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Sea snakes propel themselves by lateral deformation waves
moving backwards along their bodies faster than they swim.
In contrast to typical anguilliform swimmers, however, their
swimming is characterized by exaggerated torsional waves
that lead the lateral ones. The effect of torsional waves on
hydrodynamic forces generated by an anguilliform swimmer is
the subject matter of this study. The forces, and the power
needed to sustain them, are found analytically using the
framework of the slender (elongated) body theory. It is shown
that combinations of torsional waves and angle of attack can
generate both thrust and lift, whereas combinations of torsional
and lateral waves can generate lift of the same magnitude as
thrust. Generation of lift comes at a price of increasing tail
amplitude, but otherwise carries practically no energetic penalty.
1. Introduction
Sea snakes have flattened bodies with no fins, and they propel
themselves by lateral deformation waves moving backwards
along their bodies faster than they swim—as a typical eel-
like (anguilliform) swimmer does [1]. In contrast to a typical
anguilliform swimmer, however, their swimming is characterized
by exaggerated torsional waves (their amplitude can exceed 90°)
that lead the lateral waves. Can it be that the torsional waves come
to balance the swimming snake against gravity? To answer this
question, one will need an estimate of hydrodynamic forces acting
on an anguilliform swimmer propelling itself by a combination of
lateral and torsional waves—these forces are the subject matter of
this study.

Hydrodynamic forces acting on an elongated deforming body,
moving in a fluid at Reynolds numbers in excess of a few tens of
thousands, can be found in several ways. The two extreme
approaches are represented by direct numerical solutions of the
Navier–Stokes equations [2], and by asymptotic solutions based
on the width-to-length ratio of the body as a small parameter
and an ideal fluid approximation [3–7]. The last approach,
widely known as the elongated (or slender) body theory, allows,
at least in principle, to obtain the hydrodynamic forces acting
on the body analytically. Preferring simplicity to accuracy, but
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deeming the accuracy of the asymptotic approach adequate [8], it is adopted for this study as well. The

coherence of the present results within the ideal fluid approximation is furnished in the electronic
supplementary material by comparison with numerical simulations based on the vortex lattice
method. An indication of their viability is furnished in Appendix I by comparison with observations
of a swimming yellow-bellied sea snake Hydrophis platurus [1].

The paper is organized in seven sections and 10 short appendices, which contain the details of the
underlying derivations. Units, notation, reference frames and the model swimmer are introduced in
the next section (§2), and it is where distributed forces acting on the swimmer are derived. Integral
forces acting on the swimmer are derived in §3, and further developed in §4 under the assumption
that the deformation waves are harmonic. Effects of torsion are analysed in §5. Adequacy of the
hydrodynamic forces to balance a swimming snake is assessed in §6. Section 7 concludes the paper.
l/rsos
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2. Fundamentals
2.1. Reference frames
The paper addresses a deformable swimmer of length l that moves, on average, with constant speed v
along a straight path in an infinite domain occupied by quiescent fluid of density ρ. Throughout the
paper, l, v, l/v, lv, ρv2,ρv2l, ρv2l2, ρv2l3, ρv3l and ρv3l2 will serve as units of length, velocity, time,
potential, pressure, force per unit length, force (or moment per unit length), moment, power per unit
length and power, respectively (table 1).

Two adjunct right-handed rectilinear reference frames, C and C0 will be used interchangeably.
Both have their x-axes opposing the (average) swimming direction, and both follow the swimmer
along its average path. C0 is a global (inertial) frame. Its y-axis lies in the sagittal plane of the
undeformed body and, for the sake of definiteness, points towards its dorsal side. The complementary
z-axis points left, perpendicular to the sagittal plane. Coordinates of a point relative to C0 will be
marked by a prime. Any scalar or vector field parametrized using coordinates of C’ will be marked
by a prime as well.

C is a local (non-inertial) reference frame, affixed to each cross section along the body. Its origin
is located in the y0−z0 plane of C0; its x-axis passes through the middle of a particular section;
and the frame itself is rotated (twisted) about the x-axis through angle θ(t, x), so as to make the
y-axis pass through the ventral and dorsal edges of that section. Coordinates of a point relative C
will remain unmarked, and so will any scalar or vector field parametrized using coordinates
of C. Formally,

ex0 ¼ ex, ð2:1Þ
ey0 ¼ ey cos u(t, x)� ez sin u(t, x) ð2:2Þ

and ez0 ¼ ey sin u(t, x)þ ez cos u(t, x) ð2:3Þ
relate the respective unit vectors;

x0 ¼ x, ð2:4Þ
y0 ¼ y0(t, x)� z sin u(t, x)þ y cos u(t, x) ð2:5Þ

and z0 ¼ z0(t, x)þ z cos u(t, x)þ y sin u(t, x) ð2:6Þ
relate the coordinates. Because of its equivalence with x (equation (2.4)), x0 and x will be used
interchangeably. By interpretation, y0 = y0(t,x) and z0 = z0(t, x) are equations of the swimmer’s centreline
in C0.

2.2. The model swimmer
An undeformed swimmer is assumed to be flat and of zero thickness.1 The outline of the swimmer starts
with a point at the cranial end (x = xn = 0), and reaches maximal span of 2st at the caudal end (x = xt = 1).2
1While the shape of its cross section has little or no effect on hydrodynamic forces generated by a non-twisting swimmer [5], it is hardly
true for a twisting one. The assumed flatness of the swimmer should be accepted as a limitation of the present model, and extension of
its results to a swimmer with a different cross section should be made with due caution.
2Ending the model swimmer at the widest section saves the need to address hydrodynamic interaction with its own wake [5,7,8] in an
already complex analysis.



Table 1. Nomenclature.

fundamental (dimensional) quantities

g acceleration of gravity

m body mass

l body length

v swim speed

ρ water density

ν kinematic viscosity

fundamental units

l length

v velocity

l/v time

lv velocity potential

ρv2 pressure

ρv2l force per unit length

ρv2l2 force, or moment per unit length

ρv2l3 moment

ρv3l power per unit length

ρv3l2 power

non-dimensional quantities

A± coefficient with the square-root singularity of μ at the dorsal and ventral edges; equation (2.37)

B buoyancy; equation (6.4)

C local (non-inertial) reference frame attached to the body of the swimmer

C
0

global inertial reference frame moving along with the swimmer

Cn standard integral; equation (2.25)
�D drag coefficient (based on 2ps2t as the reference area); equation (6.1)

ex , ey , ez basis vectors of C; positive directions are posterior, dorsal and sinister

ex0 , ey0 , ez0 basis vectors of C0; equations (2.1)–(2.3)
Fr Froude number, Fr ¼ v=

ffiffiffi
gl

p

f force per unit length acting on the swimmer; equation (3.1)

fx0 , fy0 , fz0 components of f in C0; equations (3.3)–(3.5)
f± leading-edge suction (per unit length), dorsal (+) and ventral (–); equation (2.36)

Jn nth-order Bessel function of the first kind

k prismatic coefficient; the ratio between the volume of the body and the minimal cylinder enclosing it;

equation (6.4)

L lift: the component of the (period averaged) hydrodynamic force along ey0 ; equation (3.27)
�L factor in the lift-to-thrust ratio; equation (5.6)

Mx0 ,My0 ,Mz0 components of the (period averaged) hydrodynamic moment, referred to the origin of C0;
equations (3.30)–(3.32)

�Mz0 ,ref factor in the pitching-moment-to-thrust ratio; equation (5.11)
�M+
z0 ,ref maximum (+) and minimum (–) of �Mz0 ,ref with respect to fu and ût

mx0 rolling moment per unit length of the swimmer about the x0-axis; equation (3.15)
N, n normal to the left-side of the body, facing left; n ¼ N=jNj; equation (A 2)
n0, n1 constituents of n associated with translational and rotational motions; equations (A 7) and (A 8)

(Continued.)
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Table 1. (Continued.)

n+ unit normal to dorsal and ventral edges of the swimmer; equation (A 9)

P (period averaged) power required to sustain the propulsion waves; equation (3.29)

p pressure

Δp pressure jump across the body of the swimmer (left minus right); equation (2.31)

Re Reynolds number, Re ¼ vl=n

Sw wetted area of the swimmer

s local semi-span: half the distance between the dorsal and ventral edges

T thrust: the component of the (period averaged) hydrodynamic force along �ex ¼ �ex0 ; equation (3.26)
�T factor in T; equation (5.2)

T+ tangent to the dorsal and ventral edges of the body; equation (A 10)

t time

w local velocity of the swimmer’s body relative to quiescent fluid, taken with the negative sign; normal-

to-the-body component only; equation (C 3)

w0, w1 constituents of w associated with translational and rotational motions; equations (2.17) and (2.18)

X1, X2 integral operators; equations (5.8)–(5.9)

x, y, z coordinates of a point relative to C

x0, y0, z0 coordinates of a point relative to C0; equations (2.4)–(2.6)
xcL, xcm, xcb coordinates of the centers of lift, mass and buoyancy

xn, xt coordinates of the cranial and caudal ends (‘nose’ and ‘tail’) in C and C0 alike; xn = 0 and xt = 1 by

assumption

y0, ŷ0 coordinate of the body centreline relative to C0; ŷ0 is independent of time
ŷt in-plane deflection of the body centreline at the tail section; ŷt ¼ ŷ0(xt )

Z side-force: the component of the (period averaged) hydrodynamic force along ez0 ; equation (3.28)

z0 coordinate of the body centreline relative to C0

ẑ0 modulating amplitude of the lateral propulsion waves; equation (4.1)

zb, z0b coordinate of the body surface relative to C0; equations (2.9) and (2.10)
ẑt amplitude of the lateral propulsion waves at the tail section; ẑt ¼ ẑ0(xt )

β ratio between submerged weight and buoyancy

ζ (invariably) an integration variable

η propulsion efficiency; equation (3.41)

θ twist angle

û0 modulating amplitude of the torsional propulsion waves; equation (4.2)

uJ1¼0 first non-trivial solution of J1(2x) = 0, approximately 110°

ût amplitude of the torsional propulsion waves at the tail section; ût ¼ û0(xt )

θ± ût that maximizes (+) or minimizes (–) the pitching-moment-to-thrust ratio

i power per unit length; equation (3.20)

κ angular wavenumber; equations (4.1)–(4.2)

μ potential jump across the body of the swimmer (left minus right); equation (2.12)

μn nth moment of μ; equation (2.20)

�mn numerical factor in μn; equations (2.29)–(2.30)

Pn nth moment of pressure; equation (2.32)

ŝt ratio of the maximal semi-span to the amplitude of the lateral waves at the tail section; ŝt ¼ st =̂zt

(Continued.)
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Table 1. (Continued.)

