
Serial Programming

Wikibooks.org



March 18, 2013

On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia
projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An
URI to this license is given in the list of figures on page 141. If this document is a derived work
from the contents of one of these projects and the content was still licensed by the project under
this license at the time of derivation this document has to be licensed under the same, a similar or a
compatible license, as stated in section 4b of the license. The list of contributors is included in chapter
Contributors on page 139. The licenses GPL, LGPL and GFDL are included in chapter Licenses on
page 145, since this book and/or parts of it may or may not be licensed under one or more of these
licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of
figures on page 141. This PDF was generated by the LATEX typesetting software. The LATEX source
code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from the
PDF file, we recommend the use of http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
utility or clicking the paper clip attachment symbol on the lower left of your PDF Viewer, selecting
Save Attachment. After extracting it from the PDF file you have to rename it to source.7z. To
uncompress the resulting archive we recommend the use of http://www.7-zip.org/. The LATEX
source itself was generated by a program written by Dirk Hünniger, which is freely available under
an open source license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf.
This distribution also contains a configured version of the pdflatex compiler with all necessary
packages and fonts needed to compile the LATEX source included in this PDF file.

http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.7-zip.org/
http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf


Contents

1 Introduction and OSI Model 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Why Serial Communication? . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 OSI Layered Network Communications Model . . . . . . . . . . . . . . . . 4
1.4 Software Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Applications in Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 External Links / References . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Other Serial Programming Articles . . . . . . . . . . . . . . . . . . . . . . . 6

2 RS-232 Connections 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Data Terminal/Communications Equipment . . . . . . . . . . . . . . . . . 7
2.3 Connection Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Wiring Pins Explained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Baud Rates Explained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Signal Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Relationship of Baud Rate to Maximum Distance . . . . . . . . . . . . . . 24
2.8 External References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Other Serial Programming Articles . . . . . . . . . . . . . . . . . . . . . . . 26

3 8250 UART Programming 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 8086 I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 x86 Processor Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 8259 PIC (Programmable Interrupt Controller) . . . . . . . . . . . . . . . . 32
3.5 Serial COM Port Memory and I/O Allocation . . . . . . . . . . . . . . . . 35
3.6 UART Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Software Identification of the UART . . . . . . . . . . . . . . . . . . . . . . 52
3.8 External References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.9 Other Serial Programming Articles . . . . . . . . . . . . . . . . . . . . . . . 54

4 Serial DOS 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Hello World, Serial Data Version . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Finding the Port I/O Address for the UART . . . . . . . . . . . . . . . . . 56
4.4 Making modifications to UART Registers . . . . . . . . . . . . . . . . . . . 59
4.5 Basic Serial Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Interrupt Drivers in DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7 Terminal Program Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . 68

III



Contents

5 Serial Linux 75
5.1 The Classic Unix C APIs for Serial Communication . . . . . . . . . . . . . 75
5.2 Serial I/O on the Shell Command Line . . . . . . . . . . . . . . . . . . . . 80
5.3 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4 Other Serial Programming Articles . . . . . . . . . . . . . . . . . . . . . . . 85

6 Serial Java 87
6.1 Using Java for Serial Communication . . . . . . . . . . . . . . . . . . . . . 87
6.2 JavaComm API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 RxTx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Forming Data Packets 109
7.1 For further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8 Error Correction Methods 115
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2 ACK-NAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.3 FEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.4 Pretend It Never Happened . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.5 combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.6 further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.7 further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9 Appendex A:Modems and AT Commands 121
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.2 Modem Programming Basics . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.3 Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.4 Changing State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.5 Sync. vs. Async. Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.6 X.25 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.7 AT Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.8 Result Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.9 S-Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.10 Advanced Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10 Contributors 139

List of Figures 141

11 Licenses 145
11.1 GNU GENERAL PUBLIC LICENSE . . . . . . . . . . . . . . . . . . . . . 145
11.2 GNU Free Documentation License . . . . . . . . . . . . . . . . . . . . . . . 146
11.3 GNU Lesser General Public License . . . . . . . . . . . . . . . . . . . . . . 147

1





1 Introduction and OSI Model

1.1 Introduction

Welcome to the wonderful world of serial data communications. This is a part of a series of
articles that will cover many aspects of serial data communications. I am going to try and
start from the beginning and follow a layered approach to working with serial data and by
the time we are through we should be able to transfer just about any sort of data that you
would care to send over wires between computers. Possibly even without wires (wireless
data communication).

There are so many aspects about this subject that sometimes it is a very hard nut to crack.
I'm going to dive down and try to start with the basics and introducing the RS-232 serial
data communications standard.

1.2 Why Serial Communication?

First of all, the basic standards that I will be describing are, from the perspective of computer
technology, positively ancient. Some of you reading this could perhaps find your grandparents
or even great-grandparents using this protocol when they were in College. At the same
time, it is so solid in concept that the reason for abandoning it should always be questioned.
Indeed, there have been several other data transmission methods that have been developed
since the RS-232 serial data protocol was established, but this workhorse is still widely used
and seems to go through a rebirth every once in a while.

When all else fails, RS-232 serial communication can be relied upon. When you are trying to
get two pieces of computer equipment together, sometimes newer communications methods
have hard limitations that can't be worked out due to number of connections, RF interference,
distance limitations, being behind physical barriers, in sensitive areas like medical equipment
where stray voltages can be a problem, or that you absolutely need to rely upon the
data being transmitted. A sister protocol to RS-232, the RS-422 protocol, even allows
transmissions for several miles of cable.

Serial data communication is widely implemented. While it is sometimes presumed that
a PC can deal with just about any problem you want to throw at it, there are a number
of electronic devices that are full of data which needs to be recorded. In part because of
the age of this protocol, there are many legacy devices that have RS-232 serial data as the
only access to the outside world. But even many of the latest network devices have RS-232
"console" ports to facilitate initial configuration and provide a means of troubleshooting
when the network itself is broken. Because the hardware is so widely implemented and
available, together with many software tools, it is also relatively cheap to develop equipment

3



Introduction and OSI Model

and software using this system. Particularly when transmission speed isn't important, but
data needs to be sent on a regular basis. RS-232 serial data is a very reasonable solution
instead of a more expensive 10BASE-T TCP/IP solution or high-speed fiber optics.

Serial data communication is also versatile. While the usual method of transmission is
over copper wires between two fixed points, recently there have been some converters that
transmit serial data over fiber optic lines, wireless transmitters, USB devices, and even over
TCP/IP networks. What is really surprising here is that all of these transmission methods
are totally transparent to the device receiving or transmitting the serial data. It can also be
a carrier for TCP/IP, and be used for private networks.

1.3 OSI Layered Network Communications Model

While serial data communication is not strictly a network communication protocol, it is still
important to understand the layered communications model when dealing with any sort of
communications protocols. Often people implementing serial data software have to build
multiple layers of this model, even if they are not totally aware of it when they are doing it
at the time.

Network Layers:

• Application
• Presentation
• Session
• Transport
• Network
• Data-Link
• Physical

Often serial data communication does not implement all of these different layers, and
even more often these different layers are combined in the same module or even the very
same function. This model was originally developed by the International Organization for
Standards (ISO) in 1984 to help give a good idea of where different networking structures
could be separated and intermingled. The point here is to know that you can separate
different parts of communications sub-systems to help with the debugging process, and to
move structures from one sub-system to another.

If your software is well written using a model similar to this one, the software subroutines in
layers above and below do not have to be rewritten if the module at a particular layer is
changed. To achieve this you need to establish strong standards for the interface between
the layers, which will be covered in other sections of these articles. For example, a web
browser does not need to know if the HTML is being sent over fiber optic cables, wireless
transmissions, or even over a serial data cable.

1.3.1 Serial Comm Layers

For serial data communication, I see this layer model as more common:

• Serial Data Applications

4



Software Examples

• Serial Networks
• Packet Challenge/Verification
• Basic Serial Packets
• 8250 UART processing
• Raw RS-232 Signals

In the case of many serial data applications, not all of these layers are implemented. Often
it is just raw packets being transmitted in one direction, but sometimes even just a signal
of any kind can indicate some action take place on a computer, regardless of content. It is
possible to simply take the logic level of a raw RS-232 signal in your software, but at some
point the data does need to be converted and the voltages involved with RS-232 can damage
hardware, so this is very seldom done.

1.4 Software Examples

I don't want to get into a holy war over programming languages with this series of articles.
For the moment, I'm going to be using Turbo Pascal and Delphi as the programming
languages, if for no other reason then the fact that I am most comfortable programming
in this development environment. If a good C/C++ guru would like to "translate" these
routines, I would welcome that, as well as other programming languages where applicable.
Serial communication is complicated enough so please avoid esoteric languages like Intercal
or Malbolge. A good BASIC implementation would be welcome, as would LISP. I'll try to
avoid language-specific features and simply deal with functions in a generic sense, which
good programmers should be able to translate to the language of their choice.

These articles are meant to teach you the basics of serial data communication, not to be a
functioning serial data driver. Still, all code examples will be checked and sent through an
actual compiler before being listed in the articles, and hopefully fully debugged. There is no
one single way to accomplish these steps and tasks, so I am going to encourage a hands-on
approach to dealing with software and setting up networks.

While I've had quite a bit of experience in dealing with several serial data protocols (on
the packet level), I am by no means the topmost expert at this. As I said earlier, I have
considerable experience in dealing with communications at many levels, and I'd like to share
some of my very hard-won knowledge.

1.5 Applications in Education

While I am only a Software Engineer and don't have the "formal" credentials necessary
for making an educational textbook, I do believe that there is much that could be taught
about computer networking by students experimenting with serial data communication. The
audience that I am aiming for with these articles are the High School hackers/computer geeks
and undergraduate CS majors. A High School teacher that wanted to tackle a subject like
this, or if you wanted to cover a special topic course in a university setting where students
could get some very hands-on experience with communications protocols. Every layer of

5



Introduction and OSI Model

the OSI model could be demonstrated in a manner that students would learn from first-
hand experiences why certain rules/systems have been implemented on the Internet, what
standards documents mean, and perhaps even participate in creating standards documents.

If you are a professor or High School instructor interested in using this text, I would be
particularly interested in adapting this text to better suit your needs, or working with you
in covering this subject.

From a professionalperspective, this is a topic that is seldom taught at a university, and
usually only in passing when they are rushing through a whole bunch of other protocol suites.
Software developers are usually introduced to this topic by having their supervisor dump
a bunch of specification documents on their desk, a driver disk with API documentation,
and perhaps a typically short deadline in order to get something working that should have
been working sometime last year. Software developers who really understand serial data
communication are worth gold, and often even these developers only learn just enough to
get the immediate job done.

I've also found that skills learned from developing serial data communications also translate
into other projects and give a deeper understanding of just about any data transmission
system. In addition to the other groups I mentioned, I am also aiming for those unfortunate
software engineers who are trying to learn just about anything about this very difficult
subject and don't know where to begin. Documentation about serial communication is
sparse, and sometime contradictory.

This doesn't have to be that complicated of a subject, and it is possible for mere mortals to
be able to understand how everything works.

1.6 External Links / References

• Cisco explanation of the OSI model1
• University of Indiana / Unix Support Group explanation of OSI2
• ISO catalog of OSI standards3

1.7 Other Serial Programming Articles

Category:Serial Programming4

1 http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/introint.htm
2 http://www.uwsg.iu.edu/usail/network/nfs/network_layers.html
3 http://www.iso.org/iso/en/CatalogueListPage.CatalogueList?ICS1=35&ICS2=100
4 http://en.wikibooks.org/wiki/Category%3ASerial%20Programming

6

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/introint.htm
http://www.uwsg.iu.edu/usail/network/nfs/network_layers.html
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList?ICS1=35&ICS2=100
http://en.wikibooks.org/wiki/Category%3ASerial%20Programming


2 RS-232 Connections

2.1 Introduction

The RS-232 standard is a collection of connection standards between different pieces of
equipment. This is a rather old standard, and has been revised many times over the years
to accommodate changes to communications technology. A bare-bones connection will
have only one wire connected between two pieces of equipment, but usually there are more.
Three wires (transmit, receive, and ground) are usually the minimum recommended. A fully
implemented RS-232 connection can have as many as 25 wires between each end. Some of
the early RS-232 connections were also used to connect terminal equipment to modems, so
information about modems is sometimes found with general serial data communication.

2.2 Data Terminal/Communications Equipment

In the world of serial communications, there are two different kinds of equipment:

• DTE - Data Terminal Equipment
• DCE - Data Communications Equipment

2.2.1 Straight Serial Connections

In practice the distinction between the two pieces of equipment is really a matter of function
rather than any real difference. As mentioned earlier, modems and serial communication
equipment have been mixed together, this is another case of that. In this situation, the
modem can be thought of as the Data Communications Equipment (DCE) and the terminal
that somebody is sitting down and using is the Data Terminal Equipment. In the older days
when it was common to use a timeshare computer system (pre 1980s), you would dial up a
telephone, stick the handset that you would normally talk with into an acoustical modem,
and that modem would be connected to a simple dumb terminal with an RS-232 cable.
When we get to baud rates this will make more sense, but the typical connection speed was
usually either 50 baud or 110 baud, and really fast connections going at 300 baud.

As a side note, when the very first IMPs (Interconnection Message Processors) that formed
the first nodes/routers of ARPAnet (the ancient predecessor of the Internet), this was exactly
the connection system they were using. This later gave way to other communication systems,
but this was the beginning of the Internet.

In a more modern setting, imagine a piece of equipment in a very dangerous place, like in a
steel processing mill that measures the temperature of the rollers or other steel processing
equipment. This would also be a form of what we now refer to as a piece of "Data

7



RS-232 Connections

Communication Equipment" that we would also want to be able to control remotely. The
PC that is used in a control room of the mill would be the Data Terminal Equipment. There
are many other similar kinds of devices, and RS-232 connections can be found on all kinds
of equipment.

The reason this is called a "straight" connection is because when the cabling is put together,
each wire on each end of the connection is put to the same pin. This wiring system will be
explained further on.

2.2.2 Null Modems

Often you don't always want to connect a piece of equipment to a computer, but you would
also like to connect two computers together. Unfortunately, when connecting two computers
with a "straight" serial connection, the two computers are fighting each other on the same
wires.

One way to make this work is to connect the two computers to each other with a pair of
modems. As explained earlier, this is a very common task, and in the 1980's and early
1990's it was common to have "Bulletin Board Systems" (BBS) where computers would call
each other up with modems and exchange all sorts of information.

Now imagine if these two computers are in the very same room. Instead of going through
the physical modems, they go through a "null modem", or a modem that really doesn't exist.
In order to make this work you have to "cross" some of the wires so when you transmit
some information on one end, the other computer is able to detect and receive that same
information.

In addition to simply allowing a computer to communicate and transmit data to another
computer, a null modem connection can be used to "simulate" the behavior of DCE equipment.
This will be particularly important later on with some of the discussion in this series of
articles, where you can experiment with writing some of your own serial communication
software. In my own experience, I've had to write these "emulators" in many instances,
either because the equipment that I was trying to communicate with wasn't finished, or it
was difficult to obtain a sample of that equipment and all that I had available to me was
the communication protocol specification.

2.2.3 Loopback Connectors

Sometimes instead of trying to communicate with another computer, you would like to
be able to test the transmission equipment itself. One practical way of doing this is to
add a "loopback" connector to the terminal device, like a PC with a serial data connection.
This connector has no cable attached, but loops the transmit lines to the receive lines.
By doing this, you can simulate both the transmission and receiving of data. Generally
speaking, this is only done for actually testing the equipment, but can be used for testing
software components as well. When this sort of connector is used, you will receive every
byte that you transmit. If you separate out the transmission subroutines from the data
capture subroutines, it can provide a controlled system for testing your application.

8



Data Terminal/Communications Equipment

2.2.4 Protocol Analyzer

General

When it starts to get very difficult to examine the serial data being transmitted by the
equipment, sometimes it is nice to be able to take a "snapshot" of the information being
transmitted. This is done with a protocol analyzer of one kind or another.

What is done is a modification of the cabling that allows for a third computer to be able to
simply read the data as it is being transmitted. Sometimes the communication protocol can
get so complicated that you need to see the whole exchange, and it needs to be examined in
"real-time" rather than going through some sort of software debugger. Another purpose of
this is to examine the data exchange for purposes of doing some reverse engineering if you
are trying to discover how a piece of equipment works. Often, despite written specifications,
the actual implementation of what is occurring when transmitting data can be quite a bit
different than what was originally planned. Basically, this is a powerful tool for development
of serial communications protocols and software, and should not be ignored.

There are common ways to connect a protocol analyzer, which are discussed in the following.

Y "Cable"

A Y "Cable" is not just some cable, but also contains electronics - assuming it is not a low
quality cable. It is supposed to be placed in between a serial line and it mirrors all signals
on a third connector. This third connector can then be connected to a protocol analyzer
(e.g. a PC with some display software):

+-----+ serial +---------+ serial +-----+
| DTE |----------| Y Cable |----------| DCE |
+-----+ +---------+ +-----+

|
|

+----------+
| Analyzer |
+----------+

It is recommended not to use a passive Y cable. Such a cable overloads the transmitters
at the DTE and DCE, which might result in the destruction of the transmitters. The
RS-233 standard requires that transmitters are short-circuit safe. However, modern, highly
integrated equipment might no longer be compliant to that particular aspect of the standard.

Often, the line going to the analyzer is also just a serial line, and the analyzer is a PC with
a serial interface and some display software. The disadvantage of such a simple Y cable
solutions is that it only supports half-duplex communication. That is, only one site (DTE or
DCE) can talk at any time. The reason for this is that the two TX lines from the DTE and
DCE are combined into one TX line going to the analyzer. If the DTE and the DCE both
send at the same time, their signals get mixed up on the third line going to the analyzer,
and the analyzer probably doesn't see any decodable signal at all.

See http://www.mmvisual.de/fbintermdspy.htm for an example of some simple circuitry
for a Y cable.

9

http://www.mmvisual.de/fbintermdspy.htm


RS-232 Connections

More advanced Y cable solutions provide the TX data from the DTE and DCE separately to
the analyzer. Such analyzers are capable of displaying full-duplex communication. Advanced
professional systems not only display the decoded digital information, but also monitor the
analog signal levels and timing.

Man-in-the-Middle

In this scenario the analyzer sits in the middle between the DTE and DCE. It is basically
some device (e.g. a PC) with two serial interfaces. The analyzer mirrors each signal from
one site to the other site, and also displays the traffic.

+-----+ serial +----------+ serial +-----+
| DTE |----------| Analyzer |----------| DCE |
+-----+ +----------+ +-----+

In principle, a simple version of such an analyzer can be built with any PC with two serial
interfaces. All that is needed is some software, which is not too difficult to write. Such a
device will, however, lack a convenient feature. Professional analyzers are able to auto-sense
the speed of the serial communication. A home made solution needs to be configured to
match the speed of the serial communication. Professional devices are also optimized to
ensure minimal delay in the circuitry. Also, a simple homegrown, PC-based analyzer can't
be used to analyze faults due to signal voltage level problems. Nevertheless, any kind of
protocol analyzer is much better than nothing at all. Even the most simple analyzer is very
useful.

Others

See Setting up a Development Environment (for modem development)1 for some more
information.

2.2.5 Breakout Box

An RS232 breakout box (a BOB) is a rather nifty piece of hardware which usually combines
a number of functions into one. It basically consist of two RS232 connectors, and a patch
field (or switches) which allows to change the wiring between the connectors. A patch field
and small pieces of wires are preferable over (DIP) switches alone, since the patch field
allows access to the signals for other purposes, too.

1 http://en.wikibooks.org/wiki/Serial_Programming%3AModems%20and%20AT%20Commands%
23Setting%20up%20a%20Development%20Environment

10

http://en.wikibooks.org/wiki/Serial_Programming%3AModems%20and%20AT%20Commands%23Setting%20up%20a%20Development%20Environment
http://en.wikibooks.org/wiki/Serial_Programming%3AModems%20and%20AT%20Commands%23Setting%20up%20a%20Development%20Environment


Data Terminal/Communications Equipment

A breakout box is very useful if the pinout (DTE/DCE) of a particular device is not known.
The patch field allows to quickly change the wiring from a straight connection2 to a null
modem3 connection, or to set up a loopback connection4.

Since the patch field provides access to all signals it also allows to use the breakout box
to connect a protocol analyzer5. Better breakout boxes also provide some signal level
information on their own, by having LEDs who inform about the signal voltage. This
information is useful when trying to identify an unknown pinout. High-end BOBs contain
circuitry to measure ground potential difference and pulse traps circuitry to find signal
glitches.

Commercial breakout boxes are available in many varieties. It is also possible to build a
useful BOB from a handful of simple parts on a circuit board. The patch field can be made
from DIL IC sockets, and the wiring of the LEDs is simple if 2-pin dual-color LEDs are used
(3-pin LEDs will not work). Each signal line should be connected via such an LED and a 680
Ohm resistor in serial to GND (Signal Ground). The home-made breakout-box is completed
with a couple of RS232 connectors, possibly also one to attach a protocol analyzer and some
simple metal or plastic case.

2.2.6 Character Sequence Generator

Another nifty piece of hardware and/or software which is useful for developing and testing
serial applications and equipment is a character sequence generator. Such a generator
produces a repeated sequence of serial line data. For example such a generator might repeat
the famous "The quick brown fox ..." sentence in an an endless loop. Another common test
sequence is the generation of all 8-bit codes from 0x00 to 0xFF in a loop. Such a loop contains
all 7-bit ASCII and 8-bit ISO Latin 1 characters, plus the first 32 non-printable control
characters and can e.g. reveal decoding errors or transmission errors. Also very common is
a modem test sequence, using generic modem commands (Serial Programming:Modems and
AT Commands6) to build up a modem connection, send some data and tear the modem
connection down in a loop.

Commercial hardware character generators provide a heap of additional features, often
combined with a protocol analyzer. As such they are rather expensive. However, just like
with a BOB, it is possible to build a useful DIY character sequence generator for small cash.
This can either happen with software on a normal computer (some simple endless software
loop sending the same data again and again to a serial interface), or with a few pieces of
cheap electronic components. Some small stand-alone hardware is often more convenient in
the field and in development for quick tests than e.g. a PC or laptop with some software.

2 http://en.wikibooks.org/wiki/Serial_Programming%3ARS-232_Connections%23Straight_
Serial_Connections

3 http://en.wikibooks.org/wiki/Serial_Programming%3ARS-232_Connections%23Null_Modems

4 http://en.wikibooks.org/wiki/Serial_Programming%3ARS-232_Connections%23Loopback_
Connectors

5 http://en.wikibooks.org/wiki/Serial_Programming%3ARS-232_Connections%23Protocol%
20Analyser

6 http://en.wikibooks.org/wiki/Serial%20Programming%3AModems%20and%20AT%20Commands

11

http://en.wikibooks.org/wiki/Serial_Programming%3ARS-232_Connections%23Straight_Serial_Connections
http://en.wikibooks.org/wiki/Serial_Programming%3ARS-232_Connections%23Straight_Serial_Connections
http://en.wikibooks.org/wiki/Serial_Programming%3ARS-232_Connections%23Null_Modems
http://en.wikibooks.org/wiki/Serial_Programming%3ARS-232_Connections%23Loopback_Connectors
http://en.wikibooks.org/wiki/Serial_Programming%3ARS-232_Connections%23Loopback_Connectors
http://en.wikibooks.org/wiki/Serial_Programming%3ARS-232_Connections%23Protocol%20Analyser
http://en.wikibooks.org/wiki/Serial_Programming%3ARS-232_Connections%23Protocol%20Analyser
http://en.wikibooks.org/wiki/Serial%20Programming%3AModems%20and%20AT%20Commands


RS-232 Connections

A simple classic hardware character generator basically consists of a baud-rate generator, a
UART (Serial Programming:8250 UART Programming7), an (E)EPROM, a binary counter
and a line driver (Serial Programming:MAX232 Driver Receiver8). Typically, each of these
components is a simple single IC. The (E)EPROM is supposed to contain the character
sequence(s). The baud-rate generator drives the UART and the binary counter. The binary
counter drives the address lines of the (E)EPROM. The result is that the character sequence
is produced at the data lines of the (E)EPROM. These data lines are feed into the UARTs
input. The UARTs output is connected to the serial line driver. All this can be easily fitted
on a small prototype board in a simple case.

A more modern hardware character generator can be build around one of these small micro
controllers (e.g. Atmel AVR9). This is particularly easy, since these micro controllers already
contain serial interfaces, and just require a little bit of serial programming - which is the
topic of this book10.

2.3 Connection Types

If you wanted to do a general RS-232 connection, you could take a bunch of long wires and
solder them directly to the electronic circuits of the equipment you are using, but this tends
to make a big mess and often those solder connections tend to break and other problems can
develop. To deal with these issues, and to make it easier to setup or take down equipment,
some standard connectors have been developed that is commonly found on most equipment
using the RS-232 standards.

These connectors come in two forms: A male and a female connector. The female connector
has holes that allow the pins on the male end to be inserted into the connector.

2.3.1 EIA/TIA 574: "DB-9"

This is a female "DB-9" connector (properly known as DE9F):

7 http://en.wikibooks.org/wiki/Serial%20Programming%3A8250%20UART%20Programming
8 http://en.wikibooks.org/wiki/Serial%20Programming%3AMAX232%20Driver%20Receiver
9 http://en.wikibooks.org/wiki/Atmel%20AVR
10 http://en.wikibooks.org/wiki/Programming%3ASerial%20Data%20Communications

12

http://en.wikibooks.org/wiki/Serial%20Programming%3A8250%20UART%20Programming
http://en.wikibooks.org/wiki/Serial%20Programming%3AMAX232%20Driver%20Receiver
http://en.wikibooks.org/wiki/Atmel%20AVR
http://en.wikibooks.org/wiki/Programming%3ASerial%20Data%20Communications


Connection Types

Figure 1 Female DB-9 Serial Connector

The female DB-9 connector is typically used as the "plug" that goes into a typical PC. If
you see one of these on the back of your computer, it is likely not to be used for serial
communication, but rather for things like early VGA or CGA monitors (not SVGA) or for
some special control/joystick equipment.

And this is a male "DB-9" connector (properly known as DE9M):

Figure 2 Male DB-9 Serial Connector

This is the connector that you are more likely to see for serial communications on a "generic"
PC. Often you will see two of them side by side (for COM1 and COM2). Special equipment
that you might communicate with would have either connector, or even one of the DB-25
connectors listed below.

2.3.2 RS-232C: DB-25

This is a female DB-25 connector (also known as DB25F):

13



RS-232 Connections

Figure 3 Female DB-25 Serial Connector

This DB25S is what you normally find on an IBM compatible PC used as the parallel
(printer) port. It is also on the computer end of a modem cable in older PCs that have 25
pin serial port connectors. This connector type is also used frequently for equipment that
conforms to RS-232 serial data communication as well, so don't always assume if you see
one of these connectors that it is always parallel. When the original RS-232 specification
was written, this was the kind of connector that was intended, but because many of the pins
were seldom if ever used, IBM PC compatible serial ports were later switched to the DB-9
DE9S connectors carrying all the required signals as on the DB connectors in the original
IBM-PC. (Yes, this is comparatively recent equipment for this standard).

This is a male DB-25 connector (also known as DB25M):

Figure 4 Male DB-25 Serial Connector

Male DB-25 connectors are usually used on one end of a PC printer cable for parallel data
communication, which is beyond the scope of this series of articles. The DB25P is also
used on the the modem end of an external modem cable. You should be aware that this
connector is also used for serial communications on many different types of equipment, using
many different types of communications protocols. In fact, if you have a random piece of
equipment that you are trying to see how it works, you can presume that it is a piece of
serial equipment. Hacking random connectors is also beyond the scope of this document,
but it can be an interesting hobby by itself.

2.3.3 mini-stereo plug connector

This is a male mini-stereo plug connector:

14



Connection Types

Figure 5 mini-stereo_plug connector

Some digital cameras and calculators come with a cable that has a mini-stereo plug connector
on the end the plugs into the camera, and a DB-9 connector on the end that plugs into the
PC.

It is a poor connector, as it short circuits segments while being plugged/unplugged.

The "PicAXE" systems use http://profmason.com/?p=218

• 1: base ring: ground (pin 5 of DB9)
• 2: middle ring: serial output from PicAXE to serial input of PC (pin 2 of DB9)
• 3: tip of pin: serial output of PC to serial input of PicAXE (pin 3 of DB9)

2.3.4 RS-232D: RS232 on RJ45

RS-232D defines a standard connector much smaller than a DB-9 plug. http://zytrax.
com/tech/layer_1/cables/tech_rs232.htm#rj45.

(RS-232 on a RJ45 modular jack is also known as "EIA/TIA - 561")

2.3.5 RS232 on RJ11

Is there a standard for connecting the TX, RX, GND of RS-232 to the 4 pins of a RJ11
connector ?

• Luhan Monat11 uses DB9-5 ---> RJ11-1; DB9-3 ---> RJ11-2; DB9-2 ---> RJ11-3. (RJ11-2
and RJ11-3 are the "inner pair").

• Paul Campbell12 says "I wired the GND to the yellow line, TXD to the black line and
RXD to the red line."

11 http://mondo-technology.com/upp.html
12 http://www.taniwha.com/~paul/fc/ass2.0.html

15

http://profmason.com/?p=218
http://zytrax.com/tech/layer_1/cables/tech_rs232.htm#rj45
http://zytrax.com/tech/layer_1/cables/tech_rs232.htm#rj45
http://mondo-technology.com/upp.html
http://www.taniwha.com/~paul/fc/ass2.0.html


RS-232 Connections

2.4 Wiring Pins Explained

The wiring of RS-232 devices involves first identifying the actual pins that are being used.

Please note also that in the "PC COMx Port context" end of things some signals are 'inputs'
while others are 'outputs' while in the "Modem context" those same signal names referred to
now become as 'outputs' where they were just before 'inputs' and vice versa. That is where
much confusion has arisen from over the years, as the 'Input' or 'Output' -sense- nature
is not noted in most diagrams on the subject in general, yet in the real world two 'Out'
pins seldom can ever work in harmony in RS-232 related +-[3-10]V stuff where the range
from -3V to +3V is not a true high or low, except to possibly burden drivers towards their
undesired burnout.

Here is how a female DB-9 connector is numbered (Note, the connector on a computer is
usually a male connector, so it is mirrored compared to the following image):

Figure 6 DB-9 Female Pinout Diagram

If the numbers are hard to read, it starts at the top-right corner as "1", and goes left until
the end of the row and then starts again as pin 6 on the next row until you get to pin 9 on
the bottom-left pin. "Top" is defined as the row with 5 pins.

Here are what each pin is usually defined as on the PC COMx end of things:

9-pin 25-pin pin definition Direction (PC view)
1 8 DCD (Data Carrier Detect) input
2 3 RX (Receive Data) input
3 2 TX (Transmit Data) output
4 20 DTR (Data Terminal Ready) output
5 7 GND (Signal Ground) -
6 6 DSR (Data Set Ready) input
7 4 RTS (Request To Send) output
8 5 CTS (Clear To Send)) input
9 22 RI (Ring Indicator) input

16



Wiring Pins Explained

One thing to keep in mind when discussing these pins and their meaning, is that they are
very closely tied together with modems and modem protocols.

Whenever interconnecting any serial ports it will be well to note that whatever the case, it
should always follow that only one <output> should ever be tied to one or more <inputs>
generally speaking. Further, be it noted that signal names at the COMx end will generally
be opposite of the <in>-<out> -sense- at the modem end of things, even though carrying
the same mnemonic names.

Often you don't have a modem attached in the loop, but you still treat the equipment as if
it were a modem on a theoretical level. At least such that you minimally have an <output>
going to every in some manner, with no two <outputs> in conflict or without any 'floating'
<inputs> tied to no <output> at all.

The following are more formal explanations regarding each signal function in the general
sense of its use:

2.4.1 DCD (Data Carrier Detect)

This is a signal to indicate from the communications equipment (DCE) that the phone
line is still "connected" and receiving a carrier signal from the modem at the other end.
Presumably well-written software or serial equipment could detect from this logic state when
the telephone has been "hung up" on the other end. Null-modems often tie DCD to DTR at
each end since there is no carrier signal involved.

2.4.2 RX (Receive Data)

Input to receive the data.

2.4.3 TX (Transmit Data)

The reverse of RX, this is where the terminal equipment (DTE) is transmitting serial
data, using the same format and protocol that the receiver is expecting. More on the
exact protocol further below. Like RX, think along the lines of "Terminal Transmit" when
designing equipment that will be using this pin.

2.4.4 DTR (Data Terminal Ready)

Basically a signal from the DTE that says "Hello!, I'm ready if you are". This is a general
indicator to the DCE that the terminal is ready to start sending and receiving data. If there
is some initialization that needs to happen in the communications equipment, this is a way
for the terminal equipment to "boot" the receiving equipment. In an null modem setup this
signal is often connected to DCD, so the device signals itself that an (imaginary) carrier has
been detected, indication that the transmission line is up.

17



RS-232 Connections

2.4.5 GND (Signal Ground)

This is an interesting pin to look at. What it does is try to make a common "ground"
reference between the equipment that is being connected to compare the voltages for the
other signals. Normally this is a good thing, because sometimes different pieces of equipment
have different power supplies and are some distance away. The not so pleasant thing about
this wire is that it usually is a physical piece of copper that can conduct electricity that is not
normally supposed to go down the wire, like a short-circuit or worse yet a bolt of lightning
(it happens far more often that you would normally think for this sort of equipment). That
can fry both the DCE as well as the DTE. Things like fiber converters and ground isolators
can help prevent this from happening, but can still be something to worry about. Over
short distances this is generally not a problem.

2.4.6 DSR (Data Set Ready)

This is the counterpart to DTR with the communications equipment (or computer peripheral
on the serial line). When the DTR is sent as a signal, the communications equipment should
change this signal to logic "1" to indicate that it is ready to communicate as well. If the
DCE goes through a "boot" sequence when the DTR gets signaled, it should not signal DSR
until it is complete. But many connectors "hard wire" this pin to be directly connected to
the DTR pin at each end to reduce the number of wires needed in the cable. This can be
useful for connecting devices using existing telephone wires, but prevents applications from
using the DTR and DSR for handshaking.

2.4.7 RTS (Request To Send)

Setting the RTS signal to logic "1"13 indicates to the DCE that the DTE wants to send it
data. Resetting the RTS signal to logic "0"14 indicates to the DCE that the DTE has no
more data to send.

2.4.8 CTS (Clear To Send)

This is the response signal from the DCE regarding if the terminal equipment should be
transmitting any data. When this signal is at logical "1"15, the terminal is "permitted" to
transmit data. Like the DTR/DSR pins, this one can be directly connected to the RTS pin
to reduce the number of wires needed, but this eliminates the possibility of hardware flow
control. Some software ignores this pin and the RTS pin, so other flow control systems are
also used. That will be explained when we get to actual software.

13 http://en.wikipedia.org/wiki/RS-232C%23Voltage_levels
14 http://en.wikipedia.org/wiki/RS-232C%23Voltage_levels
15 http://en.wikipedia.org/wiki/RS-232C%23Voltage_levels

18

http://en.wikipedia.org/wiki/RS-232C%23Voltage_levels
http://en.wikipedia.org/wiki/RS-232C%23Voltage_levels
http://en.wikipedia.org/wiki/RS-232C%23Voltage_levels


Baud Rates Explained

2.4.9 RI (Ring Indicator)

Again, thinking back to a telephone modem, this is a signal that indicates that the telephone
is "ringing". Generally, even on a real telephone modem, this is only occasionally set to -15V
for the signal. Basically, when you would normally be hearing a "ring" on your telephone, this
pin would be signaled. On Null-modems, often this wire isn't even connected to anything. If
you really are connected to a real modem, this does have some strong uses, although there
are other ways to have the terminal equipment (like a PC connected to an external modem)
be informed that there are ways to communicate this information through the data pins as
well. This will be covered lightly in the software section.

2.4.10 Other RS-232 Pins

There are other pins that the DB-25 has implemented that the DB-9 doesn't normally use,
such as a secondary transmit and receive pin, Secondary CTS/RTS for those alternate pins,
a -15V signal for power, a clock, and a couple of other good ideas as well. The problem
with implementing all of these pins is that you also need to run separate wires, and a full
set of DB-25 connectors would also mean having 25 physical wires going the full distance
between the DTE and DCE. If this is more than a foot or so, it gets to be a big hassle,
particularly if you are going through walls or in a more permanent setting. If the wrong
wire gets clipped in the bundle, the whole thing must be restrung again, or you must go
through wire testing like the old-fashioned telephone linemen used to have to do when fixing
a phone distribution box. Often only three physical copper lines are used to connect the
DTE to DCE, and that is simply RX, TX, and GND. The rest can be easily "faked" on the
connector end in a manner sufficient for most software and hardware applications.

2.5 Baud Rates Explained

Baud and BPS (Bits Per Second) are usually not the same thing, although they are often used
interchangeably, particularly in marketing literature. There are several ways to determine
what the actual data rate of a particular piece of equipment is, but in popular marketing
literature, or even general reference texts, they will almost always refer to "Baud Rate", even
if they are referring to bits per second.

Baud means the number of changes to the transmission media per second in a modulated
signal. If each transmission event contains more than one bit of information, then Baud
and BPS are not the same. E.g. if each event contains two bits (two bits modulated in an
event), then the BPS of such a transmission would be twice as large as the Baud rate. This
is not a theoretical case. Typical "high speed" modems use sophisticated modulation on
the telephone line, where the bit rate and Baud rate differ significantly on the line. It is
important to know this when you build measurement equipment, decoders (demodulators),
encoders (modulators), and all sorts of transmission equipment for a particular protocol.

However, software developers typically like to ignore the difference of bit rate and baud
rate, because a bit can either have the value true or false - an "event" (a bit) always only
has two possible states. They have no basic unit which can e.g. hold four different states.
In other words, on the software site the modulation has already been flattened by the

19



RS-232 Connections

demodulator. If a modulation was used which can e.g. transmit 8 bits in an event, the
software developer sees them already as a series of 8 consecutive bits, each either true or
false. The demodulator took care of that. When it got an event it turned the single 8-bit
event into eight single-bit events. Software developers don't see the original single entity
with 256 different states (voltages, phases). Since the modulation has been flattened they
don't experience the difference between Baud rate and bit rate any more. This is not the
fault of the people who defined a Baud or a BPS. It is just a (welcome) limitation of digital
computer hardware.

Baud is actually a shortened term named in honor of Émile Baudot, a French inventor of
early teleprinter machines that replaced the telegraph key using Morse Code. Basically two
typewriters that could be connected to each other with some wires. He came up with some
of the first digital character encoding schemes, and the character codes were transmitted
with a serial data connection. Keep in mind this was being done largely before computers
were invented. Indeed, some of these early teleprinter devices were connected to the very
first computers like the ENIAC or UNIVAC, simply because they were relatively cheap and
mass produced at that point.

In order for serial data communication to happen, you need to agree on a clock signal, or
baud rate, in order to get everything to be both transmitted and received properly. This is
where the language purists get into it, because it is this clock signal that actually drives the
"baud rate". Let's start more at the beginning with Émile Baudot's teleprinters to explain
baud rate.

Émile's early teleprinters used 5 data bits and 1 stop bit to transmit a character. We will go
onto formatting issues in a second, but what is important is that six signals are sent through
a wire in some fashion that would indicate that a character is transmitted. Typically the
equipment was designed to run at 50 baud, or in other words the equipment would transmit
or receive a "bit" of data 50 times per second. Not coincidentally, French power systems
also ran on an alternating current system of 50 Hz, so this was an easy thing to grab to
determine when a new character should be transmitted.

Teleprinters evolved, and eventually you have Western Union sending teleprinter "cablegrams"
all around the world. If you hear of a TELEX number, this is the relic of this system,
which is still in use at the present time, even with the Internet. By rapidly glossing over a
whole bunch of interesting history, you end up with the United States Department of Justice
(DOJ) in a lawsuit with AT&T. Mind you this was an earlier anti-trust lawsuit prior to the
famous/infamous 1982 settlement. The reason this is important is because the DOJ insisted
that Western Union got all of the digital business (cable grams... and unfortunately this got
to be read as computer equipment as well), and AT&T got modulated frequencies, or in
other words, you could talk to your mother on Mother's Day on their equipment. When
computers were being built in the 1950s, people wanted some way to connect different pieces
of computer equipment together to "talk" to each other. This finally resulted in the RS-232
standard that we are discussing on this page.

While Western Union was permitted to carry digital traffic, often the connections weren't in
or near computer centers. At this time AT&T found a loophole in the anti-trust settlement
that could help get them into the business of being a "carrier" of computer data. They were
also offering to transmit computer data at rates considerably cheaper than Western Union
was going to charge. Hence, the modem was born.

20



Baud Rates Explained

2.5.1 Modems Explained

The long description of a modem is a "Modulator/Demodulator", and this description is
important. Since AT&T could only carry "tones", like music from a radio network or the
voice of your mother, they created a device that would electronically create "music" or "tones"
that could be carried on their network. They would then take a computer "1" or "0" and
"modulate" the bit to a frequency, like say 2600 Hz. (The exact tones varied based on baud
rate and other factors, but there were exact frequency specs here.) A matching device would
be able to look for that "note" or "tone" in the "music" and be able to convert that back to a
computer "1" or "0", or in other words, demodulate the music. Since all you and your buddy
on each end of the telephone are only playing music to each other, it was legal for AT&T
to have that music on their network. That only computers could possibly understand this
music is besides the point, and the DOJ turned a blind eye on the whole practice, despite
objections from Western Union.

The original modems you could rent were AT&T Bell 103 modems. These were clunky boxes
about the size of a shoe box that had a bunch of switches on the outside and an RS-232
cable that connected to the computer equipment you were using. These boxes were designed
for the old-fashioned handset telephones and had pieces of rubber that would go around the
"speaker" and "mic" portion of the telephone (no direct copper connection to the telephone
equipment back then). If you wanted to dial the telephone, you had to use the rotary dial
on the phone itself... the computer didn't have access to that sort of equipment. Keep in
mind that the FCC regulated just about everything that happened with phone equipment,
and AT&T owned everything related to telephones. You even had to "rent" the modem from
AT&T, and that rental charge was on your monthly phone bill.

The Bell 103 was originally 110 baud, although it eventually had a switch to "move up" to 220
baud. 300 baud modems were also fairly common throughout the 1960's and 1970's. Keep in
mind that AT&T (or your local phone company) was the only company you could even rent
a modem from, whether you wanted one or not. By 1982, modems were so commonly used
and the POTS telephone network so widespread that this same system of sending "music"
over the telephone has been preserved, even though the legal reasons for doing it are no
longer valid. With the advent of ISDN and DSL lines, this is no longer the case and the
phone companies are now sending pure digital signals instead. This is also why DSL lines
can carry much more data than an ordinary phone line, even though it is the same pair of
copper wires going into your home.

When modems started going to very high speeds, they hit a brick wall of sorts. It was
decided back in the 1950's that telephone equipment would only have to carry tone signals
going to about 10kHz. For normal voice conversations this is sufficient, and you can even
tell the difference between a man and a woman on the telephone. The problem comes in
that this means the highest normal "baud rate" that you can send over a home telephone
network is about 9600 baud, usually about 4800 baud, because the telephone equipment
itself is going to be dropping "bits" as you switch from one tone to another. Without going
into the heavy math, you need to have at least one full "sound wave" in order to be able to
distinguish one tone or note from another. Modem manufacturers did think of something
else that could be done to overcome this limitation, however. Instead of just sending one
tone at a time, you could play a whole "chord", or several distinct tones at the same time.
Finally back to baud vs. bits per second. With higher speeds, instead of simply sending

21



RS-232 Connections

only one bit, you are sending two or as many as sixteen bits at the same time with varying
"chords" of "music". This is how you get a 56K BPS modem, even though it is still only
transmitting at 9600 baud.

More about modems in Serial Programming:Modems and AT Commands16.

2.6 Signal Bits

There are four sets of transmission bits that are used in the RS-232 standard. The positioning
of these bits in the RS-232 data stream is all that distinguishes one bit from the other. This
is also where serial communication really hits the "metal", because each bit follows in a
sequence, or in a serial fashion. All of the other wires, pins, baud rate, and everything else is
to make sure that these bits can be understood. Keep in mind that at this point the entire
protocol is based on the transmission of a single character. Multiple characters can be sent,
but they are a sequence of single character transmission events. How the characters relate is
based on what the software does with the data on the next protocol "layer".

2.6.1 Start Bit

When a transmission line is not sending anything, it remains in a logical state of "1", or
-15V on the wire. When you want to send a character, you start by changing the voltage
to +15V, indicating a logical "0" state. Each subsequent bit is based on the baud rate that
is established for communication between each device. This bit signals that the receiving
device should start scanning for subsequent bits to form the character.

2.6.2 Data Bits

This is the primary purpose of serial communications, where the data actually gets sent.
The number of bits here can vary quite a bit, although in current practice the number of bits
typically transmitted is eight bits. Originally this was five bits, which was all that the early
teleprinters really used to make the letters of the Alphabet and a few special characters.
This has implications for Internet protocols as well, because early e-mail systems transmitted
with only seven bits when they were connected over some RS-232 links. This worked because
the early character encoding schemes, mainly ASCII, only used seven bits to encode all
characters commonly used for the English language. Because computer components work
best on powers of 2 (2,4,8,16,32, etc.), eight bits became more commonly used for data
storage of individual characters. Unicode and other coding schemes have moved this concept
forward for languages other than English, but eight bits still is a very common unit for
transmitting data, and the most common setting for RS-232 devices today.

The least significant bit (LSB) is transmitted first in this sequence of bits to form a character.

16 http://en.wikibooks.org/wiki/Serial%20Programming%3AModems%20and%20AT%20Commands

22

http://en.wikibooks.org/wiki/Serial%20Programming%3AModems%20and%20AT%20Commands


Signal Bits

2.6.3 Parity Bit

To help perform a limited error check on the characters being transmitted, the parity bit
has been introduced. Parity can detect some transmission errors but not correct. The value
of the parity bit depends on the number of bits set to "1" in the string of data bits.

There are four different kinds of parity configuration to consider:

Odd Parity

When the sum of bits ends up coming up with an odd number (like the sequence 01110110),
this bit will be set to a logical state of "1".

Even Parity

This uses the formula of trying to determine if there are an even number of bits set to "1".
In this regard, it is the exact opposite state of the Odd Parity. For e.g., for a frame with
seven bits that has an odd number of ones, the parity bit will be set to one. So essentially,
the entire byte, including parity must have an even number of ones for even parity.

Mark Parity

Using this concept, the transmission protocol is essentially ignoring the parity bit entirely.
Instead, the transmission configuration is sending a logical "1" at the point that a parity
bit should be sent, regardless of if the sequence should have an odd or even count. This
configuration mode is useful for equipment that may want to be testing parity checking
software or firmware in the receiving equipment.

Space Parity

The opposite of Mark parity, this sends a logical "0" for the parity checksum. Again, very
useful for equipment diagnostics.

Parity None

This isn't really a parity formula, but rather an acknowledgment that parity really doesn't
work, so the equipment doesn't even check for it. This means the parity bit isn't even used.
This can cause, in some circumstances, a slight increase in the total data throughput. More
on that below.

2.6.4 Stop Bits

This really isn't a bit at all, but an agreement that once the character is sent that the
transmitting equipment will return to a logical "1" state. The RS-232 specification requires

23



RS-232 Connections

this logical state of "1" to remain for at least one whole clock cycle, indicating that the
character transmission is complete. Sometimes the protocol will specify two stop bits.
One reason that this might be done is because the clock frequencies being used by the
equipment might have slightly different timing, and over the course of hundreds or thousands
of characters being transmitted the difference between two clocks on the two different pieces
of equipment will cause the expected bits to be shifted slightly, causing errors. By having
two stop bits the transmission is slightly slower, but the clock signals between the two
pieces of equipment can be coordinated better. Equipment expecting one stop bit can
accept data transmitted by equipment sending two stop bits. It won't work the other way
around, however. This is something to try if you are having problems trying to get two
pieces of equipment to communicate at a given baud rate, to add the second stop bit to the
transmitter.

2.6.5 Data Transmission Rates

We got into a discussion of baud rate vs. bits per second. Here is where baud as the number
of bits being transmitted is still off, even if the nominal bits per second is also the same as
the baud rate. By adding start bits, stop bits, and parity bits, that is going to add overhead
to the transmission protocol. All digital transmission protocols have some sort of overhead
on them, so this shouldn't be that much of a surprise. As we get more into data packets
and other issues, the actual amount of data being transmitted will drop even further.

Keep in mind that if you are transmitting with 6 data bits, 2 Stop bits, and Even Parity,
you are transmitting only six bits of data and four other bits of extra information. That
means even with 9600 baud, you are only transmitting 5,760 bits of data per second. This
really is a big difference, and that is still only raw bits once it gets through the actual serial
communications channel. A more typical 8 data bits, 1 Stop Bit, No Parity will be a little
bit better at 9600 baud, with eight bits of data and only two bits used for overhead. That
gives a total throughput of 7,680 bits per second. A little bit better, but you can't simply
presume that the baud rate indicates how much data is going to be transmitted.

2.7 Relationship of Baud Rate to Maximum Distance

There are physical limits to how far serial data communication can occur over a piece of
wire. When you apply a voltage onto a wire it takes time for that voltage to traverse the
wire, and there are other unstable conditions that happen when you send a "pulse" down the
wire and change voltages too quickly. This problem is worse as wires become longer and the
frequency (i.e. baud rate) increases. This distance can vary based on a number of factors,
including the thickness of the wires involved, RF interference on the wires, quality of the
wires during the manufacturing process, how well they were installed... e.g., are there any
"kinks" in the wires that force it into a sharp bend, and finally the baud rate that you are
transmitting the data.

This table presumes a fairly straight and uniform cable that is typical for most low-voltage
applications (i.e., not a power circuit that uses 110V to run your refrigerator, toaster, and
television). Typically something like a CAT-5 cable (also used for local networks or phone
lines) should be more than sufficient for this purpose.

24



External References

Baud Rate Maximum Distance (in
feet)

Maximum Distance (in me-
ters)

2400 3000 914.4
4800 1000 304.8
9600 500 152.4
19200 50 15.24

The distance limitation can be mitigated. There are "short haul modems" that can extend
this distance to several miles of cable. There are also telephone lines, or conventional
modems, and other long-distance communications techniques. There are other ways to
handle data in situations like this, and those signals can be converted to simple RS-232 data
formats that a typical home computer can interpret. Distance still can be a limiting factor
for communication, although when you are talking about distances like to Saturn for the
Cassini mission, serial data communication has other issues involved than just data loss due
to cable length. And yes, NASA/ESA is using serial data communication for transmitting
those stunning images back to Earth.

2.8 External References

w:Serial cable17

• RS-232 wiring standards explained18

• RS-232 connection types explained19

• Wikipedia article on RS-23220

• RS-232 standards explained by HW-Server21

• Serial Pinouts (D25 and D9 Connectors)22 (also has more technical information about
the UARTs used in PCs)

• RS232 Connections, and wiring up serial device23 has several diagrams, including one
showing how to let one PC monitor the serial communication between 2 other RS232
devices.

• Lammert Bies, RS232 Specifications and standard24 Includes technical specs on RS-232
signals and more detailed information about parity checking.

• Tronisoft's Printable ASCII Serial Port Crib Sheets25

• jSSC library (Java Simple Serial Connector). Work under Win32 and Win6426

17 http://en.wikipedia.org/wiki/Serial%20cable
18 http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html
19 http://www.arcelect.com/rs232.htm
20 http://en.wikipedia.org/wiki/RS-232C
21 http://hw-server.com/rs232-overview-rs232-standard
22 http://www.beyondlogic.org/serial/serial.htm#2
23 http://airborn.com.au/serial/rs232.html
24 http://www.lammertbies.nl/comm/info/RS-232_specs.html
25 http://www.tronisoft.com/rs232info/ASCII_serial_port_crib_sheets.pdf
26 http://code.google.com/p/java-simple-serial-connector/

25

http://en.wikipedia.org/wiki/Serial%20cable
http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html
http://www.arcelect.com/rs232.htm
http://en.wikipedia.org/wiki/RS-232C
http://hw-server.com/rs232-overview-rs232-standard
http://www.beyondlogic.org/serial/serial.htm#2
http://airborn.com.au/serial/rs232.html
http://www.lammertbies.nl/comm/info/RS-232_specs.html
http://www.tronisoft.com/rs232info/ASCII_serial_port_crib_sheets.pdf
http://code.google.com/p/java-simple-serial-connector/


RS-232 Connections

2.9 Other Serial Programming Articles

Typical RS232-Hardware Configuration27

Category:Serial Programming28

27 http://en.wikibooks.org/wiki/Serial%20Programming%3ATypical%20RS232-Hardware%
20Configuration

28 http://en.wikibooks.org/wiki/Category%3ASerial%20Programming

26

http://en.wikibooks.org/wiki/Serial%20Programming%3ATypical%20RS232-Hardware%20Configuration
http://en.wikibooks.org/wiki/Serial%20Programming%3ATypical%20RS232-Hardware%20Configuration
http://en.wikibooks.org/wiki/Category%3ASerial%20Programming


3 8250 UART Programming

3.1 Introduction

Finally we are moving away from wires and voltages and hard-core electrical engineering
applications, although we still need to know quite a bit regarding computer chip architectures
at this level. While the primary focus of this section will concentrate on the 8250 UART,
there are really three computer chips that we will be working with here:

• 8250 UART
• 8259 PIC (Programmable Interrupt Controller)
• 8086 CPU (Central Processing Unit)

Keep in mind that these are chip families, not simply the chip part number itself. Computer
designs have evolved quite a bit over the years, and often all three chips are put onto the
same piece of silicon because they are tied together so much, and to reduce overall costs of
the equipment. So when I say 8086, I also mean the successor chips including the 80286,
80386, Pentium, and compatible chips made by manufacturers other than Intel. There are
some subtle differences and things you need to worry about for serial data communication
between the different chips other than the 8086, but in many cases you could in theory write
software for the original IBM PC doing serial communication and it should run just fine on
a modern computer you just bought that is running the latest version of Linux or Windows
XP.

Modern operating systems handle most of the details that we will be covering here through
low-level drivers, so this should be more of a quick understanding for how this works rather
than something you might implement yourself, unless you are writing your own operating
system. For people who are designing small embedded computer devices, it does become
quite a bit more important to understand the 8250 at this level.

Just like the 8086, the 8250 has evolved quite a bit as well, e.g. into the 16550 UART.
Further down I will go into how to detect many of the different UART chips on PCs, and
some quirks or changes that affect each one. The differences really aren't as significant as
the changes to CPU architecture, and the primary reason for updating the UART chip was
to make it work with the considerably faster CPUs that are around right now. The 8250
itself simply can't keep up with a Pentium chip.

Remember as well that this is trying to build a foundation for serial programming on the
software side. While this can be useful for hardware design as well, quite a bit will be
missing from the descriptions here to implement a full system.

27



8250 UART Programming

3.2 8086 I/O ports

We should go back even further than the Intel 8086, to the original Intel CPU, the 4004, and
its successor, the 8008. All computer instructions, or op-codes, for the 8008 still function in
today's Intel chips, so even port I/O tutorials written 30 years ago are valid today. The
newer CPUs have enhanced instructions for dealing with more data more efficiently, but the
original instructions are still there.

When the 8008 was released, Intel tried to devise a method for the CPU to communicate
with external devices. They chose a method called I/O port architecture, meaning that the
chip has a special set of pins dedicated to communicating with external devices. In the 8008,
this meant that there were a total of sixteen (16) pins dedicated to communicating with the
chip. The exact details varied based on chip design and other factors too detailed for the
current discussion, but the general theory is fairly straightforward.

Eight of the pins represent an I/O code that signaled a specific device. This is known as
the I/O port. Since this is just a binary code, it represents the potential to hook up 256
different devices to the CPU. It gets a little more complicated than that, but still you can
think of it from software like a small-town post-office that has a bank of 256 PO boxes for
its customers.

The next set of pins represent the actual data being exchanged. You can think of this as the
postcards being put into or removed from the PO boxes.

All the external device has to do is look for its I/O code, and then when it matches what it
is "assigned" to look for, it has control over the corresponding port. An pin signals whether
the data is being sent to or from the CPU. For those familiar with setting up early PCs, this
is also where I/O conflicts happen: when two or more devices try to access the same I/O
port at the same time. This was a source of heartburn on those early systems, particularly
when adding new equipment.

Incidentally, this is very similar to how conventional RAM works, and some CPU designs
mimic this whole process straight in RAM, reserving a block of memory for I/O control.
This has some problems, including the fact that it chews up a portion of potential memory
that could be used for software instead. It ends up that with the IBM PC and later PC
systems, both I/O methods are used extensively, so it really gets complicated. For serial
communication, however, we are going to stick with the port I/O method, as that is how
the 8250 chip works.

3.2.1 Software I/O access

When you get down to actually using this in your software, the assembly language instruction
to send or receive data to port 9 looks something like this:

out 9, ah ; sending data from register ah out to port 9
in ah, 9 ; getting data from port 9 and putting it in register ah

When programming in higher level languages, it gets a bit simpler. A typical C language
Port I/O library is usually written like this:

28



8086 I/O ports

char test;

test = 255;
outp(9,test);
inp(9,*test);

For many versions of Pascal, it treats the I/O ports like a massive array that you can access,
that is simply named Port:

procedure PortIO(var Test: Byte);
begin
Port[9] := Test;
Test := Port[9];

end;

Warning!! And this really is a warning. By randomly accessing I/O ports in your computer
without really knowing what it is connected to can really mess up your computer. At the
minimum, it will crash the operating system and cause the computer to not work. Writing
to some I/O ports can permanently change the internal configuration of your computer,
making a trip to the repair shop necessary just to undo the damage you've done through
software. Worse yet, in some cases it can cause actual damage to the computer. This means
that some chips inside the computer will no longer work and those components would have
to be replaced in order for the computer to work again. Damaged chips are an indication of
lousy engineering on the part of the computer, but unfortunately it does happen and you
should be aware of it.

Don't be afraid to use the I/O ports, just make sure you know what you are writing to, and
you know what equipment is "mapped" to for each I/O port if you intend to use a particular
I/O port. We will get into more of the specifics for how to identify the I/O ports for serial
communication in a bit. Finally we are starting to write a little bit of software, and there is
more to come.

3.2.2 x86 port I/O extensions

There are a few differences between the 8008 CPU and the 8086. The most notable that
affects software development is that instead of just 256 port I/O addresses, the 8086 can
access 65536 different I/O ports. In addition, besides simply sending a single character in
or out, the 8086 will let you send and receive 16 bits at once. The 386 chips will even let
you send and receive 32-bits simultaneously. The need for more than 65536 different I/O
ports has never been a serious problem, and if a device needed a larger piece of memory, the
Direct Memory Access (DMA) methods are available. This is where the device writes and
reads the RAM of the computer directly instead of going through the CPU. We will not
cover that topic here.

Also, while the 8086 CPU was able to address 65536 different I/O ports, in actual practice
it didn't. The chip designers at Intel got cheap and only had address lines for 10 bits, which
has implications for software designers having to work with legacy systems. This also meant
that I/O port address $1E8 and $19E8 (and others... this is just an example) would resolve
to the same I/O port for those early PCs. The Pentium CPUs don't have this limitation,

29



8250 UART Programming

but software written for some of that early hardware sometimes wrote to I/O port addresses
that were "aliased" because those upper bits were ignored. There are other legacy issues that
show up, but fortunately for the 8250 chip and serial communications in general this isn't
a concern, unless you happen to have a serial driver that "took advantage" of this aliasing
situation. This issue would generally only show up when you are using more than the typical
2 or 4 serial COM ports on a PC.

3.3 x86 Processor Interrupts

The 8086 CPU and compatible chips have what is known as an interrupt line. This is
literally a wire to the rest of the computer that can be turned on to let the CPU know that
it is time to stop whatever it is doing and pay attention to some I/O situations.

Within the 8086, there are two kinds of interrupts: Hardware interrupts and Software
interrupts. There are some interesting quirks that are different from each kind, but from
a software perspective they are essentially the same thing. The 8086 CPU allows for 256
interrupts, but the number available for equipment to perform a Hardware interrupt is
considerably restricted.

3.3.1 IRQs Explained

Hardware interrupts are numbered IRQ 0 through IRQ 15. IRQ means Interrupt ReQuest.
There are a total of fifteen different hardware interrupts. Before you think I don't know how
to count or do math, we need to do a little bit of a history lesson here, which we will finish
when we move on to the 8259 chip. When the original IBM-PC was built, it only had eight
IRQs, labeled IRQ 0 through IRQ 7. At the time it was felt that was sufficient for almost
everything that would ever be put on a PC, but very soon it became apparent it wasn't
nearly enough for everything that was being added. When the IBM-PC/AT was made (the
first one with the 80286 CPU, and a number of enhancements that are commonly found on
PCs today), it was decided that instead of a single 8259 chip, they would use two of these
same chips, and "chain" them to one another in order to expand the number of interrupts
from 8 to 15. One IRQ had to be sacrificed in order to accomplish this task, and that was
IRQ 2.

The point here is that if a device wants to notify the CPU that it has some data ready for
the CPU, it sends a signal that it wants to stop whatever software is currently running on
the computer and instead run a special "little" program called an interrupt handler. Once
the interrupt handler is finished, the computer can go back to whatever it was doing before.
If the interrupt handler is fast enough, you wouldn't even notice that the handler has even
been used.

In fact, if you are reading this text on a PC, in the time that it takes for you to read this
sentence several interrupt handlers have already been used by your computer. Every time
that you use a keyboard or a mouse, or receive some data over the Internet, an interrupt
handler has been used at some point in your computer to retrieve that information.

30



x86 Processor Interrupts

3.3.2 Interrupt handlers

We will be getting into specific details of interrupt handlers in a little bit, but now I want to
explain just what they are. Interrupt handlers are a method of showing the CPU exactly
what piece of software should be running when the interrupt is triggered.

The 8086 CPU has a portion of RAM that has been established that "points" to where the
interrupt software is located elsewhere in RAM. The advantage of going this route is that the
CPU only has to do a simple look-up to find just where the software is, and then transfers
software execution to that point in RAM. This also allows you as a programmer to change
where the CPU is "pointing" to in RAM, and instead of going to something in the operating
system, you can customize the interrupt handler and put something else there yourself.

How this is best done depends largely on your operating system. For a simple operating
system like MS-DOS, it actually encourages you to directly write these interrupt handlers,
particularly when you are working with external peripherals. Other operating systems
like Linux or MS-Windows use the approach of having a "driver" that hooks into these
interrupt handlers or service routines, and then the application software deals with the
drivers rather than dealing directly with the equipment. How a program actually does this
is very dependent on the specific operating system you would be using. If you are instead
trying to write your own operating system, you would have to write these interrupt handlers
directly, and establish the protocol on how you access these handlers to send and retrieve
data.

3.3.3 Software interrupts

Before we move on, I want to hit very briefly on software interrupts. Software interrupts are
invoked with the 8086 assembly instruction "int", as in:

int $21

From the perspective of a software application, this is really just another way to call a
subroutine, but with a twist. The "software" that is running in the interrupt handler doesn't
have to be from the same application, or even made from the same compiler. Indeed, often
these subroutines are written directly in assembly language. In the above example, this
interrupt actually calls a "DOS" subroutine that will allow you to perform some sort of I/O
access that is directly related to DOS. Depending on the values of the registers, usually the
AX register in the 8086 in this case, it can determine just what information you want to
get from DOS, such as the current time, date, disk size, and just about everything that
normally you would associate with DOS. Compilers often hide these details, because setting
up these interrupt routines can be a little tricky.

Now to really make a mess of things. "Hardware interrupts" can also be called from "software
interrupts", and indeed this is a reasonable way to make sure you have written your software
correctly. The difference here is that software interrupts will only be invoked, or have their
portion of software code running in the CPU, if it has been explicitly called through this
assembly opcode.

31



8250 UART Programming

3.4 8259 PIC (Programmable Interrupt Controller)

The 8259 chip is the "heart" of the whole process of doing hardware interrupts. External
devices are directly connected to this chip, or in the case of the PC-AT compatibles (most
likely what you are most familiar with for a modern PC) it will have two of these devices
that are connected together. Literally fifteen wires come into this pair of chips, each wire
labeled IRQ-0 through IRQ-15.

The purpose of these chips is to help "prioritize" the interrupt signals and organize them in
some orderly fashion. There is no way to predict when a certain device is going to "request"
an interrupt, so often multiple devices can be competing for attention from the CPU.

Generally speaking, the lower numbered IRQ gets priority. In other words, if both IRQ-1 and
IRQ-4 are requesting attention at the same time, IRQ-1 gets priority and will be triggered
first as far as the CPU is concerned. IRQ-4 has to wait until after IRQ-1 has completed its
"Interrupt Service Routine" or ISR.

If the opposite happens however, with IRQ-4 doing its ISR (remember, this is software, just
like any computer program you might normally write as a computer application), IRQ-1 will
"interrupt" the ISR for IRQ-4 and push through its own ISR to be run instead, returning
to the IRQ-4 ISR when it has finished. There are exceptions to this as well, but let's keep
things simple at the moment.

Let's return for a minute to the original IBM-PC. When it was built, there was only one
8259 chip on the motherboard. When the IBM-AT came out the engineers at IBM decided
to add a second 8259 chip to add some additional IRQ signals. Since there was still only 1
pin on the CPU (at this point the 80286) that could receive notification of an interrupt, it
was decided to grab IRQ-2 from the original 8259 chip and use that to chain onto the next
chip. IRQ-2 was re-routed to IRQ-9 as far as any devices that depended on IRQ-2. The
nice thing about going with this scheme was that software that planned on something using
IRQ-2 would still be "notified" when that device was used, even though seven other devices
were now "sharing" this interrupt. These are IRQ-8 through IRQ-15.

What this means in terms of priorities, however, is that IRQ-8 through IRQ-15 have a higher
priority than IRQ-3. This is mainly of concern when you are trying to sort out which device
can take precedence over another, and how important it would be to notified when a piece
of equipment is trying to get your attention. If you are dealing with software running a
specific computer configuration, this priority level is very important.

It should be noted here that COM1 (serial communication channel one) usually uses IRQ-4,
and COM2 uses IRQ-3, which has the net effect of making COM2 to be a higher priority
for receiving data over COM1. Usually the software really doesn't care, but on some rare
occasions you really need to know this fact.

3.4.1 8259 Registers

The 8259 has several "registers" that are associated with I/O port addresses. We will visit
this concept a little bit more when we get to the 8250 chip. For a typical PC Computer
system, the following are typical primary port addresses associated with the 8259:

32



8259 PIC (Programmable Interrupt Controller)

Interrupt Controller Port I/O Addresses
Register Name I/O Port
Master Interrupt Controller $0020
Slave Interrupt Controller $00A0

This primary port address is what we will use to directly communicate with the 8259 chip
in our software. There are a number of commands that can be sent to this chip through
these I/O port addresses, but for our purposes we really don't need to deal with them. Most
of these are used to do the initial setup and configuration of the computer equipment by
the Basic Input Output System (BIOS) of the computer, and unless you are rewriting the
BIOS from scratch, you really don't have to worry about this. Also, each computer is a
little different in its behavior when you are dealing with equipment at this level, so this
is something more for a computer manufacturer to worry about rather than something an
application programmer should have to deal with, which is exactly why BIOS software is
written at all.

Keep in mind that this is the "typical" Port I/O address for most PC-compatible type
computer systems, and can vary depending on what the manufacturer is trying to accomplish.
Generally you don't have to worry about incompatibility at this level, but when we get to
Port I/O addresses for the serial ports this will become a much larger issue.

3.4.2 Device Registers

I'm going to spend a little time here to explain the meaning of the word register. When you
are working with equipment at this level, the electrical engineers who designed the equipment
refer to registers that change the configuration of the equipment. This can happen at several
levels of abstraction, so I want to clear up some of the confusion.

A register is simply a small piece of RAM that is available for a device to directly manipulate.
In a CPU like the 8086 or a Pentium, these are the memory areas that are used to directly
perform mathematical operations like adding two numbers together. These usually go by
names like AX, SP, etc. There are very few registers on a typical CPU because access to
these registers is encoded directly into the basic machine-level instructions.

When we are talking about device register, keep in mind these are not the CPU registers,
but instead memory areas on the devices themselves. These are often designed so they
are connected to the Port I/O memory, so when you write to or read from the Port I/O
addresses, you are directly accessing the device registers. Sometimes there will be a further
level of abstraction, where you will have one Port I/O address that will indicate which
register you are changing, and another Port I/O address that has the data you are sending
to that register. How you deal with the device is based on how complex it is and what you
are going to be doing.

In a real sense, they are registers, but keep in mind that often each of these devices can be
considered a full computer in its own right, and all you are doing is establishing how it will
be communicating with the main CPU. Don't get hung up here and get these confused with
the CPU registers.

33



8250 UART Programming

3.4.3 ISR Cleanup

One area that you have to interact on a regular basis when using interrupt controllers is to
inform the 8259 PIC controller that the interrupt service routine is completed. When your
software is performing an interrupt handler, there is no automated method for the CPU
to signal to the 8259 chip that you have finished, so a specific "register" in the PIC needs
to be set to let the next interrupt handler be able to access the computer system. Typical
software to accomplish this is like the following:

Port[$20] := $20;

This is sending the command called "End of Interrupt" or often written as an abbreviation
simply "EOI". There are other commands that can be sent to this register, but for our
purposes this is the only one that we need to concern ourselves with.

Now this will clear the "master" PIC, but if you are using a device that is triggered on the
"slave" PIC, you also need to inform that chip as well that the interrupt service has been
completed. This means you need to send "EOI" to that chip as well in a manner like this:

Port[$A0] := $20;
Port[$20] := $20;

There are other things you can do to make your computer system work smoothly, but let's
keep things simple for now.

3.4.4 PIC Device Masking

Before we leave the subject of the 8259 PIC, I'd like to cover the concept of device masking.
Each one of the devices that are attached to the PIC can be "turned on" or "turned off"
from the viewpoint of how they can interrupt the CPU through the PIC chip. Usually as an
application developer all we really care about is if the device is turned on, although if you
are trying to isolate performance issues you might turn off some other devices. Keep in mind
that if you turn a device "off", the interrupt will not work until it is turned back on. That
can include the keyboard or other critical devices you may need to operate your computer.

The register to set this mask is called "Operation Control Word 1" or "OCW1". This is
located at the PIC base address + 1, or for the "Master" PIC at Port I/O Address $21.
This is where you need to go over bit manipulation, which I won't cover in detail here. The
following tables show the related bits to change in order to enable or disable each of the
hardware interrupt devices:

Master OCW1 ($21)
Bit IRQ Enabled Device Function
7 IRQ7 Parallel Port (LPT1)
6 IRQ6 Floppy Disk Controller
5 IRQ5 Reserved/Sound Card
4 IRQ4 Serial Port (COM1)
3 IRQ3 Serial Port (COM2)

34



Serial COM Port Memory and I/O Allocation

Master OCW1 ($21)
Bit IRQ Enabled Device Function
2 IRQ2 Slave PIC
1 IRQ1 Keyboard
0 IRQ0 System Timer

Slave OCW1 ($A1)
Bit IRQ Enabled Device Function
7 IRQ15 Reserved
6 IRQ14 Hard Disk Drive
5 IRQ13 Math Co-Processor
4 IRQ12 PS/2 Mouse
3 IRQ11 PCI Devices
2 IRQ10 PCI Devices
1 IRQ9 Redirected IRQ2 Devices
0 IRQ8 Real Time Clock

Assuming that we want to turn on IRQ3 (typical for the serial port COM2), we would use
the following software:

Port[$21] := Port[$21] and $F7; {Clearing bit 3 for enabling IRQ3}

And to turn it off we would use the following software:

Port[$21] := Port[$21] or $08; {Setting bit 3 for disabling IRQ3}

If you are having problems getting anything to work, you can simply send this command in
your software:

Port[$21] := 0;

which will simply enable everything. This may not be a good thing to do, but will have to
be something for you to experiment with depending on what you are working with. Try not
to take short cuts like this as not only is it a sign of a lazy programmer, but it can have
side effects that your computer may behave different than you intended. If you are working
with the computer at this level, the goal is to change as little as possible so you don't cause
damage to any other software you are using.

3.5 Serial COM Port Memory and I/O Allocation

Now that we have pushed through the 8259 chip, lets move on to the UART itself. While the
Port I/O addresses for the PICs are fairly standard, it is common for computer manufacturers
to move stuff around for the serial ports themselves. Also, if you have serial port devices
that are part of an add-in card (like an ISA or PCI card in the expansion slots of your
computer), these will usually have different settings than something built into the main

35



8250 UART Programming

motherboard of your computer. It may take some time to hunt down these settings, and
it is important to know what these values are when you are trying to write your software.
Often these values can be found in the BIOS setup screens of your computer, or if you can
pause the messages when your computer turns on, they can be found as a part of the boot
process of your computer.

For a "typical" PC system, the following are the Port I/O addresses and IRQs for each serial
COM port:

Common UART IRQ and I/O Port Addresses
COM Port IRQ Base Port I/O address
COM1 IRQ4 $3F8
COM2 IRQ3 $2F8
COM3 IRQ4 $3E8
COM4 IRQ3 $2E8

If you notice something interesting here, you can see that COM3 and COM1 share the same
interrupt. This is not a mistake but something you need to keep in mind when you are
writing an interrupt service routine. The 15 interrupts that were made available through
the 8259 PIC chips still have not been enough to allow all of the devices that are found on a
modern computer to have their own separate hardware interrupt, so in this case you will
need to learn how to share the interrupt with other devices. I'll cover more of that later
when we get into the actual software to access the serial data ports, but for now remember
not to write your software strictly for one device.

The Base Port I/O address is important for the next topic we will cover, which is directly
accessing the UART registers.

3.6 UART Registers

The UART chip has a total of 12 different registers that are mapped into 8 different Port
I/O locations. Yes, you read that correct, 12 registers in 8 locations. Obviously that means
there is more than one register that uses the same Port I/O location, and affects how the
UART can be configured. In reality, two of the registers are really the same one but in a
different context, as the Port I/O address that you transmit the characters to be sent out of
the serial data port is the same address that you can read in the characters that are sent to
the computer. Another I/O port address has a different context when you write data to it
than when you read data from it... and the number will be different after writing the data
to it than when you read data from it. More on that in a little bit.

One of the issues that came up when this chip was originally being designed was that the
designer needed to be able to send information about the baud rate of the serial data with
16 bits. This actually takes up two different "registers" and is toggled by what is called the
"Divisor Latch Access Bit" or "DLAB". When the DLAB is set to "1", the baud rate registers
can be set and when it is "0" the registers have a different context.

Does all this sound confusing? It can be, but lets take it one simple little piece at a time.
The following is a table of each of the registers that can be found in a typical UART chip:

36



UART Registers

UART Registers
Base Ad-
dress

DLAB I/O Ac-
cess

Abbrv. Register Name

+0 0 Write THR Transmitter Holding
Buffer

+0 0 Read RBR Receiver Buffer
+0 1 Read/Write DLL Divisor Latch Low Byte
+1 0 Read/Write IER Interrupt Enable Regis-

ter
+1 1 Read/Write DLH Divisor Latch High Byte
+2 x Read IIR Interrupt Identification

Register
+2 x Write FCR FIFO Control Register
+3 x Read/Write LCR Line Control Register
+4 x Read/Write MCR Modem Control Regis-

ter
+5 x Read LSR Line Status Register
+6 x Read MSR Modem Status Register
+7 x Read/Write SR Scratch Register

The "x" in the DLAB column means that the status of the DLAB has no effect on what
register is going to be accessed for that offset range. Notice also that some registers are
Read only. If you attempt to write data to them, you may end up with either some problems
with the modem (worst case), or the data will simply be ignored (typically the result). As
mentioned earlier, some registers share a Port I/O address where one register will be used
when you write data to it and another register will be used to retrieve data from the same
address.

Each serial communication port will have its own set of these registers. For example, if you
wanted to access the Line Status Register (LSR) for COM1, and assuming the base I/O
Port address of $3F8, the I/O Port address to get the information in this register would be
found at $3F8 + $05 or $3FD. Some example code would be like this:

const
COM1_Base = $3F8;
COM2_Base = $2F8;
LSR_Offset = $05;

function LSR_Value: Byte;
begin
Result := Port[COM1_Base+LSR_Offset];

end;

There is quite a bit of information packed into each of these registers, and the following is
an explanation for the meaning of each register and the information it contains.

3.6.1 Transmitter Holding Buffer/Receiver Buffer

Offset: +0 . The Transmit and Receive buffers are related, and often even use the very same
memory. This is also one of the areas where later versions of the 8250 chip have a significant

37



8250 UART Programming

impact, as the later models incorporate some internal buffering of the data within the chip
before it gets transmitted as serial data. The base 8250 chip can only receive one byte at a
time, while later chips like the 16550 chip will hold up to 16 bytes either to transmit or to
receive (sometimes both... depending on the manufacturer) before you have to wait for the
character to be sent. This can be useful in multi-tasking environments where you have a
computer doing many things, and it may be a couple of milliseconds before you get back to
dealing with serial data flow.

These registers really are the "heart" of serial data communication, and how data is transferred
from your software to another computer and how it gets data from other devices. Reading
and Writing to these registers is simply a matter of accessing the Port I/O address for the
respective UART.

3.6.2 Divisor Latch Bytes

Offset: +0 and +1 . The Divisor Latch Bytes are what control the baud rate of the modem.
As you might guess from the name of this register, it is used as a divisor to determine what
baud rate that the chip is going to be transmitting at.

In reality, it is even simpler than that. This is really a count-down clock that is used each
time a bit is transmitted by the UART. Each time a bit is sent, a count-down register is reset
to this value and then counts down to zero. This clock is running typically at 115.2 KHz.
In other words, at 115 thousand times per second a counter is going down to determine
when to send the next bit. At one time during the design process it was anticipated that
some other frequencies might be used to get a UART working, but with the large amount of
software already written for this chip this frequency is pretty much standard for almost all
UART chips used on a PC platform. They may use a faster clock in some portion (like a
1.843 MHz clock), but some fraction of that frequency will then be used to scale down to a
115.2 KHz clock.

Some more on UART clock speeds (advanced coverage): For many UART chips, the clock
frequency that is driving the UART is 1.8432 MHz. This frequency is then put through a
divider circuit that drops the frequency down by a factor of 16, giving us the 115.2 KHz
frequency mentioned above. If you are doing some custom equipment using this chip, the
National Semiconductor spec sheets allow for a 3.072 MHz clock and 18.432 MHz clock.
These higher frequencies will allow you to communicate at higher baud rates, but require
custom circuits on the motherboard and often new drivers in order to deal with these new
frequencies. What is interesting is that you can still operate at 50 baud with these higher
clock frequencies, but at the time the original IBM-PC/XT was manufactured this wasn't a
big concern as it is now for higher data throughput.

If you use the following mathematical formula, you can determine what numbers you need
to put into the Divisor Latch Bytes:

DivisorLatchV alue = 115200
BaudRate

That gives you the following table that can be used to determine common baud rates for
serial communication:

38



UART Registers

Divisor Latch Byte Values (common baud rates)
Baud
Rate

Divisor (in deci-
mal)

Divisor Latch
High Byte

Divisor Latch
Low Byte

50 2304 $09 $00
110 1047 $04 $17
220 524 $02 $0C
300 384 $01 $80
600 192 $00 $C0
1200 96 $00 $60
2400 48 $00 $30
4800 24 $00 $18
9600 12 $00 $0C
19200 6 $00 $06
38400 3 $00 $03
57600 2 $00 $02
115200 1 $00 $01

One thing to keep in mind when looking at the table is that baud rates 600 and above all
set the Divisor Latch High Byte to zero. A sloppy programmer might try to skip setting
the high byte, assuming that nobody would deal with such low baud rates, but this is not
something to always presume. Good programming habits suggest you should still try to set
this to zero even if all you are doing is running at higher baud rates.

Another thing to notice is that there are other potential baud rates other than the standard
ones listed above. While this is not encouraged for a typical application, it would be
something fun to experiment with. Also, you can attempt to communicate with older
equipment in this fashion where a standard API library might not allow a specific baud rate
that should be compatible. This should demonstrate why knowledge of these chips at this
level is still very useful.

When working with these registers, also remember that these are the only ones that require
the Divisor Latch Access Bit to be set to "1". More on that below, but I'd like to mention
that it would be useful for application software setting the baud rate to set the DLAB to "1"
just for the immediate operation of changing the baud rate, then putting it back to "0" as
the very next step before you do any more I/O access to the modem. This is just a good
working habit, and keeps the rest of the software you need to write for accessing the UART
much cleaner and easier.

One word of caution: Do not set the value "0" for both Divisor Latch bytes. While it will
not (likely) damage the UART chip, the behavior on how the UART will be transmitting
serial data will be unpredictable, and will change from one computer to the next, or even
from one time you boot the computer to the next. This is an error condition, and if you are
writing software that works with baud rate settings on this level you should catch potential
"0" values for the Divisor Latch.

Here is some sample software to set and retrieve the baud rate for COM1:

const
COM1_Base = $3F8;
COM2_Base = $2F8;

39



8250 UART Programming

LCR_Offset = $03;
Latch_Low = $00;
Latch_High = $01;

procedure SetBaudRate(NewRate: Word);
var

DivisorLatch: Word;
begin
DivisorLatch := 115200 div NewRate;
Port[COM1_Base + LCR_Offset] := Port[COM1_Base + LCR_Offset] or
$80; {Set DLAB}
Port[COM1_Base + Latch_High] := DivisorLatch shr 8;
Port[COM1_Base + Latch_Low] := DivisorLatch and $FF;
Port[COM1_Base + LCR_Offset] := Port[COM1_Base + LCR_Offset] and
$7F; {Clear DLAB}
end;

function GetBaudRate: Integer;
var

DivisorLatch: Word;
begin
Port[COM1_Base + LCR_Offset] := Port[COM1_Base + LCR_Offset] or
$80; {Set DLAB}
DivisorLatch := (Port[COM1_Base + Latch_High] shl 8) +
Port[COM1_Base + Latch_Low];
Port[COM1_Base + LCR_Offset] := Port[COM1_Base + LCR_Offset] and
$7F; {Clear DLAB}
Result := 115200 div DivisorLatch;

end;

3.6.3 Interrupt Enable Register

Offset: +1 . This register allows you to control when and how the UART is going to trigger
an interrupt event with the hardware interrupt associated with the serial COM port. If
used properly, this can enable an efficient use of system resources and allow you to react
to information being sent across a serial data line in essentially real-time conditions. Some
more on that will be covered later, but the point here is that you can use the UART to let
you know exactly when you need to extract some data. This register has both read- and
write-access.

The following is a table showing each bit in this register and what events that it will enable
to allow you check on the status of this chip:

Interrupt Enable Register (IER)
Bit Notes
7 Reserved
6 Reserved
5 Enables Low Power Mode (16750)
4 Enables Sleep Mode (16750)
3 Enable Modem Status Interrupt
2 Enable Receiver Line Status Interrupt
1 Enable Transmitter Holding Register Empty Interrupt
0 Enable Received Data Available Interrupt

40



UART Registers

The Received Data interrupt is a way to let you know that there is some data waiting for
you to pull off of the UART. This is probably the one bit that you will use more than the
rest, and has more use.

The Transmitter Holding Register Empty Interrupt is to let you know that the output buffer
(on more advanced models of the chip like the 16550) has finished sending everything that
you pushed into the buffer. This is a way to streamline the data transmission routines so
they take up less CPU time.

The Receiver Line Status Interrupt indicates that something in the LSR register has probably
changed. This is usually an error condition, and if you are going to write an efficient error
handler for the UART that will give plain text descriptions to the end user of your application,
this is something you should consider. This is certainly something that takes a bit more
advanced knowledge of programming.

The Modem Status Interrupt is to notify you when something changes with an external
modem connected to your computer. This can include things like the telephone "bell" ringing
(you can simulate this in your software), that you have successfully connected to another
modem (Carrier Detect has been turned on), or that somebody has "hung up" the telephone
(Carrier Detect has turned off). It can also help you to know if the external modem or data
equipment can continue to receive data (Clear to Send). Essentially, this deals with the
other wires in the RS-232 standard other than strictly the transmit and receive wires.

The other two modes are strictly for the 16750 chip, and help put the chip into a "low
power" state for use on things like a laptop computer or an embedded controller that has
a very limited power source like a battery. On earlier chips you should treat these bits as
"Reserved", and only put a "0" into them.

3.6.4 Interrupt Identification Register

Offset: +2 . This register is to be used to help identify what the unique characteristics of
the UART chip that you are using has. This chip has two uses:

• Identification of why the UART triggered an interrupt.
• Identification of the UART chip itself.

Of these, identification of why the interrupt service routine has been invoked is perhaps the
most important.

The following table explains some of the details of this register, and what each bit on it
represents:

41



8250 UART Programming

In
te
rr
up

t
Id
en
ti
fic

at
io
n
R
eg
is
te
r
(I
IR

)
B
it

N
ot
es

7
an

d
6

B
it
7

B
it
6

0
0

N
o
FI

FO
on

ch
ip

0
1

R
es
er
ve
d
co
nd

iti
on

1
0

FI
FO

en
ab

le
d,

bu
t
no

t
fu
nc

tio
ni
ng

1
1

FI
FO

en
ab

le
d

5
64

B
yt
e
FI

FO
En

ab
le
d
(1
67

50
on

ly
)

4
R
es
er
ve
d

3,
2
an

d
1

B
it
3

B
it
2

B
it
1

R
es
et

M
et
ho

d
0

0
0

M
od

em
St
at
us

In
te
rr
up

t
R
ea
di
ng

M
o-

de
m

St
at
us

R
eg
is-

te
r(
M
SR

)
0

0
1

Tr
an

sm
itt

er
H
ol
di
ng

R
eg
ist

er
E
m
pt
y
In
te
r-

ru
pt

R
ea
di
ng

In
te
rr
up

t
Id
en
tifi

ca
tio

n
R
eg
is-

te
r(
II
R
)
or

W
rit

in
g
to

Tr
an

sm
it

H
ol
di
ng

B
uff

er
(T

H
R
)

0
1

0
R
ec
ei
ve
d
D
at
a
Av

ai
la
bl
e
In
te
rr
up

t
R
ea
di
ng

R
e-

ce
iv
e
B
uff

er
R
eg
is-

te
r(
R
B
R
)

0
1

1
R
ec
ei
ve
r
Li
ne

St
at
us

In
te
rr
up

t
R
ea
di
ng

Li
ne

St
at
us

R
eg
ist

er
(L

SR
)

1
0

0
R
es
er
ve
d

N
/A

1
0

1
R
es
er
ve
d

N
/A

1
1

0
T
im

e-
ou

t
In
te
rr
up

t
Pe

nd
in
g
(1
65

50
&

la
te
r)

R
ea
di
ng

R
e-

ce
iv
e
B
uff

er
R
eg
is-

te
r(
R
B
R
)

1
1

1
R
es
er
ve
d

N
/A

0
In
te
rr
up

t
Pe

nd
in
g
Fl
ag

42



UART Registers

When you are writing an interrupt handler for the 8250 chip (and later), this is the register
that you need to look at in order to determine what exactly was the trigger for the interrupt.

As explained earlier, multiple serial communication devices can share the same hardware
interrupt. The use of "Bit 0" of this register will let you know (or confirm) that this was
indeed the device that caused the interrupt. What you need to do is check on all serial
devices (that are in separate port I/O address spaces), and get the contents of this register.
Keep in mind that it is at least possible for more than one device to trigger an interrupt at
the same time, so when you are doing this scanning of serial devices, make sure you examine
all of them, even one of the first devices did in fact need to be processed. Some computer
systems may not require this to occur, but this is a good programming practice anyway. It
is also possible that due to how you processed the UARTs earlier, that you have already
dealt with all of the UARTs for a given interrupt. When this bit is a "0", it identifies that
the UART is triggering an interrupt. When it is "1", that means the interrupt has already
been processed or this particular UART was not the triggering device. I know that this
seems a little bit backward for a typical bit-flag used in computers, but this is called digital
logic being asserted low, and is fairly common with electrical circuit design. This is a bit
more unusual through for this logic pattern to go into the software domain.

Bits 1, 2 & 3 help to identify exactly what sort of interrupt event was used within the
UART to invoke the hardware interrupt. These are the same interrupts that were earlier
enabled with the IER register. In this case, however, each time you process the registers
and deal with the interrupt it will be unique. If multiple "triggers" occur for the UART
due to many things happening at the same time, this will be invoked through multiple
hardware interrupts. Earlier chip sets don't use bit 3, but this is a reserved bit on those
UART systems and always set to logic state "0", so programming logic doesn't have to be
different when trying to decipher which interrupt has been used.

To explain the FIFO timeout Interrupt, this is a way to check for the end of a packet or if
the incoming data stream has stopped. Generally the following conditions must exist for
this interrupt to be triggered: Some data needs to be in the incoming FIFO and has not
been read by the computer. Data transmissions being sent to the UART via serial data link
must have ended with no new characters being received. The CPU processing incoming
data must not have retrieved any data from the FIFO before the timeout has occurred. The
timeout will occur usually after the period it would take to transmit or receive at least 4
characters. If you are talking about data sent at 1200 baud, 8 data bits, 2 stop bits, odd
parity, that would take about 40 milliseconds, which is almost an eternity in terms of things
that your computer can accomplish on a 4 GHz Pentium CPU.

The "Reset Method" listed above describes how the UART is notified that a given interrupt
has been processed. When you access the register mentioned under the reset method, this
will clear the interrupt condition for that UART. If multiple interrupts for the same UART
have been triggered, either it won't clear the interrupt signal on the CPU (triggering a new
hardware interrupt when you are done), or if you check back to this register (IIR) and query
the Interrupt Pending Flag to see if there are more interrupts to process, you can move
on and attempt to resolve any new interrupt issue that you may have to deal with, using
appropriate application code.

Bits 5, 6 & 7 are reporting the current status of FIFO buffers being used for transmitting
and receiving characters. There was a bug in the original 16550 chip design when it was

43



8250 UART Programming

first released that had a serious flaw in the FIFO, causing the FIFO to report that it was
working but in fact it wasn't. Because some software had already been written to work with
the FIFO, this bit (Bit 7 of this register) was kept, but Bit 6 was added to confirm that
the FIFO was in fact working correctly, in case some new software wanted to ignore the
hardware FIFO on the earlier versions of the 16550 chip. This pattern has been kept on
future versions of this chip as well. On the 16750 chip an added 64-byte FIFO has been
implemented, and Bit 5 is used to designate the presence of this extended buffer. These
FIFO buffers can be turned on and off using registers listed below.

3.6.5 FIFO Control Register

Offset: +2 . This is a relatively "new" register that was not a part of the original 8250
UART implementation. The purpose of this register is to control how the First In/First
Out (FIFO) buffers will behave on the chip and to help you fine-tune their performance in
your application. This even gives you the ability to "turn on" or "turn off" the FIFO.

Keep in mind that this is a "write only" register. Attempting to read in the contents will only
give you the Interrupt Identification Register (IIR), which has a totally different context.

FIFO Control Register (FCR)
Bit Notes

7 & 6

Bit 7 Bit 6 Interrupt Trigger
Level (16 byte)

Trigger Level (64
byte)

0 0 1 Byte 1 Byte
0 1 4 Bytes 16 Bytes
1 0 8 Bytes 32 Bytes
1 1 14 Bytes 56 Bytes

5 Enable 64 Byte FIFO (16750)
4 Reserved
3 DMA Mode Select
2 Clear Transmit FIFO
1 Clear Receive FIFO
0 Enable FIFOs

Writing a "0" to bit 0 will disable the FIFOs, in essence turning the UART into 8250
compatibility mode. In effect this also renders the rest of the settings in this register to
become useless. If you write a "0" here it will also stop the FIFOs from sending or receiving
data, so any data that is sent through the serial data port may be scrambled after this
setting has been changed. It would be recommended to disable FIFOs only if you are trying
to reset the serial communication protocol and clearing any working buffers you may have
in your application software. Some documentation suggests that setting this bit to "0" also
clears the FIFO buffers, but I would recommend explicit buffer clearing instead using bits 1
and 2.

Bits 1 and 2 are used to clear the internal FIFO buffers. This is useful when you are first
starting up an application where you might want to clear out any data that may have been
"left behind" by a previous piece of software using the UART, or if you want to reset a
communications connection. These bits are "automatically" reset, so if you set either of

44



UART Registers

these to a logical "1" state you will not have to go and put them back to "0" later. Sending a
logical "0" only tells the UART not to reset the FIFO buffers, even if other aspects of FIFO
control are going to be changed.

Bit 3 is in reference to how the DMA (Direct Memory Access) takes place, primarily when
you are trying to retrieve data from the FIFO. This would be useful primarily to a chip
designer who is trying to directly access the serial data, and store this data in an internal
buffer. There are two digital logic pins on the UART chip itself labeled RXRDY and TXRDY.
If you are trying to design a computer circuit with the UART chip this may be useful or
even important, but for the purposes of an application developer on a PC system it is of
little use and you can safely ignore it.

Bit 5 allows the 16750 UART chip to expand the buffers from 16 bytes to 64 bytes. Not only
does this affect the size of the buffer, but it also controls the size of the trigger threshold, as
described next. On earlier chip types this is a reserved bit and should be kept in a logical
"0" state. On the 16750 it make that UART perform more like the 16550 with only a 16
byte FIFO.

Bits 6 and 7 describe the trigger threshold value. This is the number of characters that
would be stored in the FIFO before an interrupt is triggered that will let you know data
should be removed from the FIFO. If you anticipate that large amounts of data will be sent
over the serial data link, you might want to increase the size of the buffer. The reason why
the maximum value for the trigger is less than the size of the FIFO buffer is because it may
take a little while for some software to access the UART and retrieve the data. Remember
that when the FIFO is full, you will start to lose data from the FIFO, so it is important
to make sure you have retrieved the data once this threshold has been reached. If you are
encountering software timing problems in trying to retrieve the UART data, you might want
to lower the threshold value. At the extreme end where the threshold is set to 1 byte, it
will act essentially like the basic 8250, but with the added reliability that some characters
may get caught in the buffer in situations where you don't have a chance to get all of them
immediately.

3.6.6 Line Control Register

Offset: +3 . This register has two major purposes:

• Setting the Divisor Latch Access Bit (DLAB), allowing you to set the values of the Divisor
Latch Bytes.

• Setting the bit patterns that will be used for both receiving and transmitting the serial
data. In other words, the serial data protocol you will be using (8-1-None, 5-2-Even,
etc.).

Line Control Register (LCR)
Bit Notes
7 Divisor Latch

Access Bit
6 Set Break En-

able
3, 4 & 5 Bit 5 Bit 4 Bit 3 Parity Se-

lect

45



8250 UART Programming

Line Control Register (LCR)
Bit Notes
0 0 0 No Parity
0 0 1 Odd Parity
0 1 1 Even Parity
1 0 1 Mark
1 1 1 Space
2 0 One Stop Bit
1 1.5 Stop Bits or

2 Stop Bits
0 & 1 Bit 1 Bit 0 Word

Length
0 0 5 Bits
0 1 6 Bits
1 0 7 Bits
1 1 8 Bits

The first two bits (Bit 0 and Bit 1) control how many data bits are sent for each data "word"
that is transmitted via serial protocol. For most serial data transmission, this will be 8 bits,
but you will find some of the earlier protocols and older equipment that will require fewer
data bits. For example, some military encryption equipment only uses 5 data bits per serial
"word", as did some TELEX equipment. Early ASCII teletype terminals only used 7 data
bits, and indeed this heritage has been preserved with SMTP format that only uses 7-bit
ASCII for e-mail messages. Clearly this is something that needs to be established before
you are able to successfully complete message transmission using RS-232 protocol.

Bit 2 controls how many stop bits are transmitted by the UART to the receiving device.
This is selectable as either one or two stop bits, with a logical "0" representing 1 stop bit
and "1" representing 2 stop bits. In the case of 5 data bits, the RS-232 protocol instead
sends out "1.5 stop bits". What this means is that one serial data "word" is transmitted with
only 1 stop bit, and then the next one is transmitted with 2 stop bits.

Another thing to keep in mind is that the RS-232 standard only specifies that at least one
data bit cycle will be kept a logical "1" at the end of each serial data word (in other words,
a complete character from start bit, data bits, parity bits, and stop bits). If you are having
timing problems between the two computers but are able to in general get the character
sent across one at a time, you might want to add a second stop bit instead of reducing baud
rate. This adds a one-bit penalty to the transmission speed per character instead of halving
the transmission speed by dropping the baud rate (usually).

Bits 3, 4, and 5 control how each serial word responds to parity information. When Bit 3 is
a logical "0", this causes no parity bits to be sent out with the serial data word. Instead
it moves on immediately to the stop bits, and is an admission that parity checking at this
level is really useless. You might still gain a little more reliability with data transmission
by including the parity bits, but there are other more reliable and practical ways that will
be discussed in other chapters in this book. If you want to include parity checking, the
following explains each parity method other than "none" parity:

Odd Parity

46



UART Registers

Each bit the data portion of the serial word is added as a simple count of the number of
logical "1" bits. If this is an odd number of bits, the parity bit will be transmitted as a
logical "1".

Even Parity

Like Odd Parity, the bits are added together. In this case, however, if the number of bits
end up as an even number it will display as a logical "1", which is the exact opposite of
odd parity.

Mark Parity

In this case the parity bit will always be a logical "1". While this may seem a little unusual,
this is put in for testing and diagnostics purposes. If you want to make sure that the
software on the receiving end of the serial connection is responding correctly to a parity
error, you can send a Mark or a Space parity, and send characters that don't meet what
the receiving UART or device is expecting for parity. In addition for Mark Parity only, you
can use this bit as an extra "stop bit". Keep in mind that RS-232 standards are expecting
a logical "1" to end a serial data word, so a receiving computer will not be able to tell the
difference between a "Mark" parity bit and a stop bit. In essence, you can have 3 or 2.5
stop bits through the use of this setting and by appropriate use of the stop bit portion of
this register as well. This is a way to "tweak" the settings on your computer in a way that
typical applications don't allow you to do, or at least gain a deeper insight into serial data
settings.

Space Parity

Like the Mark parity, this makes the parity bit "sticky", so it doesn't change. In this case
it puts in a logical "0" for the parity bit every time you transmit a character. There are
not many practical uses for doing this other than a crude way to put in 9 data bits for
each serial word, or for diagnostics purposes.

3.6.7 Modem Control Register

Offset: +4 . This register allows you to do "hardware" flow control, under software control.
Or in a more practical manner, it allows direct manipulation of four different wires on the
UART that you can set to any series of independent logical states, and be able to offer
control of the modem. It should also be noted that most UARTs need Auxiliary Output 2
set to a logical "1" to enable interrupts.

Modem Control Register (MCR)
Bit Notes
7 Reserved
6 Reserved
5 Autoflow Control Enabled (16750)
4 Loopback Mode
3 Auxiliary Output 2
2 Auxiliary Output 1
1 Request To Send
0 Data Terminal Ready

47



8250 UART Programming

Of these outputs on a typical PC platform, only the Request to Send (RTS) and Data
Terminal Ready (DTR) are actually connected to the output of the PC on the DB-9 connector.
If you are fortunate to have a DB-25 serial connector (more commonly used for parallel
communications on a PC platform), or if you have a custom UART on an expansion card,
the auxiliary outputs might be connected to the RS-232 connection. If you are using this
chip as a component on a custom circuit, this would give you some "free" extra output
signals you can use in your chip design to signal anything you might want to have triggered
by a TTL output, and would be under software control. There are easier ways to do this,
but in this case it might save you an extra chip on your layout.

The "loopback" mode is primarily a way to test the UART to verify that the circuits are
working between your main CPU and the UART. This seldom, if ever, needs to be tested
by an end user, but might be useful for some initial testing of some software that uses
the UART. When this is set to a logical state of "1", any character that gets put into the
transmit register will immediately be found in the receive register of the UART. Other
logical signals like the RTS and DTS listed above will show up in the modem status register
just as if you had put a loopback RS-232 device on the end of your serial communication
port. In short, this allows you to do a loopback test using just software. Except for these
diagnostics purposes and for some early development testing of software using the UART,
this will never be used.

On the 16750 there is a special mode that can be invoked using the Modem Control Register.
Basically this allows the UART to directly control the state of the RTS and DTS for hardware
character flow control, depending on the current state of the FIFO. This behavior is also
affected by the status of Bit 5 of the FIFO Control Register (FCR). While this is useful, and
can change some of the logic on how you would write UART control software, the 16750
is comparatively new as a chip and not commonly found on many computer systems. If
you know your computer has a 16750 UART, have fun taking advantage of this increased
functionality.

3.6.8 Line Status Register

Offset: +5 . This register is used primarily to give you information on possible error
conditions that may exist within the UART, based on the data that has been received. Keep
in mind that this is a "read only" register, and any data written to this register is likely to
be ignored or worse, cause different behavior in the UART. There are several uses for this
information, and some information will be given below on how it can be useful for diagnosing
problems with your serial data connection:

Line Status Register (LSR)
Bit Notes
7 Error in Received FIFO
6 Empty Data Holding Registers
5 Empty Transmitter Holding Register
4 Break Interrupt
3 Framing Error
2 Parity Error
1 Overrun Error

48



UART Registers

Line Status Register (LSR)
Bit Notes
0 Data Ready

Bit 7 refers to errors that are with characters in the FIFO. If any character that is currently
in the FIFO has had one of the other error messages listed here (like a framing error, parity
error, etc.), this is reminding you that the FIFO needs to be cleared as the character data
in the FIFO is unreliable and has one or more errors. On UART chips without a FIFO this
is a reserved bit field.

Bits 5 and 6 refer to the condition of the character transmitter circuits and can help you to
identify if the UART is ready to accept another character. Bit 6 is set to a logical "1" if all
characters have been transmitted (including the FIFO, if active), and the "shift register" is
done transmitting as well. This shift register is an internal memory block within the UART
that grabs data from the Transmitter Holding Buffer (THB) or the FIFO and is the circuitry
that does the actual transformation of the data to a serial format, sending out one bit of
the data at a time and "shifting" the contents of the shift register down one bit to get the
value of the next bit. Bit 5 merely tells you that the UART is capable of receiving more
characters, including into the FIFO for transmitting.

The Break Interrupt (Bit 4) gets to a logical state of "1" when the serial data input line has
not received any new bits for a period of time that is at least as long as an entire serial data
"word", including the start bit, data bits, parity bit, and stop bits, for the given baud rate
in the Divisor Latch Bytes. Usually this means that the device that is sending serial data
to your computer has stopped for some reason. Often with serial communications this is a
normal condition, but in this way you have a way to monitor just how the other device is
functioning.

Framing errors (Bit 3) occur when the last bit is not a stop bit. Or to be more precise the
stop bit is a logical "0". There are several causes for this, including that you have the timing
between the two computer mismatched. This is usually caused by a mismatch in baud rate,
although other causes might be involved as well, including problems in the physical cabling
between the devices or that the cable is too long. You may even have the number of data
bits off, so when errors like this are encountered, check the serial data protocol very closely
to make sure that all of the settings for the UART (data bit length, parity, and stop bit
count) are what should be expected.

Parity errors (Bit 2) can also indicate a mismatched baud rate like the framing errors
(particularly if both errors are occurring at the same time). This bit is raised when the
parity algorithm that is expected (odd, even, mark, or space) has not been found. If you are
using "no parity" in the setup of the UART, this bit should always be a logical "0". When
framing errors are not occurring, this is a way to identify that there are some problems with
the cabling, although there are other issues you may have to deal with as well.

Overrun errors (Bit 1) are a sign of poor programming or an operating system that is not
giving you proper access to the UART. This error condition occurs when there is a character
waiting to be read, and the incoming shift register is attempting to move the contents of the
next character into the Receiver Buffer (RBR). On UARTs with a FIFO, this also indicates
that the FIFO is full as well.

49



8250 UART Programming

Some things you can do to help get rid of this error including looking at how efficient your
software is that is accessing the UART, particularly the part that is monitoring and reading
incoming data. On multi-tasking operating systems, you might want to make sure that the
portion of the software that reads incoming data is on a separate thread, and that the thread
priority is high or time-critical, as this is a very important operation for software that uses
serial communications data. A good software practice for applications also includes adding
in an application specific "buffer" that is done through software, giving your application
more opportunity to be able to deal with the incoming data as necessary, and away from
the time critical subroutines needed to get the data off of the UART. This buffer can be as
small as 1KB to as large as 1MB, and depends substantially on the kind of data that you
are working with. There are other more exotic buffering techniques as well that apply to
the realm of application development, and that will be covered in later modules.

If you are working with simpler operating systems like MS-DOS or a real-time operating
system, there is a distinction between a poll-driven access to the UART vs. interrupt driven
software. Writing an interrupt driver is much more efficient, and there will be a whole
section of this book that will go into details of how to write software for UART access.

Finally, when you can't seem to solve the problems of trying to prevent overrun errors from
showing up, you might want to think about reducing the baud rate for the serial transmission.
This is not always an option, and really should be the option of last choice when trying to
resolve this issue in your software. As a quick test to simply verify that the fundamental
algorithms are working, you can start with a slower baud rate and gradually go to higher
speeds, but that should only be done during the initial development of the software, and not
something that gets released to a customer or placed as publicly distributed software.

The Data Ready Bit (Bit 0) is really the simplest part here. This is a way to simply inform
you that there is data available for your software to extract from the UART. When this bit
is a logical "1", it is time to read the Receiver Buffer (RBR). On UARTs with a FIFO that
is active, this bit will remain in a logical "1" state until you have read all of the contents of
the FIFO.

3.6.9 Modem Status Register

Offset: +6 . This register is another read-only register that is here to inform your software
about the current status of the modem. The modem accessed in this manner can either
be an external modem, or an internal modem that uses a UART as an interface to the
computer.

Modem Status Register (MSR)
Bit Notes
7 Carrier Detect
6 Ring Indicator
5 Data Set Ready
4 Clear To Send
3 Delta Data Carrier Detect
2 Trailing Edge Ring Indicator
1 Delta Data Set Ready
0 Delta Clear To Send

50



UART Registers

Bits 7 and 6 are directly related to modem activity. Carrier Detect will stay in a logical
state of "1" while the modem is "connect" to another modem. When this goes to a logical
state of "0", you can assume that the phone connection has been lost. The Ring Indicator
bit is directly tied to the RS-232 wire also labeled "RI" or Ring Indicator. Usually this bit
goes to a logical state of "1" as a result of the "ring voltage" on the telephone line is detected,
like when a conventional telephone will be ringing to inform you that somebody is trying to
call you.

When we get to the section of AT modem commands, there will be other methods that can
be shown to inform you about this and other information regarding the status of a modem,
and instead this information will be sent as characters in the normal serial data stream
instead of special wires. In truth, these extra bits are pretty worthless, but have been a
part of the specification from the beginning and comparatively easy for UART designers to
implement. It may, however, be a way to efficiently send some additional information or
allow a software designer using the UART to get some logical bit signals from other devices
for other purposes.

The "Data Set Ready" and "Clear To Send" bits (Bits 4 and 5) are found directly on an
RS-232 cable, and are matching wires to "Request To Send" and "Data Terminal Ready"
that are transmitted with the "Modem Control Register (MCR). With these four bits in
two registers, you can perform "hardware flow control", where you can signal to the other
device that it is time to send more data, or to hold back and stop sending data while you
are trying to process the information. More will be written about this subject in another
module when we get to data flow control.

A note regarding the "delta" bits (Bits 0, 1, 2, and 3). In this case the word "delta" means
change, as in a change in the status of one of the bits. This comes from other scientific
areas like rocket science where delta-vee means a change in velocity. For the purposes of
this register, each of these bits will be a logical "1" the next time you access this Modem
Status register if the bit it is associated with (like Delta Data Carrier Detect with Carrier
Detect) has changed its logical state from the previous time you accessed this register. The
Trailing Edge Ring Indicator is pretty much like the rest, except it is in a logical "1" state
only if the "Ring Indicator" bit went from a logical "1" to a logical "0" condition. There
really isn't much practical use for this knowledge, but there is some software that tries to
take advantage of these bits and perform some manipulation of the data received from the
UART based on these bits. If you ignore these 4 bits you can still make a very robust serial
communications software.

3.6.10 Scratch Register

Offset: +7 . The Scratch Register is an interesting enigma. So much effort was done to try
and squeeze a whole bunch of registers into all of the other I/O port addresses that the
designers had an extra "register" that they didn't know what to do with. Keep in mind that
when dealing with computer architecture, it is easier when dealing with powers of 2, so they
were "stuck" with having to address 8 I/O ports. Allowing another device to use this extra
I/O port would make the motherboard design far too complicated.

On some variants of the 8250 UART, any data written to this scratch register will be
available to software when you read the I/O port for this register. In effect, this gives you

51



8250 UART Programming

one extra byte of "memory" that you can use in your applications in any way that you find
useful. Other than a virus author (maybe I shouldn't give any ideas), there isn't really
a good use for this register. Of limited use is the fact that you can use this register to
identify specific variations of the UART because the original 8250 did not store the data
sent to it through this register. As that chip is hardly ever used anymore on a PC design
(those companies are using more advanced chips like the 16550), you will not find that "bug"
in most modern PC-type platforms. More details will be given below on how to identify
through software which UART chip is being used in your computer, and for each serial port.

3.7 Software Identification of the UART

Just as it is possible to identify many of the components on a computer system through just
software routines, it is also possible to detect which version or variant of the UART that is
found on your computer as well. The reason this is possible is because each different version
of the UART chip has some unique qualities that if you do a process of elimination you can
identify which version you are dealing with. This can be useful information if you are trying
to improve performance of the serial I/O routines, know if there are buffers available for
transmitting and sending information, as well as simply getting to know the equipment on
your PC better.

One example of how you can determine the version of the UART is if the Scratch Register
is working or not. On the first 8250 and 8250A chips, there was a flaw in the design of those
chip models where the Scratch Register didn't work. If you write some data to this register
and it comes back changed, you know that the UART in your computer is one of these two
chip models.

Another place to look is with the FIFO control registers. If you set bit "0" of this register to
a logical 1, you are trying to enable the FIFOs on the UART, which are only found in the
more recent version of this chip. Reading bits "6" and "7" will help you to determine if you
are using either the 16550 or 16550A chip. Bit "5" will help you determine if the chip is the
16750.

Below is a full pseudo code algorithm to help you determine the type of chip you are using:

Set the value "0xE7" to the FCR to test the status of the FIFO
flags.
Read the value of the IIR to test for what flags actually got set.
If Bit 6 is set Then
If Bit 7 is set Then
If Bit 5 is set Then
UART is 16750

Else
UART is 16550A

End If
Else
UART is 16550

End If
Else you know the chip doesn't use FIFO, so we need to check the
scratch register
Set some arbitrary value like 0x2A to the Scratch Register.
You don't want to use 0xFF or 0x00 as those might be returned by

the Scratch Register instead for a false postive result.

52



External References

Read the value of the Scratch Register
If the arbitrary value comes back identical
UART is 16450

Else
UART is 8250

End If
End If

When written in Pascal, the above algorithm ends up looking like this:

const
COM1_Addr = $3F8;
FCR = 2;
IIR = 2;
SCR = 7;

function IdentifyUART: String;
var
Test: Byte;

begin
Port[COM1_Addr + FCR] := $E7;
Test := Port[COM1_Addr + IIR];
if (Test and $40) > 0 then
if (Test and $80) > 0 then
if (Test and $20) > 0 then

IdentifyUART := '16750'
else

IdentifyUART := '16550A'
else
IdentifyUART := '16550'

else begin
Port[COM1_Addr + SCR] := $2A;
if Port[COM1_Addr + SCR] = $2A then
IdentifyUART := '16450'

else
IdentifyUART := '8250';

end;
end;

We still havn't identified between the 8250, 8250A, or 8250B; but that is rather pointless
anyway on most current computers as it is very unlikely to even find one of those chips
because of their age.

A very similar procedure can be used to determine the CPU of a computer, but that is
beyond the scope of this book.

3.8 External References

• History of Interrupt Programming1

• 8259 Chip Information with other registers explained2 (dead link?)
• Interfacing the Serial / RS232 Port3

1 http://www.cs.clemson.edu/~mark/interrupts.html
2 http://satyap.csoft.net/8259.html
3 http://www.beyondlogic.org/serial/serial.htm

53

http://www.cs.clemson.edu/~mark/interrupts.html
http://satyap.csoft.net/8259.html
http://www.beyondlogic.org/serial/serial.htm


8250 UART Programming

While the 8250 is by far the most popular UART on desktop computers, other popular
UARTs include:

• the UART inside the Atmel AVR4: ... Embedded_Systems/Atmel_AVR#Serial_-
Communication5

• the UART inside the Microchip PIC6: "Microchip AN774: Asynchronous Communications
with the PICmicro® USART"7

• the UART inside the Apple Macintosh: ...
• "bit-banging" a UART: ... http://microchip.com/stellent/idcplg?IdcService=SS_

GET_PAGE&nodeId=1824&appnote=en012058

3.9 Other Serial Programming Articles

Category:Serial Programming8

4 http://en.wikibooks.org/wiki/Embedded_Systems%2FAtmel_AVR
5 http://en.wikibooks.org/wiki/Embedded_Systems%2FAtmel_AVR%23Serial_Communication
6 http://en.wikibooks.org/wiki/PIC

7 http://microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=
en012073

8 http://en.wikibooks.org/wiki/Category%3ASerial%20Programming

54

http://microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en012058
http://microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en012058
http://en.wikibooks.org/wiki/Embedded_Systems%2FAtmel_AVR
http://en.wikibooks.org/wiki/Embedded_Systems%2FAtmel_AVR%23Serial_Communication
http://en.wikibooks.org/wiki/PIC
http://microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en012073
http://microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en012073
http://en.wikibooks.org/wiki/Category%3ASerial%20Programming


4 Serial DOS

4.1 Introduction

It is now time to build on everything that has been established so far. While it is unlikely
that you are going to be using MS-DOS for a major application, it is a good operating
system to demonstrate a number of ideas related to software access of the 8250 UART and
driver development. Compared to modern operating systems like Linux, OS-X, or Windows,
MS-DOS can hardly be called an operating system at all. All it really offers is basic access
to the hard drive and a few minor utilities. That really doesn't matter so much for what
we are dealing with here, and it is a good chance to see how we can directly manipulate
the UART to get the full functionality of all aspects of the computer. The tools I'm using
are all available for free (as in beer) and can be used in emulator software (like VMware or
Bochs) to try these ideas out as well. Emulation of serial devices is generally a weak point
for these programs, so it may work easier if you work from a floppy boot of DOS, or on an
older computer that is otherwise destined for the trash can because it is obsolete.

For Pascal, you can look here:

• Turbo Pascal http://bdn.borland.com/article/0,1410,20803,00.html version 5.5 -
This is the software I'm actually using for these examples, and the compiler that most
older documentation on the web will also support (generally).

• Free Pascal http://www.freepascal.org/ - *note* this is a 32-bit version, although
there is a port for DOS development. Unlike Turbo Pascal, it also has ongoing development
and is more valuable for serious projects running in DOS.

For MS-DOS substitution (if you don't happen to have MS-DOS 6.22 somewhere):

• FreeDOS http://www.freedos.org/ Project - Now that Microsoft has abandoned de-
velopment of DOS, this is pretty much the only OS left that is pure command line driven
and following the DOS architecture.

4.2 Hello World, Serial Data Version

In the introduction1, I mentioned that it was very difficult to write computer software that
implements RS-232 serial communications. A very short program shows that at least a
basic program really isn't that hard at all. In fact, just three more lines than a typical
"Hello World" program.

1 http://en.wikibooks.org/wiki/Programming%3ASerial%20Data%20Communications%23Intended%
20Audience

55

http://bdn.borland.com/article/0,1410,20803,00.html
http://www.freepascal.org/
http://www.freedos.org/
http://en.wikibooks.org/wiki/Programming%3ASerial%20Data%20Communications%23Intended%20Audience
http://en.wikibooks.org/wiki/Programming%3ASerial%20Data%20Communications%23Intended%20Audience


Serial DOS

program HelloSerial;
var
DataFile: Text;

begin
Assign(DataFile,'COM1');
Rewrite(DataFile);
Writeln(DataFile,'Hello World');
Close(DataFile);

end.

All of this works because in DOS (and all version of Windows as well... on this particular
point) has a "reserved" file name called COM1 that is the operating system hooks into the
serial communications ports. While this seems simple, it is deceptively simple. You still
don't have access to being able to control the baud rate or any of the other settings for the
modem. That is a fairly simple thing to add, however, using the knowledge of the UART
discussed in the previous chapter Programming the 8250 UART2.

To try something even easier, you don't even need a compiler at all. This takes advantage
of the reserved "device names" in DOS and can be done from the command prompt.

C:\>COPY CON COM1

What you are doing here is taking input from CON (the console or the standard keyboard
you use on your computer) and it "copies" the data to COM1. You can also use variations
of this to do some interesting file transfers, but it has some important limitations. Most
importantly, you don't have access to the UART settings, and this simply uses whatever the
default settings of the UART might be, or what you used last time you changed the settings
to become with a serial terminal program.

4.3 Finding the Port I/O Address for the UART

The next big task that we have to work with is trying to find the base "address" of the Port
I/O so that we can communicate with the UART chip directly (see the part about interface
logic in the Typical RS232-Hardware Configuration3 module for information what this is
about). For a "typical" PC system, the following are usually the addresses that you need to
work with:

Serial Port Name Base I/O Port Ad-
dress

IRQ (interrupt) Number

COM1 3F8 4
COM2 2F8 3
COM3 3E8 4
COM4 2E8 3

2 http://en.wikibooks.org/wiki/Serial%20Programming%3A8250%20UART%20Programming

3 http://en.wikibooks.org/wiki/Serial_Programming%3ATypical_RS232-Hardware_
Configuration

56

http://en.wikibooks.org/wiki/Serial%20Programming%3A8250%20UART%20Programming
http://en.wikibooks.org/wiki/Serial_Programming%3ATypical_RS232-Hardware_Configuration
http://en.wikibooks.org/wiki/Serial_Programming%3ATypical_RS232-Hardware_Configuration


Finding the Port I/O Address for the UART

4.3.1 Looking up UART Base Address in RAM

We will get back to the issue of the IRQ Number in a little bit, but for now we need to know
where to start accessing information about each UART. As demonstrated previously, DOS
also keeps track of where the UART IO ports are located at for its own purpose, so you can
try to "look up" within the memory tables that DOS uses to try and find the correct address
as well. This doesn't always work, because we are going outside of the normal DOS API
structure. Alternative operating systems ( FreeDOS works fine here ) that are otherwise
compatible with MS-DOS may not work in this manner, so take note that this may simply
give you a wrong result altogether.

The addresses for the serial I/O Ports can be found at the following locations in RAM:

Port Segment Offset
COM1 $0040 $0000
COM2 $0040 $0002
COM3 $0040 $0004
COM4 $0040 $0006

Those addresses are written to memory by the BIOS when it boots. If one of the ports
doesn't exist, the BIOS writes zero to the respective address. Note that the addresses are
given in segment:offset format and that you have to multiply the address of the segment
with 16 and add the offset to get to the physical address in memory. This is where DOS
"finds" the port addresses so you can run the first sample program in this chapter.

In assembler you can get the addresses like this:

; Data Segment
.data
Port dw 0
...

; Code Segment
.code
mov ax,40h
mov es,ax
mov si,0
mov bx,Port ; 0 - COM1 , 1 - COM2 ...
shl bx,1
mov Port, es:[si+bx]

In Turbo Pascal, you can get at these addresses almost the same way and in some ways
even easier because it is a "high level language". All you have to do is add the following line
to access the COM Port location as a simple array:

var
ComPort: array [1..4] of Word absolute $0040:$0000;

The reserved, non standard, word absolute is a flag to the compiler that instead of
"allocating" memory, that you already have a place in mind to have the computer look
instead. This is something that should seldom be done by a programmer unless you are
accessing things like these I/O port addresses that are always stored in this memory location.

57



Serial DOS

For a complete program that simply prints out a table of the I/O port addresses for all four
standard COM ports, you can use this simple program:

program UARTLook;
const
HexDigits: array [$0..$F] of Char = '0123456789ABCDEF';

var
ComPort: array [1..4] of Word absolute $0040:$0000;
Index: Integer;

function HexWord(Number:Word):String;
begin
HexWord := '$' + HexDigits[Hi(Number) shr 4] +

HexDigits[Hi(Number) and $F] +
HexDigits[Lo(Number) shr 4] +
HexDigits[Lo(Number) and $F];

end;
begin
writeln('Serial COMport I/O Port addresses:');
for Index := 1 to 4 do begin
writeln('COM',Index,' is located at ',HexWord(ComPort[Index]));

end;
end.

4.3.2 Searching BIOS Setup

Assuming that the standard I/O addresses don't seem to be working for your computer and
you haven't been able to find the correct I/O Port offset addresses through searching RAM
either, all hope is still not lost. Assuming that you have not accidentally changed these
settings earlier, you can also try to look up these numbers in the BIOS setup page for your
computer. It may take some pushing around to find this information, but if you have a
conventional serial data port on your computer, it will be there.

If you are using a serial data port that is connected via USB (common on more recent
computers), you are simply not going to be (easily) able to do direct serial data communi-
cations in DOS. Instead, you need to use more advanced operating systems like Windows
or Linux that is beyond the scope of this chapter. We will cover how to access the serial
communications routines in those operating systems in subsequent chapters. The basic
principles we are discussing here would still be useful to review because it goes into the basic
UART structure.

While it may be useful to try and make IRQs selectable and not presume that the information
listed above is correct in all situations, it is important to note that most PC-compatible
computer equipment usually has these IRQs and I/O port addresses used in this way
because of legacy support. And surprisingly as computers get more sophisticated with even
more advanced equipment like USB devices, these legacy connections still work for most
equipment.

58



Making modifications to UART Registers

4.4 Making modifications to UART Registers

Now that we know where to look in memory to modify the UART registers, let's put that
knowledge to work. We are also now going to do some practical application of the tables
listed earlier in the chapter 8250 UART Programming4.

To start with, let's redo the previous "Hello World" application, but this time we are going
to set the RS-232 transmission parameters to 1200 baud, 7 databits, even parity, and 2
stop bits. I'm choosing this setting parameter because it is not standard for most modem
applications, as a demonstration. If you can change these settings, then other transmission
settings are going to be trivial.

First, we need to set up some software constants to keep track of locations in memory. This
is mainly to keep things clear to somebody trying to make changes to our software in the
future, not because the compiler needs it.

const
LCR = 3;
Latch_Low = $00;
Latch_High = $01;

Next, we need to set the DLAB to a logical "1" so we can set the baud rate:

Port[ComPort[1] + LCR] := $80;

In this case, we are ignoring the rest of the settings for the Line Control Register (LCR)
because we will be setting them up in a little bit. Remember this is just a "quick and dirty"
way to get this done for now. A more "formal" way to set up things like baud rate will be
demonstrated later on with this module.

Following this, we need to put in the baud rate for the modem. Looking up 1200 baud on
the Divisor Latch Bytes table5 gives us the following values:

Port[ComPort[1] + Latch_High] := $00;
Port[ComPort[1] + Latch_Low] := $60;

Now we need to set the values for the LCR based on our desired setting of 7-2-E for the com-
munication settings. We also need to "clear" the DLAB which we can also do at the same time.

Clearing DLAB = 0 * 128
Clearing "Set Break" flag = 0 * 64
Even Parity = 2 * 8
Two Stop bits = 1 * 4
7 Data bits = 2 * 1

4 http://en.wikibooks.org/wiki/Serial%20Programming%3A8250%20UART%20Programming

5 http://en.wikibooks.org/wiki/Serial%20Programming%3A8250%20UART%20Programming%
23Divisor%20Latch%20Bytes

59

http://en.wikibooks.org/wiki/Serial%20Programming%3A8250%20UART%20Programming
http://en.wikibooks.org/wiki/Serial%20Programming%3A8250%20UART%20Programming%23Divisor%20Latch%20Bytes
http://en.wikibooks.org/wiki/Serial%20Programming%3A8250%20UART%20Programming%23Divisor%20Latch%20Bytes


Serial DOS

Port[ComPort[1] + LCR] := $16 {8*2 + 4 + 2 = 22 or $16 in hex}

Are things clear so far? What we have just done is some bit-wise arithmetic, and I'm trying
to keep things very simple here and to try and explain each step in detail. Let's just put
the whole thing together as the quick and dirty "Hello World", but with adjustment of the
transmission settings as well:

program HelloSerial;
const
LCR = 3;
Latch_Low = $00;
Latch_High = $01;

var
ComPort: array [1..4] of Word absolute $0040:$0000;
DataFile: Text;

begin
Assign(DataFile,'COM1');
Rewrite(DataFile);
{Change UART Settings}
Port[ComPort[1] + LCR] := $80;
Port[ComPort[1] + Latch_High] := $00;
Port[ComPort[1] + Latch_Low] := $60;
Port[ComPort[1] + LCR] := $16
Writeln(DataFile,'Hello World');
Close(DataFile);

end.

This is getting a little more complicated, but not too much. Still, all we have done so far is
just write data out to the serial port. Reading data from the serial data port is going to be
a little bit trickier.

4.5 Basic Serial Input

In theory, you could use a standard I/O library and simply read data from the COM port
like you would be reading from a file on your hard drive. Something like this:

Readln(DataFile,SomeSerialData);

There are some problems with doing that with most software, however. One thing to keep
in mind is that using a standard input routine will stop your software until the input is
finished ending with a "Enter" character (ASCII code 13 or in hex $0D).

Usually what you want to do with a program that receives serial data is to allow the user to
do other things while the software is waiting for the data input. In a multitasking operating
system, this would simply be put on another "thread", but with this being DOS, we don't
(usually) have threading capabilities, nor is it necessary. There are some other alternatives
that we do in order to get the serial data brought into your software.

60



Basic Serial Input

4.5.1 Polling the UART

Perhaps the easiest to go, besides simply letting the standard I/O routines grab the input)
is to do software polling of the UART. One of the reasons why this works is because serial
communications is generally so slow compared to the CPU speed that you can perform many
tasks in between each character being transmitted to your computer. Also, we are trying to
do practical applications using the UART chip, so this is a good way to demonstrate some
of the capabilities of the chip beyond simple output of data.

Serial Echo Program

Looking at the Line Status Register (LSR), there is a bit called Data Ready that
indicates there is some data available to your software in the UART. We are going to
take advantage of that bit, and start to do data access directly from the UART instead
of relying on the standard I/O library. This program we are going to demonstrate
here is going to be called Echo because all it does is take whatever data is sent to the
computer through the serial data port and display it on your screen. We are also going
to be configuring the RS-232 settings to a more normal 9600 baud, 8 data bits, 1 stop
bit, and no parity. To quit the program, all you have to do is press any key on your keyboard.

program SerialEcho;
uses
Crt;

const
RBR = 0;
LCR = 3;
LSR = 5;
Latch_Low = $00;
Latch_High = $01;

var
ComPort: array [1..4] of Word absolute $0040:$0000;
InputLetter: Char;

begin
Writeln('Serial Data Terminal Character Echo Program. Press any

key on the keyboard to quit.');
{Change UART Settings}
Port[ComPort[1] + LCR] := $80;
Port[ComPort[1] + Latch_High] := $00;
Port[ComPort[1] + Latch_Low] := $0C;
Port[ComPort[1] + LCR] := $03;
{Scan for serial data}
while not KeyPressed do begin
if (Port[ComPort[1] + LSR] and $01) > 0 then begin
InputLetter := Chr(Port[ComPort[1] + RBR]);
Write(InputLetter);

end; {if}
end; {while}

end.

Simple Terminal

This program really isn't that complicated. In fact, a very simple "terminal" program
can be adapted from this to allow both sending and receiving characters. In this case,

61



Serial DOS

the Escape key will be used to quit the program, which will in fact be where most of
the changes to the program will happen. We are also introducing for the first time
direct output into the UART instead of going through the standard I/O libraries with this line:

Port[ComPort[1] + THR] := Ord(OutputLetter);

The Transmit Holding Register (THR) is how data you want to transmit gets into
the UART in the first place. DOS just took care of the details earlier, so now we
don't need to open a "file" in order to send data. We are going to assume, to keep
things very simple, that you can't type at 9600 baud, or roughly 11,000 words per
minute. Only if you are dealing with very slow baud rates like 110 baud is that going
to be an issue anyway (still at over 130 words per minute of typing... a very fast typist indeed).

program SimpleTerminal;
uses
Crt;

const
THR = 0;
RBR = 0;
LCR = 3;
LSR = 5;
Latch_Low = $00;
Latch_High = $01;
{Character Constants}
NullLetter = #0;
EscapeKey = #27;

var
ComPort: array [1..4] of Word absolute $0040:$0000;
InputLetter: Char;
OutputLetter: Char;

begin
Writeln('Simple Serial Data Terminal Program. Press "Esc" to

quit.');
{Change UART Settings}
Port[ComPort[1] + LCR] := $80;
Port[ComPort[1] + Latch_High] := $00;
Port[ComPort[1] + Latch_Low] := $0C;
Port[ComPort[1] + LCR] := $03;
{Scan for serial data}
OutputLetter := NullLetter;
repeat
if (Port[ComPort[1] + LSR] and $01) > 0 then begin
InputLetter := Chr(Port[ComPort[1] + RBR]);
Write(InputLetter);

end; {if}
if KeyPressed then begin
OutputLetter := ReadKey;
Port[ComPort[1] + THR] := Ord(OutputLetter);

end; {if}
until OutputLetter = EscapeKey;

end.

62



Interrupt Drivers in DOS

4.6 Interrupt Drivers in DOS

The software polling method may be adequate for most simple tasks, and if you want to
test some serial data concepts without writing a lot of software, it may be sufficient. Quite
a bit can be done with just that method of data input.

When you are writing a more complete piece of software, however, it becomes important
to worry about the efficiency of your software. While the computer is "polling" the UART
to see if a character has been sent through the serial communications port, it spends quite
a few CPU cycles doing absolutely nothing at all. It also get very difficult to expand a
program like the one demonstrated above to become a small section of a very large program.
If you want to get that last little bit of CPU performance out of your software, we need to
turn to interrupt drivers and how you can write them.

I'll openly admit that this is a tough leap in complexity from a simple polling application
listed above, but it is an important programming topic in general. We are also going to
expose a little bit about the low-level behavior of the 8086 chip family, which is knowledge
you can use in newer operating systems as well, at least for background information.

Going back to earlier discussions about the 8259 Programmable Interrupt Controller (PIC)
chip, external devices like the UART can "signal" the 8086 that an important task needs to
occur that interrupts the flow of the software currently running on the computer. Not all
computers do this, however, and sometimes the software polling of devices is the only way
to get data input from other devices. The real advantage of interrupt events is that you
can process data acquisition from devices like the UART very quickly, and CPU time spent
trying to test if there is data available can instead be used for other tasks. It is also useful
when designing operating systems that are event driven.

Interrupt Requests (IRQs) are labeled with the names IRQ0 to IRQ15. UART chips typically
use either IRQ 3 or IRQ 4. When the PIC signals to the CPU that an interrupt has occurred,
the CPU automatically start to run a very small subroutine that has been previously setup
in the Interrupt Table in RAM. The exact routine that is started depends on which IRQ
has been triggered. What we are going to demonstrate here is the ability to write our own
software that "takes over" from the operating system what should occur when the interrupt
occurs. In effect, writing our own "operating system" instead, at least for those parts we are
rewriting.

Indeed, this is exactly what operating system authors do when they try to make a new
OS... deal with the interrupts and write the subroutines necessary to control the devices
connected to the computer.

The following is a very simple program that captures the keyboard interrupt and produces a
"clicking" sound in the speaker as you type each key. One interesting thing about this whole
section, while it is moving slightly off topic, this is communicating with a serial device. The
keyboard on a typical PC transmits the information about each key that you press through a
RS-232 serial protocol that operates usually between 300 and 1200 baud and has its own cus-
tom UART chip. Normally this isn't something you are going to address, and seldom are you
going to have another kind of device connected to the keyboard port, but it is interesting that
you can "hack" into the functions of your keyboard by understanding serial data programming.

63



Serial DOS

program KeyboardDemo;
uses
Dos, Crt;

const
EscapeKey = #27;

var
OldKeybrdVector: Procedure;

{$F+}
procedure Keyclick; interrupt;
begin
if Port[$60] < $80 then begin
Sound(5000);
Delay(1);
Nosound;

end;
inline($9C) { PUSHF - Push the flags onto the stack }
OldKeybrdVector;

end;
{$F-}
begin
GetIntVec($9,@OldKeybrdVector);
SetIntVec($9,Addr(Keyclick));
repeat
if KeyPressed then begin
OutputLetter := ReadKey;
Write(OutputLetter);

end; {if}
until OutputLetter = EscapeKey;
SetIntVec($9,@OldKeybrdVector);

end.

There are a number of things that this program does, and we need to explore the realm of
16-bit DOS software as well. The 8086 chip designers had to make quite a few compromises
in order to work with the computer technology that was available at the time it was designed.
Computer memory was quite expensive compared to the overall cost of the computer. Most
of the early microcomputers that the IBM-PC was competing against only had 64K or 128K
of main CPU RAM anyway, so huge programs were not considered important. In fact, the
original IBM-PC was designed to operate on only 128K of RAM although it did become
standard with generally up to 640K of main RAM, especially by the time the IBM PC-XT
was released and the market for PC "clones" turned out what is generally considered the
"standard PC" computer today.

The design came up with what is called segmented memory, where the CPU address is
made up of a memory "segment" pointer and a 64K block of memory. That is why some
early software on these computers could only run in 64K of memory, and created nightmares
for compiler authors on the 8086. Pentium computers don't generally have this issue, as the
memory model in "protected mode" doesn't use this segmented design methodology.

4.6.1 Far Procedure Calls

{$F+}
{$F-}

This program has two "compiler switches" that inform the compiler of the need to use what
are called far procedure calls. Normally for small programs and simple subroutines, you are

64



Interrupt Drivers in DOS

able to use what is called relative indexing with the software so the CPU "jumps" to the
portion of RAM with the procedure by doing a bit of simple math and "adding" a number
to the current CPU address in order to find the correct instructions. This is done especially
because it uses quite a bit less memory to store all of these instructions.

Sometimes, however, a procedure must be accessed from somewhere in RAM that is quite
different from the current CPU memory address "instruction pointer". Interrupt procedures
are one of these, because it doesn't even have to be the same program that is stored in the
interrupt vector table. That brings up the next part to discuss:

4.6.2 Interrupt Procedures

procedure Keyclick; interrupt;

The word "interrupt" after this procedure name is a key item here. This tells the compiler
that it must do something a little bit different when organizing this function than how a
normal function call behaves. Typically for most software on the computer, you have a
bunch of simple instructions that are then followed by (in assembler) an instruction called:

RET

This is the mnemonic assembly instruction for return from procedure call. Interrupts are
handled a little bit differently and should normally end with a different CPU instruction
that in assembly is called:

IRET

or Interrupt return for short. One of the things that should also happen with any interrupt
service routine is to "preserve" the CPU information before doing anything else. Each
"command" that you write in your software will modify the internal registers of the CPU.
Keep in mind that an interrupt can occur right in the middle of doing some calculations for
another program, like rendering a graphic image or making payroll calculations. We need to
hand onto that information and "restore" those values on all of the CPU registers at the end
of our subroutine. This is usually done by "pushing" all of the register values onto the CPU
stack, performing the ISR, and then restoring the CPU registers afterward.

In this case, Turbo Pascal (and other well-written compilers having a compiler flag like this)
takes care of these low-level details for you with this simple flag. If the compiler you are
using doesn't have this feature, you will have to add these features "by hand" and explicitly
put them into your software. That doesn't mean the compiler will do everything for you to
make an interrupt procedure. There are more steps to getting this to work still.

4.6.3 Procedure Variables

var
OldKeybrdVector: Procedure;

65



Serial DOS

These instructions are using what is called a procedure variable. Keep in mind that all
software is located in the same memory as variables and other information your software
is using. Essentially, a variable procedure where you don't need to worry about what it
does until the software is running, and you can change this variable while your program is
running. This is a powerful concept that is not often used, but it can be used for a number
of different things. In this case we are keeping track of the previous interrupt service routine
and "chaining" these routines together.

There are programs called Terminate and Stay Resident (TSRs) that are loaded into your
computer. Some of these are called drivers, and the operating system itself also puts in
subroutines to do basic functions. If you want to "play nice" with all of this other software,
the established protocol for making sure everybody gets a chance to review the data in
an interrupt is to link each new interrupt subroutine to the previously stored interrupt
vector. When we are done with whatever we want to do with the interrupt, we then let all
of the other programs get a chance to used the interrupt as well. It is also possible that
the Interrupt Service Routine (ISR) that we just wrote is not the first one in the chain, but
instead one that is being called by another ISR.

4.6.4 Getting/Setting Interrupt Vectors

GetIntVec($9,@OldKeybrdVector);
SetIntVec($9,Addr(Keyclick));
SetIntVec($9,@OldKeybrdVector);

Again, this is Turbo Pascal "hiding" the details in a convenient way. There is a "vector table"
that you can directly access, but this vector table is not always in the same location in RAM.
If instead you go through the BIOS with a software interrupt, you are "guaranteed" that the
interrupt vector will be correctly replaced.

4.6.5 Hardware Interrupt Table

Interrupt Hardware IRQ Purpose
$00 CPU Divide by Zero
$01 CPU Single Step Instruction Processing
$02 CPU Non-maskable Interrupts
$03 CPU Breakpoint Instruction
$04 CPU Overflow Instruction
$05 CPU Bounds Exception
$06 CPU Invalid Op Code
$07 CPU Math Co-processor not found
$08 IRQ0 System Timer
$09 IRQ1 Keyboard
$0A IRQ2 Cascade from IRQ8 - IRQ15
$0B IRQ3 Serial Port (COM2)
$0C IRQ4 Serial Port (COM1)
$0D IRQ5 Sound Card
$0E IRQ6 Floppy Disk Controller

66



Interrupt Drivers in DOS

Interrupt Hardware IRQ Purpose
$0F IRQ7 Parallel Port (LPT1)
$10 - $6F Software Interrupts
$70 IRQ8 Real-time Clock
$71 IRQ9 Legacy IRQ2 Devices
$72 IRQ10 Reserved (often PCI devices)
$73 IRQ11 Reserved (often PCI devices)
$74 IRQ12 PS/2 Mouse
$75 IRQ13 Math Co-Processor Results
$76 IRQ14 Hard Disk Drive
$77 IRQ15 Reserved
$78 - $FF Software Interrupts

This table gives you a quick glance at some of the things that interrupts are used for, and the
interrupt numbers associated with them. Keep in mind that the IRQ numbers are mainly
reference numbers, and that the CPU uses a different set of numbers. The keyboard IRQ,
for example, is IRQ1, but it is numbered as interrupt $09 inside the CPU.

There are also several interrupts that are "generated" by the CPU itself. While technically
hardware interrupts, these are generated by conditions within the CPU, sometimes based
on conditions setup by your software or the operating system. When we start writing the
interrupt service routine for the serial communication ports, we will be using interrupts 11
and 12 ($0B and $0C in hex). As can be seen, most interrupts are assigned for specific
tasks. I've omitted the software interrupts mainly to keep this on topic regarding serial
programming and hardware interrupts.

4.6.6 Other features

There are several other parts to this program that don't need too much more explanation.
Remember, we are talking about serial programming, not interrupt drivers. I/O Port $60 is
interesting as this is the Receiver Buffer (RBR) for the keyboard UART. This returns the
keyboard "scan code", not the actual character pressed. In fact, when you use a keyboard
on a PC, the keyboard actually transmits two characters for each key that you use. One
character is transmitted when you press the key down, and another character when the
key is "released" to go back up. In this case, the interrupt service routine in DOS normally
converts the scan codes into ASCII codes that your software can use. In fact, simple keys
like the shift key are treated as just another scan code.

The sound routines access the internal PC speaker, not something on a sound card. About
the only thing that uses this speaker any more is the BIOS "beep codes" that you hear only
when there is a hardware failure to your computer, or the quick "beep" when you start or
reboot the computer. It was never designed for doing things like speech synthesis or music
playback, and driver attempts to use it for those purposes sound awful. Still, it is something
neat to experiment with and a legacy computer part that is surprisingly still used on many
current computers..

67



Serial DOS

4.7 Terminal Program Revisited

I'm going to go back to the serial terminal program for a bit and this time redo the application
by using an interrupt service routine. There are a few other concepts I'd like to introduce
as well so I'll try to put them in with this example program. From the user perspective, I
would like to add the ability to change the terminal characteristics from the command line
and allow an "end-user" the ability to change things like the baud rate, stop bits, and parity
checking, and allow these to be variables instead of hard-coded constants. I'll explain each
section and then put it all together when we are through.

4.7.1 Serial ISR

This is an example of a serial ISR we can use:

{$F+}
procedure SerialDataIn; interrupt;
var
InputLetter: Char;
begin
if (Port[ComPort[1] + LSR] and $01) > 0 then begin
InputLetter := Chr(Port[ComPort[1] + RBR]);

end; {if}
end;
{$F-}

This isn't that much different from the polling method that we used earlier, but keep in
mind that by placing the checking inside an ISR that the CPU is only doing the check when
there is a piece of data available. Why even check the LSR to see if there is a data byte
available? Reading data sent to the UART is not the only reason why the UART will invoke
an interrupt. We will go over that in detail in a later section, but for now this is good
programming practice as well, to confirm that the data is in there.

By moving this checking to the ISR, more CPU time is available for performing other tasks.
We could even put the keyboard polling into an ISR as well, but we are going to keep things
very simple for now.

4.7.2 FIFO disabling

There is one minor problem with the way we have written this ISR. We are assuming that
there is no FIFO in the UART. The "bug" that could happen with this ISR as it is currently
written is that multiple characters can be in the FIFO buffer. Normally when this happens,
the UART only sends a single interrupt, and it is up to the ISR to "empty" the FIFO buffer
completely.

Instead, all we are going to do is simply disable the FIFO completely. This can be done
using the FCR (FIFO Control Register) and explicitly disabling the FIFO. As an added
precaution, we are also going to "clear" the FIFO buffers in the UART as a part of the
initialization portion of the program. Clearing the FIFOs look like this:

68



Terminal Program Revisited

Port[ComPort[1] + FCR] := $07; {clearing the FIFOs}

Disabling the FIFOs look like this:

Port[ComPort[1] + FCR] := $00; {disabling FIFOs}

We will be using the FIFOs in the next section, so this is more a brief introduction to this
register so far.

4.7.3 Working with the PIC

Up until this point, we didn't have to worry about working with the Programmable Interrupt
Controller (the PIC). Now we need to. There isn't the need to do all of the potential
instructions for the PIC, but we do need to enable and disable the interrupts that are used
by the UART. There are two PICs typically on each PC, but due to the typical UART IRQ
vector, we really only have to deal with the master PIC.

Pic Function I/O Port Address
PIC Commands 0x20
Interrupt Flags 0x21

This adds the following two constants into the software:

{PIC Constants}
MasterPIC = $20;
MasterOCW1 = $21;

After consulting the PIC IRQ table6 we need to add the following line to the software in
order to enable IRQ4 (used for COM1 typically):

Port[MasterOCW1] := Port[MasterOCW1] and $EF;

When we do the "cleanup" when the program finishes, we also need to disable this IRQ as
well with this line of software:

Port[MasterOCW1] := Port[MasterOCW1] or $10;

Remember that COM2 is on another IRQ vector, so you will have to use different constants
for that IRQ. That will be demonstrated a little bit later. We are using a logical and/or
with the existing value in this PIC register because we don't want to change the values for
the other interrupt vectors that other software and drivers may be using on your PC.

6 http://en.wikibooks.org/wiki/Serial%20Programming%3A8250%20UART%20Programming%23PIC%
20Device%20Masking

69

http://en.wikibooks.org/wiki/Serial%20Programming%3A8250%20UART%20Programming%23PIC%20Device%20Masking
http://en.wikibooks.org/wiki/Serial%20Programming%3A8250%20UART%20Programming%23PIC%20Device%20Masking


Serial DOS

We also need to modify the Interrupt Service Routine (ISR) a little bit to work with the PIC.
There is a command you can send to the PIC that is simply called End of Interrupt (EOI).
This signals to the PIC that it can clear this interrupt signal and process lower-priority
interrupts. If you fail to clear the PIC, the interrupt signal will remain and none of the
other interrupts that are "lower priority" can be processed by the CPU. This is how the
CPU communicates back to the PIC to end the interrupt cycle.

The following line is added to the ISR to make this happen:

Port[MasterPIC] := EOI;

4.7.4 Modem Control Register

This is perhaps the most non-obvious little mistake you can make when trying to get
the UART interrupt. The Modem Control register is really the way for the UART to
communicate to the rest of the PC. Because of the way the circuitry on the motherboards
of most computers is designed, you usually have to turn on the Auxiliary Output 2 signal
in order for interrupts to "connect" to the CPU. In addition, here we are going to turn on
the RTS and DTS signals on the serial data cable7 to make sure the equipment is going to
transmit. We will cover software and hardware flow control in a later section.

To turn on these values in the MCR, we need to add the following line in the software:

Port[ComPort[1] + MCR] := $0B;

4.7.5 Interrupt Enable Register

We are still not home free yet. We still need to enable interrupts on the UART itself. This
is very simple, and for now all we want to trigger an interrupt from the UART is just when
data is received by the UART. This is a very simple line to add here:

Port[ComPort[1] + IER] := $01;

4.7.6 Putting this together so far

Here is the complete program using ISR input:

program ISRTerminal;
uses
Crt, Dos;

const
{UART Constants}
THR = 0;

7 http://en.wikibooks.org/wiki/Serial%20Programming%3ARS-232%20Connections

70

http://en.wikibooks.org/wiki/Serial%20Programming%3ARS-232%20Connections


Terminal Program Revisited

RBR = 0;
IER = 1;
FCR = 2;
LCR = 3;
MCR = 4;
LSR = 5;
Latch_Low = $00;
Latch_High = $01;
{PIC Constants}
MasterPIC = $20;
MasterOCW1 = $21;
{Character Constants}
NullLetter = #0;
EscapeKey = #27;

var
ComPort: array [1..4] of Word absolute $0040:$0000;
OldSerialVector: procedure;
OutputLetter: Char;

{$F+}
procedure SerialDataIn; interrupt;
var
InputLetter: Char;

begin
if (Port[ComPort[1] + LSR] and $01) > 0 then begin
InputLetter := Chr(Port[ComPort[1] + RBR]);
Write(InputLetter);

end; {if}
Port[MasterPIC] := EOI;

end;
{$F-}
begin
Writeln('Simple Serial ISR Data Terminal Program. Press "Esc" to

quit.');
{Change UART Settings}
Port[ComPort[1] + LCR] := $80;
Port[ComPort[1] + Latch_High] := $00;
Port[ComPort[1] + Latch_Low] := $0C;
Port[ComPort[1] + LCR] := $03;
Port[ComPort[1] + FCR] := $07; {clearing the FIFOs}
Port[ComPort[1] + FCR] := $00; {disabling FIFOs}
Port[ComPort[1] + MCR] := $0B;
{Setup ISR vectors}
GetIntVec($0C,@OldSerialVector);
SetIntVec($0C,Addr(SerialDataIn));
Port[MasterOCW1] := Port[MasterOCW1] and $EF;
Port[ComPort[1] + IER] := $01;
{Scan for keyboard data}
OutputLetter := NullLetter;
repeat
if KeyPressed then begin

OutputLetter := ReadKey;
Port[ComPort[1] + THR] := Ord(OutputLetter);

end; {if}
until OutputLetter = EscapeKey;
{Put the old ISR vector back in}
SetIntVec($0C,@OldSerialVector);
Port[MasterOCW1] := Port[MasterOCW1] or $10;

end.

At this point you start to grasp how complex serial data programming can get. We are not
finished yet, but if you have made it this far you hopefully understand each part of the
program listed above. We are going to try and stay with this one step at a time, but at this
point you should be able to write some simple custom software that uses serial I/O.

71



Serial DOS

4.7.7 Command Line Input

There are a number of different ways that you can "scan" the parameters that start the
program. For example, if you start a simple terminal program in DOS, you can use this
command to begin:

C:> terminal COM1 9600 8 1 None

or perhaps

C:> terminal COM4 1200 7 2 Even

Obviously there should not be a need to have the end-user recompile the software if they
want to change something simple like the baud rate. What we are trying to accomplish here
is to grab those other items that were used to start the program. In Turbo Pascal, there is
function that returns a string

ParamStr(index)

which contains each item of the command line. These are passed to the program through
strings. A quick sample program on how to extract these parameters can be found here:

program ParamTst;
var
Index: Integer;

begin
writeln('Parameter Test -- displays all command line parameters of

this program');
writeln('Parameter Count = ',ParamCount);
for Index := 0 to ParamCount do begin
writeln('Param # ',Index,' - ',ParamStr(Index));

end;
end.

One interesting "parameter" is parameter number 0, which is the name of the program that
is processing the commands. We will not be using this parameter, but it is something useful
in many other programming situations.

4.7.8 Grabbing Terminal Parameters

For the sake of simplicity, we are going to require that either all of the parameters are going
to be in that format of baud rate, bit size, stop bits, parity; or there will be no parameters
at all. This example is going to be mainly to demonstrate how to use variables to change
the settings of the UART by the software user rather than the programmer. Since the added
sections are self-explanatory, I'm just going to give you the complete program. There will
be some string manipulation going on here that is beyond the scope of this book, but that
is going to be used only for parsing the commands. To keep the user interface simple, we
are using the command line arguments alone for changing the UART parameters. We could

72



Terminal Program Revisited

build a fancy interface to allow these settings to be changed while the program is running,
but that is an exercise that is left to the reader.

Category:Serial Programming8

8 http://en.wikibooks.org/wiki/Category%3ASerial%20Programming

73

http://en.wikibooks.org/wiki/Category%3ASerial%20Programming




5 Serial Linux

5.1 The Classic Unix C APIs for Serial Communication

5.1.1 Introduction

Scope

This page talks about the classic Unix C APIs for controlling serial devices. Languages
other than C might provide appropriate wrappers to these APIs which look similar, or
come with their own abstraction (e.g. Java1). Nevertheless, these APIs are the lowest level
of abstraction one can find for serial I/O in Unix. And, in fact they are also the highest
abstraction in C on standard Unix. Some Unix versions ship additional vendor-specific
proprietary high-level APIs. These APIs are not discussed here.

Actual implementations of classic Unix serial APIs do vary in practice, due to the different
versions of Unix and its clones, like Linux. Therefore, this module just provides a general
outline. It is highly recommended that you study a particular Unix version's manual (man
pages) when programming for a serial device in Unix. The relevant man pages are not
too great a read, but they are usually complete in their listing of options and parameters.
Together with this overview it should be possible to implement programs doing serial I/O
under Unix.

Basics

Linux, or any Unix, is a multi-user, multi-tasking operating system. As such, programs
usually don't, and are usually not allowed to, access hardware resources like serial UARTs
directly. Instead, the operating system provides

1. low-level drivers for mapping the device into the file system (/dev and/or /device/
file system entries),

2. the standard system calls for opening, reading, writing, and closing the device, and
3. the standard system call for controlling a device, and/or
4. high-level C libraries for controlling the device.

The low-level driver not only maps the device into the file system with the help of the kernel,
it also encapsulates the particular hardware. The user often does not even know or care
what type of UART is in use.

1 Chapter 6 on page 87

75



Serial Linux

Classic Unix systems often provide two different device nodes (or minor numbers) for serial
I/O hardware. These provide access to the same physical device via two different names in
the /dev hierarchy. Which node is used affects how certain serial control signals, such as
DCD (data carrier detect), are handled when the device is opened. In some cases this can
be changed programmatically, making the difference largely irrelevant. As a consequence,
Linux only provides the different devices for legacy programs.

Device names in the file system can vary, even on the same Unix system, as they are simply
aliases. The important parts of a device name (such as in /dev) are the major and minor
numbers. The major number distinguishes a serial port, for example, from a keyboard
driver, and is used to select the correct driver in the kernel. Note that the major number
differs between different Unix systems. The minor number is interpreted by the device driver
itself. For serial device drivers, it is typically used to detect which physical interface to use.
Sometimes, the minor number will also be used by the device driver to determine the DCD
behavior or the hardware flow control signals to be used.

The typical (but not standardized, see above) device names under Unix for serial interfaces
are:

/dev/ttyxxx

Normal, generic access to the device. Used for terminal and other serial communication
(originally for teletypes). More recently, they are also used in modem communication, for
example, whereas the /dev/cuaxxx was used on older systems.

See the following module on how terminal I/O and serial I/O relate on Unix.

/dev/cuaxxx

Legacy device driver with special DCD handling. Typically this was used for accessing a
modem on old Unix systems, such as running the UUCP2 communication protocol over
the serial line and the modem. The cu in the name stands for the #cu3 program. The a
for ACU (automatic call unit).

The xxx part in the names above is typically a one or two digit number, or a lowercase
letter, starting at 'a' for the first interface.

PC-based Unix systems often mimic the DOS/Windows naming for the devices and call
them /dev/comxxx.

To summarize, when programming for the serial interface of a Unix system it is highly
advisable to provide complete configuration for the device name. Not even the typical
/dev path should be hard coded.

Note, devices with the name /dev/ptyxxx are pseudo terminal devices, typically used by a
graphical user interface to provide a terminal emulator like xterm or dtterm with a "terminal"
device, and to provide a terminal device for network logins. There is no serial hardware
behind these device drivers.

2 http://en.wikipedia.org/wiki/UUCP
3 Chapter 5.2.6 on page 84

76

http://en.wikipedia.org/wiki/UUCP


The Classic Unix C APIs for Serial Communication

5.1.2 Serial I/O via Terminal I/O

Basics

Serial I/O under Unix is implemented as part of the terminal I/O capabilities of Unix. And
the terminal I/O capabilities of Unix were originally the typewriter/teletype capabilities.
Terminal I/O is not limited to terminals, though. The terminal I/O API is used for
communication with many serial devices other than terminals, such as modems and printers.

The terminal API itself has evolved over time. These days three terminal APIs are still used
in Unix programs and can be found in recent Unix implementations. A fourth one, the very
old one from Unix Version 6 exists, but is quite rare these days.

The three common ones are:

1. V7, 4BSD, XENIX style device-specific ioctl-based API4,
2. An old one called termio5

3. A newer one (although still already a few decades old), which is called termios6 (note
the additional 's').

The newer termios API is based on the older termio API, and so the two termio... APIs
share a lot of similarities. The termios API has also undergone changes since inception. For
example, the method of specifying the baud rate has changed from using pre-defined constants
to a more relaxed schema (the constants can still be used as well on most implementations).

Systems that support the newer termios often also support the older termio API, either
by providing it in addition, or by providing a termios implementation with data structures
which can be used in place of the termio data structures and work as termio. These systems
also often just provide one man page under the older name termio(7) which is then in fact
the termios man page, too.

In addition, some systems provide other, similar APIs, either in addition or as a replacement.
termiox is such an API, which is largely compatible with termio and adds some extensions
to it taken from termios. So termiox can logically be seen as an intermediate step between
termio and termios.

The terminal I/O APIs rely on the standard system calls for reading and writing data.
They don't provide their own reading/writing functions. Reading and writing data is done
via the read(2) and write(2) system calls. The terminal I/O APIs just add functions for
controlling and configuring the device. Most of this happens via the ioctl(2) system call.

Unfortunately, whichever of the standard APIs is used, one fact holds for all of them: They
are a slight mess. Well, not really. Communication with terminals was and is a difficult
issue, and the APIs reflect these difficulties. But due to the fact that one can do "everything"
with the APIs, it is overwhelming when one "just" wants to do some serial communication.
So why is there no separate serial-I/O-only API in Unix? There are probably two reasons
for this:

4 http://en.wikibooks.org/wiki/Serial_Programming%3ASerial_Linux%23V7%20%2F%20ioctl%
282%29

5 http://en.wikibooks.org/wiki/Serial_Programming%3ASerial_Linux%23termio%20%2F%
20ioctl%282%29

6 http://en.wikibooks.org/wiki/Serial_Programming%3ASerial_Linux%23termios

77

http://en.wikibooks.org/wiki/Serial_Programming%3ASerial_Linux%23V7%20%2F%20ioctl%282%29
http://en.wikibooks.org/wiki/Serial_Programming%3ASerial_Linux%23V7%20%2F%20ioctl%282%29
http://en.wikibooks.org/wiki/Serial_Programming%3ASerial_Linux%23termio%20%2F%20ioctl%282%29
http://en.wikibooks.org/wiki/Serial_Programming%3ASerial_Linux%23termio%20%2F%20ioctl%282%29
http://en.wikibooks.org/wiki/Serial_Programming%3ASerial_Linux%23termios


Serial Linux

1. Terminals/teletypes were the first, and apparently very important, serial devices which
were connected to Unix. So that API was created first.

2. Once the API was there, there was no need to create a separate one for serial I/O only,
since a large part of terminal I/O is serial I/O, and all needed features were already
there in the terminal I/O API.

So which API should one use? There is one good reason to use the old V7 API. It is the
simplest among the APIs - after going through some initialization woes on modern Unix
systems. In general, however, the newer termios API makes the most sense, although it is
the most complex one.

Line Discipline

When programming serial interfaces on Unix, there is one phrase - line discipline - which can
drive programmers crazy. The line discipline provides the hardware-independent interface for
the communication between the computer and the terminal device. It handles such things
as editing, job control, and special character interpretation, and performs transformations
on the incoming and outgoing data.

This is useful for terminal communication (e.g. when a backspace character should erase the
latest character from the send buffer before it goes over the wire, or when different end-of-line
character sequences between the terminal and the computer need to be converted). These
features are, however, hardly useful when communicating with the plethora of other serial
devices, where unaltered data communication is desired.

Much of the serial programming in Unix is hitting the line discipline which is in use over the
head so it doesn't touch the data. Monitoring what actually goes over the wire is a good
idea.

5.1.3 Unix V6/PWB

Unix Bell Version 6 with the programmer's workbench (PWB) was released in 1975 to
universities. It was the first Unix with an audience outside AT&T. It already had a terminal
programming API. Actually, at that point it was the typewriter API. That API is not
described here in depth.

The usage of this API can in theory be identified by the presence of the following signature
in some source code:

#include <sgtty.h>
stty(fd, data)
int fd;
char *data;

gtty(fd, data)
int fd;
char *data;

In theory, because at that time the C language was still a little bit different.

78



The Classic Unix C APIs for Serial Communication

data is supposed to point to a

struct {
char ispeed, ospeed;
char erase, kill;
int mode;

} *data;

structure. That structure later became struct sgttyb in Unix V7. Finding the V6 API in
source code should be rare. Anyhow, recent Unix versions and clones typically don't support
this API any more.

5.1.4 Unix V7

See Serial Programming:Unix/V77

5.1.5 termios

A simple terminal program with termios.h can look like this:

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <termios.h>

int main(int argc,char** argv)
{

struct termios tio;
struct termios stdio;
struct termios old_stdio;
int tty_fd;

unsigned char c=‚D‚;
tcgetattr(STDOUT_FILENO,&old_stdio);

printf("Please start with %s /dev/ttyS1 (for
example)\n",argv[0]);

memset(&stdio,0,sizeof(stdio));
stdio.c_iflag=0;
stdio.c_oflag=0;
stdio.c_cflag=0;
stdio.c_lflag=0;
stdio.c_cc[VMIN]=1;
stdio.c_cc[VTIME]=0;
tcsetattr(STDOUT_FILENO,TCSANOW,&stdio);
tcsetattr(STDOUT_FILENO,TCSAFLUSH,&stdio);
fcntl(STDIN_FILENO, F_SETFL, O_NONBLOCK); // make the

reads non-blocking

memset(&tio,0,sizeof(tio));
tio.c_iflag=0;
tio.c_oflag=0;
tio.c_cflag=CS8|CREAD|CLOCAL; // 8n1, see termios.h

7 http://en.wikibooks.org/wiki/Serial%20Programming%3AUnix%2FV7

79

http://en.wikibooks.org/wiki/Serial%20Programming%3AUnix%2FV7


Serial Linux

for more information
tio.c_lflag=0;
tio.c_cc[VMIN]=1;
tio.c_cc[VTIME]=5;

tty_fd=open(argv[1], O_RDWR | O_NONBLOCK);
cfsetospeed(&tio,B115200); // 115200 baud
cfsetispeed(&tio,B115200); // 115200 baud

tcsetattr(tty_fd,TCSANOW,&tio);
while (c!=‚q‚)
{

if (read(tty_fd,&c,1)>0)
write(STDOUT_FILENO,&c,1); // if new data is available
on the serial port, print it out

if (read(STDIN_FILENO,&c,1)>0) write(tty_fd,&c,1);
// if new data is available on the console, send it

to the serial port
}

close(tty_fd);
tcsetattr(STDOUT_FILENO,TCSANOW,&old_stdio);

return EXIT_SUCCESS;
}

See Serial_Programming:Unix/termios8

5.1.6 termio / ioctl(2)

See Serial Programming:Unix/termio9

5.2 Serial I/O on the Shell Command Line

5.2.1 Introduction

It is possible to do serial I/O on the Unix command line. However, the available control
is limited. Reading and writing data can be done with the shell I/O redirections like <,
>, and |. Setting basic configuration, like the baud rate, can be done with the stty (set
terminal type) command.

There is also libserial for Linux. It's a simple C++ class which hides some of the
complexity of termios.

5.2.2 Configuration with stty

The Unix command stty allows one to configure a "terminal". Since all serial I/O under
Unix is done via terminal I/O, it should be no surprise that stty can also be used to configure
serial lines. Indeed, the options and parameters which can be set via stty often have a 1:1

8 http://en.wikibooks.org/wiki/Serial_Programming%3AUnix%2Ftermios
9 http://en.wikibooks.org/wiki/Serial%20Programming%3AUnix%2Ftermio

80

http://en.wikibooks.org/wiki/Serial_Programming%3AUnix%2Ftermios
http://en.wikibooks.org/wiki/Serial%20Programming%3AUnix%2Ftermio


Serial I/O on the Shell Command Line

mapping to termio/termios. If the explanations regarding an option in the stty(1) man
page is not sufficient, looking up the option in the termio/termios man page can often help.

On "modern" (System V) Unix versions, stty changes the parameters of its current standard
input. On older systems, stty changes the parameters of its current standard output.
We assume a modern Unix is in use here. So, to change the settings of a particular serial
interface, its device name must be provided to stty via an I/O redirect:

stty parameters < /dev/com0 # change setting of /dev/com0

On some systems, the settings done by stty are reverted to system defaults as soon as the
device is closed again. This closing is done by the shell as soon as the stty parameters
< /dev/com0 command has finished. So when using the above command, the changes will
only be in effect for a few milliseconds.

One way to keep the device open for the duration of the communication is to start the
whole communication in a sub shell (using, for example, '( ... )'), and redirecting that input.
So to send the string "ATI0" over the serial line, one could use:

( stty parameters
echo "ATI0"

) < /dev/com0 > /dev/com0

Interweaving sending and receiving data is difficult from the command line. Two processes
are needed; one reading from the device, and the other writing to the device. This makes
it difficult to coordinate commands sent with the responses received. Some extensive shell
scripting might be needed to manage this.

A common way to organize the two processes is to put the reading process in the background,
and let the writing process continue to run in the foreground. For example, the following
script configures the device and starts a background process for copying all received
data from the serial device to standard output. Then it starts writing commands to the device:

# Set up device and read from it.
# Capture PID of background process so it is possible
# to terminate background process once writing is done
# TODO: Also set up a trap in case script is killed
# or crashes.
( stty parameters; cat; )& < /dev/com0
bgPid=$?

