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PREFACE

It is already well known that at the inlet edge of runner the high-
speed Francis-turbine has usually the coefficient of absolute velocity of the
entering water less than that of the low-speed one and consequently the
former may have the so-called degree of reaction greater than the latter.
But since a thorough study applicable for all reaction turbines seems to the
author to be still lacking, this paper is intended to give the characteristics
of these turbines, treating these as ** turbines with positive reaction head ™',
The positive value of reaction head is only one common property for all
sorts of reaction turbines.

The first chapter is intended as introduction to give the fundamental
equations and the definitions and to explain the process of study, The
relations between the degree of reaction, the coefficient of circumferential
velocity, those of the several velocities, the velocity angles, etc. are discussed
in general in the second chapter, and as the special case the discussion for
the state of normal exit is given in the third chapter. In the last chapter
the author has added the changing degree of reaction of a turbine regulated
by the speed governor, and has given a set of examples illustrating most of

computations which must be made before others in the design of reaction
turbines.

Jiro TANIDE.

Kyoto, January, Taisho 14.
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CHAPTER I. INTRODUCTION

SectioN 1. Water FLow THROUGH TurBINE annm.s

The sectional view on a meridian plane of a turbine fully filled with
the flowing water is illustrated in Fig. 1, and the velocity diagrams at the
inlet and outlet edges of the runner are given in Fig. 2. In Fig. 1 00 is
the head level, UU the under level, £1£: the guide channel, 12 the runner
channel, 34 the draft tube. Let /7 be the available head in metres which is

taken as the difference in level of water between 0O and U1 for an open
flume system, as shown in the figure, neglecting the velocity @, at the head
race., For an enclosed casing system, however, the available head may be
taken as the difference in level of water between the tank and the tail race

minus the resistance head in the penstock plus the head due to the
velocity of approach at the tank.

by @ the height of the centre of the guide inlet
Fy : that of the guide outlet ll

h : that of the inlet edge of the runner |

hy : that of the outlet edge of the runner F( %?;:;:::
Ky : that of the runner inlet

Iy : that of the runner outlet

ky : that of the inlet of the draft tube J

hi : the depth of the outlet of the draft tube under the level UU in
metres,




: the velocity of water at the guide inlet
: that at the guide outlet

: that at the inlet of the draft tube

: that at the outlet of the draft tube

: the absolute velocity of water at the inlet

: that at the outlet edge of the runner

: that at the runner inlet

: that at the runner outlet

: the relative velocity of water at the inlet

J. Taxior, Stupy or WATER REACTION-TURBINES

: that at the guide outlet

: that at the inlet edge of the runner
: that at the outlet edge of the runner
: that at the runner inlet

: that at the runner outlet

: that at the inlet of the draft tube

: that at the outlet of the draft tube

: the pressure of water at the guide inlet]

l above the atmospheric

- pressure in kgs. per
square metre,

|

edge of the runner

' in metres per second,

edge of the runner

: that at the outlet edge of the runner

: that at the runner inlet

: that at the runner outlet

: the circumferential velocity at the centre

of inlet edge of the runner

: that at the outlet edge of the runner
: that at the runner inlet
: that at the runner outlet

: the angle of w at the inlet edge of the runner, i.e. the angle

included by 2 and wu,

: that of w, at the outlet edge of the runner,
: the angle of © at the inlet edge of the runner, i.e. the angle

included by » and —u,

: that of v, at the outlet edge of the runmer.

Water Frow TimrouvcH TurBiNg CHANNELS 3

Other notations which are not denoted in these figures are
: the resistance coefficient in the passage between the head race and

the guide inlet for an open flume system or between the casing
entrance and the guide inlet for an enclosed casing system,

: that between the guide inlet and the guide outlet,

: that between the guide outlet and the inlet edge of the runner,

£, : that between the inlet edge and the inlet of the runner,

: that between the inlet and the outlet of the runner,

: that between the outlet and the outlet edge of the runner,

: that between the outlet edge of the runner and the inlet of the

draft tube,

: that between the inlet and the outlet of the draft tube,

: the heaviness of water in kgs. per cubic metre,
: the gravitic acceleration in metres per second per second.

If the water flows through all channels of a turbine in the state of

permanency, the following equations are established.

— gﬁ}l_’,!..t.?_n 1 = I
H--8,H = i +hy, assuming w,=0 (1)

28
2
w2 P w? P
. 1 f 8 4
__ZE_. ;;_}{— +h —§ H = %—‘g;‘+%i+kll (4)
;Ig"-— ;;'+%+”1“'eu H = '2):;'-— ;i;'_}_%z!_{"”’ (‘5)
- . _ o u | P 6
- 2;-1_&;“.-5, B = gt —tD+h (6)
L
et Bh—t H = 2+t (7)
1 w? F
_;;“l"%‘*'h: —& H = ‘E;““"'f“"hl where -;'-_- ‘ (8)
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If the sum of the left sides of the equations (1) to (8) is equated to
that of their right sides, the following equation is reduced.

= - W
”-(En+5u+E.+E|+5u+5:+5a+5¢)ﬁ = uf = t"f' a1

2¢ 2 2g
w,!
2¢ (9)

e

Put ¢ = Satfatlt8i+,a+84848
or § = §+&1&,
where §, = &,4,14&

: the resistance coefficient in the passage between the head
race and the inlet edge of the runner for an open flume
system or between the casing entrance and the inlet edge
of the runner for an enclosed casing system,

= §+8a+8, '

: the resistance coefficient in the passage between the inlet

and outlet edges of the runner,

4y
L

JI.
|

a= &18&
: the resistance coefficient in the passage between the outlet

edges of the runner and the outlet of the draft tube.
Then the equation (9) reduces to

e, .. L . S S T
H—fH—— = —_"3 .2 % | & % r
=t > T n (9)
The left side of the equation (9) may become the effective head.

Let » H : the effective head,

x :
then g H = H—gH- X
% 2
. 37 _E‘t
) S Ms N-a% } (10)
or 7 = (1l —&§ —&2

where 7 — the hydraulic efficiency
ke = the velocity coefficient of w, or w, — ky2eH
The equation (9) reduces to

Warer FLow THROUGH Tumsine CHANNELS 5

w—uy | vl—o? Wyt

VETH U R T 2eH ,
or 7 = (R—k®) (¢ ¢+ (g —@y")
where &k, Fy, ¢, ¢, ¢ and @y are the velocity coefficients of w, t,,
v, ¥y, # and u, respectively, in respect to H, thus we have

w = kV3gH, v — ¢V3gH, u — gVIeli.
wy=kV2H, v, = ¢,V2H, u,= g,V%H,
From the equation (7) and (8) we have

2 = L)

S TR )

The equaticn (12) gives the relation between the head due to the
back pressure at the outlet edge of the runner and the several heads in the
passage of the draft tube. In this equation

—? is the head due to the back pressure, and

(11)

(12)

hy may be called ** the principal effect of the draft tube”, which
means to utilize the suction head only, and

( ::—f— %':—E,,H) or (k! —k*—£,) H may be called ** the second-
ary effect of the draft tube.”

If (h'— k' ~£,) is positive, the head due to the back pressure
becomes less as (k,*—k2—£,) H than (—#y), and the potential head at
the outlet edge of runner becomes less as (k! —k?—54) H than zero,
or (fao/y+F)=—(k!—h2—-&) H. If (kg*—h?—&,) is negative, vice versa.
In these cases the draft tube has both effects.

If (k' —hk2—£,) is zero, the head due to the back pressure becomes
(—/), and the potential head at the outlet edge of the runner may be zero
or (pafr+hy)=0, which is the same as that of the turbines placed in the
tail race without the draft tube. TIn this case the draft tube has only the
principal effect.

TR N "
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Then we have

{.s...;., — —(ki#—hk2—&,)H for the turbines with draft tube. (13)
P2 hy=0 for the turbines with the draft tube neglecting

4 the secondary effect, and for the turbines
placed in the tail race without the draft tube. (14)

SectioN 2. Decree oF REACTION

The difference in potential heads between the inlet and outlet edges

of the runner
(B+n)~(Lr+h) o Py iy

is called *“ the reaction head.” The ratio of the reaction head to the
available head

p—ps | h—hy
v N

is called “ the degree of reaction " in respect to //. From the equations
(1), (2), (3), (7) and (8) we have

s T T T T T ' w! |
P h—h) = (—8)H+( 5 — G —&H )5 (19)
Put. T = (1-8&)+ (k' —h’ &) (16)
Then the equation (15) reduces to
-‘—"—‘;”—'~+(h—».) — TH—RH
P-Pl* _’L____jl _ “ K

where T =(1—§)+ (k' F#1—&)

Since for the turbines with the draft tube neglecting the secondary
effect and for the turbines placed in the tail race without the draft tube

Decree oF Reacrion.  Vevocrry-Corrricient Diacrams 7
(14) Pih=0 and  k—ki-g = 0,
the equatian (17) becomes
e P g S
where T = 1-§,
Let R : “the degree of reaction” in respect to H,
P—ps , h—h,
-y i~ Aty } (19)
or R =T —k where T = (1-§)+(k'—k2—5)

Now by the value of R the turbines fully filled with water are
classified as
if R>0o0r k< JT, reaction turbines,
if R=0o0r k= T, limit turbines or the limit case of reaction
turbines,

if R<0ork>.T, suction turbines (* Saugstrahlturbinen ”).*
Since in (19) T and A* are positive, R must be less than T when
R is positive, thus

0 < R<T for reaction turbines (20)
(20) is the condition under which reaction turbines may exist and this
is called “ the condition (20)".

SectioN 3. VerLocity-CoerriCIENT DIAGRAMS

The velocity coefficient is proportional to the magnitude of velocity
for a turbine, since the velocity coefficient =1/ 2¢gH % the magnitude of

velocity, where I is given for a turbine and 1/ 2gH is taken as constant.
If the velocity coefficient is given with the direction of the corresponding
velocity, the velocity coefficient may become a vector, its magnitude is
proportional to that of the corresponding velocity and its direction is
the same as that of the velocity.

1. see R. Thomann , Die Wasserturbinen u. Turbinenpumpen (1921), Seite 74,
Gleichung (49).
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A diagram drawn with the vectors of velocity coefficients is similar
with the corresponding velocity diagram and may be called “ the velocity
coefficient diagram.” For this reason, this diagram may be used in the
discussion of this paper instead of the velocity diagram. Fig. 3 and Fig.
4 show the velocity-coefficient diagrams at the inlet and outlet edges of the
runner respectively, which are similar with the corresponding velocity
diagrams in Fig. 2.

For a turbine with the normal exit the water discharges from the
runner in the normal direction and the absolute velocity has no tangential
component, as illustrated in Fig. 6. Fig. 6 shows the velocity-coefficient
diagram at the outlet edge of runner, in which «, is 7/2 and £y has no
tangential component. In this case some notations are written with the
suffix “ /,"" as k, and K, instead of F, and K, respectively. Fig. 5 shows
the velocity-coeflicient diagram at the inlet edge of runner corresponding
to that in Fig. 6, the point of diagram is indicated with K, instead of
K, as in Fig. 6.

SectioN 4. Types oF TURBINES

The water turbines are usually classified by the vane angle at the
runner inlet, which is not equal to the anlge of the relative velocity,
excepting the state of entrance without shock. In this paper, however,
3, the angle of the relative velocity v,is considered as the point of view
in the classification of turbines fully filled with water, as

the group I, turbines with 3 > =z/2

the group II, turbines with 3 = =/2

the group III, turbines with 3 < =/2
Besides water turbines may be classified by the value of ¢, the coefficient
of the circumferential velocity u at the inlet edge of runner, as

the case 1, turbines with ¢ < JT

the case 2, turbines with ¢ = JT
the case 3, turbines with ¢ > JT

A .. A T -

Tyres or Tursines

—— —— —
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By the combination of groups and cases nine types may be imagined as

- _c_au _l__ case 2 case J
group I |1ypel, ‘; zj’; type I, '; zf,j-f- type I ‘:, Zj’;*
group 11 |typell, ‘;; j/,:. type 11, ﬁu;_' j/‘lz' type ll.‘; ; ;[,i
group'HlFtypc m,‘; y j,f, type m,‘: o j/,f_ type m,g ;fj,f.

It is evident that there are no more types. Many turbines may
exist with the different values of 3 although ¢ is taken at one value in a
type, thus each type may include the numerous turbines of all sorts
(reaction, limit and suction turbines) with the various values of ¢ and
A. In order that these types are used to classify reaction turbines, it
1s important to determine whether every type is existent or non-existent
as reaction turbines. If all turbines in a type do not satisfy the condi-
tion (20) and are not existent as reaction turbines, this type does not
become a type of reaction turbines. If there are such types, these must
be eliminated from the types of reaction turbines, and others may remain
as the types of reaction turbines. 'This principle is applied to the discus-
sion of i) the general case in the chapter II and to that of ii) the
special case in the chapter III.

i) In general the degree of reaction “R" may become a function
of T,d, # and « or k,. k, is the velocity ceofficient of t,, the normal
component of the absolute velocity at the inlet edge of runner, and &, is
fixed by a certain value of a for the given values of ¢ and 3. « is taken
in the range between 0 and = for all types, # and ¢ are taken at the
arbitrary values within their ranges for every types, and T is given at
the reasonable value. Every type is inspected whether the value of “R"”
is positive or negative for all values of @ between 0 and #. In Fig. 7
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the velocity diagram OCK with «, & and ¢ is for Ist. turbine,
the velocity diagram OCK’ with «, K and ¢ is for 2nd. turbine,
the velocity diagram OCK'" with «", k" and ¢" is for 3rd. turbine
and so on. These diagrams have the common side OC or ¢, the com-
mon angle 3 and the points of diagram K, K’, K” on a line CK, thus
these turbines have the same values of 8 and @, but have the diiferent

values of @ corresponding to the position of the point of diagram.
These turbines may be included in a turbine series with the given values
of 3 and g, and every turbine must have the point of diagram on the line

CK, thus the line CK may be said to correspond to one turbine series if
A and @ are given. Butsince CK is a line determined by the arbitrary
values of 3 and @ within their ranges for a type, the line CK may be to
represent this type. If in a type the value of “R" is not positive at any
position of K, there are no reaction turbines existent, and this type may be
non-existent as reaction turbines.

i) In this case “R" becomes a function of T, @, 3, and « or &,
in which g, is the hydraulic efficiency in the state of normal exit. In Fig.

8 the line LL' is drawn parpendicular to OC at the distance @, from the
origin O, and this distance is determined by the values of 7, and ¢, as will
be seen in the chapter II1." For the given values of 3, and @, therefore,
the point of diagram K, is always on the line LL', and

the velocity diagram OCK with «, 3, k, & ¢ 1is for lst, turbine,
the velocity diagram OCK' with «, ¥, K, & ¢ is for 2nd. turbine,
the velocity diagram OCK" with «', ', k', & ¢ is for 3rd. turbine
and so on. The point K, takes one position for a value of « correspond-
ing to a turbine, and the line LL' may correspond to a turbine
series with the given values of 7, and @ in a type. But since LL' is
the line determined by the arbitrary values of 7 and ¢ within their
ranges for a type, the line LL' may be to represent this type. If a type
has not the positive value of *“ R” at any position of K;, no reaction turbines

may exist, and this type may be non-existent as reaction turbines.

1. see Camerer, Vorlesungen ueber Wasserkraftmaschinen, Seite 259-279.

CHARACTERISTICS OF ““R" poR “ka'’ AND CLASSIFICATION OF REACTION TuRBINES |1

CHAPTER 11.
GENERAL CHARACTERISTICS OF
REACTION TURBINES

SectioN 5. CHArAcTeRIsTICS OF “R” FOorR “h,” AND
CrassiFicaTioN oF REeactioN TURBINES

a) Equation of “R’

Fig. 9 and Fig. 10 illustrate respectively the velocity diagram and
the velocity-coefficient diagram at the inlet edge of the runner.
Let w, : the normal component of the absolute velocity w at the inlet
edge of the runner in metres per second,
k, : the velocity coefficient of w, referred to H,
u' : the tangential component of w in metres per second,
¢' : the velocity coefficient of ¥ referred to H,
u'" : the tangential component of 2 in metres per second,
@" : the velocity coefficient of "’ referred to H, then we have
w, =— W sina, u = w, clga, w'= w, ctgf,
or ky,= k sine, @ = k, ctga, @'= k, ctgf.
Then the equation (19) R = T —A* reduces to

ke (21
] sin'u +
In Fig. 10, g = g—g"
or ctga = -’;i-ctgﬂ
. %

then we have ctgla = e —Z—F—ctgﬂ-{»ctg‘,?
L L)
if 1 is added to both sides of the above equation, then we have

) |
m:,a & —’-'-;—-z—fictgﬁ-l-(l-l-ctg’ﬁ)
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then the equation (21) reduces to
R = T — g+ 2g ctgf)k,—(1 +ctgifk? (22)

(22) is the equation of “R" as a function of k,, B, ¢ and T. The value of
T is reasonably taken for every type, and # and @ are taken at the
arbitrary values in their ranges for every type. And since a turbine has one
value of &,, as mentioned in the chapter I, the values of R for all turbines of
every type may be determined by the equation (22). When the values of
T, @, and 3 are given, (22) becomes the equation of R for a turbine
series, and R becomes a function of &, only.

