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Sea snakes propel themselves by lateral deformation waves
moving backwards along their bodies faster than they swim.
In contrast to typical anguilliform swimmers, however, their
swimming is characterized by exaggerated torsional waves
that lead the lateral ones. The effect of torsional waves on
hydrodynamic forces generated by an anguilliform swimmer is
the subject matter of this study. The forces, and the power
needed to sustain them, are found analytically using the
framework of the slender (elongated) body theory. It is shown
that combinations of torsional waves and angle of attack can
generate both thrust and lift, whereas combinations of torsional
and lateral waves can generate lift of the same magnitude as
thrust. Generation of lift comes at a price of increasing tail
amplitude, but otherwise carries practically no energetic penalty.

1. Introduction

Sea snakes have flattened bodies with no fins, and they propel
themselves by lateral deformation waves moving backwards
along their bodies faster than they swim—as a typical eel-
like (anguilliform) swimmer does [1]. In contrast to a typical
anguilliform swimmer, however, their swimming is characterized
by exaggerated torsional waves (their amplitude can exceed 90°)
that lead the lateral waves. Can it be that the torsional waves come
to balance the swimming snake against gravity? To answer this
question, one will need an estimate of hydrodynamic forces acting
on an anguilliform swimmer propelling itself by a combination of
lateral and torsional waves—these forces are the subject matter of
this study.

Hydrodynamic forces acting on an elongated deforming body,
moving in a fluid at Reynolds numbers in excess of a few tens of
thousands, can be found in several ways. The two extreme
approaches are represented by direct numerical solutions of the
Navier-Stokes equations [2], and by asymptotic solutions based
on the width-to-length ratio of the body as a small parameter
and an ideal fluid approximation [3-7]. The last approach,
widely known as the elongated (or slender) body theory, allows,
at least in principle, to obtain the hydrodynamic forces acting
on the body analytically. Preferring simplicity to accuracy, but
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deeming the accuracy of the asymptotic approach adequate [8], it is adopted for this study as well. The
coherence of the present results within the ideal fluid approximation is furnished in the electronic
supplementary material by comparison with numerical simulations based on the vortex lattice
method. An indication of their viability is furnished in Appendix I by comparison with observations
of a swimming yellow-bellied sea snake Hydrophis platurus [1].

The paper is organized in seven sections and 10 short appendices, which contain the details of the
underlying derivations. Units, notation, reference frames and the model swimmer are introduced in
the next section (§2), and it is where distributed forces acting on the swimmer are derived. Integral
forces acting on the swimmer are derived in §3, and further developed in §4 under the assumption
that the deformation waves are harmonic. Effects of torsion are analysed in §5. Adequacy of the
hydrodynamic forces to balance a swimming snake is assessed in §6. Section 7 concludes the paper.

2. Fundamentals

2.1. Reference frames

The paper addresses a deformable swimmer of length I that moves, on average, with constant speed v
along a straight path in an infinite domain occupied by quiescent fluid of density p. Throughout the
paper, I, v, lfv, Iy, pvz,pvzl, pvzlz, vaIS, pv3l and pv3l2
potential, pressure, force per unit length, force (or moment per unit length), moment, power per unit
length and power, respectively (table 1).

Two adjunct right-handed rectilinear reference frames, C and C’ will be used interchangeably.
Both have their x-axes opposing the (average) swimming direction, and both follow the swimmer
along its average path. C' is a global (inertial) frame. Its y-axis lies in the sagittal plane of the
undeformed body and, for the sake of definiteness, points towards its dorsal side. The complementary
z-axis points left, perpendicular to the sagittal plane. Coordinates of a point relative to C' will be
marked by a prime. Any scalar or vector field parametrized using coordinates of C” will be marked
by a prime as well.

will serve as units of length, velocity, time,

C is a local (non-inertial) reference frame, affixed to each cross section along the body. Its origin
is located in the y'—z' plane of C’; its x-axis passes through the middle of a particular section;
and the frame itself is rotated (twisted) about the x-axis through angle 6(¢, x), so as to make the
y-axis pass through the ventral and dorsal edges of that section. Coordinates of a point relative C
will remain unmarked, and so will any scalar or vector field parametrized using coordinates
of C. Formally,

ey = ey, (2.1)

ey = e, cos 0(t, x) — e, sin 6(t, x) 2.2)

and ey = e, sin O(¢, x) + e, cos O(t, x) (2.3)
relate the respective unit vectors;

X =x, (2.4)

Y =yo(t,x) — zsin 6(t, x) + y cos 6(¢t, x) (2.5)

and Z' = zp(t, x) + z cos O(t, x) + y sin 6(¢, x) (2.6)

relate the coordinates. Because of its equivalence with x (equation (2.4)), ¥ and x will be used
interchangeably. By interpretation, i’ = yo(t,x) and z’ = zo(t, x) are equations of the swimmer’s centreline
in C'.

2.2. The model swimmer

An undeformed swimmer is assumed to be flat and of zero thickness.! The outline of the swimmer starts
with a point at the cranial end (x = x,, = 0), and reaches maximal span of 2s; at the caudal end (x=x; = 1).2

"While the shape of its cross section has little or no effect on hydrodynamic forces generated by a non-twisting swimmer [5], it is hardly
true for a twisting one. The assumed flatness of the swimmer should be accepted as a limitation of the present model, and extension of
its results to a swimmer with a different cross section should be made with due caution.

2Ending the model swimmer at the widest section saves the need to address hydrodynamic interaction with its own wake [5,7,8] in an
already complex analysis.
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Table 1. Nomenclature.

fundamental (drmensronal) quantrtres

fundamental units
/
veIocrty

v

W

force per unrt Iength

gy

krnematrc vrscosrty

Iength

time
veIocrty potentral

pressure

force Or moment per unrt Iength
moment

power per unrt Iength

power

non- drmensronal quantrtres

Ieadrng edge suctron (per unrt Iength) dorsaI ( ) and ventra ;)‘

o factor in the Irft to- thrust ratro equatron (5 6)

coefficient with the square -root srngularrty of ,u at the dorsal and ventral edges equatron (2 37) -

buoyancy, equatron (6 4)
- mlocal (non mertral) reference frame attached to the body of the swrmmer
wglobal inertial reference frame moving anng wrth the swimmer S
. mstandard rntegral equton (2 25) O
‘ wdrag coefﬁcrent (based on Zm as the reference area) equatron (6 1)
mbasrs vectors of( posrtrve drrectrons are posterror dorsal and sinister S

bas|s o Of (/ equanons (2 1) (2 3)

. ”::Froude number Fr = v/f

. force e umt |ength admg o the SW|mmer equanon (3 1)

components of |n C’ equatrons (3 3) (3 5)

eQuatron (2 36)

nth-order Bessel functron of the first krnd

prismatic coefficient; the ratio between the volume of the body and the minimal cylinder endlosing it;
equatron (6 4)

erft the component of the (perrod averaged) hydrodynamrc force anng ey/, equatron (3 27)

components of the (perrod averaged) hydrodynamrc moment referred to the orrgrn of C’
equatrons (3 30) (3 32)

*factor in the prtchrng moment to thrust ratro equatron (5 11)
. ..v.maXImum (+) and i ( ) of MZ, . wrth et ¢0 and OI e
mrollrng moment per unrt Iength of the swrmmer about the )(-axrs equatron (3 15)
- mnormal o the Ieft srde of the body, facrng Ieft n= N/|N| equatron (A2) -
constrtuents of n assocrated wrth transIatronaI and rotatronal motrons equatrons d(A 7) and (A 8) .

(Continued.)
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Table 1. (Continued.)

an X[

coordinate of the body surface reIatlve to C’ equations
amphtude of the Iateral propulsmn waves at the tall sect|on 7 =

un|t normal to dorsal and ventral edges of the SW|mmer equatlon (A 9)
(penod averaged) power requned to sustain the propuI5|on waves; equatlon (3 29) -
o pese S
pressure Jump across the body of the swimmer (Ieft minus rlght) equatlon (2 31)
- Reynlds number Re B vl/v e

wetted area of the SW|mmer

o IocaI semi-span: haIf the dlstance between the dorsal and ventral edges S
 thrust: the component of the (penod averaged) hydrodynamlc force anng ;ex :” —eX« equatlon (3 26) ‘

. mfactor in T equat|on (5 2) . .
mtangent to the dorsal and ventraI edges of the body, equatlon (A 10)

time

local velocity of the swimmer's body relative to quiescent fluid, taken with the negative sign; normal-

to- the body component only, equation (( 3)

constltuents of w assoaated W|th translatlonal and rotatlonal motlons equatlons (2 17) and (2 18)
mtegral operators equatlons (5 8) (5 9)

coordinates of a point relative to C

' mcoordlnates of a point reIatlve to C’ equatlons (2 4) (2 6)

coordinates of the centers of I|ft mass and buoyancy
coordlnates of the cranlal and caudal ends (nose and ta|I) in ( and (’ aI|ke x,, —0 and xt—t by
assumptlon

.:::coordmate of the body centrellne reIat|ve to C’ yo is |ndependent of tlme
in- pIane deﬂectlon of the body centrellne at the ta|I section; y, yo(x,)
”15|de force the ‘component. of the (penod averaged) hydrodynam|c force along ezr equatlon (3 28)

coordinate of the body centrellne reIatlve to ¢

- mmodulatmg amplltude of the Iateral propulsmn waves; equatlon (41)

- (2 10)..... OO

e between Smeerged We|ght and buoyancy SOOI

m(mvanably) an mtegratlon vanable
. ...pmpmsmn efﬁc|ency, equat|on (341) OO
R ngle OSSOSO
mmodulatmg amphtude of the torsmnal propulsmn Waves; equatlon (4 2)
"~ first non- -trivial solut|on of J1( ) 0 apprommately 110°
mamplltude of the t0r5|onal propuI5|on waves at the ta|I sectlon 0, = Oo(x[) -
MHI that maX|m|zes (+) or m|n|m|zes ( ) the p|tch|ng moment to thrust ratlo S
...power st un Iength equat|on (320) B
.m.angular wavenumber equatlons (41) (42)
potentlal Jump across the body of the swimmer (Ieft minus rlght) equatlon (2 12)
N mnth rment ofy, equat|on 0 20) B

numen(a| factor i equatmns (2 29) (2 30) e

' mnth moment of pressure; equatlon (2 32)

ratlo of the maX|maI seml -span to the amplltude of the IateraI Waves at the ta|I sectlon O'r = s, /z)

(Continued.)
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Table 1. (Continued.)