ϕ perturbation velocity potential; equation (2.11)

ϕM ϕθ that maximizes or minimizes the pitching moment; equation (5.13)

ϕz, ϕθ phases of the lateral and torsional propulsion waves at t = x = 0; equations (4.1)–(4.2)

ψz, ψθ instantaneous phases of the lateral and torsional propulsion waves; equation (4.4)

ω angular frequency; equations (4.1)–(4.2)

special symbolsc. . . typically, an amplitude

. . . typically, a factor in the quantity bearing the same name

. . .� derivative with respect to a single argument

…0 point function which is explicitly based on coordinates of the point in C0

…0 typically, pertaining to the centreline

…ref or…,ref pertaining to or referred to the reference section

…t or …,t pertaining to or referred to the tail (caudal) section

〈…〉 average over a single period

D=Dt linearized Lagrangian derivative, @=@t þ @=@x
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The local semi-span (figure 1) is described by a monotonically increasing function s: (xn, xt)→ (0, st); it is
understood that s(xt) = st. The body of the swimmer is assumed to be pronouncedly elongated, so both st
and max

x[(xn ,xt)
(ds=dx) are small as compared with unity.

The swimmer is allowed to bend in-plane (as if by arching its back—figure 1e), bend out of plane (as
any anguilliform swimmer would—figure 1c), and twist about its central (cranio-caudal) axis (figure 1d ).
The surface of the swimmer will be parametrized either by

z0 ¼ z0b(t, x, y
0), ð2:7Þ

or by

z0 ¼ zb(t, x, y): ð2:8Þ
It is assumed that each cross section of the swimmer does not deform during swimming and does not
leave its respective y0–z0 plane. In this case, y0 and y are related by (2.5) with z = 0, whereas z0b and zb
can be expressed as

z0b(t, x, y
0) ¼ z0(t, x)þ

�
y0 � y0(t, x)

�
tan u(t, x) ð2:9Þ

and

zb(t, x, y) ¼ z0(t, x)þ y sin u(t, x): ð2:10Þ

Deformations of the body are assumed small, so that max
t, x, y

jzb(t, x, y)j, max
t, x, y

j@zb(t, x, y)=@tj and

max
t, x, y

j@zb(t, x, y)=@xj are small as compared with unity. Additional constraint on the allowed

deformations will be introduced in the next section.
2.3. Underlying assumptions
As mentioned already in the Introduction, the plan is to find forces acting on the swimmer in the
framework of the slender body theory. Its fundamentals can be found in quite a few references
(e.g. [3–7,9,10]) and hence will not be repeated here; its main assumptions are recapitulated below.

Apart from the obvious assumptions on slenderness of the swimmer and smallness of its
deformations (that were already made in the preceding section), the slender body theory relies on
three basic assumptions: (i) the vortical regions in the flow are confined to the boundary layer on
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Figure 1. The model swimmer and the coordinate systems. Side (a) and top (b) views of an untwisted swimmer; axonometric
projections of lateral and torsional waves are shown on (c) and (d ); an exaggerated in-plane bend is shown on (e). The axes
of C0 are shown with dash-dot lines. Shifted and rotated axes of C are shown by blue dotted lines for a cross section that is
marked by a thick blue line.
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the surface of the swimmer and the wake behind it, (ii) the flow separates from (and only from) trailing
edges of the body, and (iii) both the boundary layer and the part of the wake in the immediate
proximity of the body are (vanishingly) thin. Under these assumptions, the velocity and pressure
fields in the exterior of the boundary layer and the wake—and, in particular, on their outer
boundary—can be found without finding them in interior of these regions. By associating thrust
and power with the normal stresses on the surface of the body and the drag with the shear stresses
[8, §3.1], the lack of knowledge of the flow field in the interior of the boundary layer still allows
estimating thrust and power, but it disallows estimating drag. Shear stresses are hardly affected by
undulations of the body [2], and since drag of an undeformed body can be estimated with a fairly
good accuracy by empirical methods [11], lack of knowledge of its exact value should not affect the
conclusions of this paper.

Location of the trailing edges along the body—these are the edges where the wake forms—has huge
effect on the complexity of the solution for the forces acting on it. Having parts of the body embedded in
the wake makes the solution unwieldly [5–8]; having the wake form at different parts of an edge during a
tail-beat makes it intractable. Both cases are avoided here by ending the model swimmer at its widest
section (see above), and limiting its admissible deformations to those for which the wake forms at
(and only at) the widest section (appendix B).
2.4. Potential jump and its moments
The slender body theory furnishes the velocity and pressure fields in the (irrotational) exterior of the
boundary layer and the wake as leading terms of the respective asymptotic series in the slenderness
parameter—the ratio between typical lateral and longitudinal dimensions of the body. For the
problem at hand, it can be the largest of the spatial derivatives of y0, z0 and sθ. This theory can be
derived formally, based on the method of matched asymptotic expansions [5,6,9,10], and informally,
based on momentum considerations [3,7]. In the leading order with respect to the slenderness
parameter all formulations are practically equivalent, and reduce the problem of finding the velocity
and pressure fields near the body of the swimmer to that of finding a certain scalar field ϕ that
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satisfies two-dimensional Laplace equation in every transverse plane crossing the body (i.e. at every

x∈ (xn, xt)), satisfies an impermeability condition on its surface, and vanishes at infinity.3

In the present case, the body of the swimmer in the transverse plane occupies the interior of the slit
{(y, z): y∈ (− s(x), s(x)), z = 0}, and the general solution of the two-dimensional Laplace equation in its
(unbounded) exterior is4

f(t, x, y, z) ¼ 1
2p

ðs(x)
�s(x)

m(t, x, z )zdz

(y� z)2 þ z2
, ð2:11Þ

where

m(t, x, y) ¼ f(t, x, y,þ0)� f(t, x, y,�0) ð2:12Þ

is the potential jump across the slit.5 This general solution is yet to satisfy the impermeability condition
on the surface of the slit,

lim
z!+0

@f(t, x, y, z)
@z

¼ �w(t, x, y) for each y [ (�s(x), s(x)) ð2:13Þ

(the right-hand side will be explicated shortly below), and the conjunction of (2.11) and (2.13) furnishes6

an integro-differential equation for μ(t, x, · ),

1
2p

�
ðs(x)
�s(x)

@m(t, x, z )
@z

dz
y� z

¼ w(t, x, y) for each y [ (�s(x), s(x)): ð2:14Þ

The bar across the integral sign indicates principle value in Cauchy sense. Its solution,

@m(t, x, y)
@y

¼ � 2
p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2(x)� y2

p �
ðs(x)
�s(x)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2(x)� z2

q
w(t, x, z ) dz

y� z
, ð2:15Þ

immediately follows by the Söhngen inversion [9].7 In the last three equations,

w(t, x, y) ¼ w0(t, x)þ yw1(t, x), ð2:16Þ
w0(t, x) ¼ �cos u(t, x)

Dz0(t, x)
Dt

þ sin u(t, x)
Dy0(t, x)

Dt
, ð2:17Þ

w1(t, x) ¼ �Du(t, x)
Dt

, ð2:18Þ

and D/Dt stands for the linearized Lagrangian derivative, ∂/∂t + ∂/∂x; details can be found in
appendix C.

Subject to

m(t, x,+s(x)) ¼ 0, ð2:19Þ
equation (2.15) can be integrated on (−s(x), y) to obtain μ(t, x, y), which can be substituted back in (2.11)
to complete the solution for ϕ(t, x, y, z). This detailed solution will not be needed, however, and the first
few moments of ∂μ/∂y,

mn(t, x) ¼
1

snþ1(x)

ðs(x)
�s(x)

@m(t, x, y)
@y

yn dy, ð2:20Þ

will suffice to obtain all relevant hydrodynamic forces and moments.
Thus,

mn(t, x) ¼ � 2
psnþ1(x)

ðs(x)
�s(x)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2(x)� z2

q
w(t, x, z ) dz�

ðs(x)
�s(x)

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2(x)� y2

p yndy
y� z

ð2:21Þ
3For a body of zero thickness, ϕ can be identified with perturbation velocity potential, so that v0 ¼ ex0 þ r0f.
4Effectively, this is the potential of a distribution of doublets of intensity µ oriented along the z-axis and located in the interior of the
slit [12].
5It can be verified by showing that lim

z!+0
f(t, x, y, z) ¼ +m(t, x, y)=2:

6The simplest way to obtain the expression on the left is to integrate (2.11) by parts, differentiate second, and carefully compute the
limit. Passage to the limit introduces the principal value to the integral. In this form, it appears in practically any textbook on
aerodynamics [9,12].
7Having assumed that the flow does not separate anteriad of the widest point, implies that the flow turns round the edges. The limiting
procedure of taking the thickness of the swimmer to zero introduces a square-root singularity in the velocity jump, @m(t, x, y)=@y. It
does not introduce a discontinuity in the velocity potential, however, and hence (2.19).
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by (2.15), and hence

mn(t, x) ¼ � 2
psnþ1(x)

ðs(x)
�s(x)

yndyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2(x)� y2

p �
ðs(x)
�s(x)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2(x)� z2

p
y� z

�
w0(t, x)þ zw1(t, x)

�
dz ð2:22Þ

by (2.16). Substituting y =−s(x)cosθy and ζ =−s(x)cosθζ, it becomes a combination

mn(t, x) ¼ � 2
p

ðp
0
(�1)ncosnuyduy�

ðp
0

�
w0(t, x)� s(x) cos uzw1(t, x)

� sin2uzduz
cos uz � cos uy

ð2:23Þ

of standard (Glauert) integrals [13], which yields

mn(t, x) ¼ (�1)n
�
2w0(t, x)Cnþ1 þ s(x)w1(t, x)(Cn � 2Cnþ2)

�
, ð2:24Þ

where

Cn ¼
ðp
0
cosnuyduy: ð2:25Þ

Among these, C2n−1 = 0 with any n > 0 by symmetry considerations, whereas

C2n ¼ 1
22n

ðp
0
(eiu þ e�iu)

2n
du ¼ p(2n)!

22n(n!)2
: ð2:26Þ

Consequently, (2.24) can be recast as

m2n(t, x) ¼ �2ps(x)w1(t, x)�m2n ð2:27Þ
and

m2n�1(t, x) ¼ �2pw0(t, x)�m2n�1, ð2:28Þ
where

�m2n(t, x) ¼ � 1
2

(2n)!

22n(n!)2
� (2nþ 2)!

22nþ1((nþ 1)!)2

� �
¼ (2n)!n

22nþ1(nþ 1)!n!
ð2:29Þ

and

�m2n�1 ¼
(2n)!