In general the value of T may be taken as about .92 to .96, except-
ing the special case in the type 1II;, and the value of g may be usually
taken at about .43" to .98* for Francis turbines, and above about .95 for
the modern axial flow turbines.

b) Inspection of Value of “R”

The equation (22) reduces to
R = T —{(g—ctgd k)'+kt) (23)
In the equation (23) '
((B—ctgd k) +hT) > 0 always.
To satisfy the condition (20) T >R>0, {(g—ctg3k,)+ k. } must be less
than T. Hence the condition (20) becomes
{'g—ctg? k) 4-k} < T  the condition (24)
The condition (24) must be satisfied for the existence of reaction
turbines.
For the group I, z>3>7/2 or 0>ctgi> —
the condition (24) reduces to

[{¢ Letg(z—f) - k.}’+k.’] <7 (24);

where 0<(z—f)<7/2, +=» >ctglx—F)>0
The type 1, 8 < VT or ¢'<T

— e S ———

1. see the example 14 and 15 in the chapter III,
1&2. see V. Gelpke, Turbinen u. Turbinenanlagen (1908), Seite 68,
J. Orten-Béving, Water turbine plant (1910), page 12.

CuaracTERISTICS OF “R" FOR “Au"' AND CLASSIFICATION OF REACTION T'URBINES 13
Since the values of k&, and 3 are selected so that the condition (24), may be
satisfied, I; may exist as the type of reaction turbines.

The type I;, ¢ = JT or g'= T and

The type I;, ¢ > VT org*> T

Since {@+ctg(r—f) - b} is larger than T, the condition (24), may not
be satisfied. Hence I, and T, do not exist as the types of reaction
turbines.

For the group 1I, 3==/2 or ctgi=0
the condition (24) reduces to

(B'+hY) < T (24)us
The type Il,, 8 < JT or ¢*<T
By taking the value of £, less than V(T —g?, the condition (24),, may
be satisfied. Hence II, may exist as the type of reaction turbines.
The type 1ly, @ = VT or ¢*= T
Since (g'+{-k,') becomes equal to (T +k?) which is larger than T, the
condition (24);; may not be satisfied. Hence II, does not exist as the
type of reaction turbines.
The type 11, 8 > VT or ¢>T
Since (@* k) =T, the condition (24);, mayv not be satisfied. Hence

II; does not exist as the type of reaction turbines.

For the group II1, 0<3<x/2 or = >ctgd 0.

Since the values of &, and 3 are easily selected so that {(g—crgd k)
+hk7} is small enough to satisfy the condition (24) in all cases: @
= VT, I, 111, and I1I, exist as the types of reaction turbines.

By the above inspection, there are no reaction turbines in the

types Iy, Iy, Iy and Il reaction turbines may exist in the types I,,
IT,, 111, 111, and III,, and accordingly reaction turbines are classified
into five types as




"
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| case | case 2 caie 3

‘ < JT g =JT ¢>JT
S::iip 1!12 type I, non-existent non-zxistent

Y - e
11 | : .

gg":P 12 type 1I, | non-—existent non-existent
group 111

— — — e ——

¢) Particular Values of “R" and “ A"

(22) R = T —¢*+ 20 ctg - ka—(1+4ctgid)k,?
If in (22) T, ¢ and 3 are given, the particular values of R may
be found.
i) 'The maximum value of R.
From the equation (22)

IR 28 ctgh—21+ gk,
dk,
d*R :
T —2(1+ctg¥?) negative,
cx O :
hence if —-J;—:l), R becomes maximum, then we have
Rpwx = T —9* sin®3, if k, = ¢ sin3 - cos? (25)

ii) The value of R for k,—=0.
From the equation (22)
R=T-¢, f =0 (26)
i) R = 0.
When R = 0, the equation (22) becomes
(14-ctg?d)kr—2g ctgd « by—(T —¢*) = 0,

then k, = ¢ sinf - cos? - sinfy T —¢* sin’?
hence we have
R=0, if k= ¢@sind.cosd L sin3yT —¢*sin’? (27)

CHARACTERISTICS OF “R" roR “ ks AND CLASSIFICATION OF REACTION TuRBINES 15

iv) The limit values of k, with the restriction of reaction.

R has one maximum value by (25) and becomes zero for two values of
kyin (27). In order that the value of R becomes positive, R, must be
positive and the value of k, must be taken in the range between two values
of &, in (27), which become the limit values of k,.

Let k.u' : the upper limit value of %, with the restriction of

reaction,
k.'"l : the lower limit,
then k‘u, = @sind cosd | sind\/ T —g* sin’3
k!, = Bsind cosf—singy T —g*sint

For 1, ¢ sin?-cosf < 0,

but ¢ sind: cosf = —sinf\/g'—@g%in%? and @'<T

hence k.“> 0.

FOI' lll:

Lo 4

for 111, 111, and m,} P sing) - cond == 0,
hence k.u':::- 0.

Then ky, = 0 always for five types.

For ]1 }¢ . ﬂ (}gﬁ 0

TN Rt B
hence k.'"'<: 0.

For 1II,, @sinj-cosf > 0,
but  @sind-cosf = +sindYg—g'sin?? and @' < T

hence k!, < 0.
For 1II,, ¢sinf cosd > 0,
but gt =T
h ik
ence k, . 0.
For 1II;, ¢ sinf cos? >0,
but ¢l S P
hence kiy > 0.
Then we have
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for 1,, II, and III,
for 111, } ;'“'g 0
for 11,

But since k, is always taken at the positive value, it is no need to
limit the value of &2, at k.'u' for the types I, II,, 111, and IIl;, Hence
we have

ki, = @sinf cosf{sinfy T —g* sin®3

k.'n':: ¢ sind cos3—sin?y/ T —g*sin??  for only ll!,}

For the types I,,II,, I1], and 111, the value of k, must be less
than k.“’, and for the type Il k, must be less than h.“' and greater
than %,/ with the restriction of reaction.

"
It

(28)

Secrion 6. ** A R" Curves
If T, @ and 3 are given, (22) becomes the equation of parabola
in respect to “k,"" and “R.” This parabola is called the “k,R” curve.

The equation (22) reduces to

cos3
R = (T*ﬁ’)+2*:;‘§*¢ by —

S1

l - b | !
g e (22)

Further the equation (22) reduces to
_[R-—(‘Z'_..gjisin!‘?j] - ‘Eif:fﬁ [k.—-;isin,’? cas,a]' (29)
From (29) we have
k, = ¢ sind - cosd | sin?(T —g@*sin¥d)— R (30)
In Fig. 11, the “A,R" curve is illustrated in a coordinates with
Ok, as the axis of abscissa and with OR as that of ordinate.
() : the vertex of curve or parabola,

MO’ : the symmetrical axis of curve, which is parailel to OR,
M : the intersection of MO' with the axis Ok,,
B : the intersection of curve with the axis Ok, in the right side of
MU,
U/ : the intersection of curve with the axis Ok, in the left side of
MO/
T : the intersection of curve with the axis OR.

“kaR" Curves 17
From the equation (30) we have
if R=0, kb, ,—= gsindcosf L sinhy/T —@*sin¥?, thus we have
OB = g@sinf cosfl + sin3\ T — @' sin’d — b,
OU = gsinf cosg — sinfy T —@* sin?7 — k.'ur for only 111, } (28)

UB = OB—OU
hence TB = 2 Biﬂgqu*ﬁ-‘ s_i_n’ﬂ ] (31)
UM=MB - sinf\yT —¢* sin’?

In the equation (22,
if k=10, R = (T —¢g?%, thus we have
OT = (T —¢" (26)
By the equation (25)
OM = gsinfcosp and MO — T —@sin®3 =R, (25)
If in the equation (25) the value of 7 is changed, the positions of
the vertex O’ and the intersection M may change.
For the group I, 3 > =/2, and @ sin3 - cos@< 0. Hence O and
M are situated in the negative side of k,.
For the group II, # — 7/2, and & sinf cosf = 0. Hence O’ and
M drop on the axis OR.
For the group I11, # < /2, and @ sind cosf > 0. Hence O and
M are situated in the positive side of &,.
If in the equation (26) the value of @ is changed, the position of the
intersection 7" may change.,
Forthecase 1, < VT, or T —¢*> 0. Hence T is situated in
the positive side of R,
For the case 2, g~ T, or T -g*== 0. Hence T coincides
with the origin O,
For the case 3,8> VT, or T -¢*< 0. Hence T is situated
in the negative side of R,
Fig. 12 to Fig. 20 illustrate the “k,R" curves for nine types.
Every curve has the proper characteristics with regard to the axes OR
and Ok,. For the sake of abbreviation, (UO'B), the portion of curve in
the positive side of R, is called “the symmetrical portion,”
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(O'U), the left half of the symmetrical portion, *‘the U-side,”

(O’B), the right half of the symmetrical portion, “the B-side,” and
the portion of curve in the positive side of R and &, “the R-portion.”
When the R-portion exists, the condition (20) is satisfied.

For the group I, the symmetrical axis MO’ is situated in the
negative side of k,. Hence the R-portion exists only in the case 1, and
accordingly the reaction turbines may exist only in the case 1.

Type §,, (Fig. 12). The R-portion is less than the B-side, and the sym-
metrical portion is largely lost in the positive side of &,.

Type I,, (Fig. 13). The R-portion is just lost, and the point B coincides
with the origin O.

Type I, (Fig. 14). The R-portion disappears, and the point B is apart
from the origin O in the left side. Since the types I, and I, have no
R-portions, these may not exist as the types of reaction turbines.

For the group 11, the symmetrical axis MO’ coincides with the axis
OR. Hence the R-portion exists only in the case 1, and accordingly the
reaction turbines may exist only in the case 1.

Type 11,, (Fig. 15). The R-portion becomes the B-side, and the point
M coincides with the origin O.

Type II,, (Fig. 16). The R-portion is just lost, and the vertex O’
coincides with the origin O.

Type 11y, (Fig 17). The R-portion disappears, and the vertex O’ falls
below the origin O along the axis OR Since the types I, and 1l have
no R-portions, these may not exist as the types of reaction turbines.

For the group IlI, the symmetrical axis MO’ is situated in the
positive side of k.. The R-portion exists in all cases, and accordingly

the the reaction turbines may exist in all cases.

Type I11,, (Fig. 18). The R-portion is less than the symmetrical portion:

and is greater than the B-side.

Type IIT,, (Fig. 19). The R-portion becomes just the symmetrical

portion, and the point U coincides with the origin O.
Type 111, (Fig. 20). The R-portion becomes the symmetrical portion,

“kaR" Cunves 19

and the point U is apart from the origin O in the right side. Since the
types I11,, I1I, and I1], have the R-portion, these may exist as the types
of reaction turbines.

According to the characteristics of the “kR” curve above
explained, it is also evident that the reaction turbines may exist in five
types I, II,, 111, III, and III,. '

... Further the ratio of the R-portion to the symmetrical portion is the

smallest for I, it increases step by step as in the order of 1,, II,, I11,, and
I11;, and it becomes unity for 111, and 111,

The example 1. The “k,R" curve for a turbine series in the
type I, with T - 93, g == .56 and 7 - 145°,
(25), ﬁf"_'"= MG — T —g*sin’3, if k“tam-:.: = OM = @sinj - cosf
MO’ = 93 (.56 xsin 145°)? == 827
OM — 56 sin 145° % cos 145° — — 263
(26), if khy= 0. Ry.H = OT = (T—gY
OT -~ 93-3136 — .616
(27), if R= 0, & ~ OB and OU

(ko)

o == @sind - cos? - siny/ T — g* sin'3

OB - .56 xsin 145" < cos 145°- sin 145y 93— (.56 > sin 145"

i —.20311+4-.52155=.258 = ko,

OU = —.26311—-.52155= —.785
(31), UM = MB-—singy T —gsin®d

- sin 1457 V.93 (.56 < sin 145°) — 522

Fig. 12 shows the *“‘A,R"” curve of this exar;;le'!. and the values

of k, and R at the particular points are denoted in the brackets.

r

The example 2. The “AR" curve for a turbine series in the
type [T, with T - 94, ¢ .640 and 3-90°.
(25), fi:.} = MO =T —g'sin®3, if b, — OM = gsinf - cosj
MO — 94—(.640<sin 90°)* — .53
OM  ~ 640 sin 90° ~ cos 90" = 0
(26), if Ak, = 0, Ry .oy = OT =T —¢*
OT — 94—(.640)* — .53

—

R —



:

— e -

20 1. Taxmg, Stuny oF WATER ReACTION-TURBINES

(27), ifR= 0, ko, = OB and OU
= @ sin Acosf + sin?y T —@*sin’3
OB — .640 % sin 90° X cos 90°+sin 90° V- 94—(.640 x sin 90°)*
= 0+yYSi =78 = &
OU= 0—V.5 = —.728
(31), UM=— MB - sin@{ T —¢*sin}
— sin90° % V.94—(.640 <sind0")* = .728
Fig. 15 shows the “k,R” curve of this example, and the values of k.

and R at the particular points are denoted in the brackets.

The example 3. The “kR" curve for a turbine series in the
type 111, with T — 95, ¢ — .80, and 3 = 40°.
(25), Ruu= MO' = T—g'sin®®, il b, = OM — ¢ sinf cosj
MO’ - 95 — (.8 sind(")* = 686
OM == .8 .64279 » 76604 = 394
(26), if hh=10, Ry o = OT=T —¢*
O = 85—(8ff = 3
(27), if R= 0, ky, ~— OB and OU -
— gsind corp - sindy T —g*sin®p
OB = .8 xsind0)” % cos40” +-sind0° 1/ 95— (.8 ~ 64279)°
= .39392+.53222 = 926 = k,."r
OU = .39392—.53222 = —.138
(31), UM = MB = sinfy T —@*sin’
— sind40” %1/ .95 —(.8 x sin40")? — 532
Fig. 18 shows the “k,R" curve of this example, and the values of %,
and R at the particular points are denoted in the brackets.

The example 4. The “k,R" curve for a turbine series in the
type 111, with T == .95, ¢ — 975 and 3 = 25",
(25), Rpw. = MO' = T —g@sind, if b, = OM =: ¢ sinfl cosf
MO = T cos® for T=¢
= .95x(.90631)* = .780
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OM = .975x.42262x 90631 = .373

(26), if b =0, Ro .. = OT =T —¢*
OT = 95—(975)'= .95—.95 = 0
(27), f R== 0, A"ﬂl:l) — OB and OU
= @ sinf cosd - ¢ sinf cosP, for ¢ = JT
OB = 2¢ sinf cosf — 2x.975 % .42262 % .90631=.747 — by,
oU = 0
(31), UM = MB = sinByT —g'sin? — @ sinf cosf for ¢g=yT

= 975 .42262% .90631—.373

Fig. 19 shows the “&,R" curve of this example, and the values of &,
and R at the particular points are denoted in the brackets.

The example 5. The “kA,R"” curve for a turbine series in the
type Ill;, with T= 96, ¢ = 1.6, and 3 = 12°

(25), Ruax. = MO =T —g'sin®3, if R ey = OM = ¢ sinf cosf3

MO = 96—(1.6%.20791)* = .849
OM = 1.63.20791x 97815 = .325

(26), if k= 0, Ro.p = OT = T —¢*
OT = 96—(1.6)* = —1.6
(27), if R= 0, hy, = OB and OU
= @ sind cos3 - sing\/ T —g?sin?3
OB = 1.6X20791x.97815+.20791 x /.96 —(1.6 % .20791)"

= .325387+.191609 = 517 = k,,
325387—.191609 = .134 = &,

— — r

(31), UM = MB = sinfy T —g* . sin3
= 20791 X V.96—(1.6 % .20791)* = .192

Fig. 20 shows the “/,R" curve of this example, and the values of &, and R
at the particular points are denoted in the brackets.

-
C
I
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Table 1 illustrates schematically the principal characteristics of
“k,R" curves for nine types,

Table 1 The Schedule, showing the RR" characleristics.
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SectioN 7. CHARACTERISTICS OF “R" FOR “a AND
CrassiFicaTioN oF REeactioN TURBINES

a) Equation of “R”

In Fig. 10
= ¢ tind
k= Pon(ath
then the equation (19) reduces to
- ., sin’3
R =Tt 'y

(32) is the equation of **R” as a function of ¢, #, g and T. 'The value of
T is reasonably taken for every type, and 3 and @ are taken at the
arbitrary values in their rages for every type. And since a turbine has
one value of a, as mentioned in the chapter I, the values of R for all
turbines of every type may be determined by the equation (32).

b) Inspection of Value of “R"

In the equation (32) R = T — ¢’si::(!:_'{9_ A)
sni
¢'si::(t;f A) > 0 always.
; 4t sin’3
To satisfy the condition (20) T > R > 0, ¢'sin‘(a A must be less
‘ sin®3
than T. Then (20) reduces to ¢’sin'(a B <7T.
But 0<p <m, 0< (@+f)<m and ¢ > 0,
or sind > 0, sin («+f) > 0.
Hence the above condition reduces again to
o BI:E:i 8) < JT the condition (33)

— AT -

il i il I
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The condition (33) must be satisfied for the existence of reaction
turbines.