1) perturbatron veIocrty potentral equation (2 11)
¢M R ,..¢9 tat matinizes o miniicsthe pltchlng momem equatlon (513) B
¢Z¢9 - mphases of the lateral and torsional propulsron Waves at t=x = 0; equatlons (41) (42)” -
Wz WQ .............. o phasesof theIateraIand t0r5|0nal pmpmsmnwaves equatlon (4 4) ..................................
S mangular frequency, cqutns (41) (42) B

typlcally, an amplrtu e
typrcaIIy, a factor in the quantrty bearrng the same name
derlvatrve wrth respect toa srngle argument

point functlon WhICh is eprrcrtIy based on coordlnates of the pornt in C’ S

0 R typlcally, pertalnrng to the centrellne

ref or,ef ...penammg . o 0 o reference Semon
tor [ - mpertarnlng to or referred to the tall (caudal) sectlon

( .>)> - average over a srngle perlod

D/Dt e Lagrangran der|vat|ve 8/61‘ +a/ax e

The local semi-span (figure 1) is described by a monotonically increasing function s: (x,, x;) — (0, sp); it is
understood that s(x;) =s;. The body of the swimmer is assumed to be pronouncedly elongated, so both s;

and rr(tax ) (ds/dx) are small as compared with unity.
XE (XXt

The swimmer is allowed to bend in-plane (as if by arching its back—figure 1e), bend out of plane (as
any anguilliform swimmer would—figure 1c), and twist about its central (cranio-caudal) axis (figure 1d).
The surface of the swimmer will be parametrized either by

Z' =z (t,x,y), (2.7)
or by
Z' = z(t, x, ). (2.8)
It is assumed that each cross section of the swimmer does not deform during swimming and does not
leave its respective y/—z’ plane. In this case, ¥ and y are related by (2.5) with z=0, whereas z, and z,
can be expressed as
z,(t,x,y) = zo(t, ) + (y — yo(t, x)) tan 6(t, x) (2.9)

and

zp(t, x, ) = zo(t, x) + y sin 6(t, x). (2.10)

Deformations of the body are assumed small, so that max |zp(t, x, )], max [0zy(t, x,)/0t| and
Xy Xy

max |0z(t, x,1)/0x| are small as compared with unity. Additional constraint on the allowed

X,y

deformations will be introduced in the next section.

2.3. Underlying assumptions

As mentioned already in the Introduction, the plan is to find forces acting on the swimmer in the
framework of the slender body theory. Its fundamentals can be found in quite a few references
(e.g. [3-7,9,10]) and hence will not be repeated here; its main assumptions are recapitulated below.

Apart from the obvious assumptions on slenderness of the swimmer and smallness of its
deformations (that were already made in the preceding section), the slender body theory relies on
three basic assumptions: (i) the vortical regions in the flow are confined to the boundary layer on
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Figure 1. The model swimmer and the coordinate systems. Side (a) and top (b) views of an untwisted swimmer; axonometric
projections of lateral and torsional waves are shown on (c) and (d); an exaggerated in-plane bend is shown on (e). The axes
of C' are shown with dash-dot lines. Shifted and rotated axes of C are shown by blue dotted lines for a cross section that is
marked by a thick blue line.

the surface of the swimmer and the wake behind it, (ii) the flow separates from (and only from) trailing
edges of the body, and (iii) both the boundary layer and the part of the wake in the immediate
proximity of the body are (vanishingly) thin. Under these assumptions, the velocity and pressure
fields in the exterior of the boundary layer and the wake—and, in particular, on their outer
boundary—can be found without finding them in interior of these regions. By associating thrust
and power with the normal stresses on the surface of the body and the drag with the shear stresses
[8, §3.1], the lack of knowledge of the flow field in the interior of the boundary layer still allows
estimating thrust and power, but it disallows estimating drag. Shear stresses are hardly affected by
undulations of the body [2], and since drag of an undeformed body can be estimated with a fairly
good accuracy by empirical methods [11], lack of knowledge of its exact value should not affect the
conclusions of this paper.

Location of the trailing edges along the body—these are the edges where the wake forms—has huge
effect on the complexity of the solution for the forces acting on it. Having parts of the body embedded in
the wake makes the solution unwieldly [5-8]; having the wake form at different parts of an edge during a
tail-beat makes it intractable. Both cases are avoided here by ending the model swimmer at its widest
section (see above), and limiting its admissible deformations to those for which the wake forms at
(and only at) the widest section (appendix B).

2.4. Potential jump and its moments

The slender body theory furnishes the velocity and pressure fields in the (irrotational) exterior of the
boundary layer and the wake as leading terms of the respective asymptotic series in the slenderness
parameter—the ratio between typical lateral and longitudinal dimensions of the body. For the
problem at hand, it can be the largest of the spatial derivatives of 1o, zo and s6. This theory can be
derived formally, based on the method of matched asymptotic expansions [5,6,9,10], and informally,
based on momentum considerations [3,7]. In the leading order with respect to the slenderness
parameter all formulations are practically equivalent, and reduce the problem of finding the velocity
and pressure fields near the body of the swimmer to that of finding a certain scalar field ¢ that
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satisfies two-dimensional Laplace equation in every transverse plane crossing the body (i.e. at every
x € (x,,, X)), satisfies an impermeability condition on its surface, and vanishes at infinity.3

In the present case, the body of the swimmer in the transverse plane occupies the interior of the slit
{(y, z):ye(—s), sv), z= 0}, and the general solution of the two-dimensional Laplace equation in its
(unbounded) exterior is*

1 (9 ult,x, Ozde
t,x,vy, —_— 2.11
Pt x,y,2) = 27TJ75(X) -0 12 (2.11)
where
wlt,x,y) = ot x,y, +0) — ¢(t, x,y, —0) (2.12)

is the potential jump across the slit.” This general solution is yet to satisfy the impermeability condition
on the surface of the slit,

‘sosyjewnol/Buo Buysiigndiaanosjefos

lim 0Pt x,y,2) _
z—+0 0z

—w(t,x,y) for eachy € (—s(x),s(x)) (2.13)

(the right-hand side will be explicated shortly below), and the conjunction of (2.11) and (2.13) furnishes®
an integro-differential equation for u(t, x, - ),

s(x)
%r o) %;D yd_g I w(t, x,y) for each y € (=s(x),s(x)). (2.14)

The bar across the integral sign indicates principle value in Cauchy sense. Its solution,

oult,x,y) 2 s 2w(t X, g)dg
\/s%( 2.15
Oy T/ sz(x) @15)

—s(x)

¥SL00T =L "PS uadp 0S Y

immediately follows by the S6hngen inversion [9].7 In the last three equations,

w(t, x,y) = wolt, ) + yun(t, x), (2.16)

wolt,x) = —cos 0(t,x)7ngi'x) n o, )Dy‘)(: ) (2.17)
Do, x)

wit,x) = — D’ (2.18)

and D/Dt stands for the linearized Lagrangian derivative, 0/0t+0/0x; details can be found in
appendix C.
Subject to

ult,x, +5(x)) =0, (2.19)

equation (2.15) can be integrated on (—s(x), y) to obtain u(t, x, y), which can be substituted back in (2.11)
to complete the solution for ¢(t, x, y, z). This detailed solution will not be needed, however, and the first
few moments of du /0y,

1 % out,x, y)
t, 2.20
(%) = "H(x)J oy (2.20)
will suffice to obtain all relevant hydrodynamic forces and moments.

Thus,

2 s(x) s5(x) 1 yndy
- __ = 2 _ 2 - -
(%) ) J—s(x) \/82(x) — Fwlt,x, &) d¢ 0 VEOD Y L (2.21)

*For a body of zero thickness, ¢ can be identified with perturbation velocity potential, so that v/ = ey + V'¢.

“Effectively, this is the potential of a distribution of doublets of intensity y oriented along the z-axis and located in the interior of the
slit [12].

51t can be verified by showing that zliTo o, x,y,2) = £ ult, x,y)/2.

“The simplest way to obtain the expression on the left is to integrate (2.11) by parts, differentiate second, and carefully compute the

limit. Passage to the limit introduces the principal value to the integral. In this form, it appears in practically any textbook on
aerodynamics [9,12].

7Havir\g assumed that the flow does not separate anteriad of the widest point, implies that the flow turns round the edges. The limiting
procedure of taking the thickness of the swimmer to zero introduces a square-root singularity in the velocity jump, Ou(t, x,y)/0y. It
does not introduce a discontinuity in the velocity potential, however, and hence (2.19).



by (2.15), and hence

w,(tx) = — (wot, x) + fw (t,x)) AL (2.22)

2 J~s(x) yndy I-S(x) /SZ(X) _ 4«2
s (x) —s(x) m-’ —s(x) y—¢

by (2.16). Substituting y = —s(x)cos, and {'= —s(x)cosf,, it becomes a combination

2 (" ” sin?6,d6
tx) = —— —1)"cos"6,d t,x) — t et i S 2.2
(%) WL (=1)"cos" b, oy][o (wo(t, x) — s(x) cos Bz (¢, x)) cos 6 — cos 6, (2.23)

of standard (Glauert) integrals [13], which yields
Bt %) = (=1)" (2w00(t, )Cpry1 + 51 (t, 0)(Cy — 2Ci12)), (2.24)
where

Cy,= J cos" 6,d6,. (2.25)
0

Among these, Cyp,_1 =0 with any n >0 by symmetry considerations, whereas

g  mn)!