# Read commands from user, send them to device
while read cmd; do

echo "$cmd"
done >/dev/com0

# Terminate background read process
kill $bgPid

If there is a chance that a response to some command might never come, and if there is no
other way to terminate the process, it is advisable to set up a timeout by using the alarm

81



Serial Linux

signal and trap that signal (signal 14), or simply kill the process:

trap timeout 14
timeout() {

echo "timeout occurred"
}
pid=$$
( sleep 60 ; kill -14 $pid; )& # send alarm signal after 60 sec.
# normal script contents goes here

or

pid=$$
( sleep 60; kill -9 $pid;)& # brutally kill process after 60 sec.
# normal script contents goes here

5.2.3 Permanent Configuration

Overview

It is possible to provide a serial line with a default configuration. On classic Unix this is
done with entries in the /etc/ttytab configuration file, on newer (System V R4) systems
with /etc/ttydefs.

The default configurations make some sense when they are used for setting up terminal lines
or dialup lines for a Unix system (and that's what they are for). However, such default
configurations are not of much use when doing some serial communication with some other
device. The correct function of the communication program should better not depend on
some operating system configuration. Instead, the application should be self-contained and
configure the device as needed by it.

/etc/ttytab

The ttytab format varies from Unix to Unix, so checking the corresponding man page
is a good idea. If the device is not intended for a terminal (no login), then the getty
field (sometimes also called the program field, usually the 3rd field) for the device
entry should be empty. The init field (often the 4th field) can contain an initialization
command. Using stty here is a good idea. So, a typical entry for a serial line might look like:

# Device TermType Getty Init
tty0 unknown "" "stty parameters"

/etc/ttydefs

Just some hints:

82



Serial I/O on the Shell Command Line

/etc/ttydefs provides the configuration as used by the ttymon program. The settings
are similar to the settings possible with stty.

ttymon is a program which is typically run under control of the Service Access Controller
(SAC), as part of the Service Access Facility (SAF).

TODO: Provide info to set up all the sac/sacadm junk.

/etc/serial.conf

Just some hints:

A Linux-specific way of configuring serial devices using the setserial program.

5.2.4 tty

tty with the -s option can be used to test if a device is a terminal (supports the
termio/termios ioctl()'s). Therefore it can also be used to check if a given file name is
indeed a device name of a serial line.

echo "Enter serial device name: \c"
read dev
if tty -s < "$dev"; then
echo "$dev is indeed a serial device."

else
echo "$dev is not a serial device."

fi

5.2.5 tip

It is a simple program for establishing a terminal connection with a remote system over a
serial line. tip takes the necessary communication parameters, including the parameters for
the serial communication, from a tip-specific configuration file. Details can be found in the
tip(1) manual page.

Example:

To start the session over the first serial interface (here ttya):

tip -9600 /dev/ttya

To leave the session:

˜.

83



Serial Linux

5.2.6 uucp

Overview

Uucp (Unix-to-Unix-Copy) is a set of programs for moving data over serial lines/modems
between Unix computers. Before the rise of the Internet uucp was the heart and foundation
of services like e-mail and Usenet (net news) between Unix computers. Today uucp is
largely insignificant. However, it is still a good choice if two or more Unix systems should
be connected via serial lines/modems.

The uucp suite also contains command line tools for login over a serial line (or another
UUCP bearer to a remote system. These tools are cu and ct. They are e.g. useful when
trying to access a device connected via a serial line and when debugging some serial line
protocol.

cu

cu "call another UNIX system", does what the name implies. Only, that the other system
does not have to be a UNIX system at all. It just sets up a serial connection, possibly by
dialing via a modem.

cu is the oldest Unix program for serial communication. It's the reason why some serial
devices on classic Unix systems are called something like /dev/cul0 and /dev/cua0. Where
cu of course stands for the cu program supposed to use the devices, l stands for line - the
communication line, and a for acu (automatic call unit).

Note:
An ACU is kind of a modem. Modern modems work slightly different and don't provide
separate serial interfaces for dialing and communicating with the remote side. Instead
they do both over the same serial interface, using some kind of inband signaling. See
Serial Programming:Modems and AT Commandsa.

a http://en.wikibooks.org/wiki/Serial%20Programming%3AModems%20and%20AT%20Commands

ct

ct is intended to spawn a login to a remote system over a modem line, serial line, or similar
bearer. It uses the uucp devices list to find the necessary dialing (modem) commands, and
the serial line settings.

5.3 System Configuration

inittab, ttytab, SAF configuration

84

http://en.wikibooks.org/wiki/Serial%20Programming%3AModems%20and%20AT%20Commands


Other Serial Programming Articles

5.4 Other Serial Programming Articles

Category:Serial Programming10

10 http://en.wikibooks.org/wiki/Category%3ASerial%20Programming

85

http://en.wikibooks.org/wiki/Category%3ASerial%20Programming




6 Serial Java

6.1 Using Java for Serial Communication

6.1.1 Introduction

Because of Java's platform-independence, serial interfacing is difficult. Serial interfacing
requires a standardized API with platform-specific implementations, which is difficult for
Java.

Unfortunately, Sun doesn't pay much attention to serial communication in Java. Sun has
defined a serial communication API, called JavaComm1, but an implementation of the API
is not part of the Java standard edition. Sun provides a reference implementation for a few,
but not all Java platforms. Particularly, at the end of 2005 Sun silently withdrew JavaComm
support for Windows. Third party implementations for some of the omitted platforms are
available. JavaComm hasn't seen much in the way of maintenance activities, only the bare
minimum maintenance is performed by Sun, except that Sun has apparently responded to
pressure from buyers of their own Sun Ray thin clients and has adapted JavaComm to this
platform while dropping Windows support.

This situation, and the fact that Sun originally did not provide a JavaComm implementation
for Linux (starting in 2006, they now do) led to the development of the free-software RxTx2

library. RxTx is available for a number of platforms, not only Linux. It can be used in
conjunction with JavaComm (RxTx providing the hardware-specific drivers), or it can be
used stand-alone. When used as a JavaComm driver the bridging between the JavaComm
API and RxTx is done by JCL (JavaComm for Linux). JCL is part of the RxTx distribution.

Sun's negligence of JavaComm and JavaComms particular programming model gained
JavaCommthe reputation of being unusable. Fortunately, this is not the case.
Unfortunately, the reputation is further spread by people who don't know the
basics of serial programming at all and make JavaCommresponsible for their
lack of understanding.

RxTx - if not used as a JavaComm driver - provides a richer interface, but one which is not
standardized. RxTx supports more platforms than the existing JavaComm implementations.
Recently, RxTx has been adopted to provide the same interface as JavaComm, only that the
package names don't match Sun's package names.

So, which of the libraries should one use in an application? If maximum portability (for
some value of "maximum") is desired, then JavaComm is a good choice. If there is no
JavaComm implementation for a particular platform available, but an RxTx implementation

1 http://www.oracle.com/technetwork/java/index-jsp-141752.html
2 http://rxtx.qbang.org/wiki/index.php/Main_Page

87

http://www.oracle.com/technetwork/java/index-jsp-141752.html
http://rxtx.qbang.org/wiki/index.php/Main_Page


Serial Java

is, then RxTx could be used as a driver on that platform for JavaComm. So, by using
JavaComm one can support all platforms which are either directly supported by Sun's
reference implementation or by RxTx with JCL. This way the application doesn't need to
be changed, and can work against just one interface, the standardized JavaComm interface.

This module discusses both JavaComm and RxTx. It mainly focuses on demonstrating
concepts, not ready-to-run code. Those who want to blindly copy code are referred to the
sample code that comes with the packages. Those who want to know what they are doing
might find some useful information in this module.

6.1.2 Getting started

• Learn the basics of serial communication and programming3.
• Have the documentation of the device you want to communicate with (e.g. the modem)

ready.
• Set up all hardware and a test environment
• Use, for example, a terminal program to manually communicate with the device. This is

to be sure the test environment is set up correctly and you have understood the commands
and responses from the device.

• Download the API implementation you want to use for your particular operating system

• Read
• the JavaComm and/or RxTx installation instruction (and follow it)
• the API documentation
• the example source code shipped

6.1.3 Installation

General Issues

Both JavaComm and RxTX show some installation quirks. It is highly recommended to
follow the installation instructions word-for-word. If they say that a jar file or a shared
library has to go into a particular directory, then this is meant seriously! If the instructions
say that a particular file or device needs to have a specific ownership or access rights, this
is also meant seriously. Many installation troubles simply come from not following the
instructions precisely.

It should especially be noted that some versions of JavaComm come with two installation
instructions. One for Java 1.2 and newer, one for Java 1.1. Using the wrong one will result
in a non-working installation. On the other hand, some versions/builds/packages of RxTx
come with incomplete instructions. In such a case the corresponding source code distribution
of RxTx needs to be obtained, which should contain complete instructions.

It should be further noticed that it is also typical for Windows JDK installations to come
with up to three VMs, and thus three extension directories.

• One as part of the JDK,

3 http://en.wikibooks.org/wiki/Serial%20Programming

88

http://en.wikibooks.org/wiki/Serial%20Programming


Using Java for Serial Communication

• one as part of the private JRE which comes with the JDK to run JDK tools, and
• one as part of the public JRE which comes with the JDK to run applications

Some even claim to have a fourth JRE somewhere in the \Windows directory hierarchy.

JavaComm should at least be installed as extension in the JDK and in all public JREs.

Webstart

JavaComm
A general problem, both for JavaComm and RxTx is, that they resist installation via Java
WebStart4:

JavaComm is notorious, because it requires a file called javax.comm.properties to be placed in
the JDK lib directory, something which can't be done with Java WebStart. This is particularly
sad, because the need for that file is the result of some unnecessary design/decision in
JavaComm and could have easily been avoided by the JavaComm designers. Sun constantly
refuses to correct this error, citing the mechanism is essential. Which is, they are lying
through their teeth when it comes to JavaComm, particular, because Java for a long time
has a service provider architecture exactly intended for such purposes.

The contents of the properties file is typically just one line, the name of the java class with
the native driver, e.g.:

driver=com.sun.comm.Win32Driver

The following is a hack which allows to deploy JavaComm via Web Start ignoring that
brain-dead properties file. It has serious drawbacks, and might fail with newer JavaComm
releases - should Sun ever come around and make a new version.

First, turn off the security manager. Some doofus programmer at Sun decided that it would
be cool to again and again check for the existence of the dreaded javax.comm.properties file,
even after it has been loaded initially, for no other apparent reason than checking for the file.

System.setSecurityManager(null);

Then, when initializing the JavaComm API, initialize the driver manually:

String driverName = "com.sun.comm.Win32Driver"; // or get as a JNLP
property
CommDriver commDriver =
(CommDriver)Class.forName(driverName).newInstance();
commDriver.initialize();

RxTx

4 http://java.sun.com/products/javawebstart/

89

http://java.sun.com/products/javawebstart/


Serial Java

RxTx on some platforms requires changing ownership and access rights of serial devices.
This is also something which can't be done via WebStart.

At startup of your program you could ask the user to perform the necessary setup as super
user.

Further, RxTx has a pattern matching algorithm for identifying "valid" serial device names.
This often breaks things when one wants to use non-standard devices, like USB-to-serial con-
verters. This mechanism can be overridden by system properties. See the RxTx installation
instruction for details.

6.2 JavaComm API

6.2.1 Introduction

The official API for serial communication in Java is the JavaComm API. This API is not
part of the standard Java 2 version. Instead, an implementation of the API has to be
downloaded separately. Unfortunately, JavaComm has not received much attention from
Sun, and hasn't been really maintained for a long time. From time to time Sun does trivial
bug-fixes, but doesn't do the long overdue main overhaul.

This section explains the basic operation of the JavaComm API. The provided source code
is kept simple to demonstrate important point. It needs to be enhanced when used in a real
application.

The source code in this chapter is not the only available example code. The JavaComm
download comes with several examples. These examples almost contain more information
about using the API than the API documentation. Unfortunately, Sun does not provide
any real tutorial or some introductory text. Therefore, it is worth studying the example
code to understand the mechanisms of the API. Still, the API documentation should be
studied, too. But the best way is to study the examples and play with them. Due to the lack
of easy-to-use application and people's difficulty in understanding the APIs programming
model, the API is often bad-mouthed. The API is better than its reputation, and functional.
But no more.

The API uses a callback mechanism to inform the programmer about newly arriving data.
It is also a good idea to study this mechanism instead of relying on polling the port. Unlike
other callback interfaces in Java (e.g. in the GUI), this one only allows one listener listening
to events. If multiple listeners require to listen to serial events, the one primary listener has
to be implemented in a way that it dispatches the information to other secondary listeners.

90



JavaComm API

6.2.2 Download & Installation

Download

Sun's JavaComm5 web page points to a download location6. Under this location Sun
currently (2007) provides JavaComm 3.0 implementations for Solaris/SPARC, Solaris/x86,
and Linux x86. Downloading requires to have registered for a Sun Online Account. The
download page provides a link to the registration page. The purpose of this registration is
unclear. One can download JDKs and JREs without registration, but for the almost trivial
JavaComm Sun cites legal and governmental restrictions on the distribution and exportation
of software.

The Windows version of JavaComm is no longer officially available, and Sun has - against
their own product end-of-live policy - not made it available in the Java products archive7.
However, the 2.0 Windows version (javacom 2.0) is still downloadable from here8.

Installation

Follow the installation instructions that come with the download. Some versions of Java-
Comm 2.0 come with two installation instructions. The most obvious of the two instructions
is unfortunately the wrong one, intended for ancient Java 1.1 environments. The information
referring to the also ancient Java 1.2 (jdk1.2.html) is the right one.

Particularly Windows users are typically not aware that they have copies of the same VM
installed in several locations (typically three to four). Some IDEs also like to come with own,
private JRE/JDK installations, as do some Java applications. The installation needs to be
repeated for every VM installation (JDKs and JREs) which should be used in conjunction
with the development and execution of a serial application.

IDEs typically have IDE-specific ways of how a new library (classes and documentation) is
made known to the IDE. Often a library like JavaComm not only needs to be made known
to the IDE as such, but also to each project that is supposed to use the library. Read the
IDE's documentation. It should be noted that the old JavaComm 2.0 version comes with
JavaDoc API documentation that is structured in the historic Java 1.0 JavaDoc layout.
Some modern IDEs are no longer aware of this structure and can't integrate the JavaComm
2.0 documentation into their help system. In such a case an external browser is needed to
read the documentation (a recommended activity ...).

Once the software is installed it is recommended to examine the samples and JavaDoc
directories. It makes sense to build and run one of the sample applications to verify that the
installation is correct. The sample applications typically need some minor adaptations in
order to run on a particular platform (e.g. changes to the hard-coded com port identifiers).
It is a good idea to have some serial hardware, like cabling, a null modem, a breakout box,

5 http://java.sun.com/products/javacomm/
6 http://www.sun.com/download/products.xml?id=43208d3d
7 http://java.sun.com/products/archive/
8 http://wind.lcs.mit.edu/download/

91

http://java.sun.com/products/javacomm/
http://www.sun.com/download/products.xml?id=43208d3d
http://java.sun.com/products/archive/
http://wind.lcs.mit.edu/download/


Serial Java

a real modem, PABX and others available when trying out a sample application. Serial_-
Programming:RS-232 Connections9 and Serial_Programming:Modems and AT Commands10

provide some information on how to set up the hardware part of a serial application
development environment.

Finding the desired serial Port

The first three things to do when programming serial lines with JavaComm are typically

1. to enumerate all serial ports (port identifiers) available to JavaComm,
2. to select the desired port identifier from the available ones, and
3. to acquire the port via the port identifier.

Enumerating and selecting the desired port identifier is typically done in one loop:

import javax.comm.*;
import java.util.*;
...

//
// Platform specific port name, here a Unix name
//
// NOTE: On at least one Unix JavaComm implementation JavaComm
// enumerates the ports as "COM1" ... "COMx", too, and not
// by their Unix device names "/dev/tty...".
// Yet another good reason to not hard-code the wanted
// port, but instead make it user configurable.
//
String wantedPortName = "/dev/ttya";

//
// Get an enumeration of all ports known to JavaComm
//
Enumeration portIdentifiers =
CommPortIdentifier.getPortIdentifiers();

//
// Check each port identifier if
// (a) it indicates a serial (not a parallel) port, and
// (b) matches the desired name.
//
CommPortIdentifier portId = null; // will be set if port found
while (portIdentifiers.hasMoreElements())
{

CommPortIdentifier pid = (CommPortIdentifier)
portIdentifiers.nextElement();

if(pid.getPortType() == CommPortIdentifier.PORT_SERIAL &&
pid.getName().equals(wantedPortName))

{
portId = pid;
break;

}
}
if(portId == null)
{

System.err.println("Could not find serial port " +

9 http://en.wikibooks.org/wiki/Serial_Programming%3ARS-232%20Connections
10 http://en.wikibooks.org/wiki/Serial_Programming%3AModems%20and%20AT%20Commands

92

http://en.wikibooks.org/wiki/Serial_Programming%3ARS-232%20Connections
http://en.wikibooks.org/wiki/Serial_Programming%3AModems%20and%20AT%20Commands


JavaComm API

wantedPortName);
System.exit(1);

}

//
// Use port identifier for acquiring the port
//
...

Note:
JavaComm itself obtains the default list of available serial port identifiers from its
platform-specific driver. The list is not really configurable via JavaComm. The method
CommPortIdentifier.addPortName() is misleading, since driver classes are platform
specific and their implementations are not part of the public API. Depending on the
driver, the list of ports might be configurable / expendable in the driver. So if a particular
port is not found in JavaComm, sometimes some fiddling with the driver can help.

Once a port identifier has been found, it can be used to acquire the desired port:

//
// Use port identifier for acquiring the port
//
SerialPort port = null;
try {

port = (SerialPort) portId.open(
"name", // Name of the application asking for the port
10000 // Wait max. 10 sec. to acquire port

);
} catch(PortInUseException e) {

System.err.println("Port already in use: " + e);
System.exit(1);

}
//
// Now we are granted exclusive access to the particular serial
// port. We can configure it and obtain input and output streams.
//
...

6.2.3 Initialize a Serial Port

The initialization of a serial port is straight forward. Either individually set the communica-
tion preferences (baud rate, data bits, stop bits, parity) or set them all at once using the
setSerialPortParams(...) convenience method.

As part of the initialization process the Input and Output streams for communication will
be configured in the example.

import java.io.*;
...

//
// Set all the params.

93



Serial Java

// This may need to go in a try/catch block which throws
UnsupportedCommOperationException
//
port.setSerialPortParams(

115200,
SerialPort.DATABITS_8,
SerialPort.STOPBITS_1,
SerialPort.PARITY_NONE);

//
// Open the input Reader and output stream. The choice of a
// Reader and Stream are arbitrary and need to be adapted to
// the actual application. Typically one would use Streams in
// both directions, since they allow for binary data transfer,
// not only character data transfer.
//
BufferedReader is = null; // for demo purposes only. A stream would
be more typical.
PrintStream os = null;

try {
is = new BufferedReader(new

InputStreamReader(port.getInputStream()));
} catch (IOException e) {
System.err.println("Can't open input stream: write-only");
is = null;

}

//
// New Linux systems rely on Unicode, so it might be necessary to
// specify the encoding scheme to be used. Typically this should
// be US-ASCII (7 bit communication), or ISO Latin 1 (8 bit
// communication), as there is likely no modem out there accepting
// Unicode for its commands. An example to specify the encoding
// would look like:
//
// os = new PrintStream(port.getOutputStream(), true,
"ISO-8859-1");
//
os = new PrintStream(port.getOutputStream(), true);

//
// Actual data communication would happen here
// performReadWriteCode();
//

//
// It is very important to close input and output streams as well
// as the port. Otherwise Java, driver and OS resources are not
released.
//
if (is != null) is.close();
if (os != null) os.close();
if (port != null) port.close();

94



JavaComm API

6.2.4 Simple Data Transfer

Simple Writing of Data

Writing to a serial port is as simple as basic Java IO. However there are a couple of caveats
to look out for if you are using the AT Hayes protocol:

1. Don't use println (or other methods that automatically append "\n") on the Out-
putStream. The AT Hayes protocol for modems expects a "\r\n" as the delimiter
(regardless of underlying operating system).

2. After writing to the OutputStream, the InputStream buffer will contain a repeat of
the command that was sent to it (with line feed), if the modem is set to echoing the
command line, and another line feed (the answer to the "AT" command). So as part
of the write operation make sure to clean the InputStream of this information (which
can actually be used for error detection).

3. When using a Reader/Writer (not a really good idea), at least set the character
encoding to US-ASCII instead of using the platform's default encoding, which might
or might not work.

4. Since the main operation when using a modem is to transfer data unaltered, the
communication with the modem should be handled via InputStream/OutputStream,
and not a Reader/Writer.

// Write to the output
os.print("AT");
os.print("\r\n"); // Append a carriage return with a line feed

is.readLine(); // First read will contain the echoed command you
sent to it. In this case: "AT"
is.readLine(); // Second read will remove the extra line feed that
AT generates as output

Simple Reading of Data (Polling)

If you correctly carried out the write operation (see above) then the read operation is as
simple as one command:

// Read the response
String response = is.readLine(); // if you sent "AT" then response
== "OK"

Problems with the simple Reading / Writing

The simple way of reading and/or writing from/to a serial port as demonstrated in the
previous sections has serious drawbacks. Both activities are done with blocking I/O. That
means, when there is

• no data available for reading, or
• the output buffer for writing is full (the device does not accept (any more) data),

95



Serial Java

the read or write method (os.print() or is.readLine() in the previous example) do not
return, and the application comes to a halt. More precisely, the thread from which the read
or write is done gets blocked. If that thread is the main application thread, the application
freezes until the blocking condition is resolved (data becomes available for reading or device
accepts data again).

Unless the application is a very primitive one, freezing of the application is not acceptable.
For example, as a minimum some user interaction to cancel the communication should still
be possible. What is needed is non-blocking I/O or asynchronous I/O. However, JavaComm
is based on Java's standard blocking I/O system (InputStream, OutputStream), but with a
twist, as shown later.

The mentioned "twist" is that JavaComm provides some limited support for asynchronous
I/O via an event notification mechanism. But the general solution in Java to achieve
non-blocking I/O on top of the blocking I/O system is to use threads. Indeed, this is a
viable solution for serial writing, and it is strongly recommended to use a separate thread to
write to the serial port - even if the event notification mechanism is used, as explained later.

Reading could also be handled in a separate thread. However, this is not strictly necessary
if the JavaComm event notification mechanism is used. So summarize:

Activity Architecture
reading use event notification and/or separate thread
writing always use separate thread, optionally use event notification

The following sections provide some details.

6.2.5 Event Driven Serial Communication

Introduction

The JavaComm API provides an event notification mechanism to overcome the problems
with blocking I/O. However, in the typical Sun manner this mechanism is not without
problems.

In principle an application can register event listeners with a particular SerialPort to be
kept informed about important events happening on that port. The two most interesting
event types for reading and writing data are

• javax.comm.SerialPortEvent.DATA_AVAILABLE and
• javax.comm.SerialPortEvent.OUTPUT_BUFFER_EMPTY.

But there are also two problems:

1. Only one single event listener per SerialPort can be registered. This forces the
programmer to write "monster" listeners, discriminating according to the event type.

2. OUTPUT_BUFFER_EMPTY is an optional event type. Well hidden in the documentation
Sun states that not all JavaComm implementations support generating events of this
type.

96



JavaComm API

Before going into details, the next section will present the principal way of implementing
and registering a serial event handler. Remember, there can only be one handler at all, and
it will have to handle all possible events.

Setting up a serial Event Handler

import javax.comm.*;

/**
* Listener to handle all serial port events.
*
* NOTE: It is typical that the SerialPortEventListener is
implemented
* in the main class that is supposed to communicate with the
* device. That way the listener has easy access to state
information
* about the communication, e.g. when a particular
communication
* protocol needs to be followed.
*
* However, for demonstration purposes this example implements
a
* separate class.
*/
class SerialListener implements SerialPortEventListener {

/**
* Handle serial events. Dispatches the event to event-specific
* methods.
* @param event The serial event
*/
@Override
public void serialEvent(SerialPortEvent event){

//
// Dispatch event to individual methods. This keeps this

ugly
// switch/case statement as short as possible.
//
switch(event.getEventType()) {

case SerialPortEvent.OUTPUT_BUFFER_EMPTY:
outputBufferEmpty(event);
break;

case SerialPortEvent.DATA_AVAILABLE:
dataAvailable(event);
break;

/* Other events, not implemented here ->
case SerialPortEvent.BI:

breakInterrupt(event);
break;

case SerialPortEvent.CD:
carrierDetect(event);
break;

97



Serial Java

case SerialPortEvent.CTS:
clearToSend(event);
break;

case SerialPortEvent.DSR:
dataSetReady(event);
break;

case SerialPortEvent.FE:
framingError(event);
break;

case SerialPortEvent.OE:
overrunError(event);
break;

case SerialPortEvent.PE:
parityError(event);
break;

case SerialPortEvent.RI:
ringIndicator(event);
break;

<- other events, not implemented here */

}
}

/**
* Handle output buffer empty events.
* NOTE: The reception of this event is optional and not
* guaranteed by the API specification.
* @param event The output buffer empty event
*/
protected void outputBufferEmpty(SerialPortEvent event) {

// Implement writing more data here
}

/**
* Handle data available events.
*
* @param event The data available event
*/
protected void dataAvailable(SerialPortEvent event) {

// implement reading from the serial port here
}

}

Once the listener is implemented, it can be used to listen to particular serial port events.
To do so, an instance of the listener needs to be added to the serial port. Further, the
reception of each event type needs to be requested individually.

SerialPort port = ...;
...
//
// Configure port parameters here. Only after the port is configured
it

98



JavaComm API

// makes sense to enable events. The event handler might be called
immediately
// after an event is enabled.
...

//
// Typically, if the current class implements the
SerialEventListener interface
// one would call
//
// port.addEventListener(this);
//
// but for our example a new instance of SerialListener is created:
//
port.addEventListener(new SerialListener());

//
// Enable the events we are interested in
//
port.notifyOnDataAvailable(true);
port.notifyOnOutputEmpty(true);

/* other events not used in this example ->
port.notifyOnBreakInterrupt(true);
port.notifyOnCarrierDetect(true);
port.notifyOnCTS(true);
port.notifyOnDSR(true);
port.notifyOnFramingError(true);
port.notifyOnOverrunError(true);
port.notifyOnParityError(true);
port.notifyOnRingIndicator(true);
<- other events not used in this example */

Writing of Data

Setting up a separate Thread for Writing
Using a separate thread for writing has one purpose: Avoiding that the whole application

blocks in case the serial port is not ready for writing.

A simple, thread-safe Ring Buffer Implementation
Using a separate thread for writing, separate from some main application thread, implies
that there is some way to hand off the data which needs to be written from the application
thread to the writing thread. A shared, synchronized data buffer, for example a byte[]
should do. Further, there needs to be a way for the main application to determine if it can
write to the data buffer, or if the data buffer is currently full. In case the data buffer is full
it could indicate that the serial port is not ready, and output data has queued up. The main
application will have to poll the availability of new space in the shared data buffer. However,
between the polling the main application can do other things, for example updating a GUI,
providing a command prompt with the ability to abort the sending, etc.

99



Serial Java

At first glance a PipedInputStream/PipedOutputStream pair seems like a good idea for
this kind of communication. But Sun wouldn't be Sun if the a piped stream would actually
be useful. PipedInputStream blocks if the corresponding PipedOutputStream is not cleared
fast enough. So the application thread would block. Exactly what one wants to avoid by
using the separate thread. A java.nio.Pipe suffers from the same problem. Its blocking
behavior is platform dependent. And adapting the classic I/O used by JavaComm to NIO is
anyhow not a nice task.

In this article a very simple synchronized ring buffer is used to hand over the data from one
thread to another. In a real world application it is likely that the implementation should be
more sophisticated. E.g. in a real world implementation it would make sense to implement
OutputStream and InputStream views on the buffer.

A ring buffer as such is nothing special, and has no special properties regarding threading.
It is just that this simple data structure is used here to provide data buffering. The
implementation is done so that access to this data structure has been made thread safe.

/**
* Synchronized ring buffer.
* Suitable to hand over data from one thread to another.
**/
public synchronized class RingBuffer {

/** internal buffer to hold the data **/
protected byte buffer[];

/** size of the buffer **/
protected int size;

/** current start of data area **/
protected int start;

/** current end of data area **/
protected int end;

/**
* Construct a RingBuffer with a default buffer size of 1k.
*/
public RingBuffer() {

this(1024);
}

/**
* Construct a RingBuffer with a certain buffer size.
* @param size Buffer size in bytes
*/
public RingBuffer(int size) {

this.size = size;
buffer = new byte[size];
clear();

}

100



JavaComm API

/**
* Clear the buffer contents. All data still in the buffer is

lost.
*/
public void clear() {

// Just reset the pointers. The remaining data fragments, if
any,

// will be overwritten during normal operation.
start = end = 0;

}

/**
* Return used space in buffer. This is the size of the
* data currently in the buffer.
* <p>
* Note: While the value is correct upon returning, it
* is not necessarily valid when data is read from the
* buffer or written to the buffer. Another thread might
* have filled the buffer or emptied it in the mean time.
*
* @return currently amount of data available in buffer
*/
public int data() {

return start <= end
? end - start
: end - start + size;

}

/**
* Return unused space in buffer. Note: While the value is
* correct upon returning, it is not necessarily valid when
* data is written to the buffer or read from the buffer.
* Another thread might have filled the buffer or emptied
* it in the mean time.
*
* @return currently available free space
*/
public int free() {

return start <= end
? size + start - end
: start - end;

}

/**
* Write as much data as possible to the buffer.
* @param data Data to be written
* @return Amount of data actually written
*/
int write(byte data[]) {

return write(data, 0, data.length);
}

/**
* Write as much data as possible to the buffer.
* @param data Array holding data to be written
* @param off Offset of data in array
* @param n Amount of data to write, starting from off.
* @return Amount of data actually written
*/
int write(byte data[], int off, int n) {

if(n <= 0) return 0;

101



Serial Java

int remain = n;
// @todo check if off is valid: 0= <= off < data.length;

throw exception if not

int i = Math.min(remain, (end < start ? start :
buffer.length) - end);

if(i > 0) {
System.arraycopy(data, off, buffer, end, i);
off += i;
remain -= i;
end += i;

}

i = Math.min(remain, end >= start ? start : 0);
if(i > 0 ) {

System.arraycopy(data, off, buffer, 0, i);
remain -= i;
end = i;

}
return n - remain;

}

/**
* Read as much data as possible from the buffer.
* @param data Where to store the data
* @return Amount of data read
*/
int read(byte data[]) {

return read(data, 0, data.length);
}

/**
* Read as much data as possible from the buffer.
* @param data Where to store the read data
* @param off Offset of data in array
* @param n Amount of data to read
* @return Amount of data actually read
*/
int read(byte data[], int off, int n) {

if(n <= 0) return 0;
int remain = n;
// @todo check if off is valid: 0= <= off < data.length;

throw exception if not

int i = Math.min(remain, (end < start ? buffer.length : end)
- start);

if(i > 0) {
System.arraycopy(buffer, start, data, off, i);
off += i;
remain -= i;
start += i;
if(start >= buffer.length) start = 0;

}

i = Math.min(remain, end >= start ? 0 : end);
if(i > 0 ) {

System.arraycopy(buffer, 0, data, off, i);
remain -= i;

102



JavaComm API

start = i;
}
return n - remain;

}
}

With this ring buffer one can now hand over data from one thread to another in a controlled
way. Any other thread-safe, non-blocking mechanism would also do. The key point here is
that the write does not block when the buffer is full and also does not block when there is
nothing to read.

Using the Buffer together with Serial Events

Usage of OUTPUT_BUFFER_EMPTY Event in Writing

Referring to the skeleton event handler presented in the section Setting up a serial Event
Handler11, one can now use a shared ring buffer from section A simple, thread-safe Ring
Buffer Implementation12 to support the OUTPUT_BUFFER_EMPTY event. The event is not
supported by all JavaComm implementations, therefore the code might never be called.
However, in case the event is available it is one building block for ensuring best data
throughput, because the serial interface is not left idle for too long.

The skeleton event listener proposed a method outputBufferEmpty(), which could be
implemented as it follows.

RingBuffer dataBuffer = ... ;

/**
* Handle output buffer empty events.
* NOTE: The reception is of this event is optional and not
* guaranteed by the API specification.
* @param event The output buffer empty event
*/
protected void outputBufferEmpty(SerialPortEvent event) {

}

Reading of Data

The following example assumes that the data's destination is some file. Whenever data
becomes available it is fetched from the serial port and written to the file. This is an
extremely simplified view, because in reality one would need to check the data for an

11 Chapter 6.2.5 on page 97
12 Chapter 6.2.5 on page 99

103



Serial Java

end-of-file indication to, for example, return to the modem command mode.

import javax.comm.*;

...
InputStream is = port.getInputStream();
BufferedOutputStream out = new BufferedOutputStream(new
FileOutputStream("out.dat"));

/**
* Listen to port events
*/
class FileListener implements SerialPortEventListener {

/**
* Handle serial event.
*/
void serialEvent(SerialPortEvent e) {

SerialPort port = (SerialPort) e.getSource();

//
// Discriminate handling according to event type
//
switch(e.getEventType()) {
case SerialPortEvent.DATA_AVAILABLE:

//
// Move all currently available data to the file
//
try {

int c;
while((c = is.read()) != -1) {

out.write(c);
}

} catch(IOException ex) {
...

}
break;

case ...:
...
break;

...
}
if (is != null) is.close();
if (port != null) port.close();

}

6.2.6 Handling multiple Ports in one Application

6.2.7 Modem Control

JavaComm is strictly concerned with the handling of a serial interface and the transmission of
data over that interface. It does not know, or provide, any support for higher-layer protocols,
e.g. for Hayes modem commands typically used to control consumer-grade modems. This is
simply not the job of JavaComm, and not a bug.

104



RxTx

Like with any other particular serial device, if the control of a modem is desired via JavaComm
the necessary code has to be written on top of JavaComm. The page "Hayes-compatible
Modems and AT Commands"13 provides the necessary basic generic information to deal
with Hayes modems.

Some operating systems, e.g. Windows or certain Linux distributions provide a more or less
standardized way how modem control commands for a particular modem type or brand are
configured for the operating system. Windows modem "drivers", for example, are typically
just registry entries, describing a particular modem (the actual driver is a generic serial
modem driver). JavaComm as such has no provisions to access such operating-system
specific data. Therefor, one either has to provide a separate Java-only facility to allow a user
to configure an application for the usage of a particular modem, or some platform-specific
(native) code needs to be added.

6.3 RxTx

6.3.1 Overview and Versions

Due to the fact that Sun didn't provide a reference implementation of the JavaComm API
for Linux, people developed RxTx for Java and Linux http://rxtx.qbang.org/. RxTx was
then further ported to other platforms. The latest version of RxTx is known to work on
100+ platform, including Linux, Windows, Mac OS, Solaris and other operating systems.

RxTx can be used independent of the JavaComm API, or can be used as a so called
provider for the JavaComm API. In order to do the latter, a wrapper called JCL is
also needed http://www.geeksville.com/~kevinh/linuxcomm.html. JCL and RxTx are
usually packaged together with Linux/Java distributions, or JCL is completely integrated
into the code. So, before trying to get them separately, it is worth having a look at the
Linux distribution CD.

There seems to be a trend to abandon the JavaComm API, and using RxTx directly instead
of via the JCL wrapper, due to Sun's limited support and improper documentation for
the JavaComm API. However, RxTx's documentation is extremely sparse. Particularly,
the RxTX people like to make a mess of their versions and package contents (e.g. with
or without integrated JCL). Starting with RxTx version 1.5 RxTx contains replacement
classes for the public JavaComm classes. For legal reasons they are not in the java.comm
package, but in the gnu.io package. However, the two currently available RxTx versions
are packaged differently:

RxTx 2.0

RxTx version supposed to be used as a JavaComm provider. This one is supposed to have
its roots in RxRx 1.4, which is the RxTx version before the gnu.io package was added.

RxTx 2.1

RxTx version with a full gnu.io package replacement for java.comm. This version is
supposed to have its roots in RxTx 1.5, where gnu.io support started.

13 Chapter 9 on page 121

105

http://rxtx.qbang.org/
http://www.geeksville.com/~kevinh/linuxcomm.html


Serial Java

So, if one wants to program against the original JavaComm API one needs

1. Sun's generic JavaComm version. As of this writing this is in fact the Unix package
(which contains support for various Unix versions like Linux or Solaris). Even when
used on Windows, the Unix package is needed to provide the generic java.comm
implementations. Only the part implemented in Java is used, while the Unix native
libraries are just ignored.

2. RxTx 2.0 in order to have a different provider below the generic generic JavaComm
version than the ones comming with the JavaComm package

However, if one just wants to program against the gnu.io replacement package, then

• only RxTx 2.1 is needed.

6.3.2 Converting a JavaComm Application to RxTx

So, if you belong to the large group of people who have been let down by Sun when
they dropped Windows support for JavaComm, you are in need to convert a JavaComm
application to RxTx. As you can see from the above, there are two ways to do it. Both
assume that you manage to install a version of RxTx first. Then the options are either

1. Using RxTx 2.0 as a JavaComm provider
2. Porting the application to RxTx 2.1

The first option has already been explained. The second option is surprisingly simple. All
one has to do to port some application from using JavaComm to using RxTx 2.1 is to replace
all references to java.comm in the application source code with references to gnu.io. If the
original JavaComm application was properly written there is nothing more to do.

RxTx 2.1 even provides the tool contrib/ChangePackage.sh to perform the global replace-
ment on a source tree under Unix. On other platforms such a global replacement is easy to
do with IDEs supporting a decent set of refactoring features.

6.4 See also

• Sun Java Communications API14

• Java Comm Serial API How-To for Linux15

• jSSC - java serial port library. Work under Win32(Win98-Win7), Win64(x86-64), Linux
x86, Linux x86-6416

• RxTx Home Page17

• Unofficial Java Web Start/JNLP FAQ - How can I use Web Start and Comm API
together?18

14 http://java.sun.com/products/javacomm/
15 http://wass.homelinux.net/howtos/Comm_How-To.shtml
16 http://code.google.com/p/java-simple-serial-connector/
17 http://rxtx.qbang.org/
18 http://lopica.sourceforge.net/faq.html#comm

106

http://java.sun.com/products/javacomm/
http://wass.homelinux.net/howtos/Comm_How-To.shtml
http://code.google.com/p/java-simple-serial-connector/
http://rxtx.qbang.org/
http://lopica.sourceforge.net/faq.html#comm


See also

• SerialIO has a free trial version of their SerialPort package19

• Ben Resner has a free download of his SimpleSerial package20 and a newer version
without the C++ code21

19 http://serialio.com/products/serialport/serialport.php
20 http://web.media.mit.edu/~benres/simpleserial/
21 http://www.ambientdevices.com/datacasting/index.html

107

http://serialio.com/products/serialport/serialport.php
http://web.media.mit.edu/~benres/simpleserial/
http://www.ambientdevices.com/datacasting/index.html




7 Forming Data Packets

Just about every idea for communicating between computers involves "data packets", espe-
cially when more than 2 computers are involved.

The idea is very similar to putting a check in an envelope to mail to the electricity company.
We take the data (the "check") we want to send to a particular computer, and we place it
inside an "envelope" that includes the address of that particular computer.

A packet of data starts with a preamble, some address information, some other transmission-
related information, followed by the raw data, and finishes up with a few more bytes of
transmission-related error-detection information -- often a Fletcher-321 checksum2. We
will talk more about what we do with this error-detection information in the next chapter,
Serial Programming/Error Correction Methods3.

The accountant at the electricity company throws away the envelope when she gets the
check. She already knows the address of her own company. Does this mean the "overhead"
of the envelope is useless ? No.

In a similar way, once a computer receives a packet, it immediately throws away the preamble.
If the computer sees that the packet is addressed to itself, and has no errors, then it discards
the wrapper and keeps the data.

Unfortunately, there are dozens of slightly different, incompatible protocols for data packets,
because people pick slightly different ways to represent the address information and the
error-detection information.

... gateways between incompatible protocols ...

7.0.1 packet size tradeoffs

Protocol designers pick a maximum and minimum packet size based on many tradeoffs.

• packets should be "small" to prevent one transmitter transmitting a long packet from
hogging the network.

• packets should be "small" so that a single error can be corrected by retransmitting one
small packet rather than one large packet

• packets should be "large" so more time is spent transmitting good data and less time is
spent on overhead (preamble, header, footer, postamble, and between-packet gap).

• the packet header and trailing footer should be short, to reduce overhead

1 http://en.wikipedia.org/wiki/%20Fletcher%27s%20checksum
2 http://en.wikipedia.org/wiki/%20checksum%20
3 Chapter 8 on page 115

109

http://en.wikipedia.org/wiki/%20Fletcher%27s%20checksum
http://en.wikipedia.org/wiki/%20checksum%20


Forming Data Packets

• The footer should hold a large error-detection codeword field, because a shorter codeword
is more likely to incorrectly accept an error-riddled packet. (We discuss error-detection
in more detail in the next chapter, ../Error Correction Methods/4).

• making the packet header a little longer, so that meaningful fields fall on byte or word
boundaries, rather than highly encoded bit fields, makes it easier for a CPU to interpret
them, allowing lower-cost network hardware.

• making the packet header a little longer -- instead of a single error-detection field that
covers the whole packet, we have one error-detection field for the header, and another
error-detection field for the data -- allows a node to immediately reject a packet with a
bit error in the destination address or the length field, avoiding needless processing. The
same CRC polynomial is used for both.

• fixed-size packets -- where all packets fall into a few length categories -- do not require a
"length" field, and simplify buffer allocation, but waste "internal" data space on padding
the last packet when you want to send data that is not an exact multiple of the fixed
data size.

7.0.2 start-of-packet and transparency tradeoffs

Unfortunately, it is impossible for any communication protocol to have all these nice-to-have
features:

• transparency: data communication is transparent and "8 bit clean" -- (a) any possible
data file can be transmitted, (b) byte sequences in the file always handled as data, and
never mis-interpreted as something else, and (c) the destination receives the entire data
file without error, without any additions or deletions.

• simple copy: forming packets is easiest if we simply blindly copy data from the source to
the data field of the packet without change.

• unique start: The start-of-packet symbol is easy to recognize, because it is a known
constant byte that never occurs anywhere else in the headers, header CRC, data payload,
or data CRC.

• 8-bit: only uses 8-bit bytes

Some communication protocols break transparency, requiring extra complexity elsewhere
-- requiring higher network layers to implement work-arounds such as w:binary-to-text
encoding5 or else suffer mysterious errors, as with the w:Time Independent Escape Sequence6.

Some communication protocols break "8-bit" -- i.e., in addition to the 256 possible bytes,
they have "extra symbols". Some communication protocols have just a few extra non-data
symbols -- such as the "long pause" used as part of the Hayes escape sequence; the "long
break" used as part of the SDI-127 protocol; "command characters" or "control symbols"

4 Chapter 8 on page 115
5 http://en.wikipedia.org/wiki/binary-to-text%20encoding
6 http://en.wikipedia.org/wiki/Time%20Independent%20Escape%20Sequence
7 http://en.wikipedia.org/wiki/SDI-12

110

http://en.wikipedia.org/wiki/binary-to-text%20encoding
http://en.wikipedia.org/wiki/Time%20Independent%20Escape%20Sequence
http://en.wikipedia.org/wiki/SDI-12


See also

in 4B5B coding, 8b/10b encoding; etc. Other systems, such as 9-bit protocols,891011121314

transmit 9 bit symbols. Typically the first 9-bit symbol of a packet has its high bit set to 1,
waking up all nodes; then each node checks the destination address of the packet, and all
nodes other than the addressed node go back to sleep. The rest of the data in the packet
(and the ACK response) is transmitted as 9 bit symbols with the high bit cleared to 0,
effectively 8 bit values, which is ignored by the sleeping nodes. (This is similar to the way
that all data bytes in a MIDI message are effectively 7 bit values; the high bit is set only on
the first byte in a MIDI message). Alas, some UARTs make it awkward,1516 difficult, or
impossible to send and receive such 9-bit characters.

Some communication protocols break "unique start" -- i.e., they allow the no-longer-unique
start-of-packet symbol to occur elsewhere -- most often because we are sending a file that
includes that byte, and "simple copy" puts that byte in the data payload. When a receiver is
first turned on, or when cables are unplugged and later reconnected, or when noise corrupts
what was intended to be the real start-of-packet symbol, the receiver will incorrectly interpret
that data as the start-of-packet. Even though the receiver usually recognizes that something
is wrong (checksum failure), a single such noise glitch may lead to a cascade of many lost
packets, as the receiver goes back and forth between (incorrectly) interpreting that data byte
in the payload as a start-of-packet, and then (incorrectly) interpreting a real start-of-packet
symbol as payload data.

In order to keep the "unique start" feature, many communication protocols break "simple
copy". This requires a little extra software and a little more time per packet than simply
copying the data -- which is usually insignificant with modern processors. The awkwardness
comes from (a) making sure that the entire process -- the transmitter encoding/escaping
a chunk of raw data into a packet payload that must not include the start-of-packet byte,
and the receiver decoding/unescaping the packet payload into a chunk of raw data -- is
completely transparent to any possible sequence of raw data bytes, even if those bytes
include one or more start-of-packet bytes, and (b) since the encoded/escaped payload data
inevitably requires more bytes than the raw data, we must make sure we don't overflow
any buffers even with the worst possible expansion, and (c) unlike "simple copy" where a
constant bitrate of payload data bits results in the same constant goodput of raw data bits,
we must make sure that the system is designed to handle the variations in payload data

8 uLan ˆ{http://ulan.sourceforge.net/} : 9-bit message oriented communication protocol, which is
transferred over RS-485 link.

9 Pavel Pisa. "uLan RS-485 Communication Driver" ˆ{http://cmp.felk.cvut.cz/~pisa/ulan/ul_drv.
html} "9-bit message oriented communication protocol, which is transferred over RS-485 link."

10 Peter Gasparik. "9-bit data transfer format" ˆ{http://www.rtjcom.com/6811/jackpot/
rs485-commspec.html#3}

11 Stephen Byron Cooper. "9-Bit Serial Protocol" ˆ{http://www.ehow.com/facts_7735117_
9bit-serial-protocol.html} .

12 "Use The PC's UART With 9-Bit Protocols" ˆ{http://electronicdesign.com/article/embedded/
use-the-pc-s-uart-with-9-bit-protocols6245.aspx} . 1998.

13 Wikipedia: multidrop bus ˆ{http://en.wikipedia.org/wiki/%20multidrop%20bus} (MDB) is a 9-bit
protocol used in many vending machines.

14 ParitySwitch_9BitProtocols ˆ{http://www.docklight.de/examples_en.htm} : manipulate parity to
emulate a 9 bit protocol

15 "Use The PC's UART With 9-Bit Protocols" ˆ{http://electronicdesign.com/article/embedded/
use-the-pc-s-uart-with-9-bit-protocols6245.aspx} . Electronic Design. 1998-December.

16 Thomas Lochmatter. "Linux and MARK/SPACE Parity" ˆ{http://www.lothosoft.ch/thomas/
libmip/markspaceparity.php} . 2010.

111

http://ulan.sourceforge.net/
http://cmp.felk.cvut.cz/~pisa/ulan/ul_drv.html
http://cmp.felk.cvut.cz/~pisa/ulan/ul_drv.html
http://www.rtjcom.com/6811/jackpot/rs485-commspec.html#3
http://www.rtjcom.com/6811/jackpot/rs485-commspec.html#3
http://www.ehow.com/facts_7735117_9bit-serial-protocol.html
http://www.ehow.com/facts_7735117_9bit-serial-protocol.html
http://electronicdesign.com/article/embedded/use-the-pc-s-uart-with-9-bit-protocols6245.aspx
http://electronicdesign.com/article/embedded/use-the-pc-s-uart-with-9-bit-protocols6245.aspx
http://en.wikipedia.org/wiki/%20multidrop%20bus
http://www.docklight.de/examples_en.htm
http://electronicdesign.com/article/embedded/use-the-pc-s-uart-with-9-bit-protocols6245.aspx
http://electronicdesign.com/article/embedded/use-the-pc-s-uart-with-9-bit-protocols6245.aspx
http://www.lothosoft.ch/thomas/libmip/markspaceparity.php
http://www.lothosoft.ch/thomas/libmip/markspaceparity.php


Forming Data Packets

bitrate or raw data bit goodput or both. Some of this awkwardness can be reduced by using
consistent-overhead byte stuffing.17 rather than variable-overhead byte stuffing techniques
such as the one used by SLIP18.

Calculate the CRC and append it to the packet *before* encoding both the raw data and
the CRC with COBS.19

7.1 For further reading

• Optical and radio receivers usually require a preamble of some minimum length in order
to synchronize bit clocks. For detailed information on calculating exactly how long (how
many transitions) the preamble needs to be, see Clock and Data Recovery/Design values
used in practice/Burst transmission mode/Step response of a phase aligner20.

• http://intcomm.wiki.taoriver.net/moin.cgi/ProtocolMadness
• UDP
• Internet Technologies/Protocols21 including TCP/IP and HTTP
• ATM
• VSCP - Very Simple Control Protocol http://www.vscp.org/ "The protocol is free"
• "Protocol Design Folklore" by Radia Perlman. Jan 15, 2001. http://www.

awprofessional.com/articles/article.asp?p=20482
• "Devices that play together, work together: UPnP defines common proto-

cols and procedures to guarantee interoperability among network-enabled
PCs, appliances, and wireless devices." article by Edward F Steinfeld, EDN,
9/13/2001 http://www.reed-electronics.com/ednmag/index.asp?layout=
article&articleid=CA154802&spacedesc=readersChoice&rid=0&rme=0&cfd=1

• CAN bus http://computer-solutions.co.uk/ http://computer-solutions.co.uk/
gendev/can-module.htm

"CMX-MicroNet is the first system that allows TCP/IP

and other protocols to be run natively on small processors

... [including] AVR, PIC 18, M16C."

• "byteflight is a high speed data bus protocol for automotive applications" http://
byteflight.com/

• Nagle's rule ... The Nagle algorithm. "Nagle's rule is a heuristic to avoid sending
particularly small IP packets, also called tinygrams. Tinygrams are usually created
by interactive networking tools that transmit single keystrokes, such as telnet or rsh.
Tinygrams can become particularly wasteful on low-bandwidth links like SLIP. The Nagle

17 "Consistent Overhead Byte Stuffing" ˆ{http://www.stuartcheshire.org/papers/COBSforToN.pdf}
by Stuart Cheshire and Mary Baker, 1999.

18 http://en.wikibooks.org/wiki/Serial_Programming%2FIP_Over_Serial_Connections%23SLIP%
20

19 Jason Sachs. "Help, My Serial Data Has Been Framed: How To Handle Packets When All You Have
Are Streams" ˆ{http://www.embeddedrelated.com/showarticle/113.php} . 2011.

20
http://en.wikibooks.org/wiki/Clock%20and%20Data%20Recovery%2FDesign%20values%20used%
20in%20practice%2FBurst%20transmission%20mode%2FStep%20response%20of%20a%20phase%
20aligner

21 http://en.wikibooks.org/wiki/Internet%20Technologies%2FProtocols

112

http://intcomm.wiki.taoriver.net/moin.cgi/ProtocolMadness
http://www.vscp.org/
http://www.awprofessional.com/articles/article.asp?p=20482
http://www.awprofessional.com/articles/article.asp?p=20482
http://www.reed-electronics.com/ednmag/index.asp?layout=article&articleid=CA154802&spacedesc=readersChoice&rid=0&rme=0&cfd=1
http://www.reed-electronics.com/ednmag/index.asp?layout=article&articleid=CA154802&spacedesc=readersChoice&rid=0&rme=0&cfd=1
http://computer-solutions.co.uk/
http://computer-solutions.co.uk/gendev/can-module.htm
http://computer-solutions.co.uk/gendev/can-module.htm
http://byteflight.com/
http://byteflight.com/
http://www.stuartcheshire.org/papers/COBSforToN.pdf
http://en.wikibooks.org/wiki/Serial_Programming%2FIP_Over_Serial_Connections%23SLIP%20
http://en.wikibooks.org/wiki/Serial_Programming%2FIP_Over_Serial_Connections%23SLIP%20
http://www.embeddedrelated.com/showarticle/113.php
http://en.wikibooks.org/wiki/Clock%20and%20Data%20Recovery%2FDesign%20values%20used%20in%20practice%2FBurst%20transmission%20mode%2FStep%20response%20of%20a%20phase%20aligner
http://en.wikibooks.org/wiki/Clock%20and%20Data%20Recovery%2FDesign%20values%20used%20in%20practice%2FBurst%20transmission%20mode%2FStep%20response%20of%20a%20phase%20aligner
http://en.wikibooks.org/wiki/Clock%20and%20Data%20Recovery%2FDesign%20values%20used%20in%20practice%2FBurst%20transmission%20mode%2FStep%20response%20of%20a%20phase%20aligner
http://en.wikibooks.org/wiki/Internet%20Technologies%2FProtocols


For further reading

algorithm attempts to avoid them by holding back transmission of TCP data briefly
under some circumstances." -- http://www.tldp.org/LDP/nag/node45.html

• The SLIMP3 Client Protocol22

• Beej's Guide to Network Programming Using Internet Sockets23 by Brian "Beej" Hall
2005-11-05

• "RF Link Using the Z86E08"24 describes yet another "simple" packet protocol ... also
mentions a preamble to train the RF receiver just before the rest of the packet.

• Algorithm Implementation/Checksums25

• ... other packet protocols ? ...
• Communication Systems/Packet Data Systems26

• Communication Networks27

22 http://wiki.slimdevices.com/index.php/SLIMP3ClientProtocol
23 http://beej.us/guide/bgnet/output/htmlsingle/bgnet.html
24 http://www.zilog.com/docs/appnotes/an_rflink.pdf
25 http://en.wikibooks.org/wiki/Algorithm%20Implementation%2FChecksums
26 http://en.wikibooks.org/wiki/Communication%20Systems%2FPacket%20Data%20Systems
27 http://en.wikibooks.org/wiki/Communication%20Networks

113

http://www.tldp.org/LDP/nag/node45.html
http://wiki.slimdevices.com/index.php/SLIMP3ClientProtocol
http://beej.us/guide/bgnet/output/htmlsingle/bgnet.html
http://www.zilog.com/docs/appnotes/an_rflink.pdf
http://en.wikibooks.org/wiki/Algorithm%20Implementation%2FChecksums
http://en.wikibooks.org/wiki/Communication%20Systems%2FPacket%20Data%20Systems
http://en.wikibooks.org/wiki/Communication%20Networks




8 Error Correction Methods

8.1 Introduction

There are 3 main types of handling errors:

• acknowledge or retry (ACK-NAK).

• "Forward Error Correction" (FEC)

• Pretend It Never Happened

8.2 ACK-NAK

Each packet is checked by the receiver to make sure it is "good".

If it *is* good, the receiver (eventually) tells the sender that it came through OK -- it
acknowledges (ACK) the packet.

All versions of ACK-NAK absolutely require Two Way Communication1 .

How does the receiver know it's good ?

The sender calculates a checksum or CRC for the entire packet (except for the footer), then
appends it to the end of the packet (in the footer/trailer).

The typical CRC is 32 bits, often a Fletcher-322 checksum3.

Aside: Note that the checksum or CRC are forms of hashing, ie, irreversibly shrinking
data. Checksums and CRCs are weaker algorithms than "cryptographically strong" message
authentication code algorithms such as MD5 or SHA variants. Cryptographically strong
algorithms can detect errors better than checksums or CRCs, but they take more time to
calculate.

Whenever the receiver receives a packet, the receiver calculates exactly the same checksum
or CRC, then compares it to the one in the footer/trailer. If they match, the entire packet
is (almost certainly) good, so the receiver sends an ACK.

When there's even the slightest question that the packet has any sort of error (which could
be *either* in the actual data *or* in the header *or* in the checksum bits -- there's no way

1 http://en.wikibooks.org/wiki/Serial_Programming%3ABi-directional_Communication
2 http://en.wikipedia.org/wiki/%20Fletcher%27s%20checksum
3 http://en.wikipedia.org/wiki/%20checksum%20

115

http://en.wikibooks.org/wiki/Serial_Programming%3ABi-directional_Communication
http://en.wikipedia.org/wiki/%20Fletcher%27s%20checksum
http://en.wikipedia.org/wiki/%20checksum%20


Error Correction Methods

for the receiver to tell), the receiver discards it completely and (in most cases) pretends it
never saw it.

If it's not good, the sender sends it again.

How does the sender know it wasn't good ?

It never got the ACK. (So either the packet was corrupted, *or* the ACK was corrupted --
there's no way for the sender to know).

"Stop-and-wait ARQ"

The simplest version of ACK-NAK is "Stop-and-wait ARQ".

The sender sends a packet, then waits a little for an ACK. As soon as it gets the ACK, it
immediately sends the next packet. If the sender doesn't hear the ACK in time, it starts
over from the beginning, sending the same packet again, until it does get an ACK.

The receiver waits for a packet. If the packet passes all the error-detection tests perfectly,
the receiver transmits an ACK (acknowledgment) to the sender.

Subtleties: If the receiver receives the packet perfectly, but the ACK message is delayed too
long, then the transmitter sends another copy of the message (a "communication echo").
Imagine the packet contained the message "deduct $11,000 from Fred's account.". When the
receiver gets this second copy of the packet, what should it do? Certainly it should send an
ACK (otherwise the transmitter will keep trying to send this packet over and over). Either
or both of the following problems could occur:

• The delayed first ACK could hit the transmitter after it transmits the second copy of
the message, so it transmits the next packet. Then the second ACK hits the transmitter,
tricking the transmitter into thinking that "next packet" has been successfully received,
when it hasn't.

• When the receiver gets 2 identical consecutive packets saying "deduct $11,000 from Fred's
account", are these 2 legitimate independent transactions, and so it should deduct $22,000
from Fred's account? Or is it really just 1 transaction, with a bit of echo, and so should
deduct a total of only $11,000 from Fred's account?

Both of these problems can be solved by adding a "sequence number". The transmitter
keeps a count of how many independent packets it has transmitted to that receiver, and
puts that sequence number in the header of each packet. But when it re-transmits a packet,
it re-transmits that same identical packet with that same identical sequence number. Also,
the receiver, rather than sending a generic "ACK" message, specifies which particular packet
it is responding to by putting its sequence number in the ACK message. When there is a
communication echo, the receiver sees the same sequence number, so ACKs that sequence
number (again) but then discards and ignores the extra, redundant copy of a packet it
already received. When the transmitter is sending a new packet that merely happens to
contain the same data, the receiver sees a different sequence number, so it ACKs that new
sequence number, and takes another $11,000 out of Fred's account. Poor Fred.

116



ACK-NAK

A 1-bit sequence number (alternating 1 - 0 - 1 - 0 for each new packet, and ACK1 ACK0
ACK1 ACK0 in response) is adequate for a stop-and-wait system. But as we will see, other
ARQ protocols require a larger sequence number.

Subtleties: Some early protocols had the receiver send a NAK (negative acknowledgment)
to the sender whenever a bad packet was received, and the sender would wait indefinitely
until it received *either* an ACK *or* a NAK. This is a bad idea. Imagine what happens
when (a) a little bit of noise made a bad packet, so the receiver sends the NAK back to
the sender, but then (b) a little bit of noise made that NAK unrecognizable. Alternatively,
imagine a shared-medium network with 1 sender and 2 receivers. What happens when a
little noise messes up the "destination" field of the packet ?

With "Stop-and-wait ARQ", the sender and the receiver only needs to keep 1 packet in
memory at a time.

streaming ARQ

The sender sends a packet, then the next packet, then the next, without waiting.

As it sends each packet, it puts a copy of that packet in a "window".

Each packet is consecutively numbered. (The sequence number must be at least large enough
to uniquely identify every packet in the window).

... turn-around time ... bouncing off geostationary satellites ...

The receiver occasionally transmits an acknowledgment ("I got all packets up to 8980", "I
got all packets up to 8990").

If the receiver is expecting packet number 9007, but it receives a packet with an *earlier*
number (that it had already received successfully), it transmits (or possibly re-transmits) a
"I got all packets up to 9006" message.

When the sender receives an acknowledgment of any packet in the "window", it deletes that
copy.

When the sender's window gets full, it waits a little, then tries re-sending the packets in the
window starting with the oldest.

So when the sender suspects an error in some packet, it resend *all* packets starting with
the erroneous packet. This guarantees that the receiver will (eventually) receive all packets
in order.

Optionally, If the receiver is expecting packet number 9007, but it receives packet number
9008, it may transmit a negative acknowledge (NAK) for 9007, and ignores any higher packet
numbers until it gets packet 9007.

When the sender receives a NAK for any packet in the window, it re-starts transmission
with that packet (and keeps it in the window).

With "streaming ARQ", the sender needs to keep the entire window of packets in memory at
a time. But the receiver still only needs to handle 1 packet at a time, and handles them in
consecutive order.

117



Error Correction Methods

(Some people think of "streaming" as one big packet the size of the window using "stop-and-
wait" protocol, divided into smaller "sub-packets").

8.2.1 Selective Repeat ARQ

w:Selective Repeat ARQ4

A selective repeat ARQ system is a kind of streaming ARQ.

But instead of the receiver only handling 1 packet at a time, and discarding all packets
higher or lower than the one it is looking for, the receiver tries to keep a copy of all packets
it receives in a window of its own, and negotiates with the sender to try to resend *only*
the erroneous packets.

8.3 FEC

If you have only one-way communication, you are forced to use Forward Error Correction,
sometimes called EDAC (Error Detection And Correction).

You transmit the data, then (instead of a CRC) you transmit "check bits" that are calculated
from the data.

... NASA space probes ... compact disks ...

The simplest kind is "repeat the message".

If I send the same packet twice, and noise only corrupts one of them, *and* the receiver can
tell which one was corrupted, then no data was lost. If I send the same packet 3 times, and
noise corrupts any one of them, then the receiver can do "best 2 out of 3". The "check bits"
are 2 copies of the data bits. In fact, noise could corrupt a little bit of *all three* of them,
and you could still extract all the data -- align the 3 packets next to each other, and do
"best 2 out of 3" for every bit. As long as there were only a few bits of noise in each packet,
and the noise was in a different place in each packet, all the data can be recovered.

... (put picture here) ...

There are some very clever kinds of FEC (Hamming codes, Reed-Solomon codes) that can
correct all kinds of common errors better than "best 2 out of 3", and only require the same
number of "check bits" as there are data bits.

8.4 Pretend It Never Happened

A sender often streams audio and video live, in real-time.

What should a receiver do when a packet gets mangled ?

4 http://en.wikipedia.org/wiki/Selective%20Repeat%20ARQ

118

http://en.wikipedia.org/wiki/Selective%20Repeat%20ARQ


combination

If it sends a message back to the sender, asking it to resend that packet, by the time the
reply gets back, it's probably several video frames later. It's too late to use that information.

Rather than pausing the entire movie until the request makes a round-trip, it's far less
jarring to the audience if the receiver silently discards the mangled packet, fills in as best it
can (for example, with nearby pixels' colors), try not to draw attention to the error, and
continue on as if nothing had happened.

Note:
Signal degradation should be documented and easily findable as to let users know that
there is no guarantee of exact reproduction.

8.5 combination

Even when they have 2-way communication, sometimes people use FEC anyway. That way
small amounts of noise can be corrected at the receiver. If a packet is corrupted so badly
that FEC cannot fix it, the protocol falls back on ACK-NAK retransmission (or on Pretend
It Never Happened).

8.6 further reading

w:error detection and correction5

a detailed description of one ACK-NAK protocol: "XModem / YModem Protocol Ref-
erence" by Chuck Forsberg 1988-10-14 http://www.commonsoftinc.com/Babylon_Cpp/
Documentation/Res/yModem.htm

a detailed description of one streaming protocol: "The ZMODEM Inter Application File Trans-
fer Protocol" by Chuck Forsberg 1988-10-14 http://www.commonsoftinc.com/Babylon_
Cpp/Documentation/Res/zModem.htm

"Data Link Error Detection / Correction Methods" http://techref.massmind.org/
techref/method/errors.htm brief descriptions of several error correction methods: Ham-
ming codes, Fire codes, Reed-Solomon codes, Viterbi decoding, etc.

8.7 further reading

• Computer Networks/Error Control, Flow Control, MAC6

• Data Coding Theory/Transmission Codes7

• Wikipedia:Automatic repeat-request8 (ARQ)

5 http://en.wikipedia.org/wiki/error%20detection%20and%20correction

6 http://en.wikibooks.org/wiki/Computer%20Networks%2FError%20Control%2C%20Flow%
20Control%2C%20MAC

7 http://en.wikibooks.org/wiki/Data%20Coding%20Theory%2FTransmission%20Codes
8 http://en.wikipedia.org/wiki/Automatic%20repeat-request

119

http://www.commonsoftinc.com/Babylon_Cpp/Documentation/Res/yModem.htm
http://www.commonsoftinc.com/Babylon_Cpp/Documentation/Res/yModem.htm
http://www.commonsoftinc.com/Babylon_Cpp/Documentation/Res/zModem.htm
http://www.commonsoftinc.com/Babylon_Cpp/Documentation/Res/zModem.htm
http://techref.massmind.org/techref/method/errors.htm
http://techref.massmind.org/techref/method/errors.htm
http://en.wikipedia.org/wiki/error%20detection%20and%20correction
http://en.wikibooks.org/wiki/Computer%20Networks%2FError%20Control%2C%20Flow%20Control%2C%20MAC
http://en.wikibooks.org/wiki/Computer%20Networks%2FError%20Control%2C%20Flow%20Control%2C%20MAC
http://en.wikibooks.org/wiki/Data%20Coding%20Theory%2FTransmission%20Codes
http://en.wikipedia.org/wiki/Automatic%20repeat-request


Error Correction Methods

• Wikipedia:forward error correction9 (FEC)
• Wikipedia:Radio Link Protocol10

• On-line CRC calculation and free CRC library11

• Algorithm Implementation/Checksums12

Category:Serial Programming13

9 http://en.wikipedia.org/wiki/forward%20error%20correction
10 http://en.wikipedia.org/wiki/Radio%20Link%20Protocol
11 http://www.lammertbies.nl/comm/info/crc-calculation.html
12 http://en.wikibooks.org/wiki/Algorithm%20Implementation%2FChecksums
13 http://en.wikibooks.org/wiki/Category%3ASerial%20Programming

120

http://en.wikipedia.org/wiki/forward%20error%20correction
http://en.wikipedia.org/wiki/Radio%20Link%20Protocol
http://www.lammertbies.nl/comm/info/crc-calculation.html
http://en.wikibooks.org/wiki/Algorithm%20Implementation%2FChecksums
http://en.wikibooks.org/wiki/Category%3ASerial%20Programming


9 Appendex A:Modems and AT
Commands

9.1 Introduction

9.1.1 General

This content is part of the Serial Programming1 book. It covers the programming of Hayes
and Hayes-compatible telephone modems. Such types of modems are the norm in consumer
applications, as well as many professionals applications - wherever modems are still used.

Modem programming is slowly becoming a lost art, particular with the wide-spread movement
of users from modem dial-up lines to DSL for very obvious performance reasons. Still modems
are used for many applications, at home, or in a professional environment. In recent times,
modems can be found in new areas where they were previously not seen. E.g. embedded
modems in machines are used to automatically "call home" to the manufacturer in case the
machine is in need of some service. Often this is done via a wireless phone system, where the
wireless module still provides a Hayes-compatible interface for dialing and data transmission.

The original Hayes modem command set is exclusively used as a reference in this module.
Vendor specific extensions are not covered, and do not belong into this module.
The module explains the origin of the term Hayes, and the related AT commands. Also
some principal information about what a modem is, and how the signaling with a modem
happens are provided for completeness. The module then continues with a description of
the basics of modem programming, including the set-up of a development environment.

Further, the content provides detailed programming information (incomplete), and a reference
of the original Hayes command set and registers (incomplete).

9.1.2 Administrative Information

This section particularly addresses potential authors. Please note:

• This module is not a dumping ground for random modem programming information and
folklore.

• This module is operating system agnostic. The Programming Serial Data Communi-
cations2 book provides other modules for such information.

1 http://en.wikibooks.org/wiki/Serial%20Programming
2 http://en.wikibooks.org/wiki/Programming%3ASerial%20Data%20Communications

121

http://en.wikibooks.org/wiki/Serial%20Programming
http://en.wikibooks.org/wiki/Programming%3ASerial%20Data%20Communications


Appendex A:Modems and AT Commands

• This module deals with generic Hayes modems, not with any vendor specific extensions.
If you really want to see your particular love-child covered, provide an Appendix with
that vendor/brand specific information.

• Do not assume that just because something works on you particular modem it is the
standard and other modems do it the same way. If you have no first hand experience
that something is done the same way on "almost" all Hayes-compatible modems, then
leave it out, or mark it at least as doubtful.

The reason why this module sticks with the original Hayes command set is to have a
defined boundary. This module is not intended as a reference manual. Once someone has
mastered the basic set, and implemented the code, it is rather straight forward to deal with
vendor-specific extensions. Other extensions, e.g. the very rough and basic FAX extensions
require some deep insight into the involved protocols (e.g. in the case of FAX the detailed
encoding, compression and timing of fax data on the phone line). This is out of the scope of
this book. If you know how to handle the FAX extensions, write your own book.

9.1.3 What is Hayes?

Hayes Microcomputer Products, Inc. was a modem manufacturer from the beginning of the
1980s until the end of the 1990s, with its heyday in the early '90s. The name Hayes still
exists as a brand name, owned by Zoom Telephonics, Inc. (as of Fall 2004).

In 1981, Hayes developed the Hayes Smartmodem. This was a unique product at the
time, because this modem was no longer simply a "dumb" device blindly converting serial
data to and from audio tones, but contained some "intelligence". It was possible to send
commands to the modem to configure it, to execute certain operations (such as dialling
a number, quieting the speaker, hanging up, etc.), and to read the current status of the
connection. Hayes developed and published a command set to control the modem over a
serial line. This command set became popular among consumer modem manufacturers,
and was cloned a thousand times. Known as both the "Hayes command set" and the "AT
command set", it has long been the de-facto standard for controlling consumer modems
and also many professional modems. Modems which support this command set are called
Hayes-compatible.

The commands were standardised at some point in time, however, as it is typical with stan-
dards, there are several standards. Plus, of course, there are still vendor-specific extensions
and implementations in different modems vary slightly. Some of these enhancements were
required to support at that time emerging features, such as data compression and FAX
support. As a result, the command sets of modern modems are not fully compatible with
each other. The original Hayes commands, however, should still work, and still form the
core of almost all consumer modem command sets.

The basic set of commands was at some point in time standardised as TIA/EIA-6023

and the syntax as EIA/TIA-615. But as already mentioned, modem manufacturers added
their extensions. A larger extended set, particular under the pressure from cell phone
manufacturers, was standardised as ITU V.2504 (old name V.25ter). That one usually

3 http://www.tiaonline.org/standards/search_results2.cfm?document_no=TIA/EIA%2D602
4 http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-V.250

122

http://www.tiaonline.org/standards/search_results2.cfm?document_no=TIA/EIA%2D602
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-V.250


Introduction

forms the base for professional Hayes-compatible modems, and cell phones with build in
data modems. ITU V.250 further referes to a bunch of other standards (e.g. V.251, V.252,
V.253) for particular applications and extensions, and also has some supplements. Plus, of
course there are the many standards defining other aspects of a modem, like compression
and transmission.

See Also:

• Wikipedia:Hayes Communications5

• Transferring Data between Standard Dial-Up Modems6

9.1.4 What are AT Commands?

Almost all of the Hayes modem commands start with the two letter sequence AT - for getting
the modem's attention. Because of this, modem commands are often called AT Commands.
This still holds for many of the manufacturer specific command set extensions. Most of
them also start with AT, and are called AT Commands, too. Please note, that just because
an AT command contains a & does not make it an extensions. & commands were already
part of the original Hayes command set.

The exact usage of the term AT command set slightly varies from manufacturer to manufac-
turer, often subject to marketing blurbs. In general, it can be assumed that a modem with
an AT command set

• uses commands mostly starting with AT,
• uses the original Hayes way of separating data and commands, and
• supports the original Hayes commands and register settings as a subset.

9.1.5 What is a Modem?

w:Modem7 A modem in the classic sense is amodulator/demodulator for transmitting digital
information over analog wires, such as the analog telephone system's two-wire or four-wire
lines. The term has come to be used as acceptable slang for many communication devices used
to link a computer to either another computer, or a wide-area network (Wikipedia:WAN8).
For example, the Ricochet radio data transceivers were commonly known as "Ricochet
modems".

This module deals with the classic type of smart modems, designed to convert data from/to
a serial interface to/from an analog line. The module also applies to modems which provide
the classic serial interface but connect over a different physical layer, such as a digital line, as
well as devices providing a serial modem-like interface for other purposes. For our purpose,
the modem is a classic DCE (data communications equipment) device, controlled via serial
line by a classic DTE (data terminal equipment) device (such as a computer).

5 http://en.wikipedia.org/wiki/Hayes%20Communications

6 http://en.wikibooks.org/wiki/Transferring%20Data%20between%20Standard%20Dial-Up%
20Modems

7 http://en.wikipedia.org/wiki/Modem
8 http://en.wikipedia.org/wiki/WAN

123

http://en.wikipedia.org/wiki/Hayes%20Communications
http://en.wikibooks.org/wiki/Transferring%20Data%20between%20Standard%20Dial-Up%20Modems
http://en.wikibooks.org/wiki/Transferring%20Data%20between%20Standard%20Dial-Up%20Modems
http://en.wikipedia.org/wiki/Modem
http://en.wikipedia.org/wiki/WAN


Appendex A:Modems and AT Commands

Depending on the type of modem, the modem can use a number of different technologies
and speeds to transmit the data over the analog line. The details of these technologies are
of no particular interest here, other than to note that it is possible with most modems to
specify these communication parameters (for example, to disable compression, or to change
modulation techniques). The data this module deals with is not the data on the analog line,
but the data as it appears on the serial interface between the DTE and DCE. I.e. the data
as read and written by a device like a computer.

(Smart) Modems also provide auxiliary services, such as dialling a particular number to set
up a connection. As a consequence, a modem can be in a number of different states and
modes, which are not always orthogonal. It is possible, for example, for a modem to be in
the command mode while still keeping a connection (see the +++ sequence for details).

Non-smart modems had to rely on other equipment like an ACU (automatic call unit) to
provide these auxiliary services, but they are practically extinct today.

9.1.6 Inband Signalling

The original RS232C/V.24 specification contained a TX wire for transmitting data and a
RX wire for receiving data, and other completely separate wires for transmitting control
information between the DTE and DCE, the idea being to separate data and control
information. In telecommunication jargon this is called outband signalling.

Hayes-compatible modems use almost none of these RS232C/V.24 features. Instead, com-
munication with the modem is done almost exclusively via the same RX/TX lines which are
used for transferring the data. This mechanism is called inband signalling.

Inband signalling has significant disadvantages. At any point in time, both the DTE and
DCE must know if information sent or received via the TX and RX lines is for signalling
purposes, or if it is data, which should be handled transparently. Therefore, the DTE and
DCE must operate in sync. If they get out of sync, either data will be lost, data will be
incorrectly interpreted as commands, or signalling information will be interpreted as data,
effectively destroying the original data.

Inband signalling has the advantage that the wiring between the DTE and DCE is simpler,
and also that, at least at first glance, the communication software in the DTE is simpler.

As it has been said, Hayes-compatible modems use almost none of the RS232 control lines.
But only almost. For example, they often drive DCD (data carrier detect). This, however
creates the situation that modem-driving software now has to take care not only of the
inband, but also the outband signalling with a modem. This slightly complicates the
communication software's state machine9.

Further, especially with the rise of cell phone modems, manufacturers have again started to
introduce more outband signaling. Such modems provide multiple virtual serial interfaces.
Some of these interfaces are exclusively dedicated to data transport, controlled by another
serial interface which is either used exclusively for signalling (i.e. outband signalling) or

9 Chapter 9.2.6 on page 131

124



Introduction

can still also be used in the more conventional inband signalling scenario. In such cases the
communication software needs to manage even more complex states.

9.1.7 Command State / On-line State

With respect of controlling the modem a Hayes-compatible modem is one of two main
states:

Command State

The modem interprets data from the DTE as modem commands. The modem can be in
command state while still keeping a connection with a remote party.

On-line State

The modem interprets data from the DTE as payload and transmits it to the other party.
This state requires that a connection to the remote site has been established.

Inside these main states are a number of sub states. Also, with respect to other issues a
modem has a number of communication states, e.g. if a remote carrier has been detected or
not.

9.1.8 Originating Mode / Answer Mode

Originating mode

A modem in originating mode is a modem which is setting up a connection, e.g., by dialing
the number of a remote station and initiating the negotiation of protocols.

Answer Mode

A modem in answer mode is a modem waiting to be contacted and ready to "answer the
phone".

9.1.9 Command Responses

A modem is supposed to send a response for almost all commands it receives. These responses
can either be in the form of ASCII strings, or numeric values. The response type can be
switched with a command, but it is typical to use the ASCII responses.

Responses need to be tracked by the DTE with great care. Among other things they inform
the DTE if the dialling of the remote site was successful or not, and if the modem switches
from command state to on-line state or not.

Unfortunately, the set of response messages has been greatly enhanced since the original
Hayes modems and are often configurable via additional AT commands. It is suggested to
not strictly parse response messages but to forgivingly check if they contain interesting
keywords, like CONNECT. It is also suggested to study the manual of a particular modem very
carefully.

125



Appendex A:Modems and AT Commands

9.1.10 S-Registers

The so called S-registers are also a Hayes heritage which all Hayes-compatible modems
support. They are registers in the modem which contain various settings. And like the AT
commands, they have been extensively enhanced by different modem manufacturers.

The reason why they are called S-Registers is a little bit unclear. Some say the S stands for
modem settings. Some say they are just called like this, because they are set and read with
ATS... commands. In the common vernacular they were usually termed storage registers
because they permanently stored the values even through power-off.

Several of the other AT commands also change values of particular S-Registers. There is
usually no difference in setting a value directly via an S-Register or via another AT command.
It depends on the particular situation which way of setting a register is better.

9.2 Modem Programming Basics

9.2.1 Command Reference

In order to program for an actual modem it is a rather good idea to obtain the command
reference for that particular modem. Unfortunately, it has become quite common for no-
name modems to ship without any kind of usable command reference. Thanks to Windows'
Plug & Play feature it is no longer necessary on Windows to know the individual commands.
Instead, all that is needed for a modem to run on Windows is to be shipped with the
necessary .inf files (often hidden inside some "installer" software, and called a "driver"
which is technically not the case, Windows already contains the necessary drivers).

If the modem doesn't come with a command reference the next logical step is to search the
web. However, unfortunately, a lot of modem information has vanished from the surface of
the earth and the web in recent years. With the rise of broadband Internet connections,
modems have become old fashioned devices and many sources are no longer available. It has
become more and more difficult to find basic information about particular modem types.
Even for modern modems like cell phone modems it can be difficult to find the necessary
information.

There are a number of alternatives to obtain a command reference if one doesn't come with
the modem:

• Maybe the distributor provides one on its website
• Maybe the OEM manufacturer provides one.

This requires to identify the OEM manufacturer. A possible way is to use the FCC
number of the device, and then looking the original manufacturer up on the FCC web
site.

• Maybe the chipset manufacturer provides one.
Consumer modems are often just build around "off-the-shelf" modem chipsets from
larger hardware manufacturers. The cheaper the modem, the more likely it is that the
modem manufacturer didn't change anything in the firmware and is using the original
example software from the chipset manufacturer. Some chipset vendors provide command
references for their modems.

126



Modem Programming Basics

• By looking into the corresponding Windows .inf files it is possible to at least obtain the
basic commands

• By using the generic Hayes command reference in this Wikibook module.
• Obtaining the previously mentioned standard documents if there is an indication a

particular modem complies to such a command standard.
• Using some kind of sniffer program to monitor the communication between the modem

and the DTE and reverse engineering the commands using the obtained information.
This requires that (a) reverse engineering is legal in your justification and (b) that there
is some DTE communication software available that handles the particular modem so
there is some valid communication to sniff.

9.2.2 Setting up a Development Environment

It is highly recommended to spend some preparation time setting up a suitable development
environment before starting to write drivers or software for a modem. Most of this consists
of hardware set-up.

It is suggested to set up a small network with a "remote" computer and a second modem
in answer mode. "Remote" computer in this case means a computer sitting right next to
the development machine, but connected via the modems. If a terminal program is being
developed, the "remote" computer should run some small BBS software (for example), so
there is always someone ready to answer, and/or protocol analysis/data dump software.
Developing modem software without such a setup can be extremely frustrating. Such a
set-up pays off a hundred times in reduced development time and lower stress. Likewise, the
modems used should have real speakers, and support ATMn commands well enough that you
can leave the speaker on for the entire connection process (and ideally have the option to
leave it on, period). "Debugging by ear" can be a reality with modems, particularly during
compatibility testing.

If possible, a hardware protocol analyser, or at least an RS-232 breakout box10, should
be obtained. These can be placed between the computers and modems, if needed, to
troubleshoot the serial link and ensure that data is, in fact, being transferred between the
modem and the computer -- a sanity check which comes in handy far more often than you
might expect. Actual hardware protocol analysers are surprisingly expensive, however; old
Wyse terminals are not, and are almost as useful for this purpose. If you find one, pick it up.
Terminals that support automatic baud-rate detection are particularly useful.

If dialing with the modem also needs to be tested, a small analog PABX for home usage is
needed. These PABX units are dirt cheap; an analog PABX for four internal lines and one
external line should cost no more than US$50. If dialing is not needed, then the modems
should be capable of directly driving a two-wire or four-wire line in leased-line mode;
otherwise, the PABX is still needed.

Possible setups are for example:

a) Leased-Line Mode

10 Chapter 2.2.5 on page 10

127



Appendex A:Modems and AT Commands

+-------------+ serial +---------+ 2-wire +----------+ serial
+----------+
| Development |----------| Modem A |----\/----| Modem B
|----------| BBS |
| Computer |----------| |----/\----| (answer)
|----------| Computer |
+-------------+ +---------+ +----------+
+----------+

or

b) With PABX

+-------------+ serial +---------+ phone wire +------+ phone
wire +----------+ serial +----------+
| Development |----------| Modem A |--------------| PABX
|--------------| Modem B |----------| BBS |
| Computer |----------| |--------------| X
|--------------| (answer) |----------| Computer |
+-------------+ +---------+ +------+

+----------+ +----------+

or

c) Leased-Line Mode with Protocol Analyser

+-------------+ serial +---------+ serial +---------+ 2-wire
+----------+ serial +----------+
| Development |----------| Y Cable |----------| Modem A |----\/----|
Modem B |----------| BBS |
| Computer |----------| Breakout|----------| |----/\----|
(answer) |----------| Computer |
+-------------+ +---------+ +---------+
+----------+ +----------+

||
||
||

+----------+
| Protocol |
| Analyser |
+----------+

Other combinations are of course also useful. And being able to easily reconnect the protocol
analyser, e.g. between Modem B and the BBS Computer is helpful, too.

9.2.3 Operating System, Programming Language & Communication
Basics

Before dealing with the details of handling a modem, a few basics should be in place. First
of all, the communication with the serial interface should be in place. This includes that the
APIs as provided by the particular operating system for serial communication - if any - should
be understood. If the operating system doesn't provide such APIs, then it is recommended
to first implement the UART access and wrap it into a library, if the serial UART in some
hardware is supposed to be programmed directly. Alternatively, a programming language
which provides convenient access to a serial interface can be used.

128



Modem Programming Basics

Whatever is used, it should be tested before starting to program for the modem. There is
nothing more annoying than not knowing if a particular misbehaviour is caused by a failure
in the serial communication with the modem, or is a problem with the modem (usually with
the commands sent to it).

Unless in the most simple case, it is suggested to use hardware handshaking with the modem
- particularly for speeds greater then 2400 bps or 9600 bps. Therefore, the used low-level
serial communication software and hardware should support hardware handshake. If the
UART supports some FIFO, like the 16550 UART, the FIFO should be enabled (both for
sending and receiving data).

It is undecided if data reception via polling or via interrupts is better. If every incoming
byte raises an interrupt there are many interrupts at high communication speeds, and, as
surprising as it might sound, polling the UART might be more efficient in such cases.

Communication as supported by a modem is usually half-duplex. Either the DTE or the
DCE talks, the other side is supposed to listen. The communication with the modem should
best be done with

• 8 Bit
• No parity
• 1 Stop bit

See the next section for speed information.

9.2.4 Line Speed is not DTE/DCE Speed

+-------------+ DTE/DCE speed +---------+ line speed
| DTE / |----------------| Modem / |--------------
| Computer |----------------| DCE |--------------
+-------------+ +---------+

Helpful Hint:
Some modem manufacturers call the DTE/DCE speed DTE speed, and the line speed
DCE speed. Others distinguish between DTE speed (DTE/DCE speed on the serial
interface), DCE speed (bps between the modems), and line speed (Baud rate between
the modems). Carefully observing the terminology can help to correctly interpret a
manufacturer's documentation.

An issue which can be very confusing is the difference between the line speed (the data
transfer speed on the telephone line) and the speed on the serial line between the DTE
(computer) and the DCE (modem).

First, there is always some general confusion about the line speed, because some line speed
is given with taking compression into account, while other data is given without taking
compression into account. Also, there is a difference between bps and Baud due to the
modulation schema used on the line. In addition, marketing blurbs obscure the picture.
We will not make any attempt to clean up the long-standing Baud vs. bps confusion here
(it is hopeless :-)). It is just recommended that whenever the modem returns information
about line speed the above mentioned differences are taken into account to avoid any
misinterpretation.

129



Appendex A:Modems and AT Commands

Second, the speed on the telephone line does not necessarily have to be the same as the
speed on the serial line. In fact, it usually isn't on modern modems. It is recommended to
set the DTE/DCE speed to a fixed speed instead of following the line speed. Logically, the
fixed DTE/DCE speed should be large enough to cope with the highest expected line speed.
V.90 modems should e.g. be accessed via 115200 bps or higher on the serial interface.

Setting the DTE/DCE speed on modern modems is quite simple. They all use autosensing
on the serial interface. That is, they themselves detect the speed of data as received from the
DTE and use the same speed to return data to the computer. They usually also autosense
the parity, and 7 bit / 8 bit data length. Usually modems assume one stop bit when
autosensing the serial interface. Therefore it is enought to just configure the serial interface
on the DTE to the desired DTE/DCE communication parameters and let the modem figure
it out on its own.

Autosensing can fail in rare cases and some modems might have broken autosensing. If a
modem tends to fail autosensing it can help to start the initial communication after the
DTE is configured with one or more nop AT commands

AT<CR>

repeated a limited number of times until the modem starts to return

OK

for the nop commands.

When a modem sets up a connection with a remote party it can report the used speed. In
fact, it can report the line speed or just the DTE speed (some modems can report both).
The end user is most probably interested in the line speed, and not the DTE/DCE speed. So
from this point of view, it is best to set the modem to report the line speed, and e.g. write
the received information to a log file. However, some old communication software or modem
drivers interpret the response from the modem as a request to change the DTE/DCE speed.
In such cases the modem must be set to always return the DTE/DCE speed. Since this
DTE/DCE speed will be the same as detected via autosensing there will be no speed change.

In the rare case that the DTE/DCE speed should indeed follow the line speed, the responses
from the modem should of course be set to return the line speed. Then the DTE software
has to evaluate the response, and change the DTE/DCE speed accordingly. This is really
not recommended these days.

See the #W: Negotiation Progress Message Selection11 command for details on how to set
which response to get.

11 Chapter 9.6 on page 134

130



Modem Programming Basics

9.2.5 Character Set and Character Case

Commands sent to the modem, and textual responses are supposed to be in the ISO 646
character set. ISO 646 is just another name for the familiar 7-bit ASCII12 character set.
Typically, modems chop off any 8th bit in commands they receive anyhow. They interpret
the result as if the command has been sent using only 7-bit characters. However, it is not
recommended to rely on this, but instead ensure that commands are only sent using 7-bit
characters.

Commands are not case sensitive, assuming a modern modem. Some early modems insisted
on uppercase-only commands. Still, a generic driver could do worse than ensuring that
all commands are sent in uppercase, and all responses are interpreted case-independent.
Typically, both letters of the AT command prefix must be of the same case. So AT and at
are acceptable, while At and aT are not.

9.2.6 Welcome to the World of State-Machines

Modem programming means to tap into the world of telecommunications. This is an
unknown field for most amateur, as well as professional programmers. Telecommunication is
heavily centered around state-machines. And in fact, it is rather difficult or impossible to
program a modem without using a state-machine. The modem is at any time in a particular
state, and any DTE software which tries to control and use the modem needs to track the
state of the modem - in an own state machine. This is necessary, because a Hayes-compatible
modem can only do certain things when it is in a certain state. E.g. it can only dial out if it
is not already connected to some remote site.

Part of a modem's state can be tracked via particular RS-232 lines. E.g. DCD (data carrier
detect) can be used to figure out if the modem has detected a remote modem's carrier
signal. Other information is provided by the flow-control lines. However, some states, and
associated data need to be tracked via interpreting the modem's result codes13.

People unfamiliar with the theory and practice of state machines often try to circumvent the
issue by "tough coding". Which means, they throw more and more code onto the problem
(wrapped in a heap of if/the/else/otherwise/maybe/... statements), until things seem to
work - sort of. If they are lucky they have implicitly managed to create a state machine
which works. If they are unlucky, they end up with a partial state machine, which breaks
down should something unusual happen in the communication. This usually comes with
the problem that the software was not designed to recover if things break down. So such
software tends to hang or crash.

It is much more efficient to first spend a few hours to to learn the basics of simple state
machines, and then spending a few more hours to describe the communication with the
modem as a state machine. The result of this planning serves as a nice template for
implementing the DTE software.

12 http://en.wikipedia.org/wiki/ASCII
13 Chapter 9.8 on page 137

131

http://en.wikipedia.org/wiki/ASCII


Appendex A:Modems and AT Commands

9.3 Flow Control

A slow device needs a way to tell its peer that currently, it is busy, so further incoming data
must be stopped until this slow device tells otherwise. This mechanism is provided by flow
control. There are two ways of doing flow control: by hardware or software.

9.3.1 Hardware Flow Control

Hardware flow control is usually implemented using the CTS (Clear To Send14) and RTS
(Request To Send15) lines, which needs separate hardware data lines between devices. This
is allocated in the RS-232 cable specification.

Hardware flow control based on DSR (Data Set Ready16) and DTR (Data Terminal Ready17)
is uncommon, particular for modems. It can usually be found at serial printers. Again,
DSR/DTR hardware flow control requires additional hardware data lines between devices.

From a programming point of view there is usually not much difference in programming
CTS/RTS or DSR/DTR hardware flow control. The hardware has to provide means to
drive/read the corresponding signals in the serial interface. If the hardware supports both,
CTS/RTS and DSR/DTR flow control, then it is recommended to support both and provide
the user with a configuration option.

It should be noted that some hardware or operating system drivers do not provide means
to drive/read the less common DSR/DTR combination. If the remote device insists on
DTR/DSR flow control a common workaround is to use CTS/RTS in the software, but
rewire the cabling so the CTS/RTS wires are in fact connected to DSR/CTS.

9.3.2 Software Flow Control

This kind of flow control doesn't need extra signal line(s) like hardware flow control, but
instead uses special control characters within the data content. To stop further incoming
data, the receiving device sends the XOFF character. To enable more data, an XON
character will be sent.

However, since the data being sent cannot contain these characters (unless you know that the
receiving device ignores such information), binary (non-ASCII) data cannot be transmitted
this way. Software flow control is typically used for communications to terminals and other
character-based devices. Binary data should not be sent this way as it could, randomly,
contain these characters. Hardware flow control using RTS/CTS is usually used.

Helpful Hint: Realizing that the Control Key is a special "shift" key that chops off the 100
bit (octal), it is easy to remember that the ASCII character used for sending XOFF is a
Control-S (23 Octal) while the character for XON is a Control-Q (21 Octal). [Think of "S"
for Stop and "Q" for Qontinue... don't you spell it that way?]

14 Chapter 2.3.3 on page 14
15 Chapter 2.3.3 on page 14
16 Chapter 2.3.3 on page 14
17 Chapter 2.3.3 on page 14

132



Changing State

9.4 Changing State

9.4.1 General

Changing the state from command state to on-line state or vice versa is either straightforward
or a great mystery. This module covers the more obscure ways.

9.4.2 On-line State to Command State

It is of course possible to switch from on-line state to command state by dropping the
connection (going on-hook in modem terminology). It is also possible to temporarily switch
into command state while keeping the connection.

Going on-hook programmatically (and not via dropping a modem control line) requires to
first switch into command state while keeping the connection, too.

Switching into command state, while in fact in the middle of transferring data (nothing
else is meant with on-line state) requires to send a certain escape sequence as part of the
data. This escape sequence is detected by the modem and the modem changes state. Since
this character sequence might also be part of the normal data, an additional mechanism
is needed to separate the escape sequence from normal data. This is the curse of inband
signalling.

The separation of the escape sequence is done by using a so called guard time, which was
once patented by Hayes. As a result, some modem manufacturers eliminated the guard time
using an alternate escape sequence called the Time Independent Escape Sequence. Anyway,
the escape sequence is only recognized by the modem when there was no other data from
the DTE (terminal) for at least the duration of the guard time, and when there was no other
data from the terminal after the escape sequence for at least the duration of the guard time,
too.

An escape sequence consists of three times the same particular character. The character, as
well as the guard time is configurable. By default, the character is +, and the guard time is
one second. So, with the default configuration, a change to command state requires

<1 sec. nothing>+++<1 sec. nothing>

If the connection should be dropped, this escape sequence should be followed by the AT
command to go on-hook, which is ATH0:

<1 sec. nothing>+++<1 sec. nothing>ATH0<CR>

133



Appendex A:Modems and AT Commands

9.4.3 Command State to On-line State

The usual way to go from command state to on-line state is via dialing the remote site (see
D command). But if the connection already exists, and the modem has been switched to
command mode via the escape sequence, the way is different.

If the connection should not be dropped, but instead data transmission should be continued,
the ATO0 (letter o, digit zero) command is needed:

<1 sec. nothing>+++<1 sec. nothing>
send a few more modem commands, then go back on-line
ATO0<CR>

9.5 Sync. vs. Async. Interface

9.6 X.25 Interface

9.7 AT Commands

The following list is the list of the original Hayes commands. Different modems use slightly
different commands. However, this list is supposed to be as "generic" as possible, and should
not be extended with modem specific commands. Instead it is recommended to provide such
command lists in an Appendix.

9.7.1 AT Command Format

Here is a summary of the format and syntax of AT commands. Please note that most
of the control characters are configurable, and the summary only uses the default control
characters.

• AT commands are accepted by the modem only when in command mode. The modem
can be forced into command mode with the #+++: Escape Sequence18.

• Commands are grouped in command lines.

• Each command line must start with the #AT: Command Prefix19 and terminated
with #<CR>: End-of-line Character20. The only exception is the #A/: Repeat Last
Command21 command.

• The body of a command line consists of visible ASCII characters (ASCII code 32 to 126).
Space (ASCII code 32) and ASCII control characters (ASCII code 0 to 31) are ignored,

18 Chapter 9.6 on page 134
19 Chapter 9.6 on page 134
20 Chapter 9.6 on page 134
21 Chapter 9.6 on page 134

134



AT Commands

with the exception of #<BS>: Backspace Character22, #<CAN>: Cancel Character23,
and #<CR>: End-of-line Character24.

• All characters preceding the #AT: Command Prefix25 are ignored.

• Interpretation / execution of the command line starts with the reception of the first (and
also command-line terminating) #<CR>: End-of-line Character26.

• Characters after the initial #AT: Command Prefix27 and before the #<CR>: End-of-line
Character28 are interpreted as commands. With some exceptions, there can be many
commands in one command line.

• Each of the basic commands consists of a single ASCII letter, or a single ASCII letter
with a &prefix, followed by a numeric value. Missing numeric values are interpreted as 0
(zero).

• The following commands can't be followed by more commands on the command line.
They must always be the last commands in a command line. If they are followed by other
commands, these other commands are ignored. However, some of these commands take
command modifiers and it is possible that a following command is accidentally interpreted
as a command modifier. Therefore, care should be taken to not follow these commands
with any more commands on the same command line. Instead, they should be placed in
an own command line.
• #A: Answer Command29

• #D: Dial Command30

• #Z: Soft Reset Command31

• A command line can be edited if the terminating #<CR>: End-of-line Character32 has
not ben entered, using the #<BS>: Backspace Character33 to delete one command line
character at a time. The initial #AT: Command Prefix34 can't be edited/deleted (it
has already been processed, because upon reception of the #AT: Command Prefix35 the
modem immediately starts command line parsing and editing, but not execution).

• The modem echoes command lines and edits when #E: Command State Character Echo
Selection36 is on (surprise, surprise :-)).

22 Chapter 9.6 on page 134
23 Chapter 9.6 on page 134
24 Chapter 9.6 on page 134
25 Chapter 9.6 on page 134
26 Chapter 9.6 on page 134
27 Chapter 9.6 on page 134
28 Chapter 9.6 on page 134
29 Chapter 9.6 on page 134
30 Chapter 9.6 on page 134
31 Chapter 9.6 on page 134
32 Chapter 9.6 on page 134
33 Chapter 9.6 on page 134
34 Chapter 9.6 on page 134
35 Chapter 9.6 on page 134
36 Chapter 9.6 on page 134

135



Appendex A:Modems and AT Commands

• When echo is on, #<BS>: Backspace Character37s are echoed with a sequence of <BS>
<BS> (backspace, space, backspace) to erase the last character in e.g. a terminal program
on the DTE.

• A command line can be cancelled at any time before the terminating #<CR>: End-of-
line Character38 by sending the #<CAN>: Cancel Character39. No command in the
command line is executed in this case.

• The #A: Answer Command40 and #D: Dial Command41 can also be cancelled as long
as the handshake with the remote site has not been completed. Cancellation is done
by sending an additional character. In theory, it doesn't matter which character. But
care has to be taken that cancellation is not attempted when the handshake has already
completed. In this case the modem has switched to on-line state (#Command State
to On-line State42) and the character will be send to the remote side. A save way to
avoid this problem is to always use the #+++: Escape Sequence43 followed by going
on-hock with the #H: Hook Command Options44. If the modem is already in the on-line
state, this will drop the connection. If the modem is still in the handshake phase the first
character of the #+++: Escape Sequence45 will cancel the command (and the rest will
be interpreted as a normal command line, doing no harm).

• Command line execution stops when the first command in the command line fails, or the
whole command line has been executed. Every command before the failed command has
been executed. Every command after the failed command and the failed command in the
command line has not been executed.

• There is no particular indication which command in a command line failed, only that
one failed. It is best to repeat the complete command line, or to first reset the modem to
a defined state before recovering from a failure.

• A modem only accepts a new command line when the previous command line has been
executed (half-duplex communication). Therefore, care should be taken to only send
the next command line after the result code from the previous command line has been
received.

9.7.2 Command Description Template

To be removed when all commands are documented.

Syntax:

37 Chapter 9.6 on page 134
38 Chapter 9.6 on page 134
39 Chapter 9.6 on page 134
40 Chapter 9.6 on page 134
41 Chapter 9.6 on page 134
42 Chapter 9.4.3 on page 134
43 Chapter 9.6 on page 134
44 Chapter 9.6 on page 134
45 Chapter 9.6 on page 134

136



Result Codes

<The syntax of the command, when necessary in EBNF>

Description:

<Description of the command, including information about the purpose and effects>

Result Codes:

Result Codes
Code Description
OK Parameter was valid <description of success>
ERROR Otherwise <description of failure>

Related Commands and Registers:

• <Link list of related commands and registers>

9.7.3 Special Commands and Character Sequences

See Special Commands and Character Sequences Reference46

9.7.4 AT Commands A - M

See AT Commands A - M47

9.7.5 AT Commands N - Z

See AT Commands N - Z48

9.7.6 AT& Commands

See AT& Commands49

9.8 Result Codes

See Result Codes50

46 http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%
2FSpecial%20Commands%20and%20Character%20Sequences

47 http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%
2FCommands%20A%20-%20M

48 http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%
2FCommands%20N%20-%20Z

49 http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%2F%
26%20Commands

50 http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%
2FResult%20Codes

137

http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%2FSpecial%20Commands%20and%20Character%20Sequences
http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%2FSpecial%20Commands%20and%20Character%20Sequences
http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%2FCommands%20A%20-%20M
http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%2FCommands%20A%20-%20M
http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%2FCommands%20N%20-%20Z
http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%2FCommands%20N%20-%20Z
http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%2F%26%20Commands
http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%2F%26%20Commands
http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%2FResult%20Codes
http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%2FResult%20Codes


Appendex A:Modems and AT Commands

9.9 S-Registers

See S-Registers51

9.10 Advanced Features

9.10.1 Introduction

Modern consumer modems provide a number of additional features which were originally
uncommon for a modem, but became standard features over time. This section provides an
overview about how to program these features.

9.10.2 Fax Class 1

9.10.3 Fax Class 2

9.10.4 Voice Services

51 http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%
2FS-Registers

138

http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%2FS-Registers
http://en.wikibooks.org/wiki/Serial%20Programming%2FModems%20and%20AT%20Commands%2FS-Registers


10 Contributors

Edits User
10 Adrignola1

2 Alsocal2
2 Benoswald3

1 Boots81814

10 Breakpoint5

10 Dallas12786

1 Damian Yerrick7

10 Darklama8

30 DavidCary9

2 DavidL10

1 Derbeth11

3 Dirk Hünniger12

3 EdDavies13

1 Fishpi14

3 Geocachernemesis15

2 Guanabot16

1 Gumba gumba17

1 HumbertoDiogenes18

1 Insaneinside19

2 JenVan20

10 Jguk21

1 http://en.wikibooks.org/w/index.php?title=User:Adrignola
2 http://en.wikibooks.org/w/index.php?title=User:Alsocal
3 http://en.wikibooks.org/w/index.php?title=User:Benoswald
4 http://en.wikibooks.org/w/index.php?title=User:Boots8181
5 http://en.wikibooks.org/w/index.php?title=User:Breakpoint
6 http://en.wikibooks.org/w/index.php?title=User:Dallas1278
7 http://en.wikibooks.org/w/index.php?title=User:Damian_Yerrick
8 http://en.wikibooks.org/w/index.php?title=User:Darklama
9 http://en.wikibooks.org/w/index.php?title=User:DavidCary
10 http://en.wikibooks.org/w/index.php?title=User:DavidL
11 http://en.wikibooks.org/w/index.php?title=User:Derbeth
12 http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger
13 http://en.wikibooks.org/w/index.php?title=User:EdDavies
14 http://en.wikibooks.org/w/index.php?title=User:Fishpi
15 http://en.wikibooks.org/w/index.php?title=User:Geocachernemesis
16 http://en.wikibooks.org/w/index.php?title=User:Guanabot
17 http://en.wikibooks.org/w/index.php?title=User:Gumba_gumba
18 http://en.wikibooks.org/w/index.php?title=User:HumbertoDiogenes
19 http://en.wikibooks.org/w/index.php?title=User:Insaneinside
20 http://en.wikibooks.org/w/index.php?title=User:JenVan
21 http://en.wikibooks.org/w/index.php?title=User:Jguk

139

http://en.wikibooks.org/w/index.php?title=User:Adrignola
http://en.wikibooks.org/w/index.php?title=User:Alsocal
http://en.wikibooks.org/w/index.php?title=User:Benoswald
http://en.wikibooks.org/w/index.php?title=User:Boots8181
http://en.wikibooks.org/w/index.php?title=User:Breakpoint
http://en.wikibooks.org/w/index.php?title=User:Dallas1278
http://en.wikibooks.org/w/index.php?title=User:Damian_Yerrick
http://en.wikibooks.org/w/index.php?title=User:Darklama
http://en.wikibooks.org/w/index.php?title=User:DavidCary
http://en.wikibooks.org/w/index.php?title=User:DavidL
http://en.wikibooks.org/w/index.php?title=User:Derbeth
http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger
http://en.wikibooks.org/w/index.php?title=User:EdDavies
http://en.wikibooks.org/w/index.php?title=User:Fishpi
http://en.wikibooks.org/w/index.php?title=User:Geocachernemesis
http://en.wikibooks.org/w/index.php?title=User:Guanabot
http://en.wikibooks.org/w/index.php?title=User:Gumba_gumba
http://en.wikibooks.org/w/index.php?title=User:HumbertoDiogenes
http://en.wikibooks.org/w/index.php?title=User:Insaneinside
http://en.wikibooks.org/w/index.php?title=User:JenVan
http://en.wikibooks.org/w/index.php?title=User:Jguk


Contributors

3 Jhdiii22

4 Jomegat23

11 Lehoaithanh24

1 Micha s25

2 Mike51826

6 Netch27

1 Ninly28

4 Panic2k429

15 QuiteUnusual30

6 Recent Runes31

80 Renffeh32

1 Rmallins33

89 Robert Horning34

1 Rustamabd35

1 Sandcat0136

1 Theodore.cackowski37

1 Trainsonplanes38

2 Wajidstar39

3 Webaware40

1 Xania41

3 Xenodevil42

1 Yuriybrisk43

22 http://en.wikibooks.org/w/index.php?title=User:Jhdiii
23 http://en.wikibooks.org/w/index.php?title=User:Jomegat
24 http://en.wikibooks.org/w/index.php?title=User:Lehoaithanh
25 http://en.wikibooks.org/w/index.php?title=User:Micha_s
26 http://en.wikibooks.org/w/index.php?title=User:Mike518
27 http://en.wikibooks.org/w/index.php?title=User:Netch
28 http://en.wikibooks.org/w/index.php?title=User:Ninly
29 http://en.wikibooks.org/w/index.php?title=User:Panic2k4
30 http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual
31 http://en.wikibooks.org/w/index.php?title=User:Recent_Runes
32 http://en.wikibooks.org/w/index.php?title=User:Renffeh
33 http://en.wikibooks.org/w/index.php?title=User:Rmallins
34 http://en.wikibooks.org/w/index.php?title=User:Robert_Horning
35 http://en.wikibooks.org/w/index.php?title=User:Rustamabd
36 http://en.wikibooks.org/w/index.php?title=User:Sandcat01
37 http://en.wikibooks.org/w/index.php?title=User:Theodore.cackowski
38 http://en.wikibooks.org/w/index.php?title=User:Trainsonplanes
39 http://en.wikibooks.org/w/index.php?title=User:Wajidstar
40 http://en.wikibooks.org/w/index.php?title=User:Webaware
41 http://en.wikibooks.org/w/index.php?title=User:Xania
42 http://en.wikibooks.org/w/index.php?title=User:Xenodevil
43 http://en.wikibooks.org/w/index.php?title=User:Yuriybrisk

140

http://en.wikibooks.org/w/index.php?title=User:Jhdiii
http://en.wikibooks.org/w/index.php?title=User:Jomegat
http://en.wikibooks.org/w/index.php?title=User:Lehoaithanh
http://en.wikibooks.org/w/index.php?title=User:Micha_s
http://en.wikibooks.org/w/index.php?title=User:Mike518
http://en.wikibooks.org/w/index.php?title=User:Netch
http://en.wikibooks.org/w/index.php?title=User:Ninly
http://en.wikibooks.org/w/index.php?title=User:Panic2k4
http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual
http://en.wikibooks.org/w/index.php?title=User:Recent_Runes
http://en.wikibooks.org/w/index.php?title=User:Renffeh
http://en.wikibooks.org/w/index.php?title=User:Rmallins
http://en.wikibooks.org/w/index.php?title=User:Robert_Horning
http://en.wikibooks.org/w/index.php?title=User:Rustamabd
http://en.wikibooks.org/w/index.php?title=User:Sandcat01
http://en.wikibooks.org/w/index.php?title=User:Theodore.cackowski
http://en.wikibooks.org/w/index.php?title=User:Trainsonplanes
http://en.wikibooks.org/w/index.php?title=User:Wajidstar
http://en.wikibooks.org/w/index.php?title=User:Webaware
http://en.wikibooks.org/w/index.php?title=User:Xania
http://en.wikibooks.org/w/index.php?title=User:Xenodevil
http://en.wikibooks.org/w/index.php?title=User:Yuriybrisk


List of Figures

• GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.html

• cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. http://
creativecommons.org/licenses/by-sa/3.0/

• cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. http://
creativecommons.org/licenses/by-sa/2.5/

• cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. http://
creativecommons.org/licenses/by-sa/2.0/

• cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. http://
creativecommons.org/licenses/by-sa/1.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.
org/licenses/by/2.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.
org/licenses/by/2.0/deed.en

• cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons.
org/licenses/by/2.5/deed.en

• cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons.
org/licenses/by/3.0/deed.en

• GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt

• LGPL: GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl.
html

• PD: This image is in the public domain.

• ATTR: The copyright holder of this file allows anyone to use it for any purpose,
provided that the copyright holder is properly attributed. Redistribution, derivative
work, commercial use, and all other use is permitted.

• EURO: This is the common (reverse) face of a euro coin. The copyright on the design
of the common face of the euro coins belongs to the European Commission. Authorised
is reproduction in a format without relief (drawings, paintings, films) provided they
are not detrimental to the image of the euro.

• LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de

• CFR: Copyright free use.

141

http://www.gnu.org/licenses/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://artlibre.org/licence/lal/de


List of Figures

• EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10.
php

Copies of the GPL, the LGPL as well as a GFDL are included in chapter Licenses44. Please
note that images in the public domain do not require attribution. You may click on the
image numbers in the following table to open the webpage of the images in your webbrower.

44 Chapter 11 on page 145

142

http://www.eclipse.org/org/documents/epl-v10.php
http://www.eclipse.org/org/documents/epl-v10.php


List of Figures

1 GFDL
2 User Mike102445 PD
3 Afrank9946 GFDL
4 User Smial47 on de.wikipedia48 cc-by-sa-2.0
5 Afrank9949 cc-by-sa-2.5
6 GFDL

45 http://en.wikibooks.org/wiki/User%3AMike1024
46 http://en.wikibooks.org/wiki/User%3AAfrank99
47 http://en.wikibooks.org/wiki/%3Ade%3ABenutzer%3ASmial
48 http://de.wikipedia.org
49 http://en.wikibooks.org/wiki/User%3AAfrank99

143

http://en.wikibooks.org/wiki/File:RS-232.jpeg
http://en.wikibooks.org/wiki/File:9%20pin%20d-sub%20connector%20male%20closeup.jpg
http://en.wikibooks.org/wiki/File:Parallelport.jpg
http://en.wikibooks.org/wiki/File:Scsi%20extern%20db25%20st.jpg
http://en.wikibooks.org/wiki/File:Klinkenstecker%20stereo%203.5mm.jpg
http://en.wikibooks.org/wiki/File:DB-9_Female_PinOut.png
http://en.wikibooks.org/wiki/User%3AMike1024
http://en.wikibooks.org/wiki/User%3AAfrank99
http://en.wikibooks.org/wiki/%3Ade%3ABenutzer%3ASmial
http://de.wikipedia.org
http://en.wikibooks.org/wiki/User%3AAfrank99




11 Licenses

11.1 GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed. Preamble

The GNU General Public License is a free, copyleft
license for software and other kinds of works.

The licenses for most software and other practi-
cal works are designed to take away your freedom
to share and change the works. By contrast, the
GNU General Public License is intended to guaran-
tee your freedom to share and change all versions
of a program–to make sure it remains free software
for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our
software; it applies also to any other work released
this way by its authors. You can apply it to your
programs, too.

When we speak of free software, we are referring
to freedom, not price. Our General Public Li-
censes are designed to make sure that you have
the freedom to distribute copies of free software
(and charge for them if you wish), that you receive
source code or can get it if you want it, that you
can change the software or use pieces of it in new
free programs, and that you know you can do these
things.

To protect your rights, we need to prevent others
from denying you these rights or asking you to sur-
render the rights. Therefore, you have certain re-
sponsibilities if you distribute copies of the soft-
ware, or if you modify it: responsibilities to respect
the freedom of others.

For example, if you distribute copies of such a pro-
gram, whether gratis or for a fee, you must pass
on to the recipients the same freedoms that you re-
ceived. You must make sure that they, too, receive
or can get the source code. And you must show
them these terms so they know their rights.

Developers that use the GNU GPL protect your
rights with two steps: (1) assert copyright on the
software, and (2) offer you this License giving you
legal permission to copy, distribute and/or modify
it.

For the developers’ and authors’ protection, the
GPL clearly explains that there is no warranty for
this free software. For both users’ and authors’
sake, the GPL requires that modified versions be
marked as changed, so that their problems will not
be attributed erroneously to authors of previous
versions.

Some devices are designed to deny users access to
install or run modified versions of the software in-
side them, although the manufacturer can do so.
This is fundamentally incompatible with the aim
of protecting users’ freedom to change the software.
The systematic pattern of such abuse occurs in the
area of products for individuals to use, which is
precisely where it is most unacceptable. Therefore,
we have designed this version of the GPL to pro-
hibit the practice for those products. If such prob-
lems arise substantially in other domains, we stand
ready to extend this provision to those domains in
future versions of the GPL, as needed to protect
the freedom of users.

Finally, every program is threatened constantly by
software patents. States should not allow patents
to restrict development and use of software on
general-purpose computers, but in those that do,
we wish to avoid the special danger that patents
applied to a free program could make it effectively
proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-
free.

The precise terms and conditions for copying, dis-
tribution and modification follow. TERMS AND
CONDITIONS 0. Definitions.

“This License” refers to version 3 of the GNU Gen-
eral Public License.

“Copyright” also means copyright-like laws that ap-
ply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work
licensed under this License. Each licensee is ad-
dressed as “you”. “Licensees” and “recipients” may
be individuals or organizations.

To “modify” a work means to copy from or adapt
all or part of the work in a fashion requiring copy-
right permission, other than the making of an exact
copy. The resulting work is called a “modified ver-
sion” of the earlier work or a work “based on” the
earlier work.

A “covered work” means either the unmodified Pro-
gram or a work based on the Program.

To “propagate” a work means to do anything with it
that, without permission, would make you directly
or secondarily liable for infringement under appli-
cable copyright law, except executing it on a com-
puter or modifying a private copy. Propagation in-
cludes copying, distribution (with or without mod-
ification), making available to the public, and in
some countries other activities as well.

To “convey” a work means any kind of propagation
that enables other parties to make or receive copies.
Mere interaction with a user through a computer

network, with no transfer of a copy, is not convey-
ing.

An interactive user interface displays “Appropriate
Legal Notices” to the extent that it includes a con-
venient and prominently visible feature that (1) dis-
plays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (ex-
cept to the extent that warranties are provided),
that licensees may convey the work under this Li-
cense, and how to view a copy of this License. If
the interface presents a list of user commands or
options, such as a menu, a prominent item in the
list meets this criterion. 1. Source Code.

The “source code” for a work means the preferred
form of the work for making modifications to it.
“Object code” means any non-source form of a
work.

A “Standard Interface” means an interface that ei-
ther is an official standard defined by a recognized
standards body, or, in the case of interfaces spec-
ified for a particular programming language, one
that is widely used among developers working in
that language.

The “System Libraries” of an executable work in-
clude anything, other than the work as a whole,
that (a) is included in the normal form of packag-
ing a Major Component, but which is not part of
that Major Component, and (b) serves only to en-
able use of the work with that Major Component,
or to implement a Standard Interface for which an
implementation is available to the public in source
code form. A “Major Component”, in this context,
means a major essential component (kernel, window
system, and so on) of the specific operating system
(if any) on which the executable work runs, or a
compiler used to produce the work, or an object
code interpreter used to run it.

The “Corresponding Source” for a work in object
code form means all the source code needed to gen-
erate, install, and (for an executable work) run
the object code and to modify the work, including
scripts to control those activities. However, it does
not include the work’s System Libraries, or general-
purpose tools or generally available free programs
which are used unmodified in performing those ac-
tivities but which are not part of the work. For
example, Corresponding Source includes interface
definition files associated with source files for the
work, and the source code for shared libraries and
dynamically linked subprograms that the work is
specifically designed to require, such as by intimate
data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include any-
thing that users can regenerate automatically from
other parts of the Corresponding Source.

The Corresponding Source for a work in source code
form is that same work. 2. Basic Permissions.

All rights granted under this License are granted
for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met.
This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The out-
put from running a covered work is covered by this
License only if the output, given its content, con-
stitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as pro-
vided by copyright law.

You may make, run and propagate covered works
that you do not convey, without conditions so long
as your license otherwise remains in force. You may
convey covered works to others for the sole purpose
of having them make modifications exclusively for
you, or provide you with facilities for running those
works, provided that you comply with the terms
of this License in conveying all material for which
you do not control copyright. Those thus making or
running the covered works for you must do so exclu-
sively on your behalf, under your direction and con-
trol, on terms that prohibit them from making any
copies of your copyrighted material outside their
relationship with you.

Conveying under any other circumstances is permit-
ted solely under the conditions stated below. Subli-
censing is not allowed; section 10 makes it unneces-
sary. 3. Protecting Users’ Legal Rights From Anti-
Circumvention Law.

No covered work shall be deemed part of an effec-
tive technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumven-
tion of such measures.

When you convey a covered work, you waive any
legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is ef-
fected by exercising rights under this License with
respect to the covered work, and you disclaim any
intention to limit operation or modification of the
work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid
circumvention of technological measures. 4. Con-
veying Verbatim Copies.

You may convey verbatim copies of the Program’s
source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately
publish on each copy an appropriate copyright no-
tice; keep intact all notices stating that this License
and any non-permissive terms added in accord with
section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipi-
ents a copy of this License along with the Program.

You may charge any price or no price for each copy
that you convey, and you may offer support or war-
ranty protection for a fee. 5. Conveying Modified
Source Versions.

You may convey a work based on the Program, or
the modifications to produce it from the Program,
in the form of source code under the terms of sec-
tion 4, provided that you also meet all of these con-
ditions:

* a) The work must carry prominent notices stating
that you modified it, and giving a relevant date. *
b) The work must carry prominent notices stating
that it is released under this License and any con-
ditions added under section 7. This requirement
modifies the requirement in section 4 to “keep in-
tact all notices”. * c) You must license the entire
work, as a whole, under this License to anyone who
comes into possession of a copy. This License will
therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all
its parts, regardless of how they are packaged. This
License gives no permission to license the work in
any other way, but it does not invalidate such per-
mission if you have separately received it. * d) If
the work has interactive user interfaces, each must
display Appropriate Legal Notices; however, if the
Program has interactive interfaces that do not dis-
play Appropriate Legal Notices, your work need not
make them do so.

A compilation of a covered work with other sepa-
rate and independent works, which are not by their
nature extensions of the covered work, and which
are not combined with it such as to form a larger
program, in or on a volume of a storage or distri-
bution medium, is called an “aggregate” if the com-
pilation and its resulting copyright are not used to
limit the access or legal rights of the compilation’s
users beyond what the individual works permit. In-
clusion of a covered work in an aggregate does not
cause this License to apply to the other parts of the
aggregate. 6. Conveying Non-Source Forms.

You may convey a covered work in object code form
under the terms of sections 4 and 5, provided that
you also convey the machine-readable Correspond-
ing Source under the terms of this License, in one
of these ways:

* a) Convey the object code in, or embodied in,
a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding
Source fixed on a durable physical medium custom-
arily used for software interchange. * b) Convey the
object code in, or embodied in, a physical product
(including a physical distribution medium), accom-
panied by a written offer, valid for at least three
years and valid for as long as you offer spare parts
or customer support for that product model, to
give anyone who possesses the object code either
(1) a copy of the Corresponding Source for all the
software in the product that is covered by this Li-
cense, on a durable physical medium customarily
used for software interchange, for a price no more
than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the
Corresponding Source from a network server at no
charge. * c) Convey individual copies of the object
code with a copy of the written offer to provide
the Corresponding Source. This alternative is al-
lowed only occasionally and noncommercially, and
only if you received the object code with such an of-
fer, in accord with subsection 6b. * d) Convey the
object code by offering access from a designated
place (gratis or for a charge), and offer equivalent
access to the Corresponding Source in the same way
through the same place at no further charge. You
need not require recipients to copy the Correspond-
ing Source along with the object code. If the place
to copy the object code is a network server, the Cor-
responding Source may be on a different server (op-
erated by you or a third party) that supports equiv-
alent copying facilities, provided you maintain clear
directions next to the object code saying where to
find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long
as needed to satisfy these requirements. * e) Con-
vey the object code using peer-to-peer transmission,
provided you inform other peers where the object
code and Corresponding Source of the work are be-
ing offered to the general public at no charge under
subsection 6d.

A separable portion of the object code, whose
source code is excluded from the Corresponding
Source as a System Library, need not be included
in conveying the object code work.

A “User Product” is either (1) a “consumer prod-
uct”, which means any tangible personal property
which is normally used for personal, family, or
household purposes, or (2) anything designed or
sold for incorporation into a dwelling. In deter-
mining whether a product is a consumer product,
doubtful cases shall be resolved in favor of cover-
age. For a particular product received by a par-
ticular user, “normally used” refers to a typical or
common use of that class of product, regardless of
the status of the particular user or of the way in
which the particular user actually uses, or expects
or is expected to use, the product. A product is a
consumer product regardless of whether the prod-
uct has substantial commercial, industrial or non-
consumer uses, unless such uses represent the only
significant mode of use of the product.

“Installation Information” for a User Product
means any methods, procedures, authorization
keys, or other information required to install and
execute modified versions of a covered work in that
User Product from a modified version of its Corre-
sponding Source. The information must suffice to
ensure that the continued functioning of the modi-
fied object code is in no case prevented or interfered
with solely because modification has been made.

If you convey an object code work under this sec-
tion in, or with, or specifically for use in, a User
Product, and the conveying occurs as part of a
transaction in which the right of possession and
use of the User Product is transferred to the re-
cipient in perpetuity or for a fixed term (regard-
less of how the transaction is characterized), the
Corresponding Source conveyed under this section
must be accompanied by the Installation Informa-
tion. But this requirement does not apply if neither
you nor any third party retains the ability to install
modified object code on the User Product (for ex-
ample, the work has been installed in ROM).

The requirement to provide Installation Informa-
tion does not include a requirement to continue to
provide support service, warranty, or updates for a
work that has been modified or installed by the re-
cipient, or for the User Product in which it has been
modified or installed. Access to a network may be
denied when the modification itself materially and
adversely affects the operation of the network or
violates the rules and protocols for communication
across the network.

Corresponding Source conveyed, and Installation
Information provided, in accord with this section
must be in a format that is publicly documented
(and with an implementation available to the public
in source code form), and must require no special
password or key for unpacking, reading or copying.
7. Additional Terms.

“Additional permissions” are terms that supplement
the terms of this License by making exceptions from
one or more of its conditions. Additional permis-
sions that are applicable to the entire Program
shall be treated as though they were included in
this License, to the extent that they are valid un-
der applicable law. If additional permissions apply
only to part of the Program, that part may be used
separately under those permissions, but the entire
Program remains governed by this License without
regard to the additional permissions.

When you convey a copy of a covered work, you may
at your option remove any additional permissions
from that copy, or from any part of it. (Additional
permissions may be written to require their own re-
moval in certain cases when you modify the work.)
You may place additional permissions on material,
added by you to a covered work, for which you have
or can give appropriate copyright permission.

Notwithstanding any other provision of this Li-
cense, for material you add to a covered work, you
may (if authorized by the copyright holders of that
material) supplement the terms of this License with
terms:

* a) Disclaiming warranty or limiting liability dif-
ferently from the terms of sections 15 and 16 of this
License; or * b) Requiring preservation of specified
reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices
displayed by works containing it; or * c) Prohibit-
ing misrepresentation of the origin of that material,
or requiring that modified versions of such material
be marked in reasonable ways as different from the
original version; or * d) Limiting the use for pub-
licity purposes of names of licensors or authors of
the material; or * e) Declining to grant rights under
trademark law for use of some trade names, trade-
marks, or service marks; or * f) Requiring indem-
nification of licensors and authors of that material
by anyone who conveys the material (or modified
versions of it) with contractual assumptions of lia-
bility to the recipient, for any liability that these
contractual assumptions directly impose on those
licensors and authors.

All other non-permissive additional terms are con-
sidered “further restrictions” within the meaning of
section 10. If the Program as you received it, or any
part of it, contains a notice stating that it is gov-
erned by this License along with a term that is a
further restriction, you may remove that term. If a
license document contains a further restriction but
permits relicensing or conveying under this License,
you may add to a covered work material governed
by the terms of that license document, provided
that the further restriction does not survive such
relicensing or conveying.

If you add terms to a covered work in accord with
this section, you must place, in the relevant source
files, a statement of the additional terms that ap-
ply to those files, or a notice indicating where to
find the applicable terms.

Additional terms, permissive or non-permissive,
may be stated in the form of a separately written
license, or stated as exceptions; the above require-
ments apply either way. 8. Termination.

You may not propagate or modify a covered work
except as expressly provided under this License.
Any attempt otherwise to propagate or modify it is
void, and will automatically terminate your rights
under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License,
then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessa-
tion.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)

145



Licenses

from that copyright holder, and you cure the vi-
olation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does
not terminate the licenses of parties who have re-
ceived copies or rights from you under this License.
If your rights have been terminated and not perma-
nently reinstated, you do not qualify to receive new
licenses for the same material under section 10. 9.
Acceptance Not Required for Having Copies.

You are not required to accept this License in or-
der to receive or run a copy of the Program. Ancil-
lary propagation of a covered work occurring solely
as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require accep-
tance. However, nothing other than this License
grants you permission to propagate or modify any
covered work. These actions infringe copyright if
you do not accept this License. Therefore, by mod-
ifying or propagating a covered work, you indicate
your acceptance of this License to do so. 10. Auto-
matic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient
automatically receives a license from the original
licensors, to run, modify and propagate that work,
subject to this License. You are not responsible
for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transfer-
ring control of an organization, or substantially all
assets of one, or subdividing an organization, or
merging organizations. If propagation of a cov-
ered work results from an entity transaction, each
party to that transaction who receives a copy of the
work also receives whatever licenses to the work the
party’s predecessor in interest had or could give un-
der the previous paragraph, plus a right to posses-
sion of the Corresponding Source of the work from
the predecessor in interest, if the predecessor has it
or can get it with reasonable efforts.

You may not impose any further restrictions on the
exercise of the rights granted or affirmed under this
License. For example, you may not impose a license
fee, royalty, or other charge for exercise of rights
granted under this License, and you may not ini-
tiate litigation (including a cross-claim or counter-
claim in a lawsuit) alleging that any patent claim
is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.

A “contributor” is a copyright holder who autho-
rizes use under this License of the Program or a
work on which the Program is based. The work
thus licensed is called the contributor’s “contribu-
tor version”.

A contributor’s “essential patent claims” are all
patent claims owned or controlled by the contribu-
tor, whether already acquired or hereafter acquired,
that would be infringed by some manner, permit-
ted by this License, of making, using, or selling its
contributor version, but do not include claims that
would be infringed only as a consequence of further
modification of the contributor version. For pur-
poses of this definition, “control” includes the right
to grant patent sublicenses in a manner consistent
with the requirements of this License.

Each contributor grants you a non-exclusive, world-
wide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, of-
fer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent li-
cense” is any express agreement or commitment,
however denominated, not to enforce a patent (such
as an express permission to practice a patent or
covenant not to sue for patent infringement). To
“grant” such a patent license to a party means to
make such an agreement or commitment not to en-
force a patent against the party.

If you convey a covered work, knowingly relying
on a patent license, and the Corresponding Source
of the work is not available for anyone to copy,
free of charge and under the terms of this License,
through a publicly available network server or other
readily accessible means, then you must either (1)
cause the Corresponding Source to be so available,
or (2) arrange to deprive yourself of the benefit
of the patent license for this particular work, or
(3) arrange, in a manner consistent with the re-
quirements of this License, to extend the patent
license to downstream recipients. “Knowingly re-
lying” means you have actual knowledge that, but
for the patent license, your conveying the covered
work in a country, or your recipient’s use of the cov-
ered work in a country, would infringe one or more
identifiable patents in that country that you have
reason to believe are valid.

If, pursuant to or in connection with a single trans-
action or arrangement, you convey, or propagate
by procuring conveyance of, a covered work, and
grant a patent license to some of the parties re-
ceiving the covered work authorizing them to use,
propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is
automatically extended to all recipients of the cov-
ered work and works based on it.

A patent license is “discriminatory” if it does not in-
clude within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise
of one or more of the rights that are specifically
granted under this License. You may not convey a
covered work if you are a party to an arrangement
with a third party that is in the business of dis-
tributing software, under which you make payment
to the third party based on the extent of your ac-
tivity of conveying the work, and under which the
third party grants, to any of the parties who would
receive the covered work from you, a discrimina-
tory patent license (a) in connection with copies
of the covered work conveyed by you (or copies
made from those copies), or (b) primarily for and in
connection with specific products or compilations
that contain the covered work, unless you entered
into that arrangement, or that patent license was
granted, prior to 28 March 2007.

Nothing in this License shall be construed as ex-
cluding or limiting any implied license or other de-
fenses to infringement that may otherwise be avail-
able to you under applicable patent law. 12. No
Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you
from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultane-
ously your obligations under this License and any
other pertinent obligations, then as a consequence
you may not convey it at all. For example, if you
agree to terms that obligate you to collect a roy-
alty for further conveying from those to whom you
convey the Program, the only way you could satisfy
both those terms and this License would be to re-
frain entirely from conveying the Program. 13. Use
with the GNU Affero General Public License.

Notwithstanding any other provision of this Li-
cense, you have permission to link or combine any
covered work with a work licensed under version
3 of the GNU Affero General Public License into
a single combined work, and to convey the result-
ing work. The terms of this License will continue
to apply to the part which is the covered work, but
the special requirements of the GNU Affero General
Public License, section 13, concerning interaction
through a network will apply to the combination
as such. 14. Revised Versions of this License.

The Free Software Foundation may publish revised
and/or new versions of the GNU General Public Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.

Each version is given a distinguishing version num-
ber. If the Program specifies that a certain num-
bered version of the GNU General Public License
“or any later version” applies to it, you have the
option of following the terms and conditions either
of that numbered version or of any later version
published by the Free Software Foundation. If the
Program does not specify a version number of the
GNU General Public License, you may choose any
version ever published by the Free Software Foun-
dation.

If the Program specifies that a proxy can decide
which future versions of the GNU General Public
License can be used, that proxy’s public statement
of acceptance of a version permanently authorizes
you to choose that version for the Program.

Later license versions may give you additional or
different permissions. However, no additional obli-
gations are imposed on any author or copyright
holder as a result of your choosing to follow a later
version. 15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PRO-
GRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECES-
SARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLI-
CABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MODIFIES AND/OR CON-
VEYS THE PROGRAM AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. 17. In-
terpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of lia-
bility provided above cannot be given local legal ef-

fect according to their terms, reviewing courts shall
apply local law that most closely approximates an
absolute waiver of all civil liability in connection
with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in
return for a fee.

END OF TERMS AND CONDITIONS How to Ap-
ply These Terms to Your New Programs

If you develop a new program, and you want it to
be of the greatest possible use to the public, the
best way to achieve this is to make it free software
which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the pro-
gram. It is safest to attach them to the start of
each source file to most effectively state the exclu-
sion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full
notice is found.

<one line to give the program’s name and a brief
idea of what it does.> Copyright (C) <year>
<name of author>

This program is free software: you can redistribute
it and/or modify it under the terms of the GNU
General Public License as published by the Free
Software Foundation, either version 3 of the Li-
cense, or (at your option) any later version.

This program is distributed in the hope that
it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU Gen-
eral Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by elec-
tronic and paper mail.

If the program does terminal interaction, make it
output a short notice like this when it starts in an
interactive mode:

<program> Copyright (C) <year> <name of au-
thor> This program comes with ABSOLUTELY
NO WARRANTY; for details type ‘show w’. This is
free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’
should show the appropriate parts of the General
Public License. Of course, your program’s com-
mands might be different; for a GUI interface, you
would use an “about box”.

You should also get your employer (if you work
as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if nec-
essary. For more information on this, and
how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit
incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you
may consider it more useful to permit linking pro-
prietary applications with the library. If this is
what you want to do, use the GNU Lesser General
Public License instead of this License. But first,
please read <http://www.gnu.org/philosophy/why-
not-lgpl.html>.

11.2 GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Soft-
ware Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed. 0. PREAMBLE

The purpose of this License is to make a manual,
textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it,
with or without modifying it, either commercially
or noncommercially. Secondarily, this License pre-
serves for the author and publisher a way to get
credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of "copyleft", which means
that derivative works of the document must them-
selves be free in the same sense. It complements
the GNU General Public License, which is a copy-
left license designed for free software.

We have designed this License in order to use it
for manuals for free software, because free software
needs free documentation: a free program should
come with manuals providing the same freedoms
that the software does. But this License is not lim-
ited to software manuals; it can be used for any tex-
tual work, regardless of subject matter or whether
it is published as a printed book. We recommend
this License principally for works whose purpose is
instruction or reference. 1. APPLICABILITY AND
DEFINITIONS

This License applies to any manual or other work,
in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under
the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in dura-
tion, to use that work under the conditions stated
herein. The "Document", below, refers to any such
manual or work. Any member of the public is a li-
censee, and is addressed as "you". You accept the
license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any
work containing the Document or a portion of it, ei-
ther copied verbatim, or with modifications and/or
translated into another language.

A "Secondary Section" is a named appendix or a
front-matter section of the Document that deals ex-
clusively with the relationship of the publishers or

authors of the Document to the Document’s overall
subject (or to related matters) and contains noth-
ing that could fall directly within that overall sub-
ject. (Thus, if the Document is in part a textbook
of mathematics, a Secondary Section may not ex-
plain any mathematics.) The relationship could be
a matter of historical connection with the subject
or with related matters, or of legal, commercial,
philosophical, ethical or political position regard-
ing them.

The "Invariant Sections" are certain Secondary Sec-
tions whose titles are designated, as being those of
Invariant Sections, in the notice that says that the
Document is released under this License. If a sec-
tion does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text
that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text
may be at most 25 words.

A "Transparent" copy of the Document means a
machine-readable copy, represented in a format
whose specification is available to the general pub-
lic, that is suitable for revising the document
straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs
or (for drawings) some widely available drawing ed-
itor, and that is suitable for input to text format-
ters or for automatic translation to a variety of for-
mats suitable for input to text formatters. A copy
made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged
to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not
Transparent if used for any substantial amount of
text. A copy that is not "Transparent" is called
"Opaque".

Examples of suitable formats for Transparent
copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or
XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF de-
signed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that
can be read and edited only by proprietary word
processors, SGML or XML for which the DTD
and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or

PDF produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the
title page itself, plus such following pages as are
needed to hold, legibly, the material this License
requires to appear in the title page. For works in
formats which do not have any title page as such,
"Title Page" means the text near the most promi-
nent appearance of the work’s title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that
distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit
of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below,
such as "Acknowledgements", "Dedications", "En-
dorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document
means that it remains a section "Entitled XYZ" ac-
cording to this definition.

The Document may include Warranty Disclaimers
next to the notice which states that this License
applies to the Document. These Warranty Dis-
claimers are considered to be included by reference
in this License, but only as regards disclaiming war-
ranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on
the meaning of this License. 2. VERBATIM COPY-
ING

You may copy and distribute the Document in any
medium, either commercially or noncommercially,
provided that this License, the copyright notices,
and the license notice saying this License applies to
the Document are reproduced in all copies, and that
you add no other conditions whatsoever to those
of this License. You may not use technical mea-
sures to obstruct or control the reading or further
copying of the copies you make or distribute. How-
ever, you may accept compensation in exchange for
copies. If you distribute a large enough number of
copies you must also follow the conditions in sec-
tion 3.

You may also lend copies, under the same condi-
tions stated above, and you may publicly display
copies. 3. COPYING IN QUANTITY

If you publish printed copies (or copies in media
that commonly have printed covers) of the Doc-
ument, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you

must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these
copies. The front cover must present the full title
with all words of the title equally prominent and
visible. You may add other material on the covers
in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Doc-
ument and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too volu-
minous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the
Document numbering more than 100, you must ei-
ther include a machine-readable Transparent copy
along with each Opaque copy, or state in or with
each Opaque copy a computer-network location
from which the general network-using public has
access to download using public-standard network
protocols a complete Transparent copy of the Doc-
ument, free of added material. If you use the lat-
ter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until
at least one year after the last time you distribute
an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you con-
tact the authors of the Document well before redis-
tributing any large number of copies, to give them
a chance to provide you with an updated version of
the Document. 4. MODIFICATIONS

You may copy and distribute a Modified Version of
the Document under the conditions of sections 2
and 3 above, provided that you release the Modi-
fied Version under precisely this License, with the
Modified Version filling the role of the Document,
thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modi-
fied Version:

* A. Use in the Title Page (and on the covers, if
any) a title distinct from that of the Document,
and from those of previous versions (which should,
if there were any, be listed in the History section
of the Document). You may use the same title as
a previous version if the original publisher of that
version gives permission. * B. List on the Title

146



GNU Lesser General Public License

Page, as authors, one or more persons or entities
responsible for authorship of the modifications in
the Modified Version, together with at least five of
the principal authors of the Document (all of its
principal authors, if it has fewer than five), unless
they release you from this requirement. * C. State
on the Title page the name of the publisher of the
Modified Version, as the publisher. * D. Preserve
all the copyright notices of the Document. * E. Add
an appropriate copyright notice for your modifica-
tions adjacent to the other copyright notices. * F.
Include, immediately after the copyright notices, a
license notice giving the public permission to use
the Modified Version under the terms of this Li-
cense, in the form shown in the Addendum below. *
G. Preserve in that license notice the full lists of In-
variant Sections and required Cover Texts given in
the Document’s license notice. * H. Include an unal-
tered copy of this License. * I. Preserve the section
Entitled "History", Preserve its Title, and add to it
an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "His-
tory" in the Document, create one stating the title,
year, authors, and publisher of the Document as
given on its Title Page, then add an item describ-
ing the Modified Version as stated in the previous
sentence. * J. Preserve the network location, if any,
given in the Document for public access to a Trans-
parent copy of the Document, and likewise the net-
work locations given in the Document for previous
versions it was based on. These may be placed in
the "History" section. You may omit a network lo-
cation for a work that was published at least four
years before the Document itself, or if the original
publisher of the version it refers to gives permission.
* K. For any section Entitled "Acknowledgements"
or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and
tone of each of the contributor acknowledgements
and/or dedications given therein. * L. Preserve all
the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or
the equivalent are not considered part of the section
titles. * M. Delete any section Entitled "Endorse-
ments". Such a section may not be included in the
Modified Version. * N. Do not retitle any existing
section to be Entitled "Endorsements" or to conflict
in title with any Invariant Section. * O. Preserve
any Warranty Disclaimers.

If the Modified Version includes new front-matter
sections or appendices that qualify as Secondary
Sections and contain no material copied from the
Document, you may at your option designate some
or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled "Endorsements",
provided it contains nothing but endorsements of
your Modified Version by various parties—for ex-
ample, statements of peer review or that the text
has been approved by an organization as the au-
thoritative definition of a standard.

You may add a passage of up to five words as a
Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may
be added by (or through arrangements made by)
any one entity. If the Document already includes
a cover text for the same cover, previously added
by you or by arrangement made by the same entity
you are acting on behalf of, you may not add an-

other; but you may replace the old one, on explicit
permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do
not by this License give permission to use their
names for publicity for or to assert or imply en-
dorsement of any Modified Version. 5. COMBIN-
ING DOCUMENTS

You may combine the Document with other docu-
ments released under this License, under the terms
defined in section 4 above for modified versions,
provided that you include in the combination all
of the Invariant Sections of all of the original doc-
uments, unmodified, and list them all as Invariant
Sections of your combined work in its license no-
tice, and that you preserve all their Warranty Dis-
claimers.

The combined work need only contain one copy of
this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there
are multiple Invariant Sections with the same name
but different contents, make the title of each such
section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher
of that section if known, or else a unique number.
Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections
Entitled "History" in the various original docu-
ments, forming one section Entitled "History"; like-
wise combine any sections Entitled "Acknowledge-
ments", and any sections Entitled "Dedications".
You must delete all sections Entitled "Endorse-
ments". 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Docu-
ment and other documents released under this Li-
cense, and replace the individual copies of this Li-
cense in the various documents with a single copy
that is included in the collection, provided that you
follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a col-
lection, and distribute it individually under this Li-
cense, provided you insert a copy of this License
into the extracted document, and follow this Li-
cense in all other respects regarding verbatim copy-
ing of that document. 7. AGGREGATION WITH
INDEPENDENT WORKS

A compilation of the Document or its derivatives
with other separate and independent documents or
works, in or on a volume of a storage or distribution
medium, is called an "aggregate" if the copyright re-
sulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what
the individual works permit. When the Document
is included in an aggregate, this License does not
apply to the other works in the aggregate which are
not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is appli-
cable to these copies of the Document, then if the
Document is less than one half of the entire aggre-
gate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers
if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket
the whole aggregate. 8. TRANSLATION

Translation is considered a kind of modification, so
you may distribute translations of the Document
under the terms of section 4. Replacing Invariant
Sections with translations requires special permis-
sion from their copyright holders, but you may in-
clude translations of some or all Invariant Sections
in addition to the original versions of these Invari-
ant Sections. You may include a translation of this
License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you
also include the original English version of this Li-
cense and the original versions of those notices and
disclaimers. In case of a disagreement between the
translation and the original version of this License
or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled "Acknowl-
edgements", "Dedications", or "History", the re-
quirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.
9. TERMINATION

You may not copy, modify, sublicense, or distribute
the Document except as expressly provided under
this License. Any attempt otherwise to copy, mod-
ify, sublicense, or distribute it is void, and will
automatically terminate your rights under this Li-
cense.

However, if you cease all violation of this License,
then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessa-
tion.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)
from that copyright holder, and you cure the vi-
olation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does
not terminate the licenses of parties who have re-
ceived copies or rights from you under this License.
If your rights have been terminated and not perma-
nently reinstated, receipt of a copy of some or all
of the same material does not give you any rights
to use it. 10. FUTURE REVISIONS OF THIS LI-
CENSE

The Free Software Foundation may publish new, re-
vised versions of the GNU Free Documentation Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguish-
ing version number. If the Document specifies that
a particular numbered version of this License "or
any later version" applies to it, you have the op-
tion of following the terms and conditions either of
that specified version or of any later version that
has been published (not as a draft) by the Free Soft-
ware Foundation. If the Document does not specify
a version number of this License, you may choose
any version ever published (not as a draft) by the
Free Software Foundation. If the Document speci-
fies that a proxy can decide which future versions of

this License can be used, that proxy’s public state-
ment of acceptance of a version permanently autho-
rizes you to choose that version for the Document.
11. RELICENSING

"Massive Multiauthor Collaboration Site" (or
"MMC Site") means any World Wide Web server
that publishes copyrightable works and also pro-
vides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is
an example of such a server. A "Massive Multiau-
thor Collaboration" (or "MMC") contained in the
site means any set of copyrightable works thus pub-
lished on the MMC site.

"CC-BY-SA" means the Creative Commons
Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in
San Francisco, California, as well as future copyleft
versions of that license published by that same
organization.

"Incorporate" means to publish or republish a Doc-
ument, in whole or in part, as part of another Doc-
ument.

An MMC is "eligible for relicensing" if it is licensed
under this License, and if all works that were first
published under this License somewhere other than
this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated
prior to November 1, 2008.

The operator of an MMC Site may republish an
MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, pro-
vided the MMC is eligible for relicensing. ADDEN-
DUM: How to use this License for your documents

To use this License in a document you have written,
include a copy of the License in the document and
put the following copyright and license notices just
after the title page:

Copyright (C) YEAR YOUR NAME. Permission is
granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documen-
tation License, Version 1.3 or any later version pub-
lished by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation
License".

If you have Invariant Sections, Front-Cover Texts
and Back-Cover Texts, replace the "with . . .
Texts." line with this:

with the Invariant Sections being LIST THEIR TI-
TLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts,
or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of
program code, we recommend releasing these exam-
ples in parallel under your choice of free software
license, such as the GNU General Public License,
to permit their use in free software.

11.3 GNU Lesser General Public License
GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed.

This version of the GNU Lesser General Public Li-
cense incorporates the terms and conditions of ver-
sion 3 of the GNU General Public License, supple-
mented by the additional permissions listed below.
0. Additional Definitions.

As used herein, “this License” refers to version 3
of the GNU Lesser General Public License, and the
“GNU GPL” refers to version 3 of the GNU General
Public License.

“The Library” refers to a covered work governed by
this License, other than an Application or a Com-
bined Work as defined below.

An “Application” is any work that makes use of an
interface provided by the Library, but which is not
otherwise based on the Library. Defining a subclass
of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by com-
bining or linking an Application with the Library.
The particular version of the Library with which
the Combined Work was made is also called the
“Linked Version”.

The “Minimal Corresponding Source” for a Com-
bined Work means the Corresponding Source for
the Combined Work, excluding any source code for
portions of the Combined Work that, considered in
isolation, are based on the Application, and not on
the Linked Version.

The “Corresponding Application Code” for a Com-
bined Work means the object code and/or source
code for the Application, including any data and
utility programs needed for reproducing the Com-
bined Work from the Application, but excluding the
System Libraries of the Combined Work. 1. Excep-
tion to Section 3 of the GNU GPL.

You may convey a covered work under sections 3
and 4 of this License without being bound by sec-
tion 3 of the GNU GPL. 2. Conveying Modified
Versions.

If you modify a copy of the Library, and, in your
modifications, a facility refers to a function or data
to be supplied by an Application that uses the fa-
cility (other than as an argument passed when the
facility is invoked), then you may convey a copy of
the modified version:

* a) under this License, provided that you make a
good faith effort to ensure that, in the event an Ap-
plication does not supply the function or data, the
facility still operates, and performs whatever part
of its purpose remains meaningful, or * b) under
the GNU GPL, with none of the additional permis-
sions of this License applicable to that copy.

3. Object Code Incorporating Material from Li-
brary Header Files.

The object code form of an Application may incor-
porate material from a header file that is part of
the Library. You may convey such object code un-
der terms of your choice, provided that, if the in-
corporated material is not limited to numerical pa-
rameters, data structure layouts and accessors, or
small macros, inline functions and templates (ten
or fewer lines in length), you do both of the follow-
ing:

* a) Give prominent notice with each copy of the
object code that the Library is used in it and that
the Library and its use are covered by this License.
* b) Accompany the object code with a copy of the
GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of
your choice that, taken together, effectively do not
restrict modification of the portions of the Library
contained in the Combined Work and reverse en-
gineering for debugging such modifications, if you
also do each of the following:

* a) Give prominent notice with each copy of the
Combined Work that the Library is used in it and
that the Library and its use are covered by this Li-
cense. * b) Accompany the Combined Work with a
copy of the GNU GPL and this license document. *
c) For a Combined Work that displays copyright no-
tices during execution, include the copyright notice
for the Library among these notices, as well as a ref-
erence directing the user to the copies of the GNU
GPL and this license document. * d) Do one of the
following: o 0) Convey the Minimal Corresponding
Source under the terms of this License, and the Cor-
responding Application Code in a form suitable for,
and under terms that permit, the user to recombine
or relink the Application with a modified version
of the Linked Version to produce a modified Com-
bined Work, in the manner specified by section 6 of
the GNU GPL for conveying Corresponding Source.
o 1) Use a suitable shared library mechanism for
linking with the Library. A suitable mechanism
is one that (a) uses at run time a copy of the Li-
brary already present on the user’s computer sys-
tem, and (b) will operate properly with a modified
version of the Library that is interface-compatible
with the Linked Version. * e) Provide Installation
Information, but only if you would otherwise be re-
quired to provide such information under section 6
of the GNU GPL, and only to the extent that such
information is necessary to install and execute a
modified version of the Combined Work produced
by recombining or relinking the Application with
a modified version of the Linked Version. (If you
use option 4d0, the Installation Information must
accompany the Minimal Corresponding Source and
Corresponding Application Code. If you use option
4d1, you must provide the Installation Information
in the manner specified by section 6 of the GNU
GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work
based on the Library side by side in a single library
together with other library facilities that are not
Applications and are not covered by this License,
and convey such a combined library under terms of
your choice, if you do both of the following:

* a) Accompany the combined library with a copy
of the same work based on the Library, uncombined
with any other library facilities, conveyed under
the terms of this License. * b) Give prominent no-
tice with the combined library that part of it is a
work based on the Library, and explaining where
to find the accompanying uncombined form of the
same work.

6. Revised Versions of the GNU Lesser General
Public License.

The Free Software Foundation may publish revised
and/or new versions of the GNU Lesser General
Public License from time to time. Such new ver-
sions will be similar in spirit to the present version,
but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version num-
ber. If the Library as you received it specifies that
a certain numbered version of the GNU Lesser Gen-
eral Public License “or any later version” applies to
it, you have the option of following the terms and
conditions either of that published version or of any
later version published by the Free Software Foun-
dation. If the Library as you received it does not
specify a version number of the GNU Lesser Gen-
eral Public License, you may choose any version of
the GNU Lesser General Public License ever pub-
lished by the Free Software Foundation.

If the Library as you received it specifies that a
proxy can decide whether future versions of the
GNU Lesser General Public License shall apply,
that proxy’s public statement of acceptance of
any version is permanent authorization for you to
choose that version for the Library.

147


	1 Introduction and OSI Model
	1.1 Introduction
	1.2 Why Serial Communication?
	1.3 OSI Layered Network Communications Model
	1.4 Software Examples
	1.5 Applications in Education
	1.6 External Links / References
	1.7 Other Serial Programming Articles

	2 RS-232 Connections
	2.1 Introduction
	2.2 Data Terminal/Communications Equipment
	2.3 Connection Types
	2.4 Wiring Pins Explained
	2.5 Baud Rates Explained
	2.6 Signal Bits
	2.7 Relationship of Baud Rate to Maximum Distance
	2.8 External References
	2.9 Other Serial Programming Articles

	3 8250 UART Programming
	3.1 Introduction
	3.2 8086 I/O ports
	3.3 x86 Processor Interrupts
	3.4 8259 PIC (Programmable Interrupt Controller)
	3.5 Serial COM Port Memory and I/O Allocation
	3.6 UART Registers
	3.7 Software Identification of the UART
	3.8 External References
	3.9 Other Serial Programming Articles

	4 Serial DOS
	4.1 Introduction
	4.2 Hello World, Serial Data Version
	4.3 Finding the Port I/O Address for the UART
	4.4 Making modifications to UART Registers
	4.5 Basic Serial Input
	4.6 Interrupt Drivers in DOS
	4.7 Terminal Program Revisited

	5 Serial Linux
	5.1 The Classic Unix C APIs for Serial Communication
	5.2 Serial I/O on the Shell Command Line 
	5.3 System Configuration
	5.4 Other Serial Programming Articles

	6 Serial Java
	6.1 Using Java for Serial Communication
	6.2 JavaComm API
	6.3 RxTx
	6.4 See also

	7 Forming Data Packets
	7.1 For further reading

	8 Error Correction Methods
	8.1 Introduction
	8.2 ACK-NAK
	8.3 FEC
	8.4 Pretend It Never Happened
	8.5 combination
	8.6 further reading
	8.7 further reading

	9 Appendex A:Modems and AT Commands
	9.1 Introduction
	9.2 Modem Programming Basics
	9.3 Flow Control
	9.4 Changing State
	9.5 Sync. vs. Async. Interface
	9.6 X.25 Interface
	9.7 AT Commands
	9.8 Result Codes
	9.9 S-Registers
	9.10 Advanced Features

	10 Contributors
	List of Figures
	11 Licenses
	11.1 GNU GENERAL PUBLIC LICENSE
	11.2 GNU Free Documentation License
	11.3 GNU Lesser General Public License





main/logfile

LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source
Done
LaTeX (1/3)
LaTeX (2/3)
LaTeX (3/3)
Including Source







images/1.jpg





images/2.jpg





images/3.jpg





images/4.jpg





images/5.jpg





images/6.png





main/md-frame-0.mdf

%%==================================================%%
%%= Ausgabe der Box nach Vorgabe der Ausgaberoutine=%%
%%==================================================%%
%% Styledatei fuer das Paket mdframed erstellt durch
%% Marco Daniel und Elke Schubert
%% 
%% This package may be distributed under the terms of the LaTeX Project
%% Public License, as described in lppl.txt in the base LaTeX distribution.
%% Either version 1.0 or, at your option, any later version.

%%$Id: md-frame-0.mdf 105 2010-12-22 16:50:44Z marco $
%%$Rev: 105 $
%%$Author: marco $
%%$Date: 2010-12-22 17:50:44 +0100 (Mi, 22. Dez 2010) $

\def\mdversion{v0.6a}
\def\mdframedOpackagename{md-frame-0}
\def\md@frameOdate@svn$#1: #2 #3 #4-#5-#6 #7 #8${#4/#5/#6\space }

\ProvidesFile{md-frame-3.mdf}[\md@frameOdate@svn$Id: md-frame-0.mdf 105 2010-12-22 16:50:44Z marco $ \mdversion: \mdframedOpackagename]


\let\md@textwidth\textwidth




%%=single=%%
\def\md@frame@background@single{%
        \rlap{\color{\mdf@backgroundcolor}%
             \setlength{\mdfboundingboxheight}{\ht\@tempboxa+\dp\@tempboxa}%
             \addtolength{\mdfboundingboxheight}{%
                   \mdf@innertopmargin@length%
                  +\mdf@innerbottommargin@length%
                  }%
              \rule[-\mdf@innerbottommargin@length]%
                     {\wd\@tempboxa%
                    +\mdf@innerleftmargin@length%
                    +\mdf@innerrightmargin@length%
                   }{\mdfboundingboxheight}%
              }%
}%
% 
\def\md@frame@leftandbottomandtopline@single{%
           \setlength{\mdfboundingboxheight}{\ht\@tempboxa+\dp\@tempboxa}%
           \addtolength{\mdfboundingboxheight}{%
                           \mdf@innertopmargin@length%
                          +\mdf@innerbottommargin@length%
                          +\mdf@middlelinewidth@length%
                          +\mdf@middlelinewidth@length%
                         }%
           \rlap{\color{\mdf@middlelinecolor}%
                 \ifbool{mdf@leftline}%
                     {\rule[-\mdf@innerbottommargin@length]%
                         {\mdf@middlelinewidth}{\mdfboundingboxheight-2\mdf@middlelinewidth@length}%
                     }{}%
               }%
           \rlap{\color{\mdf@middlelinecolor}%
                 \ifmdf@bottomline%
                     \ifboolexpr{ bool {mdf@leftline} and bool  {mdf@rightline} }%
                       {%\hspace*{\mdf@middlelinewidth@length}%
                       \rule[-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
                        {\wd\@tempboxa%
                         +\mdf@innerleftmargin@length%
                         +\mdf@innerrightmargin@length%
                         +\mdf@middlelinewidth@length%
                         +\mdf@middlelinewidth@length%
                      }{\mdf@linewidth}% 
                       }{}%
                     \ifboolexpr{ bool {mdf@leftline} and not( bool  {mdf@rightline}) }%
                       {%\hspace*{\mdf@middlelinewidth@length}%
                       \rule[-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
                        {\wd\@tempboxa%
                         +\mdf@innerleftmargin@length%
                         +\mdf@innerrightmargin@length%
                         +\mdf@middlelinewidth@length%
   %                      +\mdf@middlelinewidth@length%
                      }{\mdf@linewidth}% 
                       }{}%
                      \ifboolexpr{ not(bool {mdf@leftline}) and bool  {mdf@rightline} }%
                       {%\hspace*{\mdf@middlelinewidth@length}%
                     \rule[-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
                      {\wd\@tempboxa%
                       +\mdf@innerleftmargin@length%
                       +\mdf@innerrightmargin@length%
                       +\mdf@middlelinewidth@length%
   %                    +\mdf@middlelinewidth@length%
                      }{\mdf@linewidth}% 
                       }{}%                
                       \ifboolexpr{ not(bool {mdf@leftline}) and not( bool {mdf@rightline}) }%
                       {%\hspace*{\mdf@middlelinewidth@length}%
                        \rule[-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
                         {\wd\@tempboxa%
                         +\mdf@innerleftmargin@length%
                         +\mdf@innerrightmargin@length%
   %                      +\mdf@middlelinewidth@length%
   %                      +\mdf@middlelinewidth@length%
                        }{\mdf@linewidth}% 
                       }{}%  
                 \fi%
               }%
          \rlap{\color{\mdf@middlelinecolor}%
                \ifmdf@topline%
                  \ifboolexpr{ bool {mdf@leftline} and bool  {mdf@rightline} }%
                    {%\hspace*{\mdf@middlelinewidth@length}%
                     \rule[%
                       \mdf@innertopmargin@length
                       +\ht\@tempboxa+\dp\@tempboxa]%
                       {\wd\@tempboxa%
                        +\mdf@innerleftmargin@length%
                        +\mdf@innerrightmargin@length%
                        +\mdf@middlelinewidth@length%
                        +\mdf@middlelinewidth@length%
                       }{\mdf@linewidth}%
                    }{}%
                  \ifboolexpr{ bool {mdf@leftline} and not( bool  {mdf@rightline}) }%
                    {%\hspace*{\mdf@middlelinewidth@length}%
                     \rule[%
                       \mdf@innertopmargin@length
                       +\ht\@tempboxa+\dp\@tempboxa]%
                       {\wd\@tempboxa%
                        +\mdf@innerleftmargin@length%
                        +\mdf@innerrightmargin@length%
%                        +\mdf@middlelinewidth@length%
                        +\mdf@middlelinewidth@length%
                       }{\mdf@linewidth}%
                    }{}%
                   \ifboolexpr{ not(bool {mdf@leftline}) and bool  {mdf@rightline} }%
                    {%\hspace*{\mdf@middlelinewidth@length}%
                     \rule[%
                       \mdf@innertopmargin@length
                       +\ht\@tempboxa+\dp\@tempboxa]%
                       {\wd\@tempboxa%
                        +\mdf@innerleftmargin@length%
                        +\mdf@innerrightmargin@length%
%                        +\mdf@middlelinewidth@length%
                        +\mdf@middlelinewidth@length%
                       }{\mdf@linewidth}%
                    }{}%                
                    \ifboolexpr{ not(bool {mdf@leftline}) and not( bool {mdf@rightline}) }%
                    {%\hspace*{\mdf@middlelinewidth@length}%
                     \rule[%
                       \mdf@innertopmargin@length
                       +\ht\@tempboxa+\dp\@tempboxa]%
                       {\wd\@tempboxa%
                        +\mdf@innerleftmargin@length%
                        +\mdf@innerrightmargin@length%
%                        +\mdf@middlelinewidth@length%
%                        +\mdf@middlelinewidth@length%
                       }{\mdf@linewidth}%
                    }{}%  
                \fi%
              }%
}%

\def\md@frame@rightline@single{%
         \llap{\color{\mdf@middlelinecolor}
               \ifmdf@rightline%
                \rule[-\mdf@innerbottommargin@length]%
                     {\mdf@linewidth}%
                     {\mdfboundingboxheight-2\mdf@middlelinewidth@length}%
               \fi%
              }%
}%


\def\md@putbox@single{%%%%% Ausgabe der ungesplitteten Gesamtbox
  \ifvoid\@tempboxa
  \else
      \leftline{%
        \null\hspace*{\mdf@leftmargin@length}%
        \md@frame@leftandbottomandtopline@single%
        \ifbool{mdf@leftline}%
        {\hspace*{\mdf@middlelinewidth@length}}{}%
        \md@frame@background@single%
        \hspace*{\mdf@innerleftmargin@length}%
        {\box\@tempboxa}%
        \hspace*{\mdf@innerrightmargin@length}%
        \hspace*{\mdf@middlelinewidth@length}%
        \md@frame@rightline@single%
        }%
  \fi
}


%%=first=%%

\def\md@frame@background@first{%
       \setlength{\mdfboundingboxheight}{\ht\tw@+\dp\tw@}%
       \addtolength{\mdfboundingboxheight}{%
                           \mdf@innertopmargin@length%
                           +\mdf@splitbottomskip@length%
                         }%
       \rlap{\color{\mdf@backgroundcolor}%
              \rule[-\dp\tw@-\mdf@splitbottomskip@length]%
                   {\wd\tw@+\mdf@innerleftmargin@length+\mdf@innerrightmargin@length}%
                   {\mdfboundingboxheight}%
              }%
}%
 
\def\md@frame@topandleftline@first{%
           \setlength{\mdfboundingboxheight}{\ht\tw@+\dp\tw@}%
           \addtolength{\mdfboundingboxheight}{%
                           1\mdf@innertopmargin@length%
                          +1\mdf@middlelinewidth@length%
                          +\mdf@splitbottomskip@length%
                         }%
            \rlap{\color{\mdf@middlelinecolor}
               \ifbool{mdf@leftline}%
                   {%
                     \rule[-\dp\tw@-\mdf@splitbottomskip@length]%
                            {\mdf@middlelinewidth@length}%
                               {\mdfboundingboxheight-\mdf@middlelinewidth@length}%
                   }{}%
             }%
            \rlap{\color{\mdf@middlelinecolor}%
             \ifmdf@topline
                 \ifboolexpr{ bool {mdf@leftline} and bool {mdf@rightline}}%
                    {\rule[\mdfboundingboxheight-\mdf@middlelinewidth@length-\dp\tw@-\mdf@splitbottomskip@length]%
                        {\wd\tw@%
                          +\mdf@innerleftmargin@length%
                          +\mdf@innerrightmargin@length%
                          +\mdf@middlelinewidth@length%
                          +\mdf@middlelinewidth@length%
                         }{\mdf@linewidth@length}%
                    }{}%
                 \ifboolexpr{ bool {mdf@leftline} and not(bool {mdf@rightline}) }%
                    {\rule[\mdfboundingboxheight-\mdf@middlelinewidth@length-\dp\tw@-\mdf@splitbottomskip@length]%
                        {\wd\tw@%
                          +\mdf@innerleftmargin@length%
                          +\mdf@innerrightmargin@length%
                          +\mdf@middlelinewidth@length%
%                          +\mdf@middlelinewidth@length%
                         }{\mdf@linewidth@length}%
                    }{}%
                 \ifboolexpr{ not (bool {mdf@leftline}) and bool {mdf@rightline} }%
                    {%\hspace*{\mdf@middlelinewidth@length}%
                     \rule[\mdfboundingboxheight-\mdf@middlelinewidth@length-\dp\tw@-\mdf@splitbottomskip@length]%
                        {\wd\tw@%
                          +\mdf@innerleftmargin@length%
                          +\mdf@innerrightmargin@length%
                          +\mdf@middlelinewidth@length%
%                          +\mdf@middlelinewidth@length%
                         }{\mdf@linewidth@length}%
                    }{}%
                 \ifboolexpr{ not (bool {mdf@leftline}) and not( bool {mdf@rightline}) }%
                    {%\hspace*{\mdf@middlelinewidth@length}%
                     \rule[\mdfboundingboxheight-\mdf@middlelinewidth@length-\dp\tw@-\mdf@splitbottomskip@length]%
                        {\wd\tw@%
                          +\mdf@innerleftmargin@length%
                          +\mdf@innerrightmargin@length%
%                          +\mdf@middlelinewidth@length%
%                          +\mdf@middlelinewidth@length%
                         }{\mdf@linewidth@length}%
                    }{}%
              \fi%
              \ifmdf@rightline
               \ifmdf@topline\else%
                 \deflength\@tempskipb{\wd\tw@%
                          +\mdf@innerleftmargin@length%
                          +\mdf@innerrightmargin@length%
                          +2\mdf@middlelinewidth@length%
                         }%
                 \hspace*{\@tempskipb}%
               \fi%
                  \llap{\color{\mdf@middlelinecolor}%
                         \rule[-\dp\tw@-\mdf@splitbottomskip@length]{\mdf@middlelinewidth@length}%
                                {\mdfboundingboxheight-\mdf@middlelinewidth@length}%
                    }%
              \fi%
            }%
}%




\def\md@putbox@first{%%%% Ausgabe der Teilbox 1
      \leftline{%
           \null\hspace*{\mdf@leftmargin@length}%
           \md@frame@topandleftline@first%
           \ifbool{mdf@leftline}%
           {\hspace*{\mdf@middlelinewidth@length}}{}%
           \md@frame@background@first%
           \hspace*{\mdf@innerleftmargin@length}%
           {\box\tw@}%
         }%
}

%%=second=%%

\def\md@frame@background@second{%
         \setlength{\mdfboundingboxheight}{\ht\@tempboxa+\dp\@tempboxa}%
         \addtolength{\mdfboundingboxheight}{%
                    +\mdf@innerbottommargin@length%
                }%
        \rlap{\color{\mdf@backgroundcolor}%
               \rule[\dp\@tempboxa-\mdf@innerbottommargin@length]%
                    {\wd\@tempboxa+\mdf@innerleftmargin@length%
                      +\mdf@innerrightmargin@length}%
                   {\mdfboundingboxheight}%
               }%
}%
 
\def\md@frame@lines@second{%
         \setlength{\mdfboundingboxheight}{\ht\@tempboxa+\dp\@tempboxa}%
         \addtolength{\mdfboundingboxheight}{%
                    +\mdf@innerbottommargin@length%
                    +\mdf@middlelinewidth@length%
                }%
          \rlap{\color{\mdf@middlelinecolor}%
               \ifbool{mdf@leftline}%
                 {\rule[\dp\@tempboxa-\mdf@innerbottommargin@length]%
                        {\mdf@middlelinewidth@length}%
                        {\mdfboundingboxheight-\mdf@middlelinewidth@length}%
                 }{}%
               }%
          \rlap{\color{\mdf@middlelinecolor}%
                \ifbool{mdf@bottomline}%
                 {%
                   \ifboolexpr{ bool {mdf@leftline} and bool {mdf@rightline} }%
                        {\rule[\dp\@tempboxa-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
                           {\wd\@tempboxa+\mdf@innerleftmargin@length%
                            +\mdf@innerrightmargin@length+2\mdf@middlelinewidth@length}%
                           {\mdf@middlelinewidth@length}%
                       }{}%
                   \ifboolexpr{ not (bool {mdf@leftline}) and not(bool {mdf@rightline}) }%
                        {%
                          \rule[\dp\@tempboxa-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
                           {\wd\@tempboxa+\mdf@innerleftmargin@length%
                            +\mdf@innerrightmargin@length}%
                           {\mdf@middlelinewidth@length}%
                       }{}%
                    \ifboolexpr{ bool {mdf@leftline} and not( bool {mdf@rightline}) }%
                        {%
                          \rule[\dp\@tempboxa-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
                           {\wd\@tempboxa+\mdf@innerleftmargin@length%
                            +\mdf@innerrightmargin@length+\mdf@middlelinewidth@length}%
                           {\mdf@middlelinewidth@length}%
                       }{}%
                    \ifboolexpr{ not(bool {mdf@leftline}) and bool {mdf@rightline} }%
                        {%
                          \rule[\dp\@tempboxa-\mdf@innerbottommargin@length-\mdf@middlelinewidth@length]%
                           {\wd\@tempboxa+\mdf@innerleftmargin@length%
                            +\mdf@innerrightmargin@length+\mdf@middlelinewidth@length}%
                           {\mdf@middlelinewidth@length}%
                       }{}%
                 }{}%
               \llap{\color{\mdf@middlelinecolor}%
                     \ifbool{mdf@rightline}%
                       {\rule[\dp\@tempboxa-\mdf@innerbottommargin@length]%
                             {\mdf@middlelinewidth@length}%
                             {\mdfboundingboxheight-\mdf@middlelinewidth@length}%
                        \ifbool{mdf@bottomline}{}%
                             {\deflength\@tempskipb{\wd\@tempboxa%
                                      +\mdf@innerleftmargin@length%
                                      +\mdf@innerrightmargin@length%
                                      +2\mdf@middlelinewidth@length%
                                     }%
                             \hspace*{-\@tempskipb}%
                            }%
                      }{}%
                    }%
               }%       
}%


\def\md@putbox@second{%%%%% Ausgabe der mittleren Teilbox
  \ifvoid\@tempboxa%
  \else
      \leftline{%
         \null\hspace*{\mdf@leftmargin@length}%
         \md@frame@lines@second%
         \ifbool{mdf@leftline}%
         {\hspace*{\mdf@middlelinewidth@length}}{}%
         \md@frame@background@second%
         \hspace*{\mdf@innerleftmargin@length}%
         {\box\@tempboxa}%
        }%
  \fi%
}%


%%=middle=%%

\def\md@frame@background@middle{%
         \setlength{\mdfboundingboxheight}{\ht\tw@+\dp\tw@}%
         \addtolength{\mdfboundingboxheight}{%
                  \mdf@splitbottomskip@length%
                  }%
        \rlap{\color{\mdf@backgroundcolor}%
              \rule[-\dp\tw@-\mdf@splitbottomskip@length]%
                    {\wd\tw@+\mdf@innerleftmargin@length+\mdf@innerrightmargin@length}%
                    {\mdfboundingboxheight}%
              }%
}%
 
\def\md@frame@lines@middle{%
         \setlength{\mdfboundingboxheight}{\ht\tw@+\dp\tw@}%
         \addtolength{\mdfboundingboxheight}{%
                  \mdf@splitbottomskip@length%
                  }%
        \rlap{\color{\mdf@middlelinecolor}%
            \ifbool{mdf@leftline}%
              {%
              \rule[-\dp\tw@-\mdf@splitbottomskip@length]{\mdf@middlelinewidth@length}{\mdfboundingboxheight}%
              }{}%
            \ifbool{mdf@rightline}%
                   {%
                   \deflength{\mdfpositionx}{\wd\tw@%
                                     +\mdf@innerleftmargin@length%
                                     +\mdf@innerrightmargin@length%
                                     +\mdf@middlelinewidth@length%
                                    }%
                   \hspace*{\mdfpositionx}%
                   \llap{\color{\mdf@middlelinecolor}%
                        \rule[-\dp\tw@-\mdf@splitbottomskip@length]{\mdf@middlelinewidth@length}{\mdfboundingboxheight}%
                        \ifbool{mdf@leftline}{}{}%
                        }%
                   }{}%
          }%
}%




\def\md@putbox@middle{%%%% Ausgabe der Teilbox 1
      \leftline{%
           \null\hspace*{\mdf@leftmargin@length}%
           \md@frame@lines@middle%
           \ifbool{mdf@leftline}%
           {\hspace*{\mdf@middlelinewidth@length}}{}%
           \md@frame@background@middle%
           \hspace*{\mdf@innerleftmargin@length}%
           {\box\tw@}%
        }%
}







main/md-frame-1.mdf

%%==================================================%%
%%= Ausgabe der Box nach Vorgabe der Ausgaberoutine=%%
%%==================================================%%
%% Styledatei fuer das Paket mdframed erstellt durch
%% Marco Daniel und Elke Schubert
%% 
%% This package may be distributed under the terms of the LaTeX Project
%% Public License, as described in lppl.txt in the base LaTeX distribution.
%% Either version 1.0 or, at your option, any later version.