For the group I, #>f>=/2
Since#/2 < § < =, 7/2 < (a+p) < mand § < («+{f), sinf > sin(a+ f)

sinfd
> sin(a--3)

Hence

The type I,, ¢ << /T. The values of « and 3 are selected so that

the condltion (33) may be satisfied.

The type I, ¢ = VT,

The type I, ¢ > VT,
For the group II, @ = =/2

The condition (33) becomes

} The condition (33) is not satisfied.

| 5 . '
¢ﬁ& < JT the condiction  (33),,

where 0 > . - ~ 3

Cosa

9

The type II,,6<< /T. By taking the value of « less than cos™' JT

the condition (33) may be satisfied,

The type 11,6 = VT,

The type Il 8 > JT. } The condition (33) is not satisfied.
For the group III, B < n/2
Since the values of « and 3 are ecasily selected so that

sinf?

' Sin(at )

the condition (33) mav be satisfied for the types III,, III, and III,.
Thus is again proved the principle of Section 5, b) that the

reaction turbines may exist in five types I,, II,, III,, I11, and III,, and

are classified into these five,

CHARACTERISTICS OF ' R™ ror “a'' aAxp CrassiFication oF Reaction Tursines 25

¢) Limit Value of “(®+[3)” with Restriction of Reaction

(32) | R =T —¢'-

Ifin(32) R =0, sin¥a+j) = .E' sin®3 or sin («4f8) = —}‘,—r sinf,

whr -J—E,E. sivf < |, since 0 < sin(e+f) < 1

Let (3): the value of («43) when R = 0,
then from the above equation
- nat i R
(3) = sin{-Fzsind) (34)

There are two roots of (3) for 0 < («43) <=
Let  (3) : the root of (3) less than /2 and
(3,": another root greater than =/2.

If (3)'< (a+3) < (8)",

b5 B . sind \ .
-~ TR JT taken
sin(e+ ) > T sin or JT > ¢sm(ﬂ L A) since aswpositi :c.
. sin%3
e Fssin’(ﬂlﬁ*}- 3)
Then we have P RT T

which is the condition (20).  Hence (20) becomes
B < (a+p) < () the condition (33).

The conditien (35) must be satisfied for the existence of reaction turbines.
And ()’ and (3)"” may become respectively the lower and upper limits
of (2-4-f) with the restriction of reaction.

Further from the condition (35) we have

f < (B)” and @ 35 (B)" for the reaction turbines (35)'

The tables 2, 3 and 4 show the values of (3)' and (3)" compared
to A for all types.

b = N = Sl

B — e
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TasLe 2. Group I, =n/2<f<=
types sin(3) ) (B3)
I, <vT | sin(@ <sind | (3<f but (3/<(=—-4) | (B">3
I, ¢=vT | sin(3)=singd | (3 <@ but (:9)'=(==-_-1;J By ="
b $> T | sin(®)>sind | (Bf<B but (/>G4 | (@)'< Fa
Tase 3, Group 11, B=n/2
types sin(7) (3) (3"
I g<JT | sin(3) <1 B3 < =/2° B3> =n/2
I, g=vT | sin(@) = B=B8==2 | @y=f=n2"
wosvr| B0 l
TasLe 4. Group IIl, 0<p<=/2
types sin(3) (B (B)"
L g< T | sin(3) < sinf (ﬁf::ﬁ I(ﬁf';»ﬂ but (3)">(x—8)
g~ vT | sin(3)=sinf | (B =B (B)">F but (3)"=(=—f)
;> VT | sin(@) >sind | (3) >3 | (3)">F but (B)"<(z—p)

1. 2. and 3. By the conditon (35)' these cases are not allowable for the
reaction turbines.
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d) Limit Values of “x" with Restriction of Reaction

The condition (35) is written as |
B8 <a<(@'-4 (35)
(35) gives the range of « with the restriction of reaction. By the
tables 2, 3 and 4, it is observed that

< for 1, 1J;, and III,
[y -3] = 0 for 1,

> for 111,
and [(ﬁj"—ﬁ] > 0 for five types.
t

Bu
Hence (35) becomes as

0 < a < (3)"— 3 for 1;, 11,, 111, and IlI,
B —3 < a< (@3)'—23 for 1]

Let « : the upper limit value

D<a<rw

' : the lower limit value

r

} of « restricted by the reaction,

then we have
a, = @8 }

36
uur = (@) —3 for only lll; (36)

For the types 1,, 11;, 111, and I1J, the value of @ must be less than
a5 and for the type 111, this must be less than o, and greater than a“'r.

Fig. 21 to Fig. 25 illustrate the mutual relation of T, @, 3, (3)', (3)"
and . for five types. In these figures “‘the /T -circle” has Tas
radius and has the point O as centre. The diagram OCA is the velocity
diagram at the inlet edge of the runner in the limit of reaction or in R=0.
In this limit OA= v T. And if the angle of absolute velocity is greater
than the angle COA, the absolute velocity may become greater than v T .
Hence the upper limit of a is the angle COA, or ., = ZCOA.

Now the line €A is prolonged and intersected with the
JT- circle at the point B. And the lines AD and BE are drawn
parallel to OC. Then we have

ZOAD = ~COA = e and ~ZDAF = £OCA =3,

— e e ———— i —

- - e
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ZOAF = £OAD+£DAF = a +§ buta, +8 = (3" by (3)
hence ZLOAF = (3).
ZOAC = 7—£O0A4F = z—(3)", but z—(@" = (3
hence ZLOAC = (5.
£ZOBA = £OAC = (B) and £ABE = ~0CA = §,
ZOBE = ZABE—~ABO = - (3y
For only the type 11I; OCB becomes also the velocity diagram at

“the limit : R=0, but this is the lower limit. Since the lower limit of «

is the angle COB, we have ZOBE = ~COB = o .

n,

e) Maximum Value of “R”

. e e ANE
(32) R=T-F e
If in (32) T, @ and 3 are given,
i’g & ?aind 9‘”(“+ﬁ)
> e 2 sia'p sin®(«+-f3)
d*R . goSin¥u+ )+ 3 cosu | .
“J(;l =3 -*—2¢’ ﬂlﬂ!t? % il)'l'{ﬂ"’ ‘9, ) ﬂj negnll\'e.

‘ 3 .. 4R cos(e+f) :
Hence R becomes maximum, if T - 0 or s atp) — 0, in
which the denominator is taken at the finite value.

Then we have

Rune,. = T—@'sin®3, if (a1f) = z/2 (37)

f) Values of “R” for o 0 and - =/2

Let R0y ¢ the value of R when « — (),
R . g ¢ the value of R when « — =/2,

then from the equation (32) we have

R{::ﬁ) =T __¢1 (38)
Ry.5 = T — ¢t (39)

(38) corresponds to (26), which is the equation of R for k, 0.

From the condition (35) we have
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“for R> 0, (@ < («4p) < @)
for R = 0, (atf) = (3) and (a+B) = (3)" (40)
for R < 0, (e+) < (B) and (a+3) > (3)"
i) relation between the sign of R, and /3
For the case 1, g< VT, T —¢* > 0.
Reyeny=>0,  from (38).
B <pf < @, from (40) and for a = 0.
For the case 2, ¢ = VT, T—¢* = 0.
Ra:0p = 0, from (38).
B =4 and 3 = (3)”, from (40) and for « = 0.
The latter value of 7 is not applicable for the reaction turbines by the
condition (33)'.
For the case 3, ¢ > VT, T —¢'<0.
R < 0, from (38).

B <(8) and 3 > (3)", from (40) and for @ = 0.
The latter value of 3 is not applicable for the reaction turbines by the
condition (35)'.

i) The relation between the sign of R, .5 and

Generally 0 < (a+p) < =
But since #>=/2 for the group I and 3==/2 for the group II, (a==/2)
does not occur for the groups I and II. Hence this item is considered
only for the group III.

The group 111, 8 < =/2
For R>0 the condition (35) or (40) reduces to

@) < (/2+8) < (B where (3 < =/2
Further the aboves reduce to

z/2 < (B)'—B or =/2 > (B)4P8 (41)
But (3)+8 = {(3) —3}+23. Then (41) becomes
= (3-8
G (42)

For R = 0, (40) reduces to
B) = (=/2+8) and (7/243) = (3)", where (3 < =z/2
Further the aboves reduce to
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2 .7 N !
z/2 = (B)"—B or(ﬁ):rlzﬁ (B)+8 (43) = h: )
. = o . | L v |
B w et (44) m*-.-“;':-i;. g T8 |0
For R<0, (40) reduces to g .2 = ml;q- & | ke | & e | &
(=/2+8) < (By and (3)" < (x/2+P), where (3)<n/2 - AR
Further the aboves reduce to ’
2> @)= or =2 < (B/+8 (45) A e 1 Sl Ball R KO
= ()-8 5 e L 10| .A
B> T - (46) % o R | | X @ 18| 9 |
o |
The tables 5, 6 and 7 show the relations between the sign of N ;!; | "fll | fils. T_‘ '
i p— . " B [ ol < T G :_._~N _;hN = 1.4 10
R and 3, when @ = ( and « n/2 T Y e S8 ® = “ & D
T b . | |
TasLe 5. Group 1, =/2<f<= " | e g | whe [ L N | e L
> + & Y/ f A
a = () V S & e — =
| ™ <
(wtB) = 7 v % o )
Ry.p =T —¢ . ol i .
— —_— o> > | . +
case | case 2 case J "i o | i E
¢ < JT ¢ = JT g > JT | 3 e t;T:;; e
@0 @)= @-a<o } < Wi n v
@ria<m |Gy +a = | @48 > . LR of N
| — 155 8" | :-:u ;-.. |
' R @® | R=0 R © | 2 ¥ | > =
| P‘ b 4
| TAT.E_G: Group II, p=r/2. 1 : t;; nf:}_ f\é 0 |
‘ &2 == 0 g A "‘I j- 1
BRLE T
| (a4 ﬁ) . ﬁ= =2 | % | ~ | |
Ra:oy = T—¢° I S B |
g a® WU capb| v b | I |e
case | case 2 ‘ case 3 i & R “I" ?: |
| | TR ¢ § I By B RG
g < JT g = JT ¢ > JT e Mo « 3 &
@ <=2 | @Gy=w2" | @G> a2 L SR e
AR R R R P ol Rl
R @ R=0 | R © Voo U
| | a3 &

1. These cases do not occur in reaction turbines by the condition (35)".
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Section 8. aR CURvEs

sin®3
T—R = et

If T,¢ and 3 are given, (32) may become the equation of curve in the
coordinates with Ou as the axis of abscissa and with OR as that of ordinate.
This curve is called the “aR” curve. To plot the “aR” curve the

The equation (32)

auxiliary curves may be used which are
the auxiliary curve (1) y = siny’, a sine curve,
where o' = (24 )

the auxiliary curve (1) 9= 57, a parabola with 1 as
parameter,
the auxiliary curve (iii) A"y = @'sin?d  a rectan
hyperbola,
the auxiliary curve (iv) y' = @¢*sin’d iy -
M |
The equation of (iV) becomes y = ¢ m;;:i %

and by the equation (32) we have 3 = T —R. Hence the auxiliary
curve (iv) may become the (2473) (T —R) curve.
In Fig. 26 there are five rectangular coordinates, and
the auxiliary curve (i) is plotted in the coordinates (', "),
in the coordinates (x", »"),
in the coordinates (1", ¥'),
in the coordinates (x',3),
in the coordinates («, R).

the auxiliary aurve (1) ,, ,,
the auxiliary aurve (iit) ,, o
the auxiliary aurve (1v) ,, =
and the “aR” curve ,,

For the sake of abbreviation, the auxiliary curves (i), (i), (iii) and
(iv) are called the curves (i), (i), (iii) and (iv) respectively and the coor-
dinates (x', %), (x",y"), (", ') and (', y’) are called (i), (u), (1ii)
and (iV) respectively. The axes of abscissas of (i) and (i) are taken at
a straigth line O,0., and those of (iii) and (iv) at a straight line Oy,Oy,.
The axes of ordinates of (i) and (iV) are taken at a straight line OOy,
and those of (ii) and (iii) at a straight line OuOy-
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In (i), y' = sinx’ or y" = sin(a}pf)

A point P, has (2 ) as the abscissa and
sin («--3) as the ordinate.

In (ii), »"*=x",and a point P, has the same ordinate as '

Hence P, has sin¥{«{4) as the abscissa and
sin («-49) as the ordinate.

sin%3
xﬂ'

In (iii),

A"y = g*sinl3 or Yy = ¢
P, has the same abscissa as P,.

Hence P, has sin® (x| 3) as the abscissa and

- |
¢‘si;1§:(%§ A as the ordinate,

, and a point

- . 1 .
In (iv) 3 = ¢#'sin?3 Sini and a point P has the same

abscissa as P, and has the same ordinate as P,.
Hence P has («-| ) as the abscissa and
sin?,
5in ’-(E%ﬁ or (T —-R) as the ordinate.
A straight line OB is drawn parallel to the axis O’ at the distance of T :
and let a point P’ be the intersection of P,P with OB.
Then PP = T g S0P
t-¢ sin? (a--3)
= R, by the equation (32).
The *“ aR” curve.

In the coordinates (#,R) the line OB is taken as the axis of abscissa
and the axis OR is drawn parallel to Oy’ at the distance 3, but OR is in
the opposite direction against Oy’.

Then a point P may have @ as the abscissa and

R as the ordinate,
Other points are similarly plotted, and a curve is determined, then this
curve (iv) may become the “aR’ curve in the coordinates (a,R).

Fig. 27 to Fig. 35 illustrate the “aR” curves for nine types. The
characteristics of the “aR” curve in these figures are similar as that of the




mm.‘- — el e T il NG, R G A —— =

34 J. Taxipg, Stroy oF WATER ReacTioN-TURBINES

“k,R” curves, The “R-portion” disappears in the “aR" curves of the
types Iy, 1y, 1]; and 1]y, hence no reaction turbines exist in these types.
Since the “R-portion” appears in five types I,, II,, III,, I1], and IIly,
the reaction turbines may exist in these types. Further the particular
points with regard to «, 7 and R are denoted with the notations (3)’,

(3), (T —¢%), (T —¢*1g%3) etc, in these figures.

The example 6. The “«R" curve of a turbine series in the type
I, with T =.93, §=—.56 and 3= 145", which are taken at the same values
as those of the example 1.

(34), (@) = sin“'( ff sinﬁ)

(3 — sin- '5“;;‘377353) ~ sinl33307 — 19°27.3

(@)= 7—(3) = 180°—19°27.3 = 160°32.7"
(37), Ryus. = T —9¢'sin’3, if (atp3) = =/2
&= X)2—P = 90°—145° = —B5°
Ruyox,. = T —9*sin®3 — 827 by the example 1.
(38), f «=0, Rgp = T—¢"
Ry.,= T —@*= .616 by the example 1.
(40), if R = 0, («+3) = () or ay.y— (3)"—A and (3)—7

OB = (B)"—3 = 160°32.7 —145° = 15°32,7 = ¢,
OU = (B —p = 19°27.3 —145° = —125°32.7'
Fig. 27 shows the “«R" curve of this example, and the values of R

I

and a at the particular points are denoted in the brackets.

The example 7. The “aR” curve of a turbine series in the type 11,
with T = .94, @ =—.640 and [ = 90°, which are taken at the same values
as those of the example 2.

(34), (@ = sin"‘( ﬁr sinﬂ) = gin"t j’T’ for sinf# = 1

(B = sin™Y{ ) = sin~'.66043 = 41°20'

96954
B)'= =—(f) = 180°—41°20' = 138°40"

640
)

il . =
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(37), if (@+f) ==x/2, Rype. = T —@*sin’d = T —¢*, for sinf = |
Rpmazy = T/2—F = 90°—90° = 0
Ruyss. = T —¢' = .53, by the example 2.
(38), if a=0, Rg,)=T —¢*
R(.:.).-_-' T ‘“ﬁ' —_ Rlll’l..= _-._?:._3 as the lhﬂve
(40), f R =0, (a+8) = (B) or aw.p= (3)"—73 and (3) -3
OB = (3)"—f = 138°40/—90° — 48°40' = «,
OU= (B) —f = 41°20/ —90° = —48°40/
Fig. 30 shows the “aR” curve of this example, and the values of R and «
at the particular points are denoted in the brackets.

The example 8. The “aR" curve of a turbine series in the type

I, with T=.95, ¢=.80 and #=40°, which are taken at the same
values as those of the example 3.