_ 1 i0 —i6y2
Cy, = ﬁJo e +e ™) do= 22”(;1!)2 . (226)
Consequently, (2.24) can be recast as
Moy, (8, %) = =27s(x)w1 (F, X) [ay,, (2.27)
and
Moy (t, ) = =270 (t, X) oy, 1, (2.28)
where
i 1/ @2n)! @2n+2)! 2m'n
#Zn(t,X) == 5 (22"(11!)2 - 22n+1((17 4 1)!)2) T 2n+l n+ D! (2.29)
and
_ @)
R (2.30)

are certain numerical coefficients, and the convention 0!=1 applies. In particular, g, =0, @; =1/2,
B, =1/8 and fy; =3/8.

2.5. Pressure jump and its moments

The pressure jump across the body, Ap(t, x, y) =p(t, x, y, +0) — p(t, x, y, —0), is given by

Dz (¢, x) Dyo(t, x)
Dt t

_ Dutt,x,y) . out, x,y)

Ap(t,x,y) = DI By

+ cos O(t, x) ——"——~

D) T (2.31)

(sin ot, x)
where the ellipsis comes to emphasize that the expression is correct only in the leading order with respect
to the spatial derivatives of zy, 1o and 6. Derivation of (2.31) can be found in appendix D. With (2.31) and
(2.20), the nth-order pressure moment

s(x)
0,0, = fJ Apt, %,y dy, (232)
—s(x)
becomes a combination
__ 1 D sl . Dz (t, x) Dyo(t, )
I1,(t,x) = 1Dt ("2 1 () — 8" () sin 6t x) D + cos 6(t, x) D m (%) (2.33)

of the respective moments of the potential jump, u,, and p,,41. Derivation of (2.33), as well as explicit
expressions, relating II, with wy and w;, can be found in appendix E. The zeroth- and first-order
pressure moments,

Io(t, x) = 77% (s*(X)wo(t, x)) (2.34)
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and

7D o ) Zo(t, x) Dyo(t, x)
IL(t, x) = §ﬁ( xX)w; (¢, x)) + ms7(x) (sm o, x)Tt + cos 0(t, x) Dt wolt, x), (2.35)
are shown here because they will be actively used below. Note that the zeroth-order moment (the force
per unit length) is independent of the shape of the body’s centreline.

2.6. Leading-edge suction

When the thickness of the body tends to zero, the pressure at its leading edges becomes singular. The
product of the body thickness and pressure remains finite, however, giving rise to what is known as
the ‘leading-edge suction’—the force acting on the edge and oriented along the normal to it (i.e.
along n,—see appendix A). There are two leading edges, and the force (per unit length) acting on
each one of them is

fult,x) = T A% (), (2.36)
where
. ——oult, x,y)
Ait,x) = hin( )\/s(x) F yT (2.37)
y— +s(x

is the coefficient with the square-root singularity of x4 at the respective edge [14]. Its explicit form is

(’“) stx) + ¢
Ast,x)=TF 2s(x _s<x>‘/s(x)_ w(t,x, §) dd

2s(x)(¢w0(t, ) — Ewl(t, x)s(x)) (2.38)

by (2.15) and (2.16). The leading-edge suction,

foltx) = fs(x) (wo(t 0t Lot x)s(x)) (2.39)

follows (2.38) by (2.36).

3. Forces and moments

3.1. Forces

The force per unit length acting on the body is given by

s(x)
£, ) = fJ Ap(t, %, %, dy + £ 0n_ () + £, 0n, (), (3.1)

—s(x)

or, what is equivalent by (A 6) and (2.32),
f(t, x) = I(t, x)no(t, x) + IL(E x)nq (E x) + (-, 0n_(t, %) + £ ¢, 0)n ¢ x). (3.2)

Substituting (A7), (A8) and (A 11) from appendix A for the normal vectors, the three components of
f(t, x) in C' become

fo =—1IL (cos 0%—731 0%1/0) Hl**(f +f+ —(fs —f- )(sm G?TJFC %yxo)’ (33)
fy = —Ilysin 6+ (f, *f_) cos ¢ (3:4)
and fo = +Ilycos 0+ (fy —f_)sin6; (3.5)

the arguments of all functions have been omitted for brevity. With (2.39), (2.34), (2.35), (2.17) and (2.18),
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they yield

B 0z . Oyo , 00 Dz Dyo
fo = w(cost‘)ax sin =7 )Dt (s*wy) — s Wy sin 6 O 0 4 cos o

_m06D (s*wr) — <7T 205 + 285 ) — msPwow, (sin O%Jr cos Gayo), (3.6)

8 0x Dt “o ox “i ox ox ox
fy = _msin 02 (swo) + ms*wow; cos O = —772(51119527/0 ) (3.7)
y DtV 0 o Dt 0 '
D
and fo = mcos Oﬁ (s*wp) + ms*wow; sin 6 = TS (cos 8s%wy). (3.8)

Exploiting (2.18) and (2.17), about half a page of algebraic manipulations on (3.6) (detailed in
appendix F) furnishes

D 2 820 . Byo 1 4 00 w0 4 >
fX/—’TT (swo( C0s68x+sm08x> 85w18x 2 9% O+8w1 (3.9)

in a short form, and

B D 2 Dz 0 yo 0z Z0 E)yo 1 4D086
fx _”Dt<s (COSODt sin 0571 ) (cos 07 2 —sin 058 g5 5o
70 (, Dz . .Dyo\>  s*/D6\?
o (s (COS 0 D ~ Sin Dt) + s\ Dr (3.10)
in a long one. Averaging (3.7)—(3.10) over a tail-beat period (t,) yields
_mo 0z Yo 1, 00
(fv) = > 8% <s wo (2 cos 05 — 2sin 98— + w, ) — gs wy (28— + w1> > (3.11)

_ 70 oo (220) _ (220\\\ 70 [ g (20 _ ()’
zax<SC°S 0<(ax) _<E)t) T\ \ox ) Lo

_7md 0200y0 _0200y0\\ , 0 [ 4 (06)* _ (06)*

20x < 20(83{ ox Ot ot )> " 160x <S ox ot o (G12)

_ 9 /o _ 9 Dz Dyo
(fy) = — T\ sin 0w0> =755 <s sin 6 cos Gﬁ — s%sin?9—— Dr > (3.13)
_ 0/ _ 0/ o 2,D20 o . Dyo
and (fz) = L <s cos 9w0> = W8x< s°cos“ 6 Dr + s“sin fcos 6 D)’ (3.14)
where the angular brackets stand for the averaging operator, (...) = (1/t,) f” ...(Hdt

3.2. Rolling moment
The rolling moment (per unit length) about the x'-axis is given by
5(x)
my(t,x) = —J Ap(t, x, )y dy + fo (8, ©)yo(t, x) — f, (t, 0)zp(t, 1), (3.15)
—s(x)

or, what is equivalent by (2.32),
e (t, x) = I (8, %) + fo (b, 0)yo(t, ) — f (¢, 2020 (¢, %). (3.16)

Consistent with the direction of the x-axis, it is positive when rolling to the left. Introducing (2.35), (3.7)
and (3.8), it yields

D Dy, D D
stwy) + s (sin =2 4 cos 0_]/) wo + 720 (sin 0s”wp) + Yoo (cos 0s*wy),  (3.17)

e = Dt Dt

7D
501

where the arguments of the respective functions have been removed for brevity, as in (3.3). The second
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term cancels out with a remainder of the union of the last two terms, leaving
D 1
my =T (52 (zo sin 6+ o cos 8wy + §s4w1)

D D 1,D
= 7— <52 (z0 sin 6 + yo cos ) (— c0s =2 4 sin yo> gt 0)

Dt Dt 8 Dt (318)

by (2.17) and (2.18). Assuming 6 to be periodic with zero mean, the tail-beat-average of (3.18) yields

7m0 Dz Yo
(M) ‘E$<_ (o +zosm20+y0c0520)ﬁ+s (20 + Yo sin 26 — zg cos 26) Dt>

_ 79 (a/ Dy %_D(yozo) Dy; Dz .
28x<s <Z D Y Dr T pr o820t 2 Dt bt )20 ) (319)

3.3. Power

The power (per unit length) needed to sustain the deformation waves is given by

™ dzo(t, x,) dyo(t,x) | D6t x)
ut, x) = L(x) Ap(t,x, ) (cos ot, X)T — sin 6(t, x) T +vy T ) d
— (fot, ) — f-(t, ) (sin (t, x) W 0s 6(t, 1) 2 0(‘; ")), (3.20)

the factor with the pressure jump in the first term is the normal-to-the-surface component of the
swimmer’s velocity in C’; the factor with the leading-edge suction in the second term is the normal-
to-the-edge component of the swimmer’s velocity in the same reference frame. Thus,

) = — (cos o(t, x) az(’(i’ Y in 6t %) ay%(i, X)) Tyt x) — ag(t 2 It 0
— 2w (t, Vwi (¢, x) (sin o, x)aZO(g’tx’ Y 4 cos ot )ayO(: x’) (3.21)

by (2.32) and (2.39), and, consequently,

B 0zp . . 0y\ D, , 06 Dz Dvo
L= 7r<cos 6~ — sin 0—> = (%wo) — ms*wo = ot Slnaﬁ+ Dt

8 E)yo
¥TIo" (s*wy) — ms*wowy (sm@ Y + cos @ E)t) (3.22)
by (2.34) and (2.35) (or (E3) and (E4)); again, the arguments of the respective functions have been
removed for brevity. With an intermediate step shown in appendix G,