%%$Id: md-frame-1.mdf 105 2010-12-22 16:50:44Z marco $
%%$Rev: 105 $
%%$Author: marco $
%%$Date: 2010-12-22 17:50:44 +0100 (Mi, 22. Dez 2010) $

\def\mdversion{v0.6a}
\def\mdframedIpackagename{md-frame-1}
\def\md@frameIdate@svn$#1: #2 #3 #4-#5-#6 #7 #8${#4/#5/#6\space }

\ProvidesFile{md-frame-1.mdf}[\md@frameIdate@svn$Id: md-frame-1.mdf 105 2010-12-22 16:50:44Z marco $ \mdversion: \mdframedIpackagename]

%%Allgemeine Einstellungen fuer tikz

\def\md@tikz@settings{%
          %wenn das Innere der Doppellinie 0pt breit ist,
          %muss Grenze zwischen innerer und aeusserer Linie
          %einer Farbe zugeordnet werden
          \ifdimequal{\mdf@middlelinewidth@length}{\z@}%
                       {\ifdimequal{\mdf@innerlinewidth@length}{\z@}%
                            {\ifdimequal{\mdf@outerlinewidth@length}{\z@}%
                              {\let\mdf@middlelinecolor\mdf@backgroundcolor}%
                              {\let\mdf@middlelinecolor\mdf@outerlinecolor}%
                            }%
                            {\let\mdf@middlelinecolor\mdf@innerlinecolor}%
                        }{}%
          \ifdimequal{\mdf@innerlinewidth@length}{\z@}%
                       {\ifdimequal{\mdf@outerlinewidth@length}{\z@}%
                            {\ifdimequal{\mdf@middlelinewidth@length}{\z@}%
                              {}%
                              {\let\mdf@middlelinecolor\mdf@linecolor}%
                            }%
                            {}%
                        }{}%
        \tikzset{mdftext/.style={inner sep=0pt,outer sep=0pt}}%
        \tikzset{mdfcorners/.style={rounded corners=\mdf@roundcorner@length}}%
        \tikzset{mdfbackground/.style={fill=\mdf@backgroundcolor}}%
        \ifdimgreater{\mdf@outerlinewidth@length}{\z@}%
            {\tikzset{mdfborderA/.style={%
                         draw=\mdf@outerlinecolor,%
                         line width=2\mdf@outerlinewidth@length+\mdf@middlelinewidth@length%
                         }%
                     }%
            }%
            {\tikzset{mdfborderA/.style={}}}%
        \ifdimgreater{\mdf@innerlinewidth@length}{\z@}%
            {\tikzset{mdfborderI/.style={%
                         draw=\mdf@innerlinecolor,%
                         line width=2\mdf@innerlinewidth@length+\mdf@middlelinewidth@length%
                         }%
                     }%
            }%
            {\tikzset{mdfborderI/.style={}}}%
       \tikzset{mdfmiddle/.style={draw=\mdf@middlelinecolor,line width=\mdf@middlelinewidth@length}}%
}%



\def\md@putbox@single{%
   \leftline{\null\hspace*{\mdf@leftmargin@length}%%
       \md@tikz@settings%
        \setlength\mdfboxwidth{\wd\@tempboxa}%
        \setlength\mdfboxheight{\ht\@tempboxa+\dp\@tempboxa}%
        \begin{tikzpicture}
	         \coordinate(O)at(0,0);
                 \pgfmathsetlengthmacro\x{\mdfboxwidth+\mdf@innerrightmargin@length%
                                          +\mdf@innerleftmargin@length+%
                                          2\mdf@innerlinewidth@length+\mdf@middlelinewidth@length}
                 \pgfmathsetlengthmacro\xp{\mdf@innerleftmargin@length+%
                                          1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
                 \pgfmathsetlengthmacro\y{\mdfboxheight+\mdf@innertopmargin@length%
                                          +\mdf@innerbottommargin@length%
                                          +2*\mdf@innerlinewidth@length+\mdf@middlelinewidth@length}
                 \pgfmathsetlengthmacro\yp{\mdf@innerbottommargin@length%
                                          +1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
                 \coordinate(P)at(\x,\y);
                 \begin{scope}
		      \clip[preaction=mdfborderA]%
                           [postaction={mdfbackground,mdfborderI}]%
                           [mdfcorners](O)--(O|-P)--(P)--(P|-O)--cycle;
	         \end{scope}
                 \path[mdfmiddle,mdfcorners](O)--(O|-P)--(P)--(P|-O)--cycle;
                 \node[mdftext,anchor=south west]at(\xp,\yp){\box\@tempboxa};
       \end{tikzpicture}%
     }%
}%

\def\md@putbox@first{%
   \leftline{\null\hspace*{\mdf@leftmargin@length}%%
       \md@tikz@settings%
        \setlength\mdfboxwidth{\wd\tw@}%
        \setlength\mdfboxheight{\ht\tw@+\dp\tw@}%
        \ifdimequal{\pagegoal}{\maxdimen}{\enlargethispage{\baselineskip}}{}%
        \begin{tikzpicture}
	         \coordinate(O) at (0,0);
                 \pgfmathsetlengthmacro\x{\mdfboxwidth+\mdf@innerrightmargin@length%
                                          +\mdf@innerleftmargin@length+%
                                          2*\mdf@innerlinewidth@length+1*\mdf@middlelinewidth@length}
                 \pgfmathsetlengthmacro\xp{\mdf@innerleftmargin@length+%
                                          1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
                 \pgfmathsetlengthmacro\y{-\mdfboxheight-\mdf@innertopmargin@length%
                                          -1*\mdf@innerlinewidth@length-0.5*\mdf@middlelinewidth@length+0.0cm}
                 \pgfmathsetlengthmacro\yp{-\mdf@innertopmargin@length%
                                           -1*\mdf@innerlinewidth@length-0.5*\mdf@middlelinewidth@length%
                                           -0.5\mdfboxheight}
                 \coordinate(P)at(\x,\y);
                 \clip(-\mdf@outerlinewidth@length-0.5*\mdf@middlelinewidth@length,%
                       \mdf@outerlinewidth@length+0.5*\mdf@middlelinewidth@length)%
                      rectangle(\x+\mdf@outerlinewidth@length+0.5*\mdf@middlelinewidth@length,\y);
                 \begin{scope}
                     \clip[preaction=mdfborderA]%
                          [postaction={mdfbackground,mdfborderI}]%
                          [mdfcorners](O|-P)--(O)--(P|-O)--(P);
                 \end{scope}
                 \path[mdfmiddle,mdfcorners,](O|-P)--(O)--(P|-O)--(P);
                 \node[mdftext,anchor=west,inner sep=0pt,outer sep=0pt]at(\xp,\yp){\box\tw@};
%                 \draw[fill] (0,0) circle (.1cm);
%                 \draw[fill,yellow] (\x,\y) circle (.1cm);
%                 \draw[fill,orange] (\xp,\yp) circle (.05cm);
     \end{tikzpicture}%
     }%
}%


\def\md@putbox@middle{%
   \leftline{\null\hspace*{\mdf@leftmargin@length}%%
        \md@tikz@settings%
        \setlength\mdfboxwidth{\wd\tw@}%
        \setlength\mdfboxheight{\ht\tw@}%
        \setlength{\mdf@ymargin@length}{0.4\baselineskip}%
        \begin{tikzpicture}
	         \coordinate(O)at(0,0);
                 \pgfmathsetlengthmacro\x{\mdfboxwidth+\mdf@innerrightmargin@length%
                                          +\mdf@innerleftmargin@length+%
                                          2*\mdf@innerlinewidth@length+1*\mdf@middlelinewidth@length}
                 \pgfmathsetlengthmacro\xp{\mdf@innerleftmargin@length+%
                                          1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
                 \pgfmathsetlengthmacro\y{\mdfboxheight}
                 \pgfmathsetlengthmacro\yp{0cm}
                 \coordinate(P)at(\x,\y);
                 \clip(-\mdf@outerlinewidth@length-0.5*\mdf@middlelinewidth@length,0)%
                       rectangle(\x+\mdf@outerlinewidth@length+0.5*\mdf@middlelinewidth@length,\y);
                 \begin{scope}
                 	\path[mdfborderA](O)--(O|-P)(P)--(P|-O);
                        \clip[postaction=mdfbackground](O)--(O|-P)--(P)--(P|-O);
                        \path[mdfborderI](O)--(O|-P)(P)--(P|-O);
                 \end{scope}
                 \path[mdfmiddle](O)--(O|-P)(P)--(P|-O);
                 \node[mdftext,anchor=south west]at(\xp,\yp){\box\tw@};
       \end{tikzpicture}%
     }
}

\def\md@putbox@second{%
   \leftline{\null\hspace*{\mdf@leftmargin@length}%%
       \md@tikz@settings%
        \setlength\mdfboxwidth{\wd\@tempboxa}%
        \setlength\mdfboxheight{\ht\@tempboxa}%
        \begin{tikzpicture}
                 \coordinate(O)at(0,0);
                 \pgfmathsetlengthmacro\x{\mdfboxwidth+\mdf@innerrightmargin@length%
                                          +\mdf@innerleftmargin@length+%
                                          2*\mdf@innerlinewidth@length+1*\mdf@middlelinewidth@length}
                 \pgfmathsetlengthmacro\xp{\mdf@innerleftmargin@length+%
                                          1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
                 \pgfmathsetlengthmacro\y{\mdfboxheight%
                                          +\mdf@innerbottommargin@length%
                                          +1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
                 \pgfmathsetlengthmacro\yp{\mdf@innerbottommargin@length%
                                          +1*\mdf@innerlinewidth@length+0.5*\mdf@middlelinewidth@length}
                 \coordinate(P)at(\x,\y);
                 \clip(-\mdf@outerlinewidth@length-0.5*\mdf@middlelinewidth@length,%
                       -\mdf@outerlinewidth@length-0.5*\mdf@middlelinewidth@length)%
                      rectangle(\x+\mdf@outerlinewidth@length+0.5*\mdf@middlelinewidth@length,\y);
                 \begin{scope}
                      \clip[preaction=mdfborderA]%
                      [postaction={mdfbackground,mdfborderI}]%
                      [mdfcorners](P-|O)--(O)--(O-|P)--(P);
                 \end{scope}
                 \path[mdfmiddle,mdfcorners](P-|O)--(O)--(O-|P)--(P);
                 \node[mdftext,anchor=south west] at (\xp,\yp){\box\@tempboxa};
       \end{tikzpicture}%
     }
}







main/md-frame-3.mdf

%%==================================================%%
%%= Ausgabe der Box nach Vorgabe der Ausgaberoutine=%%
%%==================================================%%
%% Styledatei fuer das Paket mdframed erstellt durch
%% Marco Daniel 

%% This package may be distributed under the terms of the LaTeX Project
%% Public License, as described in lppl.txt in the base LaTeX distribution.
%% Either version 1.0 or, at your option, any later version.

%%$Id: md-frame-3.mdf 105 2010-12-22 16:50:44Z marco $
%%$Rev: 105 $
%%$Author: marco $
%%$Date: 2010-12-22 17:50:44 +0100 (Mi, 22. Dez 2010) $


%%Allgemeine Einstellungen fuer pstricks
%%Hier nur einfacher Rahmen mit Einstellungen

\def\mdversion{v0.6a}
\def\mdframedIIIpackagename{md-frame-3}
\def\md@frameIIIdate@svn$#1: #2 #3 #4-#5-#6 #7 #8${#4/#5/#6\space }

\ProvidesFile{md-frame-3.mdf}[\md@frameIIIdate@svn$Id: md-frame-3.mdf 105 2010-12-22 16:50:44Z marco $ \mdversion: \mdframedIIIpackagename]

\def\md@ptlength@to@pscode#1{\pst@number{#1} \pst@number\psxunit div}
\let\ptTps\md@ptlength@to@pscode\relax


\def\md@putbox@single{%
   \leftline{\null\hspace*{\mdf@leftmargin@length}%%
        \setlength\mdfboxwidth{\wd\@tempboxa}%
        \setlength\mdfboxheight{\ht\@tempboxa+\dp\@tempboxa}%
        \setlength{\mdfboundingboxheight}{%
                     \mdfboxheight%
                    +\mdf@innertopmargin@length%
                    +\mdf@innerbottommargin@length%
%                    +\mdf@middlelinewidth@length%
%                    +\mdf@middlelinewidth@length%
                  }%
         \ifbool{mdf@topline}{\addtolength{\mdfboundingboxheight}{\mdf@middlelinewidth@length}}{}%
         \ifbool{mdf@bottomline}{\addtolength{\mdfboundingboxheight}{\mdf@middlelinewidth@length}}{}%
         \setlength{\mdfboundingboxwidth}{%
                     \mdfboxwidth%
                    +\mdf@innerleftmargin@length%
                    +\mdf@innerrightmargin@length%
%                    +\mdf@middlelinewidth@length%
%                    +\mdf@middlelinewidth@length%
                  }%
       \ifbool{mdf@leftline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
       \ifbool{mdf@rightline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
       \psset{linearc=\mdf@roundcorner@length,cornersize=absolute,}%
       \expandafter\psset\expandafter{\mdf@psset@local}%
        \psset{unit=1truecm}%
        \begin{pspicture}(0,0)(\mdfboundingboxwidth,\mdfboundingboxheight)
             \ifboolexpr{     bool {mdf@topline} and bool {mdf@bottomline}
                          and bool {mdf@leftline} and bool {mdf@rightline}
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (\mdf@middlelinewidth@length,\mdf@middlelinewidth@length)%
                                (! \ptTps{\mdfboundingboxwidth}
                                   \ptTps{\mdf@middlelinewidth@length} neg add  %X-Koord
                                   \ptTps{\mdfboundingboxheight}
                                   \ptTps{\mdf@middlelinewidth@length} neg add  %Y-Koord
                                )
                      \psframe[linewidth=\mdf@middlelinewidth@length,
                               linecolor=\mdf@linecolor,
                                cornersize=absolute,
                                fillstyle=none,]%
                          (0,0)(\mdfboundingboxwidth,\mdfboundingboxheight)%
                       \rput(! \ptTps{\mdf@middlelinewidth@length}
                              \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
                              \ptTps{\mdf@middlelinewidth@length} 
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
                           ){\box\@tempboxa}
                     }{}%
             \ifboolexpr{     bool {mdf@topline} and bool {mdf@bottomline}
                          and not (bool {mdf@leftline}) and bool {mdf@rightline}
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (0,\mdf@middlelinewidth@length)%
                                (! \ptTps{\mdfboundingboxwidth}
                                   \ptTps{\mdf@middlelinewidth@length} neg add  %X-Koord
                                   \ptTps{\mdfboundingboxheight}
                                   \ptTps{\mdf@middlelinewidth@length} neg add  %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! 0  %X-Koord
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          \ptTps{\mdfboundingboxheight} 
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
                       )%
                       (! 0  %X-Koord
                          \ptTps{\mdfboundingboxheight} 
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
                       )%
                       \rput(!\ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add  %X-Koord
                              \ptTps{\mdf@middlelinewidth@length} 
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
                           ){\box\@tempboxa}
                      }{}%
              \ifboolexpr{     bool {mdf@topline} and bool {mdf@bottomline}
                          and bool {mdf@leftline} and not( bool {mdf@rightline})
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (\mdf@middlelinewidth@length,\mdf@middlelinewidth@length)%
                                (! \ptTps{\mdfboundingboxwidth} %X-Koord
                                   \ptTps{\mdfboundingboxheight}
                                   \ptTps{\mdf@middlelinewidth@length} neg add  %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdfboundingboxwidth} %X-Koord
                          \ptTps{\mdfboundingboxheight}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
                       )%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          \ptTps{\mdfboundingboxheight}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
                       )%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth} %X-Koord
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
                       )%
                       \rput(! \ptTps{\mdf@middlelinewidth@length}
                              \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
                              \ptTps{\mdf@middlelinewidth@length} 
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
                           ){\box\@tempboxa}
                     }{}% 
               \ifboolexpr{   not(  bool {mdf@topline}) and bool {mdf@bottomline}
                          and bool {mdf@leftline} and  bool {mdf@rightline}
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (\mdf@middlelinewidth@length,\mdf@middlelinewidth@length)%
                                (! \ptTps{\mdfboundingboxwidth}
                                   \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          \ptTps{\mdfboundingboxheight} %Y-Koord
                       )%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth} 
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          \ptTps{\mdfboundingboxheight} %Y-Koord
                       )%  
                      \rput(! \ptTps{\mdf@middlelinewidth@length}
                              \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
                              \ptTps{\mdf@middlelinewidth@length} 
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
                           ){\box\@tempboxa}
                     }{}%     
                \ifboolexpr{  bool {mdf@topline} and not (bool {mdf@bottomline})
                          and bool {mdf@leftline} and  bool {mdf@rightline}
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (\mdf@middlelinewidth@length,0)%
                                (! \ptTps{\mdfboundingboxwidth}
                                   \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
                                   \ptTps{\mdfboundingboxheight}
                                   \ptTps{\mdf@middlelinewidth@length} neg add %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                           0 %Y-Koord
                       )%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          \ptTps{\mdfboundingboxheight}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add  %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth} 
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          \ptTps{\mdfboundingboxheight}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add  %Y-Koord
                       )%  
                       (! \ptTps{\mdfboundingboxwidth} 
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                           0 %Y-Koord
                       )%
                      \rput(! \ptTps{\mdf@middlelinewidth@length}
                              \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
                           ){\box\@tempboxa}
                     }{}% 
                 \ifboolexpr{ not( bool {mdf@topline}) and not (bool {mdf@bottomline})
                          and bool {mdf@leftline} and  bool {mdf@rightline}
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (\mdf@middlelinewidth@length,0)%
                                (! \ptTps{\mdfboundingboxwidth}
                                   \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                           0 %Y-Koord
                       )%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          \ptTps{\mdfboundingboxheight}
                       )%
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdfboundingboxwidth} 
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          \ptTps{\mdfboundingboxheight} %Y-Koord
                       )%  
                       (! \ptTps{\mdfboundingboxwidth} 
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                           0 %Y-Koord
                       )%
                      \rput(! \ptTps{\mdf@middlelinewidth@length}
                              \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
                           ){\box\@tempboxa}
                     }{}%    
             \ifboolexpr{     bool {mdf@topline} and bool {mdf@bottomline}
                          and not (bool {mdf@leftline}) and not(bool {mdf@rightline})
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (0,\mdf@middlelinewidth@length)%
                                (! \ptTps{\mdfboundingboxwidth} %X-Koord
                                   \ptTps{\mdfboundingboxheight}
                                   \ptTps{\mdf@middlelinewidth@length} neg add  %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! 0  %X-Koord
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth} %X-Koord
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
                       )%
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdfboundingboxwidth}  %X-Koord
                          \ptTps{\mdfboundingboxheight} 
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
                       )%
                       (! 0  %X-Koord
                          \ptTps{\mdfboundingboxheight} 
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
                       )%
                       \rput(!\ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add  %X-Koord
                              \ptTps{\mdf@middlelinewidth@length} 
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
                           ){\box\@tempboxa}
                      }{}%
              \ifboolexpr{ not( bool {mdf@topline}) and not (bool {mdf@bottomline})
                          and bool {mdf@leftline} and  not( bool {mdf@rightline})
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (\mdf@middlelinewidth@length,0)%
                                (! \ptTps{\mdfboundingboxwidth}  %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                           0 %Y-Koord
                       )%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          \ptTps{\mdfboundingboxheight}
                       )%
                      \rput(! \ptTps{\mdf@middlelinewidth@length}
                              \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
                           ){\box\@tempboxa}
                     }{}%    
              \ifboolexpr{ not( bool {mdf@topline}) and not (bool {mdf@bottomline})
                          and not(bool {mdf@leftline}) and  bool {mdf@rightline}
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (!0 0)%
                                (! \ptTps{\mdfboundingboxwidth}
                                   \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdfboundingboxwidth} 
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          \ptTps{\mdfboundingboxheight} %Y-Koord
                       )%  
                       (! \ptTps{\mdfboundingboxwidth} 
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                           0 %Y-Koord
                       )%
                      \rput(! \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
                           ){\box\@tempboxa}
                     }{}% 
             \ifboolexpr{    not( bool {mdf@topline}) and bool {mdf@bottomline}
                          and not (bool {mdf@leftline}) and not(bool {mdf@rightline})
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (0,\mdf@middlelinewidth@length)%
                                (! \ptTps{\mdfboundingboxwidth} %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! 0  %X-Koord
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth} %X-Koord
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
                       )%
                       \rput(!\ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add  %X-Koord
                              \ptTps{\mdf@middlelinewidth@length} 
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
                           ){\box\@tempboxa}
                      }{}%
              \ifboolexpr{     bool {mdf@topline} and not (bool {mdf@bottomline})
                          and not (bool {mdf@leftline}) and not(bool {mdf@rightline})
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (0,0)%
                                (! \ptTps{\mdfboundingboxwidth} %X-Koord
                                   \ptTps{\mdfboundingboxheight}
                                   \ptTps{\mdf@middlelinewidth@length} neg add  %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdfboundingboxwidth}  %X-Koord
                          \ptTps{\mdfboundingboxheight} 
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
                       )%
                       (! 0  %X-Koord
                          \ptTps{\mdfboundingboxheight} 
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
                       )%
                       \rput(!\ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add  %X-Koord
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
                           ){\box\@tempboxa}
                      }{}%  \psgrid
        \end{pspicture}%
     }%
}






\def\md@putbox@first{%
   \leftline{\null\hspace*{\mdf@leftmargin@length}%%
        \setlength\mdfboxwidth{\wd\tw@}%
        \setlength\mdfboxheight{\ht\tw@+\dp\tw@}%
        \setlength{\mdfboundingboxheight}{%
                    +\mdfboxheight%
                    +\mdf@innertopmargin@length%
                    +\mdf@splitbottomskip@length%
                  }%
         \ifbool{mdf@topline}{\addtolength{\mdfboundingboxheight}{\mdf@middlelinewidth@length}}{}%
         \setlength{\mdfboundingboxwidth}{%
                    +\mdf@innerleftmargin@length%
                    +\mdfboxwidth
                    +\mdf@innerrightmargin@length%
                  }%
         \ifbool{mdf@leftline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
         \ifbool{mdf@rightline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
         \psset{linearc=\mdf@roundcorner@length}%
         \expandafter\psset\expandafter{\mdf@psset@local}%
         \psset{unit=1truecm}%
         \ifdimgreater{\mdfboundingboxheight}{\vsize}
                {\begin{pspicture}(0,0)(\mdfboundingboxwidth,\vsize)}
                {\begin{pspicture}(0,0)(\mdfboundingboxwidth,\mdfboundingboxheight)}
              \ifboolexpr{     bool {mdf@topline} and bool {mdf@rightline}
                          and bool {mdf@leftline} 
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (\mdf@middlelinewidth@length,0)%
                                (! \ptTps{\mdfboundingboxwidth} 
                                   \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
                                   \ptTps{\mdfboundingboxheight}
                                   \ptTps{\mdf@middlelinewidth@length} neg add  %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          0 %Y-Koord
                       )%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          \ptTps{\mdfboundingboxheight}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          \ptTps{\mdfboundingboxheight}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          0 %Y-Koord
                       )%
                       \rput(! \ptTps{\mdf@middlelinewidth@length}
                              \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
                              \ptTps{\mdf@splitbottomskip@length}
                              \ptTps{\mdfboxheight} 0.5 mul  add %Y-Koord
                           ){\box\tw@}
                     }{}%
              \ifboolexpr{    not( bool {mdf@topline}) and bool {mdf@rightline}
                          and bool {mdf@leftline} 
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (\mdf@middlelinewidth@length,0)%
                                (! \ptTps{\mdfboundingboxwidth} 
                                   \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          0 %Y-Koord
                       )%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          \ptTps{\mdfboundingboxheight} %Y-Koord
                       )%
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          \ptTps{\mdfboundingboxheight} %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          0 %Y-Koord
                       )%
                       \rput(! \ptTps{\mdf@middlelinewidth@length}
                              \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
                              \ptTps{\mdf@splitbottomskip@length}
                              \ptTps{\mdfboxheight} 0.5 mul  add %Y-Koord
                           ){\box\tw@}
                     }{}%       
               \ifboolexpr{    not( bool {mdf@topline}) and not(bool {mdf@rightline})
                          and bool {mdf@leftline} 
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (\mdf@middlelinewidth@length,0)%
                                (! \ptTps{\mdfboundingboxwidth} %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          0 %Y-Koord
                       )%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          \ptTps{\mdfboundingboxheight} %Y-Koord
                       )%
                       \rput(! \ptTps{\mdf@middlelinewidth@length}
                              \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
                              \ptTps{\mdf@splitbottomskip@length}
                              \ptTps{\mdfboxheight} 0.5 mul  add %Y-Koord
                           ){\box\tw@}
                     }{}%  
               \ifboolexpr{    not( bool {mdf@topline}) and bool {mdf@rightline}
                          and not( bool {mdf@leftline} )
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (0,0)%
                                (! \ptTps{\mdfboundingboxwidth} 
                                   \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          \ptTps{\mdfboundingboxheight} %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          0 %Y-Koord
                       )%
                       \rput(!\ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
                              \ptTps{\mdf@splitbottomskip@length}
                              \ptTps{\mdfboxheight} 0.5 mul  add %Y-Koord
                           ){\box\tw@}
                     }{}%              
               \ifboolexpr{     bool {mdf@topline} and not(bool {mdf@rightline})
                          and not(bool {mdf@leftline} )
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (0,0)%
                                (! \ptTps{\mdfboundingboxwidth} %X-Koord
                                   \ptTps{\mdfboundingboxheight}
                                   \ptTps{\mdf@middlelinewidth@length} neg add  %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! 0 %X-Koord
                          \ptTps{\mdfboundingboxheight}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth} %X-Koord
                          \ptTps{\mdfboundingboxheight}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %Y-Koord
                       )%
                       \rput(! \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
                              \ptTps{\mdf@splitbottomskip@length}
                              \ptTps{\mdfboxheight} 0.5 mul  add %Y-Koord
                           ){\box\tw@}
                     }{}% 
                \ifboolexpr{    not(bool {mdf@topline}) and not(bool {mdf@rightline})
                          and not(bool {mdf@leftline} )
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (0,0)%
                                (! \ptTps{\mdfboundingboxwidth} %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \rput(! \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
                              \ptTps{\mdf@splitbottomskip@length}
                              \ptTps{\mdfboxheight} 0.5 mul  add %Y-Koord
                           ){\box\tw@}
                     }{}%  
           \end{pspicture}%
     }%
}



\def\md@putbox@middle{%
   \leftline{\null\hspace*{\mdf@leftmargin@length}%%
        \setlength\mdfboxwidth{\wd\tw@}%
        \setlength\mdfboxheight{\ht\tw@+\dp\tw@}%
        \setlength{\mdfboundingboxheight}{%
                    +\mdfboxheight%
                    +\mdf@splitbottomskip@length%
                  }%
         \setlength{\mdfboundingboxwidth}{%
                    +\mdf@innerleftmargin@length%
                    +\mdfboxwidth%
                    +\mdf@innerrightmargin@length%
                  }%
         \ifbool{mdf@leftline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
         \ifbool{mdf@rightline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
         \expandafter\psset\expandafter{\mdf@psset@local}%
         \psset{linearc=\mdf@roundcorner@length}%
         \psset{unit=1truecm}%
         \ifdimgreater{\mdfboundingboxheight}{\vsize}
                {\begin{pspicture}(0,0)(\mdfboundingboxwidth,\vsize)}
                {\begin{pspicture}(0,0)(\mdfboundingboxwidth,\mdfboundingboxheight)}
              \ifboolexpr{    bool {mdf@rightline} and bool {mdf@leftline} 
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (\mdf@middlelinewidth@length,0)%
                                (! \ptTps{\mdfboundingboxwidth} 
                                   \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          0 %Y-Koord
                       )%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          \ptTps{\mdfboundingboxheight}  %Y-Koord
                       )%
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          0 %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          \ptTps{\mdfboundingboxheight} %Y-Koord
                       )%
                       \rput(! \ptTps{\mdf@middlelinewidth@length}
                              \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
                              \ptTps{\mdf@splitbottomskip@length}
                              \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
                           ){\box\tw@}
                     }{}%
               \ifboolexpr{    bool {mdf@rightline} and not(bool {mdf@leftline})
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (0,0)%
                                (! \ptTps{\mdfboundingboxwidth} 
                                   \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          0 %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          \ptTps{\mdfboundingboxheight} %Y-Koord
                       )%
                       \rput(! \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
                              \ptTps{\mdf@splitbottomskip@length}
                              \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
                           ){\box\tw@}
                     }{}%  
               \ifboolexpr{   not( bool {mdf@rightline})  and bool {mdf@leftline} 
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (\mdf@middlelinewidth@length,0)%
                                (! \ptTps{\mdfboundingboxwidth} %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          0 %Y-Koord
                       )%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          \ptTps{\mdfboundingboxheight}  %Y-Koord
                       )%
                       \rput(! \ptTps{\mdf@middlelinewidth@length}
                              \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
                              \ptTps{\mdf@splitbottomskip@length}
                              \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
                           ){\box\tw@}
                     }{}%                    
                \ifboolexpr{(
                             not(bool {mdf@rightline}) and not(bool {mdf@leftline})
                             and bool {mdf@topline} and not( bool {mdf@bottomline})
                             )
                             or
                             (
                             not(bool {mdf@rightline}) and not(bool {mdf@leftline})
                             and not (bool {mdf@topline}) and not( bool {mdf@bottomline})
                             )
                             or
                             (
                             not(bool {mdf@rightline}) and not(bool {mdf@leftline})
                             and not (bool {mdf@topline}) and bool {mdf@bottomline}
                             )
                              or
                             (
                             not(bool {mdf@rightline}) and not(bool {mdf@leftline})
                             and bool {mdf@topline} and bool {mdf@bottomline}
                             )  
                       }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (0,0)%
                                (! \ptTps{\mdfboundingboxwidth}  %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \rput(! \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
                              \ptTps{\mdf@splitbottomskip@length}
                              \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
                           ){\box\tw@}
                     }{}%  
       \end{pspicture}%
     }%
}

\def\md@putbox@second{
   \leftline{\null\hspace*{\mdf@leftmargin@length}%%
        \setlength\mdfboxwidth{\wd\@tempboxa}%
        \setlength\mdfboxheight{\ht\@tempboxa+\dp\@tempboxa}%
        \setlength{\mdfboundingboxheight}{%
                    +\mdfboxheight%
                    +\mdf@innerbottommargin@length%
                  }%
         \ifbool{mdf@bottomline}{\addtolength{\mdfboundingboxheight}{\mdf@middlelinewidth@length}}{}%
         \setlength{\mdfboundingboxwidth}{%
                    +\mdf@innerleftmargin@length%
                    +\mdfboxwidth
                    +\mdf@innerrightmargin@length%
                  }%
         \ifbool{mdf@leftline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
         \ifbool{mdf@rightline}{\addtolength{\mdfboundingboxwidth}{\mdf@middlelinewidth@length}}{}%
         \expandafter\psset\expandafter{\mdf@psset@local}
         \psset{linearc=\mdf@roundcorner@length}%
         \psset{unit=1truecm}%
         \begin{pspicture}(0,0)(\mdfboundingboxwidth,\mdfboundingboxheight)
              \ifboolexpr{     bool {mdf@bottomline} and bool {mdf@rightline}
                          and bool {mdf@leftline} 
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (\mdf@middlelinewidth@length,\mdf@middlelinewidth@length)%
                                (! \ptTps{\mdfboundingboxwidth} 
                                   \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          \ptTps{\mdfboundingboxheight} %Y-Koord
                       )%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          \ptTps{\mdfboundingboxheight} %Y-Koord
                       )%
                       \rput(! \ptTps{\mdf@middlelinewidth@length}
                              \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
                              \ptTps{\mdf@middlelinewidth@length} 
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
                           ){\box\@tempboxa}
                     }{}%
               \ifboolexpr{   not( bool {mdf@bottomline}) and bool {mdf@rightline}
                          and bool {mdf@leftline} 
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (\mdf@middlelinewidth@length,0)%
                                (! \ptTps{\mdfboundingboxwidth} 
                                   \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          \ptTps{\mdfboundingboxheight} %Y-Koord
                       )%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          0 %Y-Koord
                       )%
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          0 %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          \ptTps{\mdfboundingboxheight} %Y-Koord
                       )%
                       \rput(! \ptTps{\mdf@middlelinewidth@length}
                              \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul  add %Y-Koord
                           ){\box\@tempboxa}
                     }{}%                    
               \ifboolexpr{   not( bool {mdf@bottomline}) and not(bool {mdf@rightline})
                          and bool {mdf@leftline} 
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (\mdf@middlelinewidth@length,0)%
                                (! \ptTps{\mdfboundingboxwidth} %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          \ptTps{\mdfboundingboxheight} %Y-Koord
                       )%
                       (! \ptTps{\mdf@middlelinewidth@length} 0.5 mul %X-Koord
                          0 %Y-Koord
                       )%
                       \rput(! \ptTps{\mdf@middlelinewidth@length}
                              \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add add %X-Koord
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul  add %Y-Koord
                           ){\box\@tempboxa}
                     }{}%  
               \ifboolexpr{   not( bool {mdf@bottomline}) and bool {mdf@rightline}
                          and not(bool {mdf@leftline})
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (0,0)%
                                (! \ptTps{\mdfboundingboxwidth} 
                                   \ptTps{\mdf@middlelinewidth@length} neg add %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          0 %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth}
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul neg add %X-Koord
                          \ptTps{\mdfboundingboxheight} %Y-Koord
                       )%
                       \rput(! \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul  add %Y-Koord
                           ){\box\@tempboxa}
                     }{}%  
               \ifboolexpr{  bool {mdf@bottomline} and not(bool {mdf@rightline})
                          and not(bool {mdf@leftline})
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (0,\mdf@middlelinewidth@length)%
                                (! \ptTps{\mdfboundingboxwidth}  %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \psline[linewidth=\mdf@middlelinewidth,
                                linecolor=\mdf@linecolor,fillstyle=none,]%
                       (! 0 %X-Koord
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
                       )%
                       (! \ptTps{\mdfboundingboxwidth} %X-Koord
                          \ptTps{\mdf@middlelinewidth@length} 0.5 mul %Y-Koord
                       )%
                       \rput(! \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
                              \ptTps{\mdf@middlelinewidth@length}
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul add add %Y-Koord
                           ){\box\@tempboxa}
                     }{}%  
                \ifboolexpr{  not(bool {mdf@bottomline}) and not(bool {mdf@rightline})
                          and not(bool {mdf@leftline})
                        }%
                      {\psframe[linecolor=\mdf@backgroundcolor,fillstyle=solid,%
                                fillcolor=\mdf@backgroundcolor,linestyle=solid,
                                linewidth=\mdf@middlelinewidth@length]%
                                (0,0)%
                                (! \ptTps{\mdfboundingboxwidth}  %X-Koord
                                   \ptTps{\mdfboundingboxheight} %Y-Koord
                                )
                       \rput(! \ptTps{\mdf@innerleftmargin@length}
                              \ptTps{\mdfboxwidth} 0.5 mul add %X-Koord
                              \ptTps{\mdf@innerbottommargin@length}
                              \ptTps{\mdfboxheight} 0.5 mul add %Y-Koord
                           ){\box\@tempboxa}
                     }{}%  
       \end{pspicture}%
     }%
}

\endinput
%eof
%eof
%eof
%eof
%eof







main/utf8plain.def

%%
%% This is file `utf8.def',
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% utf8ienc.dtx  (with options: `utf8')
%% 
%% This is a generated file.
%% 
%% Copyright 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
%% The LaTeX3 Project and any individual authors listed elsewhere
%% in this file.
%% 
%% This file was generated from file(s) of the LaTeX base system.
%% --------------------------------------------------------------
%% 
%% It may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3c
%% of this license or (at your option) any later version.
%% The latest version of this license is in
%%    http://www.latex-project.org/lppl.txt
%% and version 1.3c or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%% 
%% This file has the LPPL maintenance status "maintained".
%% 
%% This file may only be distributed together with a copy of the LaTeX
%% base system. You may however distribute the LaTeX base system without
%% such generated files.
%% 
%% The list of all files belonging to the LaTeX base distribution is
%% given in the file `manifest.txt'. See also `legal.txt' for additional
%% information.
%% 
%% The list of derived (unpacked) files belonging to the distribution
%% and covered by LPPL is defined by the unpacking scripts (with
%% extension .ins) which are part of the distribution.
\ProvidesFile{utf8.def}
   [2008/04/05 v1.1m UTF-8 support for inputenc]
\makeatletter
\catcode`\ \saved@space@catcode
\def\UTFviii@two@octets#1#2{\expandafter
    \UTFviii@defined\csname u8:#1\string#2\endcsname}
\def\UTFviii@three@octets#1#2#3{\expandafter
    \UTFviii@defined\csname u8:#1\string#2\string#3\endcsname}
\def\UTFviii@four@octets#1#2#3#4{\expandafter
    \UTFviii@defined\csname u8:#1\string#2\string#3\string#4\endcsname}
\def\UTFviii@defined#1{%
  \ifx#1\relax
      \PackageError{inputenc}{Unicode\space char\space \string#1\space
                              not\space set\space up\space
                              for\space use\space with\space LaTeX}\@eha
  \else\expandafter
    #1%
  \fi
}
\begingroup
\catcode`\~13
\catcode`\"12
\def\UTFviii@loop{%
  \uccode`\~\count@
  \uppercase\expandafter{\UTFviii@tmp}%
  \advance\count@\@ne
  \ifnum\count@<\@tempcnta
  \expandafter\UTFviii@loop
  \fi}
    \count@"C2
    \@tempcnta"E0
    \def\UTFviii@tmp{\xdef~{\noexpand\UTFviii@two@octets\string~}}
\UTFviii@loop
    \count@"E0
    \@tempcnta"F0
    \def\UTFviii@tmp{\xdef~{\noexpand\UTFviii@three@octets\string~}}
\UTFviii@loop
    \count@"F0
    \@tempcnta"F4
    \def\UTFviii@tmp{\xdef~{\noexpand\UTFviii@four@octets\string~}}
\UTFviii@loop
\endgroup
\@inpenc@test
\ifx\@begindocumenthook\@undefined
  \makeatother
  \endinput \fi
\begingroup
\catcode`\"=12
\catcode`\<=12
\catcode`\.=12
\catcode`\,=12
\catcode`\;=12
\catcode`\!=12
\catcode`\~=13
\gdef\DeclareUnicodeCharacter#1#2{%
   \count@"#1\relax
   \wlog{ \space\space defining Unicode char U+#1 (decimal \the\count@)}%
   \begingroup
    \parse@XML@charref
    \def\UTFviii@two@octets##1##2{\csname u8:##1\string##2\endcsname}%
    \def\UTFviii@three@octets##1##2##3{\csname u8:##1%
                                     \string##2\string##3\endcsname}%
    \def\UTFviii@four@octets##1##2##3##4{\csname u8:##1%
                           \string##2\string##3\string##4\endcsname}%
    \expandafter\expandafter\expandafter
    \expandafter\expandafter\expandafter
    \expandafter
     \gdef\UTFviii@tmp{\IeC{#2}}%
   \endgroup
}
\gdef\parse@XML@charref{%
  \ifnum\count@<"A0\relax
     \PackageError{inputenc}{Cannot\space define\space Unicode\space
                             char\space value\space <\space 00A0}\@eha
  \else\ifnum\count@<"800\relax
     \parse@UTFviii@a,%
     \parse@UTFviii@b C\UTFviii@two@octets.,%
  \else\ifnum\count@<"10000\relax
     \parse@UTFviii@a;%
     \parse@UTFviii@a,%
     \parse@UTFviii@b E\UTFviii@three@octets.{,;}%
   \else
     \parse@UTFviii@a;%
     \parse@UTFviii@a,%
     \parse@UTFviii@a!%
     \parse@UTFviii@b F\UTFviii@four@octets.{!,;}%
    \fi
    \fi
  \fi
}
\gdef\parse@UTFviii@a#1{%
     \@tempcnta\count@
     \divide\count@ 64
     \@tempcntb\count@
     \multiply\count@ 64
     \advance\@tempcnta-\count@
     \advance\@tempcnta 128
     \uccode`#1\@tempcnta
     \count@\@tempcntb}
\gdef\parse@UTFviii@b#1#2#3#4{%
     \advance\count@ "#10\relax
     \uccode`#3\count@
     \uppercase{\gdef\UTFviii@tmp{#2#3#4}}}
\endgroup
\@onlypreamble\DeclareUnicodeCharacter
\@onlypreamble\parse@XML@charref
\@onlypreamble\parse@UTFviii@a
\@onlypreamble\parse@UTFviii@b
\begingroup
  \def\cdp@elt#1#2#3#4{%
    \wlog{Now handling font encoding #1 ...}%
    \lowercase{%
        \InputIfFileExists{utf8plain.dfu}}%
           {\wlog{... processing UTF-8 mapping file for font %
                     encoding #1}%
            \catcode`\ 9\relax}%
          {\wlog{... no UTF-8 mapping file for font encoding #1}}%
  }
  \cdp@list
\endgroup
\def\DeclareFontEncoding@#1#2#3{%
  \expandafter
  \ifx\csname T@#1\endcsname\relax
    \def\cdp@elt{\noexpand\cdp@elt}%
    \xdef\cdp@list{\cdp@list\cdp@elt{#1}%
                    {\default@family}{\default@series}%
                    {\default@shape}}%
    \expandafter\let\csname#1-cmd\endcsname\@changed@cmd
    \begingroup
      \wlog{Now handling font encoding #1 ...}%
      \lowercase{%
        \InputIfFileExists{utf8plainenc.dfu}}%
           {\wlog{... processing UTF-8 mapping file for font %
                      encoding #1}}%
           {\wlog{... no UTF-8 mapping file for font encoding #1}}%
    \endgroup
  \else
     \@font@info{Redeclaring font encoding #1}%
  \fi
  \global\@namedef{T@#1}{#2}%
  \global\@namedef{M@#1}{\default@M#3}%
  \xdef\LastDeclaredEncoding{#1}%
  }
\DeclareUnicodeCharacter{00A9}{\textcopyright}
\DeclareUnicodeCharacter{00AA}{\textordfeminine}
\DeclareUnicodeCharacter{00AE}{\textregistered}
\DeclareUnicodeCharacter{00BA}{\textordmasculine}
\DeclareUnicodeCharacter{02C6}{\textasciicircum}
\DeclareUnicodeCharacter{02DC}{\textasciitilde}
\DeclareUnicodeCharacter{200C}{\textcompwordmark}
\DeclareUnicodeCharacter{2026}{\textellipsis}
\DeclareUnicodeCharacter{2122}{\texttrademark}
\DeclareUnicodeCharacter{2423}{\textvisiblespace}

\endinput
%%
%% End of file `utf8.def'.







main/main.txt

51.53748pt

�






headers/babel.tex

\usepackage[english]{babel}
\newcommand{\mychapterbabel}{Chapter}
\newcommand{\mypagebabel}{on page}
\newcommand{\myfigurebabel}{Figure}
\newcommand{\mylangbabel}{english}







headers/commands.tex

% Syntax Highlightling

%\DefineShortVerb[commandchars=\\\{\}]{\|}
\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}}
% Add ',fontsize=\small' for more characters per line
\newenvironment{Shaded}{\begin{scriptsize}}{\end{scriptsize}}
\newcommand{\KeywordTok}[1]{\textbf{{#1}}}
\newcommand{\DataTypeTok}[1]{\underline{{#1}}}
\newcommand{\DecValTok}[1]{{#1}}
\newcommand{\BaseNTok}[1]{{#1}}
\newcommand{\FloatTok}[1]{{#1}}
\newcommand{\CharTok}[1]{{#1}}
\newcommand{\StringTok}[1]{{#1}}
\newcommand{\CommentTok}[1]{\textit{{#1}}}
\newcommand{\OtherTok}[1]{{#1}}
\newcommand{\AlertTok}[1]{\textbf{{#1}}}
\newcommand{\FunctionTok}[1]{{#1}}
\newcommand{\RegionMarkerTok}[1]{{#1}}
\newcommand{\ErrorTok}[1]{\textbf{{#1}}}
\newcommand{\NormalTok}[1]{{#1}}
\newcommand{\myfigurewithoutcaption}[1]{{\bfseries \myfigurebabel{ }#1}}
\newcommand{\myfigurewithcaption}[2]{{\bfseries \myfigurebabel{ }#1{\quad}}#2}

% Definition der Fussnoten
% ------------------------
%\KOMAoptions{footnotes=multiple}


\DeclareTextSymbol{\textlongs}{TS1}{115} 

\deffootnote[2.2em]{2.2em}{0em}{\makebox[2.2em][l]{\thefootnotemark}}

\newcommand{\badchar}[1]
{\textbf{?}}


\newcommand{\myplainurl}[1]
{{\ttfamily  \url{#1}}}


\newcommand{\myfnhref}[2]
{{#2} \^{}{\{\ttfamily  \url{#1}\}} }

\newcommand{\mymchref}[2]
{}


\newcommand{\mytabhref}[2]
{{#2}\protect\footnote{\ttfamily \url{#1} }}
%{\textsc{#2}}


\newcommand{\myfnlref}[2]
{{#2} \^{}\{\mychapterbabel \ref{#1} \mypagebabel {$\text{}$} \pageref{#1}\}}

\newlength{\fnwidth}
\setlength{\fnwidth}{\linewidth}
\addtolength{\fnwidth}{-10mm}

\newcommand{\myhref}[2]
{{#2}\protect\footnote{    \begin{minipage}{\fnwidth} \ttfamily \url{#1}  \end{minipage}}} 

\newcommand{\mylref}[2]
{{#2}\protect\footnote{\mychapterbabel {$\text{}$} \ref{#1} \mypagebabel {$\text{}$} \pageref{#1}}}

\newcommand{\myfnsref}[2]
{\text{#2} \^{}\{\text{#1} \}}

\newcommand{\mysref}[2]
{\text{#2}\protect\footnote{#1}}

\newcommand{\TickYes}{\checkmark}


% Kompatibilität, damit myfootnote nichts ins Leere läuft
\newcommand{\myfootnote}[1]
%{\footnote{\quad{}#1}}
{\footnote{#1}}


% Auflistungen
% ------------
% Standardvorschlag für itemize
%\newenvironment{myitemize}{\begin{itemize}}{\end{itemize}}
%\newenvironment{myenumerate}{\begin{enumerate}}{\end{enumerate}}
\newenvironment{myquote}{\begin{itemize}[{}]}{\end{itemize}}
\newenvironment{myblockquote}{\begin{itemize}[{\quad}]}{\end{itemize}}

\newenvironment{mydescription}{

\begin{inparablank}}{\end{inparablank}} 
% Alternativen ohne Einrückung
\newenvironment{myitemize}{\begin{compactitem}[\textbullet]}{\end{compactitem}}
\newenvironment{myenumerate}{\begin{compactenum}}{\end{compactenum}}

% einige weitere Festlegungen
% ---------------------------
% \breakslash is used for URLs to allow linebreaking
\newcommand{\mybreakslash}{\discretionary{/}{}{/}}

\newlength{\mylength}
\newlength{\myhight}
\newlength{\myshadingheight}
\newcommand{\myoverline}[1]
{\settowidth{\mylength}{#1} \settoheight{\myhight}{#1}
\makebox[-3pt][l]{#1}
\rule[\myhight+1pt]{\mylength}{0.15mm}}

% Teile von Büchern
\newcommand{\mypart}[1]
%{\part{#1}}
{\addtocontents{toc}{\protect\vspace{7.5mm} \textbf{\Large {#1}}}}

% minitoc vorbereiten, aber standardmäßig unterdrücken
\newcommand{\myminitoc}{}

% Haupttitel
% ----------
%\newcommand{\mymaintitle}[1]
%{\definecolor{shadecolor}{gray}{0.9}\begin{shaded}
%\begin{center}
%\Huge \bfseries 
%#1 
%\end{center}
%\end{shaded}}

%\newcommand{\mysubtitle}[1]
%{\begin{center}
%\LARGE \bfseries 
%#1
%\end{center}}

\newcommand{\mysubtitle}[1]{\subtitle{#1}}
\newcommand{\mymaintitle}[1]{\title{#1}}
\newcommand{\myauthor}[1]{\author{#1}}


% Metadaten
% ---------
\newcommand{\fetchurlcaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Adresse der elektronischen Ressource zur Abholung (O)}.}{URL zur Abholung}}

\newcommand{\bookcaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Adresse der elektronischen Ressource (O)}.}{Buch (Hauptseite)}}

\newcommand{\functionalgroupcaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Angaben zum Inhalt: DDC-Sachgruppe der Deutschen Nationalbibliografie oder Warengruppen-Systematik des Deutschen Buchhandels (O)}.}{Sachgruppe(n)} }

\newcommand{\futhertopicscaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Angaben zum Inhalt: weitere Klassifikationen / Thesauri (F)}.}{Weitere Themen}}

\newcommand{\mainauthorscaption}[0]
{Hauptautor(en)}

\newcommand{\projecttexniciancaption}[0]
{Betreuer}

\newcommand{\organizationscaptions}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Beteiligte Organisationen (F)}.}{Organisation(en)}}

\newcommand{\datecaption}[0]
{Erscheinungsdatum}

\newcommand{\issuecaption}[0]
{Ausgabebezeichnung}

\newcommand{\standardcodecaption}[0]
{Standardnummer }

\newcommand{\maintitlecaption}[0]
{Haupttitel}

\newcommand{\publishercaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Verlag / Verlegende Stelle (O)}.}{Verlegende Stelle} }

\newcommand{\publishercitycaption}[0]
{Verlagsort}

\newcommand{\shelfcaption}[0]
{Wikibooks-Regal}

\newcommand{\sizecaption}[0]
{Umfang}


\newcommand{\Alpha}{\mathrm{A}}
\newcommand{\Beta}{\mathrm{B}}
\newcommand{\Epsilon}{\mathrm{E}}
\newcommand{\Zeta}{\mathrm{Z}}
\newcommand{\Eta}{\mathrm{H}}
\newcommand{\Iota}{\mathrm{I}}
\newcommand{\Kappa}{\mathrm{K}}
\newcommand{\Mu}{\mathrm{M}}
\newcommand{\Nu}{\mathrm{N}}
\newcommand{\Rho}{\mathrm{P}}
\newcommand{\Tau}{\mathrm{T}}
\newcommand{\Chi}{\mathrm{X}}













headers/defaultcolors.tex

\definecolor{AliceBlue}{rgb}{0.941176470588,0.972549019608,1.0}
\definecolor{aliceblue}{rgb}{0.941176470588,0.972549019608,1.0}
\definecolor{AntiqueWhite}{rgb}{0.980392156863,0.921568627451,0.843137254902}
\definecolor{antiquewhite}{rgb}{0.980392156863,0.921568627451,0.843137254902}
\definecolor{Aqua}{rgb}{0.0,1.0,1.0}
\definecolor{aqua}{rgb}{0.0,1.0,1.0}
\definecolor{Aquamarine}{rgb}{0.498039215686,1.0,0.83137254902}
\definecolor{aquamarine}{rgb}{0.498039215686,1.0,0.83137254902}
\definecolor{Azure}{rgb}{0.941176470588,1.0,1.0}
\definecolor{azure}{rgb}{0.941176470588,1.0,1.0}
\definecolor{Beige}{rgb}{0.960784313725,0.960784313725,0.862745098039}
\definecolor{beige}{rgb}{0.960784313725,0.960784313725,0.862745098039}
\definecolor{Bisque}{rgb}{1.0,0.894117647059,0.76862745098}
\definecolor{bisque}{rgb}{1.0,0.894117647059,0.76862745098}
\definecolor{Black}{rgb}{0.0,0.0,0.0}
\definecolor{black}{rgb}{0.0,0.0,0.0}
\definecolor{BlanchedAlmond}{rgb}{1.0,0.921568627451,0.803921568627}
\definecolor{blanchedalmond}{rgb}{1.0,0.921568627451,0.803921568627}
\definecolor{Blue}{rgb}{0.0,0.0,1.0}
%\definecolor{blue}{rgb}{0.0,0.0,1.0}
\definecolor{BlueViolet}{rgb}{0.541176470588,0.16862745098,0.886274509804}
\definecolor{blueviolet}{rgb}{0.541176470588,0.16862745098,0.886274509804}
\definecolor{Brown}{rgb}{0.647058823529,0.164705882353,0.164705882353}
\definecolor{brown}{rgb}{0.647058823529,0.164705882353,0.164705882353}
\definecolor{BurlyWood}{rgb}{0.870588235294,0.721568627451,0.529411764706}
\definecolor{burlywood}{rgb}{0.870588235294,0.721568627451,0.529411764706}
\definecolor{CadetBlue}{rgb}{0.372549019608,0.619607843137,0.627450980392}
\definecolor{cadetblue}{rgb}{0.372549019608,0.619607843137,0.627450980392}
\definecolor{Chartreuse}{rgb}{0.498039215686,1.0,0.0}
\definecolor{chartreuse}{rgb}{0.498039215686,1.0,0.0}
\definecolor{Chocolate}{rgb}{0.823529411765,0.411764705882,0.117647058824}
\definecolor{chocolate}{rgb}{0.823529411765,0.411764705882,0.117647058824}
\definecolor{Coral}{rgb}{1.0,0.498039215686,0.313725490196}
\definecolor{coral}{rgb}{1.0,0.498039215686,0.313725490196}
\definecolor{CornflowerBlue}{rgb}{0.392156862745,0.58431372549,0.929411764706}
\definecolor{cornflowerblue}{rgb}{0.392156862745,0.58431372549,0.929411764706}
\definecolor{Cornsilk}{rgb}{1.0,0.972549019608,0.862745098039}
\definecolor{cornsilk}{rgb}{1.0,0.972549019608,0.862745098039}
\definecolor{Crimson}{rgb}{0.862745098039,0.078431372549,0.235294117647}
\definecolor{crimson}{rgb}{0.862745098039,0.078431372549,0.235294117647}
\definecolor{Cyan}{rgb}{0.0,1.0,1.0}
%\definecolor{cyan}{rgb}{0.0,1.0,1.0}
\definecolor{DarkBlue}{rgb}{0.0,0.0,0.545098039216}
\definecolor{darkblue}{rgb}{0.0,0.0,0.545098039216}
\definecolor{DarkCyan}{rgb}{0.0,0.545098039216,0.545098039216}
\definecolor{darkcyan}{rgb}{0.0,0.545098039216,0.545098039216}
\definecolor{DarkGoldenRod}{rgb}{0.721568627451,0.525490196078,0.043137254902}
\definecolor{darkgoldenrod}{rgb}{0.721568627451,0.525490196078,0.043137254902}
\definecolor{DarkGray}{rgb}{0.662745098039,0.662745098039,0.662745098039}
\definecolor{darkgray}{rgb}{0.662745098039,0.662745098039,0.662745098039}
\definecolor{DarkGreen}{rgb}{0.0,0.392156862745,0.0}
\definecolor{darkgreen}{rgb}{0.0,0.392156862745,0.0}
\definecolor{DarkKhaki}{rgb}{0.741176470588,0.717647058824,0.419607843137}
\definecolor{darkkhaki}{rgb}{0.741176470588,0.717647058824,0.419607843137}
\definecolor{DarkMagenta}{rgb}{0.545098039216,0.0,0.545098039216}
\definecolor{darkmagenta}{rgb}{0.545098039216,0.0,0.545098039216}
\definecolor{DarkOliveGreen}{rgb}{0.333333333333,0.419607843137,0.18431372549}
\definecolor{darkolivegreen}{rgb}{0.333333333333,0.419607843137,0.18431372549}
\definecolor{Darkorange}{rgb}{1.0,0.549019607843,0.0}
\definecolor{darkorange}{rgb}{1.0,0.549019607843,0.0}
\definecolor{DarkOrchid}{rgb}{0.6,0.196078431373,0.8}
\definecolor{darkorchid}{rgb}{0.6,0.196078431373,0.8}
\definecolor{DarkRed}{rgb}{0.545098039216,0.0,0.0}
\definecolor{darkred}{rgb}{0.545098039216,0.0,0.0}
\definecolor{DarkSalmon}{rgb}{0.913725490196,0.588235294118,0.478431372549}
\definecolor{darksalmon}{rgb}{0.913725490196,0.588235294118,0.478431372549}
\definecolor{DarkSeaGreen}{rgb}{0.560784313725,0.737254901961,0.560784313725}
\definecolor{darkseagreen}{rgb}{0.560784313725,0.737254901961,0.560784313725}
\definecolor{DarkSlateBlue}{rgb}{0.282352941176,0.239215686275,0.545098039216}
\definecolor{darkslateblue}{rgb}{0.282352941176,0.239215686275,0.545098039216}
\definecolor{DarkSlateGray}{rgb}{0.18431372549,0.309803921569,0.309803921569}
\definecolor{darkslategray}{rgb}{0.18431372549,0.309803921569,0.309803921569}
\definecolor{DarkTurquoise}{rgb}{0.0,0.807843137255,0.819607843137}
\definecolor{darkturquoise}{rgb}{0.0,0.807843137255,0.819607843137}
\definecolor{DarkViolet}{rgb}{0.580392156863,0.0,0.827450980392}
\definecolor{darkviolet}{rgb}{0.580392156863,0.0,0.827450980392}
\definecolor{DeepPink}{rgb}{1.0,0.078431372549,0.576470588235}
\definecolor{deeppink}{rgb}{1.0,0.078431372549,0.576470588235}
\definecolor{DeepSkyBlue}{rgb}{0.0,0.749019607843,1.0}
\definecolor{deepskyblue}{rgb}{0.0,0.749019607843,1.0}
\definecolor{DimGray}{rgb}{0.411764705882,0.411764705882,0.411764705882}
\definecolor{dimgray}{rgb}{0.411764705882,0.411764705882,0.411764705882}
\definecolor{DodgerBlue}{rgb}{0.117647058824,0.564705882353,1.0}
\definecolor{dodgerblue}{rgb}{0.117647058824,0.564705882353,1.0}
\definecolor{FireBrick}{rgb}{0.698039215686,0.133333333333,0.133333333333}
\definecolor{firebrick}{rgb}{0.698039215686,0.133333333333,0.133333333333}
\definecolor{FloralWhite}{rgb}{1.0,0.980392156863,0.941176470588}
\definecolor{floralwhite}{rgb}{1.0,0.980392156863,0.941176470588}
\definecolor{ForestGreen}{rgb}{0.133333333333,0.545098039216,0.133333333333}
\definecolor{forestgreen}{rgb}{0.133333333333,0.545098039216,0.133333333333}
\definecolor{Fuchsia}{rgb}{1.0,0.0,1.0}
\definecolor{fuchsia}{rgb}{1.0,0.0,1.0}
\definecolor{Gainsboro}{rgb}{0.862745098039,0.862745098039,0.862745098039}
\definecolor{gainsboro}{rgb}{0.862745098039,0.862745098039,0.862745098039}
\definecolor{GhostWhite}{rgb}{0.972549019608,0.972549019608,1.0}
\definecolor{ghostwhite}{rgb}{0.972549019608,0.972549019608,1.0}
\definecolor{Gold}{rgb}{1.0,0.843137254902,0.0}
\definecolor{gold}{rgb}{1.0,0.843137254902,0.0}
\definecolor{GoldenRod}{rgb}{0.854901960784,0.647058823529,0.125490196078}
\definecolor{goldenrod}{rgb}{0.854901960784,0.647058823529,0.125490196078}
\definecolor{Gray}{rgb}{0.501960784314,0.501960784314,0.501960784314}
\definecolor{gray}{rgb}{0.501960784314,0.501960784314,0.501960784314}
\definecolor{Green}{rgb}{0.0,0.501960784314,0.0}
%\definecolor{green}{rgb}{0.0,0.501960784314,0.0}
\definecolor{GreenYellow}{rgb}{0.678431372549,1.0,0.18431372549}
\definecolor{greenyellow}{rgb}{0.678431372549,1.0,0.18431372549}
\definecolor{HoneyDew}{rgb}{0.941176470588,1.0,0.941176470588}
\definecolor{honeydew}{rgb}{0.941176470588,1.0,0.941176470588}
\definecolor{HotPink}{rgb}{1.0,0.411764705882,0.705882352941}
\definecolor{hotpink}{rgb}{1.0,0.411764705882,0.705882352941}
\definecolor{IndianRed}{rgb}{0.803921568627,0.360784313725,0.360784313725}
\definecolor{indianred}{rgb}{0.803921568627,0.360784313725,0.360784313725}
\definecolor{Indigo}{rgb}{0.294117647059,0.0,0.509803921569}
\definecolor{indigo}{rgb}{0.294117647059,0.0,0.509803921569}
\definecolor{Ivory}{rgb}{1.0,1.0,0.941176470588}
\definecolor{ivory}{rgb}{1.0,1.0,0.941176470588}
\definecolor{Khaki}{rgb}{0.941176470588,0.901960784314,0.549019607843}
\definecolor{khaki}{rgb}{0.941176470588,0.901960784314,0.549019607843}
\definecolor{Lavender}{rgb}{0.901960784314,0.901960784314,0.980392156863}
\definecolor{lavender}{rgb}{0.901960784314,0.901960784314,0.980392156863}
\definecolor{LavenderBlush}{rgb}{1.0,0.941176470588,0.960784313725}
\definecolor{lavenderblush}{rgb}{1.0,0.941176470588,0.960784313725}
\definecolor{LawnGreen}{rgb}{0.486274509804,0.988235294118,0.0}
\definecolor{lawngreen}{rgb}{0.486274509804,0.988235294118,0.0}
\definecolor{LemonChiffon}{rgb}{1.0,0.980392156863,0.803921568627}
\definecolor{lemonchiffon}{rgb}{1.0,0.980392156863,0.803921568627}
\definecolor{LightBlue}{rgb}{0.678431372549,0.847058823529,0.901960784314}
\definecolor{lightblue}{rgb}{0.678431372549,0.847058823529,0.901960784314}
\definecolor{LightCoral}{rgb}{0.941176470588,0.501960784314,0.501960784314}
\definecolor{lightcoral}{rgb}{0.941176470588,0.501960784314,0.501960784314}
\definecolor{LightCyan}{rgb}{0.878431372549,1.0,1.0}
\definecolor{lightcyan}{rgb}{0.878431372549,1.0,1.0}
\definecolor{LightGoldenRodYellow}{rgb}{0.980392156863,0.980392156863,0.823529411765}
\definecolor{lightgoldenrodyellow}{rgb}{0.980392156863,0.980392156863,0.823529411765}
\definecolor{LightGrey}{rgb}{0.827450980392,0.827450980392,0.827450980392}
\definecolor{lightgrey}{rgb}{0.827450980392,0.827450980392,0.827450980392}
\definecolor{LightGreen}{rgb}{0.564705882353,0.933333333333,0.564705882353}
\definecolor{lightgreen}{rgb}{0.564705882353,0.933333333333,0.564705882353}
\definecolor{LightPink}{rgb}{1.0,0.713725490196,0.756862745098}
\definecolor{lightpink}{rgb}{1.0,0.713725490196,0.756862745098}
\definecolor{LightSalmon}{rgb}{1.0,0.627450980392,0.478431372549}
\definecolor{lightsalmon}{rgb}{1.0,0.627450980392,0.478431372549}
\definecolor{LightSeaGreen}{rgb}{0.125490196078,0.698039215686,0.666666666667}
\definecolor{lightseagreen}{rgb}{0.125490196078,0.698039215686,0.666666666667}
\definecolor{LightSkyBlue}{rgb}{0.529411764706,0.807843137255,0.980392156863}
\definecolor{lightskyblue}{rgb}{0.529411764706,0.807843137255,0.980392156863}
\definecolor{LightSlateGray}{rgb}{0.466666666667,0.533333333333,0.6}
\definecolor{lightslategray}{rgb}{0.466666666667,0.533333333333,0.6}
\definecolor{LightSteelBlue}{rgb}{0.690196078431,0.76862745098,0.870588235294}
\definecolor{lightsteelblue}{rgb}{0.690196078431,0.76862745098,0.870588235294}
\definecolor{LightYellow}{rgb}{1.0,1.0,0.878431372549}
\definecolor{lightyellow}{rgb}{1.0,1.0,0.878431372549}
\definecolor{Lime}{rgb}{0.0,1.0,0.0}
\definecolor{lime}{rgb}{0.0,1.0,0.0}
\definecolor{LimeGreen}{rgb}{0.196078431373,0.803921568627,0.196078431373}
\definecolor{limegreen}{rgb}{0.196078431373,0.803921568627,0.196078431373}
\definecolor{Linen}{rgb}{0.980392156863,0.941176470588,0.901960784314}
\definecolor{linen}{rgb}{0.980392156863,0.941176470588,0.901960784314}
\definecolor{Magenta}{rgb}{1.0,0.0,1.0}
%\definecolor{magenta}{rgb}{1.0,0.0,1.0}
\definecolor{Maroon}{rgb}{0.501960784314,0.0,0.0}
\definecolor{maroon}{rgb}{0.501960784314,0.0,0.0}
\definecolor{MediumAquaMarine}{rgb}{0.4,0.803921568627,0.666666666667}
\definecolor{mediumaquamarine}{rgb}{0.4,0.803921568627,0.666666666667}
\definecolor{MediumBlue}{rgb}{0.0,0.0,0.803921568627}
\definecolor{mediumblue}{rgb}{0.0,0.0,0.803921568627}
\definecolor{MediumOrchid}{rgb}{0.729411764706,0.333333333333,0.827450980392}
\definecolor{mediumorchid}{rgb}{0.729411764706,0.333333333333,0.827450980392}
\definecolor{MediumPurple}{rgb}{0.576470588235,0.439215686275,0.847058823529}
\definecolor{mediumpurple}{rgb}{0.576470588235,0.439215686275,0.847058823529}
\definecolor{MediumSeaGreen}{rgb}{0.235294117647,0.701960784314,0.443137254902}
\definecolor{mediumseagreen}{rgb}{0.235294117647,0.701960784314,0.443137254902}
\definecolor{MediumSlateBlue}{rgb}{0.482352941176,0.407843137255,0.933333333333}
\definecolor{mediumslateblue}{rgb}{0.482352941176,0.407843137255,0.933333333333}
\definecolor{MediumSpringGreen}{rgb}{0.0,0.980392156863,0.603921568627}
\definecolor{mediumspringgreen}{rgb}{0.0,0.980392156863,0.603921568627}
\definecolor{MediumTurquoise}{rgb}{0.282352941176,0.819607843137,0.8}
\definecolor{mediumturquoise}{rgb}{0.282352941176,0.819607843137,0.8}
\definecolor{MediumVioletRed}{rgb}{0.780392156863,0.0823529411765,0.521568627451}
\definecolor{mediumvioletred}{rgb}{0.780392156863,0.0823529411765,0.521568627451}
\definecolor{MidnightBlue}{rgb}{0.0980392156863,0.0980392156863,0.439215686275}
\definecolor{midnightblue}{rgb}{0.0980392156863,0.0980392156863,0.439215686275}
\definecolor{MintCream}{rgb}{0.960784313725,1.0,0.980392156863}
\definecolor{mintcream}{rgb}{0.960784313725,1.0,0.980392156863}
\definecolor{MistyRose}{rgb}{1.0,0.894117647059,0.882352941176}
\definecolor{mistyrose}{rgb}{1.0,0.894117647059,0.882352941176}
\definecolor{Moccasin}{rgb}{1.0,0.894117647059,0.709803921569}
\definecolor{moccasin}{rgb}{1.0,0.894117647059,0.709803921569}
\definecolor{NavajoWhite}{rgb}{1.0,0.870588235294,0.678431372549}
\definecolor{navajowhite}{rgb}{1.0,0.870588235294,0.678431372549}
\definecolor{Navy}{rgb}{0.0,0.0,0.501960784314}
\definecolor{navy}{rgb}{0.0,0.0,0.501960784314}
\definecolor{OldLace}{rgb}{0.992156862745,0.960784313725,0.901960784314}
\definecolor{oldlace}{rgb}{0.992156862745,0.960784313725,0.901960784314}
\definecolor{Olive}{rgb}{0.501960784314,0.501960784314,0.0}
\definecolor{olive}{rgb}{0.501960784314,0.501960784314,0.0}
\definecolor{OliveDrab}{rgb}{0.419607843137,0.556862745098,0.137254901961}
\definecolor{olivedrab}{rgb}{0.419607843137,0.556862745098,0.137254901961}
\definecolor{Orange}{rgb}{1.0,0.647058823529,0.0}
\definecolor{orange}{rgb}{1.0,0.647058823529,0.0}
\definecolor{OrangeRed}{rgb}{1.0,0.270588235294,0.0}
\definecolor{orangered}{rgb}{1.0,0.270588235294,0.0}
\definecolor{Orchid}{rgb}{0.854901960784,0.439215686275,0.839215686275}
\definecolor{orchid}{rgb}{0.854901960784,0.439215686275,0.839215686275}
\definecolor{PaleGoldenRod}{rgb}{0.933333333333,0.909803921569,0.666666666667}
\definecolor{palegoldenrod}{rgb}{0.933333333333,0.909803921569,0.666666666667}
\definecolor{PaleGreen}{rgb}{0.596078431373,0.98431372549,0.596078431373}
\definecolor{palegreen}{rgb}{0.596078431373,0.98431372549,0.596078431373}
\definecolor{PaleTurquoise}{rgb}{0.686274509804,0.933333333333,0.933333333333}
\definecolor{paleturquoise}{rgb}{0.686274509804,0.933333333333,0.933333333333}
\definecolor{PaleVioletRed}{rgb}{0.847058823529,0.439215686275,0.576470588235}
\definecolor{palevioletred}{rgb}{0.847058823529,0.439215686275,0.576470588235}
\definecolor{PapayaWhip}{rgb}{1.0,0.937254901961,0.835294117647}
\definecolor{papayawhip}{rgb}{1.0,0.937254901961,0.835294117647}
\definecolor{PeachPuff}{rgb}{1.0,0.854901960784,0.725490196078}
\definecolor{peachpuff}{rgb}{1.0,0.854901960784,0.725490196078}
\definecolor{Peru}{rgb}{0.803921568627,0.521568627451,0.247058823529}
\definecolor{peru}{rgb}{0.803921568627,0.521568627451,0.247058823529}
\definecolor{Pink}{rgb}{1.0,0.752941176471,0.796078431373}
\definecolor{pink}{rgb}{1.0,0.752941176471,0.796078431373}
\definecolor{Plum}{rgb}{0.866666666667,0.627450980392,0.866666666667}
\definecolor{plum}{rgb}{0.866666666667,0.627450980392,0.866666666667}
\definecolor{PowderBlue}{rgb}{0.690196078431,0.878431372549,0.901960784314}
\definecolor{powderblue}{rgb}{0.690196078431,0.878431372549,0.901960784314}
\definecolor{Purple}{rgb}{0.501960784314,0.0,0.501960784314}
\definecolor{purple}{rgb}{0.501960784314,0.0,0.501960784314}
\definecolor{Red}{rgb}{1.0,0.0,0.0}
%\definecolor{red}{rgb}{1.0,0.0,0.0}
\definecolor{RosyBrown}{rgb}{0.737254901961,0.560784313725,0.560784313725}
\definecolor{rosybrown}{rgb}{0.737254901961,0.560784313725,0.560784313725}
\definecolor{RoyalBlue}{rgb}{0.254901960784,0.411764705882,0.882352941176}
\definecolor{royalblue}{rgb}{0.254901960784,0.411764705882,0.882352941176}
\definecolor{SaddleBrown}{rgb}{0.545098039216,0.270588235294,0.0745098039216}
\definecolor{saddlebrown}{rgb}{0.545098039216,0.270588235294,0.0745098039216}
\definecolor{Salmon}{rgb}{0.980392156863,0.501960784314,0.447058823529}
\definecolor{salmon}{rgb}{0.980392156863,0.501960784314,0.447058823529}
\definecolor{SandyBrown}{rgb}{0.956862745098,0.643137254902,0.376470588235}
\definecolor{sandybrown}{rgb}{0.956862745098,0.643137254902,0.376470588235}
\definecolor{SeaGreen}{rgb}{0.180392156863,0.545098039216,0.341176470588}
\definecolor{seagreen}{rgb}{0.180392156863,0.545098039216,0.341176470588}
\definecolor{SeaShell}{rgb}{1.0,0.960784313725,0.933333333333}
\definecolor{seashell}{rgb}{1.0,0.960784313725,0.933333333333}
\definecolor{Sienna}{rgb}{0.627450980392,0.321568627451,0.176470588235}
\definecolor{sienna}{rgb}{0.627450980392,0.321568627451,0.176470588235}
\definecolor{Silver}{rgb}{0.752941176471,0.752941176471,0.752941176471}
\definecolor{silver}{rgb}{0.752941176471,0.752941176471,0.752941176471}
\definecolor{SkyBlue}{rgb}{0.529411764706,0.807843137255,0.921568627451}
\definecolor{skyblue}{rgb}{0.529411764706,0.807843137255,0.921568627451}
\definecolor{SlateBlue}{rgb}{0.41568627451,0.352941176471,0.803921568627}
\definecolor{slateblue}{rgb}{0.41568627451,0.352941176471,0.803921568627}
\definecolor{SlateGray}{rgb}{0.439215686275,0.501960784314,0.564705882353}
\definecolor{slategray}{rgb}{0.439215686275,0.501960784314,0.564705882353}
\definecolor{Snow}{rgb}{1.0,0.980392156863,0.980392156863}
\definecolor{snow}{rgb}{1.0,0.980392156863,0.980392156863}
\definecolor{SpringGreen}{rgb}{0.0,1.0,0.498039215686}
\definecolor{springgreen}{rgb}{0.0,1.0,0.498039215686}
\definecolor{SteelBlue}{rgb}{0.274509803922,0.509803921569,0.705882352941}
\definecolor{steelblue}{rgb}{0.274509803922,0.509803921569,0.705882352941}
\definecolor{Tan}{rgb}{0.823529411765,0.705882352941,0.549019607843}
\definecolor{tan}{rgb}{0.823529411765,0.705882352941,0.549019607843}
\definecolor{Teal}{rgb}{0.0,0.501960784314,0.501960784314}
\definecolor{teal}{rgb}{0.0,0.501960784314,0.501960784314}
\definecolor{Thistle}{rgb}{0.847058823529,0.749019607843,0.847058823529}
\definecolor{thistle}{rgb}{0.847058823529,0.749019607843,0.847058823529}
\definecolor{Tomato}{rgb}{1.0,0.388235294118,0.278431372549}
\definecolor{tomato}{rgb}{1.0,0.388235294118,0.278431372549}
\definecolor{Turquoise}{rgb}{0.250980392157,0.878431372549,0.81568627451}
\definecolor{turquoise}{rgb}{0.250980392157,0.878431372549,0.81568627451}
\definecolor{Violet}{rgb}{0.933333333333,0.509803921569,0.933333333333}
\definecolor{violet}{rgb}{0.933333333333,0.509803921569,0.933333333333}
\definecolor{Wheat}{rgb}{0.960784313725,0.870588235294,0.701960784314}
\definecolor{wheat}{rgb}{0.960784313725,0.870588235294,0.701960784314}
\definecolor{White}{rgb}{1.0,1.0,1.0}
%\definecolor{white}{rgb}{1.0,1.0,1.0}
\definecolor{WhiteSmoke}{rgb}{0.960784313725,0.960784313725,0.960784313725}
\definecolor{whitesmoke}{rgb}{0.960784313725,0.960784313725,0.960784313725}
\definecolor{Yellow}{rgb}{1.0,1.0,0.0}
%\definecolor{yellow}{rgb}{1.0,1.0,0.0}
\definecolor{YellowGreen}{rgb}{0.603921568627,0.803921568627,0.196078431373}
\definecolor{yellowgreen}{rgb}{0.603921568627,0.803921568627,0.196078431373}

\definecolor{shadecolor}{gray}{0.9}
\definecolor{mydarkgreen}{rgb}{0.0,0.5625,0.0} 








headers/formattings.tex

% PDF-Links vorbereiten
\hypersetup{%a5paper,
	linkcolor=black,     % Für Links in der gleichen Seite
	urlcolor=black,      % Für Links auf URLs
	breaklinks=true,    % Links dürfen umgebrochen werden
	colorlinks=false,
	citebordercolor=0 0 0,  % Farbe für \cite
	filebordercolor=0 0 0,
	linkbordercolor=0 0 0,
	menubordercolor=0 0 0,
	urlbordercolor=0 0 0,
	pdfhighlight=/I,
	pdfborder=0 0 0,   % keine Box um die Links!
	bookmarksopen=true,
	bookmarksnumbered=true,
	frenchlinks=false
}

% nicht zu viele Silbentrennungen
\sloppy


% Waisen, Hurenkinder
\clubpenalty = 10000
\widowpenalty = 10000 
\displaywidowpenalty = 10000


% verschiedene Einstellungen
\addtolength{\skip\footins}{2ex} % Länge zwischen Fußnotenbereich und Text








headers/hyphenation.tex

\hyphenation{NASA}
\hyphenation{Unter-schenkel-vorder-innen-seite}
\hyphenation{Unter-schenkel-vorder-au\ss en-seite}
\hyphenation{Auge}
\hyphenation{ohne}
\hyphenation{eine}
\hyphenation{come}
\hyphenation{zero}
\hyphenation{also}
\hyphenation{five}
\hyphenation{many}
\hyphenation{copy}
\hyphenation{year}
\hyphenation{same}
\hyphenation{make}
\hyphenation{time}
\hyphenation{made}
\hyphenation{glei-che}
\hyphenation{Zucker-wasser}
\hyphenation{Makro-phagen-stimulation}
\hyphenation{Revo-lution}
\hyphenation{Reich}
\hyphenation{Gebiet}
\hyphenation{ethnische}
\hyphenation{Sow-jet-uni-on}
\hyphenation{NATO}
\hyphenation{Amts-sprache}
\hyphenation{Amts-sprachen}
\hyphenation{Otto}
\hyphenation{Ab-sorptions-ko-effizient}
\hyphenation{Reich}
\hyphenation{Trier}
\hyphenation{Butter-worth}
\hyphenation{Rausch-unter-dr\"uckung}









headers/imageheader.tex

\begin{small}
Auf den folgenden Seiten stehen für alle Bilder die Quellen, Autoren und Lizenzen. Das Verzeichnis wurde erstellt mit Hilfe der \myhref{http://de.wikipedia.org/wiki/MediaWiki}{Wikimedia-Software} und an Layout und Gliederung dieses Buches angepasst.

Zu den Lizenzen gibt es hier weitere Informationen:

\begin{itemize}
\item GNU Free Documentation License (GFDL). Text dieser Lizenz: \newline{}\url{http://www.gnu.org/licenses/old-licenses/gpl-1.0.txt}

\item GNU General Public License Version 2 (GPL). Text dieser Lizenz: \newline{}\url{http://www.gnu.org/licenses/gpl-2.0.txt} 

\item Creative Commons Attribution ShareAlike 1.0 License (cc-by-sa-1.0). Text dieser Lizenz: \newline{}\url{http://creativecommons.org/licenses/by-sa/1.0/} 

\item Creative Commons Attribution ShareAlike 2.0 License (cc-by-sa-2.0). Damit werden auch die Versionen f\"ur andere Sprachen bezeichnet. Text der englischen Version: \newline{}\url{http://creativecommons.org/licenses/by-sa/2.0/}

\item Creative Commons Attribution ShareAlike 2.5 License (cc-by-sa-2.5). Text dieser Lizenz:\newline{}\url{http://creativecommons.org/licenses/by-sa/2.5/}

\item Creative Commons Attribution ShareAlike 3.0 License (cc-by-sa-3.0). Text dieser Lizenz:\newline{}\url{http://creativecommons.org/licenses/by-sa/3.0/}

\item Creative Commons Attribution 2.0 License (cc-by-2.0). Damit werden auch die Versionen f\"ur andere Sprachen bezeichnet. Text der englischen Version:\newline{}\url{http://creativecommons.org/licenses/by/2.0/}

\item Creative Commons Attribution 2.5 License (cc-by-2.5). Text dieser Lizenz:\newline{}\url{http://creativecommons.org/licenses/by/2.5/deed.en}

\item Creative Commons Attribution 3.0 License (cc-by-3.0). Text dieser Lizenz:\newline{}\url{http://creativecommons.org/licenses/by/2.5/deed.en}

\item Public Domain (PD): This image is in the public domain. Dieses Bild ist gemeinfrei.

\item ATTR:  The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted. 

\item EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the common face of the euro coins belongs to the European Commission. Authorised is reproduction in a format without relief (drawings, paintings, films) provided they are not detrimental to the image of the euro.
\end{itemize}

Den an weiteren Einzelheiten interessierten Leser verweisen wir auf die Onlineversion dieses Buches und die Beschreibungsseiten der Dateien.

\end{small}

\pagebreak







headers/license.tex

\chapter{Zu diesem Buch}
\section{Hinweise zu den Lizenzen}
\label{Lizenzhinweise}

Dieses Werk ist entstanden bei \myhref{http://de.wikibooks.org/wiki/Einf\%C3\%BChrung_in_SQL}{Wikibooks}, einer Online-Bibliothek im Internet mit Lehr-, Sach- und Fachbüchern. Jeder kann und darf diese Bücher frei nutzen und bearbeiten. Alle Inhalte stehen unter den Lizenzen „Creative Commons Attribution/Share-Alike“ (CC-BY-SA 3.0) und GNU-Lizenz für freie Dokumentation (GFDL). 

Das Konvertierungsprogramm \myhref{http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf}{wb2pdf} steht unter GNU General Public License (GPL).

Das Textsatzprogramm \myhref{http://de.wikipedia.org/wiki/LaTeX} {\LaTeX{}} steht unter der LaTeX Project Public License (LPPL).

Hinweise zur Nutzung und für Zitate sind zu finden unter:
\begin{itemize}
\item Originalversion der Lizenz CC-BY-SA 3.0 \newline \url{http://creativecommons.org/licenses/by-sa/3.0}
\item Deutsche Version der Lizenz mit Ergänzungen \newline{} \url{http://creativecommons.org/licenses/by-sa/3.0/deed.de}
\item Originalversion der Lizenz GFDL \newline{} \url{http://www.gnu.org/copyleft/fdl.html}
\item Originalversion der Lizenz GPL \newline{} \url{http://www.gnu.org/licenses/gpl-3.0.html}
\item Version der LaTeX PPL \newline{} \url{http://www.opensource.org/licenses/lppl}
\item Nutzungsbedingungen der Wikimedia Foundation (deutsch) \newline{} \url{http://wikimediafoundation.org/wiki/Nutzungsbedingungen}
\item Zitieren aus Wikibooks \newline{} \url{http://de.wikibooks.org/wiki/Hilfe:Zitieren#Zitieren_aus_Wikibooks}
\end{itemize}








main/main.tex

\RequirePackage{hyphsubst}
\documentclass[fontsize=11pt,paper=A4,BCOR=12mm,DIV=13,open=any,listof=totoc]{scrbook}
\input{../headers/paper}
\input{../headers/packages1}
\input{../headers/babel}
\input{../headers/svg}
\input{../headers/packages2}
\input{../headers/defaultcolors}
\input{../headers/hyphenation}
\input{../headers/commands}
\usepackage{type1ec}      
\usepackage{CJKutf8}
\usepackage[overlap, CJK]{ruby}
\usepackage{CJKulem}
\input{../headers/title}
\input{../headers/options}
\input{../headers/formattings}
\input{../headers/unicodes}
\input{../headers/templates}
\input{../headers/templates-dirk}
\input{../headers/templates-chemie}
\usepackage{lmodern}
\begin{document}
\begin{CJK}{UTF8}{megafont}
\usetocstyle{standard}
\raggedbottom
\thispagestyle{empty}
\pagestyle{empty}
%\include{coverfrontpage}

%\cleardoublepage
\pagenumbering{Roman}
\maketitle
\pagestyle{scrheadings}

\setcounter{tocdepth}{\mytocdepth}
\tableofcontents 

%\cleardoublepage
\pagenumbering{arabic}

%\include{kap-vorwort}




\label{0}\chapter{Introduction and OSI Model}

\myminitoc
\label{1}





\label{2}
\LaTeXNullTemplate{}
\section{Introduction}
\label{3}
Welcome to the wonderful world of serial data communications.  This is a part of a series of articles that will cover many aspects of serial data communications.  I am going to try and start from the beginning and follow a layered approach to working with serial data and by the time we are through we should be able to transfer just about any sort of data that you would care to send over wires between computers.  Possibly even without wires (wireless data communication).

There are so many aspects about this subject that sometimes it is a very hard nut to crack.  I\textquotesingle{}m going to dive down and try to start with the basics and introducing the RS-{}232 serial data communications standard.
\section{Why Serial Communication?}
\label{4} 
\LaTeXNullTemplate{}
First of all, the basic standards that I will be describing are, from the perspective of computer technology, positively ancient.  Some of you reading this could perhaps find your grandparents or even great-{}grandparents using this protocol when they were in College.  At the same time, it is so solid in concept that the reason for abandoning it should always be questioned.  Indeed, there have been several other data transmission methods that have been developed since the RS-{}232 serial data protocol was established, but this workhorse is still widely used and seems to go through a rebirth every once in a while.

When all else fails, RS-{}232 serial communication can be relied upon.  When you are trying to get two pieces of computer equipment together, sometimes newer communications methods have hard limitations that can\textquotesingle{}t be worked out due to number of connections, RF interference, distance limitations, being behind physical barriers, in sensitive areas like medical equipment where stray voltages can be a problem, or that you absolutely need to rely upon the data being transmitted.  A sister protocol to RS-{}232, the RS-{}422 protocol, even allows transmissions for several miles of cable.

Serial data communication is widely implemented.  While it is sometimes presumed that a PC can deal with just about any problem you want to throw at it, there are a number of electronic devices that are full of data which needs to be recorded.  In part because of the age of this protocol, there are many legacy devices that have RS-{}232 serial data as the only access to the outside world. But even many of the latest network devices have RS-{}232 \symbol{34}console\symbol{34} ports to facilitate initial configuration and provide a means of troubleshooting when the network itself is broken.  Because the hardware is so widely implemented and available, together with many software tools, it is also relatively cheap to develop equipment and software using this system.  Particularly when transmission speed isn\textquotesingle{}t important, but data needs to be sent on a regular basis.  RS-{}232 serial data is a very reasonable solution instead of a more expensive 10BASE-{}T TCP/IP solution or high-{}speed fiber optics.

Serial data communication is also versatile.  While the usual method of transmission is over copper wires between two fixed points, recently there have been some converters that transmit serial data over fiber optic lines, wireless transmitters, USB devices, and even over TCP/IP networks.  What is really surprising here is that all of these transmission methods are totally transparent to the device receiving or transmitting the serial data.  It can also be a carrier for TCP/IP, and be used for private networks.
\section{OSI Layered Network Communications Model}
\label{5}
While serial data communication is not strictly a network communication protocol, it is still important to understand the layered communications model when dealing with any sort of communications protocols.  Often people implementing serial data software have to build multiple layers of this model, even if they are not totally aware of it when they are doing it at the time.

Network Layers:

\begin{myitemize}
\item{}  Application
\item{}  Presentation
\item{}  Session
\item{}  Transport
\item{}  Network
\item{}  Data-{}Link
\item{}  Physical
\end{myitemize}


Often serial data communication does not implement all of these different layers, and even more often these different layers are combined in the same module or even the very same function. This model was originally developed by the International Organization for Standards (ISO) in 1984 to help give a good idea of where different networking structures could be separated and intermingled. The point here is to know that you can separate different parts of communications sub-{}systems to help with the debugging process, and to move structures from one sub-{}system to another.

If your software is well written using a model similar to this one, the software subroutines in layers above and below do not have to be rewritten if the module at a particular layer is changed. To achieve this you need to establish strong standards for the interface between the layers, which will be covered in other sections of these articles. For example, a web browser does not need to know if the HTML is being sent over fiber optic cables, wireless transmissions, or even over a serial data cable.
\subsection{Serial Comm Layers}
\label{6}
For serial data communication, I see this layer model as more common:

\begin{myitemize}
\item{}  Serial Data Applications
\item{}  Serial Networks
\item{}  Packet Challenge/Verification
\item{}  Basic Serial Packets
\item{}  8250 UART processing
\item{}  Raw RS-{}232 Signals
\end{myitemize}


In the case of many serial data applications, not all of these layers are implemented.  Often it is just raw packets being transmitted in one direction, but sometimes even just a signal of any kind can indicate some action take place on a computer, regardless of content.  It is possible to simply take the logic level of a raw RS-{}232 signal in your software, but at some point the data does need to be converted and the voltages involved with RS-{}232 can damage hardware, so this is very seldom done.
\section{Software Examples}
\label{7}
I don\textquotesingle{}t want to get into a holy war over programming languages with this series of articles.  For the moment, I\textquotesingle{}m going to be using Turbo Pascal and Delphi as the programming languages, if for no other reason then the fact that I am most comfortable programming in this development environment.  If a good C/C++ guru would like to \symbol{34}translate\symbol{34} these routines, I would welcome that, as well as other programming languages where applicable.  Serial communication is complicated enough so please avoid esoteric languages like Intercal or Malbolge.  A good BASIC implementation would be welcome, as would LISP.  I\textquotesingle{}ll try to avoid language-{}specific features and simply deal with functions in a generic sense, which good programmers should be able to translate to the language of their choice.

These articles are meant to teach you the basics of serial data communication, not to be a functioning serial data driver.  Still, all code examples will be checked and sent through an actual compiler before being listed in the articles, and hopefully fully debugged.  There is no one single way to accomplish these steps and tasks, so I am going to encourage a hands-{}on approach to dealing with software and setting up networks.

While I\textquotesingle{}ve had quite a bit of experience in dealing with several serial data protocols (on the packet level), I am by no means the topmost expert at this.  As I said earlier, I have considerable experience in dealing with communications at many levels, and I\textquotesingle{}d like to share some of my very hard-{}won knowledge.
\section{Applications in Education}
\label{8}
While I am only a Software Engineer and don\textquotesingle{}t have the \symbol{34}formal\symbol{34} credentials necessary for making an educational textbook, I do believe that there is much that could be taught about computer networking by students experimenting with serial data communication.  The audience that I am aiming for with these articles are the High School hackers/computer geeks and undergraduate CS majors.  A High School teacher that wanted to tackle a subject like this, or if you wanted to cover a special topic course in a university setting where students could get some very hands-{}on experience with communications protocols.  Every layer of the OSI model could be demonstrated in a manner that students would learn from first-{}hand experiences why certain rules/systems have been implemented on the Internet, what standards documents mean, and perhaps even participate in creating standards documents.

If you are a professor or High School instructor interested in using this text, I would be particularly interested in adapting this text to better suit your needs, or working with you in covering this subject.

From a professional{\bfseries  perspective}, this is a topic that is seldom taught at a university, and usually only in passing when they are rushing through a whole bunch of other protocol suites.  Software developers are usually introduced to this topic by having their supervisor dump a bunch of specification documents on their desk, a driver disk with API documentation, and perhaps a typically short deadline in order to get something working that should have been working sometime last year.  Software developers who really understand serial data communication are worth gold, and often even these developers only learn just enough to get the immediate job done.

I\textquotesingle{}ve also found that skills learned from developing serial data communications also translate into other projects and give a deeper understanding of just about any data transmission system.  In addition to the other groups I mentioned, I am also aiming for those unfortunate software engineers who are trying to learn just about anything about this very difficult subject and don\textquotesingle{}t know where to begin.  Documentation about serial communication is sparse, and sometime contradictory.

This doesn\textquotesingle{}t have to be that complicated of a subject, and it is possible for mere mortals to be able to understand how everything works.
\section{External Links / References}
\label{9}
\begin{myitemize}
\item{}  \myhref{http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/introint.htm}{ Cisco explanation of the OSI model}
\item{}  \myhref{http://www.uwsg.iu.edu/usail/network/nfs/network_layers.html}{ University of Indiana / Unix Support Group explanation of OSI}
\item{}  \myhref{http://www.iso.org/iso/en/CatalogueListPage.CatalogueList?ICS1=35\&ICS2=100}{ ISO catalog of OSI standards}
\end{myitemize}

\section{Other Serial Programming Articles}
\label{10}
\LaTeXNullTemplate{}

\myhref{http://en.wikibooks.org/wiki/Category\%3ASerial\%20Programming}{Category:Serial Programming}
\chapter{RS-{}232 Connections}

\myminitoc
\label{11}





\label{12}
\LaTeXNullTemplate{}
\section{Introduction}
\label{13}

The RS-{}232 standard is a collection of connection standards
between different pieces of equipment.  This is a rather old
standard, and has been revised many times over the years to
accommodate changes to communications technology.  A
bare-{}bones connection will have only one wire connected
between two pieces of equipment, but usually there are more.
Three wires (transmit, receive, and ground) are usually the
minimum recommended.  A fully implemented RS-{}232 connection
can have as many as 25 wires between each end. Some of the
early RS-{}232 connections were also used to connect terminal
equipment to modems, so information about modems is
sometimes found with general serial data communication.
\section{Data Terminal/Communications Equipment}
\label{14}

In the world of serial communications, there are two different kinds of equipment:

\begin{myitemize}
\item{}  DTE -{} Data Terminal Equipment
\item{}  DCE -{} Data Communications Equipment
\end{myitemize}

\subsection{Straight Serial Connections}
\label{15}

In practice the distinction between the two pieces of equipment is really a matter of function rather than any real difference.  As mentioned earlier, modems and serial communication equipment have been mixed together, this is another case of that.  In this situation, the modem can be thought of as the Data Communications Equipment (DCE) and the terminal that somebody is sitting down and using is the Data Terminal Equipment.  In the older days when it was common to use a timeshare computer system (pre 1980s), you would dial up a telephone, stick the handset that you would normally talk with into an acoustical modem, and that modem would be connected to a simple dumb terminal with an RS-{}232 cable.  When we get to baud rates this will make more sense, but the typical connection speed was usually either 50 baud or 110 baud, and really fast connections going at 300 baud.

As a side note, when the very first IMPs (Interconnection Message Processors) that formed the first nodes/routers of ARPAnet (the ancient predecessor of the Internet), this was exactly the connection system they were using.  This later gave way to other communication systems, but this was the beginning of the Internet.

In a more modern setting, imagine a piece of equipment in a very dangerous place, like in a steel processing mill that measures the temperature of the rollers or other steel processing equipment.  This would also be a form of what we now refer to as a piece of \symbol{34}Data Communication Equipment\symbol{34} that we would also want to be able to control remotely.
The PC that is used in a control room of the mill would be the Data Terminal Equipment.  There are many other similar kinds of devices, and RS-{}232 connections can be found on all kinds of equipment.

The reason this is called a \symbol{34}straight\symbol{34} connection is because when the cabling is put together, each wire on each end of the connection is put to the same pin.  This wiring system will be explained further on.
\subsection{Null Modems}
\label{16}

Often you don\textquotesingle{}t always want to connect a piece of equipment to a computer, but you would also like to connect two computers together.  Unfortunately, when connecting two computers with a \symbol{34}straight\symbol{34} serial connection, the two computers are fighting each other on the same wires.

One way to make this work is to connect the two computers to each other with a pair of modems.  As explained earlier, this is a very common task, and in the 1980\textquotesingle{}s and early 1990\textquotesingle{}s it was common to have \symbol{34}Bulletin Board Systems\symbol{34} (BBS) where computers would call each other up with modems and exchange all sorts of information.

Now imagine if these two computers are in the very same room.  Instead of going through the physical modems, they go through a \symbol{34}null modem\symbol{34}, or a modem that really doesn\textquotesingle{}t exist.  In order to make this work you have to \symbol{34}cross\symbol{34} some of the wires so when you transmit some information on one end, the other computer is able to detect and receive that same information.

In addition to simply allowing a computer to communicate and transmit data to another computer, a null modem connection can be used to \symbol{34}simulate\symbol{34} the behavior of DCE equipment.  This will be particularly important later on with some of the discussion in this series of articles, where you can experiment with writing some of your own serial communication software.  In my own experience, I\textquotesingle{}ve had to write these \symbol{34}emulators\symbol{34} in many instances, either because the equipment that I was trying to communicate with wasn\textquotesingle{}t finished, or it was difficult to obtain a sample of that equipment and all that I had available to me was the communication protocol specification.
\subsection{Loopback Connectors}
\label{17}

Sometimes instead of trying to communicate with another computer, you would like to be able to test the transmission equipment itself.  One practical way of doing this is to add a \symbol{34}loopback\symbol{34} connector to the terminal device, like a PC with a serial data connection. This connector has no cable attached, but loops the transmit lines to the receive lines.  By doing this, you can simulate both the transmission and receiving of data.  Generally speaking, this is only done for actually testing the equipment, but can be used for testing software components as well.  When this sort of connector is used, you will receive every byte that you transmit.  If you separate out the transmission subroutines from the data capture subroutines, it can provide a controlled system for testing your application.
\subsection{Protocol Analyzer}
\label{18}
\subsubsection{General}
\label{19}

When it starts to get very difficult to examine the serial data being transmitted by the equipment, sometimes it is nice to be able to take a \symbol{34}snapshot\symbol{34} of the information being transmitted. This is done with a protocol analyzer of one kind or another.

What is done is a modification of the cabling that allows for a third computer to be able to simply read the data as it is being transmitted.  Sometimes the communication protocol can get so complicated that you need to see the whole exchange, and it needs to be examined in \symbol{34}real-{}time\symbol{34} rather than going through some sort of software debugger.  Another purpose of this is to examine the data exchange for purposes of doing some reverse engineering if you are trying to discover how a piece of equipment works.  Often, despite written specifications, the actual implementation of what is occurring when transmitting data can be quite a bit different than what was originally planned.  Basically, this is a powerful tool for development of serial communications protocols and software, and should not be ignored.

There are common ways to connect a protocol analyzer, which are discussed in the following.
\subsubsection{Y \symbol{34}Cable\symbol{34}}
\label{20}

A {\itshape Y \symbol{34}Cable\symbol{34}} is not just some cable, but also contains electronics -{} assuming it is not a low quality cable. It is supposed to be placed in between a serial line and it mirrors all signals on a third connector. This third connector can then be connected to a protocol analyzer (e.g. a PC with some display software):

\\

\TemplateSpaceIndent{$\text{ }${}+-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}+$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}DTE$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Y$\text{ }${}Cable$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}DCE$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}+$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|$\text{ }${}Analyzer$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}}


It is recommended not to use a passive Y cable. Such a cable overloads the transmitters at the DTE and DCE, which might result in the {\bfseries destruction of the transmitters}. The RS-{}233 standard requires that transmitters are short-{}circuit safe. However, modern, highly integrated equipment might no longer be compliant to that particular aspect of the standard.

Often, the line going to the analyzer is also just a serial line, and the analyzer is a PC with a serial interface and some display software. The disadvantage of such a simple Y cable solutions is that it only supports half-{}duplex communication. That is, only one site (DTE or DCE) can talk at any time. The reason for this is that the two TX lines from the DTE and DCE are combined into one TX line going to the analyzer. If the DTE and the DCE both send at the same time, their signals get mixed up on the third line going to the analyzer, and the analyzer probably doesn\textquotesingle{}t see any decodable signal at all.


See \myplainurl{http://www.mmvisual.de/fbintermdspy.htm} for an example of some simple circuitry for a Y cable.

More advanced Y cable solutions provide the TX data from the DTE and DCE separately to the analyzer. Such analyzers are capable of displaying full-{}duplex communication. Advanced professional systems not only display the decoded digital information, but also monitor the analog signal levels and timing.
\subsubsection{Man-{}in-{}the-{}Middle}
\label{21}

In this scenario the analyzer sits in the middle between the DTE and DCE. It is basically some device (e.g. a PC) with two serial interfaces. The analyzer mirrors each signal from one site to the other site, and also displays the traffic.
\\

\TemplateSpaceIndent{$\text{ }${}+-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}+$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}DTE$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Analyzer$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}DCE$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}+}


In principle, a simple version of such an analyzer can be built with any PC with two serial interfaces. All that is needed is some software, which is not too difficult to write. Such a device will, however, lack a convenient feature. Professional analyzers are able to auto-{}sense the speed of the serial communication. A home made solution needs to be configured to match the speed of the serial communication. Professional devices are also optimized to ensure minimal delay in the circuitry. Also, a simple homegrown, PC-{}based analyzer can\textquotesingle{}t be used to analyze faults due to signal voltage level problems. Nevertheless, any kind of protocol analyzer is much better than nothing at all. Even the most simple analyzer is very useful.
\subsubsection{Others}
\label{22}

See \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3AModems\%20and\%20AT\%20Commands\%23Setting\%20up\%20a\%20Development\%20Environment}{Setting up a Development Environment (for modem development)} for some more information.

\subsection{Breakout Box}
\label{23}

An RS232 breakout box (a BOB) is a rather nifty piece of hardware which usually combines a number of functions into one. It basically consist of two RS232 connectors, and a patch field (or switches) which allows to change the wiring between the connectors. A patch field and small pieces of wires are preferable over (DIP) switches alone, since the patch field allows access to the signals for other purposes, too. 

A breakout box is very useful if the pinout (DTE/DCE) of a particular device is not known. The patch field allows to quickly change the wiring from a \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ARS-232_Connections\%23Straight_Serial_Connections}{straight connection} to a \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ARS-232_Connections\%23Null_Modems}{null modem} connection, or to set up a \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ARS-232_Connections\%23Loopback_Connectors}{loopback connection}.

Since the patch field provides access to all signals it also allows to use the breakout box to connect a \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ARS-232_Connections\%23Protocol\%20Analyser}{protocol analyzer}. Better breakout boxes also provide some signal level information on their own, by having LEDs who inform about the signal voltage. This information is useful when trying to identify an unknown pinout. High-{}end BOBs contain circuitry to measure ground potential difference and pulse traps circuitry to find signal glitches.

Commercial breakout boxes are available in many varieties. It is also possible to build a useful BOB from a handful of simple parts on a circuit board. The patch field can be made from DIL IC sockets, and the wiring of the LEDs is simple if 2-{}pin dual-{}color LEDs are used (3-{}pin LEDs will not work). Each signal line should be connected via such an LED and a 680 Ohm resistor in serial to GND (Signal Ground). The home-{}made breakout-{}box is completed with a couple of RS232 connectors, possibly also one to attach a protocol analyzer and some simple metal or plastic case.
\subsection{Character Sequence Generator}
\label{24}

Another nifty piece of hardware and/or software which is useful for developing and testing serial applications and  equipment is a character sequence generator. Such a generator produces a repeated sequence of serial line data. For example such a generator might repeat the famous \symbol{34}The quick brown fox ...\symbol{34} sentence in an an endless loop. Another common test sequence is the generation of all 8-{}bit codes from 0x00 to 0xFF in a loop. Such a loop contains all 7-{}bit ASCII and 8-{}bit ISO Latin 1 characters, plus the first 32 non-{}printable control characters and can e.g. reveal decoding errors or transmission errors. Also very common is a modem test sequence, using generic modem commands (\myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3AModems\%20and\%20AT\%20Commands}{Serial Programming:Modems and AT Commands}) to build up a modem connection, send some data and tear the modem connection down in a loop.

Commercial hardware character generators provide a heap of additional features, often combined with a protocol analyzer. As such they are rather expensive. However, just like with a BOB, it is possible to build a useful DIY character sequence generator for small cash. This can either happen with software on a normal computer (some simple endless software loop sending the same data again and again to a serial interface), or with a few pieces of cheap electronic components. Some small stand-{}alone hardware is often more convenient in the field and in development for quick tests than e.g. a PC or laptop with some software.

A simple classic hardware character generator basically consists of a baud-{}rate generator, a UART (\myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3A8250\%20UART\%20Programming}{Serial Programming:8250 UART Programming}), an (E)EPROM, a binary counter and a line driver (\myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3AMAX232\%20Driver\%20Receiver}{Serial Programming:MAX232 Driver Receiver}). Typically, each of these components is a simple single IC. The (E)EPROM is supposed to contain the character sequence(s). The baud-{}rate generator drives the UART and the binary counter. The binary counter drives the address lines of the (E)EPROM. The result is that the character sequence is produced at the data lines of the (E)EPROM. These data lines are feed into the UARTs input. The UARTs output is connected to the serial line driver. All this can be easily fitted on a small prototype board in a simple case. 

A more modern hardware character generator can be build around one of these small micro controllers (e.g.
\myhref{http://en.wikibooks.org/wiki/Atmel\%20AVR}{Atmel AVR}). This is particularly easy, since these micro controllers already contain serial interfaces, and just require a little bit of serial programming -{} which is the topic of \myhref{http://en.wikibooks.org/wiki/Programming\%3ASerial\%20Data\%20Communications}{this book}.
\section{Connection Types}
\label{25}

If you wanted to do a general RS-{}232 connection, you could take a bunch of long wires and solder them directly to the electronic circuits of the equipment you are using, but this tends to make a big mess and often those solder connections tend to break and other problems can develop.  To deal with these issues, and to make it easier to setup or take down equipment, some standard connectors have been developed that is commonly found on most equipment using the RS-{}232 standards.

These connectors come in two forms:  A male and a female connector.  The female connector has holes that allow the pins on the male end to be inserted into the connector.
\subsection{EIA/TIA 574: \symbol{34}DB-{}9\symbol{34}}
\label{26}

This is a female \symbol{34}DB-{}9\symbol{34} connector (properly known as DE9F):



\begin{minipage}{0.50000\textwidth}
\begin{center}
\includegraphics[width=1.0\textwidth,height=6.5in,keepaspectratio]{../images/1.jpg}
\end{center}
\raggedright{}\myfigurewithcaption{1}{Female DB-{}9 Serial Connector}
\end{minipage}\vspace{0.75cm}



The female DB-{}9 connector is typically used as the \symbol{34}plug\symbol{34} that goes into a typical PC.  If you see one of these on the back of your computer, it is likely not to be used for serial communication, but rather for things like early VGA or CGA monitors (not SVGA) or for some special control/joystick equipment.

And this is a male \symbol{34}DB-{}9\symbol{34} connector (properly known as DE9M):



\begin{minipage}{0.50000\textwidth}
\begin{center}
\includegraphics[width=1.0\textwidth,height=6.5in,keepaspectratio]{../images/2.jpg}
\end{center}
\raggedright{}\myfigurewithcaption{2}{Male DB-{}9 Serial Connector}
\end{minipage}\vspace{0.75cm}



This is the connector that you are more likely to see for serial communications on a \symbol{34}generic\symbol{34} PC.  Often you will see two of them side by side (for COM1 and COM2).  Special equipment that you might communicate with would have either connector, or even one of the DB-{}25 connectors listed below.
\subsection{RS-{}232C: DB-{}25}
\label{27}

This is a female DB-{}25 connector (also known as DB25F):



\begin{minipage}{0.50000\textwidth}
\begin{center}
\includegraphics[width=1.0\textwidth,height=6.5in,keepaspectratio]{../images/3.jpg}
\end{center}
\raggedright{}\myfigurewithcaption{3}{Female DB-{}25 Serial Connector}
\end{minipage}\vspace{0.75cm}



This DB25S is what you normally find on an IBM compatible PC used as the parallel (printer) port.  It is also on the computer end of a modem cable in older PCs that have 25 pin serial port connectors. This connector type is also used frequently for equipment that conforms to RS-{}232 serial data communication as well, so don\textquotesingle{}t always assume if you see one of these connectors that it is always parallel.  When the original RS-{}232 specification was written, this was the kind of connector that was intended, but because many of the pins were seldom if ever used, IBM PC compatible serial ports were later switched to the DB-{}9 DE9S connectors carrying all the required signals as on the DB connectors in the original IBM-{}PC. (Yes, this is comparatively recent equipment for this standard).

This is a male DB-{}25 connector (also known as DB25M):



\begin{minipage}{0.50000\textwidth}
\begin{center}
\includegraphics[width=1.0\textwidth,height=6.5in,keepaspectratio]{../images/4.jpg}
\end{center}
\raggedright{}\myfigurewithcaption{4}{Male DB-{}25 Serial Connector}
\end{minipage}\vspace{0.75cm}



Male DB-{}25 connectors are usually used on one end of a PC printer cable for parallel data communication, which is beyond the scope of this series of articles.  The DB25P is also used on the the modem end of an external modem cable.  You should be aware that this connector is also used for serial communications on many different types of equipment, using many different types of communications protocols.  In fact, if you have a random piece of equipment that you are trying to see how it works, you can presume that it is a piece of serial equipment.  Hacking random connectors is also beyond the scope of this document, but it can be an interesting hobby by itself.
\subsection{mini-{}stereo plug connector}
\label{28}

This is a male mini-{}stereo plug connector:



\begin{minipage}{0.50000\textwidth}
\begin{center}
\includegraphics[width=1.0\textwidth,height=6.5in,keepaspectratio]{../images/5.jpg}
\end{center}
\raggedright{}\myfigurewithcaption{5}{mini-{}stereo_plug connector}
\end{minipage}\vspace{0.75cm}



Some digital cameras and calculators come with a cable that has a mini-{}stereo plug connector on the end the plugs into the camera, and a DB-{}9 connector on the end that plugs into the PC.

It is a poor connector, as it short circuits segments while being plugged/unplugged.

The \symbol{34}PicAXE\symbol{34} systems use \myplainurl{http://profmason.com/?p=218}
\begin{myitemize}
\item{}  1: base ring: ground (pin 5 of DB9)
\item{}  2: middle ring: serial output from PicAXE to serial input of PC (pin 2 of DB9)
\item{}  3: tip of pin: serial output of PC to serial input of PicAXE (pin 3 of DB9)
\end{myitemize}

\subsection{RS-{}232D: RS232 on RJ45}
\label{29}

RS-{}232D defines a standard connector much smaller than a DB-{}9 plug.
\myplainurl{http://zytrax.com/tech/layer_1/cables/tech_rs232.htm\#rj45}.

(RS-{}232 on a RJ45 modular jack is also known as \symbol{34}EIA/TIA -{} 561\symbol{34})
\subsection{RS232 on RJ11}
\label{30}

Is there a standard for connecting the TX, RX, GND of RS-{}232 to the 4 pins of a RJ11 connector ? 
\begin{myitemize}
\item{}  \myhref{http://mondo-technology.com/upp.html}{ Luhan Monat} uses DB9-{}5 -{}-{}-{}>{} RJ11-{}1; DB9-{}3 -{}-{}-{}>{} RJ11-{}2; DB9-{}2 -{}-{}-{}>{} RJ11-{}3. (RJ11-{}2 and RJ11-{}3 are the \symbol{34}inner pair\symbol{34}).
\item{}  \myhref{http://www.taniwha.com/~paul/fc/ass2.0.html}{ Paul Campbell} says \symbol{34}I wired the GND to the yellow line, TXD to the black line and RXD to the red line.\symbol{34}
\end{myitemize}

\section{Wiring Pins Explained}
\label{31}

The wiring of RS-{}232 devices involves first identifying the actual pins that are being used.  

Please note also that in the \symbol{34}PC COMx Port context\symbol{34} end of things some signals are \textquotesingle{}inputs\textquotesingle{} while others are \textquotesingle{}outputs\textquotesingle{} while in the \symbol{34}Modem context\symbol{34} those same signal names referred to now become as \textquotesingle{}outputs\textquotesingle{} where they were just before \textquotesingle{}inputs\textquotesingle{} and vice versa. That is where much confusion has arisen from over the years, as the \textquotesingle{}Input\textquotesingle{} or \textquotesingle{}Output\textquotesingle{} -{}sense-{} nature is not noted in most diagrams on the subject in general,  yet in the real world two \textquotesingle{}Out\textquotesingle{} pins seldom can ever work in harmony in RS-{}232 related +-{}{$\text{[}$}3-{}10{$\text{]}$}V stuff where the range from -{}3V to +3V is not a true high or low, except to possibly burden drivers towards their undesired burnout.  

Here is how a {\bfseries female} DB-{}9 connector is numbered (Note, the connector on a computer is usually a {\bfseries male} connector, so it is mirrored compared to the following image):



\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/6.png}
\end{center}
\raggedright{}\myfigurewithcaption{6}{DB-{}9 Female Pinout Diagram}
\end{minipage}\vspace{0.75cm}



If the numbers are hard to read, it starts at the top-{}right corner as \symbol{34}1\symbol{34}, and goes left until the end of the row and then starts again as pin 6 on the next row until you get to pin 9 on the bottom-{}left pin.  \symbol{34}Top\symbol{34} is defined as the row with 5 pins.

Here are what each pin is usually defined as on the PC COMx end of things:

\begin{longtable}{>{\RaggedRight}p{0.10073\linewidth}>{\RaggedRight}p{0.11472\linewidth}>{\RaggedRight}p{0.35907\linewidth}>{\RaggedRight}p{0.26477\linewidth}} 
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 9-{}pin}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 25-{}pin}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} pin definition }&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Direction (PC view)\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} DCD (Data Carrier Detect) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} input\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} RX (Receive Data) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} input\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} TX (Transmit Data) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} output\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 20 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} DTR (Data Terminal Ready) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} output\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GND (Signal Ground) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} -{}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} DSR (Data Set Ready) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} input\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} RTS (Request To Send) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} output\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CTS (Clear To Send)) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} input\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 9 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 22 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} RI  (Ring Indicator) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} input 
\end{longtable}


One thing to keep in mind when discussing these pins and their meaning, is that they are very closely tied together with modems and modem protocols.  

Whenever interconnecting any serial ports it will be well to note that whatever the case, it should always follow that only one <{}output>{} should ever be tied to one or more <{}inputs>{} generally speaking.  Further, be it noted that signal names at the COMx end will generally be opposite of the <{}in>{}-{}<{}out>{} -{}sense-{} at the modem end of things, even though carrying the same mnemonic names.  

Often you don\textquotesingle{}t have a modem attached in the loop, but you still treat the equipment as if it were a modem on a theoretical level.  At least such that you minimally have an <{}output>{} going to every  in some manner, with no two <{}outputs>{} in conflict or without any \textquotesingle{}floating\textquotesingle{} <{}inputs>{} tied to no <{}output>{} at all.

The following are more formal explanations regarding each signal function in the general sense of its use:
\subsection{DCD (Data Carrier Detect)}
\label{32}

This is a signal to indicate from the communications equipment (DCE) that the phone line is still \symbol{34}connected\symbol{34} and receiving a carrier signal from the modem at the other end.  Presumably well-{}written software or serial equipment could detect from this logic state when the telephone has been \symbol{34}hung up\symbol{34} on the other end.  Null-{}modems often tie DCD to DTR at each end since there is no carrier signal involved.
\subsection{RX (Receive Data)}
\label{33}

Input to receive the data.
\subsection{TX (Transmit Data)}
\label{34}

The reverse of RX, this is where the terminal equipment (DTE) is transmitting serial data, using the same format and protocol that the receiver is expecting.  More on the exact protocol further below.  Like RX, think along the lines of \symbol{34}Terminal Transmit\symbol{34} when designing equipment that will be using this pin.
\subsection{DTR (Data Terminal Ready)}
\label{35}

Basically a signal from the DTE that says \symbol{34}Hello!, I\textquotesingle{}m ready if you are\symbol{34}.  This is a general indicator to the DCE that the terminal is ready to start sending and receiving data.  If there is some initialization that needs to happen in the communications equipment, this is a way for the terminal equipment to \symbol{34}boot\symbol{34} the receiving equipment. In an null modem setup this signal is often connected to DCD, so the device signals itself that an (imaginary) carrier has been detected, indication that the transmission line is up.
\subsection{GND (Signal Ground)}
\label{36}

This is an interesting pin to look at.  What it does is try to make a common \symbol{34}ground\symbol{34} reference between the equipment that is being connected to compare the voltages for the other signals.  Normally this is a good thing, because sometimes different pieces of equipment have different power supplies and are some distance away.  The not so pleasant thing about this wire is that it usually is a physical piece of copper that can conduct electricity that is not normally supposed to go down the wire, like a short-{}circuit or worse yet a bolt of lightning (it happens far more often that you would normally think for this sort of equipment).  That can fry both the DCE as well as the DTE.  Things like fiber converters and ground isolators can help prevent this from happening, but can still be something to worry about.  Over short distances this is generally not a problem.
\subsection{DSR (Data Set Ready)}
\label{37}

This is the counterpart to DTR with the communications equipment (or computer peripheral on the serial line).  When the DTR is sent as a signal, the communications equipment should change this signal to logic \symbol{34}1\symbol{34} to indicate that it is ready to communicate as well.  If the DCE goes through a \symbol{34}boot\symbol{34} sequence when the DTR gets signaled, it should not signal DSR until it is complete. But many connectors \symbol{34}hard wire\symbol{34} this pin to be directly connected to the DTR pin at each end to reduce the number of wires needed in the cable. This can be useful for connecting devices using existing telephone wires, but prevents applications from using the DTR and DSR for handshaking.
\subsection{RTS (Request To Send)}
\label{38}

Setting the RTS signal to \myhref{http://en.wikipedia.org/wiki/RS-232C\%23Voltage_levels}{logic \symbol{34}1\symbol{34}} indicates to the DCE that the DTE wants to send it data. Resetting the RTS signal to \myhref{http://en.wikipedia.org/wiki/RS-232C\%23Voltage_levels}{logic \symbol{34}0\symbol{34}} indicates to the DCE that the DTE has no more data to send.
\subsection{CTS (Clear To Send)}
\label{39}

This is the response signal from the DCE regarding if the terminal equipment should be transmitting any data.  When this signal is at \myhref{http://en.wikipedia.org/wiki/RS-232C\%23Voltage_levels}{logical \symbol{34}1\symbol{34}}, the terminal is \symbol{34}permitted\symbol{34} to transmit data.  Like the DTR/DSR pins, this one can be directly connected to the RTS pin to reduce the number of wires needed, but this eliminates the possibility of hardware flow control.  Some software ignores this pin and the RTS pin, so other flow control systems are also used.  That will be explained when we get to actual software.
\subsection{RI (Ring Indicator)}
\label{40}

Again, thinking back to a telephone modem, this is a signal that indicates that the telephone is \symbol{34}ringing\symbol{34}.  Generally, even on a real telephone modem, this is only occasionally set to -{}15V for the signal.  Basically, when you would normally be hearing a \symbol{34}ring\symbol{34} on your telephone, this pin would be signaled.  On Null-{}modems, often this wire isn\textquotesingle{}t even connected to anything.  If you really are connected to a real modem, this does have some strong uses, although there are other ways to have the terminal equipment (like a PC connected to an external modem) be informed that there are ways to communicate this information through the data pins as well.  This will be covered lightly in the software section.
\subsection{Other RS-{}232 Pins}
\label{41}

There are other pins that the DB-{}25 has implemented that the DB-{}9 doesn\textquotesingle{}t normally use, such as a secondary transmit and receive pin, Secondary CTS/RTS for those alternate pins, a -{}15V signal for power, a clock, and a couple of other good ideas as well.  The problem with implementing all of these pins is that you also need to run separate wires, and a full set of DB-{}25 connectors would also mean having 25 physical wires going the full distance between the DTE and DCE.  If this is more than a foot or so, it gets to be a big hassle, particularly if you are going through walls or in a more permanent setting.  If the wrong wire gets clipped in the bundle, the whole thing must be restrung again, or you must go through wire testing like the old-{}fashioned telephone linemen used to have to do when fixing a phone distribution box.  Often only three physical copper lines are used to connect the DTE to DCE, and that is simply RX, TX, and GND.  The rest can be easily \symbol{34}faked\symbol{34} on the connector end in a manner sufficient for most software and hardware applications.
\section{Baud Rates Explained}
\label{42}
Baud and BPS (Bits Per Second) are usually not the same thing, although they are often used interchangeably, particularly in marketing literature. There are several ways to determine what the actual data rate of a particular piece of equipment is, but in popular marketing literature, or even general reference texts, they will almost always refer to \symbol{34}Baud Rate\symbol{34}, even if they are referring to bits per second.

Baud means the number of changes to the transmission media per second in a modulated signal. If each transmission event contains more than one bit of information, then Baud and BPS are not the same. E.g. if each event contains two bits (two bits modulated in an event), then the BPS of such a transmission would be twice as large as the Baud rate. This is not a theoretical case. Typical \symbol{34}high speed\symbol{34} modems use sophisticated modulation on the telephone line, where the bit rate and Baud rate differ significantly on the line. It is important to know this when you build measurement equipment, decoders (demodulators), encoders (modulators), and all sorts of transmission equipment for a particular protocol.

However, software developers typically like to ignore the difference of bit rate and baud rate, because a bit can either have the value true or false -{} an \symbol{34}event\symbol{34} (a bit) always only has two possible states. They have no basic unit which can e.g. hold four different states. In other words, on the software site the modulation has already been flattened by the demodulator. If a modulation was used which can e.g. transmit 8 bits in an event, the software developer sees them already as a series of 8 consecutive bits, each either true or false. The demodulator took care of that. When it got an event it turned the single 8-{}bit event into eight single-{}bit events. Software developers don\textquotesingle{}t see the original single entity with 256 different states (voltages, phases). Since the modulation has been flattened they don\textquotesingle{}t experience the difference between Baud rate and bit rate any more. This is not the fault of the people who defined  a Baud or a BPS. It is just a (welcome) limitation of digital computer hardware.

Baud is actually a shortened term named in honor of Ã�mile Baudot, a French inventor of early teleprinter machines that replaced the telegraph key using Morse Code.  Basically two typewriters that could be connected to each other with some wires.  He came up with some of the first digital character encoding schemes, and the character codes were transmitted with a serial data connection.  Keep in mind this was being done largely before computers were invented.  Indeed, some of these early teleprinter devices were connected to the very first computers like the ENIAC or UNIVAC, simply because they were relatively cheap and mass produced at that point.

In order for serial data communication to happen, you need to agree on a clock signal, or baud rate, in order to get everything to be both transmitted and received properly.  This is where the language purists get into it, because it is this clock signal that actually drives the \symbol{34}baud rate\symbol{34}.  Let\textquotesingle{}s start more at the beginning with Ã�mile Baudot\textquotesingle{}s teleprinters to explain baud rate.

Ã�mile\textquotesingle{}s early teleprinters used 5 data bits and 1 stop bit to transmit a character.  We will go onto formatting issues in a second, but what is important is that six signals are sent through a wire in some fashion that would indicate that a character is transmitted.  Typically the equipment was designed to run at 50 baud, or in other words the equipment would transmit or receive a \symbol{34}bit\symbol{34} of data 50 times per second.  Not coincidentally, French power systems also ran on an alternating current system of 50 Hz, so this was an easy thing to grab to determine when a new character should be transmitted.

Teleprinters evolved, and eventually you have Western Union sending teleprinter \symbol{34}cablegrams\symbol{34} all around the world.  If you hear of a TELEX number, this is the relic of this system, which is still in use at the present time, even with the Internet.  By rapidly glossing over a whole bunch of interesting history, you end up with the United States Department of Justice (DOJ) in a lawsuit with AT\&T.  Mind you this was an earlier anti-{}trust lawsuit prior to the famous/infamous 1982 settlement.  The reason this is important is because the DOJ insisted that Western Union got all of the digital business (cable grams... and unfortunately this got to be read as computer equipment as well), and AT\&T got modulated frequencies, or in other words, you could talk to your mother on Mother\textquotesingle{}s Day on their equipment.  When computers were being built in the 1950s, people wanted some way to connect different pieces of computer equipment together to \symbol{34}talk\symbol{34} to each other.  This finally resulted in the RS-{}232 standard that we are discussing on this page.

While Western Union was permitted to carry digital traffic, often the connections weren\textquotesingle{}t in or near computer centers.  At this time AT\&T found a loophole in the anti-{}trust settlement that could help get them into the business of being a \symbol{34}carrier\symbol{34} of computer data.  They were also offering to transmit computer data at rates considerably cheaper than Western Union was going to charge.  Hence, the modem was born.
\subsection{Modems Explained}
\label{43}

The long description of a modem is a \symbol{34}Modulator/Demodulator\symbol{34}, and this description is important.  Since AT\&T could only carry \symbol{34}tones\symbol{34}, like music from a radio network or the voice of your mother, they created a device that would electronically create \symbol{34}music\symbol{34} or \symbol{34}tones\symbol{34} that could be carried on their network.  They would then take a computer \symbol{34}1\symbol{34} or \symbol{34}0\symbol{34} and \symbol{34}modulate\symbol{34} the bit to a frequency, like say 2600 Hz.  (The exact tones varied based on baud rate and other factors, but there were exact frequency specs here.)  A matching device would be able to look for that \symbol{34}note\symbol{34} or \symbol{34}tone\symbol{34} in the \symbol{34}music\symbol{34} and be able to convert that back to a computer \symbol{34}1\symbol{34} or \symbol{34}0\symbol{34}, or in other words, demodulate the music.  Since all you and your buddy on each end of the telephone are only playing music to each other, it was legal for AT\&T to have that music on their network.  That only computers could possibly understand this music is besides the point, and the DOJ turned a blind eye on the whole practice, despite objections from Western Union.

The original modems you could rent were AT\&T Bell 103 modems.  These were clunky boxes about the size of a shoe box that had a bunch of switches on the outside and an RS-{}232 cable that connected to the computer equipment you were using.  These boxes were designed for the old-{}fashioned handset telephones and had pieces of rubber that would go around the \symbol{34}speaker\symbol{34} and \symbol{34}mic\symbol{34} portion of the telephone (no direct copper connection to the telephone equipment back then).  If you wanted to dial the telephone, you had to use the rotary dial on the phone itself... the computer didn\textquotesingle{}t have access to that sort of equipment.  Keep in mind that the FCC regulated just about everything that happened with phone equipment, and AT\&T owned everything related to telephones.  You even had to \symbol{34}rent\symbol{34} the modem from AT\&T, and that rental charge was on your monthly phone bill.

The Bell 103 was originally 110 baud, although it eventually had a switch to \symbol{34}move up\symbol{34} to 220 baud.  300 baud modems were also fairly common throughout the 1960\textquotesingle{}s and 1970\textquotesingle{}s.  Keep in mind that AT\&T (or your local phone company) was the only company you could even rent a modem from, whether you wanted one or not.  By 1982, modems were so commonly used and the POTS telephone network so widespread that this same system of sending \symbol{34}music\symbol{34} over the telephone has been preserved, even though the legal reasons for doing it are no longer valid.  With the advent of ISDN and DSL lines, this is no longer the case and the phone companies are now sending pure digital signals instead.  This is also why DSL lines can carry much more data than an ordinary phone line, even though it is the same pair of copper wires going into your home.

When modems started going to very high speeds, they hit a brick wall of sorts.  It was decided back in the 1950\textquotesingle{}s that telephone equipment would only have to carry tone signals going to about 10kHz.  For normal voice conversations this is sufficient, and you can even tell the difference between a man and a woman on the telephone.  The problem comes in that this means the highest normal \symbol{34}baud rate\symbol{34} that you can send over a home telephone network is about 9600 baud, usually about 4800 baud, because the telephone equipment itself is going to be dropping \symbol{34}bits\symbol{34} as you switch from one tone to another.  Without going into the heavy math, you need to have at least one full \symbol{34}sound wave\symbol{34} in order to be able to distinguish one tone or note from another.  Modem manufacturers did think of something else that could be done to overcome this limitation, however.  Instead of just sending one tone at a time, you could play a whole \symbol{34}chord\symbol{34}, or several distinct tones at the same time.  Finally back to baud vs. bits per second.  With higher speeds, instead of simply sending only one bit, you are sending two or as many as sixteen bits at the same time with varying \symbol{34}chords\symbol{34} of \symbol{34}music\symbol{34}.  This is how you get a 56K BPS modem, even though it is still only transmitting at 9600 baud.

More about modems in \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3AModems\%20and\%20AT\%20Commands}{Serial Programming:Modems and AT Commands}.
\section{Signal Bits}
\label{44}

There are four sets of transmission bits that are used in the RS-{}232 standard.  The positioning of these bits in the RS-{}232 data stream is all that distinguishes one bit from the other.  This is also where serial communication really hits the \symbol{34}metal\symbol{34}, because each bit follows in a sequence, or in a serial fashion.  All of the other wires, pins, baud rate, and everything else is to make sure that these bits can be understood.  Keep in mind that at this point the entire protocol is based on the transmission of a single character.  Multiple characters can be sent, but they are a sequence of single character transmission events.  How the characters relate is based on what the software does with the data on the next protocol \symbol{34}layer\symbol{34}.
\subsection{Start Bit}
\label{45}

When a transmission line is not sending anything, it remains in a logical state of \symbol{34}1\symbol{34}, or -{}15V on the wire.  When you want to send a character, you start by changing the voltage to +15V, indicating a logical \symbol{34}0\symbol{34} state.  Each subsequent bit is based on the baud rate that is established for communication between each device.  This bit signals that the receiving device should start scanning for subsequent bits to form the character.
\subsection{Data Bits}
\label{46}

This is the primary purpose of serial communications, where the data actually gets sent.  The number of bits here can vary quite a bit, although in current practice the number of bits typically transmitted is eight bits.  Originally this was five bits, which was all that the early teleprinters really used to make the letters of the Alphabet and a few special characters.  This has implications for Internet protocols as well, because early e-{}mail systems transmitted with only seven bits when they were connected over some RS-{}232 links.  This worked because the early character encoding schemes, mainly ASCII, only used seven bits to encode all characters commonly used for the English language.  Because computer components work best on powers of 2 (2,4,8,16,32, etc.), eight bits became more commonly used for data storage of individual characters.  Unicode and other coding schemes have moved this concept forward for languages other than English, but eight bits still is a very common unit for transmitting data, and the most common setting for RS-{}232 devices today.

The least significant bit (LSB)  is transmitted first in this sequence of bits to form a character.
\subsection{Parity Bit}
\label{47}

To help perform a limited error check on the characters being transmitted, the parity bit has been introduced.  Parity can detect some transmission errors but not correct.  The value of the parity bit depends on the number of bits set to \symbol{34}1\symbol{34} in the string of data bits.

There are four different kinds of parity configuration to consider:
\subsubsection{Odd Parity}
\label{48}

When the sum of bits ends up coming up with an odd number (like the sequence 01110110), this bit will be set to a logical state of \symbol{34}1\symbol{34}.
\subsubsection{Even Parity}
\label{49}

This uses the formula of trying to determine if there are an even number of bits set to \symbol{34}1\symbol{34}.  In this regard, it is the exact opposite state of the Odd Parity. For e.g., for a frame with seven bits that has an odd number of ones, the parity bit will be set to one.  So essentially, the entire byte, including parity must have an even number of ones for even parity.
\subsubsection{Mark Parity}
\label{50}

Using this concept, the transmission protocol is essentially ignoring the parity bit entirely.  Instead, the transmission configuration is sending a logical \symbol{34}1\symbol{34} at the point that a parity bit should be sent, regardless of if the sequence should have an odd or even count.  This configuration mode is useful for equipment that may want to be testing parity checking software or firmware in the receiving equipment.
\subsubsection{Space Parity}
\label{51}

The opposite of Mark parity, this sends a logical \symbol{34}0\symbol{34} for the parity checksum.  Again, very useful for equipment diagnostics.
\subsubsection{Parity None}
\label{52}

This isn\textquotesingle{}t really a parity formula, but rather an acknowledgment that parity really doesn\textquotesingle{}t work, so the equipment doesn\textquotesingle{}t even check for it.  This means the parity bit isn\textquotesingle{}t even used.  This can cause, in some circumstances, a slight increase in the total data throughput.  More on that below.
\subsection{Stop Bits}
\label{53}

This really isn\textquotesingle{}t a bit at all, but an agreement that once the character is sent that the transmitting equipment will return to a logical \symbol{34}1\symbol{34} state.  The RS-{}232 specification requires this logical state of \symbol{34}1\symbol{34} to remain for at least one whole clock cycle, indicating that the character transmission is complete.  Sometimes the protocol will specify two stop bits.  One reason that this might be done is because the clock frequencies being used by the equipment might have slightly different timing, and over the course of hundreds or thousands of characters being transmitted the difference between two clocks on the two different pieces of equipment will cause the expected bits to be shifted slightly, causing errors.  By having two stop bits the transmission is slightly slower, but the clock signals between the two pieces of equipment can be coordinated better.  Equipment expecting one stop bit can accept data transmitted by equipment sending two stop bits.  It won\textquotesingle{}t work the other way around, however.  This is something to try if you are having problems trying to get two pieces of equipment to communicate at a given baud rate, to add the second stop bit to the transmitter.
\subsection{Data Transmission Rates}
\label{54}

We got into a discussion of baud rate vs. bits per second.  Here is where baud as the number of bits being transmitted is still off, even if the nominal bits per second is also the same as the baud rate.  By adding start bits, stop bits, and parity bits, that is going to add overhead to the transmission protocol.  All digital transmission protocols have some sort of overhead on them, so this shouldn\textquotesingle{}t be that much of a surprise.  As we get more into data packets and other issues, the actual amount of data being transmitted will drop even further.

Keep in mind that if you are transmitting with 6 data bits, 2 Stop bits, and Even Parity, you are transmitting only six bits of data and four other bits of extra information.  That means even with 9600 baud, you are only transmitting 5,760 bits of data per second.  This really is a big difference, and that is still only raw bits once it gets through the actual serial communications channel.  A more typical 8 data bits, 1 Stop Bit, No Parity will be a little bit better at 9600 baud, with eight bits of data and only two bits used for overhead.  That gives a total throughput of 7,680 bits per second.  A little bit better, but you can\textquotesingle{}t simply presume that the baud rate indicates how much data is going to be transmitted.
\section{Relationship of Baud Rate to Maximum Distance}
\label{55}

There are physical limits to how far serial data communication can occur over a piece of wire.  When you apply a voltage onto a wire it takes time for that voltage to traverse the wire, and there are other unstable conditions that happen when you send a \symbol{34}pulse\symbol{34} down the wire and change voltages too quickly.  This problem is worse as wires become longer and the frequency (i.e. baud rate) increases.  This distance can vary based on a number of factors, including the thickness of the wires involved, RF interference on the wires, quality of the wires during the manufacturing process, how well they were installed... e.g., are there any \symbol{34}kinks\symbol{34} in the wires that force it into a sharp bend, and finally the baud rate that you are transmitting the data. 

This table presumes a fairly straight and uniform cable that is typical for most low-{}voltage applications (i.e., not a power circuit that uses 110V to run your refrigerator, toaster, and television).  Typically something like a CAT-{}5 cable (also used for local networks or phone lines) should be more than sufficient for this purpose.

\begin{longtable}{>{\RaggedRight}p{0.15355\linewidth}>{\RaggedRight}p{0.34563\linewidth}>{\RaggedRight}p{0.38029\linewidth}} 
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Baud Rate}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Maximum Distance (in feet)}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Maximum Distance (in meters)}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2400 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3000 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 914.4\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4800 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1000 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 304.8\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 9600 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 500 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 152.4\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 19200 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 50 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 15.24 
\end{longtable}


The distance limitation can be mitigated.  There are \symbol{34}short haul modems\symbol{34} that can extend this distance to several miles of cable.  There are also telephone lines, or conventional modems, and other long-{}distance communications techniques.  There are other ways to handle data in situations like this, and those signals can be converted to simple RS-{}232 data formats that a typical home computer can interpret.  Distance still can be a limiting factor for communication, although when you are talking about distances like to Saturn for the Cassini mission, serial data communication has other issues involved than just data loss due to cable length.  And yes, NASA/ESA is using serial data communication for transmitting those stunning images back to Earth.
\section{External References}
\label{56}

\myhref{http://en.wikipedia.org/wiki/Serial\%20cable}{w:Serial cable}
\begin{myitemize}
\item{}  \myhref{http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html}{ RS-{}232 wiring standards explained}
\item{}  \myhref{http://www.arcelect.com/rs232.htm}{ RS-{}232 connection types explained}
\item{}  \myhref{http://en.wikipedia.org/wiki/RS-232C}{Wikipedia article on RS-{}232}
\item{}  \myhref{http://hw-server.com/rs232-overview-rs232-standard}{ RS-{}232 standards explained by HW-{}Server}
\item{}  \myhref{http://www.beyondlogic.org/serial/serial.htm\#2}{ Serial Pinouts (D25 and D9 Connectors)} (also has more technical information about the UARTs used in PCs)
\item{}  \myhref{http://airborn.com.au/serial/rs232.html}{ RS232 Connections, and wiring up serial device} has several diagrams, including one showing how to let one PC monitor the serial communication between 2 other RS232 devices.
\item{}  \myhref{http://www.lammertbies.nl/comm/info/RS-232_specs.html}{ Lammert Bies, RS232 Specifications and standard} Includes technical specs on RS-{}232 signals and more detailed information about parity checking.
\item{} \myhref{http://www.tronisoft.com/rs232info/ASCII_serial_port_crib_sheets.pdf}{ Tronisoft\textquotesingle{}s Printable ASCII  Serial Port Crib Sheets}
\item{} \myhref{http://code.google.com/p/java-simple-serial-connector/}{ jSSC library (Java Simple Serial Connector). Work under Win32 and Win64}
\end{myitemize}

\section{Other Serial Programming Articles}
\label{57}

\myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3ATypical\%20RS232-Hardware\%20Configuration}{Typical RS232-{}Hardware Configuration}

\LaTeXNullTemplate{}

\myhref{http://en.wikibooks.org/wiki/Category\%3ASerial\%20Programming}{Category:Serial Programming}
\chapter{8250 UART Programming}

\myminitoc
\label{58}





\label{59}
\LaTeXNullTemplate{}\section{Introduction}
\label{60}

Finally we are moving away from wires and voltages and hard-{}core electrical engineering applications, although we still need to know quite a bit regarding computer chip architectures at this level.  While the primary focus of this section will concentrate on the 8250 UART, there are really three computer chips that we will be working with here:

\begin{myitemize}
\item{} 8250 UART
\item{} 8259 PIC (Programmable Interrupt Controller)
\item{} 8086 CPU (Central Processing Unit)
\end{myitemize}


Keep in mind that these are chip families, not simply the chip part number itself.  Computer designs have evolved quite a bit over the years, and often all three chips are put onto the same piece of silicon because they are tied together so much, and to reduce overall costs of the equipment.  So when I say 8086, I also mean the successor chips including the 80286, 80386, Pentium, and compatible chips made by manufacturers other than Intel.  There are some subtle differences and things you need to worry about for serial data communication between the different chips other than the 8086, but in many cases you could in theory write software for the original IBM PC doing serial communication and it should run just fine on a modern computer you just bought that is running the latest version of Linux or Windows XP.  

Modern operating systems handle most of the details that we will be covering here through low-{}level drivers, so this should be more of a quick understanding for how this works rather than something you might implement yourself, unless you are writing your own operating system.  For people who are designing small embedded computer devices, it does become quite a bit more important to understand the 8250 at this level.

Just like the 8086, the 8250 has evolved quite a bit as well, e.g. into the 16550 UART. Further down I will go into how to detect many of the different UART chips on PCs, and some quirks or changes that affect each one.  The differences really aren\textquotesingle{}t as significant as the changes to CPU architecture, and the primary reason for updating the UART chip was to make it work with the considerably faster CPUs that are around right now.  The 8250 itself simply can\textquotesingle{}t keep up with a Pentium chip.

Remember as well that this is trying to build a foundation for serial programming on the software side.  While this can be useful for hardware design as well, quite a bit will be missing from the descriptions here to implement a full system.
\section{8086 I/O ports}
\label{61}
We should go back even further than the Intel 8086, to the original Intel CPU, the 4004, and its successor, the 8008. All computer instructions, or op-{}codes, for the 8008 still function in today\textquotesingle{}s Intel chips, so even port I/O tutorials written 30 years ago are valid today. The newer CPUs have enhanced instructions for dealing with more data more efficiently, but the original instructions are still there.

When the 8008 was released, Intel tried to devise a method for the CPU to communicate with external devices.  They chose a method called I/O port architecture, meaning that the chip has a special set of pins dedicated to communicating with external devices.  In the 8008, this meant that there were a total of sixteen (16) pins dedicated to communicating with the chip.  The exact details varied based on chip design and other factors too detailed for the current discussion, but the general theory is fairly straightforward.

Eight of the pins represent an I/O code that signaled a specific device.  This is known as the I/O port.  Since this is just a binary code, it represents the potential to hook up 256 different devices to the CPU.  It gets a little more complicated than that, but still you can think of it from software like a small-{}town post-{}office that has a bank of 256 PO boxes for its customers.

The next set of pins represent the actual data being exchanged.  You can think of this as the postcards being put into or removed from the PO boxes.

All the external device has to do is look for its I/O code, and then when it matches what it is \symbol{34}assigned\symbol{34} to look for, it has control over the corresponding port.  An pin signals whether the data is being sent to or from the CPU.  For those familiar with setting up early PCs, this is also where I/O conflicts happen: when two or more devices try to access the same I/O port at the same time.  This was a source of heartburn on those early systems, particularly when adding new equipment.

Incidentally, this is very similar to how conventional RAM works, and some CPU designs mimic this whole process straight in RAM, reserving a block of memory for I/O control.  This has some problems, including the fact that it chews up a portion of potential memory that could be used for software instead.  It ends up that with the IBM PC and later PC systems, both I/O methods are used extensively, so it really gets complicated.  For serial communication, however, we are going to stick with the port I/O method, as that is how the 8250 chip works.
\subsection{Software I/O access}
\label{62}

When you get down to actually using this in your software, the assembly language instruction to send or receive data to port 9 looks something like this:

\TemplatePreformat{$\text{ }$\newline{}
out$\text{ }${}9,$\text{ }${}ah$\text{ }${};$\text{ }${}sending$\text{ }${}data$\text{ }${}from$\text{ }${}register$\text{ }${}ah$\text{ }${}out$\text{ }${}to$\text{ }${}port$\text{ }${}9$\text{ }${}$\text{ }$\newline{}
in$\text{ }${}ah,$\text{ }${}9$\text{ }${};$\text{ }${}getting$\text{ }${}data$\text{ }${}from$\text{ }${}port$\text{ }${}9$\text{ }${}and$\text{ }${}putting$\text{ }${}it$\text{ }${}in$\text{ }${}register$\text{ }${}ah$\text{ }$\newline{}
}

When programming in higher level languages, it gets a bit simpler.  A typical C language Port I/O library is usually written like this:

\TemplatePreformat{$\text{ }$\newline{}
char$\text{ }${}test;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
test$\text{ }${}=$\text{ }${}255;$\text{ }$\newline{}
outp(9,test);$\text{ }$\newline{}
inp(9,*test);$\text{ }$\newline{}
}

For many versions of Pascal, it treats the I/O ports like a massive array that you can access, that is simply named Port:

\TemplatePreformat{$\text{ }$\newline{}
procedure$\text{ }${}PortIO(var$\text{ }${}Test:$\text{ }${}Byte);$\text{ }$\newline{}
begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}9{$\text{]}$}$\text{ }${}:=$\text{ }${}Test;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Test$\text{ }${}:=$\text{ }${}Port{$\text{[}$}9{$\text{]}$};$\text{ }$\newline{}
end;$\text{ }$\newline{}
}

{\bfseries Warning!!} And this really is a warning.  By randomly accessing I/O ports in your computer without really knowing what it is connected to can really mess up your computer.  At the minimum, it will crash the operating system and cause the computer to not work.  Writing to some I/O ports can permanently change the internal configuration of your computer, making a trip to the repair shop necessary just to undo the damage you\textquotesingle{}ve done through software.  Worse yet, in some cases it can cause actual damage to the computer.  This means that some chips inside the computer will no longer work and those components would have to be replaced in order for the computer to work again.  Damaged chips are an indication of lousy engineering on the part of the computer, but unfortunately it does happen and you should be aware of it.

Don\textquotesingle{}t be afraid to use the I/O ports, just make sure you know what you are writing to, and you know what equipment is \symbol{34}mapped\symbol{34} to for each I/O port if you intend to use a particular I/O port.  We will get into more of the specifics for how to identify the I/O ports for serial communication in a bit.  Finally we are starting to write a little bit of software, and there is more to come.
\subsection{x86 port I/O extensions}
\label{63}

There are a few differences between the 8008 CPU and the 8086.  The most notable that affects software development is that instead of just 256 port I/O addresses, the 8086 can access 65536 different I/O ports.  In addition, besides simply sending a single character in or out, the 8086 will let you send and receive 16 bits at once.  The 386 chips will even let you send and receive 32-{}bits simultaneously.  The need for more than 65536 different I/O ports has never been a serious problem, and if a device needed a larger piece of memory, the Direct Memory Access (DMA) methods are available.  This is where the device writes and reads the RAM of the computer directly instead of going through the CPU.  We will not cover that topic here.

Also, while the 8086 CPU was able to address 65536 different I/O ports, in actual practice it didn\textquotesingle{}t.  The chip designers at Intel got cheap and only had address lines for 10 bits, which has implications for software designers having to work with legacy systems.  This also meant that I/O port address \${}1E8 and \${}19E8 (and others... this is just an example) would resolve to the same I/O port for those early PCs.  The Pentium CPUs don\textquotesingle{}t have this limitation, but software written for some of that early hardware sometimes wrote to I/O port addresses that were \symbol{34}aliased\symbol{34} because those upper bits were ignored.  There are other legacy issues that show up, but fortunately for the 8250 chip and serial communications in general this isn\textquotesingle{}t a concern, unless you happen to have a serial driver that \symbol{34}took advantage\symbol{34} of this aliasing situation.  This issue would generally only show up when you are using more than the typical 2 or 4 serial COM ports on a PC.
\section{x86 Processor Interrupts}
\label{64}

The 8086 CPU and compatible chips have what is known as an interrupt line.  This is literally a wire to the rest of the computer that can be turned on to let the CPU know that it is time to stop whatever it is doing and pay attention to some I/O situations.

Within the 8086, there are two kinds of interrupts:  Hardware interrupts and Software interrupts.  There are some interesting quirks that are different from each kind, but from a software perspective they are essentially the same thing.  The 8086 CPU allows for 256 interrupts, but the number available for equipment to perform a Hardware interrupt is considerably restricted.
\subsection{IRQs Explained}
\label{65}

Hardware interrupts are numbered IRQ 0 through IRQ 15.  IRQ means Interrupt ReQuest.  There are a total of fifteen different hardware interrupts.  Before you think I don\textquotesingle{}t know how to count or do math, we need to do a little bit of a history lesson here, which we will finish when we move on to the 8259 chip.  When the original IBM-{}PC was built, it only had eight IRQs, labeled IRQ 0 through IRQ 7.  At the time it was felt that was sufficient for almost everything that would ever be put on a PC, but very soon it became apparent it wasn\textquotesingle{}t nearly enough for everything that was being added.  When the IBM-{}PC/AT was made (the first one with the 80286 CPU, and a number of enhancements that are commonly found on PCs today), it was decided that instead of a single 8259 chip, they would use two of these same chips, and \symbol{34}chain\symbol{34} them to one another in order to expand the number of interrupts from 8 to 15.  One IRQ had to be sacrificed in order to accomplish this task, and that was IRQ 2.

The point here is that if a device wants to notify the CPU that it has some data ready for the CPU, it sends a signal that it wants to stop whatever software is currently running on the computer and instead run a special \symbol{34}little\symbol{34} program called an interrupt handler.  Once the interrupt handler is finished, the computer can go back to whatever it was doing before.  If the interrupt handler is fast enough, you wouldn\textquotesingle{}t even notice that the handler has even been used.

In fact, if you are reading this text on a PC, in the time that it takes for you to read this sentence several interrupt handlers have already been used by your computer.  Every time that you use a keyboard or a mouse, or receive some data over the Internet, an interrupt handler has been used at some point in your computer to retrieve that information.
\subsection{Interrupt handlers}
\label{66}

We will be getting into specific details of interrupt handlers in a little bit, but now I want to explain just what they are.  Interrupt handlers are a method of showing the CPU exactly what piece of software should be running when the interrupt is triggered.

The 8086 CPU has a portion of RAM that has been established that \symbol{34}points\symbol{34} to where the interrupt software is located elsewhere in RAM.  The advantage of going this route is that the CPU only has to do a simple look-{}up to find just where the software is, and then transfers software execution to that point in RAM.  This also allows you as a programmer to change where the CPU is \symbol{34}pointing\symbol{34} to in RAM, and instead of going to something in the operating system, you can customize the interrupt handler and put something else there yourself.

How this is best done depends largely on your operating system.  For a simple operating system like MS-{}DOS, it actually encourages you to directly write these interrupt handlers, particularly when you are working with external peripherals.  Other operating systems like Linux or MS-{}Windows use the approach of having a \symbol{34}driver\symbol{34} that hooks into these interrupt handlers or service routines, and then the application software deals with the drivers rather than dealing directly with the equipment.  How a program actually does this is very dependent on the specific operating system you would be using.  If you are instead trying to write your own operating system, you would have to write these interrupt handlers directly, and establish the protocol on how you access these handlers to send and retrieve data.
\subsection{Software interrupts}
\label{67}

Before we move on, I want to hit very briefly on software interrupts.  Software interrupts are invoked with the 8086 assembly instruction \symbol{34}int\symbol{34}, as in:

int \${}21

From the perspective of a software application, this is really just another way to call a subroutine, but with a twist.  The \symbol{34}software\symbol{34} that is running in the interrupt handler doesn\textquotesingle{}t have to be from the same application, or even made from the same compiler.  Indeed, often these subroutines are written directly in assembly language.  In the above example, this interrupt actually calls a \symbol{34}DOS\symbol{34} subroutine that will allow you to perform some sort of I/O access that is directly related to DOS.  Depending on the values of the registers, usually the AX register in the 8086 in this case, it can determine just what information you want to get from DOS, such as the current time, date, disk size, and just about everything that normally you would associate with DOS.  Compilers often hide these details, because setting up these interrupt routines can be a little tricky.

Now to really make a mess of things.  \symbol{34}Hardware interrupts\symbol{34} can also be called from \symbol{34}software interrupts\symbol{34}, and indeed this is a reasonable way to make sure you have written your software correctly.  The difference here is that software interrupts will only be invoked, or have their portion of software code running in the CPU, if it has been explicitly called through this assembly opcode.
\section{8259 PIC (Programmable Interrupt Controller)}
\label{68}

The 8259 chip is the \symbol{34}heart\symbol{34} of the whole process of doing hardware interrupts.  External devices are directly connected to this chip, or in the case of the PC-{}AT compatibles (most likely what you are most familiar with for a modern PC) it will have two of these devices that are connected together.  Literally fifteen wires come into this pair of chips, each wire labeled IRQ-{}0 through IRQ-{}15.

The purpose of these chips is to help \symbol{34}prioritize\symbol{34} the interrupt signals and organize them in some orderly fashion.  There is no way to predict when a certain device is going to \symbol{34}request\symbol{34} an interrupt, so often multiple devices can be competing for attention from the CPU.

Generally speaking, the lower numbered IRQ gets priority.  In other words, if both IRQ-{}1 and IRQ-{}4 are requesting attention at the same time, IRQ-{}1 gets priority and will be triggered first as far as the CPU is concerned.  IRQ-{}4 has to wait until after IRQ-{}1 has completed its \symbol{34}Interrupt Service Routine\symbol{34} or ISR.

If the opposite happens however, with IRQ-{}4 doing its ISR (remember, this is software, just like any computer program you might normally write as a computer application), IRQ-{}1 will \symbol{34}interrupt\symbol{34} the ISR for IRQ-{}4 and push through its own ISR to be run instead, returning to the IRQ-{}4 ISR when it has finished.  There are exceptions to this as well, but let\textquotesingle{}s keep things simple at the moment.

Let\textquotesingle{}s return for a minute to the original IBM-{}PC.  When it was built, there was only one 8259 chip on the motherboard.  When the IBM-{}AT came out the engineers at IBM decided to add a second 8259 chip to add some additional IRQ signals.  Since there was still only 1 pin on the CPU (at this point the 80286) that could receive notification of an interrupt, it was decided to grab IRQ-{}2 from the original 8259 chip and use that to chain onto the next chip.  IRQ-{}2 was re-{}routed to IRQ-{}9 as far as any devices that depended on IRQ-{}2.  The nice thing about going with this scheme was that software that planned on something using IRQ-{}2 would still be \symbol{34}notified\symbol{34} when that device was used, even though seven other devices were now \symbol{34}sharing\symbol{34} this interrupt.  These are IRQ-{}8 through IRQ-{}15.

What this means in terms of priorities, however, is that IRQ-{}8 through IRQ-{}15 have a higher priority than IRQ-{}3.  This is mainly of concern when you are trying to sort out which device can take precedence over another, and how important it would be to notified when a piece of equipment is trying to get your attention.  If you are dealing with software running a specific computer configuration, this priority level is very important.

It should be noted here that COM1 (serial communication channel one) usually uses IRQ-{}4, and COM2 uses IRQ-{}3, which has the net effect of making COM2 to be a higher priority for receiving data over COM1.  Usually the software really doesn\textquotesingle{}t care, but on some rare occasions you really need to know this fact.
\subsection{8259 Registers}
\label{69}

The 8259 has several \symbol{34}registers\symbol{34} that are associated with I/O port addresses.  We will visit this concept a little bit more when we get to the 8250 chip.  For a typical PC Computer system, the following are typical primary port addresses associated with the 8259:


\begin{longtable}{>{\RaggedRight}p{0.65559\linewidth}>{\RaggedRight}p{0.26405\linewidth}} 
\multicolumn{2}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Interrupt Controller Port I/O Addresses}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Register Name}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} I/O Port}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Master Interrupt Controller &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0020\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Slave Interrupt Controller &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00A0 
\end{longtable}


This primary port address is what we will use to directly communicate with the 8259 chip in our software.  There are a number of commands that can be sent to this chip through these I/O port addresses, but for our purposes we really don\textquotesingle{}t need to deal with them.  Most of these are used to do the initial setup and configuration of the computer equipment by the Basic Input Output System (BIOS) of the computer, and unless you are rewriting the BIOS from scratch, you really don\textquotesingle{}t have to worry about this.  Also, each computer is a little different in its behavior when you are dealing with equipment at this level, so this is something more for a computer manufacturer to worry about rather than something an application programmer should have to deal with, which is exactly why BIOS software is written at all.

Keep in mind that this is the \symbol{34}typical\symbol{34} Port I/O address for most PC-{}compatible type computer systems, and can vary depending on what the manufacturer is trying to accomplish.  Generally you don\textquotesingle{}t have to worry about incompatibility at this level, but when we get to Port I/O addresses for the serial ports this will become a much larger issue.
\subsection{Device Registers}
\label{70}

I\textquotesingle{}m going to spend a little time here to explain the meaning of the word register.  When you are working with equipment at this level, the electrical engineers who designed the equipment refer to registers that change the configuration of the equipment.  This can happen at several levels of abstraction, so I want to clear up some of the confusion.

A register is simply a small piece of RAM that is available for a device to directly manipulate.  In a CPU like the 8086 or a Pentium, these are the memory areas that are used to directly perform mathematical operations like adding two numbers together.  These usually go by names like AX, SP, etc.  There are very few registers on a typical CPU because access to these registers is encoded directly into the basic machine-{}level instructions.

When we are talking about device register, keep in mind these are not the CPU registers, but instead memory areas on the devices themselves.  These are often designed so they are connected to the Port I/O memory, so when you write to or read from the Port I/O addresses, you are directly accessing the device registers.  Sometimes there will be a further level of abstraction, where you will have one Port I/O address that will indicate which register you are changing, and another Port I/O address that has the data you are sending to that register.  How you deal with the device is based on how complex it is and what you are going to be doing.