(34), (@) = sin“(jﬁf sinﬁ)

- a3 X . -
(3) = sin” q,?Tﬁfg) = sin~! 52759 = 31°50.5

B)'==—() = 180°— 31°50.5' = 148°0.5'
(37), if («+B) ==/2, Ry = T —g@'sin}3

Uypmary = T2 —3 = W' —40° = §£‘|‘:

Ruw. =T —¢* sinl@ = 686 by the example 3,
(38), if a=0, Ry, = T —9¢"

Rig.p= T —¢*= ,31 by the exampje 3.

(40) if R =0, (@+p) = (A or ag,n=(3)"—f and (3Y—3
OB = (3)"—f = 148°9.5 —40° = 10895 =
OU = (By —8 = 31°50.5'—40° = —8&9.5'
Fig. 33 shows the “aR" curve of this example, and the values of R and «
at the particular points are denoted in the brackets.

The eaxmple 9. The “aR” curve of a turbine series in the type

[l with T =.95, $=.975 and 3=25", which are taken at the same
values as those of the example 4.
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(34), @) = sin"( f‘&' sinﬂ) = gin~* sinf = B, for g = 4T

@ =4 =25
(B = 7—(B) = 180°—25° = 155"
(37), if («tB).= %/2, Ruwe = T—¢* sin*@ = T cas®3, for T =¢
Bpmay = X[2— B = W —25"=65
R, = Tcos®3 = 780 by the example 4.
G, H a = R s TP
Reio=T—8"= 0
(40), if R=0, («¢4+B3) = (3) or ag.o = (3)"—8 and (y—7
OB = (8)'—p = 155°=25" = 130'= @,

OU = By —p = 25°—25° = @

Fig. 34 shows the “aR"" curve of this example, and the values of R and «
at the particular points are denoted in the brackets.

The example 10. The “aR" curve of a turbine series in the type
I, with T =.96,8— 1.6 and 3=12°, which are taken at the same values
as those of the example 5.

(34), (A = sin"(%siﬂﬁ)

3) = sin"(l'ﬁ;;;i:::gl) = sin~1.33951 = 19°50.%'

(A)'= =—(3) = 180°—-19°50.8' = 160°9.2
(37), if (a+83) = /2, Ry = T —@*sin?3
Cpay = Rf2—f =90"—12" = 78
Rux — T—¢*" sin%d = 850 by the example 5.
(38), if «=0, Ry.p=T —¢*
Ra.9p = T—¢* = —1.6 by the example 5.
(40), if R =0, («{p) = (B) or ag.e= (B)"—f and (B)—§
OB = (8)"—8 = 160°0.2—12° = 148°9.0' = «,_
OU = (B) —8 = 19°50.8'—12° = 7°50.8' = o,
Fig. 35 shows the “aR" curve of this example, and the values of R and «
at the particular points are denoted in the brackets.

“aR"” Curves 37

The table 8 illustrates schematically the principal characteristics
of the “aR” curves for nine types.

Iﬂe 8 The Schedule, Showing the SR ok;o&;nm-s.
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CHAPTER L
CHARACTERISTICS OF REACTION
TURBINES WITH NORMAL EXIT

SgerioN 9. RevaTion BETWEEN “a’ AnD “B
iN State oF NormaL Exit

The equation (11) reduces to
12 - COSE—y + Wy~ COtty = 58 H (47)
(47) is the well known fundamental equation of water turbines.
Let # be the hydraulic efficiency of a turbine with the normal exit,

then for the turbines with the normal exit (47) reduces to

uw cose = p g H, since ay==x/2

Ul (43)

or ¢ k cosa = >

Fig. 36 shows the velocity diagrams in the state of normal exit.

In the diagram at the inlet edge of runner

¢  sin(atp) (49)

— —
_—

k sinfi

If k is eliminated from the equation (48) and (49), we have

= [h& o 50
8 = B N1+5 (50)
(50) is the equation of @ as a function of @, # and ;. (50) becomes
- _2..2'_ i 51

tge = ( . ) te (51)

The equation (51) may give the relation between « and j for

the turbines with normal exit.

ReraTion Berween “a" & “P“ AND, CLassIFICATION OF REAC- 39
110N Tumrsines By VaLve oF ‘' ¢ v Stare or NormaL Exir

SecrioN 10. CurassiFicaTioON oF ReacTioN TURBINES
BY VALUE oF “¢" IN STaTE oF NormaL ExiT

The reaction turbines are usually classified by the value of 3. For
the turbines with the normal exit this classification may become as that by
the value of @ with regard to ;.

If in the equation (48) @ k cosa = ‘3-’

« is equall to =/2, the hydraulic efficiency may become 0, and if « is
greater than /2, ¢ may change the direction. Hence a << z/2 for the

turbines with normal exit,

- 3
In the equation (50) ¢ — /% / 1+

gl <B€ny 0<(e4p) < =

or cosa > (), sing > 0, sin(fa-3) > 0.
sin(a 4 3) sin(«{j3) tgn
' L o - =
e sin,? cosa = e sinj cosa = tgd’
tpu
henc o= T

If in the equation (50) #, is given, the value of ¢ may change as 3

changes, as

For the = W tga ~/',T‘ “
group I, 2 = A<= 1tga<0, el <0, @<y
For the T tga o |
group 11, fg =2 ‘E tgﬂ el t-ég | ¢ - Q/% ‘-' (52)
For the 0<f< &, 98>0 B2 _ o ¢}~/'_ﬂ,

L 2’ Lo~ e 2 |

group 11




—

sd |

case 1 | case 2 case 3
—_ s l
type I, ] type I, type Iy
1 [
group @>¢<JT¢%?¢:JT@}¢)JT
g > =2 low speed | impossible impossible
: - ey g
t}vpcr]h type II. type Ill
IT |
ol g vt R g =T E =g > T
g = =2 impossible impossible
type lm. - type I1J, type 111,
111 T | %,
gt ,/-E-* {ﬁﬂ‘:JT@J—?d¢:JT »< g >JT
| )
| B < w2 L_»____I__,high speed
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(52) is also well known, which gives the relation between @ and , for the
turbines with the normal exit.
From the equations (16) and (10)

for the normal exit T = (1—=§)+ (k2 —k2-5) (53)
and y, = 16—k} (54)
or g, = 1—(&+ &, 18,)—R}

then y, = T—(&,1&") (55)

where the suffix “ /" is used to
indicate the values of some no-

tations for the normal exit.
Hence 3 < T and .g.! < JT always (56)

The following table gives the values of “@" compared with v/3/2
and T for nine types.

In the above table the values of ‘@' are not rational for the types
Iy, Iy, I, and II,, and accordingly there are no turbines existent in
these types. For this reason, the reaction turbines with the normal exit

Lr. VaLues oF “a", “§" anp “&" witn Rest. oF Reac, 1 State or Nor. Exit. 4]

may also be classified into five types Iy, 11, 111, I11; and Il by the value
of “@", as by the restriction of reaction in the general case. This is of
course necessary, since the turbines with the normal exit are included in
every type of the general case.

The example 11.  The values of @ for nine types in the normal exit
with T = 94 md n= 82.
JT = V04 = 96954 or .97 say

,/12-' = /41 = .64031 or .64 say
The values of ¢ for nine types are given in the following table.

case | case 2 case J
T: "! ]I
group 1 g < 64 | 64 >9 =97 .64 >9¢ >.57
- impossible ___impossible |
| 11, 'l Ik 11,
~ group 1l ¢ = 64 |64 =¢=97|.64 =¢ > .97
| VA impossible impossible
111, .| I 111,
‘ group 111 | 64 < ¢ < .97 ¢ = .97 ¢ > 97
|

£l i

Secrion 11. Limit VaLues oF “o”, “B" AND “&,"” wiTH
RESTRICTION OF REACTION IN STATE
ofF NormaL ExiT

a) Limit Values of “o”

The equation (48) becomes

cosa = zg‘k (57)

where « is taken at (0 to =/2) for the normal exit,

If in (57) ¢ and ¥, are given, @ may increase according as k in-

creases. For the restriction of reaction, however, k can not increase with-

out limit. Since the limit value of k is /T, @ may have also the limit
value, which corresponds to & T.
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Let @, : the limit value of « restricted by the reaction in the state
of normal exit.
then (57) reduces to
ol SR
. NP
sindy = " JT (59)
_ VAT ¢'—y/'
tga, = " } (60)
o < oy

The value of « must be less than #, for the restriction of reaction
in the state of normal exit.

b) Limit Values of “f"

Let j3,, : the value of 3 corresponding to a,,

then (5]) becomes tgﬁu = ?ﬁ%-;l tg"'u
the above reduces to
fo T ¢l; . 3
tgﬁn -~ 2¢:_?:z‘

« must be less than #, by the restriction of reaction, and 7 must
hold the relation of

(51) tgf = Zﬁ_j__’-m tga
against a.
For the group I, ﬁ>—§. @< -g-' by (52)
then iEii’-iv;, < 0in (51)

According as a decreases, tga decreases, tgf increases and 3 increases.
In order that a is less than &, # must be larger than 8. Hence f, may
become the limit value of .

Lr. VALUES oF ““a”, “B" anD “ky"' witn Rest. or Reac. 1N State oF Nor. Exit. 43

For the group III, ﬂ<-—;;, ¢>~[-_g-: by (52)

then — 2 _ ~ 0 in (51)

According as @ decreases, also # decreases. In order that a is less than

a,, B must also be less than 3. Hence B, may be the limit value of 3.
For these reasons, 3, may become the limit for both groups, 1. e.

the lower or upper limit for the group I or III.

‘r 3 _ol
tgfy = Y“zﬁf_ 2
T (61)
A > B, for the group I,
g < B, for the group III.

The example 12. The limit values of @ and 3 for the type I11,.
In this case, ¢*=T, 3 < =/2, tgf > 0.

: _ ViTe—3' _ VaT'—3' _ 2T+
(bl) tgﬂll - 2¢I__,?‘ o T - s "/27.'—-7;
_ ViTg'—z VAT —y! (21‘ 2T 4%
t = - L — == -'-""'-—1 R
(60) gy, ) 7 N 2T —,
lf 7.'-:*-.95 and ’2‘2-821
 [i9F®
th = Nig—g2 — 225
By = S7T47
B e sy = 1 200
7‘ -4'
tga, — 1.30244 % tgh, = 1.30244 158698 = 2.06695
iy = 64',26'

For check, «, = (ﬁ}"—'ﬁu = ’T*‘(ﬁ)’_ﬁh - ﬂ'_zﬁlt

for (8) = @ in the type IlI,.

a, = 180°—=2x57°47 = 64°2¢'

L
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¢) Limit Values of “k."

In Fig. 36. k, = k sina
by the equation (48) the above reduces to
g
k. 26 tga (62)

Ifin (62) @ and y, are given, k, may decrease according as «
decreases. Inorder that @ may be less than «,, k, must be also less than
the particular value of k,, which corresponds to @,. Hence this value
may become the limit of k,, which is denoted with the notation “&, ".

In the limit, (62) becomes

k‘u - _2%' L8y,

by the equation (60) the above reduces to
ik
k, <

T_
e ﬁ,“

-
ig° } (63)

SectioN 12. GrapHIcAL SoLuTioN oF LimiT VALUES oF
“o" AND “B"" wiTH RESTRICTION OF REACTION
IN STATE oF NorMmAL ExiT

Fig. 37 shows the velocity diagrams in the state of normal exit,
Let ¢/ :
¢ : the circumferential component of ¢,

the circumferential component of &,

= g—g/
then . ky = @/ tga, k, = 8" tgfi = (3—9/) - tgh,
hence -%—1 = ::; (64)
o A
But (51) tga — ( 3 l)tgﬂ

GraruICAL SoLvTioN of Limit VALues or “‘a" anp “B" 45

hence we have

oo
g/ = -2’-¢— (65)

If in (65) @ and 7, are given, ¢/ may be fixed.

In Fig. 38 aline LL' is drawn parallel to the axis Ok, at the distance
@/, and LL’ may intersect with the /T -circle at the point L and with
the axis Og at the point L’. OCK, is the velocity diagram at the inlet
edge of runner for a turbine, and OCK, is that for another turbine
which has g and #, at the same values as those of the former in the state
of normal exit. However the velocity angles and the velocity coeficients
of the second turbine may be different from those of the first, i. e.
for the first turbine for the second turbine

“, ﬁl k ﬂnd ¢ ﬂ', f'?, kK and 9”' }

But the circumferential component of &’ becomes equal to that of
k,because ¢ and 3, are taken at the same values for hoth turbines. Hence
the point K, of the second turbine may drop on the line LL', in which the
point K, of the first is situated. In the state of normal exit a lot of turbines
with the same values of ¢ and 7, but with the various values of «, 3, k,
and ¢ may be imagined. For the similar reason as the second turbine, all
points of these turbines may drop on the line ZL'." And a turbine series
with the same values of @ and 7 may consist of these turbines.

According as the value of « increases, the point K, may approach to
the intersection L along the line ZL’ and the value of k may increase. For
the restriction of reaction, however, « can not increases without limit, and
the valuc of % is limited at /7. Hence « has also the limit value, when k
becomes o/ T. In the limit the point K, coincides with the intersection
L, and the diagram becomes OCL which corresponds to the limit turbines.
Then we have

VOCL = the velocity diagram of the limit turbine,
ZCOL = a,
ZOCL = 3,

In the velocity diagram OCL,

and

1. see Camerer, Vorlesungen iiber Wasserkraftmaschinen, (1914), seite 259-279.

R ——
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L TS S
UL T VT Wt

which is the same as the equation (38).

UE = GE—GE == ¢——¢" = ﬁ...._!'_. P w*rﬂ

26 29
e % 3 ‘ iyt
L = VOoLr'—-oL® = NT—-¢* = V4TZ¢¢ -
3 _ L _ VITF@—y' _2¢ _ VaTg'—y
tyy = ‘E"C-; o 26 2¢1H’n 2¢|__m

the above is the same as the equation (61).
Fig. 39 to Fig. 43 show the velocity diagrams at the inlet edges of
runner for five types 1, 11, II1,, I1I; and Il]; in the state of normal

exit.
The example 13. The values of @, for five types with
=.2 and T =.93 to .96
T =93 i
For 1, | JT = 964 e = = IR
g — .56 L5 TR 26 .56

|

T =M% " \/‘7‘1 LA
2

T . '95 r .41

For 111, | JT =975 = =2 = 513
r =¢95 .4l

For 111, { e e AT P S = g = A2
¢ = of =19, 4
b =220 41

For 111, { JT = .980 R -~
¢ = 1.6 S 2¢ 1.6

Fig. 39 to Fig. 43 show the diagrams of this example, and the values
of ¢, ¥ T and (,/2¢) are denoted in the bracktes.

CHARACTERISTICS OF “R" rOR “ky" IN StATE oF NorMmaL ExiT 47

SecTioN 13. CHArAcTERISTICS OF “R" FOR “B,”
IN STATE oF NormAL Exit

a) Equation of “R"”

In Fig. 37 k= g, +k!
N e el
hence the former equation reduces to
?
A* = _27;_) . & kn’ (66)
The equation (19) reduces to
= - —y‘—),__ 3
R=T (2 L)k, (67)

(67) is the equation of R as a function of k,, ¥ 7, and T. The value of
T is reasonably taken for every type, 7, is taken at the practical value, and
¢ is taken at the arbitrary value in its range for every type. And since a
turbine has one value of &, as mentioned in the chapter I, the values of R
for all turbines of every type in the state of the normal exit may be deter-
mined by the equation (67).

b) Particular Values of “R”

(67) R = T—(—"—)’—k}

2¢
If in (67) T, 5 and @ are given,
dR d*R
dk.= —2 k, and = ey -2
hence if dR/dk, — 0 or k,= 0, R becomes maximum,
Then we have R, = ‘Z'-h(—’g—)’, if k,= 0 (68)

By the equation (67)
y
R =10, if _k.=~/7.'- 2;) (69)
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) : (67) and (69), it is observed that :
R By the equations (68), ( 7)-311 (69) L b A 73
if b, is zero, R may become maximum, 47T 2
according as k, increases, R may decrease, In the table 9 the values of {T —(7/28)"} or R,.c for nine types are
if b, becomes /T —(7,/2¢)}, R may become zero, ; compared to (T —y,/2) and (T —5347).
and after k, has increased above {/T —(7,/2¢)* R may become negative s e G H
and any reaction turbine may not exist. Thus /T —(3,/2¢)? may become I o - & =
the limit value of k,. Then we have ’ T : + B *: B l; "
i (PR ¥ ] __" = =
- v B - V2 Sl
by A T—(2) (70) X a8 o VEl 3= o
It ‘J (Zﬁ) g A ?-f\ \TB : % \T# !“: é ‘: g’
(70) is the same as the equation (63). o flﬁ‘ , I;: . g " 'r;]' . §. e t; 3 v
If in the equation (68) 'L ;_ & : E: . £ ;. Mee »
Ro=0,T—(/28f= 0 or § = (5/2+T), R may not L 1% 3 ) T
become positive for any positive value of k,. In order that R is positive, i We e 1
therefore, R, must be positive. Then we have | e ! & le . ;L
Y for the reaction turbines | g B | == I
’ g > 2T with the normal exit, (71) - *I.I. ?;.ri-. vV B i“‘—l‘é [ -y :“'::i-ﬁ'
Further it is of course necessary that R, must be the rational value. i 1: i-l; "E’ = ﬁ . W %i b
HE -
: | | B, . > *-r'..-n'sghfuwsv
. I'he example 14, The smallest value of g, with which the reaction & “ g #e RES . T lx e
turbines may exist, having #,—=.82 and T =.92. z ek ol s |
=~ | e o - —
PR AT TR = o, _ﬂ_ S[Y
3JT N8 T T i s : "’4.“' n
- jon turbines with the it e % 5 |
" (71) ¢ > 0.427 or 0.43 say, for the reaction turbines wi ey, VO3 L¢ v
: normal exit, z, : S2and T : .92. =) Sk 7 b i‘ﬁ
i - R Te Ny EO"_T - ~ -
e =2 b & - g
i Now the existence of reaction turbine is inspected by the value of ":E" - a'?u 2 = ssg" B .Y
" (T (/26 B £ E Y
| For the type II,, ¢ = J(7/2), then T —(—?—)’becumes T —%—- = >y et e ~y L
| X : ok & 53 S8
7, \2 T;. ' - ﬁ‘ﬁ. ‘T" = |31Fl ""‘T" = aﬂ \TJ
For the type 111, ¢ = T, then T '—(—2*;—) becomes T — - & "v* g 5 'é‘_ g T faed S
- A Il Vv
X E v ! A
: But 56) T > wn "'}" - ""‘|I"“I B g '51“ g o ﬂlﬂ |
% LN 72 I___""_ e * ac
* hence AT < 2 (72) L ——

e —
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Since in the table 9 the values of R, or {T —(%/2¢)'} for the
types I, 15, IT; and 11, are not rational, there are no reaction turbines
in these types.