22n(n!)2
ð2:30Þ

are certain numerical coefficients, and the convention 0! = 1 applies. In particular, �m0 ¼ 0, �m1 ¼ 1=2,
�m2 ¼ 1=8 and �m3 ¼ 3=8.
2.5. Pressure jump and its moments
The pressure jump across the body, Δp(t, x, y) = p(t, x, y, +0)− p(t, x, y,−0), is given by

Dp(t, x, y) ¼�Dm(t, x, y)
Dt

þ @m(t, x, y)
@y

sin u(t, x)
Dz0(t, x)

Dt
þ cos u(t, x)

Dy0(t, x)
Dt

� �
þ . . . , ð2:31Þ

where the ellipsis comes to emphasize that the expression is correct only in the leading order with respect
to the spatial derivatives of z0, y0 and θ. Derivation of (2.31) can be found in appendix D. With (2.31) and
(2.20), the nth-order pressure moment

Pn(t, x) ¼ �
ðs(x)
�s(x)

Dp(t, x, y)yn dy, ð2:32Þ

becomes a combination

Pn(t, x) ¼� 1
nþ 1

D
Dt
�
snþ2(x)mnþ1(t, x)

�� snþ1(x) sin u(t, x)
Dz0(t, x)

Dt
þ cos u(t, x)

Dy0(t, x)
Dt

� �
mn(t, x) ð2:33Þ

of the respective moments of the potential jump, μn and μn+1. Derivation of (2.33), as well as explicit
expressions, relating Pn with w0 and w1, can be found in appendix E. The zeroth- and first-order
pressure moments,

P0(t, x) ¼ p
D
Dt
�
s2(x)w0(t, x)

� ð2:34Þ
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and

P1(t, x) ¼p

8
D
Dt
�
s4(x)w1(t, x)

�þ ps2(x) sin u(t, x)
Dz0(t, x)

Dt
þ cos u(t, x)

Dy0(t, x)
Dt

� �
w0(t, x) , ð2:35Þ

are shown here because they will be actively used below. Note that the zeroth-order moment (the force
per unit length) is independent of the shape of the body’s centreline.
 lishing.org/journal/rsos
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2.6. Leading-edge suction
When the thickness of the body tends to zero, the pressure at its leading edges becomes singular. The
product of the body thickness and pressure remains finite, however, giving rise to what is known as
the ‘leading-edge suction’—the force acting on the edge and oriented along the normal to it (i.e.
along n+—see appendix A). There are two leading edges, and the force (per unit length) acting on
each one of them is

f+(t, x) ¼ p

4
A2

+(t, x), ð2:36Þ

where

A+(t, x) ¼ lim
y!+s(x)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(x)+ y

p @m(t, x, y)
@y

ð2:37Þ

is the coefficient with the square-root singularity of μ at the respective edge [14]. Its explicit form is

A+(t, x) ¼ +
2
p

1ffiffiffiffiffiffiffiffiffiffi
2s(x)

p �
ðs(x)
�s(x)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(x)+ z

s(x)+ z

s
w(t, x, z ) dz

¼
ffiffiffiffiffiffiffiffiffiffi
2s(x)

p �
+w0(t, x)� 1

2
w1(t, x)s(x)

�
ð2:38Þ

by (2.15) and (2.16). The leading-edge suction,

f+(t, x) ¼ p

2
s(x)
�
w0(t, x)+

1
2
w1(t, x)s(x)

�2
, ð2:39Þ

follows (2.38) by (2.36).
3. Forces and moments
3.1. Forces
The force per unit length acting on the body is given by

f(t, x) ¼ �
ðs(x)
�s(x)

Dp(t, x, y)n(t, x, y)dyþ f�(t, x)n�(t, x)þ fþ(t, x)nþ(t, x), ð3:1Þ

or, what is equivalent by (A 6) and (2.32),

f(t, x) ¼ P0(t, x)n0(t, x)þP1(t, x)n1(t, x)þ f�(t, x)n�(t, x)þ fþ(t, x)nþ(t, x): ð3:2Þ
Substituting (A 7), (A 8) and (A 11) from appendix A for the normal vectors, the three components of
f(t, x) in C0 become

fx0 ¼ �P0 cos u
@z0
@x

� sin u
@y0
@x

� �
�P1

@u

@x
� ( f� þ fþ)

ds
dx

� ( fþ � f�) sin u
@z0
@x

þ cos u
@y0
@x

� �
, ð3:3Þ

fy0 ¼ �P0 sin uþ ( fþ � f�) cos u ð3:4Þ
and fz0 ¼ þP0 cos uþ ( fþ � f�) sin u ; ð3:5Þ
the arguments of all functions have been omitted for brevity. With (2.39), (2.34), (2.35), (2.17) and (2.18),
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they yield

fx0 ¼ �p cos u
@z0
@x

� sin u
@y0
@x

� �
D
Dt
�
s2w0

�� ps2w0
@u

@x
sin u

Dz0
Dt

þ cos u
Dy0
Dt

� �
� p

8
@u

@x
D
Dt
�
s4w1

�� p

2
w2

0
@s2

@x
þ p

16
w2

1
@s4

@x

� �
� ps2w0w1 sin u

@z0
@x

þ cos u
@y0
@x

� �
, ð3:6Þ

fy0 ¼ �p sin u
D
Dt
�
s2w0

�þ ps2w0w1 cos u ¼ �p
D
Dt
�
sin u s2w0

� ð3:7Þ

and fz0 ¼ p cos u
D
Dt
�
s2w0

�þ ps2w0w1 sin u ¼ p
D
Dt
�
cos u s2w0

�
: ð3:8Þ

Exploiting (2.18) and (2.17), about half a page of algebraic manipulations on (3.6) (detailed in
appendix F) furnishes

fx0 ¼ p
D
Dt

s2w0

�
� cos u

@z0
@x

þ sin u
@y0
@x

�
� 1
8
s4w1

@u

@x

� �
� p

2
@

@x
s2w2

0 þ
s4

8
w2

1

� �
ð3:9Þ

in a short form, and

fx0 ¼p
D
Dt

 
s2
�
cos u

Dz0
Dt

� sin u
Dy0
Dt

��
cos u

@z0
@x

� sin u
@y0
@x

�
þ 1
8
s4
Du

Dt
@u

@x

!

� p

2
@

@x
s2 cos u

Dz0
Dt

� sin u
Dy0
Dt

� �2

þ s4

8
Du

Dt

� �2
 !

ð3:10Þ

in a long one. Averaging (3.7)–(3.10) over a tail-beat period (tp) yields

h fx0 i ¼ p

2
@

@x

*
�s2w0 2 cos u

@z0
@x

� 2 sin u
@y0
@x

þ w0

� �
� 1
8
s4w1 2

@u

@x
þ w1

� �+
ð3:11Þ

¼ p

2
@

@x

*
s2cos2u

@z0
@x

� �2

� @z0
@t

� �2
 !+

þ p

2
@

@x
s2sin2u

@y0
@x

� �2

� @y0
@t

� �2
 !* +

� p

2
@

@x

*
s2 sin 2u

@z0
@x

@y0
@x

� @z0
@t

@y0
@t

� �+
þ p

16
@

@x
s4

@u

@x

� �2

� @u

@t

� �2
 !* +

, ð3:12Þ

h fy0 i ¼ �p
@

@x

	
s2 sin uw0



¼ p

@

@x
s2 sin u cos u

Dz0
Dt

� s2sin2u
Dy0
Dt

	 

ð3:13Þ

and h fz0 i ¼ p
@

@x

	
s2 cos uw0



¼ p

@

@x
�s2cos2u

Dz0
Dt

þ s2 sin u cos u
Dy0
Dt

	 

, ð3:14Þ

where the angular brackets stand for the averaging operator, h. . .i ¼ (1=tp)
Ð tp
0 . . . (t) dt.
3.2. Rolling moment
The rolling moment (per unit length) about the x0-axis is given by

mx0 (t, x) ¼ �
ðs(x)
�s(x)

Dp(t, x, y)ydyþ fz0 (t, x)y0(t, x)� fy0 (t, x)z0(t, x), ð3:15Þ

or, what is equivalent by (2.32),

mx0 (t, x) ¼ P1(t, x)þ fz0 (t, x)y0(t, x)� fy0 (t, x)z0(t, x): ð3:16Þ

Consistent with the direction of the x-axis, it is positive when rolling to the left. Introducing (2.35), (3.7)
and (3.8), it yields

mx0 ¼p

8
D
Dt
�
s4w1

�þ ps2 sin u
Dz0
Dt

þ cos u
Dy0
Dt

� �
w0 þ pz0

D
Dt
�
sin u s2w0

�þ py0
D
Dt
�
cos u s2w0

�
, ð3:17Þ

where the arguments of the respective functions have been removed for brevity, as in (3.3). The second
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term cancels out with a remainder of the union of the last two terms, leaving

mx0 ¼ p
D
Dt

s2
�
z0 sin uþ y0 cos u

�
w0 þ 1

8
s4w1

� �
¼ p

D
Dt

s2
�
z0 sin uþ y0 cos u

��� cos u
Dz0
Dt

þ sin u
Dy0
Dt

�
� 1
8
s4
Du

Dt

� �
ð3:18Þ

by (2.17) and (2.18). Assuming θ to be periodic with zero mean, the tail-beat-average of (3.18) yields

hmx0 i ¼ p

2
@

@x
�s2

�
y0 þ z0 sin 2uþ y0 cos 2u

�Dz0
Dt

þ s2
�
z0 þ y0 sin 2u� z0 cos 2u

�Dy0
Dt

	 

¼ p

2
@

@x

 
s2 z0

Dy0
Dt

� y0
Dz0
Dt

�D(y0z0)
Dt

cos 2uþ 1
2

Dy20
Dt

�Dz20
Dt

� �
sin 2u

	 
!
: ð3:19Þ
R.Soc.Open
Sci.7:200754
3.3. Power
The power (per unit length) needed to sustain the deformation waves is given by

i(t, x) ¼
ðs(x)
�s(x)

Dp(t, x, y) cos u(t, x)
@z0(t, x, y)

@t
� sin u(t, x)

@y0(t, x)
@t

þ y
@u(t, x)

@t

� �
dy

� � fþ(t, x)� f�(t, x)
�

sin u(t, x)
@z0(t, x, y)

@t
þ cos u(t, x)

@y0(t, x)
@t

� �
; ð3:20Þ

the factor with the pressure jump in the first term is the normal-to-the-surface component of the
swimmer’s velocity in C0; the factor with the leading-edge suction in the second term is the normal-
to-the-edge component of the swimmer’s velocity in the same reference frame. Thus,

i(t, x) ¼� cos u(t, x)
@z0(t, x)

@t
� sin u(t, x)

@y0(t, x)
@t

� �
P0(t, x)� @u(t, x)

@t
P1(t, x)

� ps2(x)w0(t, x)w1(t, x) sin u(t, x)
@z0(t, x, y)

@t
þ cos u(t, x)

@y0(t, x)
@t

� �
ð3:21Þ

by (2.32) and (2.39), and, consequently,

i ¼� p cos u
@z0
@t

� sin u
@y0
@t

� �
D
Dt
�
s2w0

�� ps2w0
@u

@t
sin u

Dz0
Dt

þ cos u
Dy0
Dt

� �
� p

8
@u

@t
D
Dt
�
s4w1

�� ps2w0w1 sin u
@z0
@t

þ cos u
@y0
@t

� �
ð3:22Þ

by (2.34) and (2.35) (or (E 3) and (E 4)); again, the arguments of the respective functions have been
removed for brevity. With an intermediate step shown in appendix G,

i ¼ p
D
Dt

s2w0

�
� cos u

@z0
@t

þ sin u
@y0
@t

�
� 1
8
s4w1

@u

@t

� �
� p

2
@

@t
s2w2

0 þ
1
8
s4w2

1

� �
ð3:23Þ

by (2.17) and (2.18). Its tail-beat-average is

hii ¼ �p
@

@x
s2w0

�
cos u

@z0
@t

� sin u
@y0
@t

�	 

� p

8
@

@x
s4w1

@u

@t

	 