In a real sense, they are registers, but keep in mind that often each of these devices can be considered a full computer in its own right, and all you are doing is establishing how it will be communicating with the main CPU.  Don\textquotesingle{}t get hung up here and get these confused with the CPU registers.
\subsection{ISR Cleanup}
\label{71}

One area that you have to interact on a regular basis when using interrupt controllers is to inform the 8259 PIC controller that the interrupt service routine is completed.  When your software is performing an interrupt handler, there is no automated method for the CPU to signal to the 8259 chip that you have finished, so a specific \symbol{34}register\symbol{34} in the PIC needs to be set to let the next interrupt handler be able to access the computer system.  Typical software to accomplish this is like the following:

\TemplatePreformat{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}\${}20{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}20;$\text{ }$\newline{}
}

This is sending the command called \symbol{34}End of Interrupt\symbol{34} or often written as an abbreviation simply \symbol{34}EOI\symbol{34}.  There are other commands that can be sent to this register, but for our purposes this is the only one that we need to concern ourselves with.{\bfseries
\begin{mydescription}{\bfseries
\begin{mydescription}
\end{mydescription}
}

\end{mydescription}
}

Now this will clear the \symbol{34}master\symbol{34} PIC, but if you are using a device that is triggered on the \symbol{34}slave\symbol{34} PIC, you also need to inform that chip as well that the interrupt service has been completed.  This means you need to send \symbol{34}EOI\symbol{34} to that chip as well in a manner like this:

\TemplatePreformat{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}\${}A0{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}20;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}\${}20{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}20;$\text{ }$\newline{}
}

There are other things you can do to make your computer system work smoothly, but let\textquotesingle{}s keep things simple for now.
\subsection{PIC Device Masking}
\label{72}

Before we leave the subject of the 8259 PIC, I\textquotesingle{}d like to cover the concept of device masking.  Each one of the devices that are attached to the PIC can be \symbol{34}turned on\symbol{34} or \symbol{34}turned off\symbol{34} from the viewpoint of how they can interrupt the CPU through the PIC chip.  Usually as an application developer all we really care about is if the device is turned on, although if you are trying to isolate performance issues you might turn off some other devices.  Keep in mind that if you turn a device \symbol{34}off\symbol{34}, the interrupt will not work until it is turned back on.  That can include the keyboard or other critical devices you may need to operate your computer.

The register to set this mask is called \symbol{34}Operation Control Word 1\symbol{34} or \symbol{34}OCW1\symbol{34}.  This is located at the PIC base address + 1, or for the \symbol{34}Master\symbol{34} PIC at Port I/O Address \${}21.  This is where you need to go over bit manipulation, which I won\textquotesingle{}t cover in detail here.  The following tables show the related bits to change in order to enable or disable each of the hardware interrupt devices:


\begin{longtable}{>{\RaggedRight}p{0.11428\linewidth}>{\RaggedRight}p{0.30449\linewidth}>{\RaggedRight}p{0.46069\linewidth}} 
\multicolumn{3}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Master OCW1 (\${}21)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ Enabled{\bfseries  }}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Device Function}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Parallel Port (LPT1)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Floppy Disk Controller\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved/Sound Card\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Serial Port (COM1)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Serial Port (COM2)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Slave PIC\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Keyboard\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} System Timer 
\end{longtable}




\begin{longtable}{>{\RaggedRight}p{0.10932\linewidth}>{\RaggedRight}p{0.29129\linewidth}>{\RaggedRight}p{0.47885\linewidth}} 
\multicolumn{3}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Slave OCW1 (\${}A1)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ Enabled}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Device Function}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ15 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ14 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Hard Disk Drive\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ13 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Math Co-{}Processor\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ12 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} PS/2 Mouse\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ11 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} PCI Devices\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ10 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} PCI Devices\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ9 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Redirected IRQ2 Devices\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Real Time Clock 
\end{longtable}


Assuming that we want to turn on IRQ3 (typical for the serial port COM2), we would use the following software:

\TemplatePreformat{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}\${}21{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}\${}21{$\text{]}$}$\text{ }${}and$\text{ }${}\${}F7;$\text{ }${}\{Clearing$\text{ }${}bit$\text{ }${}3$\text{ }${}for$\text{ }${}enabling$\text{ }${}IRQ3\}$\text{ }$\newline{}
}

And to turn it off we would use the following software:

\TemplatePreformat{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}\${}21{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}\${}21{$\text{]}$}$\text{ }${}or$\text{ }${}\${}08;$\text{ }${}\{Setting$\text{ }${}bit$\text{ }${}3$\text{ }${}for$\text{ }${}disabling$\text{ }${}IRQ3\}$\text{ }$\newline{}
}

If you are having problems getting anything to work, you can simply send this command in your software:

\TemplatePreformat{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}\${}21{$\text{]}$}$\text{ }${}:=$\text{ }${}0;$\text{ }$\newline{}
}

which will simply enable everything.  This may not be a good thing to do, but will have to be something for you to experiment with depending on what you are working with.  Try not to take short cuts like this as not only is it a sign of a lazy programmer, but it can have side effects that your computer may behave different than you intended.  If you are working with the computer at this level, the goal is to change as little as possible so you don\textquotesingle{}t cause damage to any other software you are using.
\section{Serial COM Port Memory and I/O Allocation}
\label{73}

Now that we have pushed through the 8259 chip, lets move on to the UART itself.  While the Port I/O addresses for the PICs are fairly standard, it is common for computer manufacturers to move stuff around for the serial ports themselves.  Also, if you have serial port devices that are part of an add-{}in card (like an ISA or PCI card in the expansion slots of your computer), these will usually have different settings than something built into the main motherboard of your computer.  It may take some time to hunt down these settings, and it is important to know what these values are when you are trying to write your software.  Often these values can be found in the BIOS setup screens of your computer, or if you can pause the messages when your computer turns on, they can be found as a part of the boot process of your computer.

For a \symbol{34}typical\symbol{34} PC system, the following are the Port I/O addresses and IRQs for each serial COM port:


\begin{longtable}{>{\RaggedRight}p{0.25808\linewidth}>{\RaggedRight}p{0.15639\linewidth}>{\RaggedRight}p{0.46499\linewidth}} 
\multicolumn{3}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Common UART IRQ and I/O Port Addresses}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM Port}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Base Port I/O address}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}3F8\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}2F8\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}3E8\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}2E8 
\end{longtable}


If you notice something interesting here, you can see that COM3 and COM1 share the same interrupt.  This is not a mistake but something you need to keep in mind when you are writing an interrupt service routine.  The 15 interrupts that were made available through the 8259 PIC chips still have not been enough to allow all of the devices that are found on a modern computer to have their own separate hardware interrupt, so in this case you will need to learn how to share the interrupt with other devices.  I\textquotesingle{}ll cover more of that later when we get into the actual software to access the serial data ports, but for now remember not to write your software strictly for one device.

The Base Port I/O address is important for the next topic we will cover, which is directly accessing the UART registers.
\section{UART Registers}
\label{74}

The UART chip has a total of 12 different registers that are mapped into 8 different Port I/O locations.  Yes, you read that correct, 12 registers in 8 locations.  Obviously that means there is more than one register that uses the same Port I/O location, and affects how the UART can be configured.  In reality, two of the registers are really the same one but in a different context, as the Port I/O address that you transmit the characters to be sent out of the serial data port is the same address that you can read in the characters that are sent to the computer.  Another I/O port address has a different context when you write data to it than when you read data from it... and the number will be different after writing the data to it than when you read data from it.  More on that in a little bit.

One of the issues that came up when this chip was originally being designed was that the designer needed to be able to send information about the baud rate of the serial data with 16 bits.  This actually takes up two different \symbol{34}registers\symbol{34} and is toggled by what is called the \symbol{34}Divisor Latch Access Bit\symbol{34} or \symbol{34}DLAB\symbol{34}.  When the DLAB is set to \symbol{34}1\symbol{34}, the baud rate registers can be set and when it is \symbol{34}0\symbol{34} the registers have a different context.

Does all this sound confusing?  It can be, but lets take it one simple little piece at a time.  The following is a table of each of the registers that can be found in a typical UART chip:


\begin{longtable}{>{\RaggedRight}p{0.17090\linewidth}>{\RaggedRight}p{0.09988\linewidth}>{\RaggedRight}p{0.14392\linewidth}>{\RaggedRight}p{0.10372\linewidth}>{\RaggedRight}p{0.28069\linewidth}} 
\multicolumn{5}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries UART Registers}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Base Address}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} DLAB}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} I/O Access}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Abbrv.}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Register Name}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Write &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} THR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Transmitter Holding Buffer\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} RBR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Receiver Buffer\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read/Write &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} DLL &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Divisor Latch Low Byte\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read/Write &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IER &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Interrupt Enable Register\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read/Write &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} DLH &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Divisor Latch High Byte\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} x &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IIR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Interrupt Identification Register\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} x &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Write &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} FCR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} FIFO Control Register\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} x &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read/Write &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} LCR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Line Control Register\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} x &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read/Write &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} MCR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Modem Control Register\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} x &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} LSR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Line Status Register\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} x &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} MSR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Modem Status Register\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} x &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read/Write &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} SR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Scratch Register 
\end{longtable}


The \symbol{34}x\symbol{34} in the DLAB column means that the status of the DLAB has no effect on what register is going to be accessed for that offset range.  Notice also that some registers are Read only.  If you attempt to write data to them, you may end up with either some problems with the modem (worst case), or the data will simply be ignored (typically the result).  As mentioned earlier, some registers share a Port I/O address where one register will be used when you write data to it and another register will be used to retrieve data from the same address.

Each serial communication port will have its own set of these registers.  For example, if you wanted to access the Line Status Register (LSR) for COM1, and assuming the base I/O Port address of \${}3F8, the I/O Port address to get the information in this register would be found at \${}3F8 + \${}05 or \${}3FD.  Some example code would be like this:

\TemplatePreformat{$\text{ }$\newline{}
const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}COM1_Base$\text{ }${}=$\text{ }${}\${}3F8;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}COM2_Base$\text{ }${}=$\text{ }${}\${}2F8;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}LSR_Offset$\text{ }${}=$\text{ }${}\${}05;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
function$\text{ }${}LSR_Value:$\text{ }${}Byte;$\text{ }$\newline{}
begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Result$\text{ }${}:=$\text{ }${}Port{$\text{[}$}COM1_Base+LSR_Offset{$\text{]}$};$\text{ }$\newline{}
end;$\text{ }$\newline{}
}

There is quite a bit of information packed into each of these registers, and the following is an explanation for the meaning of each register and the information it contains.
\subsection{Transmitter Holding Buffer/Receiver Buffer}
\label{75}  
Offset: +0 .
The Transmit and Receive buffers are related, and often even use the very same memory.  This is also one of the areas where later versions of the 8250 chip have a significant impact, as the later models incorporate some internal buffering of the data within the chip before it gets transmitted as serial data.  The base 8250 chip can only receive one byte at a time, while later chips like the 16550 chip will hold up to 16 bytes either to transmit or to receive (sometimes both... depending on the manufacturer) before you have to wait for the character to be sent.  This can be useful in multi-{}tasking environments where you have a computer doing many things, and it may be a couple of milliseconds before you get back to dealing with serial data flow.

These registers really are the \symbol{34}heart\symbol{34} of serial data communication, and how data is transferred from your software to another computer and how it gets data from other devices.  Reading and Writing to these registers is simply a matter of accessing the Port I/O address for the respective UART.
\subsection{Divisor Latch Bytes}
\label{76}
Offset: +0 and +1 .
The Divisor Latch Bytes are what control the baud rate of the modem.  As you might guess from the name of this register, it is used as a divisor to determine what baud rate that the chip is going to be transmitting at.  

In reality, it is even simpler than that.  This is really a count-{}down clock that is used each time a bit is transmitted by the UART.  Each time a bit is sent, a count-{}down register is reset to this value and then counts down to zero.  This clock is running typically at 115.2 KHz.  In other words, at 115 thousand times per second a counter is going down to determine when to send the next bit.  At one time during the design process it was anticipated that some other frequencies might be used to get a UART working, but with the large amount of software already written for this chip this frequency is pretty much standard for almost all UART chips used on a PC platform.  They may use a faster clock in some portion (like a 1.843 MHz clock), but some fraction of that frequency will then be used to scale down to a 115.2 KHz clock.

Some more on UART clock speeds (advanced coverage):  For many UART chips, the clock frequency that is driving the UART is 1.8432 MHz.  This frequency is then put through a divider circuit that drops the frequency down by a factor of 16, giving us the 115.2 KHz frequency mentioned above.  If you are doing some custom equipment using this chip, the National Semiconductor spec sheets allow for a 3.072 MHz clock and 18.432 MHz clock.  These higher frequencies will allow you to communicate at higher baud rates, but require custom circuits on the motherboard and often new drivers in order to deal with these new frequencies.  What is interesting is that you can still operate at 50 baud with these higher clock frequencies, but at the time the original IBM-{}PC/XT was manufactured this wasn\textquotesingle{}t a big concern as it is now for higher data throughput.

If you use the following mathematical formula, you can determine what numbers you need to put into the Divisor Latch Bytes:

\begin{myquote}
\item{} 
\begin{myquote}
\item{} \begin{equation*}{Divisor Latch Value} = {115200 \over {Baud Rate}}\end{equation*}
\end{myquote}

\end{myquote}


That gives you the following table that can be used to determine common baud rates for serial communication:


\begin{longtable}{>{\RaggedRight}p{0.14195\linewidth}>{\RaggedRight}p{0.23586\linewidth}>{\RaggedRight}p{0.23074\linewidth}>{\RaggedRight}p{0.23074\linewidth}} 
\multicolumn{4}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Divisor Latch Byte Values (common baud rates)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Baud Rate}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Divisor (in decimal)}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Divisor Latch High Byte}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Divisor Latch Low Byte}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 50 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2304 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}09 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 110 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1047 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}04 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}17\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 220 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 524 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}02 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0C\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 300 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 384 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}01 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}80\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 600 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 192 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}C0\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1200 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 96 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}60\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2400 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 48 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}30\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4800 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 24 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}18\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 9600 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 12 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0C\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 19200 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}06\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 38400 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}03\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 57600 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}02\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 115200 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}01 
\end{longtable}


One thing to keep in mind when looking at the table is that baud rates 600 and above all set the Divisor Latch High Byte to zero.  A sloppy programmer might try to skip setting the high byte, assuming that nobody would deal with such low baud rates, but this is not something to always presume.  Good programming habits suggest you should still try to set this to zero even if all you are doing is running at higher baud rates.

Another thing to notice is that there are other potential baud rates other than the standard ones listed above.  While this is not encouraged for a typical application, it would be something fun to experiment with.  Also, you can attempt to communicate with older equipment in this fashion where a standard API library might not allow a specific baud rate that should be compatible.  This should demonstrate why knowledge of these chips at this level is still very useful.

When working with these registers, also remember that these are the only ones that require the Divisor Latch Access Bit to be set to \symbol{34}1\symbol{34}.  More on that below, but I\textquotesingle{}d like to mention that it would be useful for application software setting the baud rate to set the DLAB to \symbol{34}1\symbol{34} just for the immediate operation of changing the baud rate, then putting it back to \symbol{34}0\symbol{34} as the very next step before you do any more I/O access to the modem.  This is just a good working habit, and keeps the rest of the software you need to write for accessing the UART much cleaner and easier.

One word of caution:  Do not set the value \symbol{34}0\symbol{34} for both Divisor Latch bytes.  While it will not (likely) damage the UART chip, the behavior on how the UART will be transmitting serial data will be unpredictable, and will change from one computer to the next, or even from one time you boot the computer to the next.  This is an error condition, and if you are writing software that works with baud rate settings on this level you should catch potential \symbol{34}0\symbol{34} values for the Divisor Latch.

Here is some sample software to set and retrieve the baud rate for COM1:

\TemplatePreformat{$\text{ }$\newline{}
const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}COM1_Base$\text{ }${}=$\text{ }${}\${}3F8;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}COM2_Base$\text{ }${}=$\text{ }${}\${}2F8;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}LCR_Offset$\text{ }${}=$\text{ }${}\${}03;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Latch_Low$\text{ }${}=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Latch_High$\text{ }${}=$\text{ }${}\${}01;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
procedure$\text{ }${}SetBaudRate(NewRate:$\text{ }${}Word);$\text{ }$\newline{}
var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}DivisorLatch:$\text{ }${}Word;$\text{ }$\newline{}
begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}DivisorLatch$\text{ }${}:=$\text{ }${}115200$\text{ }${}div$\text{ }${}NewRate;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}LCR_Offset{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}LCR_Offset{$\text{]}$}$\text{ }${}or$\text{ }$\newline{}
$\text{ }${}\${}80;$\text{ }${}\{Set$\text{ }${}DLAB\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}Latch_High{$\text{]}$}$\text{ }${}:=$\text{ }${}DivisorLatch$\text{ }${}shr$\text{ }${}8;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}Latch_Low{$\text{]}$}$\text{ }${}:=$\text{ }${}DivisorLatch$\text{ }${}and$\text{ }${}\${}FF;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}LCR_Offset{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}LCR_Offset{$\text{]}$}$\text{ }${}and$\text{ }$\newline{}
$\text{ }${}\${}7F;$\text{ }${}\{Clear$\text{ }${}DLAB\}$\text{ }$\newline{}
end;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
function$\text{ }${}GetBaudRate:$\text{ }${}Integer;$\text{ }$\newline{}
var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}DivisorLatch:$\text{ }${}Word;$\text{ }$\newline{}
begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}LCR_Offset{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}LCR_Offset{$\text{]}$}$\text{ }${}or$\text{ }$\newline{}
$\text{ }${}\${}80;$\text{ }${}\{Set$\text{ }${}DLAB\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}DivisorLatch$\text{ }${}:=$\text{ }${}(Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}Latch_High{$\text{]}$}$\text{ }${}shl$\text{ }${}8)$\text{ }${}+$\text{ }$\newline{}
$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}Latch_Low{$\text{]}$};$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}LCR_Offset{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}LCR_Offset{$\text{]}$}$\text{ }${}and$\text{ }$\newline{}
$\text{ }${}\${}7F;$\text{ }${}\{Clear$\text{ }${}DLAB\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Result$\text{ }${}:=$\text{ }${}115200$\text{ }${}div$\text{ }${}DivisorLatch;$\text{ }$\newline{}
end;$\text{ }$\newline{}
}
\subsection{Interrupt Enable Register}
\label{77}
Offset: +1 .
This register allows you to control when and how the UART is going to trigger an interrupt event with the hardware interrupt associated with the serial COM port.  If used properly, this can enable an efficient use of system resources and allow you to react to information being sent across a serial data line in essentially real-{}time conditions.  Some more on that will be covered later, but the point here is that you can use the UART to let you know exactly when you need to extract some data.  This register has both read-{} and write-{}access.

The following is a table showing each bit in this register and what events that it will enable to allow you check on the status of this chip:


\begin{longtable}{>{\RaggedRight}p{0.09591\linewidth}>{\RaggedRight}p{0.82373\linewidth}} 
\multicolumn{2}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Interrupt Enable Register (IER)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Notes}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Enables Low Power Mode (16750)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Enables Sleep Mode (16750)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Enable Modem Status Interrupt\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Enable Receiver Line Status Interrupt\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Enable Transmitter Holding Register Empty Interrupt\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Enable Received Data Available Interrupt 
\end{longtable}


The Received Data interrupt is a way to let you know that there is some data waiting for you to pull off of the UART.  This is probably the one bit that you will use more than the rest, and has more use.

The Transmitter Holding Register Empty Interrupt is to let you know that the output buffer (on more advanced models of the chip like the 16550) has finished sending everything that you pushed into the buffer.  This is a way to streamline the data transmission routines so they take up less CPU time.

The Receiver Line Status Interrupt indicates that something in the LSR register has probably changed.  This is usually an error condition, and if you are going to write an efficient error handler for the UART that will give plain text descriptions to the end user of your application, this is something you should consider. This is certainly something that takes a bit more advanced knowledge of programming.

The Modem Status Interrupt is to notify you when something changes with an external modem connected to your computer.  This can include things like the telephone \symbol{34}bell\symbol{34} ringing (you can simulate this in your software), that you have successfully connected to another modem (Carrier Detect has been turned on), or that somebody has \symbol{34}hung up\symbol{34} the telephone (Carrier Detect has turned off).  It can also help you to know if the external modem or data equipment can continue to receive data (Clear to Send).  Essentially, this deals with the other wires in the RS-{}232 standard other than strictly the transmit and receive wires.

The other two modes are strictly for the 16750 chip, and help put the chip into a \symbol{34}low power\symbol{34} state for use on things like a laptop computer or an embedded controller that has a very limited power source like a battery.  On earlier chips you should treat these bits as \symbol{34}Reserved\symbol{34}, and only put a \symbol{34}0\symbol{34} into them.
\subsection{Interrupt Identification Register}
\label{78}
Offset: +2 .
This register is to be used to help identify what the unique characteristics of the UART chip that you are using has.  This chip has two uses:

\begin{myitemize}
\item{}  Identification of why the UART triggered an interrupt.
\item{}  Identification of the UART chip itself.
\end{myitemize}


Of these, identification of why the interrupt service routine has been invoked is perhaps the most important.

The following table explains some of the details of this register, and what each bit on it represents:

\begin{landscape}

\begin{longtable}{>{\RaggedRight}p{0.09046\linewidth}>{\RaggedRight}p{0.05788\linewidth}>{\RaggedRight}p{0.05788\linewidth}>{\RaggedRight}p{0.05788\linewidth}>{\RaggedRight}p{0.33613\linewidth}>{\RaggedRight}p{0.15869\linewidth}} 
\multicolumn{6}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Interrupt Identification Register (IIR)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&\multicolumn{5}{>{\RaggedRight}p{0.80291\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Notes}}\\ \multirow{5}{\linewidth}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 and 6}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 7}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 6}&\multicolumn{3}{>{\RaggedRight}p{0.60320\linewidth}}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt}}\\ \multicolumn{1}{c}{}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\multicolumn{3}{>{\RaggedRight}p{0.60320\linewidth}}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} No FIFO on chip}\\ \multicolumn{1}{c}{}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\multicolumn{3}{>{\RaggedRight}p{0.60320\linewidth}}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved condition}\\ \multicolumn{1}{c}{}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\multicolumn{3}{>{\RaggedRight}p{0.60320\linewidth}}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} FIFO enabled, but not functioning}\\ \multicolumn{1}{c}{}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\multicolumn{3}{>{\RaggedRight}p{0.60320\linewidth}}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} FIFO enabled}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5&\multicolumn{5}{>{\RaggedRight}p{0.80291\linewidth}}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 64 Byte FIFO Enabled (16750 only)}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\multicolumn{5}{>{\RaggedRight}p{0.80291\linewidth}}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved}\\ \multirow{9}{\linewidth}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3, 2 and 1}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 3}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 2}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 1}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reset Method}\\ \multicolumn{1}{c}{}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Modem Status Interrupt &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reading Modem Status Register(MSR)\\ \multicolumn{1}{c}{}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Transmitter Holding Register Empty Interrupt&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reading Interrupt Identification Register(IIR) or \newline{}Writing to Transmit Holding Buffer(THR)\\ \multicolumn{1}{c}{}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Received Data Available Interrupt&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reading Receive Buffer Register(RBR)\\ \multicolumn{1}{c}{}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Receiver Line Status Interrupt &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reading Line Status Register(LSR)\\ \multicolumn{1}{c}{}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} N/A\\ \multicolumn{1}{c}{}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} N/A\\ \multicolumn{1}{c}{}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Time-{}out Interrupt Pending (16550 \& later)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reading Receive Buffer Register(RBR)\\ \multicolumn{1}{c}{}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} N/A\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0&\multicolumn{5}{>{\RaggedRight}p{0.80291\linewidth}}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Interrupt Pending Flag} 
\end{longtable}

\end{landscape}

When you are writing an interrupt handler for the 8250 chip (and later), this is the register that you need to look at in order to determine what exactly was the trigger for the interrupt.  

As explained earlier, multiple serial communication devices can share the same hardware interrupt.  The use of \symbol{34}Bit 0\symbol{34} of this register will let you know (or confirm) that this was indeed the device that caused the interrupt.  What you need to do is check on all serial devices (that are in separate port I/O address spaces), and get the contents of this register.  Keep in mind that it is at least possible for more than one device to trigger an interrupt at the same time, so when you are doing this scanning of serial devices, make sure you examine all of them, even one of the first devices did in fact need to be processed.  Some computer systems may not require this to occur, but this is a good programming practice anyway.  It is also possible that due to how you processed the UARTs earlier, that you have already dealt with all of the UARTs for a given interrupt.  When this bit is a \symbol{34}0\symbol{34}, it identifies that the UART is triggering an interrupt.  When it is \symbol{34}1\symbol{34}, that means the interrupt has already been processed or this particular UART was not the triggering device.  I know that this seems a little bit backward for a typical bit-{}flag used in computers, but this is called digital logic being asserted low, and is fairly common with electrical circuit design.  This is a bit more unusual through for this logic pattern to go into the software domain.

Bits 1, 2 \& 3 help to identify exactly what sort of interrupt event was used within the UART to invoke the hardware interrupt.  These are the same interrupts that were earlier enabled with the IER register.  In this case, however, each time you process the registers and deal with the interrupt it will be unique.  If multiple \symbol{34}triggers\symbol{34} occur for the UART due to many things happening at the same time, this will be invoked through multiple hardware interrupts.  Earlier chip sets don\textquotesingle{}t use bit 3, but this is a reserved bit on those UART systems and always set to logic state \symbol{34}0\symbol{34}, so programming logic doesn\textquotesingle{}t have to be different when trying to decipher which interrupt has been used.

To explain the FIFO timeout Interrupt, this is a way to check for the end of a packet or if the incoming data stream has stopped.  Generally the following conditions must exist for this interrupt to be triggered:  Some data needs to be in the incoming FIFO and has not been read by the computer.  Data transmissions being sent to the UART via serial data link must have ended with no new characters being received.  The CPU processing incoming data must not have retrieved any data from the FIFO before the timeout has occurred.  The timeout will occur usually after the period it would take to transmit or receive at least 4 characters.  If you are talking about data sent at 1200 baud, 8 data bits, 2 stop bits, odd parity, that would take about 40 milliseconds, which is almost an eternity in terms of things that your computer can accomplish on a 4 GHz Pentium CPU.

The \symbol{34}Reset Method\symbol{34} listed above describes how the UART is notified that a given interrupt has been processed.  When you access the register mentioned under the reset method, this will clear the interrupt condition for that UART.  If multiple interrupts for the same UART have been triggered, either it won\textquotesingle{}t clear the interrupt signal on the CPU (triggering a new hardware interrupt when you are done), or if you check back to this register (IIR) and query the Interrupt Pending Flag to see if there are more interrupts to process, you can move on and attempt to resolve any new interrupt issue that you may have to deal with, using appropriate application code.

Bits 5, 6 \& 7 are reporting the current status of FIFO buffers being used for transmitting and receiving characters.  There was a bug in the original 16550 chip design when it was first released that had a serious flaw in the FIFO, causing the FIFO to report that it was working but in fact it wasn\textquotesingle{}t.  Because some software had already been written to work with the FIFO, this bit (Bit 7 of this register) was kept, but Bit 6 was added to confirm that the FIFO was in fact working correctly, in case some new software wanted to ignore the hardware FIFO on the earlier versions of the 16550 chip.  This pattern has been kept on future versions of this chip as well.  On the 16750 chip an added 64-{}byte FIFO has been implemented, and Bit 5 is used to designate the presence of this extended buffer.  These FIFO buffers can be turned on and off using registers listed below.
\subsection{FIFO Control Register}
\label{79}
Offset: +2 .
This is a relatively \symbol{34}new\symbol{34} register that was not a part of the original 8250 UART implementation.  The purpose of this register is to control how the First In/First Out (FIFO) buffers will behave on the chip and to help you fine-{}tune their performance in your application.  This even gives you the ability to \symbol{34}turn on\symbol{34} or \symbol{34}turn off\symbol{34} the FIFO.

Keep in mind that this is a \symbol{34}write only\symbol{34} register.  Attempting to read in the contents will only give you the Interrupt Identification Register (IIR), which has a totally different context.


\begin{longtable}{>{\RaggedRight}p{0.08786\linewidth}>{\RaggedRight}p{0.08185\linewidth}>{\RaggedRight}p{0.08185\linewidth}>{\RaggedRight}p{0.27982\linewidth}>{\RaggedRight}p{0.26774\linewidth}} 
\multicolumn{5}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries FIFO Control Register (FCR)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&\multicolumn{4}{>{\RaggedRight}p{0.81340\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Notes}}\\ \multirow{5}{\linewidth}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 \& 6}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 7}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 6}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Interrupt Trigger Level (16 byte)}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Trigger Level (64 byte)}\\ \multicolumn{1}{c}{}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 Byte &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 Byte\\ \multicolumn{1}{c}{}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 Bytes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 16 Bytes\\ \multicolumn{1}{c}{}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 8 Bytes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 32 Bytes\\ \multicolumn{1}{c}{}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 14 Bytes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 56 Bytes\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5&\multicolumn{4}{>{\RaggedRight}p{0.81340\linewidth}}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Enable 64 Byte FIFO (16750)}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\multicolumn{4}{>{\RaggedRight}p{0.81340\linewidth}}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\multicolumn{4}{>{\RaggedRight}p{0.81340\linewidth}}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} DMA Mode Select}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\multicolumn{4}{>{\RaggedRight}p{0.81340\linewidth}}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Clear Transmit FIFO}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\multicolumn{4}{>{\RaggedRight}p{0.81340\linewidth}}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Clear Receive FIFO}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\multicolumn{4}{>{\RaggedRight}p{0.81340\linewidth}}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Enable FIFOs} 
\end{longtable}


Writing a \symbol{34}0\symbol{34} to bit 0 will disable the FIFOs, in essence turning the UART into 8250 compatibility mode.  In effect this also renders the rest of the settings in this register to become useless.  If you write a \symbol{34}0\symbol{34} here it will also stop the FIFOs from sending or receiving data, so any data that is sent through the serial data port may be scrambled after this setting has been changed.  It would be recommended to disable FIFOs only if you are trying to reset the serial communication protocol and clearing any working buffers you may have in your application software.  Some documentation suggests that setting this bit to \symbol{34}0\symbol{34} also clears the FIFO buffers, but I would recommend explicit buffer clearing instead using bits 1 and 2.

Bits 1 and 2 are used to clear the internal FIFO buffers.  This is useful when you are first starting up an application where you might want to clear out any data that may have been \symbol{34}left behind\symbol{34} by a previous piece of software using the UART, or if you want to reset a communications connection.  These bits are \symbol{34}automatically\symbol{34} reset, so if you set either of these to a logical \symbol{34}1\symbol{34} state you will not have to go and put them back to \symbol{34}0\symbol{34} later.  Sending a logical \symbol{34}0\symbol{34} only tells the UART not to reset the FIFO buffers, even if other aspects of FIFO control are going to be changed.

Bit 3 is in reference to how the DMA (Direct Memory Access) takes place, primarily when you are trying to retrieve data from the FIFO.  This would be useful primarily to a chip designer who is trying to directly access the serial data, and store this data in an internal buffer.  There are two digital logic pins on the UART chip itself labeled RXRDY and TXRDY.  If you are trying to design a computer circuit with the UART chip this may be useful or even important, but for the purposes of an application developer on a PC system it is of little use and you can safely ignore it.

Bit 5 allows the 16750 UART chip to expand the buffers from 16 bytes to 64 bytes.  Not only does this affect the size of the buffer, but it also controls the size of the trigger threshold, as described next.  On earlier chip types this is a reserved bit and should be kept in a logical \symbol{34}0\symbol{34} state.  On the 16750 it make that UART perform more like the 16550 with only a 16 byte FIFO.

Bits 6 and 7 describe the trigger threshold value.  This is the number of characters that would be stored in the FIFO before an interrupt is triggered that will let you know data should be removed from the FIFO.  If you anticipate that large amounts of data will be sent over the serial data link, you might want to increase the size of the buffer.  The reason why the maximum value for the trigger is less than the size of the FIFO buffer is because it may take a little while for some software to access the UART and retrieve the data.  Remember that when the FIFO is full, you will start to lose data from the FIFO, so it is important to make sure you have retrieved the data once this threshold has been reached.  If you are encountering software timing problems in trying to retrieve the UART data, you might want to lower the threshold value.  At the extreme end where the threshold is set to 1 byte, it will act essentially like the basic 8250, but with the added reliability that some characters may get caught in the buffer in situations where you don\textquotesingle{}t have a chance to get all of them immediately.
\subsection{Line Control Register}
\label{80}
Offset: +3 .
This register has two major purposes:

\begin{myitemize}
\item{}  Setting the Divisor Latch Access Bit (DLAB), allowing you to set the values of the Divisor Latch Bytes.
\item{}  Setting the bit patterns that will be used for both receiving and transmitting the serial data.  In other words, the serial data protocol you will be using (8-{}1-{}None, 5-{}2-{}Even, etc.).
\end{myitemize}



\begin{longtable}{>{\RaggedRight}p{0.11190\linewidth}>{\RaggedRight}p{0.19464\linewidth}>{\RaggedRight}p{0.15866\linewidth}>{\RaggedRight}p{0.17087\linewidth}>{\RaggedRight}p{0.16303\linewidth}} 
\multicolumn{5}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Line Control Register (LCR)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Notes}&&&\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Divisor Latch Access Bit&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Set Break Enable&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3, 4 \& 5&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 5}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 4}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 3}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Parity Select}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} No Parity&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Odd Parity&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Even Parity&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Mark&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Space&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} One Stop Bit&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.5 Stop Bits or 2 Stop Bits&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 \& 1&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 1}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 0}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Word Length}&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 Bits&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 Bits&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 Bits&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 8 Bits&& 
\end{longtable}


The first two bits (Bit 0 and Bit 1) control how many data bits are sent for each data \symbol{34}word\symbol{34} that is transmitted via serial protocol.  For most serial data transmission, this will be 8 bits, but you will find some of the earlier protocols and older equipment that will require fewer data bits.  For example, some military encryption equipment only uses 5 data bits per serial \symbol{34}word\symbol{34}, as did some TELEX equipment.  Early ASCII teletype terminals only used 7 data bits, and indeed this heritage has been preserved with SMTP format that only uses 7-{}bit ASCII for e-{}mail messages.  Clearly this is something that needs to be established before you are able to successfully complete message transmission using RS-{}232 protocol.

Bit 2 controls how many stop bits are transmitted by the UART to the receiving device.  This is selectable as either one or two stop bits, with a logical \symbol{34}0\symbol{34} representing 1 stop bit and \symbol{34}1\symbol{34} representing 2 stop bits.  In the case of 5 data bits, the RS-{}232 protocol instead sends out \symbol{34}1.5 stop bits\symbol{34}.  What this means is that one serial data \symbol{34}word\symbol{34} is transmitted with only 1 stop bit, and then the next one is transmitted with 2 stop bits.

Another thing to keep in mind is that the RS-{}232 standard only specifies that at least one data bit cycle will be kept a logical \symbol{34}1\symbol{34} at the end of each serial data word (in other words, a complete character from start bit, data bits, parity bits, and stop bits).  If you are having timing problems between the two computers but are able to in general get the character sent across one at a time, you might want to add a second stop bit instead of reducing baud rate.  This adds a one-{}bit penalty to the transmission speed per character instead of halving the transmission speed by dropping the baud rate (usually).

Bits 3, 4, and 5 control how each serial word responds to parity information.  When Bit 3 is a logical \symbol{34}0\symbol{34}, this causes no parity bits to be sent out with the serial data word.  Instead it moves on immediately to the stop bits, and is an admission that parity checking at this level is really useless.  You might still gain a little more reliability with data transmission by including the parity bits, but there are other more reliable and practical ways that will be discussed in other chapters in this book.  If you want to include parity checking, the following explains each parity method other than \symbol{34}none\symbol{34} parity:

{\bfseries Odd Parity}
\begin{myquote}
\item{}Each bit the data portion of the serial word is added as a simple count of the number of logical \symbol{34}1\symbol{34} bits.  If this is an odd number of bits, the parity bit will be transmitted as a logical \symbol{34}1\symbol{34}.
\end{myquote}


{\bfseries Even Parity}
\begin{myquote}
\item{}Like Odd Parity, the bits are added together.  In this case, however, if the number of bits end up as an even number it will display as a logical \symbol{34}1\symbol{34}, which is the exact opposite of odd parity.
\end{myquote}


{\bfseries Mark Parity}
\begin{myquote}
\item{}In this case the parity bit will always be a logical \symbol{34}1\symbol{34}.  While this may seem a little unusual, this is put in for testing and diagnostics purposes.  If you want to make sure that the software on the receiving end of the serial connection is responding correctly to a parity error, you can send a Mark or a Space parity, and send characters that don\textquotesingle{}t meet what the receiving UART or device is expecting for parity.  In addition for Mark Parity only, you can use this bit as an extra \symbol{34}stop bit\symbol{34}.  Keep in mind that RS-{}232 standards are expecting a logical \symbol{34}1\symbol{34} to end a serial data word, so a receiving computer will not be able to tell the difference between a \symbol{34}Mark\symbol{34} parity bit and a stop bit.  In essence, you can have 3 or 2.5 stop bits through the use of this setting and by appropriate use of the stop bit portion of this register as well.  This is a way to \symbol{34}tweak\symbol{34} the settings on your computer in a way that typical applications don\textquotesingle{}t allow you to do, or at least gain a deeper insight into serial data settings.
\end{myquote}


{\bfseries Space Parity}
\begin{myquote}
\item{}Like the Mark parity, this makes the parity bit \symbol{34}sticky\symbol{34}, so it doesn\textquotesingle{}t change.  In this case it puts in a logical \symbol{34}0\symbol{34} for the parity bit every time you transmit a character.  There are not many practical uses for doing this other than a crude way to put in 9 data bits for each serial word, or for diagnostics purposes.
\end{myquote}

\subsection{Modem Control Register}
\label{81}
Offset: +4 .
This register allows you to do \symbol{34}hardware\symbol{34} flow control, under software control.  Or in a more practical manner, it allows direct manipulation of four different wires on the UART that you can set to any series of independent logical states, and be able to offer control of the modem.  It should also be noted that most UARTs need Auxiliary Output 2 set to a logical \symbol{34}1\symbol{34} to enable interrupts.


\begin{longtable}{>{\RaggedRight}p{0.13537\linewidth}>{\RaggedRight}p{0.78427\linewidth}} 
\multicolumn{2}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Modem Control Register (MCR)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Notes}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Autoflow Control Enabled (16750)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Loopback Mode\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Auxiliary Output 2\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Auxiliary Output 1\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Request To Send\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Data Terminal Ready 
\end{longtable}


Of these outputs on a typical PC platform, only the Request to Send (RTS) and Data Terminal Ready (DTR) are actually connected to the output of the PC on the DB-{}9 connector.  If you are fortunate to have a DB-{}25 serial connector (more commonly used for parallel communications on a PC platform), or if you have a custom UART on an expansion card, the auxiliary outputs might be connected to the RS-{}232 connection.  If you are using this chip as a component on a custom circuit, this would give you some \symbol{34}free\symbol{34} extra output signals you can use in your chip design to signal anything you might want to have triggered by a TTL output, and would be under software control.  There are easier ways to do this, but in this case it might save you an extra chip on your layout.

The \symbol{34}loopback\symbol{34} mode is primarily a way to test the UART to verify that the circuits are working between your main CPU and the UART.  This seldom, if ever, needs to be tested by an end user, but might be useful for some initial testing of some software that uses the UART.  When this is set to a logical state of \symbol{34}1\symbol{34}, any character that gets put into the transmit register will immediately be found in the receive register of the UART.  Other logical signals like the RTS and DTS listed above will show up in the modem status register just as if you had put a loopback RS-{}232 device on the end of your serial communication port.  In short, this allows you to do a loopback test using just software.  Except for these diagnostics purposes and for some early development testing of software using the UART, this will never be used.

On the 16750 there is a special mode that can be invoked using the Modem Control Register.  Basically this allows the UART to directly control the state of the RTS and DTS for hardware character flow control, depending on the current state of the FIFO.  This behavior is also affected by the status of Bit 5 of the FIFO Control Register (FCR).  While this is useful, and can change some of the logic on how you would write UART control software, the 16750 is comparatively new as a chip and not commonly found on many computer systems.  If you know your computer has a 16750 UART, have fun taking advantage of this increased functionality.
\subsection{Line Status Register}
\label{82}
Offset: +5 . 
This register is used primarily to give you information on possible error conditions that may exist within the UART, based on the data that has been received.  Keep in mind that this is a \symbol{34}read only\symbol{34} register, and any data written to this register is likely to be ignored or worse, cause different behavior in the UART.  There are several uses for this information, and some information will be given below on how it can be useful for diagnosing problems with your serial data connection:


\begin{longtable}{>{\RaggedRight}p{0.13072\linewidth}>{\RaggedRight}p{0.78893\linewidth}} 
\multicolumn{2}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Line Status Register (LSR)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Notes}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Error in Received FIFO\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Empty Data Holding Registers\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Empty Transmitter Holding Register\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Break Interrupt\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Framing Error\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Parity Error\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Overrun Error\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Data Ready 
\end{longtable}


Bit 7 refers to errors that are with characters in the FIFO.  If any character that is currently in the FIFO has had one of the other error messages listed here (like a framing error, parity error, etc.), this is reminding you that the FIFO needs to be cleared as the character data in the FIFO is unreliable and has one or more errors.  On UART chips without a FIFO this is a reserved bit field.

Bits 5 and 6 refer to the condition of the character transmitter circuits and can help you to identify if the UART is ready to accept another character.  Bit 6 is set to a logical \symbol{34}1\symbol{34} if all characters have been transmitted (including the FIFO, if active), and the \symbol{34}shift register\symbol{34} is done transmitting as well.  This shift register is an internal memory block within the UART that grabs data from the Transmitter Holding Buffer (THB) or the FIFO and is the circuitry that does the actual transformation of the data to a serial format, sending out one bit of the data at a time and \symbol{34}shifting\symbol{34} the contents of the shift register down one bit to get the value of the next bit.  Bit 5 merely tells you that the UART is capable of receiving more characters, including into the FIFO for transmitting.

The Break Interrupt (Bit 4) gets to a logical state of \symbol{34}1\symbol{34} when the serial data input line has not received any new bits for a period of time that is at least as long as an entire serial data \symbol{34}word\symbol{34}, including the start bit, data bits, parity bit, and stop bits, for the given baud rate in the Divisor Latch Bytes.  Usually this means that the device that is sending serial data to your computer has stopped for some reason.  Often with serial communications this is a normal condition, but in this way you have a way to monitor just how the other device is functioning.

Framing errors (Bit 3) occur when the last bit is not a stop bit.  Or to be more precise the stop bit is a logical \symbol{34}0\symbol{34}.  There are several causes for this, including that you have the timing between the two computer mismatched.  This is usually caused by a mismatch in baud rate, although other causes might be involved as well, including problems in the physical cabling between the devices or that the cable is too long.  You may even have the number of data bits off, so when errors like this are encountered, check the serial data protocol very closely to make sure that all of the settings for the UART (data bit length, parity, and stop bit count) are what should be expected.

Parity errors (Bit 2) can also indicate a mismatched baud rate like the framing errors (particularly if both errors are occurring at the same time).  This bit is raised when the parity algorithm that is expected (odd, even, mark, or space) has not been found.  If you are using \symbol{34}no parity\symbol{34} in the setup of the UART, this bit should always be a logical \symbol{34}0\symbol{34}.  When framing errors are not occurring, this is a way to identify that there are some problems with the cabling, although there are other issues you may have to deal with as well.

Overrun errors (Bit 1) are a sign of poor programming or an operating system that is not giving you proper access to the UART.  This error condition occurs when there is a character waiting to be read, and the incoming shift register is attempting to move the contents of the next character into the Receiver Buffer (RBR).  On UARTs with a FIFO, this also indicates that the FIFO is full as well.  

Some things you can do to help get rid of this error including looking at how efficient your software is that is accessing the UART, particularly the part that is monitoring and reading incoming data.  On multi-{}tasking operating systems, you might want to make sure that the portion of the software that reads incoming data is on a separate thread, and that the thread priority is high or time-{}critical, as this is a very important operation for software that uses serial communications data.  A good software practice for applications also includes adding in an application specific \symbol{34}buffer\symbol{34} that is done through software, giving your application more opportunity to be able to deal with the incoming data as necessary, and away from the time critical subroutines needed to get the data off of the UART.  This buffer can be as small as 1KB to as large as 1MB, and depends substantially on the kind of data that you are working with.  There are other more exotic buffering techniques as well that apply to the realm of application development, and that will be covered in later modules.

If you are working with simpler operating systems like MS-{}DOS or a real-{}time operating system, there is a distinction between a poll-{}driven access to the UART vs. interrupt driven software.  Writing an interrupt driver is much more efficient, and there will be a whole section of this book that will go into details of how to write software for UART access.

Finally, when you can\textquotesingle{}t seem to solve the problems of trying to prevent overrun errors from showing up, you might want to think about reducing the baud rate for the serial transmission.  This is not always an option, and really should be the option of last choice when trying to resolve this issue in your software.  As a quick test to simply verify that the fundamental algorithms are working, you can start with a slower baud rate and gradually go to higher speeds, but that should only be done during the initial development of the software, and not something that gets released to a customer or placed as publicly distributed software.

The Data Ready Bit (Bit 0) is really the simplest part here.  This is a way to simply inform you that there is data available for your software to extract from the UART.  When this bit is a logical \symbol{34}1\symbol{34}, it is time to read the Receiver Buffer (RBR).  On UARTs with a FIFO that is active, this bit will remain in a logical \symbol{34}1\symbol{34} state until you have read all of the contents of the FIFO.
\subsection{Modem Status Register}
\label{83}
Offset: +6 . 
This register is another read-{}only register that is here to inform your software about the current status of the modem.  The modem accessed in this manner can either be an external modem, or an internal modem that uses a UART as an interface to the computer.


\begin{longtable}{>{\RaggedRight}p{0.15670\linewidth}>{\RaggedRight}p{0.76294\linewidth}} 
\multicolumn{2}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Modem Status Register (MSR)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Notes}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Carrier Detect\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ring Indicator\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Data Set Ready\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Clear To Send\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Delta Data Carrier Detect\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Trailing Edge Ring Indicator\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Delta Data Set Ready\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Delta Clear To Send 
\end{longtable}


Bits 7 and 6 are directly related to modem activity.  Carrier Detect will stay in a logical state of \symbol{34}1\symbol{34} while the modem is \symbol{34}connect\symbol{34} to another modem.  When this goes to a logical state of \symbol{34}0\symbol{34}, you can assume that the phone connection has been lost.  The Ring Indicator bit is directly tied to the RS-{}232 wire also labeled \symbol{34}RI\symbol{34} or Ring Indicator.  Usually this bit goes to a logical state of \symbol{34}1\symbol{34} as a result of the \symbol{34}ring voltage\symbol{34} on the telephone line is detected, like when a conventional telephone will be ringing to inform you that somebody is trying to call you.  

When we get to the section of AT modem commands, there will be other methods that can be shown to inform you about this and other information regarding the status of a modem, and instead this information will be sent as characters in the normal serial data stream instead of special wires.  In truth, these extra bits are pretty worthless, but have been a part of the specification from the beginning and comparatively easy for UART designers to implement.  It may, however, be a way to efficiently send some additional information or allow a software designer using the UART to get some logical bit signals from other devices for other purposes.

The \symbol{34}Data Set Ready\symbol{34} and \symbol{34}Clear To Send\symbol{34} bits (Bits 4 and 5) are found directly on an RS-{}232 cable, and are matching wires to \symbol{34}Request To Send\symbol{34} and \symbol{34}Data Terminal Ready\symbol{34} that are transmitted with the \symbol{34}Modem Control Register (MCR).  With these four bits in two registers, you can perform \symbol{34}hardware flow control\symbol{34}, where you can signal to the other device that it is time to send more data, or to hold back and stop sending data while you are trying to process the information.  More will be written about this subject in another module when we get to data flow control.

A note regarding the \symbol{34}delta\symbol{34} bits (Bits 0, 1, 2, and 3).  In this case the word \symbol{34}delta\symbol{34} means change, as in a change in the status of one of the bits.  This comes from other scientific areas like rocket science where delta-{}vee means a change in velocity.  For the purposes of this register, each of these bits will be a logical \symbol{34}1\symbol{34} the next time you access this Modem Status register if the bit it is associated with (like Delta Data Carrier Detect with Carrier Detect) has changed its logical state from the previous time you accessed this register.  The Trailing Edge Ring Indicator is pretty much like the rest, except it is in a logical \symbol{34}1\symbol{34} state only if the \symbol{34}Ring Indicator\symbol{34} bit went from a logical \symbol{34}1\symbol{34} to a logical \symbol{34}0\symbol{34} condition.  There really isn\textquotesingle{}t much practical use for this knowledge, but there is some software that tries to take advantage of these bits and perform some manipulation of the data received from the UART based on these bits.  If you ignore these 4 bits you can still make a very robust serial communications software.
\subsection{Scratch Register}
\label{84}
Offset: +7 . 
The Scratch Register is an interesting enigma.  So much effort was done to try and squeeze a whole bunch of registers into all of the other I/O port addresses that the designers had an extra \symbol{34}register\symbol{34} that they didn\textquotesingle{}t know what to do with.  Keep in mind that when dealing with computer architecture, it is easier when dealing with powers of 2, so they were \symbol{34}stuck\symbol{34} with having to address 8 I/O ports.  Allowing another device to use this extra I/O port would make the motherboard design far too complicated.

On some variants of the 8250 UART, any data written to this scratch register will be available to software when you read the I/O port for this register.  In effect, this gives you one extra byte of \symbol{34}memory\symbol{34} that you can use in your applications in any way that you find useful.  Other than a virus author (maybe I shouldn\textquotesingle{}t give any ideas), there isn\textquotesingle{}t really a good use for this register.  Of limited use is the fact that you can use this register to identify specific variations of the UART because the original 8250 did not store the data sent to it through this register.  As that chip is hardly ever used anymore on a PC design (those companies are using more advanced chips like the 16550), you will not find that \symbol{34}bug\symbol{34} in most modern PC-{}type platforms.  More details will be given below on how to identify through software which UART chip is being used in your computer, and for each serial port.
\section{Software Identification of the UART}
\label{85}

Just as it is possible to identify many of the components on a computer system through just software routines, it is also possible to detect which version or variant of the UART that is found on your computer as well.  The reason this is possible is because each different version of the UART chip has some unique qualities that if you do a process of elimination you can identify which version you are dealing with.  This can be useful information if you are trying to improve performance of the serial I/O routines, know if there are buffers available for transmitting and sending information, as well as simply getting to know the equipment on your PC better.

One example of how you can determine the version of the UART is if the Scratch Register is working or not.  On the first 8250 and 8250A chips, there was a flaw in the design of those chip models where the Scratch Register didn\textquotesingle{}t work.  If you write some data to this register and it comes back changed, you know that the UART in your computer is one of these two chip models.

Another place to look is with the FIFO control registers.  If you set bit \symbol{34}0\symbol{34} of this register to a logical {\bfseries 1}, you are trying to enable the FIFOs on the UART, which are only found in the more recent version of this chip.  Reading bits \symbol{34}6\symbol{34} and \symbol{34}7\symbol{34} will help you to determine if you are using either the 16550 or 16550A chip.  Bit \symbol{34}5\symbol{34} will help you determine if the chip is the 16750.

Below is a full pseudo code algorithm to help you determine the type of chip you are using:
\\

\TemplateSpaceIndent{$\text{ }${}Set$\text{ }${}the$\text{ }${}value$\text{ }${}\symbol{34}0xE7\symbol{34}$\text{ }${}to$\text{ }${}the$\text{ }${}FCR$\text{ }${}to$\text{ }${}test$\text{ }${}the$\text{ }${}status$\text{ }${}of$\text{ }${}the$\text{ }${}FIFO$\text{ }$\newline{}
$\text{ }${}flags.$\text{ }$\newline{}
$\text{ }${}Read$\text{ }${}the$\text{ }${}value$\text{ }${}of$\text{ }${}the$\text{ }${}IIR$\text{ }${}to$\text{ }${}test$\text{ }${}for$\text{ }${}what$\text{ }${}flags$\text{ }${}actually$\text{ }${}got$\text{ }${}set.$\text{ }$\newline{}
$\text{ }${}If$\text{ }${}Bit$\text{ }${}6$\text{ }${}is$\text{ }${}set$\text{ }${}Then$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}If$\text{ }${}Bit$\text{ }${}7$\text{ }${}is$\text{ }${}set$\text{ }${}Then$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}If$\text{ }${}Bit$\text{ }${}5$\text{ }${}is$\text{ }${}set$\text{ }${}Then$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}UART$\text{ }${}is$\text{ }${}16750$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Else$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}UART$\text{ }${}is$\text{ }${}16550A$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}End$\text{ }${}If$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Else$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}UART$\text{ }${}is$\text{ }${}16550$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}End$\text{ }${}If$\text{ }$\newline{}
$\text{ }${}Else$\text{ }${}you$\text{ }${}know$\text{ }${}the$\text{ }${}chip$\text{ }${}doesn\textquotesingle{}t$\text{ }${}use$\text{ }${}FIFO,$\text{ }${}so$\text{ }${}we$\text{ }${}need$\text{ }${}to$\text{ }${}check$\text{ }${}the$\text{ }$\newline{}
$\text{ }${}scratch$\text{ }${}register$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Set$\text{ }${}some$\text{ }${}arbitrary$\text{ }${}value$\text{ }${}like$\text{ }${}0x2A$\text{ }${}to$\text{ }${}the$\text{ }${}Scratch$\text{ }${}Register.$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}You$\text{ }${}don\textquotesingle{}t$\text{ }${}want$\text{ }${}to$\text{ }${}use$\text{ }${}0xFF$\text{ }${}or$\text{ }${}0x00$\text{ }${}as$\text{ }${}those$\text{ }${}might$\text{ }${}be$\text{ }${}returned$\text{ }${}by$\text{ }$\newline{}
$\text{ }${}the$\text{ }${}Scratch$\text{ }${}Register$\text{ }${}instead$\text{ }${}for$\text{ }${}a$\text{ }${}false$\text{ }${}postive$\text{ }${}result.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Read$\text{ }${}the$\text{ }${}value$\text{ }${}of$\text{ }${}the$\text{ }${}Scratch$\text{ }${}Register$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}If$\text{ }${}the$\text{ }${}arbitrary$\text{ }${}value$\text{ }${}comes$\text{ }${}back$\text{ }${}identical$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}UART$\text{ }${}is$\text{ }${}16450$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Else$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}UART$\text{ }${}is$\text{ }${}8250$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}End$\text{ }${}If$\text{ }$\newline{}
$\text{ }${}End$\text{ }${}If}


When written in Pascal, the above algorithm ends up looking like this:
\\

\TemplateSpaceIndent{$\text{ }${}const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}COM1_Addr$\text{ }${}=$\text{ }${}\${}3F8;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}FCR$\text{ }${}=$\text{ }${}2;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}IIR$\text{ }${}=$\text{ }${}2;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}SCR$\text{ }${}=$\text{ }${}7;}

\\

\TemplateSpaceIndent{$\text{ }${}function$\text{ }${}IdentifyUART:$\text{ }${}String;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Test:$\text{ }${}Byte;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}COM1_Addr$\text{ }${}+$\text{ }${}FCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}E7;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Test$\text{ }${}:=$\text{ }${}Port{$\text{[}$}COM1_Addr$\text{ }${}+$\text{ }${}IIR{$\text{]}$};$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(Test$\text{ }${}and$\text{ }${}\${}40)$\text{ }${}>{}$\text{ }${}0$\text{ }${}then$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(Test$\text{ }${}and$\text{ }${}\${}80)$\text{ }${}>{}$\text{ }${}0$\text{ }${}then$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(Test$\text{ }${}and$\text{ }${}\${}20)$\text{ }${}>{}$\text{ }${}0$\text{ }${}then$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}IdentifyUART$\text{ }${}:=$\text{ }${}\textquotesingle{}16750\textquotesingle{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}else$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}IdentifyUART$\text{ }${}:=$\text{ }${}\textquotesingle{}16550A\textquotesingle{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}else$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}IdentifyUART$\text{ }${}:=$\text{ }${}\textquotesingle{}16550\textquotesingle{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}else$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}COM1_Addr$\text{ }${}+$\text{ }${}SCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}2A;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}Port{$\text{[}$}COM1_Addr$\text{ }${}+$\text{ }${}SCR{$\text{]}$}$\text{ }${}=$\text{ }${}\${}2A$\text{ }${}then$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}IdentifyUART$\text{ }${}:=$\text{ }${}\textquotesingle{}16450\textquotesingle{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}else$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}IdentifyUART$\text{ }${}:=$\text{ }${}\textquotesingle{}8250\textquotesingle{};$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}end;}


We still havn\textquotesingle{}t identified between the 8250, 8250A, or 8250B; but that is rather pointless anyway on most current computers as it is very unlikely to even find one of those chips because of their age.

A very similar procedure can be used to determine the CPU of a computer, but that is beyond the scope of this book.
\section{External References}
\label{86}

\begin{myitemize}
\item{}  \myhref{http://www.cs.clemson.edu/~mark/interrupts.html}{ History of Interrupt Programming}
\item{}  \myhref{http://satyap.csoft.net/8259.html}{ 8259 Chip Information with other registers explained} (dead link?)
\item{}  \myhref{http://www.beyondlogic.org/serial/serial.htm}{ Interfacing the Serial / RS232 Port}
\end{myitemize}



While the 8250 is by far the most popular UART on desktop computers, other popular UARTs include:
\begin{myitemize}
\item{}  the UART inside the \myhref{http://en.wikibooks.org/wiki/Embedded_Systems\%2FAtmel_AVR}{Atmel AVR}: ... \myhref{http://en.wikibooks.org/wiki/Embedded_Systems\%2FAtmel_AVR\%23Serial_Communication}{Embedded_Systems/Atmel_AVR\#Serial_Communication}
\item{}  the UART inside the \myhref{http://en.wikibooks.org/wiki/PIC}{Microchip PIC}: \myhref{http://microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE\&nodeId=1824\&appnote=en012073}{ \symbol{34}Microchip AN774: Asynchronous Communications with the PICmicroÂ® USART\symbol{34}}
\item{}  the UART inside the Apple Macintosh:  ...
\item{}  \symbol{34}bit-{}banging\symbol{34} a UART: ... \myplainurl{http://microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE\&nodeId=1824\&appnote=en012058}
\end{myitemize}

\section{Other Serial Programming Articles}
\label{87}
\LaTeXNullTemplate{}

\myhref{http://en.wikibooks.org/wiki/Category\%3ASerial\%20Programming}{Category:Serial Programming}
\chapter{Serial DOS}

\myminitoc
\label{88}





\label{89}
\LaTeXNullTemplate{}\section{Introduction}
\label{90}
It is now time to build on everything that has been established so far.  While it is unlikely that you are going to be using MS-{}DOS for a major application, it is a good operating system to demonstrate a number of ideas related to software access of the 8250 UART and driver development. Compared to modern operating systems like Linux, OS-{}X, or Windows, MS-{}DOS can hardly be called an operating system at all.  All it really offers is basic access to the hard drive and a few minor utilities.  That really doesn\textquotesingle{}t matter so much for what we are dealing with here, and it is a good chance to see how we can directly manipulate the UART to get the full functionality of all aspects of the computer.  The tools I\textquotesingle{}m using are all available for free (as in beer) and can be used in emulator software (like VMware or Bochs) to try these ideas out as well.  Emulation of serial devices is generally a weak point for these programs, so it may work easier if you work from a floppy boot of DOS, or on an older computer that is otherwise destined for the trash can because it is obsolete.

For Pascal, you can look here:

\begin{myitemize}
\item{} Turbo Pascal \myplainurl{http://bdn.borland.com/article/0,1410,20803,00.html} version 5.5 -{} This is the software I\textquotesingle{}m actually using for these examples, and the compiler that most older documentation on the web will also support (generally).
\end{myitemize}


\begin{myitemize}
\item{} Free Pascal \myplainurl{http://www.freepascal.org/} -{} *note* this is a 32-{}bit version, although there is a port for DOS development.  Unlike Turbo Pascal, it also has ongoing development and is more valuable for serious projects running in DOS.
\end{myitemize}


For MS-{}DOS substitution (if you don\textquotesingle{}t happen to have MS-{}DOS 6.22 somewhere):

\begin{myitemize}
\item{} FreeDOS \myplainurl{http://www.freedos.org/} Project -{} Now that Microsoft has abandoned development of DOS, this is pretty much the only OS left that is pure command line driven and following the DOS architecture.
\end{myitemize}

\section{{\bfseries Hello World}, Serial Data Version}
\label{91}

In the \myhref{http://en.wikibooks.org/wiki/Programming\%3ASerial\%20Data\%20Communications\%23Intended\%20Audience}{introduction}, I mentioned that it was very difficult to write computer software that implements RS-{}232 serial communications.  A very short program shows that at least a basic program really isn\textquotesingle{}t that hard at all.  In fact, just three more lines than a typical \symbol{34}Hello World\symbol{34} program.
\\

\TemplateSpaceIndent{$\text{ }${}program$\text{ }${}HelloSerial;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}DataFile:$\text{ }${}Text;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Assign(DataFile,\textquotesingle{}COM1\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Rewrite(DataFile);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Writeln(DataFile,\textquotesingle{}Hello$\text{ }${}World\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Close(DataFile);$\text{ }$\newline{}
$\text{ }${}end.}


All of this works because in DOS (and all version of Windows as well... on this particular point) has a \symbol{34}reserved\symbol{34} file name called COM1 that is the operating system hooks into the serial communications ports.  While this seems simple, it is deceptively simple.  You still don\textquotesingle{}t have access to being able to control the baud rate or any of the other settings for the modem.  That is a fairly simple thing to add, however, using the knowledge of the UART discussed in the previous chapter \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3A8250\%20UART\%20Programming}{Programming the 8250 UART}.

To try something even easier, you don\textquotesingle{}t even need a compiler at all.  This takes advantage of the reserved \symbol{34}device names\symbol{34} in DOS and can be done from the command prompt.
\\

\TemplateSpaceIndent{$\text{ }${}C:\textbackslash{}>{}COPY$\text{ }${}CON$\text{ }${}COM1}


What you are doing here is taking input from {\itshape CON} (the console or the standard keyboard you use on your computer) and it \symbol{34}copies\symbol{34} the data to {\itshape COM1}.  You can also use variations of this to do some interesting file transfers, but it has some important limitations.  Most importantly, you don\textquotesingle{}t have access to the UART settings, and this simply uses whatever the default settings of the UART might be, or what you used last time you changed the settings to become with a serial terminal program.
\section{Finding the Port I/O Address for the UART}
\label{92}

The next big task that we have to work with is trying to find the base \symbol{34}address\symbol{34} of the Port I/O so that we can communicate with the UART chip directly (see the part about interface logic in the \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ATypical_RS232-Hardware_Configuration}{Typical RS232-{}Hardware Configuration} module for information what this is about).  For a \symbol{34}typical\symbol{34} PC system, the following are usually the addresses that you need to work with:

\begin{longtable}{>{\RaggedRight}p{0.24338\linewidth}>{\RaggedRight}p{0.30400\linewidth}>{\RaggedRight}p{0.33209\linewidth}} 
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Serial Port Name }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Base I/O Port Address }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ (interrupt) Number}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3F8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2F8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3E8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2E8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 
\end{longtable}

\subsection{Looking up UART Base Address in RAM}
\label{93}

We will get back to the issue of the IRQ Number in a little bit, but for now we need to know where to start accessing information about each UART.  As demonstrated previously, DOS also keeps track of where the UART IO ports are located at for its own purpose, so you can try to \symbol{34}look up\symbol{34} within the memory tables that DOS uses to try and find the correct address as well.  This doesn\textquotesingle{}t always work, because we are going outside of the normal DOS API structure.  Alternative operating systems ( FreeDOS works fine here ) that are otherwise compatible with MS-{}DOS may not work in this manner, so take note that this may simply give you a wrong result altogether.

The addresses for the serial I/O Ports can be found at the following locations in RAM:


\begin{longtable}{>{\RaggedRight}p{0.27714\linewidth}>{\RaggedRight}p{0.33638\linewidth}>{\RaggedRight}p{0.26594\linewidth}} 
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Port }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Segment }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Offset}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0040 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0000\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0040 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0002\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0040 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0004\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0040 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0006 
\end{longtable}



Those addresses are written to memory by the BIOS when it boots. If one of the ports doesn\textquotesingle{}t exist, the BIOS writes zero to the respective address. Note that the addresses are given in segment:offset format and that you have to multiply the address of the segment with 16 and add the offset to get to the physical address in memory.  This is where DOS \symbol{34}finds\symbol{34} the port addresses so you can run the first sample program in this chapter.

In assembler you can get the addresses like this: 

\TemplatePreformat{$\text{ }$\newline{}
;$\text{ }${}Data$\text{ }${}Segment$\text{ }$\newline{}
.data$\text{ }$\newline{}
Port$\text{ }${}$\text{ }${}dw$\text{ }${}0$\text{ }$\newline{}
...$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
;$\text{ }${}Code$\text{ }${}Segment$\text{ }$\newline{}
.code$\text{ }$\newline{}
mov$\text{ }${}ax,40h$\text{ }$\newline{}
mov$\text{ }${}es,ax$\text{ }$\newline{}
mov$\text{ }${}si,0$\text{ }$\newline{}
mov$\text{ }${}bx,Port$\text{ }${};$\text{ }${}0$\text{ }${}-{}$\text{ }${}COM1$\text{ }${},$\text{ }${}1$\text{ }${}-{}$\text{ }${}COM2$\text{ }${}...$\text{ }$\newline{}
shl$\text{ }${}bx,1$\text{ }$\newline{}
mov$\text{ }${}Port,$\text{ }${}es:{$\text{[}$}si+bx{$\text{]}$}$\text{ }$\newline{}
}

In Turbo Pascal, you can get at these addresses almost the same way and in some ways even easier because it is a \symbol{34}high level language\symbol{34}.  All you have to do is add the following line to access the COM Port location as a simple array:
\\

\TemplateSpaceIndent{$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}ComPort:$\text{ }${}array$\text{ }${}{$\text{[}$}1..4{$\text{]}$}$\text{ }${}of$\text{ }${}Word$\text{ }${}absolute$\text{ }${}\${}0040:\${}0000;}


The reserved, non standard, word {\bfseries absolute} is a flag to the compiler that instead of \symbol{34}allocating\symbol{34} memory, that you already have a place in mind to have the computer look instead.  This is something that should seldom be done by a programmer unless you are accessing things like these I/O port addresses that are always stored in this memory location.

For a complete program that simply prints out a table of the I/O port addresses for all four standard COM ports, you can use this simple program:
\\

\TemplateSpaceIndent{$\text{ }${}program$\text{ }${}UARTLook;$\text{ }$\newline{}
$\text{ }${}const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}HexDigits:$\text{ }${}array$\text{ }${}{$\text{[}$}\${}0..\${}F{$\text{]}$}$\text{ }${}of$\text{ }${}Char$\text{ }${}=$\text{ }${}\textquotesingle{}0123456789ABCDEF\textquotesingle{};$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}ComPort:$\text{ }${}array$\text{ }${}{$\text{[}$}1..4{$\text{]}$}$\text{ }${}of$\text{ }${}Word$\text{ }${}absolute$\text{ }${}\${}0040:\${}0000;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Index:$\text{ }${}Integer;$\text{ }$\newline{}
$\text{ }${}function$\text{ }${}HexWord(Number:Word):String;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}HexWord$\text{ }${}:=$\text{ }${}\textquotesingle{}\${}\textquotesingle{}$\text{ }${}+$\text{ }${}HexDigits{$\text{[}$}Hi(Number)$\text{ }${}shr$\text{ }${}4{$\text{]}$}$\text{ }${}+$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}HexDigits{$\text{[}$}Hi(Number)$\text{ }${}and$\text{ }${}\${}F{$\text{]}$}$\text{ }${}+$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}HexDigits{$\text{[}$}Lo(Number)$\text{ }${}shr$\text{ }${}4{$\text{]}$}$\text{ }${}+$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}HexDigits{$\text{[}$}Lo(Number)$\text{ }${}and$\text{ }${}\${}F{$\text{]}$};$\text{ }$\newline{}
$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}writeln(\textquotesingle{}Serial$\text{ }${}COMport$\text{ }${}I/O$\text{ }${}Port$\text{ }${}addresses:\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}for$\text{ }${}Index$\text{ }${}:=$\text{ }${}1$\text{ }${}to$\text{ }${}4$\text{ }${}do$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}writeln(\textquotesingle{}COM\textquotesingle{},Index,\textquotesingle{}$\text{ }${}is$\text{ }${}located$\text{ }${}at$\text{ }${}\textquotesingle{},HexWord(ComPort{$\text{[}$}Index{$\text{]}$}));$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}end.}

\subsection{Searching BIOS Setup}
\label{94}

Assuming that the standard I/O addresses don\textquotesingle{}t seem to be working for your computer and you haven\textquotesingle{}t been able to find the correct I/O Port offset addresses through searching RAM either, all hope is still not lost.  Assuming that you have not accidentally changed these settings earlier, you can also try to look up these numbers in the BIOS setup page for your computer.  It may take some pushing around to find this information, but if you have a conventional serial data port on your computer, it will be there.

If you are using a serial data port that is connected via USB (common on more recent computers), you are simply not going to be (easily) able to do direct serial data communications in DOS.  Instead, you need to use more advanced operating systems like Windows or Linux that is beyond the scope of this chapter.  We will cover how to access the serial communications routines in those operating systems in subsequent chapters.  The basic principles we are discussing here would still be useful to review because it goes into the basic UART structure.

While it may be useful to try and make IRQs selectable and not presume that the information listed above is correct in all situations, it is important to note that most PC-{}compatible computer equipment usually has these IRQs and I/O port addresses used in this way because of legacy support.  And surprisingly as computers get more sophisticated with even more advanced equipment like USB devices, these legacy connections still work for most equipment.
\section{Making modifications to UART Registers}
\label{95}

Now that we know where to look in memory to modify the UART registers, let\textquotesingle{}s put that knowledge to work.  We are also now going to do some practical application of the tables listed earlier in the chapter \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3A8250\%20UART\%20Programming}{8250 UART Programming}.

To start with, let\textquotesingle{}s redo the previous \symbol{34}Hello World\symbol{34} application, but this time we are going to set the RS-{}232 transmission parameters to 1200 baud, 7 databits, even parity, and 2 stop bits.  I\textquotesingle{}m choosing this setting parameter because it is not standard for most modem applications, as a demonstration.  If you can change these settings, then other transmission settings are going to be trivial.

First, we need to set up some software constants to keep track of locations in memory.  This is mainly to keep things clear to somebody trying to make changes to our software in the future, not because the compiler needs it.
\\

\TemplateSpaceIndent{$\text{ }${}const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}LCR$\text{ }${}=$\text{ }${}3;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_Low$\text{ }${}=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_High$\text{ }${}=$\text{ }${}\${}01;}


Next, we need to set the DLAB to a logical \symbol{34}1\symbol{34} so we can set the baud rate:
\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}80;}


In this case, we are ignoring the rest of the settings for the Line Control Register (LCR) because we will be setting them up in a little bit.  Remember this is just a \symbol{34}quick and dirty\symbol{34} way to get this done for now.  A more \symbol{34}formal\symbol{34} way to set up things like baud rate will be demonstrated later on with this module.

Following this, we need to put in the baud rate for the modem.  Looking up 1200 baud on the \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3A8250\%20UART\%20Programming\%23Divisor\%20Latch\%20Bytes}{Divisor Latch Bytes table} gives us the following values:
\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_High{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_Low{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}60;}


Now we need to set the values for the LCR based on our desired setting of 7-{}2-{}E for the communication settings.  We also need to \symbol{34}clear\symbol{34} the DLAB which we can also do at the same time.\\

\TemplateSpaceIndent{$\text{ }${}$\text{ }$\newline{}
$\text{ }${}Clearing$\text{ }${}DLAB$\text{ }${}=$\text{ }${}0$\text{ }${}*$\text{ }${}128$\text{ }$\newline{}
$\text{ }${}Clearing$\text{ }${}\symbol{34}Set$\text{ }${}Break\symbol{34}$\text{ }${}flag$\text{ }${}=$\text{ }${}0$\text{ }${}*$\text{ }${}64$\text{ }$\newline{}
$\text{ }${}Even$\text{ }${}Parity$\text{ }${}=$\text{ }${}2$\text{ }${}*$\text{ }${}8$\text{ }$\newline{}
$\text{ }${}Two$\text{ }${}Stop$\text{ }${}bits$\text{ }${}=$\text{ }${}1$\text{ }${}*$\text{ }${}4$\text{ }$\newline{}
$\text{ }${}7$\text{ }${}Data$\text{ }${}bits$\text{ }${}=$\text{ }${}2$\text{ }${}*$\text{ }${}1}

\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}16$\text{ }${}$\text{ }${}\{8*2$\text{ }${}+$\text{ }${}4$\text{ }${}+$\text{ }${}2$\text{ }${}=$\text{ }${}22$\text{ }${}or$\text{ }${}\${}16$\text{ }${}in$\text{ }${}hex\}}


Are things clear so far?  What we have just done is some bit-{}wise arithmetic, and I\textquotesingle{}m trying to keep things very simple here and to try and explain each step in detail.  Let\textquotesingle{}s just put the whole thing together as the quick and dirty \symbol{34}Hello World\symbol{34}, but with adjustment of the transmission settings as well:
\\

\TemplateSpaceIndent{$\text{ }${}program$\text{ }${}HelloSerial;$\text{ }$\newline{}
$\text{ }${}const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}LCR$\text{ }${}=$\text{ }${}3;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_Low$\text{ }${}=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_High$\text{ }${}=$\text{ }${}\${}01;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}ComPort:$\text{ }${}array$\text{ }${}{$\text{[}$}1..4{$\text{]}$}$\text{ }${}of$\text{ }${}Word$\text{ }${}absolute$\text{ }${}\${}0040:\${}0000;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}DataFile:$\text{ }${}Text;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Assign(DataFile,\textquotesingle{}COM1\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Rewrite(DataFile);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Change$\text{ }${}UART$\text{ }${}Settings\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}80;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_High{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_Low{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}60;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}16$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Writeln(DataFile,\textquotesingle{}Hello$\text{ }${}World\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Close(DataFile);$\text{ }$\newline{}
$\text{ }${}end.}


This is getting a little more complicated, but not too much.  Still, all we have done so far is just write data out to the serial port.  Reading data from the serial data port is going to be a little bit trickier.
\section{Basic Serial Input}
\label{96}

In theory, you could use a standard I/O library and simply read data from the COM port like you would be reading from a file on your hard drive.  Something like this:
\\

\TemplateSpaceIndent{$\text{ }${}Readln(DataFile,SomeSerialData);}


There are some problems with doing that with most software, however.  One thing to keep in mind is that using a standard input routine will stop your software until the input is finished ending with a \symbol{34}Enter\symbol{34} character (ASCII code 13 or in hex \${}0D).  

Usually what you want to do with a program that receives serial data is to allow the user to do other things while the software is waiting for the data input.  In a multitasking operating system, this would simply be put on another \symbol{34}thread\symbol{34}, but with this being DOS, we don\textquotesingle{}t (usually) have threading capabilities, nor is it necessary.  There are some other alternatives that we do in order to get the serial data brought into your software.
\subsection{Polling the UART}
\label{97}

Perhaps the easiest to go, besides simply letting the standard I/O routines grab the input) is to do software polling of the UART.  One of the reasons why this works is because serial communications is generally so slow compared to the CPU speed that you can perform many tasks in between each character being transmitted to your computer.  Also, we are trying to do practical applications using the UART chip, so this is a good way to demonstrate some of the capabilities of the chip beyond simple output of data.
\subsubsection{Serial Echo Program}
\label{98}

Looking at the Line Status Register (LSR), there is a bit called {\bfseries Data Ready} that indicates there is some data available to your software in the UART.  We are going to take advantage of that bit, and start to do data access directly from the UART instead of relying on the standard I/O library.  This program we are going to demonstrate here is going to be called {\itshape Echo} because all it does is take whatever data is sent to the computer through the serial data port and display it on your screen.  We are also going to be configuring the RS-{}232 settings to a more normal 9600 baud, 8 data bits, 1 stop bit, and no parity.  To quit the program, all you have to do is press any key on your keyboard.
\\

\TemplateSpaceIndent{$\text{ }${}program$\text{ }${}SerialEcho;$\text{ }$\newline{}
$\text{ }${}uses$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Crt;$\text{ }$\newline{}
$\text{ }${}const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}RBR$\text{ }${}=$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}LCR$\text{ }${}=$\text{ }${}3;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}LSR$\text{ }${}=$\text{ }${}5;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_Low$\text{ }${}=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_High$\text{ }${}=$\text{ }${}\${}01;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}ComPort:$\text{ }${}array$\text{ }${}{$\text{[}$}1..4{$\text{]}$}$\text{ }${}of$\text{ }${}Word$\text{ }${}absolute$\text{ }${}\${}0040:\${}0000;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}InputLetter:$\text{ }${}Char;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Writeln(\textquotesingle{}Serial$\text{ }${}Data$\text{ }${}Terminal$\text{ }${}Character$\text{ }${}Echo$\text{ }${}Program.$\text{ }${}$\text{ }${}Press$\text{ }${}any$\text{ }$\newline{}
$\text{ }${}key$\text{ }${}on$\text{ }${}the$\text{ }${}keyboard$\text{ }${}to$\text{ }${}quit.\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Change$\text{ }${}UART$\text{ }${}Settings\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}80;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_High{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_Low{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}0C;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}03;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Scan$\text{ }${}for$\text{ }${}serial$\text{ }${}data\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}while$\text{ }${}not$\text{ }${}KeyPressed$\text{ }${}do$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LSR{$\text{]}$}$\text{ }${}and$\text{ }${}\${}01)$\text{ }${}>{}$\text{ }${}0$\text{ }${}then$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}InputLetter$\text{ }${}:=$\text{ }${}Chr(Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}RBR{$\text{]}$});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Write(InputLetter);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }${}\{if\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }${}\{while\}$\text{ }$\newline{}
$\text{ }${}end.}

\subsubsection{Simple Terminal}
\label{99}

This program really isn\textquotesingle{}t that complicated.  In fact, a very simple \symbol{34}terminal\symbol{34} program can be adapted from this to allow both sending and receiving characters.  In this case, the {\itshape Escape} key will be used to quit the program, which will in fact be where most of the changes to the program will happen.  We are also introducing for the first time direct output into the UART instead of going through the standard I/O libraries with this line:
\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}THR{$\text{]}$}$\text{ }${}:=$\text{ }${}Ord(OutputLetter);$\text{ }${}}


The Transmit Holding Register (THR) is how data you want to transmit gets into the UART in the first place.  DOS just took care of the details earlier, so now we don\textquotesingle{}t need to open a \symbol{34}file\symbol{34} in order to send data.  We are going to assume, to keep things very simple, that you can\textquotesingle{}t type at 9600 baud, or roughly 11,000 words per minute.  Only if you are dealing with very slow baud rates like 110 baud is that going to be an issue anyway (still at over 130 words per minute of typing... a very fast typist indeed).
\\

\TemplateSpaceIndent{$\text{ }${}program$\text{ }${}SimpleTerminal;$\text{ }$\newline{}
$\text{ }${}uses$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Crt;$\text{ }$\newline{}
$\text{ }${}const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}THR$\text{ }${}=$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}RBR$\text{ }${}=$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}LCR$\text{ }${}=$\text{ }${}3;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}LSR$\text{ }${}=$\text{ }${}5;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_Low$\text{ }${}=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_High$\text{ }${}=$\text{ }${}\${}01;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Character$\text{ }${}Constants\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}NullLetter$\text{ }${}=$\text{ }${}\#0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}EscapeKey$\text{ }${}=$\text{ }${}\#27;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}ComPort:$\text{ }${}array$\text{ }${}{$\text{[}$}1..4{$\text{]}$}$\text{ }${}of$\text{ }${}Word$\text{ }${}absolute$\text{ }${}\${}0040:\${}0000;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}InputLetter:$\text{ }${}Char;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}OutputLetter:$\text{ }${}Char;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Writeln(\textquotesingle{}Simple$\text{ }${}Serial$\text{ }${}Data$\text{ }${}Terminal$\text{ }${}Program.$\text{ }${}$\text{ }${}Press$\text{ }${}\symbol{34}Esc\symbol{34}$\text{ }${}to$\text{ }$\newline{}
$\text{ }${}quit.\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Change$\text{ }${}UART$\text{ }${}Settings\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}80;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_High{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_Low{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}0C;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}03;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Scan$\text{ }${}for$\text{ }${}serial$\text{ }${}data\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}OutputLetter$\text{ }${}:=$\text{ }${}NullLetter;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}repeat$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LSR{$\text{]}$}$\text{ }${}and$\text{ }${}\${}01)$\text{ }${}>{}$\text{ }${}0$\text{ }${}then$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}InputLetter$\text{ }${}:=$\text{ }${}Chr(Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}RBR{$\text{]}$});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Write(InputLetter);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }${}\{if\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}KeyPressed$\text{ }${}then$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}OutputLetter$\text{ }${}:=$\text{ }${}ReadKey;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}THR{$\text{]}$}$\text{ }${}:=$\text{ }${}Ord(OutputLetter);$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }${}\{if\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}until$\text{ }${}OutputLetter$\text{ }${}=$\text{ }${}EscapeKey;$\text{ }$\newline{}
$\text{ }${}end.}

\section{Interrupt Drivers in DOS}
\label{100}

The software polling method may be adequate for most simple tasks, and if you want to test some serial data concepts without writing a lot of software, it may be sufficient.  Quite a bit can be done with just that method of data input.

When you are writing a more complete piece of software, however, it becomes important to worry about the efficiency of your software.  While the computer is \symbol{34}polling\symbol{34} the UART to see if a character has been sent through the serial communications port, it spends quite a few CPU cycles doing absolutely nothing at all.  It also get very difficult to expand a program like the one demonstrated above to become a small section of a very large program.  If you want to get that last little bit of CPU performance out of your software, we need to turn to interrupt drivers and how you can write them.

I\textquotesingle{}ll openly admit that this is a tough leap in complexity from a simple polling application listed above, but it is an important programming topic in general.  We are also going to expose a little bit about the low-{}level behavior of the 8086 chip family, which is knowledge you can use in newer operating systems as well, at least for background information.

Going back to earlier discussions about the 8259 Programmable Interrupt Controller (PIC) chip, external devices like the UART can \symbol{34}signal\symbol{34} the 8086 that an important task needs to occur that {\bfseries interrupts} the flow of the software currently running on the computer.  Not all computers do this, however, and sometimes the software polling of devices is the only way to get data input from other devices.  The real advantage of interrupt events is that you can process data acquisition from devices like the UART very quickly, and CPU time spent trying to test if there is data available can instead be used for other tasks.  It is also useful when designing operating systems that are {\itshape event driven}.

Interrupt Requests (IRQs) are labeled with the names IRQ0 to IRQ15.  UART chips typically use either IRQ 3 or IRQ 4.  When the PIC signals to the CPU that an interrupt has occurred, the CPU automatically start to run a very small subroutine that has been previously setup in the {\bfseries Interrupt Table} in RAM.  The exact routine that is started depends on which IRQ has been triggered.  What we are going to demonstrate here is the ability to write our own software that \symbol{34}takes over\symbol{34} from the operating system what should occur when the interrupt occurs.  In effect, writing our own \symbol{34}operating system\symbol{34} instead, at least for those parts we are rewriting.

Indeed, this is exactly what operating system authors do when they try to make a new OS... deal with the interrupts and write the subroutines necessary to control the devices connected to the computer.

The following is a very simple program that captures the keyboard interrupt and produces a \symbol{34}clicking\symbol{34} sound in the speaker as you type each key.  One interesting thing about this whole section, while it is moving slightly off topic, this is communicating with a serial device.  The keyboard on a typical PC transmits the information about each key that you press through a RS-{}232 serial protocol that operates usually between 300 and 1200 baud and has its own custom UART chip.  Normally this isn\textquotesingle{}t something you are going to address, and seldom are you going to have another kind of device connected to the keyboard port, but it is interesting that you can \symbol{34}hack\symbol{34} into the functions of your keyboard by understanding serial data programming.
\\

\TemplateSpaceIndent{$\text{ }${}program$\text{ }${}KeyboardDemo;$\text{ }$\newline{}
$\text{ }${}uses$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Dos,$\text{ }${}Crt;$\text{ }$\newline{}
$\text{ }${}const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}EscapeKey$\text{ }${}=$\text{ }${}\#27;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}OldKeybrdVector:$\text{ }${}Procedure;$\text{ }$\newline{}
$\text{ }${}\{\${}F+\}$\text{ }$\newline{}
$\text{ }${}procedure$\text{ }${}Keyclick;$\text{ }${}interrupt;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}Port{$\text{[}$}\${}60{$\text{]}$}$\text{ }${}<{}$\text{ }${}\${}80$\text{ }${}then$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Sound(5000);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Delay(1);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Nosound;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}inline(\${}9C)$\text{ }${}\{$\text{ }${}PUSHF$\text{ }${}-{}$\text{ }${}Push$\text{ }${}the$\text{ }${}flags$\text{ }${}onto$\text{ }${}the$\text{ }${}stack$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}OldKeybrdVector;$\text{ }$\newline{}
$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}\{\${}F-{}\}$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}GetIntVec(\${}9,@OldKeybrdVector);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}SetIntVec(\${}9,Addr(Keyclick));$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}repeat$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}KeyPressed$\text{ }${}then$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}OutputLetter$\text{ }${}:=$\text{ }${}ReadKey;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Write(OutputLetter);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }${}\{if\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}until$\text{ }${}OutputLetter$\text{ }${}=$\text{ }${}EscapeKey;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}SetIntVec(\${}9,@OldKeybrdVector);$\text{ }$\newline{}
$\text{ }${}end.}


There are a number of things that this program does, and we need to explore the realm of 16-{}bit DOS software as well.  The 8086 chip designers had to make quite a few compromises in order to work with the computer technology that was available at the time it was designed.  Computer memory was quite expensive compared to the overall cost of the computer.  Most of the early microcomputers that the IBM-{}PC was competing against only had 64K or 128K of main CPU RAM anyway, so huge programs were not considered important.  In fact, the original IBM-{}PC was designed to operate on only 128K of RAM although it did become standard with generally up to 640K of main RAM, especially by the time the IBM PC-{}XT was released and the market for PC \symbol{34}clones\symbol{34} turned out what is generally considered the \symbol{34}standard PC\symbol{34} computer today.

The design came up with what is called {\bfseries segmented memory}, where the CPU address is made up of a memory \symbol{34}segment\symbol{34} pointer and a 64K block of memory.  That is why some early software on these computers could only run in 64K of memory, and created nightmares for compiler authors on the 8086.  Pentium computers don\textquotesingle{}t generally have this issue, as the memory model in \symbol{34}protected mode\symbol{34} doesn\textquotesingle{}t use this segmented design methodology.
\subsection{Far Procedure Calls}
\label{101}\\

\TemplateSpaceIndent{$\text{ }${}$\text{ }$\newline{}
$\text{ }${}\{\${}F+\}$\text{ }$\newline{}
$\text{ }${}\{\${}F-{}\}}


This program has two \symbol{34}compiler switches\symbol{34} that inform the compiler of the need to use what are called far procedure calls.  Normally for small programs and simple subroutines, you are able to use what is called relative indexing with the software so the CPU \symbol{34}jumps\symbol{34} to the portion of RAM with the procedure by doing a bit of simple math and \symbol{34}adding\symbol{34} a number to the current CPU address in order to find the correct instructions.  This is done especially because it uses quite a bit less memory to store all of these instructions.

Sometimes, however, a procedure must be accessed from somewhere in RAM that is quite different from the current CPU memory address \symbol{34}instruction pointer\symbol{34}.  Interrupt procedures are one of these, because it doesn\textquotesingle{}t even have to be the same program that is stored in the interrupt vector table.  That brings up the next part to discuss:
\subsection{Interrupt Procedures}
\label{102}
\\

\TemplateSpaceIndent{$\text{ }${}procedure$\text{ }${}Keyclick;$\text{ }${}interrupt;}


The word \symbol{34}interrupt\symbol{34} after this procedure name is a key item here.  This tells the compiler that it must do something a little bit different when organizing this function than how a normal function call behaves.  Typically for most software on the computer, you have a bunch of simple instructions that are then followed by (in assembler) an instruction called:
\\

\TemplateSpaceIndent{$\text{ }${}RET}


This is the mnemonic assembly instruction for return from procedure call.  Interrupts are handled a little bit differently and should normally end with a different CPU instruction that in assembly is called:
\\

\TemplateSpaceIndent{$\text{ }${}IRET}


or Interrupt return for short.  One of the things that should also happen with any interrupt service routine is to \symbol{34}preserve\symbol{34} the CPU information before doing anything else.  Each \symbol{34}command\symbol{34} that you write in your software will modify the internal registers of the CPU.  Keep in mind that an interrupt can occur right in the middle of doing some calculations for another program, like rendering a graphic image or making payroll calculations.  We need to hand onto that information and \symbol{34}restore\symbol{34} those values on all of the CPU registers at the end of our subroutine.  This is usually done by \symbol{34}pushing\symbol{34} all of the register values onto the CPU stack, performing the ISR, and then restoring the CPU registers afterward.

In this case, Turbo Pascal (and other well-{}written compilers having a compiler flag like this) takes care of these low-{}level details for you with this simple flag.  If the compiler you are using doesn\textquotesingle{}t have this feature, you will have to add these features \symbol{34}by hand\symbol{34} and explicitly put them into your software.  That doesn\textquotesingle{}t mean the compiler will do everything for you to make an interrupt procedure.  There are more steps to getting this to work still.
\subsection{Procedure Variables}
\label{103}
\\

\TemplateSpaceIndent{$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}OldKeybrdVector:$\text{ }${}Procedure;}


These instructions are using what is called a procedure variable.  Keep in mind that all software is located in the same memory as variables and other information your software is using.  Essentially, a variable procedure where you don\textquotesingle{}t need to worry about what it does until the software is running, and you can change this variable while your program is running.  This is a powerful concept that is not often used, but it can be used for a number of different things.  In this case we are keeping track of the previous interrupt service routine and \symbol{34}chaining\symbol{34} these routines together.

There are programs called Terminate and Stay Resident (TSRs) that are loaded into your computer.  Some of these are called drivers, and the operating system itself also puts in subroutines to do basic functions.  If you want to \symbol{34}play nice\symbol{34} with all of this other software, the established protocol for making sure everybody gets a chance to review the data in an interrupt is to link each new interrupt subroutine to the previously stored interrupt vector.  When we are done with whatever we want to do with the interrupt, we then let all of the other programs get a chance to used the interrupt as well.  It is also possible that the Interrupt Service Routine (ISR) that we just wrote is not the first one in the chain, but instead one that is being called by another ISR.
\subsection{Getting/Setting Interrupt Vectors}
\label{104}
\\

\TemplateSpaceIndent{$\text{ }${}$\text{ }${}GetIntVec(\${}9,@OldKeybrdVector);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}SetIntVec(\${}9,Addr(Keyclick));$\text{ }$\newline{}
$\text{ }${}$\text{ }${}SetIntVec(\${}9,@OldKeybrdVector);}


Again, this is Turbo Pascal \symbol{34}hiding\symbol{34} the details in a convenient way.  There is a \symbol{34}vector table\symbol{34} that you can directly access, but this vector table is not always in the same location in RAM.  If instead you go through the BIOS with a software interrupt, you are \symbol{34}guaranteed\symbol{34} that the interrupt vector will be correctly replaced.
\subsection{Hardware Interrupt Table}
\label{105}

\begin{longtable}{>{\RaggedRight}p{0.16803\linewidth}>{\RaggedRight}p{0.24348\linewidth}>{\RaggedRight}p{0.46796\linewidth}} 
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Interrupt }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Hardware IRQ }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Purpose}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CPU &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Divide by Zero\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}01 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CPU &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Single Step Instruction Processing\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}02 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CPU &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Non-{}maskable Interrupts\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}03 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CPU &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Breakpoint Instruction\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}04 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CPU &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Overflow Instruction\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}05 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CPU &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bounds Exception\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}06 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CPU &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Invalid Op Code\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}07 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CPU &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Math Co-{}processor not found\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}08 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} System Timer\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}09 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Keyboard\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0A &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cascade from IRQ8 -{} IRQ15\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0B &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Serial Port (COM2)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0C &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Serial Port (COM1)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0D &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Sound Card\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0E &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Floppy Disk Controller\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0F &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Parallel Port (LPT1)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}10 -{} \${}6F &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}   &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Software Interrupts\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}70 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Real-{}time Clock\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}71 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ9 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Legacy IRQ2 Devices\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}72 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ10 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved (often PCI devices)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}73 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ11 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved (often PCI devices)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}74 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ12 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} PS/2 Mouse\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}75 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ13 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Math Co-{}Processor Results\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}76 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ14 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Hard Disk Drive\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}77 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ15 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}78 -{} \${}FF &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}   &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Software Interrupts 
\end{longtable}


This table gives you a quick glance at some of the things that interrupts are used for, and the interrupt numbers associated with them.  Keep in mind that the IRQ numbers are mainly reference numbers, and that the CPU uses a different set of numbers.  The keyboard IRQ, for example, is IRQ1, but it is numbered as interrupt \${}09 inside the CPU.

There are also several interrupts that are \symbol{34}generated\symbol{34} by the CPU itself.  While technically hardware interrupts, these are generated by conditions {\itshape within} the CPU, sometimes based on conditions setup by your software or the operating system.  When we start writing the interrupt service routine for the serial communication ports, we will be using interrupts 11 and 12 (\${}0B and \${}0C in hex).  As can be seen, most interrupts are assigned for specific tasks.  I\textquotesingle{}ve omitted the software interrupts mainly to keep this on topic regarding serial programming and hardware interrupts.
\subsection{Other features}
\label{106}

There are several other parts to this program that don\textquotesingle{}t need too much more explanation.  Remember, we are talking about serial programming, not interrupt drivers.  I/O Port \${}60 is interesting as this is the Receiver Buffer (RBR) for the keyboard UART.  This returns the keyboard \symbol{34}scan code\symbol{34}, not the actual character pressed.  In fact, when you use a keyboard on a PC, the keyboard actually transmits two characters for each key that you use.  One character is transmitted when you press the key down, and another character when the key is \symbol{34}released\symbol{34} to go back up.  In this case, the interrupt service routine in DOS normally converts the scan codes into ASCII codes that your software can use.  In fact, simple keys like the shift key are treated as just another scan code.

The sound routines access the internal PC speaker, not something on a sound card.  About the only thing that uses this speaker any more is the BIOS \symbol{34}beep codes\symbol{34} that you hear only when there is a hardware failure to your computer, or the quick \symbol{34}beep\symbol{34} when you start or reboot the computer.  It was never designed for doing things like speech synthesis or music playback, and driver attempts to use it for those purposes sound awful.  Still, it is something neat to experiment with and a legacy computer part that is surprisingly still used on many current computers..
\section{Terminal Program Revisited}
\label{107}

I\textquotesingle{}m going to go back to the serial terminal program for a bit and this time redo the application by using an interrupt service routine.  There are a few other concepts I\textquotesingle{}d like to introduce as well so I\textquotesingle{}ll try to put them in with this example program.  From the user perspective, I would like to add the ability to change the terminal characteristics from the command line and allow an \symbol{34}end-{}user\symbol{34} the ability to change things like the baud rate, stop bits, and parity checking, and allow these to be variables instead of hard-{}coded constants.  I\textquotesingle{}ll explain each section and then put it all together when we are through.
\subsection{Serial ISR}
\label{108}

This is an example of a serial ISR we can use:
\\

\TemplateSpaceIndent{$\text{ }${}\{\${}F+\}$\text{ }$\newline{}
$\text{ }${}procedure$\text{ }${}SerialDataIn;$\text{ }${}interrupt;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}InputLetter:$\text{ }${}Char;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LSR{$\text{]}$}$\text{ }${}and$\text{ }${}\${}01)$\text{ }${}>{}$\text{ }${}0$\text{ }${}then$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}InputLetter$\text{ }${}:=$\text{ }${}Chr(Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}RBR{$\text{]}$});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}end;$\text{ }${}\{if\}$\text{ }$\newline{}
$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}\{\${}F-{}\}}


This isn\textquotesingle{}t that much different from the polling method that we used earlier, but keep in mind that by placing the checking inside an ISR that the CPU is only doing the check when there is a piece of data available.  Why even check the LSR to see if there is a data byte available?  Reading data sent to the UART is not the only reason why the UART will invoke an interrupt.  We will go over that in detail in a later section, but for now this is good programming practice as well, to confirm that the data is in there.

By moving this checking to the ISR, more CPU time is available for performing other tasks.  We could even put the keyboard polling into an ISR as well, but we are going to keep things very simple for now.
\subsection{FIFO disabling}
\label{109}

There is one minor problem with the way we have written this ISR.  We are assuming that there is no FIFO in the UART.  The \symbol{34}bug\symbol{34} that could happen with this ISR as it is currently written is that multiple characters can be in the FIFO buffer.  Normally when this happens, the UART only sends a single interrupt, and it is up to the ISR to \symbol{34}empty\symbol{34} the FIFO buffer completely.

Instead, all we are going to do is simply disable the FIFO completely.  This can be done using the FCR (FIFO Control Register) and explicitly disabling the FIFO.  As an added precaution, we are also going to \symbol{34}clear\symbol{34} the FIFO buffers in the UART as a part of the initialization portion of the program.  Clearing the FIFOs look like this:
\\

\TemplateSpaceIndent{$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}FCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}07;$\text{ }${}\{clearing$\text{ }${}the$\text{ }${}FIFOs\}}


Disabling the FIFOs look like this:
\\

\TemplateSpaceIndent{$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}FCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}00;$\text{ }${}\{disabling$\text{ }${}FIFOs\}}


We will be using the FIFOs in the next section, so this is more a brief introduction to this register so far.
\subsection{Working with the PIC}
\label{110}

Up until this point, we didn\textquotesingle{}t have to worry about working with the Programmable Interrupt Controller (the PIC).  Now we need to.  There isn\textquotesingle{}t the need to do all of the potential instructions for the PIC, but we do need to enable and disable the interrupts that are used by the UART.  There are two PICs typically on each PC, but due to the typical UART IRQ vector, we really only have to deal with the master PIC.

\begin{longtable}{>{\RaggedRight}p{0.43368\linewidth}>{\RaggedRight}p{0.48596\linewidth}} 
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Pic Function }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} I/O Port Address}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} PIC Commands &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0x20\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Interrupt Flags &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0x21 
\end{longtable}


This adds the following two constants into the software:
\\

\TemplateSpaceIndent{$\text{ }${}\{PIC$\text{ }${}Constants\}$\text{ }$\newline{}
$\text{ }${}MasterPIC$\text{ }${}=$\text{ }${}\${}20;$\text{ }$\newline{}
$\text{ }${}MasterOCW1$\text{ }${}=$\text{ }${}\${}21;}


After consulting the \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3A8250\%20UART\%20Programming\%23PIC\%20Device\%20Masking}{PIC IRQ table} we need to add the following line to the software in order to enable IRQ4 (used for COM1 typically):
\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}MasterOCW1{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}MasterOCW1{$\text{]}$}$\text{ }${}and$\text{ }${}\${}EF;}


When we do the \symbol{34}cleanup\symbol{34} when the program finishes, we also need to disable this IRQ as well with this line of software:
\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}MasterOCW1{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}MasterOCW1{$\text{]}$}$\text{ }${}or$\text{ }${}\${}10;}


Remember that COM2 is on another IRQ vector, so you will have to use different constants for that IRQ.  That will be demonstrated a little bit later.  We are using a logical and/or with the existing value in this PIC register because we don\textquotesingle{}t want to change the values for the other interrupt vectors that other software and drivers may be using on your PC.

We also need to modify the Interrupt Service Routine (ISR) a little bit to work with the PIC.  There is a command you can send to the PIC that is simply called End of Interrupt (EOI).  This signals to the PIC that it can clear this interrupt signal and process lower-{}priority interrupts.  If you fail to clear the PIC, the interrupt signal will remain and none of the other interrupts that are \symbol{34}lower priority\symbol{34} can be processed by the CPU.  This is how the CPU communicates back to the PIC to end the interrupt cycle.

The following line is added to the ISR to make this happen:
\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}MasterPIC{$\text{]}$}$\text{ }${}:=$\text{ }${}EOI;}

\subsection{Modem Control Register}
\label{111}

This is perhaps the most non-{}obvious little mistake you can make when trying to get the UART interrupt.  The Modem Control register is really the way for the UART to communicate to the rest of the PC.  Because of the way the circuitry on the motherboards of most computers is designed, you usually have to turn on the Auxiliary Output 2 signal in order for interrupts to \symbol{34}connect\symbol{34} to the CPU.  In addition, here we are going to turn on the RTS and DTS signals on the \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3ARS-232\%20Connections}{serial data cable} to make sure the equipment is going to transmit.  We will cover software and hardware flow control in a later section.

To turn on these values in the MCR, we need to add the following line in the software:
\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}MCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}0B;}

\subsection{Interrupt Enable Register}
\label{112}

We are still not home free yet.  We still need to enable interrupts on the UART itself.  This is very simple, and for now all we want to trigger an interrupt from the UART is just when data is received by the UART.  This is a very simple line to add here:
\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}IER{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}01;}

\subsection{Putting this together so far}
\label{113}

Here is the complete program using ISR input:

\TemplatePreformat{$\text{ }$\newline{}
$\text{ }${}program$\text{ }${}ISRTerminal;$\text{ }$\newline{}
$\text{ }${}uses$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Crt,$\text{ }${}Dos;$\text{ }$\newline{}
$\text{ }${}const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{UART$\text{ }${}Constants\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}THR$\text{ }${}=$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}RBR$\text{ }${}=$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}IER$\text{ }${}=$\text{ }${}1;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}FCR$\text{ }${}=$\text{ }${}2;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}LCR$\text{ }${}=$\text{ }${}3;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}MCR$\text{ }${}=$\text{ }${}4;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}LSR$\text{ }${}=$\text{ }${}5;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_Low$\text{ }${}=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_High$\text{ }${}=$\text{ }${}\${}01;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{PIC$\text{ }${}Constants\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}MasterPIC$\text{ }${}=$\text{ }${}\${}20;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}MasterOCW1$\text{ }${}=$\text{ }${}\${}21;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Character$\text{ }${}Constants\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}NullLetter$\text{ }${}=$\text{ }${}\#0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}EscapeKey$\text{ }${}=$\text{ }${}\#27;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}ComPort:$\text{ }${}array$\text{ }${}{$\text{[}$}1..4{$\text{]}$}$\text{ }${}of$\text{ }${}Word$\text{ }${}absolute$\text{ }${}\${}0040:\${}0000;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}OldSerialVector:$\text{ }${}procedure;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}OutputLetter:$\text{ }${}Char;$\text{ }$\newline{}
$\text{ }${}\{\${}F+\}$\text{ }$\newline{}
$\text{ }${}procedure$\text{ }${}SerialDataIn;$\text{ }${}interrupt;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}InputLetter:$\text{ }${}Char;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LSR{$\text{]}$}$\text{ }${}and$\text{ }${}\${}01)$\text{ }${}>{}$\text{ }${}0$\text{ }${}then$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}InputLetter$\text{ }${}:=$\text{ }${}Chr(Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}RBR{$\text{]}$});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Write(InputLetter);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }${}\{if\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}MasterPIC{$\text{]}$}$\text{ }${}:=$\text{ }${}EOI;$\text{ }$\newline{}
$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}\{\${}F-{}\}$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Writeln(\textquotesingle{}Simple$\text{ }${}Serial$\text{ }${}ISR$\text{ }${}Data$\text{ }${}Terminal$\text{ }${}Program.$\text{ }${}$\text{ }${}Press$\text{ }${}\symbol{34}Esc\symbol{34}$\text{ }${}to$\text{ }$\newline{}
$\text{ }${}quit.\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Change$\text{ }${}UART$\text{ }${}Settings\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}80;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_High{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_Low{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}0C;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}03;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}FCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}07;$\text{ }${}\{clearing$\text{ }${}the$\text{ }${}FIFOs\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}FCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}00;$\text{ }${}\{disabling$\text{ }${}FIFOs\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}MCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}0B;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Setup$\text{ }${}ISR$\text{ }${}vectors\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}GetIntVec(\${}0C,@OldSerialVector);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}SetIntVec(\${}0C,Addr(SerialDataIn));$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}MasterOCW1{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}MasterOCW1{$\text{]}$}$\text{ }${}and$\text{ }${}\${}EF;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}IER{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}01;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Scan$\text{ }${}for$\text{ }${}keyboard$\text{ }${}data\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}OutputLetter$\text{ }${}:=$\text{ }${}NullLetter;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}repeat$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}KeyPressed$\text{ }${}then$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}OutputLetter$\text{ }${}:=$\text{ }${}ReadKey;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}THR{$\text{]}$}$\text{ }${}:=$\text{ }${}Ord(OutputLetter);$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }${}\{if\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}until$\text{ }${}OutputLetter$\text{ }${}=$\text{ }${}EscapeKey;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Put$\text{ }${}the$\text{ }${}old$\text{ }${}ISR$\text{ }${}vector$\text{ }${}back$\text{ }${}in\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}SetIntVec(\${}0C,@OldSerialVector);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}MasterOCW1{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}MasterOCW1{$\text{]}$}$\text{ }${}or$\text{ }${}\${}10;$\text{ }$\newline{}
$\text{ }${}end.$\text{ }$\newline{}
}

At this point you start to grasp how complex serial data programming can get.  We are not finished yet, but if you have made it this far you hopefully understand each part of the program listed above.  We are going to try and stay with this one step at a time, but at this point you should be able to write some simple custom software that uses serial I/O.
\subsection{Command Line Input}
\label{114}

There are a number of different ways that you can \symbol{34}scan\symbol{34} the parameters that start the program.  For example, if you start a simple terminal program in DOS, you can use this command to begin:
\\

\TemplateSpaceIndent{$\text{ }${}C:>{}$\text{ }${}terminal$\text{ }${}COM1$\text{ }${}9600$\text{ }${}8$\text{ }${}1$\text{ }${}None}


or perhaps
\\

\TemplateSpaceIndent{$\text{ }${}C:>{}$\text{ }${}terminal$\text{ }${}COM4$\text{ }${}1200$\text{ }${}7$\text{ }${}2$\text{ }${}Even}


Obviously there should not be a need to have the end-{}user recompile the software if they want to change something simple like the baud rate.  What we are trying to accomplish here is to grab those other items that were used to start the program.  In Turbo Pascal, there is function that returns a string
\\

\TemplateSpaceIndent{$\text{ }${}ParamStr(index)}


which contains each item of the command line.  These are passed to the program through strings.  A quick sample program on how to extract these parameters can be found here:
\\

\TemplateSpaceIndent{$\text{ }${}program$\text{ }${}ParamTst;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Index:$\text{ }${}Integer;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}writeln(\textquotesingle{}Parameter$\text{ }${}Test$\text{ }${}-{}-{}$\text{ }${}displays$\text{ }${}all$\text{ }${}command$\text{ }${}line$\text{ }${}parameters$\text{ }${}of$\text{ }$\newline{}
$\text{ }${}this$\text{ }${}program\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}writeln(\textquotesingle{}Parameter$\text{ }${}Count$\text{ }${}=$\text{ }${}\textquotesingle{},ParamCount);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}for$\text{ }${}Index$\text{ }${}:=$\text{ }${}0$\text{ }${}to$\text{ }${}ParamCount$\text{ }${}do$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}writeln(\textquotesingle{}Param$\text{ }${}\#$\text{ }${}\textquotesingle{},Index,\textquotesingle{}$\text{ }${}-{}$\text{ }${}\textquotesingle{},ParamStr(Index));$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}end.}


One interesting \symbol{34}parameter\symbol{34} is parameter number 0, which is the name of the program that is processing the commands.  We will not be using this parameter, but it is something useful in many other programming situations.
\subsection{Grabbing Terminal Parameters}
\label{115}

For the sake of simplicity, we are going to require that either all of the parameters are going to be in that format of baud rate, bit size, stop bits, parity; or there will be no parameters at all.  This example is going to be mainly to demonstrate how to use variables to change the settings of the UART by the software user rather than the programmer.  Since the added sections are self-{}explanatory, I\textquotesingle{}m just going to give you the complete program.  There will be some string manipulation going on here that is beyond the scope of this book, but that is going to be used only for parsing the commands.  To keep the user interface simple, we are using the command line arguments alone for changing the UART parameters.  We could build a fancy interface to allow these settings to be changed while the program is running, but that is an exercise that is left to the reader.

\LaTeXNullTemplate{}

\myhref{http://en.wikibooks.org/wiki/Category\%3ASerial\%20Programming}{Category:Serial Programming}
\chapter{Serial Linux}

\myminitoc
\label{116}





\label{117}
\LaTeXNullTemplate{}\section{The Classic Unix C APIs for Serial Communication}
\label{118}
\subsection{Introduction}
\label{119}
\subsubsection{Scope}
\label{120}
This page talks about the classic Unix C APIs for controlling serial devices. Languages other than C might provide appropriate wrappers to these APIs which look similar, or come with their own abstraction (e.g. \mylref{146}{Java}). Nevertheless, these APIs are the lowest level of abstraction one can find for serial I/O in Unix. And, in fact they are also the highest abstraction in C on standard Unix. Some Unix versions ship additional vendor-{}specific proprietary high-{}level APIs. These APIs are not discussed here.

Actual implementations of classic Unix serial APIs do vary in practice, due to the different versions of Unix and its clones, like Linux. Therefore, this module just provides a general outline. It is highly recommended that you study a particular Unix
version\textquotesingle{}s manual (man pages) when programming for a serial device in Unix. The relevant man pages are not too great a read, but they are usually complete in their listing of options and parameters. Together with this overview it should be possible to implement programs doing serial I/O under Unix.
\subsubsection{Basics}
\label{121}
Linux, or any Unix, is a multi-{}user, multi-{}tasking operating system. As such, programs usually don\textquotesingle{}t, and are usually not allowed to, access hardware resources like serial UARTs directly. Instead, the operating system provides

\begin{myenumerate}
\item{}  low-{}level drivers for mapping the device into the file system ({\ttfamily /dev} and/or {\ttfamily /device/} file system entries),
\item{}  the standard system calls for opening, reading, writing, and closing the device, and
\item{}  the standard system call for controlling a device, and/or
\item{}  high-{}level C libraries for controlling the device.
\end{myenumerate}


The low-{}level driver not only maps the device into the file system with the help of the kernel, it also encapsulates the particular hardware. The user often does not even know or care what type of UART is in use.

Classic Unix systems often provide two different device nodes (or minor numbers) for serial I/O hardware. These provide access to the same physical device via two different names in the {\ttfamily /dev} hierarchy. Which node is used affects how certain serial control signals, such as DCD (data carrier detect), are handled when the device is opened. In some cases this can be changed programmatically, making the difference largely irrelevant. As a consequence, Linux only provides the different devices for legacy programs.

Device names in the file system can vary, even on the same Unix system, as they are simply aliases. The important parts of a device name (such as in {\ttfamily /dev}) are the major and minor numbers. The major number distinguishes a serial port, for example, from a keyboard driver, and is used to select the correct driver in the kernel. Note that the major number differs between different Unix systems. The minor number is interpreted by the device driver itself. For serial device drivers, it is typically used to detect which physical interface to use. Sometimes, the minor number will also be used by the device driver to determine the DCD behavior or the hardware flow control signals to be used.

The typical (but not standardized, see above) device names under Unix for serial interfaces are:
{\bfseries
\begin{mydescription} /dev/tty{\itshape xxx}
\end{mydescription}
}

\begin{myquote}
\item{}  Normal, generic access to the device. Used for terminal and other serial communication (originally for {\bfseries t}ele{\bfseries ty}pes). More recently, they are also used in modem communication, for example, whereas the {\ttfamily /dev/cua{\itshape xxx}} was used on older systems.
\item{}  See the following module on how terminal I/O and serial I/O relate on Unix.
\end{myquote}

{\bfseries
\begin{mydescription} /dev/cua{\itshape xxx}
\end{mydescription}
}

\begin{myquote}
\item{}  Legacy device driver with special DCD handling. Typically this was used for accessing a modem on old Unix systems, such as running the \myhref{http://en.wikipedia.org/wiki/UUCP}{UUCP} communication protocol over the serial line and the modem. The {\itshape cu} in the name stands for the \mylref{142}{\#{\ttfamily cu}} program. The {\itshape a} for ACU (automatic call unit).
\end{myquote}


The {\bfseries xxx} part in the names above is typically a one or two digit number, or a lowercase letter, starting at \textquotesingle{}a\textquotesingle{} for the first interface.

PC-{}based Unix systems often mimic the DOS/Windows naming for the devices and call them {\ttfamily /dev/com{\itshape xxx}}.

To summarize, when programming for the serial interface of a Unix system it is {\bfseries highly advisable} to provide complete configuration for the device name. Not even the typical {\ttfamily /dev} path should be hard coded.

Note, devices with the name {\ttfamily /dev/pty{\itshape xxx}} are pseudo terminal devices, typically used by a graphical user interface to provide a terminal emulator like {\itshape xterm} or {\itshape dtterm} with a \symbol{34}terminal\symbol{34} device, and to provide a terminal device for network logins. There is no serial hardware behind these device drivers.
\subsection{Serial I/O via Terminal I/O \LaTeXNullTemplate{}}
\label{122}\subsubsection{Basics}
\label{123}
Serial I/O under Unix is implemented as part of the terminal I/O capabilities of Unix. And the terminal I/O capabilities of Unix were originally the typewriter/teletype capabilities. Terminal I/O is not limited to terminals, though. The terminal I/O API is used for communication with many serial devices other than terminals, such as modems and printers.

The terminal API itself has evolved over time. These days three terminal APIs are still used in Unix programs and can be found in recent Unix implementations. A fourth one, the very old one from Unix Version 6 exists, but is quite rare these days.

The three common ones are:

\begin{myenumerate}
\item{}  V7, 4BSD, XENIX style device-{}specific \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ASerial_Linux\%23V7\%20\%2F\%20ioctl\%282\%29}{ioctl-{}based API},
\item{}  An old one called \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ASerial_Linux\%23termio\%20\%2F\%20ioctl\%282\%29}{termio}
\item{}  A newer one (although still already a few decades old), which is called \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ASerial_Linux\%23termios}{termios} (note the additional \textquotesingle{}s\textquotesingle{}). 
\end{myenumerate}


The newer {\ttfamily termios} API is based on the older {\ttfamily termio} API, and so the two {\ttfamily termio...} APIs share a lot of similarities. The {\ttfamily termios} API has also undergone changes since inception. For example, the method of specifying the baud rate has changed from using pre-{}defined constants to a more relaxed schema (the constants can still be used as well on most implementations).

Systems that support the newer {\ttfamily termios} often also support the older {\ttfamily termio} API, either by providing it in addition, or by providing a {\ttfamily termios} implementation with data structures which can be used in place of the {\ttfamily termio} data structures and work as {\ttfamily termio}. These systems also often just provide one man page under the older name {\bfseries termio}{\itshape (7)} which is then in fact the {\ttfamily termios} man page, too.

In addition, some systems provide other, similar APIs, either in addition or as a replacement. {\ttfamily termiox} is such an API, which is largely compatible with {\ttfamily termio} and adds some extensions to it taken from {\ttfamily termios}. So {\ttfamily termiox} can logically be seen as an intermediate step between {\ttfamily termio} and {\ttfamily termios}. 

The terminal I/O APIs rely on the standard system calls for reading and writing data. They don\textquotesingle{}t provide their own reading/writing functions. Reading and writing data is done via the {\bfseries read}{\itshape (2)} and {\bfseries write}{\itshape (2)} system calls. The terminal I/O APIs just add functions for controlling and configuring the device. Most of this happens via the {\bfseries ioctl}{\itshape (2)} system call.

Unfortunately, whichever of the standard APIs is used, one fact holds for all of them: They are a slight mess. Well, not really. Communication with terminals was and is a difficult issue, and the APIs reflect these difficulties. But due to the fact that one can do \symbol{34}everything\symbol{34} with the APIs, it is overwhelming when one \symbol{34}just\symbol{34} wants to do some serial communication. So why is there no separate serial-{}I/O-{}only API in Unix? There are probably two reasons for this:

\begin{myenumerate}
\item{}  Terminals/teletypes were the first, and apparently very important, serial devices which were connected to Unix. So that API was created first.
\item{}  Once the API was there, there was no need to create a separate one for serial I/O only, since a large part of terminal I/O is serial I/O, and all needed features were already there in the terminal I/O API.
\end{myenumerate}


So which API should one use? There is one good reason to use the old V7 API. It is the simplest among the APIs -{} after going through some initialization woes on modern Unix systems. In general, however, the newer {\ttfamily termios} API makes the most sense, although it is the most complex one.
\subsubsection{Line Discipline}
\label{124}

When programming serial interfaces on Unix, there is one phrase -{} {\itshape line discipline} -{} which can drive programmers crazy. The line discipline provides the hardware-{}independent interface for the communication between the computer and the terminal device. It handles such things as editing, job control, and special character interpretation, and performs transformations on the incoming and outgoing data.

This is useful for terminal communication (e.g. when a backspace character should erase the latest character from the send buffer before it goes over the wire, or when different end-{}of-{}line character sequences between the terminal and the computer need to be converted). These features are, however, hardly useful when communicating with the plethora of other serial devices, where unaltered data communication is desired.

Much of the serial programming in Unix is hitting the line discipline which is in use over the head so it doesn\textquotesingle{}t touch the data. Monitoring what actually goes over the wire is a good idea.
\subsection{Unix V6/PWB}
\label{125}

Unix {\itshape Bell Version 6} with the {\itshape programmer\textquotesingle{}s workbench} (PWB) was released in 1975 to universities. It was the first Unix with an audience outside AT\&T. It already had a terminal programming API. Actually, at that point it was the {\itshape typewriter} API. That API is not described here in depth.

The usage of this API can in theory be identified by the presence of the following signature in some source code:
\\

\TemplateSpaceIndent{$\text{ }${}\#include$\text{ }${}<{}sgtty.h>{}$\text{ }$\newline{}
$\text{ }${}stty(fd,$\text{ }${}data)$\text{ }$\newline{}
$\text{ }${}int$\text{ }${}fd;$\text{ }$\newline{}
$\text{ }${}char$\text{ }${}*data;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}gtty(fd,$\text{ }${}data)$\text{ }$\newline{}
$\text{ }${}int$\text{ }${}fd;$\text{ }$\newline{}
$\text{ }${}char$\text{ }${}*data;}


In theory, because at that time the C language was still a little bit different.

{\ttfamily data} is supposed to point to a 
\\

\TemplateSpaceIndent{$\text{ }${}struct$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}char$\text{ }${}ispeed,$\text{ }${}ospeed;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}char$\text{ }${}erase,$\text{ }${}kill;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}$\text{ }${}mode;$\text{ }$\newline{}
$\text{ }${}\}$\text{ }${}*data;}


structure. That structure later became {\ttfamily struct sgttyb} in Unix V7. Finding the V6 API in source code should be rare. Anyhow, recent Unix versions and clones typically don\textquotesingle{}t support this API any more.
\subsection{Unix V7}
\label{126}

See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3AUnix\%2FV7}{Serial Programming:Unix/V7}
\subsection{termios}
\label{127}

A simple terminal program with termios.h can look like this:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{#include\ensuremath{\text{ }}<string.h>}\newline
\OtherTok{#include\ensuremath{\text{ }}<stdlib.h>}\newline
\OtherTok{#include\ensuremath{\text{ }}<stdio.h>}\newline
\OtherTok{#include\ensuremath{\text{ }}<unistd.h>}\newline
\OtherTok{#include\ensuremath{\text{ }}<fcntl.h>}\newline
\OtherTok{#include\ensuremath{\text{ }}<termios.h>}\newline
\ensuremath{\text{ }}\newline
\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{main(}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{argc,}\DataTypeTok{char}\NormalTok{**\ensuremath{\text{ }}argv)}\newline
\NormalTok{\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{struct}\ensuremath{\text{ }}\NormalTok{termios\ensuremath{\text{ }}tio;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{struct}\ensuremath{\text{ }}\NormalTok{termios\ensuremath{\text{ }}stdio;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{struct}\ensuremath{\text{ }}\NormalTok{termios\ensuremath{\text{ }}old_stdio;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{tty_fd;}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{unsigned}\ensuremath{\text{ }}\DataTypeTok{char}\ensuremath{\text{ }}\NormalTok{c={\char13}D{\char13};}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tcgetattr(STDOUT_FILENO,\&old_stdio);}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{printf(}\StringTok{"Please\ensuremath{\text{ }}start\ensuremath{\text{ }}with\ensuremath{\text{ }}\%s\ensuremath{\text{ }}/dev/ttyS1\ensuremath{\text{ }}(for}\newline
\ensuremath{\text{ }}\NormalTok{example)\textbackslash{}n}\StringTok{",argv[0]);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{memset(\&stdio,}\DecValTok{0}\NormalTok{,}\KeywordTok{sizeof}\NormalTok{(stdio));}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{stdio.c_iflag=}\DecValTok{0}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{stdio.c_oflag=}\DecValTok{0}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{stdio.c_cflag=}\DecValTok{0}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{stdio.c_lflag=}\DecValTok{0}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{stdio.c_cc[VMIN]=}\DecValTok{1}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{stdio.c_cc[VTIME]=}\DecValTok{0}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tcsetattr(STDOUT_FILENO,TCSANOW,\&stdio);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tcsetattr(STDOUT_FILENO,TCSAFLUSH,\&stdio);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fcntl(STDIN_FILENO,\ensuremath{\text{ }}F_SETFL,\ensuremath{\text{ }}O_NONBLOCK);\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{//\ensuremath{\text{ }}make\ensuremath{\text{ }}the}\newline
\ensuremath{\text{ }}\NormalTok{reads\ensuremath{\text{ }}non-blocking}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{memset(\&tio,}\DecValTok{0}\NormalTok{,}\KeywordTok{sizeof}\NormalTok{(tio));}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tio.c_iflag=}\DecValTok{0}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tio.c_oflag=}\DecValTok{0}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tio.c_cflag=CS8\textbar{}CREAD\textbar{}CLOCAL;\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{//\ensuremath{\text{ }}8n1,\ensuremath{\text{ }}see\ensuremath{\text{ }}termios.h}\newline
\ensuremath{\text{ }}\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{more\ensuremath{\text{ }}information}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tio.c_lflag=}\DecValTok{0}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tio.c_cc[VMIN]=}\DecValTok{1}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tio.c_cc[VTIME]=}\DecValTok{5}\NormalTok{;}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tty_fd=open(argv[}\DecValTok{1}\NormalTok{],\ensuremath{\text{ }}O_RDWR\ensuremath{\text{ }}\textbar{}\ensuremath{\text{ }}O_NONBLOCK);\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{cfsetospeed(\&tio,B115200);\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{//\ensuremath{\text{ }}115200\ensuremath{\text{ }}baud}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{cfsetispeed(\&tio,B115200);\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{//\ensuremath{\text{ }}115200\ensuremath{\text{ }}baud}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tcsetattr(tty_fd,TCSANOW,\&tio);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{while}\ensuremath{\text{ }}\NormalTok{(c!={\char13}q{\char13})}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{(read(tty_fd,\&c,}\DecValTok{1}\NormalTok{)>}\DecValTok{0}\NormalTok{)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\NormalTok{write(STDOUT_FILENO,\&c,}\DecValTok{1}\NormalTok{);\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{//\ensuremath{\text{ }}if\ensuremath{\text{ }}new\ensuremath{\text{ }}data\ensuremath{\text{ }}is\ensuremath{\text{ }}available}\newline
\ensuremath{\text{ }}\NormalTok{on\ensuremath{\text{ }}the\ensuremath{\text{ }}serial\ensuremath{\text{ }}port,\ensuremath{\text{ }}print\ensuremath{\text{ }}it\ensuremath{\text{ }}out}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{(read(STDIN_FILENO,\&c,}\DecValTok{1}\NormalTok{)>}\DecValTok{0}\NormalTok{)\ensuremath{\text{ }}\ensuremath{\text{ }}write(tty_fd,\&c,}\DecValTok{1}\NormalTok{);\ensuremath{\text{ }}\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{//\ensuremath{\text{ }}if\ensuremath{\text{ }}new\ensuremath{\text{ }}data\ensuremath{\text{ }}is\ensuremath{\text{ }}available\ensuremath{\text{ }}on\ensuremath{\text{ }}the\ensuremath{\text{ }}console,\ensuremath{\text{ }}send\ensuremath{\text{ }}it}\newline
\ensuremath{\text{ }}\NormalTok{to\ensuremath{\text{ }}the\ensuremath{\text{ }}serial\ensuremath{\text{ }}port}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{close(tty_fd);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tcsetattr(STDOUT_FILENO,TCSANOW,\&old_stdio);}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{EXIT_SUCCESS;}\newline
\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}

See \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3AUnix\%2Ftermios}{Serial_Programming:Unix/termios}
\subsection{termio / ioctl(2) \LaTeXNullTemplate{}}
\label{128}

See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3AUnix\%2Ftermio}{Serial Programming:Unix/termio}
\section{Serial I/O on the Shell Command Line \LaTeXNullTemplate{}}
\label{129}
\subsection{Introduction}
\label{130}

It is possible to do serial I/O on the Unix command line. However, the available control is limited. Reading and writing data can be done with the shell I/O redirections like {\bfseries <{}}, {\bfseries >{}}, and {\bfseries |}. Setting basic configuration, like the baud rate, can be done with the {\ttfamily stty} (set terminal type) command.

There is also {\ttfamily libserial} for Linux.  It\textquotesingle{}s a simple C++ class which
hides some of the complexity of termios.
\subsection{Configuration with {\ttfamily stty}}
\label{131}

The Unix command {\ttfamily stty} allows one to configure a \symbol{34}terminal\symbol{34}. Since all serial I/O under Unix is done via terminal I/O, it should be no surprise that stty can also be used to configure serial lines. Indeed, the options and parameters which can be set via stty often have a 1:1 mapping to termio/termios. If the explanations regarding an option in the {\bfseries stty}{\itshape (1)} man page is not sufficient, looking up the option in the termio/termios man page can often help.

On \symbol{34}modern\symbol{34} (System V) Unix versions, stty changes the parameters of its current {\bfseries standard input}. On older systems, stty changes the parameters of its current {\bfseries standard output}. We assume a modern Unix is in use here. So, to change the settings of a particular serial interface, its device name must be provided to stty via an I/O redirect:
\\

\TemplateSpaceIndent{$\text{ }${}stty$\text{ }${}{\itshape parameters}$\text{ }${}<{}$\text{ }${}/dev/com0$\text{ }${}$\text{ }${}\#$\text{ }${}change$\text{ }${}setting$\text{ }${}of$\text{ }${}/dev/com0}


On some systems, the settings done by stty are reverted to system defaults as soon as the device is closed again. This closing is done by the shell as soon as the {\ttfamily stty {\itshape parameters} <{} /dev/com0} command has finished. So when using the above command, the changes will only be in effect for a few milliseconds.

One way to keep the device open for the duration of the communication is to start the whole communication in a sub shell (using, for example, \textquotesingle{}( ... )\textquotesingle{}), and redirecting that input. So to send the string \symbol{34}ATI0\symbol{34} over the serial line, one could use:
\\

\TemplateSpaceIndent{$\text{ }${}($\text{ }${}stty$\text{ }${}{\itshape parameters}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}echo$\text{ }${}\symbol{34}ATI0\symbol{34}$\text{ }$\newline{}
$\text{ }${})$\text{ }${}<{}$\text{ }${}/dev/com0$\text{ }${}>{}$\text{ }${}/dev/com0$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}}

Interweaving sending and receiving data is difficult from the command line. Two processes are needed; one reading from the device, and the other writing to the device. This makes it difficult to coordinate commands sent with the responses received. Some extensive shell scripting might be needed to manage this.

A common way to organize the two processes is to put the reading process in the background, and let the writing process continue to run in the foreground. For example, the following script configures the device and starts a background process for copying all received data from the serial device to standard output. Then it starts writing commands to the device:
\\

\TemplateSpaceIndent{$\text{ }${}\#$\text{ }${}Set$\text{ }${}up$\text{ }${}device$\text{ }${}and$\text{ }${}read$\text{ }${}from$\text{ }${}it.$\text{ }$\newline{}
$\text{ }${}\#$\text{ }${}Capture$\text{ }${}PID$\text{ }${}of$\text{ }${}background$\text{ }${}process$\text{ }${}so$\text{ }${}it$\text{ }${}is$\text{ }${}possible$\text{ }$\newline{}
$\text{ }${}\#$\text{ }${}to$\text{ }${}terminate$\text{ }${}background$\text{ }${}process$\text{ }${}once$\text{ }${}writing$\text{ }${}is$\text{ }${}done$\text{ }$\newline{}
$\text{ }${}\#$\text{ }${}TODO:$\text{ }${}Also$\text{ }${}set$\text{ }${}up$\text{ }${}a$\text{ }${}trap$\text{ }${}in$\text{ }${}case$\text{ }${}script$\text{ }${}is$\text{ }${}killed$\text{ }$\newline{}
$\text{ }${}\#$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}or$\text{ }${}crashes.$\text{ }$\newline{}
$\text{ }${}($\text{ }${}stty$\text{ }${}{\itshape parameters};$\text{ }${}cat;$\text{ }${})\&$\text{ }${}<{}$\text{ }${}/dev/com0$\text{ }$\newline{}
$\text{ }${}bgPid=\${}?$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}\#$\text{ }${}Read$\text{ }${}commands$\text{ }${}from$\text{ }${}user,$\text{ }${}send$\text{ }${}them$\text{ }${}to$\text{ }${}device$\text{ }$\newline{}
$\text{ }${}while$\text{ }${}read$\text{ }${}cmd;$\text{ }${}do$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}echo$\text{ }${}\symbol{34}\${}cmd\symbol{34}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}done$\text{ }${}>{}/dev/com0$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}\#$\text{ }${}Terminate$\text{ }${}background$\text{ }${}read$\text{ }${}process$\text{ }$\newline{}
$\text{ }${}kill$\text{ }${}\${}bgPid}


If there is a chance that a response to some command might never come, and if there is no other way to terminate the process, it is advisable to set up a timeout by using the alarm signal and {\ttfamily trap} that signal (signal 14), or simply kill the process:
\\

\TemplateSpaceIndent{$\text{ }${}trap$\text{ }${}timeout$\text{ }${}14$\text{ }$\newline{}
$\text{ }${}timeout()$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}echo$\text{ }${}\symbol{34}timeout$\text{ }${}occurred\symbol{34}$\text{ }$\newline{}
$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}pid=\${}\${}$\text{ }$\newline{}
$\text{ }${}($\text{ }${}sleep$\text{ }${}60$\text{ }${};$\text{ }${}kill$\text{ }${}-{}14$\text{ }${}\${}pid;$\text{ }${})\&$\text{ }${}\#$\text{ }${}send$\text{ }${}alarm$\text{ }${}signal$\text{ }${}after$\text{ }${}60$\text{ }${}sec.$\text{ }$\newline{}
$\text{ }${}\#$\text{ }${}normal$\text{ }${}script$\text{ }${}contents$\text{ }${}goes$\text{ }${}here}

or\\

\TemplateSpaceIndent{$\text{ }${}pid=\${}\${}$\text{ }$\newline{}
$\text{ }${}($\text{ }${}sleep$\text{ }${}60;$\text{ }${}kill$\text{ }${}-{}9$\text{ }${}\${}pid;)\&$\text{ }${}\#$\text{ }${}brutally$\text{ }${}kill$\text{ }${}process$\text{ }${}after$\text{ }${}60$\text{ }${}sec.$\text{ }$\newline{}
$\text{ }${}\#$\text{ }${}normal$\text{ }${}script$\text{ }${}contents$\text{ }${}goes$\text{ }${}here}

\subsection{Permanent Configuration}
\label{132}
\subsubsection{Overview}
\label{133}
It is possible to provide a serial line with a default configuration. On classic Unix this is done with entries in the {\ttfamily /etc/ttytab} configuration file, on newer (System V R4) systems with {\ttfamily /etc/ttydefs}.

The default configurations make some sense when they are used for setting up terminal lines or dialup lines for a Unix system (and that\textquotesingle{}s what they are for). However, such default configurations are not of much use when doing some serial communication with some other device. The correct function of the communication program should better not depend on some operating system configuration. Instead, the application should be self-{}contained and configure the device as needed by it.
\subsubsection{{\ttfamily /etc/ttytab}}
\label{134}

The ttytab format varies from Unix to Unix, so checking the corresponding man page is a good idea. If the device is not intended for a terminal (no login), then the {\itshape getty} field (sometimes also called the program field, usually the 3rd field) for the device entry should be empty. The init field (often the 4th field) can contain an initialization command. Using {\ttfamily stty} here is a good idea. So, a typical entry for a serial line might look like:
\\

\TemplateSpaceIndent{$\text{ }${}$\text{ }${}\#$\text{ }${}Device$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}TermType$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Getty$\text{ }${}$\text{ }${}$\text{ }${}Init$\text{ }$\newline{}
$\text{ }${}$\text{ }${}tty0$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}unknown$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\symbol{34}\symbol{34}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\symbol{34}stty$\text{ }${}{\itshape parameters}\symbol{34}}

\subsubsection{{\ttfamily /etc/ttydefs}}
\label{135}

\LaTeXNullTemplate{}Just some hints:

{\ttfamily /etc/ttydefs} provides the configuration as used by the {\bfseries ttymon} program. The settings are similar to the settings possible with stty. 

{\ttfamily ttymon} is a program which is typically run under control of the Service Access Controller (SAC), as part of the Service Access Facility (SAF).

{\itshape TODO: Provide info to set up all the sac/sacadm junk.}
\subsubsection{{\ttfamily /etc/serial.conf}}
\label{136}

\LaTeXNullTemplate{}Just some hints:

A Linux-{}specific way of configuring serial devices using the {\bfseries setserial} program.
\subsection{{\ttfamily tty}}
\label{137}

tty with the {\bfseries -{}s} option can be used to test if a device is a terminal (supports the termio/termios ioctl()\textquotesingle{}s). Therefore it can also be used to check if a given file name is indeed a device name of a serial line.
\\

\TemplateSpaceIndent{$\text{ }${}echo$\text{ }${}\symbol{34}Enter$\text{ }${}serial$\text{ }${}device$\text{ }${}name:$\text{ }${}\textbackslash{}c\symbol{34}$\text{ }$\newline{}
$\text{ }${}read$\text{ }${}dev$\text{ }$\newline{}
$\text{ }${}if$\text{ }${}tty$\text{ }${}-{}s$\text{ }${}<{}$\text{ }${}\symbol{34}\${}dev\symbol{34};$\text{ }${}then$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}echo$\text{ }${}\symbol{34}\${}dev$\text{ }${}is$\text{ }${}indeed$\text{ }${}a$\text{ }${}serial$\text{ }${}device.\symbol{34}$\text{ }$\newline{}
$\text{ }${}else$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}echo$\text{ }${}\symbol{34}\${}dev$\text{ }${}is$\text{ }${}not$\text{ }${}a$\text{ }${}serial$\text{ }${}device.\symbol{34}$\text{ }$\newline{}
$\text{ }${}fi}

\subsection{{\ttfamily tip}}
\label{138}

It is a simple program for establishing a terminal connection with a remote system over a serial line. {\ttfamily tip} takes the necessary communication parameters, including the parameters for the serial communication, from a tip-{}specific configuration file. Details can be found in the {\ttfamily tip}{\itshape (1)} manual page.

Example:

To start the session over the first serial interface (here {\ttfamily ttya}):
\\

\TemplateSpaceIndent{$\text{ }${}tip$\text{ }${}-{}9600$\text{ }${}/dev/ttya}


To leave the session:
\\

\TemplateSpaceIndent{$\text{ }${}\~{}.}

\subsection{{\ttfamily uucp}}
\label{139}
\subsubsection{Overview}
\label{140}
Uucp (Unix-{}to-{}Unix-{}Copy) is a set of programs for moving data over serial lines/modems between Unix computers. Before the rise of the Internet uucp was the heart and foundation of services like e-{}mail and Usenet (net news) between Unix computers. Today uucp is largely insignificant. However, it is still a good choice if two or more Unix systems should be connected via serial lines/modems.

The uucp suite also contains command line tools for login over a serial line (or another UUCP bearer to a remote system. These tools are {\ttfamily cu} and {\ttfamily ct}. They are e.g. useful when trying to access a device connected via a serial line and when debugging some serial line protocol.
\subsubsection{{\ttfamily cu}}
\label{141}

{\ttfamily cu} \symbol{34}call another UNIX system\symbol{34}, does what the name implies. Only, that the other system does not have to be a UNIX system at all. It just sets up a serial connection, possibly by dialing via a modem.

{\ttfamily cu} is the oldest Unix program for serial communication. It\textquotesingle{}s the reason why some serial devices on classic Unix systems are called something like {\ttfamily /dev/cul0} and {\ttfamily /dev/cua0}. Where {\itshape cu} of course stands for the {\ttfamily cu} program supposed to use the devices, {\itshape l} stands for {\itshape line} -{} the communication line, and {\itshape a} for acu (automatic call unit).

\LaTeXNOTETemplate{}{An ACU is kind of a modem. Modern modems work slightly different and don\textquotesingle{}t provide separate serial interfaces for dialing and communicating with the remote side. Instead they do both over the same serial interface, using some kind of inband signaling. See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3AModems\%20and\%20AT\%20Commands}{Serial Programming:Modems and AT Commands}.}
\subsubsection{{\ttfamily ct}}
\label{142}

{\ttfamily ct} is intended to spawn a login to a remote system over a modem line, serial line, or similar bearer. It uses the uucp devices list to find the necessary dialing (modem) commands, and the serial line settings.
\section{System Configuration}
\label{143}
\LaTeXNullTemplate{}{\itshape inittab, ttytab, SAF configuration}
\section{Other Serial Programming Articles}
\label{144}
\LaTeXNullTemplate{}

\myhref{http://en.wikibooks.org/wiki/Category\%3ASerial\%20Programming}{Category:Serial Programming}
\chapter{Serial Java}

\myminitoc
\label{145}





\label{146}
\LaTeXNullTemplate{}
\section{Using Java for Serial Communication}
\label{147}
\subsection{Introduction}
\label{148}
Because of Java\textquotesingle{}s platform-{}independence, serial interfacing is difficult. Serial interfacing requires a standardized API with platform-{}specific implementations, which is difficult for Java.

Unfortunately, Sun doesn\textquotesingle{}t pay much attention to serial communication in Java. Sun has defined a serial communication API, called \myhref{http://www.oracle.com/technetwork/java/index-jsp-141752.html}{ {\itshape JavaComm}}, but an implementation of the API is not part of the Java standard edition. Sun provides a reference implementation for a few, but not all Java platforms. Particularly, at the end of 2005 Sun silently withdrew {\itshape JavaComm} support for Windows. Third party implementations for some of the omitted platforms are available. {\itshape JavaComm} hasn\textquotesingle{}t seen much in the way of maintenance activities, only the bare minimum maintenance is performed by Sun, except that Sun has apparently responded to pressure from buyers of their own Sun Ray thin clients and has adapted JavaComm to this platform while dropping Windows support.

This situation, and the fact that Sun originally did not provide a {\itshape JavaComm} implementation for Linux (starting in 2006, they now do) led to the development of the free-{}software \myhref{http://rxtx.qbang.org/wiki/index.php/Main_Page}{ {\itshape RxTx}} library. {\itshape RxTx} is available for a number of platforms, not only Linux. It can be used in conjunction with {\itshape JavaComm} ({\itshape RxTx} providing the hardware-{}specific drivers), or it can be used stand-{}alone. When used as a {\itshape JavaComm} driver the bridging between the {\itshape JavaComm} API and {\itshape RxTx} is done by {\itshape JCL} ({\itshape JavaComm for Linux}). {\itshape JCL} is part of the {\itshape RxTx} distribution.

Sun\textquotesingle{}s negligence of {\itshape JavaComm} and {\itshape JavaComm{\bfseries s particular programming model gained }}{\bfseries JavaComm{\itshape  the reputation of being unusable. Fortunately, this is not the case. Unfortunately, the reputation is further spread by people who don\textquotesingle{}t know the basics of serial programming at all and make }JavaComm{\itshape  responsible for their lack of understanding.}}

{\itshape RxTx} -{} if not used as a {\itshape JavaComm} driver -{} provides a richer interface, but one which is not standardized. {\itshape RxTx} supports more platforms than the existing {\itshape JavaComm} implementations. Recently, {\itshape RxTx} has been adopted to provide the same interface as {\itshape JavaComm}, only that the package names don\textquotesingle{}t match Sun\textquotesingle{}s package names.

So, which of the libraries should one use in an application? If maximum portability (for some value of \symbol{34}maximum\symbol{34}) is desired, then {\itshape JavaComm} is a good choice. If there is no {\itshape JavaComm} implementation for a particular platform available, but an {\itshape RxTx} implementation is, then {\itshape RxTx} could be used as a driver on that platform for {\itshape JavaComm}. So, by using JavaComm one can support all platforms which are either directly supported by Sun\textquotesingle{}s reference implementation or by RxTx with JCL. This way the application doesn\textquotesingle{}t need to be changed, and can work against just one interface, the standardized {\itshape JavaComm} interface.

This module discusses both {\itshape JavaComm} and {\itshape RxTx}. It mainly focuses on demonstrating concepts, not ready-{}to-{}run code. Those who want to blindly copy code are referred to the sample code that comes with the packages. Those who want to know what they are doing might find some useful information in this module.
\subsection{Getting started}
\label{149}

\begin{myitemize}
\item{}  Learn the basics of \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming}{serial communication and programming}.
\item{}  Have the documentation of the device you want to communicate with (e.g. the modem) ready.
\item{}  Set up all hardware and a test environment
\item{}  Use, for example, a terminal program to manually communicate with the device. This is to be sure the test environment is set up correctly and you have understood the commands and responses from the device.
\item{}  Download the API implementation you want to use for your particular operating system
\end{myitemize}


\begin{myitemize}
\item{}  Read
\begin{myitemize}
\item{}  the JavaComm and/or RxTx installation instruction (and follow it)
\item{}  the API documentation
\item{}  the example source code shipped
\end{myitemize}

\end{myitemize}

\subsection{Installation}
\label{150}
\subsubsection{General Issues}
\label{151}
Both {\itshape JavaComm} and {\itshape RxTX} show some installation quirks. It is highly recommended to follow the installation instructions word-{}for-{}word. If they say that a jar file or a shared library has to go into a particular directory, then this is meant seriously! If the instructions say that a particular file or device needs to have a specific ownership or access rights, this is also meant seriously. Many installation troubles simply come from not following the instructions precisely.

It should especially be noted that some versions of {\itshape JavaComm} come with two installation instructions. One for Java 1.2 and newer, one for Java 1.1. Using the wrong one will result in a non-{}working installation. On the other hand, some versions/builds/packages of {\itshape RxTx} come with incomplete instructions. In such a case the corresponding source code distribution of {\itshape RxTx} needs to be obtained, which should contain complete instructions.

It should be further noticed that it is also typical for Windows JDK installations to come with up to three VMs, and thus three extension directories. 
\begin{myitemize}
\item{}  One as part of the JDK, 
\item{}  one as part of the private JRE which comes with the JDK to run JDK tools, and 
\item{}  one as part of the public JRE which comes with the JDK to run applications
\end{myitemize}

Some even claim to have a fourth JRE somewhere in the \textbackslash{}Windows directory hierarchy.

{\itshape JavaComm} should at least be installed as extension in the JDK and in all public JREs.
\subsubsection{Webstart}
\label{152}\paragraph{JavaComm}
{$\text{ }$}\newline\label{153}
A general problem, both for {\itshape JavaComm} and {\itshape RxTx} is, that they resist installation via \myhref{http://java.sun.com/products/javawebstart/}{ Java WebStart}:

{\itshape JavaComm} is notorious, because it requires a file called {\itshape javax.comm.properties} to be placed in the JDK lib directory, something which can\textquotesingle{}t be done with Java WebStart. This is particularly sad, because the need for that file is the result of some unnecessary design/decision in {\itshape JavaComm} and could have easily been avoided by the {\itshape JavaComm} designers. Sun constantly refuses to correct this error, citing the mechanism is essential. Which is, they are lying through their teeth when it comes to {\itshape JavaComm}, particular, because Java for a long time has a service provider architecture exactly intended for such purposes.

The contents of the properties file is typically just one line, the name of the java class with the native driver, e.g.:
\\

\TemplateSpaceIndent{$\text{ }${}driver=com.sun.comm.Win32Driver}


The following is a hack which allows to deploy JavaComm via Web Start ignoring that brain-{}dead properties file. It has serious drawbacks, and might fail with newer JavaComm releases -{} should Sun ever come around and make a new version.

First, turn off the security manager. Some doofus programmer at Sun decided that it would be cool to again and again check for the existence of the dreaded {\itshape javax.comm.properties} file, even after it has been loaded initially, for no other apparent reason than checking for the file.
\\

\TemplateSpaceIndent{$\text{ }${}System.setSecurityManager(null);}


Then, when initializing the JavaComm API, initialize the driver manually:
\\

\TemplateSpaceIndent{$\text{ }${}String$\text{ }${}driverName$\text{ }${}=$\text{ }${}\symbol{34}com.sun.comm.Win32Driver\symbol{34};$\text{ }${}//$\text{ }${}or$\text{ }${}get$\text{ }${}as$\text{ }${}a$\text{ }${}JNLP$\text{ }$\newline{}
$\text{ }${}property$\text{ }$\newline{}
$\text{ }${}CommDriver$\text{ }${}commDriver$\text{ }${}=$\text{ }$\newline{}
$\text{ }${}(CommDriver)Class.forName(driverName).newInstance();$\text{ }$\newline{}
$\text{ }${}commDriver.initialize();}

\paragraph{RxTx}
{$\text{ }$}\newline\label{154}

{\itshape RxTx} on some platforms requires changing ownership and access rights of serial devices. This is also something which can\textquotesingle{}t be done via WebStart.

At startup of your program you could ask the user to perform the necessary setup as super user.

Further, RxTx has a pattern matching algorithm for identifying \symbol{34}valid\symbol{34} serial device names. This often breaks things when one wants to use non-{}standard devices, like USB-{}to-{}serial converters. This mechanism can be overridden by system properties. See the RxTx installation instruction for details.
\section{JavaComm API}
\label{155}
\subsection{Introduction}
\label{156}

The official API for serial communication in Java is the JavaComm API. This API is not part of the standard Java 2 version. Instead, an implementation of the API has to be downloaded separately. Unfortunately, JavaComm has not received much attention from Sun, and hasn\textquotesingle{}t been really maintained for a long time. From time to time Sun does trivial bug-{}fixes, but doesn\textquotesingle{}t do the long overdue main overhaul.

This section explains the basic operation of the JavaComm API. The provided source code is kept simple to demonstrate important point. It needs to be enhanced when used in a real application.

The source code in this chapter is not the only available example code. The JavaComm download comes with several examples. These examples almost contain more information about using the API than the API documentation. Unfortunately, Sun does not provide any real tutorial or some introductory text. Therefore, it is worth studying the example code to understand the mechanisms of the API. Still, the API documentation should be studied, too. But the best way is to study the examples and play with them. Due to the lack of easy-{}to-{}use application and people\textquotesingle{}s difficulty in understanding the APIs programming model, the API is often bad-{}mouthed. The API is better than its reputation, and functional. But no more.

The API uses a callback mechanism to inform the programmer about newly arriving data. It is also a good idea to study this mechanism instead of relying on polling the port. Unlike other callback interfaces in Java (e.g. in the GUI), this one only allows one listener listening to events. If multiple listeners require to listen to serial events, the one primary listener has to be implemented in a way that it dispatches the information to other secondary listeners.
\subsection{Download \& Installation}
\label{157}
\subsubsection{Download}
\label{158}
Sun\textquotesingle{}s \myhref{http://java.sun.com/products/javacomm/}{ JavaComm} web page points to a \myhref{http://www.sun.com/download/products.xml?id=43208d3d}{ download location}. Under this location Sun currently (2007) provides JavaComm 3.0 implementations for Solaris/SPARC, Solaris/x86, and Linux x86. Downloading requires to have registered for a Sun Online Account. The download page provides a link to the registration page. The purpose of this registration is unclear. One can download JDKs and JREs without registration, but for the almost trivial JavaComm Sun cites legal and governmental restrictions on the distribution and exportation of software.

The Windows version of JavaComm is no longer officially available, and Sun has -{} against their own product end-{}of-{}live policy -{} not made it available in the \myhref{http://java.sun.com/products/archive/}{ Java products archive}. However, the 2.0 Windows version (javacom 2.0) is still downloadable from \myhref{http://wind.lcs.mit.edu/download/}{ here}.
\subsubsection{Installation}
\label{159}

Follow the installation instructions that come with the download. Some versions of JavaComm 2.0 come with two installation instructions. The most obvious of the two instructions is unfortunately the wrong one, intended for ancient Java 1.1 environments. The information referring to the also ancient Java 1.2 (jdk1.2.html) is the right one.

Particularly Windows users are typically not aware that they have copies of the same VM installed in several locations (typically three to four). Some IDEs also like to come with own, private JRE/JDK installations, as do some Java applications. The installation needs to be repeated for every VM installation (JDKs and JREs) which should be used in conjunction with the development and execution of a serial application.

IDEs typically have IDE-{}specific ways of how a new library (classes and documentation) is made known to the IDE. Often a library like JavaComm not only needs to be made known to the IDE as such, but also to each project that is supposed to use the library. Read the IDE\textquotesingle{}s documentation. It should be noted that the old JavaComm 2.0 version comes with JavaDoc API documentation that is structured in the historic Java 1.0 JavaDoc layout. Some modern IDEs are no longer aware of this structure and can\textquotesingle{}t integrate the JavaComm 2.0 documentation into their help system. In such a case an external browser is needed to read the documentation (a recommended activity ...).

Once the software is installed it is recommended to examine the samples and JavaDoc directories. It makes sense to build and run one of the sample applications to verify that the installation is correct. The sample applications typically need some minor adaptations in order to run on a particular platform (e.g. changes to the hard-{}coded com port identifiers). It is a good idea to have some serial hardware, like cabling, a null modem, a breakout box, a real modem, PABX and others available when trying out a sample application. \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ARS-232\%20Connections}{Serial_Programming:RS-{}232 Connections} and \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3AModems\%20and\%20AT\%20Commands}{Serial_Programming:Modems and AT Commands} provide some information on how to set up the hardware part of a serial application development environment.
\subsubsection{Finding the desired serial Port}
\label{160}

The first three things to do when programming serial lines with JavaComm are typically 

\begin{myenumerate}
\item{} to enumerate all serial ports (port identifiers) available to JavaComm, 
\item{} to select the desired port identifier from the available ones, and
\item{} to acquire the port via the port identifier.
\end{myenumerate}


Enumerating and selecting the desired port identifier is typically done in one loop:
\\

\TemplateSpaceIndent{$\text{ }${}import$\text{ }${}javax.comm.*;$\text{ }$\newline{}
$\text{ }${}import$\text{ }${}java.util.*;$\text{ }$\newline{}
$\text{ }${}...$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Platform$\text{ }${}specific$\text{ }${}port$\text{ }${}name,$\text{ }${}here$\text{ }${}a$\text{ }${}Unix$\text{ }${}name$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}NOTE:$\text{ }${}On$\text{ }${}at$\text{ }${}least$\text{ }${}one$\text{ }${}Unix$\text{ }${}JavaComm$\text{ }${}implementation$\text{ }${}JavaComm$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}enumerates$\text{ }${}the$\text{ }${}ports$\text{ }${}as$\text{ }${}\symbol{34}COM1\symbol{34}$\text{ }${}...$\text{ }${}\symbol{34}COMx\symbol{34},$\text{ }${}too,$\text{ }${}and$\text{ }${}not$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}by$\text{ }${}their$\text{ }${}Unix$\text{ }${}device$\text{ }${}names$\text{ }${}\symbol{34}/dev/tty...\symbol{34}.$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Yet$\text{ }${}another$\text{ }${}good$\text{ }${}reason$\text{ }${}to$\text{ }${}not$\text{ }${}hard-{}code$\text{ }${}the$\text{ }${}wanted$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}port,$\text{ }${}but$\text{ }${}instead$\text{ }${}make$\text{ }${}it$\text{ }${}user$\text{ }${}configurable.$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}String$\text{ }${}wantedPortName$\text{ }${}=$\text{ }${}\symbol{34}/dev/ttya\symbol{34};$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Get$\text{ }${}an$\text{ }${}enumeration$\text{ }${}of$\text{ }${}all$\text{ }${}ports$\text{ }${}known$\text{ }${}to$\text{ }${}JavaComm$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}Enumeration$\text{ }${}portIdentifiers$\text{ }${}=$\text{ }$\newline{}
$\text{ }${}CommPortIdentifier.getPortIdentifiers();$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Check$\text{ }${}each$\text{ }${}port$\text{ }${}identifier$\text{ }${}if$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}$\text{ }${}$\text{ }${}(a)$\text{ }${}it$\text{ }${}indicates$\text{ }${}a$\text{ }${}serial$\text{ }${}(not$\text{ }${}a$\text{ }${}parallel)$\text{ }${}port,$\text{ }${}and$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}$\text{ }${}$\text{ }${}(b)$\text{ }${}matches$\text{ }${}the$\text{ }${}desired$\text{ }${}name.$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}CommPortIdentifier$\text{ }${}portId$\text{ }${}=$\text{ }${}null;$\text{ }${}$\text{ }${}//$\text{ }${}will$\text{ }${}be$\text{ }${}set$\text{ }${}if$\text{ }${}port$\text{ }${}found$\text{ }$\newline{}
$\text{ }${}while$\text{ }${}(portIdentifiers.hasMoreElements())$\text{ }$\newline{}
$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}CommPortIdentifier$\text{ }${}pid$\text{ }${}=$\text{ }${}(CommPortIdentifier)$\text{ }$\newline{}
$\text{ }${}portIdentifiers.nextElement();$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if(pid.getPortType()$\text{ }${}==$\text{ }${}CommPortIdentifier.PORT_SERIAL$\text{ }${}\&\&$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}pid.getName().equals(wantedPortName))$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}portId$\text{ }${}=$\text{ }${}pid;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}if(portId$\text{ }${}==$\text{ }${}null)$\text{ }$\newline{}
$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}System.err.println(\symbol{34}Could$\text{ }${}not$\text{ }${}find$\text{ }${}serial$\text{ }${}port$\text{ }${}\symbol{34}$\text{ }${}+$\text{ }$\newline{}
$\text{ }${}wantedPortName);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}System.exit(1);$\text{ }$\newline{}
$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Use$\text{ }${}port$\text{ }${}identifier$\text{ }${}for$\text{ }${}acquiring$\text{ }${}the$\text{ }${}port$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}...}


\LaTeXNOTETemplate{}{JavaComm itself obtains the default list of available serial port identifiers from its platform-{}specific driver. The list is not really configurable via JavaComm. The method  {\ttfamily CommPortIdentifier.addPortName()} is misleading, since driver classes are platform specific and their implementations are not part of the public API. Depending on the driver, the list of ports might be configurable / expendable in the driver. So if a particular port is not found in JavaComm, sometimes some fiddling with the driver can help.}

Once a port identifier has been found, it can be used to acquire the desired port:
\\

\TemplateSpaceIndent{$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Use$\text{ }${}port$\text{ }${}identifier$\text{ }${}for$\text{ }${}acquiring$\text{ }${}the$\text{ }${}port$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}SerialPort$\text{ }${}port$\text{ }${}=$\text{ }${}null;$\text{ }$\newline{}
$\text{ }${}try$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}port$\text{ }${}=$\text{ }${}(SerialPort)$\text{ }${}portId.open($\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\symbol{34}name\symbol{34},$\text{ }${}//$\text{ }${}Name$\text{ }${}of$\text{ }${}the$\text{ }${}application$\text{ }${}asking$\text{ }${}for$\text{ }${}the$\text{ }${}port$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}10000$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}Wait$\text{ }${}max.$\text{ }${}10$\text{ }${}sec.$\text{ }${}to$\text{ }${}acquire$\text{ }${}port$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${});$\text{ }$\newline{}
$\text{ }${}\}$\text{ }${}catch(PortInUseException$\text{ }${}e)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}System.err.println(\symbol{34}Port$\text{ }${}already$\text{ }${}in$\text{ }${}use:$\text{ }${}\symbol{34}$\text{ }${}+$\text{ }${}e);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}System.exit(1);$\text{ }$\newline{}
$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Now$\text{ }${}we$\text{ }${}are$\text{ }${}granted$\text{ }${}exclusive$\text{ }${}access$\text{ }${}to$\text{ }${}the$\text{ }${}particular$\text{ }${}serial$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}port.$\text{ }${}We$\text{ }${}can$\text{ }${}configure$\text{ }${}it$\text{ }${}and$\text{ }${}obtain$\text{ }${}input$\text{ }${}and$\text{ }${}output$\text{ }${}streams.$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}...}

\subsection{Initialize a Serial Port}
\label{161}

The initialization of a serial port is straight forward. Either individually set the communication preferences (baud rate, data bits, stop bits, parity) or set them all at once using the setSerialPortParams(...) convenience method. 

As part of the initialization process the Input and Output streams for communication will be configured in the example.
\\

\TemplateSpaceIndent{$\text{ }${}import$\text{ }${}java.io.*;$\text{ }$\newline{}
$\text{ }${}...$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Set$\text{ }${}all$\text{ }${}the$\text{ }${}params.$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}This$\text{ }${}may$\text{ }${}need$\text{ }${}to$\text{ }${}go$\text{ }${}in$\text{ }${}a$\text{ }${}try/catch$\text{ }${}block$\text{ }${}which$\text{ }${}throws$\text{ }$\newline{}
$\text{ }${}UnsupportedCommOperationException$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}port.setSerialPortParams($\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}115200,$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}SerialPort.DATABITS_8,$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}SerialPort.STOPBITS_1,$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}SerialPort.PARITY_NONE);$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Open$\text{ }${}the$\text{ }${}input$\text{ }${}Reader$\text{ }${}and$\text{ }${}output$\text{ }${}stream.$\text{ }${}The$\text{ }${}choice$\text{ }${}of$\text{ }${}a$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Reader$\text{ }${}and$\text{ }${}Stream$\text{ }${}are$\text{ }${}arbitrary$\text{ }${}and$\text{ }${}need$\text{ }${}to$\text{ }${}be$\text{ }${}adapted$\text{ }${}to$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}the$\text{ }${}actual$\text{ }${}application.$\text{ }${}Typically$\text{ }${}one$\text{ }${}would$\text{ }${}use$\text{ }${}Streams$\text{ }${}in$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}both$\text{ }${}directions,$\text{ }${}since$\text{ }${}they$\text{ }${}allow$\text{ }${}for$\text{ }${}binary$\text{ }${}data$\text{ }${}transfer,$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}not$\text{ }${}only$\text{ }${}character$\text{ }${}data$\text{ }${}transfer.$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}BufferedReader$\text{ }${}is$\text{ }${}=$\text{ }${}null;$\text{ }${}$\text{ }${}//$\text{ }${}for$\text{ }${}demo$\text{ }${}purposes$\text{ }${}only.$\text{ }${}A$\text{ }${}stream$\text{ }${}would$\text{ }$\newline{}
$\text{ }${}be$\text{ }${}more$\text{ }${}typical.$\text{ }$\newline{}
$\text{ }${}PrintStream$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}os$\text{ }${}=$\text{ }${}null;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}try$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}is$\text{ }${}=$\text{ }${}new$\text{ }${}BufferedReader(new$\text{ }$\newline{}
$\text{ }${}InputStreamReader(port.getInputStream()));$\text{ }$\newline{}
$\text{ }${}\}$\text{ }${}catch$\text{ }${}(IOException$\text{ }${}e)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}System.err.println(\symbol{34}Can\textquotesingle{}t$\text{ }${}open$\text{ }${}input$\text{ }${}stream:$\text{ }${}write-{}only\symbol{34});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}is$\text{ }${}=$\text{ }${}null;$\text{ }$\newline{}
$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}New$\text{ }${}Linux$\text{ }${}systems$\text{ }${}rely$\text{ }${}on$\text{ }${}Unicode,$\text{ }${}so$\text{ }${}it$\text{ }${}might$\text{ }${}be$\text{ }${}necessary$\text{ }${}to$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}specify$\text{ }${}the$\text{ }${}encoding$\text{ }${}scheme$\text{ }${}to$\text{ }${}be$\text{ }${}used.$\text{ }${}Typically$\text{ }${}this$\text{ }${}should$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}be$\text{ }${}US-{}ASCII$\text{ }${}(7$\text{ }${}bit$\text{ }${}communication),$\text{ }${}or$\text{ }${}ISO$\text{ }${}Latin$\text{ }${}1$\text{ }${}(8$\text{ }${}bit$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}communication),$\text{ }${}as$\text{ }${}there$\text{ }${}is$\text{ }${}likely$\text{ }${}no$\text{ }${}modem$\text{ }${}out$\text{ }${}there$\text{ }${}accepting$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Unicode$\text{ }${}for$\text{ }${}its$\text{ }${}commands.$\text{ }${}An$\text{ }${}example$\text{ }${}to$\text{ }${}specify$\text{ }${}the$\text{ }${}encoding$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}would$\text{ }${}look$\text{ }${}like:$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}os$\text{ }${}=$\text{ }${}new$\text{ }${}PrintStream(port.getOutputStream(),$\text{ }${}true,$\text{ }$\newline{}
$\text{ }${}\symbol{34}ISO-{}8859-{}1\symbol{34});$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}os$\text{ }${}=$\text{ }${}new$\text{ }${}PrintStream(port.getOutputStream(),$\text{ }${}true);$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Actual$\text{ }${}data$\text{ }${}communication$\text{ }${}would$\text{ }${}happen$\text{ }${}here$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}performReadWriteCode();$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}It$\text{ }${}is$\text{ }${}very$\text{ }${}important$\text{ }${}to$\text{ }${}close$\text{ }${}input$\text{ }${}and$\text{ }${}output$\text{ }${}streams$\text{ }${}as$\text{ }${}well$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}as$\text{ }${}the$\text{ }${}port.$\text{ }${}Otherwise$\text{ }${}Java,$\text{ }${}driver$\text{ }${}and$\text{ }${}OS$\text{ }${}resources$\text{ }${}are$\text{ }${}not$\text{ }$\newline{}
$\text{ }${}released.$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}if$\text{ }${}(is$\text{ }${}!=$\text{ }${}null)$\text{ }${}is.close();$\text{ }$\newline{}
$\text{ }${}if$\text{ }${}(os$\text{ }${}!=$\text{ }${}null)$\text{ }${}os.close();$\text{ }$\newline{}
$\text{ }${}if$\text{ }${}(port$\text{ }${}!=$\text{ }${}null)$\text{ }${}port.close();}

\subsection{Simple Data Transfer}
\label{162}\subsubsection{Simple Writing of Data}
\label{163}

Writing to a serial port is as simple as basic Java IO. However there are a couple of caveats to look out for if you are using the AT Hayes protocol:

\begin{myenumerate}
\item{}  Don\textquotesingle{}t use println (or other methods that automatically append \symbol{34}\textbackslash{}n\symbol{34}) on the OutputStream. The AT Hayes protocol for modems expects a \symbol{34}\textbackslash{}r\textbackslash{}n\symbol{34} as the delimiter (regardless of underlying operating system). 
\item{}  After writing to the OutputStream, the InputStream buffer will contain a repeat of the command that was sent to it (with line feed), if the modem is set to echoing the command line, and another line feed (the answer to the \symbol{34}AT\symbol{34} command). So as part of the write operation make sure to clean the InputStream of this information (which can actually be used for error detection).
\item{}  When using a Reader/Writer (not a really good idea), at least set the character encoding to US-{}ASCII instead of using the platform\textquotesingle{}s default encoding, which might or might not work.
\item{}  Since the main operation when using a modem is to transfer data unaltered, the communication with the modem should be handled via InputStream/OutputStream, and not a Reader/Writer.
\end{myenumerate}


\LaTeXNullTemplate{}
\\

\TemplateSpaceIndent{$\text{ }${}//$\text{ }${}Write$\text{ }${}to$\text{ }${}the$\text{ }${}output$\text{ }${}$\text{ }$\newline{}
$\text{ }${}os.print(\symbol{34}AT\symbol{34});$\text{ }$\newline{}
$\text{ }${}os.print(\symbol{34}\textbackslash{}r\textbackslash{}n\symbol{34});$\text{ }${}//$\text{ }${}Append$\text{ }${}a$\text{ }${}carriage$\text{ }${}return$\text{ }${}with$\text{ }${}a$\text{ }${}line$\text{ }${}feed$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}is.readLine();$\text{ }${}//$\text{ }${}First$\text{ }${}read$\text{ }${}will$\text{ }${}contain$\text{ }${}the$\text{ }${}echoed$\text{ }${}command$\text{ }${}you$\text{ }$\newline{}
$\text{ }${}sent$\text{ }${}to$\text{ }${}it.$\text{ }${}In$\text{ }${}this$\text{ }${}case:$\text{ }${}\symbol{34}AT\symbol{34}$\text{ }$\newline{}
$\text{ }${}is.readLine();$\text{ }${}//$\text{ }${}Second$\text{ }${}read$\text{ }${}will$\text{ }${}remove$\text{ }${}the$\text{ }${}extra$\text{ }${}line$\text{ }${}feed$\text{ }${}that$\text{ }$\newline{}
$\text{ }${}AT$\text{ }${}generates$\text{ }${}as$\text{ }${}output}

\subsubsection{Simple Reading of Data (Polling)}
\label{164}

If you correctly carried out the write operation (see above) then the read operation is as simple as one command:
\\

\TemplateSpaceIndent{$\text{ }${}//$\text{ }${}Read$\text{ }${}the$\text{ }${}response$\text{ }$\newline{}
$\text{ }${}String$\text{ }${}response$\text{ }${}=$\text{ }${}is.readLine();$\text{ }${}//$\text{ }${}if$\text{ }${}you$\text{ }${}sent$\text{ }${}\symbol{34}AT\symbol{34}$\text{ }${}then$\text{ }${}response$\text{ }$\newline{}
$\text{ }${}==$\text{ }${}\symbol{34}OK\symbol{34}}

\subsubsection{Problems with the simple Reading / Writing}
\label{165}

The simple way of reading and/or writing from/to a serial port as demonstrated in the previous sections has serious drawbacks. Both activities are done with {\itshape blocking I/O}. That means, when there is
\begin{myitemize}
\item{}  no data available for reading, or
\item{}  the output buffer for writing is full (the device does not accept (any more) data),
\end{myitemize}

the read or write method ({\ttfamily os.print()} or {\ttfamily is.readLine()} in the previous example) do not return, and the application comes to a halt. More precisely, the thread from which the read or write is done gets blocked. If that thread is the main application thread, the application freezes until the blocking condition is resolved (data becomes available for reading or device accepts data again).