Assuming that T and #, are taken at the same values for all types,
the values of k, or VT —(y,/28)" is the smallest for the type I, it
increases step by step as in the order of I,, I, TIT,, 111, and III,,

and it becomes the largest for the type Il

Seetion 14, “B.R" Curves IN STATE oF NorMAL ExiT

The equation (67) R = T — (—@—) —k,? becomes

el (B o

If T, » and @ are given, (67) or (71) may become the equation of
the parabola with 1 as parameter in regard to k, and R. 'This parabola is
called the “k,R" curve in the state of normal exit.

Fig. 44 shows the “k,R" curve is a coordinates with Ok, as the axis
of abscissa and with OR as that of ordinate.  7T'is the vertex of the parabola,
which is the intersection of curve with OR. The symmetrical axis of
curve coincides with OR. B is the intersection of curve with Ok,

Since the parameter of the parabola is always 1 and does not depend
on the values of T, ¢ and 7, all curves may become the equal parabolas
in the state of the normal exit. By the value of T —(7/28)", however,
the position of 7' may be changed for every curve.

Let OT.«y = T,and aline is drawn parallel to Ok, through

the point 7(p.=) This line is called “T -line.”

b L I C )

If 3, is given, the length 7y . .)1" may increase as ¢ decreases.
If %, is given and T(g . «) is assumed as the fixed point, the vertex 7' and
all other points of curve fall evenly, according as @ decreases. And all
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curves with ¢ at the different values do not coincide with each other,
as shown in Fig. 51.

Fig. 45 to Fig. 49 show the “k,R" curves of turbine series for five

types. A point on curve may correspond to a turbine with the normal exit
and gives the values of k, and R,

For the type I,.ﬂ::»—ﬂ- and ¢ < lur(";) J-‘

2
In Fig. 45,
for this type,

Tt = (5).07 = T(&). 08 -7 (%)

for the type IT,,

A YT o
Ty . -)fnl "f. OT“: = T _.g-" OB"I :Jr__gg

where Ty : the vertex of the curve for 11,.
]i_:y, and T are taken at the same values for both types,
OF < OTy, & OB < OBy, or R,y < (Ruw)n, & ko < (ky I
Hence all curves of this type may not exist in the outside of the 1T, “k.R':
curve or the curve of II,, which may become the boundary and the

space UT'}Il B“:w may become the territory for the “k,R" curves of L.

In Fig. 46, p .

N n
21' U!lll—' T“zft

If v and T are taken at the same values for all turbines of this type, all

curves may coincide altogether and become only one, which is called
the 11, “k,R" curve,

For the type I1I,,

A< -4 and j' < L VUi 7
2 ‘/2 ¢§JT°’2}(2¢)>4‘:

Teg:mTy, = and OBy = JT -“Z‘ (75)




52 1. Taxioe, Stuny oF Warer ReacTION-TURBINES

for this type

Tt = (&), 07 = t(%). o8 - JT(%)

for the type 11,
fe—Tr = . OTn= T-, OB= JT—2
@:mim - 2" ", 9 ° m 2

for the type 111,

im N = i, 41" 3 4T

If 5, and T are taken at the same values for these types,
0Ty, < OT <OTm, and OB, < OB < OBy,
or (Ruax Yy < Ripax, < (R\uas. Jin, and (k“l'l.)“l< ko, < (Fa ),

Hence all curves of this type may not existin the inside of the II,
“b R" curve nor in the outside of the IIl, “AR"”, and the space

Ty, B, By, Ty, may become the territory for “AR" curves of 1171,.

= d 7t
For the type I11,, < 5 and ¢ VT or 2¢) = 47:.
In Fig. 18,
?1’:-17‘"[’ 47, OTHI : T— 4,1. ill'ld Uﬂnh = JT 47; (7ﬁ)

If 5 and T are taken at the same values for all turbines of this type, all
curves may coincide altogether and become only one, which is called
the 111, “A,R" curve.

and o > o (—;- )..;*"' a‘

For the type 11, 3 < >

In Fig. 49,
for this type,

Taa? = (55). 07 - T(%). 08 = (%)

for the type 111,

2 T R
T{O*-}Tm, = Oli,= T "f;' OB‘": _ JT“ e
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If 7, and T are taken at the same values for both types,

OT > OTy, & OB > OBy, or Ry > (R, d, & ko, > (ky ), -

IHence all curves of this type may exist in the outside of the I11, “A.R.”
If g=2o, wm = T and OFy:, = JT

where OTy..,: the length of OT for ¢ : =,
and OB.., : that of OB,
The curve Tig..y Pg.uy is called the limit “k,R” curve. Any turbine
has never ¢ at ». By taking ¢ as about (2.5 to 3), the curve may be
very near the limit curve. And it is evident, any curve is never
existent in the outside of the limit curve.

The example 15. The values of R,.. and ky,, for five types

with =82 and T = .93 to .96.
The type I,, T = .93 and ¢ =56,

(68) Raw. = T- ( ;’; 93 — ("* ~ 394

(70) by =~/7.'( L) ./93( )_@@

The type II,, T=94 and ¢ — ,/—Z‘ = V.41 = .640

{

-_—_—

(63) (Ruws J, = T—3' = 94—41 = 53
(70) )n—Jr-*"V&} = .728
The type 11I,, T =.95 and ¢—.80,
(65) Rows. = T—( b} = 05—(52) = 687
(70) Ry (- ) J 95— (<5 )= 829

The type 111,, T —.95 and p = JT = V95 == 975

P S —— S T -

- —— e — - -

i, T —
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(68) (Russ Yy = T~ = 95— (:;;)’ — 773

(70) (ko s, =.J T —f% =~[ -95—% = 879
The type 11l T=9 and ¢ = 1.6

(68) R, = T—( —2‘%)' — 96—(75) = 894

(70) kol r—(%)’ o i .96-(%9’:—. 946

Fig. 45 to Fig. 49 show the “AR" curves of this example,
In these figures the values of Ryae, b, T and (7/2¢)" are denoted
in the brackets.

On the relations between the “k,R" curves in the
state of the normal exit and in the general case.

If for the types I, I1I,, Il and IIl; T and @ are taken as the
constants but 3 changes, there are plotted many “A,R" curves of the
general case, every one of which has only one point corresponding to a
turbine with normal exit and with 7, at a given value. Hence these points
correspond to some turbines of a series in the state of normal exit having
T,¢ and 7, at the given values, and accordingly the locus of such points
may become a “‘k, R’ curve in the state of normal exit. To be alittle more
definite, this is explained by the preceding examples.

e.g. On the relation between the “k,R"” curves in Iig. 49 and that
in Fig. 20,
Fig. 20 for the example 5, the type III,, (page 21)
with T =.96, ¢=1.6 and =12
Fig. 49 for the example 15, the type III;, (page 54)
with T =.96, §=1.6 and 7,=.82
Fig. 43 for the example 13, the type III,, (page 46)
with T =.96, §=1.6 and z,=.82
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For these examples T and ¢ are taken at the same values : .96 and
1.6 respectively.

In Fig. 43 OCK, is a velocity diagram at the inlet edge of the
runner and L'K, becomes the value of k, for #=12°. At the point K,
T =.96,g=1.6and 3 =12°, hence a turbine for K, may be one of the
turbine series in the example 5. In Fig. 20 a point P, on the “A.R"

curve has the length of L'K, (Fig. 43) as the abscissa, then P, may
correspond to only one turbine with the normal exit and with 7= 82,
when 3=12°,

Further in Fig. 43 L'K, becomes the value of k, for 3=12° in
the state of normal exit. Sinceat K, T =.96, ¢—1.6 and 7= .82 in the
state of normal exit, the turbine for K, may be one of the turbine series in
the example 15. In Fig. 49 a point Pyg,,», on the “A,R" curve has the
length of L'K, (Fig. 43) as the abscissa, then P s, may correspond to
only one turbine with 3—=12° when z,—. 82 in the state of normal exit.

For this reason, the point P, in Fig. 20 must have the same values
of k, and R as those of the point Pg. ) in Fig. 49, or these points

coincide with each other in a coordinates (#,, R) and correspond to one

turbine.

When in the example 5 the value of # changes, a lot of curves with
T =96 and ¢ —=1.6 may ke plotted in Fig. 20 according to the character-
istics of “A,R" curve for 1], excepting that in the limit Fand %, become
zero and the curve coincides with the axis OR. Every curve corresponds
to one turbine series and has only one point for the turbine with the normal
exit and with 7,—=.82. The locus of these points becomes the “k,R” curve
in Fig. 49.

Similarly the relation between the “k,R" curves in Fig. 45 and Fig.
12, Fig. 47 and Fig. 18 or Fig. 48 and Fig. 19 may be as that between the
curves in Fig. 49 and Fig. 20.

For the type II,, however, the “A, R’ curves in the both cases
coincide with each other taking T and @ at the same values, since (29)
and (74) reduce to
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-—[R—(T —m] = &t for 11, in the general  (77)

and special cases.

Fig. 50 shows the “A,R" curve with another parabola to find graph-
ically the value of (y/2¢). A point O is taken as the origin of the
coordinates (k,, R) and the point O’ is that of the coordinates (8, 8%,
at the distance T from O. The axes OR and O’ @, are taken on a
line but in the opposite direction to each other, and the axes Ok, and

O’ @, are parallel. The curve TB is the “A,R"” curve, the curve 7C is
a parabola with 1 as the parameter and has the point 7' as the vertex,
and thus the parabola 7C may be as the inverted view of the “k,R"” curve.
A point C is the intersection of the parabola 7C with the axcs O’ g,
then O'T' = (O'C), since the curve TC is a parabola with 1 as the

parameter,

but OT= 00 —-0T = T_[T_('_g%)l] s (*2%)1’

@ (L)« 0w

By the above idea, (3,/28) may be graphically found, if a “A,R"
curve is given. Then y may be computed for the given value of @, or
vice versa.

Fig. 51 shows the “k,R" curves with the curve CT for five turbine
series of the example 15. If a lot of “k,R" curves with the curve CT'is
plotted at the intervals as small as possible, a “k,R" chart with ¢,’ may be
made. To omit the trouble of calculation this chart may be applicable to

the design of reaction turbine.
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SectioN 15 CHArAcTERISTICS OF “R"™ FOR “ot”
IN StaTE oF NormaL ExiT

a) Equation of “R"

The equation (48) becomes

Al
- 26  cosa (78)
Then the equation (19) reduces to
w3
Re=T (2¢ cos*a (79)

(79) is the equation of “R" as a function of &, ,, @ and T. The values
of T,y and @ are taken as mentioned in Section 13. And since a turbine
has one value of a as explained in the chapter I, the values of R for all
turbines with the normal exit may be determined by the equation (79).

b) Particular Values of “R"

If in the equation (79)

. Pl
Lao T ( 20 ) cos*u
T, ¢ and 7, are given,
dR 7 \! sina  a’R of 7 ! cos®a |- 3sinu :
= e e | s A LTS B 4
o A 2¢ ) ey -( 7 ¢) i negative,

hence if dR/de = 0, R becomes maximum, Thus we have

s r_(gé-)' if « = 0 (80)

(80) corresponds to the equation (68).

By the equatian (79),

R =0 if &« == con™! 2¢?/‘I' (81)
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(81) corresponds to the equation (69).

- By the equations (80), (79) and (81) it is observed that
if a is zero, R may be maximum,
according as @ increase, R may decrease,
if @ becomes cos™ (y,/2¢ v/ T), R may become zero,
and after @ has increased above cos™ (7,/2¢ VT ), R may be negative
and any reaction turbine may not exist.

Hence cos™ (7,/2¢ /T ) becomes the limt value of a,

or @, = cos™' (y,/2¢ T ) which is the same as the equation (58)
and @ << @, by the restriction of reaction,

R »
or casa>2¢J,r where () < a < 5 (82)

If in the equation (80) Ry = 0 or ¢ = (5,/2 VT ), R may not
become positive for any positive value of « between 0 and =/2, In order
that R is positive, therefore, R, must be positive. Then ¢ > (5,/2VT)
or 1 > (5/286 4T) for the reaction turbines with the normal exit.
Further it is of course necessary that the value of (7,/2¢ v T) must be

rational,

Now the value of (/28 ¥ T) or cose, is inspected.
¢ = V7,/2, then cosey = p 2T
= JT, then ccsay=(3/2T)

For the type I]l
For the type I1l,,

But (56) T > 3

n_ -
hence T < 42{. (83)

In the table 10 the values of (,/2¢ +/T) for nine types are compared
to Vy,/2T and (/27T).
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(¥
.~|~.
®

-
Rar
h o8

VT
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% |
T |27~
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-
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Since in the table 10 the value of (7,/2¢ v T) for the types I, T,
[T, and I, are not rational, there are no reaction turbines in these types.

Assuming that T and 7, are taken at the same values for all types,
the value of (7,/28 &/ T) is the largest for I,, it decreases step by step as in
the order of I, 1I,, I11;, 111, and III,, and it becomes the smallest for
I1I;. The value of &, is vice versa.
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SectionN 16. “oR" Curves IN State oF NorMaL ExiT

The equation (79)

R=T “(J'z%)’&éh o8 TR = (’%)'ai”&

If T, 7 and @ are given, (79) may become the equation of a curve
in the coordinates with Ou as the axis of abscissa and with OR as that of
ordinate. This curve is called the “aR’ curve in the state of the normal

exit. To plot the “aR"” curve the auxiliary curves may be used, as in
the general case.

The auxiliary curve (i) is "= cos &’ a cosine curve,
where &' = «

a parabola with 1 a3 the
parameter,

the auxiliary curve (ii) is y"*= a”

2
the auxiliary curve (iii) is x”y — (—%—) a rectangular hyperbola,

B b . e i rl 2 l
the auxiliary curve (iv) is v — ( ‘ )
; o ) 8 5 26/ cos®y’

where ' = T —R by (79).

In the Fig. 52 there are five coordinates, and
the curve (i) is plotted in the coordinates (x', y") or (i),

the curve (ii) ,, ,, in the coordinates (x",y") or (ii),
the curve (iii) ,, »» In the coordinates (x”, ¥') or (iii),
the curve (iv) ,, s in the coordinates (x', 3') or (iV),

and the “«R” curve is plotted in the coordinates («, R).
The axes of abscissas of (i) and (ii) are taken at a straight line O, Oy, and
those of (iii) and (i¥) at a straight line O, Oy The axes of ordinates of
(1), (iv) and (, R) are taken at a straight line O, 0,0, and those of (11) and
(ii1) at a straight line O,, O,

In (1), Y'= cosx’ or y"= cosa,
a point P, has « as the abscissa and

cos « as the ordinate.
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In (i), Yy o
a point P; has the same ordinate as P,,
hence P, has cos® as the abscissa and
cos @ as the ordinate,

In (i), &'y — (—27;7)' or y — (-3;)’ 5
a point P, has the same abscissa as P,,

hence Py has cos' as the abscissa and

—2"; 'ca:'a as the ordinate.

a point P has the same abscissa as P, and has the same ordinate as
P,,
hence p has « as the abscissa and

%)'c-o%—'a or (T —R) as the ordinate,
A straight line OB is drawn parallel to the axis of abscissa in (iv)

at the distance T, and let a point P’ be the intersection of OB with the
line P,P.