ð3:24Þ

(equation (2.18) was used in the last term); or, explicitly,

hii ¼p
@

@x
s2cos2u

Dz0
Dt

@z0
@t

	 

þ p

@

@x
s2sin2u

Dy0
Dt

@y0
@t

	 

þ p

8
@

@x
s4
@u

@t
Du

Dt

	 

� p

@

@x
s2 sin u cos u

Dz0
Dt

@y0
@t

þ @z0
@t

Dy0
Dt

� �	 

ð3:25Þ

by (2.17) and (2.18).
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3.4. Integral quantities

Hydrodynamic forces and moments acting on the entire body follow the above by quadratures. Explicit
expressions for the respective time-dependent quantities turn unwieldy, but can be found in full in the
electronic supplementary material, S1. Their coherence was verified by comparison with numerical
simulations based on the vortex lattice method [12]. The rest of this manuscript addresses time-
averaged quantities only. In an attempt to make all relevant expressions as short as possible, w0 and
w1 (equations (2.17) and (2.18)) are left here unexpanded. Thus,

T ¼ �
ðxt
xn
h fx0 idx ¼ p

2
s2t w0 2 cos u

@z0
@x

� 2 sin u
@y0
@x

þ w0

� �
þ 1
8
s2t w1 2

@u

@x
þ w1

� �	 

x¼xt

ð3:26Þ

is the effective thrust (it follows by (3.11)),

L ¼
ðxt
xn
h fy0 i dx ¼ �ps2t

�
w0 sin u

�
x¼xt

ð3:27Þ

is the lift (it follows by (3.13)),

Z ¼
ðxt
xn
h fz0 idx ¼ ps2t

�
w0 cos u

�
x¼xt

ð3:28Þ

is the lateral force (it follows by (3.14)),

P ¼
ðxt
xn
hii dx ¼ �ps2t w0 cos u

@z0
@t

� sin u
@y0
@t

� �
þ 1
8
s2t
@u

@t
w1

	 

x¼xt

ð3:29Þ

is power required to sustain the deformation waves (it follows by (3.24)),

Mx0 ¼
ðxt
xn
hmx0 i dx ¼ ps2t

D
w0
�
z0 sin uþ y0 cos u

�E
x¼xt

ð3:30Þ

is the rolling moment about the x0-axis (it follows by (3.18) and (3.19)), and finally,

My0 ,ref ¼ �(xt � xref)ZþMy0 ,t ð3:31Þ

and

Mz0 ,ref ¼ (xt � xref)LþMz0 ,t ð3:32Þ

are the yawing and pitching moments about some x = xref, where

My0 ,t ¼ �
ðxt
xn
h fz0 (�,x)i(x� xt) dx ¼ p

ðxt
xn
s2(x)

D
cos u(�,x)w0(�,x)

E
dx ð3:33Þ

and

Mz0 ,t ¼
ðxt
xn
h fy0 (�,x)i(x� xt) dx ¼ p

ðx
xn
s2(x)

D
sin u(�,x)w0(�,x)

E
dx ð3:34Þ

are the respective moments about the tail section (they follow by (3.13) and (3.14)). Admittedly, the last
four equations are approximations, because they tacitly neglect the moments due to thrust as compared
with those due to lift and side force. To remain consistent with directions of the respective axes, the
pitching and yawing moments are defined as positive when pushing the nose down and left. Thrust
is defined positive when pushing forwards. Classical results of the slender body theory [3],

T ¼ p

2
s2t

@z0
@t

� �2

� @z0
@x

� �2
* +

x¼xt

ð3:35Þ
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and

P ¼ ps2t
@z0
@t

@z0
@t

þ @z0
@x

� �	 

x¼xt

, ð3:36Þ

follow (3.26) and (3.29) with θ = 0 by (2.17) and (2.18).

3.5. Hydrodynamic losses and propulsion efficiency
The difference, ΔP = P− T, between the power used and the power made good (recall that in
dimensionless units, the swimming speed is unity, and hence the power made good, which is the
product of thrust and speed, equals thrust) is the power lost to the fluid. It can be computed from
(3.29) and (3.26),

DP ¼ P� T ¼ ps2t
1
2

D
w2

0(�, xt)
E
þ 1
16

s2t
D
w2

1(�, xt)
E� �

, ð3:37Þ

but it also can be computed directly from the rate at which the kinetic energy is added to the fluid at the
tail section [15],

Pt ¼ 1
2

ðst
�st

m(�, xt, y)w(�, xt, y) dy
	 


: ð3:38Þ

Introducing (2.16)—and noting (2.19)—it can be integrated by parts to obtain

Pt ¼� 1
2

ðst
�st

@m(�, xt, y)
@y

w0(�, xt)yþ 1
2
w1(�, xt)y2

� �
dy

	 

¼ � 1

2
s2t
D
w0(�, xt)m1(�, xt)

E
� 1
4
s3t
D
w1(�, xt)m2(�, xt)

E
, ð3:39Þ

which, in turn, yields

Pt ¼ ps2t
1
2

D
w2

0(�, xt)
E
þ 1
16

s2t
D
w2

1(�, xt)
E� �

ð3:40Þ

by (2.27) and (2.28). Indeed, Pt = ΔP.
The (hydrodynamic) propulsion efficiency,

h ¼ T
P
¼ 1� DP

P
, ð3:41Þ

is commonly defined as the ratio of the power made good, T (see the opening paragraph of this section)
and the power spent, P. Introducing (3.29) and (3.26), it becomes

h ¼
w0

�
2 cos u

@z0
@x

� 2 sin u
@y0
@x

þ w0

�
þ 1
8
s2t w1

�
2
@u

@x
þ w1

�	 

x¼xt

�w0

�
2 cos u

@z0
@t

� 2 sin u
@y0
@t

�
� 1
8
s2t 2

@u

@t
w1

	 

x¼xt

; ð3:42Þ

it is reminded that w0 and w1 are given by (2.17) and (2.18).
4. Harmonic waves
4.1. Basic expressions
Based on Graham et al. [1], deformations of a swimming snake appear as a combination of lateral,

z0(t, x) ¼ ẑ0(x) cos (vt� kxþ fz), ð4:1Þ
and torsional,

u(t, x) ¼ û0(x) cos (vt� kxþ fu), ð4:2Þ
harmonic waves, and time-independent flex in the x0–y0 plane,

y0(t, x) ¼ ŷ0(x): ð4:3Þ
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Here, ω and κ are the (angular) frequency and the (angular) wavenumber, ϕz and ϕθ are the phase angles,

ẑ0 and û0 are the modulating amplitudes. ẑ0 and û0 are assumed continuous, monotonic and non-
negative on (xn, xt), dŷ0=dx is assumed continuous on (xn, xt). The arguments of the cosines in (4.1)
and (4.2) will be abbreviated by

cz(t, x) ¼ vt� kxþ fz, cu(t, x) ¼ vt� kxþ fu ð4:4Þ

below, and, without a loss of generality, ϕz will be set zero. It is noted that

@z0(t, x)
@t

¼ �vẑ0(x) sincz(t, x) ð4:5Þ

and
@z0(t, x)

@x
¼ kẑ0(x) sincz(t, x)þ _̂z0(x) coscz(t, x), ð4:6Þ

where an overdot marks the derivative of a function with respect to its single argument. Similar
expressions hold for θ.

Now,with any real a andψ, cos(a cosψ) and sin(a cos ψ) can be expanded into the respective Fourier series

cos (a cosc) ¼ J0(a)þ 2
X1
m¼1

(�1)mJ2m(a) cos 2mc ð4:7Þ

and

sin (a cosc) ¼ �2
X1
m¼1

(�1)mJ2m�1(a) cos (2m� 1)c, ð4:8Þ

where J0, J1, … are the Bessel functions of the first kind (these expansions are based on standard integrals
appearing in eqns 3.715.13 and 3.715.18 of [16]). In particular,

2 cos2
�
u(t, x)

� ¼ 1þ cos
�
2u(t, x)

�
¼ 1þ J0

�
2û0(x)

�þ 2
X1
m¼1

(�1)mJ2m
�
2û0(x)

�
cos
�
2mcu(t, x)

�
, ð4:9Þ

and, similarly, 2sin 2(θ(t, x)) = 1− cos(2θ(t, x)) is given by a variant of (4.9) withminuses replacing the pluses.
After introducing these in (3.12), (3.13), (3.14), (3.19) and (3.25)—or, rather, directly in (3.26)–(3.34)—a few
pages of tedious (but rather straightforward) algebra yield

T ¼ps2t
8

�
(v2 � k2)ẑ2t � _̂z

2
t

��
1þ J0(2ût)þ J2 (2ût) cos 2fu

�þ ps4t
32

�
(v2 � k2)û2t � _̂u

2

t

�
� ps2t

4

�
J2 (2ût) _̂zt (kẑt sin 2fu � _̂zt cos 2fu)þ 2J1(2ût) _̂yt (kẑt sinfu � _̂zt cosfu )

�
� ps2t

4

�
1� J0(2ût)

�
_̂y
2
t , ð4:10Þ

L ¼ ps2t
2

J1(2ût)
�
ẑt(v� k) sinfu þ _̂zt cosfu

�� ps2t
2

_̂yt
�
1� J0(2ût)

�
, ð4:11Þ

P ¼ps2t
4

v(v� k)
��

1þ J0(2ût)þ J2(2ût) cos 2fu

�
ẑ2t þ

s2t û
2
t

4

�
� ps2t

4
vJ2 (2ût)ẑt _̂zt sin 2fu �

ps2t
2

vJ1 (2ût) _̂yt ẑt sinfu, ð4:12Þ

Mz0 ,t ¼� p

2

ðxt
xn
s2(x)

�
ẑ0(x)(v� k) sinfu þ _̂z0(x) cosfu

�
J1
�
2û0(x)

�
dx

þ p

2

ðxt
xn
s2(x) _̂y0(x)

�
1� J0

�
2û0(x)

��
dx ð4:13Þ

and also

Z ¼ Mx0 ¼ My0 ,t ¼ 0: ð4:14Þ

The subscript ‘t’ universally marks the values of the respective functions at the tail section: ŷt ¼ ŷ0(xt),
ẑt ¼ ẑ0(xt), ût ¼ û0(xt), and st = s(xt).
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4.2. An extension

Extended variants of (4.10)–(4.14), which are based on

y0(t, x) ¼ ŷ0(x)þ n̂0(x) cos (vt� kxþ fy) ð4:15Þ
instead of (4.3), can be found in electronic supplementary material, S2. Deemed unwieldy to be used
without simplifying them back to (4.10)–(4.14), they do offer an insight that two mutually
perpendicular lateral harmonic waves do not interact in any of the tail-beat-averaged quantities
appearing in (4.10)–(4.14), except for Mx0 . This result could have been expected for lift, side force and
the associated moments (that follow from (3.27) and (3.28)), but it could hardly be expected for thrust
and power (that follow from (3.26) and (3.29)).
al/rsos
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4.3. Limiting cases
The respective limits of (4.10)–(4.13)

lim
ût!0

T ¼ ps2t
4

�
(v2 � k2)ẑ2t � _̂z

2
t

�
, ð4:16Þ

lim
ût!0

L ¼ 0, ð4:17Þ

lim
ût!0

P ¼ p

2
s2tv(v� k)ẑ2t ð4:18Þ

and lim
ût!0

Mz0 ,t ¼ 0, ð4:19Þ

recover the expressions of the classical elongated body theory [5,7,8]. Thrust can be obtained only when
the phase velocity of the propulsion waves, u = ω/κ, exceeds the swimming velocity.

