances of 2, 4, 6, 8, 10 ohms, respectively.

Plot resistances as abscissae and voltmeter readings as ordinates.

What does the plot indicate to be the relation between the fall of

potential along a conductor and the corresponding resistances ?

Is the fall of potential over 2 ohms' resistance the same in all parts

of the circuit?

IV. Calculate from the readings of the ammeter and voltmeter,

by means of Ohm's law,* the combined resistance of the three

circuits in II when joined in parallel.

What relation exists between this resistance and the resistances

of the separate branches?

The reciprocal of the resistance of a conductor of electricity is

called its conductivity. Calculate the conductivity of each of the

parallel circuits in II separately, and also the conductivity of the

three in parallel. What relation exists between the conductivity*

of the whole, and the sum of the conductivities of the separate

branches, of the circuit ?

For statement of Ohm's law, see text-book or Exercise 37.
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V. Deduce algebraically from Ohm's law the relations found

experimentally in I and II, finding the equations for the resistance

of circuits of two and of three branches in parallel.

39. ARRANGEMENT OF BATTERY CELLS; THEIR
ELECTROMOTIVE FORCE AND INTERNAL

RESISTANCE.

I. Connect three Daniell cells in series with each other (zinc to

copper) and in series with an ammeter and a rheostat. Also

connect a voltmeter to the terminals of the battery. Read the

voltmeter and ammeter simultaneously, varying the external

resistance from o by steps to the limit of the rheostat. Discon-

nect the ammeter and rheostat and read the voltmeter.

II. Repeat I with the three cells in parallel (coppers together
and zincs together).

III. What from I and from II is the value of the electromotive

force of a single Daniell cell? Measure this quantity directly

with the voltmeter. Also read the ammeter connected to a single

Daniell cell.

By Ohm's Law find the internal resistance of a single Daniell

cell, of three in parallel and of three in series. What are the

corresponding electromotive forces ?

IV. Construct a plot, from the results of II, with external

resistances (R) as abscissae and terminal potential differences

(E'=CR where C=current) as ordinates. The electromotive

force E of the battery is given by the voltmeter reading on open
circuit. Indicate this quantity on the plot also. For what resist-

ance in the external circuit does the terminal potential difference

become zero ? On what does the terminal potential difference

depend? Deduce an equation (based on Ohm's law) giving the

relation between the electromotive force of a battery in terms of

the internal and external resistances and the current. Modify
this to include the terminal potential difference.
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V. In I and II, which arrangement of cells gave the greatest

current when there was no external resistance in the circuit?

Which when the highest resistance used was introduced? Ex-

plain why in each case.

In general, how should a number of cells be connected in order

to obtain the greatest possible current ?

(i.) When the resistance in the external circuit is very small.

(2.) When comparatively large.

Explain these results algebraically by Ohm's law.

40. COMPARISON OF RESISTANCES BY WHEAT-
STONE'S BRIDGE.

I. Connect a Leclauche cell to the bridge-wire of a Wheat-

stone's bridge, and connect a sensitive galvanoscope, by one

terminal, to the sliding contact. (As the galvanoscope is simply
used to show the presence or absence of an electric current, the

motion of its needle is restricted to a few degrees.) Connect also

two rheostats in series with each other and in parallel with the

bridge-wire, and join the free terminal of the galvanoscope to the

junction of the two rheostats. A circuit of six branches is thus

formed, with the galvanoscope in one branch, the battery cell in

another, the rheostats in two branches, and two branches formed

by portions of the bridge-wire.

With a resistance of five ohms in each rheostat set the sliding

contact so that there is no current through the galvanoscope.

Interchange the rheostats and repeat.

Measure the lengths of the two portions into which the bridge-
wire is divided in each case. What is the mean ratio of these

two lengths? How does this ratio compare with the ratio between

the two resistances in the rheostats ?

II. Repeat I, with resistances of 5 and 10 ohms, respectively,

in the rheostats; with resistances of 7 and 10 ohms. What

proportion do you find can always be formed between the resist-

ances in the rheostat branches and the two lengths into which
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the bridge-wire is divided when there is no current through the

galvanoscope ? Indicate clearly.

III. What must be the difference of potential between the two

points where the galvanoscope is connected when there is no

current indicated? Why? Show, by applying Ohm's law to

the four branches formed by the two parts of the bridge-wire

and the two resistances, that, when this is the case, the proportion

found in II must hold true.

IV. Replace one of the rheostats by 100 cm. of No. 25 German

silver wire. Adjust the sliding contact so that there is no current

through the galvanoscope, and measure the lengths into which

the bridge-wire is divided. Using the rheostat resistance as a

standard, calculate, by means of the proportion found in II, the

resistance of 100 cm. of No. 25 German silver wire.

V. Repeat IV with various coils of wire on the table, instead

of the German silver wire, and find the respective resistances of

these coils. Record the numbers on the coils.