Then PP - ‘L'..(—;%)' |

cos*a ’

= R by the equation (79).

The “aR” curve.

In the coordinates (#, R) the line OB is taken as the axis of abscissa
and the line OOy as that of ordinate. Then a point P may have « as the
abscissa and R as the ordinate. Thus the curve (iv) may become the “aR"
curve in the coordinates (a,R).

Fig. 53 shows the “«R" curves for five types. A point on a curve

may correspond to a turbine with the normal exit and gives the values of
a and R.
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. ﬁl Assuming that T and , are taken at the same values for all turbine
For the type I;, g2 > 2 and g< 2 series, the “aR" curves of 1, III, and I1I; may be plotted in the ter-
ritories under the II, “aR" curve, between the I1, and 111, “aR” curves
and between the 111, and the limit “«R” curves respectively, as written
in regard to the “k,R"” curves,

The value of g may be arbitrarily taken between (7,/2 /T )" and v/7,/2,
By the various value of @ a lot of curves may be plotted, although T and
y are taken at the same values for every turbine series.

: The example 16. The values os R, and «, for fi
4 T max, It ve types
For the type II;,, 3 = - and ¢:~/2- with », = 82 and T = .93 to .96.

2
The type I, T = .93 and ¢ — .56

by (80), 67‘::. or (Rm)nl: T—‘n n: \? Al \e
2 (L (84) (80) Ry = r_(-zla.) = _93_(3—6—) == .394
by (81), _O_Blll or (#)y = W‘S-IJ f,% v 41
(58) @, = 005"( 2% 5,1.) = Cos"( Sﬁxv’ﬁ) = cos™' ,75920
If T and 7, are given, all curves may coincide altogether, and they — 40°36 ' '
become only one curve, which is called the 11, “aR" curve.
The type 1I;, T = 94 and ¢ = {17 = .640

For the type I1I,, 3 < j; and J-? < P <JT,
- . (84)  (Ruwe)n, = T*"",? = .M — 41 = 53
By the various value of ¢ there are many curves plotted with T and 7, at ¢ -

the given values, as often mentioned. - J / oy i ] Y 4
g (84) (), = cos™ éff‘ = cos! 95 — Cos 1.66043 = 48740

e

For the type IIl;, 3 < —and g = JT

2 The type 111, T =95 and ¢ —.80
1
by (80), Wm, or (Ruue)n, = T — I{% (80) R = T “(2};')' s -95“(';_:])' = .687
-,- (35) '
by (81), OB . e -1_4
y (81) m, OF (), ot S (58) a,= coa",/w E:’Z' = oo™} (-8:*’.“\‘([95) = cos™! 52581

If T and ¥, are given, one curve may exist, which is called the 111, “aR” = S8°17

curve, as in the type I1,.

For the type IIl,, g < °

2 :md ¢ _-r‘ ﬂt

2
S - = _L'l_l.)_' .
( 5) (an.)m, 7- 4.2- 95 95 e _773

By the various value of @, there are many curves plotted with T and ,

«t Y -f 41 a o
at the given values, as often written, (35) ("u)m, = €08 ‘2','5. == COos '(55 = Cos~' 43158 = 64°2¢'
1. See the equation (71)- Ind‘the example 14 in the_ Sactiun_ls. The tppe 11I;, T = .96 and @ == 1.6,




T T — T

64 J. Tanioe, Stuoy or Water Reaction-TurBiNgs Cuance oF VELociTy Diacrams 8y REGULATION WiTH CONSTANT ¢ 65

B0 Ruw = T—(F) = 96—(5) =804 CHAPTER IV

AT ) = con (__J;_) — cos=! 26153 CHANGING DEGREE OF REACTION
o w = o (50z) = = (iwive OF A TURBINE REGULATED BY

=% SPEED GOVERNOR

Fig. 53 shows the “aR" curves of this example, and the values of

i i ted in the brackets and in the
a and R at the particular points are denoted in According as the water admission is adjusted by the speed regula-
table,

tion, k and T vary. Hence R of a turhine does not take one value during
the regulation. This is discussed in this chapter, considering that the

regulation is operated by the means of the usual movable vane ; 1.e. Fink's
regulator,

The relation between the “a@R' cruves in the state of the normal

exit and those in the general case is similar as the relation between the Section 17, CHANGE OF VELocity Di AGRAMS BY
“k R’ curves, excepting the curves of the type 11,. For the type II, the REGULATION WiTH CONST ANT “g"
“aR"” curves in both cases coincide with each other, since (32) and (79)

| reduce to a) Velocity Diagrams

R=T- g for I1, in the general and the special cases, (86)

cos'a Fig. 54 and Fig. 55 show the velocity diagrams at the inlet and
ik A outlet edges of runner for a turbine in a state of running.
WICHCONSpRnctS, W Wew Omcs (77 At the inlet edge (Fig. 54)
let & : the coefficient of the absolute velocity of water,
k, : the normal component of k,
@ : the circumferential component of &,
¢ : the coefficient of the relative velocity of water,
a« : the mgle of &,

A : the angle of ¢, and
@ : the coefficient of the circumferential velocity of runner.
At the outlet edge (Fig. 55)
let £y : the coefficient of the absolute velocity of water,
ks, ¢ the normal component of A,
(s : the coefficient of the relative velocity of water,
@y : the angle of k&,
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B, : the angle of ¢, which is taken as equal to the vane angle,
@, : the coefficient of the circumferential velocity of runner.
¢ is assumed as constant during the regulation. Since @, is pro-
portional to @, @, becomes also to be assumed as constant. #, may be
taken as constant during the regulation, because water discharges usually
in the direction of vane angle from the runner outlet. Hence 3, may be
taken as equal to the vane angle at the outlet. At the inlet edge, however,
# may not coincide with the vane angle 3, excepting the state of entrance
without shock. «' corresponds to 7, and in the state of entrance without
shock @' becomes « which corresponds to 3, as shown with the diagram
OC(K).
In the permanent flow ky, is always proportional to k,, for instance
Rasiiiyr Rascsiars Rawainys Raaqiey and Ry are proportional to
by Rasios Farmy  Bayn and kg, respectively, in which the indexes
(1/1), (3/4j, (1/2), (1/4) and (0) are used for the full, 3/4,1/2, 1/4 and
zero admissions respectively.

b) Exit Line

In Fig. 55 the point K, is determined by the angle of the relative
velocity and the magnitude of k,,. But this angle is taken at the constant
A, during the regulation. Hence K, is always on a line C;Kky which in-
cludes the angle 3, with O,C, , as shown in Fig. 56. The meanings of the
notations used in this figure are given in the following table.

. velocity coefficients  angles veloclt
—_— ‘ ormal | of | points ‘
n |
. | . absolute | 4
sions  compo- absolutei relative velocity | diagrams
nents | B e 52 -
1/1 Raaii 1y | ks i Paan) \| a1y ! Kuny | OfGaKaan
3/4 kago | R | P | Baw | Kasw | O:C:Kyg
hiias o ] | - | e
/2 Raacr Paaiy | Pscum | Yy Kyyn | O:C:Kam
: L = ST
| AN | Ryairja) | ks | P Baw | Ky | OiGaKgp
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During the regulation the point K, moves along the line C,Ky,
which is called “the exit line.”

¢) Entrance Curve and Entrance Parabola

If in Fig. 54 OC is taken as the axis of @’ and ON as that of k,, the
position of K depends on the values of ¢’ and k,. According as k, and ¢’
vary by the regulation, the point K displaces. An actual curve traced by
the successive positions of K is called “the entrance curve.” In theory,
however, the curve is usually assumed as a parabola.*

Let F : the normal intersectional area of the effective opening at

the inlet edge of runner,

F, : that at the outlet edge.

then k, = 1_5‘3 sing, - ¢h,,
or k.= c¢, (87)
where € = i:’ sin, 3, (88)
: a constant for a turbine
sany = 1.333 @, for Frsncis turbines® .
B: < thany < 1.333 &, for the high-speed axial-ﬂmrs} (89)
In the diagram at the inlet edge
A'+gt—gt = 29 off (90)
or 0 = (l(kl_[_¢l__,'{,l}_2‘l ¢ ¢r
by (87) k= ¢y
1) k= ARt g) 208 g (91)

But the equatian (11) becomes

(k) + @5t = Rt g8

1. see Camerer : Vorlesungen iiber Wasserkraftmaschinen (1914), Abb. 405 u.
407, seite 278 u. 279.

Honold u. Albrecht : Francis-Turbinen (1908), Seite 20 u. 21.

2. see Honold n. Albrecht Francis-Turbinen (1908), Seite 21,26,29, 36 u, 37
(Tabellen).
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hence the equation (91) reduces to
g A~ "{(’Hh') +gtt—2'g g (92)

In (92) » and k, are not constant during the regulation. In
theory, however, (7 { k) is assumed as constant.* If (y {-k'), ¢ and
@, are assumed as constant, (92) becomes the equation of parabola
which is called “ the entrance parabola ”.

In the equation (92),

. , k) + 6
if k=0, Fo.y = Ba.n= _(’ii;; ﬁ)_"?'- (93)
if ¢'= 0, k(’rm} = k";.‘” —— (V(r‘ f'k-;')'f ¢!l | (94)

In Fig. 57 XKY is the entrance parabola, and a point X is the
intersection of the parabola with the axis Ug’ and a point Y is that with
the axis Ok,.

Let X = OX, and Y = 0OY,

then by (93) X = -(ﬁhf;’;j B (95)
by (94) Y = otk (96)

In the states near the entrance without shock the entrance curve

coincides almost with the entrance parabola. According as the running
state is further regulated from the entrance without shock, the former
curve deviates more from the latter. Sometimes the former deviates
much from the latter at the small admission, but not so mluch at the large
admission .*

Fig. 58 shows the positions of K, assuming that K moves on the
entrance parabola XK'V by the regulation. The meanings of the nota-

tions are given in the following table.

1. see Camerer, Vorlesungen iiber Wasserkraftmaschinen, Seite 369—372.

2. see Honold u. Albrecht, Francis-Turbinen, Seite 20 u. 21.

3. see Z.V.D.I., Band 55, Nr. 23, 1911, Seite 1025, and Camerer, Vorlesungen
{iber Wasserkraftmaschinen, Seite 364, Abb. 475 u. 476.
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g velocity coefficients velocity angles : _.
= | . velocity
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compo- |absolute | relative absolute | relative diagrams

S | ments | a2 o '
| l/] . *.(lm *{un 'lf'u,rl) } "'(ul} t?(:m K{IHJ OCK(IJI)
3f 4 } *a(!u; ‘ *t:.rl} i 'rﬁ(:_'n , ""n:n) | i’ Gn) | K(:m 0ocC K(m}l

| i |

| 1/2 | Focin . Fam | Y  12) Fam | K | OCK 3y
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IU“‘ ”a(tm "m-) | &”{uu “'u.-a) | J‘-"wu | ﬁ(uu OCR(::.);

SectioN 18 CHARACTERISTCS OF “R" CHANGED BY
RecuraTion witH CoNsTANT “¢”

a) Equation of “R”

From the equation (92) we have

e o e |’ (k") +8MN, 0, 1,
skt = gl k] {1 S e e on
Then the equation (19) reduces to
=T —Llwr sty (@tA04+8' 1., 1 .,
R=T— gl e +{T Rl o ifer- ke (o)

(98) is the equation of R as a function of k, and T during the speed
regulation, assuming ¢, @, and (5--k?) as constant or that K moves on
the entrance .parabola. In theory, however, T may be also assumed as
constant, and the error by the assumption is easily corrected, as will be
seen in the pages 76 and 77.

b) Particular Values of “R”
If in (98) T, &, &, and (y+kt) are given,

dR _  [(y-+k)+8) [
2 = A
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d'R = {(_?Tk:’)’{ 8. l}——‘%;k.':

ky = eyl +h)+ 9} — 29,
k, = 0.

put G = 0, tha is{

But since k,>0, two of the above values are taken.

a = T - Ryt )+ gt} — 2%}
Hence %—f— = ( becnmes{ Vigth) 19} g (99)
a k = 0

N L (CRRRTR B2

d*R -

dk? — 4 ‘&?[{(’i +-k?)+ 553‘}—25395’-

d*R ‘
if k= 0, }El e —i¢‘i[{(?+kf)‘+‘¢:‘}_‘2"¢t
Py £ = (y+h7)+g -2
or £ = (y+R")+ (71;‘): -——-Zc’]d'.

where D : the diameter at the centre of
the inlet edge,

D, : that of the outlet edge.

According as the type of turbine becomes a high speed or the value
of @ increases, (5-+k,?) and (D,/D) increase but ¢ decrcases. Hence the
value of Kk increases according as that of ¢ increases.

e.g. The value of k of a turbine with g=.50, @,=.25,

7+ke*=.80 and ¢=:.70

In practice .50 is the smallest value of @, although .43 may be taken
as the theoretical limit, as shown in the example 14, and others are also
taken at the limit values to make that of k as small as possible.
k=(7+k?)+@,'—2¢" becomes
Kep.o0 = -80+.25'—2%.70* X .50'= .6175 = 0.6 say. 0.6 may be the
smallest value of k. Hence £ may be the positive value above 0.6 for
all reaction turbines.

CHARACTERISTICS OF “R"” CHANGED BY REGULATION WiTH CONSTANT g =5

The case £ >0 or (y-+hkY)+g1—25 > 0,
If ko= oG+ k)1 S5 —228%, (d°Rjdk?) becomes negative and
R the maximum. Then we hove
b= V(G +R)+ 87278,
Ruae. = T— A {(p+hk0) ¢:’}—r'¢’] l
assuming (7 FA7) - @022 ¢ > 0,

if k=0, (d'R/dk}) becomes positive and R the minimum.
Then we have

(100)

: b
if ".:O, .Ruln — r"'4_¢i{(3;+k")-{ ¢=’} = T""x! !
a%mng (q }'kg’)'l." ¢:’*‘2¢’¢I > 0
The case £ < 0 or (p+kf)l@2—22¢" < 0.

In (99) k= cV{(5+hY)+ 85} —2%¢"  becomes imaginary, and
(dR/dk,) =0  becomes only k,— 0. If k,— 0, (@*R/dk*) becomes
negative and R the maximum. Then we hawe

=l Ry = T";‘,;a ('JH")—*siu} = T—-X* }

assuming (y-+At) -+ @222 ¢* <= 0,
this case occurs scarcely, as above written.

Let P . : the value of R, when k, is zero. Then

it k=0, Ro.p = T——qpt+hkd)ig} = T—-X?
4¢{ } }(IUI)

where if (U'*'kﬂ’)'*'%'“"z" ¢'§ 0. R(I: 1) 18 nﬁiﬂﬁﬁ

Let Rigr.0y : the value of R, when ¢ =
Then by (94) and (98), or (19) we have

if ¢ =0o0r b=Y, Ry .,y = T—c’{(q tks?)+ ¢z’} = T—Y* (102)

From the equation (98)
if R = (,

hyl= ‘{{(’H-* ')+¢:’}-2¢’ ¢’]
T" [{(’?‘H":') )20 g *r[‘-ifﬂ’ {(7+ k')+¢:’}'] } 413

S g mm—
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or

R =0, if k= ((+h)is8)—29)

2208 [T— {0 +hD) + 88—

In (103) or (103)’ there are four roots of k,. But since k, must be
taken as the positive value, only two positive roots are taken as the values
of k,.

In theory the change of R behaves according to the equation (98),
when £k, is varied by the speed regulation. By taking ¢ as constant and
by assuming [{ (7+-kD)+6.5 -ztw] positive, the behaviour of the chang-
ing R is observed from the equations (102), (100), (103) and (101).

When &, is V(5 +k%)+8.% R takee[‘l' —-c’{(:p+k,')+¢,‘}] or (T—-Y?),
according as k, is diminished less than ¢\/(34-k,%) @} R increases,
when k, becomes c\/{(7 k%) +@,7} —2°@%, R becomes the maximum,
according as k, is decreased less than (\/{(3 k%) &,3} — 2:°¢*, R decrcases
also,

when k, becomes as the smaller positive root of &, in (103) or (103), R
may be zero, (for Francis turbines, however, this case occurs scarcely.)
and when at last &, becomes to be zero, R is the minimum.

Since the value of &, at the (1/1) admission is usually less than that
of k, for R, , the degree of reaction may diminish by closing the open-

(103)

ing of the movable guide vanes.

SectioNn 19. “kR" Curve BY REGULATION
wiTH CONSTANT “8"

Assuming T, @, @, and (y4-k,%) constant during the rcgulation,
(98) may become the equation of a curve in the coordinates with Ok,
as the axis of abscissa and with OR as that of ordinate. This curve is
called the “k,R” curve by the regulation. The “AR" curve is con-

cisely to illustrate the behaviour of changing of R, and accordingly this
is an important curve to be applied to the solution of the several Gues-
tions which occurs during the regulation. The “kA,R” curve may be plot-

ted by computation or by the graphical means, and for the latter there are
two methods : A ) and B).