The limits:

lim
ẑt!0

T ¼ ps4t
32

�
(v2 � k2)û2t � _̂u

2

t

�� ps2t
4

�
1� J0(2ût)

�
_̂y
2
t , ð4:20Þ

lim
ẑt!0

L ¼ �p

2
s2t _̂yt

�
1� J0(2ût)

�
, ð4:21Þ

lim
ẑt!0

P ¼ p

16
s4tv(v� k) û2t ð4:22Þ

and lim
ẑt!0

Mz0 ,t ¼ p

2

ðxt
xn
s2(x) _̂y0(x)

�
1� J0

�
2û0(x)

��
dx, ð4:23Þ

elucidate the equivalence between the classical anguilliform swimming gait based on backward-
propagating lateral displacement waves, and its variant (or, rather, a variant of a gymnotiform gait
[4]) based on backward-propagating torsional waves. In the context of propulsion, the effective
amplitude of the edge displacement due to torsion, sû0=

ffiffiffi
8

p
, is equivalent to the translation amplitude

ẑ0. Of course, twist interacts with the angle of attack (manifested in _̂y0), whereas translation alone
does not, and hence additional terms proportional to powers of _̂y0 are found in (4.20), (4.21) and
(4.23). In particular, the factor with _̂yt in the expression for lift, (ps2t =2)

�
1� J0(2ût)

�
, can be identified

with the lift slope coefficient Lα of a twisting swimmer,8 whereas the ratio of the factor with _̂y
2
t in the

expression for thrust and L2a, can be identified with the induced drag coefficient.
The limits,

lim
_̂zt!0
_̂ut!0

T ¼ ps2t
8

(v2 � k2)
��

1þ J0(2ût)þ J2 (2ût) cos 2fu

�
ẑ2t þ

s2t û
2
t

4

�

� ps2t
2

kJ1(2ût) _̂yt ẑt sinfu �
ps2t
4
�
1� J0(2ût)

�
_̂y
2
t , ð4:24Þ

lim
_̂zt!0

L ¼ ps2t
2

J1(2ût)ẑt(v� k) sinfu �
ps2t
2

_̂yt
�
1� J0(2ût)

� ð4:25Þ
8Maximal list slope of 0.7ps2t is obtained at ût � 110�, where J1(2ut) ¼ 0. It is 70% of what it would have been if the swimmer was
swimming on its side.
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and

lim
_̂zt!0

P ¼ps2t
4

v(v� k)
��

1þ J0(2ût)þ J2(2ût) cos 2fu

�
ẑ2t þ

s2t û
2
t

4

�
� ps2t

2
vJ1 (2ût) _̂yt ẑt sinfu ð4:26Þ

(equation (4.13) for the pitching moment remains unchanged), furnish a convenient framework for
subsequent analysis. _̂zt ¼ 0 and _̂ut ¼ 0 reflect free-end conditions at x = xt,

9 and have been actually
observed with a swimming H. platurus [1] (figure 4).

Remarkably, a combination of (4.24)–(4.26),

lim
_̂zt!0
_̂ut!0

T ¼ lim
_̂zt!0

vþ k

2v
Pþ 1

2
_̂yt L

� �
, ð4:27Þ

suggests

lim
_̂zt!0
_̂ut!0

h ¼ lim
_̂zt!0
_̂ut!0

T
P
¼ vþ k

2v
þ 1
2
_̂yt lim_̂zt!0

L
P

ð4:28Þ

by (3.41). In other words, generating lift with no angle of attack ( _̂yt ¼ 0) carries no energetic penalty.
Generating positive lift when swimming tail high directs the normal-to-the-body component of the
hydrodynamic force forwards and improves efficiency; conversely, generating positive lift by
swimming tail-low worsens it. In fact, when ϕθ = 0, the last term in (4.24) (and hence in (4.28))
becomes identified with the induced drag.

The fact that thrust does not vanish when the power does, reflects a (possible) problem in separation
of thrust and drag. Reclassifying thrust at zero power as drag, as was done in [17] for a bird in flapping
flight, does not work here. As opposed to large birds, which can generate lift without flapping, slender
flat swimmers cannot generate lift without twisting their bodies. Assuming _̂yt ! 0, in addition to _̂zt ! 0
and _̂ut ! 0, furnishes a fortuitous solution for the remaining part of the paper, but the general problem
will have to be addressed somewhere.
5. Effects of torsion
5.1. Thrust
Equations (4.11) and (4.13) answer part of the question that started this study: an interaction between
torsional and lateral waves can indeed generate lift and pitching moment. It remains to assess their
magnitudes, and this is the subject matter of this section. To make the analysis concise, it will be
limited to those cases where _̂zt ¼ _̂ut ¼ _̂yt ¼ 0. The ubiquitous ratio st=ẑt of the tail semi-span st to the
amplitude of the tail displacement ẑt will be denoted here by ŝt. It is a small quantity for a swimming
sea-snake (it equals 0.11 for H. platurus—appendix I), but one can easily conceive a swimmer for
which ŝt is of the order of unity.

In the case where _̂zt ¼ _̂ut ¼ _̂yt ¼ 0, equation (4.10) can be rearranged as

T ¼ ps2t
4

ẑ2t (v
2 � k2)�T(fu,ût, ŝt), ð5:1Þ

where the factor

�T(fu,ût, ŝt) ¼ 1
2
�
1þ J0(2ût)þ J2 (2ût) cos 2fu

�þ 1
8
ŝ2
t û

2
t ð5:2Þ

manifests the effect of torsional waves on thrust—in fact, �T(fu, 0, ŝt) ¼ 1, for any ϕθ and any ŝt. It is a
(local) extremum of �T, which is a maximum when ŝ2

t , 4� 2 cos 2fu (figure 2a,c), and a minimum
otherwise (figure 2d ).10 The minimum of �T is invariably associated with ϕθ = π/2 and ût ranging
9A swimming body can be modelled as a cantilever subjected to internal (muscles) and external (hydrodynamic) forces. There is no
concentrated hydrodynamic force that acts on it at x ¼ xt from the outside, and there are no muscles at x ¼ xt to bend it from
inside. The free-end condition for a cantilever is @2z0=@2x ¼ 0 at x ¼ xt, where @2z0=@x2 ¼ (€̂z0 � k2 ẑ0) coscz þ 2k _̂z0 sincz by (4.1). A
necessary condition to satisfy it at all times is _̂zt ¼ 0. The same is true for ût.
10When ût � 1, �T(fu,ût, ŝt) ¼ 1þ (�4þ 2 cos 2fu þ ŝ2

t )(û
2
t =8)þOðû4t Þ.
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between 101° at ŝt ! 0,11 and zero at ŝt �
ffiffiffi
6

p
(figure 2b). The minimum itself ranges from 0.08 at ŝt ! 0

and unity at ŝt �
ffiffiffi
6

p
(figure 2a,b).

Maxima and minima of �T should not be confused with maxima and minima of thrust. When
swimming at constant speed and depth, thrust equals drag, regardless of the particular value of �T.
Smaller �T merely implies that the swimmer will need larger tail amplitude,
ẑt ¼ 4T
ps2t (v2 � k2)�T(fu,ût,ŝt)

 !1=2

, ð5:3Þ
to generate it for the same ω and κ (this equation follows from (5.1)). In fact, since �T ¼ 1 when there is no
twist,

ffiffiffiffiffiffiffiffi
1=�T

p
can be interpreted as the ratio ẑt=ẑt,ût¼0 of tail amplitudes needed to generate the same thrust

when the torsional waves present or not. Having observed ût � 50�—at which �T can be as low as 0.5
(figure 2a,b), and hence ẑt=ẑt,ût¼0 can be as high as 1.4—an attempt made in [1] to calculate thrust of a
swimming H. platurus based on results of the classical elongated body theory is inconsistent (compare
the last two columns in appendix I, table 2).
11It is a solution of 2ûtJ1ð2ûtÞ ¼ J2 ð2ûtÞ.



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200754
18
5.2. Lift

Appearing in full in equation (4.11), the expression for lift comprises three terms. The first term, the one
involving ω− κ, is associated with lift that is (actively) generated by lateral and torsional waves
propagating along the tail; it can be compared to the lift generated by a helicopter’s rotor in forward
flight. The other two are associated with the lift that is (passively) generated by the tail being, on
average, at angle with the flow; it can be compared to the lift generated by a wing at angle of attack.
The limit _̂zt ¼ _̂yt ¼ 0 leaves only the ‘active’ part,

L ¼ p

2
s2t J1(2ût)(v� k) ẑt sinfu, ð5:4Þ

which is linked to generation of thrust through the product (v� k)ẑt. In fact, given ω and κ, thrust
actually sets ẑt (equation (5.3)); and hence equation (5.4) can be used to obtain the lift-to-thrust ratio,

L
T
¼ �L(fu,ût, ŝt)

v� k

vþ k

ps2t
T

� �1=2

, ð5:5Þ

in which

�L(fu,ût, ŝt) ¼ J1(2ût) sinfuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�T(fu,ût, ŝt)

q ð5:6Þ

manifests the effect of the torsional waves.
The maximum of �L is practically unity when ŝt ! 0 (figure 3), but vanishes when ŝt ! 1, when

thrust is generated by the torsional waves only. The maximum is invariably associated with ϕθ = π/2
(figure 3a) and ût ranging between 77° when ŝt ! 0 and zero when ŝt ! 1 (figure 3b). With small ŝt

(say, a few tenths), the tail amplitude that will be needed to generate thrust at maximal lift-to-thrust
ratio is approximately twice the tail amplitude needed to generate the same thrust with no twist
(�T � 1=4 along the dash-dotted line with filled circles on figure 2b).