VI. Repeat IV with a coil of fine copper wire immersed in

cold water, and then in hot water, taking the temperature of the

water in each case after stirring. From your "results calculate:

(i) The resistance of the coil at each temperature; (2) the

change in resistance per degree rise in temperature; (3) the

resistance at o; (4) the change in resistance per degree rise in

temperature of each ohm at o. The last result will be the

temperature coefficient of the electrical resistance of copper.

41. HEATING EFFECT OF AN ELECTRIC
CURRENT.

I. Fill a small calorimeter, that has been weighed with its

stirrer, two-thirds full of icercold water and weigh. Adjust in

place the heating-coil provided having the higher resistance, and

insert a thermometer in the water through the opening in the

cover to which the coil is attached. Stir thoroughly, taking

care not to splash the water and keep stirring throughout the

exercise.
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Connect the heating coil in series with an ammeter and with

the terminals of the power circuit marked ' '

large current,

making the final connection at a noted minute and taking the

temperature at the same instant. Read the temperature and the

current each every minute on alternate half minutes, until the

temperature is half as high above that of the room as it was below

at the start.

II. Repeat I connecting to the terminals marked "small

current."

III. Repeat I (with the same terminals as in I) using the coil

of lower resistance.

IV. Calculate the heating effect of the current in each of the

three cases, in degrees per second.

Show from the results of I and II to what power of the current

the heating is proportional.

From the results of I and III show how the heating varies

with the resistance when the current is constant.

V. What becomes of the energy expended in maintaining an

electric current through a conductor?

Form an equation representing the relation of the heating to

the current, resistance and time.

Calculate the heat imparted by the coil in I on the assumption

that all goes to the water, calorimeter and stirrer. (The neces-

sary specific heats are given.)

The energy expended electrically is given in joules when ex-

pressed in terms of the units: the ampere, ohm, and second.

From the relation found above calculate in joules the energy ex-

pended in I, using the average value of the current. Deduce the

ratio of the calorie to the joule. What is this quantity?

Calculate in watts the power required in I.

What is it now necessary to know to calculate the value of the

watt in ergs per second? Explain.

VI. By means of Ohm's Law and the relation of V, find an

expression for the heating effect in terms of the electromotive

force and the current.
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42. LAWS OF ELECTROLYSIS.

1. Scour with emery cloth the six plates of the three copper

voltameters, then wash and dry them, taking care not to touch

the polished surfaces 'and not lay them on anything other than

clean white paper. Weigh these plates carefully on a sensitive

Jolly balance, recording the numbers on the plates in order to

identify them later. Place the plates in the dilute, slightly acid

copper sulphate solution which fills each of the voltameters, two

plates in each voltameter, adjusting so that the plates are parallel

in each cell. Connect the voltameters so that the whole current

will go through one of them and half through each of the other

two, arranging so that the current will go from the thick to the

thin plate in each cell. Diagram. State how you determine the

direction of the current. The circuit is completed by connecting
in series an ammeter and storage battery. The final connection

completing the circuit is to be made at a noted instant of time.

Leave the circuit closed for fifty minutes exactly and read the

current every two minutes. At the close of the run wash, dry,

and weigh the plates with the same precautions as before.

Record on the diagram the gain or loss of each plate.

II. i. Was the copper carried with or against the current?

Which, then, are the gain plates, those by which the current

enters or leaves the cells? How does the electrolytic cell com-

pare in this respect with the voltaic cell?

2. In each voltameter how did the gain of mass in one plate

compare with the loss of mass in the other?

3. What relation exists between the gain in mass of the. gain

plate in the voltameter through which the whole current passed

and the corresponding quantities for the other two voltameters?

Does the same relation hold for the loss plates ?

Find how the mass of copper deposited varies with the current.

III. Using the average value of the current in I, calculate for

each cell the mass of copper that would be deposited, from a

copper sulphate solution by a current of one ampere in one
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second, and find the average. This quantity is known as the

electro-chemical equivalent of copper.

IV. If zinc electrodes in a zinc sulphate solution were used,

would you expect the same quantity of zinc to be deposited in

the same time by the same current, as above ?

Look this up and state the remaining law of electrolysis.

Express in the form of an equation the laws of electrolysis.

43. ELECTROMAGNETIC INDUCTION.

I. (a.) Connect a coil of wire to a sensitive galvanometer, after

testing with a Leclanche cell what is the direction of the

current corresponding to a deflection to the right and left. (Be

careful not to disturb the galvanometer and accessory apparatus.)

Connect an electro-magnet to the storage battery terminals.

Hold the coil in the field of the electromagnet perpendicular to

the direction of the field, opposite the north pole of the magnet.
Then turn the coil quickly through 90, so that it becomes

parallel to the direction of the field. Note the deflection of the

galvanometer, and whether a clockwise or counter-clockwise

current is induced in the coil, looking along the lines of force.