“haR" Cumve By ReGULATION Wit CONSTANT “¢" 73

The method A)
The equation (98) reduces to

ri=ftht a2} [ =t T o+ -0} R
(104)
If T, ¢, ¢ and (3+4ky’) are given, (104) becomes the equation

of parabola for &' and R, which is called the ““AR” parabola.
Fig. 59 shows the “AJR" parabola (Py Py P, P.) in the co-

ordinates with O’ or Ok} as the axis of abscissa and with O,y or O,K
as that of ordinate, Py is the vertex of parabola which has

Vu= Akt igl) 20 g }
Y= T*C'{(¢+*:'+'¢z')—€'¢'}
as abscissa and ordinate respectively. The symmetrical axis of parabola

Py Ky is parallel to the axis f)?_ P, is the intersection of parabola with
the axis Op’. Then

Py, becomes the point corresponding to R, ,

P. becomes the point where R = 0,
and Py is the point corresponding to k==Y or ¢’ = 0.

For the point Py, by (105) or (100)
B s = R 8 -20 8]
R = T— g +hi 89 l
For the point P, by (103)
by = +hi+gh)—-20 ¢ (

(105)

(106)

:Ez"ﬂ‘,\/r _"{(’?‘l'ka"}‘ﬂsz')—'t'ﬁ'}’

(107)
R =0,

where k,t - is the value of A, if R = (
For the point Py, by (102) and (96)

ki = Y= Apt+ht+-05) }

R(‘rm, == ‘E_cl(q+k‘l+¢‘t) (103)

- ——— - —
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At first the poinm Py, P and Py are plotted in the coordinates
(x,y"), then the “A2R” parabolais drawn by the usual method. The
“RJIR” parabola and others are used as the auxiliary curves to plot
the “&,R" curve.

In Fig. 60 the method of plotting the “A,R" curve is shown.

The auxiliary curve (i), (&'—&'y)' = 4 V/u—y) (109)
where x' =: k2 ¥ y== :’{(:y—}-k,”r g.*)— 2 ¢’}
! and ] (105)
y=Rl  yu= T-c{gthiieh s

The equation (109) is reduced to (104), hence the auxiliary curve

(1) is the “42R" parabola.
The auxiliary curve (ii), y"* = &/, a parabola with 1 as parameter, (110)
where ¥ =Rk and y'= J'=A,
The auxiliary straight line (iii), "= a" (111)
whete =5k and x"== A,
The “k,R” curve (iv), in which
the abscissa, &, = a" in (i)
the ordinate, R = % in (1) }

The relative positions of the axcs of four coordinates are that the
axes O’ and Ok, are taken at a straight line O,0, the axes O, ¥’ and O, x"
at a straight line O,0y;, the axes O,y and O,)” at a straight line
O, Oy, and the axes OR and Oyy" at a straight line O O.

In (i) a point P, is on the “A2R" parabola, hence P, has k? as

(112)

abscissa and R as ordinate,

In (ii) a point P, has the same abscissa as that of P,, hence P, has
k. as abscissa and k&, as ordinate,

In (iit) a point Py has the same ordinate as that of P;, hence Py has
k, as abscissa and as ordinate.

In (iv) a point P has the same abscissa as that of Py and the same

ordinate as that of P,, hence P has k, as abscissa and R as ordinate.

Similarly the successive points of (iv) are plotted from the “A2R"
parabola in (1) through (ii) and (iii), then the “A,R" curve consists of these

e ———— — - -
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points. By the “AR" curve the behaviour of the change of R may be
observed,

When k, = Y or e\/y k2 g3, R=T —y+ki+@,), this point
is indicated with P,
according as k, decreases, R increases and the curve ascends,
when k.becomes ¢/(y-k?+@,7)— 2", Ris the maximum, this point is
indicated with P,
according as k, decreases less than the above value, R decreases also
and the curve descends,

when k, becomes the value in the equation (107), R is zero, this point
is indicated with P.. The existence of the point P is taken as the
meaning of that R becomes zero before the admission is shut off. In
this case “X" is greater than T. For the usual reaction turbines,
however, such case occurs scarcely, and accordingly the point P. does

probably not appear on the curve.

The method B)

The “k,R” curve may be plotted according to the equation (92)
or the entrance parabola.

In Fig. 61, the axes O,k* and Ok, are taken at a line 0,0,, the
axis Oy, Pz, and the T -line in (iv) at a horizontal line, the axes Ok
and Oy P-, at a line 0,0y, the axes O,¢ and OR at a line 0,0, and
the axis Ok, at a line Pz, Ok, at the distance T from the T -line.

In (i) the entrance parabola is plotted, and P, is the point on the
parabola (i), then

k = O,P,, which is the radius at P, with O, as centre.

In (ii) the parabola with | as parameter is plotted, and P, is the point
on the parabola (ii) and has k or the radius O,P, in (i) as ordinate, as shown
with the arrow head, and has A?* as abscissa.

In (iii) a point Py is on the axis Oy, P~ and has A* as abscissa which

1s the same as that of P,
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let Ol =T
then PPry, = OuPpry—OuWP, = T—R =R by (19)

A point P, is on the axis Oy Pz, and has A* as ordinate which is
equal to the abscissa of Py, since P; and P, are on a circular arc with O, as
centre. Then we have

OwlPry = 6“:1 -3 and 6F = ﬁttlp 3
hence PPy, = PyPe, = R,
The “Ak,R" curve.

In (iv) a point P has thessamne abscissa as P, and has PPy, as or-
dinate, as shown with the arrow heads. Hence P has k&, as abscissa and
R as ordinate, and accordingly (iv) becomes the coordinates (k,R).
Similarly the successive points in (iv) are plotted from the entrance par-
abola in (i) through (ii) and (iii), and the “A,R" curve consists of these
points,

The method B) may be also applied to plot the “4,R"” curve from
the entrance curve, although T is variable during the regulation. In
this case the approximate curve is drawn by the above method taking T
as constant, and then this curve is corrected by the varying value of T .

In Fig. 62 the method of correcting the approximate curve is shown.
P’ ,,PxP' is the approximate or the “k,K'"" curve which is drawn from the
entrance curve by the above method, assuming T’ is constant. T’ 1s
taken as the value of T in the normal state of running. T T IxT'
is the “T’-line” which is a straight line parallel to the axis Ok, at the
distance T'. T TTxT is the “T-curve,” on which a point has the
distance

T = (I—E,)-i-(k,'—-k,’—fd)

from the axis Ok,. By the regulation the resistance coefficient &, and the
secondary effect of draft tube (k2—k2—&,) are changed, and T may be
diminished according to the decrease of k.

let AT = T'-T

—

1. see Z.V.D.L., 1911, Seite 1024-1026, Camerer, Beitriige zur Berechung der
Zentripetal Turbinen,
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R' = T'—R* : the degree of reaction in respect to T',
or k= T'-R
then KT'—-KT = AT and K,P' = R
The equation (19), R=T —&?* reduces to
R=T—(T'-R)= R—(T'--T) = K.P-AT
Let K,P — KR—AT, then K,P = R.
Hence P becomes the correct point, and accordingly P has k, and
R as abscissa and ordinate respectively. The actual “k,R" curve consists
of the successive points which are corrected by the above method.

SectioN 20. Exampres oN “R" CHANGED BY
RecuLATION wWiTH CONSTANT “‘g"

The example 17.
The changing value of R by the regulation for a Francis turbine
of the type I, with
$=56, @,=.30, F,/F=.78, p,=40" and T'=.93.

(88), ¢ = %sinﬁ, = .78x.643 = .50

ky = @ tgh, = 0.3x.839 = ,25173

ky'= 25173 = 0.06 and take 7, = .82

if (3+A,") is taken at the value of (y,+ k%),
y+ k= .82+ .06 = .88

' (p+k0+d:  .88+.3°
95 ' - . — ——— = . 66
%) X = Fom 2¢ IxBE T 2=

(96), Y = kup:y = J{g+hY)+¢ = SXVEBF .3 = 5+1.97
= .492

(89), Yy = ‘;‘ = 1333x.3 = 40

(87), kamy = ¢y = 50x .40 = .20
ky = (Fy/F)k, = 78x.25173 = .196
The values os R at the particular points are computed below.
(101), if k, = 0, Ry .y = T'—X* where T is assumed constant and

i1s taken as T'.




. W "

78 J. Taxioe, Sruoy or Warer Reaction-"TursiNes ExampLes oN “R” Cuancep By REGULATION WiITH CONSTANT “or 79

Fig. 64 shows the velocity diagrams of this example, assuming that

97 \* .
= 93— (Tﬁ) = 180 the point K moves on the entrance parabola (X'Y) during the regulation,
(102), if by = ¥, Ry .y = T'—Y? = 93—5'x.97 + 688 Fi",“ shows the “A,R" curve, corresponding to Fig. 64, assuming
Y b that the point K moves on the entrance parabola and T is taken at .93
(100), if k, = c,/{(,; A + ¢,=}_z¢=¢', during the regulation.
Rnu — T""‘f [{(v—}‘k,’)'} ¢'|} oy C’ﬁ’] \ Figl 66 BIIOWB the gnphi‘ul methOd to Plﬂ't thc same curve as
L 3 that in Fig. 65. The values of R in this figure are almost fit to the comput-
bunmaxy = SXY 972X 5% 56 = 451 ed ones.
Rmu. — '93_'5’)‘:['97—*'5’}('56’] = :Z‘E The mmple 15.
The equation (104) reduces to The changing value of R by the regulation for a Francis turbine
. g of the I1; with
K= -Rnu.z.- (x_‘%) —Ef;a (lla) type ;
& ” p=.64, g, 45, F,/F= 80, 3,=30° and T'=.94
- . :
(113), R = Rm i _(}C—.s'x .55)-2*;—5:;‘56 (33). C = (F,jl?) smﬁ, = 8X.5 = _42
5 bt ky = @ tgd, = 45x 57735 = 25081
R = Rywe—| 72607— 3] (114) bt = 25081° — 067
k,(,:,,) = .20, as above computed, N = 20" = 2X 64 = 819
k.u“) — (3/4) kﬂ(”l) == i{) - if (9‘*‘*3’) is t-aken at lhc “luc Of (?"ﬂ*i'*k”'),
b = (12) kg = .10 ki = 819-4.067 — 886
k = (1/4) kyy = 05
w(1/4) (.( ) (/1) (95) LK e N f‘*‘k:"‘}‘fj:’ B 886 .45° O
scisecid [ TR R 3 g " D L
sions | . 7 28 %) Y k b
gt J (96), = Rugri) = Vpthii g7 = 40XV1.0887 = 417
(1/1) | .20 .0400 .142857
89), = |, = 1333 X 45 = .
(34) 15 0225 080357 W T = 1R 5 = LARx A8 - &
(12) . .10 0100  .035714 (87), Ry = € oy = 4x.6 = .24
(1/49) .05  .0025  .008928 ku = (Fy/F) ky — 8x.25981 = .208
If the above values are substituted in (114) (101), if Ak, = 0, Ry .y = T'—X* = 94— .85055 = .217
Rapy = Rpes —.58321° = .7071—.34014 = .367 (102), if &k, = Y.Ra .= T'—Y?* = 94—.4*x1.0887 = .766
= L 4 e . - F
RUIIH — le 64571° = .7071—.41695 ._2_9_{! (IUO), if k. = (V(q_’_k’:_{_%l)_ztwt'
R(”z} = Rm“_-—.ﬁgo:’ﬁ’ — -7071“":47659 — i?_?_!

Ry,

I

'.__c’r 2 e )
Ru“) = Rm,'_-71714= — .7071_.51429 —_— -12§ r L(q+k’+¢=) £’¢]
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—— ] il e

l—

40

(113), R = Ruw—|[(X-9)—3%

! dtmnny = AXYITORT— 2K AX 64 = 391
Ruws, = 94— 4| 10887 06554 | — 776
k,

k 2
- 2 o g

R=R, —~ [.74815——4.88281 k.’]

by = 24 Fasy = (3/4) Ry =
"-(l.‘u = (”2) k-(m) = .12 and k-(m) - (”3] A'un(n'l)
admis-
b k, . 4.88281 k,°

(/)| .24 0576  .28125
(3/4) | .8 0324 15820
(1/2) | .12 0144  .07031
(1/4) | 06 0036  .01758

If the above values are substituted in (115),

Rum — Rm_ -¢46'690’ = ,77629— 21799 = ._5_5__{5_
R{;”n = Rm - -58994: — -77629 — -34803 —= 22.8_
R(”ﬂ — 'RMI- . -67783, - -77629 - -45946 — _-_;i!z

Rupy = R, — 73057 = .77629—.53373 = .243

Fig. 67 shows the velocity diagrams of this example, assuming that
the point K moves on the entrance parabola (X'Y) during the regulation.
Fig. 68 shows the “k,R"" curve corresponding to Fig. 67, assuming that
the point K moves on the entrance parabola and T’ takes at .94 during

the regulation.
The example 19.

The changing value of R by the regulation for a Francis turbine

of the type 11I, with

¢ =.80, @,=.60, F,/F= 83, 3,=25 and T' = 95.
(88), ¢ = (Fy/F) sinf; = .83x.42262 = .35

ky = @, tgh, = 60xtg25 = .6x.46631 = .27979

95), x — 1thitd’ 946

Exampies oN “R" CHANGED BY REGULATION Wit CONSTANT .

ky'= 27979 = .07827 and take 7= .82
if (74+k%) is taken at the value of (7:-+kyY),
y+hk! = 82407827 = 0.9

7 A~ ShadE ]

(96), Y = o\Vyfhi+gf = 35xy 076 = .393
(89), faam= 1.333¢, = 1.333% 6 — .8
(87), kam= cPsam = .I5x.8 = .28

hy = (Fo/F)ky = 83%.27979 — 232

——

(101, if ky = 0, Ro . = T'—X* = 95-.7875' = 330

(102), if &, = Y  Ro.yy = T'—¥Y* = 05—-35"%(.9+.6°) = .796
(100), if &, —

|

V(p+hk'+ g,Y) — 2,
T'—-¢{(q+&'+¢:’)*¢’¢’]
kunmaxy= 35X (9165 —2x 35" .6¢ = .368

|

Ry,

g .95—.35'x[1.26—.0734] — 805

—

kaaizy = (1/2) kygpy = 14 and kg, = (1/4) kyqpy = 07

admis-
sions ks

(1/1) | .28 0784 400
(3/4) | .21 0441 225
(1/2)| .14 0196 100
(1/4) | .07 0049 025

(113), R R —[ -
R = Rmu _'_P- 875—-.35" % .8)— k.’ I
S = B ) e P
R = Ry, —|.6895— ""—]’
. _68'95 T a0 (116) =
kn(]"} — _-28 kﬂ(’"] — (3/4) kﬂ”“ — -2'

:
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If the above values are substituted in (116),

Rupy = Ry —.2895' = 80525 — 08381
Ry — AB45' = 80525 — .21576
Rum = Ry —.5805' = 80525 — 34751
Py = Ry —.6643° = 80525 — .44156

&
u

= a2
~ 5%
= 458
= 364

Fig. 69 shows the velocity diagrams of this example assuming that
the point K moves on the entrance parabola (X'Y) during the regulation.

Fig. 70 shows the “k,R" curve corresponding to Fig.

69, assuming that

the point K moves on the entrance parabola and T’ takes at .95 during

the regulation.

The example 20.