Twisting the tail beyond uJ1¼0 � 110� (where J1(2θ) = 0) makes the lift negative (figure 3a). Its
minimum (at ϕθ = π/2 and ût . 140�) hardly exceeds half of its maximum (at ϕθ = π/2 and ût , 77�) by
the absolute value, and hence negative lift can be generated much more effectively with a smaller
twist and ϕθ =−π/2.
5.3. Pitching moment
Like the expression (4.11) for lift, the full expression (4.13) for pitching moment comprises three terms, of
which the first one (involving ω− κ) is associated with moment that is actively generated by lateral and
torsional waves propagating along the tail, and the other two are associated with the moment that is
passively generated by the tail being, on average, at angle with the flow. This time, however, the limit
_̂zt ¼ _̂ut ¼ _̂yt ¼ 0 leaves two terms in the expression for the pitching moment, that, when re-referred to
some x = xref, take on the form

Mz0 ,ref ¼ ps2t
2

ẑt
�
(v� k) sinfu

�
J1(2ût)(xt � xref)� X1(ût)

�� cosfuX2(ût)
�

ð5:7Þ

where X1ðûtÞ and X2ðûtÞ shorthand

X1

�s,�z0, �u0

�ðûtÞ ¼ ðxt
xn
�s2ðxÞ�z0ðxÞJ1 2�u0ðxÞût

� �
dx ð5:8Þ

and

X2

�s,�z0, �u0

�ðûtÞ ¼ X1

�s, _�z0, �u0

�ðûtÞ, ð5:9Þ

whereas �s(x) ¼ s(x)s�1
t , �z0(x) ¼ ẑ0(x)ẑ�1

t and �u0(x) ¼ û0(x)û�1
t are the respective shape functions on (xn, xt)

into (0, 1). Equation (5.7) straightforwardly follows from (3.32) by (4.13) and (4.11). A few examples
elucidating the behaviour of X1 and X2 for the shape functions shown in figure 4 (see appendix J for
details) can be found in figure 5.
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Using (5.3) for ẑt, equation (5.7) furnishes the pitching-moment-to-thrust ratio,

Mz0 ,ref

T
¼ �Mz0 ,ref(fu,ût, ŝt,v� k)

v� k

vþ k

ps2t
T

� �1=2

, ð5:10Þ

practically in the same form as equation (5.5), only now

�Mz0 ,ref(fu,ût, ŝt,v� k) ¼ (xt � xref)J1ð2ûtÞ � X1ðûtÞ � cotfu

X2ðûtÞ
v� k

 !
sinfuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�T(fu,ût, ŝt)
q ð5:11Þ
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replaces �L as effect of torsion. �Mz0 ,ref has two extrema,

�M+
z0 ,ref(ŝt,v� k) ¼ +

�
ðxt � xrefÞJ1ð2u+Þ � X1ðu+Þ

�2
�Tðp=2, u+,ŝtÞ

þ X2
2ðu+Þ

(v� k)2�T(0, u+, ŝt)

0B@
1CA

1=2

, ð5:12Þ

both situated along the line fu ¼ fM(ût, ŝt,v� k),

fM(ût, ŝt,v� k) ¼ arctan (v� k)
ðxt � xrefÞJ1ð2ûtÞ � X1ðûtÞ

�X2ðûtÞ
�T(0,ût, ŝt)

�T(p=2,ût, ŝt)

 !
, ð5:13Þ

where @ �Mz0 ,ref=@fu ¼ 0. One of the two extrema is a (positive) maximum at ût ¼ uþ(ŝt,v� k), where
both ðxt � xrefÞJ1ð2uþÞ � X1ðuþÞ and X2ðuþÞ are positive, and hence fM(u

þ . . .) . p=2; the other is a
(negative) minimum at ût ¼ u�(ŝt,v� k), where ðxt � xrefÞJ1ð2u�Þ � X1ðu�Þ is negative, and (typically)
fM(u

� . . .) , p=2 (appendix H). Over-twisting the tail causes the anterior and posterior parts of the
body to generate lift in the opposite directions, and changes the direction of the pitching moment;
unlike the lift, the magnitude of the negative pitching moment exceeds the magnitude of the positive
one (figure 6a,c). In those cases, the centre of lift,

xcL ¼ xref þ
�Mz0 ,ref
�L

, ð5:14Þ

moves posteriad of the caudal end (figure 7).
For all combinations of shape functions tested for this study, (xt− xref )J1(2θ

±)−X1(θ
±) and X2(θ

±) were
comparable quantities, and so were �T(p=2,u+,ŝt) and �T(0,u+,ŝt). At the same time, ω− κ can be a fairly
large quantity—in fact, H. platurus swim with ω− κ≈ 6 (appendix I, table 2). Consequently,

�M+
z0 ,ref(ŝt,1) ¼ ðxt � xrefÞJ1ð2u+Þ � X1ðu+Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Tðp=2,u+,ŝtÞ
p , ð5:15Þ

fM
�
u+(ŝt,1),ŝt,1

� ¼ p

2
ð5:16Þ

and u+(ŝt,1) ¼ argmax
ût

+
ðxt � xrefÞJ1ð2ûtÞ � X1ðûtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Tðp=2,ût,ŝtÞ
q

0B@
1CA, ð5:17Þ

which formally are limits of the respective quantities when ω− κ→∞ (see equations (5.12) and (5.13)),
can be effectively used as leading-order approximations when ω− κ is finite (figure 6c,d). In fact,
when ω− κ exceeds, say, 4, fM

�
u+(ŝt,v� k),ŝt,v� k

�
remains within 15° of π/2, and neither

u+(ŝt,v� k) nor �M+
z0 ,ref(ŝt,v� k) change appreciably with ω− κ.
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Figure 6. Contours of constant �Mz0 ,ref (fu,ût , 0:1,v –k) over the ϕθ−ût plane (a,c); contours of constant
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the same as along the y-axes on the respective plates to the right of them. Points mark the combinations of parameters
where the reduced thrust �T (triangles), the lift-to-thrust ratio �L (circles) and the pitching-moment-to-thrust ratio �Mz0 ,ref
(squares) are either minimal (empty symbols) or maximal (filled symbols). The combination of shape functions underlying this
figure is the one that was marked ‘1’ in figure 4, �s(x) ¼ ffiffi

x
p

, and xref = 0.45.
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Shapes of the modulating functions �z0 and �u0 have pronounced effect on the pitching moment
(figure 8a), but hardly change the arguments θ± and ϕM(θ

±…) of its extrema (figure 8b). A combination
of late-rising �z0 and �u0 increases the maximal moment (case 4); a combination of late-raising �u0 and
early-rising �z0 increases (by the absolute value) the minimal one (case 3).
6. Balancing a snake
In order to swim at constant depth and speed, thrust should counterbalance drag,12

T ¼ ps2t �D, ð6:1Þ
hydrodynamic lift should counterbalance the excess weight,

L ¼ bB, ð6:2Þ
and the hydrodynamic pitching moment about the centre of mass should counterbalance the hydrostatic
12In the framework of an ideal fluid approximation, this statement means that the respective tail-beat-averaged component of the force
acting on the body through normal and shear stresses on its surface is zero. Thrust and drag has been already associated with normal
and shear stresses, respectively.
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couple

Mz0 ,cm ¼ (xcm � xcb)B: ð6:3Þ

In (6.1)–(6.3), �D is the drag coefficient based on 2ps2t as the reference area; xcb and xcm are the respective
coordinates of the centres of buoyancy and mass; B is the buoyancy; and β is the ratio between the
submerged weight and buoyancy.

With ρv2l2 serving as a unit of force (§2.1),

B ¼ ps2t k
Fr2

, ð6:4Þ

where k is the prismatic coefficient—the ratio between the volume of the body and the minimal
cylinder enclosing it (see appendix I)—and Fr is the pertinent Froude number, formally defined
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as Fr ¼ v=

ffiffiffiffi
gl

p
(g is the acceleration of gravity). A clear distinction is made here between the actual body

shape used for hydrostatic analysis, and its flattened version used for the hydrodynamic one.
With T taken from (6.1), B from (6.4), L/T from (5.5) and Mz0 ,cm=T from (5.10), equilibrium conditions

(6.2) and (6.3) can be restated as

�L(fu,ût,ŝt)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v� k

vþ k

1
�D

r
¼ kb

Fr2 �D
ð6:5Þ

and

�Mz0 ,cm(fu,ût,ŝt,v� k)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v� k

vþ k

1
�D

r
¼ k(xcm � xcb)

Fr2 �D
: ð6:6Þ

Lacking the data, no attempt is made to solve them explicitly. Yet, a necessary condition for their solution
to exist is to have the maximal achievable values on their left-hand sides exceed those on the right.
Practically, it sets a lower bound on the Froude number. Its rough estimate, based on kinematic data
of H. platurus (appendix I), yields 1.6|β|1/2 by (6.5), and 3.5|xcm− xcb|

1/2 by (6.6). The first one is
based on �L � 1 (figure 3b); the last one is based on j �Mz0 ,cmj � 0:2 (figures 6a and 8a).13

A buoyancy–gravity imbalance with β = 0.005, which is representative of buoyancy loss after an hour
at 10 m depth14 [18,19] or a descent of 1.6 m from the same depth,15 can be compensated
hydrodynamically at Froude numbers in excess of 0.11. This is 0.25 m s−1 for a 0.5 m snake. Sea
snakes can swim faster than that. Balancing hydrostatic imbalance hydrodynamically appears as a
viable option.