D, 9zo . Oy 1,
L—Wﬁ(S w0<7c059§+sm0§)f§s w

06 70
ot

Ta o
Zat( w0+85 wl) (3.23)

by (2.17) and (2.18). Its tail-beat-average is

o cos 8050 g gQ0) | O [ 00
(v = W8x<s wo(cosﬁat sin 08t>> 88x<s w18t> (3.24)

(equation (2.18) was used in the last term); or, explicitly,

(v :”aax <s cos?6 220 820> 4l <szsinze%%> + 70 <s48—6’29>

Dt ot ox Dt ot 8 0x ot Dt
0 Dzof)yo aZODyo
— 'rra <s sin 6 cos G(Dt o +Wﬁ (3.25)

by (2.17) and (2.18).
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3.4. Integral quantities

Hydrodynamic forces and moments acting on the entire body follow the above by quadratures. Explicit
expressions for the respective time-dependent quantities turn unwieldy, but can be found in full in the
electronic supplementary material, S1. Their coherence was verified by comparison with numerical
simulations based on the vortex lattice method [12]. The rest of this manuscript addresses time-
averaged quantities only. In an attempt to make all relevant expressions as short as possible, w, and
w, (equations (2.17) and (2.18)) are left here unexpanded. Thus,

t T 0z .0y 1 00
T=- Ln (fo)dx = Esf <w0 (2 cos O~ — 2sin 0"+ wo) + gs,zwl (25 + wl) >x:X’ (3.26)
is the effective thrust (it follows by (3.11)),
L= J (fy) dx = —ms? {(wy sin 0y, (3.27)
Xn
is the lift (it follows by (3.13)),
Xt
Z= [ (f)dx = ms?(wy cos )y, (3.28)
J Xy
is the lateral force (it follows by (3.14)),
A 0zg . OYo 1,00
P= Ln (v) dx = —ﬂstz<wo <COS Bﬁ —sin 0%) + §St2§m>x:x, (3.29)
is power required to sustain the deformation waves (it follows by (3.24)),
Xt
My = J (my) dx = m,2<w0 (zo sin 6 + g cos 0)> - (3.30)

is the rolling moment about the x’-axis (it follows by (3.18) and (3.19)), and finally,

My ref = —(xr — Xref)Z + My (3.31)
and
My ret = (¢ — Xpef)L + Mz (3.32)
are the yawing and pitching moments about some x = x,.f, where

Xt

My = — [ () — xp) d = WJ

Xn Xn

s2(x><cos ) wo(~,x)> dx (3.33)

and

M, = J ' (fy (0 — x¢) dx = wJ sz(x)<sin 6(-,x) wo(-,x)> dx (3.34)

Xn Xn

are the respective moments about the tail section (they follow by (3.13) and (3.14)). Admittedly, the last
four equations are approximations, because they tacitly neglect the moments due to thrust as compared
with those due to lift and side force. To remain consistent with directions of the respective axes, the
pitching and yawing moments are defined as positive when pushing the nose down and left. Thrust
is defined positive when pushing forwards. Classical results of the slender body theory [3],

T 9z0\* 920\ 2
T_Esf<(a—to) - (aT?) > (3.35)
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and

820 820 aZO
— 2,20 [Z=0 | ©~0
P= < = (at + ax) > (336)

follow (3.26) and (3.29) with =0 by (2.17) and (2.18).

3.5. Hydrodynamic losses and propulsion efficiency

The difference, AP=P —T, between the power used and the power made good (recall that in
dimensionless units, the swimming speed is unity, and hence the power made good, which is the
product of thrust and speed, equals thrust) is the power lost to the fluid. It can be computed from
(3.29) and (3.26),

AP=P—T=ms (% (wht,x0) + 11—6s$<w%(~, x,)>), (3.37)

but it also can be computed directly from the rate at which the kinetic energy is added to the fluid at the
tail section [15],

o % <J "l xe X y) dy>. (338)

Introducing (2.16)—and noting (2.19)—it can be integrated by parts to obtain

1/ oud, xy, 1

1 1
= =55t (w0, 2D, 1)) = 757 (i 3l 1)), (3.39)
which, in turn, yields
1 1
_ 2( = 2(. i 2¢(.
Py = sy <2 <w0( ,xt)> + T <w1( ,xf)>) (3.40)

by (2.27) and (2.28). Indeed, P;=AP.
The (hydrodynamic) propulsion efficiency,

T AP

S (341)

is commonly defined as the ratio of the power made good, T (see the opening paragraph of this section)
and the power spent, P. Introducing (3.29) and (3.26), it becomes

0 0 1 00
<wo(2cos Bﬂ —2sin 6)ﬂ + wo) + 7st2w1 <2—+ w1)>
X=X;

ox ox 8 ox (3.42)
n= ; .
o] o] 1,.006
<7wo <2cos Bg — 2sin 0%) — §552aw1>
X=X

it is reminded that wy and w; are given by (2.17) and (2.18).

4. Harmonic waves

4.1. Basic expressions
Based on Graham ef al. [1], deformations of a swimming snake appear as a combination of lateral,
zo(t, x) = zo(x) cos (wt — kx + @), (4.1)
and torsional,
6(t, x) = Op(x) cos (wf — Kkx + by), (4.2)
harmonic waves, and time-independent flex in the x'— plane,

Yolt, x) = o). (4.3)
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Here, aAnd K are the (angular) frequency and the (angular) wavenumber, ¢, and ¢ are the phase angles, [ 14 |
Zp and 6 are the modulating amplitudes. Zy and 6, are assumed continuous, monotonic and non-
negative on (x,, x,), dij,/dx is assumed continuous on (x,, x;). The arguments of the cosines in (4.1)
and (4.2) will be abbreviated by

Pt x) = ot — kx + ¢, Pyt x) = 0t — kX + P, (4.4)

below, and, without a loss of generality, ¢, will be set zero. It is noted that

sos1/JeuInof/6105uiysignd/aposjesos

t
az(gt, Y _ o) sin it ) (4.5)
and

t .

82%( 1) o) sin gt ) + 5060 cos it ), (4.6)

x =
where an overdot marks the derivative of a function with respect to its single argument. Similar : _§’
expressions hold for 6. o

Now, with any real a and v, cos(a cos ) and sin(a cos y) can be expanded into the respective Fourier series | S
L
o,
cos (acos ih) = Jo(a) +2 Z (=1)"Jom(@) cos 2ms 47) o
m=1 §
ol
S
and . ;
sin(@cos ) = =2 (=1)"Jom1(@) cos (2m — 1)y, (4.8)
m=1

where Jo, J;, ... are the Bessel functions of the first kind (these expansions are based on standard integrals
appearing in eqns 3.715.13 and 3.715.18 of [16]). In particular,

2 cos? (G(t, x)) =1+ cos (20(t, x))

=1+4]0(200() +2  (~1)"T2(260(x)) cos (2mysy(t, x)), (4.9)

m=1

and, similarly, 2sin 2(6(t, x)) = 1 — cos(260(t, x)) is given by a variant of (4.9) with minuses replacing the pluses.
After introducing these in (3.12), (3.13), (3.14), (3.19) and (3.25)—or, rather, directly in (3.26)-(3.34)—a few
pages of tedious (but rather straightforward) algebra yield

2 . R R 4 N .
T :% (o — K22 — 2) (1 + Jo8) + [2(26) cos 2by) + % ((? — D& —0,)
2 . . -~ . .
- % (J2(20,)2¢ (K2 sin 2¢b, — 2; cOs 2dbg) + 2]1 (26,7, (k2 sin g — 2¢ cos by) )
2 .
- % (1-Jo6))3;, (4.10)
’7752 ~ . 7752 . N
L= Tfh (261 (21(w — K) sin ¢y + z; cos ) — Tt?’f(l —Jo(26)), (4.11)
77'52 ~ N 52 @
P="Lolw—K) ((1 +J0Q28) + 226, cos 2¢5) 22 + %)
2 . 2 ~ .
- % ol 2025 sin 2, — % ol 20)7,2 sin ,, (4.12)
My =— %TJ l $2(x) (20 (x)(w — K) sin py + Zo(x) cos bo)J1(260(x)) dx
+2 J Lo (1 = Jo(260(x)) dx (4.13)
and also
Z =My =My, =0. (4.14)

The subscript ‘t" universally marks the values of the respective functions at the tail section: i; = io(x;),
Zr = Zo(xy), 6 = (), and s, = s(xy).



4.2. An extension

Extended variants of (4.10)-(4.14), which are based on
Yolt, x) = §o(x) + Po(x) cos (wt — kx + q’)y) (4.15)

instead of (4.3), can be found in electronic supplementary material, S2. Deemed unwieldy to be used
without simplifying them back to (4.10)-(4.14), they do offer an insight that two mutually
perpendicular lateral harmonic waves do not interact in any of the tail-beat-averaged quantities
appearing in (4.10)—(4.14), except for M. This result could have been expected for lift, side force and
the associated moments (that follow from (3.27) and (3.28)), but it could hardly be expected for thrust
and power (that follow from (3.26) and (3.29)).