The changing values of R by the regulation for an axial flow turbine

of the type 111, with

@98, g~ @B, =15 and F,JF = 966

(88), ¢ = (Fu/F)sinf, = (Fy/F)sin15 = .966x.25882 = .25

ky = gatgh, = 98x1tgl5" = 98x.26795 = .25723

hy' = 25723 = 06617 and take 7 = .82
if (y+4A?*) is taken at the value (7,1 k&%),
7+k' = .824+.06617 = .89

For the type IIl; T' = ¢* = 98 = 9604 take T’

* 2 2

2¢ R & —_—

!
%

(96). ¥ = ¢y ihitgr = 25%\YFIT 08 = 340

(89). ¢y = 1.15 ¢, = L.15X.98 = 1127
(87)- ‘kl(”ﬂ = 4 9”-‘““) - -25)‘( 1.127 — *_0_-_2_8
kﬂl = (F;r'F) kﬂ — -966)’ -25?23 -— ._.?i&

(101). if k. = {), P“‘n‘“) = TI=t = 06-.044"

—= 069

(102), if &y, = Y, R= T'=Y? = .96—.25"<(.894.98") = .844

(100), if &, = V{pFhig:)— 27"

—— e ——

ExAmries o “R" Ciancep sy REcuLATION witit ConsTanT “¢" 83
R = T'~{ (g +hi+8)-c9']
‘ -
"o .25><~/(l.8504)—2x‘?-g = 329
& o |
- = 96— (l.sstu)—.osmm] — 848
(113), R = Ruw —[(x—c)— 2T
R = R [ (0408 —98)_ £,
(o408 -5 ) o b
= = 28
Barhe [.33233 — k.’]‘ (117)
by = 28 ks = (3/4) by = 21

k) = (1/2) kury = .14 and Ay = (1/4) kyyy = .07

admis-

4
sions ks Rt 2o e

497°
(1/1) 28 0784 .64
(3/4) 21 0441 .36
(1/2) | .14 0196 .16
(1) | 07 0049 .04

If the above values are substituted in (117),

Rany = Ruax —.24283* = 84810—.05897 = .789
Ry = Ruux —52283% = 84810—.27335 — 575
Ruisy = Ruae —.72283' = 84810— 52249 — 326
Ruy = Ryuux —.84283° = 84810—.71037 — .138

Il

Fig. 71 shows the velocity diagrams of this example, assuming that
tlfc point K moves on the entrance parabola (XY) during the regulation.
Fig. 72 shows the “E.R" curve corresponding to Fig. 71, assuming that

the point K moves on the entrance parabola and T takes at .96 during
the regulation, m

e e
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The example 21,

The changing values of R by the regulation for an axial flow turbine

of the type III; with
g=@,=1.6, F,/F=.98, 3,=10" and T'=.96.
(88), ¢ = (FyF)sinf; = (Fy/F)sinl(f = 98x.17365 = .17
ky = @, tgfy = 1.6x1tg10° =1.6x.17633 = .28213
ky' = .28213" = .08 and take 7, = .82
if (yp+k&') is taken at the value of (3,1 A&y'),
7tk = 824+.08 = .90

 pthid? | 9+16
R e S i i

(96), Y = oyfkifgt = JTIXVI+1.65 = 316
(89), ¢y = 1.12 ¢, = 1.12X1.6 = 1.792
(87), ki) = € Yoy = 17X 1.792 = .30
ky = (Fo/F)ky = 98%.282 = 277
(101), if k, = 0, Ry .y = T'—X* = 96—1.08125" = —.209

(102). if k.= Y;Ra‘:,-) - T'“‘y‘ = .96—.|7’K(.90+I.6’) . _.8__@

(103), if R = 0,

kn’(ﬂ ‘0

4 .I?’x[3.46—2><.17’>< |.6=]

= ok ¢:)—2¢-’¢‘]ﬁ:2c’¢~/ Tk #-0¥]

42X 17X I.EJ.QB—-J?’}( [3.4&—-.17’>< 1.6’]

= 09573 4+ .0858%5

= 00988 and .18158
kun.y = 099 and .426, of which the latter is greater

than Y : J16
Hence take A, 4.y = 099

(100), if &k, = oy/(y+ki @) =279,
. T'_._ﬁ[(,; {'kl"*' 3’)_€'¢=]

(118),

(118),

(118),

(118),

Examrres oN “R" CuaNGED py RECULATION WiTH CoNSTANT o 8
kummay = 17XV (@FA6)—2%X 1716 = .300

_

R ' =700~ .17’.><[(3.46)—.l7'xl.6' ~ 862
The equation (98) reduces to

R = r’-—x'+{:’%—1} | I

eyt
R = 96—1.081250 {10815 ., 1
+{.l7'xl.6 l}*‘ .4><.17‘xl.6’k‘.
R = —.20910+22.38343 kI—116.92419 k! (118)

k.‘”u = .3

—

Ry = (3/4) kugyy = _.225

ki = (1/2)keqpy = 15 and ky,, = (1/4) kapy = 075

if kam = 3, kluy = .3* = 09 and k=3¢ = .008]
Ram = —.209104-22.38343% .09—116.92419 x 0081 — 858

—

if klﬂf‘) = .225, k.‘m.} — 05063 and k.‘mn = 00256

Row = —:20910+22.38343 % .05063 —116.92419 x .00256
= 624
if *ﬂh‘ﬁ = .15, k.’um = 0225 and kﬂ'ﬂfl) = .00050
Row = —.209104-22.38343 % .0225—116.92419 % .00050
= 235
if k.u“) = -075, k"ﬂ n = -0‘0563 and k.‘u“) - -00003
Roy = —.20910-+22.38343 < .00563— 116.92419  .00003
= — 087

Fig. 73 shows the velocity diagrams of this example, assuming that

the point K moves on the entrance parabola (X'Y) during the regulation.
Fig. 74 shows the “k,R" curve corresponding to Fig. 73, assuming that
the point K moves on the entrance parabola and T’ takes at .96 during

the regulation.

“‘I—""_‘—-Il I |




"

"3
"
r-*

86 J. Tanoe, Sruny or WATER ReacTion-Tursives

It is seen in the above examples that using the reasonable coeffici-
ents the value of Y in (96) is determined to be less than JT, and Y
is usually less than X . In (95), however, the value of X tends to become
greater than T, especially it is inevitable in the high-speed, axial-
flow turbine of the type III,, as illustrated in the example 21, in this
case a value of & becomes as equal to T and R may become zero
before the gate-opening is entirely shut off. At the small partial admis-
sion the actual value of k is less than that in the entrance parabola, and in
the states near the zero admission the former diminishes remarkably, thus
it seems as if R does not become zero before the entire closing. But
since T diminishes also by closing the gate opening and this is consider-
able after the (1/4) admission, it might not be neglected to take care of
this point on the turbine design of the type III,.

SumMMmARy 87

SUMMARY

A) General Remarks

1) The head *“ T H" will have to be not only that required to rotate
the runner and to overcome the hydraulic resistance in the runner passage,
but also enough to produce the velocity of discharging water at the outlet-
edge of the runner. The reaction head is the remainder of “ T H"' reduced

by “R*H’ which is the impulse head at the inlet edge. Then the degrec
of reaction

(19) R = T-R,

in which T is taken as 0.92 to (.96, excepting the particular case of the
type I1I,. "The existence of reaction turbine necessitates the degree of

reaction satisfying the condition
(20) < B< T
which means the restriction of reaction.
2) The equation (19) reduces to
(22) R = T—g"+ 2@ ctgf) ky—(1-+ctg?3) k2

— T g SN for the general case
BB K= TNt

67) R=T —-(—’*'"*— )'—k:
.y for the special case

() B 1‘«) =

In general (22) and (32) are the equations of R which express the
characteristics of R in regard to other coefficients, and in the state of normal
exit (67) and (79) are such equations. For the existence of reaction tur-
bines the value of R must of course satisfy the condition (20), although
R is expressed in the several equations.

3) By combining the ranges of 3 with those of @ the author im-
agines nine types of turbines fully filled with the flowing water as

] w‘m_._ e ——T -
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ran
ofg? case | | case 2 case 3
| ‘
ranges | g€ T $ = JT > T
of A |
| I
group 1 | yype {ﬁ> 1;— typeiﬁ:b- —’25 type lﬁ >§"
Ty
EAPAS { Rilee2P1 % $=vT| L $>4T
| -
oo 1| ype (3= = | oype (=12 twe{3=-’—2'~
,9:—;— I, (¢ <vT | Il,{¢=~/f II; (¢ >JT
_ |
group 111 7 J T 3 T
twc{ﬁ<~5 type{c?f-t-g type (B <5
0<B<% | m, ¢<:J‘1'lll], 6 =vT | I, | >vT
|

It is evident that there are no more types to be iinagined

B) General Case

4) In general the value of R in (22) or (32) does not satisfy the con-
dition (20) for the types Iy, Iy, 11, and II,, and accordingly there are no
reaction turbines existent in these types. Hence the reaction turbines
may be classified into five types I,, II,, I1I,, III, and III,.

5) The limit values of &, and @ with the restriction of reaction are

= @& si irAVT —af winid
(28) {:ﬁ = : ::z iﬁt::mf.i :Eis for only I,
e

t, = @) —F
(36) a) = (B) —B for only III,

-
where ()" : the root of sin™ (g sin/ /T) in the
range (7/2 to =)

(3)' : that in the range (0 to =/2),

then for reaction turbines the values of &, and @ must be as

Summany 89

B << k,"’
{k*: < Ry < k‘“. for only III;
{ @ < a

a‘: <@ < u“' for only III,

Further the value of # may be restricted as
# <@ and 3 5 ().

6) For the turbine series with T, ¢ and 7 as the given values
the “A,R"” and “aR” curves illustrate concisely the characteristics of R
in respect to k, and @. The tables 1 and 8 illustrate schematically these
principal characteristics for nine types, and it is seen that the “R-portion”’
disappears in the types I,, I, 11, and II,, and accordingly no reaction
turbines exist in these types. Further the particular characteristics of
curves in regard to the maximum value of R, the limits of k, and a, (3)’
and ()", etc. are shown in Fig. 12 to Fig. 20 and Fig. 27 to Fig. 35.

C) Special Case

7) In the case of the normal exit the value of @ becomes as
irrational for the types I,, Iy, I, and IT,, and consequently the reaction
turbines with the normal exit may also be classified into five types I,, I1,,
I11,, II1; and III; as in the general case. This is of course necessary,
because these turbines must be included within every one of types in the
general case. In this case the values of ¢ are

the types the values of ¢
I, Al Jf
| P ~/12!
111, | ._3* < g < JT
IIl, | o= JT
111, l VT < ¢ < about 0.30

s . — A — E——— e

e e ——
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Ifin the above T =10.92 and 7,=0.82, the lower limit of g is com-
puted as 0.43 which may be the smallest value of ¢ for all reaction turbines
with the normal exit, as already mentioned. In practice 0.30 may be the
almost upper limit of @ for III;, and consequently this may be the
nearly greatest value of @ for all reaction turbines with the normal exit.

8) The value of R in (67) and (79) becomes irrational for the types
I, 13, 11, and 115 in the state of the normal exit, thus it is again proved
that any reaction turbines does not exist for these four.

9) For the turbines with the normal exit the limit values of k., «
and [ are respectively

3
(63) ‘k.“ = Jr""::";_:*l tht’ﬂ k‘ < k‘“.
(60) @, = tg_.(YiT¢‘—ﬁ’) or
T
" < %y
) o = ol 577)

61) fu = tg (Vi’{g’:aﬁ ) {‘9 o,
20"~ 3 < By for 111, 111, and III,.

Assuming that T and 7, are taken at the same values for all turbines,
the values of ks, and @, are the smallest for I,, these increase according
to the order of I,, IT,, III,, I1l, and III,, and these become the greatest
for 111,.

10) For the turbine series with T, ¢ and #, as the given values,
the “k,R” curve which is a parabola with 1 as parameter and “«R” curve
illustrate concisely the characteristics of R in regard to k, and « respect-
ively. Itisseenin Fig. 45 to Fig' 49 and Fig. 53 that if T and #, are taken
at the same values for all series, the curve with the smaller value of ¢ is
situated at the lower position and that with the larger ¢ at the higher one,
and the II,, I1I, and limit curves become the boundary lines of the ter-
ritories, in each of which many curves of the type 1,, III, or III; may
exist,

If T and @ are taken at the same values for the special and general
cases, the “k,R" or “aR” curve of the special case may become the locus

SuMMARY 9
of the points, any one of which corresponds to a turbine with normal exit
on the “A,R"” or “aR” curve of the general case. All points on a “k R"
or “aR"™ curve of the special case correspond to the turbines with the
same value of 7 but with the different values of 3. For the type 11,

however, these curves in both cases coincide with each other.

D) Changing Degree of Reaction by Speed Regulation

11) 'The equation of R changed by the speed regulation is

(98) R = T—r;i{(wk,')—!-ﬁ,’}’-k{ (J%%TQ’LI}*.’—“: 13

In (98) T and (+A,?) are almost constant in the states near the
normal running, but vary remarkably at the small partial admissions which
are less than (1/4). In theory, however, they are assumed as constant,
then R may become a function of k, with constants ¢ and @s. 1f the
coefficient of (k%) is assumed as positive, R has one maximum for a par-
ticular value of &, and has one minimum for k= 0. Since the value of k,
corresponding to R,,,, is usually greater than that at the (1/1) admission,
the degree of reaction may decrease by closing the gate opening.

12) If in the entrance parabola X is greater than T, R may
become zero before the gate opening is entirely shut off. For the types
I, II;, 1T, and 111, this might not occur by the good design, but for the
type Illy is perhaps inevitable.



T e P, g g T g P % i,

- &

T ——

—

W
l..-

- .._1 - ¥ _.. ¥ .._I_... “.i L v - . -
i, 1 - o t e E Jﬁuﬁl I . ¥ - . ’
. - - . ‘J...T..n o e I N .l‘t —— Fl".‘ — -

. W

’ -.A__.' .--i-—--'“ ._---r‘.._

o it w ® - - - L] -
- - —
e - -

.
:




i salp—Se) T mSmoew - e g

i S e

G

PLATE
— e
| l
61 é ‘ ?‘l
| |
v N\t b o
ey T g I
\
N
W, 4
Uz
ufy
a
K,
Velocity Diagram at Outlet
Edge of Runner 22

e

Fig. |
Fig. 2

el S LN t\‘

Tanipe, WaTer ReacTion TUrBINES
8§

/

reeCy
gl A

- ______:d.__ --]—_,__.-...._.1
-
0 u 7c
[ 4
Velocity Diagram at Inlet
Edge of Runner 11 -

Yl

=B g e

A

o T —— g— e k2 -

N







e —— - — o — -

Sooe
«uY

e
il a F ;

i
L

t..#-

Sy

FiLag —_—

L N L

- - .\- ¥ P

. . “Ur\r.. -u.., 2y AN
R T R
. X & _ ’L A W ‘_ . ._!“.i '
o b . iy 3 . ..' ..h A.

.-._.

- e e —










L P



















- T el Nl i— v—m——

T T






C

R




— e M, T Rl W E

il Tl e

PrLaTE 15

:
:

(#,0%)

»

X
(Fow)

(5e,80/)
(-x) “F"(d-.f] %
/

g

4——_

IL
.

o
m

|
%

TTTTTTITTTITT

(54 8v) (o potn
A (F+9)
>
$00 o
- e - il vy - aI.F.. r > "

m o e s

-

il il



Ll T

o el S T Al e R, - —

o i K
- it
- o o T i -l e ——
. -

. oy . W




— —

—— — Wy

A g— e ———— " —

- ——

|
|
|

¢¢ “Fg

w (2,990 A...HM.HS (.80 (805,L) £ ?.M.‘h ne%ﬂnu K= x
s [d-2] (019 ..w. (¢-3) o) T g qued
—— I
TN 2

0 |

5 ._ o

= b

1 n’
i
Il 11
. 1 ¥ R et s < e, 38
(.20 (eos.0¥), . i ......m...o.. y
(F-9] |8 p. W |y 0 w (Fom,ug0
= .

- - |
W
m w4 — 1 i E— a
= Wortus» 2 %
: s
= m .I‘ ﬁ-

.,LJ_.I.I;. Sy - - a— - e e - = . ——



- ‘
i“’}:qﬁ J'
e g
h-‘ 3

b3

b
.--ll.-

-

»

®

A




- B S -






5= Tl S —— . . O N S—— . - - .

Tanipe, WATErR ReacTiON TURBINES

J

Prate 21

Fig. 47




TanipE, WaTER ReACTION ‘['URBINSE

PrLate 22
rRER
AT
Rl i
& jasisin | sem s i
1 1 1

Mimlm |2 - - z
[N . ]
s6 Losiselon |-e 1 !
arc-u.lo 5 5
3o b [bay |6 s
L T" :f i |
" by |-® & fo to0s

Aa for 7o 98
- for To93
¢ for te 76
' = . . 5 .
' 2
(t'_" .
4 " 1"

Fig. 51






— o —— e

e — e ——

X .-__'-_I-"" i T

%

Gs'a

- =T =

Taxme, Water Reaction Tursines

E g3

PrLate 24

of for Tu.g3
Te

g

ol for Te46



e, N W o g

= - —_—
-

* -#’H'l-—lr-n =t e
S—

Taxme, Warer Reacrion Tursines

Fig. 56

PrLate 25













T e . TN e e e &

e . —

. -
- - .

Tane, Water Reaction Tursines

PLate 29




._ >
1 *‘_ A i . -
M T e =it

-

I II‘I e .‘r._‘




= - - L

|
i
|
|
|
.

Tanioe, Water ReactioNn TUrBINES Prate 31

o, Francis Turbine  T'=-95
'-"‘ p.-:.!' Xw 788

Q=60 KoD=B0 Y=-393




PraTe 32

Fig. 72

I, Asiel FlowTurbine =26
$= 18 P= /5" Xe.94s
=@ “-,-,).J.lﬂ y=- 340




| -l e -h_-.ﬁ-l-"-_—-.-nL

e - O . e

— . - - T —— ‘--""-"!'—-*I—. ----.- . y T— __- i - e S—— -y — Y e - e ————— -
11?11 }
't
. 3 R
* 1
r
L]
Tanme, Warer ReacTion TurBinNes Prate 33
-
¢ /6 -
-
Ce
-

I, Axial Flow lurbine T= 26

P16 Pan 10" Xe 08
e KH)=IMZI Yy 3|6

R thane) — 209
860

Fig. 74

- .-.‘- - ——