A buoyancy–gravity misalignment with |xcm− xcb| = 0.002, which is a diminutive 1 mm for a 0.5 m
snake, will need a Froude number in excess of 0.15 to be compensated hydrodynamically. This is
0.35 m s−1 for a 0.5 m snake. Sea snakes can swim faster, but it seems unlikely that a realistic
hydrostatic couple can be balanced hydrodynamically. Sea snakes do have control over their centre of
buoyancy [18].
7. Concluding remarks
To make this extension of the elongated (slender) body theory tractable, quite a few simplifying
assumptions were made. The central ones were: (i) the body is flat; (ii) it ends at the widest section;
(iii) its dorsal and ventral edges both serve as leading edges along their entire length at all times; (iv)
the lateral deformations are small; and (v) the Reynolds number is high. The central results are found
in equations (3.11)–(3.14), (3.19), (3.26)–(3.34) and (4.10)–(4.14). They were shown coherent in
electronic supplementary material, S1 by matching numerical simulations based on the vortex lattice
method. Nonetheless, the vortex lattice method cannot serve as a standard to establish their practical
applicability limits. To find the limits, the verifying simulations should have been free from any of the
assumptions underlying the present results—in particular, free from an a priori classification of the
swimmers edges into ‘leading’ and ‘trailing’ (assumption (iii)). Unsteady RANS simulations could
have been effective to this end, but they are complex and deserve a separate study. An encouraging
indication of viability of the present results is furnished in appendix I (table 2) by accurately
predicting the observed tail amplitude of a swimming H. platurus.
Data accessibility. All data underlying this study have been taken from [1,18,19].
Authors’ contributions. Both authors took equal share in the analysis; G.I. wrote the manuscript with the input from A.R.
Both authors gave final approval for publication.
Competing interests. The authors declare no competing interests.
Funding. This research had no funding.
13The reference point for Mz0 ,refwas set at 0.45 body length from the cranial end, roughly where the centre-of-mass is expected to be
(appendix I).
14To remain neutrally buoyant, a yellow-bellied sea snake needs lungs occupying 6.5% of its body volume [19]. When submerged, it
uses oxygen from the lungs and expels CO2 to the water through the skin, losing lungs volume at the rate of approximately 16% per
hour at atmospheric pressure [20]. The respective change in buoyancy is approximately 1% per hour. With the same lungs volume at
10 m depth, the rate halves.
15Referring to the preceding footnote, a 0.5% change in buoyancy requires 8% change in lungs volume. It can be achieved by changing
the outside pressure by the same amount. At 10 m, it requires a change in depth of 1.6 m.
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Appendix A. Normal vectors

A normal to the surface

z0 ¼ z0b(t, x, y
0), ðA1Þ

can be found with

N0(t, x0, y0) ¼ r0�z0 � z0b(t, x0, y0)
� ðA2Þ

(e.g. [20]). When z0b is given by (2.9), it yields

N0(t,x0,y0) ¼ ez0 � ey0 tan u(t, x0)� ex0
@z0(t, x0)

@x0
þ y0 � y0(t, x0)

cos2u(t, x0)
@u(t, x0)
@x0

� tan u(t, x0)
@y0(t, x0)

@x0

� �
, ðA3Þ

or, using a different parametrization

N(t, x, y) ¼ ez0 � ey0 tan u(t, x)� ex0
@z0(t, x)

@x
þ y
cos u(t, x)

@u(t, x)
@x

� tan u(t, x)
@y0(t, x)

@x

� �
; ðA4Þ

recall that ex ¼ ex0 and x0 = x by (2.1) and (2.4), whereas y0 and y are related by (2.5) with z = 0. When ∂y0/
∂x, ∂z0/∂x and s∂θ/∂x are small,

jN(t, x, y)j ¼ jsec u(t, x)j þ . . . ðA5Þ

by (A 4), and in this case, the unit normal, n ¼ +N=jNj, facing the same side as the z-axis of C, can be
recast as a sum

n(t, x, y) ¼ n0(t, x)þ yn1(t, x)þ . . . , ðA6Þ

where

n0(t, x) ¼ ez0 cos u(t, x)� ey0 sin u(t, x)� ex0 cos u(t, x)
@z0(t, x)

@x
� sin u(t, x)

@y0(t, x)
@x

� �
ðA7Þ

and

n1(t, x) ¼ �ex0
@u(t, x)
@x

; ðA8Þ

note that ex0 ¼ ex by (2.1), whereas ez0 cos u(t, x)� ey0 sin u(t, x) ¼ ez by (2.2) and (2.3). The ellipsis in (A 5)
and (A 6) stands for second-order terms with respect to ∂y0/∂x, ∂z0/∂x and s∂θ/∂x.

A unit normal to the dorsal (marked by a plus) and ventral (marked by a minus) edges of the
swimmer can be found from the cross product

n+(t, x) ¼ +n(t, x,+s(x))� T+(t, x)
jT+(t, x)j , ðA9Þ

between the unit normal to the surface near the respective edge, and the unit tangent vector to the same
edge, T+(t, x)=jT+(t, x)j;

T+(t, x) ¼ ez0
@
�
z0(t, x)+ s(x) sin u(t, x)

�
@x

þ ey0
@
�
y0(t, x)+ s(x) cos u(t, x)

�
@x

þ ex0 : ðA10Þ

Written in explicit form, the expression for n+(t, x) is unwieldy, but when ∂y0/∂x, ∂z0/∂x and s∂θ/∂x are
small, it reduces to

n+(t, x) ¼ � + sin u(t, x)
@z0(t, x)

@x
+ cos u(t, x)

@y0(t, x)
@x

þ ds(x)
dx

� �
ex0

+ cos u(t, x) ey0 + sin u(t, x) ez0 þ . . . : ðA11Þ

The ellipsis in (A 11) stands for the same order terms as in (A 5) and (A 6).
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Appendix B. Leading and trailing edges

A point on an edge having coordinates x0 = x, y0 = y0(t, x) ± s(x)cosθ(t, x) and z0 = z0(t, x) ± s(x)sinθ(t, x) (see
equations (2.4)–(2.6)) moves relative to the fluid with velocity

v+(t, x) ¼ �ex0 þ @y0(t, x)
@t

+ s(x) sin u(t, x)
@u(t, x)

@t

� �
ey0 þ @z0(t, x)

@t
+ s(x) cos u(t, x)

@u(t, x)
@t

� �
ez0 : ðB1Þ

The first term is the velocity of C0 relative to quiescent fluid (i.e. the swimming velocity); the other two are
the velocity of the point relative to C0 (it follows by differentiating the coordinates with respect to time).
Leading edges of the swimmer are parts of the edges that advance into the fluid, i.e. where

n+(t, x) � v+(t, x) � 0; ðB2Þ

trailing edges are the remaining parts. In principle, a part of an edge can be ‘leading’ during a part of the
tail-beat cycle, and ‘trailing’ during the rest of it. By observation, the flow separates from trailing edges,
but not from leading ones.
.7:200754
Appendix C. Impermeability condition
Defining the surface of the body by a variant z0 � z0b(t,x

0,y0) ¼ 0 of (2.7), the impermeability condition on
its surface can be formulated as

lim
z0!z0b(t,x0 ,y0)

@

@t
þ
�
ex0 þ r0f0(t,x,y0,z0)

�
� r0

� ��
z0 � z0b(t,x0,y0)

�
¼ 0, ðC1Þ

where the operator in the parentheses is an explicit form of the convective (Lagrangian) derivative
[13],16 whereas (x0,y0) spans the domain on which the body surface is defined. It is not specified
here explicitly, because a different parametrization will eventually be used. Identifying
r0(z0 � z0b(t,x0,y0)) with a normal to the body surface, N0(t,x0,y0) (equation (A 2)), equation (C 1) can be
rewritten as

lim
z0!z0b(t,x0 ,y0)

r0f0(t,x0,y0,z0) � n0(t,x0,y0) ¼ 1
jN0(t,x0,y0)j

@

@t
þ @

@x0

� �
z0b(t,x

0,y0), ðC2Þ

where the sign is to be adjusted to make the respective unit normal n0 ¼ +N0=jN0j pointing to the same
side as the z-axis of C.

The expression on the left of (C 2) can be identified as the normal-to-the-surface component of the
perturbation velocity. In the leading order with respect to the slenderness parameter, it is
lim
z!þ0

@f(t,x,y,z)=@z, where, having x, y and z related with x0, y0 and z0 by (2.4)–(2.6), ϕ(t, x, y, z)= ϕ0(t, x0,

y0, z0). The expression on the right of (C2) yields

1
jN0(t,x0,y0)j

@

@t
þ @

@x0

� �
z0b(t,x0,y0) ¼ cos u(t, x)

Dz0(t, x)
Dt

� tan u(t, x)
Dy0(t, x)

Dt
þ y0 � y0(t, x)

cos2u(t, x)
Du(t, x)

Dt

� �
ðC3Þ

by (A 5), (2.9) and (2.4). Noting that for the problem at hand, z0 ! z0b(t, x
0, y0) implies z→ 0, y0 − y0(t, x) =

ycosθ(t, x) by (2.5). Introducing it in (C 3) furnishes the expression that appears on the right-hand side of
(2.16).
16ex0 þ r0f0(t, x, y0, z0) is the fluid velocity in C0 by definition of the perturbation potential.
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Appendix D. Pressure jump

Perhaps the easiest way to derive equation (2.31) is by using the inertial reference frame C0. In this frame,
the local pressure p can be directly related to the (perturbation) velocity potential by a variant

p0(t, x0, y0, z0) ¼ p1 þ 1
2
� @f0(t, x0, y0, z0)

@t
� 1
2

�
ex0 þ r0f0(t, x0, y0, z0)

�2
¼ p1 � @f0(t, x0, y0, z0)

@t
� @f0(t, x0, y0, z0)

@x0
� 1
2

�
r0f0(t, x0, y0, z0)

�2
ðD1Þ

of Bernoulli’s theorem [13]. p∞ is the pressure far from the moving body; it is reminded that l, v, l/v, lv and
ρv2 are units of length, velocity, time, potential and pressure, respectively. The perturbation potential here
can be replaced by

f0(t, x0, y0, z0) ¼ f(t, x, y, z), ðD2Þ
where x = x0, whereas y, y0, z and z0 are related by the variants of (2.5) and (2.6),

y ¼ sin u(t, x)
�
z0 � z0(t, x)

�þ cos u(t, x)
�
y0 � y0(t, x)

� ðD3Þ
and

z ¼ cos u(t, x)
�
z0 � z0(t, x)

�� sin u(t, x)
�
y0 � y0(t, x)

�
: ðD4Þ

Keeping y0 and z0 constant when differentiating ϕ with respect to t and x0, (D 1) yields

p(t, x, y, z) ¼ p1 �Df(t, x, y, z)
Dt

� @f(t, x, y, z)
@y

z
Du(t, x)

Dt
� sin u(t, x)

Dz0(t, x)
Dt

� cos u(t, x)
Dy0(t, x)

Dt

� �
� @f(t, x, y, z)

@z
�y

Du(t, x)
Dt

� cos u(t, x)
Dz0(t, x)

Dt
þ sin u(t, x)

Dy0(t, x)
Dt

� �
� 1
2

@f(t, x, y, z)
@y

� �2

� 1
2

@f(t, x, y, z)
@z

� �2

� 1
2

�
@f(t, x, y, z)

@x

þ @f(t, x, y, z)
@y

z
@u(t, x)
@x

� sin u(t, x)
@z0(t, x)

@x
� cos u(t, x)

@y0(t, x)
@x

� �
þ @f(t, x, y, z)

@z
�y

@u(t, x)
@x

� cos u(t, x)
@z0(t, x)

@x
þ sin u(t, x)

@y0(t, x)
@x

� ��2

: ðD5Þ

Because ϕ(t, x, y, z) is antisymmetric with respect to z (equation (2.11)), and because

m(t, x, y) ¼ lim
z!0

�
f(t, x, y, z)� f(t, x, y,�z)

� ðD6Þ

by (2.12), the pressure jump,

Dp(t, x, y) ¼ lim
z!0

�
p(t, x, y, z)� p(t, x, y,�z)

�
, ðD7Þ

yields (2.31) by (D 5); quadratic terms vanish identically.
Appendix E. Higher-order pressure moments
Introducing (2.31) in (2.32) one finds

Pn(t, x) ¼
ðs(x)
�s(x)

Dm(t, x, y)
Dt

yn dy�
ðs(x)
�s(x)

@m(t, x, y)
@y

sin u(t, x)
Dz0(t, x)