4.3. Limiting cases
The respective limits of (4.10)-(4.13)

lim T = ”ST% (P — P2 —3), (4.16)

limL =0, (4.17)

lim P = 7§T s2o(w — KZ (4.18)

and lim Mz =0, (4.19)

recover the expressions of the classical elongated body theory [5,7,8]. Thrust can be obtained only when
the phase velocity of the propulsion waves, 1 =w/k, exceeds the swimming velocity.
The limits:

4 2 2 .\
im T = (o — )R —6,) — (1 Jo@6)) 37, (4.20)
20 32 4
lim L = — gsfﬁ,@ ~ To@6)), (4.21)
. _ 1 4 _ ~
lim P = 7o, (o — k) F (4.22)
and ]in}) My = g J f S Wi (1~ Jo(260())) dx, (4.23)

n

elucidate the equivalence between the classical anguilliform swimming gait based on backward-
propagating lateral displacement waves, and its variant (or, rather, a variant of a gymnotiform gait
[4]) based on backward-propagating torsional waves. In the context of propulsion, the effective
amplitude of the edge displacement due to torsion, sfy/v/8, is equivalent to the translation amplitude
Zp. Of course, twist interacts with the angle of attack (manifested in 90), whereas translation alone
does not, and hence additional terms proportional to powers of f/o are found in (4.20), (4.21) and
(4.23). In particular, the factor with ];/t in the expression for lift, (ms?/2) (1 — Jo(2 é,)), can be identified
with the lift slope coefficient L, of a twisting swimmer,® whereas the ratio of the factor with ]}f in the
expression for thrust and L2, can be identified with the induced drag coefficient.
The limits,

2 2 N
lim T = %(aﬂ _ KZ)((l +10@0) + ]2(26) cos 24, 22 + #)
21—0
-0
s? o s> Y
- Tt KkJ1(260,)7, 2 sin ¢y — Tf (1—-70260)y,, (4.24)
2 2
lim L. = % 112602 — K sin ¢y — %gt (1-Jo26)) (4.25)

$Maximal list slope of 0.7719[2 is obtained at 6; ~ 110°, where J1(26;) = 0. It is 70% of what it would have been if the swimmer was
swimming on its side.
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and

2
lim P =8 (e — K)<(1 +JoQ6)) + 12(26;) cos 2h) 2% + ﬁ)
50 4 4

ms? s
— Lo @8)i, 2 sin (4.26)

(equation (4.13) for the pitching moment remains unchanged), furnish a Convenlent framework for
subsequent analysis. zt =0 and 6 =0 reflect free-end conditions at x=x;” and have been actually
observed with a swimming H. platurus [1] (figure 4).

Remarkably, a combination of (4.24)-(4.26),

o+ K 1:
IimT = 1li =y,L 427
20 li’%< 20 2" ) 427
f—0
suggests
T o+k 1:

L
li = lim— i 4.2
f = = e T2 Imp (4.28)

é,HO 0,%0

by (3.41). In other words, generating lift with no angle of attack (ﬁt = 0) carries no energetic penalty.
Generating positive lift when swimming tail high directs the normal-to-the-body component of the
hydrodynamic force forwards and improves efficiency; conversely, generating positive lift by
swimming tail-low worsens it. In fact, when ¢,=0, the last term in (4.24) (and hence in (4.28))
becomes identified with the induced drag.

The fact that thrust does not vanish when the power does, reflects a (possible) problem in separation
of thrust and drag. Reclassifying thrust at zero power as drag, as was done in [17] for a bird in flapping
flight, does not work here. As opposed to large birds, which can generate lift without flapping, slender
flat swimmers cannot generate lift without twisting their bodies. Assuming j yt — 0, in addition to % — 0
and 6; — 0, furnishes a fortuitous solution for the remaining part of the paper, but the general problem
will have to be addressed somewhere.

5. Effects of torsion
5.1. Thrust

Equations (4.11) and (4.13) answer part of the question that started this study: an interaction between
torsional and lateral waves can indeed generate lift and pitching moment. It remains to assess their
magnitudes, and this is the sub]ect matter of this section. To make the analysis concise, it will be
limited to those cases where z; =6, = yt = 0. The ubiquitous ratio s;/z; of the tail semi-span s; to the
amplitude of the tail displacement z; will be denoted here by &;. It is a small quantity for a swimming
sea-snake (it equals 0.11 for H. platurus—appendix I), but one can easily conceive a swimmer for
which 0y is of the order of unity.
In the case where % =6, = ﬁt =0, equation (4.10) can be rearranged as

TS o 0 oavn 5 5
T = TZ, (CU — K )T(¢01 Bt/ O-t)/ (51)

where the factor

T(¢by, 00, 67) = 1 ( +Jo(26,) + 226, cos 2¢by) + = 3 O}Zétz (5.2)

manifests the effect of torsional waves on thrust—in fact, T(¢,,0, ;) = 1, for any ¢ and any &;. It is a

(local) extremum of T, which is a maximum when 6% <4 —2cos2¢, (figure 2a,c), and a minimum

)10

otherwise (figure 24)."° The minimum of T is invariably associated with ¢9=7/2 and 6; ranging

A swimming body can be modelled as a cantilever subjected to internal (muscles) and external (hydrodynamic) forces. There is no
concentrated hydrodynamic force that acts on it at x = x; from the outside, and there are no muscles at x = x; to bend it from
inside. The free-end condition for a cantilever is azzo/i)zx =0 at x = x4, where GZZO/E)xZ = (ég — k22) cos iy, + 2K£0 siny, by (4.1). A
necessary condition to satisfy it at all times is Z = 0. The same is true for 6;.

OWhen 6; < 1, T(dy, b, 07) = 1+ (—4 + 2cos 2y + 62)(62/8) + O(6?).
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Figure 2. Contours of constant T( ¢, ét,0.1), T(¢by, (9,,1) and T( ¢y, (%3) over the qbo—é, plane are shown on plates (a), (c)
and (d), respectively. Contours of constant T(w/ 2, é,,(r,) over the (rr—é, plane are shown on plate (b). The values of T along the
dashed vertical lines on plates (a), (c) and (d) are found on plate (b) at 6v = 0.1, 63 = 1 and ; = 3. Thick solid lines on all
plates highlight the contours T = 1. Points and unmarked lines (either dashed or dash-dotted) on all plates show the combinations
of parameters where the reduced thrust T (triangles, dashed lines), the lift-to-thrust ratio [ (circles, dash-dotted lines) and the
pitching moment-to-thrust ratio A_/Izr,,ef (squares) are either minimal (empty symbols) or maximal (filled symbols). The values of
A_/szlref correspond to X.r=0.45 and @ — x =6, and the four combinations of shape functions shown in figure 4.

between 101° at 61 — 0,'! and zero at 67 > V6 (figure 2b). The minimum itself ranges from 0.08 at ; — 0
and unity at oy > NG (figure 2a,b).

Maxima and minima of T should not be confused with maxima and minima of thrust. When
swimming at constant speed and depth, thrust equals drag, regardless of the particular value of T.
Smaller T merely implies that the swimmer will need larger tail amplitude,

172
5 - 4T
! 752 (w? — k)T (g, 0,07 )

to generate it for the same » and « (this equation follows from (5.1)). In fact, since T = 1 when there is no
twist, 1/1/T can be interpreted as the ratio 2/, 5 _, of tail amplitudes needed to generate the same thrust
when the torsional waves present or not. Having observed 6; ~ 50°—at which T can be as low as 0.5
(figure 2a,b), and hence z; /it,é,:o can be as high as 1.4—an attempt made in [1] to calculate thrust of a
swimming H. platurus based on results of the classical elongated body theory is inconsistent (compare
the last two columns in appendix I, table 2).

Tt is a solution of 26,]; (Zéf) = ]2(2(9,).
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5.2. Lift

Appearing in full in equation (4.11), the expression for lift comprises three terms. The first term, the one
involving o —k, is associated with lift that is (actively) generated by lateral and torsional waves
propagating along the tail; it can be compared to the lift generated by a helicopter’s rotor in forward
flight. The other two are associated with the lift that is (passively) generated by the tail being, on
average, at angle with the flow; it can be compared to the lift generated by a wing at angle of attack.
The limit Z; = §, = 0 leaves only the ‘active’ part,

L= 757 21126 (@ — K) 2 sin &y, (5.4)
which is linked to generation of thrust through the product (w — k)z;. In fact, given o and «, thrust
actually sets 2; (equation (5.3)); and hence equation (5.4) can be used to obtain the lift-to-thrust ratio,

L - [ w— K’TTS% 12
T - L(d)er Gtr U[) <w + KT) 7 (55)
in which
_ R 26;) sin
L(¢pg, 0:, 6v) = J1@6)sin gy (5.6)

/Ty, 6, &)
manifests the effect of the torsional waves.

The maximum of L is practically unity when &; — 0 (figure 3), but vanishes when &; — o, when
thrust is generated by the torsional waves only. The maximum is invariably associated with ¢,=7/2
(figure 3a) and o, ranging between 77° when &; — 0 and zero when &; — oo (figure 3b). With small &;
(say, a few tenths), the tail amplitude that will be needed to generate thrust at maximal lift-to-thrust
ratio is approximately twice the tail amplitude needed to generate the same thrust with no twist
(T =~ 1/4 along the dash-dotted line with filled circles on figure 2b).

Twisting the tail beyond 6,9 ~ 110° (where [;(26) =0) makes the lift negative (figure 3a). Its
minimum (at ¢g=7/2 and 6, > 140°) hardly exceeds half of its maximum (at ¢ =7/2 and 0, < 77°) by
the absolute value, and hence negative lift can be generated much more effectively with a smaller
twist and ¢y=—7/2.

5.3. Pitching moment

Like the expression (4.11) for lift, the full expression (4.13) for pitching moment comprises three terms, of
which the first one (involving @ — x) is associated with moment that is actively generated by lateral and
torsional waves propagating along the tail, and the other two are associated with the moment that is
passively generated by the tail being, on average, at angle with the flow. This time, however, the limit
ét =6 = f/t =0 leaves two terms in the expression for the pitching moment, that, when re-referred to
some X = X take on the form

ms?