(^.) With the coil held as in (a) remove the electromagnet
from before the coil, noting deflection and direction of induced

current as before.

(c.*} With the coil and magnet as in (a), break the circuit of

the electromagnet. Record as before.

In (d), (), and (c) how do the currents compare in magnitude
and direction? Viewing the coil in the direction of the lines of

force, was the number of lines through the coil diminished or

increased in each case? Does then diminishing the number of

lines of force through a closed circuit induce a clockwise or a

counter-clockwise current in the circuit?

II. Repeat I (a) with the same coil but inserting a resistance

in the circuit equal to the previous total resistance of the circuit.

Compare the current induced with that in I. How did it vary
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with the resistance in the circuit ? Which do you conclude is the

quantity that remained constant, the induced current or the

induced electromotive force? Is it better then to speak of induc-

ing an electromotive force or a current by moving a closed circuit

in a magnetic field?

III. (#.) Remove the extra resistance, and rotate the coil from

its final position in I through another 90. Apply the rule de-

duced in III, for the direction of the induced current (electro-

motive force). Does it still hold true?

(.) Rotate the coil through 180 more by steps of 90. What
is the effect of increasing the number of force-lines through the

coil on the direction of the induced current (electromotive force) ?

(r.) Repeat I (<) with the electromagnetic turned end for end.

Is the result of III () confirmed?

IV. Repeat III () with a coil having twice as many turns of

wire. How do you find the induction to vary with the number

of turns of wire in the coil? If you consider each turn as enclos-

ing a certain number of force-lines, how then does the induction

vary with the total change in the number of the force-lines

threading through the coil ?

V. (a.'} Hold the coil stationary, as in I (<:), and remove the

core only of the electromagnet. If the galvanometer is deflected,

read the deflection. Replace the core and read the deflection, if

any, again. Explain the effect in each case.

(<5.) Remove the core very slowly and read the deflection of

the galvanometer. Does this experiment indicate that the in-

duced current (electromotive force) varies with the rate at which

the change in the magnetic field is produced? How does the

rate of change affect the induced electromotive force ?

VI. The general laws of electromagnetic induction may be

stated thus: When the magnetic field is altered in any way with

respect to an electric conductor, an electromotive force is induced

in the conductor. This induced electromotive force is propor-

tional to the rate of change in the magnetic field, and its direc-
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tion is such as to produce a current that will oppose the change
in the field.

Show how the results obtained in I-V may be explained by
means of this law.

44. EARTH INDUCTOR.

I. (a.) Set up a sensitive galvanometer and connect it with an

earth-inductor, placing them as far apart as the table will allow.

Place the earth-inductor so that the two stationary, upright sup-

ports are in an east and west line, and set the circle so that its

axis- of rotation is horizontal.

Turn the circle slowly into a horizontal position, let the

galvanometer-needle come to rest, and then turn the circle sud-

denly through 1 80, noting the effect on the galvanometer.

Explain the cause of the current produced.

(b. ) Turn the circle in the same direction through another

1 80, and compare the induced current with that in I (). Was
its direction the same ? What would its direction have been if

there had been no commutator?

(V.) Rotate the coil continuously and uniformly, recording
the number of turns per minute and the deflection of the

galvanometer.
II. Set the coil so that its axis of rotation is approximately in

the direction of the earth's magnetic field (at an angle of about

62 with the horizontal). Rotate it continuously as was done in

I (V), recording again the number of turns per minute and the

deflection of the galvanometer, if any. How does the current

induced compare with that in I (V)? Explain the difference, if

there is any.

III. Set the coil as in I, and rotate it continuously at a rate

either one-half or twice as great as in I (V). What effect do you
find a change in the rate of rotation to have upon the value of

the induced current ?

IV. Repeat I (c) with the axis of rotation vertical, rotating
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the coil as nearly as possible at the same rate. To what com-

ponent of the earth's magnetic field is the induced current pro-

portional in this case? To what component was it proportional

in I (V)? How might the angle of dip be calculated from the

observations made in this section and in I (V) ? Using a table of

natural tangents, calculate thus the angle of dip at Berkeley.

V. By varying the angle of inclination of the coil, find a posi-

tion for which there will be no current induced when the coil is

rotated. Read the angle of inclination, if the earth-inductor has

a graduated circle. What is the relation between this angle and

the angle of dip? How does the value of the angle of dip found

in this way compare with that found in IV?

VI. Turn the base of the earth-inductor through 90 and

rotate the coil continuously about a vertical axis, as in IV, at the

same rate. How do you find the induced current to compare
with that in IV ? Explain the difference, if there is any.

VII. Answer the following questions and give reasons for your
answers:

1. Would there have been any current induced if the coil had

been moved parallel to itself?

2. Would there have been any current induced if the coil had

been moved parallel to itself with a strong magnet in its

neighborhood ?

3. What would be the effect on the induced current if a soft

iron core were placed within the coil of the earth inductor?
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