Unless the application is a very primitive one, freezing of the application is not acceptable. For example, as a minimum some user interaction to cancel the communication should still be possible. What is needed is {\itshape non-{}blocking I/O} or {\itshape asynchronous I/O}. However, JavaComm is based on Java\textquotesingle{}s standard blocking I/O system ({\ttfamily InputStream}, {\ttfamily OutputStream}), but with a twist, as shown later.

The mentioned \symbol{34}twist\symbol{34} is that JavaComm provides some limited support for {\itshape asynchronous I/O} via an event notification mechanism. But the general solution in Java to achieve {\itshape non-{}blocking I/O} on top of the blocking I/O system is to use threads. Indeed, this is a viable solution for serial writing, and it is strongly recommended to use a separate thread to write to the serial port -{} even if the event notification mechanism is used, as explained later.

Reading could also be handled in a separate thread. However, this is not strictly necessary if the JavaComm event notification mechanism is used. So summarize:

\begin{longtable}{>{\RaggedRight}p{0.14010\linewidth}>{\RaggedRight}p{0.77954\linewidth}} 
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Activity}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Architecture}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt}reading&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}use event notification and/or separate thread\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}writing&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}always use separate thread, optionally use event notification 
\end{longtable}


The following sections provide some details.
\subsection{Event Driven Serial Communication}
\label{166}\subsubsection{Introduction}
\label{167}
The JavaComm API provides an event notification mechanism to overcome the problems with {\itshape blocking I/O}. However, in the typical Sun manner this mechanism is not without problems.

In principle an application can register event listeners with a particular {\ttfamily SerialPort} to be kept informed about important events happening on that port. The two most interesting event types for reading and writing data are
\begin{myitemize}
\item{} {\ttfamily javax.comm.SerialPortEvent.DATA_AVAILABLE} and 
\item{} {\ttfamily javax.comm.SerialPortEvent.OUTPUT_BUFFER_EMPTY}.
\end{myitemize}


But there are also two problems:

\begin{myenumerate}
\item{} Only one single event listener per {\ttfamily SerialPort} can be registered. This forces the programmer to write \symbol{34}monster\symbol{34} listeners, discriminating according to the event type.
\item{} {\ttfamily OUTPUT_BUFFER_EMPTY} is an optional event type. Well hidden in the documentation Sun states that not all JavaComm implementations support generating events of this type.
\end{myenumerate}


Before going into details, the next section will present the principal way of implementing and registering a serial event handler. Remember, there can only be one handler at all, and it will have to handle all possible events.
\subsubsection{Setting up a serial Event Handler}
\label{168}
\\

\TemplateSpaceIndent{$\text{ }${}import$\text{ }${}javax.comm.*;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}Listener$\text{ }${}to$\text{ }${}handle$\text{ }${}all$\text{ }${}serial$\text{ }${}port$\text{ }${}events.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}NOTE:$\text{ }${}It$\text{ }${}is$\text{ }${}typical$\text{ }${}that$\text{ }${}the$\text{ }${}SerialPortEventListener$\text{ }${}is$\text{ }$\newline{}
$\text{ }${}implemented$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}in$\text{ }${}the$\text{ }${}main$\text{ }${}class$\text{ }${}that$\text{ }${}is$\text{ }${}supposed$\text{ }${}to$\text{ }${}communicate$\text{ }${}with$\text{ }${}the$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}device.$\text{ }${}That$\text{ }${}way$\text{ }${}the$\text{ }${}listener$\text{ }${}has$\text{ }${}easy$\text{ }${}access$\text{ }${}to$\text{ }${}state$\text{ }$\newline{}
$\text{ }${}information$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}about$\text{ }${}the$\text{ }${}communication,$\text{ }${}e.g.$\text{ }${}when$\text{ }${}a$\text{ }${}particular$\text{ }$\newline{}
$\text{ }${}communication$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}protocol$\text{ }${}needs$\text{ }${}to$\text{ }${}be$\text{ }${}followed.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}However,$\text{ }${}for$\text{ }${}demonstration$\text{ }${}purposes$\text{ }${}this$\text{ }${}example$\text{ }${}implements$\text{ }$\newline{}
$\text{ }${}a$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}separate$\text{ }${}class.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*/$\text{ }${}$\text{ }$\newline{}
$\text{ }${}class$\text{ }${}SerialListener$\text{ }${}implements$\text{ }${}SerialPortEventListener$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Handle$\text{ }${}serial$\text{ }${}events.$\text{ }${}Dispatches$\text{ }${}the$\text{ }${}event$\text{ }${}to$\text{ }${}event-{}specific$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}methods.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}event$\text{ }${}The$\text{ }${}serial$\text{ }${}event$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}@Override$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}public$\text{ }${}void$\text{ }${}serialEvent(SerialPortEvent$\text{ }${}event)\{$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}Dispatch$\text{ }${}event$\text{ }${}to$\text{ }${}individual$\text{ }${}methods.$\text{ }${}This$\text{ }${}keeps$\text{ }${}this$\text{ }$\newline{}
$\text{ }${}ugly$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}switch/case$\text{ }${}statement$\text{ }${}as$\text{ }${}short$\text{ }${}as$\text{ }${}possible.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}switch(event.getEventType())$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.OUTPUT_BUFFER_EMPTY:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}outputBufferEmpty(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.DATA_AVAILABLE:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}dataAvailable(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}/*$\text{ }${}Other$\text{ }${}events,$\text{ }${}not$\text{ }${}implemented$\text{ }${}here$\text{ }${}-{}>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.BI:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}breakInterrupt(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.CD:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}carrierDetect(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.CTS:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}clearToSend(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.DSR:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}dataSetReady(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.FE:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}framingError(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.OE:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}overrunError(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.PE:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}parityError(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.RI:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}ringIndicator(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}<{}-{}$\text{ }${}other$\text{ }${}events,$\text{ }${}not$\text{ }${}implemented$\text{ }${}here$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Handle$\text{ }${}output$\text{ }${}buffer$\text{ }${}empty$\text{ }${}events.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}NOTE:$\text{ }${}The$\text{ }${}reception$\text{ }${}of$\text{ }${}this$\text{ }${}event$\text{ }${}is$\text{ }${}optional$\text{ }${}and$\text{ }${}not$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}guaranteed$\text{ }${}by$\text{ }${}the$\text{ }${}API$\text{ }${}specification.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}event$\text{ }${}The$\text{ }${}output$\text{ }${}buffer$\text{ }${}empty$\text{ }${}event$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}protected$\text{ }${}void$\text{ }${}outputBufferEmpty(SerialPortEvent$\text{ }${}event)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}Implement$\text{ }${}writing$\text{ }${}more$\text{ }${}data$\text{ }${}here$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Handle$\text{ }${}data$\text{ }${}available$\text{ }${}events.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}event$\text{ }${}The$\text{ }${}data$\text{ }${}available$\text{ }${}event$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}protected$\text{ }${}void$\text{ }${}dataAvailable(SerialPortEvent$\text{ }${}event)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}implement$\text{ }${}reading$\text{ }${}from$\text{ }${}the$\text{ }${}serial$\text{ }${}port$\text{ }${}here$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}\}}


Once the listener is implemented, it can be used to listen to particular serial port events. To do so, an instance of the listener needs to be added to the serial port. Further, the reception of each event type needs to be requested individually.
\\

\TemplateSpaceIndent{$\text{ }${}SerialPort$\text{ }${}port$\text{ }${}=$\text{ }${}...;$\text{ }$\newline{}
$\text{ }${}...$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Configure$\text{ }${}port$\text{ }${}parameters$\text{ }${}here.$\text{ }${}Only$\text{ }${}after$\text{ }${}the$\text{ }${}port$\text{ }${}is$\text{ }${}configured$\text{ }$\newline{}
$\text{ }${}it$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}makes$\text{ }${}sense$\text{ }${}to$\text{ }${}enable$\text{ }${}events.$\text{ }${}The$\text{ }${}event$\text{ }${}handler$\text{ }${}might$\text{ }${}be$\text{ }${}called$\text{ }$\newline{}
$\text{ }${}immediately$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}after$\text{ }${}an$\text{ }${}event$\text{ }${}is$\text{ }${}enabled.$\text{ }$\newline{}
$\text{ }${}...$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Typically,$\text{ }${}if$\text{ }${}the$\text{ }${}current$\text{ }${}class$\text{ }${}implements$\text{ }${}the$\text{ }$\newline{}
$\text{ }${}SerialEventListener$\text{ }${}interface$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}one$\text{ }${}would$\text{ }${}call$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}port.addEventListener(this);$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}but$\text{ }${}for$\text{ }${}our$\text{ }${}example$\text{ }${}a$\text{ }${}new$\text{ }${}instance$\text{ }${}of$\text{ }${}SerialListener$\text{ }${}is$\text{ }${}created:$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}port.addEventListener(new$\text{ }${}SerialListener());$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Enable$\text{ }${}the$\text{ }${}events$\text{ }${}we$\text{ }${}are$\text{ }${}interested$\text{ }${}in$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}port.notifyOnDataAvailable(true);$\text{ }$\newline{}
$\text{ }${}port.notifyOnOutputEmpty(true);$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}/*$\text{ }${}other$\text{ }${}events$\text{ }${}not$\text{ }${}used$\text{ }${}in$\text{ }${}this$\text{ }${}example$\text{ }${}-{}>{}$\text{ }$\newline{}
$\text{ }${}port.notifyOnBreakInterrupt(true);$\text{ }$\newline{}
$\text{ }${}port.notifyOnCarrierDetect(true);$\text{ }$\newline{}
$\text{ }${}port.notifyOnCTS(true);$\text{ }$\newline{}
$\text{ }${}port.notifyOnDSR(true);$\text{ }$\newline{}
$\text{ }${}port.notifyOnFramingError(true);$\text{ }$\newline{}
$\text{ }${}port.notifyOnOverrunError(true);$\text{ }$\newline{}
$\text{ }${}port.notifyOnParityError(true);$\text{ }$\newline{}
$\text{ }${}port.notifyOnRingIndicator(true);$\text{ }$\newline{}
$\text{ }${}<{}-{}$\text{ }${}other$\text{ }${}events$\text{ }${}not$\text{ }${}used$\text{ }${}in$\text{ }${}this$\text{ }${}example$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
}

\subsubsection{Writing of Data}
\label{169}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\paragraph{Setting up a separate Thread for Writing}
{$\text{ }$}\newline\label{170}
\LaTeXNullTemplate{}
Using a separate thread for writing has one purpose: Avoiding that the whole application blocks in case the serial port is not
ready for writing.\subparagraph{A simple, thread-{}safe Ring Buffer Implementation}
{$\text{ }$}\newline\label{171}
Using a separate thread for writing, separate from some main application thread, implies that there is some way to hand off the data which needs to be written from the application thread to the writing thread. A shared, synchronized data buffer, for example a {\ttfamily byte{$\text{[}$}{$\text{]}$}} should do. Further, there needs to be a way for the main application to determine if it can write to the data buffer, or if the data buffer is currently full. In case the data buffer is full it could indicate that the serial port is not ready, and output data has queued up. The main application will have to poll the availability of new space in the shared data buffer. However, between the polling the main application can do other things, for example updating a GUI, providing a command prompt with the ability to abort the sending, etc.

At first glance a {\ttfamily PipedInputStream/PipedOutputStream} pair seems like a good idea for this kind of communication. But Sun wouldn\textquotesingle{}t be Sun if the a piped stream would actually be useful. {\ttfamily PipedInputStream} blocks if the corresponding {\ttfamily PipedOutputStream} is not cleared fast enough. So the application thread would block. Exactly what one wants to avoid by using the separate thread. A {\ttfamily java.nio.Pipe} suffers from the same problem. Its blocking behavior is platform dependent. And adapting the classic I/O used by JavaComm to NIO is anyhow not a nice task.

In this article a very simple synchronized ring buffer is used to hand over the data from one thread to another. In a real world application it is likely that the implementation should be more sophisticated. E.g. in a real world implementation it would make sense to implement OutputStream and InputStream views on the buffer.

A ring buffer as such is nothing special, and has no special properties regarding threading. It is just that this simple data structure is used here to provide data buffering. The implementation is done so that access to this data structure has been made thread safe.
\\

\TemplateSpaceIndent{$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}Synchronized$\text{ }${}ring$\text{ }${}buffer.$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}Suitable$\text{ }${}to$\text{ }${}hand$\text{ }${}over$\text{ }${}data$\text{ }${}from$\text{ }${}one$\text{ }${}thread$\text{ }${}to$\text{ }${}another.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}**/$\text{ }$\newline{}
$\text{ }${}public$\text{ }${}{\bfseries synchronized}$\text{ }${}class$\text{ }${}RingBuffer$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }${}internal$\text{ }${}buffer$\text{ }${}to$\text{ }${}hold$\text{ }${}the$\text{ }${}data$\text{ }${}**/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}protected$\text{ }${}byte$\text{ }${}buffer{$\text{[}$}{$\text{]}$};$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }${}size$\text{ }${}of$\text{ }${}the$\text{ }${}buffer$\text{ }${}**/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}protected$\text{ }${}int$\text{ }${}size;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }${}current$\text{ }${}start$\text{ }${}of$\text{ }${}data$\text{ }${}area$\text{ }${}**/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}protected$\text{ }${}int$\text{ }${}start;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }${}current$\text{ }${}end$\text{ }${}of$\text{ }${}data$\text{ }${}area$\text{ }${}**/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}protected$\text{ }${}int$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Construct$\text{ }${}a$\text{ }${}RingBuffer$\text{ }${}with$\text{ }${}a$\text{ }${}default$\text{ }${}buffer$\text{ }${}size$\text{ }${}of$\text{ }${}1k.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}public$\text{ }${}RingBuffer()$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}this(1024);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Construct$\text{ }${}a$\text{ }${}RingBuffer$\text{ }${}with$\text{ }${}a$\text{ }${}certain$\text{ }${}buffer$\text{ }${}size.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}size$\text{ }${}$\text{ }${}$\text{ }${}Buffer$\text{ }${}size$\text{ }${}in$\text{ }${}bytes$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}public$\text{ }${}RingBuffer(int$\text{ }${}size)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}this.size$\text{ }${}=$\text{ }${}size;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}buffer$\text{ }${}=$\text{ }${}new$\text{ }${}byte{$\text{[}$}size{$\text{]}$};$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}clear();$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Clear$\text{ }${}the$\text{ }${}buffer$\text{ }${}contents.$\text{ }${}All$\text{ }${}data$\text{ }${}still$\text{ }${}in$\text{ }${}the$\text{ }${}buffer$\text{ }${}is$\text{ }$\newline{}
$\text{ }${}lost.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}public$\text{ }${}void$\text{ }${}clear()$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}Just$\text{ }${}reset$\text{ }${}the$\text{ }${}pointers.$\text{ }${}The$\text{ }${}remaining$\text{ }${}data$\text{ }${}fragments,$\text{ }${}if$\text{ }$\newline{}
$\text{ }${}any,$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}will$\text{ }${}be$\text{ }${}overwritten$\text{ }${}during$\text{ }${}normal$\text{ }${}operation.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}start$\text{ }${}=$\text{ }${}end$\text{ }${}=$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Return$\text{ }${}used$\text{ }${}space$\text{ }${}in$\text{ }${}buffer.$\text{ }${}This$\text{ }${}is$\text{ }${}the$\text{ }${}size$\text{ }${}of$\text{ }${}the$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}data$\text{ }${}currently$\text{ }${}in$\text{ }${}the$\text{ }${}buffer.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}<{}p>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Note:$\text{ }${}While$\text{ }${}the$\text{ }${}value$\text{ }${}is$\text{ }${}correct$\text{ }${}upon$\text{ }${}returning,$\text{ }${}it$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}is$\text{ }${}not$\text{ }${}necessarily$\text{ }${}valid$\text{ }${}when$\text{ }${}data$\text{ }${}is$\text{ }${}read$\text{ }${}from$\text{ }${}the$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}buffer$\text{ }${}or$\text{ }${}written$\text{ }${}to$\text{ }${}the$\text{ }${}buffer.$\text{ }${}Another$\text{ }${}thread$\text{ }${}might$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}have$\text{ }${}filled$\text{ }${}the$\text{ }${}buffer$\text{ }${}or$\text{ }${}emptied$\text{ }${}it$\text{ }${}in$\text{ }${}the$\text{ }${}mean$\text{ }${}time.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@return$\text{ }${}currently$\text{ }${}amount$\text{ }${}of$\text{ }${}data$\text{ }${}available$\text{ }${}in$\text{ }${}buffer$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}public$\text{ }${}int$\text{ }${}data()$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}return$\text{ }${}start$\text{ }${}<{}=$\text{ }${}end$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}?$\text{ }${}end$\text{ }${}-{}$\text{ }${}start$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}:$\text{ }${}end$\text{ }${}-{}$\text{ }${}start$\text{ }${}+$\text{ }${}size;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Return$\text{ }${}unused$\text{ }${}space$\text{ }${}in$\text{ }${}buffer.$\text{ }${}Note:$\text{ }${}While$\text{ }${}the$\text{ }${}value$\text{ }${}is$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}correct$\text{ }${}upon$\text{ }${}returning,$\text{ }${}it$\text{ }${}is$\text{ }${}not$\text{ }${}necessarily$\text{ }${}valid$\text{ }${}when$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}data$\text{ }${}is$\text{ }${}written$\text{ }${}to$\text{ }${}the$\text{ }${}buffer$\text{ }${}or$\text{ }${}read$\text{ }${}from$\text{ }${}the$\text{ }${}buffer.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Another$\text{ }${}thread$\text{ }${}might$\text{ }${}have$\text{ }${}filled$\text{ }${}the$\text{ }${}buffer$\text{ }${}or$\text{ }${}emptied$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}it$\text{ }${}in$\text{ }${}the$\text{ }${}mean$\text{ }${}time.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@return$\text{ }${}currently$\text{ }${}available$\text{ }${}free$\text{ }${}space$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}public$\text{ }${}int$\text{ }${}free()$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}return$\text{ }${}start$\text{ }${}<{}=$\text{ }${}end$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}?$\text{ }${}size$\text{ }${}+$\text{ }${}start$\text{ }${}-{}$\text{ }${}end$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}:$\text{ }${}start$\text{ }${}-{}$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Write$\text{ }${}as$\text{ }${}much$\text{ }${}data$\text{ }${}as$\text{ }${}possible$\text{ }${}to$\text{ }${}the$\text{ }${}buffer.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}data$\text{ }${}$\text{ }${}$\text{ }${}Data$\text{ }${}to$\text{ }${}be$\text{ }${}written$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@return$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Amount$\text{ }${}of$\text{ }${}data$\text{ }${}actually$\text{ }${}written$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}write(byte$\text{ }${}data{$\text{[}$}{$\text{]}$})$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}return$\text{ }${}write(data,$\text{ }${}0,$\text{ }${}data.length);$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Write$\text{ }${}as$\text{ }${}much$\text{ }${}data$\text{ }${}as$\text{ }${}possible$\text{ }${}to$\text{ }${}the$\text{ }${}buffer.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}data$\text{ }${}$\text{ }${}$\text{ }${}Array$\text{ }${}holding$\text{ }${}data$\text{ }${}to$\text{ }${}be$\text{ }${}written$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}off$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Offset$\text{ }${}of$\text{ }${}data$\text{ }${}in$\text{ }${}array$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}n$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Amount$\text{ }${}of$\text{ }${}data$\text{ }${}to$\text{ }${}write,$\text{ }${}starting$\text{ }${}from$\text{ }${}{\ttfamily off}.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@return$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Amount$\text{ }${}of$\text{ }${}data$\text{ }${}actually$\text{ }${}written$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}write(byte$\text{ }${}data{$\text{[}$}{$\text{]}$},$\text{ }${}int$\text{ }${}off,$\text{ }${}int$\text{ }${}n)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if(n$\text{ }${}<{}=$\text{ }${}0)$\text{ }${}return$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}remain$\text{ }${}=$\text{ }${}n;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}@todo$\text{ }${}check$\text{ }${}if$\text{ }${}off$\text{ }${}is$\text{ }${}valid:$\text{ }${}0=$\text{ }${}<{}=$\text{ }${}off$\text{ }${}<{}$\text{ }${}data.length;$\text{ }$\newline{}
$\text{ }${}throw$\text{ }${}exception$\text{ }${}if$\text{ }${}not$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}i$\text{ }${}=$\text{ }${}Math.min(remain,$\text{ }${}(end$\text{ }${}<{}$\text{ }${}start$\text{ }${}?$\text{ }${}start$\text{ }${}:$\text{ }$\newline{}
$\text{ }${}buffer.length)$\text{ }${}-{}$\text{ }${}end);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if(i$\text{ }${}>{}$\text{ }${}0)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}System.arraycopy(data,$\text{ }${}off,$\text{ }${}buffer,$\text{ }${}end,$\text{ }${}i);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}off$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}remain$\text{ }${}-{}=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}end$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}i$\text{ }${}=$\text{ }${}Math.min(remain,$\text{ }${}end$\text{ }${}>{}=$\text{ }${}start$\text{ }${}?$\text{ }${}start$\text{ }${}:$\text{ }${}0);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if(i$\text{ }${}>{}$\text{ }${}0$\text{ }${})$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}System.arraycopy(data,$\text{ }${}off,$\text{ }${}buffer,$\text{ }${}0,$\text{ }${}i);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}remain$\text{ }${}-{}=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}end$\text{ }${}=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}return$\text{ }${}n$\text{ }${}-{}$\text{ }${}remain;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Read$\text{ }${}as$\text{ }${}much$\text{ }${}data$\text{ }${}as$\text{ }${}possible$\text{ }${}from$\text{ }${}the$\text{ }${}buffer.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}data$\text{ }${}$\text{ }${}$\text{ }${}Where$\text{ }${}to$\text{ }${}store$\text{ }${}the$\text{ }${}data$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@return$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Amount$\text{ }${}of$\text{ }${}data$\text{ }${}read$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}read(byte$\text{ }${}data{$\text{[}$}{$\text{]}$})$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}return$\text{ }${}read(data,$\text{ }${}0,$\text{ }${}data.length);$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Read$\text{ }${}as$\text{ }${}much$\text{ }${}data$\text{ }${}as$\text{ }${}possible$\text{ }${}from$\text{ }${}the$\text{ }${}buffer.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}data$\text{ }${}$\text{ }${}$\text{ }${}Where$\text{ }${}to$\text{ }${}store$\text{ }${}the$\text{ }${}read$\text{ }${}data$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}off$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Offset$\text{ }${}of$\text{ }${}data$\text{ }${}in$\text{ }${}array$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}n$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Amount$\text{ }${}of$\text{ }${}data$\text{ }${}to$\text{ }${}read$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@return$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Amount$\text{ }${}of$\text{ }${}data$\text{ }${}actually$\text{ }${}read$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}read(byte$\text{ }${}data{$\text{[}$}{$\text{]}$},$\text{ }${}int$\text{ }${}off,$\text{ }${}int$\text{ }${}n)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if(n$\text{ }${}<{}=$\text{ }${}0)$\text{ }${}return$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}remain$\text{ }${}=$\text{ }${}n;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}@todo$\text{ }${}check$\text{ }${}if$\text{ }${}off$\text{ }${}is$\text{ }${}valid:$\text{ }${}0=$\text{ }${}<{}=$\text{ }${}off$\text{ }${}<{}$\text{ }${}data.length;$\text{ }$\newline{}
$\text{ }${}throw$\text{ }${}exception$\text{ }${}if$\text{ }${}not$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}i$\text{ }${}=$\text{ }${}Math.min(remain,$\text{ }${}(end$\text{ }${}<{}$\text{ }${}start$\text{ }${}?$\text{ }${}buffer.length$\text{ }${}:$\text{ }${}end)$\text{ }$\newline{}
$\text{ }${}-{}$\text{ }${}start);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if(i$\text{ }${}>{}$\text{ }${}0)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}System.arraycopy(buffer,$\text{ }${}start,$\text{ }${}data,$\text{ }${}off,$\text{ }${}i);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}off$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}remain$\text{ }${}-{}=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}start$\text{ }${}$\text{ }${}+=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if(start$\text{ }${}>{}=$\text{ }${}buffer.length)$\text{ }${}start$\text{ }${}=$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}i$\text{ }${}=$\text{ }${}Math.min(remain,$\text{ }${}end$\text{ }${}>{}=$\text{ }${}start$\text{ }${}?$\text{ }${}0$\text{ }${}:$\text{ }${}end);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if(i$\text{ }${}>{}$\text{ }${}0$\text{ }${})$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}System.arraycopy(buffer,$\text{ }${}0,$\text{ }${}data,$\text{ }${}off,$\text{ }${}i);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}remain$\text{ }${}-{}=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}start$\text{ }${}=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}return$\text{ }${}n$\text{ }${}-{}$\text{ }${}remain;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}\}}


With this ring buffer one can now hand over data from one thread to another in a controlled way.  Any other thread-{}safe, non-{}blocking mechanism would also do. The key point here is that the write does not block when the buffer is full and also does not block when there is nothing to read.
\subparagraph{Using the Buffer together with Serial Events}
{$\text{ }$}\newline\label{172}
\paragraph{Usage of OUTPUT_BUFFER_EMPTY Event in Writing}
{$\text{ }$}\newline\label{173}

Referring to the skeleton event handler presented in the section \mylref{168}{Setting up a serial Event Handler}, one can now use a shared ring buffer from section \mylref{171}{A simple, thread-{}safe Ring Buffer Implementation} to support the  {\ttfamily OUTPUT_BUFFER_EMPTY} event. The event is not supported by all JavaComm implementations, therefore the code might never be called. However, in case the event is available it is one building block for ensuring best data throughput, because the serial interface is not left idle for too long.

The skeleton event listener proposed a method {\ttfamily outputBufferEmpty()}, which could be implemented as it follows.
\\

\TemplateSpaceIndent{$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}RingBuffer$\text{ }${}dataBuffer$\text{ }${}=$\text{ }${}...$\text{ }${};$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Handle$\text{ }${}output$\text{ }${}buffer$\text{ }${}empty$\text{ }${}events.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}NOTE:$\text{ }${}The$\text{ }${}reception$\text{ }${}is$\text{ }${}of$\text{ }${}this$\text{ }${}event$\text{ }${}is$\text{ }${}optional$\text{ }${}and$\text{ }${}not$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}guaranteed$\text{ }${}by$\text{ }${}the$\text{ }${}API$\text{ }${}specification.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}event$\text{ }${}The$\text{ }${}output$\text{ }${}buffer$\text{ }${}empty$\text{ }${}event$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}protected$\text{ }${}void$\text{ }${}outputBufferEmpty(SerialPortEvent$\text{ }${}event)$\text{ }${}\{}


\LaTeXNullTemplate{}\\

\TemplateSpaceIndent{$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}}






\LaTeXNullTemplate{}
\subsubsection{Reading of Data}
\label{174}
\LaTeXNullTemplate{}

The following example assumes that the data\textquotesingle{}s destination is some file. Whenever data becomes available it is fetched from the serial port and written to the file. This is an extremely simplified view, because in reality one would need to check the data for an end-{}of-{}file indication to, for example, return to the modem command mode. 
\\

\TemplateSpaceIndent{$\text{ }${}import$\text{ }${}javax.comm.*;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}...$\text{ }$\newline{}
$\text{ }${}InputStream$\text{ }${}is$\text{ }${}=$\text{ }${}port.getInputStream();$\text{ }$\newline{}
$\text{ }${}BufferedOutputStream$\text{ }${}out$\text{ }${}=$\text{ }${}new$\text{ }${}BufferedOutputStream(new$\text{ }$\newline{}
$\text{ }${}FileOutputStream(\symbol{34}out.dat\symbol{34}));$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}Listen$\text{ }${}to$\text{ }${}port$\text{ }${}events$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*/$\text{ }${}$\text{ }$\newline{}
$\text{ }${}class$\text{ }${}FileListener$\text{ }${}implements$\text{ }${}SerialPortEventListener$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Handle$\text{ }${}serial$\text{ }${}event.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}void$\text{ }${}serialEvent(SerialPortEvent$\text{ }${}e)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}SerialPort$\text{ }${}port$\text{ }${}=$\text{ }${}(SerialPort)$\text{ }${}e.getSource();$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}Discriminate$\text{ }${}handling$\text{ }${}according$\text{ }${}to$\text{ }${}event$\text{ }${}type$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}switch(e.getEventType())$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.DATA_AVAILABLE:$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}Move$\text{ }${}all$\text{ }${}currently$\text{ }${}available$\text{ }${}data$\text{ }${}to$\text{ }${}the$\text{ }${}file$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}try$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}c;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}while((c$\text{ }${}=$\text{ }${}is.read())$\text{ }${}!=$\text{ }${}-{}1)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}out.write(c);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }${}catch(IOException$\text{ }${}ex)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}...$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}...:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}...$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}...$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(is$\text{ }${}!=$\text{ }${}null)$\text{ }${}is.close();$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(port$\text{ }${}!=$\text{ }${}null)$\text{ }${}port.close();$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}}

\subsection{Handling multiple Ports in one Application}
\label{175}
\LaTeXNullTemplate{}\subsection{Modem Control}
\label{176}

JavaComm is strictly concerned with the handling of a serial interface and the transmission of data over that interface. It does not know, or provide, any support for higher-{}layer protocols, e.g. for Hayes modem commands typically used to control consumer-{}grade modems. This is simply not the job of JavaComm, and not a bug.

Like with any other particular serial device, if the control of a modem is desired via JavaComm the necessary code has to be written on top of JavaComm. The page \mylref{201}{\symbol{34}Hayes-{}compatible Modems and AT Commands\symbol{34}} provides the necessary basic generic information to deal with Hayes modems.

Some operating systems, e.g. Windows or certain Linux distributions provide a more or less standardized way how modem control commands for a particular modem type or brand are configured for the operating system. Windows modem \symbol{34}drivers\symbol{34}, for example, are typically just registry entries, describing a particular modem (the actual driver is a generic serial modem driver). JavaComm as such has no provisions to access such operating-{}system specific data. Therefor, one either has to provide a separate Java-{}only facility to allow a user to configure an application for the usage of a particular modem, or some platform-{}specific (native) code needs to be added.
\section{RxTx}
\label{177}
\LaTeXNullTemplate{}\subsection{Overview and Versions}
\label{178}

Due to the fact that Sun didn\textquotesingle{}t provide a reference implementation of the JavaComm API for Linux, people developed RxTx for Java and Linux \myplainurl{http://rxtx.qbang.org/}. RxTx was then further ported to other platforms. The latest version of RxTx is known to work on 100+ platform, including Linux, Windows, Mac OS, Solaris and other operating systems.

RxTx can be used independent of the JavaComm API, or can be used as a so called provider for the JavaComm API. In order to do the latter, a wrapper called JCL is also needed \myplainurl{http://www.geeksville.com/~kevinh/linuxcomm.html}. JCL and RxTx are usually packaged together with Linux/Java distributions, or JCL is completely integrated into the code. So, before trying to get them separately, it is worth having a look at the Linux distribution CD.

There seems to be a trend to abandon the JavaComm API, and using RxTx directly instead of via the JCL wrapper, due to Sun\textquotesingle{}s limited support and improper documentation for the JavaComm API. However, RxTx\textquotesingle{}s documentation is extremely sparse. Particularly, the RxTX people like to make a mess of their versions and package contents (e.g. with or without integrated JCL). Starting with RxTx version 1.5 RxTx contains replacement classes for the public JavaComm classes. For legal reasons they are not in the {\ttfamily java.comm} package, but in the {\ttfamily gnu.io} package. However, the two currently available RxTx versions are packaged differently:
{\bfseries
\begin{mydescription}RxTx 2.0
\end{mydescription}
}
\begin{myquote}\item{}RxTx version supposed to be used as a JavaComm provider. This one is supposed to have its roots in RxRx 1.4, which is the RxTx version before the {\ttfamily gnu.io} package was added.
\end{myquote}
{\bfseries
\begin{mydescription}RxTx 2.1
\end{mydescription}
}
\begin{myquote}\item{}RxTx version with a full {\ttfamily gnu.io} package replacement for {\ttfamily java.comm}. This version is supposed to have its roots in RxTx 1.5, where {\ttfamily gnu.io} support started.
\end{myquote}


So, if one wants to program against the original JavaComm API one needs

\begin{myenumerate}
\item{} Sun\textquotesingle{}s generic JavaComm version. As of this writing this is in fact the Unix package (which contains support for various Unix versions like Linux or Solaris). Even when used on Windows, the Unix package is needed to provide the generic {\ttfamily java.comm} implementations. Only the part implemented in Java is used, while the Unix native libraries are just ignored.
\item{} RxTx 2.0 in order to have a different provider below the generic generic JavaComm version than the ones comming with the JavaComm package
\end{myenumerate}


However, if one just wants to program against the {\ttfamily gnu.io} replacement package, then 
\begin{myitemize}
\item{} only RxTx 2.1 is needed.
\end{myitemize}

\subsection{Converting a JavaComm Application to RxTx}
\label{179}

So, if you belong to the large group of people who have been let down by Sun when they dropped Windows support for JavaComm, you are in need to convert a JavaComm application to RxTx. As you can see from the above, there are two ways to do it. Both assume that you manage to install a version of RxTx first. Then the options are either

\begin{myenumerate}
\item{} Using RxTx 2.0 as a JavaComm provider
\item{} Porting the application to RxTx 2.1
\end{myenumerate}


The first option has already been explained. The second option is surprisingly simple. All one has to do to port some application from using JavaComm to using RxTx 2.1 is to replace all references to {\ttfamily java.comm} in the application source code with references to {\ttfamily gnu.io}. If the original JavaComm application was properly written there is nothing more to do.

RxTx 2.1 even provides the tool {\ttfamily contrib/ChangePackage.sh} to perform the global replacement on a source tree under Unix. On other platforms such a global replacement is easy to do with IDEs supporting a decent set of refactoring features.
\section{See also}
\label{180}

\begin{myitemize}
\item{} \myhref{http://java.sun.com/products/javacomm/}{ Sun Java Communications API}
\item{} \myhref{http://wass.homelinux.net/howtos/Comm_How-To.shtml}{ Java Comm Serial API How-{}To for Linux}
\item{} \myhref{http://code.google.com/p/java-simple-serial-connector/}{ jSSC -{} java serial port library. Work under Win32(Win98-{}Win7), Win64(x86-{}64), Linux x86, Linux x86-{}64}
\item{} \myhref{http://rxtx.qbang.org/}{ RxTx Home Page}
\item{} \myhref{http://lopica.sourceforge.net/faq.html\#comm}{ Unofficial Java Web Start/JNLP FAQ -{} How can I use Web Start and Comm API together?}
\item{} \myhref{http://serialio.com/products/serialport/serialport.php}{ SerialIO has a free trial version of their SerialPort package}
\item{} Ben Resner has \myhref{http://web.media.mit.edu/~benres/simpleserial/}{ a free download of his SimpleSerial package} and \myhref{http://www.ambientdevices.com/datacasting/index.html}{ a newer version without the C++ code}
\end{myitemize}



\LaTeXNullTemplate{}
\chapter{Forming Data Packets}

\myminitoc
\label{181}





\label{182}
\LaTeXNullTemplate{}

Just about every idea for communicating between computers involves \symbol{34}data packets\symbol{34}, especially when more than 2 computers are involved.

The idea is very similar to putting a check in an envelope to mail to the electricity company.
We take the data (the \symbol{34}check\symbol{34}) we want to send to a particular computer,
and we place it inside an \symbol{34}envelope\symbol{34} that includes the address of that particular computer.

A packet of data starts with a preamble, some address information, some other transmission-{}related information, followed by the raw data, and finishes up with a few more bytes of transmission-{}related error-{}detection information -{}-{} often a \myhref{http://en.wikipedia.org/wiki/\%20Fletcher\%27s\%20checksum}{ Fletcher-{}32} \myhref{http://en.wikipedia.org/wiki/\%20checksum\%20}{ checksum}.
We will talk more about what we do with this error-{}detection information in the next chapter, \mylref{187}{Serial Programming/Error Correction Methods}.

The accountant at the electricity company throws away the envelope when she gets the check.
She already knows the address of her own company. Does this mean the \symbol{34}overhead\symbol{34} of the envelope is useless ? No.

In a similar way, once a computer receives a packet, it immediately throws away the preamble. If the computer sees that the packet is addressed to itself, and has no errors, then it discards the wrapper and keeps the data.

Unfortunately, there are dozens of slightly different, incompatible protocols for data packets, because people pick slightly different ways to represent the address information and the error-{}detection information.

... gateways between incompatible protocols ...
\subsection{packet size tradeoffs}
\label{183}

Protocol designers pick a maximum and minimum packet size based on many tradeoffs.
\begin{myitemize}
\item{}  packets should be \symbol{34}small\symbol{34} to prevent one transmitter transmitting a long packet from hogging the network.
\item{}  packets should be \symbol{34}small\symbol{34} so that a single error can be corrected by retransmitting one small packet rather than one large packet
\item{}  packets should be \symbol{34}large\symbol{34} so more time is spent transmitting good data and less time is spent on overhead (preamble, header, footer, postamble, and between-{}packet gap).
\item{}  the packet header and trailing footer should be short, to reduce overhead
\item{}  The footer should hold a large error-{}detection codeword field, because a shorter codeword is more likely to incorrectly accept an error-{}riddled packet. (We discuss error-{}detection in more detail in the next chapter, \mylref{187}{../Error Correction Methods/}).
\item{}  making the packet header a little longer, so that meaningful fields fall on byte or word boundaries, rather than highly encoded bit fields, makes it easier for a CPU to interpret them, allowing lower-{}cost network hardware.
\item{}  making the packet header a little longer -{}-{} instead of a single error-{}detection field that covers the whole packet, we have one error-{}detection field for the header, and another error-{}detection field for the data -{}-{} allows a node to immediately reject a packet with a bit error in the destination address or the length field, avoiding needless processing. The same CRC polynomial is used for both.
\end{myitemize}


\begin{myitemize}
\item{}  fixed-{}size packets -{}-{} where all packets fall into a few length categories -{}-{} do not require a \symbol{34}length\symbol{34} field, and simplify buffer allocation, but waste \symbol{34}internal\symbol{34} data space on padding the last packet when you want to send data that is not an exact multiple of the fixed data size.
\end{myitemize}

\subsection{start-{}of-{}packet and transparency tradeoffs}
\label{184}

Unfortunately, it is impossible for any communication protocol to have all these nice-{}to-{}have features:
\begin{myitemize}
\item{}  transparency: data communication is transparent and \symbol{34}8 bit clean\symbol{34} -{}-{} (a) any possible data file can be transmitted, (b) byte sequences in the file always handled as data, and never mis-{}interpreted as something else, and (c) the destination receives the entire data file without error, without any additions or deletions.
\item{}  simple copy: forming packets is easiest if we simply blindly copy data from the source to the data field of the packet without change.
\item{}  unique start: The start-{}of-{}packet symbol is easy to recognize, because it is a known constant byte that never occurs anywhere else in the headers, header CRC, data payload, or data CRC.
\item{}  8-{}bit: only uses 8-{}bit bytes
\end{myitemize}


Some communication protocols break transparency, requiring extra complexity elsewhere -{}-{} requiring higher network layers to implement work-{}arounds such as \myhref{http://en.wikipedia.org/wiki/binary-to-text\%20encoding}{w:binary-{}to-{}text encoding} or else suffer mysterious errors, as with the \myhref{http://en.wikipedia.org/wiki/Time\%20Independent\%20Escape\%20Sequence}{w:Time Independent Escape Sequence}.

Some communication protocols break \symbol{34}8-{}bit\symbol{34} -{}-{} i.e., in addition to the 256 possible bytes, they have \symbol{34}extra symbols\symbol{34}. Some communication protocols have just a few extra non-{}data symbols -{}-{} such as the \symbol{34}long pause\symbol{34} used as part of the Hayes escape sequence; the \symbol{34}long break\symbol{34} used as part of the \myhref{http://en.wikipedia.org/wiki/SDI-12}{SDI-{}12} protocol; \symbol{34}command characters\symbol{34} or \symbol{34}control symbols\symbol{34} in 4B5B coding, 8b/10b encoding; etc. Other systems, such as 9-{}bit protocols,\myfootnote{
\myfnhref{http://ulan.sourceforge.net/}{ uLan}: 9-{}bit message oriented communication protocol, which is transferred over RS-{}485 link.
}\myfootnote{
Pavel Pisa.
\myfnhref{http://cmp.felk.cvut.cz/~pisa/ulan/ul_drv.html}{ \symbol{34}uLan RS-{}485 Communication Driver\symbol{34}}
\symbol{34}9-{}bit message oriented communication protocol, which is transferred over RS-{}485 link.\symbol{34}
}\myfootnote{
Peter Gasparik.
\myfnhref{http://www.rtjcom.com/6811/jackpot/rs485-commspec.html\#3}{ \symbol{34}9-{}bit data transfer format\symbol{34}}
}\myfootnote{
Stephen Byron Cooper.
\myfnhref{http://www.ehow.com/facts_7735117_9bit-serial-protocol.html}{ \symbol{34}9-{}Bit Serial Protocol\symbol{34}}.
}\myfootnote{
\myfnhref{http://electronicdesign.com/article/embedded/use-the-pc-s-uart-with-9-bit-protocols6245.aspx}{ \symbol{34}Use The PC\textquotesingle{}s UART With 9-{}Bit Protocols\symbol{34}}.
1998.
}\myfootnote{
\myfnhref{http://en.wikipedia.org/wiki/\%20multidrop\%20bus}{Wikipedia: multidrop bus} (MDB) is a 9-{}bit protocol used in many vending machines.
}\myfootnote{
\myfnhref{http://www.docklight.de/examples_en.htm}{ ParitySwitch_9BitProtocols}: manipulate parity to emulate a 9 bit protocol
}
transmit 9 bit symbols.
Typically the first 9-{}bit symbol of a packet has its high bit set to 1, waking up all nodes; then each node checks the destination address of the packet, and all nodes other than the addressed node go back to sleep. The rest of the data in the packet (and the ACK response) is transmitted as 9 bit symbols with the high bit cleared to 0, effectively 8 bit values, which is ignored by the sleeping nodes.
(This is similar to the way that all data bytes in a MIDI message are effectively 7 bit values; the high bit is set only on the first byte in a MIDI message).
Alas, some UARTs make it awkward,\myfootnote{
\myfnhref{http://electronicdesign.com/article/embedded/use-the-pc-s-uart-with-9-bit-protocols6245.aspx}{ \symbol{34}Use The PC\textquotesingle{}s UART With 9-{}Bit Protocols\symbol{34}}.
Electronic Design.
1998-{}December.
}\myfootnote{
Thomas Lochmatter.
\myfnhref{http://www.lothosoft.ch/thomas/libmip/markspaceparity.php}{ \symbol{34}Linux and MARK/SPACE Parity\symbol{34}}.
2010.
}
difficult, or impossible to send and receive such 9-{}bit characters.

Some communication protocols break \symbol{34}unique start\symbol{34} -{}-{} i.e., they allow the no-{}longer-{}unique start-{}of-{}packet symbol to occur elsewhere -{}-{} most often because we are sending a file that includes that byte, and \symbol{34}simple copy\symbol{34} puts that byte in the data payload. When a receiver is first turned on, or when cables are unplugged and later reconnected, or when noise corrupts what was intended to be the real start-{}of-{}packet symbol, the receiver will incorrectly interpret that data as the start-{}of-{}packet. Even though the receiver usually recognizes that something is wrong (checksum failure), a single such noise glitch may lead to a cascade of many lost packets, as the receiver goes back and forth between (incorrectly) interpreting that data byte in the payload as a start-{}of-{}packet, and then (incorrectly) interpreting a real start-{}of-{}packet symbol as payload data.

In order to keep the \symbol{34}unique start\symbol{34} feature, many communication protocols break \symbol{34}simple copy\symbol{34}. This requires a little extra software and a little more time per packet than simply copying the data -{}-{} which is usually insignificant with modern processors.
The awkwardness comes from (a) making sure that the entire process -{}-{} the transmitter encoding/escaping a chunk of raw data into a packet payload that must not include the start-{}of-{}packet byte, and the receiver decoding/unescaping the packet payload into a chunk of raw data -{}-{} is completely transparent to any possible sequence of raw data bytes, even if those bytes include one or more start-{}of-{}packet bytes, and (b) since the encoded/escaped payload data inevitably requires more bytes than the raw data, we must make sure we don\textquotesingle{}t overflow any buffers even with the worst possible expansion, and (c) unlike \symbol{34}simple copy\symbol{34} where a constant bitrate of payload data bits results in the same constant goodput of raw data bits, we must make sure that the system is designed to handle the variations in payload data bitrate or raw data bit goodput or both.
Some of this awkwardness can be reduced by using consistent-{}overhead byte stuffing.\myfootnote{
\myfnhref{http://www.stuartcheshire.org/papers/COBSforToN.pdf}{ \symbol{34}Consistent Overhead Byte Stuffing\symbol{34}} by Stuart Cheshire and Mary Baker, 1999.
}
rather than variable-{}overhead byte stuffing techniques such as the one used by
\myhref{http://en.wikibooks.org/wiki/Serial_Programming\%2FIP_Over_Serial_Connections\%23SLIP\%20}{ SLIP}.

Calculate the CRC and append it to the packet *before* encoding both the raw data and the CRC with COBS.\myfootnote{
Jason Sachs.
\myfnhref{http://www.embeddedrelated.com/showarticle/113.php}{ \symbol{34}Help, My Serial Data Has Been Framed: How To Handle Packets When All You Have Are Streams\symbol{34}}.
2011.
}
\section{For further reading}
\label{185}
\LaTeXNullTemplate{}
\begin{myitemize}
\item{}  Optical and radio receivers usually require a preamble of some minimum length in order to synchronize bit clocks. For detailed information on calculating exactly how long (how many transitions) the preamble needs to be, see \myhref{http://en.wikibooks.org/wiki/Clock\%20and\%20Data\%20Recovery\%2FDesign\%20values\%20used\%20in\%20practice\%2FBurst\%20transmission\%20mode\%2FStep\%20response\%20of\%20a\%20phase\%20aligner}{Clock and Data Recovery/Design values used in practice/Burst transmission mode/Step response of a phase aligner}.
\item{}  \myplainurl{http://intcomm.wiki.taoriver.net/moin.cgi/ProtocolMadness}
\item{}  UDP
\item{}  \myhref{http://en.wikibooks.org/wiki/Internet\%20Technologies\%2FProtocols}{Internet Technologies/Protocols} including TCP/IP and HTTP
\item{}  ATM
\item{}  VSCP -{} Very Simple Control Protocol \myplainurl{http://www.vscp.org/} \symbol{34}The protocol is free\symbol{34}
\item{}  \symbol{34}Protocol Design Folklore\symbol{34} by Radia Perlman. Jan 15, 2001. \myplainurl{http://www.awprofessional.com/articles/article.asp?p=20482}
\item{}  \symbol{34}Devices that play together, work together: UPnP defines common protocols and procedures to guarantee interoperability among network-{}enabled PCs, appliances, and wireless devices.\symbol{34} article by Edward F Steinfeld, EDN, 9/13/2001 \myplainurl{http://www.reed-electronics.com/ednmag/index.asp?layout=article\&articleid=CA154802\&spacedesc=readersChoice\&rid=0\&rme=0\&cfd=1}
\item{}  CAN bus \myplainurl{http://computer-solutions.co.uk/} \myplainurl{http://computer-solutions.co.uk/gendev/can-module.htm}
\end{myitemize}

\begin{myquote}
\item{} \symbol{34}CMX-{}MicroNet is the first system that allows TCP/IP 
\item{} and other protocols to be run natively on small processors
\item{}  ... {$\text{[}$}including{$\text{]}$} AVR, PIC 18, M16C.\symbol{34}
\end{myquote}

\begin{myitemize}
\item{}  \symbol{34}byteflight is a high speed data bus protocol for automotive applications\symbol{34} \myplainurl{http://byteflight.com/}
\item{}  Nagle\textquotesingle{}s rule ... The Nagle algorithm. \symbol{34}Nagle\textquotesingle{}s rule is a heuristic to avoid sending particularly small IP packets, also called tinygrams. Tinygrams are usually created by interactive networking tools that transmit single keystrokes, such as telnet or rsh. Tinygrams can become particularly wasteful on low-{}bandwidth links like SLIP. The Nagle algorithm attempts to avoid them by holding back transmission of TCP data briefly under some circumstances.\symbol{34} -{}-{} \myplainurl{http://www.tldp.org/LDP/nag/node45.html}
\item{}  \myhref{http://wiki.slimdevices.com/index.php/SLIMP3ClientProtocol}{ The SLIMP3 Client Protocol}
\item{}  \myhref{http://beej.us/guide/bgnet/output/htmlsingle/bgnet.html}{ Beej\textquotesingle{}s Guide to Network Programming Using Internet Sockets} by Brian \symbol{34}Beej\symbol{34} Hall 2005-{}11-{}05
\item{}  \myhref{http://www.zilog.com/docs/appnotes/an_rflink.pdf}{ \symbol{34}RF Link Using the Z86E08\symbol{34}} describes yet another \symbol{34}simple\symbol{34} packet protocol ... also mentions a preamble to train the RF receiver just before the rest of the packet.
\item{}  \myhref{http://en.wikibooks.org/wiki/Algorithm\%20Implementation\%2FChecksums}{Algorithm Implementation/Checksums} 
\item{}  ... other packet protocols ? ...
\item{}  \myhref{http://en.wikibooks.org/wiki/Communication\%20Systems\%2FPacket\%20Data\%20Systems}{Communication Systems/Packet Data Systems}
\item{}  \myhref{http://en.wikibooks.org/wiki/Communication\%20Networks}{Communication Networks}
\end{myitemize}

\chapter{Error Correction Methods}

\myminitoc
\label{186}






\label{187}
\LaTeXNullTemplate{}
\section{Introduction}
\label{188}

There are 3 main types of handling errors:

\begin{myitemize}
\item{}  acknowledge or retry (ACK-{}NAK).
\end{myitemize}


\begin{myitemize}
\item{}  \symbol{34}Forward Error Correction\symbol{34} (FEC)
\end{myitemize}


\begin{myitemize}
\item{}  Pretend It Never Happened
\end{myitemize}

\section{ACK-{}NAK}
\label{189}

Each packet is checked by the receiver to make sure it is \symbol{34}good\symbol{34}.

If it *is* good, the receiver (eventually) tells the sender that it came through OK -{}-{} it acknowledges (ACK) the packet.


All versions of ACK-{}NAK absolutely require
\myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ABi-directional_Communication}{Two Way Communication}
.
\subsubsection{How does the {\itshape receiver} know it\textquotesingle{}s good ?}
\label{190}

The sender calculates a checksum or CRC for the entire packet (except for the footer), then appends it to the end of the packet (in the footer/trailer).

The typical CRC is 32 bits, often a \myhref{http://en.wikipedia.org/wiki/\%20Fletcher\%27s\%20checksum}{ Fletcher-{}32} \myhref{http://en.wikipedia.org/wiki/\%20checksum\%20}{ checksum}.

Aside: Note that the checksum or CRC are forms of {\bfseries hashing}, ie, irreversibly shrinking data.  Checksums and CRCs are weaker algorithms than \symbol{34}cryptographically strong\symbol{34} message authentication code algorithms such as MD5 or SHA variants.  Cryptographically strong algorithms can detect errors better than checksums or CRCs, but they take more time to calculate.

Whenever the receiver receives a packet, the receiver calculates exactly the same checksum or CRC, then compares it to the one in the footer/trailer. If they match, the entire packet is (almost certainly) good, so the receiver sends an ACK.

When there\textquotesingle{}s even the slightest question that the packet has any sort of error (which could be *either* in the actual data *or* in the header *or* in the checksum bits -{}-{} there\textquotesingle{}s no way for the receiver to tell), the receiver discards it completely and (in most cases) pretends it never saw it.

If it\textquotesingle{}s not good, the {\itshape sender} sends it again.
\subsubsection{How does the {\itshape sender} know it wasn\textquotesingle{}t good ?}
\label{191}

It never got the ACK. (So either the packet was corrupted, *or* the ACK was corrupted -{}-{} there\textquotesingle{}s no way for the sender to know).
\subsubsection{\symbol{34}Stop-{}and-{}wait ARQ\symbol{34}}
\label{192}

The simplest version of ACK-{}NAK is \symbol{34}Stop-{}and-{}wait ARQ\symbol{34}.

The sender sends a packet, then waits a little for an ACK.
As soon as it gets the ACK, it immediately sends the next packet.
If the sender doesn\textquotesingle{}t hear the ACK in time, it starts over from the beginning, sending the same packet again, until it does get an ACK.

The receiver waits for a packet. If the packet passes all the error-{}detection tests perfectly, the receiver transmits an ACK (acknowledgment) to the sender.

Subtleties:
If the receiver receives the packet perfectly, but the ACK message is delayed too long, then the transmitter sends another copy of the message (a \symbol{34}communication echo\symbol{34}).
Imagine the packet contained the message \symbol{34}deduct \${}11,000 from Fred\textquotesingle{}s account.\symbol{34}.
When the receiver gets this second copy of the packet, what should it do?
Certainly it should send an ACK (otherwise the transmitter will keep trying to send this packet over and over).
Either or both of the following problems could occur:
\begin{myitemize}
\item{}  The delayed first ACK could hit the transmitter after it transmits the second copy of the message, so it transmits the next packet. Then the second ACK hits the transmitter, tricking the transmitter into thinking that \symbol{34}next packet\symbol{34} has been successfully received, when it hasn\textquotesingle{}t.
\item{}  When the receiver gets 2 identical consecutive packets saying \symbol{34}deduct \${}11,000 from Fred\textquotesingle{}s account\symbol{34}, are these 2 legitimate independent transactions, and so it should deduct \${}22,000 from Fred\textquotesingle{}s account? Or is it really just 1 transaction, with a bit of echo, and so should deduct a total of only \${}11,000 from Fred\textquotesingle{}s account?
\end{myitemize}


Both of these problems can be solved by adding a \symbol{34}sequence number\symbol{34}.
The transmitter keeps a count of how many independent packets it has transmitted to that receiver, and puts that sequence number in the header of each packet.
But when it re-{}transmits a packet, it re-{}transmits that same identical packet with that same identical sequence number.
Also, the receiver, rather than sending a generic \symbol{34}ACK\symbol{34} message, specifies which particular packet it is responding to by putting its sequence number in the ACK message.
When there is a communication echo, the receiver sees the same sequence number, so ACKs that sequence number (again) but then discards and ignores the extra, redundant copy of a packet it already received.
When the transmitter is sending a new packet that merely happens to contain the same data, the receiver sees a different sequence number, so it ACKs that new sequence number, and takes another \${}11,000 out of Fred\textquotesingle{}s account. Poor Fred.

A 1-{}bit sequence number (alternating 1 -{} 0 -{} 1 -{} 0 for each new packet, and ACK1 ACK0 ACK1 ACK0 in response) is adequate for a stop-{}and-{}wait system.
But as we will see, other ARQ protocols require a larger sequence number.

Subtleties:
Some early protocols had the receiver send a NAK (negative acknowledgment) to the sender whenever a bad packet was received, and the sender would wait indefinitely until it received *either* an ACK *or* a NAK.
This is a bad idea.
Imagine what happens when (a) a little bit of noise made a bad packet, so the receiver sends the NAK back to the sender, but then (b) a little bit of noise made that NAK unrecognizable.
Alternatively, imagine a shared-{}medium network with 1 sender and 2 receivers. What happens when a little noise messes up the \symbol{34}destination\symbol{34} field of the packet ?

With \symbol{34}Stop-{}and-{}wait ARQ\symbol{34}, the sender and the receiver only needs to keep 1 packet in memory at a time.
\subsubsection{streaming ARQ}
\label{193}

The sender sends a packet, then the next packet, then the next, without waiting.

As it sends each packet, it puts a copy of that packet in a \symbol{34}window\symbol{34}.

Each packet is consecutively numbered.
(The sequence number must be at least large enough to uniquely identify every packet in the window).

... turn-{}around time ... bouncing off geostationary satellites ...

The receiver occasionally transmits an acknowledgment (\symbol{34}I got all packets up to 8980\symbol{34}, \symbol{34}I got all packets up to 8990\symbol{34}).

If the receiver is expecting packet number 9007, but it receives a packet with an *earlier* number (that it had already received successfully), it transmits (or possibly re-{}transmits) a \symbol{34}I got all packets up to 9006\symbol{34} message.

When the sender receives an acknowledgment of any packet in the \symbol{34}window\symbol{34}, it deletes that copy.

When the sender\textquotesingle{}s window gets full, it waits a little, then tries re-{}sending the packets in the window starting with the oldest.

So when the sender suspects an error in some packet, it resend *all* packets starting with the erroneous packet. This guarantees that the receiver will (eventually) receive all packets in order.

Optionally,
If the receiver is expecting packet number 9007, but it receives packet number 9008, it may transmit a negative acknowledge (NAK) for 9007, and ignores any higher packet numbers until it gets packet 9007.

When the sender receives a NAK for any packet in the window, it re-{}starts transmission with that packet (and keeps it in the window).

With \symbol{34}streaming ARQ\symbol{34}, the sender needs to keep the entire window of packets in memory at a time.
But the receiver still only needs to handle 1 packet at a time, and handles them in consecutive order.

(Some people think of \symbol{34}streaming\symbol{34} as one big packet the size of the window using \symbol{34}stop-{}and-{}wait\symbol{34} protocol, divided into smaller \symbol{34}sub-{}packets\symbol{34}).
\subsection{Selective Repeat ARQ}
\label{194}
\myhref{http://en.wikipedia.org/wiki/Selective\%20Repeat\%20ARQ}{w:Selective Repeat ARQ}

A selective repeat ARQ system is a kind of streaming ARQ.

But instead of the receiver only handling 1 packet at a time, and discarding all packets higher or lower than the one it is looking for, the receiver tries to keep a copy of all packets it receives in a window of its own, and negotiates with the sender to try to resend *only* the erroneous packets.
\section{FEC}
\label{195}

If you have only one-{}way communication,
you are forced to use Forward Error Correction, sometimes called EDAC (Error Detection And Correction).

You transmit the data, then (instead of a CRC) you transmit \symbol{34}check bits\symbol{34} that are calculated from the data.

... NASA space probes ... compact disks ...

The simplest kind is \symbol{34}repeat the message\symbol{34}.

If I send the same packet twice, and noise only corrupts one of them, *and* the receiver can tell which one was corrupted, then no data was lost.
If I send the same packet 3 times, and noise corrupts any one of them, then the receiver can do \symbol{34}best 2 out of 3\symbol{34}. The \symbol{34}check bits\symbol{34} are 2 copies of the data bits.
In fact, noise could corrupt a little bit of *all three* of them, and you could still extract all the data -{}-{} align the 3 packets next to each other,
and do \symbol{34}best 2 out of 3\symbol{34} for every bit. As long as there were only a few bits of noise in each packet, and the noise was in a different place in each packet, all the data can be recovered.

... (put picture here) ...

There are some very clever kinds of FEC (Hamming codes, Reed-{}Solomon codes) that can correct all kinds of common errors better than \symbol{34}best 2 out of 3\symbol{34}, and only require the same number of \symbol{34}check bits\symbol{34} as there are data bits.
\section{Pretend It Never Happened}
\label{196}

A sender often streams audio and video live, in real-{}time.

What should a receiver do when a packet gets mangled ?

If it sends a message back to the sender, asking it to resend that packet,
by the time the reply gets back, it\textquotesingle{}s probably several video frames later.
It\textquotesingle{}s too late to use that information.

Rather than pausing the entire movie until the request makes a round-{}trip, it\textquotesingle{}s far less jarring to the audience if the receiver silently discards the mangled packet, fills in as best it can (for example, with nearby pixels\textquotesingle{} colors), try not to draw attention to the error, and continue on as if nothing had happened.

\LaTeXNOTETemplate{Signal degradation should be documented and easily findable as to let users know that there is no guarantee of exact reproduction.}{}
\section{combination}
\label{197}

Even when they have 2-{}way communication, sometimes people use FEC anyway. That way small amounts of noise can be corrected at the receiver. If a packet is corrupted so badly that FEC cannot fix it, the protocol falls back on ACK-{}NAK retransmission (or on Pretend It Never Happened).\section{further reading}
\label{198}
\myhref{http://en.wikipedia.org/wiki/error\%20detection\%20and\%20correction}{w:error detection and correction}

a detailed description of one ACK-{}NAK protocol:
\symbol{34}XModem / YModem Protocol Reference\symbol{34}
by Chuck Forsberg 1988-{}10-{}14
\myplainurl{http://www.commonsoftinc.com/Babylon_Cpp/Documentation/Res/yModem.htm}

a detailed description of one streaming protocol:
\symbol{34}The ZMODEM Inter Application File Transfer Protocol\symbol{34}
by Chuck Forsberg 1988-{}10-{}14
\myplainurl{http://www.commonsoftinc.com/Babylon_Cpp/Documentation/Res/zModem.htm}

\symbol{34}Data Link Error Detection / Correction Methods\symbol{34}
\myplainurl{http://techref.massmind.org/techref/method/errors.htm}
brief descriptions of
several error correction methods:
Hamming codes, Fire codes, Reed-{}Solomon codes, Viterbi decoding, etc.


\section{further reading}
\label{199}

\begin{myitemize}
\item{}  \myhref{http://en.wikibooks.org/wiki/Computer\%20Networks\%2FError\%20Control\%2C\%20Flow\%20Control\%2C\%20MAC}{Computer Networks/Error Control, Flow Control, MAC}
\item{}  \myhref{http://en.wikibooks.org/wiki/Data\%20Coding\%20Theory\%2FTransmission\%20Codes}{Data Coding Theory/Transmission Codes}
\item{}  \myhref{http://en.wikipedia.org/wiki/Automatic\%20repeat-request}{Wikipedia:Automatic repeat-{}request} (ARQ)
\item{}  \myhref{http://en.wikipedia.org/wiki/forward\%20error\%20correction}{Wikipedia:forward error correction} (FEC)
\item{}  \myhref{http://en.wikipedia.org/wiki/Radio\%20Link\%20Protocol}{Wikipedia:Radio Link Protocol}
\item{}  \myhref{http://www.lammertbies.nl/comm/info/crc-calculation.html}{ On-{}line CRC calculation and free CRC library}
\item{}  \myhref{http://en.wikibooks.org/wiki/Algorithm\%20Implementation\%2FChecksums}{Algorithm Implementation/Checksums}
\end{myitemize}


\myhref{http://en.wikibooks.org/wiki/Category\%3ASerial\%20Programming}{Category:Serial Programming}\chapter{Appendex A:Modems and AT Commands}

\myminitoc
\label{200}





\label{201}
\LaTeXNullTemplate{}
\section{Introduction}
\label{202}
\subsection{General}
\label{203}
This content is part of the \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming}{Serial Programming} book. It covers the programming of Hayes and Hayes-{}compatible telephone modems. Such types of modems are the norm in consumer applications, as well as many professionals applications -{} wherever modems are still used. 

Modem programming is slowly becoming a lost art, particular with the wide-{}spread movement of users from modem dial-{}up lines to DSL for very obvious performance reasons. Still modems are used for many applications, at home, or in a professional environment. In recent times, modems can be found in new areas where they were previously not seen. E.g. embedded modems in machines are used to automatically  \symbol{34}call home\symbol{34} to the manufacturer in case the machine is in need of some service. Often this is done via a wireless phone system, where the wireless module still provides a Hayes-{}compatible interface for dialing and data transmission.

The original Hayes modem command set is exclusively used as a reference in this module. {\bfseries Vendor specific extensions are not covered, and do not belong into this module}. The module explains the origin of the term {\itshape Hayes}, and the related {\itshape AT commands}. Also some principal information about what a {\itshape modem} is, and how the signaling with a modem happens are provided for completeness. The module then continues with a description of the basics of modem programming, including the set-{}up of a development environment.

Further, the content provides detailed programming information ({\itshape incomplete}), and a reference of the original Hayes command set and registers ({\itshape incomplete}).
\subsection{Administrative Information}
\label{204}

This section particularly addresses potential authors. Please note:

\begin{myitemize}
\item{}  This module {\bfseries is not} a dumping ground for random modem programming information and folklore.
\item{}  This module is {\bfseries operating system agnostic}. The \myhref{http://en.wikibooks.org/wiki/Programming\%3ASerial\%20Data\%20Communications}{Programming Serial Data Communications} book provides other modules for such information.
\item{}  This module deals with {\bfseries generic Hayes modems}, not with any vendor specific extensions. If you really want to see your particular love-{}child covered, provide an Appendix with that vendor/brand specific information. 
\item{}  Do not assume that just because something works on you particular modem it is the standard and other modems do it the same way. If you have no first hand experience that something is done the same way on \symbol{34}almost\symbol{34} all Hayes-{}compatible modems, then leave it out, or mark it at least as doubtful.
\end{myitemize}


The reason why this module sticks with the original Hayes command set is to have a defined boundary. This module is not intended as a reference manual. Once someone has mastered the basic set, and implemented the code, it is rather straight forward to deal with vendor-{}specific extensions. Other extensions, e.g. the very rough and basic FAX extensions require some deep insight into the involved protocols (e.g. in the case of FAX the detailed encoding, compression and timing of fax data on the phone line). This is out of the scope of this book. If you know how to handle the FAX extensions, write your own book.
\subsection{What is Hayes?}
\label{205}

{\itshape Hayes Microcomputer Products, Inc.} was a modem manufacturer from the beginning of the 1980s until the end of the 1990s, with its heyday in the early \textquotesingle{}90s. The name {\itshape Hayes} still exists as a brand name, owned by {\itshape Zoom Telephonics, Inc.} (as of Fall 2004). 

In 1981, Hayes developed the {\bfseries Hayes Smartmodem}.  This was a unique product at the time, because this modem was no longer simply a \symbol{34}dumb\symbol{34} device blindly converting serial data to and from audio tones, but contained some \symbol{34}intelligence\symbol{34}. It was possible to send commands to the modem to configure it, to execute certain operations (such as dialling a number, quieting the speaker, hanging up, etc.), and to read the current status of the connection. Hayes developed and published a command set to control the modem over a serial line. This command set became popular among consumer modem manufacturers, and was cloned a thousand times. Known as both the \symbol{34}Hayes command set\symbol{34} and the \symbol{34}AT command set\symbol{34}, it has long been the de-{}facto standard for controlling consumer modems and also many professional modems. Modems which support this command set are called {\itshape Hayes-{}compatible}. 

The commands were standardised at some point in time, however, as it is typical with standards, there are several standards. Plus, of course, there are still vendor-{}specific extensions and implementations in different modems vary slightly. Some of these enhancements were required to support at that time emerging features, such as data compression and FAX support. As a result, the command sets of modern modems are not fully compatible with each other. The original Hayes commands, however, should still work, and still form the core of almost all consumer modem command sets.

The basic set of commands was at some point in time standardised as \myhref{http://www.tiaonline.org/standards/search_results2.cfm?document_no=TIA/EIA\%2D602}{ TIA/EIA-{}602} and the syntax as EIA/TIA-{}615. But as already mentioned, modem manufacturers added their extensions. A larger extended set, particular under the pressure from cell phone manufacturers, was standardised as \myhref{http://www.itu.int/rec/recommendation.asp?type=folders\&lang=e\&parent=T-REC-V.250}{ ITU V.250} (old name V.25ter). That one usually forms the base for professional Hayes-{}compatible modems, and cell phones with build in data modems. ITU V.250 further referes to a bunch of other standards (e.g. V.251, V.252, V.253) for particular applications and extensions, and also has some supplements. Plus, of course there are the many standards defining other aspects of a modem, like compression and transmission.

{\itshape See Also:}
\begin{myitemize}
\item{}  \myhref{http://en.wikipedia.org/wiki/Hayes\%20Communications}{Wikipedia:Hayes Communications}
\item{}  \myhref{http://en.wikibooks.org/wiki/Transferring\%20Data\%20between\%20Standard\%20Dial-Up\%20Modems}{Transferring Data between Standard Dial-{}Up Modems}
\end{myitemize}

\subsection{What are AT Commands?}
\label{206}

Almost all of the Hayes modem commands start with the two letter sequence {\ttfamily AT} -{} for getting the modem\textquotesingle{}s {\itshape attention}. Because of this, modem commands are often called {\itshape AT Commands}. This still holds for many of the manufacturer specific command set extensions. Most of them also start with {\ttfamily AT}, and are called {\itshape AT Commands}, too. Please note, that just because an AT command contains a {\itshape \&} does not make it an extensions. {\itshape \&} commands were already part of the original Hayes command set.

The exact usage of the term {\itshape AT command set} slightly varies from manufacturer to manufacturer, often subject to marketing blurbs. In general, it can be assumed that a modem with an {\itshape AT command set}

\begin{myitemize}
\item{}  uses commands mostly starting with {\ttfamily AT},
\item{}  uses the original Hayes way of separating data and commands, and
\item{}  supports the original Hayes commands and register settings as a subset.
\end{myitemize}

\subsection{What is a Modem?}
\label{207}
\myhref{http://en.wikipedia.org/wiki/Modem}{w:Modem}
A modem in the classic sense is a {\bfseries mo}dulator/{\bfseries dem}odulator for transmitting digital information over analog wires, such as the analog telephone system\textquotesingle{}s two-{}wire or four-{}wire lines. The term has come to be used as acceptable slang for many communication devices used to link a computer to either another computer, or a wide-{}area network (\myhref{http://en.wikipedia.org/wiki/WAN}{Wikipedia:WAN}).  For example, the Ricochet radio data transceivers were commonly known as \symbol{34}Ricochet modems\symbol{34}.

This module deals with the classic type of {\itshape smart} modems, designed to convert data from/to a serial interface to/from an analog line. The module also applies to modems which provide the classic serial interface but connect over a different physical layer, such as a digital line, as well as devices providing a serial modem-{}like interface for other purposes. For our purpose, the modem is a classic DCE (data communications equipment) device, controlled via serial line by a classic DTE (data terminal equipment) device (such as a computer).

Depending on the type of modem, the modem can use a number of different technologies and speeds to transmit the data over the analog line. The details of these technologies are of no particular interest here, other than to note that it is possible with most modems to specify these communication parameters (for example, to disable compression, or to change modulation techniques).  The data this module deals with is not the data on the analog line, but the data as it appears on the serial interface between the DTE and DCE. I.e. the data as read and written by a device like a computer.

({\itshape Smart}) Modems also provide auxiliary services, such as dialling a particular number to set up a connection. As a consequence, a modem can be in a number of different states and modes, which are not always orthogonal. It is possible, for example, for a modem to be in the command mode while still keeping a connection (see the {\ttfamily +++} sequence for details).

Non-{}smart modems had to rely on other equipment like an ACU (automatic call unit) to provide these auxiliary services, but they are practically extinct today.
\subsection{Inband Signalling}
\label{208}

The original RS232C/V.24 specification contained a TX wire for transmitting data and a RX wire for receiving data, and other completely separate wires for transmitting control information between the DTE and DCE, the idea being to separate data and control information. In telecommunication jargon this is called {\bfseries outband signalling}.

Hayes-{}compatible modems use almost none of these RS232C/V.24 features. Instead, communication with the modem is done almost exclusively via the same RX/TX lines which are used for transferring the data. This mechanism is called {\bfseries inband signalling}.

Inband signalling has significant disadvantages. At any point in time, both the DTE and DCE must know if information sent or received via the TX and RX lines is for signalling purposes, or if it is data, which should be handled transparently.  Therefore, the DTE and DCE must operate in sync. If they get out of sync, either data will be lost, data will be incorrectly interpreted as commands, or signalling information will be interpreted as data, effectively destroying the original data.

Inband signalling has the advantage that the wiring between the DTE and DCE is simpler, and also that, at least at first glance, the communication software in the DTE is simpler.

As it has been said, Hayes-{}compatible modems use almost none of the RS232 control lines. But only almost. For example, they often drive DCD (data carrier detect). This, however creates the situation that modem-{}driving software now has to take care not only of the inband, but also the outband signalling with a modem. This slightly complicates the communication software\textquotesingle{}s \mylref{219}{state machine}.

Further, especially with the rise of cell phone modems, manufacturers have again started to introduce more outband signaling. Such modems provide multiple virtual serial interfaces. Some of these interfaces are exclusively dedicated to data transport, controlled by another serial interface which is either used exclusively for signalling (i.e. outband signalling) or can still also be used in the more conventional inband signalling scenario. In such cases the communication software needs to manage even more complex states.
\subsection{Command State / On-{}line State}
\label{209}

With respect of controlling the modem a Hayes-{}compatible modem is one of two main states:
{\bfseries
\begin{mydescription} Command State
\end{mydescription}
}

\begin{myquote}
\item{}  The modem interprets data from the DTE as modem commands. The modem can be in command state while still keeping a connection with a remote party.
\end{myquote}

{\bfseries
\begin{mydescription} On-{}line State
\end{mydescription}
}

\begin{myquote}
\item{}  The modem interprets data from the DTE as payload and transmits it to the other party. This state requires that a connection to the remote site has been established.
\end{myquote}


Inside these main states are a number of sub states. Also, with respect to other issues a modem has a number of communication states, e.g. if a remote carrier has been detected or not.
\subsection{Originating Mode / Answer Mode}
\label{210}
{\bfseries
\begin{mydescription} Originating mode
\end{mydescription}
}

\begin{myquote}
\item{}  A modem in originating mode is a modem which is setting up a connection, e.g., by dialing the number of a remote station and initiating the negotiation of protocols.
\end{myquote}

{\bfseries
\begin{mydescription} Answer Mode
\end{mydescription}
}

\begin{myquote}
\item{}  A modem in answer mode is a modem waiting to be contacted and ready to \symbol{34}answer the phone\symbol{34}.
\end{myquote}

\subsection{Command Responses}
\label{211}

A modem is supposed to send a response for almost all commands it receives. These responses can either be in the form of ASCII strings, or numeric values. The response type can be switched with a command, but it is typical to use the ASCII responses.

Responses need to be tracked by the DTE with great care. Among other things they inform the DTE if the dialling of the remote site was successful or not, and if the modem switches from command state to on-{}line state or not.

Unfortunately, the set of response messages has been greatly enhanced since the original Hayes modems and are often configurable via additional {\ttfamily AT} commands. It is suggested to not strictly parse response messages but to forgivingly check if they contain interesting keywords, like {\ttfamily CONNECT}. It is also suggested to study the manual of a particular modem very carefully.
\subsection{S-{}Registers}
\label{212}

The so called S-{}registers are also a Hayes heritage which all Hayes-{}compatible modems support. They are registers in the modem which contain various settings. And like the AT commands, they have been extensively enhanced by different modem manufacturers.

The reason why they are called {\bfseries S}-{}Registers is a little bit unclear. Some say the {\bfseries S} stands for modem {\itshape settings}. Some say they are just called like this, because      they are set and read with {\ttfamily ATS}... commands.  In the common vernacular they were usually termed {\itshape storage} registers because they permanently stored the values even through power-{}off.

Several of the other {\ttfamily AT} commands also change values of particular S-{}Registers. There is usually no difference in setting a value directly via an S-{}Register or via another {\ttfamily AT} command. It depends on the particular situation which way of setting a register is better.
\section{Modem Programming Basics}
\label{213}
\subsection{Command Reference}
\label{214}

In order to program for an actual modem it is a rather good idea to obtain the command reference for that particular modem. Unfortunately, it has become quite common for no-{}name modems to ship without any kind of usable command reference. Thanks to Windows\textquotesingle{} Plug \& Play feature it is no longer necessary on Windows to know the individual commands. Instead, all that is needed for a modem to run on Windows is to be shipped with the necessary {\ttfamily .inf} files (often hidden inside some \symbol{34}installer\symbol{34} software, and called a \symbol{34}driver\symbol{34} which is technically not the case, Windows already contains the necessary drivers).

If the modem doesn\textquotesingle{}t come with a command reference the next logical step is to search the web. However, unfortunately, a lot of modem information has vanished from the surface of the earth and the web in recent years. With the rise of broadband Internet connections, modems have become old fashioned devices and many sources are no longer available. It has become more and more difficult to find basic information about particular modem types. Even for modern modems like cell phone modems it can be difficult to find the necessary information.

There are a number of alternatives to obtain a command reference if one doesn\textquotesingle{}t come with the modem:

\begin{myitemize}
\item{}  Maybe the distributor provides one on its website
\item{}  Maybe the OEM manufacturer provides one.$\text{ }$\newline{}
This requires to identify the OEM manufacturer. A possible way is to use the FCC number of the device, and then looking the original manufacturer up on the FCC web site.
\item{}  Maybe the chipset manufacturer provides one.$\text{ }$\newline{}
Consumer modems are often just build around \symbol{34}off-{}the-{}shelf\symbol{34} modem chipsets from larger hardware manufacturers. The cheaper the modem, the more likely it is that the modem manufacturer didn\textquotesingle{}t change anything in the firmware and is using the original example software from the chipset manufacturer. Some chipset vendors provide command references for their modems.
\item{}  By looking into the corresponding Windows {\ttfamily .inf} files it is possible to at least obtain the basic commands
\item{}  By using the generic Hayes command reference in this Wikibook module.
\item{}  Obtaining the previously mentioned standard documents if there is an indication a particular modem complies to such a command standard.
\item{}  Using some kind of {\itshape sniffer} program to monitor the communication between the modem and the DTE and reverse engineering the commands using the obtained information. This requires that (a) reverse engineering is legal in your justification and (b) that there is some DTE communication software available that handles the particular modem so there is some valid communication to sniff.
\end{myitemize}

\subsection{Setting up a Development Environment}
\label{215}

It is highly recommended to spend some preparation time setting up a suitable development environment before starting to write drivers or software for a modem. Most of this consists of hardware set-{}up.

It is suggested to set up a small network with a \symbol{34}remote\symbol{34} computer and a second modem in answer mode. \symbol{34}Remote\symbol{34} computer in this case means a computer sitting right next to the development machine, but connected via the modems. If a {\bfseries terminal program} is being developed, the \symbol{34}remote\symbol{34} computer should run some small BBS software (for example), so there is always someone ready to answer, and/or protocol analysis/data dump software. Developing modem software without such a setup can be extremely frustrating. Such a set-{}up pays off a hundred times in reduced development time and lower stress.  Likewise, the modems used should have real speakers, and support {\ttfamily ATM}{\itshape n} commands well enough that you can leave the speaker on for the entire connection process (and ideally have the option to leave it on, period).  \symbol{34}Debugging by ear\symbol{34} can be a reality with modems, particularly during compatibility testing.

If possible, a hardware protocol analyser, or at least an \mylref{23}{RS-{}232 breakout box}, should be obtained.  These can be placed between the computers and modems, if needed, to troubleshoot the serial link and ensure that data is, in fact, being transferred between the modem and the computer -{}-{} a sanity check which comes in handy far more often than you might expect.  Actual hardware protocol analysers are surprisingly expensive, however; old Wyse terminals are not, and are almost as useful for this purpose.  If you find one, pick it up.  Terminals that support automatic baud-{}rate detection are particularly useful.

If dialing with the modem also needs to be tested, a small analog PABX for home usage is needed.  These PABX units are dirt cheap; an analog PABX for four internal lines and one external line should cost no more than US\${}50. If dialing is not needed, then the modems should be capable of directly driving a two-{}wire or four-{}wire line in {\bfseries leased-{}line} mode; otherwise, the PABX is still needed.

Possible setups are for example:

a) Leased-{}Line Mode\\

\TemplateSpaceIndent{$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}2-{}wire$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}Development$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Modem$\text{ }${}A$\text{ }${}|-{}-{}-{}-{}\textbackslash{}/-{}-{}-{}-{}|$\text{ }${}Modem$\text{ }${}B$\text{ }${}$\text{ }$\newline{}
$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}BBS$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}$\text{ }${}Computer$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}/\textbackslash{}-{}-{}-{}-{}|$\text{ }${}(answer)$\text{ }$\newline{}
$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Computer$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+}


or

b) With PABX\\

\TemplateSpaceIndent{$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}phone$\text{ }${}wire$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}phone$\text{ }$\newline{}
$\text{ }${}wire$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}Development$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Modem$\text{ }${}A$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}PABX$\text{ }$\newline{}
$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Modem$\text{ }${}B$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}BBS$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}$\text{ }${}Computer$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}$\text{ }${}X$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}(answer)$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Computer$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+}


or

c) Leased-{}Line Mode with Protocol Analyser
\\

\TemplateSpaceIndent{$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}2-{}wire$\text{ }${}$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}Development$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Y$\text{ }${}Cable$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Modem$\text{ }${}A$\text{ }${}|-{}-{}-{}-{}\textbackslash{}/-{}-{}-{}-{}|$\text{ }$\newline{}
$\text{ }${}Modem$\text{ }${}B$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}BBS$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}$\text{ }${}Computer$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Breakout|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}/\textbackslash{}-{}-{}-{}-{}|$\text{ }$\newline{}
$\text{ }${}(answer)$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Computer$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}||$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}||$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}||$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|$\text{ }${}Protocol$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|$\text{ }${}Analyser$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+}


Other combinations are of course also useful. And being able to easily reconnect the protocol analyser, e.g. between Modem B and the BBS Computer is helpful, too.
\subsection{Operating System, Programming Language \& Communication Basics}
\label{216}

Before dealing with the details of handling a modem, a few basics should be in place. First of all, the communication with the serial interface should be in place. This includes that the APIs as provided by the particular operating system for serial communication -{} if any -{} should be understood. If the operating system doesn\textquotesingle{}t provide such APIs, then it is recommended to first implement the UART access and wrap it into a library, if the serial UART in some hardware is supposed to be programmed directly. Alternatively, a programming language which provides convenient access to a serial interface can be used.

Whatever is used, it should be tested before starting to program for the modem. There is nothing more annoying than not knowing if a particular misbehaviour is caused by a failure in the serial communication with the modem, or is a problem with the modem (usually with the commands sent to it).

Unless in the most simple case, it is suggested to use hardware handshaking with the modem -{} particularly for speeds greater then 2400 bps or 9600 bps. Therefore, the used low-{}level serial communication software and hardware should support hardware handshake. If the UART supports some FIFO, like the 16550 UART, the FIFO should be enabled (both for sending and receiving data). 

It is undecided if data reception via polling or via interrupts is better. If every incoming byte raises an interrupt there are many interrupts at high communication speeds, and, as surprising as it might sound, polling the UART might be more efficient in such cases.

Communication as supported by a modem is usually half-{}duplex. Either the DTE or the DCE talks, the other side is supposed to listen. The communication with the modem should best be done with

\begin{myitemize}
\item{}  8 Bit
\item{}  No parity
\item{}  1 Stop bit
\end{myitemize}


See the next section for speed information.
\subsection{Line Speed is not DTE/DCE Speed}
\label{217}\\

\TemplateSpaceIndent{$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}DTE/DCE$\text{ }${}speed$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}line$\text{ }${}speed$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}DTE$\text{ }${}/$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Modem$\text{ }${}/$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}$\text{ }${}Computer$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}$\text{ }${}DCE$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}}


\LaTexHelpFulHintTemplate{Some modem manufacturers call the DTE/DCE speed {\itshape DTE speed}, and the line speed {\itshape DCE speed}. Others distinguish between {\itshape DTE speed} (DTE/DCE speed on the serial interface), {\itshape DCE speed} (bps between the modems), and {\itshape line speed} (Baud rate between the modems). Carefully observing the terminology can help to correctly interpret a manufacturer\textquotesingle{}s documentation.}
An issue which can be very confusing is the difference between the line speed (the data transfer speed on the telephone line) and the speed on the serial line between the DTE (computer) and the DCE (modem).

First, there is always some general confusion about the line speed, because some line speed is given with taking compression into account, while other data is given without taking compression into account. Also, there is a difference between {\itshape bps} and {\itshape Baud} due to the modulation schema used on the line. In addition, marketing blurbs obscure the picture. We will not make any attempt to clean up the long-{}standing Baud vs. bps confusion here (it is hopeless :-{})). It is just recommended that whenever the modem returns information about line speed the above mentioned differences are taken into account to avoid any misinterpretation.

Second, the speed on the telephone line does not necessarily have to be the same as the speed on the serial line. In fact, it usually isn\textquotesingle{}t on modern modems. It is recommended to set the DTE/DCE speed to a fixed speed instead of following the line speed. Logically, the fixed DTE/DCE speed should be large enough to cope with the highest expected line speed. V.90 modems should e.g. be accessed via 115200 bps or higher on the serial interface.

Setting the DTE/DCE speed on modern modems is quite simple. They all use autosensing on the serial interface. That is, they themselves detect the speed of data as received from the DTE and use the same speed to return data to the computer. They usually also autosense the parity, and 7 bit / 8 bit data length. Usually modems assume one stop bit when autosensing the serial interface. Therefore it is enought to just configure the serial interface on the DTE to the desired DTE/DCE communication parameters and let the modem figure it out on its own.

Autosensing can fail in rare cases and some modems might have broken autosensing. If a modem tends to fail autosensing it can help to start the initial communication after the DTE is configured with one or more {\itshape nop} AT commands\\

\TemplateSpaceIndent{$\text{ }${}AT{\itshape <{}CR>{}}}

repeated a limited number of times until the modem starts to return\\

\TemplateSpaceIndent{$\text{ }${}OK}

for the {\itshape nop} commands.

When a modem sets up a connection with a remote party it can report the used speed. In fact, it can report the line speed or just the DTE speed (some modems can report both). The end user is most probably interested in the line speed, and not the DTE/DCE speed. So from this point of view, it is best to set the modem to report the line speed, and e.g. write the received information to a log file.  However, some old communication software or modem drivers interpret the response from the modem as a request to change the DTE/DCE speed. In such cases the modem must be set to always return the DTE/DCE speed. Since this DTE/DCE speed will be the same as detected via autosensing there will be no speed change.

In the rare case that the DTE/DCE speed should indeed follow the line speed, the responses from the modem should of course be set to return the line speed. Then the DTE software has to evaluate the response, and change the DTE/DCE speed accordingly. This is really not recommended these days.

See the \mylref{228}{\#W: Negotiation Progress Message Selection} command for details on how to set which response to get.
\subsection{Character Set and Character Case}
\label{218}

Commands sent to the modem, and textual responses are supposed to be in the ISO 646 character set. ISO 646 is just another name for the  familiar 7-{}bit \myhref{http://en.wikipedia.org/wiki/ASCII}{ASCII} character set. Typically, modems chop off any 8th bit in commands they receive anyhow. They interpret the result as if the command has been sent using only 7-{}bit characters. However, it is not recommended to rely on this, but instead ensure that commands are only sent using 7-{}bit characters.

Commands are not case sensitive, assuming a modern modem. Some early modems insisted on uppercase-{}only commands. Still, a generic driver could do worse than ensuring that all commands are sent in uppercase, and all responses are interpreted case-{}independent. Typically, both letters of the {\ttfamily AT} command prefix must be of the same case. So {\ttfamily AT} and {\ttfamily at} are acceptable, while {\ttfamily At} and {\ttfamily aT} are not.
\subsection{Welcome to the World of State-{}Machines}
\label{219}

Modem programming means to tap into the world of telecommunications. This is an unknown field for most amateur, as well as professional programmers. Telecommunication is heavily centered around state-{}machines. And in fact, it is rather difficult or impossible to program a modem without using a state-{}machine. The modem is at any time in a particular state, and any DTE software which tries to control and use the modem needs to track the state of the modem -{} in an own state machine. This is necessary, because a Hayes-{}compatible modem can only do certain things when it is in a certain state. E.g. it can only dial out if it is not already connected to some remote site.

Part of a modem\textquotesingle{}s state can be tracked via particular RS-{}232 lines. E.g. DCD (data carrier detect) can be used to figure out if the modem has detected a remote modem\textquotesingle{}s carrier signal. Other information is provided by the flow-{}control lines. However, some states, and associated data need to be tracked via interpreting the modem\textquotesingle{}s \mylref{236}{result codes}.

People unfamiliar with the theory and practice of state machines often try to circumvent the issue by \symbol{34}tough coding\symbol{34}. Which means, they throw more and more code onto the problem (wrapped in a heap of if/the/else/otherwise/maybe/... statements), until things seem to work -{} sort of. If they are lucky they have implicitly managed to create a state machine which works. If they are unlucky, they end up with a partial state machine, which breaks down should something unusual happen in the communication. This usually comes with the problem that the software was not designed to recover if things break down. So such software tends to hang or crash.

It is much more efficient to first spend a few hours to to learn the basics of simple state machines, and then spending a few more hours to describe the communication with the modem as a state machine. The result of this planning serves as a nice template for implementing the DTE software.

\LaTeXNullTemplate{}
\section{Flow Control}
\label{220}
A slow device needs a way to tell its peer that currently, it is busy, so further incoming data must be stopped until this slow device tells otherwise. This mechanism is provided by flow control.
There are two ways of doing flow control: by hardware or software.\subsection{Hardware Flow Control}
\label{221}
Hardware flow control is usually implemented using the CTS (\mylref{28}{Clear To Send}) and RTS (\mylref{28}{Request To Send}) lines, which needs separate hardware data lines between devices. This is allocated in the RS-{}232 cable specification.

Hardware flow control based on DSR (\mylref{28}{Data Set Ready}) and DTR (\mylref{28}{Data Terminal Ready}) is uncommon, particular for modems. It can usually be found at serial printers. Again, DSR/DTR hardware flow control requires additional hardware data lines between devices.

From a programming point of view there is usually not much difference in programming CTS/RTS or DSR/DTR hardware flow control. The hardware has to provide means to drive/read the corresponding signals in the serial interface. If the hardware supports both, CTS/RTS and DSR/DTR flow control, then it is recommended to support both and provide the user with a configuration option.

It should be noted that some hardware or operating system drivers do not provide means to drive/read the less common DSR/DTR combination. If the remote device insists on DTR/DSR flow control a common workaround is to use CTS/RTS in the software, but rewire the cabling so the CTS/RTS wires are in fact connected to DSR/CTS.
\subsection{Software Flow Control}
\label{222}
This kind of flow control doesn\textquotesingle{}t need extra signal line(s) like hardware flow control, but instead uses special control characters within the data content.  To stop further incoming data, the receiving device sends the XOFF character.  To enable more data, an XON character will be sent.

However, since the data being sent cannot contain these characters (unless you know that the receiving device ignores such information), binary (non-{}ASCII) data cannot be transmitted this way.  Software flow control is typically used for communications to terminals and other character-{}based devices.  Binary data should not be sent this way as it could, randomly, contain these characters.  Hardware flow control using RTS/CTS is usually used.

Helpful Hint: Realizing that the Control Key is a special \symbol{34}shift\symbol{34} key that chops off the 100 bit (octal), it is easy to remember that the ASCII character used for sending XOFF is a Control-{}S (23 Octal) while the character for XON is a Control-{}Q (21 Octal).  {$\text{[}$}Think of \symbol{34}S\symbol{34} for Stop and \symbol{34}Q\symbol{34} for Qontinue... don\textquotesingle{}t you spell it that way?{$\text{]}$}
\section{Changing State}
\label{223}
\subsection{General}
\label{224}

Changing the state from command state to on-{}line state or vice versa is either straightforward or a great mystery. This module covers the more obscure ways.
\subsection{On-{}line State to Command State}
\label{225}

It is of course possible to switch from on-{}line state to command state by dropping the connection (going on-{}hook in modem terminology). It is also possible to temporarily switch into command state while keeping the connection.

Going on-{}hook programmatically (and not via dropping a modem control line) requires to first switch into command state while keeping the connection, too. 

Switching into command state, while in fact in the middle of transferring data (nothing else is meant with on-{}line state) requires to send a certain escape sequence as part of the data. This escape sequence is detected by the modem and the modem changes state. Since this character sequence might also be part of the normal data, an additional mechanism is needed to separate the escape sequence from normal data. This is the curse of inband signalling.

The separation of the escape sequence is done by using a so called guard time, which was once patented by Hayes. As a result, some modem manufacturers eliminated the guard time using an alternate escape sequence called the Time Independent Escape Sequence. Anyway, the escape sequence is only recognized by the modem when there was no other data from the DTE (terminal) for at least the duration of the guard time, and when there was no other data from the terminal after the escape sequence for at least the duration of the guard time, too.

An escape sequence consists of three times the same particular character. The character, as well as the guard time is configurable. By default, the character is {\ttfamily +}, and the guard time is one second. So, with the default configuration, a change to command state requires
\\

\TemplateSpaceIndent{$\text{ }${}{\itshape <{}1 sec. nothing>{}}+++{\itshape <{}1 sec. nothing>{}}}


If the connection should be dropped, this escape sequence should be followed by the {\ttfamily AT} command to go on-{}hook, which is {\ttfamily ATH0}:
\\

\TemplateSpaceIndent{$\text{ }${}{\itshape <{}1 sec. nothing>{}}+++{\itshape <{}1 sec. nothing>{}}ATH0{\itshape <{}CR>{}}}

\subsection{Command State to On-{}line State}
\label{226}

The usual way to go from command state to on-{}line state is via dialing the remote site (see {\ttfamily D} command). But if the connection already exists, and the modem has been switched to command mode via the escape sequence, the way is different.

If the connection should not be dropped, but instead data transmission should be continued, the {\ttfamily ATO0} (letter o, digit zero) command is needed:
\\

\TemplateSpaceIndent{$\text{ }${}{\itshape <{}1 sec. nothing>{}}+++{\itshape <{}1 sec. nothing>{}}$\text{ }$\newline{}
$\text{ }${}{\itshape send a few more modem commands, then go back on-{}line}$\text{ }$\newline{}
$\text{ }${}ATO0{\itshape <{}CR>{}}}

\section{Sync. vs. Async. Interface}
\label{227}

\LaTeXNullTemplate{}
\section{X.25 Interface}
\label{228}
\LaTeXNullTemplate{}

\section{AT Commands}
\label{229}

The following list is the list of the original Hayes commands. Different modems use slightly different commands. However, this list is supposed to be as \symbol{34}generic\symbol{34} as possible, and should not be extended with modem specific commands. Instead it is recommended to provide such command lists in an Appendix.



\LaTeXNullTemplate{}
\subsection{AT Command Format}
\label{230}

Here is a summary of the format and syntax of AT commands. Please note that most of the control characters are configurable, and the summary only uses the default control characters.

\begin{myitemize}
\item{}  AT commands are accepted by the modem only when in command mode. The modem can be forced into command mode with the \mylref{228}{\#+++: Escape Sequence}.
\end{myitemize}


\begin{myitemize}
\item{}  Commands are grouped in command lines.
\end{myitemize}


\begin{myitemize}
\item{}  Each command line must start with the \mylref{228}{\#AT: Command Prefix} and terminated with \mylref{228}{\#<{}CR>{}: End-{}of-{}line Character}. The only exception is the \mylref{228}{\#A/: Repeat Last Command} command.
\end{myitemize}


\begin{myitemize}
\item{}  The body of a command line consists of visible ASCII characters (ASCII code 32 to 126). Space (ASCII code 32) and ASCII control characters (ASCII code 0 to 31) are ignored, with the exception of \mylref{228}{\#<{}BS>{}: Backspace Character}, \mylref{228}{\#<{}CAN>{}: Cancel Character}, and \mylref{228}{\#<{}CR>{}: End-{}of-{}line Character}.
\end{myitemize}


\begin{myitemize}
\item{}  All characters preceding the \mylref{228}{\#AT: Command Prefix} are ignored.
\end{myitemize}


\begin{myitemize}
\item{}  Interpretation / execution of the command line starts with the reception of the first (and also command-{}line terminating) \mylref{228}{\#<{}CR>{}: End-{}of-{}line Character}.
\end{myitemize}


\begin{myitemize}
\item{}  Characters after the initial \mylref{228}{\#AT: Command Prefix} and before the \mylref{228}{\#<{}CR>{}: End-{}of-{}line Character} are interpreted as commands. With some exceptions, there can be many commands in one command line.
\end{myitemize}


\begin{myitemize}
\item{}  Each of the basic commands consists of a single ASCII letter, or a single ASCII letter with a {\ttfamily \&}prefix, followed by a numeric value.  Missing numeric values are interpreted as {\ttfamily 0} (zero).
\end{myitemize}


\begin{myitemize}
\item{}  The following commands can\textquotesingle{}t be followed by more commands on the command line. They must always be the last commands in a command line. If they are followed by other commands, these other commands are ignored. However, some of these commands take command modifiers and it is possible that a following command is accidentally interpreted as a command modifier. Therefore, care should be taken to not follow these commands with any more commands on the same command line. Instead, they should be placed in an own command line.
\begin{myitemize}
\item{}  \mylref{228}{\#A: Answer Command}
\item{}  \mylref{228}{\#D: Dial Command}
\item{}  \mylref{228}{\#Z: Soft Reset Command}
\end{myitemize}

\end{myitemize}


\begin{myitemize}
\item{}  A command line can be edited if the terminating \mylref{228}{\#<{}CR>{}: End-{}of-{}line Character} has not ben entered, using the \mylref{228}{\#<{}BS>{}: Backspace Character} to delete one command line character at a time. The initial \mylref{228}{\#AT: Command Prefix} can\textquotesingle{}t be edited/deleted (it has already been processed, because upon reception of the \mylref{228}{\#AT: Command Prefix} the modem immediately starts command line parsing and editing, but not execution).
\end{myitemize}


\begin{myitemize}
\item{}  The modem echoes command lines and edits when \mylref{228}{\#E: Command State Character Echo Selection} is on (surprise, surprise :-{})).
\end{myitemize}


\begin{myitemize}
\item{}  When echo is on, \mylref{228}{\#<{}BS>{}: Backspace Character}s are echoed with a sequence of {\ttfamily <{}BS>{} <{}BS>{}} (backspace, space, backspace) to erase the last character in e.g. a terminal program on the DTE.
\end{myitemize}


\begin{myitemize}
\item{}  A command line can be cancelled at any time before the terminating \mylref{228}{\#<{}CR>{}: End-{}of-{}line Character} by sending the \mylref{228}{\#<{}CAN>{}: Cancel Character}. No command in the command line is executed in this case.
\end{myitemize}


\begin{myitemize}
\item{}  The \mylref{228}{\#A: Answer Command} and \mylref{228}{\#D: Dial Command} can also be cancelled as long as the handshake with the remote site has not been completed. Cancellation is done by sending an additional character. In theory, it doesn\textquotesingle{}t matter which character. But care has to be taken that cancellation is not attempted when the handshake has already completed. In this case the modem has switched to on-{}line state (\mylref{226}{\#Command State to On-{}line State}) and the character will be send to the remote side. A save way to avoid this problem is to always use the \mylref{228}{\#+++: Escape Sequence} followed by going on-{}hock with the \mylref{228}{\#H: Hook Command Options}. If the modem is already in the on-{}line state, this will drop the connection. If the modem is still in the handshake phase the first character of the \mylref{228}{\#+++: Escape Sequence} will cancel the command (and the rest will be interpreted as a normal command line, doing no harm).
\end{myitemize}


\begin{myitemize}
\item{}  Command line execution stops when the first command in the command line fails, or the whole command line has been executed. Every command before the failed command has been executed. Every command after the failed command and the failed command in the command line has not been executed.
\end{myitemize}


\begin{myitemize}
\item{}  There is no particular indication which command in a command line failed, only that one failed. It is best to repeat the complete command line, or to first reset the modem to a defined state before recovering from a failure.
\end{myitemize}


\begin{myitemize}
\item{}  A modem only accepts a new command line when the previous command line has been executed (half-{}duplex communication). Therefore, care should be taken to only send the next command line after the result code from the previous command line has been received.
\end{myitemize}

\subsection{{\itshape Command Description Template}}
\label{231}
{\itshape To be removed when all commands are documented.}

{\bfseries Syntax:}
\\

\TemplateSpaceIndent{$\text{ }${}{\itshape <{}The syntax of the command, when necessary in EBNF>{}}}


{\bfseries Description:}

{\itshape <{}Description of the command, including information about the purpose and effects>{}}

{\bfseries Result Codes:}
\begin{longtable}{>{\RaggedRight}p{0.17543\linewidth}>{\RaggedRight}p{0.74421\linewidth}} 
\multicolumn{2}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Result Codes}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Code}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Description}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} OK    &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Parameter was valid {\itshape <{}description of success>{}}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} ERROR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Otherwise {\itshape <{}description of failure>{}} 
\end{longtable}


{\bfseries Related Commands and Registers:}
\begin{myitemize}
\item{}  {\itshape <{}Link list of related commands and registers>{}}
\end{myitemize}

\subsection{Special Commands and Character Sequences}
\label{232}

See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%2FModems\%20and\%20AT\%20Commands\%2FSpecial\%20Commands\%20and\%20Character\%20Sequences}{Special Commands and Character Sequences Reference}
\subsection{AT Commands A -{} M}
\label{233}
See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%2FModems\%20and\%20AT\%20Commands\%2FCommands\%20A\%20-\%20M}{ AT Commands A -{} M}
\subsection{AT Commands N -{} Z}
\label{234}
See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%2FModems\%20and\%20AT\%20Commands\%2FCommands\%20N\%20-\%20Z}{ AT Commands N -{} Z}
\subsection{AT\& Commands}
\label{235}

See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%2FModems\%20and\%20AT\%20Commands\%2F\%26\%20Commands}{AT\& Commands}
\section{Result Codes}
\label{236}

See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%2FModems\%20and\%20AT\%20Commands\%2FResult\%20Codes}{Result Codes}
\section{S-{}Registers}
\label{237}

See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%2FModems\%20and\%20AT\%20Commands\%2FS-Registers}{S-{}Registers}
\section{Advanced Features}
\label{238}
\subsection{Introduction}
\label{239}

Modern consumer modems provide a number of additional features which were originally uncommon for a modem, but became standard features over time. This section provides an overview about how to program these features.

\LaTeXNullTemplate{}
\subsection{Fax Class 1}
\label{240}\subsection{Fax Class 2}
\label{241}\subsection{Voice Services}
\label{242}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}



\chapter{Contributors}
\label{Contributors}
\begin{longtable}{rp{0.6\linewidth}}
\textbf{Edits}&\textbf{User}\\
10& \myhref{http://en.wikibooks.org/w/index.php?title=User:Adrignola}{Adrignola}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Alsocal}{Alsocal}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Benoswald}{Benoswald}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Boots8181}{Boots8181}\\
10& \myhref{http://en.wikibooks.org/w/index.php?title=User:Breakpoint}{Breakpoint}\\
10& \myhref{http://en.wikibooks.org/w/index.php?title=User:Dallas1278}{Dallas1278}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Damian_Yerrick}{Damian Yerrick}\\
10& \myhref{http://en.wikibooks.org/w/index.php?title=User:Darklama}{Darklama}\\
30& \myhref{http://en.wikibooks.org/w/index.php?title=User:DavidCary}{DavidCary}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:DavidL}{DavidL}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Derbeth}{Derbeth}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Dirk_H\%C3\%BCnniger}{Dirk HÃ¼nniger}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:EdDavies}{EdDavies}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Fishpi}{Fishpi}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Geocachernemesis}{Geocachernemesis}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Guanabot}{Guanabot}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Gumba_gumba}{Gumba gumba}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:HumbertoDiogenes}{HumbertoDiogenes}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Insaneinside}{Insaneinside}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:JenVan}{JenVan}\\
10& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jguk}{Jguk}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jhdiii}{Jhdiii}\\
4& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jomegat}{Jomegat}\\
11& \myhref{http://en.wikibooks.org/w/index.php?title=User:Lehoaithanh}{Lehoaithanh}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Micha_s}{Micha s}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Mike518}{Mike518}\\
6& \myhref{http://en.wikibooks.org/w/index.php?title=User:Netch}{Netch}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Ninly}{Ninly}\\
4& \myhref{http://en.wikibooks.org/w/index.php?title=User:Panic2k4}{Panic2k4}\\
15& \myhref{http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual}{QuiteUnusual}\\
6& \myhref{http://en.wikibooks.org/w/index.php?title=User:Recent_Runes}{Recent Runes}\\
80& \myhref{http://en.wikibooks.org/w/index.php?title=User:Renffeh}{Renffeh}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Rmallins}{Rmallins}\\
89& \myhref{http://en.wikibooks.org/w/index.php?title=User:Robert_Horning}{Robert Horning}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Rustamabd}{Rustamabd}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Sandcat01}{Sandcat01}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Theodore.cackowski}{Theodore.cackowski}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Trainsonplanes}{Trainsonplanes}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Wajidstar}{Wajidstar}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Webaware}{Webaware}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Xania}{Xania}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Xenodevil}{Xenodevil}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Yuriybrisk}{Yuriybrisk}\\
\end{longtable}
\pagebreak
\listoffigures
\label{ListOfFigures}
\begin{itemize}
\item GFDL: Gnu Free Documentation License. \url{http://www.gnu.org/licenses/fdl.html}
\item cc-by-sa-3.0:  Creative Commons Attribution ShareAlike 3.0 License. \url{http://creativecommons.org/licenses/by-sa/3.0/} 
\item cc-by-sa-2.5:  Creative Commons Attribution ShareAlike 2.5 License. \url{http://creativecommons.org/licenses/by-sa/2.5/} 
\item cc-by-sa-2.0:  Creative Commons Attribution ShareAlike 2.0 License. \url{http://creativecommons.org/licenses/by-sa/2.0/} 
\item cc-by-sa-1.0:  Creative Commons Attribution ShareAlike 1.0 License. \url{http://creativecommons.org/licenses/by-sa/1.0/} 
\item cc-by-2.0:  Creative Commons Attribution 2.0 License.  \url{http://creativecommons.org/licenses/by/2.0/}  
\item cc-by-2.0:  Creative Commons Attribution 2.0 License. \url{http://creativecommons.org/licenses/by/2.0/deed.en}  
\item cc-by-2.5:  Creative Commons Attribution 2.5 License. \url{http://creativecommons.org/licenses/by/2.5/deed.en}  
\item cc-by-3.0:  Creative Commons Attribution 3.0 License. \url{http://creativecommons.org/licenses/by/3.0/deed.en}  
\item GPL:  GNU General Public License. \url{http://www.gnu.org/licenses/gpl-2.0.txt} 
\item LGPL:  GNU Lesser General Public License. \url{http://www.gnu.org/licenses/lgpl.html}
 \item PD: This image is in the public domain.
\item ATTR:  The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted. 
\item EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the common face of the euro coins belongs to the European Commission. Authorised is reproduction in a format without relief (drawings, paintings, films) provided they are not detrimental to the image of the euro.
\item LFK: Lizenz Freie Kunst. \url{http://artlibre.org/licence/lal/de} 
\item CFR: Copyright free use. 
\item EPL: Eclipse Public License. \url{http://www.eclipse.org/org/documents/epl-v10.php} 
\end{itemize}
Copies of the GPL, the LGPL as well as a GFDL are included in chapter \mylref{Licenses}{Licenses}. Please note that images in the public domain do not require attribution. You may click on the image numbers in the following table to open the webpage of the images in your webbrower.
\pagebreak
\small
\begin{longtable}{|p{0.05\textwidth}|p{0.6\textwidth}|p{0.15\textwidth}|}
\hline
\href{http://en.wikibooks.org/wiki/File:RS-232.jpeg}{1}& 


 & GFDL\\ \hline 
\href{http://en.wikibooks.org/wiki/File:9\%20pin\%20d-sub\%20connector\%20male\%20closeup.jpg}{2}& 

User \myhref{http://en.wikibooks.org/wiki/User\%3AMike1024}{Mike1024}
 & PD\\ \hline 
\href{http://en.wikibooks.org/wiki/File:Parallelport.jpg}{3}& 

\myhref{http://en.wikibooks.org/wiki/User\%3AAfrank99}{Afrank99}
 & GFDL\\ \hline 
\href{http://en.wikibooks.org/wiki/File:Scsi\%20extern\%20db25\%20st.jpg}{4}& 

User \myhref{http://en.wikibooks.org/wiki/\%3Ade\%3ABenutzer\%3ASmial}{Smial} on \myhref{http://de.wikipedia.org}{ de.wikipedia}
 & cc-by-sa-2.0\\ \hline 
\href{http://en.wikibooks.org/wiki/File:Klinkenstecker\%20stereo\%203.5mm.jpg}{5}& 

\myhref{http://en.wikibooks.org/wiki/User\%3AAfrank99}{Afrank99}
 & cc-by-sa-2.5\\ \hline 
\href{http://en.wikibooks.org/wiki/File:DB-9_Female_PinOut.png}{6}& 


 & GFDL\\ \hline 

\end{longtable}
\pagebreak\KOMAoptions{fontsize=9pt,DIV=90,BCOR=0pt} 
\pagebreak
\chapter{Licenses}
\label{Licenses}
{\tiny
\section {GNU GENERAL PUBLIC LICENSE}
\begin{multicols}{4}

Version 3, 29 June 2007

Copyright Â© 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS
0. Definitions.

â��This Licenseâ�� refers to version 3 of the GNU General Public License.

â��Copyrightâ�� also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

â��The Programâ�� refers to any copyrightable work licensed under this License. Each licensee is addressed as â��youâ��. â��Licenseesâ�� and â��recipientsâ�� may be individuals or organizations.

To â��modifyâ�� a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a â��modified versionâ�� of the earlier work or a work â��based onâ�� the earlier work.

A â��covered workâ�� means either the unmodified Program or a work based on the Program.

To â��propagateâ�� a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.

To â��conveyâ�� a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays â��Appropriate Legal Noticesâ�� to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.
1. Source Code.

The â��source codeâ�� for a work means the preferred form of the work for making modifications to it. â��Object codeâ�� means any non-source form of a work.

A â��Standard Interfaceâ�� means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.

The â��System Librariesâ�� of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A â��Major Componentâ��, in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The â��Corresponding Sourceâ�� for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.
4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:

    * a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
    * b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to â��keep intact all noticesâ��.
    * c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.
    * d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an â��aggregateâ�� if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.
6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

    * a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.
    * b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.
    * c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.
    * d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.
    * e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

A â��User Productâ�� is either (1) a â��consumer productâ��, which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, â��normally usedâ�� refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

â��Installation Informationâ�� for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.
7. Additional Terms.

â��Additional permissionsâ�� are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:

    * a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or
    * b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or
    * c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or
    * d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
    * e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or
    * f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered â��further restrictionsâ�� within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.
8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.
9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License.

An â��entity transactionâ�� is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.
11. Patents.

A â��contributorâ�� is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's â��contributor versionâ��.

A contributor's â��essential patent claimsâ�� are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, â��controlâ�� includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a â��patent licenseâ�� is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To â��grantâ�� such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. â��Knowingly relyingâ�� means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is â��discriminatoryâ�� if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such.
14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License â��or any later versionâ�� applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.
15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM â��AS ISâ�� WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the â��copyrightâ�� line and a pointer to where the full notice is found.

    <one line to give the program's name and a brief idea of what it does.>
    Copyright (C) <year>  <name of author>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:

    <program>  Copyright (C) <year>  <name of author>
    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
    This is free software, and you are welcome to redistribute it
    under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an â��about boxâ��.

You should also get your employer (if you work as a programmer) or school, if any, to sign a â��copyright disclaimerâ�� for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
\end{multicols}

\section{GNU Free Documentation License}
\begin{multicols}{4}

Version 1.3, 3 November 2008

Copyright Â© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.
1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.
2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.
4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

    * A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
    * B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
    * C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
    * D. Preserve all the copyright notices of the Document.
    * E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
    * F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
    * G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
    * H. Include an unaltered copy of this License.
    * I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
    * J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
    * K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
    * L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
    * M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
    * N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
    * O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various partiesâ��for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".
6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.
7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.
8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.
9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.
10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document.
11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.
ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

    Copyright (C)  YEAR  YOUR NAME.
    Permission is granted to copy, distribute and/or modify this document
    under the terms of the GNU Free Documentation License, Version 1.3
    or any later version published by the Free Software Foundation;
    with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
    A copy of the license is included in the section entitled "GNU
    Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with â�¦ Texts." line with this:

    with the Invariant Sections being LIST THEIR TITLES, with the
    Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.
\end{multicols}

\section{GNU Lesser General Public License}
\begin{multicols}{4}


GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright Â© 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below.
0. Additional Definitions.

As used herein, â��this Licenseâ�� refers to version 3 of the GNU Lesser General Public License, and the â��GNU GPLâ�� refers to version 3 of the GNU General Public License.

â��The Libraryâ�� refers to a covered work governed by this License, other than an Application or a Combined Work as defined below.

An â��Applicationâ�� is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library.

A â��Combined Workâ�� is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is also called the â��Linked Versionâ��.

The â��Minimal Corresponding Sourceâ�� for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version.

The â��Corresponding Application Codeâ�� for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version:

    * a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or
    * b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following:

    * a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License.
    * b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following:

    * a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License.
    * b) Accompany the Combined Work with a copy of the GNU GPL and this license document.
    * c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document.
    * d) Do one of the following:
          o 0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.
          o 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version.
    * e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following:

    * a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License.
    * b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License â��or any later versionâ�� applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is permanent authorization for you to choose that version for the Library.
\end{multicols}
}
\pagebreak
\end{CJK}
\end{document}








headers/options.tex

% Festlegungen für minitoc
% \renewcommand{\myminitoc}{\minitoc}
% \renewcommand{\mtctitle}{Überblick}
% \setcounter{minitocdepth}{1}
% \dominitoc   % diese Zeile aktiviert das Erstellen der minitocs, sie muss vor \tableofcontents kommen

% Seitenformat
% ------------
%\KOMAoption{paper}{A5}          % zulässig: letter, legal, executive; A-, B-, C-, D-Reihen
\KOMAoption{open}{right}			% zulässig: right (jedes Kapitel beginnt rechts), left, any
\KOMAoption{numbers}{auto}
% Satzspiegel jetzt neu berechnen, damit er bei Kopf- und Fußzeilen beachtet wird
\KOMAoptions{DIV=13}

% Kopf- und Fusszeilen
% --------------------
% Breite und Trennlinie
%\setheadwidth[-6mm]{textwithmarginpar}
%\setheadsepline[textwithmarginpar]{0.4pt}
\setheadwidth{text}
\setheadsepline[text]{0.4pt}

% Variante 1: Kopf: links Kapitel, rechts Abschnitt (ohne Nummer); Fuß: außen die Seitenzahl
\ohead{\headmark}
\renewcommand{\chaptermark}[1]{\markleft{#1}{}}
\renewcommand{\sectionmark}[1]{\markright{#1}{}}
\ofoot[\pagemark]{\pagemark}

% Variante 2: Kopf außen die Seitenzahl, Fuß nichts
%\ohead{\pagemark}
%\ofoot{}

% Standardschriften
% -----------------
%\KOMAoption{fontsize}{18pt}
\addtokomafont{disposition}{\rmfamily}
\addtokomafont{title}{\rmfamily} 
\setkomafont{pageheadfoot}{\normalfont\rmfamily\mdseries}

% vertikaler Ausgleich
% -------------------- 
% nein -> \raggedbottom
% ja   -> \flushbottom    aber ungeeignet bei Fußnoten
%\raggedbottom
\flushbottom

% Tiefe des Inhaltsverzeichnisses bestimmen
% -----------------------------------------
% -1   nur \part{}
%  0   bis \chapter{}
%  1   bis \section{}
%  2   bis \subsection{} usw.
\newcommand{\mytocdepth}{1}

% mypart - Teile des Buches und Inhaltsverzeichnis
% ------------------------------------------------
% Standard: nur im Inhaltsverzeichnis, zusätzlicher Eintrag ohne Seitenzahl
% Variante: nur im Inhaltsverzeichnis, zusätzlicher Eintrag mit Seitenzahl 
%\renewcommand{\mypart}[1]{\addcontentsline{toc}{part}{#1}}
% Variante: mit eigener Seite vor dem ersten Kapitel, mit Eintrag und Seitenzahl im Inhaltsverzeichnis
\renewcommand{\mypart}[1]{\part{#1}}


% maketitle
% -----------------------------------------------
% Bestandteile des Innentitels
%\title{Einführung in SQL}
%\author{Jürgen Thomas}
%\subtitle{Datenbanken bearbeiten}
\date{}
% Bestandteile von Impressum und CR
% Bestandteile von Impressum und CR

\uppertitleback{
%Detaillierte Daten zu dieser Publikation sind bei Wikibooks zu erhalten:\newline{} \url{http://de.wikibooks.org/}
%Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Daten sind im Internet  zu erhalten: \newline{}\url{https://portal.d-nb.de/opac.htm?method=showSearchForm#top}
%Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Daten sind im Internet unter der Katalog-Nr. 1008575860 zu erhalten: \newline{}\url{http://d-nb.info/1008575860}

%Namen von Programmen und Produkten sowie sonstige Angaben sind häufig geschützt. Da es auch freie Bezeichnungen gibt, wird das Symbol \textregistered{} nicht verwendet.

%Erstellt am 
\today{}
}

\lowertitleback{
{\footnotesize
On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An URI to this license is given in the list of figures on page \pageref{ListOfFigures}. If this document is a derived work from the contents of one of these projects and the content was still licensed by the project under this license at the time of derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section 4b of the license. The list of contributors is included in chapter Contributors on page \pageref{Contributors}. The licenses GPL, LGPL and GFDL are included in chapter Licenses on page \pageref{Licenses}, since this book and/or parts of it may or may not be licensed under one or more of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of figures on page \pageref{ListOfFigures}. This PDF was generated by the \LaTeX{} typesetting  software. The \LaTeX{} source code is included as an attachment ({\tt source.7z.txt}) in this PDF file. To extract the source from the PDF file, we recommend the use of \url{http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/} utility or clicking the paper clip attachment symbol on the lower left of your PDF Viewer, selecting {\tt Save Attachment}. After extracting it from the PDF file you have to rename it to {\tt source.7z}. To uncompress the resulting archive we recommend the use of \url{http://www.7-zip.org/}. The \LaTeX{} source itself was generated by a program written by Dirk Hünniger, which is freely available under an open source license from \url{http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf}. This distribution also contains a configured version of the {\tt pdflatex 
} compiler with all necessary packages and fonts needed to compile the \LaTeX{} source included in this PDF file. 
}}


\renewcommand{\mysubtitle}[1]{}
\renewcommand{\mymaintitle}[1]{}
\renewcommand{\myauthor}[1]{}

\newenvironment{myshaded}{%
  \def\FrameCommand{ \hskip-2pt \fboxsep=\FrameSep \colorbox{shadecolor}}%
  \MakeFramed {\advance\hsize-\width \FrameRestore}}%
 {\endMakeFramed}








headers/packages1.tex

% Standard für Formatierung
%\usepackage[utf8]{inputenc} % use \usepackage[utf8]{inputenc} for tex4ht
\usepackage[usenames]{color}
\usepackage{textcomp} 
\usepackage{alltt} 
\usepackage{syntax}
\usepackage{parskip} 
\usepackage[normalem]{ulem}
\usepackage[pdftex,unicode=true]{hyperref}
\usepackage{tocstyle}
\usepackage[defblank]{paralist}
\usepackage{trace}
\usepackage{bigstrut}
% Minitoc
%\usepackage{minitoc}

% Keystroke
\usepackage{keystroke}
\usepackage{supertabular}

\usepackage{wrapfig}
\newcommand{\bigs}{\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut{}}







headers/packages2.tex

% für Zeichensätze


%replacemnt for pslatex
\usepackage{mathptmx}
\usepackage[scaled=.92]{helvet}
\usepackage{courier}


\usepackage[T1]{fontenc} % disable this line for tex4ht

% für Tabellen
\usepackage{multirow}
\usepackage{multicol}
\usepackage{array,ragged2e}
\usepackage{longtable}

% für Kopf- und Fußzeilen, Fußnoten
\usepackage{scrpage2}
\usepackage{footnote}

% für Rahmen
\usepackage{verbatim}
\usepackage{framed}
\usepackage{mdframed}
\usepackage{listings}
\usepackage{lineno}

% für Symbole
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}

\usepackage{pifont}
\usepackage{marvosym}
\let\Cross\undefined 
\usepackage{fourier-orns}  % disable this line for tex4ht   % für weitere Logos, z.B. \danger

% für Grafik-Einbindung
\usepackage[pdftex]{graphicx}
\usepackage{wasysym}
\let\Square\undefined 

% unklare Verwendung
\usepackage{bbm}
\usepackage{skull}

%arabtex
\usepackage[T1]{tipa}  % disable this line for tex4ht

\usepackage{fancyvrb}
\usepackage{bbding} 
\usepackage{textcomp}
\usepackage[table]{xcolor}
\usepackage{microtype}
\usepackage{lscape}
\usepackage{amsthm}
\usepackage{tocstyle}








headers/paper.tex

\KOMAoption{paper}{A4}






headers/svg.tex

\newcommand{\SVGExtension}{png}






headers/templates-chemie.tex

\newcommand{\TemplateEnergieerhaltung}[1]{
\begin{longtable}{|>{\RaggedRight}p{\linewidth}|} \hline
{\bfseries Gesetz von der Erhaltung der Energie}\\ \hline
{\bfseries Albert Einstein (14.3. 1879 - 18.4.1955)}: Umwandlung von Energie in Masse und von Masse in Energie ist möglich.\\ 
$E = m \cdot c^2$ (c = Lichtgeschwindigkeit = 300.000 km/s)\\ \hline
{\bfseries 
Bei einer chemischen Reaktion ist die Summe aus Masse und Energie der Ausgangsstoffe gleich der Summe aus Masse und Energie der Endstoffe.
}\\\hline
Wird Energie frei, tritt ein unwägbar kleiner Massenverlust auf. Wird Energie investiert, tritt Massenzunahme auf. Dieses kann allerdings mit herkömmlichen Waagen nicht gemessen werden. \\ \hline
\end{longtable}
}

\newcommand{\TemplatePeriodensystem}[1]{
Hier sollte das Periodensystem stehen. Ein solches wird sehr wahrscheinlich von Orlando Camargo Rodriguez frei zur Verfügung gestellt werden. Dateiname: tabela_periodica.tex ist bereits online. Lizenz aber noch nicht genau genug definiert.
}

\newcommand{\TemplateMassenerhaltung}[1]{
\begin{longtable}{|>{\RaggedRight}p{\linewidth}|} \hline
{\bfseries Gesetz von der Erhaltung der Masse}\\ \hline
{\bfseries Antoine Lavoisier (1743 - 1794)}: Rien ne se perd, rien ne se crée\\ 
Die Gesamtmasse ändert sich bei chemischen Reaktionen (im Rahmen der Messgenauigkeiten) nicht.\\ \hline
Masse der Ausgangsstoffe=Masse der Produkte \\ \hline
\end{longtable}
}

\newcommand{\TemplateDaltonsAtomhyposthese}[1]{
\begin{longtable}{|>{\RaggedRight}p{\linewidth}|} \hline
\begin{enumerate}
\item Materie besteht aus extrem kleinen, bei Reaktion ungeteilt bleibenden Teilchen, den Atomen.
\item Die Masse der Atome eines bestimmten Elements sind gleich (alle Atome eines Elements sind gleich). Die Atome verschiedener Elemente unterscheiden sich in ihren Eigenschaften (zum Beispiel in Größe, Masse, usw.).
\item Es existieren so viele Atomsorten wie Elemente.
\item Bei chemischen Reaktionen werden Atome in neuer Kombination vereinigt oder voneinander getrennt.
\item Eine bestimmte Verbindung wird von den Atomen der betreffenden Elemente in einem bestimmten, einfachen Zahlenverhältnis gebildet.
\end{enumerate}
\\ \hline
\end{longtable}
}

\newcommand{\TemplateUnveraenderlicheMassenverhaeltnisse}[1]{
\begin{longtable}{|>{\RaggedRight}p{\linewidth}|} \hline
{\bfseries Gesetz der unveränderlichen Massenverhältnisse}\\ \hline
Louis Proust (1799) \\ \hline
Bei chemischen Reaktionen, also Vereinigung beziehungsweise Zersetzung, reagieren die Reinstoffe immer in einem von der Natur vorgegebenen festen Verhältnis miteinander.
\\ \hline
\end{longtable}
}







headers/templates-dirk.tex

\newenvironment{TemplateCodeInside}[6]
{
\def\leftbox{#5}
\def\rightbox{}
\def\framecolor{shadecolor}
\ifstr{#4}{e}{ \def\framecolor{red} 
               \def\rightbox{Falsch} } {}
\ifstr{#4}{v}{ \def\framecolor{mydarkgreen} 
               \def\rightbox{Richtig} } {}

\begin{scriptsize}
\begin{mdframed} [ 
backgroundcolor=shadecolor, linewidth=0pt, 
skipabove=#2, skipbelow=#3,
innertopmargin=0.5ex, innerbottommargin=0 ]
\ttfamily

\ifstr{\leftbox} {} {
  % Ausgabe nur, wenn rechte Box Inhalt hat, dann links mit Standardtext
  \ifstr{\rightbox}{}{}
  { \fbox{Quelltext} \hfill \textbf{\color{\framecolor} \fcolorbox{black}{white}{\rightbox} }
  }
} {
\fbox{\leftbox}
% und bei Bedarf zusätzlich rechts die zweite Box
  \ifstr{\rightbox}{}{}
  { \hfill \textbf{\color{\framecolor} \fcolorbox{black}{white}{\rightbox} }
  } 
}

\begin{flushleft}
}  % Ende der begin-Anweisungen, es folgen die end-Anweisungen
{\end{flushleft}\end{mdframed}\end{scriptsize} }

\newcommand{\TemplateCode}[9]
% **************************************************
{

\ifstr{#1}{}{~}{
\minisec{\normalfont \scriptsize \centering \textbf{\textit{#1}} \medskip } }

\begin{scriptsize}

% Code-Abschnitt mit #4
\begin{TemplateCodeInside} {} {0pt} {0pt} {#3} {#5} {}
#6
\end{TemplateCodeInside}

% Ausgabetext mit #4
#4
 
% #2   Fußzeile ausgeben, sofern vorgesehen
\ifstr{#2} {} {} { \centering \textit{#2} \medskip \\ } 

\end{scriptsize}
}








headers/templates-juetho.tex

\newcommand{\wbtempcolora}{white}
\newcommand{\wbtempcolorb}{white}
\newcommand{\wbtempcolorc}{white}
\newcommand{\wbtemptexta}{}
\newcommand{\wbtemptextb}{}
\newcommand{\wbtemptextc}{}
\newlength{\wbtemplengtha}
\setlength{\wbtemplengtha}{0pt}
\newlength{\wbtemplengthb}
\setlength{\wbtemplengthb}{0pt}
\newlength{\wbtemplengthc}
\setlength{\wbtemplengthc}{0pt}
\newlength{\wbtemplengthd}
\setlength{\wbtemplengthd}{0pt}
\newlength{\wbtemplengthe}
\setlength{\wbtemplengthe}{0pt}
\newcount\wbtempcounta
\wbtempcounta=0
\newcount\wbtempcountb
\wbtempcountb=0
\newcount\wbtempcountc
\wbtempcountc=0

\newenvironment{TemplateCodeInside}[6]
% no more parameters
% **************************************************
% Template Code Inside
% Darstellung eines Code-Teils oder der Code-Ausgabe
% wird für folgende Wiki-Vorlagen benutzt:
%     Vorlage:Syntax
%     <source>...</source>
%     Regal:Programmierung: Vorlage:CodeIntern
% außerdem mehrfache Verwendung durch das Makro "Template Code"
%
% #1  leer   Anzeige als Code:    grauer Hintergrund, ohne Rahmen
%     sonst  Anzeige als Ausgabe: weißer Hintergrund, mit  Rahmen
% #2  Abstand vor dem Rahmen
%     0pt    als Standardwert
%     \baselineskip nur dann, wenn es der erste Teil innerhalb der Umgebung ist
%            und keine Kopfzeile vorgesehen ist
% #3  Abstand nach dem Rahmen
%     0pt    als Standardwert
%     \baselineskip nur dann, wenn es der letzte Teil innerhalb der Umgebung ist
%            und keine Fußzeile vorgesehen ist
% #4  spezieller Hinweis, verwendet für die Zusatzbox rechts
%     leer   als Standardwert
%     e      steht für error, also Zusatz 'Falsch' in rot
%     v      steht für valid, also Zusatz 'Richtig' in grün (genauer: jeder beliebige andere Inhalt)
% #5  spezieller Text für die Zusatzbox links
%     leer   als Standardwert
%     spezieller Hinweis: Wenn dieser Text leer ist, aber 'e' oder 'v' vorgesehen ist,
%            dann wird 'Quelltext' eingetragen
% #6  Zeilennummerierung *** funktioniert noch nicht, wird vorerst ignoriert ***
%     leer   als Standardwert -> ausschalten
%     true   als Spezialwert  -> einschalten
% **************************************************
% auch wenn die Variablen am Anfang dieser Datei nur lokal überschrieben werden,
% muss zwischen den Variablen von TemplateCode und TemplateCodeInside unterschieden werden.
% In TemplateCode werden die folgenden Variablen benutzt:
%      \wbtemplengthb für skipabove
%      \wbtemplengthc für skipbelow
%      \wbtempcounta  als Zwischenspeicher
%      \wbtemptexta   als Ausgabetext, der automatisch erzeugt wird
%
% In TemplateCodeInside werden die folgenden Variablen benutzt:
%      \wbtemplengtha für framelinewidth
%      \wbtemplengthd für innertopmargin
%      \wbtempcolorb  für die Schriftfarbe der rechten Box
% **************************************************
{
% Argumente für Hintergrund und Rahmen definieren
%      \wbtemplengtha für framelinewidth
\definecolor{framebackground}{gray}{0.9}
% Argumente mit Inhalt versehen
% #1 - Standard leer: als Code anzeigen
%        mit Inhalt: als Ausgabe anzeigen
\ifstr{#1}{}{\setlength{\wbtemplengtha}{0pt}}
{ \definecolor{framebackground}{rgb}{1.0,1.0,1.0}   
\setlength{\wbtemplengtha}{1pt}  }

% 2./3.Parameter in Variable übernehmen
%     es gelingt mir nicht, unten #2 und #3 direkt zuzuweisen
%\setlength{\wbtemplengthb}{#2}
%\setlength{\wbtemplengthc}{#3}

% 4./5.Parameter in Variable übernehmen
% der Box für den rechten Rahmen wird der richtige Text und die richtige Farbe zugewiesen
% Standard:     grün, 'Richtig'
% im Fall 'e':  rot,  'Falsch'
\renewcommand{\wbtempcolorb}{mydarkgreen}
\renewcommand{\wbtemptextb}{Richtig}
\ifstr{#4} {e} { \renewcommand{\wbtempcolorb}{red} \renewcommand{\wbtemptextb}{Falsch} } {} 

% Festlegen des oberen inneren Rands:
%    Standard als normaler Zeilenabstand
%    wenn es keine obere Box gibt, dann genügt der Standardabstand
\setlength{\wbtemplengthd}{0pt}
\ifstr{#4}{}{}{\setlength{\wbtemplengthd}{\baselineskip}}
\ifstr{#5}{}{}{\setlength{\wbtemplengthd}{\baselineskip}}

% Aufruf von mdframed mit den festgelegten Parametern
\begin{scriptsize}
%\begin{mdframed} [ backgroundcolor=framebackground, 
%linewidth=\wbtemplengtha, %skipabove=\wbtemplengthb, skipbelow=\wbtemplengthc, 
%splittopskip=5\baselineskip, splitbottomskip=5\baselineskip,
%skipabove=#2, skipbelow=#3, 
%innertopmargin=\wbtemplengthd, innerbottommargin=1ex ]
\begin{shaded}
\ttfamily 
% Anzeige der kleinen Boxen nur dann, wenn eine davon nicht leer ist
\ifstr{#5}{}
% wenn die rechte Box vorgesehen ist und die linke nicht, kommt links der Standardtext
{ \ifstr{#4}{}{}
   {\fbox{Quelltext} \hfill \textbf{\color{\wbtempcolorb} \fcolorbox{black}{white}{\wbtemptextb}} } 
}
% andernfalls kommt links auf jeden Fall die vorgesehene Box
{  \fbox{#5}
% und bei Bedarf zusätzlich rechts die zweite Box
   \ifstr{#4}{}{}{\hfill \textbf{\color{\wbtempcolorb} \fcolorbox{black}{white}{\wbtemptextb}}}
}

%\ifstr{#6}{true}{\linenumbers[1]}{}
%\begin{lstlisting}
\begin{flushleft}
}  % Ende der begin-Anweisungen, es folgen die end-Anweisungen
{\end{flushleft}
%\end{lstlisting}
%\end{mdframed}
\end{shaded}
\end{scriptsize}}


\newcommand{\TemplateCode}[9]
% no more parameters
% **************************************************
% Template Code
% Darstellung von Code (einzeln oder mehrfach, Kopf- und Fußzeile,
%      mit oder ohne Ausgabe)
% wird für folgende Wiki-Vorlagen benutzt:
%      Regal:Programmierung: Vorlage:Code
%      Regal:Programmierung: Vorlage:NETCode
%      Regal:Programmierung: Vorlage:MultiCode
%
% #1   Inhalt der Kopfzeile
%      kann auch leer sein
% #2   Inhalt der Fußzeile
%      kann auch leer sein
% #3   spezieller Hinweis, verwendet für die Zusatzbox rechts
%      leer   als Standardwert
%      e      steht für error, also Zusatz 'Falsch' in rot
%      v      steht für valid, also Zusatz 'Richtig' in grün (genauer: jeder beliebige andere Inhalt)
% #4   spezieller Text für die Zusatzbox links
%      leer   als Standardwert
%      spezieller Hinweis: Wenn dieser Text leer ist, aber 'e' oder 'v' vorgesehen ist,
%            dann wird 'Quelltext' eingetragen
%      spezieller Hinweis: Wenn der Text #6 vorgesehen ist und außerdem mindestens 
%                 einer der Texte #7/#8/#9, dann muss sinnvollerweise der Parameter #4 
%                 für den Text #6 verwendet werden
% #5   Inhalt für den Ausgabe-Teil
%      kann auch leer sein
% #6   Inhalt für den Quelltext 1
%      kann auch leer sein
%      bei NETCode und MultiCode der Text für C++
%      bei DualCode der Text für lang1
% #7   Inhalt für den Quelltext 2
%      kann auch leer sein
%      bei NETCode und MultiCode der Text für C#
%      bei DualCode der Text für lang2
% #8   Inhalt für den Quelltext 3
%      kann auch leer sein
%      bei NETCode und MultiCode der Text für VB.NET
% #9   Inhalt für den Quelltext 4
%      kann auch leer sein
%      bei MultiCode der Text für Delphi Prism
% **************************************************
% Hier werden die folgenden Variablen von wiki-templates.tex benutzt; 
% diese dürfen in TemplateCodeInside nicht benutzt werden, weil sie unter Umständen
% überschrieben werden könnten.
%      \wbtemplengthb für skipabove
%      \wbtemplengthc für skipbelow
%      \wbtempcounta  als Zwischenspeicher
%      \wbtemptexta   als Ausgabetext, der automatisch erzeugt wird
%
% **************************************************
{
% Die Umgebung Template Code Inside setzt die Schriftgröße ebenfalls fest,
% dies soll aber auch für Kopf- und Fußzeile gelten.
\begin{scriptsize}

% #1   Kopfzeile ausgeben, sofern vorgesehen
%      wenn sie nicht vorgesehen ist, muss der obere Abstand definiert werden
%      \wbtemplengthb für skipabove
\ifstr{#1}{}
{ \setlength{\wbtemplengthb}{\baselineskip} }
{ \minisec{\normalfont \scriptsize \centering \textbf{#1} \\[-0.5\baselineskip]}
  \setlength{\wbtemplengthb}{0pt} }

% #2   unterer Abstand ist standardmäßig 0 pt, aber beim letzten Abschnitt 
%      ohne Fußzeile ist der Abstand festzusetzen
\setlength{\wbtemplengthc}{0pt}
%      \wbtemplengthc für skipbelow
% \wbtempcounta als temp-Variable verwenden, welcher Abschnitt der letzte ist
\wbtempcounta=0
% prüfe zunächst, bei welcher Ausgabe der "Abstand nachher" auf \baselineskip gesetzt werden muss;
% in allen anderen Fällen bleibt es beim Standardwert 0pt
% * nur erforderlich, wenn keine Fußzeile vorgesehen ist
% * wenn Ausgabe   #4 vorgesehen ist, dann dort
% * wenn Quellcode #9 vorgesehen ist, dann dort
% * wenn Quellcode #8 vorgesehen ist, dann dort
% * wenn Quellcode #7 vorgesehen ist, dann dort
% * wenn Quellcode #6 vorgesehen ist, dann dort
% das einfachste Verfahren ist, dies vorwärts zu prüfen
\ifstr{#2}{}{}{
  \ifstr{#6}{}{}{\wbtempcounta=6 }
  \ifstr{#7}{}{}{\wbtempcounta=7 }
  \ifstr{#8}{}{}{\wbtempcounta=8 }
  \ifstr{#9}{}{}{\wbtempcounta=9 }
  \ifstr{#4}{}{}{\wbtempcounta=10 }
}
  
% nach der ersten Ausgabe wird der "Abstand vorher" immer auf 0 gesetzt
% Quelltext 1 mit #6
\ifstr{#6}{}{}{
  % Abstand dahinter anpassen, sofern bei diesem Abstand vorgemerkt
  \ifnum\wbtempcounta=6 \setlength{\wbtemplengthc}{\baselineskip} 
     \else \setlength{\wbtemplengthc}{0pt} \fi
  \begin{TemplateCodeInside} {} {\wbtemplengthb} {\wbtemplengthc} {#3} {#5} {}
#6
  \end{TemplateCodeInside}
  \setlength{\wbtemplengthb}{0pt}
}  

% in gleicher Weise werden die weiteren Teile ausgegeben, bei #7 #8 #9 gibt es Standardtexte
% Quelltext 2 mit #7
\ifstr{#7}{}{}{
  % Abstand dahinter anpassen, sofern bei diesem Abstand vorgemerkt
  \ifnum\wbtempcounta=7 \setlength{\wbtemplengthc}{\baselineskip} 
     \else \setlength{\wbtemplengthc}{0pt} \fi
  \ifstr{#5}{}{\renewcommand{\wbtemptexta}{}}{\renewcommand{\wbtemptexta}{C\#-Quelltext}}
  \begin{TemplateCodeInside} {} {\wbtemplengthb} {\wbtemplengthc} {#3} {\wbtemptexta} {}
#7
  \end{TemplateCodeInside}
  \setlength{\wbtemplengthb}{0pt}
}  

% Quelltext 3 mit #8
\ifstr{#8}{}{}{
  % Abstand dahinter anpassen, sofern bei diesem Abstand vorgemerkt
  \ifnum\wbtempcounta=8 \setlength{\wbtemplengthc}{\baselineskip} 
     \else \setlength{\wbtemplengthc}{0pt} \fi
  \ifstr{#5}{}{\renewcommand{\wbtemptexta}{}}{\renewcommand{\wbtemptexta}{VB.NET-Quelltext}}
  \begin{TemplateCodeInside} {} {\wbtemplengthb} {\wbtemplengthc} {#3} {\wbtemptexta} {}
#8
  \end{TemplateCodeInside}
  \setlength{\wbtemplengthb}{0pt}
}  

% Quelltext 4 mit #9
\ifstr{#9}{}{}{
  % Abstand dahinter anpassen, sofern bei diesem Abstand vorgemerkt
  \ifnum\wbtempcounta=9 \setlength{\wbtemplengthc}{\baselineskip} 
     \else \setlength{\wbtemplengthc}{0pt} \fi
  \ifstr{#5}{}{\renewcommand{\wbtemptexta}{}}{\renewcommand{\wbtemptexta}{C\#-Quelltext}}
  \begin{TemplateCodeInside} {} {\wbtemplengthb} {\wbtemplengthc} {#3} {\wbtemptexta} {}
#9
  \end{TemplateCodeInside}
  \setlength{\wbtemplengthb}{0pt}
}  

% Ausgabetext mit #4
\ifstr{#4}{}{}{
  % Abstand dahinter anpassen, sofern bei diesem Abstand vorgemerkt
  \ifnum\wbtempcounta=10 \setlength{\wbtemplengthc}{\baselineskip} 
     \else \setlength{\wbtemplengthc}{0pt} \fi
  \ifstr{#5}{}{\renewcommand{\wbtemptexta}{}}{\renewcommand{\wbtemptexta}{Ausgabe}}
  \begin{TemplateCodeInside} {x} {\wbtemplengthb} {\wbtemplengthc} {} {\wbtemptexta} {}
#4
  \end{TemplateCodeInside}
  \setlength{\wbtemplengthb}{0pt}
}  
 
% #2   Fußzeile ausgeben, sofern vorgesehen
%      wenn sie nicht vorgesehen ist, muss der obere Abstand definiert werden
\ifstr{#2}{}{}
{ \centering \textbf{#2} \medskip \\ }

\end{scriptsize}
}

\begin{comment}
\newcommand{\TemplatePreformat}[1]
{\begin{TemplateCodeInside}{x}{\baselineskip}{\baselineskip}{}{}{}
#1
\end{TemplateCodeInside}
}

\newcommand{\TemplateSpaceIndent}[1]
{\begin{TemplateCodeInside}{x}{\baselineskip}{\baselineskip}{}{}{}
#1
\end{TemplateCodeInside}
}
\end{comment}

\newcommand{\ubung}{\ding{228} \textbf{Aufgabe:}~}







headers/templates.tex

\newcommand{\wbtempcolora}{white}
\newcommand{\wbtempcolorb}{white}
\newcommand{\wbtempcolorc}{white}
\newcommand{\wbtemptexta}{}
\newcommand{\wbtemptextb}{}
\newcommand{\wbtemptextc}{}
\newlength{\wbtemplengtha}
\setlength{\wbtemplengtha}{0pt}
\newlength{\wbtemplengthb}
\setlength{\wbtemplengthb}{0pt}
\newlength{\wbtemplengthc}
\setlength{\wbtemplengthc}{0pt}
\newlength{\wbtemplengthd}
\setlength{\wbtemplengthd}{0pt}
\newlength{\wbtemplengthe}
\setlength{\wbtemplengthe}{0pt}
\newcount\wbtempcounta
\wbtempcounta=0
\newcount\wbtempcountb
\wbtempcountb=0
\newcount\wbtempcountc
\wbtempcountc=0

\newcommand{\CPPAuthorsTemplate}[4]{
\LaTeXZeroBoxTemplate{
The following people are authors to this book:

#3

You can verify who has contributed to this book by examining the history logs at Wikibooks (http://en.wikibooks.org/).

Acknowledgment is given for using some contents from other works like #1, as from the authors #2.

The above authors release their work under the following license:

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. In short: you are free to share and to make derivatives of this work under the conditions that you appropriately attribute it, and that you only distribute it under the same, similar or a compatible license. Any of the above conditions can be waived if you get permission from the copyright holder.
Unless otherwise noted, #4 used in this book have their own copyright, may use different licenses than the one used here, and were not created by the above authors. The authors, contributors, and licenses used should be acknowledged separately.}
}


\newcommand{\tlTemplate}[1]{{\{\{{\ttfamily #1}\}\}}}

\newcommand{\matrixdimTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
{\bfseries Matrix Dimensions: }\\
A: $p \times p$ \\
B:  $p \times q$\\
C:  $r \times p$\\
D:  $r \times q$\\
\end{myshaded}
}

\newcommand{\matlabTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
This operation can be performed using this MATLAB command:
{\ttfamily #1}
\end{myshaded}}

\newcommand{\PrintUnitPage}[3]{\pagebreak
\begin{flushleft}
{\bfseries \Large #1}
\end{flushleft}

\begin{longtable}{>{\RaggedRight}p{0.5\linewidth}>{\RaggedRight}p{0.5\linewidth}}
& #2
\end{longtable}}

\newcommand{\LaTeXCodeTipTemplate}[3]{

\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
#1 \\
#2 \\
#3
\end{myshaded}
}

\newcommand{\DisassemblySyntax}[1]{

\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
This code example uses #1 Syntax
\end{myshaded}}


\newcommand{\LaTeXDeutschTemplate}[1]{ {\bfseries deutsch:} #1 }



\newcommand{\LaTeXNullTemplate}[1]{}
\newcommand{\LatexSymbol}[1]{\LaTeX}

\newcommand{\LaTeXDoubleBoxTemplate}[2]{

\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #1} \\
#2
\end{myshaded}
\end{minipage}

}


\newcommand{\LaTeXSimpleBoxTemplate}[2]{
{\bfseries #1} \\
#2
}

\newcommand{\SolutionBoxTemplate}[2]{
#2
}


\newcommand{\LaTeXDoubleBoxOpenTemplate}[2]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #1} \\
#2
\end{myshaded}

}


\newcommand{\LaTeXLatinExcerciseTemplate}[3]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries Excercise: #1} \\
#2 \\
{\bfseries Solution}
#3
\end{myshaded}

}


\newcommand{\LaTeXShadedColorBoxTemplate}[2]{
{\linewidth}#1\begin{myshaded}
#2
\end{myshaded}
}

\newcommand{\PGP}[1]{PGP:#1}


\newcommand{\ADAFile}[1]{\LaTeXZeroBoxTemplate{File: #1}}
\newcommand{\ADASample}[1]{\LaTeXZeroBoxTemplate{This code sample is also available in #1}}


\newcommand{\LaTeXZeroBoxTemplate}[1]{
\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
\end{minipage}
}

\newcommand{\LaTeXZeroBoxOpenTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
}

\newcommand{\PDFLink}[1]{
\textbf{PDF} #1
}

\newcommand{\SonnensystemFakten}[3]{
#1 \\
\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #2}  \\
#3 \\
\end{myshaded}
}


\newcommand{\VorlageReferenzenEintrag}[3]{
\begin{longtable}{p{0.2\linewidth}p{0.8\linewidth}}

{[\bfseries #1]} & {\itshape #2} #3 \\
\end{longtable}

}

\newcommand{\MBOX}[2]{\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
\begin{longtable}{p{0.2\linewidth}p{0.7\linewidth}}
#1 & #2 \\
\end{longtable}
\end{myshaded}}



\newcommand{\LaTeXIdentityTemplate}[1]{#1
}

\newcommand{\TychoBrahe}[1]{Tycho Brahe}

\newcommand{\LaTeXPlainBoxTemplate}[1]{
\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded} 
#1
\end{myshaded}
\end{minipage}
}


\newcommand{\Hinweis}[1]{
\begin{TemplateInfo}{{\Huge \textcircled{\LARGE !}}}{Hinweis}
#1
\end{TemplateInfo}}



\newcommand{\LaTexInfoTemplateOne}[1]{
\begin{TemplateInfo}{\Info}{Information}
#1
\end{TemplateInfo}}

\newcommand{\EqnTemplate}[1]{
\begin{flushright}
\textbf{[#1]}
\end{flushright}}

\newcommand{\RefTemplate}[1]{[#1]}


\newcommand{\LaTeXGCCTakeTemplate}[1]{
\LaTeXDoubleBoxTemplate{Take home:}{#1}
}

\newcommand{\LaTeXEditorNote}[1]{\LaTeXDoubleBoxTemplate{Editor's note}{#1}}

\newcommand{\BNPForVersion}[1]{
\LaTeXInfoTemplateOne{Applicable Blender version: #1}
}

\newcommand{\LaTeXInfoTemplateOne}[1]{
\begin{TemplateInfo}{\Info}{Information}
#1
\end{TemplateInfo}
}


\newcommand{\LaTexHelpFulHintTemplate}[1]{
\LaTeXDoubleBoxTemplate{Helpful Hint:}{#1}
}

\newcommand{\MyLaTeXTemplate}[3]{
\LaTeXDoubleBoxTemplate{MyLaTeXTemplate1:}{#1 \\ #2 \\ #3}
}

\newcommand{\TemplatePreformat}[1]{
\par
\begin{scriptsize}
%\setlength{\baselineskip}{0.9\baselineskip}
\ttfamily
#1
\par
\end{scriptsize}
}

\newcommand{\TemplateSpaceIndent}[1]{
\begin{scriptsize}
\begin{framed}
\ttfamily
#1
\end{framed}
\end{scriptsize}
}

\newcommand{\GenericColorBox}[2]
{
\newline
\begin{tabular}[t]{p{0.6cm}p{4cm}}
#1&#2\\  
\end{tabular}
}

\newcommand{\legendNamedColorBox}[2]
{
  \GenericColorBox{
    \parbox[t]{0.5\linewidth}{
      \textsuperscript{
        \fcolorbox{black}{#1}{
          \Huge{\,\,}
        }
      }
    }
  }{
    #2
  } 
}

\newcommand{\legendColorBox}[2]
{
  \GenericColorBox{
    \definecolor{tempColor}{rgb}{#1}
    \parbox[t]{0.5\linewidth}{
      \textsuperscript{
        \fcolorbox{black}{tempColor}{
           \Huge{\,\,}
        }
      }
    }
  }{
    #2
  } 
}



%\newcommand{\ubung} {{\LARGE $\triangleright$}}
\newcommand{\ubung}{\ding{228} \textbf{Aufgabe:}\,}

\newcommand{\TemplateSource}[1]
{
%\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{true}
\begin{scriptsize}
\begin{myshaded}\ttfamily
#1
\end{myshaded}
\end{scriptsize}
%\end{TemplateCodeInside}
}


\newenvironment{TemplateInfo}[2]
% no more parameters
%****************************************************
% Template Info
% Kasten mit Logo, Titelzeile, Text
% kann für folgende Wiki-Vorlagen benutzt werden:
%          Vorlage:merke, Vorlage:Achtung u.ä.
%
% #1 Logo  (optional) default: \Info
% #2 Titel (optional) default: Information; könnte theoretisch auch leer sein,
%                     das ist aber wegen des Logos nicht sinnvoll
%****************************************************
{
% Definition des Kastens mit Standardwerten
% u.U. ist linewidth=1pt erorderlich
\begin{mdframed}[ skipabove=\baselineskip, skipbelow=\baselineskip,
linewidth=1pt,
innertopmargin=0, innerbottommargin=0 ]
% linksbündig ist besser, weil es in der Regel wenige Zeilen sind, die teilweise kurz sind
\begin{flushleft}
% Überschrift größer darstellen
\begin{Large}
% #1 wird als Logo verwendet, Vorgabe ist \Info aus marvosym
%    für andere Logos muss ggf. das Package eingebunden werden
%    das Logo kann auch mit einer Größe verbunden werden, z.B. \LARGE\danger als #1
{#1 } \
% #2 wird als Titelzeile verwendet, Vorgabe ist 'Information'
{\bfseries #2}
\medskip \end{Large} \\
} % Ende der begin-Anweisungen, es folgenden die end-Anweisungen
{ \end{flushleft}\end{mdframed} }


\newcommand{\TemplateHeaderExercise}[3]
% no more parameters
%****************************************************
% Template Header Exercise
% Rahmen als minisec mit Nummer der Aufgabe und Titel und grauem Hintergrund
% ist gedacht für folgende Wiki-Vorlage:
%          Vorlage:Übung4
% kann genauso für den Aufgaben-Teil folgender Vorlagen verwendet werden:
%          Vorlage:Übung    (wird zz. nur einmal benutzt)
%          Vorlage:Übung2   (wird zz. gar nicht benutzt)
%          Vorlage:Übung3   (wird zz. in 2 Büchern häufig benutzt)
%          C++-Programmierung/ Vorlage:Aufgabe  (wird zz. nur selten benutzt,
%                            ist in LatexRenderer.hs schon erledigt)
%
% #1 Text   (optional) 'Aufgabe' oder 'Übung', kann auch leer sein
% #2 Nummer (Pflicht)  könnte theoretisch auch leer sein, aber dann sieht die Zeile
%                      seltsam aus; oder die if-Abfragen wären unnötig komplex
% #3 Titel  (optional) Inhaltsangabe der Aufgabe, kann auch leer sein
%****************************************************
{
\minisec{\normalfont \fcolorbox{black}{shadecolor}{\large \, #1 #2 \ifx{#3}{}{}\else{-- #3}\fi \,} \medskip }
}
 
\newcommand{\TemplateHeaderSolution}[3]
% no more parameters
%****************************************************
% Template Header Solution
% Rahmen als minisec mit Nummer der Aufgabe und Titel und grauem Hintergrund
%
% ist gedacht für den Lösungen-Teil der Vorlagen und wird genauso
% verwendet wie \TemplateHeaderExercise
%****************************************************
{
\minisec{\normalfont \fcolorbox{black}{shadecolor}{\large \, Lösung zu #1 #2 \ifx{#3}{}{}\else{-- #3}\fi \,} \medskip }
}

\newcommand{\TemplateUbungDrei}[4]
{
\TemplateHeaderExercise{Übung}{#1}{#2}
#3
\TemplateHeaderSolution{Übung}{#1}{#2}
#4
}

\newcommand{\Mywrapfigure}[2]
{
\begin{wrapfigure}{r}{#1\textwidth}
\begin{center}
#2
\end{center}
\end{wrapfigure}
}



\newcommand{\Mymakebox}[2]
{
\begin{minipage}{#1\textwidth}
#2
\end{minipage}
}

\newcommand{\MyBlau}[1]{
\textcolor{darkblue}{#1}
} 
\newcommand{\MyRot}[1]{
\textcolor{red}{#1}
} 
\newcommand{\MyGrun}[1]{
\textcolor{mydarkgreen}{#1}
} 
\newcommand{\MyBg}[2]{
\fcolorbox{#1}{#1}{#2} 
} 

\newcommand{\BNPModule}[1]{
the "#1" module
} 


\newcommand{\LaTeXMerkeZweiTemplate}[1]{\LaTeXDoubleBoxTemplate{Merke}{#1}}

\newcommand{\LaTeXDefinitionTemplate}[1]{\LaTeXDoubleBoxTemplate{Definition}{#1}}

\newcommand{\LaTeXAnorganischeChemieFuerSchuelerVorlageMerksatzTemplate}[1]{\LaTeXDoubleBoxTemplate{Merksatz}{#1}}

\newcommand{\LaTeXTextTemplate}[1]{\LaTeXDoubleBoxTemplate{}{#1}}

\newcommand{\LaTeXExampleTemplate}[1]{\LaTeXDoubleBoxTemplate{Example:}{#1}}

\newcommand{\LaTeXexampleTemplate}[1]{\LaTeXDoubleBoxTemplate{Example:}{#1}}

\newcommand{\LaTeXPTPBoxTemplate}[1]{\LaTeXDoubleBoxTemplate{Points to ponder:}{#1}}

\newcommand{\LaTeXNOTETemplate}[2]{\LaTeXDoubleBoxTemplate{Note:}{#1 #2}}

\newcommand{\LaTeXNotizTemplate}[1]{\LaTeXDoubleBoxTemplate{Notiz:}{#1}}

\newcommand{\LaTeXbodynoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXcquoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Quote:}{#1}}

\newcommand{\LaTeXCquoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Quote:}{#1}}

\newcommand{\LaTeXSideNoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXsideNoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXExercisesTemplate}[1]{\LaTeXDoubleBoxTemplate{Exercises:}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageTippTemplate}[1]{\LaTeXDoubleBoxTemplate{Tip}{#1}}

\newcommand{\LaTeXTipTemplate}[1]{\LaTeXDoubleBoxTemplate{Tip}{#1}}
\newcommand{\LaTeXUnknownTemplate}[1]{unknown}

\newcommand{\LaTeXCppProgrammierungVorlageHinweisTemplate}[1]{\LaTeXDoubleBoxTemplate{Hinweis}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageSpaeterImBuchTemplate}[1]{\LaTeXDoubleBoxTemplate{Thema wird später näher erläutert...}{#1}}

\newcommand{\SGreen}[1]{This page uses material from Dr. Sheldon Green's Hypertext Help with LaTeX.}
\newcommand{\ARoberts}[1]{This page uses material from Andy Roberts' Getting to grips with LaTeX with permission from the author.}

\newcommand{\LaTeXCppProgrammierungVorlageAnderesBuchTemplate}[1]{\LaTeXDoubleBoxTemplate{Buchempfehlung}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageNichtNaeherBeschriebenTemplate}[1]{\LaTeXDoubleBoxTemplate{Nicht Thema dieses Buches...}{#1}}

\newcommand{\LaTeXPythonUnterLinuxVorlagenVorlageDetailsTemplate}[1]{\LaTeXDoubleBoxTemplate{Details}{#1}}

\newcommand{\LaTeXChapterTemplate}[1]{\chapter{#1}
\myminitoc
}

\newcommand{\Sample}[2]{
\begin{longtable}{|p{\linewidth}|}
\hline
#1 \\ \hline
#2 \\ \hline
\end{longtable}
}

\newcommand{\Syntax}[1]{
\LaTeXDoubleBoxTemplate{Syntax}{#1}}


\newcommand{\LaTeXTT}[1]{{\ttfamily #1}}
\newcommand{\LaTeXBF}[1]{{\bfseries #1}}
\newcommand{\LaTeXIT}[1]{{\itshape #1}}



\newcommand{\LaTeXCenter}[1]{
\begin{center}
#1
\end{center}}


\newcommand{\BNPManual}[2]{The Blender Manual page on #1 at \url{http://wiki.blender.org/index.php/Doc:Manual/#1}}
\newcommand{\BNPWeb}[2]{#1 at \url{#2}}

\newcommand{\Noframecenter}[2]{
\begin{tablular}{p{\linewidth}}
#2\\ 
#1 
\end{tabluar}
}


\newcommand{\LaTeXTTUlineTemplate}[1]{{\ttfamily \uline{#1}}
}



\newcommand{\PythonUnterLinuxDenulltails}[1]{
\begin{tabular}{|p{\linewidth}|}\hline
\textbf{Denulltails} \\ \hline
#1 \\ \hline 
\end{tabular}}

\newcommand{\GNURTip}[1]{
\begin{longtable}{|p{\linewidth}|}\hline
\textbf{Tip} \\ \hline
#1 \\ \hline 
\end{longtable}}

\newcommand{\PerlUebung}[1]{
\begin{longtable}{|p{\linewidth}|}\hline
#1 \\ \hline 
\end{longtable}}

\newcommand{\PerlNotiz}[1]{
\begin{table}{|p{\linewidth}|}\hline
#1 \\ \hline 
\end{table}}

\newcommand{\ACFSZusatz}[1]{\textbf{ Zusatzinformation }}
\newcommand{\ACFSVorlageB}[1]{\textbf{ Beobachtung }}
\newcommand{\ACFSVorlageV}[1]{\textbf{ Versuchsbeschreibung }}
\newcommand{\TemplateHeaderSolutionUebung}[2]{\TemplateHeaderSolution{Übung}{#1}{#2}}
\newcommand{\TemplateHeaderExerciseUebung}[2]{\TemplateHeaderExercise{Übung}{#1}{#2}}

\newcommand{\ChemTemplate}[9]{\texttt{     
#1#2#3#4#5#6#7#8#9}}


\newcommand{\WaningTemplate}[1]{     
\begin{TemplateInfo}{\danger}{Warning}
#1
\end{TemplateInfo}}


\newcommand{\WarnungTemplate}[1]{     
\begin{TemplateInfo}{\danger}{Warnung}
#1
\end{TemplateInfo}}


\newcommand{\BlenderAlignedToViewIssue}[1]{     
\begin{TemplateInfo}{\danger}{Blender3d Aligned to view issue}
This tutorial relies on objects being created so that they are aligned to the view that you’re looking through. Versions 2.48 and above have changed the way this works. Visit Aligned (\url{http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Aligned_to_view_issue}) to view issue to understand the settings that need to be changed.
\end{TemplateInfo}}


\newcommand{\BlenderVersion}[1]{     
{\itshape Diese Seite bezieht sich auf }{\bfseries \quad Blender Version #1}}

\newcommand{\Literal}[1]{{\itshape #1}}

\newcommand{\JavaIllustration}[3]{
\begin{tablular}
{Figure #1: #2}
\\
#3
\end{ltablular}
}

\newcommand{\PDFLink}[1]{#1 PDF}

\newcommand{\Ja}[1]{\Checkmark {\bfseries Ja}}
\newcommand{\Nein}[1]{\XSolidBrush {\bfseries Nein}}

\newcommand{\SVGVersions}[8]{
{\scriptsize
\begin{tabular}{|p{0.45\linewidth}|p{0.13\linewidth}|}\hline
Squiggle (Batik) & #1 \\ \hline
Opera (Presto) & #2 \\ \hline
Firefox (Gecko; auch SeaMonkey, Iceape, Iceweasel etc) & #3 \\ \hline
Konqueror (KSVG) & #4 \\ \hline
Safari (Webkit) & #5 \\ \hline
Chrome (Webkit) & #6 \\ \hline
Microsoft Internet Explorer (Trident) & #7 \\ \hline
librsvg & #8 \\\hline
\end{tabular}}

}


\theoremstyle{plain}
\newtheorem{satz}{Satz}
\newtheorem{beweis}{Beweis}
\newtheorem{beispiel}{Beispiel}

\theoremstyle{definition}
\newtheorem{mydef}{Definition}

\newcommand{\NFSatz}[2]{\begin{satz}#1\end{satz}#2}

\newcommand{\NFDef}[2]{\begin{mydef}#1\end{mydef}#2}

\newcommand{\NFBeweis}[2]{\begin{beweis}#1\end{beweis}#2}

\newcommand{\NFBeispiel}[2]{\begin{beweis}#1\end{beweis}#2}

\newcommand{\NFFrage}[3]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\itshape \uline{#1}: #2} \\
#3
\end{myshaded}

}

\newcommand{\NFFrageB}[2]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\itshape \uline{Frage}: #1} \\
#2
\end{myshaded}

}


\newcommand{\NFVertiefung}[1]{
{\bfseries Vertiefung:} \\
Der Inhalt des folgenden Abschnitts ist eine Vertiefung des Stoffes. Für die nächsten Kapitel ist es nicht notwendig, dass du dieses Kapitel gelesen hast.