Mz’ jref — 2

((w — ) sin ¢y (J1 (20D — Xref) — X1(6)) — cos ¢9X2(ér)) (5.7)

where X;(6;) and X,(6;) shorthand

Xt

X] {E, ZO, bo}(ét) = J Ez(x)io (x)h (2@0 (x) ét) dx (58)

Xn

and
X>{5,20, 00} (6;) = X1{5,Z0, 60 }(6:), (5.9)

whereas 5(x) = s()s; !, Zo(x) = 29(x)2; ' and 6y(x) = fy(x)§; ! are the respective shape functions on (x,, x;)
into (0, 1). Equation (5.7) straightforwardly follows from (3.32) by (4.13) and (4.11). A few examples
elucidating the behaviour of X; and X, for the shape functions shown in figure 4 (see appendix ] for
details) can be found in figure 5.
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Figure 3. Contours of constant Z(¢>0, é,,0.1) over the q,’)o—é, plane (a), and of constant Z(ﬂ-/ 2, é,,&t) over the &,—ér plane (b). The
values of [ along the dash-dotted vertical line on plate (a) are those found along the y-axis on plate (b). Thick solid lines on plate (a)

o=

highlight the contour L = 0. Points and unmarked lines (either dashed or dash-dotted) on all plates show the combinations of

parameters where the reduced thrust T (triangles, dashed lines), the lift-to-thrust ratio [ (circles, dash-dotted lines) and the

pitching moment-to-thrust ratio My s (squares) are either minimal (empty symbols) or maximal (filled symbols). The values of

My e correspond to X, = 0.45 and @ — x =6, and the four combinations of shape functions shown in figure 4.

(@) (b)

1.0} 1.0

]

0.8 1 0.8F

0.6 Fd 0.6 o
N ; v 53¢ /

0.4 0.4 3 |

0.2 0.2

// . Xref ey Xref
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
X x

Figure 4. The four lines (numbered 1-4) depict four different combinations of Zy (a) and 6, (b) from appendix J. Filled circles and
diamonds (with the respective error bars) mark the amplitudes observed with H. platurus swimming at 0.3 and 0.6 body lengths per

second, respectively [1].

Using (5.3) for z;, equation (5.7) furnishes the pitching-moment-to-thrust ratio,

1/2
My ref w— K 7'rst2 /
T T)

= V z’,ref(¢9/ ét/ (ATZ’/ w — K) ((() Tk T

practically in the same form as equation (5.5), only now

sin ¢,

\/ T(d)el ét/ &t)

w— K

My e (g, B, 1, 0 — K) = ((xt — %ee)]1(26:) — X1(6;) — cot ¢, Xa(6) )

(5.10)

(5.11)
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Figure 5. X1((§,) and Xz(ér) as functions of 6. (X — Xeet )y (Zé,) is shown by a broken line on (a) for a reference. Numbers

next to each line mark different combination of the shape functions from figure 4, S(x) = /X and X,.;= 0.45.

replaces L as effect of torsion. Mzr,ref has two extrema,

1/2

2
]\_/Ii, (0,0 —K) =+ ((xt — et (ZGi) B X1(0i)) X%(oi)

! ( , 5.12
- T(m/2,0%,6) (0 — KT, 0%, 67) 512

both situated along the line ¢, = d)M(ét, 01, 0 — K),

(5.13)

. (1~ %) (28) = X1(8) _T(O,0, )
0/ ’ - = - j T ) ’
dri(0;, 61, 0 — K) = arctan <(w K) —X2(6) T(w/2,6,, 6}))

where OM,: ¢/, = 0. One of the two extrema is a (positive) maximum at 6; = 61 (07,0 — k), where
both (x; — Xye)J1(267) — X1(6%) and X»(6") are positive, and hence ¢, (67 ...) > 7/2; the other is a
(negative) minimum at 6 = 67 (61, w — K), where (% — xref)J1(207) — X1(67) is negative, and (typically)
(6™ ..) < 7/2 (appendix H). Over-twisting the tail causes the anterior and posterior parts of the
body to generate lift in the opposite directions, and changes the direction of the pitching moment;
unlike the lift, the magnitude of the negative pitching moment exceeds the magnitude of the positive

one (figure 6a,c). In those cases, the centre of lift,

M.,
Xl = et + (5.14)

moves posteriad of the caudal end (figure 7).

For all combinations of shape functions tested for this study, (x; — Xrer)]1(26) — X7(6%) and X»(6*) were
comparable quantities, and so were T(w/2,6%,6;) and T(0,0%,57). At the same time, & — k can be a fairly
large quantity—in fact, H. platurus swim with @ — xk ~ 6 (appendix I, table 2). Consequently,

(xr — Xref)J1(260F) — X1 (6%)

M 1og(61,00) = - , 5.15

el Ot T(w/2,6% 67) (5.15)

dui (0% (@,00),7,00) = 7 (5.16)

and 6% (61,00) = argmax | + (xi = xref)h @ Ot? —X%(%) , (5.17)
ét T(7T/2, Gt/a-t)

which formally are limits of the respective quantities when o — k — co (see equations (5.12) and (5.13)),
can be effectively used as leading-order approximations when o —« is finite (figure 6c,d). In fact,
when o -« exceeds, say, 4, ¢y (6% (61,0 — K),61,0— k) remains within 15° of 7/2, and neither
6% (61,0 — k) nor M, (61,0 — «) change appreciably with @ — x.
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Figure 6. Contours of constant M, f(chy, 6,,0.1, —kK) over the Po— 6, plane (a,); contours of constant
szlref(¢M(é[,&[,w — K),ér,&,,w—x) over the o w—ét plane (b,d). On plates (a) and (b), @ — x =2; on plates (c) and
(d), ®— k=6 (black) and @ — x =100 (grey). Cases @ — k=6 and w — x =100 are practically indistinguishable on
plate (d). ¢M(91,0.1,w — K) is shown by the dashed lines on plates (a) and (c). The values of My . along those lines are
the same as along the y-axes on the respective plates to the right of them. Points mark the combinations of parameters
where the reduced thrust T (triangles), the lift-to-thrust ratio L (circles) and the pitching-moment-to-thrust ratio MZ/,ref
(squares) are either minimal (empty symbols) or maximal (filled symbols). The combination of shape functions underlying this
figure is the one that was marked ‘1 in figure 4, S(x) = /X, and X.f= 0.45.

Shapes of the modulating functions Z, and 6 have pronounced effect on the pitching moment
(figure 84), but hardly change the arguments 6* and ¢(6~...) of its extrema (figure 8b). A combination
of late-rising zy and 6o increases the maximal moment (case 4); a combination of late-raising 6y and
early-rising z increases (by the absolute value) the minimal one (case 3).

6. Balancing a snake
In order to swim at constant depth and speed, thrust should counterbalance drag,'?
T = ms’D, (6.1)
hydrodynamic lift should counterbalance the excess weight,
L = BB, (6.2)
and the hydrodynamic pitching moment about the centre of mass should counterbalance the hydrostatic
2In the framework of an ideal fluid approximation, this statement means that the respective tail-beat-averaged component of the force

acting on the body through normal and shear stresses on its surface is zero. Thrust and drag has been already associated with normal
and shear stresses, respectively.
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Figure 7. Contours of constant centre-of-lift location over the d),,—é[ plane. Points mark the combinations of parameters where the
reduced thrust T (triangles), the lift-to-thrust ratio L (circles) and the pitching moment-to-thrust ratio /Vsz,,ef (squares) are either
minimal (empty symbols) or maximal (filled symbols). Solid red line marks the combinations of parameters where A_/szlref = 0; dot-
dashed (‘H’-shaped) blue line marks the combinations of parameters where [ =0; dashed line marks the line

0 = c,bM(ét,(r,,w — k) Where 8A_/Izr,,ef /Oy = 0. The combination of shape functions underlying this figure is the one
that was marked ‘1" in figure 4, S5(x) = /X, Xt =045, @ — Kk =6, 67 = 0.1.
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Figure 8. Maximal (solid lines) and minimal (dashed lines) pitching moment, Mz,i,ef(é-,,G) as functions of o (a); the respective

|

arg max (+ /T/Iz/,,ef) (b). Numbers next to each line mark different combination of the shape functions (figure 4), S(x) = /X, Xt = 0.45.

couple
Mz/,cm = (xcm - ch)B. (63)

In (6.1)—(6.3), D is the drag coefficient based on 2ms? as the reference area; x4, and X, are the respective
coordinates of the centres of buoyancy and mass; B is the buoyancy; and S is the ratio between the
submerged weight and buoyancy.

With p0212 serving as a unit of force (§2.1),

ms?k
B=—7 (6.4)

where k is the prismatic coefficient—the ratio between the volume of the body and the minimal
cylinder enclosing it (see appendix I)—and Fr is the pertinent Froude number, formally defined
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as Fr = v/,/4l (g is the acceleration of gravity). A clear distinction is made here between the actual body
shape used for hydrostatic analysis, and its flattened version used for the hydrodynamic one.

With T taken from (6.1), B from (6.4), L/ T from (5.5) and My ¢y /T from (5.10), equilibrium conditions
(6.2) and (6.3) can be restated as

wo—xl kB
w+«kD  Fr2D

_ I lo—k1 k(xem — Xab)
Mz’,cm(¢0/ 0:,01,0 — K) pr KE = F2D . (66)

Lacking the data, no attempt is made to solve them explicitly. Yet, a necessary condition for their solution
to exist is to have the maximal achievable values on their left-hand sides exceed those on the right.
Practically, it sets a lower bound on the Froude number. Its rough estimate, based on kinematic data
of H. platurus (appendix 1), yields 1.6181"2 by (6.5), and 3.5 xqm — X | /2 by (6.6). The first one is
based on L ~ 1 (figure 3b); the last one is based on |My em| = 0.2 (figures 6a and 8a).13

A buoyancy-gravity imbalance with = 0.005, which is representative of buoyancy loss after an hour
at 10m depth'* [18,19] or a descent of 1.6m from the same depth,'> can be compensated
hydrodynamically at Froude numbers in excess of 0.11. This is 0.25ms™" for a 0.5m snake. Sea
snakes can swim faster than that. Balancing hydrostatic imbalance hydrodynamically appears as a
viable option.

A buoyancy-gravity misalignment with |x.y, — x4, | =0.002, which is a diminutive 1 mm for a 0.5 m
snake, will need a Froude number in excess of 0.15 to be compensated hydrodynamically. This is
0.35ms™! for a 0.5m snake. Sea snakes can swim faster, but it seems unlikely that a realistic
hydrostatic couple can be balanced hydrodynamically. Sea snakes do have control over their centre of
buoyancy [18].