Dt
þ cos u(t, x)

Dy0(t, x)
Dt

� �
yn dy: ðE1Þ

Because the potential jump vanishes at y = ±s(x) by (2.19), the derivative in the first term can be taken
outside the integral sign. Subsequent integration by parts allows to recast it as a combination

Pn(t, x) ¼� 1
nþ 1

D
Dt
�
snþ2(x)mnþ1(t, x)

�
� snþ1(x) sin u(t, x)

Dz0(t, x)
Dt

þ cos u(t, x)
Dy0(t, x)

Dt

� �
mn(t, x) ðE2Þ
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of potential jump moments (2.20). With (2.27) and (2.28), it splits into

Pn(t, x) ¼ 2p
�mnþ1

nþ 1
D
Dt
�
snþ2(x)w0(t, x)

�
þ 2psnþ2(x)�mn sin u(t, x)

Dz0(t, x)
Dt

þ cos u(t, x)
Dy0(t, x)

Dt

� �
w1(t, x), ðE3Þ

when n is even, and

Pn(t, x) ¼ 2p
�mnþ1

nþ 1
D
Dt
�
snþ3(x)w1(t, x)

�
þ 2psnþ1(x)�mn sin u(t, x)

Dz0(t, x)
Dt

þ cos u(t, x)
Dy0(t, x)

Dt

� �
w0(t, x), ðE4Þ

when n is odd.
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Appendix F. Derivation of (3.9)
The terms on the right of (3.6) are can be regrouped as

fx0 ¼ � p
D
Dt

s2w0 cos u
@z0
@x

� sin u
@y0
@x

� �� �
þ ps2w0 cos u

@

@x
Dz0
Dt

� sin u
@

@x
Dy0
Dt

� �
� ps2w0

Du

Dt
sin u

@z0
@x

þ cos u
@y0
@x

� �
� ps2w0

@u

@x
sin u

Dz0
Dt

þ cos u
Dy0
Dt

� �
� p

8
@u

@x
D
Dt

�
s4w1

�
� p

16
w2

1
@s4

@x
� p

2
w2

0
@s2

@x
� ps2w0w1 sin u

@z0
@x

þ cos u
@y0
@x

� �
: ðF 1Þ

In this form, the third term on the right cancels out with the last by (2.18), whereas the remaining ones
can be further regrouped to obtain

fx0 ¼ � p
D
Dt

s2w0 cos u
@z0
@x

� sin u
@y0
@x

� �� �
þ ps2w0

@u

@x
sin u

Dz0
Dt

þ cos u
Dy0
Dt

� �
� ps2w0

@u

@x
sin u

Dz0
Dt

þ cos u
Dy0
Dt

� �
� p

2
@

@x

�
s2w2

0

�
þ p

8
D
Dt

s4
Du

Dt
@u

@x

� �
� p

16
@

@x
s2
Du

Dt

� �2

; ðF 2Þ

the fourth term here is the combination of parts from the second and seventh terms in (F 1). The second
term now cancels out with the third, yielding (3.9) by (2.18).
Appendix G. Derivation of (3.23)
Exploiting (2.17) and (2.18), terms on the right-hand side of (3.22) can be regrouped to obtain

i ¼� p
D
Dt

s2w0 cos u
@z0
@t

� sin u
@y0
@t

� �� �
þ ps2w0 cos u

D
Dt

@z0
@t

� sin u
D
Dt

@y0
@t

� �
� ps2w0

Du

Dt
sin u

@z0
@t

þ cos u
@y0
@t

� �
� p

2
s2
@w2

0

@t
þ ps2w0

Du

Dt
sin u

@z0
@t

þ cos u
@y0
@t

� �
� ps2w0 cos u

@

@t
Dz0
Dt

� sin u
@

@t
Dy0
Dt

� �
þ p

8
D
Dt

s4
@u

@t
Du

Dt

� �
� p

16
s4

@

@t
Du

Dt

� �2

: ðG1Þ

In this form, the second and the third terms cancel out with the fifth and the sixth, yielding (3.23).
Appendix H. Derivation of (5.12)
In deriving (5.12), two trigonometric identities, sin2 fu ¼ 1=(1þ cot2 fu) and
cos 2fu ¼ (cot2 fu � 1)=(cot2 fu þ 1), prove useful. Using the former, equation (5.2) can be recast as

�T(fu,ût, ŝt) ¼
�T(p=2,ût, ŝt)þ cot2fu

�T(0,ût, ŝt)
1þ cot2fu

: ðH1Þ
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Using the latter, together with (H 1), in (5.11), yields

�Mz0 ,ref(fu,ût, ŝt,v� k) ¼
J1ð2ûtÞ(xt � xref)� X1ðûtÞ � cotfu

v� k
X2ðûtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�T(p=2,ût, ŝt)þ cot2fu
�T(0,ût, ŝt)

q : ðH2Þ

If ϕθ is defined on (0, π), there is no ambiguity in sign in (H 2). Equating zero the derivative of �Mwith respect to
cotfu furnishes (5.13); substituting it back in (H 2) furnishes

�Mz0 ,ref

�
fM(ût, ŝt,v� k),ût, ŝt,v� k

�
¼ sgn

�
ðxt � xrefÞJ1ð2ûtÞ � X1ðûtÞ

�

�
�
ðxt � xrefÞJ1ð2ûtÞ � X1ðûtÞ

�2
�Tðp=2,ût, ŝtÞ

þ X2
2ðûtÞ

(v� k)2�Tð0,ût, ŝtÞ

0B@
1CA

1=2

: ðH3Þ

Equation (5.12) is a variant of (H 3) with ût ¼ u+(ŝt,v� k), the point(s) where the derivative of
�Mz0 ,ref

�
fMðût, ŝt,v� kÞ,ût, ŝt,v� k

�
with respect to ût vanish.

The integrands in (5.8) (that define X1ðûtÞ) and (5.9) (that define X2ðûtÞ) are positive throughout the
integration domain for any ût , uJ1¼0 (the angle where J1ð2ûtÞ ¼ 0, approx. 110°), and hence X1ðûtÞ and
X2ðûtÞ change sign only at some ût . uJ1¼0. At the same time, the product ðxt � xrefÞJ1ð2ûtÞ changes sign
exactly at uJ1¼0, and hence ðxt � xrefÞJ1ð2ûtÞ � X1ðûtÞ changes sign earlier, at some ût<uJ1¼0. It implies that
�Mz0 ,ref

�
fMðu+, ŝt,v� kÞ, u+, ŝt,v� k

�
is a positive maximum if θ± happens to be smaller than uJ1¼0,

where both (xt− xref )J1(2θ
±)−X1(θ

±) and X2(θ
±) are positive, and a negative minimum if θ± happens

to be sufficiently large to have the first one negative. Concurrently, the maximum is invariably
associated with ϕM > π/2, and, in most cases (where X2(θ

±) is still positive), the minimum is associated
with 0 < ϕM < π/2. The ‘+’ and ‘−’ modifiers with θ± will be naturally associated with maximum �Mþ

z0 ,ref
and minimum �M�

z0 ,ref of �Mz0 ,ref, respectively.
Appendix I. Yellow-bellied sea snake
Graham et al. [1] furnishes basic morphological data for seven yellow-bellied sea snakes, 50–70 cm long
(the binomial name of this snake has changed twice since this paper was published; it is now Hydrophis
platurus). An average snake has half-width st = 0.0145, surface (wet) area Sw = 0.08, and prismatic
coefficient k = 0.44. The same paper also furnishes kinematic data (recapitulated in the first five
columns of table 2) for a 0.51 m snake at two swimming speeds, 0.15 and 0.32 m s−1, but does not
provide any additional information on the particular snake for which the data was collected. The
missing data were supplemented by assuming average values. The phase lag, ϕθ, was guessed to be
larger than 90° (say, 120°) based on the general comment made in this reference that ‘…the keel flared
outward at maximal displacement…’. Drag coefficient of the snake at the two speeds was estimated
with �D ¼ SwCf ðReÞ=2ps2t , where Cf (Re) � 0:455(log10Re)

�2:58 is an empirical approximation for the
effective friction coefficient [11] and Re is the pertinent body-length-based Reynolds number; recall
that the drag was associated with the viscous constituent only. It was tacitly assumed that textured
skin of the snake renders the boundary layer turbulent. �D and Cf values in table 2 confirm the values
estimated in table 4 of [1]. ẑt,ût¼0 and ẑt were estimated with (5.3) assuming that thrust equals drag
and ŝt ¼ st=ẑt ¼ 0 (the estimate does not change when changing ŝt to 0.1). It practically recovers the
value reported in [1]—compare the 4th and 13th columns in table 2.
Table 2. Swimming parameters of a 0.51 m yellow-bellied sea snake. The bottom line of the table specifies the source of the
preceding two lines.

v m s–1 Ω κ ẑt ŝt ût ϕθ Fr Re 103 Cf 10
–3 �D ẑt,ût¼0 ẑt

0.15 17.8 12.5 0.129 0.11 51° 120° 0.067 77 7.6 0.458 0.107 0.138

0.32 17.1 11.6 0.121 0.12 45° 120° 0.14 164 6.4 0.387 0.099 0.121

ref. [1] a guess (112) (112)



Table 3. Coefficients c1, c2 and c3 that generate �z0, �u0 and �s with (J 1).

function

case 1 case 2 case 3 case 4

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3

�z0 1 2 0 2 3 0 1.2 2.2 0 2.5 3.5 0
�u0 1 2 0 1.2 2.2 0 2 3 0 2.5 3.5 0

�s 1/2 0 1/2 1/2 0 1/2 1/2 0 1/2 1/2 0 1/2
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Appendix J. Shape functions
To allow visualization of the pitching moment and the functions associated with it, one needs the shape
functions �z0(x) ¼ ẑ0(x)ẑ�1

t , �u0(x) ¼ û0(x)û�1
t and �s(x) ¼ s(x)=st. All of them were generated by fitting c1≥ 0,

c2≥ 0 and c3 in

f(x; c1, c2, c3) ¼ c2 � c3
c2 � c1

xc1 � c1 � c3
c2 � c1

xc2 : ðJ 1Þ

For any viable combination of c1, c2 and c3, this function implicitly satisfies f(0; c1, c2, c3) = 0, f(1; c1, c2, c3) = 1
and lim

x!1
@f(x; c1, c2, c3)=@x ¼ c3. The particular parameters of �z0 and �u0 (table 3) were chosen so as to have

the observations of Graham et al. [1] bracketed between the limiting cases (figure 4), and make

the respective derivatives _�z0 and _�u0 vanish at the tail section. In all cases, the body outline was assumed
parabolic, with �s(x) ¼ ffiffiffi

x
p

.
Lungs of H. platurus occupy the entire body length up to the flattened tail section [19]. The length of

that section is approximately 11% body length (table 1 in [1]). Based on these observations, the reference
point for calculation of the pitching moment xref was chosen at 0.45 (body lengths from the cranial end).
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