}







headers/title.tex

\publishers{Wikibooks.org}
\title{Serial Programming}







headers/unicodes.tex



\newcommand{\R}{\ensuremath{\mathbb{R}}}
\newcommand{\N}{\ensuremath{\mathbb{N}}}
\newcommand{\Z}{\ensuremath{\mathbb{Z}}}
\newcommand{\Q}{\ensuremath{\mathbb{Q}}}
\renewcommand{\C}{\ensuremath{\mathbb{C}}}








main/main.out

\BOOKMARK [0][]{chapter.1}{\376\377\0001\000\040\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n\000\040\000a\000n\000d\000\040\000O\000S\000I\000\040\000M\000o\000d\000e\000l}{}% 1
\BOOKMARK [1][]{section.1.1}{\376\377\0001\000.\0001\000\040\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n}{chapter.1}% 2
\BOOKMARK [1][]{section.1.2}{\376\377\0001\000.\0002\000\040\000W\000h\000y\000\040\000S\000e\000r\000i\000a\000l\000\040\000C\000o\000m\000m\000u\000n\000i\000c\000a\000t\000i\000o\000n\000?}{chapter.1}% 3
\BOOKMARK [1][]{section.1.3}{\376\377\0001\000.\0003\000\040\000O\000S\000I\000\040\000L\000a\000y\000e\000r\000e\000d\000\040\000N\000e\000t\000w\000o\000r\000k\000\040\000C\000o\000m\000m\000u\000n\000i\000c\000a\000t\000i\000o\000n\000s\000\040\000M\000o\000d\000e\000l}{chapter.1}% 4
\BOOKMARK [1][]{section.1.4}{\376\377\0001\000.\0004\000\040\000S\000o\000f\000t\000w\000a\000r\000e\000\040\000E\000x\000a\000m\000p\000l\000e\000s}{chapter.1}% 5
\BOOKMARK [1][]{section.1.5}{\376\377\0001\000.\0005\000\040\000A\000p\000p\000l\000i\000c\000a\000t\000i\000o\000n\000s\000\040\000i\000n\000\040\000E\000d\000u\000c\000a\000t\000i\000o\000n}{chapter.1}% 6
\BOOKMARK [1][]{section.1.6}{\376\377\0001\000.\0006\000\040\000E\000x\000t\000e\000r\000n\000a\000l\000\040\000L\000i\000n\000k\000s\000\040\000/\000\040\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{chapter.1}% 7
\BOOKMARK [1][]{section.1.7}{\376\377\0001\000.\0007\000\040\000O\000t\000h\000e\000r\000\040\000S\000e\000r\000i\000a\000l\000\040\000P\000r\000o\000g\000r\000a\000m\000m\000i\000n\000g\000\040\000A\000r\000t\000i\000c\000l\000e\000s}{chapter.1}% 8
\BOOKMARK [0][]{chapter.2}{\376\377\0002\000\040\000R\000S\000-\0002\0003\0002\000\040\000C\000o\000n\000n\000e\000c\000t\000i\000o\000n\000s}{}% 9
\BOOKMARK [1][]{section.2.1}{\376\377\0002\000.\0001\000\040\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n}{chapter.2}% 10
\BOOKMARK [1][]{section.2.2}{\376\377\0002\000.\0002\000\040\000D\000a\000t\000a\000\040\000T\000e\000r\000m\000i\000n\000a\000l\000/\000C\000o\000m\000m\000u\000n\000i\000c\000a\000t\000i\000o\000n\000s\000\040\000E\000q\000u\000i\000p\000m\000e\000n\000t}{chapter.2}% 11
\BOOKMARK [1][]{section.2.3}{\376\377\0002\000.\0003\000\040\000C\000o\000n\000n\000e\000c\000t\000i\000o\000n\000\040\000T\000y\000p\000e\000s}{chapter.2}% 12
\BOOKMARK [1][]{section.2.4}{\376\377\0002\000.\0004\000\040\000W\000i\000r\000i\000n\000g\000\040\000P\000i\000n\000s\000\040\000E\000x\000p\000l\000a\000i\000n\000e\000d}{chapter.2}% 13
\BOOKMARK [1][]{section.2.5}{\376\377\0002\000.\0005\000\040\000B\000a\000u\000d\000\040\000R\000a\000t\000e\000s\000\040\000E\000x\000p\000l\000a\000i\000n\000e\000d}{chapter.2}% 14
\BOOKMARK [1][]{section.2.6}{\376\377\0002\000.\0006\000\040\000S\000i\000g\000n\000a\000l\000\040\000B\000i\000t\000s}{chapter.2}% 15
\BOOKMARK [1][]{section.2.7}{\376\377\0002\000.\0007\000\040\000R\000e\000l\000a\000t\000i\000o\000n\000s\000h\000i\000p\000\040\000o\000f\000\040\000B\000a\000u\000d\000\040\000R\000a\000t\000e\000\040\000t\000o\000\040\000M\000a\000x\000i\000m\000u\000m\000\040\000D\000i\000s\000t\000a\000n\000c\000e}{chapter.2}% 16
\BOOKMARK [1][]{section.2.8}{\376\377\0002\000.\0008\000\040\000E\000x\000t\000e\000r\000n\000a\000l\000\040\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{chapter.2}% 17
\BOOKMARK [1][]{section.2.9}{\376\377\0002\000.\0009\000\040\000O\000t\000h\000e\000r\000\040\000S\000e\000r\000i\000a\000l\000\040\000P\000r\000o\000g\000r\000a\000m\000m\000i\000n\000g\000\040\000A\000r\000t\000i\000c\000l\000e\000s}{chapter.2}% 18
\BOOKMARK [0][]{chapter.3}{\376\377\0003\000\040\0008\0002\0005\0000\000\040\000U\000A\000R\000T\000\040\000P\000r\000o\000g\000r\000a\000m\000m\000i\000n\000g}{}% 19
\BOOKMARK [1][]{section.3.1}{\376\377\0003\000.\0001\000\040\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n}{chapter.3}% 20
\BOOKMARK [1][]{section.3.2}{\376\377\0003\000.\0002\000\040\0008\0000\0008\0006\000\040\000I\000/\000O\000\040\000p\000o\000r\000t\000s}{chapter.3}% 21
\BOOKMARK [1][]{section.3.3}{\376\377\0003\000.\0003\000\040\000x\0008\0006\000\040\000P\000r\000o\000c\000e\000s\000s\000o\000r\000\040\000I\000n\000t\000e\000r\000r\000u\000p\000t\000s}{chapter.3}% 22
\BOOKMARK [1][]{section.3.4}{\376\377\0003\000.\0004\000\040\0008\0002\0005\0009\000\040\000P\000I\000C\000\040\000\050\000P\000r\000o\000g\000r\000a\000m\000m\000a\000b\000l\000e\000\040\000I\000n\000t\000e\000r\000r\000u\000p\000t\000\040\000C\000o\000n\000t\000r\000o\000l\000l\000e\000r\000\051}{chapter.3}% 23
\BOOKMARK [1][]{section.3.5}{\376\377\0003\000.\0005\000\040\000S\000e\000r\000i\000a\000l\000\040\000C\000O\000M\000\040\000P\000o\000r\000t\000\040\000M\000e\000m\000o\000r\000y\000\040\000a\000n\000d\000\040\000I\000/\000O\000\040\000A\000l\000l\000o\000c\000a\000t\000i\000o\000n}{chapter.3}% 24
\BOOKMARK [1][]{section.3.6}{\376\377\0003\000.\0006\000\040\000U\000A\000R\000T\000\040\000R\000e\000g\000i\000s\000t\000e\000r\000s}{chapter.3}% 25
\BOOKMARK [1][]{section.3.7}{\376\377\0003\000.\0007\000\040\000S\000o\000f\000t\000w\000a\000r\000e\000\040\000I\000d\000e\000n\000t\000i\000f\000i\000c\000a\000t\000i\000o\000n\000\040\000o\000f\000\040\000t\000h\000e\000\040\000U\000A\000R\000T}{chapter.3}% 26
\BOOKMARK [1][]{section.3.8}{\376\377\0003\000.\0008\000\040\000E\000x\000t\000e\000r\000n\000a\000l\000\040\000R\000e\000f\000e\000r\000e\000n\000c\000e\000s}{chapter.3}% 27
\BOOKMARK [1][]{section.3.9}{\376\377\0003\000.\0009\000\040\000O\000t\000h\000e\000r\000\040\000S\000e\000r\000i\000a\000l\000\040\000P\000r\000o\000g\000r\000a\000m\000m\000i\000n\000g\000\040\000A\000r\000t\000i\000c\000l\000e\000s}{chapter.3}% 28
\BOOKMARK [0][]{chapter.4}{\376\377\0004\000\040\000S\000e\000r\000i\000a\000l\000\040\000D\000O\000S}{}% 29
\BOOKMARK [1][]{section.4.1}{\376\377\0004\000.\0001\000\040\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n}{chapter.4}% 30
\BOOKMARK [1][]{section.4.2}{\376\377\0004\000.\0002\000\040\000H\000e\000l\000l\000o\000\040\000W\000o\000r\000l\000d\000,\000\040\000S\000e\000r\000i\000a\000l\000\040\000D\000a\000t\000a\000\040\000V\000e\000r\000s\000i\000o\000n}{chapter.4}% 31
\BOOKMARK [1][]{section.4.3}{\376\377\0004\000.\0003\000\040\000F\000i\000n\000d\000i\000n\000g\000\040\000t\000h\000e\000\040\000P\000o\000r\000t\000\040\000I\000/\000O\000\040\000A\000d\000d\000r\000e\000s\000s\000\040\000f\000o\000r\000\040\000t\000h\000e\000\040\000U\000A\000R\000T}{chapter.4}% 32
\BOOKMARK [1][]{section.4.4}{\376\377\0004\000.\0004\000\040\000M\000a\000k\000i\000n\000g\000\040\000m\000o\000d\000i\000f\000i\000c\000a\000t\000i\000o\000n\000s\000\040\000t\000o\000\040\000U\000A\000R\000T\000\040\000R\000e\000g\000i\000s\000t\000e\000r\000s}{chapter.4}% 33
\BOOKMARK [1][]{section.4.5}{\376\377\0004\000.\0005\000\040\000B\000a\000s\000i\000c\000\040\000S\000e\000r\000i\000a\000l\000\040\000I\000n\000p\000u\000t}{chapter.4}% 34
\BOOKMARK [1][]{section.4.6}{\376\377\0004\000.\0006\000\040\000I\000n\000t\000e\000r\000r\000u\000p\000t\000\040\000D\000r\000i\000v\000e\000r\000s\000\040\000i\000n\000\040\000D\000O\000S}{chapter.4}% 35
\BOOKMARK [1][]{section.4.7}{\376\377\0004\000.\0007\000\040\000T\000e\000r\000m\000i\000n\000a\000l\000\040\000P\000r\000o\000g\000r\000a\000m\000\040\000R\000e\000v\000i\000s\000i\000t\000e\000d}{chapter.4}% 36
\BOOKMARK [0][]{chapter.5}{\376\377\0005\000\040\000S\000e\000r\000i\000a\000l\000\040\000L\000i\000n\000u\000x}{}% 37
\BOOKMARK [1][]{section.5.1}{\376\377\0005\000.\0001\000\040\000T\000h\000e\000\040\000C\000l\000a\000s\000s\000i\000c\000\040\000U\000n\000i\000x\000\040\000C\000\040\000A\000P\000I\000s\000\040\000f\000o\000r\000\040\000S\000e\000r\000i\000a\000l\000\040\000C\000o\000m\000m\000u\000n\000i\000c\000a\000t\000i\000o\000n}{chapter.5}% 38
\BOOKMARK [1][]{section.5.2}{\376\377\0005\000.\0002\000\040\000S\000e\000r\000i\000a\000l\000\040\000I\000/\000O\000\040\000o\000n\000\040\000t\000h\000e\000\040\000S\000h\000e\000l\000l\000\040\000C\000o\000m\000m\000a\000n\000d\000\040\000L\000i\000n\000e\000\040}{chapter.5}% 39
\BOOKMARK [1][]{section.5.3}{\376\377\0005\000.\0003\000\040\000S\000y\000s\000t\000e\000m\000\040\000C\000o\000n\000f\000i\000g\000u\000r\000a\000t\000i\000o\000n}{chapter.5}% 40
\BOOKMARK [1][]{section.5.4}{\376\377\0005\000.\0004\000\040\000O\000t\000h\000e\000r\000\040\000S\000e\000r\000i\000a\000l\000\040\000P\000r\000o\000g\000r\000a\000m\000m\000i\000n\000g\000\040\000A\000r\000t\000i\000c\000l\000e\000s}{chapter.5}% 41
\BOOKMARK [0][]{chapter.6}{\376\377\0006\000\040\000S\000e\000r\000i\000a\000l\000\040\000J\000a\000v\000a}{}% 42
\BOOKMARK [1][]{section.6.1}{\376\377\0006\000.\0001\000\040\000U\000s\000i\000n\000g\000\040\000J\000a\000v\000a\000\040\000f\000o\000r\000\040\000S\000e\000r\000i\000a\000l\000\040\000C\000o\000m\000m\000u\000n\000i\000c\000a\000t\000i\000o\000n}{chapter.6}% 43
\BOOKMARK [1][]{section.6.2}{\376\377\0006\000.\0002\000\040\000J\000a\000v\000a\000C\000o\000m\000m\000\040\000A\000P\000I}{chapter.6}% 44
\BOOKMARK [1][]{section.6.3}{\376\377\0006\000.\0003\000\040\000R\000x\000T\000x}{chapter.6}% 45
\BOOKMARK [1][]{section.6.4}{\376\377\0006\000.\0004\000\040\000S\000e\000e\000\040\000a\000l\000s\000o}{chapter.6}% 46
\BOOKMARK [0][]{chapter.7}{\376\377\0007\000\040\000F\000o\000r\000m\000i\000n\000g\000\040\000D\000a\000t\000a\000\040\000P\000a\000c\000k\000e\000t\000s}{}% 47
\BOOKMARK [1][]{section.7.1}{\376\377\0007\000.\0001\000\040\000F\000o\000r\000\040\000f\000u\000r\000t\000h\000e\000r\000\040\000r\000e\000a\000d\000i\000n\000g}{chapter.7}% 48
\BOOKMARK [0][]{chapter.8}{\376\377\0008\000\040\000E\000r\000r\000o\000r\000\040\000C\000o\000r\000r\000e\000c\000t\000i\000o\000n\000\040\000M\000e\000t\000h\000o\000d\000s}{}% 49
\BOOKMARK [1][]{section.8.1}{\376\377\0008\000.\0001\000\040\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n}{chapter.8}% 50
\BOOKMARK [1][]{section.8.2}{\376\377\0008\000.\0002\000\040\000A\000C\000K\000-\000N\000A\000K}{chapter.8}% 51
\BOOKMARK [1][]{section.8.3}{\376\377\0008\000.\0003\000\040\000F\000E\000C}{chapter.8}% 52
\BOOKMARK [1][]{section.8.4}{\376\377\0008\000.\0004\000\040\000P\000r\000e\000t\000e\000n\000d\000\040\000I\000t\000\040\000N\000e\000v\000e\000r\000\040\000H\000a\000p\000p\000e\000n\000e\000d}{chapter.8}% 53
\BOOKMARK [1][]{section.8.5}{\376\377\0008\000.\0005\000\040\000c\000o\000m\000b\000i\000n\000a\000t\000i\000o\000n}{chapter.8}% 54
\BOOKMARK [1][]{section.8.6}{\376\377\0008\000.\0006\000\040\000f\000u\000r\000t\000h\000e\000r\000\040\000r\000e\000a\000d\000i\000n\000g}{chapter.8}% 55
\BOOKMARK [1][]{section.8.7}{\376\377\0008\000.\0007\000\040\000f\000u\000r\000t\000h\000e\000r\000\040\000r\000e\000a\000d\000i\000n\000g}{chapter.8}% 56
\BOOKMARK [0][]{chapter.9}{\376\377\0009\000\040\000A\000p\000p\000e\000n\000d\000e\000x\000\040\000A\000:\000M\000o\000d\000e\000m\000s\000\040\000a\000n\000d\000\040\000A\000T\000\040\000C\000o\000m\000m\000a\000n\000d\000s}{}% 57
\BOOKMARK [1][]{section.9.1}{\376\377\0009\000.\0001\000\040\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n}{chapter.9}% 58
\BOOKMARK [1][]{section.9.2}{\376\377\0009\000.\0002\000\040\000M\000o\000d\000e\000m\000\040\000P\000r\000o\000g\000r\000a\000m\000m\000i\000n\000g\000\040\000B\000a\000s\000i\000c\000s}{chapter.9}% 59
\BOOKMARK [1][]{section.9.3}{\376\377\0009\000.\0003\000\040\000F\000l\000o\000w\000\040\000C\000o\000n\000t\000r\000o\000l}{chapter.9}% 60
\BOOKMARK [1][]{section.9.4}{\376\377\0009\000.\0004\000\040\000C\000h\000a\000n\000g\000i\000n\000g\000\040\000S\000t\000a\000t\000e}{chapter.9}% 61
\BOOKMARK [1][]{section.9.5}{\376\377\0009\000.\0005\000\040\000S\000y\000n\000c\000.\000\040\000v\000s\000.\000\040\000A\000s\000y\000n\000c\000.\000\040\000I\000n\000t\000e\000r\000f\000a\000c\000e}{chapter.9}% 62
\BOOKMARK [1][]{section.9.6}{\376\377\0009\000.\0006\000\040\000X\000.\0002\0005\000\040\000I\000n\000t\000e\000r\000f\000a\000c\000e}{chapter.9}% 63
\BOOKMARK [1][]{section.9.7}{\376\377\0009\000.\0007\000\040\000A\000T\000\040\000C\000o\000m\000m\000a\000n\000d\000s}{chapter.9}% 64
\BOOKMARK [1][]{section.9.8}{\376\377\0009\000.\0008\000\040\000R\000e\000s\000u\000l\000t\000\040\000C\000o\000d\000e\000s}{chapter.9}% 65
\BOOKMARK [1][]{section.9.9}{\376\377\0009\000.\0009\000\040\000S\000-\000R\000e\000g\000i\000s\000t\000e\000r\000s}{chapter.9}% 66
\BOOKMARK [1][]{section.9.10}{\376\377\0009\000.\0001\0000\000\040\000A\000d\000v\000a\000n\000c\000e\000d\000\040\000F\000e\000a\000t\000u\000r\000e\000s}{chapter.9}% 67
\BOOKMARK [0][]{chapter.10}{\376\377\0001\0000\000\040\000C\000o\000n\000t\000r\000i\000b\000u\000t\000o\000r\000s}{}% 68
\BOOKMARK [0][]{chapter*.46}{\376\377\000L\000i\000s\000t\000\040\000o\000f\000\040\000F\000i\000g\000u\000r\000e\000s}{}% 69
\BOOKMARK [0][]{chapter.11}{\376\377\0001\0001\000\040\000L\000i\000c\000e\000n\000s\000e\000s}{}% 70
\BOOKMARK [1][]{section.11.1}{\376\377\0001\0001\000.\0001\000\040\000G\000N\000U\000\040\000G\000E\000N\000E\000R\000A\000L\000\040\000P\000U\000B\000L\000I\000C\000\040\000L\000I\000C\000E\000N\000S\000E}{chapter.11}% 71
\BOOKMARK [1][]{section.11.2}{\376\377\0001\0001\000.\0002\000\040\000G\000N\000U\000\040\000F\000r\000e\000e\000\040\000D\000o\000c\000u\000m\000e\000n\000t\000a\000t\000i\000o\000n\000\040\000L\000i\000c\000e\000n\000s\000e}{chapter.11}% 72
\BOOKMARK [1][]{section.11.3}{\376\377\0001\0001\000.\0003\000\040\000G\000N\000U\000\040\000L\000e\000s\000s\000e\000r\000\040\000G\000e\000n\000e\000r\000a\000l\000\040\000P\000u\000b\000l\000i\000c\000\040\000L\000i\000c\000e\000n\000s\000e}{chapter.11}% 73







main/main.aux

\relax 
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax 
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\select@language{english}
\@writefile{toc}{\select@language{english}}
\@writefile{lof}{\select@language{english}}
\@writefile{lot}{\select@language{english}}
\tocstyle@set@width {unum}{toc}{}{24.9416pt}
\tocstyle@set@width {num}{toc}{0}{18.8887pt}
\tocstyle@set@width {skip}{toc}{0}{0.0pt}
\tocstyle@set@width {num}{toc}{1}{24.9416pt}
\tocstyle@set@width {skip}{toc}{1}{18.8887pt}
\newlabel{0}{{}{1}{\relax }{chapter*.1}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Introduction and OSI Model}{3}{chapter.1}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{1}{{1}{3}{Introduction and OSI Model\relax }{chapter.1}{}}
\newlabel{2}{{1}{3}{Introduction and OSI Model\relax }{chapter.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.1}Introduction}{3}{section.1.1}}
\newlabel{3}{{1.1}{3}{Introduction\relax }{section.1.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.2}Why Serial Communication?}{3}{section.1.2}}
\newlabel{4}{{1.2}{3}{Why Serial Communication?\relax }{section.1.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.3}OSI Layered Network Communications Model}{4}{section.1.3}}
\newlabel{5}{{1.3}{4}{OSI Layered Network Communications Model\relax }{section.1.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.1}Serial Comm Layers}{4}{subsection.1.3.1}}
\newlabel{6}{{1.3.1}{4}{Serial Comm Layers\relax }{subsection.1.3.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.4}Software Examples}{5}{section.1.4}}
\newlabel{7}{{1.4}{5}{Software Examples\relax }{section.1.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.5}Applications in Education}{5}{section.1.5}}
\newlabel{8}{{1.5}{5}{Applications in Education\relax }{section.1.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.6}External Links / References}{6}{section.1.6}}
\newlabel{9}{{1.6}{6}{External Links / References\relax }{section.1.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.7}Other Serial Programming Articles}{6}{section.1.7}}
\newlabel{10}{{1.7}{6}{Other Serial Programming Articles\relax }{section.1.7}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}RS-{}232 Connections}{7}{chapter.2}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{11}{{2}{7}{RS-{}232 Connections\relax }{chapter.2}{}}
\newlabel{12}{{2}{7}{RS-{}232 Connections\relax }{chapter.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Introduction}{7}{section.2.1}}
\newlabel{13}{{2.1}{7}{Introduction\relax }{section.2.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Data Terminal/Communications Equipment}{7}{section.2.2}}
\newlabel{14}{{2.2}{7}{Data Terminal/Communications Equipment\relax }{section.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}Straight Serial Connections}{7}{subsection.2.2.1}}
\newlabel{15}{{2.2.1}{7}{Straight Serial Connections\relax }{subsection.2.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}Null Modems}{8}{subsection.2.2.2}}
\newlabel{16}{{2.2.2}{8}{Null Modems\relax }{subsection.2.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.3}Loopback Connectors}{8}{subsection.2.2.3}}
\newlabel{17}{{2.2.3}{8}{Loopback Connectors\relax }{subsection.2.2.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.4}Protocol Analyzer}{9}{subsection.2.2.4}}
\newlabel{18}{{2.2.4}{9}{Protocol Analyzer\relax }{subsection.2.2.4}{}}
\@writefile{toc}{\contentsline {subsubsection}{General}{9}{section*.2}}
\newlabel{19}{{2.2.4}{9}{General\relax }{section*.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Y \char 34\relax Cable\char 34\relax }{9}{section*.3}}
\newlabel{20}{{2.2.4}{9}{Y \symbol {34}Cable\symbol {34}\relax }{section*.3}{}}
\@writefile{toc}{\contentsline {subsubsection}{Man-{}in-{}the-{}Middle}{10}{section*.4}}
\newlabel{21}{{2.2.4}{10}{Man-{}in-{}the-{}Middle\relax }{section*.4}{}}
\@writefile{toc}{\contentsline {subsubsection}{Others}{10}{section*.5}}
\newlabel{22}{{2.2.4}{10}{Others\relax }{section*.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.5}Breakout Box}{10}{subsection.2.2.5}}
\newlabel{23}{{2.2.5}{10}{Breakout Box\relax }{subsection.2.2.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.6}Character Sequence Generator}{11}{subsection.2.2.6}}
\newlabel{24}{{2.2.6}{11}{Character Sequence Generator\relax }{subsection.2.2.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Connection Types}{12}{section.2.3}}
\newlabel{25}{{2.3}{12}{Connection Types\relax }{section.2.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}EIA/TIA 574: \char 34\relax DB-{}9\char 34\relax }{12}{subsection.2.3.1}}
\newlabel{26}{{2.3.1}{12}{EIA/TIA 574: \symbol {34}DB-{}9\symbol {34}\relax }{subsection.2.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}RS-{}232C: DB-{}25}{13}{subsection.2.3.2}}
\newlabel{27}{{2.3.2}{13}{RS-{}232C: DB-{}25\relax }{subsection.2.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.3}mini-{}stereo plug connector}{14}{subsection.2.3.3}}
\newlabel{28}{{2.3.3}{14}{mini-{}stereo plug connector\relax }{subsection.2.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.4}RS-{}232D: RS232 on RJ45}{15}{subsection.2.3.4}}
\newlabel{29}{{2.3.4}{15}{RS-{}232D: RS232 on RJ45\relax }{subsection.2.3.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.5}RS232 on RJ11}{15}{subsection.2.3.5}}
\newlabel{30}{{2.3.5}{15}{RS232 on RJ11\relax }{subsection.2.3.5}{}}
\gdef \LT@i {\LT@entry 
    {1}{55.64917pt}\LT@entry 
    {1}{61.71284pt}\LT@entry 
    {1}{167.60556pt}\LT@entry 
    {1}{126.74025pt}}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Wiring Pins Explained}{16}{section.2.4}}
\newlabel{31}{{2.4}{16}{Wiring Pins Explained\relax }{section.2.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}DCD (Data Carrier Detect)}{17}{subsection.2.4.1}}
\newlabel{32}{{2.4.1}{17}{DCD (Data Carrier Detect)\relax }{subsection.2.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}RX (Receive Data)}{17}{subsection.2.4.2}}
\newlabel{33}{{2.4.2}{17}{RX (Receive Data)\relax }{subsection.2.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}TX (Transmit Data)}{17}{subsection.2.4.3}}
\newlabel{34}{{2.4.3}{17}{TX (Transmit Data)\relax }{subsection.2.4.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.4}DTR (Data Terminal Ready)}{17}{subsection.2.4.4}}
\newlabel{35}{{2.4.4}{17}{DTR (Data Terminal Ready)\relax }{subsection.2.4.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.5}GND (Signal Ground)}{18}{subsection.2.4.5}}
\newlabel{36}{{2.4.5}{18}{GND (Signal Ground)\relax }{subsection.2.4.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.6}DSR (Data Set Ready)}{18}{subsection.2.4.6}}
\newlabel{37}{{2.4.6}{18}{DSR (Data Set Ready)\relax }{subsection.2.4.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.7}RTS (Request To Send)}{18}{subsection.2.4.7}}
\newlabel{38}{{2.4.7}{18}{RTS (Request To Send)\relax }{subsection.2.4.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.8}CTS (Clear To Send)}{18}{subsection.2.4.8}}
\newlabel{39}{{2.4.8}{18}{CTS (Clear To Send)\relax }{subsection.2.4.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.9}RI (Ring Indicator)}{19}{subsection.2.4.9}}
\newlabel{40}{{2.4.9}{19}{RI (Ring Indicator)\relax }{subsection.2.4.9}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.10}Other RS-{}232 Pins}{19}{subsection.2.4.10}}
\newlabel{41}{{2.4.10}{19}{Other RS-{}232 Pins\relax }{subsection.2.4.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.5}Baud Rates Explained}{19}{section.2.5}}
\newlabel{42}{{2.5}{19}{Baud Rates Explained\relax }{section.2.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.1}Modems Explained}{21}{subsection.2.5.1}}
\newlabel{43}{{2.5.1}{21}{Modems Explained\relax }{subsection.2.5.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.6}Signal Bits}{22}{section.2.6}}
\newlabel{44}{{2.6}{22}{Signal Bits\relax }{section.2.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.1}Start Bit}{22}{subsection.2.6.1}}
\newlabel{45}{{2.6.1}{22}{Start Bit\relax }{subsection.2.6.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.2}Data Bits}{22}{subsection.2.6.2}}
\newlabel{46}{{2.6.2}{22}{Data Bits\relax }{subsection.2.6.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.3}Parity Bit}{23}{subsection.2.6.3}}
\newlabel{47}{{2.6.3}{23}{Parity Bit\relax }{subsection.2.6.3}{}}
\@writefile{toc}{\contentsline {subsubsection}{Odd Parity}{23}{section*.6}}
\newlabel{48}{{2.6.3}{23}{Odd Parity\relax }{section*.6}{}}
\@writefile{toc}{\contentsline {subsubsection}{Even Parity}{23}{section*.7}}
\newlabel{49}{{2.6.3}{23}{Even Parity\relax }{section*.7}{}}
\@writefile{toc}{\contentsline {subsubsection}{Mark Parity}{23}{section*.8}}
\newlabel{50}{{2.6.3}{23}{Mark Parity\relax }{section*.8}{}}
\@writefile{toc}{\contentsline {subsubsection}{Space Parity}{23}{section*.9}}
\newlabel{51}{{2.6.3}{23}{Space Parity\relax }{section*.9}{}}
\@writefile{toc}{\contentsline {subsubsection}{Parity None}{23}{section*.10}}
\newlabel{52}{{2.6.3}{23}{Parity None\relax }{section*.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.4}Stop Bits}{23}{subsection.2.6.4}}
\newlabel{53}{{2.6.4}{23}{Stop Bits\relax }{subsection.2.6.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.6.5}Data Transmission Rates}{24}{subsection.2.6.5}}
\newlabel{54}{{2.6.5}{24}{Data Transmission Rates\relax }{subsection.2.6.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.7}Relationship of Baud Rate to Maximum Distance}{24}{section.2.7}}
\newlabel{55}{{2.7}{24}{Relationship of Baud Rate to Maximum Distance\relax }{section.2.7}{}}
\gdef \LT@ii {\LT@entry 
    {1}{78.54167pt}\LT@entry 
    {1}{161.77994pt}\LT@entry 
    {1}{176.80357pt}}
\@writefile{toc}{\contentsline {section}{\numberline {2.8}External References}{25}{section.2.8}}
\newlabel{56}{{2.8}{25}{External References\relax }{section.2.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.9}Other Serial Programming Articles}{26}{section.2.9}}
\newlabel{57}{{2.9}{26}{Other Serial Programming Articles\relax }{section.2.9}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}8250 UART Programming}{27}{chapter.3}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{58}{{3}{27}{8250 UART Programming\relax }{chapter.3}{}}
\newlabel{59}{{3}{27}{8250 UART Programming\relax }{chapter.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Introduction}{27}{section.3.1}}
\newlabel{60}{{3.1}{27}{Introduction\relax }{section.3.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}8086 I/O ports}{28}{section.3.2}}
\newlabel{61}{{3.2}{28}{8086 I/O ports\relax }{section.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}Software I/O access}{28}{subsection.3.2.1}}
\newlabel{62}{{3.2.1}{28}{Software I/O access\relax }{subsection.3.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}x86 port I/O extensions}{29}{subsection.3.2.2}}
\newlabel{63}{{3.2.2}{29}{x86 port I/O extensions\relax }{subsection.3.2.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}x86 Processor Interrupts}{30}{section.3.3}}
\newlabel{64}{{3.3}{30}{x86 Processor Interrupts\relax }{section.3.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}IRQs Explained}{30}{subsection.3.3.1}}
\newlabel{65}{{3.3.1}{30}{IRQs Explained\relax }{subsection.3.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Interrupt handlers}{31}{subsection.3.3.2}}
\newlabel{66}{{3.3.2}{31}{Interrupt handlers\relax }{subsection.3.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}Software interrupts}{31}{subsection.3.3.3}}
\newlabel{67}{{3.3.3}{31}{Software interrupts\relax }{subsection.3.3.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.4}8259 PIC (Programmable Interrupt Controller)}{32}{section.3.4}}
\newlabel{68}{{3.4}{32}{8259 PIC (Programmable Interrupt Controller)\relax }{section.3.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.4.1}8259 Registers}{32}{subsection.3.4.1}}
\newlabel{69}{{3.4.1}{32}{8259 Registers\relax }{subsection.3.4.1}{}}
\gdef \LT@iii {\LT@entry 
    {1}{296.10646pt}\LT@entry 
    {1}{131.84021pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.4.2}Device Registers}{33}{subsection.3.4.2}}
\newlabel{70}{{3.4.2}{33}{Device Registers\relax }{subsection.3.4.2}{}}
\gdef \LT@iv {\LT@entry 
    {1}{61.52107pt}\LT@entry 
    {1}{143.95262pt}\LT@entry 
    {1}{222.47298pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.4.3}ISR Cleanup}{34}{subsection.3.4.3}}
\newlabel{71}{{3.4.3}{34}{ISR Cleanup\relax }{subsection.3.4.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.4.4}PIC Device Masking}{34}{subsection.3.4.4}}
\newlabel{72}{{3.4.4}{34}{PIC Device Masking\relax }{subsection.3.4.4}{}}
\gdef \LT@v {\LT@entry 
    {1}{59.37201pt}\LT@entry 
    {1}{138.2328pt}\LT@entry 
    {1}{230.34186pt}}
\@writefile{toc}{\contentsline {section}{\numberline {3.5}Serial COM Port Memory and I/O Allocation}{35}{section.3.5}}
\newlabel{73}{{3.5}{35}{Serial COM Port Memory and I/O Allocation\relax }{section.3.5}{}}
\gdef \LT@vi {\LT@entry 
    {1}{123.84398pt}\LT@entry 
    {1}{79.7716pt}\LT@entry 
    {1}{224.33109pt}}
\@writefile{toc}{\contentsline {section}{\numberline {3.6}UART Registers}{36}{section.3.6}}
\newlabel{74}{{3.6}{36}{UART Registers\relax }{section.3.6}{}}
\gdef \LT@vii {\LT@entry 
    {1}{86.0601pt}\LT@entry 
    {1}{55.28548pt}\LT@entry 
    {1}{74.36919pt}\LT@entry 
    {1}{56.94522pt}\LT@entry 
    {1}{155.28668pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.6.1}Transmitter Holding Buffer/Receiver Buffer}{37}{subsection.3.6.1}}
\newlabel{75}{{3.6.1}{37}{Transmitter Holding Buffer/Receiver Buffer\relax }{subsection.3.6.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.6.2}Divisor Latch Bytes}{38}{subsection.3.6.2}}
\newlabel{76}{{3.6.2}{38}{Divisor Latch Bytes\relax }{subsection.3.6.2}{}}
\gdef \LT@viii {\LT@entry 
    {1}{73.51617pt}\LT@entry 
    {1}{114.20955pt}\LT@entry 
    {1}{111.99435pt}\LT@entry 
    {1}{128.2266pt}}
\gdef \LT@ix {\LT@entry 
    {1}{53.56622pt}\LT@entry 
    {1}{374.38045pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.6.3}Interrupt Enable Register}{40}{subsection.3.6.3}}
\newlabel{77}{{3.6.3}{40}{Interrupt Enable Register\relax }{subsection.3.6.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.6.4}Interrupt Identification Register}{41}{subsection.3.6.4}}
\newlabel{78}{{3.6.4}{41}{Interrupt Identification Register\relax }{subsection.3.6.4}{}}
\gdef \LT@x {\LT@entry 
    {1}{70.81328pt}\LT@entry 
    {1}{49.63136pt}\LT@entry 
    {1}{49.63136pt}\LT@entry 
    {2}{49.63136pt}\LT@entry 
    {2}{230.55563pt}\LT@entry 
    {1}{185.81458pt}}
\gdef \LT@xi {\LT@entry 
    {1}{50.07483pt}\LT@entry 
    {1}{47.4695pt}\LT@entry 
    {1}{47.4695pt}\LT@entry 
    {1}{133.2602pt}\LT@entry 
    {1}{149.67265pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.6.5}FIFO Control Register}{44}{subsection.3.6.5}}
\newlabel{79}{{3.6.5}{44}{FIFO Control Register\relax }{subsection.3.6.5}{}}
\gdef \LT@xii {\LT@entry 
    {1}{60.48952pt}\LT@entry 
    {1}{96.34917pt}\LT@entry 
    {1}{80.75687pt}\LT@entry 
    {1}{86.04688pt}\LT@entry 
    {1}{104.30424pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.6.6}Line Control Register}{45}{subsection.3.6.6}}
\newlabel{80}{{3.6.6}{45}{Line Control Register\relax }{subsection.3.6.6}{}}
\gdef \LT@xiii {\LT@entry 
    {1}{70.66618pt}\LT@entry 
    {1}{357.28049pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.6.7}Modem Control Register}{47}{subsection.3.6.7}}
\newlabel{81}{{3.6.7}{47}{Modem Control Register\relax }{subsection.3.6.7}{}}
\gdef \LT@xiv {\LT@entry 
    {1}{68.64937pt}\LT@entry 
    {1}{359.2973pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.6.8}Line Status Register}{48}{subsection.3.6.8}}
\newlabel{82}{{3.6.8}{48}{Line Status Register\relax }{subsection.3.6.8}{}}
\gdef \LT@xv {\LT@entry 
    {1}{79.90385pt}\LT@entry 
    {1}{348.04282pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.6.9}Modem Status Register}{50}{subsection.3.6.9}}
\newlabel{83}{{3.6.9}{50}{Modem Status Register\relax }{subsection.3.6.9}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.6.10}Scratch Register}{51}{subsection.3.6.10}}
\newlabel{84}{{3.6.10}{51}{Scratch Register\relax }{subsection.3.6.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.7}Software Identification of the UART}{52}{section.3.7}}
\newlabel{85}{{3.7}{52}{Software Identification of the UART\relax }{section.3.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.8}External References}{53}{section.3.8}}
\newlabel{86}{{3.8}{53}{External References\relax }{section.3.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.9}Other Serial Programming Articles}{54}{section.3.9}}
\newlabel{87}{{3.9}{54}{Other Serial Programming Articles\relax }{section.3.9}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Serial DOS}{55}{chapter.4}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{88}{{4}{55}{Serial DOS\relax }{chapter.4}{}}
\newlabel{89}{{4}{55}{Serial DOS\relax }{chapter.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Introduction}{55}{section.4.1}}
\newlabel{90}{{4.1}{55}{Introduction\relax }{section.4.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}{\bfseries  Hello World}, Serial Data Version}{55}{section.4.2}}
\newlabel{91}{{4.2}{55}{{\bfseries Hello World}, Serial Data Version\relax }{section.4.2}{}}
\gdef \LT@xvi {\LT@entry 
    {1}{117.46951pt}\LT@entry 
    {1}{143.74101pt}\LT@entry 
    {1}{155.91464pt}}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Finding the Port I/O Address for the UART}{56}{section.4.3}}
\newlabel{92}{{4.3}{56}{Finding the Port I/O Address for the UART\relax }{section.4.3}{}}
\gdef \LT@xvii {\LT@entry 
    {1}{132.103pt}\LT@entry 
    {1}{157.77277pt}\LT@entry 
    {1}{127.24942pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Looking up UART Base Address in RAM}{57}{subsection.4.3.1}}
\newlabel{93}{{4.3.1}{57}{Looking up UART Base Address in RAM\relax }{subsection.4.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Searching BIOS Setup}{58}{subsection.4.3.2}}
\newlabel{94}{{4.3.2}{58}{Searching BIOS Setup\relax }{subsection.4.3.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Making modifications to UART Registers}{59}{section.4.4}}
\newlabel{95}{{4.4}{59}{Making modifications to UART Registers\relax }{section.4.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.5}Basic Serial Input}{60}{section.4.5}}
\newlabel{96}{{4.5}{60}{Basic Serial Input\relax }{section.4.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.5.1}Polling the UART}{61}{subsection.4.5.1}}
\newlabel{97}{{4.5.1}{61}{Polling the UART\relax }{subsection.4.5.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{Serial Echo Program}{61}{section*.11}}
\newlabel{98}{{4.5.1}{61}{Serial Echo Program\relax }{section*.11}{}}
\@writefile{toc}{\contentsline {subsubsection}{Simple Terminal}{61}{section*.12}}
\newlabel{99}{{4.5.1}{61}{Simple Terminal\relax }{section*.12}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.6}Interrupt Drivers in DOS}{63}{section.4.6}}
\newlabel{100}{{4.6}{63}{Interrupt Drivers in DOS\relax }{section.4.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.6.1}Far Procedure Calls}{64}{subsection.4.6.1}}
\newlabel{101}{{4.6.1}{64}{Far Procedure Calls\relax }{subsection.4.6.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.6.2}Interrupt Procedures}{65}{subsection.4.6.2}}
\newlabel{102}{{4.6.2}{65}{Interrupt Procedures\relax }{subsection.4.6.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.6.3}Procedure Variables}{65}{subsection.4.6.3}}
\newlabel{103}{{4.6.3}{65}{Procedure Variables\relax }{subsection.4.6.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.6.4}Getting/Setting Interrupt Vectors}{66}{subsection.4.6.4}}
\newlabel{104}{{4.6.4}{66}{Getting/Setting Interrupt Vectors\relax }{subsection.4.6.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.6.5}Hardware Interrupt Table}{66}{subsection.4.6.5}}
\newlabel{105}{{4.6.5}{66}{Hardware Interrupt Table\relax }{subsection.4.6.5}{}}
\gdef \LT@xviii {\LT@entry 
    {1}{84.81694pt}\LT@entry 
    {1}{117.51581pt}\LT@entry 
    {1}{214.79243pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.6.6}Other features}{67}{subsection.4.6.6}}
\newlabel{106}{{4.6.6}{67}{Other features\relax }{subsection.4.6.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.7}Terminal Program Revisited}{68}{section.4.7}}
\newlabel{107}{{4.7}{68}{Terminal Program Revisited\relax }{section.4.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.1}Serial ISR}{68}{subsection.4.7.1}}
\newlabel{108}{{4.7.1}{68}{Serial ISR\relax }{subsection.4.7.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.2}FIFO disabling}{68}{subsection.4.7.2}}
\newlabel{109}{{4.7.2}{68}{FIFO disabling\relax }{subsection.4.7.2}{}}
\gdef \LT@xix {\LT@entry 
    {1}{199.94073pt}\LT@entry 
    {1}{222.5952pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.3}Working with the PIC}{69}{subsection.4.7.3}}
\newlabel{110}{{4.7.3}{69}{Working with the PIC\relax }{subsection.4.7.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.4}Modem Control Register}{70}{subsection.4.7.4}}
\newlabel{111}{{4.7.4}{70}{Modem Control Register\relax }{subsection.4.7.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.5}Interrupt Enable Register}{70}{subsection.4.7.5}}
\newlabel{112}{{4.7.5}{70}{Interrupt Enable Register\relax }{subsection.4.7.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.6}Putting this together so far}{70}{subsection.4.7.6}}
\newlabel{113}{{4.7.6}{70}{Putting this together so far\relax }{subsection.4.7.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.7}Command Line Input}{72}{subsection.4.7.7}}
\newlabel{114}{{4.7.7}{72}{Command Line Input\relax }{subsection.4.7.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.7.8}Grabbing Terminal Parameters}{72}{subsection.4.7.8}}
\newlabel{115}{{4.7.8}{72}{Grabbing Terminal Parameters\relax }{subsection.4.7.8}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {5}Serial Linux}{75}{chapter.5}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{116}{{5}{75}{Serial Linux\relax }{chapter.5}{}}
\newlabel{117}{{5}{75}{Serial Linux\relax }{chapter.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}The Classic Unix C APIs for Serial Communication}{75}{section.5.1}}
\newlabel{118}{{5.1}{75}{The Classic Unix C APIs for Serial Communication\relax }{section.5.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.1}Introduction}{75}{subsection.5.1.1}}
\newlabel{119}{{5.1.1}{75}{Introduction\relax }{subsection.5.1.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{Scope}{75}{section*.13}}
\newlabel{120}{{5.1.1}{75}{Scope\relax }{section*.13}{}}
\@writefile{toc}{\contentsline {subsubsection}{Basics}{75}{section*.14}}
\newlabel{121}{{5.1.1}{75}{Basics\relax }{section*.14}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.2}Serial I/O via Terminal I/O }{77}{subsection.5.1.2}}
\newlabel{122}{{5.1.2}{77}{Serial I/O via Terminal I/O \LaTeXNullTemplate {}\relax }{subsection.5.1.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Basics}{77}{section*.15}}
\newlabel{123}{{5.1.2}{77}{Basics\relax }{section*.15}{}}
\@writefile{toc}{\contentsline {subsubsection}{Line Discipline}{78}{section*.16}}
\newlabel{124}{{5.1.2}{78}{Line Discipline\relax }{section*.16}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.3}Unix V6/PWB}{78}{subsection.5.1.3}}
\newlabel{125}{{5.1.3}{78}{Unix V6/PWB\relax }{subsection.5.1.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.4}Unix V7}{79}{subsection.5.1.4}}
\newlabel{126}{{5.1.4}{79}{Unix V7\relax }{subsection.5.1.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.5}termios}{79}{subsection.5.1.5}}
\newlabel{127}{{5.1.5}{79}{termios\relax }{subsection.5.1.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.6}termio / ioctl(2) }{80}{subsection.5.1.6}}
\newlabel{128}{{5.1.6}{80}{termio / ioctl(2) \LaTeXNullTemplate {}\relax }{subsection.5.1.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.2}Serial I/O on the Shell Command Line }{80}{section.5.2}}
\newlabel{129}{{5.2}{80}{Serial I/O on the Shell Command Line \LaTeXNullTemplate {}\relax }{section.5.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.1}Introduction}{80}{subsection.5.2.1}}
\newlabel{130}{{5.2.1}{80}{Introduction\relax }{subsection.5.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.2}Configuration with {\ttfamily  stty}}{80}{subsection.5.2.2}}
\newlabel{131}{{5.2.2}{80}{Configuration with {\ttfamily stty}\relax }{subsection.5.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.3}Permanent Configuration}{82}{subsection.5.2.3}}
\newlabel{132}{{5.2.3}{82}{Permanent Configuration\relax }{subsection.5.2.3}{}}
\@writefile{toc}{\contentsline {subsubsection}{Overview}{82}{section*.17}}
\newlabel{133}{{5.2.3}{82}{Overview\relax }{section*.17}{}}
\@writefile{toc}{\contentsline {subsubsection}{\ttfamily  /etc/ttytab}{82}{section*.18}}
\newlabel{134}{{5.2.3}{82}{\ttfamily /etc/ttytab\relax }{section*.18}{}}
\@writefile{toc}{\contentsline {subsubsection}{\ttfamily  /etc/ttydefs}{82}{section*.19}}
\newlabel{135}{{5.2.3}{82}{\ttfamily /etc/ttydefs\relax }{section*.19}{}}
\@writefile{toc}{\contentsline {subsubsection}{\ttfamily  /etc/serial.conf}{83}{section*.20}}
\newlabel{136}{{5.2.3}{83}{\ttfamily /etc/serial.conf\relax }{section*.20}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.4}\ttfamily  tty}{83}{subsection.5.2.4}}
\newlabel{137}{{5.2.4}{83}{\ttfamily tty\relax }{subsection.5.2.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.5}\ttfamily  tip}{83}{subsection.5.2.5}}
\newlabel{138}{{5.2.5}{83}{\ttfamily tip\relax }{subsection.5.2.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.2.6}\ttfamily  uucp}{84}{subsection.5.2.6}}
\newlabel{139}{{5.2.6}{84}{\ttfamily uucp\relax }{subsection.5.2.6}{}}
\@writefile{toc}{\contentsline {subsubsection}{Overview}{84}{section*.21}}
\newlabel{140}{{5.2.6}{84}{Overview\relax }{section*.21}{}}
\@writefile{toc}{\contentsline {subsubsection}{\ttfamily  cu}{84}{section*.22}}
\newlabel{141}{{5.2.6}{84}{\ttfamily cu\relax }{section*.22}{}}
\@writefile{toc}{\contentsline {subsubsection}{\ttfamily  ct}{84}{section*.23}}
\newlabel{142}{{5.2.6}{84}{\ttfamily ct\relax }{section*.23}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.3}System Configuration}{84}{section.5.3}}
\newlabel{143}{{5.3}{84}{System Configuration\relax }{section.5.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.4}Other Serial Programming Articles}{85}{section.5.4}}
\newlabel{144}{{5.4}{85}{Other Serial Programming Articles\relax }{section.5.4}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {6}Serial Java}{87}{chapter.6}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{145}{{6}{87}{Serial Java\relax }{chapter.6}{}}
\newlabel{146}{{6}{87}{Serial Java\relax }{chapter.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.1}Using Java for Serial Communication}{87}{section.6.1}}
\newlabel{147}{{6.1}{87}{Using Java for Serial Communication\relax }{section.6.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1.1}Introduction}{87}{subsection.6.1.1}}
\newlabel{148}{{6.1.1}{87}{Introduction\relax }{subsection.6.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1.2}Getting started}{88}{subsection.6.1.2}}
\newlabel{149}{{6.1.2}{88}{Getting started\relax }{subsection.6.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1.3}Installation}{88}{subsection.6.1.3}}
\newlabel{150}{{6.1.3}{88}{Installation\relax }{subsection.6.1.3}{}}
\@writefile{toc}{\contentsline {subsubsection}{General Issues}{88}{section*.24}}
\newlabel{151}{{6.1.3}{88}{General Issues\relax }{section*.24}{}}
\@writefile{toc}{\contentsline {subsubsection}{Webstart}{89}{section*.25}}
\newlabel{152}{{6.1.3}{89}{Webstart\relax }{section*.25}{}}
\@writefile{toc}{\contentsline {paragraph}{JavaComm}{89}{section*.26}}
\newlabel{153}{{6.1.3}{89}{JavaComm\relax }{section*.26}{}}
\@writefile{toc}{\contentsline {paragraph}{RxTx}{89}{section*.27}}
\newlabel{154}{{6.1.3}{89}{RxTx\relax }{section*.27}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.2}JavaComm API}{90}{section.6.2}}
\newlabel{155}{{6.2}{90}{JavaComm API\relax }{section.6.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2.1}Introduction}{90}{subsection.6.2.1}}
\newlabel{156}{{6.2.1}{90}{Introduction\relax }{subsection.6.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2.2}Download \& Installation}{91}{subsection.6.2.2}}
\newlabel{157}{{6.2.2}{91}{Download \& Installation\relax }{subsection.6.2.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{Download}{91}{section*.28}}
\newlabel{158}{{6.2.2}{91}{Download\relax }{section*.28}{}}
\@writefile{toc}{\contentsline {subsubsection}{Installation}{91}{section*.29}}
\newlabel{159}{{6.2.2}{91}{Installation\relax }{section*.29}{}}
\@writefile{toc}{\contentsline {subsubsection}{Finding the desired serial Port}{92}{section*.30}}
\newlabel{160}{{6.2.2}{92}{Finding the desired serial Port\relax }{section*.30}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2.3}Initialize a Serial Port}{93}{subsection.6.2.3}}
\newlabel{161}{{6.2.3}{93}{Initialize a Serial Port\relax }{subsection.6.2.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2.4}Simple Data Transfer}{95}{subsection.6.2.4}}
\newlabel{162}{{6.2.4}{95}{Simple Data Transfer\relax }{subsection.6.2.4}{}}
\@writefile{toc}{\contentsline {subsubsection}{Simple Writing of Data}{95}{section*.31}}
\newlabel{163}{{6.2.4}{95}{Simple Writing of Data\relax }{section*.31}{}}
\@writefile{toc}{\contentsline {subsubsection}{Simple Reading of Data (Polling)}{95}{section*.32}}
\newlabel{164}{{6.2.4}{95}{Simple Reading of Data (Polling)\relax }{section*.32}{}}
\@writefile{toc}{\contentsline {subsubsection}{Problems with the simple Reading / Writing}{95}{section*.33}}
\newlabel{165}{{6.2.4}{95}{Problems with the simple Reading / Writing\relax }{section*.33}{}}
\gdef \LT@xx {\LT@entry 
    {1}{72.71605pt}\LT@entry 
    {1}{349.81987pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2.5}Event Driven Serial Communication}{96}{subsection.6.2.5}}
\newlabel{166}{{6.2.5}{96}{Event Driven Serial Communication\relax }{subsection.6.2.5}{}}
\@writefile{toc}{\contentsline {subsubsection}{Introduction}{96}{section*.34}}
\newlabel{167}{{6.2.5}{96}{Introduction\relax }{section*.34}{}}
\@writefile{toc}{\contentsline {subsubsection}{Setting up a serial Event Handler}{97}{section*.35}}
\newlabel{168}{{6.2.5}{97}{Setting up a serial Event Handler\relax }{section*.35}{}}
\@writefile{toc}{\contentsline {subsubsection}{Writing of Data}{99}{section*.36}}
\newlabel{169}{{6.2.5}{99}{Writing of Data\relax }{section*.36}{}}
\@writefile{toc}{\contentsline {paragraph}{Setting up a separate Thread for Writing}{99}{section*.37}}
\newlabel{170}{{6.2.5}{99}{Setting up a separate Thread for Writing\relax }{section*.37}{}}
\@writefile{toc}{\contentsline {subparagraph}{A simple, thread-{}safe Ring Buffer Implementation}{99}{section*.38}}
\newlabel{171}{{6.2.5}{99}{A simple, thread-{}safe Ring Buffer Implementation\relax }{section*.38}{}}
\@writefile{toc}{\contentsline {subparagraph}{Using the Buffer together with Serial Events}{103}{section*.39}}
\newlabel{172}{{6.2.5}{103}{Using the Buffer together with Serial Events\relax }{section*.39}{}}
\@writefile{toc}{\contentsline {paragraph}{Usage of OUTPUT\@uscore .BUFFER\@uscore .EMPTY Event in Writing}{103}{section*.40}}
\newlabel{173}{{6.2.5}{103}{Usage of OUTPUT_BUFFER_EMPTY Event in Writing\relax }{section*.40}{}}
\@writefile{toc}{\contentsline {subsubsection}{Reading of Data}{103}{section*.41}}
\newlabel{174}{{6.2.5}{103}{Reading of Data\relax }{section*.41}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2.6}Handling multiple Ports in one Application}{104}{subsection.6.2.6}}
\newlabel{175}{{6.2.6}{104}{Handling multiple Ports in one Application\relax }{subsection.6.2.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2.7}Modem Control}{104}{subsection.6.2.7}}
\newlabel{176}{{6.2.7}{104}{Modem Control\relax }{subsection.6.2.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.3}RxTx}{105}{section.6.3}}
\newlabel{177}{{6.3}{105}{RxTx\relax }{section.6.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.3.1}Overview and Versions}{105}{subsection.6.3.1}}
\newlabel{178}{{6.3.1}{105}{Overview and Versions\relax }{subsection.6.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.3.2}Converting a JavaComm Application to RxTx}{106}{subsection.6.3.2}}
\newlabel{179}{{6.3.2}{106}{Converting a JavaComm Application to RxTx\relax }{subsection.6.3.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.4}See also}{106}{section.6.4}}
\newlabel{180}{{6.4}{106}{See also\relax }{section.6.4}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {7}Forming Data Packets}{109}{chapter.7}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{181}{{7}{109}{Forming Data Packets\relax }{chapter.7}{}}
\newlabel{182}{{7}{109}{Forming Data Packets\relax }{chapter.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.0.1}packet size tradeoffs}{109}{subsection.7.0.1}}
\newlabel{183}{{7.0.1}{109}{packet size tradeoffs\relax }{subsection.7.0.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.0.2}start-{}of-{}packet and transparency tradeoffs}{110}{subsection.7.0.2}}
\newlabel{184}{{7.0.2}{110}{start-{}of-{}packet and transparency tradeoffs\relax }{subsection.7.0.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.1}For further reading}{112}{section.7.1}}
\newlabel{185}{{7.1}{112}{For further reading\relax }{section.7.1}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {8}Error Correction Methods}{115}{chapter.8}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{186}{{8}{115}{Error Correction Methods\relax }{chapter.8}{}}
\newlabel{187}{{8}{115}{Error Correction Methods\relax }{chapter.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.1}Introduction}{115}{section.8.1}}
\newlabel{188}{{8.1}{115}{Introduction\relax }{section.8.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.2}ACK-{}NAK}{115}{section.8.2}}
\newlabel{189}{{8.2}{115}{ACK-{}NAK\relax }{section.8.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{How does the {\itshape  receiver} know it\textquotesingle {}s good ?}{115}{section*.42}}
\newlabel{190}{{8.2}{115}{How does the {\itshape receiver} know it\textquotesingle {}s good ?\relax }{section*.42}{}}
\@writefile{toc}{\contentsline {subsubsection}{How does the {\itshape  sender} know it wasn\textquotesingle {}t good ?}{116}{section*.43}}
\newlabel{191}{{8.2}{116}{How does the {\itshape sender} know it wasn\textquotesingle {}t good ?\relax }{section*.43}{}}
\@writefile{toc}{\contentsline {subsubsection}{\char 34\relax Stop-{}and-{}wait ARQ\char 34\relax }{116}{section*.44}}
\newlabel{192}{{8.2}{116}{\symbol {34}Stop-{}and-{}wait ARQ\symbol {34}\relax }{section*.44}{}}
\@writefile{toc}{\contentsline {subsubsection}{streaming ARQ}{117}{section*.45}}
\newlabel{193}{{8.2}{117}{streaming ARQ\relax }{section*.45}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.2.1}Selective Repeat ARQ}{118}{subsection.8.2.1}}
\newlabel{194}{{8.2.1}{118}{Selective Repeat ARQ\relax }{subsection.8.2.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.3}FEC}{118}{section.8.3}}
\newlabel{195}{{8.3}{118}{FEC\relax }{section.8.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.4}Pretend It Never Happened}{118}{section.8.4}}
\newlabel{196}{{8.4}{118}{Pretend It Never Happened\relax }{section.8.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.5}combination}{119}{section.8.5}}
\newlabel{197}{{8.5}{119}{combination\relax }{section.8.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.6}further reading}{119}{section.8.6}}
\newlabel{198}{{8.6}{119}{further reading\relax }{section.8.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.7}further reading}{119}{section.8.7}}
\newlabel{199}{{8.7}{119}{further reading\relax }{section.8.7}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {9}Appendex A:Modems and AT Commands}{121}{chapter.9}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{200}{{9}{121}{Appendex A:Modems and AT Commands\relax }{chapter.9}{}}
\newlabel{201}{{9}{121}{Appendex A:Modems and AT Commands\relax }{chapter.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.1}Introduction}{121}{section.9.1}}
\newlabel{202}{{9.1}{121}{Introduction\relax }{section.9.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.1.1}General}{121}{subsection.9.1.1}}
\newlabel{203}{{9.1.1}{121}{General\relax }{subsection.9.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.1.2}Administrative Information}{121}{subsection.9.1.2}}
\newlabel{204}{{9.1.2}{121}{Administrative Information\relax }{subsection.9.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.1.3}What is Hayes?}{122}{subsection.9.1.3}}
\newlabel{205}{{9.1.3}{122}{What is Hayes?\relax }{subsection.9.1.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.1.4}What are AT Commands?}{123}{subsection.9.1.4}}
\newlabel{206}{{9.1.4}{123}{What are AT Commands?\relax }{subsection.9.1.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.1.5}What is a Modem?}{123}{subsection.9.1.5}}
\newlabel{207}{{9.1.5}{123}{What is a Modem?\relax }{subsection.9.1.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.1.6}Inband Signalling}{124}{subsection.9.1.6}}
\newlabel{208}{{9.1.6}{124}{Inband Signalling\relax }{subsection.9.1.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.1.7}Command State / On-{}line State}{125}{subsection.9.1.7}}
\newlabel{209}{{9.1.7}{125}{Command State / On-{}line State\relax }{subsection.9.1.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.1.8}Originating Mode / Answer Mode}{125}{subsection.9.1.8}}
\newlabel{210}{{9.1.8}{125}{Originating Mode / Answer Mode\relax }{subsection.9.1.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.1.9}Command Responses}{125}{subsection.9.1.9}}
\newlabel{211}{{9.1.9}{125}{Command Responses\relax }{subsection.9.1.9}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.1.10}S-{}Registers}{126}{subsection.9.1.10}}
\newlabel{212}{{9.1.10}{126}{S-{}Registers\relax }{subsection.9.1.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.2}Modem Programming Basics}{126}{section.9.2}}
\newlabel{213}{{9.2}{126}{Modem Programming Basics\relax }{section.9.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.2.1}Command Reference}{126}{subsection.9.2.1}}
\newlabel{214}{{9.2.1}{126}{Command Reference\relax }{subsection.9.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.2.2}Setting up a Development Environment}{127}{subsection.9.2.2}}
\newlabel{215}{{9.2.2}{127}{Setting up a Development Environment\relax }{subsection.9.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.2.3}Operating System, Programming Language \& Communication Basics}{128}{subsection.9.2.3}}
\newlabel{216}{{9.2.3}{128}{Operating System, Programming Language \& Communication Basics\relax }{subsection.9.2.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.2.4}Line Speed is not DTE/DCE Speed}{129}{subsection.9.2.4}}
\newlabel{217}{{9.2.4}{129}{Line Speed is not DTE/DCE Speed\relax }{subsection.9.2.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.2.5}Character Set and Character Case}{131}{subsection.9.2.5}}
\newlabel{218}{{9.2.5}{131}{Character Set and Character Case\relax }{subsection.9.2.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.2.6}Welcome to the World of State-{}Machines}{131}{subsection.9.2.6}}
\newlabel{219}{{9.2.6}{131}{Welcome to the World of State-{}Machines\relax }{subsection.9.2.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.3}Flow Control}{132}{section.9.3}}
\newlabel{220}{{9.3}{132}{Flow Control\relax }{section.9.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.3.1}Hardware Flow Control}{132}{subsection.9.3.1}}
\newlabel{221}{{9.3.1}{132}{Hardware Flow Control\relax }{subsection.9.3.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.3.2}Software Flow Control}{132}{subsection.9.3.2}}
\newlabel{222}{{9.3.2}{132}{Software Flow Control\relax }{subsection.9.3.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.4}Changing State}{133}{section.9.4}}
\newlabel{223}{{9.4}{133}{Changing State\relax }{section.9.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.4.1}General}{133}{subsection.9.4.1}}
\newlabel{224}{{9.4.1}{133}{General\relax }{subsection.9.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.4.2}On-{}line State to Command State}{133}{subsection.9.4.2}}
\newlabel{225}{{9.4.2}{133}{On-{}line State to Command State\relax }{subsection.9.4.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.4.3}Command State to On-{}line State}{134}{subsection.9.4.3}}
\newlabel{226}{{9.4.3}{134}{Command State to On-{}line State\relax }{subsection.9.4.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.5}Sync. vs. Async. Interface}{134}{section.9.5}}
\newlabel{227}{{9.5}{134}{Sync. vs. Async. Interface\relax }{section.9.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.6}X.25 Interface}{134}{section.9.6}}
\newlabel{228}{{9.6}{134}{X.25 Interface\relax }{section.9.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.7}AT Commands}{134}{section.9.7}}
\newlabel{229}{{9.7}{134}{AT Commands\relax }{section.9.7}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.7.1}AT Command Format}{134}{subsection.9.7.1}}
\newlabel{230}{{9.7.1}{134}{AT Command Format\relax }{subsection.9.7.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.7.2}\itshape  Command Description Template}{136}{subsection.9.7.2}}
\newlabel{231}{{9.7.2}{136}{\itshape Command Description Template\relax }{subsection.9.7.2}{}}
\gdef \LT@xxi {\LT@entry 
    {1}{88.02402pt}\LT@entry 
    {1}{339.92265pt}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.7.3}Special Commands and Character Sequences}{137}{subsection.9.7.3}}
\newlabel{232}{{9.7.3}{137}{Special Commands and Character Sequences\relax }{subsection.9.7.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.7.4}AT Commands A -{} M}{137}{subsection.9.7.4}}
\newlabel{233}{{9.7.4}{137}{AT Commands A -{} M\relax }{subsection.9.7.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.7.5}AT Commands N -{} Z}{137}{subsection.9.7.5}}
\newlabel{234}{{9.7.5}{137}{AT Commands N -{} Z\relax }{subsection.9.7.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.7.6}AT\& Commands}{137}{subsection.9.7.6}}
\newlabel{235}{{9.7.6}{137}{AT\& Commands\relax }{subsection.9.7.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.8}Result Codes}{137}{section.9.8}}
\newlabel{236}{{9.8}{137}{Result Codes\relax }{section.9.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.9}S-{}Registers}{138}{section.9.9}}
\newlabel{237}{{9.9}{138}{S-{}Registers\relax }{section.9.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.10}Advanced Features}{138}{section.9.10}}
\newlabel{238}{{9.10}{138}{Advanced Features\relax }{section.9.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.10.1}Introduction}{138}{subsection.9.10.1}}
\newlabel{239}{{9.10.1}{138}{Introduction\relax }{subsection.9.10.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.10.2}Fax Class 1}{138}{subsection.9.10.2}}
\newlabel{240}{{9.10.2}{138}{Fax Class 1\relax }{subsection.9.10.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.10.3}Fax Class 2}{138}{subsection.9.10.3}}
\newlabel{241}{{9.10.3}{138}{Fax Class 2\relax }{subsection.9.10.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.10.4}Voice Services}{138}{subsection.9.10.4}}
\newlabel{242}{{9.10.4}{138}{Voice Services\relax }{subsection.9.10.4}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {10}Contributors}{139}{chapter.10}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{Contributors}{{10}{139}{Contributors\relax }{chapter.10}{}}
\gdef \LT@xxii {\LT@entry 
    {1}{40.63092pt}\LT@entry 
    {1}{272.01709pt}}
\@writefile{toc}{\contentsline {chapter}{List of Figures}{141}{chapter*.46}}
\newlabel{ListOfFigures}{{10}{141}{Contributors\relax }{chapter*.46}{}}
\gdef \LT@xxiii {\LT@entry 
    {1}{34.46918pt}\LT@entry 
    {1}{272.41708pt}\LT@entry 
    {1}{77.40096pt}}
\@writefile{toc}{\contentsline {chapter}{\numberline {11}Licenses}{145}{chapter.11}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{lol}{\addvspace {10\p@ }}
\newlabel{Licenses}{{11}{145}{Licenses\relax }{chapter.11}{}}
\@writefile{toc}{\contentsline {section}{\numberline {11.1}GNU GENERAL PUBLIC LICENSE}{145}{section.11.1}}
\@writefile{toc}{\contentsline {section}{\numberline {11.2}GNU Free Documentation License}{146}{section.11.2}}
\@writefile{toc}{\contentsline {section}{\numberline {11.3}GNU Lesser General Public License}{147}{section.11.3}}







main/utf8plainenc.dfu

%%
%% This is file `utf8enc.dfu',
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% utf8ienc.dtx  (with options: `all')
%% 
%% This is a generated file.
%% 
%% Copyright 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
%% The LaTeX3 Project and any individual authors listed elsewhere
%% in this file.
%% 
%% This file was generated from file(s) of the LaTeX base system.
%% --------------------------------------------------------------
%% 
%% It may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3c
%% of this license or (at your option) any later version.
%% The latest version of this license is in
%%    http://www.latex-project.org/lppl.txt
%% and version 1.3c or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%% 
%% This file has the LPPL maintenance status "maintained".
%% 
%% This file may only be distributed together with a copy of the LaTeX
%% base system. You may however distribute the LaTeX base system without
%% such generated files.
%% 
%% The list of all files belonging to the LaTeX base distribution is
%% given in the file `manifest.txt'. See also `legal.txt' for additional
%% information.
%% 
%% The list of derived (unpacked) files belonging to the distribution
%% and covered by LPPL is defined by the unpacking scripts (with
%% extension .ins) which are part of the distribution.
 \ProvidesFile{utf8enc.dfu}
   [2008/04/05 v1.1m UTF-8 support for inputenc]
\DeclareUnicodeCharacter{00A1}{\textexclamdown}
\DeclareUnicodeCharacter{00A2}{\textcent}
\DeclareUnicodeCharacter{00A3}{\textsterling}
\DeclareUnicodeCharacter{00A4}{\textcurrency}
\DeclareUnicodeCharacter{00A5}{\textyen}
\DeclareUnicodeCharacter{00A6}{\textbrokenbar}
\DeclareUnicodeCharacter{00A7}{\textsection}
\DeclareUnicodeCharacter{00A8}{\textasciidieresis}
\DeclareUnicodeCharacter{00A9}{\textcopyright}
\DeclareUnicodeCharacter{00AA}{\textordfeminine}
\DeclareUnicodeCharacter{00AB}{\guillemotleft}
\DeclareUnicodeCharacter{00AC}{\textlnot}
\DeclareUnicodeCharacter{00AE}{\textregistered}
\DeclareUnicodeCharacter{00AF}{\textasciimacron}
\DeclareUnicodeCharacter{00B0}{\textdegree}
\DeclareUnicodeCharacter{00B1}{\textpm}
\DeclareUnicodeCharacter{00B2}{\texttwosuperior}
\DeclareUnicodeCharacter{00B3}{\textthreesuperior}
\DeclareUnicodeCharacter{00B4}{\textasciiacute}
\DeclareUnicodeCharacter{00B5}{\textmu} % micro sign
\DeclareUnicodeCharacter{00B6}{\textparagraph}
\DeclareUnicodeCharacter{00B7}{\textperiodcentered}
\DeclareUnicodeCharacter{00B8}{\c\ }
\DeclareUnicodeCharacter{00B9}{\textonesuperior}
\DeclareUnicodeCharacter{00BA}{\textordmasculine}
\DeclareUnicodeCharacter{00BB}{\guillemotright}
\DeclareUnicodeCharacter{00BC}{\textonequarter}
\DeclareUnicodeCharacter{00BD}{\textonehalf}
\DeclareUnicodeCharacter{00BE}{\textthreequarters}
\DeclareUnicodeCharacter{00BF}{\textquestiondown}
\DeclareUnicodeCharacter{00C0}{\@tabacckludge`A}
\DeclareUnicodeCharacter{00C1}{\@tabacckludge'A}
\DeclareUnicodeCharacter{00C2}{\^A}
\DeclareUnicodeCharacter{00C3}{\~A}
\DeclareUnicodeCharacter{00C4}{\"A}
\DeclareUnicodeCharacter{00C5}{\r A}
\DeclareUnicodeCharacter{00C6}{\AE}
\DeclareUnicodeCharacter{00C7}{\c C}
\DeclareUnicodeCharacter{00C8}{\@tabacckludge`E}
\DeclareUnicodeCharacter{00C9}{\@tabacckludge'E}
\DeclareUnicodeCharacter{00CA}{\^E}
\DeclareUnicodeCharacter{00CB}{\"E}
\DeclareUnicodeCharacter{00CC}{\@tabacckludge`I}
\DeclareUnicodeCharacter{00CD}{\@tabacckludge'I}
\DeclareUnicodeCharacter{00CE}{\^I}
\DeclareUnicodeCharacter{00CF}{\"I}
\DeclareUnicodeCharacter{00D0}{\DH}
\DeclareUnicodeCharacter{00D1}{\~N}
\DeclareUnicodeCharacter{00D2}{\@tabacckludge`O}
\DeclareUnicodeCharacter{00D3}{\@tabacckludge'O}
\DeclareUnicodeCharacter{00D4}{\^O}
\DeclareUnicodeCharacter{00D5}{\~O}
\DeclareUnicodeCharacter{00D6}{\"O}
\DeclareUnicodeCharacter{00D7}{\texttimes}
\DeclareUnicodeCharacter{00D8}{\O}
\DeclareUnicodeCharacter{00D9}{\@tabacckludge`U}
\DeclareUnicodeCharacter{00DA}{\@tabacckludge'U}
\DeclareUnicodeCharacter{00DB}{\^U}
\DeclareUnicodeCharacter{00DC}{\"U}
\DeclareUnicodeCharacter{00DD}{\@tabacckludge'Y}
\DeclareUnicodeCharacter{00DE}{\TH}
\DeclareUnicodeCharacter{00DF}{\ss}
\DeclareUnicodeCharacter{00E0}{\@tabacckludge`a}
\DeclareUnicodeCharacter{00E1}{\@tabacckludge'a}
\DeclareUnicodeCharacter{00E2}{\^a}
\DeclareUnicodeCharacter{00E3}{\~a}
\DeclareUnicodeCharacter{00E4}{\"a}
\DeclareUnicodeCharacter{00E5}{\r a}
\DeclareUnicodeCharacter{00E6}{\ae}
\DeclareUnicodeCharacter{00E7}{\c c}
\DeclareUnicodeCharacter{00E8}{\@tabacckludge`e}
\DeclareUnicodeCharacter{00E9}{\@tabacckludge'e}
\DeclareUnicodeCharacter{00EA}{\^e}
\DeclareUnicodeCharacter{00EB}{\"e}
\DeclareUnicodeCharacter{00EC}{\@tabacckludge`\i}
\DeclareUnicodeCharacter{00ED}{\@tabacckludge'\i}
\DeclareUnicodeCharacter{00EE}{\^\i}
\DeclareUnicodeCharacter{00EF}{\"\i}
\DeclareUnicodeCharacter{00F0}{\dh}
\DeclareUnicodeCharacter{00F1}{\~n}
\DeclareUnicodeCharacter{00F2}{\@tabacckludge`o}
\DeclareUnicodeCharacter{00F3}{\@tabacckludge'o}
\DeclareUnicodeCharacter{00F4}{\^o}
\DeclareUnicodeCharacter{00F5}{\~o}
\DeclareUnicodeCharacter{00F6}{\"o}
\DeclareUnicodeCharacter{00F7}{\textdiv}
\DeclareUnicodeCharacter{00F8}{\o}
\DeclareUnicodeCharacter{00F9}{\@tabacckludge`u}
\DeclareUnicodeCharacter{00FA}{\@tabacckludge'u}
\DeclareUnicodeCharacter{00FB}{\^u}
\DeclareUnicodeCharacter{00FC}{\"u}
\DeclareUnicodeCharacter{00FD}{\@tabacckludge'y}
\DeclareUnicodeCharacter{00FE}{\th}
\DeclareUnicodeCharacter{00FF}{\"y}
\DeclareUnicodeCharacter{0102}{\u A}
\DeclareUnicodeCharacter{0103}{\u a}
\DeclareUnicodeCharacter{0104}{\k A}
\DeclareUnicodeCharacter{0105}{\k a}
\DeclareUnicodeCharacter{0106}{\@tabacckludge'C}
\DeclareUnicodeCharacter{0107}{\@tabacckludge'c}
\DeclareUnicodeCharacter{010C}{\v C}
\DeclareUnicodeCharacter{010D}{\v c}
\DeclareUnicodeCharacter{010E}{\v D}
\DeclareUnicodeCharacter{010F}{\v d}
\DeclareUnicodeCharacter{0110}{\DJ}
\DeclareUnicodeCharacter{0111}{\dj}
\DeclareUnicodeCharacter{0118}{\k E}
\DeclareUnicodeCharacter{0119}{\k e}
\DeclareUnicodeCharacter{011A}{\v E}
\DeclareUnicodeCharacter{011B}{\v e}
\DeclareUnicodeCharacter{011E}{\u G}
\DeclareUnicodeCharacter{011F}{\u g}
\DeclareUnicodeCharacter{0130}{\.I}
\DeclareUnicodeCharacter{0131}{\i}
\DeclareUnicodeCharacter{0132}{\IJ}
\DeclareUnicodeCharacter{0133}{\ij}
\DeclareUnicodeCharacter{0139}{\@tabacckludge'L}
\DeclareUnicodeCharacter{013A}{\@tabacckludge'l}
\DeclareUnicodeCharacter{013D}{\v L}
\DeclareUnicodeCharacter{013E}{\v l}
\DeclareUnicodeCharacter{0141}{\L}
\DeclareUnicodeCharacter{0142}{\l}
\DeclareUnicodeCharacter{0143}{\@tabacckludge'N}
\DeclareUnicodeCharacter{0144}{\@tabacckludge'n}
\DeclareUnicodeCharacter{0147}{\v N}
\DeclareUnicodeCharacter{0148}{\v n}
\DeclareUnicodeCharacter{014A}{\NG}
\DeclareUnicodeCharacter{014B}{\ng}
\DeclareUnicodeCharacter{0150}{\H O}
\DeclareUnicodeCharacter{0151}{\H o}
\DeclareUnicodeCharacter{0152}{\OE}
\DeclareUnicodeCharacter{0153}{\oe}
\DeclareUnicodeCharacter{0154}{\@tabacckludge'R}
\DeclareUnicodeCharacter{0155}{\@tabacckludge'r}
\DeclareUnicodeCharacter{0158}{\v R}
\DeclareUnicodeCharacter{0159}{\v r}
\DeclareUnicodeCharacter{015A}{\@tabacckludge'S}
\DeclareUnicodeCharacter{015B}{\@tabacckludge's}
\DeclareUnicodeCharacter{015E}{\c S}
\DeclareUnicodeCharacter{015F}{\c s}
\DeclareUnicodeCharacter{0160}{\v S}
\DeclareUnicodeCharacter{0161}{\v s}
\DeclareUnicodeCharacter{0162}{\c T}
\DeclareUnicodeCharacter{0163}{\c t}
\DeclareUnicodeCharacter{0164}{\v T}
\DeclareUnicodeCharacter{0165}{\v t}
\DeclareUnicodeCharacter{016E}{\r U}
\DeclareUnicodeCharacter{016F}{\r u}
\DeclareUnicodeCharacter{0170}{\H U}
\DeclareUnicodeCharacter{0171}{\H u}
\DeclareUnicodeCharacter{0178}{\"Y}
\DeclareUnicodeCharacter{0179}{\@tabacckludge'Z}
\DeclareUnicodeCharacter{017A}{\@tabacckludge'z}
\DeclareUnicodeCharacter{017B}{\.Z}
\DeclareUnicodeCharacter{017C}{\.z}
\DeclareUnicodeCharacter{017D}{\v Z}
\DeclareUnicodeCharacter{017E}{\v z}
\DeclareUnicodeCharacter{0192}{\textflorin}
\DeclareUnicodeCharacter{02C6}{\textasciicircum}
\DeclareUnicodeCharacter{02C7}{\textasciicaron}
\DeclareUnicodeCharacter{02DC}{\textasciitilde}
\DeclareUnicodeCharacter{02D8}{\textasciibreve}
\DeclareUnicodeCharacter{02DD}{\textacutedbl}
\DeclareUnicodeCharacter{0E3F}{\textbaht}
\DeclareUnicodeCharacter{200C}{\textcompwordmark}
\DeclareUnicodeCharacter{2013}{\textendash}
\DeclareUnicodeCharacter{2014}{\textemdash}
\DeclareUnicodeCharacter{2016}{\textbardbl}
\DeclareUnicodeCharacter{2018}{\textquoteleft}
\DeclareUnicodeCharacter{2019}{\textquoteright}
\DeclareUnicodeCharacter{201A}{\quotesinglbase}
\DeclareUnicodeCharacter{201C}{\textquotedblleft}
\DeclareUnicodeCharacter{201D}{\textquotedblright}
\DeclareUnicodeCharacter{201E}{\quotedblbase}
\DeclareUnicodeCharacter{2020}{\textdagger}
\DeclareUnicodeCharacter{2021}{\textdaggerdbl}
\DeclareUnicodeCharacter{2022}{\textbullet}
\DeclareUnicodeCharacter{2026}{\textellipsis}
\DeclareUnicodeCharacter{2030}{\textperthousand}
\DeclareUnicodeCharacter{2031}{\textpertenthousand}
\DeclareUnicodeCharacter{2039}{\guilsinglleft}
\DeclareUnicodeCharacter{203A}{\guilsinglright}
\DeclareUnicodeCharacter{203B}{\textreferencemark}
\DeclareUnicodeCharacter{203D}{\textinterrobang}
\DeclareUnicodeCharacter{2044}{\textfractionsolidus}
\DeclareUnicodeCharacter{204E}{\textasteriskcentered} % LOW ASTERISK
\DeclareUnicodeCharacter{2052}{\textdiscount}
\DeclareUnicodeCharacter{20A1}{\textcolonmonetary}
\DeclareUnicodeCharacter{20A4}{\textlira}
\DeclareUnicodeCharacter{20A6}{\textnaira}
\DeclareUnicodeCharacter{20A9}{\textwon}
\DeclareUnicodeCharacter{20AB}{\textdong}
\DeclareUnicodeCharacter{20AC}{\texteuro}
\DeclareUnicodeCharacter{20B1}{\textpeso}
\DeclareUnicodeCharacter{2103}{\textcelsius}
\DeclareUnicodeCharacter{2116}{\textnumero}
\DeclareUnicodeCharacter{2117}{\textcircledP}
\DeclareUnicodeCharacter{211E}{\textrecipe}
\DeclareUnicodeCharacter{2120}{\textservicemark}
\DeclareUnicodeCharacter{2122}{\texttrademark}
\DeclareUnicodeCharacter{2126}{\textohm}
\DeclareUnicodeCharacter{2127}{\textmho}
\DeclareUnicodeCharacter{212E}{\textestimated}
\DeclareUnicodeCharacter{2190}{\textleftarrow}
\DeclareUnicodeCharacter{2191}{\textuparrow}
\DeclareUnicodeCharacter{2192}{\textrightarrow}
\DeclareUnicodeCharacter{2193}{\textdownarrow}
\DeclareUnicodeCharacter{2329}{\textlangle}
\DeclareUnicodeCharacter{232A}{\textrangle}
\DeclareUnicodeCharacter{2422}{\textblank}
\DeclareUnicodeCharacter{2423}{\textvisiblespace}
\DeclareUnicodeCharacter{25E6}{\textopenbullet}
\DeclareUnicodeCharacter{25EF}{\textbigcircle}
\DeclareUnicodeCharacter{266A}{\textmusicalnote}

\endinput
%%
%% End of file `utf8enc.dfu'.







images/1.info





images/2.info





images/3.info





images/4.info





images/5.info





images/6.info





main/main.lof

\select@language {english}
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }







main/main.log

This is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=pdflatex 2012.10.25)  18 MAR 2013 15:04
entering extended mode
 restricted \write18 enabled.
 %&-line parsing enabled.
**main.tex
(./main.tex
LaTeX2e <2011/06/27>
Babel <v3.8m> and hyphenation patterns for english, dumylang, nohyphenation, et
hiopic, farsi, arabic, pinyin, croatian, bulgarian, ukrainian, russian, slovak,
 czech, danish, dutch, usenglishmax, ukenglish, finnish, french, basque, ngerma
n, german, swissgerman, ngerman-x-2012-05-30, german-x-2012-05-30, monogreek, g
reek, ibycus, ancientgreek, hungarian, bengali, tamil, hindi, telugu, gujarati,
 sanskrit, malayalam, kannada, assamese, marathi, oriya, panjabi, italian, lati
n, latvian, lithuanian, mongolian, mongolianlmc, nynorsk, bokmal, indonesian, e
speranto, coptic, welsh, irish, interlingua, serbian, serbianc, slovenian, friu
lan, romansh, estonian, romanian, armenian, uppersorbian, turkish, afrikaans, i
celandic, kurmanji, polish, portuguese, galician, catalan, spanish, swedish, th
ai, loaded.
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hyphsubst.sty
Package: hyphsubst 2008/06/09 v0.2 Substitute hyphenation patterns (HO)

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/infwarerr.sty
Package: infwarerr 2010/04/08 v1.3 Providing info/warning/error messages (HO)
))
(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrbook.cls
Document Class: scrbook 2012/05/15 v3.11 KOMA-Script document class (book)
(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrkbase.sty
Package: scrkbase 2012/05/15 v3.11 KOMA-Script package (KOMA-Script-dependent b
asics and keyval usage)

(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrbase.sty
Package: scrbase 2012/05/15 v3.11 KOMA-Script package (KOMA-Script-independent 
basics and keyval usage)

(/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
Package: keyval 1999/03/16 v1.13 key=value parser (DPC)
\KV@toks@=\toks14
)
(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrlfile.sty
Package: scrlfile 2011/03/09 v3.09 KOMA-Script package (loading files)

Package scrlfile, 2011/03/09 v3.09 KOMA-Script package (loading files)
                  Copyright (C) Markus Kohm

))) (/usr/share/texlive/texmf-dist/tex/latex/koma-script/tocbasic.sty
Package: tocbasic 2012/04/04 v3.10b KOMA-Script package (handling toc-files)
)
Package tocbasic Info: omitting babel extension for `toc'
(tocbasic)             because of feature `nobabel' available
(tocbasic)             for `toc' on input line 117.
Package tocbasic Info: omitting babel extension for `lof'
(tocbasic)             because of feature `nobabel' available
(tocbasic)             for `lof' on input line 118.
Package tocbasic Info: omitting babel extension for `lot'
(tocbasic)             because of feature `nobabel' available
(tocbasic)             for `lot' on input line 119.
Class scrbook Info: File `scrsize11pt.clo' used to setup font sizes on input li
ne 1366.

(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrsize11pt.clo
File: scrsize11pt.clo 2012/05/15 v3.11 KOMA-Script font size class option (11pt
)
)
(/usr/share/texlive/texmf-dist/tex/latex/koma-script/typearea.sty
Package: typearea 2012/05/15 v3.11 KOMA-Script package (type area)

Package typearea, 2012/05/15 v3.11 KOMA-Script package (type area)
                  Copyright (C) Frank Neukam, 1992-1994
                  Copyright (C) Markus Kohm, 1994-

\ta@bcor=\skip41
\ta@div=\count79
\ta@hblk=\skip42
\ta@vblk=\skip43
\ta@temp=\skip44
Package typearea Info: These are the values describing the layout:
(typearea)             DIV  = 13
(typearea)             BCOR = 34.1433pt
(typearea)             \paperwidth      = 597.50793pt
(typearea)              \textwidth      = 433.35742pt
(typearea)              DIV departure   = -10%
(typearea)              \evensidemargin = 14.40149pt
(typearea)              \oddsidemargin  = 5.20905pt
(typearea)             \paperheight     = 845.04694pt
(typearea)              \textheight     = 650.20029pt
(typearea)              \topmargin      = -44.6664pt
(typearea)              \headheight     = 17.0pt
(typearea)              \headsep        = 20.40001pt
(typearea)              \topskip        = 11.0pt
(typearea)              \footskip       = 47.60002pt
(typearea)              \baselineskip   = 13.6pt
(typearea)              on input line 1211.
)
\c@part=\count80
\c@chapter=\count81
\c@section=\count82
\c@subsection=\count83
\c@subsubsection=\count84
\c@paragraph=\count85
\c@subparagraph=\count86
\abovecaptionskip=\skip45
\belowcaptionskip=\skip46
\c@pti@nb@sid@b@x=\box26
\c@figure=\count87
\c@table=\count88
\bibindent=\dimen102
) (../headers/paper.tex) (../headers/packages1.tex
(/usr/share/texlive/texmf-dist/tex/latex/graphics/color.sty
Package: color 2005/11/14 v1.0j Standard LaTeX Color (DPC)

(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/color.cfg
File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
)
Package color Info: Driver file: pdftex.def on input line 130.

(/usr/share/texlive/texmf-dist/tex/latex/pdftex-def/pdftex.def
File: pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ltxcmds.sty
Package: ltxcmds 2011/11/09 v1.22 LaTeX kernel commands for general use (HO)
)
\Gread@gobject=\count89
))
(/usr/share/texlive/texmf-dist/tex/latex/base/textcomp.sty
Package: textcomp 2005/09/27 v1.99g Standard LaTeX package
Package textcomp Info: Sub-encoding information:
(textcomp)               5 = only ISO-Adobe without \textcurrency
(textcomp)               4 = 5 + \texteuro
(textcomp)               3 = 4 + \textohm
(textcomp)               2 = 3 + \textestimated + \textcurrency
(textcomp)               1 = TS1 - \textcircled - \t
(textcomp)               0 = TS1 (full)
(textcomp)             Font families with sub-encoding setting implement
(textcomp)             only a restricted character set as indicated.
(textcomp)             Family '?' is the default used for unknown fonts.
(textcomp)             See the documentation for details.
Package textcomp Info: Setting ? sub-encoding to TS1/1 on input line 71.

(/usr/share/texlive/texmf-dist/tex/latex/base/ts1enc.def
File: ts1enc.def 2001/06/05 v3.0e (jk/car/fm) Standard LaTeX file
)
LaTeX Info: Redefining \oldstylenums on input line 266.
Package textcomp Info: Setting cmr sub-encoding to TS1/0 on input line 281.
Package textcomp Info: Setting cmss sub-encoding to TS1/0 on input line 282.
Package textcomp Info: Setting cmtt sub-encoding to TS1/0 on input line 283.
Package textcomp Info: Setting cmvtt sub-encoding to TS1/0 on input line 284.
Package textcomp Info: Setting cmbr sub-encoding to TS1/0 on input line 285.
Package textcomp Info: Setting cmtl sub-encoding to TS1/0 on input line 286.
Package textcomp Info: Setting ccr sub-encoding to TS1/0 on input line 287.
Package textcomp Info: Setting ptm sub-encoding to TS1/4 on input line 288.
Package textcomp Info: Setting pcr sub-encoding to TS1/4 on input line 289.
Package textcomp Info: Setting phv sub-encoding to TS1/4 on input line 290.
Package textcomp Info: Setting ppl sub-encoding to TS1/3 on input line 291.
Package textcomp Info: Setting pag sub-encoding to TS1/4 on input line 292.
Package textcomp Info: Setting pbk sub-encoding to TS1/4 on input line 293.
Package textcomp Info: Setting pnc sub-encoding to TS1/4 on input line 294.
Package textcomp Info: Setting pzc sub-encoding to TS1/4 on input line 295.
Package textcomp Info: Setting bch sub-encoding to TS1/4 on input line 296.
Package textcomp Info: Setting put sub-encoding to TS1/5 on input line 297.
Package textcomp Info: Setting uag sub-encoding to TS1/5 on input line 298.
Package textcomp Info: Setting ugq sub-encoding to TS1/5 on input line 299.
Package textcomp Info: Setting ul8 sub-encoding to TS1/4 on input line 300.
Package textcomp Info: Setting ul9 sub-encoding to TS1/4 on input line 301.
Package textcomp Info: Setting augie sub-encoding to TS1/5 on input line 302.
Package textcomp Info: Setting dayrom sub-encoding to TS1/3 on input line 303.
Package textcomp Info: Setting dayroms sub-encoding to TS1/3 on input line 304.

Package textcomp Info: Setting pxr sub-encoding to TS1/0 on input line 305.
Package textcomp Info: Setting pxss sub-encoding to TS1/0 on input line 306.
Package textcomp Info: Setting pxtt sub-encoding to TS1/0 on input line 307.
Package textcomp Info: Setting txr sub-encoding to TS1/0 on input line 308.
Package textcomp Info: Setting txss sub-encoding to TS1/0 on input line 309.
Package textcomp Info: Setting txtt sub-encoding to TS1/0 on input line 310.
Package textcomp Info: Setting lmr sub-encoding to TS1/0 on input line 311.
Package textcomp Info: Setting lmdh sub-encoding to TS1/0 on input line 312.
Package textcomp Info: Setting lmss sub-encoding to TS1/0 on input line 313.
Package textcomp Info: Setting lmssq sub-encoding to TS1/0 on input line 314.
Package textcomp Info: Setting lmvtt sub-encoding to TS1/0 on input line 315.
Package textcomp Info: Setting qhv sub-encoding to TS1/0 on input line 316.
Package textcomp Info: Setting qag sub-encoding to TS1/0 on input line 317.
Package textcomp Info: Setting qbk sub-encoding to TS1/0 on input line 318.
Package textcomp Info: Setting qcr sub-encoding to TS1/0 on input line 319.
Package textcomp Info: Setting qcs sub-encoding to TS1/0 on input line 320.
Package textcomp Info: Setting qpl sub-encoding to TS1/0 on input line 321.
Package textcomp Info: Setting qtm sub-encoding to TS1/0 on input line 322.
Package textcomp Info: Setting qzc sub-encoding to TS1/0 on input line 323.
Package textcomp Info: Setting qhvc sub-encoding to TS1/0 on input line 324.
Package textcomp Info: Setting futs sub-encoding to TS1/4 on input line 325.
Package textcomp Info: Setting futx sub-encoding to TS1/4 on input line 326.
Package textcomp Info: Setting futj sub-encoding to TS1/4 on input line 327.
Package textcomp Info: Setting hlh sub-encoding to TS1/3 on input line 328.
Package textcomp Info: Setting hls sub-encoding to TS1/3 on input line 329.
Package textcomp Info: Setting hlst sub-encoding to TS1/3 on input line 330.
Package textcomp Info: Setting hlct sub-encoding to TS1/5 on input line 331.
Package textcomp Info: Setting hlx sub-encoding to TS1/5 on input line 332.
Package textcomp Info: Setting hlce sub-encoding to TS1/5 on input line 333.
Package textcomp Info: Setting hlcn sub-encoding to TS1/5 on input line 334.
Package textcomp Info: Setting hlcw sub-encoding to TS1/5 on input line 335.
Package textcomp Info: Setting hlcf sub-encoding to TS1/5 on input line 336.
Package textcomp Info: Setting pplx sub-encoding to TS1/3 on input line 337.
Package textcomp Info: Setting pplj sub-encoding to TS1/3 on input line 338.
Package textcomp Info: Setting ptmx sub-encoding to TS1/4 on input line 339.
Package textcomp Info: Setting ptmj sub-encoding to TS1/4 on input line 340.
)
(/usr/share/texlive/texmf-dist/tex/latex/base/alltt.sty
Package: alltt 1997/06/16 v2.0g defines alltt environment
)
(/usr/share/texlive/texmf-dist/tex/latex/mdwtools/syntax.sty
Package: syntax 1996/05/17 1.07 Syntax typesetting (MDW)
\grammarparsep=\skip47
\grammarindent=\dimen103
\sdstartspace=\skip48
\sdendspace=\skip49
\sdmidskip=\skip50
\sdtokskip=\skip51
\sdfinalskip=\skip52
\sdrulewidth=\dimen104
\sdcirclediam=\dimen105
\sdindent=\dimen106
)
(/usr/share/texlive/texmf-dist/tex/latex/parskip/parskip.sty
Package: parskip 2001/04/09 non-zero parskip adjustments
)
(/usr/share/texlive/texmf-dist/tex/generic/ulem/ulem.sty
\UL@box=\box27
\UL@hyphenbox=\box28
\UL@skip=\skip53
\UL@hook=\toks15
\UL@height=\dimen107
\UL@pe=\count90
\UL@pixel=\dimen108
\ULC@box=\box29
Package: ulem 2012/05/18
\ULdepth=\dimen109
)
(/usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty
Package: hyperref 2012/05/13 v6.82q Hypertext links for LaTeX

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty
Package: hobsub-hyperref 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO)


(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty
Package: hobsub-generic 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO)
Package: hobsub 2012/05/28 v1.13 Construct package bundles (HO)
Package hobsub Info: Skipping package `infwarerr' (already loaded).
Package hobsub Info: Skipping package `ltxcmds' (already loaded).
Package: ifluatex 2010/03/01 v1.3 Provides the ifluatex switch (HO)
Package ifluatex Info: LuaTeX not detected.
Package: ifvtex 2010/03/01 v1.5 Detect VTeX and its facilities (HO)
Package ifvtex Info: VTeX not detected.
Package: intcalc 2007/09/27 v1.1 Expandable calculations with integers (HO)
Package: ifpdf 2011/01/30 v2.3 Provides the ifpdf switch (HO)
Package ifpdf Info: pdfTeX in PDF mode is detected.
Package: etexcmds 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO)
Package etexcmds Info: Could not find \expanded.
(etexcmds)             That can mean that you are not using pdfTeX 1.50 or
(etexcmds)             that some package has redefined \expanded.
(etexcmds)             In the latter case, load this package earlier.
Package: kvsetkeys 2012/04/25 v1.16 Key value parser (HO)
Package: kvdefinekeys 2011/04/07 v1.3 Define keys (HO)
Package: pdftexcmds 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO
)
Package pdftexcmds Info: LuaTeX not detected.
Package pdftexcmds Info: \pdf@primitive is available.
Package pdftexcmds Info: \pdf@ifprimitive is available.
Package pdftexcmds Info: \pdfdraftmode found.
Package: pdfescape 2011/11/25 v1.13 Implements pdfTeX's escape features (HO)
Package: bigintcalc 2012/04/08 v1.3 Expandable calculations on big integers (HO
)
Package: bitset 2011/01/30 v1.1 Handle bit-vector datatype (HO)
Package: uniquecounter 2011/01/30 v1.2 Provide unlimited unique counter (HO)
)
Package hobsub Info: Skipping package `hobsub' (already loaded).
Package: letltxmacro 2010/09/02 v1.4 Let assignment for LaTeX macros (HO)
Package: hopatch 2012/05/28 v1.2 Wrapper for package hooks (HO)
Package: xcolor-patch 2011/01/30 xcolor patch
Package: atveryend 2011/06/30 v1.8 Hooks at the very end of document (HO)
Package atveryend Info: \enddocument detected (standard20110627).
Package: atbegshi 2011/10/05 v1.16 At begin shipout hook (HO)
Package: refcount 2011/10/16 v3.4 Data extraction from label references (HO)
Package: hycolor 2011/01/30 v1.7 Color options for hyperref/bookmark (HO)
)
(/usr/share/texlive/texmf-dist/tex/generic/ifxetex/ifxetex.sty
Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional
)
(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty
Package: kvoptions 2011/06/30 v3.11 Key value format for package options (HO)
)
\@linkdim=\dimen110
\Hy@linkcounter=\count91
\Hy@pagecounter=\count92

(/usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def
File: pd1enc.def 2012/05/13 v6.82q Hyperref: PDFDocEncoding definition (HO)
)
\Hy@SavedSpaceFactor=\count93

(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/hyperref.cfg
File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
)
Package hyperref Info: Option `unicode' set `true' on input line 3941.

(/usr/share/texlive/texmf-dist/tex/latex/hyperref/puenc.def
File: puenc.def 2012/05/13 v6.82q Hyperref: PDF Unicode definition (HO)
)
Package hyperref Info: Hyper figures OFF on input line 4062.
Package hyperref Info: Link nesting OFF on input line 4067.
Package hyperref Info: Hyper index ON on input line 4070.
Package hyperref Info: Plain pages OFF on input line 4077.
Package hyperref Info: Backreferencing OFF on input line 4082.
Package hyperref Info: Implicit mode ON; LaTeX internals redefined.
Package hyperref Info: Bookmarks ON on input line 4300.
\c@Hy@tempcnt=\count94

(/usr/share/texlive/texmf-dist/tex/latex/url/url.sty
\Urlmuskip=\muskip10
Package: url 2006/04/12  ver 3.3  Verb mode for urls, etc.
)
LaTeX Info: Redefining \url on input line 4653.
\Fld@menulength=\count95
\Field@Width=\dimen111
\Fld@charsize=\dimen112
Package hyperref Info: Hyper figures OFF on input line 5773.
Package hyperref Info: Link nesting OFF on input line 5778.
Package hyperref Info: Hyper index ON on input line 5781.
Package hyperref Info: backreferencing OFF on input line 5788.
Package hyperref Info: Link coloring OFF on input line 5793.
Package hyperref Info: Link coloring with OCG OFF on input line 5798.
Package hyperref Info: PDF/A mode OFF on input line 5803.
LaTeX Info: Redefining \ref on input line 5843.
LaTeX Info: Redefining \pageref on input line 5847.
\Hy@abspage=\count96
\c@Item=\count97
\c@Hfootnote=\count98
)

Package hyperref Message: Driver: hpdftex.

(/usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def
File: hpdftex.def 2012/05/13 v6.82q Hyperref driver for pdfTeX
\Fld@listcount=\count99
\c@bookmark@seq@number=\count100

(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty
Package: rerunfilecheck 2011/04/15 v1.7 Rerun checks for auxiliary files (HO)
Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2
82.
)
\Hy@SectionHShift=\skip54
)
(/usr/share/texlive/texmf-dist/tex/latex/koma-script/tocstyle.sty
Package: tocstyle 2009/11/09 v0.2d-alpha LaTeX2e KOMA-Script package (versatile
 toc styles)


Package tocstyle Warning: THIS IS AN ALPHA VERSION!
(tocstyle)                USAGE OF THIS VERSION IS ON YOUR OWN RISK!
(tocstyle)                EVERYTHING MAY HAPPEN!
(tocstyle)                EVERYTHING MAY CHANGE IN FUTURE!
(tocstyle)                THERE IS NO SUPPORT, IF YOU USE THIS PACKAGE!
(tocstyle)                Maybe it would be better, not to load this package.

\tocstyle@indentstyle=\count101
Package tocstyle Info: no tocstyle.cfg found on input line 838.
) (/usr/share/texlive/texmf-dist/tex/latex/paralist/paralist.sty
Package: paralist 2002/03/18 v2.3b Extended list environments (BS)
\pltopsep=\skip55
\plpartopsep=\skip56
\plitemsep=\skip57
\plparsep=\skip58
\pl@lab=\toks16
)
(/usr/share/texlive/texmf-dist/tex/latex/tools/trace.sty
Package: trace 2003/04/30 v1.1c trace LaTeX code
)
(/usr/share/texlive/texmf-dist/tex/latex/multirow/bigstrut.sty
\bigstrutjot=\dimen113
)
(/usr/share/texlive/texmf-dist/tex/latex/keystroke/keystroke.sty
Package: keystroke 2010/04/23 v1.6 3D keystrokes (SuSE GmbH/RN)

(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR)

(/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
Package: trig 1999/03/16 v1.09 sin cos tan (DPC)
)
(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg
File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live
)
Package graphics Info: Driver file: pdftex.def on input line 91.
)
\suse@key=\box30
\keystroke@left=\box31
\keystroke@right=\box32
\keystroke@middle=\box33

<keystroke_left.pdf, id=1, 42.1575pt x 195.73125pt>
File: keystroke_left.pdf Graphic file (type pdf)
 <use keystroke_left.pdf>
Package pdftex.def Info: keystroke_left.pdf used on input line 171.
(pdftex.def)             Requested size: 42.15738pt x 195.73076pt.

<keystroke_middle.pdf, id=2, 116.435pt x 195.73125pt>
File: keystroke_middle.pdf Graphic file (type pdf)

<use keystroke_middle.pdf>
Package pdftex.def Info: keystroke_middle.pdf used on input line 172.
(pdftex.def)             Requested size: 116.43471pt x 195.73076pt.

<keystroke_right.pdf, id=3, 42.1575pt x 195.73125pt>
File: keystroke_right.pdf Graphic file (type pdf)
 <use keystroke_right.pdf>
Package pdftex.def Info: keystroke_right.pdf used on input line 173.
(pdftex.def)             Requested size: 42.15738pt x 195.73076pt.
) (/usr/share/texlive/texmf-dist/tex/latex/supertabular/supertabular.sty
Package: supertabular 2004/02/20 v4.1e the supertabular environment
\c@tracingst=\count102
\ST@wd=\dimen114
\ST@rightskip=\skip59
\ST@leftskip=\skip60
\ST@parfillskip=\skip61
\ST@pageleft=\dimen115
\ST@headht=\dimen116
\ST@tailht=\dimen117
\ST@pagesofar=\dimen118
\ST@pboxht=\dimen119
\ST@lineht=\dimen120
\ST@stretchht=\dimen121
\ST@prevht=\dimen122
\ST@toadd=\dimen123
\ST@dimen=\dimen124
\ST@pbox=\box34
)
(/usr/share/texlive/texmf-dist/tex/latex/wrapfig/wrapfig.sty
\wrapoverhang=\dimen125
\WF@size=\dimen126
\c@WF@wrappedlines=\count103
\WF@box=\box35
\WF@everypar=\toks17
Package: wrapfig 2003/01/31  v 3.6
))
(../headers/babel.tex (/var/lib/texmf/tex/generic/babel/babel.sty
Package: babel 2008/07/08 v3.8m The Babel package

(/usr/share/texlive/texmf-dist/tex/generic/babel/english.ldf
Language: english 2005/03/30 v3.3o English support from the babel system

(/usr/share/texlive/texmf-dist/tex/generic/babel/babel.def
File: babel.def 2008/07/08 v3.8m Babel common definitions
\babel@savecnt=\count104
\U@D=\dimen127
)
\l@canadian = a dialect from \language\l@american 
\l@australian = a dialect from \language\l@british 
\l@newzealand = a dialect from \language\l@british 
)))
(../headers/svg.tex) (../headers/packages2.tex
(/usr/share/texlive/texmf-dist/tex/latex/psnfss/mathptmx.sty
Package: mathptmx 2005/04/12 PSNFSS-v9.2a Times w/ Math, improved (SPQR, WaS) 
LaTeX Font Info:    Redeclaring symbol font `operators' on input line 28.
LaTeX Font Info:    Overwriting symbol font `operators' in version `normal'
(Font)                  OT1/cmr/m/n --> OT1/ztmcm/m/n on input line 28.
LaTeX Font Info:    Overwriting symbol font `operators' in version `bold'
(Font)                  OT1/cmr/bx/n --> OT1/ztmcm/m/n on input line 28.
LaTeX Font Info:    Redeclaring symbol font `letters' on input line 29.
LaTeX Font Info:    Overwriting symbol font `letters' in version `normal'
(Font)                  OML/cmm/m/it --> OML/ztmcm/m/it on input line 29.
LaTeX Font Info:    Overwriting symbol font `letters' in version `bold'
(Font)                  OML/cmm/b/it --> OML/ztmcm/m/it on input line 29.
LaTeX Font Info:    Redeclaring symbol font `symbols' on input line 30.
LaTeX Font Info:    Overwriting symbol font `symbols' in version `normal'
(Font)                  OMS/cmsy/m/n --> OMS/ztmcm/m/n on input line 30.
LaTeX Font Info:    Overwriting symbol font `symbols' in version `bold'
(Font)                  OMS/cmsy/b/n --> OMS/ztmcm/m/n on input line 30.
LaTeX Font Info:    Redeclaring symbol font `largesymbols' on input line 31.
LaTeX Font Info:    Overwriting symbol font `largesymbols' in version `normal'
(Font)                  OMX/cmex/m/n --> OMX/ztmcm/m/n on input line 31.
LaTeX Font Info:    Overwriting symbol font `largesymbols' in version `bold'
(Font)                  OMX/cmex/m/n --> OMX/ztmcm/m/n on input line 31.
\symbold=\mathgroup4
\symitalic=\mathgroup5
LaTeX Font Info:    Redeclaring math alphabet \mathbf on input line 34.
LaTeX Font Info:    Overwriting math alphabet `\mathbf' in version `normal'
(Font)                  OT1/cmr/bx/n --> OT1/ptm/bx/n on input line 34.
LaTeX Font Info:    Overwriting math alphabet `\mathbf' in version `bold'
(Font)                  OT1/cmr/bx/n --> OT1/ptm/bx/n on input line 34.
LaTeX Font Info:    Redeclaring math alphabet \mathit on input line 35.
LaTeX Font Info:    Overwriting math alphabet `\mathit' in version `normal'
(Font)                  OT1/cmr/m/it --> OT1/ptm/m/it on input line 35.
LaTeX Font Info:    Overwriting math alphabet `\mathit' in version `bold'
(Font)                  OT1/cmr/bx/it --> OT1/ptm/m/it on input line 35.
LaTeX Info: Redefining \hbar on input line 50.
)
(/usr/share/texlive/texmf-dist/tex/latex/psnfss/helvet.sty
Package: helvet 2005/04/12 PSNFSS-v9.2a (WaS) 
)
(/usr/share/texlive/texmf-dist/tex/latex/psnfss/courier.sty
Package: courier 2005/04/12 PSNFSS-v9.2a (WaS) 
)
(/usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty
Package: fontenc 2005/09/27 v1.99g Standard LaTeX package

(/usr/share/texlive/texmf-dist/tex/latex/base/t1enc.def
File: t1enc.def 2005/09/27 v1.99g Standard LaTeX file
LaTeX Font Info:    Redeclaring font encoding T1 on input line 43.
))
(/usr/share/texlive/texmf-dist/tex/latex/multirow/multirow.sty)
(/usr/share/texlive/texmf-dist/tex/latex/tools/multicol.sty
Package: multicol 2011/06/27 v1.7a multicolumn formatting (FMi)
\c@tracingmulticols=\count105
\mult@box=\box36
\multicol@leftmargin=\dimen128
\c@unbalance=\count106
\c@collectmore=\count107
\doublecol@number=\count108
\multicoltolerance=\count109
\multicolpretolerance=\count110
\full@width=\dimen129
\page@free=\dimen130
\premulticols=\dimen131
\postmulticols=\dimen132
\multicolsep=\skip62
\multicolbaselineskip=\skip63
\partial@page=\box37
\last@line=\box38
\mult@rightbox=\box39
\mult@grightbox=\box40
\mult@gfirstbox=\box41
\mult@firstbox=\box42
\@tempa=\box43
\@tempa=\box44
\@tempa=\box45
\@tempa=\box46
\@tempa=\box47
\@tempa=\box48
\@tempa=\box49
\@tempa=\box50
\@tempa=\box51
\@tempa=\box52
\@tempa=\box53
\@tempa=\box54
\@tempa=\box55
\@tempa=\box56
\@tempa=\box57
\@tempa=\box58
\@tempa=\box59
\c@columnbadness=\count111
\c@finalcolumnbadness=\count112
\last@try=\dimen133
\multicolovershoot=\dimen134
\multicolundershoot=\dimen135
\mult@nat@firstbox=\box60
\colbreak@box=\box61
\multicol@sort@counter=\count113
)
(/usr/share/texlive/texmf-dist/tex/latex/tools/array.sty
Package: array 2008/09/09 v2.4c Tabular extension package (FMi)
\col@sep=\dimen136
\extrarowheight=\dimen137
\NC@list=\toks18
\extratabsurround=\skip64
\backup@length=\skip65
)
(/usr/share/texlive/texmf-dist/tex/latex/ms/ragged2e.sty
Package: ragged2e 2009/05/21 v2.1 ragged2e Package (MS)

(/usr/share/texlive/texmf-dist/tex/latex/ms/everysel.sty
Package: everysel 2011/10/28 v1.2 EverySelectfont Package (MS)
)
\CenteringLeftskip=\skip66
\RaggedLeftLeftskip=\skip67
\RaggedRightLeftskip=\skip68
\CenteringRightskip=\skip69
\RaggedLeftRightskip=\skip70
\RaggedRightRightskip=\skip71
\CenteringParfillskip=\skip72
\RaggedLeftParfillskip=\skip73
\RaggedRightParfillskip=\skip74
\JustifyingParfillskip=\skip75
\CenteringParindent=\skip76
\RaggedLeftParindent=\skip77
\RaggedRightParindent=\skip78
\JustifyingParindent=\skip79
)
(/usr/share/texlive/texmf-dist/tex/latex/tools/longtable.sty
Package: longtable 2004/02/01 v4.11 Multi-page Table package (DPC)
\LTleft=\skip80
\LTright=\skip81
\LTpre=\skip82
\LTpost=\skip83
\LTchunksize=\count114
\LTcapwidth=\dimen138
\LT@head=\box62
\LT@firsthead=\box63
\LT@foot=\box64
\LT@lastfoot=\box65
\LT@cols=\count115
\LT@rows=\count116
\c@LT@tables=\count117
\c@LT@chunks=\count118
\LT@p@ftn=\toks19
)
Class scrbook Info: longtable captions redefined on input line 17.

(/usr/share/texlive/texmf-dist/tex/latex/koma-script/scrpage2.sty
Package: scrpage2 2010/04/22 v2.5 LaTeX2e KOMA-Script package
LaTeX Info: Redefining \pagemark on input line 176.
)
(/usr/share/texlive/texmf-dist/tex/latex/mdwtools/footnote.sty
Package: footnote 1997/01/28 1.13 Save footnotes around boxes
\fn@notes=\box66
\fn@width=\dimen139
)
(/usr/share/texlive/texmf-dist/tex/latex/tools/verbatim.sty
Package: verbatim 2003/08/22 v1.5q LaTeX2e package for verbatim enhancements
\every@verbatim=\toks20
\verbatim@line=\toks21
\verbatim@in@stream=\read1
)
(/usr/share/texlive/texmf-dist/tex/latex/framed/framed.sty
Package: framed 2011/10/22 v 0.96: framed or shaded text with page breaks
\OuterFrameSep=\skip84
\fb@frw=\dimen140
\fb@frh=\dimen141
\FrameRule=\dimen142
\FrameSep=\dimen143
) (./mdframed.sty
Package: mdframed 2010/12/22  v0.6a: mdframed

(/usr/share/texlive/texmf-dist/tex/latex/etex-pkg/etex.sty
Package: etex 1998/03/26 v2.0 eTeX basic definition package (PEB)
\et@xins=\count119
)
(/usr/share/texlive/texmf-dist/tex/latex/tools/calc.sty
Package: calc 2007/08/22 v4.3 Infix arithmetic (KKT,FJ)
\calc@Acount=\count120
\calc@Bcount=\count121
\calc@Adimen=\dimen144
\calc@Bdimen=\dimen145
\calc@Askip=\skip85
\calc@Bskip=\skip86
LaTeX Info: Redefining \setlength on input line 76.
LaTeX Info: Redefining \addtolength on input line 77.
\calc@Ccount=\count122
\calc@Cskip=\skip87
) (./etoolbox.sty
Package: etoolbox 2011/01/03 v2.1 e-TeX tools for LaTeX
\etb@tempcnta=\count123
)
\md@templength=\skip88
\mdf@skipabove@length=\skip89
\mdf@skipbelow@length=\skip90
\mdf@leftmargin@length=\skip91
\mdf@rightmargin@length=\skip92
\mdf@margin@length=\skip93
\mdf@innerleftmargin@length=\skip94
\mdf@innerrightmargin@length=\skip95
\mdf@innertopmargin@length=\skip96
\mdf@innerbottommargin@length=\skip97
\mdf@splittopskip@length=\skip98
\mdf@splitbottomskip@length=\skip99
\mdf@linewidth@length=\skip100
\mdf@innerlinewidth@length=\skip101
\mdf@middlelinewidth@length=\skip102
\mdf@outerlinewidth@length=\skip103
\mdf@roundcorner@length=\skip104

(./md-frame-0.mdf
File: md-frame-3.mdf 2010/12/22  v0.6a: md-frame-0
)
\md@temp@skip@a=\skip105
\md@verticalmarginwhole@length=\skip106
\mdf@xmargin@length=\skip107
\mdf@ymargin@length=\skip108
\mdfboxheight=\skip109
\mdfboxwidth=\skip110
\mdfboundingboxheight=\skip111
\mdfboundingboxwidth=\skip112
\mdfpositionx=\skip113
\mdfpositiony=\skip114
\md@freevspace@length=\skip115
\md@horizontalspaceofbox=\skip116
\md@temp@frame@hsize=\skip117
\md@temp@frame@vsize=\skip118
)
(/usr/share/texlive/texmf-dist/tex/latex/listings/listings.sty
\lst@mode=\count124
\lst@gtempboxa=\box67
\lst@token=\toks22
\lst@length=\count125
\lst@currlwidth=\dimen146
\lst@column=\count126
\lst@pos=\count127
\lst@lostspace=\dimen147
\lst@width=\dimen148
\lst@newlines=\count128
\lst@lineno=\count129
\lst@maxwidth=\dimen149

(/usr/share/texlive/texmf-dist/tex/latex/listings/lstmisc.sty
File: lstmisc.sty 2007/02/22 1.4 (Carsten Heinz)
\c@lstnumber=\count130
\lst@skipnumbers=\count131
\lst@framebox=\box68
)
(/usr/share/texlive/texmf-dist/tex/latex/listings/listings.cfg
File: listings.cfg 2007/02/22 1.4 listings configuration
))
Package: listings 2007/02/22 1.4 (Carsten Heinz)

(/usr/share/texlive/texmf-dist/tex/latex/lineno/lineno.sty
Package: lineno 2005/11/02 line numbers on paragraphs v4.41
\linenopenalty=\count132
\output=\toks23
\linenoprevgraf=\count133
\linenumbersep=\dimen150
\linenumberwidth=\dimen151
\c@linenumber=\count134
\c@pagewiselinenumber=\count135
\c@LN@truepage=\count136
\c@internallinenumber=\count137
\c@internallinenumbers=\count138
\quotelinenumbersep=\dimen152
\bframerule=\dimen153
\bframesep=\dimen154
\bframebox=\box69
LaTeX Info: Redefining \\ on input line 3056.
)
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
Package: amsmath 2000/07/18 v2.13 AMS math features
\@mathmargin=\skip119

For additional information on amsmath, use the `?' option.
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
Package: amstext 2000/06/29 v2.01

(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
File: amsgen.sty 1999/11/30 v2.0
\@emptytoks=\toks24
\ex@=\dimen155
))
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
Package: amsbsy 1999/11/29 v1.2d
\pmbraise@=\dimen156
)
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
Package: amsopn 1999/12/14 v2.01 operator names
)
\inf@bad=\count139
LaTeX Info: Redefining \frac on input line 211.
\uproot@=\count140
\leftroot@=\count141
LaTeX Info: Redefining \overline on input line 307.
\classnum@=\count142
\DOTSCASE@=\count143
LaTeX Info: Redefining \ldots on input line 379.
LaTeX Info: Redefining \dots on input line 382.
LaTeX Info: Redefining \cdots on input line 467.
\Mathstrutbox@=\box70
\strutbox@=\box71
\big@size=\dimen157
LaTeX Font Info:    Redeclaring font encoding OML on input line 567.
LaTeX Font Info:    Redeclaring font encoding OMS on input line 568.
\macc@depth=\count144
\c@MaxMatrixCols=\count145
\dotsspace@=\muskip11
\c@parentequation=\count146
\dspbrk@lvl=\count147
\tag@help=\toks25
\row@=\count148
\column@=\count149
\maxfields@=\count150
\andhelp@=\toks26
\eqnshift@=\dimen158
\alignsep@=\dimen159
\tagshift@=\dimen160
\tagwidth@=\dimen161
\totwidth@=\dimen162
\lineht@=\dimen163
\@envbody=\toks27
\multlinegap=\skip120
\multlinetaggap=\skip121
\mathdisplay@stack=\toks28
LaTeX Info: Redefining \[ on input line 2666.
LaTeX Info: Redefining \] on input line 2667.
)
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty
Package: amssymb 2009/06/22 v3.00

(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
Package: amsfonts 2009/06/22 v3.00 Basic AMSFonts support
\symAMSa=\mathgroup6
\symAMSb=\mathgroup7
LaTeX Font Info:    Overwriting math alphabet `\mathfrak' in version `bold'
(Font)                  U/euf/m/n --> U/euf/b/n on input line 96.
))
(/usr/share/texlive/texmf-dist/tex/latex/psnfss/pifont.sty
Package: pifont 2005/04/12 PSNFSS-v9.2a Pi font support (SPQR) 
LaTeX Font Info:    Try loading font information for U+pzd on input line 63.

(/usr/share/texlive/texmf-dist/tex/latex/psnfss/upzd.fd
File: upzd.fd 2001/06/04 font definitions for U/pzd.
)
LaTeX Font Info:    Try loading font information for U+psy on input line 64.

(/usr/share/texlive/texmf-dist/tex/latex/psnfss/upsy.fd
File: upsy.fd 2001/06/04 font definitions for U/psy.
))
(/usr/share/texlive/texmf-dist/tex/latex/marvosym/marvosym.sty
Package: marvosym 2011/07/20 v2.2 Martin Vogel's Symbols font definitions
)
(/usr/share/texlive/texmf-dist/tex/latex/fourier/fourier-orns.sty
Package: fourier-orns 2004/01/30 1.1 fourier-ornaments package
)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
\Gin@req@height=\dimen164
\Gin@req@width=\dimen165
)
(/usr/share/texlive/texmf-dist/tex/latex/wasysym/wasysym.sty
Package: wasysym 2003/10/30 v2.0 Wasy-2 symbol support package
\symwasy=\mathgroup8
LaTeX Font Info:    Overwriting symbol font `wasy' in version `bold'
(Font)                  U/wasy/m/n --> U/wasy/b/n on input line 90.
)
(/usr/share/texlive/texmf-dist/tex/latex/bbm-macros/bbm.sty
Package: bbm 1999/03/15 V 1.2 provides fonts for set symbols - TH
LaTeX Font Info:    Overwriting math alphabet `\mathbbm' in version `bold'
(Font)                  U/bbm/m/n --> U/bbm/bx/n on input line 33.
LaTeX Font Info:    Overwriting math alphabet `\mathbbmss' in version `bold'
(Font)                  U/bbmss/m/n --> U/bbmss/bx/n on input line 35.
)
(/usr/share/texlive/texmf-dist/tex/latex/skull/skull.sty
Package: skull 2002/01/23 v0.1 (c) Henrik Christian Grove <grove@math.ku.dk>
\symSKULL=\mathgroup9
)
(/usr/share/texmf/tex/latex/tipa/tipa.sty
Package: tipa 2002/08/08 TIPA version 1.1

(/usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty
Package: fontenc 2005/09/27 v1.99g Standard LaTeX package

(/usr/share/texmf/tex/latex/tipa/t3enc.def
File: t3enc.def 2001/12/31 T3 encoding
LaTeX Font Info:    Try loading font information for T1+phv on input line 357.

(/usr/share/texlive/texmf-dist/tex/latex/psnfss/t1phv.fd
File: t1phv.fd 2001/06/04 scalable font definitions for T1/phv.
)
LaTeX Font Info:    Font shape `T1/phv/m/n' will be
(Font)              scaled to size 10.07397pt on input line 357.
)
(/usr/share/texlive/texmf-dist/tex/latex/base/t1enc.def
File: t1enc.def 2005/09/27 v1.99g Standard LaTeX file
LaTeX Font Info:    Redeclaring font encoding T1 on input line 43.
)))
(/usr/share/texlive/texmf-dist/tex/latex/fancyvrb/fancyvrb.sty
Package: fancyvrb 2008/02/07

Style option: `fancyvrb' v2.7a, with DG/SPQR fixes, and firstline=lastline fix 
<2008/02/07> (tvz)
\FV@CodeLineNo=\count151
\FV@InFile=\read2
\FV@TabBox=\box72
\c@FancyVerbLine=\count152
\FV@StepNumber=\count153
\FV@OutFile=\write3
) (/usr/share/texlive/texmf-dist/tex/latex/bbding/bbding.sty
Package: bbding 1999/04/15 v1.01 Dingbats symbols
) (/usr/share/texmf/tex/latex/xcolor/xcolor.sty
Package: xcolor 2007/01/21 v2.11 LaTeX color extensions (UK)

(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/color.cfg
File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
)
Package xcolor Info: Driver file: pdftex.def on input line 225.

(/usr/share/texlive/texmf-dist/tex/latex/colortbl/colortbl.sty
Package: colortbl 2012/02/13 v1.0a Color table columns (DPC)
\everycr=\toks29
\minrowclearance=\skip122
)
LaTeX Info: Redefining \color on input line 702.
\rownum=\count154
Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1337.
Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1341.
Package xcolor Info: Model `RGB' extended on input line 1353.
Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1355.
Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1356.
Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1357.
Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1358.
Package xcolor Info: Model `Gray' substituted by `gray' on input line 1359.
Package xcolor Info: Model `wave' substituted by `hsb' on input line 1360.
)
(/usr/share/texlive/texmf-dist/tex/latex/microtype/microtype.sty
Package: microtype 2010/01/10 v2.4 Micro-typography with pdfTeX (RS)
\MT@toks=\toks30
\MT@count=\count155
LaTeX Info: Redefining \lsstyle on input line 1597.
LaTeX Info: Redefining \lslig on input line 1597.
\MT@outer@space=\skip123
LaTeX Info: Redefining \textls on input line 1605.
\MT@outer@kern=\dimen166
LaTeX Info: Redefining \textmicrotypecontext on input line 2156.
Package microtype Info: Loading configuration file microtype.cfg.

(/usr/share/texlive/texmf-dist/tex/latex/microtype/microtype.cfg
File: microtype.cfg 2010/01/10 v2.4 microtype main configuration file (RS)
))
(/usr/share/texlive/texmf-dist/tex/latex/graphics/lscape.sty
Package: lscape 2000/10/22 v3.01 Landscape Pages (DPC)
)
(/usr/share/texlive/texmf-dist/tex/latex/amscls/amsthm.sty
Package: amsthm 2009/07/02 v2.20.1
\thm@style=\toks31
\thm@bodyfont=\toks32
\thm@headfont=\toks33
\thm@notefont=\toks34
\thm@headpunct=\toks35
\thm@preskip=\skip124
\thm@postskip=\skip125
\thm@headsep=\skip126
\dth@everypar=\toks36
))
(../headers/defaultcolors.tex) (../headers/hyphenation.tex)
(../headers/commands.tex
\fnwidth=\skip127
\mylength=\skip128
\myhight=\skip129
\myshadingheight=\skip130
) (/usr/share/texmf/tex/latex/cm-super/type1ec.sty
Package: type1ec 2002/09/07 v1.1 Type1 EC font definitions (for CM-Super fonts)


(/usr/share/texlive/texmf-dist/tex/latex/base/t1cmr.fd
File: t1cmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
))
(/usr/share/texmf/tex/latex/CJK/CJKutf8.sty
Package: CJKutf8 2012/05/07 4.8.3

(/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty
Package: inputenc 2008/03/30 v1.1d Input encoding file
\inpenc@prehook=\toks37
\inpenc@posthook=\toks38

(/usr/share/texlive/texmf-dist/tex/latex/base/utf8.def
File: utf8.def 2008/04/05 v1.1m UTF-8 support for inputenc
Now handling font encoding OML ...
... no UTF-8 mapping file for font encoding OML
Now handling font encoding T1 ...
... processing UTF-8 mapping file for font encoding T1

(/usr/share/texlive/texmf-dist/tex/latex/base/t1enc.dfu
File: t1enc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
   defining Unicode char U+00A1 (decimal 161)
   defining Unicode char U+00A3 (decimal 163)
   defining Unicode char U+00AB (decimal 171)
   defining Unicode char U+00BB (decimal 187)
   defining Unicode char U+00BF (decimal 191)
   defining Unicode char U+00C0 (decimal 192)
   defining Unicode char U+00C1 (decimal 193)
   defining Unicode char U+00C2 (decimal 194)
   defining Unicode char U+00C3 (decimal 195)
   defining Unicode char U+00C4 (decimal 196)
   defining Unicode char U+00C5 (decimal 197)
   defining Unicode char U+00C6 (decimal 198)
   defining Unicode char U+00C7 (decimal 199)
   defining Unicode char U+00C8 (decimal 200)
   defining Unicode char U+00C9 (decimal 201)
   defining Unicode char U+00CA (decimal 202)
   defining Unicode char U+00CB (decimal 203)
   defining Unicode char U+00CC (decimal 204)
   defining Unicode char U+00CD (decimal 205)
   defining Unicode char U+00CE (decimal 206)
   defining Unicode char U+00CF (decimal 207)
   defining Unicode char U+00D0 (decimal 208)
   defining Unicode char U+00D1 (decimal 209)
   defining Unicode char U+00D2 (decimal 210)
   defining Unicode char U+00D3 (decimal 211)
   defining Unicode char U+00D4 (decimal 212)
   defining Unicode char U+00D5 (decimal 213)
   defining Unicode char U+00D6 (decimal 214)
   defining Unicode char U+00D8 (decimal 216)
   defining Unicode char U+00D9 (decimal 217)
   defining Unicode char U+00DA (decimal 218)
   defining Unicode char U+00DB (decimal 219)
   defining Unicode char U+00DC (decimal 220)
   defining Unicode char U+00DD (decimal 221)
   defining Unicode char U+00DE (decimal 222)
   defining Unicode char U+00DF (decimal 223)
   defining Unicode char U+00E0 (decimal 224)
   defining Unicode char U+00E1 (decimal 225)
   defining Unicode char U+00E2 (decimal 226)
   defining Unicode char U+00E3 (decimal 227)
   defining Unicode char U+00E4 (decimal 228)
   defining Unicode char U+00E5 (decimal 229)
   defining Unicode char U+00E6 (decimal 230)
   defining Unicode char U+00E7 (decimal 231)
   defining Unicode char U+00E8 (decimal 232)
   defining Unicode char U+00E9 (decimal 233)
   defining Unicode char U+00EA (decimal 234)
   defining Unicode char U+00EB (decimal 235)
   defining Unicode char U+00EC (decimal 236)
   defining Unicode char U+00ED (decimal 237)
   defining Unicode char U+00EE (decimal 238)
   defining Unicode char U+00EF (decimal 239)
   defining Unicode char U+00F0 (decimal 240)
   defining Unicode char U+00F1 (decimal 241)
   defining Unicode char U+00F2 (decimal 242)
   defining Unicode char U+00F3 (decimal 243)
   defining Unicode char U+00F4 (decimal 244)
   defining Unicode char U+00F5 (decimal 245)
   defining Unicode char U+00F6 (decimal 246)
   defining Unicode char U+00F8 (decimal 248)
   defining Unicode char U+00F9 (decimal 249)
   defining Unicode char U+00FA (decimal 250)
   defining Unicode char U+00FB (decimal 251)
   defining Unicode char U+00FC (decimal 252)
   defining Unicode char U+00FD (decimal 253)
   defining Unicode char U+00FE (decimal 254)
   defining Unicode char U+00FF (decimal 255)
   defining Unicode char U+0102 (decimal 258)
   defining Unicode char U+0103 (decimal 259)
   defining Unicode char U+0104 (decimal 260)
   defining Unicode char U+0105 (decimal 261)
   defining Unicode char U+0106 (decimal 262)
   defining Unicode char U+0107 (decimal 263)
   defining Unicode char U+010C (decimal 268)
   defining Unicode char U+010D (decimal 269)
   defining Unicode char U+010E (decimal 270)
   defining Unicode char U+010F (decimal 271)
   defining Unicode char U+0110 (decimal 272)
   defining Unicode char U+0111 (decimal 273)
   defining Unicode char U+0118 (decimal 280)
   defining Unicode char U+0119 (decimal 281)
   defining Unicode char U+011A (decimal 282)
   defining Unicode char U+011B (decimal 283)
   defining Unicode char U+011E (decimal 286)
   defining Unicode char U+011F (decimal 287)
   defining Unicode char U+0130 (decimal 304)
   defining Unicode char U+0131 (decimal 305)
   defining Unicode char U+0132 (decimal 306)
   defining Unicode char U+0133 (decimal 307)
   defining Unicode char U+0139 (decimal 313)
   defining Unicode char U+013A (decimal 314)
   defining Unicode char U+013D (decimal 317)
   defining Unicode char U+013E (decimal 318)
   defining Unicode char U+0141 (decimal 321)
   defining Unicode char U+0142 (decimal 322)
   defining Unicode char U+0143 (decimal 323)
   defining Unicode char U+0144 (decimal 324)
   defining Unicode char U+0147 (decimal 327)
   defining Unicode char U+0148 (decimal 328)
   defining Unicode char U+014A (decimal 330)
   defining Unicode char U+014B (decimal 331)
   defining Unicode char U+0150 (decimal 336)
   defining Unicode char U+0151 (decimal 337)
   defining Unicode char U+0152 (decimal 338)
   defining Unicode char U+0153 (decimal 339)
   defining Unicode char U+0154 (decimal 340)
   defining Unicode char U+0155 (decimal 341)
   defining Unicode char U+0158 (decimal 344)
   defining Unicode char U+0159 (decimal 345)
   defining Unicode char U+015A (decimal 346)
   defining Unicode char U+015B (decimal 347)
   defining Unicode char U+015E (decimal 350)
   defining Unicode char U+015F (decimal 351)
   defining Unicode char U+0160 (decimal 352)
   defining Unicode char U+0161 (decimal 353)
   defining Unicode char U+0162 (decimal 354)
   defining Unicode char U+0163 (decimal 355)
   defining Unicode char U+0164 (decimal 356)
   defining Unicode char U+0165 (decimal 357)
   defining Unicode char U+016E (decimal 366)
   defining Unicode char U+016F (decimal 367)
   defining Unicode char U+0170 (decimal 368)
   defining Unicode char U+0171 (decimal 369)
   defining Unicode char U+0178 (decimal 376)
   defining Unicode char U+0179 (decimal 377)
   defining Unicode char U+017A (decimal 378)
   defining Unicode char U+017B (decimal 379)
   defining Unicode char U+017C (decimal 380)
   defining Unicode char U+017D (decimal 381)
   defining Unicode char U+017E (decimal 382)
   defining Unicode char U+200C (decimal 8204)
   defining Unicode char U+2013 (decimal 8211)
   defining Unicode char U+2014 (decimal 8212)
   defining Unicode char U+2018 (decimal 8216)
   defining Unicode char U+2019 (decimal 8217)
   defining Unicode char U+201A (decimal 8218)
   defining Unicode char U+201C (decimal 8220)
   defining Unicode char U+201D (decimal 8221)
   defining Unicode char U+201E (decimal 8222)
   defining Unicode char U+2030 (decimal 8240)
   defining Unicode char U+2031 (decimal 8241)
   defining Unicode char U+2039 (decimal 8249)
   defining Unicode char U+203A (decimal 8250)
   defining Unicode char U+2423 (decimal 9251)
)
Now handling font encoding OT1 ...
... processing UTF-8 mapping file for font encoding OT1

(/usr/share/texlive/texmf-dist/tex/latex/base/ot1enc.dfu
File: ot1enc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
   defining Unicode char U+00A1 (decimal 161)
   defining Unicode char U+00A3 (decimal 163)
   defining Unicode char U+00B8 (decimal 184)
   defining Unicode char U+00BF (decimal 191)
   defining Unicode char U+00C5 (decimal 197)
   defining Unicode char U+00C6 (decimal 198)
   defining Unicode char U+00D8 (decimal 216)
   defining Unicode char U+00DF (decimal 223)
   defining Unicode char U+00E6 (decimal 230)
   defining Unicode char U+00EC (decimal 236)
   defining Unicode char U+00ED (decimal 237)
   defining Unicode char U+00EE (decimal 238)
   defining Unicode char U+00EF (decimal 239)
   defining Unicode char U+00F8 (decimal 248)
   defining Unicode char U+0131 (decimal 305)
   defining Unicode char U+0141 (decimal 321)
   defining Unicode char U+0142 (decimal 322)
   defining Unicode char U+0152 (decimal 338)
   defining Unicode char U+0153 (decimal 339)
   defining Unicode char U+2013 (decimal 8211)
   defining Unicode char U+2014 (decimal 8212)
   defining Unicode char U+2018 (decimal 8216)
   defining Unicode char U+2019 (decimal 8217)
   defining Unicode char U+201C (decimal 8220)
   defining Unicode char U+201D (decimal 8221)
)
Now handling font encoding OMS ...
... processing UTF-8 mapping file for font encoding OMS

(/usr/share/texlive/texmf-dist/tex/latex/base/omsenc.dfu
File: omsenc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
   defining Unicode char U+00A7 (decimal 167)
   defining Unicode char U+00B6 (decimal 182)
   defining Unicode char U+00B7 (decimal 183)
   defining Unicode char U+2020 (decimal 8224)
   defining Unicode char U+2021 (decimal 8225)
   defining Unicode char U+2022 (decimal 8226)
)
Now handling font encoding OMX ...
... no UTF-8 mapping file for font encoding OMX
Now handling font encoding U ...
... no UTF-8 mapping file for font encoding U
Now handling font encoding TS1 ...
... processing UTF-8 mapping file for font encoding TS1

(/usr/share/texlive/texmf-dist/tex/latex/base/ts1enc.dfu
File: ts1enc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
   defining Unicode char U+00A2 (decimal 162)
   defining Unicode char U+00A3 (decimal 163)
   defining Unicode char U+00A4 (decimal 164)
   defining Unicode char U+00A5 (decimal 165)
   defining Unicode char U+00A6 (decimal 166)
   defining Unicode char U+00A7 (decimal 167)
   defining Unicode char U+00A8 (decimal 168)
   defining Unicode char U+00A9 (decimal 169)
   defining Unicode char U+00AA (decimal 170)
   defining Unicode char U+00AC (decimal 172)
   defining Unicode char U+00AE (decimal 174)
   defining Unicode char U+00AF (decimal 175)
   defining Unicode char U+00B0 (decimal 176)
   defining Unicode char U+00B1 (decimal 177)
   defining Unicode char U+00B2 (decimal 178)
   defining Unicode char U+00B3 (decimal 179)
   defining Unicode char U+00B4 (decimal 180)
   defining Unicode char U+00B5 (decimal 181)
   defining Unicode char U+00B6 (decimal 182)
   defining Unicode char U+00B7 (decimal 183)
   defining Unicode char U+00B9 (decimal 185)
   defining Unicode char U+00BA (decimal 186)
   defining Unicode char U+00BC (decimal 188)
   defining Unicode char U+00BD (decimal 189)
   defining Unicode char U+00BE (decimal 190)
   defining Unicode char U+00D7 (decimal 215)
   defining Unicode char U+00F7 (decimal 247)
   defining Unicode char U+0192 (decimal 402)
   defining Unicode char U+02C7 (decimal 711)
   defining Unicode char U+02D8 (decimal 728)
   defining Unicode char U+02DD (decimal 733)
   defining Unicode char U+0E3F (decimal 3647)
   defining Unicode char U+2016 (decimal 8214)
   defining Unicode char U+2020 (decimal 8224)
   defining Unicode char U+2021 (decimal 8225)
   defining Unicode char U+2022 (decimal 8226)
   defining Unicode char U+2030 (decimal 8240)
   defining Unicode char U+2031 (decimal 8241)
   defining Unicode char U+203B (decimal 8251)
   defining Unicode char U+203D (decimal 8253)
   defining Unicode char U+2044 (decimal 8260)
   defining Unicode char U+204E (decimal 8270)
   defining Unicode char U+2052 (decimal 8274)
   defining Unicode char U+20A1 (decimal 8353)
   defining Unicode char U+20A4 (decimal 8356)
   defining Unicode char U+20A6 (decimal 8358)
   defining Unicode char U+20A9 (decimal 8361)
   defining Unicode char U+20AB (decimal 8363)
   defining Unicode char U+20AC (decimal 8364)
   defining Unicode char U+20B1 (decimal 8369)
   defining Unicode char U+2103 (decimal 8451)
   defining Unicode char U+2116 (decimal 8470)
   defining Unicode char U+2117 (decimal 8471)
   defining Unicode char U+211E (decimal 8478)
   defining Unicode char U+2120 (decimal 8480)
   defining Unicode char U+2122 (decimal 8482)
   defining Unicode char U+2126 (decimal 8486)
   defining Unicode char U+2127 (decimal 8487)
   defining Unicode char U+212E (decimal 8494)
   defining Unicode char U+2190 (decimal 8592)
   defining Unicode char U+2191 (decimal 8593)
   defining Unicode char U+2192 (decimal 8594)
   defining Unicode char U+2193 (decimal 8595)
   defining Unicode char U+2329 (decimal 9001)
   defining Unicode char U+232A (decimal 9002)
   defining Unicode char U+2422 (decimal 9250)
   defining Unicode char U+25E6 (decimal 9702)
   defining Unicode char U+25EF (decimal 9711)
   defining Unicode char U+266A (decimal 9834)
)
Now handling font encoding PD1 ...
... no UTF-8 mapping file for font encoding PD1
Now handling font encoding PU ...
... no UTF-8 mapping file for font encoding PU
Now handling font encoding T3 ...
... no UTF-8 mapping file for font encoding T3
   defining Unicode char U+00A9 (decimal 169)
   defining Unicode char U+00AA (decimal 170)
   defining Unicode char U+00AE (decimal 174)
   defining Unicode char U+00BA (decimal 186)
   defining Unicode char U+02C6 (decimal 710)
   defining Unicode char U+02DC (decimal 732)
   defining Unicode char U+200C (decimal 8204)
   defining Unicode char U+2026 (decimal 8230)
   defining Unicode char U+2122 (decimal 8482)
   defining Unicode char U+2423 (decimal 9251)
))
(/usr/share/texmf/tex/latex/CJK/CJK.sty
Package: CJK 2012/05/07 4.8.3

(/usr/share/texmf/tex/latex/CJK/mule/MULEenc.sty
Package: MULEenc 2012/05/07 4.8.3
)
(/usr/share/texmf/tex/latex/CJK/CJK.enc
File: CJK.enc 2012/05/07 4.8.3
Now handling font encoding C00 ...
... no UTF-8 mapping file for font encoding C00
Now handling font encoding C05 ...
... no UTF-8 mapping file for font encoding C05
Now handling font encoding C09 ...
... no UTF-8 mapping file for font encoding C09
Now handling font encoding C10 ...
... no UTF-8 mapping file for font encoding C10
Now handling font encoding C20 ...
... no UTF-8 mapping file for font encoding C20
Now handling font encoding C19 ...
... no UTF-8 mapping file for font encoding C19
Now handling font encoding C40 ...
... no UTF-8 mapping file for font encoding C40
Now handling font encoding C42 ...
... no UTF-8 mapping file for font encoding C42
Now handling font encoding C43 ...
... no UTF-8 mapping file for font encoding C43
Now handling font encoding C50 ...
... no UTF-8 mapping file for font encoding C50
Now handling font encoding C52 ...
... no UTF-8 mapping file for font encoding C52
Now handling font encoding C49 ...
... no UTF-8 mapping file for font encoding C49
Now handling font encoding C60 ...
... no UTF-8 mapping file for font encoding C60
Now handling font encoding C61 ...
... no UTF-8 mapping file for font encoding C61
Now handling font encoding C63 ...
... no UTF-8 mapping file for font encoding C63
Now handling font encoding C64 ...
... no UTF-8 mapping file for font encoding C64
Now handling font encoding C65 ...
... no UTF-8 mapping file for font encoding C65
Now handling font encoding C70 ...
... no UTF-8 mapping file for font encoding C70
Now handling font encoding C31 ...
... no UTF-8 mapping file for font encoding C31
Now handling font encoding C32 ...
... no UTF-8 mapping file for font encoding C32
Now handling font encoding C33 ...
... no UTF-8 mapping file for font encoding C33
Now handling font encoding C34 ...
... no UTF-8 mapping file for font encoding C34
Now handling font encoding C35 ...
... no UTF-8 mapping file for font encoding C35
Now handling font encoding C36 ...
... no UTF-8 mapping file for font encoding C36
Now handling font encoding C37 ...
... no UTF-8 mapping file for font encoding C37
Now handling font encoding C80 ...
... no UTF-8 mapping file for font encoding C80
Now handling font encoding C81 ...
... no UTF-8 mapping file for font encoding C81
Now handling font encoding C01 ...
... no UTF-8 mapping file for font encoding C01
Now handling font encoding C11 ...
... no UTF-8 mapping file for font encoding C11
Now handling font encoding C21 ...
... no UTF-8 mapping file for font encoding C21
Now handling font encoding C41 ...
... no UTF-8 mapping file for font encoding C41
Now handling font encoding C62 ...
... no UTF-8 mapping file for font encoding C62
)
LaTeX Info: Redefining \selectfont on input line 755.
\CJK@indent=\box73
)
(/usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty
Package: fontenc 2005/09/27 v1.99g Standard LaTeX package
))
(/usr/share/texmf/tex/latex/CJK/ruby.sty
Package: ruby 2012/05/07 4.8.3
\ruby@width=\dimen167
)
(/usr/share/texmf/tex/latex/CJK/CJKulem.sty
Package: CJKulem 2012/05/07 4.8.3
\UL@lastkern=\dimen168
\CJK@skip=\skip131
) (../headers/title.tex)
(../headers/options.tex
LaTeX Font Info:    Try loading font information for T1+ptm on input line 13.

(/usr/share/texlive/texmf-dist/tex/latex/psnfss/t1ptm.fd
File: t1ptm.fd 2001/06/04 font definitions for T1/ptm.
)

Package typearea Warning: Bad type area settings!
(typearea)                The detected line width is about 18%
(typearea)                larger than the heuristically detected line width.
(typearea)                You should e.g. decrease DIV, increase fontsize
(typearea)                or change papersize.

Package typearea Info: These are the values describing the layout:
(typearea)             DIV  = 13
(typearea)             BCOR = 34.1433pt
(typearea)             \paperwidth      = 597.50793pt
(typearea)              \textwidth      = 433.35742pt
(typearea)              DIV departure   = -18%
(typearea)              \evensidemargin = 14.40149pt
(typearea)              \oddsidemargin  = 5.20905pt
(typearea)             \paperheight     = 845.04694pt
(typearea)              \textheight     = 650.20029pt
(typearea)              \topmargin      = -44.6664pt
(typearea)              \headheight     = 17.0pt
(typearea)              \headsep        = 20.40001pt
(typearea)              \topskip        = 11.0pt
(typearea)              \footskip       = 47.60002pt
(typearea)              \baselineskip   = 13.6pt
(typearea)              on input line 13.
) (../headers/formattings.tex
Package hyperref Info: Option `breaklinks' set `true' on input line 17.
Package hyperref Info: Option `colorlinks' set `false' on input line 17.
Package hyperref Info: Option `bookmarksopen' set `true' on input line 17.
Package hyperref Info: Option `bookmarksnumbered' set `true' on input line 17.
Package hyperref Info: Option `frenchlinks' set `false' on input line 17.
) (../headers/unicodes.tex)
(../headers/templates.tex
\wbtemplengtha=\skip132
\wbtemplengthb=\skip133
\wbtemplengthc=\skip134
\wbtemplengthd=\skip135
\wbtemplengthe=\skip136
\wbtempcounta=\count156
\wbtempcountb=\count157
\wbtempcountc=\count158


! LaTeX Error: Command \PDFLink already defined.
               Or name \end... illegal, see p.192 of the manual.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help.
 ...                                              
                                                  
l.591 \newcommand{\PDFLink}[1]{#1 PDF}
                                      
Your command was ignored.
Type  I <command> <return>  to replace it with another command,
or  <return>  to continue without it.

\c@satz=\count159
\c@beweis=\count160
\c@beispiel=\count161
\c@mydef=\count162
) (../headers/templates-dirk.tex) (../headers/templates-chemie.tex)
(/usr/share/texmf/tex/latex/lm/lmodern.sty
Package: lmodern 2009/10/30 v1.6 Latin Modern Fonts
LaTeX Font Info:    Overwriting symbol font `operators' in version `normal'
(Font)                  OT1/ztmcm/m/n --> OT1/lmr/m/n on input line 22.
LaTeX Font Info:    Overwriting symbol font `letters' in version `normal'
(Font)                  OML/ztmcm/m/it --> OML/lmm/m/it on input line 23.
LaTeX Font Info:    Overwriting symbol font `symbols' in version `normal'
(Font)                  OMS/ztmcm/m/n --> OMS/lmsy/m/n on input line 24.
LaTeX Font Info:    Overwriting symbol font `largesymbols' in version `normal'
(Font)                  OMX/ztmcm/m/n --> OMX/lmex/m/n on input line 25.
LaTeX Font Info:    Overwriting symbol font `operators' in version `bold'
(Font)                  OT1/ztmcm/m/n --> OT1/lmr/bx/n on input line 26.
LaTeX Font Info:    Overwriting symbol font `letters' in version `bold'
(Font)                  OML/ztmcm/m/it --> OML/lmm/b/it on input line 27.
LaTeX Font Info:    Overwriting symbol font `symbols' in version `bold'
(Font)                  OMS/ztmcm/m/n --> OMS/lmsy/b/n on input line 28.
LaTeX Font Info:    Overwriting symbol font `largesymbols' in version `bold'
(Font)                  OMX/ztmcm/m/n --> OMX/lmex/m/n on input line 29.
LaTeX Font Info:    Overwriting math alphabet `\mathbf' in version `normal'
(Font)                  OT1/ptm/bx/n --> OT1/lmr/bx/n on input line 31.
LaTeX Font Info:    Overwriting math alphabet `\mathsf' in version `normal'
(Font)                  OT1/cmss/m/n --> OT1/lmss/m/n on input line 32.
LaTeX Font Info:    Overwriting math alphabet `\mathit' in version `normal'
(Font)                  OT1/ptm/m/it --> OT1/lmr/m/it on input line 33.
LaTeX Font Info:    Overwriting math alphabet `\mathtt' in version `normal'
(Font)                  OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 34.
LaTeX Font Info:    Overwriting math alphabet `\mathbf' in version `bold'
(Font)                  OT1/ptm/bx/n --> OT1/lmr/bx/n on input line 35.
LaTeX Font Info:    Overwriting math alphabet `\mathsf' in version `bold'
(Font)                  OT1/cmss/bx/n --> OT1/lmss/bx/n on input line 36.
LaTeX Font Info:    Overwriting math alphabet `\mathit' in version `bold'
(Font)                  OT1/ptm/m/it --> OT1/lmr/bx/it on input line 37.
LaTeX Font Info:    Overwriting math alphabet `\mathtt' in version `bold'
(Font)                  OT1/cmtt/m/n --> OT1/lmtt/m/n on input line 38.
) (./main.aux)
\openout1 = `main.aux'.

LaTeX Font Info:    Checking defaults for OML/cmm/m/it on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for T1/cmr/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for OT1/cmr/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for OMS/cmsy/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for OMX/cmex/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for U/cmr/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for TS1/cmr/m/n on input line 23.
LaTeX Font Info:    Try loading font information for TS1+cmr on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/base/ts1cmr.fd
File: ts1cmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
)
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for PD1/pdf/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for PU/pdf/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for T3/cmr/m/n on input line 23.
LaTeX Font Info:    Try loading font information for T3+cmr on input line 23.

(/usr/share/texmf/tex/latex/tipa/t3cmr.fd
File: t3cmr.fd 2001/12/31 TIPA font definitions
)
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C00/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C05/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C09/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C10/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C20/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C19/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C40/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C42/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C43/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C50/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C52/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C49/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C60/mj/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C61/mj/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C63/mj/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C64/mj/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C65/mj/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C70/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C31/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C32/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C33/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C34/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C35/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C36/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C37/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C80/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C81/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C01/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C11/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C21/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C41/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Checking defaults for C62/song/m/n on input line 23.
LaTeX Font Info:    ... okay on input line 23.
LaTeX Font Info:    Try loading font information for T1+lmr on input line 23.

(/usr/share/texmf/tex/latex/lm/t1lmr.fd
File: t1lmr.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
(/usr/share/texlive/texmf-dist/tex/context/base/supp-pdf.mkii
[Loading MPS to PDF converter (version 2006.09.02).]
\scratchcounter=\count163
\scratchdimen=\dimen169
\scratchbox=\box74
\nofMPsegments=\count164
\nofMParguments=\count165
\everyMPshowfont=\toks39
\MPscratchCnt=\count166
\MPscratchDim=\dimen170
\MPnumerator=\count167
\makeMPintoPDFobject=\count168
\everyMPtoPDFconversion=\toks40
)
\AtBeginShipoutBox=\box75
Package hyperref Info: Link coloring OFF on input line 23.
 (/usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty
Package: nameref 2010/04/30 v2.40 Cross-referencing by name of section

(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/gettitlestring.sty
Package: gettitlestring 2010/12/03 v1.4 Cleanup title references (HO)
)
\c@section@level=\count169
)
LaTeX Info: Redefining \ref on input line 23.
LaTeX Info: Redefining \pageref on input line 23.
LaTeX Info: Redefining \nameref on input line 23.

(./main.out) (./main.out)
\@outlinefile=\write4
\openout4 = `main.out'.

LaTeX Font Info:    Try loading font information for T1+lmss on input line 23.
 (/usr/share/texmf/tex/latex/lm/t1lmss.fd
File: t1lmss.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
Package tocstyle Info: prepare \l@part for redefinition on input line 23.
Package tocstyle Info: prepare \l@chapter for redefinition on input line 23.
Package tocstyle Info: prepare \l@section for redefinition on input line 23.
LaTeX Font Info:    Try loading font information for OT1+lmr on input line 23.

(/usr/share/texmf/tex/latex/lm/ot1lmr.fd
File: ot1lmr.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
LaTeX Font Info:    Try loading font information for OML+lmm on input line 23.

(/usr/share/texmf/tex/latex/lm/omllmm.fd
File: omllmm.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
LaTeX Font Info:    Try loading font information for OMS+lmsy on input line 23.


(/usr/share/texmf/tex/latex/lm/omslmsy.fd
File: omslmsy.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
LaTeX Font Info:    Try loading font information for OMX+lmex on input line 23.


(/usr/share/texmf/tex/latex/lm/omxlmex.fd
File: omxlmex.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
LaTeX Font Info:    External font `lmex10' loaded for size
(Font)              <10.95> on input line 23.
LaTeX Font Info:    External font `lmex10' loaded for size
(Font)              <8> on input line 23.
LaTeX Font Info:    External font `lmex10' loaded for size
(Font)              <6> on input line 23.
LaTeX Font Info:    Try loading font information for OT1+ptm on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/psnfss/ot1ptm.fd
File: ot1ptm.fd 2001/06/04 font definitions for OT1/ptm.
)
LaTeX Font Info:    Font shape `OT1/ptm/bx/n' in size <10.95> not available
(Font)              Font shape `OT1/ptm/b/n' tried instead on input line 23.
LaTeX Font Info:    Font shape `OT1/ptm/bx/n' in size <8> not available
(Font)              Font shape `OT1/ptm/b/n' tried instead on input line 23.
LaTeX Font Info:    Font shape `OT1/ptm/bx/n' in size <6> not available
(Font)              Font shape `OT1/ptm/b/n' tried instead on input line 23.
LaTeX Font Info:    Try loading font information for U+msa on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd
File: umsa.fd 2009/06/22 v3.00 AMS symbols A
)
LaTeX Font Info:    Try loading font information for U+msb on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd
File: umsb.fd 2009/06/22 v3.00 AMS symbols B
)
LaTeX Font Info:    Try loading font information for U+wasy on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/wasysym/uwasy.fd
File: uwasy.fd 2003/10/30 v2.0 Wasy-2 symbol font definitions
)
Package tocstyle Info: prepare \l@subsection for redefinition on input line 23.

Package tocstyle Info: prepare \l@table for redefinition on input line 23.
Package tocstyle Info: prepare \l@figure for redefinition on input line 23.

(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty
Package: epstopdf-base 2010/02/09 v2.5 Base part for package epstopdf

(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/grfext.sty
Package: grfext 2010/08/19 v1.1 Manage graphics extensions (HO)
)
Package grfext Info: Graphics extension search list:
(grfext)             [.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPE
G,.JBIG2,.JB2,.eps]
(grfext)             \AppendGraphicsExtensions on input line 452.

(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv
e
))

Class scrbook Warning: discard change of \selectfont.

ABD: EverySelectfont initializing macros

LaTeX Warning: Command \selectfont   has changed.
               Check if current package is valid.

LaTeX Info: Redefining \selectfont on input line 23.
\c@lstlisting=\count170
LaTeX Info: Redefining \microtypecontext on input line 23.
Package microtype Info: Generating PDF output.
Package microtype Info: Character protrusion enabled (level 2).
Package microtype Info: Using default protrusion set `alltext'.
Package microtype Info: Automatic font expansion enabled (level 2),
(microtype)             stretch: 20, shrink: 20, step: 1, non-selected.
Package microtype Info: Using default expansion set `basictext'.
Package microtype Info: No tracking.
Package microtype Info: No adjustment of interword spacing.
Package microtype Info: No adjustment of character kerning.
(/usr/share/texlive/texmf-dist/tex/latex/microtype/mt-cmr.cfg
File: mt-cmr.cfg 2009/11/09 v2.0 microtype config. file: Computer Modern Roman 
(RS)
)
(/usr/share/texmf/tex/latex/CJK/UTF8/UTF8.bdg
File: UTF8.bdg 2012/05/07 4.8.3
)
(/usr/share/texmf/tex/latex/CJK/UTF8/UTF8.enc
File: UTF8.enc 2012/05/07 4.8.3
)
(/usr/share/texmf/tex/latex/CJK/UTF8/UTF8.chr
File: UTF8.chr 2012/05/07 4.8.3
)
exclude: 
exclude: 
exclude: 
exclude: 
exclude: 
exclude: 
exclude: 
LaTeX Font Info:    External font `lmex10' loaded for size
(Font)              <14.4> on input line 34.
LaTeX Font Info:    Font shape `OT1/ptm/bx/n' in size <14.4> not available
(Font)              Font shape `OT1/ptm/b/n' tried instead on input line 34.
(/usr/share/texlive/texmf-dist/tex/latex/microtype/mt-ptm.cfg
File: mt-ptm.cfg 2006/04/20 v1.7 microtype config. file: Times (RS)
)
(/usr/share/texlive/texmf-dist/tex/latex/microtype/mt-msa.cfg
File: mt-msa.cfg 2006/02/04 v1.1 microtype config. file: AMS symbols (a) (RS)
)
(/usr/share/texlive/texmf-dist/tex/latex/microtype/mt-msb.cfg
File: mt-msb.cfg 2005/06/01 v1.0 microtype config. file: AMS symbols (b) (RS)
)

LaTeX Warning: No \author given.

[1



{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}]
LaTeX Font Info:    External font `lmex10' loaded for size
(Font)              <10> on input line 34.
LaTeX Font Info:    External font `lmex10' loaded for size
(Font)              <7.4> on input line 34.
LaTeX Font Info:    Font shape `OT1/ptm/bx/n' in size <10> not available
(Font)              Font shape `OT1/ptm/b/n' tried instead on input line 34.
LaTeX Font Info:    Font shape `OT1/ptm/bx/n' in size <7.4> not available
(Font)              Font shape `OT1/ptm/b/n' tried instead on input line 34.
LaTeX Font Info:    Try loading font information for T1+lmtt on input line 34.

(/usr/share/texmf/tex/latex/lm/t1lmtt.fd
File: t1lmtt.fd 2009/10/30 v1.6 Font defs for Latin Modern
) [2

]
Package tocbasic Info: character protrusion at toc deactivated on input line 37
.
 (./main.toc
number indent by \l@... (toc, 0):  0.0pt
text indent by \l@... (toc, 0):  16.42499pt
number indent by parent (toc, 0):  0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0):  0.0pt
text indent by \l@... (toc, 0):  16.42499pt
number indent by parent (toc, 0):  0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0):  0.0pt
text indent by \l@... (toc, 0):  16.42499pt
number indent by parent (toc, 0):  0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0):  0.0pt
text indent by \l@... (toc, 0):  16.42499pt
number indent by parent (toc, 0):  0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0):  0.0pt
text indent by \l@... (toc, 0):  16.42499pt
number indent by parent (toc, 0):  0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
[3


]
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0):  0.0pt
text indent by \l@... (toc, 0):  16.42499pt
number indent by parent (toc, 0):  0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0):  0.0pt
text indent by \l@... (toc, 0):  16.42499pt
number indent by parent (toc, 0):  0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0):  0.0pt
text indent by \l@... (toc, 0):  16.42499pt
number indent by parent (toc, 0):  0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0):  0.0pt
text indent by \l@... (toc, 0):  16.42499pt
number indent by parent (toc, 0):  0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 0):  0.0pt
text indent by \l@... (toc, 0):  16.42499pt
number indent by parent (toc, 0):  0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 0):  0.0pt
text indent by \l@... (toc, 0):  16.42499pt
number indent by parent (toc, 0):  0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 0):  0.0pt
text indent by \l@... (toc, 0):  16.42499pt
number indent by parent (toc, 0):  0.0pt
text indent calculated (toc, 0): 18.8887pt
number indent calculated (toc, 0): 0.0pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
number indent by \l@... (toc, 1):  16.42499pt
text indent by \l@... (toc, 1):  25.18501pt
number indent by parent (toc, 1):  18.8887pt
text indent calculated (toc, 1): 24.9416pt
number indent calculated (toc, 1): 18.8887pt
)
\tf@toc=\write5
\openout5 = `main.toc'.

 [1] [2


]
Chapter 1.

Class scrbook Warning: \float@addtolists detected!
(scrbook)              You should use the features of package `tocbasic'
(scrbook)              instead of \float@addtolists.
(scrbook)              Support for \float@addtolists may be removed from
(scrbook)              `scrbook' soon .

LaTeX Font Info:    Try loading font information for TS1+lmr on input line 62.
(/usr/share/texmf/tex/latex/lm/ts1lmr.fd
File: ts1lmr.fd 2009/10/30 v1.6 Font defs for Latin Modern
) [3] [4] [5]
LaTeX Font Info:    External font `lmex10' loaded for size
(Font)              <9> on input line 129.
LaTeX Font Info:    External font `lmex10' loaded for size
(Font)              <7> on input line 129.
LaTeX Font Info:    External font `lmex10' loaded for size
(Font)              <5> on input line 129.
LaTeX Font Info:    Font shape `OT1/ptm/bx/n' in size <9> not available
(Font)              Font shape `OT1/ptm/b/n' tried instead on input line 129.
LaTeX Font Info:    Font shape `OT1/ptm/bx/n' in size <7> not available
(Font)              Font shape `OT1/ptm/b/n' tried instead on input line 129.
LaTeX Font Info:    Font shape `OT1/ptm/bx/n' in size <5> not available
(Font)              Font shape `OT1/ptm/b/n' tried instead on input line 129.
 [6]
Chapter 2.
[7


] [8]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help.
 ...                                              
                                                  
l.216 
      
Your command was ignored.
Type  I <command> <return>  to replace it with another command,
or  <return>  to continue without it.

[9]
Underfull \hbox (badness 10000) in paragraph at lines 238--240

 []


Underfull \hbox (badness 10000) in paragraph at lines 250--250
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial _ Programmi
ng % 3AModems % 20and % 20AT % 20Commands %
 []


Underfull \hbox (badness 10000) in paragraph at lines 257--257
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial _ Programmi
ng % 3ARS-[]232 _ Connections % 23Straight _
 []


Underfull \hbox (badness 10000) in paragraph at lines 257--257
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial _ Programmi
ng % 3ARS-[]232 _ Connections % 23Loopback _
 []

[10]
Underfull \hbox (badness 10000) in paragraph at lines 259--259
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial _ Programmi
ng % 3ARS-[]232 _ Connections % 23Protocol %
 []

[11] <../images/1.jpg, id=508, 642.4pt x 481.8pt>
File: ../images/1.jpg Graphic file (type jpg)
 <use ../images/1.jpg>
Package pdftex.def Info: ../images/1.jpg used on input line 288.
(pdftex.def)             Requested size: 216.67812pt x 162.50858pt.

[12] <../images/2.jpg, id=518, 1094.0875pt x 805.0075pt>
File: ../images/2.jpg Graphic file (type jpg)
 <use ../images/2.jpg>
Package pdftex.def Info: ../images/2.jpg used on input line 303.
(pdftex.def)             Requested size: 216.67673pt x 159.42638pt.

<../images/3.jpg, id=519, 1244.65pt x 354.32375pt>
File: ../images/3.jpg Graphic file (type jpg)
 <use ../images/3.jpg>
Package pdftex.def Info: ../images/3.jpg used on input line 320.
(pdftex.def)             Requested size: 216.6775pt x 61.68318pt.