Ly, 61,6 (6.5)

and

7. Concluding remarks

To make this extension of the elongated (slender) body theory tractable, quite a few simplifying
assumptions were made. The central ones were: (i) the body is flat; (i) it ends at the widest section;
(iii) its dorsal and ventral edges both serve as leading edges along their entire length at all times; (iv)
the lateral deformations are small; and (v) the Reynolds number is high. The central results are found
in equations (3.11)-(3.14), (3.19), (3.26)—(3.34) and (4.10)-(4.14). They were shown coherent in
electronic supplementary material, S1 by matching numerical simulations based on the vortex lattice
method. Nonetheless, the vortex lattice method cannot serve as a standard to establish their practical
applicability limits. To find the limits, the verifying simulations should have been free from any of the
assumptions underlying the present results—in particular, free from an a priori classification of the
swimmers edges into ‘leading’ and ‘trailing’ (assumption (iii)). Unsteady RANS simulations could
have been effective to this end, but they are complex and deserve a separate study. An encouraging
indication of viability of the present results is furnished in appendix I (table 2) by accurately
predicting the observed tail amplitude of a swimming H. platurus.

Data accessibility. All data underlying this study have been taken from [1,18,19].

Authors’ contributions. Both authors took equal share in the analysis; G.I. wrote the manuscript with the input from A.R.
Both authors gave final approval for publication.

Competing interests. The authors declare no competing interests.
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3The reference point for M, rfwas set at 0.45 body length from the cranial end, roughly where the centre-of-mass is expected to be
(appendix I).

“To remain neutrally buoyant, a yellow-bellied sea snake needs lungs occupying 6.5% of its body volume [19]. When submerged, it
uses oxygen from the lungs and expels CO, to the water through the skin, losing lungs volume at the rate of approximately 16% per
hour at atmospheric pressure [20]. The respective change in buoyancy is approximately 1% per hour. With the same lungs volume at
10 m depth, the rate halves.

15Referring to the preceding footnote, a 0.5% change in buoyancy requires 8% change in lungs volume. It can be achieved by changing
the outside pressure by the same amount. At 10 m, it requires a change in depth of 1.6 m.
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Appendix A. Normal vectors

A normal to the surface
Z =zt x,y), (A1)
can be found with
Nt x,y) =V'(Z =24t x,y)) (A2)
(e.g. [20]). When z, is given by (2.9), it yields

0zo(t,x) Y —yot,x) 06, x)
ox’' cos20(t,x')  Ox'

Oyo(t, x)
ox' )’ (A3)

— tan 6(¢, x')

N'(tx,y) = ey — ey tan (¢, x') — ey <

or, using a different parametrization

; (A4)

N, x,y) = ey — ey tan 6(t, x) — ey <aZO(t' ») y 06(t, ») — tan 6(t, x) %)

ox cos O(t,x) Ox

recall that e, = ey and ¥’ =x by (2.1) and (2.4), whereas i’ and y are related by (2.5) with z=0. When dy,/
0x, 0z9/0x and s06/0x are small,

IN(t, x, )| = |sec O, x)| + ... (A5)

by (A4), and in this case, the unit normal, n = +N/|N]|, facing the same side as the z-axis of C, can be
recast as a sum

n(t, x,y) = not, x) + ymi(t,x) + ..., (A6)
where
ng(t, x) = ey cos 6(t, x) — e, sin (¢, x) — ey (cos ot, x) aZ%(;' ») — sin 6(t, x) %) (A7)
and
oo,
nit,x) = —ey gxx); (A8)

note that ey = e, by (2.1), whereas e cos 6(t, x) — e, sin 6(t, x) = e, by (2.2) and (2.3). The ellipsis in (A 5)
and (A 6) stands for second-order terms with respect to dyy/0x, 0zo/0x and s06/0x.

A unit normal to the dorsal (marked by a plus) and ventral (marked by a minus) edges of the
swimmer can be found from the cross product

Ti (t, x)

R () = dnllx, 2s00) < o

(A9)

between the unit normal to the surface near the respective edge, and the unit tangent vector to the same
edge, T+, x)/|T+ (¢, x)];

0 (zo(t, x) £ s(x)sin 6(t, x))
ox

9 (yo(t, x) £ s(x) cos 6(t, x))
ox

T.(tx)=ey +ey + ey (A10)
Written in explicit form, the expression for n. (t, x) is unwieldy, but when dy,/0x, 0zp/0x and s06/0dx are

small, it reduces to

ni(t,x) =— <i sin 6(t, x) E)z%(i, ») + cos 0(t, x) ay%(i' ») + d;(;c)) ey
+ cos 6, x) e, + sin6(t, ) ey +.... (A11)

The ellipsis in (A 11) stands for the same order terms as in (A 5) and (A 6).
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Appendix B. Leading and trailing edges

A point on an edge having coordinates x' = x, i’ = yo(t, x) + s(x)cosé(t, x) and z’ = zy(t, x)  s(x)sin6(¢, x) (see
equations (2.4)-(2.6)) moves relative to the fluid with velocity

vi(tx) = —ey + (E)y(g:' ») F s(x) sin 6(t, x)aggg x)> ey + (8208(? ) =+ s(x) cos 6(t, x)aogg x)) es. (B1)

The first term is the velocity of C’ relative to quiescent fluid (i.e. the swimming velocity); the other two are
the velocity of the point relative to C’ (it follows by differentiating the coordinates with respect to time).
Leading edges of the swimmer are parts of the edges that advance into the fluid, i.e. where

ny(t,x) ve(t,x) >0; (B2)

trailing edges are the remaining parts. In principle, a part of an edge can be ‘leading’ during a part of the
tail-beat cycle, and ‘trailing” during the rest of it. By observation, the flow separates from trailing edges,
but not from leading ones.

Appendix C. Impermeability condition

Defining the surface of the body by a variant z’ — z,(t,x',y") = 0 of (2.7), the impermeability condition on
its surface can be formulated as

: 8 !4t ! ! ! / / ! _
i (5 (o Ty ) 9 (2] o S

where the operator in the parentheses is an explicit form of the convective (Lagrangian) derivative
[13],'® whereas (x'}y) spans the domain on which the body surface is defined. It is not specified
here explicitly, because a different parametrization will eventually be wused. Identifying
V'(z' — 2/,(t,x",y")) with a normal to the body surface, N'(t,x,y’) (equation (A 2)), equation (C 1) can be
rewritten as

1 o 0
1~ ! /t VA . /t ! ] — — o /t !l ) 2
zuzif?x/,yuvd’('x Y2 n'txy) NG| (aﬁ ax/)zb( XY, (C2)

where the sign is to be adjusted to make the respective unit normal n’ = +N'/|N’| pointing to the same
side as the z-axis of C.

The expression on the left of (C2) can be identified as the normal-to-the-surface component of the
perturbation velocity. In the leading order with respect to the slenderness parameter, it is
Zl_ig\()@(j)(t,x,y,z) /0z, where, having x, y and z related with ¥/, ¥ and z’ by (2.4)-(2.6), ¢(t, x, y, 2)=¢'(t, ¥/,

Y, Z'). The expression on the right of (C2) yields

1 O 0N, Dzo(t, x) Dyo(t,x) v —yo(t, x) DO(t, x)
IN'(t,x )| (8t + ax’)z b(tox ) = cos O, x)( D on 6,2 D ' cos? o(t,x) Dt (€3)

by (A 5), (2.9) and (2.4). Noting that for the problem at hand, z’ — z,(t,x’, ) implies z = 0, v — yo(t, x) =
ycosé(t, x) by (2.5). Introducing it in (C 3) furnishes the expression that appears on the right-hand side of
(2.16).

ey + V'@t x, y',2') is the fluid velocity in c by definition of the perturbation potential.
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Appendix D. Pressure jump

Perhaps the easiest way to derive equation (2.31) is by using the inertial reference frame C'. In this frame,
the local pressure p can be directly related to the (perturbation) velocity potential by a variant

/ ] ! AN 1 a¢/(t’ x/’ ]/’Z,) 1 I ! ! ! 2
p(t,x,y,z)7poo+§—T—§<exr+v¢(l‘,x,y,z)>
ot x,y,2) o, x,y,2) 1/, ..., 2
= poo - S S fE(Vd)(t,x,y,z)) (D1)

of Bernoulli’s theorem [13]. p, is the pressure far from the moving body; it is reminded that [, v, /v, lv and
pv? are units of length, velocity, time, potential and pressure, respectively. The perturbation potential here
can be replaced by

¢y, 2) = ¢t xy,2), (D2)
where x =x’, whereas v, i/, z and z’ are related by the variants of (2.5) and (2.6),
y = sin 6(t, x) (2’ — zo(t, x)) + cos 6(¢, ) (i — yo(t, x)) (D3)
and
z = cos 6(t, ) (z' — zo(t, x)) — sin 6, x) (Y — yo(t, ). (D4)

Keeping ' and z’' constant when differentiating ¢ with respect to t and x’, (D 1) yields

_ D¢t x,y,2)
p(t/ X, y/ Z) - poo T
_0¢(t,x,y,2) (DOtx) . Dzo(t,x) Dyo(t, x)
By (z DF sin 6(, x) D cos 0(t, x) D )
0t x,y,2) (DOt x) Dzo(t, %) | . Dyo(t, x)
2 ( v Dt cos 0(t, x) D + sin 0(t, x) D )
L1 (0¢(x,y,2\? 1[04t x,y,2\* 1 [04(tx,y,2)
2 oy 2 0z 2 ox
L 0dtxy,2) (Zae(t, Ym0 2280 o o, v 20 X))
dy Oox ox Ox
0dlt,x,y,2) (D6t %) 0zt ) dyott, 0\ |*
+ 92 (fy o cos O(t, x) o + sin 6(t, x) P ) } . (D5)
Because ¢(t, x, y, z) is antisymmetric with respect to z (equation (2.11)), and because
ptx,y) = lim (¢, x,y,2) = ¢t x,y,~2)) (Do)
by (2.12), the pressure jump,
Ap(t/ X, y) = EET(} (P(t; X, Y, Z) - P(t, X, %*Z))/ (D 7)

yields (2.31) by (D 5); quadratic terms vanish identically.