[13 <../images/1.jpg> <../images/2.jpg>]
<../images/4.jpg, id=525, 1027.84pt x 770.88pt>
File: ../images/4.jpg Graphic file (type jpg)
 <use ../images/4.jpg>
Package pdftex.def Info: ../images/4.jpg used on input line 335.
(pdftex.def)             Requested size: 216.6683pt x 162.50124pt.

<../images/5.jpg, id=526, 298.716pt x 228.3732pt>
File: ../images/5.jpg Graphic file (type jpg)
 <use ../images/5.jpg>
Package pdftex.def Info: ../images/5.jpg used on input line 352.
(pdftex.def)             Requested size: 216.68433pt x 165.65866pt.

[14 <../images/3.jpg> <../images/4.jpg>] [15 <../images/5.jpg>]
<../images/6.png, id=547, 95.6072pt x 42.1575pt>
File: ../images/6.png Graphic file (type png)
 <use ../images/6.png>
Package pdftex.def Info: ../images/6.png used on input line 399.
(pdftex.def)             Requested size: 433.41592pt x 191.11246pt.
 [16 <../images/6.png>] [17] [18] [19] [20] [21] [22] [23] [24]
Underfull \hbox (badness 10000) in paragraph at lines 573--573
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial % 20Program
ming % 3ATypical % 20RS232-[]Hardware %
 []

[25] [26]
Chapter 3.
[27


]
Underfull \hbox (badness 10000) in paragraph at lines 628--628

 []


Underfull \hbox (badness 10000) in paragraph at lines 638--638

 []

[28]
Underfull \hbox (badness 10000) in paragraph at lines 648--648

 []

[29] [30] [31] [32] [33]
Underfull \hbox (badness 10000) in paragraph at lines 738--738

 []


Underfull \hbox (badness 10000) in paragraph at lines 754--754

 []

[34]
Underfull \hbox (badness 10000) in paragraph at lines 781--781

 []


Underfull \hbox (badness 10000) in paragraph at lines 787--787

 []


Underfull \hbox (badness 10000) in paragraph at lines 793--793

 []

[35] [36]
Underfull \hbox (badness 10000) in paragraph at lines 841--841

 []

[37]

Package amsmath Warning: Foreign command \over;
(amsmath)                \frac or \genfrac should be used instead
(amsmath)                 on input line 864.

[38]
Underfull \hbox (badness 10000) in paragraph at lines 921--921

 []

[39] [40] [41] [42

] [43

] [44] [45] [46] [47] [48] [49] [50] [51]
Underfull \hbox (badness 10000) in paragraph at lines 1127--1129

 []

LaTeX Font Info:    Try loading font information for TS1+lmtt on input line 115
4.
(/usr/share/texmf/tex/latex/lm/ts1lmtt.fd
File: ts1lmtt.fd 2009/10/30 v1.6 Font defs for Latin Modern
)
Package microtype Info: Character `texttrademark ' is missing
(microtype)             in font `TS1/lmtt/m/n/8'.
(microtype)             Ignoring protrusion settings for this character.
 [52]
Underfull \hbox (badness 10000) in paragraph at lines 1157--1159

 []


! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help.
 ...                                              
                                                  
l.1167 
       
Your command was ignored.
Type  I <command> <return>  to replace it with another command,
or  <return>  to continue without it.

[53]
Underfull \hbox (badness 10000) in paragraph at lines 1209--1209
[][]$\T1/lmtt/m/n/9 http : / / microchip . com / stellent / idcplg ? IdcService
 = SS _ GET _ PAGE&nodeId = 1824&appnote =
 []

[54]
Chapter 4.

Underfull \hbox (badness 10000) in paragraph at lines 1254--1254
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Programming % 3ASe
rial % 20Data % 20Communications % 23Intended %
 []


Underfull \hbox (badness 10000) in paragraph at lines 1254--1256

 []

[55


]
Underfull \hbox (badness 10000) in paragraph at lines 1270--1272

 []


Underfull \hbox (badness 10000) in paragraph at lines 1280--1280
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial _ Programmi
ng % 3ATypical _ RS232-[]Hardware _
 []

[56]
Underfull \hbox (badness 10000) in paragraph at lines 1318--1318

 []


Underfull \hbox (badness 10000) in paragraph at lines 1320--1322

 []


Underfull \hbox (badness 10000) in paragraph at lines 1329--1331

 []

[57] [58]
Underfull \hbox (badness 10000) in paragraph at lines 1367--1369

 []


Underfull \hbox (badness 10000) in paragraph at lines 1376--1378

 []


Underfull \hbox (badness 10000) in paragraph at lines 1384--1384
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial % 20Program
ming % 3A8250 % 20UART % 20Programming %
 []


Underfull \hbox (badness 10000) in paragraph at lines 1384--1386

 []


Underfull \hbox (badness 10000) in paragraph at lines 1391--1392

 []


! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help.
 ...                                              
                                                  
l.1401 
       
Your command was ignored.
Type  I <command> <return>  to replace it with another command,
or  <return>  to continue without it.

[59]
Underfull \hbox (badness 10000) in paragraph at lines 1405--1407

 []


Underfull \hbox (badness 10000) in paragraph at lines 1433--1435

 []

[60]
Underfull \hbox (badness 10000) in paragraph at lines 1449--1451

 []


Underfull \hbox (badness 10000) in paragraph at lines 1484--1486

 []

[61]
Underfull \hbox (badness 10000) in paragraph at lines 1490--1492

 []

[62]
Underfull \hbox (badness 10000) in paragraph at lines 1547--1549

 []

[63]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help.
 ...                                              
                                                  
l.1587 
       
Your command was ignored.
Type  I <command> <return>  to replace it with another command,
or  <return>  to continue without it.

[64]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help.
 ...                                              
                                                  
l.1599 
       
Your command was ignored.
Type  I <command> <return>  to replace it with another command,
or  <return>  to continue without it.


Underfull \hbox (badness 10000) in paragraph at lines 1603--1605

 []


Underfull \hbox (badness 10000) in paragraph at lines 1609--1611

 []


! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help.
 ...                                              
                                                  
l.1621 
       
Your command was ignored.
Type  I <command> <return>  to replace it with another command,
or  <return>  to continue without it.

[65]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help.
 ...                                              
                                                  
l.1632 
       
Your command was ignored.
Type  I <command> <return>  to replace it with another command,
or  <return>  to continue without it.

[66] [67]
Underfull \hbox (badness 10000) in paragraph at lines 1663--1665

 []


Underfull \hbox (badness 10000) in paragraph at lines 1686--1688

 []

[68]
Underfull \hbox (badness 10000) in paragraph at lines 1692--1694

 []


Underfull \hbox (badness 10000) in paragraph at lines 1709--1711

 []


Underfull \hbox (badness 10000) in paragraph at lines 1717--1717
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial % 20Program
ming % 3A8250 % 20UART % 20Programming % 23PIC %
 []


Underfull \hbox (badness 10000) in paragraph at lines 1717--1719

 []


Underfull \hbox (badness 10000) in paragraph at lines 1723--1725

 []

[69]
Underfull \hbox (badness 10000) in paragraph at lines 1733--1735

 []


Underfull \hbox (badness 10000) in paragraph at lines 1743--1745

 []


Underfull \hbox (badness 10000) in paragraph at lines 1751--1753

 []


Underfull \hbox (badness 10000) in paragraph at lines 1826--1826

 []

[70]
Underfull \hbox (badness 10000) in paragraph at lines 1832--1834

 []

[71]
Underfull \hbox (badness 10000) in paragraph at lines 1838--1840

 []


Underfull \hbox (badness 10000) in paragraph at lines 1844--1846

 []


Underfull \hbox (badness 10000) in paragraph at lines 1850--1852

 []

[72] [73] [74


]
Chapter 5.
[75] [76]
Underfull \hbox (badness 10000) in paragraph at lines 1951--1951
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial _ Programmi
ng % 3ASerial _ Linux % 23V7 % 20 % 2F % 20ioctl %
 []


Underfull \hbox (badness 10000) in paragraph at lines 1952--1952
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial _ Programmi
ng % 3ASerial _ Linux % 23termio % 20 % 2F %
 []

[77]
Underfull \hbox (badness 10000) in paragraph at lines 1987--1989

 []


Underfull \hbox (badness 10000) in paragraph at lines 2002--2004

 []

[78]
LaTeX Font Info:    Font shape `T1/lmtt/bx/n' in size <8> not available
(Font)              Font shape `T1/lmtt/b/n' tried instead on input line 2034.
 [79]
LaTeX Font Info:    Font shape `T1/lmtt/bx/n' in size <12> not available
(Font)              Font shape `T1/lmtt/b/n' tried instead on input line 2102.
 [80]
Underfull \hbox (badness 10000) in paragraph at lines 2107--2109

 []


Underfull \hbox (badness 10000) in paragraph at lines 2115--2117

 []


Underfull \hbox (badness 10000) in paragraph at lines 2125--2127

 []


Underfull \hbox (badness 10000) in paragraph at lines 2145--2147

 []

[81]
Underfull \hbox (badness 10000) in paragraph at lines 2156--2157

 []

LaTeX Font Info:    Font shape `T1/lmtt/bx/n' in size <10.95> not available
(Font)              Font shape `T1/lmtt/b/n' tried instead on input line 2169.

Underfull \hbox (badness 10000) in paragraph at lines 2172--2174

 []

[82]
Underfull \hbox (badness 10000) in paragraph at lines 2197--2199

 []


Underfull \hbox (badness 10000) in paragraph at lines 2215--2217

 []


Underfull \hbox (badness 10000) in paragraph at lines 2221--2223

 []

[83]
Overfull \hbox (9.95256pt too wide) in paragraph at lines 2240--2240
[][][] $[]$| 
 []

[84] [85] [86


]
Chapter 6.
[87] [88]
Underfull \hbox (badness 10000) in paragraph at lines 2328--2330

 []


Underfull \hbox (badness 10000) in paragraph at lines 2336--2338

 []


Underfull \hbox (badness 10000) in paragraph at lines 2342--2344

 []

[89] [90] [91]
Underfull \hbox (badness 10000) in paragraph at lines 2400--2402

 []

[92]
Underfull \hbox (badness 10000) in paragraph at lines 2456--2458

 []


Underfull \hbox (badness 10000) in paragraph at lines 2483--2485

 []

[93] [94]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help.
 ...                                              
                                                  
l.2568 
       
Your command was ignored.
Type  I <command> <return>  to replace it with another command,
or  <return>  to continue without it.


Underfull \hbox (badness 10000) in paragraph at lines 2581--2583

 []

[95] [96]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help.
 ...                                              
                                                  
l.2635 
       
Your command was ignored.
Type  I <command> <return>  to replace it with another command,
or  <return>  to continue without it.

[97]
Underfull \hbox (badness 10000) in paragraph at lines 2749--2751

 []


Underfull \hbox (badness 10000) in paragraph at lines 2793--2793

 []

[98] [99]
Underfull \hbox (badness 10000) in paragraph at lines 2811--2813

 []

[100]
Underfull \vbox (badness 10000) detected at line 2993
 []


Underfull \vbox (badness 10000) detected at line 2993
 []

[101]
Underfull \vbox (badness 10000) detected at line 2993
 []


Underfull \vbox (badness 10000) detected at line 2993
 []

[102]
Underfull \hbox (badness 10000) in paragraph at lines 3004--3006

 []


! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help.
 ...                                              
                                                  
l.3020 
       
Your command was ignored.
Type  I <command> <return>  to replace it with another command,
or  <return>  to continue without it.


Underfull \hbox (badness 10000) in paragraph at lines 3034--3036

 []

[103] [104] [105] [106] [107] [108


]
Chapter 7.
[109]
Underfull \hbox (badness 1590) in paragraph at lines 3235--3235
[][][] \T1/lmr/m/n/9 (+20) Pe-ter Gas-parik.  "9-bit data trans-fer for-mat" ^^
B{[]$\T1/lmtt/m/n/9 http : / / www . rtjcom . com / 6811 / jackpot /
 []

[110]
Underfull \hbox (badness 10000) in paragraph at lines 3268--3268
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial _ Programmi
ng % 2FIP _ Over _ Serial _ Connections % 23SLIP %
 []

[111]
Underfull \hbox (badness 10000) in paragraph at lines 3279--3279
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Clock % 20and % 20
Data % 20Recovery % 2FDesign % 20values % 20used %
 []


Underfull \hbox (badness 10000) in paragraph at lines 3279--3279
\T1/lmtt/m/n/9 20in % 20practice % 2FBurst % 20transmission % 20mode % 2FStep %
 20response % 20of % 20a % 20phase %
 []


Underfull \hbox (badness 1648) in paragraph at lines 3285--3286
[]\T1/lmr/m/n/10.95 (+20) "Protocol De-sign Folk-lore" by Ra-dia Perl-man. Jan 
15, 2001. []$\T1/lmtt/m/n/10.95 http : / / www .
 []


Underfull \hbox (badness 3482) in paragraph at lines 3286--3287
[]\T1/lmr/m/n/10.95 (+20) "Devices that play to-gether, work to-gether: UPnP de
-fines com-mon pro-to-
 []


Underfull \hbox (badness 10000) in paragraph at lines 3286--3287
\T1/lmr/m/n/10.95 (+20) cols and pro-ce-dures to guar-an-tee in-ter-op-er-abil-
ity among network-enabled
 []


Underfull \hbox (badness 1668) in paragraph at lines 3286--3287
\T1/lmr/m/n/10.95 (+20) PCs, ap-pli-ances, and wire-less de-vices." ar-ti-cle b
y Ed-ward F Ste-in-feld, EDN,
 []


Underfull \hbox (badness 10000) in paragraph at lines 3286--3287
\T1/lmr/m/n/10.95 (+20) 9/13/2001 []$\T1/lmtt/m/n/10.95 http : / / www . reed-[
]electronics . com / ednmag / index . asp ? layout =
 []

[112] [113] [114


]
Chapter 8.
[115] [116] [117] [118]
Underfull \hbox (badness 10000) in paragraph at lines 3508--3508
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Computer % 20Netwo
rks % 2FError % 20Control % 2C % 20Flow %
 []

[119] [120]
Chapter 9.
[121


] [122]
Underfull \hbox (badness 10000) in paragraph at lines 3568--3568
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Transferring % 20D
ata % 20between % 20Standard % 20Dial-[]Up %
 []

[123] [124] [125] [126]
Underfull \hbox (badness 10000) in paragraph at lines 3706--3707

 []

[127]
Underfull \hbox (badness 10000) in paragraph at lines 3720--3721

 []


Underfull \hbox (badness 10000) in paragraph at lines 3734--3736

 []

[128]

! LaTeX Error: There's no line here to end.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help.
 ...                                              
                                                  
l.3778 
       
Your command was ignored.
Type  I <command> <return>  to replace it with another command,
or  <return>  to continue without it.

[129]
Underfull \hbox (badness 10000) in paragraph at lines 3794--3795

 []


Underfull \hbox (badness 10000) in paragraph at lines 3798--3799

 []

[130] [131] [132]
Underfull \hbox (badness 10000) in paragraph at lines 3863--3865

 []


Underfull \hbox (badness 10000) in paragraph at lines 3869--3871

 []

[133]
Underfull \hbox (badness 10000) in paragraph at lines 3879--3881

 []

[134] [135]
Underfull \hbox (badness 10000) in paragraph at lines 4001--4003

 []

[136]
Underfull \hbox (badness 10000) in paragraph at lines 4025--4025
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial % 20Program
ming % 2FModems % 20and % 20AT % 20Commands %
 []


Underfull \hbox (badness 10000) in paragraph at lines 4028--4028
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial % 20Program
ming % 2FModems % 20and % 20AT % 20Commands %
 []


Underfull \hbox (badness 10000) in paragraph at lines 4031--4031
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial % 20Program
ming % 2FModems % 20and % 20AT % 20Commands %
 []


Underfull \hbox (badness 10000) in paragraph at lines 4035--4035
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial % 20Program
ming % 2FModems % 20and % 20AT % 20Commands % 2F %
 []


Underfull \hbox (badness 10000) in paragraph at lines 4039--4039
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial % 20Program
ming % 2FModems % 20and % 20AT % 20Commands %
 []


Underfull \hbox (badness 10000) in paragraph at lines 4043--4043
[][]$\T1/lmtt/m/n/9 http : / / en . wikibooks . org / wiki / Serial % 20Program
ming % 2FModems % 20and % 20AT % 20Commands %
 []

[137] [138]
Chapter 10.
[139


] [140]
Package tocbasic Info: character protrusion at lof deactivated on input line 41
12.
 (./main.lof)
\tf@lof=\write6
\openout6 = `main.lof'.

 [141


] [142]
Underfull \vbox (badness 10000) detected at line 4163
 []

[143]

Class scrbook Warning: Using fallback calculation to setup font sizes
(scrbook)              for basic size `9pt' on input line 4164.


Package typearea Warning: \typearea used at group level 2.
(typearea)                Using \typearea inside any group, e.g.
(typearea)                environments, math mode, boxes, etc. may result in
(typearea)                many type setting problems.
(typearea)                You should move the command \typearea
(typearea)                outside all groups on input line 4164.


Package typearea Warning: Bad type area settings!
(typearea)                The detected line width is about 66%
(typearea)                larger than the heuristically detected line width.
(typearea)                You should e.g. decrease DIV, increase fontsize
(typearea)                or change papersize.

Package typearea Info: These are the values describing the layout:
(typearea)             DIV  = 90
(typearea)             BCOR = 34.1433pt
(typearea)             \paperwidth      = 597.50793pt
(typearea)              \textwidth      = 544.58585pt
(typearea)              DIV departure   = -66%
(typearea)              \evensidemargin = -59.7508pt
(typearea)              \oddsidemargin  = -31.8671pt
(typearea)             \paperheight     = 845.04694pt
(typearea)              \textheight     = 818.99794pt
(typearea)              \topmargin      = -92.58049pt
(typearea)              \headheight     = 13.49995pt
(typearea)              \headsep        = 16.19995pt
(typearea)              \topskip        = 9.0pt
(typearea)              \footskip       = 37.7999pt
(typearea)              \baselineskip   = 10.79997pt
(typearea)              on input line 4164.

Package typearea Warning: Typearea changed!
(typearea)                You should do this only at preamble, because only
(typearea)                \begin{document} calculates output dimensions!
(typearea)                Trying to calculate new output dimensions, but
(typearea)                this is only a dirty hack on input line 4164.


Package typearea Warning: \typearea used at group level 2.
(typearea)                Using \typearea inside any group, e.g.
(typearea)                environments, math mode, boxes, etc. may result in
(typearea)                many type setting problems.
(typearea)                You should move the command \typearea
(typearea)                outside all groups on input line 4164.


Package typearea Warning: Bad type area settings!
(typearea)                The detected line width is about 76%
(typearea)                larger than the heuristically detected line width.
(typearea)                You should e.g. decrease DIV, increase fontsize
(typearea)                or change papersize.

Package typearea Info: These are the values describing the layout:
(typearea)             DIV  = 90
(typearea)             BCOR = 0.0pt
(typearea)             \paperwidth      = 597.50793pt
(typearea)              \textwidth      = 577.591pt
(typearea)              DIV departure   = -76%
(typearea)              \evensidemargin = -58.99203pt
(typearea)              \oddsidemargin  = -65.63101pt
(typearea)             \paperheight     = 845.04694pt
(typearea)              \textheight     = 818.99794pt
(typearea)              \topmargin      = -92.58049pt
(typearea)              \headheight     = 13.49995pt
(typearea)              \headsep        = 16.19995pt
(typearea)              \topskip        = 9.0pt
(typearea)              \footskip       = 37.7999pt
(typearea)              \baselineskip   = 10.79997pt
(typearea)              on input line 4164.

Package typearea Warning: Typearea changed!
(typearea)                You should do this only at preamble, because only
(typearea)                \begin{document} calculates output dimensions!
(typearea)                Trying to calculate new output dimensions, but
(typearea)                this is only a dirty hack on input line 4164.

[144


]
Chapter 11.
[145] [146]
Underfull \hbox (badness 7433) in paragraph at lines 4514--4515
[]\T1/lmr/m/n/4.5 "Massive Mul-ti-au-thor Col-lab-o-ra-tion Site" (or
 []


Underfull \hbox (badness 10000) in paragraph at lines 4516--4517
[]\T1/lmr/m/n/4.5 "CC-BY-SA" means the Cre-ative Com-mons
 []

[147]
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 4618.
Package atveryend Info: Empty hook `AfterLastShipout' on input line 4618.
 (./main.aux)
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 4618.
Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 4618.

Package rerunfilecheck Info: File `main.out' has not changed.
(rerunfilecheck)             Checksum: F5C2FC4A4DB8186A8A93EC83183CE370;13726.
Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 4618.
 ) 
Here is how much of TeX's memory you used:
 20859 strings out of 493485
 299505 string characters out of 3143525
 590471 words of memory out of 3000000
 22745 multiletter control sequences out of 15000+200000
 166044 words of font info for 242 fonts, out of 3000000 for 9000
 990 hyphenation exceptions out of 8191
 48i,12n,47p,4851b,1441s stack positions out of 5000i,500n,10000p,200000b,50000s
pdfTeX warning (dest): name{Hfootnote.220} has been referenced but does not e
xist, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.219} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.218} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.217} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.216} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.214} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.213} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.212} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.211} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.210} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.209} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.208} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.207} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.206} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.205} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.204} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.203} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.202} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.201} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.200} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.199} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.198} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.197} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.196} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.195} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.194} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.193} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.192} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.191} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.190} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.189} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.188} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.187} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.186} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.185} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.184} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.183} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.182} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.181} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.180} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.179} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.178} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.177} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.176} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.175} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.174} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.173} has been referenced but does not exi
st, replaced by a fixed one

pdfTeX warning (dest): name{Hfootnote.172} has been referenced but does not exi
st, replaced by a fixed one

{/usr/share/texmf/fonts/enc/dvips/lm/lm-ts1.enc}{/usr/share/texmf/fonts/enc/dvi
ps/lm/lm-ec.enc}{/usr/share/texmf/fonts/enc/dvips/lm/lm-rm.enc}{/usr/share/texm
f/fonts/enc/dvips/lm/lm-mathit.enc}</usr/share/texmf/fonts/type1/public/lm/lmbx
10.pfb></usr/share/texmf/fonts/type1/public/lm/lmbx12.pfb></usr/share/texmf/fon
ts/type1/public/lm/lmbxi10.pfb></usr/share/texmf/fonts/type1/public/lm/lmmi10.p
fb></usr/share/texmf/fonts/type1/public/lm/lmr10.pfb></usr/share/texmf/fonts/ty
pe1/public/lm/lmr12.pfb></usr/share/texmf/fonts/type1/public/lm/lmr5.pfb></usr/
share/texmf/fonts/type1/public/lm/lmr7.pfb></usr/share/texmf/fonts/type1/public
/lm/lmr8.pfb></usr/share/texmf/fonts/type1/public/lm/lmr9.pfb></usr/share/texmf
/fonts/type1/public/lm/lmri10.pfb></usr/share/texmf/fonts/type1/public/lm/lmri8
.pfb></usr/share/texmf/fonts/type1/public/lm/lmri9.pfb></usr/share/texmf/fonts/
type1/public/lm/lmtk10.pfb></usr/share/texmf/fonts/type1/public/lm/lmtt10.pfb><
/usr/share/texmf/fonts/type1/public/lm/lmtt8.pfb></usr/share/texmf/fonts/type1/
public/lm/lmtt9.pfb></usr/share/texmf/fonts/type1/public/lm/lmtti10.pfb>
Output written on main.pdf (150 pages, 1507504 bytes).
PDF statistics:
 2269 PDF objects out of 2487 (max. 8388607)
 2069 compressed objects within 21 object streams
 656 named destinations out of 1000 (max. 500000)
 54902 words of extra memory for PDF output out of 61914 (max. 10000000)








main/etoolbox.sty

% $Id: etoolbox.sty,v 2.1 2011/01/03 19:14:10 lehman stable $

% Copyright (c) 2007-2011 Philipp Lehman.
%
% Permission is granted to copy, distribute and/or modify this
% software under the terms of the LaTeX Project Public License
% (LPPL), version 1.3.
%
% The LPPL maintenance status of this software is
% 'author-maintained'.
%
% This software is provided 'as is', without warranty of any kind,
% either expressed or implied, including, but not limited to, the
% implied warranties of merchantability and fitness for a
% particular purpose.

\def\etb@rcsid$#1: #2 #3 #4 #5${#4 v#3}

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{etoolbox}
[\etb@rcsid $Id: etoolbox.sty,v 2.1 2011/01/03 19:14:10 lehman stable $
 e-TeX tools for LaTeX]

\begingroup
\@ifundefined{eTeXversion}
  {\PackageError{etoolbox}
     {Not running under e-TeX}
     {This package requires e-TeX. Try compiling the document
      with\MessageBreak 'elatex' instead of 'latex'. When using
      pdfTeX, try 'pdfelatex'\MessageBreak instead of 'pdflatex'.
      This is a fatal error. I'm aborting now.}%
   \aftergroup\endinput}
  {}
\endgroup

\RequirePackage{etex}

\def\etb@catcodes{\do\&\do\|\do\:\do\-\do\=\do\<\do\>}
\def\do#1{\catcode\number`#1=\the\catcode`#1\relax}
\edef\etb@catcodes{\etb@catcodes}
\let\do\noexpand
\AtEndOfPackage{\etb@catcodes\undef\etb@catcodes}

\catcode`\&=3
\catcode`\|=3
\@makeother\:
\@makeother\-
\@makeother\=
\@makeother\<
\@makeother\>

\protected\def\etb@error{\PackageError{etoolbox}}
\protected\def\etb@warning{\PackageWarning{etoolbox}}
\protected\def\etb@info{\PackageInfo{etoolbox}}
\newcount\etb@tempcnta

% {<cstoken>}[<arguments>][<optarg default>]{<definition>}

\newcommand*{\newrobustcmd}{}
\protected\def\newrobustcmd{\@star@or@long\etb@new@command}

\def\etb@new@command#1{\@testopt{\etb@newcommand#1}0}

\def\etb@newcommand#1[#2]{%
  \@ifnextchar[%]
    {\etb@xargdef#1[#2]}
    {\ifx\l@ngrel@x\relax
       \let\l@ngrel@x\protected
     \else
       \protected\def\l@ngrel@x{\protected\long}%
     \fi
     \@argdef#1[#2]}}

\long\def\etb@xargdef#1[#2][#3]#4{%
  \@ifdefinable#1{%
    \expandafter\protected
    \expandafter\def
    \expandafter#1%
    \expandafter{%
      \expandafter\@testopt
      \csname\string#1\endcsname{#3}}%
    \expandafter\@yargdef\csname\string#1\endcsname\tw@{#2}{#4}}}

% {<cstoken>}[<arguments>][<optarg default>]{<definition>}

\newrobustcmd*{\renewrobustcmd}{\@star@or@long\etb@renew@command}

\def\etb@renew@command#1{%
  \ifundef{#1}
     {\etb@error{\string#1 undefined}\@ehc}
     {}%
  \let\@ifdefinable\@rc@ifdefinable
  \etb@new@command#1}

% {<cstoken>}[<arguments>][<optarg default>]{<definition>}

\newrobustcmd*{\providerobustcmd}{\@star@or@long\etb@provide@command}

\def\etb@provide@command#1{%
  \ifundef{#1}
    {\def\reserved@a{\etb@new@command#1}}
    {\def\reserved@a{\etb@renew@command\reserved@a}}%
  \reserved@a}

% {<csname>}

\newrobustcmd*{\csshow}[1]{%
  \begingroup\expandafter\endgroup
  \expandafter\show\csname#1\endcsname}

% {<cstoken>}{<true>}{<false>}

\newcommand{\ifdef}[1]{%
  \ifdefined#1%
    \expandafter\@firstoftwo
  \else
    \expandafter\@secondoftwo
  \fi}

% {<cstoken>}{<true>}{<false>}

\newcommand{\ifundef}[1]{%
  \ifdefined#1%
    \ifx#1\relax
      \expandafter\expandafter
      \expandafter\@firstoftwo
    \else
      \expandafter\expandafter
      \expandafter\@secondoftwo
    \fi
  \else
    \expandafter\@firstoftwo
  \fi}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsdef}[1]{%
  \ifcsname#1\endcsname
    \expandafter\@firstoftwo
  \else
    \expandafter\@secondoftwo
  \fi}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsundef}[1]{%
  \ifcsname#1\endcsname
    \expandafter\ifx\csname#1\endcsname\relax
      \expandafter\expandafter
      \expandafter\@firstoftwo
    \else
      \expandafter\expandafter
      \expandafter\@secondoftwo
    \fi
  \else
    \expandafter\@firstoftwo
  \fi}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefmacro}{}
\long\edef\ifdefmacro#1{%
  \noexpand\expandafter\noexpand\etb@ifdefmacro
  \noexpand\meaning#1\detokenize{macro}:&}
\edef\etb@ifdefmacro{%
  \def\noexpand\etb@ifdefmacro##1\detokenize{macro}:##2&}
\etb@ifdefmacro{\notblank{#2}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsmacro}[1]{%
  \ifcsdef{#1}
    {\expandafter\ifdefmacro\csname#1\endcsname}
    {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefprefix}[1]{%
  \ifdefmacro{#1}
    {\etb@ifdefprefix{#1}}
    {\@secondoftwo}}
\long\edef\etb@ifdefprefix#1{%
  \noexpand\expandafter\noexpand\etb@ifdefprefix@i
  \noexpand\meaning#1\detokenize{macro}:&}
\edef\etb@ifdefprefix@i{%
  \def\noexpand\etb@ifdefprefix@i##1\detokenize{macro}:##2&}
\etb@ifdefprefix@i{\notblank{#1}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsprefix}[1]{%
  \ifcsdef{#1}
    {\expandafter\ifdefprefix\csname#1\endcsname}
    {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefparam}{}
\long\edef\ifdefparam#1{%
  \noexpand\expandafter\noexpand\etb@ifdefparam
  \noexpand\meaning#1\detokenize{macro}:->&}
\edef\etb@ifdefparam{%
  \def\noexpand\etb@ifdefparam##1\detokenize{macro}:##2->##3&}
\etb@ifdefparam{\notblank{#2}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsparam}[1]{%
  \ifcsdef{#1}
    {\expandafter\ifdefparam\csname#1\endcsname}
    {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefprotected}{}
\long\edef\ifdefprotected#1{%
  \noexpand\expandafter\noexpand\etb@ifdefprotected
  \noexpand\meaning#1\string\protected&}
\edef\etb@ifdefprotected{%
  \def\noexpand\etb@ifdefprotected##1\string\protected##2&}
\etb@ifdefprotected{\notblank{#2}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsprotected}[1]{%
  \ifcsdef{#1}
    {\expandafter\ifdefprotected\csname#1\endcsname}
    {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newrobustcmd{\ifdefltxprotect}[1]{%
  \begingroup
  \edef\etb@resrvda{%
    \noexpand\protect\expandafter\noexpand
    \csname\expandafter\@gobble\string#1 \endcsname}%
  \expandafter\endgroup\ifx#1\etb@resrvda
    \expandafter\@firstoftwo
  \else
    \expandafter\@secondoftwo
  \fi}

% {<csname>}{<true>}{<false>}

\newrobustcmd*{\ifcsltxprotect}[1]{%
  \ifcsdef{#1}
    {\expandafter\ifdefltxprotect\csname#1\endcsname}
    {\@secondoftwo}}

% {<cstoken>}{<true>}{<false>}

\newcommand{\ifdefempty}[1]{%
  \ifundef{#1}
    {\@secondoftwo}
    {\ifdefmacro{#1}
       {\ifdefparam{#1}
	  {\@secondoftwo}
	  {\etb@ifdefempty{#1}}}
       {\@secondoftwo}}}

\def\etb@ifdefempty#1{%
  \expandafter\expandafter
  \expandafter\ifblank
  \expandafter\expandafter
  \expandafter{%
  \expandafter\strip@prefix\meaning#1}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsempty}[1]{%
  \ifcsundef{#1}
    {\@secondoftwo}
    {\expandafter\ifdefparam\csname#1\endcsname
       {\@secondoftwo}
       {\expandafter\etb@ifdefempty\csname#1\endcsname}}}

% {<cstoken>}{<true>}{<false>}

\newcommand{\ifdefvoid}[1]{%
  \ifundef{#1}
    {\@firstoftwo}
    {\ifdefmacro{#1}
       {\ifdefparam{#1}
	  {\@secondoftwo}
	  {\etb@ifdefempty{#1}}}
       {\@secondoftwo}}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsvoid}[1]{%
  \ifcsundef{#1}
    {\@firstoftwo}
    {\expandafter\ifdefparam\csname#1\endcsname
       {\@secondoftwo}
       {\expandafter\etb@ifdefempty\csname#1\endcsname}}}

% {<cstoken1>}{<cstoken2>}{<true>}{<false>}

\newcommand{\ifdefequal}[2]{%
  \ifundef{#1}
    {\@secondoftwo}
    {\ifundef{#2}
       {\@secondoftwo}
       {\ifx#1#2%
          \expandafter\@firstoftwo
        \else
          \expandafter\@secondoftwo
        \fi}}}

% {<csname1>}{<csname2>}{<true>}{<false>}

\newcommand*{\ifcsequal}[2]{%
  \ifcsundef{#1}
    {\@secondoftwo}
    {\ifcsundef{#2}
       {\@secondoftwo}
       {\expandafter\ifx
        \csname#1\expandafter\endcsname
        \csname#2\endcsname
          \expandafter\@firstoftwo
        \else
          \expandafter\@secondoftwo
        \fi}}}

% {<cstoken1>}{<cstoken2>}{<true>}{<false>}

\newrobustcmd{\ifdefstrequal}[2]{%
  \ifdefmacro{#1}
    {\ifdefmacro{#2}
       {\begingroup
	\edef\etb@tempa{\expandafter\strip@prefix\meaning#1}%
	\edef\etb@tempb{\expandafter\strip@prefix\meaning#2}%
	\ifx\etb@tempa\etb@tempb
	  \aftergroup\@firstoftwo
	\else
	  \aftergroup\@secondoftwo
	\fi
	\endgroup}
       {\@secondoftwo}}
    {\@secondoftwo}}

% {<csname1>}{<csname2>}{<true>}{<false>}

\newcommand*{\ifcsstrequal}[2]{%
  \ifcsundef{#1}
    {\@secondoftwo}
    {\ifcsundef{#2}
       {\@secondoftwo}
       {\expandafter\ifdefstrequal
        \csname#1\expandafter\endcsname
	\csname#2\endcsname}}}

% {<cstoken>}{<string>}{<true>}{<false>}

\newrobustcmd{\ifdefstring}[2]{%
  \ifdefmacro{#1}
    {\begingroup
     \edef\etb@tempa{\expandafter\strip@prefix\meaning#1}%
     \edef\etb@tempb{\detokenize{#2}}%
     \ifx\etb@tempa\etb@tempb
       \aftergroup\@firstoftwo
     \else
       \aftergroup\@secondoftwo
     \fi
     \endgroup}
    {\@secondoftwo}}

% {<csname>}{<string>}{<true>}{<false>}

\newrobustcmd{\ifcsstring}[2]{%
  \ifcsundef{#1}
    {\@secondoftwo}
    {\expandafter\ifdefstring\csname#1\endcsname{#2}}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefcounter}[1]{\etb@ifcounter#1&}
\long\def\etb@ifcounter#1#2&{%
  \ifx\count#1%
    \expandafter\@secondoftwo
  \else
    \expandafter\etb@ifcounter@i\meaning#1:%
  \fi}
\edef\etb@ifcounter@i#1:#2\fi{\noexpand\fi
  \noexpand\etb@ifcounter@ii#1\string\count&}
\edef\etb@ifcounter@ii{%
  \def\noexpand\etb@ifcounter@ii##1\string\count##2&}
\etb@ifcounter@ii{\ifblank{#1}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcscounter}[1]{%
  \ifcsdef{#1}
    {\expandafter\ifdefcounter\csname#1\endcsname}
    {\@secondoftwo}}

% {<name>}{<true>}{<false>}

\newcommand*{\ifltxcounter}[1]{%
  \ifcsdef{c@#1}
    {\expandafter\ifdefcounter\csname c@#1\endcsname}
    {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdeflength}[1]{\etb@iflength#1&}
\long\def\etb@iflength#1#2&{%
  \ifx\skip#1%
    \expandafter\@secondoftwo
  \else
    \expandafter\etb@iflength@i\meaning#1:%
  \fi}
\edef\etb@iflength@i#1:#2\fi{\noexpand\fi
  \noexpand\etb@iflength@ii#1\string\skip&}
\edef\etb@iflength@ii{%
  \def\noexpand\etb@iflength@ii##1\string\skip##2&}
\etb@iflength@ii{\ifblank{#1}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcslength}[1]{%
  \ifcsdef{#1}
    {\expandafter\ifdeflength\csname#1\endcsname}
    {\@secondoftwo}}

% {<cstoken>}{<true}{<false>}

\newcommand{\ifdefdimen}[1]{\etb@ifdimen#1&}
\long\def\etb@ifdimen#1#2&{%
  \ifx\dimen#1%
    \expandafter\@secondoftwo
  \else
    \expandafter\etb@ifdimen@i\meaning#1:%
  \fi}
\edef\etb@ifdimen@i#1:#2\fi{\noexpand\fi
  \noexpand\etb@ifdimen@ii#1\string\dimen&}
\edef\etb@ifdimen@ii{%
  \def\noexpand\etb@ifdimen@ii##1\string\dimen##2&}
\etb@ifdimen@ii{\ifblank{#1}}

% {<csname>}{<true>}{<false>}

\newcommand*{\ifcsdimen}[1]{%
  \ifcsdef{#1}
    {\expandafter\ifdefdimen\csname#1\endcsname}
    {\@secondoftwo}}

% {<string1>}{<string2>}{<true>}{<false>}

\newrobustcmd{\ifstrequal}[2]{%
  \begingroup
  \edef\etb@tempa{\detokenize{#1}}%
  \edef\etb@tempb{\detokenize{#2}}%
  \ifx\etb@tempa\etb@tempb
    \aftergroup\@firstoftwo
  \else
    \aftergroup\@secondoftwo
  \fi
  \endgroup}

% {<string>}{<true>}{<false>}

\newcommand{\ifstrempty}[1]{%
  \expandafter\ifx\expandafter&\detokenize{#1}&%
    \expandafter\@firstoftwo
  \else
    \expandafter\@secondoftwo
  \fi}

% {<string>}{<true>}{<false>}

\newcommand{\ifblank}[1]{% from url.sty
  \etb@ifblank@i#1&&\@secondoftwo\@firstoftwo:}
\long\def\etb@ifblank@i#1#2&#3#4#5:{#4}

\newcommand{\notblank}[1]{%
  \etb@ifblank@i#1&&\@firstoftwo\@secondoftwo:}

% {<numexpr>}{<comp>}{<numexpr>}{<true>}{<false>}

\newcommand*{\ifnumcomp}[3]{%
  \ifnum\numexpr#1\relax#2\numexpr#3\relax
    \expandafter\@firstoftwo
  \else
    \expandafter\@secondoftwo
  \fi}

% {<numexpr>}{<numexpr>}{<true>}{<false>}

\newcommand*{\ifnumequal}[1]{%
  \ifnumcomp{#1}=}

\newcommand*{\ifnumgreater}[1]{%
  \ifnumcomp{#1}>}

\newcommand*{\ifnumless}[1]{%
  \ifnumcomp{#1}<}

% {<numexpr>}{<true>}{<false>}

\newcommand*{\ifnumodd}[1]{%
  \ifodd\numexpr#1\relax
    \expandafter\@firstoftwo
  \else
    \expandafter\@secondoftwo
  \fi}

% {<dimexpr>}{<comp>}{<dimexpr>}{<true>}{<false>}

\newcommand*{\ifdimcomp}[3]{%
  \ifdim\dimexpr#1\relax#2\dimexpr#3\relax
    \expandafter\@firstoftwo
  \else
    \expandafter\@secondoftwo
  \fi}

% {<dimexpr>}{<dimexpr>}{<true>}{<false>}

\newcommand*{\ifdimequal}[1]{%
  \ifdimcomp{#1}=}

\newcommand*{\ifdimgreater}[1]{%
  \ifdimcomp{#1}>}

\newcommand*{\ifdimless}[1]{%
  \ifdimcomp{#1}<}

% {<expr>}{<true>}{<false>}

\newcommand{\ifboolexpe}[1]{%
  \etb@be@beg\etb@be@bgroup#1(&\etb@be@end}

\let\etb@be@true\@empty
\def\etb@be@false{-\@ne}

\def\etb@be@beg{%
  \ifnum\numexpr\z@\ifnum\numexpr\z@}

\def\etb@be@end{%
  <\z@
    \expandafter\etb@be@false
  \fi
  <\z@
    \expandafter\@secondoftwo
  \else
    \expandafter\@firstoftwo
  \fi}

\long\def\etb@be@bgroup#1(#2&{%
  \etb@be@egroup#1)&%
  \ifblank{#2}
    {}
    {\etb@be@beg
     \etb@be@bgroup#2&}}

\long\def\etb@be@egroup#1)#2&{%
  \etb@be@and#1and&%
  \ifblank{#2}
    {}
    {\etb@be@end\etb@be@true\etb@be@false
     \etb@be@egroup#2&}}

\long\def\etb@be@and#1and#2&{%
  \etb@be@or#1or&%
  \ifblank{#2}
    {}
    {<\z@
       \expandafter\@firstofone
     \else
       \expandafter\@gobble
     \fi
     {=\z@\fi\ifnum\numexpr\m@ne}%
     \ifnum\numexpr\z@
     \etb@be@and#2&}}

\long\def\etb@be@or#1or#2&{%
  \etb@be@not#1not&%
  \ifblank{#2}
    {}
    {<\z@
       \expandafter\@secondoftwo
     \else
       \expandafter\@firstoftwo
     \fi
     {=\z@\fi\ifnum\numexpr\z@
      \ifnum\numexpr\@ne}
     {=\z@\fi\ifnum\numexpr\z@
      \ifnum\numexpr\z@}%
     \etb@be@or#2&}}

\long\def\etb@be@not#1not#2&{%
  \etb@be@togl#1togl&%
  \ifblank{#2}
    {}
    {>\z@
       \expandafter\@firstoftwo
     \else
       \expandafter\@secondoftwo
     \fi
     {\unless\ifnum\numexpr\m@ne}
     {\unless\ifnum\numexpr\z@}%
     \etb@be@not#2&}}

\long\def\etb@be@togl#1togl#2&{%
  \etb@be@bool#1bool&%
  \ifblank{#2}
    {}
    {\etb@be@togl@i#2&}}

\long\def\etb@be@togl@i#1#2&{%
  \ifcsdef{etb@tgl@#1}
    {\csname etb@tgl@#1\endcsname\etb@be@true\etb@be@false}
    {\etb@be@err{Toggle '#1' undefined}{}}%
  \etb@be@togl#2&}

\long\def\etb@be@bool#1bool#2&{%
  \etb@be@test#1test&%
  \ifblank{#2}
    {}
    {\etb@be@bool@i#2&}}

\long\def\etb@be@bool@i#1#2&{%
  \ifcsundef{if#1}
    {\etb@be@err{Boolean '#1' undefined}{}}
    {\csname if#1\endcsname
     \else
       \etb@be@false
     \fi}%
  \etb@be@bool#2&}

\long\def\etb@be@test#1test#2&{%
  \ifblank{#1}
    {}
    {\etb@be@err{The invalid part is: '\detokenize{#1}'}{}}%
  \ifblank{#2}
    {}
    {\etb@be@test@i#2&}}

\long\def\etb@be@test@i#1#2&{%
  #1\etb@be@true\etb@be@false
  \etb@be@test#2&}

\long\def\etb@be@err#1#2{%
  \expandafter\ifnum\the\numexpr
    \expandafter\ifnum\the\currentiftype=-3
      \expandafter\thr@@
    \else
      \expandafter\currentiftype
    \fi
  =\thr@@
    \expandafter\@firstoftwo
  \else
    \expandafter\@secondoftwo
  \fi
  {=\z@\fi
   \etb@be@err{#1}{#2\ifnum\numexpr\m@ne}}
  {\etb@err@expr{#1}#2}}

% {<expr>}{<true>}{<false>}

\newrobustcmd{\ifboolexpr}[1]{\etb@boolexpr{#1}}

\long\def\etb@boolexpr#1{%
  \begingroup
  \let\etb@br@neg\@firstoftwo
  \etb@tempcnta\z@
  \etb@br@beg
  \etb@br@bgroup#1(&%
  \etb@br@end
  \etb@br@eval}

\def\etb@br@beg{%
  \begingroup
  \let\etb@br@neg\@firstoftwo
  \etb@tempcnta\z@}

\def\etb@br@end{%
  \etb@br@eval\etb@br@true\etb@br@false}

\def\etb@br@eval{%
  \ifnum\etb@tempcnta<\z@
    \aftergroup\@secondoftwo
  \else
    \aftergroup\@firstoftwo
  \fi
  \endgroup}

\def\etb@br@true{%
  \advance\etb@tempcnta\etb@br@neg\z@\m@ne
  \let\etb@br@neg\@firstoftwo}

\def\etb@br@false{%
  \advance\etb@tempcnta\etb@br@neg\m@ne\z@
  \let\etb@br@neg\@firstoftwo}

\long\def\etb@br@bgroup#1(#2&{%
  \etb@br@egroup#1)&%
  \ifblank{#2}
    {}
    {\etb@br@beg
     \etb@br@bgroup#2&}}

\long\def\etb@br@egroup#1)#2&{%
  \etb@br@and#1and&%
  \ifblank{#2}
    {}
    {\etb@br@end
     \etb@br@egroup#2&}}

\long\def\etb@br@and#1and#2&{%
  \etb@br@or#1or&%
  \ifblank{#2}
    {}
    {\ifnum\etb@tempcnta<\z@
       \etb@tempcnta\m@ne
     \else
       \etb@tempcnta\z@
     \fi
     \etb@br@and#2&}}

\long\def\etb@br@or#1or#2&{%
  \etb@br@not#1not&%
  \ifblank{#2}
    {}
    {\ifnum\etb@tempcnta<\z@
       \etb@tempcnta\z@
     \else
       \etb@tempcnta\@ne
     \fi
     \etb@br@or#2&}}

\long\def\etb@br@not#1not#2&{%
  \etb@br@togl#1togl&%
  \ifblank{#2}
    {}
    {\let\etb@br@neg\@secondoftwo
     \etb@br@not#2&}}

\long\def\etb@br@togl#1togl#2&{%
  \etb@br@bool#1bool&%
  \ifblank{#2}
    {}
    {\etb@br@togl@i#2&}}

\long\def\etb@br@togl@i#1#2&{%
  \ifcsdef{etb@tgl@#1}
    {\csname etb@tgl@#1\endcsname\etb@br@true\etb@br@false}
    {\etb@err@expr{Toggle '#1' undefined}\etb@br@false}%
  \etb@br@togl#2&}

\long\def\etb@br@bool#1bool#2&{%
  \etb@br@test#1test&%
  \ifblank{#2}
    {}
    {\etb@br@bool@i#2&}}

\long\def\etb@br@bool@i#1#2&{%
  \ifcsundef{if#1}
    {\etb@err@expr{Boolean '#1' undefined}\etb@br@false}
    {\csname if#1\endcsname
       \etb@br@true
     \else
       \etb@br@false
     \fi}%
  \etb@br@bool#2&}

\long\def\etb@br@test#1test#2&{%
  \ifblank{#1}
    {}
    {\etb@err@expr{The invalid part is: '\detokenize{#1}'}}%
  \ifblank{#2}
    {}
    {\etb@br@test@i#2&}}

\long\def\etb@br@test@i#1#2&{%
  \ignorespaces#1\etb@br@true\etb@br@false
  \etb@br@test#2&}

\long\def\etb@err@expr#1{%
  \etb@error
    {Invalid boolean expression}
    {#1.}}

% {<expr>}{<code>}

\newrobustcmd{\whileboolexpr}[2]{%
  \etb@boolexpr{#1}{#2\whileboolexpr{#1}{#2}}{}}

% {<expr>}{<code>}

\newrobustcmd{\unlessboolexpr}[2]{%
  \etb@boolexpr{#1}{}{#2\unlessboolexpr{#1}{#2}}}

% {<cstoken>}

\newcommand{\expandonce}[1]{%
  \unexpanded\expandafter{#1}}

% {<csname>}

\newcommand*{\csexpandonce}[1]{%
  \expandafter\expandonce\csname#1\endcsname}

% {<code>}

\newcommand*{\protecting}{}
\def\protecting#{%
  \ifx\protect\@typeset@protect
    \etb@protecting\@firstofone
  \fi
  \ifx\protect\@unexpandable@protect
    \etb@protecting\etb@unexpandable
  \fi
  \ifx\protect\noexpand
    \etb@protecting\unexpanded
  \fi
  \ifx\protect\string
    \etb@protecting\detokenize
  \fi
  \relax\@firstofone}

\def\etb@protecting#1#2\relax\@firstofone{\fi#1}
\long\def\etb@unexpandable#1{\unexpanded{\protecting{#1}}}

% {<csname>}

\newrobustcmd*{\csdef}[1]{\expandafter\def\csname#1\endcsname}
\newrobustcmd*{\csedef}[1]{\expandafter\edef\csname#1\endcsname}
\newrobustcmd*{\csgdef}[1]{\expandafter\gdef\csname#1\endcsname}
\newrobustcmd*{\csxdef}[1]{\expandafter\xdef\csname#1\endcsname}
\newrobustcmd*{\protected@csedef}{\etb@protected\csedef}
\newrobustcmd*{\protected@csxdef}{\etb@protected\csxdef}

\def\etb@protected{%
  \let\@@protect\protect
  \let\protect\@unexpandable@protect
  \afterassignment\restore@protect}

% {<csname>}{<cstoken>}

\newrobustcmd{\cslet}[2]{%
  \expandafter\let\csname#1\endcsname#2}

% {<cstoken>}{<csname>}

\newrobustcmd{\letcs}[2]{%
  \ifcsdef{#2}
    {\expandafter\let\expandafter#1\csname#2\endcsname}
    {\undef#1}}

% {<csname>}{<csname>}

\newrobustcmd*{\csletcs}[2]{%
  \ifcsdef{#2}
    {\expandafter\let
     \csname#1\expandafter\endcsname
     \csname#2\endcsname}
    {\csundef{#1}}}

% {<csname>}

\newcommand*{\csuse}[1]{%
  \ifcsname#1\endcsname
    \csname#1\expandafter\endcsname
  \fi}

% {<cstoken>}

\newrobustcmd{\undef}[1]{\let#1\etb@undefined}

% {<csname>}

\newrobustcmd*{\csundef}[1]{\cslet{#1}\etb@undefined}

% {<cstoken>}{<code>}

\newrobustcmd{\appto}[2]{%
  \ifundef{#1}
    {\edef#1{\unexpanded{#2}}}
    {\edef#1{\expandonce#1\unexpanded{#2}}}}
\newrobustcmd{\eappto}[2]{%
  \ifundef{#1}
    {\edef#1{#2}}
    {\edef#1{\expandonce#1#2}}}
\newrobustcmd{\gappto}[2]{%
  \ifundef{#1}
    {\xdef#1{\unexpanded{#2}}}
    {\xdef#1{\expandonce#1\unexpanded{#2}}}}
\newrobustcmd{\xappto}[2]{%
  \ifundef{#1}
    {\xdef#1{#2}}
    {\xdef#1{\expandonce#1#2}}}

\newrobustcmd*{\protected@eappto}{\etb@protected\eappto}
\newrobustcmd*{\protected@xappto}{\etb@protected\xappto}

% {<cstoken>}{<code>}

\newrobustcmd{\preto}[2]{%
  \ifundef{#1}
    {\edef#1{\unexpanded{#2}}}
    {\edef#1{\unexpanded{#2}\expandonce#1}}}
\newrobustcmd{\epreto}[2]{%
  \ifundef{#1}
    {\edef#1{#2}}
    {\edef#1{#2\expandonce#1}}}
\newrobustcmd{\gpreto}[2]{%
  \ifundef{#1}
    {\xdef#1{\unexpanded{#2}}}
    {\xdef#1{\unexpanded{#2}\expandonce#1}}}
\newrobustcmd{\xpreto}[2]{%
  \ifundef{#1}
    {\xdef#1{#2}}
    {\xdef#1{#2\expandonce#1}}}

\newrobustcmd*{\protected@epreto}{\etb@protected\epreto}
\newrobustcmd*{\protected@xpreto}{\etb@protected\xpreto}

% {<csname>}{<code>}

\newrobustcmd*{\csappto}[1]{\expandafter\appto\csname#1\endcsname}
\newrobustcmd*{\cseappto}[1]{\expandafter\eappto\csname#1\endcsname}
\newrobustcmd*{\csgappto}[1]{\expandafter\gappto\csname#1\endcsname}
\newrobustcmd*{\csxappto}[1]{\expandafter\xappto\csname#1\endcsname}
\newrobustcmd*{\protected@cseappto}{\etb@protected\cseappto}
\newrobustcmd*{\protected@csxappto}{\etb@protected\csxappto}

% {<csname>}{<code>}

\newrobustcmd*{\cspreto}[1]{\expandafter\preto\csname#1\endcsname}
\newrobustcmd*{\csepreto}[1]{\expandafter\epreto\csname#1\endcsname}
\newrobustcmd*{\csgpreto}[1]{\expandafter\gpreto\csname#1\endcsname}
\newrobustcmd*{\csxpreto}[1]{\expandafter\xpreto\csname#1\endcsname}
\newrobustcmd*{\protected@csepreto}{\etb@protected\csepreto}
\newrobustcmd*{\protected@csxpreto}{\etb@protected\csxpreto}

% {<cstoken>}{<numexpr>}

\newrobustcmd*{\numdef}[2]{%
  \ifundef#1{\let#1\z@}{}%
  \edef#1{\the\numexpr#2}}
\newrobustcmd*{\numgdef}[2]{%
  \ifundef#1{\let#1\z@}{}%
  \xdef#1{\the\numexpr#2}}

% {<csname>}{<numexpr>}

\newrobustcmd*{\csnumdef}[1]{%
  \expandafter\numdef\csname#1\endcsname}
\newrobustcmd*{\csnumgdef}[1]{%
  \expandafter\numgdef\csname#1\endcsname}

% {<cstoken>}{<dimexpr>}

\newrobustcmd*{\dimdef}[2]{%
  \ifundef#1{\let#1\z@}{}%
  \edef#1{\the\dimexpr#2}}
\newrobustcmd*{\dimgdef}[2]{%
  \ifundef#1{\let#1\z@}{}%
  \xdef#1{\the\dimexpr#2}}

% {<csname>}{<dimexpr>}

\newrobustcmd*{\csdimdef}[1]{%
  \expandafter\dimdef\csname#1\endcsname}
\newrobustcmd*{\csdimgdef}[1]{%
  \expandafter\dimgdef\csname#1\endcsname}

% {<cstoken>}{<glueexpr>}

\newrobustcmd*{\gluedef}[2]{%
  \ifundef#1{\let#1\z@skip}{}%
  \edef#1{\the\glueexpr#2}}
\newrobustcmd*{\gluegdef}[2]{%
  \ifundef#1{\let#1\z@skip}{}%
  \xdef#1{\the\glueexpr#2}}

% {<csname>}{<glueexpr>}

\newrobustcmd*{\csgluedef}[1]{%
  \expandafter\gluedef\csname#1\endcsname}
\newrobustcmd*{\csgluegdef}[1]{%
  \expandafter\gluegdef\csname#1\endcsname}

% {<cstoken>}{<muexpr>}

\newrobustcmd*{\mudef}[2]{%
  \ifundef#1{\def#1{0mu}}{}%
  \edef#1{\the\muexpr#2}}
\newrobustcmd*{\mugdef}[2]{%
  \ifundef#1{\let#1\z@}{}%
  \xdef#1{\the\muexpr#2}}

% {<csname>}{<muexpr>}

\newrobustcmd*{\csmudef}[1]{%
  \expandafter\mudef\csname#1\endcsname}
\newrobustcmd*{\csmugdef}[1]{%
  \expandafter\mugdef\csname#1\endcsname}

% {<counter>}{<numexpr>}

\newrobustcmd*{\defcounter}[2]{%
  \ifcsundef{c@#1}
    {\etb@noglobal\@nocounterr{#1}}%
    {\csname c@#1\endcsname\numexpr#2\relax}}

% {<length>}{<glueexpr>}

\newrobustcmd*{\deflength}[2]{%
  \ifundef{#1}
    {\etb@noglobal\etb@err@nolen{#1}}%
    {#1\glueexpr#2\relax}}

\protected\def\etb@err@nolen#1{%
  \etb@error{Length '\string#1' undefined}\@eha}

% {<name>}

\newrobustcmd*{\newbool}[1]{%
  \expandafter\@ifdefinable\csname if#1\endcsname{%
    \expandafter\newif\csname if#1\endcsname}}

% {<name>}

\newrobustcmd*{\providebool}[1]{%
  \ifcsundef{if#1}
    {\expandafter\newif\csname if#1\endcsname}
    {\begingroup
     \edef\@tempa{\expandafter\meaning\csname if#1\endcsname}%
     \ifx\@tempa\etb@isfalse
     \else
       \ifx\@tempa\etb@istrue
       \else
         \etb@error{\@backslashchar if#1 not a boolean}\@eha
       \fi
     \fi
     \endgroup}}

% {<name>}{<true>|<false>}

\newrobustcmd*{\setbool}[2]{%
  \ifcsundef{if#1}
    {\etb@noglobal\etb@err@nobool{#1}}
    {\ifcsundef{#1#2}
       {\etb@noglobal\etb@err@boolval{#2}}
       {\csname#1#2\endcsname}}}

% {<name>}

\newrobustcmd*{\booltrue}[1]{%
  \ifcsundef{if#1}
    {\etb@noglobal\etb@err@nobool{#1}}
    {\csname#1true\endcsname}}

% {<name>}

\newrobustcmd*{\boolfalse}[1]{%
  \ifcsundef{if#1}
    {\etb@noglobal\etb@err@nobool{#1}}
    {\csname#1false\endcsname}}

\edef\etb@istrue{\meaning\iftrue}
\edef\etb@isfalse{\meaning\iffalse}
\protected\def\etb@noglobal{\let\relax\relax}

% {<name>}{<true}{<false>}

\newcommand*{\ifbool}[1]{%
  \ifcsundef{if#1}
    {\etb@err@nobool{#1}\@gobbletwo}
    {\csname if#1\endcsname
       \expandafter\@firstoftwo
     \else
       \expandafter\@secondoftwo
     \fi}}

% {<name>}{<not true}{<not false>}

\newcommand*{\notbool}[1]{%
  \ifcsundef{if#1}
    {\etb@err@nobool{#1}\@gobbletwo}
    {\csname if#1\endcsname
       \expandafter\@secondoftwo
     \else
       \expandafter\@firstoftwo
     \fi}}

\protected\def\etb@err@nobool#1{%
  \etb@error{Boolean '\@backslashchar if#1' undefined}\@eha}

\def\etb@err@boolval#1{%
  \etb@error
    {Invalid boolean value '#1'}
    {Valid boolean values are 'true' and 'false'.}}

% {<name>}

\newrobustcmd*{\newtoggle}[1]{%
  \ifcsdef{etb@tgl@#1}
    {\etb@error{Toggle '#1' already defined}\@eha}
    {\cslet{etb@tgl@#1}\@secondoftwo}}

% {<name>}

\newrobustcmd*{\providetoggle}[1]{%
  \ifcsdef{etb@tgl@#1}
    {}
    {\cslet{etb@tgl@#1}\@secondoftwo}}

% {<name>}{<true>|<false>}

\newrobustcmd*{\settoggle}[2]{%
  \ifcsdef{etb@tgl@#1}
    {\ifcsdef{etb@toggle#2}
       {\csletcs{etb@tgl@#1}{etb@toggle#2}}
       {\etb@noglobal\etb@err@boolval{#2}}}
    {\etb@noglobal\etb@err@notoggle{#1}}}

% {<name>}

\newrobustcmd*{\toggletrue}[1]{%
  \ifcsdef{etb@tgl@#1}
    {\cslet{etb@tgl@#1}\etb@toggletrue}
    {\etb@noglobal\etb@err@notoggle{#1}}}

% {<name>}

\newrobustcmd*{\togglefalse}[1]{%
  \ifcsdef{etb@tgl@#1}
    {\cslet{etb@tgl@#1}\etb@togglefalse}
    {\etb@noglobal\etb@err@notoggle{#1}}}

\let\etb@toggletrue\@firstoftwo
\let\etb@togglefalse\@secondoftwo

% {<name>}{<true}{<false>}

\newcommand*{\iftoggle}[1]{%
  \ifcsdef{etb@tgl@#1}
    {\csname etb@tgl@#1\endcsname}
    {\etb@err@notoggle{#1}\@gobbletwo}}

% {<name>}{<not true}{<not false>}

\newcommand*{\nottoggle}[1]{%
  \ifcsdef{etb@tgl@#1}
    {\csname etb@tgl@#1\endcsname\@secondoftwo\@firstoftwo}
    {\etb@err@notoggle{#1}\@gobbletwo}}

\protected\def\etb@err@notoggle#1{%
  \etb@error{Toggle '#1' undefined}\@eha}

% {<cstoken>}{<true}{<false>}

\protected\def\etb@ifscanable#1{%
  \begingroup
  \edef\etb@resrvda{%
    \def\noexpand\etb@resrvda####1\detokenize{macro}:####2->####3&{%
      ####1\def\string\etb@resrvda####2{####3}}%
    \edef\noexpand\etb@resrvda{\noexpand\etb@resrvda\meaning#1&}}%
  \etb@resrvda
  \makeatletter
  \scantokens\expandafter{\etb@resrvda}%
  \expandafter\endgroup\ifx#1\etb@resrvda
    \expandafter\@firstoftwo
  \else
    \expandafter\@secondoftwo
  \fi}

% {<cstoken>}{<search>}{<true}{<false>}

\protected\long\def\etb@ifpattern#1#2{%
  \begingroup
  \edef\etb@resrvda{%
    \def\noexpand\etb@resrvda####1\detokenize{#2}####2&{%
      \endgroup\noexpand\noexpand\noexpand\ifblank{####2}}%
    \edef\noexpand\etb@resrvda{\noexpand\etb@resrvda
      \expandafter\strip@prefix\meaning#1\detokenize{#2}&}%
    \noexpand\etb@resrvda}
  \etb@resrvda\@secondoftwo\@firstoftwo}

% {<string>}{<true}{<false>}

\protected\long\def\etb@ifhashcheck#1{%
  \begingroup
  \edef\etb@resrvda{\detokenize{#1}}%
  \expandafter\endgroup
  \expandafter\etb@ifhashcheck@i\meaning\etb@resrvda&}

\edef\etb@ifhashcheck@i#1&{%
  \noexpand\expandafter
  \noexpand\etb@ifhashcheck@ii
  \noexpand\strip@prefix#1\string#\string#&}

\edef\etb@ifhashcheck@ii{%
  \def\noexpand\etb@ifhashcheck@ii##1\string#\string###2&}
\etb@ifhashcheck@ii{\ifblank{#2}}

% {<cstoken>}

\newrobustcmd*{\robustify}[1]{%
  \ifundef{#1}
    {\etb@error{\string#1 undefined}\@eha}
    {\ifdefmacro{#1}
       {\ifdefltxprotect{#1}
          {\letcs\etb@resrvda{\expandafter\@gobble\string#1 }%
           \@tempswatrue}
          {\let\etb@resrvda#1%
           \@tempswafalse}%
        \ifdefparam\etb@resrvda
          {\etb@ifscanable\etb@resrvda
             {\etb@robustify\etb@resrvda
              \let#1\etb@resrvda}
             {\etb@error{Failed to robustify \string#1}
                {The command is special and cannot be
                 handled by \string\robustify.}%
              \@tempswafalse}}
          {\protected\edef#1{\expandonce\etb@resrvda}}
        \if@tempswa
          \ifcsdef{\string#1 }
            {}
            {\csundef{\expandafter\@gobble\string#1 }}%
        \fi
        \undef\etb@resrvda}
       {\etb@error{\string#1 not a macro}\@eha}}}

\def\etb@robustify#1{%
  \begingroup
  \edef\etb@resrvdb{%
    \def\noexpand\etb@resrvdb####1\detokenize{macro}:####2->####3&{%
      \protected####1\def\string#1\space####2{####3}}%
    \edef\noexpand\etb@resrvdb{%
      \noexpand\etb@resrvdb\meaning#1&}}%
  \etb@resrvdb
  \etb@patchcmd@scantoks\etb@resrvdb}

%  {<cstoken>}{<search>}{<true}{<false>}
% *{<cstoken>}{<true}{<false>}

\newrobustcmd{\ifpatchable}{%
  \etb@dbg@trce\ifpatchable
  \begingroup
  \@makeother\#%
  \@ifstar\etb@ifpatchable@i\etb@ifpatchable}

\long\def\etb@ifpatchable#1#2{%
  \endgroup
  \etb@dbg@init#1%
  \ifundef{#1}
    {\etb@dbg@fail{def}\@secondoftwo}
    {\etb@dbg@info{def}%
     \ifdefmacro{#1}
       {\etb@dbg@info{mac}%
        \etb@ifscanable{#1}
          {\etb@ifhashcheck{#2}
             {\etb@dbg@info{tok}%
              \etb@ifpattern#1{#2}
                 {\etb@dbg@info{pat}%
                  \etb@dbg@info{pos}\@firstoftwo}
                 {\etb@dbg@fail{pat}\@secondoftwo}}
             {\etb@dbg@fail{hsh}\@secondoftwo}}
          {\etb@dbg@fail{tok}\@secondoftwo}}
       {\etb@dbg@fail{mac}\@secondoftwo}}}

\long\def\etb@ifpatchable@i#1{%
  \endgroup
  \etb@dbg@init#1%
  \ifundef{#1}
    {\etb@dbg@fail{def}\@secondoftwo}
    {\etb@dbg@info{def}%
     \ifdefmacro{#1}
       {\etb@dbg@info{mac}%
        \ifdefparam{#1}
          {\etb@dbg@info{prm}%
           \etb@ifscanable{#1}
             {\etb@dbg@info{tok}%
              \etb@dbg@info{pos}\@firstoftwo}
             {\etb@dbg@fail{tok}\@secondoftwo}}
          {\etb@dbg@info{prl}%
           \ifdefprotected{#1}
             {\etb@dbg@info{pro}}
             {}%
           \etb@dbg@info{pos}\@firstoftwo}}
       {\etb@dbg@fail{mac}\@secondoftwo}}}

% [<prefix>]{<cstoken>}{<search>}{<replace>}{<success>}{<failure>}

\newrobustcmd*{\patchcmd}{%
  \etb@dbg@trce\patchcmd
  \begingroup
  \@makeother\#%
  \etb@patchcmd}

\newcommand{\etb@patchcmd}[4][########1]{%
  \etb@ifpatchable#2{#3}
    {\etb@dbg@succ{ret}%
     \begingroup
     \edef\etb@resrvda{%
       \def\noexpand\etb@resrvda####1\detokenize{macro:}####2->####3&{%
         #1\def\string\etb@resrvda\space####2{\noexpand\etb@resrvdb####3&}}%
       \def\noexpand\etb@resrvdb####1\detokenize{#3}####2&{%
         ####1\detokenize{#4}####2}%
       \edef\noexpand\etb@resrvda{%
         \noexpand\etb@resrvda\meaning#2&}}%
     \etb@resrvda
     \etb@patchcmd@scantoks\etb@resrvda
     \let#2\etb@resrvda
     \undef\etb@resrvda
     \@firstoftwo}
    {\@secondoftwo}}

\def\etb@patchcmd@scantoks#1{%
  \edef\etb@resrvda{\endgroup
    \unexpanded{\makeatletter\scantokens}{#1}%
    \catcode\number`\@=\the\catcode`\@\relax}%
  \etb@resrvda}

% {<cstoken>}{<code>}{<success>}{<failure>}

\newrobustcmd*{\apptocmd}{%
  \etb@dbg@trce\apptocmd
  \begingroup
  \@makeother\#%
  \etb@hooktocmd\etb@append}

\newrobustcmd*{\pretocmd}{%
  \etb@dbg@trce\pretocmd
  \begingroup
  \@makeother\#%
  \etb@hooktocmd\etb@prepend}

\long\def\etb@hooktocmd#1#2#3{%
  \endgroup
  \etb@dbg@init#2%
  \ifundef{#2}
    {\etb@dbg@fail{def}\@secondoftwo}
    {\etb@dbg@info{def}%
     \ifdefmacro{#2}
       {\etb@dbg@info{mac}%
        \ifdefparam{#2}
          {\etb@dbg@info{prm}%
           \etb@ifscanable{#2}
             {\etb@ifhashcheck{#3}
                {\etb@dbg@info{tok}%
                 \etb@dbg@succ{ret}%
                 \etb@hooktocmd@i#1#2{#3}%
                 \@firstoftwo}
                {\etb@dbg@fail{hsh}\@secondoftwo}}
             {\etb@dbg@fail{tok}\@secondoftwo}}
          {\etb@dbg@info{prl}%
           \ifdefprotected{#2}
             {\etb@dbg@info{pro}%
              \etb@dbg@succ{red}%
              \protected}
             {\etb@dbg@succ{red}}%
           \edef#2{#1{\expandonce#2}{\unexpanded{#3}}}%
           \@firstoftwo}}
       {\etb@dbg@fail{mac}\@secondoftwo}}}

\long\def\etb@hooktocmd@i#1#2#3{%
  \begingroup
  \edef\etb@resrvda{%
    \def\noexpand\etb@resrvda####1\detokenize{macro}:####2->####3&{%
      ####1\def\string\etb@resrvda\space####2{#1{####3}{\detokenize{#3}}}}%
    \edef\noexpand\etb@resrvda{%
      \noexpand\etb@resrvda\meaning#2&}}%
  \etb@resrvda
  \etb@patchcmd@scantoks\etb@resrvda
  \let#2\etb@resrvda
  \undef\etb@resrvda}

\long\def\etb@append#1#2{#1#2}
\long\def\etb@prepend#1#2{#2#1}

\newrobustcmd*{\tracingpatches}{%
  \etb@info{Enabling tracing}%
  \input{etoolbox.def}%
  \global\let\tracingpatches\relax}
\@onlypreamble\tracingpatches

\let\etb@dbg@trce\@gobble
\let\etb@dbg@init\@gobble
\let\etb@dbg@info\@gobble
\let\etb@dbg@succ\@gobble
\let\etb@dbg@fail\@gobble

% {<numeral>}

\newcommand{\rmntonum}[1]{%
  \ifblank{#1}
    {}
    {\expandafter\etb@rti@end\number\numexpr
     \expandafter\etb@rti@prs\detokenize{#1}&\relax}}

\def\etb@rti@prs#1#2{%
  \ifx&#1%
    \expandafter\@firstoftwo
  \else
    \expandafter\@secondoftwo
  \fi
  {#1#2}
  {\ifx&#2%
     \expandafter\@firstoftwo
   \else
     \expandafter\@secondoftwo
   \fi
   {\etb@rti@chk#1+\etb@rti@num#1#2}
   {\etb@rti@chk#1\etb@rti@chk#2%
    \ifnum\etb@rti@num#1<\etb@rti@num#2 %
      \expandafter\@firstoftwo
    \else
      \expandafter\@secondoftwo
    \fi
    {+\etb@rti@num#2-\etb@rti@num#1\etb@rti@prs}
    {+\etb@rti@num#1\etb@rti@prs#2}}}}

\def\etb@rti@chk#1{%
  \ifcsname etb@rmn@#1\endcsname
  \else
    \expandafter\etb@rti@brk
  \fi}

\def\etb@rti@brk#1&{+\z@&-1}
\def\etb@rti@end#1&#2\relax{\ifblank{#2}{#1}{#2}}
\def\etb@rti@num#1{\csname etb@rmn@#1\endcsname}

\chardef\etb@rmn@i=1
\chardef\etb@rmn@I=1
\chardef\etb@rmn@v=5
\chardef\etb@rmn@V=5
\chardef\etb@rmn@x=10
\chardef\etb@rmn@X=10
\chardef\etb@rmn@l=50
\chardef\etb@rmn@L=50
\chardef\etb@rmn@c=100
\chardef\etb@rmn@C=100
\mathchardef\etb@rmn@d=500
\mathchardef\etb@rmn@D=500
\mathchardef\etb@rmn@m=1000
\mathchardef\etb@rmn@M=1000

% {<numeral>}{<true>}{<false>}

\newcommand{\ifrmnum}[1]{%
  \ifblank{#1}
    {\@secondoftwo}
    {\expandafter\etb@ifr@prs\detokenize{#1}\relax}}

\def\etb@ifr@prs#1{%
  \ifx\relax#1%
    \expandafter\@firstoftwo
  \else
    \ifcsname etb@rmn@#1\endcsname
      \expandafter\expandafter
      \expandafter\etb@ifr@prs
    \else
      \expandafter\expandafter
      \expandafter\etb@ifr@brk
    \fi
  \fi}

\def\etb@ifr@brk#1\relax{\@secondoftwo}

% <*>{<command>}{<separator>}

\newrobustcmd*{\DeclareListParser}{%
  \@ifstar
    {\etb@defparser\etb@defparser@arg}
    {\etb@defparser\etb@defparser@do}}

\def\etb@defparser#1#2#3{%
  \@ifdefinable#2{#1{#2}{#3}}}

\def\etb@defparser@do#1#2{%
  \begingroup
  \edef\@tempa{\endgroup
    \long\def\noexpand#1####1{%
      \expandafter\noexpand
      \csname etb@lst@\expandafter\@gobble\string#1\endcsname
      \space####1\noexpand#2&}%
    \long\csdef{etb@lst@\expandafter\@gobble\string#1}####1\noexpand#2####2&{%
      \noexpand\etb@listitem\noexpand\do{####1}%
      \noexpand\ifblank{####2}
        {\noexpand\listbreak}
        {\expandafter\noexpand
         \csname etb@lst@\expandafter\@gobble\string#1\endcsname
	 \space####2}&}}%
  \@tempa}

\def\etb@defparser@arg#1#2{%
  \begingroup
  \edef\@tempa{\endgroup
    \long\def\noexpand#1####1####2{%
      \expandafter\noexpand
      \csname etb@lst@\expandafter\@gobble\string#1\endcsname
      {####1}\space####2\noexpand#2&}%
    \long\csdef{etb@lst@\expandafter\@gobble\string#1}####1####2\noexpand#2####3&{%
      \noexpand\etb@listitem{####1}{####2}%
      \noexpand\ifblank{####3}
        {\noexpand\listbreak}
        {\expandafter\noexpand
         \csname etb@lst@\expandafter\@gobble\string#1\endcsname
	 {####1}\space####3}&}}%
  \@tempa}

\long\def\etb@listitem#1#2{%
  \ifblank{#2}
    {}
    {\expandafter\etb@listitem@i
     \expandafter{\@firstofone#2}{#1}}}
\long\def\etb@listitem@i#1#2{#2{#1}}

\newcommand*{\listbreak}{}
\long\def\listbreak#1&{}

% {<item1>,<item2>,...} => \do{<item1>}\do{<item2>}...

\DeclareListParser{\docsvlist}{,}

% {<handler>}{<item1>,<item2>,...} => <handler>{<item1>}<handler>{<item2>}...

\DeclareListParser*{\forcsvlist}{,}

% {<listmacro>}{<string>}

\newrobustcmd{\listadd}[2]{%
  \ifblank{#2}{}{\appto#1{#2|}}}
\newrobustcmd{\listeadd}[2]{%
  \begingroup
  \edef\etb@tempa{\endgroup\noexpand\ifblank{#2}}%
  \etb@tempa{}{\eappto#1{#2|}}}
\newrobustcmd{\listgadd}[2]{%
  \ifblank{#2}{}{\gappto#1{#2|}}}
\newrobustcmd{\listxadd}[2]{%
  \begingroup
  \edef\etb@tempa{\endgroup\noexpand\ifblank{#2}}%
  \etb@tempa{}{\xappto#1{#2|}}}

% {<listcsname>}{<string>}

\newrobustcmd{\listcsadd}[1]{%
  \expandafter\listadd\csname#1\endcsname}
\newrobustcmd{\listcseadd}[1]{%
  \expandafter\listeadd\csname#1\endcsname}
\newrobustcmd{\listcsgadd}[1]{%
  \expandafter\listgadd\csname#1\endcsname}
\newrobustcmd{\listcsxadd}[1]{%
  \expandafter\listxadd\csname#1\endcsname}

% {<string>}{<listmacro>}{<true>}{<false>}

\newrobustcmd{\ifinlist}[2]{%
  \begingroup
  \def\etb@tempa##1|#1|##2&{\endgroup
    \ifblank{##2}\@secondoftwo\@firstoftwo}%
  \expandafter\etb@tempa\expandafter|#2|#1|&}

\newrobustcmd{\xifinlist}[1]{%
  \begingroup
  \edef\etb@tempa{\endgroup\ifinlist{#1}}%
  \etb@tempa}

% {<string>}{<listcsname>}{<true>}{<false>}

\newrobustcmd{\ifinlistcs}[2]{%
  \expandafter\etb@ifinlistcs@i\csname #2\endcsname{#1}}
\long\def\etb@ifinlistcs@i#1#2{\ifinlist{#2}{#1}}

\newrobustcmd{\xifinlistcs}[1]{%
  \begingroup
  \edef\etb@tempa{\endgroup\ifinlistcs{#1}}%
  \etb@tempa}

% {<handler>}{<listmacro>} => <handler>{<item1>}<handler>{<item2>}...

\newcommand*{\forlistloop}[2]{%
  \expandafter\etb@forlistloop\expandafter{#2}{#1}}

\long\def\etb@forlistloop#1#2{\etb@forlistloop@i{#2}#1|&}

\long\def\etb@forlistloop@i#1#2|#3&{%
  \ifblank{#2}
    {}
    {#1{#2}}%
  \ifblank{#3}
    {\listbreak}
    {\etb@forlistloop@i{#1}#3}%
  &}

% {<handler>}{<listcsname>} => <handler>{<item1>}<handler>{<item2>}...

\newcommand*{\forlistcsloop}[2]{%
  \expandafter\expandafter\expandafter\etb@forlistloop
  \expandafter\expandafter\expandafter{\csname#2\endcsname}{#1}}

% {<listmacro>} => \do{<item1>}\do{<item2>}...

\newcommand*{\dolistloop}{\forlistloop\do}

% {<listcsname>} => \do{<item1>}\do{<item2>}...

\newcommand*{\dolistcsloop}{\forlistcsloop\do}

% {<code>}

\newrobustcmd*{\AtEndPreamble}{\gappto\@endpreamblehook}
\newcommand*{\@endpreamblehook}{}

\preto\document{%
  \endgroup
  \let\AtEndPreamble\@firstofone
  \@endpreamblehook
  \protected\def\AtEndPreamble{\@notprerr\@gobble}%
  \undef\@endpreamblehook
  \begingroup}

% {<code>}

\newrobustcmd*{\AfterPreamble}{\AtBeginDocument}
\AtEndPreamble{\let\AfterPreamble\@firstofone}

% {<code>}

\newrobustcmd*{\AfterEndPreamble}{\gappto\@afterendpreamblehook}
\newcommand*{\@afterendpreamblehook}{}

\appto\document{%
  \let\AfterEndPreamble\@firstofone
  \@afterendpreamblehook
  \protected\def\AfterEndPreamble{\@notprerr\@gobble}%
  \undef\@afterendpreamblehook
  \ignorespaces}

\AtEndDocument{\let\AfterEndPreamble\@gobble}

% {<code>}

\newrobustcmd*{\AfterEndDocument}{\gappto\@afterenddocumenthook}
\newcommand*{\@afterenddocumenthook}{}

\patchcmd\enddocument
  {\deadcycles}
  {\let\AfterEndDocument\@firstofone
   \@afterenddocumenthook
   \deadcycles}
  {}
  {\let\etb@@end\@@end
   \def\@@end{%
     \let\AfterEndDocument\@firstofone
     \@afterenddocumenthook
     \etb@@end}}

% {<environment>}{<code>}

\newrobustcmd{\AtBeginEnvironment}[1]{%
  \csgappto{@begin@#1@hook}}

\patchcmd\begin
  {\csname #1\endcsname}
  {\csuse{@begin@#1@hook}%
   \csname #1\endcsname}
  {}
  {\etb@warning{%
     Patching '\string\begin' failed!\MessageBreak
     '\string\AtBeginEnvironment' will not work\@gobble}}

% {<environment>}{<code>}

\newrobustcmd{\AtEndEnvironment}[1]{%
  \csgappto{@end@#1@hook}}

\patchcmd\end
  {\csname end#1\endcsname}
  {\csuse{@end@#1@hook}%
   \csname end#1\endcsname}
  {}
  {\etb@warning{%
     Patching '\string\end' failed!\MessageBreak
     '\string\AtEndEnvironment' will not work\@gobble}}

% {<environment>}{<code>}

\newrobustcmd{\BeforeBeginEnvironment}[1]{%
  \csgappto{@beforebegin@#1@hook}}

\pretocmd\begin
  {\csuse{@beforebegin@#1@hook}}
  {}
  {\etb@warning{%
     Patching '\string\begin' failed!\MessageBreak
     '\string\BeforeBeginEnvironment' will not work\@gobble}}

% {<environment>}{<code>}

\newrobustcmd{\AfterEndEnvironment}[1]{%
  \csgappto{@afterend@#1@hook}}

\patchcmd\end
  {\if@ignore}
  {\csuse{@afterend@#1@hook}%
   \if@ignore}
  {}
  {\etb@warning{%
     Patching '\string\end' failed!\MessageBreak
     '\string\AfterEndEnvironment' will not work\@gobble}}

\endinput







main/mdframed.sty

%%==================================================%%
%%========Is based on the idea of framed.sty========%%
%%==================================================%%
%%===== Currently the package has a beta-Status ====%%
%%==================================================%%
%% WITH THANKS TO (alphabetically):
%% ROLF NIEPRASCHK
%% HEIKO OBERDIEK
%% HERBERT VOSS

%% Copyright (c) 2010 Marco Daniel
%
%% This package may be distributed under the terms of the LaTeX Project
%% Public License, as described in lppl.txt in the base LaTeX distribution.
%% Either version 1.0 or, at your option, any later version.
%%
%%
%%==================================================%%
%% Erstellung eines Rahmens, der am Seitenende keine
%% horizontale Linie einfuegt
%%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>%%
%%      _______________                            %%
%%      |    page 1   |                            %%  
%%      |    Text     |                            %%
%%      |  __Text__   |                            %%
%%      |  | Text |   |                            %%
%%     P A G E B R E A K                           %%
%%      |  | Text |   |                            %%
%%      |  |_Text_|   |                            %%
%%      |    Text     |                            %%
%%      |____page 2___|                            %%
%%                                                 %%
%%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>%%


%%$Id: mdframed.sty 103 2010-12-22 16:46:10Z marco $
%%$Rev: 103 $
%%$Author: marco $
%%$Date: 2010-12-22 17:46:10 +0100 (Mi, 22. Dez 2010) $

%% Allgemeine Angaben
\def\mdversion{v0.6a}
\def\mdframedpackagename{mdframed}
\def\md@maindate@svn$#1: #2 #3 #4-#5-#6 #7 #8${#4/#5/#6\space }
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{mdframed}[\md@maindate@svn$Id: mdframed.sty 103 2010-12-22 16:46:10Z marco $ \mdversion: \mdframedpackagename]

%%==================================================%%
%%=============== Benoetigte Pakete ================%%
%%==================================================%%

\newcommand*\md@PackageWarning[1]{\PackageWarning{\mdframedpackagename}{#1}}
\newcommand*\md@PackageInfo[1]{\PackageInfo{\mdframedpackagename}{#1}}
\newcommand*\md@LoadFile@IfExist[1]{%
 \IfFileExists{#1.sty}{%
          \RequirePackage{#1}%
        }{%
        \md@PackageWarning{The package #1 does not exist\MessageBreak
                           but it is required by \mdframedpackagename}%
       }
}
\md@LoadFile@IfExist{kvoptions}

\md@LoadFile@IfExist{etex}

\md@LoadFile@IfExist{calc}

\md@LoadFile@IfExist{color}


%Eingearbeitet in Optionen
%\md@LoadFile@IfExist{pstricks}
%\md@LoadFile@IfExist{pstricks}

\md@LoadFile@IfExist{etoolbox}

\SetupKeyvalOptions{family=mdf,prefix=mdf@}

%%==================================================%%
%%========Hilfsmakro zur Bestimmung ob Laenge=======%%
%%============= IDEE: Martin Scharrer ==============%%
%%==================================================%%

%%%\md@iflength{<EINGABE>}{<IST LAENGE>}{<IST KEINE LAENGE>}
\newlength{\md@templength}
\def\md@iflength#1{%
  \afterassignment\md@iflength@check%
  \md@templength=#1\mdf@defaultunit\relax\relax
  \expandafter\endgroup\next
}
\def\md@iflength@check#1{%
  \begingroup
  \ifx\relax#1\@empty
    \def\next{\@secondoftwo}
  \else
    \def\next{\@firstoftwo}
    \expandafter\md@iflength@cleanup
  \fi
}
\def\md@iflength@cleanup#1\relax{}

%%\def\md@@iflength#1{
%%       \begingroup
%%       \def\@tempa{#1}
%%       \md@iflength{\@tempa}{%
%%             \expandafter\global\expandafter%
%%             \edef\csname #1\endcsname{\the\md@templength}%
%%            }{%
%%             \expandafter\global\expandafter%
%%             \edef\csname #1\endcsname{\the\md@templength}%
%%            }%
%%       \endgroup%
%%}

%%==================================================%%
%%==================== Optionen ====================%%
%%==================================================%%


%Festlegung welcher Stildatei
%% 0 := tex-Kommandos -- rule
%% 1 := tikz
%% 2 := tikz-erweitert
%% 3 := pstricks-einfach
%% 4 := pstricks-erweitert

\DeclareStringOption[0]{style}

\define@key{mdf}{globalstyle}[\mdf@style]{%
      \renewcommand*{\do}[1]{%
          \def\@tempa{##1}
          \ifcase\number\@tempa\relax
             %0 <- kein Grafikpaket
          \or
             \md@LoadFile@IfExist{tikz}
             %1 <- tikz wird benoetigt
          \or
             \md@LoadFile@IfExist{tikz}
             %2 <- tikz wird benoetigt
          \or
             \md@LoadFile@IfExist{pstricks-add}
             %3 <- pstricks wird benoetigt
          \or
             \md@LoadFile@IfExist{pstricks-add}
             %4 <- pstricks wird benoetigt
          \else
            \md@PackageWarning{Unknown global style \@tempa}
          \fi
      }%
      \docsvlist{\mdf@style,#1}%
 }

%%%%Optionen mit Laengen

\newcommand*\mdf@skipabove{\z@}
\newcommand*\mdfl@skipabove{}
\newlength\mdf@skipabove@length
\deflength\mdf@skipabove@length{\z@}
\define@key{mdf}{skipabove}[\z@]{%
       \def\@tempa{#1}
        \md@iflength{\@tempa}%
            {\global\edef\mdfl@skipabove{\the\md@templength}}%
            {\global\edef\mdfl@skipabove{\the\md@templength}}
\let\mdf@skipabove\mdfl@skipabove
\setlength\mdf@skipabove@length{\mdf@skipabove}
}

\newcommand*\mdf@skipbelow{\z@}
\newcommand*\mdfl@skipbelow{}
\newlength\mdf@skipbelow@length
\deflength\mdf@skipbelow@length{\z@}
\define@key{mdf}{skipbelow}[\z@]{%
       \def\@tempa{#1}
        \md@iflength{\@tempa}%
            {\global\edef\mdfl@skipbelow{\the\md@templength}}%
            {\global\edef\mdfl@skipbelow{\the\md@templength}}
\let\mdf@skipbelow\mdfl@skipbelow
\setlength\mdf@skipbelow@length{\mdf@skipbelow}
}

\newcommand*\mdf@leftmargin{\z@}
\newcommand*\mdfl@leftmargin{}
\newlength\mdf@leftmargin@length
\deflength\mdf@leftmargin@length{\z@}
\define@key{mdf}{leftmargin}[\z@]{%
       \def\@tempa{#1}
        \md@iflength{\@tempa}%
            {\global\edef\mdfl@leftmargin{\the\md@templength}}%
            {\global\edef\mdfl@leftmargin{\the\md@templength}}
\let\mdf@leftmargin\mdfl@leftmargin
\setlength\mdf@leftmargin@length{\mdf@leftmargin}
}

\newcommand*\mdf@rightmargin{\z@}
\newcommand*\mdfl@rightmargin{}
\newlength\mdf@rightmargin@length
\deflength\mdf@rightmargin@length{\z@}
\define@key{mdf}{rightmargin}[\z@]{%
       \def\@tempa{#1}
        \md@iflength{\@tempa}%
            {\global\edef\mdfl@rightmargin{\the\md@templength}}%
            {\global\edef\mdfl@rightmargin{\the\md@templength}}
\let\mdf@rightmargin\mdfl@rightmargin
\setlength\mdf@rightmargin@length{\mdf@rightmargin}
}

\newcommand*\mdf@margin{20pt}
\newcommand*\mdfl@margin{}
\newlength\mdf@margin@length
\deflength\mdf@margin@length{20pt}
\define@key{mdf}{margin}[20pt]{%
     \md@PackageWarning{The option margin is obsolote and no longer used\MessageBreak
                        use instead innerleftmargin and innerrightmargin\MessageBreak
                        For more details look at the documentation \mdframedpackagename}%
       \def\@tempa{#1}
        \md@iflength{\@tempa}%
            {\global\edef\mdfl@margin{\the\md@templength}}%
            {\global\edef\mdfl@margin{\the\md@templength}}
\let\mdf@margin\mdfl@margin
\setlength\mdf@margin@length{\mdf@margin}
}

\newcommand*\mdf@innerleftmargin{10pt}
\newcommand*\mdfl@innerleftmargin{}
\newlength\mdf@innerleftmargin@length
\deflength\mdf@innerleftmargin@length{10pt}
\define@key{mdf}{innerleftmargin}[10pt]{%
       \def\@tempa{#1}
        \md@iflength{\@tempa}%
            {\global\edef\mdfl@innerleftmargin{\the\md@templength}}%
            {\global\edef\mdfl@innerleftmargin{\the\md@templength}}
\let\mdf@innerleftmargin\mdfl@innerleftmargin
\setlength\mdf@innerleftmargin@length{\mdf@innerleftmargin}
}

\newcommand*\mdf@innerrightmargin{10pt}
\newcommand*\mdfl@innerrightmargin{}
\newlength\mdf@innerrightmargin@length
\deflength\mdf@innerrightmargin@length{10pt}
\define@key{mdf}{innerrightmargin}[10pt]{%
       \def\@tempa{#1}
        \md@iflength{\@tempa}%
            {\global\edef\mdfl@innerrightmargin{\the\md@templength}}%
            {\global\edef\mdfl@innerrightmargin{\the\md@templength}}
\let\mdf@innerrightmargin\mdfl@innerrightmargin
\setlength\mdf@innerrightmargin@length{\mdf@innerrightmargin}
}



\newcommand*\mdf@innertopmargin{0.4\baselineskip}
\newcommand*\mdfl@innertopmargin{}
\newlength\mdf@innertopmargin@length
\deflength\mdf@innertopmargin@length{0.4\baselineskip}
\define@key{mdf}{innertopmargin}[0.4\baselineskip]{%
       \def\@tempa{#1}
        \md@iflength{\@tempa}%
            {\global\edef\mdfl@innertopmargin{\the\md@templength}}%
            {\global\edef\mdfl@innertopmargin{\the\md@templength}}
\let\mdf@innertopmargin\mdfl@innertopmargin
\setlength\mdf@innertopmargin@length{\mdf@innertopmargin}
}

\newcommand*\mdf@innerbottommargin{0.4\baselineskip}
\newcommand*\mdfl@innerbottommargin{}
\newlength\mdf@innerbottommargin@length
\deflength\mdf@innerbottommargin@length{0.4\baselineskip}
\define@key{mdf}{innerbottommargin}[0.4\baselineskip]{%
       \def\@tempa{#1}
        \md@iflength{\@tempa}%
            {\global\edef\mdfl@innerbottommargin{\the\md@templength}}%
            {\global\edef\mdfl@innerbottommargin{\the\md@templength}}
\let\mdf@innerbottommargin\mdfl@innerbottommargin
\setlength\mdf@innerbottommargin@length{\mdf@innerbottommargin}
}


\newcommand*\mdf@splittopskip{\z@}
\newcommand*\mdfl@splittopskip{}
\newlength\mdf@splittopskip@length
\deflength\mdf@splittopskip@length{\z@}
\define@key{mdf}{splittopskip}[\z@]{%
       \def\@tempa{#1}
        \md@iflength{\@tempa}%
            {\global\edef\mdfl@splittopskip{\the\md@templength}}%
            {\global\edef\mdfl@splittopskip{\the\md@templength}}
\let\mdf@splittopskip\mdfl@splittopskip
\setlength\mdf@splittopskip@length{\mdf@splittopskip}
}



\newcommand*\mdf@splitbottomskip{\z@}
\newcommand*\mdfl@splitbottomskip{}
\newlength\mdf@splitbottomskip@length
\deflength\mdf@splitbottomskip@length{\z@}
\define@key{mdf}{splitbottomskip}[\z@]{%
       \def\@tempa{#1}
        \md@iflength{\@tempa}%
            {\global\edef\mdfl@splitbottomskip{\the\md@templength}}%
            {\global\edef\mdfl@splitbottomskip{\the\md@templength}}
\let\mdf@splitbottomskip\mdfl@splitbottomskip
\setlength\mdf@splitbottomskip@length{\mdf@splitbottomskip}
}


%% Linienstaerken
\newcommand*\mdf@linewidth{0.4pt}
\newcommand*\mdfl@linewidth{}
\newlength\mdf@linewidth@length
\deflength\mdf@linewidth@length{0.4pt}
\define@key{mdf}{linewidth}[0.4pt]{%
       \def\@tempa{#1}
        \md@iflength{\@tempa}%
            {\global\edef\mdfl@linewidth{\the\md@templength}}%
            {\global\edef\mdfl@linewidth{\the\md@templength}}
\let\mdf@linewidth\mdfl@linewidth
\setlength\mdf@linewidth@length{\mdf@linewidth}%
\ifnumequal{\mdf@style}{1}{%
\deflength\mdf@middlelinewidth@length{\mdf@linewidth@length}%
}{}%
}

\newcommand*\mdf@innerlinewidth{\z@}
\newcommand*\mdfl@innerlinewidth{}
\newlength\mdf@innerlinewidth@length
\deflength\mdf@innerlinewidth@length{\z@}
\define@key{mdf}{innerlinewidth}[\z@]{%
       \def\@tempa{#1}
        \md@iflength{\@tempa}%
            {\global\edef\mdfl@innerlinewidth{\the\md@templength}}%
            {\global\edef\mdfl@innerlinewidth{\the\md@templength}}
\let\mdf@innerlinewidth\mdfl@innerlinewidth
\setlength\mdf@innerlinewidth@length{\mdf@innerlinewidth}
}

\newcommand*\mdf@middlelinewidth{\mdf@linewidth}
\newcommand*\mdfl@middlelinewidth{}
\newlength\mdf@middlelinewidth@length
\deflength\mdf@middlelinewidth@length{\mdf@linewidth@length}
\define@key{mdf}{middlelinewidth}[\mdf@linewidth]{%
       \def\@tempa{#1}
        \md@iflength{\@tempa}%
            {\global\edef\mdfl@middlelinewidth{\the\md@templength}}%
            {\global\edef\mdfl@middlelinewidth{\the\md@templength}}
\let\mdf@middlelinewidth\mdfl@middlelinewidth
\setlength\mdf@middlelinewidth@length{\mdf@middlelinewidth}
}

\newcommand*\mdf@outerlinewidth{\z@}
\newcommand*\mdfl@outerlinewidth{}
\newlength\mdf@outerlinewidth@length
\deflength\mdf@outerlinewidth@length{\z@}
\define@key{mdf}{outerlinewidth}[\z@]{%
       \def\@tempa{#1}
        \md@iflength{\@tempa}%
            {\global\edef\mdfl@outerlinewidth{\the\md@templength}}%
            {\global\edef\mdfl@outerlinewidth{\the\md@templength}}
\let\mdf@outerlinewidth\mdfl@outerlinewidth
\setlength\mdf@outerlinewidth@length{\mdf@outerlinewidth}
}

\newcommand*\mdf@roundcorner{\z@}
\newcommand*\mdfl@roundcorner{}
\newlength\mdf@roundcorner@length
\deflength\mdf@roundcorner@length{\z@}
\define@key{mdf}{roundcorner}[\z@]{%
       \def\@tempa{#1}
        \md@iflength{\@tempa}%
            {\global\edef\mdfl@roundcorner{\the\md@templength}}%
            {\global\edef\mdfl@roundcorner{\the\md@templength}}
\let\mdf@roundcorner\mdfl@roundcorner
\setlength\mdf@roundcorner@length{\mdf@roundcorner}
}

%Unterstuetzung der Optionen fuer pstricks
\def\mdf@psset@local{}
\define@key{mdf}{pstrickssetting}{%
  \def\mdf@psset@local{#1}
}


%%Defaulunit
\DeclareStringOption[pt]{defaultunit}

%%mdframed umfasst ntheorem-Umgebung ja/nein
\DeclareBoolOption{ntheorem}

\DeclareBoolOption[true]{topline}
\DeclareBoolOption[true]{leftline}
\DeclareBoolOption[true]{bottomline}
\DeclareBoolOption[true]{rightline}


%%FARBEN
\DeclareStringOption[none]{xcolor}
\DeclareStringOption[black]{linecolor}
\DeclareStringOption[white]{backgroundcolor}
\DeclareStringOption[black]{fontcolor}
\DeclareStringOption[\mdf@linecolor]{innerlinecolor}
\DeclareStringOption[\mdf@linecolor]{outerlinecolor}
\DeclareStringOption[\mdf@backgroundcolor]{middlelinecolor}


\DeclareDefaultOption{%
   \md@PackageWarning{Unknown Option '\CurrentOption' for mdframed}}


%%==================================================%%
%%========== ENDE DER OPTIONENDEKLARATION ==========%%
%%==================================================%%

\ProcessKeyvalOptions*
\newcommand*{\mdfsetup}{\setkeys{mdf}}
\mdfsetup{globalstyle=0}

%%==================================================%%
%%========Sicherstellen der key-value-Syntax========%%
%%==================================================%%
\AtBeginDocument{
 \@ifpackageloaded{xcolor}{%
    \let\mdf@xcolor\@empty %ignoriere die Eingabe der Optionen
    }{%
     \def\@tempa{none}
    \ifx\mdf@xcolor\@tempa
    \else
     \PassOptionsToPackage{\mdf@xcolor}{xcolor}
     \RequirePackage{xcolor}
   \fi
 }
}



%%Farbabkuerzungen:
\newcommand*\mdf@@linecolor{\color{\mdf@linecolor}}
\newcommand*\mdf@@backgroundcolor{
    \ifx\mdf@backgroundcolor\@empty
    \else
         \color{\mdf@backgroundcolor}
    \fi}
\newcommand*\mdf@@fontcolor{\color{\mdf@fontcolor}}
\newcommand*\mdf@@innerlinecolor{\color{\mdf@innerlinecolor}}
\newcommand*\mdf@@outerlinecolor{\color{\mdf@outerlinecolor}}
\newcommand*\mdf@@middlelinecolor{\color{\mdf@middlelinecolor}}

%%==================================================%%
%%======= Laden der gewuenschten Style-Datei =======%%
%%==================================================%%
\ifcase\mdf@style\relax%
        \input{md-frame-0.mdf}%
      \or%
        \input{md-frame-1.mdf}%
      \or%        
        \md@PackageWarning{The style number\mdf@style does not exist\MessageBreak
                           mdframed ues instead style=0 \mdframedpackagename}%
        \input{md-frame-1.mdf}%
      \or% 
        \input{md-frame-3.mdf}%
      \else%
       \IfFileExists{md-frame-\mdf@style.mdf}{%
             \input{md-frame-\mdf@style.mdf}%
           }{%
            \input{md-frame-1.mdf}%
            \md@PackageWarning{The style number \mdf@style does not exist\MessageBreak
                           mdframed ues instead style=0 \mdframedpackagename}%
          }%
\fi%


%%==================================================%%
%%===Globale Umgebung -- noch keine Modifikation ===%%
%%==================================================%%
\def\md@margin@startenv{% latex.ltx -> \@startsection
    \if@noskipsec \leavevmode  \fi
    \par%\kern-\lastskip%
    \@tempskipa -\mdf@skipabove@length\relax
    \@afterindenttrue
    \ifdim \@tempskipa < \z@
      \@tempskipa -\@tempskipa \@afterindentfalse%
    \fi
    \if@nobreak
      \everypar{}%
    \else
      \addpenalty\@secpenalty\addvspace\@tempskipa%
      \par\kern-\ht\strutbox
    \fi%
}%


\def\mdframed{%
   \@ifnextchar[%]
       \mdframed@i\mdframed@ii}%

\def\mdframed@ii{\mdframed@i[]}%
\def\mdframed@i[#1]{% default-Umgebung
   \mdfsetup{#1}%%
   \md@margin@startenv%
   \ifmdf@ntheorem%       %%% Pruefen ob ntheorem gesetzt ist
   \ifundef{\theorempreskipamount}%
          {\md@PackageWarning{You have not loaded ntheorem yet}}%
          {\setlength{\theorempreskipamount}{0pt}%
           \setlength{\theorempostskipamount}{0pt}}%
   \fi%
   \ifnumequal{\mdf@style}{0}% 
   {\deflength{\mdf@innerlinewidth@length}{\z@}%
    \deflength{\mdf@middlelinewidth@length}{\mdf@linewidth@length}%
    \deflength{\mdf@outerlinewidth@length}{\z@}%
    \let\mdf@innerlinecolor\mdf@linecolor%
    \let\mdf@middlelinecolor\mdf@linecolor%
    \let\mdf@outerlinecolor\mdf@linecolor%
   }{}%
   \ifnumequal{\mdf@style}{3}% 
   {\deflength{\mdf@innerlinewidth@length}{\z@}%
   \deflength{\mdf@middlelinewidth@length}{\mdf@linewidth}%
    \deflength{\mdf@outerlinewidth@length}{\z@}%
    \let\mdf@innerlinecolor\mdf@linecolor%
   }{}%
   \mdframed@global@env%
   }%

\def\endmdframed{\endmdframed@global@env\endtrivlist%
\vspace{\mdf@skipbelow@length}}%

%%==================================================%%
%%==Deklaration diverser Eingabe und Hilfsparameter=%%
%%==================================================%%

\newskip\md@temp@skip@a      \md@temp@skip@a\z@    %% Hilfslaenge

\newlength\md@verticalmarginwhole@length

\newlength\mdf@xmargin@length%
\newlength\mdf@ymargin@length%
\newlength\mdfboxheight%                            %% Berechnungsvariable tikz
\newlength\mdfboxwidth%                             %% Berechnungsvariable tikz


\newlength\mdfboundingboxheight
\newlength\mdfboundingboxwidth
\newlength\mdfpositionx
\newlength\mdfpositiony



\providecommand*\ptTps{}


%%==================================================%%
%%=================== Kommentare ===================%%
%%==================================================%%

\chardef\md@arrayparboxrestore=\catcode`\|   % for debug
\catcode`\|=\catcode`\%                      % (debug: insert space after backslash)
%% Kommentare werden im Code mit | gekennzeichnet


%%==================================================%%
%%================= Platz auf Seite ================%%
%%==================================================%%
\newlength\md@freevspace@length
\def\md@freepagevspace{%
     \ifdimequal{\pagegoal}{\maxdimen}%
          {%
            \setlength{\md@freevspace@length}{\vsize}%
          }{
            \setlength{\md@freevspace@length}{\pagegoal}%
            \addtolength{\md@freevspace@length}{-\pagetotal}%
          }%
}

%%==================================================%%
%================= Breite der BOX =================%%
%%==================================================%%

% edge-leftmargin-outerlinewith-middlelinewidth-innerlinewidth-innerleftmargin-TEXTBREITE-
% innerrightmargin-innerlinewidth-middlelinewidth-outelinewith-edge
\newlength\md@horizontalspaceofbox
\def\md@horizontalmargin@equation{%
    \setlength{\md@horizontalspaceofbox}{\hsize}
    \addtolength{\md@horizontalspaceofbox}{%
                         -\mdf@leftmargin@length%
                         -\mdf@outerlinewidth@length%
                         -\mdf@middlelinewidth@length%
                         -\mdf@innerlinewidth@length%
                         -\mdf@innerleftmargin@length%
                         -\mdf@innerrightmargin@length%
                         -\mdf@innerlinewidth@length%
                         -\mdf@middlelinewidth@length%      
                         -\mdf@outerlinewidth@length%
                         -\mdf@rightmargin@length%
                        }%
  \ifboolexpr{ test {\ifnumequal{\mdf@style}{0}} or test {\ifnumequal{\mdf@style}{3}}}%
           {
           \notbool{mdf@leftline}{\addtolength{\md@horizontalspaceofbox}{%
                                    \mdf@innerlinewidth@length%
                                    +\mdf@middlelinewidth@length%      
                                    +\mdf@outerlinewidth@length%
                                 }}{}%
           \notbool{mdf@rightline}{\addtolength{\md@horizontalspaceofbox}{%
                                    \mdf@innerlinewidth@length%
                                    +\mdf@middlelinewidth@length%      
                                    +\mdf@outerlinewidth@length%
                                  }}{}%
    }{}%
    \advance\md@horizontalspaceofbox by - \width\md@arrayparboxrestore%
    %%% Beruecksichtigung, dass Auszaehlung bzw. list-Umgebung enthalten
    \ifdimless{\md@horizontalspaceofbox}{3cm}{\md@PackageWarning{You have only a width of 3cm}}{}
    \hsize=\md@horizontalspaceofbox%
}




%%==================================================%%
%%========= Seitenparameter und Strafpunkte ========%%
%%==================================================%%
\def\md@penalty@startenv{%
 \begingroup%
   \skip@\lastskip%                             %%% lastskip nur ungleich null nach section, list, figure, usw.
   \if@nobreak%
   \else 
      \penalty9999 % updates \page parameters <-pruefen
      \ifdim\pagefilstretch=\z@                 %%% pagefilstretch ist ein internes Register fuer den
                                                %%% Seitenumbruch. Es entaehlt den akkumulierten (gespeicherten) fil-Anteil
                                                %%% auf der aktuellen Seite
         \ifdim\pagefillstretch=\z@             %%% pagefillstretch ist ein internes Register fuer den
                                                %%% Seitenumbruch. Es entaehlt den akkumulierten (gespeicherten) fill-Anteil
                                                %%% auf der aktuellen Seite
            %%% nicht unendlich dehnbar, so hier foerdern eines Seitenumbruches
            \edef\@tempa{\the\skip@}%
            \edef\@tempb{\the\z@skip}%
            \ifx\@tempa\@tempb                  %%% ???????
                  \penalty-30%
            \else
                  \vskip-\skip@%
                  \penalty-30%
                  \vskip\skip@%
            \fi
         \fi
      \fi
    \penalty\z@%
    % Give a stretchy breakpoint that will always be taken in preference
    % to the \penalty 9999 used to update page parameters.  The cube root
    % of 10000/100 indicates a multiplier of 0.21545, but the maximum 
    % calculated badness is really 8192, not 10000, so the multiplier
    % is 0.2301. 
    \advance\skip@ \z@ plus-.5\baselineskip%
    \advance\skip@ \z@ plus-.231\height%
    \advance\skip@ \z@ plus-.231\skip@%
    \advance\skip@ \z@ plus-.231\topsep%
    \vskip-\skip@ \penalty 1800 \vskip\skip@%
  \fi
 \addvspace{\topsep}%
 \endgroup%
 % clear out pending page break
 \nobreak \vskip 2\baselineskip \vskip\height%     %%%\@M=10000
 \penalty9999 \vskip -2\baselineskip \vskip-\height%
 \penalty9999 % updates \pagetotal
}%


%%==================================================%%
%%============Start der globalen Umgebung===========%%
%%==================================================%%
\newskip\md@temp@frame@hsize \md@temp@frame@hsize=0pt%
\newskip\md@temp@frame@vsize \md@temp@frame@vsize=0pt%

\def\mdframed@global@env{\relax%
   \let\width\z@%
   \let\height\z@%
   \md@penalty@startenv%
   \def\@doendpe{\@endpetrue%                      %%% SIEHE LATEX.ltx -- ersten Absatz ignorieren
                 \def\par{\@restorepar\par\@endpefalse}%
                 \everypar{{\setbox\z@\lastbox}\everypar{}\@endpefalse}%
                }%
   \md@horizontalmargin@equation%
   \setbox\@tempboxa%
       \vbox\bgroup\@doendpe%
                 \begingroup%                %%% zweites begingroup noetig, dass fontcolor gesetzt werden kann
                 \mdf@@fontcolor%            %%% Setzen der Schriftfarbe
                 \textwidth\md@horizontalspaceofbox \columnwidth\md@horizontalspaceofbox%
}%

\def\endmdframed@global@env{\par%
     \kern\z@%
     \hrule\@width\md@horizontalspaceofbox\@height\z@%   
     \penalty-100 % put depth into height
   \endgroup%
 \egroup%
 \begingroup%
  \mdf@@fontcolor%
  \setbox\@tempboxa\vbox{\unvbox\@tempboxa}
  \md@put@frame%
 \endgroup%
}

%%==================================================%%
%%===========Ausgaberoutine -> Berechnung===========%%
%%==================================================%%

%% \md@put@frame nimmt den Inhalt der \@tempboxa und packt alles oder nur einen Teil
%% auf die Seite mit dem Rahmen.
%% Es ist rekursiv, solange alles von der \@tempboxa aufgebraucht ist (\@tempboxa muss die Tiefe 0 haben.)
%% Erste Iteration: Versuche alles in einen Rahmen zu bekommen. Falls es nicht passt, 
%% splitte es fuer die erste Rahmenumgebung
%% Spaetere Iteration: Versuche alles in den letzten Rahmen zu bekommen. Falls es nicht passt,
%% splitte es erneut. (Versuchsstadium -- Da bisher nur Anfang und Ende enthalten)



\def\md@put@frame{\relax%
   \md@freepagevspace
   \ifdimless{\md@freevspace@length}{1.999\baselineskip}
             {\md@PackageInfo{Not enough space on this page}%die Seite hat nur noch minimal Platz
              \clearpage%
              \md@put@frame
             }{%
               %Hier berechnung Box-Inhalt+Rahmen oben und unten
              \setlength{\md@verticalmarginwhole@length}{\ht\@tempboxa+\dp\@tempboxa}%
              \addtolength{\md@verticalmarginwhole@length}{%
                 \mdf@outerlinewidth@length%
                +\mdf@middlelinewidth@length%
                +\mdf@innerlinewidth@length%
                +\mdf@innertopmargin@length%
                +\mdf@innerbottommargin@length%
                +\mdf@innerlinewidth@length%
                +\mdf@middlelinewidth@length%
                +\mdf@outerlinewidth@length%
                }%
                \ifnumequal{\mdf@style}{0}%
                {\ifbool{mdf@topline}{}%
                   {\addtolength{\md@verticalmarginwhole@length}{-\mdf@middlelinewidth@length}%
                   }%
                 \ifbool{mdf@bottomline}{}%
                   {\addtolength{\md@verticalmarginwhole@length}{-\mdf@middlelinewidth@length}%
                   }%
                }{}              
                \ifnumequal{\mdf@style}{3}%
                {\ifbool{mdf@topline}{}%
                   {\addtolength{\md@verticalmarginwhole@length}{-\mdf@middlelinewidth@length}%
                   }%
                 \ifbool{mdf@bottomline}{}%
                   {\addtolength{\md@verticalmarginwhole@length}{-\mdf@middlelinewidth@length}%
                   }%
                }{}
                \ifdimless{\md@verticalmarginwhole@length}{\md@freevspace@length}%
                {\md@putbox@single}%passt auf Seite
                {\md@put@frame@i}%passt nicht auf Seite
             }
}

\def\md@put@frame@i{%Box muss gesplittet werden -- Ausgabe der ersten Teilbox
      %Berechnung der Splittgroesse -- Linien und Abstand oben
      \md@freepagevspace
      \setlength{\dimen@}{\md@freevspace@length}%
      \addtolength{\dimen@}{%
                -\mdf@outerlinewidth@length%
                -\mdf@middlelinewidth@length%
                -\mdf@innerlinewidth@length%
                -\mdf@innertopmargin@length%
                -\mdf@splitbottomskip@length%
                }%
      \ifnumequal{\mdf@style}{0}%
                {\ifbool{mdf@topline}{}%
                   {\addtolength{\dimen@}{+\mdf@middlelinewidth@length}%
                   }%
                }{}
       \ifnumequal{\mdf@style}{3}%
                {\ifbool{mdf@topline}{}%
                   {\addtolength{\dimen@}{\mdf@middlelinewidth@length}%
                   }%
                }{}
       \ifdimless{\ht\@tempboxa+\dp\@tempboxa}{\dimen@}%
         {\md@PackageWarning{You got a bad break\MessageBreak
                             you have to change it manually\MessageBreak
                             by changing the text, the space\MessageBreak
                             or something else}%
         \addtolength{\dimen@}{-1.8\baselineskip}
         }{}%
         \addtolength{\dimen@}{-\pageshrink}%Box darf nicht zu GroÃ� werden.
         \boxmaxdepth\z@ \splittopskip\mdf@splittopskip@length%
         \setbox\tw@\vsplit\@tempboxa to \dimen@
         \setbox\tw@\vbox{\unvbox\tw@}%
         \ifdimgreater{\ht\tw@+\dp\tw@}{\dimen@}{%Falsch gesplittet
             \setlength\dimen@i{\dimen@}
             \addtolength{\dimen@}{-\ht\tw@-\dp\tw@}
             \addtolength\dimen@i{0.5\dimen@}
             \boxmaxdepth\z@ \splittopskip\z@%
             \setbox\@tempboxa\vbox{\unvbox\tw@\unvbox\@tempboxa}
             \boxmaxdepth\z@ \splittopskip\mdf@splittopskip@length%
             \setbox\tw@\vsplit\@tempboxa to \dimen@i
             \setbox\tw@\vbox{\unvbox\tw@}%
             }{}%
         \setbox\@tempboxa\vbox{\unvbox\@tempboxa}%PRUEFEN!!!!
         \ifvoid\@tempboxa
           \md@PackageWarning{You got a bad break\MessageBreak
                               because the splittet box is empty\MessageBreak
                               You have to change the page settings\MessageBreak
                               like enlargethispage or something else}%
         \fi
         \ifdimequal{\wd\tw@}{0pt}%%pruefe, ob erste Box leer ist
            {\clearpage%
             \md@put@frame}%
          {\md@putbox@first%%Groesse des Splittens passt
           \eject%\clearpage%
           \md@put@frame@ii}%
}


\def\md@put@frame@ii{%Ausgabe der mittleren Box(en) wenn vorhanden
  \setlength{\md@freevspace@length}{\vsize}%
  \setlength{\dimen@}{\ht\@tempboxa+\dp\@tempboxa}%
  \addtolength{\dimen@}{%%Addition der Linien unten
                 \mdf@outerlinewidth@length%
                +\mdf@middlelinewidth@length%
                +\mdf@innerlinewidth@length%
                +\mdf@innerbottommargin@length%
                }%
   \ifboolexpr{( bool {mdf@bottomline} )
               and
               (  test {\ifnumequal{\mdf@style}{0}} 
                  or
                  test {\ifnumequal{\mdf@style}{3}}
              )
              }%
              {}{\addtolength{\dimen@}{-\mdf@middlelinewidth@length}}%
    \ifdimgreater{\dimen@}{\md@freevspace@length}%
    {%
        \addtolength{\md@freevspace@length}{%%Abzug der Linien unten
                    -\mdf@splitbottomskip@length%
                    }%
        \boxmaxdepth\z@ \splittopskip\mdf@splittopskip@length%
        \setbox\tw@\vsplit\@tempboxa to \md@freevspace@length%
        \setbox\tw@\vbox{\unvbox\tw@}%PRUEFEN!!!
        \setbox\@tempboxa\vbox{\unvbox\@tempboxa}%PRUEFEN!!!!
        \ifvoid\@tempboxa\relax%
           \md@PackageWarning{You got a bad break\MessageBreak
                               because the splittet box is empty\MessageBreak
                               You have to change the settings}%
         \fi%
        \md@putbox@middle%
        \clearpage\md@put@frame@ii%
     }%Hier die Ausgabe der mittleren Box
     {\ifdimequal{\wd\@tempboxa}{\z@}{\md@PackageWarning{You got a bad break\MessageBreak
                               because the splittet box is empty\MessageBreak
                               You have to change the settings}%
                   }{}%
      \md@putbox@second}%Hier kommt die Ausgabe der letzten Box
}




\catcode`\|=\md@arrayparboxrestore  %%%????




% \md@arrayparboxrestore has parts of \@parboxrestore, performing a similar but 
% less complete restoration of a default layout.  See how it is used in the 
% "settings" argument of \MakeFrame.  Though not a parameter, \hsize 
% should be set to the desired total line width available inside the
% frame before invoking \md@arrayparboxrestore.  
\def\md@arrayparboxrestore{%
   %%%AUS ltboxes.dtx -> \@arrayparboxrestore
   \let\if@nobreak\iffalse
   \let\if@noskipsec\iffalse  
   \let\-\@dischyph                         %%%Default \let\@dischyph=\-
   \let\'\@acci\let\`\@accii\let\=\@acciii  %%%Default: \let\@acci\' \let\@accii\` \let\@acciii\= <- Sicher gehen
                                            %%%dass Defaultwerte erhalten sind
                                            %%%Scheinen Mathesymbole zu sein ???
   % Test ob Listenumgebung enthalten ist
   \ifnum \ifdim\@totalleftmargin>\z@ 1\fi  %%%In latex.ltx->totalleftmargin=\z@, ausser in list-Umgebung:
                                            %%%\advance\@totalleftmargin \leftmargin
          \ifdim\rightmargin     >\z@ 1\fi  %%%Default \rightmargin=\z@, Ausnahme: quote usw.
          \ifnum\@listdepth      >0   1\fi  %%%Zaehler fuer Listentiefe -> Keine Liste \@listdepth=0 sonst, je Ebene +1
           0>\z@                            %%%Ist ein Parameter erfuellt, dann ist es eine Listenumgebung
     \@setminipage                          %%%Passform rund um das Element
     % Nun wird versucht, Aenderungen der Breite von \hsize entsprechend der Listenparameter zu uebergeben.
     % Dies ist defizitaer, denn eine erweiterte Moeglichkeit, Aenderungen der Textdimension anzugegeben
     % ist (noch) nicht vorgesehen, insbesondere keine getrennte linke / rechte Einstellung.
     \advance\linewidth-\columnwidth \advance\linewidth\md@horizontalspaceofbox
     \parshape\@ne \@totalleftmargin \linewidth %%% parshape definiert das Aussehen  eines Absatzes Zeile fuer Zeile.
                                                %%% Seine Parameterversorgung geschieht mittels der folgenden Syntax:
                                                %%% \parshape = n i1 l1 i2 l2 ... in ln.
                                                %%% Dabei gibt der Parameter n an, fuer wieviele Zeilen Definitionspaare folgen.
                                                %%% Jedes Definitionspaar besteht aus der Angabe i_j fuer den Einzug und
                                                %%% der Laengenangabe l_j fuer die entsprechende Zeile. Sind mehr als n Zeilen
                                                %%% vorhanden, so wird die letzte Angabe stets weiter verwendet
   \else % Not in list
     \linewidth=\md@horizontalspaceofbox
   \fi
   \sloppy
}

%%==================================================%%
%%= Sicherstellen, dass Optionen nur global setzbar=%%
%%==================================================%%

\DisableKeyvalOption[%  
  action=warning,  
  package=mdframed,    
]{mdf}{globalstyle}%


\DisableKeyvalOption[%  
  action=warning,  
  package=mdframed,    
]{mdf}{xcolor}%


\endinput
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
EOF
EOF
EOF








main/main.tex~

\RequirePackage{hyphsubst}
\documentclass[fontsize=11pt,paper=A4,BCOR=12mm,DIV=13,open=any,listof=totoc]{scrbook}
\input{../headers/paper}
\input{../headers/packages1}
\input{../headers/babel}
\input{../headers/svg}
\input{../headers/packages2}
\input{../headers/defaultcolors}
\input{../headers/hyphenation}
\input{../headers/commands}
\usepackage{type1ec}      
\usepackage{CJKutf8}
\usepackage[overlap, CJK]{ruby}
\usepackage{CJKulem}
\input{../headers/title}
\input{../headers/options}
\input{../headers/formattings}
\input{../headers/unicodes}
\input{../headers/templates}
\input{../headers/templates-dirk}
\input{../headers/templates-chemie}
\usepackage{lmodern}
\begin{document}
\begin{CJK}{UTF8}{megafont}
\usetocstyle{standard}
\raggedbottom
\thispagestyle{empty}
\pagestyle{empty}
%\include{coverfrontpage}

%\cleardoublepage
\pagenumbering{Roman}
\maketitle
\pagestyle{scrheadings}

\setcounter{tocdepth}{\mytocdepth}
\tableofcontents 

%\cleardoublepage
\pagenumbering{arabic}

%\include{kap-vorwort}




\label{0}\chapter{Introduction and OSI Model}

\myminitoc
\label{1}





\label{2}




\section{Introduction}
\label{3}
Welcome to the wonderful world of serial data communications.  This is a part of a series of articles that will cover many aspects of serial data communications.  I am going to try and start from the beginning and follow a layered approach to working with serial data and by the time we are through we should be able to transfer just about any sort of data that you would care to send over wires between computers.  Possibly even without wires (wireless data communication).

There are so many aspects about this subject that sometimes it is a very hard nut to crack.  I\textquotesingle{}m going to dive down and try to start with the basics and introducing the RS-{}232 serial data communications standard.
\section{Why Serial Communication?}
\label{4} 
\LaTeXNullTemplate{}
First of all, the basic standards that I will be describing are, from the perspective of computer technology, positively ancient.  Some of you reading this could perhaps find your grandparents or even great-{}grandparents using this protocol when they were in College.  At the same time, it is so solid in concept that the reason for abandoning it should always be questioned.  Indeed, there have been several other data transmission methods that have been developed since the RS-{}232 serial data protocol was established, but this workhorse is still widely used and seems to go through a rebirth every once in a while.

When all else fails, RS-{}232 serial communication can be relied upon.  When you are trying to get two pieces of computer equipment together, sometimes newer communications methods have hard limitations that can\textquotesingle{}t be worked out due to number of connections, RF interference, distance limitations, being behind physical barriers, in sensitive areas like medical equipment where stray voltages can be a problem, or that you absolutely need to rely upon the data being transmitted.  A sister protocol to RS-{}232, the RS-{}422 protocol, even allows transmissions for several miles of cable.

Serial data communication is widely implemented.  While it is sometimes presumed that a PC can deal with just about any problem you want to throw at it, there are a number of electronic devices that are full of data which needs to be recorded.  In part because of the age of this protocol, there are many legacy devices that have RS-{}232 serial data as the only access to the outside world. But even many of the latest network devices have RS-{}232 \symbol{34}console\symbol{34} ports to facilitate initial configuration and provide a means of troubleshooting when the network itself is broken.  Because the hardware is so widely implemented and available, together with many software tools, it is also relatively cheap to develop equipment and software using this system.  Particularly when transmission speed isn\textquotesingle{}t important, but data needs to be sent on a regular basis.  RS-{}232 serial data is a very reasonable solution instead of a more expensive 10BASE-{}T TCP/IP solution or high-{}speed fiber optics.

Serial data communication is also versatile.  While the usual method of transmission is over copper wires between two fixed points, recently there have been some converters that transmit serial data over fiber optic lines, wireless transmitters, USB devices, and even over TCP/IP networks.  What is really surprising here is that all of these transmission methods are totally transparent to the device receiving or transmitting the serial data.  It can also be a carrier for TCP/IP, and be used for private networks.
\section{OSI Layered Network Communications Model}
\label{5}
While serial data communication is not strictly a network communication protocol, it is still important to understand the layered communications model when dealing with any sort of communications protocols.  Often people implementing serial data software have to build multiple layers of this model, even if they are not totally aware of it when they are doing it at the time.

Network Layers:

\begin{myitemize}
\item{}  Application
\item{}  Presentation
\item{}  Session
\item{}  Transport
\item{}  Network
\item{}  Data-{}Link
\item{}  Physical
\end{myitemize}


Often serial data communication does not implement all of these different layers, and even more often these different layers are combined in the same module or even the very same function. This model was originally developed by the International Organization for Standards (ISO) in 1984 to help give a good idea of where different networking structures could be separated and intermingled. The point here is to know that you can separate different parts of communications sub-{}systems to help with the debugging process, and to move structures from one sub-{}system to another.

If your software is well written using a model similar to this one, the software subroutines in layers above and below do not have to be rewritten if the module at a particular layer is changed. To achieve this you need to establish strong standards for the interface between the layers, which will be covered in other sections of these articles. For example, a web browser does not need to know if the HTML is being sent over fiber optic cables, wireless transmissions, or even over a serial data cable.
\subsection{Serial Comm Layers}
\label{6}
For serial data communication, I see this layer model as more common:

\begin{myitemize}
\item{}  Serial Data Applications
\item{}  Serial Networks
\item{}  Packet Challenge/Verification
\item{}  Basic Serial Packets
\item{}  8250 UART processing
\item{}  Raw RS-{}232 Signals
\end{myitemize}


In the case of many serial data applications, not all of these layers are implemented.  Often it is just raw packets being transmitted in one direction, but sometimes even just a signal of any kind can indicate some action take place on a computer, regardless of content.  It is possible to simply take the logic level of a raw RS-{}232 signal in your software, but at some point the data does need to be converted and the voltages involved with RS-{}232 can damage hardware, so this is very seldom done.
\section{Software Examples}
\label{7}
I don\textquotesingle{}t want to get into a holy war over programming languages with this series of articles.  For the moment, I\textquotesingle{}m going to be using Turbo Pascal and Delphi as the programming languages, if for no other reason then the fact that I am most comfortable programming in this development environment.  If a good C/C++ guru would like to \symbol{34}translate\symbol{34} these routines, I would welcome that, as well as other programming languages where applicable.  Serial communication is complicated enough so please avoid esoteric languages like Intercal or Malbolge.  A good BASIC implementation would be welcome, as would LISP.  I\textquotesingle{}ll try to avoid language-{}specific features and simply deal with functions in a generic sense, which good programmers should be able to translate to the language of their choice.

These articles are meant to teach you the basics of serial data communication, not to be a functioning serial data driver.  Still, all code examples will be checked and sent through an actual compiler before being listed in the articles, and hopefully fully debugged.  There is no one single way to accomplish these steps and tasks, so I am going to encourage a hands-{}on approach to dealing with software and setting up networks.

While I\textquotesingle{}ve had quite a bit of experience in dealing with several serial data protocols (on the packet level), I am by no means the topmost expert at this.  As I said earlier, I have considerable experience in dealing with communications at many levels, and I\textquotesingle{}d like to share some of my very hard-{}won knowledge.
\section{Applications in Education}
\label{8}
While I am only a Software Engineer and don\textquotesingle{}t have the \symbol{34}formal\symbol{34} credentials necessary for making an educational textbook, I do believe that there is much that could be taught about computer networking by students experimenting with serial data communication.  The audience that I am aiming for with these articles are the High School hackers/computer geeks and undergraduate CS majors.  A High School teacher that wanted to tackle a subject like this, or if you wanted to cover a special topic course in a university setting where students could get some very hands-{}on experience with communications protocols.  Every layer of the OSI model could be demonstrated in a manner that students would learn from first-{}hand experiences why certain rules/systems have been implemented on the Internet, what standards documents mean, and perhaps even participate in creating standards documents.

If you are a professor or High School instructor interested in using this text, I would be particularly interested in adapting this text to better suit your needs, or working with you in covering this subject.

From a professional{\bfseries  perspective}, this is a topic that is seldom taught at a university, and usually only in passing when they are rushing through a whole bunch of other protocol suites.  Software developers are usually introduced to this topic by having their supervisor dump a bunch of specification documents on their desk, a driver disk with API documentation, and perhaps a typically short deadline in order to get something working that should have been working sometime last year.  Software developers who really understand serial data communication are worth gold, and often even these developers only learn just enough to get the immediate job done.

I\textquotesingle{}ve also found that skills learned from developing serial data communications also translate into other projects and give a deeper understanding of just about any data transmission system.  In addition to the other groups I mentioned, I am also aiming for those unfortunate software engineers who are trying to learn just about anything about this very difficult subject and don\textquotesingle{}t know where to begin.  Documentation about serial communication is sparse, and sometime contradictory.

This doesn\textquotesingle{}t have to be that complicated of a subject, and it is possible for mere mortals to be able to understand how everything works.
\section{External Links / References}
\label{9}
\begin{myitemize}
\item{}  \myhref{http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/introint.htm}{ Cisco explanation of the OSI model}
\item{}  \myhref{http://www.uwsg.iu.edu/usail/network/nfs/network_layers.html}{ University of Indiana / Unix Support Group explanation of OSI}
\item{}  \myhref{http://www.iso.org/iso/en/CatalogueListPage.CatalogueList?ICS1=35\&ICS2=100}{ ISO catalog of OSI standards}
\end{myitemize}

\section{Other Serial Programming Articles}
\label{10}





\myhref{http://en.wikibooks.org/wiki/Category\%3ASerial\%20Programming}{Category:Serial Programming}
\chapter{RS-{}232 Connections}

\myminitoc
\label{11}





\label{12}




\section{Introduction}
\label{13}

The RS-{}232 standard is a collection of connection standards
between different pieces of equipment.  This is a rather old
standard, and has been revised many times over the years to
accommodate changes to communications technology.  A
bare-{}bones connection will have only one wire connected
between two pieces of equipment, but usually there are more.
Three wires (transmit, receive, and ground) are usually the
minimum recommended.  A fully implemented RS-{}232 connection
can have as many as 25 wires between each end. Some of the
early RS-{}232 connections were also used to connect terminal
equipment to modems, so information about modems is
sometimes found with general serial data communication.
\section{Data Terminal/Communications Equipment}
\label{14}

In the world of serial communications, there are two different kinds of equipment:

\begin{myitemize}
\item{}  DTE -{} Data Terminal Equipment
\item{}  DCE -{} Data Communications Equipment
\end{myitemize}

\subsection{Straight Serial Connections}
\label{15}

In practice the distinction between the two pieces of equipment is really a matter of function rather than any real difference.  As mentioned earlier, modems and serial communication equipment have been mixed together, this is another case of that.  In this situation, the modem can be thought of as the Data Communications Equipment (DCE) and the terminal that somebody is sitting down and using is the Data Terminal Equipment.  In the older days when it was common to use a timeshare computer system (pre 1980s), you would dial up a telephone, stick the handset that you would normally talk with into an acoustical modem, and that modem would be connected to a simple dumb terminal with an RS-{}232 cable.  When we get to baud rates this will make more sense, but the typical connection speed was usually either 50 baud or 110 baud, and really fast connections going at 300 baud.

As a side note, when the very first IMPs (Interconnection Message Processors) that formed the first nodes/routers of ARPAnet (the ancient predecessor of the Internet), this was exactly the connection system they were using.  This later gave way to other communication systems, but this was the beginning of the Internet.

In a more modern setting, imagine a piece of equipment in a very dangerous place, like in a steel processing mill that measures the temperature of the rollers or other steel processing equipment.  This would also be a form of what we now refer to as a piece of \symbol{34}Data Communication Equipment\symbol{34} that we would also want to be able to control remotely.
The PC that is used in a control room of the mill would be the Data Terminal Equipment.  There are many other similar kinds of devices, and RS-{}232 connections can be found on all kinds of equipment.

The reason this is called a \symbol{34}straight\symbol{34} connection is because when the cabling is put together, each wire on each end of the connection is put to the same pin.  This wiring system will be explained further on.
\subsection{Null Modems}
\label{16}

Often you don\textquotesingle{}t always want to connect a piece of equipment to a computer, but you would also like to connect two computers together.  Unfortunately, when connecting two computers with a \symbol{34}straight\symbol{34} serial connection, the two computers are fighting each other on the same wires.

One way to make this work is to connect the two computers to each other with a pair of modems.  As explained earlier, this is a very common task, and in the 1980\textquotesingle{}s and early 1990\textquotesingle{}s it was common to have \symbol{34}Bulletin Board Systems\symbol{34} (BBS) where computers would call each other up with modems and exchange all sorts of information.

Now imagine if these two computers are in the very same room.  Instead of going through the physical modems, they go through a \symbol{34}null modem\symbol{34}, or a modem that really doesn\textquotesingle{}t exist.  In order to make this work you have to \symbol{34}cross\symbol{34} some of the wires so when you transmit some information on one end, the other computer is able to detect and receive that same information.

In addition to simply allowing a computer to communicate and transmit data to another computer, a null modem connection can be used to \symbol{34}simulate\symbol{34} the behavior of DCE equipment.  This will be particularly important later on with some of the discussion in this series of articles, where you can experiment with writing some of your own serial communication software.  In my own experience, I\textquotesingle{}ve had to write these \symbol{34}emulators\symbol{34} in many instances, either because the equipment that I was trying to communicate with wasn\textquotesingle{}t finished, or it was difficult to obtain a sample of that equipment and all that I had available to me was the communication protocol specification.
\subsection{Loopback Connectors}
\label{17}

Sometimes instead of trying to communicate with another computer, you would like to be able to test the transmission equipment itself.  One practical way of doing this is to add a \symbol{34}loopback\symbol{34} connector to the terminal device, like a PC with a serial data connection. This connector has no cable attached, but loops the transmit lines to the receive lines.  By doing this, you can simulate both the transmission and receiving of data.  Generally speaking, this is only done for actually testing the equipment, but can be used for testing software components as well.  When this sort of connector is used, you will receive every byte that you transmit.  If you separate out the transmission subroutines from the data capture subroutines, it can provide a controlled system for testing your application.
\subsection{Protocol Analyzer}
\label{18}
\subsubsection{General}
\label{19}

When it starts to get very difficult to examine the serial data being transmitted by the equipment, sometimes it is nice to be able to take a \symbol{34}snapshot\symbol{34} of the information being transmitted. This is done with a protocol analyzer of one kind or another.

What is done is a modification of the cabling that allows for a third computer to be able to simply read the data as it is being transmitted.  Sometimes the communication protocol can get so complicated that you need to see the whole exchange, and it needs to be examined in \symbol{34}real-{}time\symbol{34} rather than going through some sort of software debugger.  Another purpose of this is to examine the data exchange for purposes of doing some reverse engineering if you are trying to discover how a piece of equipment works.  Often, despite written specifications, the actual implementation of what is occurring when transmitting data can be quite a bit different than what was originally planned.  Basically, this is a powerful tool for development of serial communications protocols and software, and should not be ignored.

There are common ways to connect a protocol analyzer, which are discussed in the following.
\subsubsection{Y \symbol{34}Cable\symbol{34}}
\label{20}

A {\itshape Y \symbol{34}Cable\symbol{34}} is not just some cable, but also contains electronics -{} assuming it is not a low quality cable. It is supposed to be placed in between a serial line and it mirrors all signals on a third connector. This third connector can then be connected to a protocol analyzer (e.g. a PC with some display software):

\\

\TemplateSpaceIndent{$\text{ }${}+-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}+$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}DTE$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Y$\text{ }${}Cable$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}DCE$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}+$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|$\text{ }${}Analyzer$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}}


It is recommended not to use a passive Y cable. Such a cable overloads the transmitters at the DTE and DCE, which might result in the {\bfseries destruction of the transmitters}. The RS-{}233 standard requires that transmitters are short-{}circuit safe. However, modern, highly integrated equipment might no longer be compliant to that particular aspect of the standard.

Often, the line going to the analyzer is also just a serial line, and the analyzer is a PC with a serial interface and some display software. The disadvantage of such a simple Y cable solutions is that it only supports half-{}duplex communication. That is, only one site (DTE or DCE) can talk at any time. The reason for this is that the two TX lines from the DTE and DCE are combined into one TX line going to the analyzer. If the DTE and the DCE both send at the same time, their signals get mixed up on the third line going to the analyzer, and the analyzer probably doesn\textquotesingle{}t see any decodable signal at all.


See \myplainurl{http://www.mmvisual.de/fbintermdspy.htm} for an example of some simple circuitry for a Y cable.

More advanced Y cable solutions provide the TX data from the DTE and DCE separately to the analyzer. Such analyzers are capable of displaying full-{}duplex communication. Advanced professional systems not only display the decoded digital information, but also monitor the analog signal levels and timing.
\subsubsection{Man-{}in-{}the-{}Middle}
\label{21}

In this scenario the analyzer sits in the middle between the DTE and DCE. It is basically some device (e.g. a PC) with two serial interfaces. The analyzer mirrors each signal from one site to the other site, and also displays the traffic.
\\

\TemplateSpaceIndent{$\text{ }${}+-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}+$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}DTE$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Analyzer$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}DCE$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}+}


In principle, a simple version of such an analyzer can be built with any PC with two serial interfaces. All that is needed is some software, which is not too difficult to write. Such a device will, however, lack a convenient feature. Professional analyzers are able to auto-{}sense the speed of the serial communication. A home made solution needs to be configured to match the speed of the serial communication. Professional devices are also optimized to ensure minimal delay in the circuitry. Also, a simple homegrown, PC-{}based analyzer can\textquotesingle{}t be used to analyze faults due to signal voltage level problems. Nevertheless, any kind of protocol analyzer is much better than nothing at all. Even the most simple analyzer is very useful.
\subsubsection{Others}
\label{22}

See \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3AModems\%20and\%20AT\%20Commands\%23Setting\%20up\%20a\%20Development\%20Environment}{Setting up a Development Environment (for modem development)} for some more information.

\subsection{Breakout Box}
\label{23}

An RS232 breakout box (a BOB) is a rather nifty piece of hardware which usually combines a number of functions into one. It basically consist of two RS232 connectors, and a patch field (or switches) which allows to change the wiring between the connectors. A patch field and small pieces of wires are preferable over (DIP) switches alone, since the patch field allows access to the signals for other purposes, too. 

A breakout box is very useful if the pinout (DTE/DCE) of a particular device is not known. The patch field allows to quickly change the wiring from a \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ARS-232_Connections\%23Straight_Serial_Connections}{straight connection} to a \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ARS-232_Connections\%23Null_Modems}{null modem} connection, or to set up a \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ARS-232_Connections\%23Loopback_Connectors}{loopback connection}.

Since the patch field provides access to all signals it also allows to use the breakout box to connect a \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ARS-232_Connections\%23Protocol\%20Analyser}{protocol analyzer}. Better breakout boxes also provide some signal level information on their own, by having LEDs who inform about the signal voltage. This information is useful when trying to identify an unknown pinout. High-{}end BOBs contain circuitry to measure ground potential difference and pulse traps circuitry to find signal glitches.

Commercial breakout boxes are available in many varieties. It is also possible to build a useful BOB from a handful of simple parts on a circuit board. The patch field can be made from DIL IC sockets, and the wiring of the LEDs is simple if 2-{}pin dual-{}color LEDs are used (3-{}pin LEDs will not work). Each signal line should be connected via such an LED and a 680 Ohm resistor in serial to GND (Signal Ground). The home-{}made breakout-{}box is completed with a couple of RS232 connectors, possibly also one to attach a protocol analyzer and some simple metal or plastic case.
\subsection{Character Sequence Generator}
\label{24}

Another nifty piece of hardware and/or software which is useful for developing and testing serial applications and  equipment is a character sequence generator. Such a generator produces a repeated sequence of serial line data. For example such a generator might repeat the famous \symbol{34}The quick brown fox ...\symbol{34} sentence in an an endless loop. Another common test sequence is the generation of all 8-{}bit codes from 0x00 to 0xFF in a loop. Such a loop contains all 7-{}bit ASCII and 8-{}bit ISO Latin 1 characters, plus the first 32 non-{}printable control characters and can e.g. reveal decoding errors or transmission errors. Also very common is a modem test sequence, using generic modem commands (\myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3AModems\%20and\%20AT\%20Commands}{Serial Programming:Modems and AT Commands}) to build up a modem connection, send some data and tear the modem connection down in a loop.

Commercial hardware character generators provide a heap of additional features, often combined with a protocol analyzer. As such they are rather expensive. However, just like with a BOB, it is possible to build a useful DIY character sequence generator for small cash. This can either happen with software on a normal computer (some simple endless software loop sending the same data again and again to a serial interface), or with a few pieces of cheap electronic components. Some small stand-{}alone hardware is often more convenient in the field and in development for quick tests than e.g. a PC or laptop with some software.

A simple classic hardware character generator basically consists of a baud-{}rate generator, a UART (\myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3A8250\%20UART\%20Programming}{Serial Programming:8250 UART Programming}), an (E)EPROM, a binary counter and a line driver (\myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3AMAX232\%20Driver\%20Receiver}{Serial Programming:MAX232 Driver Receiver}). Typically, each of these components is a simple single IC. The (E)EPROM is supposed to contain the character sequence(s). The baud-{}rate generator drives the UART and the binary counter. The binary counter drives the address lines of the (E)EPROM. The result is that the character sequence is produced at the data lines of the (E)EPROM. These data lines are feed into the UARTs input. The UARTs output is connected to the serial line driver. All this can be easily fitted on a small prototype board in a simple case. 

A more modern hardware character generator can be build around one of these small micro controllers (e.g.
\myhref{http://en.wikibooks.org/wiki/Atmel\%20AVR}{Atmel AVR}). This is particularly easy, since these micro controllers already contain serial interfaces, and just require a little bit of serial programming -{} which is the topic of \myhref{http://en.wikibooks.org/wiki/Programming\%3ASerial\%20Data\%20Communications}{this book}.
\section{Connection Types}
\label{25}

If you wanted to do a general RS-{}232 connection, you could take a bunch of long wires and solder them directly to the electronic circuits of the equipment you are using, but this tends to make a big mess and often those solder connections tend to break and other problems can develop.  To deal with these issues, and to make it easier to setup or take down equipment, some standard connectors have been developed that is commonly found on most equipment using the RS-{}232 standards.

These connectors come in two forms:  A male and a female connector.  The female connector has holes that allow the pins on the male end to be inserted into the connector.
\subsection{EIA/TIA 574: \symbol{34}DB-{}9\symbol{34}}
\label{26}

This is a female \symbol{34}DB-{}9\symbol{34} connector (properly known as DE9F):



\begin{minipage}{0.50000\textwidth}
\begin{center}
\includegraphics[width=1.0\textwidth,height=6.5in,keepaspectratio]{../images/1.jpg}
\end{center}
\raggedright{}\myfigurewithcaption{1}{Female DB-{}9 Serial Connector}
\end{minipage}\vspace{0.75cm}



The female DB-{}9 connector is typically used as the \symbol{34}plug\symbol{34} that goes into a typical PC.  If you see one of these on the back of your computer, it is likely not to be used for serial communication, but rather for things like early VGA or CGA monitors (not SVGA) or for some special control/joystick equipment.

And this is a male \symbol{34}DB-{}9\symbol{34} connector (properly known as DE9M):



\begin{minipage}{0.50000\textwidth}
\begin{center}
\includegraphics[width=1.0\textwidth,height=6.5in,keepaspectratio]{../images/2.jpg}
\end{center}
\raggedright{}\myfigurewithcaption{2}{Male DB-{}9 Serial Connector}
\end{minipage}\vspace{0.75cm}



This is the connector that you are more likely to see for serial communications on a \symbol{34}generic\symbol{34} PC.  Often you will see two of them side by side (for COM1 and COM2).  Special equipment that you might communicate with would have either connector, or even one of the DB-{}25 connectors listed below.
\subsection{RS-{}232C: DB-{}25}
\label{27}

This is a female DB-{}25 connector (also known as DB25F):



\begin{minipage}{0.50000\textwidth}
\begin{center}
\includegraphics[width=1.0\textwidth,height=6.5in,keepaspectratio]{../images/3.jpg}
\end{center}
\raggedright{}\myfigurewithcaption{3}{Female DB-{}25 Serial Connector}
\end{minipage}\vspace{0.75cm}



This DB25S is what you normally find on an IBM compatible PC used as the parallel (printer) port.  It is also on the computer end of a modem cable in older PCs that have 25 pin serial port connectors. This connector type is also used frequently for equipment that conforms to RS-{}232 serial data communication as well, so don\textquotesingle{}t always assume if you see one of these connectors that it is always parallel.  When the original RS-{}232 specification was written, this was the kind of connector that was intended, but because many of the pins were seldom if ever used, IBM PC compatible serial ports were later switched to the DB-{}9 DE9S connectors carrying all the required signals as on the DB connectors in the original IBM-{}PC. (Yes, this is comparatively recent equipment for this standard).

This is a male DB-{}25 connector (also known as DB25M):



\begin{minipage}{0.50000\textwidth}
\begin{center}
\includegraphics[width=1.0\textwidth,height=6.5in,keepaspectratio]{../images/4.jpg}
\end{center}
\raggedright{}\myfigurewithcaption{4}{Male DB-{}25 Serial Connector}
\end{minipage}\vspace{0.75cm}



Male DB-{}25 connectors are usually used on one end of a PC printer cable for parallel data communication, which is beyond the scope of this series of articles.  The DB25P is also used on the the modem end of an external modem cable.  You should be aware that this connector is also used for serial communications on many different types of equipment, using many different types of communications protocols.  In fact, if you have a random piece of equipment that you are trying to see how it works, you can presume that it is a piece of serial equipment.  Hacking random connectors is also beyond the scope of this document, but it can be an interesting hobby by itself.
\subsection{mini-{}stereo plug connector}
\label{28}

This is a male mini-{}stereo plug connector:



\begin{minipage}{0.50000\textwidth}
\begin{center}
\includegraphics[width=1.0\textwidth,height=6.5in,keepaspectratio]{../images/5.jpg}
\end{center}
\raggedright{}\myfigurewithcaption{5}{mini-{}stereo_plug connector}
\end{minipage}\vspace{0.75cm}



Some digital cameras and calculators come with a cable that has a mini-{}stereo plug connector on the end the plugs into the camera, and a DB-{}9 connector on the end that plugs into the PC.

It is a poor connector, as it short circuits segments while being plugged/unplugged.

The \symbol{34}PicAXE\symbol{34} systems use \myplainurl{http://profmason.com/?p=218}
\begin{myitemize}
\item{}  1: base ring: ground (pin 5 of DB9)
\item{}  2: middle ring: serial output from PicAXE to serial input of PC (pin 2 of DB9)
\item{}  3: tip of pin: serial output of PC to serial input of PicAXE (pin 3 of DB9)
\end{myitemize}

\subsection{RS-{}232D: RS232 on RJ45}
\label{29}

RS-{}232D defines a standard connector much smaller than a DB-{}9 plug.
\myplainurl{http://zytrax.com/tech/layer_1/cables/tech_rs232.htm\#rj45}.

(RS-{}232 on a RJ45 modular jack is also known as \symbol{34}EIA/TIA -{} 561\symbol{34})
\subsection{RS232 on RJ11}
\label{30}

Is there a standard for connecting the TX, RX, GND of RS-{}232 to the 4 pins of a RJ11 connector ? 
\begin{myitemize}
\item{}  \myhref{http://mondo-technology.com/upp.html}{ Luhan Monat} uses DB9-{}5 -{}-{}-{}>{} RJ11-{}1; DB9-{}3 -{}-{}-{}>{} RJ11-{}2; DB9-{}2 -{}-{}-{}>{} RJ11-{}3. (RJ11-{}2 and RJ11-{}3 are the \symbol{34}inner pair\symbol{34}).
\item{}  \myhref{http://www.taniwha.com/~paul/fc/ass2.0.html}{ Paul Campbell} says \symbol{34}I wired the GND to the yellow line, TXD to the black line and RXD to the red line.\symbol{34}
\end{myitemize}

\section{Wiring Pins Explained}
\label{31}

The wiring of RS-{}232 devices involves first identifying the actual pins that are being used.  

Please note also that in the \symbol{34}PC COMx Port context\symbol{34} end of things some signals are \textquotesingle{}inputs\textquotesingle{} while others are \textquotesingle{}outputs\textquotesingle{} while in the \symbol{34}Modem context\symbol{34} those same signal names referred to now become as \textquotesingle{}outputs\textquotesingle{} where they were just before \textquotesingle{}inputs\textquotesingle{} and vice versa. That is where much confusion has arisen from over the years, as the \textquotesingle{}Input\textquotesingle{} or \textquotesingle{}Output\textquotesingle{} -{}sense-{} nature is not noted in most diagrams on the subject in general,  yet in the real world two \textquotesingle{}Out\textquotesingle{} pins seldom can ever work in harmony in RS-{}232 related +-{}{$\text{[}$}3-{}10{$\text{]}$}V stuff where the range from -{}3V to +3V is not a true high or low, except to possibly burden drivers towards their undesired burnout.  

Here is how a {\bfseries female} DB-{}9 connector is numbered (Note, the connector on a computer is usually a {\bfseries male} connector, so it is mirrored compared to the following image):



\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/6.png}
\end{center}
\raggedright{}\myfigurewithcaption{6}{DB-{}9 Female Pinout Diagram}
\end{minipage}\vspace{0.75cm}



If the numbers are hard to read, it starts at the top-{}right corner as \symbol{34}1\symbol{34}, and goes left until the end of the row and then starts again as pin 6 on the next row until you get to pin 9 on the bottom-{}left pin.  \symbol{34}Top\symbol{34} is defined as the row with 5 pins.

Here are what each pin is usually defined as on the PC COMx end of things:

\begin{longtable}{>{\RaggedRight}p{0.10073\linewidth}>{\RaggedRight}p{0.11472\linewidth}>{\RaggedRight}p{0.35907\linewidth}>{\RaggedRight}p{0.26477\linewidth}} 
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 9-{}pin}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 25-{}pin}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} pin definition }&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Direction (PC view)\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} DCD (Data Carrier Detect) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} input\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} RX (Receive Data) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} input\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} TX (Transmit Data) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} output\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 20 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} DTR (Data Terminal Ready) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} output\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} GND (Signal Ground) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} -{}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} DSR (Data Set Ready) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} input\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} RTS (Request To Send) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} output\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CTS (Clear To Send)) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} input\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 9 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 22 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} RI  (Ring Indicator) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} input 
\end{longtable}


One thing to keep in mind when discussing these pins and their meaning, is that they are very closely tied together with modems and modem protocols.  

Whenever interconnecting any serial ports it will be well to note that whatever the case, it should always follow that only one <{}output>{} should ever be tied to one or more <{}inputs>{} generally speaking.  Further, be it noted that signal names at the COMx end will generally be opposite of the <{}in>{}-{}<{}out>{} -{}sense-{} at the modem end of things, even though carrying the same mnemonic names.  

Often you don\textquotesingle{}t have a modem attached in the loop, but you still treat the equipment as if it were a modem on a theoretical level.  At least such that you minimally have an <{}output>{} going to every  in some manner, with no two <{}outputs>{} in conflict or without any \textquotesingle{}floating\textquotesingle{} <{}inputs>{} tied to no <{}output>{} at all.

The following are more formal explanations regarding each signal function in the general sense of its use:
\subsection{DCD (Data Carrier Detect)}
\label{32}

This is a signal to indicate from the communications equipment (DCE) that the phone line is still \symbol{34}connected\symbol{34} and receiving a carrier signal from the modem at the other end.  Presumably well-{}written software or serial equipment could detect from this logic state when the telephone has been \symbol{34}hung up\symbol{34} on the other end.  Null-{}modems often tie DCD to DTR at each end since there is no carrier signal involved.
\subsection{RX (Receive Data)}
\label{33}

Input to receive the data.
\subsection{TX (Transmit Data)}
\label{34}

The reverse of RX, this is where the terminal equipment (DTE) is transmitting serial data, using the same format and protocol that the receiver is expecting.  More on the exact protocol further below.  Like RX, think along the lines of \symbol{34}Terminal Transmit\symbol{34} when designing equipment that will be using this pin.
\subsection{DTR (Data Terminal Ready)}
\label{35}

Basically a signal from the DTE that says \symbol{34}Hello!, I\textquotesingle{}m ready if you are\symbol{34}.  This is a general indicator to the DCE that the terminal is ready to start sending and receiving data.  If there is some initialization that needs to happen in the communications equipment, this is a way for the terminal equipment to \symbol{34}boot\symbol{34} the receiving equipment. In an null modem setup this signal is often connected to DCD, so the device signals itself that an (imaginary) carrier has been detected, indication that the transmission line is up.
\subsection{GND (Signal Ground)}
\label{36}

This is an interesting pin to look at.  What it does is try to make a common \symbol{34}ground\symbol{34} reference between the equipment that is being connected to compare the voltages for the other signals.  Normally this is a good thing, because sometimes different pieces of equipment have different power supplies and are some distance away.  The not so pleasant thing about this wire is that it usually is a physical piece of copper that can conduct electricity that is not normally supposed to go down the wire, like a short-{}circuit or worse yet a bolt of lightning (it happens far more often that you would normally think for this sort of equipment).  That can fry both the DCE as well as the DTE.  Things like fiber converters and ground isolators can help prevent this from happening, but can still be something to worry about.  Over short distances this is generally not a problem.
\subsection{DSR (Data Set Ready)}
\label{37}

This is the counterpart to DTR with the communications equipment (or computer peripheral on the serial line).  When the DTR is sent as a signal, the communications equipment should change this signal to logic \symbol{34}1\symbol{34} to indicate that it is ready to communicate as well.  If the DCE goes through a \symbol{34}boot\symbol{34} sequence when the DTR gets signaled, it should not signal DSR until it is complete. But many connectors \symbol{34}hard wire\symbol{34} this pin to be directly connected to the DTR pin at each end to reduce the number of wires needed in the cable. This can be useful for connecting devices using existing telephone wires, but prevents applications from using the DTR and DSR for handshaking.
\subsection{RTS (Request To Send)}
\label{38}

Setting the RTS signal to \myhref{http://en.wikipedia.org/wiki/RS-232C\%23Voltage_levels}{logic \symbol{34}1\symbol{34}} indicates to the DCE that the DTE wants to send it data. Resetting the RTS signal to \myhref{http://en.wikipedia.org/wiki/RS-232C\%23Voltage_levels}{logic \symbol{34}0\symbol{34}} indicates to the DCE that the DTE has no more data to send.
\subsection{CTS (Clear To Send)}
\label{39}

This is the response signal from the DCE regarding if the terminal equipment should be transmitting any data.  When this signal is at \myhref{http://en.wikipedia.org/wiki/RS-232C\%23Voltage_levels}{logical \symbol{34}1\symbol{34}}, the terminal is \symbol{34}permitted\symbol{34} to transmit data.  Like the DTR/DSR pins, this one can be directly connected to the RTS pin to reduce the number of wires needed, but this eliminates the possibility of hardware flow control.  Some software ignores this pin and the RTS pin, so other flow control systems are also used.  That will be explained when we get to actual software.
\subsection{RI (Ring Indicator)}
\label{40}

Again, thinking back to a telephone modem, this is a signal that indicates that the telephone is \symbol{34}ringing\symbol{34}.  Generally, even on a real telephone modem, this is only occasionally set to -{}15V for the signal.  Basically, when you would normally be hearing a \symbol{34}ring\symbol{34} on your telephone, this pin would be signaled.  On Null-{}modems, often this wire isn\textquotesingle{}t even connected to anything.  If you really are connected to a real modem, this does have some strong uses, although there are other ways to have the terminal equipment (like a PC connected to an external modem) be informed that there are ways to communicate this information through the data pins as well.  This will be covered lightly in the software section.
\subsection{Other RS-{}232 Pins}
\label{41}

There are other pins that the DB-{}25 has implemented that the DB-{}9 doesn\textquotesingle{}t normally use, such as a secondary transmit and receive pin, Secondary CTS/RTS for those alternate pins, a -{}15V signal for power, a clock, and a couple of other good ideas as well.  The problem with implementing all of these pins is that you also need to run separate wires, and a full set of DB-{}25 connectors would also mean having 25 physical wires going the full distance between the DTE and DCE.  If this is more than a foot or so, it gets to be a big hassle, particularly if you are going through walls or in a more permanent setting.  If the wrong wire gets clipped in the bundle, the whole thing must be restrung again, or you must go through wire testing like the old-{}fashioned telephone linemen used to have to do when fixing a phone distribution box.  Often only three physical copper lines are used to connect the DTE to DCE, and that is simply RX, TX, and GND.  The rest can be easily \symbol{34}faked\symbol{34} on the connector end in a manner sufficient for most software and hardware applications.
\section{Baud Rates Explained}
\label{42}
Baud and BPS (Bits Per Second) are usually not the same thing, although they are often used interchangeably, particularly in marketing literature. There are several ways to determine what the actual data rate of a particular piece of equipment is, but in popular marketing literature, or even general reference texts, they will almost always refer to \symbol{34}Baud Rate\symbol{34}, even if they are referring to bits per second.

Baud means the number of changes to the transmission media per second in a modulated signal. If each transmission event contains more than one bit of information, then Baud and BPS are not the same. E.g. if each event contains two bits (two bits modulated in an event), then the BPS of such a transmission would be twice as large as the Baud rate. This is not a theoretical case. Typical \symbol{34}high speed\symbol{34} modems use sophisticated modulation on the telephone line, where the bit rate and Baud rate differ significantly on the line. It is important to know this when you build measurement equipment, decoders (demodulators), encoders (modulators), and all sorts of transmission equipment for a particular protocol.

However, software developers typically like to ignore the difference of bit rate and baud rate, because a bit can either have the value true or false -{} an \symbol{34}event\symbol{34} (a bit) always only has two possible states. They have no basic unit which can e.g. hold four different states. In other words, on the software site the modulation has already been flattened by the demodulator. If a modulation was used which can e.g. transmit 8 bits in an event, the software developer sees them already as a series of 8 consecutive bits, each either true or false. The demodulator took care of that. When it got an event it turned the single 8-{}bit event into eight single-{}bit events. Software developers don\textquotesingle{}t see the original single entity with 256 different states (voltages, phases). Since the modulation has been flattened they don\textquotesingle{}t experience the difference between Baud rate and bit rate any more. This is not the fault of the people who defined  a Baud or a BPS. It is just a (welcome) limitation of digital computer hardware.

Baud is actually a shortened term named in honor of Ã�mile Baudot, a French inventor of early teleprinter machines that replaced the telegraph key using Morse Code.  Basically two typewriters that could be connected to each other with some wires.  He came up with some of the first digital character encoding schemes, and the character codes were transmitted with a serial data connection.  Keep in mind this was being done largely before computers were invented.  Indeed, some of these early teleprinter devices were connected to the very first computers like the ENIAC or UNIVAC, simply because they were relatively cheap and mass produced at that point.

In order for serial data communication to happen, you need to agree on a clock signal, or baud rate, in order to get everything to be both transmitted and received properly.  This is where the language purists get into it, because it is this clock signal that actually drives the \symbol{34}baud rate\symbol{34}.  Let\textquotesingle{}s start more at the beginning with Ã�mile Baudot\textquotesingle{}s teleprinters to explain baud rate.

Ã�mile\textquotesingle{}s early teleprinters used 5 data bits and 1 stop bit to transmit a character.  We will go onto formatting issues in a second, but what is important is that six signals are sent through a wire in some fashion that would indicate that a character is transmitted.  Typically the equipment was designed to run at 50 baud, or in other words the equipment would transmit or receive a \symbol{34}bit\symbol{34} of data 50 times per second.  Not coincidentally, French power systems also ran on an alternating current system of 50 Hz, so this was an easy thing to grab to determine when a new character should be transmitted.

Teleprinters evolved, and eventually you have Western Union sending teleprinter \symbol{34}cablegrams\symbol{34} all around the world.  If you hear of a TELEX number, this is the relic of this system, which is still in use at the present time, even with the Internet.  By rapidly glossing over a whole bunch of interesting history, you end up with the United States Department of Justice (DOJ) in a lawsuit with AT\&T.  Mind you this was an earlier anti-{}trust lawsuit prior to the famous/infamous 1982 settlement.  The reason this is important is because the DOJ insisted that Western Union got all of the digital business (cable grams... and unfortunately this got to be read as computer equipment as well), and AT\&T got modulated frequencies, or in other words, you could talk to your mother on Mother\textquotesingle{}s Day on their equipment.  When computers were being built in the 1950s, people wanted some way to connect different pieces of computer equipment together to \symbol{34}talk\symbol{34} to each other.  This finally resulted in the RS-{}232 standard that we are discussing on this page.

While Western Union was permitted to carry digital traffic, often the connections weren\textquotesingle{}t in or near computer centers.  At this time AT\&T found a loophole in the anti-{}trust settlement that could help get them into the business of being a \symbol{34}carrier\symbol{34} of computer data.  They were also offering to transmit computer data at rates considerably cheaper than Western Union was going to charge.  Hence, the modem was born.
\subsection{Modems Explained}
\label{43}

The long description of a modem is a \symbol{34}Modulator/Demodulator\symbol{34}, and this description is important.  Since AT\&T could only carry \symbol{34}tones\symbol{34}, like music from a radio network or the voice of your mother, they created a device that would electronically create \symbol{34}music\symbol{34} or \symbol{34}tones\symbol{34} that could be carried on their network.  They would then take a computer \symbol{34}1\symbol{34} or \symbol{34}0\symbol{34} and \symbol{34}modulate\symbol{34} the bit to a frequency, like say 2600 Hz.  (The exact tones varied based on baud rate and other factors, but there were exact frequency specs here.)  A matching device would be able to look for that \symbol{34}note\symbol{34} or \symbol{34}tone\symbol{34} in the \symbol{34}music\symbol{34} and be able to convert that back to a computer \symbol{34}1\symbol{34} or \symbol{34}0\symbol{34}, or in other words, demodulate the music.  Since all you and your buddy on each end of the telephone are only playing music to each other, it was legal for AT\&T to have that music on their network.  That only computers could possibly understand this music is besides the point, and the DOJ turned a blind eye on the whole practice, despite objections from Western Union.

The original modems you could rent were AT\&T Bell 103 modems.  These were clunky boxes about the size of a shoe box that had a bunch of switches on the outside and an RS-{}232 cable that connected to the computer equipment you were using.  These boxes were designed for the old-{}fashioned handset telephones and had pieces of rubber that would go around the \symbol{34}speaker\symbol{34} and \symbol{34}mic\symbol{34} portion of the telephone (no direct copper connection to the telephone equipment back then).  If you wanted to dial the telephone, you had to use the rotary dial on the phone itself... the computer didn\textquotesingle{}t have access to that sort of equipment.  Keep in mind that the FCC regulated just about everything that happened with phone equipment, and AT\&T owned everything related to telephones.  You even had to \symbol{34}rent\symbol{34} the modem from AT\&T, and that rental charge was on your monthly phone bill.

The Bell 103 was originally 110 baud, although it eventually had a switch to \symbol{34}move up\symbol{34} to 220 baud.  300 baud modems were also fairly common throughout the 1960\textquotesingle{}s and 1970\textquotesingle{}s.  Keep in mind that AT\&T (or your local phone company) was the only company you could even rent a modem from, whether you wanted one or not.  By 1982, modems were so commonly used and the POTS telephone network so widespread that this same system of sending \symbol{34}music\symbol{34} over the telephone has been preserved, even though the legal reasons for doing it are no longer valid.  With the advent of ISDN and DSL lines, this is no longer the case and the phone companies are now sending pure digital signals instead.  This is also why DSL lines can carry much more data than an ordinary phone line, even though it is the same pair of copper wires going into your home.