Appendix E. Higher-order pressure moments
Introducing (2.31) in (2.32) one finds

SO Dudt, x, Y SO Dt x y) Dzo(t, x) Dyo(t, x)
7Ny n 7 . 7 4 1 . 1
I1,(t,x) = L(x) —Dor Y dy — J—s(x) 4y (sm ot, x) D + cos 6(t, x) ~Dr ) y'dy. (E1)

Because the potential jump vanishes at y = +s(x) by (2.19), the derivative in the first term can be taken
outside the integral sign. Subsequent integration by parts allows to recast it as a combination

Iy (6,0) = = (620,11, )
— () (sin oct, ) 220 L os o, ) Dygi’ X)) 1, %) (E2)
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of potential jump moments (2.20). With (2.27) and (2.28), it splits into

IL,(t x) = ZwME (s" 2 (wo(t, %))

n-+ 1Dt

Dzo(t, Dyol(t,
+ 27" 2 (x),, | sin 6(, x) Zo(t, 1) + cos 6(t, x) Yolt, ) wi(t, x),

Dt Dt

when 7 is even, and
10,0, %) =20 Pt D (i3 0y0, 1, )
! n+ 1Dt !

Dzy(t Dy (t

+2ms" (), (Sin 0(t, x) Zg t, a2 + cos O(t, x) 2 olt; x)) wo(t, x),

when 7 is odd.

Appendix F. Derivation of (3.9)

The terms on the right of (3.6) are can be regrouped as

Y = — B s*wg [ cos 0% — sin 0% + ms?wy | cos 02% — sin 03%
m ox

Dt ox ox Dt ox Dt
Do 0z, o] 00 Dz D
_ 50— [ sin 6222 9o\ _ 2., 99 (i g0 Yo
mS“Wo t(s1n08x+c0568x) wswoax(smﬂ t+cos€ t>

4 2
77—7@2(54701) 77 zaifgwéaifm2w0w1<sin9%+cosﬂ%).

8 dx Dt 16 ox ox ox ox

)

(E4)

(F1)

In this form, the third term on the right cancels out with the last by (2.18), whereas the remaining ones

can be further regrouped to obtain

D > 820 . ayo 2 00 . DZO Dyo
) = — T— _— = — —_ — 0——
fx : (S wWo (COS 0 sin 6 f) + ms Wy 5 sin 6 ; + cos ¢

ox Dt Dt 20x 8 Dt Dt ox 160x

2
- mzwoa—g (sin 0220 4 cos 0%> _7d (szu%) 47D (s“gﬁﬁ> _To (52%: ;

(F2)

the fourth term here is the combination of parts from the second and seventh terms in (F 1). The second

term now cancels out with the third, yielding (3.9) by (2.18).

Appendix G. Derivation of (3.23)

Exploiting (2.17) and (2.18), terms on the right-hand side of (3.22) can be regrouped to obtain

_ D 2 820 . E)yo > D aZO . D E)yo
L=— Wﬁ (s wo(cosﬂﬁ—sm W)) + s wy cosﬂﬁﬁ—sm Di o

DO/ . 0z Yo T w2 DO/ . 0z Yo
_ 2 _ T2 0 2
s wO_Dt (sm 0_81‘ + cos G_Bt) 2s ot + s wO_Dt sin 0_81‘ + cos o
d Dz 9D 7D [ ,00D6\ w ,0 (D6\>
2 0 . Yo 4 4
— s 0 sing=——L ) - = (F ) st (=) .
o (Coseat Dt " Dt> TsDr <S ot Dt) 16° ot (Dt)

In this form, the second and the third terms cancel out with the fifth and the sixth, yielding (3.23).

Appendix H. Derivation of (5.12)

In deriving (5.12), two trigonometric identities, sin® ¢y = 1/(1 + cot? )
cos2¢y = (cot? ¢y — 1)/(cot? ¢y + 1), prove useful. Using the former, equation (5.2) can be recast as

T(w/2,6;, 61) + cot? ,T(0,6;, &)
1+ cot? ¢y '

T(¢g, 0, ) =

(G1)

and
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Using the latter, together with (H 1), in (5.11), yields

A ~ cot ~
o Jr(26)(x — ) — X (6) — 20,6
Mz’,ref(d)er Btr [Tt; w — K) = w—K .

(H2)

\/T(’JT/Z, ét, 6’,}) + C0t2¢9T(0,ét, (ATf)

If o is defined on (0, 7), there is no ambiguity in sign in (H 2). Equating zero the derivative of M with respect to
cot ¢, furnishes (5.13); substituting it back in (H 2) furnishes

Mot (ma( B, 1,0 = 10,81, 61,0 — i) = s (v = %) 1 (260) — Xa(8))

) o 1/2
(0 — 31 20) = X1 (61)) X3(8) (H3)

X — = =
T(w/2,6, o) (0 — K*T(0,6;, &)

Equation (5.12) is a variant of (H3) with 6; = 6% (61, w — ), the point(s) where the derivative of
Mz res (b ( 6, 61,0 — K), 6y, 61,0 — «) with respect to 6; vanish.

The integrands in (5.8) (that define X;(6;)) and (5.9) (that define X,(6;)) are positive throughout the
integration domain for any 6 < 0j,—o (the angle where [;(2 é,) =0, approx. 110°), and hence Xl(ét) and
X ( ét) change sign only at some 6, > 0j,—0. At the same time, the product (x; — Xyef) 1 (2 ét) changes sign
exactly at 6}, o, and hence (x; — xref)J1(2 é,) — X ( ét) changes sign earlier, at some ét<9h —o. It implies that
Mz ret (pp1 (6%, 01,0 — k), 6%, 61, 0 — k) is a positive maximum if 6% happens to be smaller than 6}, o,
where both (x; — x,0)]1(26%) — X1(6%) and X,(6*) are positive, and a negative minimum if 6* happens
to be sufficiently large to have the first one negative. Concurrently, the maximum is invariably
associated with ¢, >7/2, and, in most cases (where X»(6%) is still positive), the minimum is associated
with 0 < ¢y <7/2. The ‘+" and ‘~" modifiers with 6* will be naturally associated with maximum M

Z/ ref
and minimum M, ot of M yef, respectively.

Appendix I. Yellow-bellied sea snake

Graham ef al. [1] furnishes basic morphological data for seven yellow-bellied sea snakes, 50-70 cm long
(the binomial name of this snake has changed twice since this paper was published; it is now Hydrophis
platurus). An average snake has half-width s,=0.0145, surface (wet) area S, =0.08, and prismatic
coefficient k=0.44. The same paper also furnishes kinematic data (recapitulated in the first five
columns of table 2) for a 0.51 m snake at two swimming speeds, 0.15 and 0.32 ms~!, but does not
provide any additional information on the particular snake for which the data was collected. The
missing data were supplemented by assuming average values. The phase lag, ¢o, was guessed to be
larger than 90° (say, 120°) based on the general comment made in this reference that ...the keel flared
outward at maximal displacement...”. Drag coefficient of the snake at the two speeds was estimated
with D = S,Cy (Re)/2ms?, where Cf(Re) ~ 0.455(log,,Re) >*® is an empirical approximation for the
effective friction coefficient [11] and Re is the pertinent body-length-based Reynolds number; recall
that the drag was associated with the viscous constituent only. It was tacitly assumed that textured
skin of the snake renders the boundary layer turbulent. D and C; values in table 2 confirm the values
estimated in table 4 of [1]. Z,5_, and 2 were estimated with (5.3) assuming that thrust equals drag
and 6; = s;/z; = 0 (the estimate does not change when changing &; to 0.1). It practically recovers the
value reported in [1]—compare the 4th and 13th columns in table 2.

Table 2. Swimming parameters of a 0.51 m yellow-bellied sea snake. The bottom line of the table specifies the source of the
preceding two lines.

015 178 125019 0M STt 0067 7776 048 0107 0138
032 171 116 0121 012 4 120° 014 l64 64 0387

ref. [1] a guess
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Table 3. Coefficients ¢;, ¢, and ¢; that generate Zy, 6 and 5 with () 1).

function

) 1 2 0 2 3 0 1.2 22 0 2.5 3.5 0
6 1 2 0 1.2 2.2 0 2 3 0 2.5 3.5 0
3 12 0 12 12 0 12 12 0 12 12 0 12

Appendix J. Shape functions

To allow visualization of the pitching moment and the functions associated with it, one needs the shape
functions z(x) = io(x),%[], Bo(x) = Go(x) (5; L and 5(x) = s(x)/s;. All of them were generated by fitting ¢; >0,
;>0 and c; in

C—C3 X
0 —0

C1 —C3 ey
C2—C1

f(x; c1,02,03) =

J1

For any viable combination of c;, ¢; and c3, this function implicitly satisfies f(0; ¢y, ¢, c3) =0, f(1; ¢4, ¢z, c3) =1
and }(111} Of(x; c1,¢2,¢3)/0x = c3. The particular parameters of Zy and 6, (table 3) were chosen so as to have
the observations of Graham et al. [1] bracketed between the limiting cases (figure 4), and make
the respective derivatives z, and 0y vanish at the tail section. In all cases, the body outline was assumed
parabolic, with 5(x) = v/x.

Lungs of H. platurus occupy the entire body length up to the flattened tail section [19]. The length of

that section is approximately 11% body length (table 1 in [1]). Based on these observations, the reference
point for calculation of the pitching moment X, was chosen at 0.45 (body lengths from the cranial end).
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