When modems started going to very high speeds, they hit a brick wall of sorts.  It was decided back in the 1950\textquotesingle{}s that telephone equipment would only have to carry tone signals going to about 10kHz.  For normal voice conversations this is sufficient, and you can even tell the difference between a man and a woman on the telephone.  The problem comes in that this means the highest normal \symbol{34}baud rate\symbol{34} that you can send over a home telephone network is about 9600 baud, usually about 4800 baud, because the telephone equipment itself is going to be dropping \symbol{34}bits\symbol{34} as you switch from one tone to another.  Without going into the heavy math, you need to have at least one full \symbol{34}sound wave\symbol{34} in order to be able to distinguish one tone or note from another.  Modem manufacturers did think of something else that could be done to overcome this limitation, however.  Instead of just sending one tone at a time, you could play a whole \symbol{34}chord\symbol{34}, or several distinct tones at the same time.  Finally back to baud vs. bits per second.  With higher speeds, instead of simply sending only one bit, you are sending two or as many as sixteen bits at the same time with varying \symbol{34}chords\symbol{34} of \symbol{34}music\symbol{34}.  This is how you get a 56K BPS modem, even though it is still only transmitting at 9600 baud.

More about modems in \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3AModems\%20and\%20AT\%20Commands}{Serial Programming:Modems and AT Commands}.
\section{Signal Bits}
\label{44}

There are four sets of transmission bits that are used in the RS-{}232 standard.  The positioning of these bits in the RS-{}232 data stream is all that distinguishes one bit from the other.  This is also where serial communication really hits the \symbol{34}metal\symbol{34}, because each bit follows in a sequence, or in a serial fashion.  All of the other wires, pins, baud rate, and everything else is to make sure that these bits can be understood.  Keep in mind that at this point the entire protocol is based on the transmission of a single character.  Multiple characters can be sent, but they are a sequence of single character transmission events.  How the characters relate is based on what the software does with the data on the next protocol \symbol{34}layer\symbol{34}.
\subsection{Start Bit}
\label{45}

When a transmission line is not sending anything, it remains in a logical state of \symbol{34}1\symbol{34}, or -{}15V on the wire.  When you want to send a character, you start by changing the voltage to +15V, indicating a logical \symbol{34}0\symbol{34} state.  Each subsequent bit is based on the baud rate that is established for communication between each device.  This bit signals that the receiving device should start scanning for subsequent bits to form the character.
\subsection{Data Bits}
\label{46}

This is the primary purpose of serial communications, where the data actually gets sent.  The number of bits here can vary quite a bit, although in current practice the number of bits typically transmitted is eight bits.  Originally this was five bits, which was all that the early teleprinters really used to make the letters of the Alphabet and a few special characters.  This has implications for Internet protocols as well, because early e-{}mail systems transmitted with only seven bits when they were connected over some RS-{}232 links.  This worked because the early character encoding schemes, mainly ASCII, only used seven bits to encode all characters commonly used for the English language.  Because computer components work best on powers of 2 (2,4,8,16,32, etc.), eight bits became more commonly used for data storage of individual characters.  Unicode and other coding schemes have moved this concept forward for languages other than English, but eight bits still is a very common unit for transmitting data, and the most common setting for RS-{}232 devices today.

The least significant bit (LSB)  is transmitted first in this sequence of bits to form a character.
\subsection{Parity Bit}
\label{47}

To help perform a limited error check on the characters being transmitted, the parity bit has been introduced.  Parity can detect some transmission errors but not correct.  The value of the parity bit depends on the number of bits set to \symbol{34}1\symbol{34} in the string of data bits.

There are four different kinds of parity configuration to consider:
\subsubsection{Odd Parity}
\label{48}

When the sum of bits ends up coming up with an odd number (like the sequence 01110110), this bit will be set to a logical state of \symbol{34}1\symbol{34}.
\subsubsection{Even Parity}
\label{49}

This uses the formula of trying to determine if there are an even number of bits set to \symbol{34}1\symbol{34}.  In this regard, it is the exact opposite state of the Odd Parity. For e.g., for a frame with seven bits that has an odd number of ones, the parity bit will be set to one.  So essentially, the entire byte, including parity must have an even number of ones for even parity.
\subsubsection{Mark Parity}
\label{50}

Using this concept, the transmission protocol is essentially ignoring the parity bit entirely.  Instead, the transmission configuration is sending a logical \symbol{34}1\symbol{34} at the point that a parity bit should be sent, regardless of if the sequence should have an odd or even count.  This configuration mode is useful for equipment that may want to be testing parity checking software or firmware in the receiving equipment.
\subsubsection{Space Parity}
\label{51}

The opposite of Mark parity, this sends a logical \symbol{34}0\symbol{34} for the parity checksum.  Again, very useful for equipment diagnostics.
\subsubsection{Parity None}
\label{52}

This isn\textquotesingle{}t really a parity formula, but rather an acknowledgment that parity really doesn\textquotesingle{}t work, so the equipment doesn\textquotesingle{}t even check for it.  This means the parity bit isn\textquotesingle{}t even used.  This can cause, in some circumstances, a slight increase in the total data throughput.  More on that below.
\subsection{Stop Bits}
\label{53}

This really isn\textquotesingle{}t a bit at all, but an agreement that once the character is sent that the transmitting equipment will return to a logical \symbol{34}1\symbol{34} state.  The RS-{}232 specification requires this logical state of \symbol{34}1\symbol{34} to remain for at least one whole clock cycle, indicating that the character transmission is complete.  Sometimes the protocol will specify two stop bits.  One reason that this might be done is because the clock frequencies being used by the equipment might have slightly different timing, and over the course of hundreds or thousands of characters being transmitted the difference between two clocks on the two different pieces of equipment will cause the expected bits to be shifted slightly, causing errors.  By having two stop bits the transmission is slightly slower, but the clock signals between the two pieces of equipment can be coordinated better.  Equipment expecting one stop bit can accept data transmitted by equipment sending two stop bits.  It won\textquotesingle{}t work the other way around, however.  This is something to try if you are having problems trying to get two pieces of equipment to communicate at a given baud rate, to add the second stop bit to the transmitter.
\subsection{Data Transmission Rates}
\label{54}

We got into a discussion of baud rate vs. bits per second.  Here is where baud as the number of bits being transmitted is still off, even if the nominal bits per second is also the same as the baud rate.  By adding start bits, stop bits, and parity bits, that is going to add overhead to the transmission protocol.  All digital transmission protocols have some sort of overhead on them, so this shouldn\textquotesingle{}t be that much of a surprise.  As we get more into data packets and other issues, the actual amount of data being transmitted will drop even further.

Keep in mind that if you are transmitting with 6 data bits, 2 Stop bits, and Even Parity, you are transmitting only six bits of data and four other bits of extra information.  That means even with 9600 baud, you are only transmitting 5,760 bits of data per second.  This really is a big difference, and that is still only raw bits once it gets through the actual serial communications channel.  A more typical 8 data bits, 1 Stop Bit, No Parity will be a little bit better at 9600 baud, with eight bits of data and only two bits used for overhead.  That gives a total throughput of 7,680 bits per second.  A little bit better, but you can\textquotesingle{}t simply presume that the baud rate indicates how much data is going to be transmitted.
\section{Relationship of Baud Rate to Maximum Distance}
\label{55}

There are physical limits to how far serial data communication can occur over a piece of wire.  When you apply a voltage onto a wire it takes time for that voltage to traverse the wire, and there are other unstable conditions that happen when you send a \symbol{34}pulse\symbol{34} down the wire and change voltages too quickly.  This problem is worse as wires become longer and the frequency (i.e. baud rate) increases.  This distance can vary based on a number of factors, including the thickness of the wires involved, RF interference on the wires, quality of the wires during the manufacturing process, how well they were installed... e.g., are there any \symbol{34}kinks\symbol{34} in the wires that force it into a sharp bend, and finally the baud rate that you are transmitting the data. 

This table presumes a fairly straight and uniform cable that is typical for most low-{}voltage applications (i.e., not a power circuit that uses 110V to run your refrigerator, toaster, and television).  Typically something like a CAT-{}5 cable (also used for local networks or phone lines) should be more than sufficient for this purpose.

\begin{longtable}{>{\RaggedRight}p{0.15355\linewidth}>{\RaggedRight}p{0.34563\linewidth}>{\RaggedRight}p{0.38029\linewidth}} 
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Baud Rate}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Maximum Distance (in feet)}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Maximum Distance (in meters)}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2400 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3000 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 914.4\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4800 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1000 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 304.8\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 9600 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 500 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 152.4\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 19200 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 50 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 15.24 
\end{longtable}


The distance limitation can be mitigated.  There are \symbol{34}short haul modems\symbol{34} that can extend this distance to several miles of cable.  There are also telephone lines, or conventional modems, and other long-{}distance communications techniques.  There are other ways to handle data in situations like this, and those signals can be converted to simple RS-{}232 data formats that a typical home computer can interpret.  Distance still can be a limiting factor for communication, although when you are talking about distances like to Saturn for the Cassini mission, serial data communication has other issues involved than just data loss due to cable length.  And yes, NASA/ESA is using serial data communication for transmitting those stunning images back to Earth.
\section{External References}
\label{56}

\myhref{http://en.wikipedia.org/wiki/Serial\%20cable}{w:Serial cable}
\begin{myitemize}
\item{}  \myhref{http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html}{ RS-{}232 wiring standards explained}
\item{}  \myhref{http://www.arcelect.com/rs232.htm}{ RS-{}232 connection types explained}
\item{}  \myhref{http://en.wikipedia.org/wiki/RS-232C}{Wikipedia article on RS-{}232}
\item{}  \myhref{http://hw-server.com/rs232-overview-rs232-standard}{ RS-{}232 standards explained by HW-{}Server}
\item{}  \myhref{http://www.beyondlogic.org/serial/serial.htm\#2}{ Serial Pinouts (D25 and D9 Connectors)} (also has more technical information about the UARTs used in PCs)
\item{}  \myhref{http://airborn.com.au/serial/rs232.html}{ RS232 Connections, and wiring up serial device} has several diagrams, including one showing how to let one PC monitor the serial communication between 2 other RS232 devices.
\item{}  \myhref{http://www.lammertbies.nl/comm/info/RS-232_specs.html}{ Lammert Bies, RS232 Specifications and standard} Includes technical specs on RS-{}232 signals and more detailed information about parity checking.
\item{} \myhref{http://www.tronisoft.com/rs232info/ASCII_serial_port_crib_sheets.pdf}{ Tronisoft\textquotesingle{}s Printable ASCII  Serial Port Crib Sheets}
\item{} \myhref{http://code.google.com/p/java-simple-serial-connector/}{ jSSC library (Java Simple Serial Connector). Work under Win32 and Win64}
\end{myitemize}

\section{Other Serial Programming Articles}
\label{57}

\myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3ATypical\%20RS232-Hardware\%20Configuration}{Typical RS232-{}Hardware Configuration}






\myhref{http://en.wikibooks.org/wiki/Category\%3ASerial\%20Programming}{Category:Serial Programming}
\chapter{8250 UART Programming}

\myminitoc
\label{58}





\label{59}



\section{Introduction}
\label{60}

Finally we are moving away from wires and voltages and hard-{}core electrical engineering applications, although we still need to know quite a bit regarding computer chip architectures at this level.  While the primary focus of this section will concentrate on the 8250 UART, there are really three computer chips that we will be working with here:

\begin{myitemize}
\item{} 8250 UART
\item{} 8259 PIC (Programmable Interrupt Controller)
\item{} 8086 CPU (Central Processing Unit)
\end{myitemize}


Keep in mind that these are chip families, not simply the chip part number itself.  Computer designs have evolved quite a bit over the years, and often all three chips are put onto the same piece of silicon because they are tied together so much, and to reduce overall costs of the equipment.  So when I say 8086, I also mean the successor chips including the 80286, 80386, Pentium, and compatible chips made by manufacturers other than Intel.  There are some subtle differences and things you need to worry about for serial data communication between the different chips other than the 8086, but in many cases you could in theory write software for the original IBM PC doing serial communication and it should run just fine on a modern computer you just bought that is running the latest version of Linux or Windows XP.  

Modern operating systems handle most of the details that we will be covering here through low-{}level drivers, so this should be more of a quick understanding for how this works rather than something you might implement yourself, unless you are writing your own operating system.  For people who are designing small embedded computer devices, it does become quite a bit more important to understand the 8250 at this level.

Just like the 8086, the 8250 has evolved quite a bit as well, e.g. into the 16550 UART. Further down I will go into how to detect many of the different UART chips on PCs, and some quirks or changes that affect each one.  The differences really aren\textquotesingle{}t as significant as the changes to CPU architecture, and the primary reason for updating the UART chip was to make it work with the considerably faster CPUs that are around right now.  The 8250 itself simply can\textquotesingle{}t keep up with a Pentium chip.

Remember as well that this is trying to build a foundation for serial programming on the software side.  While this can be useful for hardware design as well, quite a bit will be missing from the descriptions here to implement a full system.
\section{8086 I/O ports}
\label{61}
We should go back even further than the Intel 8086, to the original Intel CPU, the 4004, and its successor, the 8008. All computer instructions, or op-{}codes, for the 8008 still function in today\textquotesingle{}s Intel chips, so even port I/O tutorials written 30 years ago are valid today. The newer CPUs have enhanced instructions for dealing with more data more efficiently, but the original instructions are still there.

When the 8008 was released, Intel tried to devise a method for the CPU to communicate with external devices.  They chose a method called I/O port architecture, meaning that the chip has a special set of pins dedicated to communicating with external devices.  In the 8008, this meant that there were a total of sixteen (16) pins dedicated to communicating with the chip.  The exact details varied based on chip design and other factors too detailed for the current discussion, but the general theory is fairly straightforward.

Eight of the pins represent an I/O code that signaled a specific device.  This is known as the I/O port.  Since this is just a binary code, it represents the potential to hook up 256 different devices to the CPU.  It gets a little more complicated than that, but still you can think of it from software like a small-{}town post-{}office that has a bank of 256 PO boxes for its customers.

The next set of pins represent the actual data being exchanged.  You can think of this as the postcards being put into or removed from the PO boxes.

All the external device has to do is look for its I/O code, and then when it matches what it is \symbol{34}assigned\symbol{34} to look for, it has control over the corresponding port.  An pin signals whether the data is being sent to or from the CPU.  For those familiar with setting up early PCs, this is also where I/O conflicts happen: when two or more devices try to access the same I/O port at the same time.  This was a source of heartburn on those early systems, particularly when adding new equipment.

Incidentally, this is very similar to how conventional RAM works, and some CPU designs mimic this whole process straight in RAM, reserving a block of memory for I/O control.  This has some problems, including the fact that it chews up a portion of potential memory that could be used for software instead.  It ends up that with the IBM PC and later PC systems, both I/O methods are used extensively, so it really gets complicated.  For serial communication, however, we are going to stick with the port I/O method, as that is how the 8250 chip works.
\subsection{Software I/O access}
\label{62}

When you get down to actually using this in your software, the assembly language instruction to send or receive data to port 9 looks something like this:

\TemplatePreformat{$\text{ }$\newline{}
out$\text{ }${}9,$\text{ }${}ah$\text{ }${};$\text{ }${}sending$\text{ }${}data$\text{ }${}from$\text{ }${}register$\text{ }${}ah$\text{ }${}out$\text{ }${}to$\text{ }${}port$\text{ }${}9$\text{ }${}$\text{ }$\newline{}
in$\text{ }${}ah,$\text{ }${}9$\text{ }${};$\text{ }${}getting$\text{ }${}data$\text{ }${}from$\text{ }${}port$\text{ }${}9$\text{ }${}and$\text{ }${}putting$\text{ }${}it$\text{ }${}in$\text{ }${}register$\text{ }${}ah$\text{ }$\newline{}
}

When programming in higher level languages, it gets a bit simpler.  A typical C language Port I/O library is usually written like this:

\TemplatePreformat{$\text{ }$\newline{}
char$\text{ }${}test;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
test$\text{ }${}=$\text{ }${}255;$\text{ }$\newline{}
outp(9,test);$\text{ }$\newline{}
inp(9,*test);$\text{ }$\newline{}
}

For many versions of Pascal, it treats the I/O ports like a massive array that you can access, that is simply named Port:

\TemplatePreformat{$\text{ }$\newline{}
procedure$\text{ }${}PortIO(var$\text{ }${}Test:$\text{ }${}Byte);$\text{ }$\newline{}
begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}9{$\text{]}$}$\text{ }${}:=$\text{ }${}Test;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Test$\text{ }${}:=$\text{ }${}Port{$\text{[}$}9{$\text{]}$};$\text{ }$\newline{}
end;$\text{ }$\newline{}
}

{\bfseries Warning!!} And this really is a warning.  By randomly accessing I/O ports in your computer without really knowing what it is connected to can really mess up your computer.  At the minimum, it will crash the operating system and cause the computer to not work.  Writing to some I/O ports can permanently change the internal configuration of your computer, making a trip to the repair shop necessary just to undo the damage you\textquotesingle{}ve done through software.  Worse yet, in some cases it can cause actual damage to the computer.  This means that some chips inside the computer will no longer work and those components would have to be replaced in order for the computer to work again.  Damaged chips are an indication of lousy engineering on the part of the computer, but unfortunately it does happen and you should be aware of it.

Don\textquotesingle{}t be afraid to use the I/O ports, just make sure you know what you are writing to, and you know what equipment is \symbol{34}mapped\symbol{34} to for each I/O port if you intend to use a particular I/O port.  We will get into more of the specifics for how to identify the I/O ports for serial communication in a bit.  Finally we are starting to write a little bit of software, and there is more to come.
\subsection{x86 port I/O extensions}
\label{63}

There are a few differences between the 8008 CPU and the 8086.  The most notable that affects software development is that instead of just 256 port I/O addresses, the 8086 can access 65536 different I/O ports.  In addition, besides simply sending a single character in or out, the 8086 will let you send and receive 16 bits at once.  The 386 chips will even let you send and receive 32-{}bits simultaneously.  The need for more than 65536 different I/O ports has never been a serious problem, and if a device needed a larger piece of memory, the Direct Memory Access (DMA) methods are available.  This is where the device writes and reads the RAM of the computer directly instead of going through the CPU.  We will not cover that topic here.

Also, while the 8086 CPU was able to address 65536 different I/O ports, in actual practice it didn\textquotesingle{}t.  The chip designers at Intel got cheap and only had address lines for 10 bits, which has implications for software designers having to work with legacy systems.  This also meant that I/O port address \${}1E8 and \${}19E8 (and others... this is just an example) would resolve to the same I/O port for those early PCs.  The Pentium CPUs don\textquotesingle{}t have this limitation, but software written for some of that early hardware sometimes wrote to I/O port addresses that were \symbol{34}aliased\symbol{34} because those upper bits were ignored.  There are other legacy issues that show up, but fortunately for the 8250 chip and serial communications in general this isn\textquotesingle{}t a concern, unless you happen to have a serial driver that \symbol{34}took advantage\symbol{34} of this aliasing situation.  This issue would generally only show up when you are using more than the typical 2 or 4 serial COM ports on a PC.
\section{x86 Processor Interrupts}
\label{64}

The 8086 CPU and compatible chips have what is known as an interrupt line.  This is literally a wire to the rest of the computer that can be turned on to let the CPU know that it is time to stop whatever it is doing and pay attention to some I/O situations.

Within the 8086, there are two kinds of interrupts:  Hardware interrupts and Software interrupts.  There are some interesting quirks that are different from each kind, but from a software perspective they are essentially the same thing.  The 8086 CPU allows for 256 interrupts, but the number available for equipment to perform a Hardware interrupt is considerably restricted.
\subsection{IRQs Explained}
\label{65}

Hardware interrupts are numbered IRQ 0 through IRQ 15.  IRQ means Interrupt ReQuest.  There are a total of fifteen different hardware interrupts.  Before you think I don\textquotesingle{}t know how to count or do math, we need to do a little bit of a history lesson here, which we will finish when we move on to the 8259 chip.  When the original IBM-{}PC was built, it only had eight IRQs, labeled IRQ 0 through IRQ 7.  At the time it was felt that was sufficient for almost everything that would ever be put on a PC, but very soon it became apparent it wasn\textquotesingle{}t nearly enough for everything that was being added.  When the IBM-{}PC/AT was made (the first one with the 80286 CPU, and a number of enhancements that are commonly found on PCs today), it was decided that instead of a single 8259 chip, they would use two of these same chips, and \symbol{34}chain\symbol{34} them to one another in order to expand the number of interrupts from 8 to 15.  One IRQ had to be sacrificed in order to accomplish this task, and that was IRQ 2.

The point here is that if a device wants to notify the CPU that it has some data ready for the CPU, it sends a signal that it wants to stop whatever software is currently running on the computer and instead run a special \symbol{34}little\symbol{34} program called an interrupt handler.  Once the interrupt handler is finished, the computer can go back to whatever it was doing before.  If the interrupt handler is fast enough, you wouldn\textquotesingle{}t even notice that the handler has even been used.

In fact, if you are reading this text on a PC, in the time that it takes for you to read this sentence several interrupt handlers have already been used by your computer.  Every time that you use a keyboard or a mouse, or receive some data over the Internet, an interrupt handler has been used at some point in your computer to retrieve that information.
\subsection{Interrupt handlers}
\label{66}

We will be getting into specific details of interrupt handlers in a little bit, but now I want to explain just what they are.  Interrupt handlers are a method of showing the CPU exactly what piece of software should be running when the interrupt is triggered.

The 8086 CPU has a portion of RAM that has been established that \symbol{34}points\symbol{34} to where the interrupt software is located elsewhere in RAM.  The advantage of going this route is that the CPU only has to do a simple look-{}up to find just where the software is, and then transfers software execution to that point in RAM.  This also allows you as a programmer to change where the CPU is \symbol{34}pointing\symbol{34} to in RAM, and instead of going to something in the operating system, you can customize the interrupt handler and put something else there yourself.

How this is best done depends largely on your operating system.  For a simple operating system like MS-{}DOS, it actually encourages you to directly write these interrupt handlers, particularly when you are working with external peripherals.  Other operating systems like Linux or MS-{}Windows use the approach of having a \symbol{34}driver\symbol{34} that hooks into these interrupt handlers or service routines, and then the application software deals with the drivers rather than dealing directly with the equipment.  How a program actually does this is very dependent on the specific operating system you would be using.  If you are instead trying to write your own operating system, you would have to write these interrupt handlers directly, and establish the protocol on how you access these handlers to send and retrieve data.
\subsection{Software interrupts}
\label{67}

Before we move on, I want to hit very briefly on software interrupts.  Software interrupts are invoked with the 8086 assembly instruction \symbol{34}int\symbol{34}, as in:

int \${}21

From the perspective of a software application, this is really just another way to call a subroutine, but with a twist.  The \symbol{34}software\symbol{34} that is running in the interrupt handler doesn\textquotesingle{}t have to be from the same application, or even made from the same compiler.  Indeed, often these subroutines are written directly in assembly language.  In the above example, this interrupt actually calls a \symbol{34}DOS\symbol{34} subroutine that will allow you to perform some sort of I/O access that is directly related to DOS.  Depending on the values of the registers, usually the AX register in the 8086 in this case, it can determine just what information you want to get from DOS, such as the current time, date, disk size, and just about everything that normally you would associate with DOS.  Compilers often hide these details, because setting up these interrupt routines can be a little tricky.

Now to really make a mess of things.  \symbol{34}Hardware interrupts\symbol{34} can also be called from \symbol{34}software interrupts\symbol{34}, and indeed this is a reasonable way to make sure you have written your software correctly.  The difference here is that software interrupts will only be invoked, or have their portion of software code running in the CPU, if it has been explicitly called through this assembly opcode.
\section{8259 PIC (Programmable Interrupt Controller)}
\label{68}

The 8259 chip is the \symbol{34}heart\symbol{34} of the whole process of doing hardware interrupts.  External devices are directly connected to this chip, or in the case of the PC-{}AT compatibles (most likely what you are most familiar with for a modern PC) it will have two of these devices that are connected together.  Literally fifteen wires come into this pair of chips, each wire labeled IRQ-{}0 through IRQ-{}15.

The purpose of these chips is to help \symbol{34}prioritize\symbol{34} the interrupt signals and organize them in some orderly fashion.  There is no way to predict when a certain device is going to \symbol{34}request\symbol{34} an interrupt, so often multiple devices can be competing for attention from the CPU.

Generally speaking, the lower numbered IRQ gets priority.  In other words, if both IRQ-{}1 and IRQ-{}4 are requesting attention at the same time, IRQ-{}1 gets priority and will be triggered first as far as the CPU is concerned.  IRQ-{}4 has to wait until after IRQ-{}1 has completed its \symbol{34}Interrupt Service Routine\symbol{34} or ISR.

If the opposite happens however, with IRQ-{}4 doing its ISR (remember, this is software, just like any computer program you might normally write as a computer application), IRQ-{}1 will \symbol{34}interrupt\symbol{34} the ISR for IRQ-{}4 and push through its own ISR to be run instead, returning to the IRQ-{}4 ISR when it has finished.  There are exceptions to this as well, but let\textquotesingle{}s keep things simple at the moment.

Let\textquotesingle{}s return for a minute to the original IBM-{}PC.  When it was built, there was only one 8259 chip on the motherboard.  When the IBM-{}AT came out the engineers at IBM decided to add a second 8259 chip to add some additional IRQ signals.  Since there was still only 1 pin on the CPU (at this point the 80286) that could receive notification of an interrupt, it was decided to grab IRQ-{}2 from the original 8259 chip and use that to chain onto the next chip.  IRQ-{}2 was re-{}routed to IRQ-{}9 as far as any devices that depended on IRQ-{}2.  The nice thing about going with this scheme was that software that planned on something using IRQ-{}2 would still be \symbol{34}notified\symbol{34} when that device was used, even though seven other devices were now \symbol{34}sharing\symbol{34} this interrupt.  These are IRQ-{}8 through IRQ-{}15.

What this means in terms of priorities, however, is that IRQ-{}8 through IRQ-{}15 have a higher priority than IRQ-{}3.  This is mainly of concern when you are trying to sort out which device can take precedence over another, and how important it would be to notified when a piece of equipment is trying to get your attention.  If you are dealing with software running a specific computer configuration, this priority level is very important.

It should be noted here that COM1 (serial communication channel one) usually uses IRQ-{}4, and COM2 uses IRQ-{}3, which has the net effect of making COM2 to be a higher priority for receiving data over COM1.  Usually the software really doesn\textquotesingle{}t care, but on some rare occasions you really need to know this fact.
\subsection{8259 Registers}
\label{69}

The 8259 has several \symbol{34}registers\symbol{34} that are associated with I/O port addresses.  We will visit this concept a little bit more when we get to the 8250 chip.  For a typical PC Computer system, the following are typical primary port addresses associated with the 8259:


\begin{longtable}{>{\RaggedRight}p{0.65559\linewidth}>{\RaggedRight}p{0.26405\linewidth}} 
\multicolumn{2}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Interrupt Controller Port I/O Addresses}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Register Name}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} I/O Port}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Master Interrupt Controller &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0020\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Slave Interrupt Controller &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00A0 
\end{longtable}


This primary port address is what we will use to directly communicate with the 8259 chip in our software.  There are a number of commands that can be sent to this chip through these I/O port addresses, but for our purposes we really don\textquotesingle{}t need to deal with them.  Most of these are used to do the initial setup and configuration of the computer equipment by the Basic Input Output System (BIOS) of the computer, and unless you are rewriting the BIOS from scratch, you really don\textquotesingle{}t have to worry about this.  Also, each computer is a little different in its behavior when you are dealing with equipment at this level, so this is something more for a computer manufacturer to worry about rather than something an application programmer should have to deal with, which is exactly why BIOS software is written at all.

Keep in mind that this is the \symbol{34}typical\symbol{34} Port I/O address for most PC-{}compatible type computer systems, and can vary depending on what the manufacturer is trying to accomplish.  Generally you don\textquotesingle{}t have to worry about incompatibility at this level, but when we get to Port I/O addresses for the serial ports this will become a much larger issue.
\subsection{Device Registers}
\label{70}

I\textquotesingle{}m going to spend a little time here to explain the meaning of the word register.  When you are working with equipment at this level, the electrical engineers who designed the equipment refer to registers that change the configuration of the equipment.  This can happen at several levels of abstraction, so I want to clear up some of the confusion.

A register is simply a small piece of RAM that is available for a device to directly manipulate.  In a CPU like the 8086 or a Pentium, these are the memory areas that are used to directly perform mathematical operations like adding two numbers together.  These usually go by names like AX, SP, etc.  There are very few registers on a typical CPU because access to these registers is encoded directly into the basic machine-{}level instructions.

When we are talking about device register, keep in mind these are not the CPU registers, but instead memory areas on the devices themselves.  These are often designed so they are connected to the Port I/O memory, so when you write to or read from the Port I/O addresses, you are directly accessing the device registers.  Sometimes there will be a further level of abstraction, where you will have one Port I/O address that will indicate which register you are changing, and another Port I/O address that has the data you are sending to that register.  How you deal with the device is based on how complex it is and what you are going to be doing.

In a real sense, they are registers, but keep in mind that often each of these devices can be considered a full computer in its own right, and all you are doing is establishing how it will be communicating with the main CPU.  Don\textquotesingle{}t get hung up here and get these confused with the CPU registers.
\subsection{ISR Cleanup}
\label{71}

One area that you have to interact on a regular basis when using interrupt controllers is to inform the 8259 PIC controller that the interrupt service routine is completed.  When your software is performing an interrupt handler, there is no automated method for the CPU to signal to the 8259 chip that you have finished, so a specific \symbol{34}register\symbol{34} in the PIC needs to be set to let the next interrupt handler be able to access the computer system.  Typical software to accomplish this is like the following:

\TemplatePreformat{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}\${}20{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}20;$\text{ }$\newline{}
}

This is sending the command called \symbol{34}End of Interrupt\symbol{34} or often written as an abbreviation simply \symbol{34}EOI\symbol{34}.  There are other commands that can be sent to this register, but for our purposes this is the only one that we need to concern ourselves with.{\bfseries
\begin{mydescription}{\bfseries
\begin{mydescription}
\end{mydescription}
}

\end{mydescription}
}

Now this will clear the \symbol{34}master\symbol{34} PIC, but if you are using a device that is triggered on the \symbol{34}slave\symbol{34} PIC, you also need to inform that chip as well that the interrupt service has been completed.  This means you need to send \symbol{34}EOI\symbol{34} to that chip as well in a manner like this:

\TemplatePreformat{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}\${}A0{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}20;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}\${}20{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}20;$\text{ }$\newline{}
}

There are other things you can do to make your computer system work smoothly, but let\textquotesingle{}s keep things simple for now.
\subsection{PIC Device Masking}
\label{72}

Before we leave the subject of the 8259 PIC, I\textquotesingle{}d like to cover the concept of device masking.  Each one of the devices that are attached to the PIC can be \symbol{34}turned on\symbol{34} or \symbol{34}turned off\symbol{34} from the viewpoint of how they can interrupt the CPU through the PIC chip.  Usually as an application developer all we really care about is if the device is turned on, although if you are trying to isolate performance issues you might turn off some other devices.  Keep in mind that if you turn a device \symbol{34}off\symbol{34}, the interrupt will not work until it is turned back on.  That can include the keyboard or other critical devices you may need to operate your computer.

The register to set this mask is called \symbol{34}Operation Control Word 1\symbol{34} or \symbol{34}OCW1\symbol{34}.  This is located at the PIC base address + 1, or for the \symbol{34}Master\symbol{34} PIC at Port I/O Address \${}21.  This is where you need to go over bit manipulation, which I won\textquotesingle{}t cover in detail here.  The following tables show the related bits to change in order to enable or disable each of the hardware interrupt devices:


\begin{longtable}{>{\RaggedRight}p{0.11428\linewidth}>{\RaggedRight}p{0.30449\linewidth}>{\RaggedRight}p{0.46069\linewidth}} 
\multicolumn{3}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Master OCW1 (\${}21)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ Enabled{\bfseries  }}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Device Function}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Parallel Port (LPT1)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Floppy Disk Controller\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved/Sound Card\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Serial Port (COM1)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Serial Port (COM2)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Slave PIC\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Keyboard\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} System Timer 
\end{longtable}




\begin{longtable}{>{\RaggedRight}p{0.10932\linewidth}>{\RaggedRight}p{0.29129\linewidth}>{\RaggedRight}p{0.47885\linewidth}} 
\multicolumn{3}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Slave OCW1 (\${}A1)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ Enabled}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Device Function}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ15 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ14 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Hard Disk Drive\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ13 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Math Co-{}Processor\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ12 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} PS/2 Mouse\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ11 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} PCI Devices\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ10 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} PCI Devices\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ9 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Redirected IRQ2 Devices\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Real Time Clock 
\end{longtable}


Assuming that we want to turn on IRQ3 (typical for the serial port COM2), we would use the following software:

\TemplatePreformat{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}\${}21{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}\${}21{$\text{]}$}$\text{ }${}and$\text{ }${}\${}F7;$\text{ }${}\{Clearing$\text{ }${}bit$\text{ }${}3$\text{ }${}for$\text{ }${}enabling$\text{ }${}IRQ3\}$\text{ }$\newline{}
}

And to turn it off we would use the following software:

\TemplatePreformat{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}\${}21{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}\${}21{$\text{]}$}$\text{ }${}or$\text{ }${}\${}08;$\text{ }${}\{Setting$\text{ }${}bit$\text{ }${}3$\text{ }${}for$\text{ }${}disabling$\text{ }${}IRQ3\}$\text{ }$\newline{}
}

If you are having problems getting anything to work, you can simply send this command in your software:

\TemplatePreformat{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}\${}21{$\text{]}$}$\text{ }${}:=$\text{ }${}0;$\text{ }$\newline{}
}

which will simply enable everything.  This may not be a good thing to do, but will have to be something for you to experiment with depending on what you are working with.  Try not to take short cuts like this as not only is it a sign of a lazy programmer, but it can have side effects that your computer may behave different than you intended.  If you are working with the computer at this level, the goal is to change as little as possible so you don\textquotesingle{}t cause damage to any other software you are using.
\section{Serial COM Port Memory and I/O Allocation}
\label{73}

Now that we have pushed through the 8259 chip, lets move on to the UART itself.  While the Port I/O addresses for the PICs are fairly standard, it is common for computer manufacturers to move stuff around for the serial ports themselves.  Also, if you have serial port devices that are part of an add-{}in card (like an ISA or PCI card in the expansion slots of your computer), these will usually have different settings than something built into the main motherboard of your computer.  It may take some time to hunt down these settings, and it is important to know what these values are when you are trying to write your software.  Often these values can be found in the BIOS setup screens of your computer, or if you can pause the messages when your computer turns on, they can be found as a part of the boot process of your computer.

For a \symbol{34}typical\symbol{34} PC system, the following are the Port I/O addresses and IRQs for each serial COM port:


\begin{longtable}{>{\RaggedRight}p{0.25808\linewidth}>{\RaggedRight}p{0.15639\linewidth}>{\RaggedRight}p{0.46499\linewidth}} 
\multicolumn{3}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Common UART IRQ and I/O Port Addresses}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM Port}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Base Port I/O address}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}3F8\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}2F8\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}3E8\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}2E8 
\end{longtable}


If you notice something interesting here, you can see that COM3 and COM1 share the same interrupt.  This is not a mistake but something you need to keep in mind when you are writing an interrupt service routine.  The 15 interrupts that were made available through the 8259 PIC chips still have not been enough to allow all of the devices that are found on a modern computer to have their own separate hardware interrupt, so in this case you will need to learn how to share the interrupt with other devices.  I\textquotesingle{}ll cover more of that later when we get into the actual software to access the serial data ports, but for now remember not to write your software strictly for one device.

The Base Port I/O address is important for the next topic we will cover, which is directly accessing the UART registers.
\section{UART Registers}
\label{74}

The UART chip has a total of 12 different registers that are mapped into 8 different Port I/O locations.  Yes, you read that correct, 12 registers in 8 locations.  Obviously that means there is more than one register that uses the same Port I/O location, and affects how the UART can be configured.  In reality, two of the registers are really the same one but in a different context, as the Port I/O address that you transmit the characters to be sent out of the serial data port is the same address that you can read in the characters that are sent to the computer.  Another I/O port address has a different context when you write data to it than when you read data from it... and the number will be different after writing the data to it than when you read data from it.  More on that in a little bit.

One of the issues that came up when this chip was originally being designed was that the designer needed to be able to send information about the baud rate of the serial data with 16 bits.  This actually takes up two different \symbol{34}registers\symbol{34} and is toggled by what is called the \symbol{34}Divisor Latch Access Bit\symbol{34} or \symbol{34}DLAB\symbol{34}.  When the DLAB is set to \symbol{34}1\symbol{34}, the baud rate registers can be set and when it is \symbol{34}0\symbol{34} the registers have a different context.

Does all this sound confusing?  It can be, but lets take it one simple little piece at a time.  The following is a table of each of the registers that can be found in a typical UART chip:


\begin{longtable}{>{\RaggedRight}p{0.17090\linewidth}>{\RaggedRight}p{0.09988\linewidth}>{\RaggedRight}p{0.14392\linewidth}>{\RaggedRight}p{0.10372\linewidth}>{\RaggedRight}p{0.28069\linewidth}} 
\multicolumn{5}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries UART Registers}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Base Address}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} DLAB}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} I/O Access}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Abbrv.}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Register Name}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Write &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} THR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Transmitter Holding Buffer\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} RBR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Receiver Buffer\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read/Write &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} DLL &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Divisor Latch Low Byte\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read/Write &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IER &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Interrupt Enable Register\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read/Write &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} DLH &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Divisor Latch High Byte\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} x &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IIR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Interrupt Identification Register\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} x &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Write &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} FCR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} FIFO Control Register\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} x &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read/Write &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} LCR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Line Control Register\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} x &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read/Write &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} MCR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Modem Control Register\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} x &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} LSR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Line Status Register\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} x &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} MSR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Modem Status Register\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} +7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} x &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Read/Write &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} SR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Scratch Register 
\end{longtable}


The \symbol{34}x\symbol{34} in the DLAB column means that the status of the DLAB has no effect on what register is going to be accessed for that offset range.  Notice also that some registers are Read only.  If you attempt to write data to them, you may end up with either some problems with the modem (worst case), or the data will simply be ignored (typically the result).  As mentioned earlier, some registers share a Port I/O address where one register will be used when you write data to it and another register will be used to retrieve data from the same address.

Each serial communication port will have its own set of these registers.  For example, if you wanted to access the Line Status Register (LSR) for COM1, and assuming the base I/O Port address of \${}3F8, the I/O Port address to get the information in this register would be found at \${}3F8 + \${}05 or \${}3FD.  Some example code would be like this:

\TemplatePreformat{$\text{ }$\newline{}
const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}COM1_Base$\text{ }${}=$\text{ }${}\${}3F8;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}COM2_Base$\text{ }${}=$\text{ }${}\${}2F8;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}LSR_Offset$\text{ }${}=$\text{ }${}\${}05;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
function$\text{ }${}LSR_Value:$\text{ }${}Byte;$\text{ }$\newline{}
begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Result$\text{ }${}:=$\text{ }${}Port{$\text{[}$}COM1_Base+LSR_Offset{$\text{]}$};$\text{ }$\newline{}
end;$\text{ }$\newline{}
}

There is quite a bit of information packed into each of these registers, and the following is an explanation for the meaning of each register and the information it contains.
\subsection{Transmitter Holding Buffer/Receiver Buffer}
\label{75}  
Offset: +0 .
The Transmit and Receive buffers are related, and often even use the very same memory.  This is also one of the areas where later versions of the 8250 chip have a significant impact, as the later models incorporate some internal buffering of the data within the chip before it gets transmitted as serial data.  The base 8250 chip can only receive one byte at a time, while later chips like the 16550 chip will hold up to 16 bytes either to transmit or to receive (sometimes both... depending on the manufacturer) before you have to wait for the character to be sent.  This can be useful in multi-{}tasking environments where you have a computer doing many things, and it may be a couple of milliseconds before you get back to dealing with serial data flow.

These registers really are the \symbol{34}heart\symbol{34} of serial data communication, and how data is transferred from your software to another computer and how it gets data from other devices.  Reading and Writing to these registers is simply a matter of accessing the Port I/O address for the respective UART.
\subsection{Divisor Latch Bytes}
\label{76}
Offset: +0 and +1 .
The Divisor Latch Bytes are what control the baud rate of the modem.  As you might guess from the name of this register, it is used as a divisor to determine what baud rate that the chip is going to be transmitting at.  

In reality, it is even simpler than that.  This is really a count-{}down clock that is used each time a bit is transmitted by the UART.  Each time a bit is sent, a count-{}down register is reset to this value and then counts down to zero.  This clock is running typically at 115.2 KHz.  In other words, at 115 thousand times per second a counter is going down to determine when to send the next bit.  At one time during the design process it was anticipated that some other frequencies might be used to get a UART working, but with the large amount of software already written for this chip this frequency is pretty much standard for almost all UART chips used on a PC platform.  They may use a faster clock in some portion (like a 1.843 MHz clock), but some fraction of that frequency will then be used to scale down to a 115.2 KHz clock.

Some more on UART clock speeds (advanced coverage):  For many UART chips, the clock frequency that is driving the UART is 1.8432 MHz.  This frequency is then put through a divider circuit that drops the frequency down by a factor of 16, giving us the 115.2 KHz frequency mentioned above.  If you are doing some custom equipment using this chip, the National Semiconductor spec sheets allow for a 3.072 MHz clock and 18.432 MHz clock.  These higher frequencies will allow you to communicate at higher baud rates, but require custom circuits on the motherboard and often new drivers in order to deal with these new frequencies.  What is interesting is that you can still operate at 50 baud with these higher clock frequencies, but at the time the original IBM-{}PC/XT was manufactured this wasn\textquotesingle{}t a big concern as it is now for higher data throughput.

If you use the following mathematical formula, you can determine what numbers you need to put into the Divisor Latch Bytes:

\begin{myquote}
\item{} 
\begin{myquote}
\item{} \begin{equation*}{Divisor Latch Value} = {115200 \over {Baud Rate}}\end{equation*}
\end{myquote}

\end{myquote}


That gives you the following table that can be used to determine common baud rates for serial communication:


\begin{longtable}{>{\RaggedRight}p{0.14195\linewidth}>{\RaggedRight}p{0.23586\linewidth}>{\RaggedRight}p{0.23074\linewidth}>{\RaggedRight}p{0.23074\linewidth}} 
\multicolumn{4}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Divisor Latch Byte Values (common baud rates)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Baud Rate}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Divisor (in decimal)}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Divisor Latch High Byte}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Divisor Latch Low Byte}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 50 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2304 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}09 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 110 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1047 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}04 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}17\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 220 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 524 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}02 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0C\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 300 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 384 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}01 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}80\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 600 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 192 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}C0\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1200 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 96 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}60\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2400 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 48 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}30\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4800 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 24 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}18\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 9600 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 12 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0C\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 19200 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}06\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 38400 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}03\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 57600 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}02\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 115200 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}01 
\end{longtable}


One thing to keep in mind when looking at the table is that baud rates 600 and above all set the Divisor Latch High Byte to zero.  A sloppy programmer might try to skip setting the high byte, assuming that nobody would deal with such low baud rates, but this is not something to always presume.  Good programming habits suggest you should still try to set this to zero even if all you are doing is running at higher baud rates.

Another thing to notice is that there are other potential baud rates other than the standard ones listed above.  While this is not encouraged for a typical application, it would be something fun to experiment with.  Also, you can attempt to communicate with older equipment in this fashion where a standard API library might not allow a specific baud rate that should be compatible.  This should demonstrate why knowledge of these chips at this level is still very useful.

When working with these registers, also remember that these are the only ones that require the Divisor Latch Access Bit to be set to \symbol{34}1\symbol{34}.  More on that below, but I\textquotesingle{}d like to mention that it would be useful for application software setting the baud rate to set the DLAB to \symbol{34}1\symbol{34} just for the immediate operation of changing the baud rate, then putting it back to \symbol{34}0\symbol{34} as the very next step before you do any more I/O access to the modem.  This is just a good working habit, and keeps the rest of the software you need to write for accessing the UART much cleaner and easier.

One word of caution:  Do not set the value \symbol{34}0\symbol{34} for both Divisor Latch bytes.  While it will not (likely) damage the UART chip, the behavior on how the UART will be transmitting serial data will be unpredictable, and will change from one computer to the next, or even from one time you boot the computer to the next.  This is an error condition, and if you are writing software that works with baud rate settings on this level you should catch potential \symbol{34}0\symbol{34} values for the Divisor Latch.

Here is some sample software to set and retrieve the baud rate for COM1:

\TemplatePreformat{$\text{ }$\newline{}
const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}COM1_Base$\text{ }${}=$\text{ }${}\${}3F8;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}COM2_Base$\text{ }${}=$\text{ }${}\${}2F8;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}LCR_Offset$\text{ }${}=$\text{ }${}\${}03;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Latch_Low$\text{ }${}=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Latch_High$\text{ }${}=$\text{ }${}\${}01;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
procedure$\text{ }${}SetBaudRate(NewRate:$\text{ }${}Word);$\text{ }$\newline{}
var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}DivisorLatch:$\text{ }${}Word;$\text{ }$\newline{}
begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}DivisorLatch$\text{ }${}:=$\text{ }${}115200$\text{ }${}div$\text{ }${}NewRate;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}LCR_Offset{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}LCR_Offset{$\text{]}$}$\text{ }${}or$\text{ }$\newline{}
$\text{ }${}\${}80;$\text{ }${}\{Set$\text{ }${}DLAB\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}Latch_High{$\text{]}$}$\text{ }${}:=$\text{ }${}DivisorLatch$\text{ }${}shr$\text{ }${}8;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}Latch_Low{$\text{]}$}$\text{ }${}:=$\text{ }${}DivisorLatch$\text{ }${}and$\text{ }${}\${}FF;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}LCR_Offset{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}LCR_Offset{$\text{]}$}$\text{ }${}and$\text{ }$\newline{}
$\text{ }${}\${}7F;$\text{ }${}\{Clear$\text{ }${}DLAB\}$\text{ }$\newline{}
end;$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
function$\text{ }${}GetBaudRate:$\text{ }${}Integer;$\text{ }$\newline{}
var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}DivisorLatch:$\text{ }${}Word;$\text{ }$\newline{}
begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}LCR_Offset{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}LCR_Offset{$\text{]}$}$\text{ }${}or$\text{ }$\newline{}
$\text{ }${}\${}80;$\text{ }${}\{Set$\text{ }${}DLAB\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}DivisorLatch$\text{ }${}:=$\text{ }${}(Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}Latch_High{$\text{]}$}$\text{ }${}shl$\text{ }${}8)$\text{ }${}+$\text{ }$\newline{}
$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}Latch_Low{$\text{]}$};$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}LCR_Offset{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}COM1_Base$\text{ }${}+$\text{ }${}LCR_Offset{$\text{]}$}$\text{ }${}and$\text{ }$\newline{}
$\text{ }${}\${}7F;$\text{ }${}\{Clear$\text{ }${}DLAB\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}Result$\text{ }${}:=$\text{ }${}115200$\text{ }${}div$\text{ }${}DivisorLatch;$\text{ }$\newline{}
end;$\text{ }$\newline{}
}
\subsection{Interrupt Enable Register}
\label{77}
Offset: +1 .
This register allows you to control when and how the UART is going to trigger an interrupt event with the hardware interrupt associated with the serial COM port.  If used properly, this can enable an efficient use of system resources and allow you to react to information being sent across a serial data line in essentially real-{}time conditions.  Some more on that will be covered later, but the point here is that you can use the UART to let you know exactly when you need to extract some data.  This register has both read-{} and write-{}access.

The following is a table showing each bit in this register and what events that it will enable to allow you check on the status of this chip:


\begin{longtable}{>{\RaggedRight}p{0.09591\linewidth}>{\RaggedRight}p{0.82373\linewidth}} 
\multicolumn{2}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Interrupt Enable Register (IER)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Notes}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Enables Low Power Mode (16750)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Enables Sleep Mode (16750)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Enable Modem Status Interrupt\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Enable Receiver Line Status Interrupt\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Enable Transmitter Holding Register Empty Interrupt\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Enable Received Data Available Interrupt 
\end{longtable}


The Received Data interrupt is a way to let you know that there is some data waiting for you to pull off of the UART.  This is probably the one bit that you will use more than the rest, and has more use.

The Transmitter Holding Register Empty Interrupt is to let you know that the output buffer (on more advanced models of the chip like the 16550) has finished sending everything that you pushed into the buffer.  This is a way to streamline the data transmission routines so they take up less CPU time.

The Receiver Line Status Interrupt indicates that something in the LSR register has probably changed.  This is usually an error condition, and if you are going to write an efficient error handler for the UART that will give plain text descriptions to the end user of your application, this is something you should consider. This is certainly something that takes a bit more advanced knowledge of programming.

The Modem Status Interrupt is to notify you when something changes with an external modem connected to your computer.  This can include things like the telephone \symbol{34}bell\symbol{34} ringing (you can simulate this in your software), that you have successfully connected to another modem (Carrier Detect has been turned on), or that somebody has \symbol{34}hung up\symbol{34} the telephone (Carrier Detect has turned off).  It can also help you to know if the external modem or data equipment can continue to receive data (Clear to Send).  Essentially, this deals with the other wires in the RS-{}232 standard other than strictly the transmit and receive wires.

The other two modes are strictly for the 16750 chip, and help put the chip into a \symbol{34}low power\symbol{34} state for use on things like a laptop computer or an embedded controller that has a very limited power source like a battery.  On earlier chips you should treat these bits as \symbol{34}Reserved\symbol{34}, and only put a \symbol{34}0\symbol{34} into them.
\subsection{Interrupt Identification Register}
\label{78}
Offset: +2 .
This register is to be used to help identify what the unique characteristics of the UART chip that you are using has.  This chip has two uses:

\begin{myitemize}
\item{}  Identification of why the UART triggered an interrupt.
\item{}  Identification of the UART chip itself.
\end{myitemize}


Of these, identification of why the interrupt service routine has been invoked is perhaps the most important.

The following table explains some of the details of this register, and what each bit on it represents:

\begin{landscape}

\begin{longtable}{>{\RaggedRight}p{0.09046\linewidth}>{\RaggedRight}p{0.13612\linewidth}>{\RaggedRight}p{0.13612\linewidth}>{\RaggedRight}p{0.13612\linewidth}>{\RaggedRight}p{0.13612\linewidth}>{\RaggedRight}p{0.12397\linewidth}} 
\multicolumn{6}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Interrupt Identification Register (IIR)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Notes}&&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 and 6&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 7}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 6}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&&\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} No FIFO on chip&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved condition&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} FIFO enabled, but not functioning&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} FIFO enabled&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 64 Byte FIFO Enabled (16750 only)&&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved&&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3, 2 and 1&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 3}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 2}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 1}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reset Method}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Modem Status Interrupt &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reading Modem Status Register(MSR)&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Transmitter Holding Register Empty Interrupt&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reading Interrupt Identification Register(IIR) or \newline{}Writing to Transmit Holding Buffer(THR)&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Received Data Available Interrupt&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reading Receive Buffer Register(RBR)&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Receiver Line Status Interrupt &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reading Line Status Register(LSR)&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} N/A&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} N/A&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Time-{}out Interrupt Pending (16550 \& later)&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reading Receive Buffer Register(RBR)&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} N/A&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Interrupt Pending Flag&&&& 
\end{longtable}

\end{landscape}

When you are writing an interrupt handler for the 8250 chip (and later), this is the register that you need to look at in order to determine what exactly was the trigger for the interrupt.  

As explained earlier, multiple serial communication devices can share the same hardware interrupt.  The use of \symbol{34}Bit 0\symbol{34} of this register will let you know (or confirm) that this was indeed the device that caused the interrupt.  What you need to do is check on all serial devices (that are in separate port I/O address spaces), and get the contents of this register.  Keep in mind that it is at least possible for more than one device to trigger an interrupt at the same time, so when you are doing this scanning of serial devices, make sure you examine all of them, even one of the first devices did in fact need to be processed.  Some computer systems may not require this to occur, but this is a good programming practice anyway.  It is also possible that due to how you processed the UARTs earlier, that you have already dealt with all of the UARTs for a given interrupt.  When this bit is a \symbol{34}0\symbol{34}, it identifies that the UART is triggering an interrupt.  When it is \symbol{34}1\symbol{34}, that means the interrupt has already been processed or this particular UART was not the triggering device.  I know that this seems a little bit backward for a typical bit-{}flag used in computers, but this is called digital logic being asserted low, and is fairly common with electrical circuit design.  This is a bit more unusual through for this logic pattern to go into the software domain.

Bits 1, 2 \& 3 help to identify exactly what sort of interrupt event was used within the UART to invoke the hardware interrupt.  These are the same interrupts that were earlier enabled with the IER register.  In this case, however, each time you process the registers and deal with the interrupt it will be unique.  If multiple \symbol{34}triggers\symbol{34} occur for the UART due to many things happening at the same time, this will be invoked through multiple hardware interrupts.  Earlier chip sets don\textquotesingle{}t use bit 3, but this is a reserved bit on those UART systems and always set to logic state \symbol{34}0\symbol{34}, so programming logic doesn\textquotesingle{}t have to be different when trying to decipher which interrupt has been used.

To explain the FIFO timeout Interrupt, this is a way to check for the end of a packet or if the incoming data stream has stopped.  Generally the following conditions must exist for this interrupt to be triggered:  Some data needs to be in the incoming FIFO and has not been read by the computer.  Data transmissions being sent to the UART via serial data link must have ended with no new characters being received.  The CPU processing incoming data must not have retrieved any data from the FIFO before the timeout has occurred.  The timeout will occur usually after the period it would take to transmit or receive at least 4 characters.  If you are talking about data sent at 1200 baud, 8 data bits, 2 stop bits, odd parity, that would take about 40 milliseconds, which is almost an eternity in terms of things that your computer can accomplish on a 4 GHz Pentium CPU.

The \symbol{34}Reset Method\symbol{34} listed above describes how the UART is notified that a given interrupt has been processed.  When you access the register mentioned under the reset method, this will clear the interrupt condition for that UART.  If multiple interrupts for the same UART have been triggered, either it won\textquotesingle{}t clear the interrupt signal on the CPU (triggering a new hardware interrupt when you are done), or if you check back to this register (IIR) and query the Interrupt Pending Flag to see if there are more interrupts to process, you can move on and attempt to resolve any new interrupt issue that you may have to deal with, using appropriate application code.

Bits 5, 6 \& 7 are reporting the current status of FIFO buffers being used for transmitting and receiving characters.  There was a bug in the original 16550 chip design when it was first released that had a serious flaw in the FIFO, causing the FIFO to report that it was working but in fact it wasn\textquotesingle{}t.  Because some software had already been written to work with the FIFO, this bit (Bit 7 of this register) was kept, but Bit 6 was added to confirm that the FIFO was in fact working correctly, in case some new software wanted to ignore the hardware FIFO on the earlier versions of the 16550 chip.  This pattern has been kept on future versions of this chip as well.  On the 16750 chip an added 64-{}byte FIFO has been implemented, and Bit 5 is used to designate the presence of this extended buffer.  These FIFO buffers can be turned on and off using registers listed below.
\subsection{FIFO Control Register}
\label{79}
Offset: +2 .
This is a relatively \symbol{34}new\symbol{34} register that was not a part of the original 8250 UART implementation.  The purpose of this register is to control how the First In/First Out (FIFO) buffers will behave on the chip and to help you fine-{}tune their performance in your application.  This even gives you the ability to \symbol{34}turn on\symbol{34} or \symbol{34}turn off\symbol{34} the FIFO.

Keep in mind that this is a \symbol{34}write only\symbol{34} register.  Attempting to read in the contents will only give you the Interrupt Identification Register (IIR), which has a totally different context.


\begin{longtable}{>{\RaggedRight}p{0.08786\linewidth}>{\RaggedRight}p{0.16280\linewidth}>{\RaggedRight}p{0.11791\linewidth}>{\RaggedRight}p{0.16280\linewidth}>{\RaggedRight}p{0.26774\linewidth}} 
\multicolumn{5}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries FIFO Control Register (FCR)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Notes}&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 \& 6&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 7}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 6}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Interrupt Trigger Level (16 byte)}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Trigger Level (64 byte)}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 Byte &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 Byte&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 Bytes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 16 Bytes&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 8 Bytes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 32 Bytes&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 14 Bytes &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 56 Bytes&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Enable 64 Byte FIFO (16750)&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} DMA Mode Select&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Clear Transmit FIFO&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Clear Receive FIFO&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Enable FIFOs&&& 
\end{longtable}


Writing a \symbol{34}0\symbol{34} to bit 0 will disable the FIFOs, in essence turning the UART into 8250 compatibility mode.  In effect this also renders the rest of the settings in this register to become useless.  If you write a \symbol{34}0\symbol{34} here it will also stop the FIFOs from sending or receiving data, so any data that is sent through the serial data port may be scrambled after this setting has been changed.  It would be recommended to disable FIFOs only if you are trying to reset the serial communication protocol and clearing any working buffers you may have in your application software.  Some documentation suggests that setting this bit to \symbol{34}0\symbol{34} also clears the FIFO buffers, but I would recommend explicit buffer clearing instead using bits 1 and 2.

Bits 1 and 2 are used to clear the internal FIFO buffers.  This is useful when you are first starting up an application where you might want to clear out any data that may have been \symbol{34}left behind\symbol{34} by a previous piece of software using the UART, or if you want to reset a communications connection.  These bits are \symbol{34}automatically\symbol{34} reset, so if you set either of these to a logical \symbol{34}1\symbol{34} state you will not have to go and put them back to \symbol{34}0\symbol{34} later.  Sending a logical \symbol{34}0\symbol{34} only tells the UART not to reset the FIFO buffers, even if other aspects of FIFO control are going to be changed.

Bit 3 is in reference to how the DMA (Direct Memory Access) takes place, primarily when you are trying to retrieve data from the FIFO.  This would be useful primarily to a chip designer who is trying to directly access the serial data, and store this data in an internal buffer.  There are two digital logic pins on the UART chip itself labeled RXRDY and TXRDY.  If you are trying to design a computer circuit with the UART chip this may be useful or even important, but for the purposes of an application developer on a PC system it is of little use and you can safely ignore it.

Bit 5 allows the 16750 UART chip to expand the buffers from 16 bytes to 64 bytes.  Not only does this affect the size of the buffer, but it also controls the size of the trigger threshold, as described next.  On earlier chip types this is a reserved bit and should be kept in a logical \symbol{34}0\symbol{34} state.  On the 16750 it make that UART perform more like the 16550 with only a 16 byte FIFO.

Bits 6 and 7 describe the trigger threshold value.  This is the number of characters that would be stored in the FIFO before an interrupt is triggered that will let you know data should be removed from the FIFO.  If you anticipate that large amounts of data will be sent over the serial data link, you might want to increase the size of the buffer.  The reason why the maximum value for the trigger is less than the size of the FIFO buffer is because it may take a little while for some software to access the UART and retrieve the data.  Remember that when the FIFO is full, you will start to lose data from the FIFO, so it is important to make sure you have retrieved the data once this threshold has been reached.  If you are encountering software timing problems in trying to retrieve the UART data, you might want to lower the threshold value.  At the extreme end where the threshold is set to 1 byte, it will act essentially like the basic 8250, but with the added reliability that some characters may get caught in the buffer in situations where you don\textquotesingle{}t have a chance to get all of them immediately.
\subsection{Line Control Register}
\label{80}
Offset: +3 .
This register has two major purposes:

\begin{myitemize}
\item{}  Setting the Divisor Latch Access Bit (DLAB), allowing you to set the values of the Divisor Latch Bytes.
\item{}  Setting the bit patterns that will be used for both receiving and transmitting the serial data.  In other words, the serial data protocol you will be using (8-{}1-{}None, 5-{}2-{}Even, etc.).
\end{myitemize}



\begin{longtable}{>{\RaggedRight}p{0.11190\linewidth}>{\RaggedRight}p{0.19464\linewidth}>{\RaggedRight}p{0.15866\linewidth}>{\RaggedRight}p{0.17087\linewidth}>{\RaggedRight}p{0.16303\linewidth}} 
\multicolumn{5}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Line Control Register (LCR)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Notes}&&&\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Divisor Latch Access Bit&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Set Break Enable&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3, 4 \& 5&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 5}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 4}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 3}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Parity Select}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} No Parity&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Odd Parity&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Even Parity&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Mark&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Space&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} One Stop Bit&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1.5 Stop Bits or 2 Stop Bits&&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 \& 1&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 1}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit 0}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Word Length}&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 Bits&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 Bits&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 Bits&&\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 8 Bits&& 
\end{longtable}


The first two bits (Bit 0 and Bit 1) control how many data bits are sent for each data \symbol{34}word\symbol{34} that is transmitted via serial protocol.  For most serial data transmission, this will be 8 bits, but you will find some of the earlier protocols and older equipment that will require fewer data bits.  For example, some military encryption equipment only uses 5 data bits per serial \symbol{34}word\symbol{34}, as did some TELEX equipment.  Early ASCII teletype terminals only used 7 data bits, and indeed this heritage has been preserved with SMTP format that only uses 7-{}bit ASCII for e-{}mail messages.  Clearly this is something that needs to be established before you are able to successfully complete message transmission using RS-{}232 protocol.

Bit 2 controls how many stop bits are transmitted by the UART to the receiving device.  This is selectable as either one or two stop bits, with a logical \symbol{34}0\symbol{34} representing 1 stop bit and \symbol{34}1\symbol{34} representing 2 stop bits.  In the case of 5 data bits, the RS-{}232 protocol instead sends out \symbol{34}1.5 stop bits\symbol{34}.  What this means is that one serial data \symbol{34}word\symbol{34} is transmitted with only 1 stop bit, and then the next one is transmitted with 2 stop bits.

Another thing to keep in mind is that the RS-{}232 standard only specifies that at least one data bit cycle will be kept a logical \symbol{34}1\symbol{34} at the end of each serial data word (in other words, a complete character from start bit, data bits, parity bits, and stop bits).  If you are having timing problems between the two computers but are able to in general get the character sent across one at a time, you might want to add a second stop bit instead of reducing baud rate.  This adds a one-{}bit penalty to the transmission speed per character instead of halving the transmission speed by dropping the baud rate (usually).

Bits 3, 4, and 5 control how each serial word responds to parity information.  When Bit 3 is a logical \symbol{34}0\symbol{34}, this causes no parity bits to be sent out with the serial data word.  Instead it moves on immediately to the stop bits, and is an admission that parity checking at this level is really useless.  You might still gain a little more reliability with data transmission by including the parity bits, but there are other more reliable and practical ways that will be discussed in other chapters in this book.  If you want to include parity checking, the following explains each parity method other than \symbol{34}none\symbol{34} parity:

{\bfseries Odd Parity}
\begin{myquote}
\item{}Each bit the data portion of the serial word is added as a simple count of the number of logical \symbol{34}1\symbol{34} bits.  If this is an odd number of bits, the parity bit will be transmitted as a logical \symbol{34}1\symbol{34}.
\end{myquote}


{\bfseries Even Parity}
\begin{myquote}
\item{}Like Odd Parity, the bits are added together.  In this case, however, if the number of bits end up as an even number it will display as a logical \symbol{34}1\symbol{34}, which is the exact opposite of odd parity.
\end{myquote}


{\bfseries Mark Parity}
\begin{myquote}
\item{}In this case the parity bit will always be a logical \symbol{34}1\symbol{34}.  While this may seem a little unusual, this is put in for testing and diagnostics purposes.  If you want to make sure that the software on the receiving end of the serial connection is responding correctly to a parity error, you can send a Mark or a Space parity, and send characters that don\textquotesingle{}t meet what the receiving UART or device is expecting for parity.  In addition for Mark Parity only, you can use this bit as an extra \symbol{34}stop bit\symbol{34}.  Keep in mind that RS-{}232 standards are expecting a logical \symbol{34}1\symbol{34} to end a serial data word, so a receiving computer will not be able to tell the difference between a \symbol{34}Mark\symbol{34} parity bit and a stop bit.  In essence, you can have 3 or 2.5 stop bits through the use of this setting and by appropriate use of the stop bit portion of this register as well.  This is a way to \symbol{34}tweak\symbol{34} the settings on your computer in a way that typical applications don\textquotesingle{}t allow you to do, or at least gain a deeper insight into serial data settings.
\end{myquote}


{\bfseries Space Parity}
\begin{myquote}
\item{}Like the Mark parity, this makes the parity bit \symbol{34}sticky\symbol{34}, so it doesn\textquotesingle{}t change.  In this case it puts in a logical \symbol{34}0\symbol{34} for the parity bit every time you transmit a character.  There are not many practical uses for doing this other than a crude way to put in 9 data bits for each serial word, or for diagnostics purposes.
\end{myquote}

\subsection{Modem Control Register}
\label{81}
Offset: +4 .
This register allows you to do \symbol{34}hardware\symbol{34} flow control, under software control.  Or in a more practical manner, it allows direct manipulation of four different wires on the UART that you can set to any series of independent logical states, and be able to offer control of the modem.  It should also be noted that most UARTs need Auxiliary Output 2 set to a logical \symbol{34}1\symbol{34} to enable interrupts.


\begin{longtable}{>{\RaggedRight}p{0.13537\linewidth}>{\RaggedRight}p{0.78427\linewidth}} 
\multicolumn{2}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Modem Control Register (MCR)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Notes}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Autoflow Control Enabled (16750)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Loopback Mode\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Auxiliary Output 2\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Auxiliary Output 1\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Request To Send\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Data Terminal Ready 
\end{longtable}


Of these outputs on a typical PC platform, only the Request to Send (RTS) and Data Terminal Ready (DTR) are actually connected to the output of the PC on the DB-{}9 connector.  If you are fortunate to have a DB-{}25 serial connector (more commonly used for parallel communications on a PC platform), or if you have a custom UART on an expansion card, the auxiliary outputs might be connected to the RS-{}232 connection.  If you are using this chip as a component on a custom circuit, this would give you some \symbol{34}free\symbol{34} extra output signals you can use in your chip design to signal anything you might want to have triggered by a TTL output, and would be under software control.  There are easier ways to do this, but in this case it might save you an extra chip on your layout.

The \symbol{34}loopback\symbol{34} mode is primarily a way to test the UART to verify that the circuits are working between your main CPU and the UART.  This seldom, if ever, needs to be tested by an end user, but might be useful for some initial testing of some software that uses the UART.  When this is set to a logical state of \symbol{34}1\symbol{34}, any character that gets put into the transmit register will immediately be found in the receive register of the UART.  Other logical signals like the RTS and DTS listed above will show up in the modem status register just as if you had put a loopback RS-{}232 device on the end of your serial communication port.  In short, this allows you to do a loopback test using just software.  Except for these diagnostics purposes and for some early development testing of software using the UART, this will never be used.

On the 16750 there is a special mode that can be invoked using the Modem Control Register.  Basically this allows the UART to directly control the state of the RTS and DTS for hardware character flow control, depending on the current state of the FIFO.  This behavior is also affected by the status of Bit 5 of the FIFO Control Register (FCR).  While this is useful, and can change some of the logic on how you would write UART control software, the 16750 is comparatively new as a chip and not commonly found on many computer systems.  If you know your computer has a 16750 UART, have fun taking advantage of this increased functionality.
\subsection{Line Status Register}
\label{82}
Offset: +5 . 
This register is used primarily to give you information on possible error conditions that may exist within the UART, based on the data that has been received.  Keep in mind that this is a \symbol{34}read only\symbol{34} register, and any data written to this register is likely to be ignored or worse, cause different behavior in the UART.  There are several uses for this information, and some information will be given below on how it can be useful for diagnosing problems with your serial data connection:


\begin{longtable}{>{\RaggedRight}p{0.13072\linewidth}>{\RaggedRight}p{0.78893\linewidth}} 
\multicolumn{2}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Line Status Register (LSR)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Notes}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Error in Received FIFO\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Empty Data Holding Registers\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Empty Transmitter Holding Register\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Break Interrupt\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Framing Error\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Parity Error\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Overrun Error\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Data Ready 
\end{longtable}


Bit 7 refers to errors that are with characters in the FIFO.  If any character that is currently in the FIFO has had one of the other error messages listed here (like a framing error, parity error, etc.), this is reminding you that the FIFO needs to be cleared as the character data in the FIFO is unreliable and has one or more errors.  On UART chips without a FIFO this is a reserved bit field.

Bits 5 and 6 refer to the condition of the character transmitter circuits and can help you to identify if the UART is ready to accept another character.  Bit 6 is set to a logical \symbol{34}1\symbol{34} if all characters have been transmitted (including the FIFO, if active), and the \symbol{34}shift register\symbol{34} is done transmitting as well.  This shift register is an internal memory block within the UART that grabs data from the Transmitter Holding Buffer (THB) or the FIFO and is the circuitry that does the actual transformation of the data to a serial format, sending out one bit of the data at a time and \symbol{34}shifting\symbol{34} the contents of the shift register down one bit to get the value of the next bit.  Bit 5 merely tells you that the UART is capable of receiving more characters, including into the FIFO for transmitting.

The Break Interrupt (Bit 4) gets to a logical state of \symbol{34}1\symbol{34} when the serial data input line has not received any new bits for a period of time that is at least as long as an entire serial data \symbol{34}word\symbol{34}, including the start bit, data bits, parity bit, and stop bits, for the given baud rate in the Divisor Latch Bytes.  Usually this means that the device that is sending serial data to your computer has stopped for some reason.  Often with serial communications this is a normal condition, but in this way you have a way to monitor just how the other device is functioning.

Framing errors (Bit 3) occur when the last bit is not a stop bit.  Or to be more precise the stop bit is a logical \symbol{34}0\symbol{34}.  There are several causes for this, including that you have the timing between the two computer mismatched.  This is usually caused by a mismatch in baud rate, although other causes might be involved as well, including problems in the physical cabling between the devices or that the cable is too long.  You may even have the number of data bits off, so when errors like this are encountered, check the serial data protocol very closely to make sure that all of the settings for the UART (data bit length, parity, and stop bit count) are what should be expected.

Parity errors (Bit 2) can also indicate a mismatched baud rate like the framing errors (particularly if both errors are occurring at the same time).  This bit is raised when the parity algorithm that is expected (odd, even, mark, or space) has not been found.  If you are using \symbol{34}no parity\symbol{34} in the setup of the UART, this bit should always be a logical \symbol{34}0\symbol{34}.  When framing errors are not occurring, this is a way to identify that there are some problems with the cabling, although there are other issues you may have to deal with as well.

Overrun errors (Bit 1) are a sign of poor programming or an operating system that is not giving you proper access to the UART.  This error condition occurs when there is a character waiting to be read, and the incoming shift register is attempting to move the contents of the next character into the Receiver Buffer (RBR).  On UARTs with a FIFO, this also indicates that the FIFO is full as well.  

Some things you can do to help get rid of this error including looking at how efficient your software is that is accessing the UART, particularly the part that is monitoring and reading incoming data.  On multi-{}tasking operating systems, you might want to make sure that the portion of the software that reads incoming data is on a separate thread, and that the thread priority is high or time-{}critical, as this is a very important operation for software that uses serial communications data.  A good software practice for applications also includes adding in an application specific \symbol{34}buffer\symbol{34} that is done through software, giving your application more opportunity to be able to deal with the incoming data as necessary, and away from the time critical subroutines needed to get the data off of the UART.  This buffer can be as small as 1KB to as large as 1MB, and depends substantially on the kind of data that you are working with.  There are other more exotic buffering techniques as well that apply to the realm of application development, and that will be covered in later modules.

If you are working with simpler operating systems like MS-{}DOS or a real-{}time operating system, there is a distinction between a poll-{}driven access to the UART vs. interrupt driven software.  Writing an interrupt driver is much more efficient, and there will be a whole section of this book that will go into details of how to write software for UART access.

Finally, when you can\textquotesingle{}t seem to solve the problems of trying to prevent overrun errors from showing up, you might want to think about reducing the baud rate for the serial transmission.  This is not always an option, and really should be the option of last choice when trying to resolve this issue in your software.  As a quick test to simply verify that the fundamental algorithms are working, you can start with a slower baud rate and gradually go to higher speeds, but that should only be done during the initial development of the software, and not something that gets released to a customer or placed as publicly distributed software.

The Data Ready Bit (Bit 0) is really the simplest part here.  This is a way to simply inform you that there is data available for your software to extract from the UART.  When this bit is a logical \symbol{34}1\symbol{34}, it is time to read the Receiver Buffer (RBR).  On UARTs with a FIFO that is active, this bit will remain in a logical \symbol{34}1\symbol{34} state until you have read all of the contents of the FIFO.
\subsection{Modem Status Register}
\label{83}
Offset: +6 . 
This register is another read-{}only register that is here to inform your software about the current status of the modem.  The modem accessed in this manner can either be an external modem, or an internal modem that uses a UART as an interface to the computer.


\begin{longtable}{>{\RaggedRight}p{0.15670\linewidth}>{\RaggedRight}p{0.76294\linewidth}} 
\multicolumn{2}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\bfseries Modem Status Register (MSR)}}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bit}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Notes}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Carrier Detect\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Ring Indicator\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Data Set Ready\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Clear To Send\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Delta Data Carrier Detect\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Trailing Edge Ring Indicator\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Delta Data Set Ready\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Delta Clear To Send 
\end{longtable}


Bits 7 and 6 are directly related to modem activity.  Carrier Detect will stay in a logical state of \symbol{34}1\symbol{34} while the modem is \symbol{34}connect\symbol{34} to another modem.  When this goes to a logical state of \symbol{34}0\symbol{34}, you can assume that the phone connection has been lost.  The Ring Indicator bit is directly tied to the RS-{}232 wire also labeled \symbol{34}RI\symbol{34} or Ring Indicator.  Usually this bit goes to a logical state of \symbol{34}1\symbol{34} as a result of the \symbol{34}ring voltage\symbol{34} on the telephone line is detected, like when a conventional telephone will be ringing to inform you that somebody is trying to call you.  

When we get to the section of AT modem commands, there will be other methods that can be shown to inform you about this and other information regarding the status of a modem, and instead this information will be sent as characters in the normal serial data stream instead of special wires.  In truth, these extra bits are pretty worthless, but have been a part of the specification from the beginning and comparatively easy for UART designers to implement.  It may, however, be a way to efficiently send some additional information or allow a software designer using the UART to get some logical bit signals from other devices for other purposes.

The \symbol{34}Data Set Ready\symbol{34} and \symbol{34}Clear To Send\symbol{34} bits (Bits 4 and 5) are found directly on an RS-{}232 cable, and are matching wires to \symbol{34}Request To Send\symbol{34} and \symbol{34}Data Terminal Ready\symbol{34} that are transmitted with the \symbol{34}Modem Control Register (MCR).  With these four bits in two registers, you can perform \symbol{34}hardware flow control\symbol{34}, where you can signal to the other device that it is time to send more data, or to hold back and stop sending data while you are trying to process the information.  More will be written about this subject in another module when we get to data flow control.

A note regarding the \symbol{34}delta\symbol{34} bits (Bits 0, 1, 2, and 3).  In this case the word \symbol{34}delta\symbol{34} means change, as in a change in the status of one of the bits.  This comes from other scientific areas like rocket science where delta-{}vee means a change in velocity.  For the purposes of this register, each of these bits will be a logical \symbol{34}1\symbol{34} the next time you access this Modem Status register if the bit it is associated with (like Delta Data Carrier Detect with Carrier Detect) has changed its logical state from the previous time you accessed this register.  The Trailing Edge Ring Indicator is pretty much like the rest, except it is in a logical \symbol{34}1\symbol{34} state only if the \symbol{34}Ring Indicator\symbol{34} bit went from a logical \symbol{34}1\symbol{34} to a logical \symbol{34}0\symbol{34} condition.  There really isn\textquotesingle{}t much practical use for this knowledge, but there is some software that tries to take advantage of these bits and perform some manipulation of the data received from the UART based on these bits.  If you ignore these 4 bits you can still make a very robust serial communications software.
\subsection{Scratch Register}
\label{84}
Offset: +7 . 
The Scratch Register is an interesting enigma.  So much effort was done to try and squeeze a whole bunch of registers into all of the other I/O port addresses that the designers had an extra \symbol{34}register\symbol{34} that they didn\textquotesingle{}t know what to do with.  Keep in mind that when dealing with computer architecture, it is easier when dealing with powers of 2, so they were \symbol{34}stuck\symbol{34} with having to address 8 I/O ports.  Allowing another device to use this extra I/O port would make the motherboard design far too complicated.

On some variants of the 8250 UART, any data written to this scratch register will be available to software when you read the I/O port for this register.  In effect, this gives you one extra byte of \symbol{34}memory\symbol{34} that you can use in your applications in any way that you find useful.  Other than a virus author (maybe I shouldn\textquotesingle{}t give any ideas), there isn\textquotesingle{}t really a good use for this register.  Of limited use is the fact that you can use this register to identify specific variations of the UART because the original 8250 did not store the data sent to it through this register.  As that chip is hardly ever used anymore on a PC design (those companies are using more advanced chips like the 16550), you will not find that \symbol{34}bug\symbol{34} in most modern PC-{}type platforms.  More details will be given below on how to identify through software which UART chip is being used in your computer, and for each serial port.
\section{Software Identification of the UART}
\label{85}

Just as it is possible to identify many of the components on a computer system through just software routines, it is also possible to detect which version or variant of the UART that is found on your computer as well.  The reason this is possible is because each different version of the UART chip has some unique qualities that if you do a process of elimination you can identify which version you are dealing with.  This can be useful information if you are trying to improve performance of the serial I/O routines, know if there are buffers available for transmitting and sending information, as well as simply getting to know the equipment on your PC better.

One example of how you can determine the version of the UART is if the Scratch Register is working or not.  On the first 8250 and 8250A chips, there was a flaw in the design of those chip models where the Scratch Register didn\textquotesingle{}t work.  If you write some data to this register and it comes back changed, you know that the UART in your computer is one of these two chip models.

Another place to look is with the FIFO control registers.  If you set bit \symbol{34}0\symbol{34} of this register to a logical {\bfseries 1}, you are trying to enable the FIFOs on the UART, which are only found in the more recent version of this chip.  Reading bits \symbol{34}6\symbol{34} and \symbol{34}7\symbol{34} will help you to determine if you are using either the 16550 or 16550A chip.  Bit \symbol{34}5\symbol{34} will help you determine if the chip is the 16750.

Below is a full pseudo code algorithm to help you determine the type of chip you are using:
\\

\TemplateSpaceIndent{$\text{ }${}Set$\text{ }${}the$\text{ }${}value$\text{ }${}\symbol{34}0xE7\symbol{34}$\text{ }${}to$\text{ }${}the$\text{ }${}FCR$\text{ }${}to$\text{ }${}test$\text{ }${}the$\text{ }${}status$\text{ }${}of$\text{ }${}the$\text{ }${}FIFO$\text{ }$\newline{}
$\text{ }${}flags.$\text{ }$\newline{}
$\text{ }${}Read$\text{ }${}the$\text{ }${}value$\text{ }${}of$\text{ }${}the$\text{ }${}IIR$\text{ }${}to$\text{ }${}test$\text{ }${}for$\text{ }${}what$\text{ }${}flags$\text{ }${}actually$\text{ }${}got$\text{ }${}set.$\text{ }$\newline{}
$\text{ }${}If$\text{ }${}Bit$\text{ }${}6$\text{ }${}is$\text{ }${}set$\text{ }${}Then$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}If$\text{ }${}Bit$\text{ }${}7$\text{ }${}is$\text{ }${}set$\text{ }${}Then$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}If$\text{ }${}Bit$\text{ }${}5$\text{ }${}is$\text{ }${}set$\text{ }${}Then$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}UART$\text{ }${}is$\text{ }${}16750$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Else$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}UART$\text{ }${}is$\text{ }${}16550A$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}End$\text{ }${}If$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Else$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}UART$\text{ }${}is$\text{ }${}16550$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}End$\text{ }${}If$\text{ }$\newline{}
$\text{ }${}Else$\text{ }${}you$\text{ }${}know$\text{ }${}the$\text{ }${}chip$\text{ }${}doesn\textquotesingle{}t$\text{ }${}use$\text{ }${}FIFO,$\text{ }${}so$\text{ }${}we$\text{ }${}need$\text{ }${}to$\text{ }${}check$\text{ }${}the$\text{ }$\newline{}
$\text{ }${}scratch$\text{ }${}register$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Set$\text{ }${}some$\text{ }${}arbitrary$\text{ }${}value$\text{ }${}like$\text{ }${}0x2A$\text{ }${}to$\text{ }${}the$\text{ }${}Scratch$\text{ }${}Register.$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}You$\text{ }${}don\textquotesingle{}t$\text{ }${}want$\text{ }${}to$\text{ }${}use$\text{ }${}0xFF$\text{ }${}or$\text{ }${}0x00$\text{ }${}as$\text{ }${}those$\text{ }${}might$\text{ }${}be$\text{ }${}returned$\text{ }${}by$\text{ }$\newline{}
$\text{ }${}the$\text{ }${}Scratch$\text{ }${}Register$\text{ }${}instead$\text{ }${}for$\text{ }${}a$\text{ }${}false$\text{ }${}postive$\text{ }${}result.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Read$\text{ }${}the$\text{ }${}value$\text{ }${}of$\text{ }${}the$\text{ }${}Scratch$\text{ }${}Register$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}If$\text{ }${}the$\text{ }${}arbitrary$\text{ }${}value$\text{ }${}comes$\text{ }${}back$\text{ }${}identical$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}UART$\text{ }${}is$\text{ }${}16450$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Else$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}UART$\text{ }${}is$\text{ }${}8250$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}End$\text{ }${}If$\text{ }$\newline{}
$\text{ }${}End$\text{ }${}If}


When written in Pascal, the above algorithm ends up looking like this:
\\

\TemplateSpaceIndent{$\text{ }${}const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}COM1_Addr$\text{ }${}=$\text{ }${}\${}3F8;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}FCR$\text{ }${}=$\text{ }${}2;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}IIR$\text{ }${}=$\text{ }${}2;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}SCR$\text{ }${}=$\text{ }${}7;}

\\

\TemplateSpaceIndent{$\text{ }${}function$\text{ }${}IdentifyUART:$\text{ }${}String;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Test:$\text{ }${}Byte;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}COM1_Addr$\text{ }${}+$\text{ }${}FCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}E7;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Test$\text{ }${}:=$\text{ }${}Port{$\text{[}$}COM1_Addr$\text{ }${}+$\text{ }${}IIR{$\text{]}$};$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(Test$\text{ }${}and$\text{ }${}\${}40)$\text{ }${}>{}$\text{ }${}0$\text{ }${}then$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(Test$\text{ }${}and$\text{ }${}\${}80)$\text{ }${}>{}$\text{ }${}0$\text{ }${}then$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(Test$\text{ }${}and$\text{ }${}\${}20)$\text{ }${}>{}$\text{ }${}0$\text{ }${}then$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}IdentifyUART$\text{ }${}:=$\text{ }${}\textquotesingle{}16750\textquotesingle{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}else$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}IdentifyUART$\text{ }${}:=$\text{ }${}\textquotesingle{}16550A\textquotesingle{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}else$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}IdentifyUART$\text{ }${}:=$\text{ }${}\textquotesingle{}16550\textquotesingle{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}else$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}COM1_Addr$\text{ }${}+$\text{ }${}SCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}2A;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}Port{$\text{[}$}COM1_Addr$\text{ }${}+$\text{ }${}SCR{$\text{]}$}$\text{ }${}=$\text{ }${}\${}2A$\text{ }${}then$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}IdentifyUART$\text{ }${}:=$\text{ }${}\textquotesingle{}16450\textquotesingle{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}else$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}IdentifyUART$\text{ }${}:=$\text{ }${}\textquotesingle{}8250\textquotesingle{};$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}end;}


We still havn\textquotesingle{}t identified between the 8250, 8250A, or 8250B; but that is rather pointless anyway on most current computers as it is very unlikely to even find one of those chips because of their age.

A very similar procedure can be used to determine the CPU of a computer, but that is beyond the scope of this book.
\section{External References}
\label{86}

\begin{myitemize}
\item{}  \myhref{http://www.cs.clemson.edu/~mark/interrupts.html}{ History of Interrupt Programming}
\item{}  \myhref{http://satyap.csoft.net/8259.html}{ 8259 Chip Information with other registers explained} (dead link?)
\item{}  \myhref{http://www.beyondlogic.org/serial/serial.htm}{ Interfacing the Serial / RS232 Port}
\end{myitemize}



While the 8250 is by far the most popular UART on desktop computers, other popular UARTs include:
\begin{myitemize}
\item{}  the UART inside the \myhref{http://en.wikibooks.org/wiki/Embedded_Systems\%2FAtmel_AVR}{Atmel AVR}: ... \myhref{http://en.wikibooks.org/wiki/Embedded_Systems\%2FAtmel_AVR\%23Serial_Communication}{Embedded_Systems/Atmel_AVR\#Serial_Communication}
\item{}  the UART inside the \myhref{http://en.wikibooks.org/wiki/PIC}{Microchip PIC}: \myhref{http://microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE\&nodeId=1824\&appnote=en012073}{ \symbol{34}Microchip AN774: Asynchronous Communications with the PICmicroÂ® USART\symbol{34}}
\item{}  the UART inside the Apple Macintosh:  ...
\item{}  \symbol{34}bit-{}banging\symbol{34} a UART: ... \myplainurl{http://microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE\&nodeId=1824\&appnote=en012058}
\end{myitemize}

\section{Other Serial Programming Articles}
\label{87}





\myhref{http://en.wikibooks.org/wiki/Category\%3ASerial\%20Programming}{Category:Serial Programming}
\chapter{Serial DOS}

\myminitoc
\label{88}





\label{89}



\section{Introduction}
\label{90}
It is now time to build on everything that has been established so far.  While it is unlikely that you are going to be using MS-{}DOS for a major application, it is a good operating system to demonstrate a number of ideas related to software access of the 8250 UART and driver development. Compared to modern operating systems like Linux, OS-{}X, or Windows, MS-{}DOS can hardly be called an operating system at all.  All it really offers is basic access to the hard drive and a few minor utilities.  That really doesn\textquotesingle{}t matter so much for what we are dealing with here, and it is a good chance to see how we can directly manipulate the UART to get the full functionality of all aspects of the computer.  The tools I\textquotesingle{}m using are all available for free (as in beer) and can be used in emulator software (like VMware or Bochs) to try these ideas out as well.  Emulation of serial devices is generally a weak point for these programs, so it may work easier if you work from a floppy boot of DOS, or on an older computer that is otherwise destined for the trash can because it is obsolete.

For Pascal, you can look here:

\begin{myitemize}
\item{} Turbo Pascal \myplainurl{http://bdn.borland.com/article/0,1410,20803,00.html} version 5.5 -{} This is the software I\textquotesingle{}m actually using for these examples, and the compiler that most older documentation on the web will also support (generally).
\end{myitemize}


\begin{myitemize}
\item{} Free Pascal \myplainurl{http://www.freepascal.org/} -{} *note* this is a 32-{}bit version, although there is a port for DOS development.  Unlike Turbo Pascal, it also has ongoing development and is more valuable for serious projects running in DOS.
\end{myitemize}


For MS-{}DOS substitution (if you don\textquotesingle{}t happen to have MS-{}DOS 6.22 somewhere):

\begin{myitemize}
\item{} FreeDOS \myplainurl{http://www.freedos.org/} Project -{} Now that Microsoft has abandoned development of DOS, this is pretty much the only OS left that is pure command line driven and following the DOS architecture.
\end{myitemize}

\section{{\bfseries Hello World}, Serial Data Version}
\label{91}

In the \myhref{http://en.wikibooks.org/wiki/Programming\%3ASerial\%20Data\%20Communications\%23Intended\%20Audience}{introduction}, I mentioned that it was very difficult to write computer software that implements RS-{}232 serial communications.  A very short program shows that at least a basic program really isn\textquotesingle{}t that hard at all.  In fact, just three more lines than a typical \symbol{34}Hello World\symbol{34} program.
\\

\TemplateSpaceIndent{$\text{ }${}program$\text{ }${}HelloSerial;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}DataFile:$\text{ }${}Text;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Assign(DataFile,\textquotesingle{}COM1\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Rewrite(DataFile);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Writeln(DataFile,\textquotesingle{}Hello$\text{ }${}World\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Close(DataFile);$\text{ }$\newline{}
$\text{ }${}end.}


All of this works because in DOS (and all version of Windows as well... on this particular point) has a \symbol{34}reserved\symbol{34} file name called COM1 that is the operating system hooks into the serial communications ports.  While this seems simple, it is deceptively simple.  You still don\textquotesingle{}t have access to being able to control the baud rate or any of the other settings for the modem.  That is a fairly simple thing to add, however, using the knowledge of the UART discussed in the previous chapter \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3A8250\%20UART\%20Programming}{Programming the 8250 UART}.

To try something even easier, you don\textquotesingle{}t even need a compiler at all.  This takes advantage of the reserved \symbol{34}device names\symbol{34} in DOS and can be done from the command prompt.
\\

\TemplateSpaceIndent{$\text{ }${}C:\textbackslash{}>{}COPY$\text{ }${}CON$\text{ }${}COM1}


What you are doing here is taking input from {\itshape CON} (the console or the standard keyboard you use on your computer) and it \symbol{34}copies\symbol{34} the data to {\itshape COM1}.  You can also use variations of this to do some interesting file transfers, but it has some important limitations.  Most importantly, you don\textquotesingle{}t have access to the UART settings, and this simply uses whatever the default settings of the UART might be, or what you used last time you changed the settings to become with a serial terminal program.
\section{Finding the Port I/O Address for the UART}
\label{92}

The next big task that we have to work with is trying to find the base \symbol{34}address\symbol{34} of the Port I/O so that we can communicate with the UART chip directly (see the part about interface logic in the \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ATypical_RS232-Hardware_Configuration}{Typical RS232-{}Hardware Configuration} module for information what this is about).  For a \symbol{34}typical\symbol{34} PC system, the following are usually the addresses that you need to work with:

\begin{longtable}{>{\RaggedRight}p{0.24338\linewidth}>{\RaggedRight}p{0.30400\linewidth}>{\RaggedRight}p{0.33209\linewidth}} 
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Serial Port Name }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Base I/O Port Address }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ (interrupt) Number}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3F8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2F8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3E8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 4\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 2E8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 3 
\end{longtable}

\subsection{Looking up UART Base Address in RAM}
\label{93}

We will get back to the issue of the IRQ Number in a little bit, but for now we need to know where to start accessing information about each UART.  As demonstrated previously, DOS also keeps track of where the UART IO ports are located at for its own purpose, so you can try to \symbol{34}look up\symbol{34} within the memory tables that DOS uses to try and find the correct address as well.  This doesn\textquotesingle{}t always work, because we are going outside of the normal DOS API structure.  Alternative operating systems ( FreeDOS works fine here ) that are otherwise compatible with MS-{}DOS may not work in this manner, so take note that this may simply give you a wrong result altogether.

The addresses for the serial I/O Ports can be found at the following locations in RAM:


\begin{longtable}{>{\RaggedRight}p{0.27714\linewidth}>{\RaggedRight}p{0.33638\linewidth}>{\RaggedRight}p{0.26594\linewidth}} 
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Port }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Segment }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Offset}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0040 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0000\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0040 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0002\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0040 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0004\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} COM4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0040 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0006 
\end{longtable}



Those addresses are written to memory by the BIOS when it boots. If one of the ports doesn\textquotesingle{}t exist, the BIOS writes zero to the respective address. Note that the addresses are given in segment:offset format and that you have to multiply the address of the segment with 16 and add the offset to get to the physical address in memory.  This is where DOS \symbol{34}finds\symbol{34} the port addresses so you can run the first sample program in this chapter.

In assembler you can get the addresses like this: 

\TemplatePreformat{$\text{ }$\newline{}
;$\text{ }${}Data$\text{ }${}Segment$\text{ }$\newline{}
.data$\text{ }$\newline{}
Port$\text{ }${}$\text{ }${}dw$\text{ }${}0$\text{ }$\newline{}
...$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
;$\text{ }${}Code$\text{ }${}Segment$\text{ }$\newline{}
.code$\text{ }$\newline{}
mov$\text{ }${}ax,40h$\text{ }$\newline{}
mov$\text{ }${}es,ax$\text{ }$\newline{}
mov$\text{ }${}si,0$\text{ }$\newline{}
mov$\text{ }${}bx,Port$\text{ }${};$\text{ }${}0$\text{ }${}-{}$\text{ }${}COM1$\text{ }${},$\text{ }${}1$\text{ }${}-{}$\text{ }${}COM2$\text{ }${}...$\text{ }$\newline{}
shl$\text{ }${}bx,1$\text{ }$\newline{}
mov$\text{ }${}Port,$\text{ }${}es:{$\text{[}$}si+bx{$\text{]}$}$\text{ }$\newline{}
}

In Turbo Pascal, you can get at these addresses almost the same way and in some ways even easier because it is a \symbol{34}high level language\symbol{34}.  All you have to do is add the following line to access the COM Port location as a simple array:
\\

\TemplateSpaceIndent{$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}ComPort:$\text{ }${}array$\text{ }${}{$\text{[}$}1..4{$\text{]}$}$\text{ }${}of$\text{ }${}Word$\text{ }${}absolute$\text{ }${}\${}0040:\${}0000;}


The reserved, non standard, word {\bfseries absolute} is a flag to the compiler that instead of \symbol{34}allocating\symbol{34} memory, that you already have a place in mind to have the computer look instead.  This is something that should seldom be done by a programmer unless you are accessing things like these I/O port addresses that are always stored in this memory location.

For a complete program that simply prints out a table of the I/O port addresses for all four standard COM ports, you can use this simple program:
\\

\TemplateSpaceIndent{$\text{ }${}program$\text{ }${}UARTLook;$\text{ }$\newline{}
$\text{ }${}const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}HexDigits:$\text{ }${}array$\text{ }${}{$\text{[}$}\${}0..\${}F{$\text{]}$}$\text{ }${}of$\text{ }${}Char$\text{ }${}=$\text{ }${}\textquotesingle{}0123456789ABCDEF\textquotesingle{};$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}ComPort:$\text{ }${}array$\text{ }${}{$\text{[}$}1..4{$\text{]}$}$\text{ }${}of$\text{ }${}Word$\text{ }${}absolute$\text{ }${}\${}0040:\${}0000;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Index:$\text{ }${}Integer;$\text{ }$\newline{}
$\text{ }${}function$\text{ }${}HexWord(Number:Word):String;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}HexWord$\text{ }${}:=$\text{ }${}\textquotesingle{}\${}\textquotesingle{}$\text{ }${}+$\text{ }${}HexDigits{$\text{[}$}Hi(Number)$\text{ }${}shr$\text{ }${}4{$\text{]}$}$\text{ }${}+$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}HexDigits{$\text{[}$}Hi(Number)$\text{ }${}and$\text{ }${}\${}F{$\text{]}$}$\text{ }${}+$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}HexDigits{$\text{[}$}Lo(Number)$\text{ }${}shr$\text{ }${}4{$\text{]}$}$\text{ }${}+$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}HexDigits{$\text{[}$}Lo(Number)$\text{ }${}and$\text{ }${}\${}F{$\text{]}$};$\text{ }$\newline{}
$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}writeln(\textquotesingle{}Serial$\text{ }${}COMport$\text{ }${}I/O$\text{ }${}Port$\text{ }${}addresses:\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}for$\text{ }${}Index$\text{ }${}:=$\text{ }${}1$\text{ }${}to$\text{ }${}4$\text{ }${}do$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}writeln(\textquotesingle{}COM\textquotesingle{},Index,\textquotesingle{}$\text{ }${}is$\text{ }${}located$\text{ }${}at$\text{ }${}\textquotesingle{},HexWord(ComPort{$\text{[}$}Index{$\text{]}$}));$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}end.}

\subsection{Searching BIOS Setup}
\label{94}

Assuming that the standard I/O addresses don\textquotesingle{}t seem to be working for your computer and you haven\textquotesingle{}t been able to find the correct I/O Port offset addresses through searching RAM either, all hope is still not lost.  Assuming that you have not accidentally changed these settings earlier, you can also try to look up these numbers in the BIOS setup page for your computer.  It may take some pushing around to find this information, but if you have a conventional serial data port on your computer, it will be there.

If you are using a serial data port that is connected via USB (common on more recent computers), you are simply not going to be (easily) able to do direct serial data communications in DOS.  Instead, you need to use more advanced operating systems like Windows or Linux that is beyond the scope of this chapter.  We will cover how to access the serial communications routines in those operating systems in subsequent chapters.  The basic principles we are discussing here would still be useful to review because it goes into the basic UART structure.

While it may be useful to try and make IRQs selectable and not presume that the information listed above is correct in all situations, it is important to note that most PC-{}compatible computer equipment usually has these IRQs and I/O port addresses used in this way because of legacy support.  And surprisingly as computers get more sophisticated with even more advanced equipment like USB devices, these legacy connections still work for most equipment.
\section{Making modifications to UART Registers}
\label{95}

Now that we know where to look in memory to modify the UART registers, let\textquotesingle{}s put that knowledge to work.  We are also now going to do some practical application of the tables listed earlier in the chapter \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3A8250\%20UART\%20Programming}{8250 UART Programming}.

To start with, let\textquotesingle{}s redo the previous \symbol{34}Hello World\symbol{34} application, but this time we are going to set the RS-{}232 transmission parameters to 1200 baud, 7 databits, even parity, and 2 stop bits.  I\textquotesingle{}m choosing this setting parameter because it is not standard for most modem applications, as a demonstration.  If you can change these settings, then other transmission settings are going to be trivial.

First, we need to set up some software constants to keep track of locations in memory.  This is mainly to keep things clear to somebody trying to make changes to our software in the future, not because the compiler needs it.
\\

\TemplateSpaceIndent{$\text{ }${}const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}LCR$\text{ }${}=$\text{ }${}3;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_Low$\text{ }${}=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_High$\text{ }${}=$\text{ }${}\${}01;}


Next, we need to set the DLAB to a logical \symbol{34}1\symbol{34} so we can set the baud rate:
\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}80;}


In this case, we are ignoring the rest of the settings for the Line Control Register (LCR) because we will be setting them up in a little bit.  Remember this is just a \symbol{34}quick and dirty\symbol{34} way to get this done for now.  A more \symbol{34}formal\symbol{34} way to set up things like baud rate will be demonstrated later on with this module.

Following this, we need to put in the baud rate for the modem.  Looking up 1200 baud on the \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3A8250\%20UART\%20Programming\%23Divisor\%20Latch\%20Bytes}{Divisor Latch Bytes table} gives us the following values:
\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_High{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_Low{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}60;}


Now we need to set the values for the LCR based on our desired setting of 7-{}2-{}E for the communication settings.  We also need to \symbol{34}clear\symbol{34} the DLAB which we can also do at the same time.\\

\TemplateSpaceIndent{$\text{ }${}$\text{ }$\newline{}
$\text{ }${}Clearing$\text{ }${}DLAB$\text{ }${}=$\text{ }${}0$\text{ }${}*$\text{ }${}128$\text{ }$\newline{}
$\text{ }${}Clearing$\text{ }${}\symbol{34}Set$\text{ }${}Break\symbol{34}$\text{ }${}flag$\text{ }${}=$\text{ }${}0$\text{ }${}*$\text{ }${}64$\text{ }$\newline{}
$\text{ }${}Even$\text{ }${}Parity$\text{ }${}=$\text{ }${}2$\text{ }${}*$\text{ }${}8$\text{ }$\newline{}
$\text{ }${}Two$\text{ }${}Stop$\text{ }${}bits$\text{ }${}=$\text{ }${}1$\text{ }${}*$\text{ }${}4$\text{ }$\newline{}
$\text{ }${}7$\text{ }${}Data$\text{ }${}bits$\text{ }${}=$\text{ }${}2$\text{ }${}*$\text{ }${}1}

\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}16$\text{ }${}$\text{ }${}\{8*2$\text{ }${}+$\text{ }${}4$\text{ }${}+$\text{ }${}2$\text{ }${}=$\text{ }${}22$\text{ }${}or$\text{ }${}\${}16$\text{ }${}in$\text{ }${}hex\}}


Are things clear so far?  What we have just done is some bit-{}wise arithmetic, and I\textquotesingle{}m trying to keep things very simple here and to try and explain each step in detail.  Let\textquotesingle{}s just put the whole thing together as the quick and dirty \symbol{34}Hello World\symbol{34}, but with adjustment of the transmission settings as well:
\\

\TemplateSpaceIndent{$\text{ }${}program$\text{ }${}HelloSerial;$\text{ }$\newline{}
$\text{ }${}const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}LCR$\text{ }${}=$\text{ }${}3;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_Low$\text{ }${}=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_High$\text{ }${}=$\text{ }${}\${}01;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}ComPort:$\text{ }${}array$\text{ }${}{$\text{[}$}1..4{$\text{]}$}$\text{ }${}of$\text{ }${}Word$\text{ }${}absolute$\text{ }${}\${}0040:\${}0000;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}DataFile:$\text{ }${}Text;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Assign(DataFile,\textquotesingle{}COM1\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Rewrite(DataFile);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Change$\text{ }${}UART$\text{ }${}Settings\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}80;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_High{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_Low{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}60;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}16$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Writeln(DataFile,\textquotesingle{}Hello$\text{ }${}World\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Close(DataFile);$\text{ }$\newline{}
$\text{ }${}end.}


This is getting a little more complicated, but not too much.  Still, all we have done so far is just write data out to the serial port.  Reading data from the serial data port is going to be a little bit trickier.
\section{Basic Serial Input}
\label{96}

In theory, you could use a standard I/O library and simply read data from the COM port like you would be reading from a file on your hard drive.  Something like this:
\\

\TemplateSpaceIndent{$\text{ }${}Readln(DataFile,SomeSerialData);}


There are some problems with doing that with most software, however.  One thing to keep in mind is that using a standard input routine will stop your software until the input is finished ending with a \symbol{34}Enter\symbol{34} character (ASCII code 13 or in hex \${}0D).  

Usually what you want to do with a program that receives serial data is to allow the user to do other things while the software is waiting for the data input.  In a multitasking operating system, this would simply be put on another \symbol{34}thread\symbol{34}, but with this being DOS, we don\textquotesingle{}t (usually) have threading capabilities, nor is it necessary.  There are some other alternatives that we do in order to get the serial data brought into your software.
\subsection{Polling the UART}
\label{97}

Perhaps the easiest to go, besides simply letting the standard I/O routines grab the input) is to do software polling of the UART.  One of the reasons why this works is because serial communications is generally so slow compared to the CPU speed that you can perform many tasks in between each character being transmitted to your computer.  Also, we are trying to do practical applications using the UART chip, so this is a good way to demonstrate some of the capabilities of the chip beyond simple output of data.
\subsubsection{Serial Echo Program}
\label{98}

Looking at the Line Status Register (LSR), there is a bit called {\bfseries Data Ready} that indicates there is some data available to your software in the UART.  We are going to take advantage of that bit, and start to do data access directly from the UART instead of relying on the standard I/O library.  This program we are going to demonstrate here is going to be called {\itshape Echo} because all it does is take whatever data is sent to the computer through the serial data port and display it on your screen.  We are also going to be configuring the RS-{}232 settings to a more normal 9600 baud, 8 data bits, 1 stop bit, and no parity.  To quit the program, all you have to do is press any key on your keyboard.
\\

\TemplateSpaceIndent{$\text{ }${}program$\text{ }${}SerialEcho;$\text{ }$\newline{}
$\text{ }${}uses$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Crt;$\text{ }$\newline{}
$\text{ }${}const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}RBR$\text{ }${}=$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}LCR$\text{ }${}=$\text{ }${}3;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}LSR$\text{ }${}=$\text{ }${}5;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_Low$\text{ }${}=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_High$\text{ }${}=$\text{ }${}\${}01;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}ComPort:$\text{ }${}array$\text{ }${}{$\text{[}$}1..4{$\text{]}$}$\text{ }${}of$\text{ }${}Word$\text{ }${}absolute$\text{ }${}\${}0040:\${}0000;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}InputLetter:$\text{ }${}Char;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Writeln(\textquotesingle{}Serial$\text{ }${}Data$\text{ }${}Terminal$\text{ }${}Character$\text{ }${}Echo$\text{ }${}Program.$\text{ }${}$\text{ }${}Press$\text{ }${}any$\text{ }$\newline{}
$\text{ }${}key$\text{ }${}on$\text{ }${}the$\text{ }${}keyboard$\text{ }${}to$\text{ }${}quit.\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Change$\text{ }${}UART$\text{ }${}Settings\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}80;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_High{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_Low{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}0C;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}03;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Scan$\text{ }${}for$\text{ }${}serial$\text{ }${}data\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}while$\text{ }${}not$\text{ }${}KeyPressed$\text{ }${}do$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LSR{$\text{]}$}$\text{ }${}and$\text{ }${}\${}01)$\text{ }${}>{}$\text{ }${}0$\text{ }${}then$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}InputLetter$\text{ }${}:=$\text{ }${}Chr(Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}RBR{$\text{]}$});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Write(InputLetter);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }${}\{if\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }${}\{while\}$\text{ }$\newline{}
$\text{ }${}end.}

\subsubsection{Simple Terminal}
\label{99}

This program really isn\textquotesingle{}t that complicated.  In fact, a very simple \symbol{34}terminal\symbol{34} program can be adapted from this to allow both sending and receiving characters.  In this case, the {\itshape Escape} key will be used to quit the program, which will in fact be where most of the changes to the program will happen.  We are also introducing for the first time direct output into the UART instead of going through the standard I/O libraries with this line:
\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}THR{$\text{]}$}$\text{ }${}:=$\text{ }${}Ord(OutputLetter);$\text{ }${}}


The Transmit Holding Register (THR) is how data you want to transmit gets into the UART in the first place.  DOS just took care of the details earlier, so now we don\textquotesingle{}t need to open a \symbol{34}file\symbol{34} in order to send data.  We are going to assume, to keep things very simple, that you can\textquotesingle{}t type at 9600 baud, or roughly 11,000 words per minute.  Only if you are dealing with very slow baud rates like 110 baud is that going to be an issue anyway (still at over 130 words per minute of typing... a very fast typist indeed).
\\

\TemplateSpaceIndent{$\text{ }${}program$\text{ }${}SimpleTerminal;$\text{ }$\newline{}
$\text{ }${}uses$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Crt;$\text{ }$\newline{}
$\text{ }${}const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}THR$\text{ }${}=$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}RBR$\text{ }${}=$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}LCR$\text{ }${}=$\text{ }${}3;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}LSR$\text{ }${}=$\text{ }${}5;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_Low$\text{ }${}=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_High$\text{ }${}=$\text{ }${}\${}01;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Character$\text{ }${}Constants\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}NullLetter$\text{ }${}=$\text{ }${}\#0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}EscapeKey$\text{ }${}=$\text{ }${}\#27;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}ComPort:$\text{ }${}array$\text{ }${}{$\text{[}$}1..4{$\text{]}$}$\text{ }${}of$\text{ }${}Word$\text{ }${}absolute$\text{ }${}\${}0040:\${}0000;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}InputLetter:$\text{ }${}Char;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}OutputLetter:$\text{ }${}Char;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Writeln(\textquotesingle{}Simple$\text{ }${}Serial$\text{ }${}Data$\text{ }${}Terminal$\text{ }${}Program.$\text{ }${}$\text{ }${}Press$\text{ }${}\symbol{34}Esc\symbol{34}$\text{ }${}to$\text{ }$\newline{}
$\text{ }${}quit.\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Change$\text{ }${}UART$\text{ }${}Settings\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}80;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_High{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_Low{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}0C;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}03;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Scan$\text{ }${}for$\text{ }${}serial$\text{ }${}data\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}OutputLetter$\text{ }${}:=$\text{ }${}NullLetter;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}repeat$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LSR{$\text{]}$}$\text{ }${}and$\text{ }${}\${}01)$\text{ }${}>{}$\text{ }${}0$\text{ }${}then$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}InputLetter$\text{ }${}:=$\text{ }${}Chr(Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}RBR{$\text{]}$});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Write(InputLetter);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }${}\{if\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}KeyPressed$\text{ }${}then$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}OutputLetter$\text{ }${}:=$\text{ }${}ReadKey;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}THR{$\text{]}$}$\text{ }${}:=$\text{ }${}Ord(OutputLetter);$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }${}\{if\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}until$\text{ }${}OutputLetter$\text{ }${}=$\text{ }${}EscapeKey;$\text{ }$\newline{}
$\text{ }${}end.}

\section{Interrupt Drivers in DOS}
\label{100}

The software polling method may be adequate for most simple tasks, and if you want to test some serial data concepts without writing a lot of software, it may be sufficient.  Quite a bit can be done with just that method of data input.

When you are writing a more complete piece of software, however, it becomes important to worry about the efficiency of your software.  While the computer is \symbol{34}polling\symbol{34} the UART to see if a character has been sent through the serial communications port, it spends quite a few CPU cycles doing absolutely nothing at all.  It also get very difficult to expand a program like the one demonstrated above to become a small section of a very large program.  If you want to get that last little bit of CPU performance out of your software, we need to turn to interrupt drivers and how you can write them.

I\textquotesingle{}ll openly admit that this is a tough leap in complexity from a simple polling application listed above, but it is an important programming topic in general.  We are also going to expose a little bit about the low-{}level behavior of the 8086 chip family, which is knowledge you can use in newer operating systems as well, at least for background information.

Going back to earlier discussions about the 8259 Programmable Interrupt Controller (PIC) chip, external devices like the UART can \symbol{34}signal\symbol{34} the 8086 that an important task needs to occur that {\bfseries interrupts} the flow of the software currently running on the computer.  Not all computers do this, however, and sometimes the software polling of devices is the only way to get data input from other devices.  The real advantage of interrupt events is that you can process data acquisition from devices like the UART very quickly, and CPU time spent trying to test if there is data available can instead be used for other tasks.  It is also useful when designing operating systems that are {\itshape event driven}.

Interrupt Requests (IRQs) are labeled with the names IRQ0 to IRQ15.  UART chips typically use either IRQ 3 or IRQ 4.  When the PIC signals to the CPU that an interrupt has occurred, the CPU automatically start to run a very small subroutine that has been previously setup in the {\bfseries Interrupt Table} in RAM.  The exact routine that is started depends on which IRQ has been triggered.  What we are going to demonstrate here is the ability to write our own software that \symbol{34}takes over\symbol{34} from the operating system what should occur when the interrupt occurs.  In effect, writing our own \symbol{34}operating system\symbol{34} instead, at least for those parts we are rewriting.

Indeed, this is exactly what operating system authors do when they try to make a new OS... deal with the interrupts and write the subroutines necessary to control the devices connected to the computer.

The following is a very simple program that captures the keyboard interrupt and produces a \symbol{34}clicking\symbol{34} sound in the speaker as you type each key.  One interesting thing about this whole section, while it is moving slightly off topic, this is communicating with a serial device.  The keyboard on a typical PC transmits the information about each key that you press through a RS-{}232 serial protocol that operates usually between 300 and 1200 baud and has its own custom UART chip.  Normally this isn\textquotesingle{}t something you are going to address, and seldom are you going to have another kind of device connected to the keyboard port, but it is interesting that you can \symbol{34}hack\symbol{34} into the functions of your keyboard by understanding serial data programming.
\\

\TemplateSpaceIndent{$\text{ }${}program$\text{ }${}KeyboardDemo;$\text{ }$\newline{}
$\text{ }${}uses$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Dos,$\text{ }${}Crt;$\text{ }$\newline{}
$\text{ }${}const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}EscapeKey$\text{ }${}=$\text{ }${}\#27;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}OldKeybrdVector:$\text{ }${}Procedure;$\text{ }$\newline{}
$\text{ }${}\{\${}F+\}$\text{ }$\newline{}
$\text{ }${}procedure$\text{ }${}Keyclick;$\text{ }${}interrupt;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}Port{$\text{[}$}\${}60{$\text{]}$}$\text{ }${}<{}$\text{ }${}\${}80$\text{ }${}then$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Sound(5000);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Delay(1);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Nosound;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}inline(\${}9C)$\text{ }${}\{$\text{ }${}PUSHF$\text{ }${}-{}$\text{ }${}Push$\text{ }${}the$\text{ }${}flags$\text{ }${}onto$\text{ }${}the$\text{ }${}stack$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}OldKeybrdVector;$\text{ }$\newline{}
$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}\{\${}F-{}\}$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}GetIntVec(\${}9,@OldKeybrdVector);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}SetIntVec(\${}9,Addr(Keyclick));$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}repeat$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}KeyPressed$\text{ }${}then$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}OutputLetter$\text{ }${}:=$\text{ }${}ReadKey;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Write(OutputLetter);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }${}\{if\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}until$\text{ }${}OutputLetter$\text{ }${}=$\text{ }${}EscapeKey;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}SetIntVec(\${}9,@OldKeybrdVector);$\text{ }$\newline{}
$\text{ }${}end.}


There are a number of things that this program does, and we need to explore the realm of 16-{}bit DOS software as well.  The 8086 chip designers had to make quite a few compromises in order to work with the computer technology that was available at the time it was designed.  Computer memory was quite expensive compared to the overall cost of the computer.  Most of the early microcomputers that the IBM-{}PC was competing against only had 64K or 128K of main CPU RAM anyway, so huge programs were not considered important.  In fact, the original IBM-{}PC was designed to operate on only 128K of RAM although it did become standard with generally up to 640K of main RAM, especially by the time the IBM PC-{}XT was released and the market for PC \symbol{34}clones\symbol{34} turned out what is generally considered the \symbol{34}standard PC\symbol{34} computer today.

The design came up with what is called {\bfseries segmented memory}, where the CPU address is made up of a memory \symbol{34}segment\symbol{34} pointer and a 64K block of memory.  That is why some early software on these computers could only run in 64K of memory, and created nightmares for compiler authors on the 8086.  Pentium computers don\textquotesingle{}t generally have this issue, as the memory model in \symbol{34}protected mode\symbol{34} doesn\textquotesingle{}t use this segmented design methodology.
\subsection{Far Procedure Calls}
\label{101}\\

\TemplateSpaceIndent{$\text{ }${}$\text{ }$\newline{}
$\text{ }${}\{\${}F+\}$\text{ }$\newline{}
$\text{ }${}\{\${}F-{}\}}


This program has two \symbol{34}compiler switches\symbol{34} that inform the compiler of the need to use what are called far procedure calls.  Normally for small programs and simple subroutines, you are able to use what is called relative indexing with the software so the CPU \symbol{34}jumps\symbol{34} to the portion of RAM with the procedure by doing a bit of simple math and \symbol{34}adding\symbol{34} a number to the current CPU address in order to find the correct instructions.  This is done especially because it uses quite a bit less memory to store all of these instructions.

Sometimes, however, a procedure must be accessed from somewhere in RAM that is quite different from the current CPU memory address \symbol{34}instruction pointer\symbol{34}.  Interrupt procedures are one of these, because it doesn\textquotesingle{}t even have to be the same program that is stored in the interrupt vector table.  That brings up the next part to discuss:
\subsection{Interrupt Procedures}
\label{102}
\\

\TemplateSpaceIndent{$\text{ }${}procedure$\text{ }${}Keyclick;$\text{ }${}interrupt;}


The word \symbol{34}interrupt\symbol{34} after this procedure name is a key item here.  This tells the compiler that it must do something a little bit different when organizing this function than how a normal function call behaves.  Typically for most software on the computer, you have a bunch of simple instructions that are then followed by (in assembler) an instruction called:
\\

\TemplateSpaceIndent{$\text{ }${}RET}


This is the mnemonic assembly instruction for return from procedure call.  Interrupts are handled a little bit differently and should normally end with a different CPU instruction that in assembly is called:
\\

\TemplateSpaceIndent{$\text{ }${}IRET}


or Interrupt return for short.  One of the things that should also happen with any interrupt service routine is to \symbol{34}preserve\symbol{34} the CPU information before doing anything else.  Each \symbol{34}command\symbol{34} that you write in your software will modify the internal registers of the CPU.  Keep in mind that an interrupt can occur right in the middle of doing some calculations for another program, like rendering a graphic image or making payroll calculations.  We need to hand onto that information and \symbol{34}restore\symbol{34} those values on all of the CPU registers at the end of our subroutine.  This is usually done by \symbol{34}pushing\symbol{34} all of the register values onto the CPU stack, performing the ISR, and then restoring the CPU registers afterward.

In this case, Turbo Pascal (and other well-{}written compilers having a compiler flag like this) takes care of these low-{}level details for you with this simple flag.  If the compiler you are using doesn\textquotesingle{}t have this feature, you will have to add these features \symbol{34}by hand\symbol{34} and explicitly put them into your software.  That doesn\textquotesingle{}t mean the compiler will do everything for you to make an interrupt procedure.  There are more steps to getting this to work still.
\subsection{Procedure Variables}
\label{103}
\\

\TemplateSpaceIndent{$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}OldKeybrdVector:$\text{ }${}Procedure;}


These instructions are using what is called a procedure variable.  Keep in mind that all software is located in the same memory as variables and other information your software is using.  Essentially, a variable procedure where you don\textquotesingle{}t need to worry about what it does until the software is running, and you can change this variable while your program is running.  This is a powerful concept that is not often used, but it can be used for a number of different things.  In this case we are keeping track of the previous interrupt service routine and \symbol{34}chaining\symbol{34} these routines together.

There are programs called Terminate and Stay Resident (TSRs) that are loaded into your computer.  Some of these are called drivers, and the operating system itself also puts in subroutines to do basic functions.  If you want to \symbol{34}play nice\symbol{34} with all of this other software, the established protocol for making sure everybody gets a chance to review the data in an interrupt is to link each new interrupt subroutine to the previously stored interrupt vector.  When we are done with whatever we want to do with the interrupt, we then let all of the other programs get a chance to used the interrupt as well.  It is also possible that the Interrupt Service Routine (ISR) that we just wrote is not the first one in the chain, but instead one that is being called by another ISR.
\subsection{Getting/Setting Interrupt Vectors}
\label{104}
\\

\TemplateSpaceIndent{$\text{ }${}$\text{ }${}GetIntVec(\${}9,@OldKeybrdVector);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}SetIntVec(\${}9,Addr(Keyclick));$\text{ }$\newline{}
$\text{ }${}$\text{ }${}SetIntVec(\${}9,@OldKeybrdVector);}


Again, this is Turbo Pascal \symbol{34}hiding\symbol{34} the details in a convenient way.  There is a \symbol{34}vector table\symbol{34} that you can directly access, but this vector table is not always in the same location in RAM.  If instead you go through the BIOS with a software interrupt, you are \symbol{34}guaranteed\symbol{34} that the interrupt vector will be correctly replaced.
\subsection{Hardware Interrupt Table}
\label{105}

\begin{longtable}{>{\RaggedRight}p{0.16803\linewidth}>{\RaggedRight}p{0.24348\linewidth}>{\RaggedRight}p{0.46796\linewidth}} 
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Interrupt }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Hardware IRQ }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Purpose}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}00 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CPU &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Divide by Zero\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}01 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CPU &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Single Step Instruction Processing\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}02 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CPU &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Non-{}maskable Interrupts\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}03 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CPU &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Breakpoint Instruction\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}04 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CPU &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Overflow Instruction\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}05 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CPU &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bounds Exception\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}06 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CPU &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Invalid Op Code\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}07 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CPU &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Math Co-{}processor not found\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}08 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ0 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} System Timer\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}09 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ1 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Keyboard\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0A &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ2 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Cascade from IRQ8 -{} IRQ15\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0B &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ3 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Serial Port (COM2)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0C &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ4 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Serial Port (COM1)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0D &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ5 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Sound Card\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0E &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ6 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Floppy Disk Controller\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}0F &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ7 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Parallel Port (LPT1)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}10 -{} \${}6F &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}   &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Software Interrupts\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}70 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ8 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Real-{}time Clock\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}71 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ9 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Legacy IRQ2 Devices\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}72 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ10 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved (often PCI devices)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}73 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ11 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved (often PCI devices)\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}74 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ12 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} PS/2 Mouse\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}75 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ13 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Math Co-{}Processor Results\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}76 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ14 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Hard Disk Drive\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}77 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} IRQ15 &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Reserved\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} \${}78 -{} \${}FF &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}   &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Software Interrupts 
\end{longtable}


This table gives you a quick glance at some of the things that interrupts are used for, and the interrupt numbers associated with them.  Keep in mind that the IRQ numbers are mainly reference numbers, and that the CPU uses a different set of numbers.  The keyboard IRQ, for example, is IRQ1, but it is numbered as interrupt \${}09 inside the CPU.

There are also several interrupts that are \symbol{34}generated\symbol{34} by the CPU itself.  While technically hardware interrupts, these are generated by conditions {\itshape within} the CPU, sometimes based on conditions setup by your software or the operating system.  When we start writing the interrupt service routine for the serial communication ports, we will be using interrupts 11 and 12 (\${}0B and \${}0C in hex).  As can be seen, most interrupts are assigned for specific tasks.  I\textquotesingle{}ve omitted the software interrupts mainly to keep this on topic regarding serial programming and hardware interrupts.
\subsection{Other features}
\label{106}

There are several other parts to this program that don\textquotesingle{}t need too much more explanation.  Remember, we are talking about serial programming, not interrupt drivers.  I/O Port \${}60 is interesting as this is the Receiver Buffer (RBR) for the keyboard UART.  This returns the keyboard \symbol{34}scan code\symbol{34}, not the actual character pressed.  In fact, when you use a keyboard on a PC, the keyboard actually transmits two characters for each key that you use.  One character is transmitted when you press the key down, and another character when the key is \symbol{34}released\symbol{34} to go back up.  In this case, the interrupt service routine in DOS normally converts the scan codes into ASCII codes that your software can use.  In fact, simple keys like the shift key are treated as just another scan code.

The sound routines access the internal PC speaker, not something on a sound card.  About the only thing that uses this speaker any more is the BIOS \symbol{34}beep codes\symbol{34} that you hear only when there is a hardware failure to your computer, or the quick \symbol{34}beep\symbol{34} when you start or reboot the computer.  It was never designed for doing things like speech synthesis or music playback, and driver attempts to use it for those purposes sound awful.  Still, it is something neat to experiment with and a legacy computer part that is surprisingly still used on many current computers..
\section{Terminal Program Revisited}
\label{107}

I\textquotesingle{}m going to go back to the serial terminal program for a bit and this time redo the application by using an interrupt service routine.  There are a few other concepts I\textquotesingle{}d like to introduce as well so I\textquotesingle{}ll try to put them in with this example program.  From the user perspective, I would like to add the ability to change the terminal characteristics from the command line and allow an \symbol{34}end-{}user\symbol{34} the ability to change things like the baud rate, stop bits, and parity checking, and allow these to be variables instead of hard-{}coded constants.  I\textquotesingle{}ll explain each section and then put it all together when we are through.
\subsection{Serial ISR}
\label{108}

This is an example of a serial ISR we can use:
\\

\TemplateSpaceIndent{$\text{ }${}\{\${}F+\}$\text{ }$\newline{}
$\text{ }${}procedure$\text{ }${}SerialDataIn;$\text{ }${}interrupt;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}InputLetter:$\text{ }${}Char;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LSR{$\text{]}$}$\text{ }${}and$\text{ }${}\${}01)$\text{ }${}>{}$\text{ }${}0$\text{ }${}then$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}InputLetter$\text{ }${}:=$\text{ }${}Chr(Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}RBR{$\text{]}$});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}end;$\text{ }${}\{if\}$\text{ }$\newline{}
$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}\{\${}F-{}\}}


This isn\textquotesingle{}t that much different from the polling method that we used earlier, but keep in mind that by placing the checking inside an ISR that the CPU is only doing the check when there is a piece of data available.  Why even check the LSR to see if there is a data byte available?  Reading data sent to the UART is not the only reason why the UART will invoke an interrupt.  We will go over that in detail in a later section, but for now this is good programming practice as well, to confirm that the data is in there.

By moving this checking to the ISR, more CPU time is available for performing other tasks.  We could even put the keyboard polling into an ISR as well, but we are going to keep things very simple for now.
\subsection{FIFO disabling}
\label{109}

There is one minor problem with the way we have written this ISR.  We are assuming that there is no FIFO in the UART.  The \symbol{34}bug\symbol{34} that could happen with this ISR as it is currently written is that multiple characters can be in the FIFO buffer.  Normally when this happens, the UART only sends a single interrupt, and it is up to the ISR to \symbol{34}empty\symbol{34} the FIFO buffer completely.

Instead, all we are going to do is simply disable the FIFO completely.  This can be done using the FCR (FIFO Control Register) and explicitly disabling the FIFO.  As an added precaution, we are also going to \symbol{34}clear\symbol{34} the FIFO buffers in the UART as a part of the initialization portion of the program.  Clearing the FIFOs look like this:
\\

\TemplateSpaceIndent{$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}FCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}07;$\text{ }${}\{clearing$\text{ }${}the$\text{ }${}FIFOs\}}


Disabling the FIFOs look like this:
\\

\TemplateSpaceIndent{$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}FCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}00;$\text{ }${}\{disabling$\text{ }${}FIFOs\}}


We will be using the FIFOs in the next section, so this is more a brief introduction to this register so far.
\subsection{Working with the PIC}
\label{110}

Up until this point, we didn\textquotesingle{}t have to worry about working with the Programmable Interrupt Controller (the PIC).  Now we need to.  There isn\textquotesingle{}t the need to do all of the potential instructions for the PIC, but we do need to enable and disable the interrupts that are used by the UART.  There are two PICs typically on each PC, but due to the typical UART IRQ vector, we really only have to deal with the master PIC.

\begin{longtable}{>{\RaggedRight}p{0.43368\linewidth}>{\RaggedRight}p{0.48596\linewidth}} 
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Pic Function }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} I/O Port Address}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} PIC Commands &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0x20\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Interrupt Flags &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 0x21 
\end{longtable}


This adds the following two constants into the software:
\\

\TemplateSpaceIndent{$\text{ }${}\{PIC$\text{ }${}Constants\}$\text{ }$\newline{}
$\text{ }${}MasterPIC$\text{ }${}=$\text{ }${}\${}20;$\text{ }$\newline{}
$\text{ }${}MasterOCW1$\text{ }${}=$\text{ }${}\${}21;}


After consulting the \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3A8250\%20UART\%20Programming\%23PIC\%20Device\%20Masking}{PIC IRQ table} we need to add the following line to the software in order to enable IRQ4 (used for COM1 typically):
\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}MasterOCW1{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}MasterOCW1{$\text{]}$}$\text{ }${}and$\text{ }${}\${}EF;}


When we do the \symbol{34}cleanup\symbol{34} when the program finishes, we also need to disable this IRQ as well with this line of software:
\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}MasterOCW1{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}MasterOCW1{$\text{]}$}$\text{ }${}or$\text{ }${}\${}10;}


Remember that COM2 is on another IRQ vector, so you will have to use different constants for that IRQ.  That will be demonstrated a little bit later.  We are using a logical and/or with the existing value in this PIC register because we don\textquotesingle{}t want to change the values for the other interrupt vectors that other software and drivers may be using on your PC.

We also need to modify the Interrupt Service Routine (ISR) a little bit to work with the PIC.  There is a command you can send to the PIC that is simply called End of Interrupt (EOI).  This signals to the PIC that it can clear this interrupt signal and process lower-{}priority interrupts.  If you fail to clear the PIC, the interrupt signal will remain and none of the other interrupts that are \symbol{34}lower priority\symbol{34} can be processed by the CPU.  This is how the CPU communicates back to the PIC to end the interrupt cycle.

The following line is added to the ISR to make this happen:
\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}MasterPIC{$\text{]}$}$\text{ }${}:=$\text{ }${}EOI;}

\subsection{Modem Control Register}
\label{111}

This is perhaps the most non-{}obvious little mistake you can make when trying to get the UART interrupt.  The Modem Control register is really the way for the UART to communicate to the rest of the PC.  Because of the way the circuitry on the motherboards of most computers is designed, you usually have to turn on the Auxiliary Output 2 signal in order for interrupts to \symbol{34}connect\symbol{34} to the CPU.  In addition, here we are going to turn on the RTS and DTS signals on the \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3ARS-232\%20Connections}{serial data cable} to make sure the equipment is going to transmit.  We will cover software and hardware flow control in a later section.

To turn on these values in the MCR, we need to add the following line in the software:
\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}MCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}0B;}

\subsection{Interrupt Enable Register}
\label{112}

We are still not home free yet.  We still need to enable interrupts on the UART itself.  This is very simple, and for now all we want to trigger an interrupt from the UART is just when data is received by the UART.  This is a very simple line to add here:
\\

\TemplateSpaceIndent{$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}IER{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}01;}

\subsection{Putting this together so far}
\label{113}

Here is the complete program using ISR input:

\TemplatePreformat{$\text{ }$\newline{}
$\text{ }${}program$\text{ }${}ISRTerminal;$\text{ }$\newline{}
$\text{ }${}uses$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Crt,$\text{ }${}Dos;$\text{ }$\newline{}
$\text{ }${}const$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{UART$\text{ }${}Constants\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}THR$\text{ }${}=$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}RBR$\text{ }${}=$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}IER$\text{ }${}=$\text{ }${}1;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}FCR$\text{ }${}=$\text{ }${}2;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}LCR$\text{ }${}=$\text{ }${}3;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}MCR$\text{ }${}=$\text{ }${}4;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}LSR$\text{ }${}=$\text{ }${}5;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_Low$\text{ }${}=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Latch_High$\text{ }${}=$\text{ }${}\${}01;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{PIC$\text{ }${}Constants\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}MasterPIC$\text{ }${}=$\text{ }${}\${}20;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}MasterOCW1$\text{ }${}=$\text{ }${}\${}21;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Character$\text{ }${}Constants\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}NullLetter$\text{ }${}=$\text{ }${}\#0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}EscapeKey$\text{ }${}=$\text{ }${}\#27;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}ComPort:$\text{ }${}array$\text{ }${}{$\text{[}$}1..4{$\text{]}$}$\text{ }${}of$\text{ }${}Word$\text{ }${}absolute$\text{ }${}\${}0040:\${}0000;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}OldSerialVector:$\text{ }${}procedure;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}OutputLetter:$\text{ }${}Char;$\text{ }$\newline{}
$\text{ }${}\{\${}F+\}$\text{ }$\newline{}
$\text{ }${}procedure$\text{ }${}SerialDataIn;$\text{ }${}interrupt;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}InputLetter:$\text{ }${}Char;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LSR{$\text{]}$}$\text{ }${}and$\text{ }${}\${}01)$\text{ }${}>{}$\text{ }${}0$\text{ }${}then$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}InputLetter$\text{ }${}:=$\text{ }${}Chr(Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}RBR{$\text{]}$});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Write(InputLetter);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }${}\{if\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}MasterPIC{$\text{]}$}$\text{ }${}:=$\text{ }${}EOI;$\text{ }$\newline{}
$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}\{\${}F-{}\}$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Writeln(\textquotesingle{}Simple$\text{ }${}Serial$\text{ }${}ISR$\text{ }${}Data$\text{ }${}Terminal$\text{ }${}Program.$\text{ }${}$\text{ }${}Press$\text{ }${}\symbol{34}Esc\symbol{34}$\text{ }${}to$\text{ }$\newline{}
$\text{ }${}quit.\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Change$\text{ }${}UART$\text{ }${}Settings\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}80;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_High{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}00;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}Latch_Low{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}0C;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}LCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}03;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}FCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}07;$\text{ }${}\{clearing$\text{ }${}the$\text{ }${}FIFOs\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}FCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}00;$\text{ }${}\{disabling$\text{ }${}FIFOs\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}MCR{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}0B;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Setup$\text{ }${}ISR$\text{ }${}vectors\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}GetIntVec(\${}0C,@OldSerialVector);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}SetIntVec(\${}0C,Addr(SerialDataIn));$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}MasterOCW1{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}MasterOCW1{$\text{]}$}$\text{ }${}and$\text{ }${}\${}EF;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}IER{$\text{]}$}$\text{ }${}:=$\text{ }${}\${}01;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Scan$\text{ }${}for$\text{ }${}keyboard$\text{ }${}data\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}OutputLetter$\text{ }${}:=$\text{ }${}NullLetter;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}repeat$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}KeyPressed$\text{ }${}then$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}OutputLetter$\text{ }${}:=$\text{ }${}ReadKey;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}ComPort{$\text{[}$}1{$\text{]}$}$\text{ }${}+$\text{ }${}THR{$\text{]}$}$\text{ }${}:=$\text{ }${}Ord(OutputLetter);$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }${}\{if\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}until$\text{ }${}OutputLetter$\text{ }${}=$\text{ }${}EscapeKey;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}\{Put$\text{ }${}the$\text{ }${}old$\text{ }${}ISR$\text{ }${}vector$\text{ }${}back$\text{ }${}in\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}SetIntVec(\${}0C,@OldSerialVector);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Port{$\text{[}$}MasterOCW1{$\text{]}$}$\text{ }${}:=$\text{ }${}Port{$\text{[}$}MasterOCW1{$\text{]}$}$\text{ }${}or$\text{ }${}\${}10;$\text{ }$\newline{}
$\text{ }${}end.$\text{ }$\newline{}
}

At this point you start to grasp how complex serial data programming can get.  We are not finished yet, but if you have made it this far you hopefully understand each part of the program listed above.  We are going to try and stay with this one step at a time, but at this point you should be able to write some simple custom software that uses serial I/O.
\subsection{Command Line Input}
\label{114}

There are a number of different ways that you can \symbol{34}scan\symbol{34} the parameters that start the program.  For example, if you start a simple terminal program in DOS, you can use this command to begin:
\\

\TemplateSpaceIndent{$\text{ }${}C:>{}$\text{ }${}terminal$\text{ }${}COM1$\text{ }${}9600$\text{ }${}8$\text{ }${}1$\text{ }${}None}


or perhaps
\\

\TemplateSpaceIndent{$\text{ }${}C:>{}$\text{ }${}terminal$\text{ }${}COM4$\text{ }${}1200$\text{ }${}7$\text{ }${}2$\text{ }${}Even}


Obviously there should not be a need to have the end-{}user recompile the software if they want to change something simple like the baud rate.  What we are trying to accomplish here is to grab those other items that were used to start the program.  In Turbo Pascal, there is function that returns a string
\\

\TemplateSpaceIndent{$\text{ }${}ParamStr(index)}


which contains each item of the command line.  These are passed to the program through strings.  A quick sample program on how to extract these parameters can be found here:
\\

\TemplateSpaceIndent{$\text{ }${}program$\text{ }${}ParamTst;$\text{ }$\newline{}
$\text{ }${}var$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}Index:$\text{ }${}Integer;$\text{ }$\newline{}
$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}writeln(\textquotesingle{}Parameter$\text{ }${}Test$\text{ }${}-{}-{}$\text{ }${}displays$\text{ }${}all$\text{ }${}command$\text{ }${}line$\text{ }${}parameters$\text{ }${}of$\text{ }$\newline{}
$\text{ }${}this$\text{ }${}program\textquotesingle{});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}writeln(\textquotesingle{}Parameter$\text{ }${}Count$\text{ }${}=$\text{ }${}\textquotesingle{},ParamCount);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}for$\text{ }${}Index$\text{ }${}:=$\text{ }${}0$\text{ }${}to$\text{ }${}ParamCount$\text{ }${}do$\text{ }${}begin$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}writeln(\textquotesingle{}Param$\text{ }${}\#$\text{ }${}\textquotesingle{},Index,\textquotesingle{}$\text{ }${}-{}$\text{ }${}\textquotesingle{},ParamStr(Index));$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}end.}


One interesting \symbol{34}parameter\symbol{34} is parameter number 0, which is the name of the program that is processing the commands.  We will not be using this parameter, but it is something useful in many other programming situations.
\subsection{Grabbing Terminal Parameters}
\label{115}

For the sake of simplicity, we are going to require that either all of the parameters are going to be in that format of baud rate, bit size, stop bits, parity; or there will be no parameters at all.  This example is going to be mainly to demonstrate how to use variables to change the settings of the UART by the software user rather than the programmer.  Since the added sections are self-{}explanatory, I\textquotesingle{}m just going to give you the complete program.  There will be some string manipulation going on here that is beyond the scope of this book, but that is going to be used only for parsing the commands.  To keep the user interface simple, we are using the command line arguments alone for changing the UART parameters.  We could build a fancy interface to allow these settings to be changed while the program is running, but that is an exercise that is left to the reader.






\myhref{http://en.wikibooks.org/wiki/Category\%3ASerial\%20Programming}{Category:Serial Programming}
\chapter{Serial Linux}

\myminitoc
\label{116}





\label{117}



\section{The Classic Unix C APIs for Serial Communication}
\label{118}
\subsection{Introduction}
\label{119}
\subsubsection{Scope}
\label{120}
This page talks about the classic Unix C APIs for controlling serial devices. Languages other than C might provide appropriate wrappers to these APIs which look similar, or come with their own abstraction (e.g. \mylref{146}{Java}). Nevertheless, these APIs are the lowest level of abstraction one can find for serial I/O in Unix. And, in fact they are also the highest abstraction in C on standard Unix. Some Unix versions ship additional vendor-{}specific proprietary high-{}level APIs. These APIs are not discussed here.

Actual implementations of classic Unix serial APIs do vary in practice, due to the different versions of Unix and its clones, like Linux. Therefore, this module just provides a general outline. It is highly recommended that you study a particular Unix
version\textquotesingle{}s manual (man pages) when programming for a serial device in Unix. The relevant man pages are not too great a read, but they are usually complete in their listing of options and parameters. Together with this overview it should be possible to implement programs doing serial I/O under Unix.
\subsubsection{Basics}
\label{121}
Linux, or any Unix, is a multi-{}user, multi-{}tasking operating system. As such, programs usually don\textquotesingle{}t, and are usually not allowed to, access hardware resources like serial UARTs directly. Instead, the operating system provides

\begin{myenumerate}
\item{}  low-{}level drivers for mapping the device into the file system ({\ttfamily /dev} and/or {\ttfamily /device/} file system entries),
\item{}  the standard system calls for opening, reading, writing, and closing the device, and
\item{}  the standard system call for controlling a device, and/or
\item{}  high-{}level C libraries for controlling the device.
\end{myenumerate}


The low-{}level driver not only maps the device into the file system with the help of the kernel, it also encapsulates the particular hardware. The user often does not even know or care what type of UART is in use.

Classic Unix systems often provide two different device nodes (or minor numbers) for serial I/O hardware. These provide access to the same physical device via two different names in the {\ttfamily /dev} hierarchy. Which node is used affects how certain serial control signals, such as DCD (data carrier detect), are handled when the device is opened. In some cases this can be changed programmatically, making the difference largely irrelevant. As a consequence, Linux only provides the different devices for legacy programs.

Device names in the file system can vary, even on the same Unix system, as they are simply aliases. The important parts of a device name (such as in {\ttfamily /dev}) are the major and minor numbers. The major number distinguishes a serial port, for example, from a keyboard driver, and is used to select the correct driver in the kernel. Note that the major number differs between different Unix systems. The minor number is interpreted by the device driver itself. For serial device drivers, it is typically used to detect which physical interface to use. Sometimes, the minor number will also be used by the device driver to determine the DCD behavior or the hardware flow control signals to be used.

The typical (but not standardized, see above) device names under Unix for serial interfaces are:
{\bfseries
\begin{mydescription} /dev/tty{\itshape xxx}
\end{mydescription}
}

\begin{myquote}
\item{}  Normal, generic access to the device. Used for terminal and other serial communication (originally for {\bfseries t}ele{\bfseries ty}pes). More recently, they are also used in modem communication, for example, whereas the {\ttfamily /dev/cua{\itshape xxx}} was used on older systems.
\item{}  See the following module on how terminal I/O and serial I/O relate on Unix.
\end{myquote}

{\bfseries
\begin{mydescription} /dev/cua{\itshape xxx}
\end{mydescription}
}

\begin{myquote}
\item{}  Legacy device driver with special DCD handling. Typically this was used for accessing a modem on old Unix systems, such as running the \myhref{http://en.wikipedia.org/wiki/UUCP}{UUCP} communication protocol over the serial line and the modem. The {\itshape cu} in the name stands for the \mylref{142}{\#{\ttfamily cu}} program. The {\itshape a} for ACU (automatic call unit).
\end{myquote}


The {\bfseries xxx} part in the names above is typically a one or two digit number, or a lowercase letter, starting at \textquotesingle{}a\textquotesingle{} for the first interface.

PC-{}based Unix systems often mimic the DOS/Windows naming for the devices and call them {\ttfamily /dev/com{\itshape xxx}}.

To summarize, when programming for the serial interface of a Unix system it is {\bfseries highly advisable} to provide complete configuration for the device name. Not even the typical {\ttfamily /dev} path should be hard coded.

Note, devices with the name {\ttfamily /dev/pty{\itshape xxx}} are pseudo terminal devices, typically used by a graphical user interface to provide a terminal emulator like {\itshape xterm} or {\itshape dtterm} with a \symbol{34}terminal\symbol{34} device, and to provide a terminal device for network logins. There is no serial hardware behind these device drivers.
\subsection{Serial I/O via Terminal I/O \LaTeXNullTemplate{}}
\label{122}\subsubsection{Basics}
\label{123}
Serial I/O under Unix is implemented as part of the terminal I/O capabilities of Unix. And the terminal I/O capabilities of Unix were originally the typewriter/teletype capabilities. Terminal I/O is not limited to terminals, though. The terminal I/O API is used for communication with many serial devices other than terminals, such as modems and printers.

The terminal API itself has evolved over time. These days three terminal APIs are still used in Unix programs and can be found in recent Unix implementations. A fourth one, the very old one from Unix Version 6 exists, but is quite rare these days.

The three common ones are:

\begin{myenumerate}
\item{}  V7, 4BSD, XENIX style device-{}specific \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ASerial_Linux\%23V7\%20\%2F\%20ioctl\%282\%29}{ioctl-{}based API},
\item{}  An old one called \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ASerial_Linux\%23termio\%20\%2F\%20ioctl\%282\%29}{termio}
\item{}  A newer one (although still already a few decades old), which is called \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ASerial_Linux\%23termios}{termios} (note the additional \textquotesingle{}s\textquotesingle{}). 
\end{myenumerate}


The newer {\ttfamily termios} API is based on the older {\ttfamily termio} API, and so the two {\ttfamily termio...} APIs share a lot of similarities. The {\ttfamily termios} API has also undergone changes since inception. For example, the method of specifying the baud rate has changed from using pre-{}defined constants to a more relaxed schema (the constants can still be used as well on most implementations).

Systems that support the newer {\ttfamily termios} often also support the older {\ttfamily termio} API, either by providing it in addition, or by providing a {\ttfamily termios} implementation with data structures which can be used in place of the {\ttfamily termio} data structures and work as {\ttfamily termio}. These systems also often just provide one man page under the older name {\bfseries termio}{\itshape (7)} which is then in fact the {\ttfamily termios} man page, too.

In addition, some systems provide other, similar APIs, either in addition or as a replacement. {\ttfamily termiox} is such an API, which is largely compatible with {\ttfamily termio} and adds some extensions to it taken from {\ttfamily termios}. So {\ttfamily termiox} can logically be seen as an intermediate step between {\ttfamily termio} and {\ttfamily termios}. 

The terminal I/O APIs rely on the standard system calls for reading and writing data. They don\textquotesingle{}t provide their own reading/writing functions. Reading and writing data is done via the {\bfseries read}{\itshape (2)} and {\bfseries write}{\itshape (2)} system calls. The terminal I/O APIs just add functions for controlling and configuring the device. Most of this happens via the {\bfseries ioctl}{\itshape (2)} system call.

Unfortunately, whichever of the standard APIs is used, one fact holds for all of them: They are a slight mess. Well, not really. Communication with terminals was and is a difficult issue, and the APIs reflect these difficulties. But due to the fact that one can do \symbol{34}everything\symbol{34} with the APIs, it is overwhelming when one \symbol{34}just\symbol{34} wants to do some serial communication. So why is there no separate serial-{}I/O-{}only API in Unix? There are probably two reasons for this:

\begin{myenumerate}
\item{}  Terminals/teletypes were the first, and apparently very important, serial devices which were connected to Unix. So that API was created first.
\item{}  Once the API was there, there was no need to create a separate one for serial I/O only, since a large part of terminal I/O is serial I/O, and all needed features were already there in the terminal I/O API.
\end{myenumerate}


So which API should one use? There is one good reason to use the old V7 API. It is the simplest among the APIs -{} after going through some initialization woes on modern Unix systems. In general, however, the newer {\ttfamily termios} API makes the most sense, although it is the most complex one.
\subsubsection{Line Discipline}
\label{124}

When programming serial interfaces on Unix, there is one phrase -{} {\itshape line discipline} -{} which can drive programmers crazy. The line discipline provides the hardware-{}independent interface for the communication between the computer and the terminal device. It handles such things as editing, job control, and special character interpretation, and performs transformations on the incoming and outgoing data.

This is useful for terminal communication (e.g. when a backspace character should erase the latest character from the send buffer before it goes over the wire, or when different end-{}of-{}line character sequences between the terminal and the computer need to be converted). These features are, however, hardly useful when communicating with the plethora of other serial devices, where unaltered data communication is desired.

Much of the serial programming in Unix is hitting the line discipline which is in use over the head so it doesn\textquotesingle{}t touch the data. Monitoring what actually goes over the wire is a good idea.
\subsection{Unix V6/PWB}
\label{125}

Unix {\itshape Bell Version 6} with the {\itshape programmer\textquotesingle{}s workbench} (PWB) was released in 1975 to universities. It was the first Unix with an audience outside AT\&T. It already had a terminal programming API. Actually, at that point it was the {\itshape typewriter} API. That API is not described here in depth.

The usage of this API can in theory be identified by the presence of the following signature in some source code:
\\

\TemplateSpaceIndent{$\text{ }${}\#include$\text{ }${}<{}sgtty.h>{}$\text{ }$\newline{}
$\text{ }${}stty(fd,$\text{ }${}data)$\text{ }$\newline{}
$\text{ }${}int$\text{ }${}fd;$\text{ }$\newline{}
$\text{ }${}char$\text{ }${}*data;<{}br>{}$\text{ }$\newline{}
$\text{ }${}gtty(fd,$\text{ }${}data)$\text{ }$\newline{}
$\text{ }${}int$\text{ }${}fd;$\text{ }$\newline{}
$\text{ }${}char$\text{ }${}*data;}


In theory, because at that time the C language was still a little bit different.

{\ttfamily data} is supposed to point to a 
\\

\TemplateSpaceIndent{$\text{ }${}struct$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}char$\text{ }${}ispeed,$\text{ }${}ospeed;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}char$\text{ }${}erase,$\text{ }${}kill;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}$\text{ }${}mode;$\text{ }$\newline{}
$\text{ }${}\}$\text{ }${}*data;}


structure. That structure later became {\ttfamily struct sgttyb} in Unix V7. Finding the V6 API in source code should be rare. Anyhow, recent Unix versions and clones typically don\textquotesingle{}t support this API any more.
\subsection{Unix V7}
\label{126}

See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3AUnix\%2FV7}{Serial Programming:Unix/V7}
\subsection{termios}
\label{127}

A simple terminal program with termios.h can look like this:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{#include\ensuremath{\text{ }}<string.h>}\newline
\OtherTok{#include\ensuremath{\text{ }}<stdlib.h>}\newline
\OtherTok{#include\ensuremath{\text{ }}<stdio.h>}\newline
\OtherTok{#include\ensuremath{\text{ }}<unistd.h>}\newline
\OtherTok{#include\ensuremath{\text{ }}<fcntl.h>}\newline
\OtherTok{#include\ensuremath{\text{ }}<termios.h>}\newline
\ensuremath{\text{ }}\newline
\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{main(}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{argc,}\DataTypeTok{char}\NormalTok{**\ensuremath{\text{ }}argv)}\newline
\NormalTok{\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{struct}\ensuremath{\text{ }}\NormalTok{termios\ensuremath{\text{ }}tio;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{struct}\ensuremath{\text{ }}\NormalTok{termios\ensuremath{\text{ }}stdio;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{struct}\ensuremath{\text{ }}\NormalTok{termios\ensuremath{\text{ }}old_stdio;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{tty_fd;}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{unsigned}\ensuremath{\text{ }}\DataTypeTok{char}\ensuremath{\text{ }}\NormalTok{c={\char13}D{\char13};}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tcgetattr(STDOUT_FILENO,\&old_stdio);}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{printf(}\StringTok{"Please\ensuremath{\text{ }}start\ensuremath{\text{ }}with\ensuremath{\text{ }}\%s\ensuremath{\text{ }}/dev/ttyS1\ensuremath{\text{ }}(for}\newline
\ensuremath{\text{ }}\NormalTok{example)\textbackslash{}n}\StringTok{",argv[0]);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{memset(\&stdio,}\DecValTok{0}\NormalTok{,}\KeywordTok{sizeof}\NormalTok{(stdio));}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{stdio.c_iflag=}\DecValTok{0}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{stdio.c_oflag=}\DecValTok{0}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{stdio.c_cflag=}\DecValTok{0}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{stdio.c_lflag=}\DecValTok{0}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{stdio.c_cc[VMIN]=}\DecValTok{1}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{stdio.c_cc[VTIME]=}\DecValTok{0}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tcsetattr(STDOUT_FILENO,TCSANOW,\&stdio);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tcsetattr(STDOUT_FILENO,TCSAFLUSH,\&stdio);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fcntl(STDIN_FILENO,\ensuremath{\text{ }}F_SETFL,\ensuremath{\text{ }}O_NONBLOCK);\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{//\ensuremath{\text{ }}make\ensuremath{\text{ }}the}\newline
\ensuremath{\text{ }}\NormalTok{reads\ensuremath{\text{ }}non-blocking}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{memset(\&tio,}\DecValTok{0}\NormalTok{,}\KeywordTok{sizeof}\NormalTok{(tio));}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tio.c_iflag=}\DecValTok{0}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tio.c_oflag=}\DecValTok{0}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tio.c_cflag=CS8\textbar{}CREAD\textbar{}CLOCAL;\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{//\ensuremath{\text{ }}8n1,\ensuremath{\text{ }}see\ensuremath{\text{ }}termios.h}\newline
\ensuremath{\text{ }}\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{more\ensuremath{\text{ }}information}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tio.c_lflag=}\DecValTok{0}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tio.c_cc[VMIN]=}\DecValTok{1}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tio.c_cc[VTIME]=}\DecValTok{5}\NormalTok{;}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tty_fd=open(argv[}\DecValTok{1}\NormalTok{],\ensuremath{\text{ }}O_RDWR\ensuremath{\text{ }}\textbar{}\ensuremath{\text{ }}O_NONBLOCK);\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{cfsetospeed(\&tio,B115200);\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{//\ensuremath{\text{ }}115200\ensuremath{\text{ }}baud}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{cfsetispeed(\&tio,B115200);\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{//\ensuremath{\text{ }}115200\ensuremath{\text{ }}baud}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tcsetattr(tty_fd,TCSANOW,\&tio);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{while}\ensuremath{\text{ }}\NormalTok{(c!={\char13}q{\char13})}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{(read(tty_fd,\&c,}\DecValTok{1}\NormalTok{)>}\DecValTok{0}\NormalTok{)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\NormalTok{write(STDOUT_FILENO,\&c,}\DecValTok{1}\NormalTok{);\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{//\ensuremath{\text{ }}if\ensuremath{\text{ }}new\ensuremath{\text{ }}data\ensuremath{\text{ }}is\ensuremath{\text{ }}available}\newline
\ensuremath{\text{ }}\NormalTok{on\ensuremath{\text{ }}the\ensuremath{\text{ }}serial\ensuremath{\text{ }}port,\ensuremath{\text{ }}print\ensuremath{\text{ }}it\ensuremath{\text{ }}out}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{(read(STDIN_FILENO,\&c,}\DecValTok{1}\NormalTok{)>}\DecValTok{0}\NormalTok{)\ensuremath{\text{ }}\ensuremath{\text{ }}write(tty_fd,\&c,}\DecValTok{1}\NormalTok{);\ensuremath{\text{ }}\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{//\ensuremath{\text{ }}if\ensuremath{\text{ }}new\ensuremath{\text{ }}data\ensuremath{\text{ }}is\ensuremath{\text{ }}available\ensuremath{\text{ }}on\ensuremath{\text{ }}the\ensuremath{\text{ }}console,\ensuremath{\text{ }}send\ensuremath{\text{ }}it}\newline
\ensuremath{\text{ }}\NormalTok{to\ensuremath{\text{ }}the\ensuremath{\text{ }}serial\ensuremath{\text{ }}port}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{close(tty_fd);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tcsetattr(STDOUT_FILENO,TCSANOW,\&old_stdio);}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{EXIT_SUCCESS;}\newline
\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}

See \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3AUnix\%2Ftermios}{Serial_Programming:Unix/termios}
\subsection{termio / ioctl(2) \LaTeXNullTemplate{}}
\label{128}

See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3AUnix\%2Ftermio}{Serial Programming:Unix/termio}
\section{Serial I/O on the Shell Command Line \LaTeXNullTemplate{}}
\label{129}
\subsection{Introduction}
\label{130}

It is possible to do serial I/O on the Unix command line. However, the available control is limited. Reading and writing data can be done with the shell I/O redirections like {\bfseries <{}}, {\bfseries >{}}, and {\bfseries |}. Setting basic configuration, like the baud rate, can be done with the {\ttfamily stty} (set terminal type) command.

There is also {\ttfamily libserial} for Linux.  It\textquotesingle{}s a simple C++ class which
hides some of the complexity of termios.
\subsection{Configuration with {\ttfamily stty}}
\label{131}

The Unix command {\ttfamily stty} allows one to configure a \symbol{34}terminal\symbol{34}. Since all serial I/O under Unix is done via terminal I/O, it should be no surprise that stty can also be used to configure serial lines. Indeed, the options and parameters which can be set via stty often have a 1:1 mapping to termio/termios. If the explanations regarding an option in the {\bfseries stty}{\itshape (1)} man page is not sufficient, looking up the option in the termio/termios man page can often help.

On \symbol{34}modern\symbol{34} (System V) Unix versions, stty changes the parameters of its current {\bfseries standard input}. On older systems, stty changes the parameters of its current {\bfseries standard output}. We assume a modern Unix is in use here. So, to change the settings of a particular serial interface, its device name must be provided to stty via an I/O redirect:
\\

\TemplateSpaceIndent{$\text{ }${}stty$\text{ }${}{\itshape parameters}$\text{ }${}<{}$\text{ }${}/dev/com0$\text{ }${}$\text{ }${}\#$\text{ }${}change$\text{ }${}setting$\text{ }${}of$\text{ }${}/dev/com0}


On some systems, the settings done by stty are reverted to system defaults as soon as the device is closed again. This closing is done by the shell as soon as the {\ttfamily stty {\itshape parameters} <{} /dev/com0} command has finished. So when using the above command, the changes will only be in effect for a few milliseconds.

One way to keep the device open for the duration of the communication is to start the whole communication in a sub shell (using, for example, \textquotesingle{}( ... )\textquotesingle{}), and redirecting that input. So to send the string \symbol{34}ATI0\symbol{34} over the serial line, one could use:
\\

\TemplateSpaceIndent{$\text{ }${}($\text{ }${}stty$\text{ }${}{\itshape parameters}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}echo$\text{ }${}\symbol{34}ATI0\symbol{34}$\text{ }$\newline{}
$\text{ }${})$\text{ }${}<{}$\text{ }${}/dev/com0$\text{ }${}>{}$\text{ }${}/dev/com0$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}}

Interweaving sending and receiving data is difficult from the command line. Two processes are needed; one reading from the device, and the other writing to the device. This makes it difficult to coordinate commands sent with the responses received. Some extensive shell scripting might be needed to manage this.

A common way to organize the two processes is to put the reading process in the background, and let the writing process continue to run in the foreground. For example, the following script configures the device and starts a background process for copying all received data from the serial device to standard output. Then it starts writing commands to the device:
\\

\TemplateSpaceIndent{$\text{ }${}\#$\text{ }${}Set$\text{ }${}up$\text{ }${}device$\text{ }${}and$\text{ }${}read$\text{ }${}from$\text{ }${}it.$\text{ }$\newline{}
$\text{ }${}\#$\text{ }${}Capture$\text{ }${}PID$\text{ }${}of$\text{ }${}background$\text{ }${}process$\text{ }${}so$\text{ }${}it$\text{ }${}is$\text{ }${}possible$\text{ }$\newline{}
$\text{ }${}\#$\text{ }${}to$\text{ }${}terminate$\text{ }${}background$\text{ }${}process$\text{ }${}once$\text{ }${}writing$\text{ }${}is$\text{ }${}done$\text{ }$\newline{}
$\text{ }${}\#$\text{ }${}TODO:$\text{ }${}Also$\text{ }${}set$\text{ }${}up$\text{ }${}a$\text{ }${}trap$\text{ }${}in$\text{ }${}case$\text{ }${}script$\text{ }${}is$\text{ }${}killed$\text{ }$\newline{}
$\text{ }${}\#$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}or$\text{ }${}crashes.$\text{ }$\newline{}
$\text{ }${}($\text{ }${}stty$\text{ }${}{\itshape parameters};$\text{ }${}cat;$\text{ }${})\&$\text{ }${}<{}$\text{ }${}/dev/com0$\text{ }$\newline{}
$\text{ }${}bgPid=\${}?<{}br>{}$\text{ }$\newline{}
$\text{ }${}\#$\text{ }${}Read$\text{ }${}commands$\text{ }${}from$\text{ }${}user,$\text{ }${}send$\text{ }${}them$\text{ }${}to$\text{ }${}device$\text{ }$\newline{}
$\text{ }${}while$\text{ }${}read$\text{ }${}cmd;$\text{ }${}do$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}echo$\text{ }${}\symbol{34}\${}cmd\symbol{34}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}done$\text{ }${}>{}/dev/com0<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}\#$\text{ }${}Terminate$\text{ }${}background$\text{ }${}read$\text{ }${}process$\text{ }$\newline{}
$\text{ }${}kill$\text{ }${}\${}bgPid}


If there is a chance that a response to some command might never come, and if there is no other way to terminate the process, it is advisable to set up a timeout by using the alarm signal and {\ttfamily trap} that signal (signal 14), or simply kill the process:
\\

\TemplateSpaceIndent{$\text{ }${}trap$\text{ }${}timeout$\text{ }${}14$\text{ }$\newline{}
$\text{ }${}timeout()$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}echo$\text{ }${}\symbol{34}timeout$\text{ }${}occurred\symbol{34}$\text{ }$\newline{}
$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}pid=\${}\${}$\text{ }$\newline{}
$\text{ }${}($\text{ }${}sleep$\text{ }${}60$\text{ }${};$\text{ }${}kill$\text{ }${}-{}14$\text{ }${}\${}pid;$\text{ }${})\&$\text{ }${}\#$\text{ }${}send$\text{ }${}alarm$\text{ }${}signal$\text{ }${}after$\text{ }${}60$\text{ }${}sec.$\text{ }$\newline{}
$\text{ }${}\#$\text{ }${}normal$\text{ }${}script$\text{ }${}contents$\text{ }${}goes$\text{ }${}here}

or\\

\TemplateSpaceIndent{$\text{ }${}pid=\${}\${}$\text{ }$\newline{}
$\text{ }${}($\text{ }${}sleep$\text{ }${}60;$\text{ }${}kill$\text{ }${}-{}9$\text{ }${}\${}pid;)\&$\text{ }${}\#$\text{ }${}brutally$\text{ }${}kill$\text{ }${}process$\text{ }${}after$\text{ }${}60$\text{ }${}sec.$\text{ }$\newline{}
$\text{ }${}\#$\text{ }${}normal$\text{ }${}script$\text{ }${}contents$\text{ }${}goes$\text{ }${}here}

\subsection{Permanent Configuration}
\label{132}
\subsubsection{Overview}
\label{133}
It is possible to provide a serial line with a default configuration. On classic Unix this is done with entries in the {\ttfamily /etc/ttytab} configuration file, on newer (System V R4) systems with {\ttfamily /etc/ttydefs}.

The default configurations make some sense when they are used for setting up terminal lines or dialup lines for a Unix system (and that\textquotesingle{}s what they are for). However, such default configurations are not of much use when doing some serial communication with some other device. The correct function of the communication program should better not depend on some operating system configuration. Instead, the application should be self-{}contained and configure the device as needed by it.
\subsubsection{{\ttfamily /etc/ttytab}}
\label{134}

The ttytab format varies from Unix to Unix, so checking the corresponding man page is a good idea. If the device is not intended for a terminal (no login), then the {\itshape getty} field (sometimes also called the program field, usually the 3rd field) for the device entry should be empty. The init field (often the 4th field) can contain an initialization command. Using {\ttfamily stty} here is a good idea. So, a typical entry for a serial line might look like:
\\

\TemplateSpaceIndent{$\text{ }${}$\text{ }${}\#$\text{ }${}Device$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}TermType$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Getty$\text{ }${}$\text{ }${}$\text{ }${}Init$\text{ }$\newline{}
$\text{ }${}$\text{ }${}tty0$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}unknown$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\symbol{34}\symbol{34}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\symbol{34}stty$\text{ }${}{\itshape parameters}\symbol{34}}

\subsubsection{{\ttfamily /etc/ttydefs}}
\label{135}

\LaTeXNullTemplate{}Just some hints:

{\ttfamily /etc/ttydefs} provides the configuration as used by the {\bfseries ttymon} program. The settings are similar to the settings possible with stty. 

{\ttfamily ttymon} is a program which is typically run under control of the Service Access Controller (SAC), as part of the Service Access Facility (SAF).

{\itshape TODO: Provide info to set up all the sac/sacadm junk.}
\subsubsection{{\ttfamily /etc/serial.conf}}
\label{136}

\LaTeXNullTemplate{}Just some hints:

A Linux-{}specific way of configuring serial devices using the {\bfseries setserial} program.
\subsection{{\ttfamily tty}}
\label{137}

tty with the {\bfseries -{}s} option can be used to test if a device is a terminal (supports the termio/termios ioctl()\textquotesingle{}s). Therefore it can also be used to check if a given file name is indeed a device name of a serial line.
\\

\TemplateSpaceIndent{$\text{ }${}echo$\text{ }${}\symbol{34}Enter$\text{ }${}serial$\text{ }${}device$\text{ }${}name:$\text{ }${}\textbackslash{}c\symbol{34}$\text{ }$\newline{}
$\text{ }${}read$\text{ }${}dev$\text{ }$\newline{}
$\text{ }${}if$\text{ }${}tty$\text{ }${}-{}s$\text{ }${}<{}$\text{ }${}\symbol{34}\${}dev\symbol{34};$\text{ }${}then$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}echo$\text{ }${}\symbol{34}\${}dev$\text{ }${}is$\text{ }${}indeed$\text{ }${}a$\text{ }${}serial$\text{ }${}device.\symbol{34}$\text{ }$\newline{}
$\text{ }${}else$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}echo$\text{ }${}\symbol{34}\${}dev$\text{ }${}is$\text{ }${}not$\text{ }${}a$\text{ }${}serial$\text{ }${}device.\symbol{34}$\text{ }$\newline{}
$\text{ }${}fi}

\subsection{{\ttfamily tip}}
\label{138}

It is a simple program for establishing a terminal connection with a remote system over a serial line. {\ttfamily tip} takes the necessary communication parameters, including the parameters for the serial communication, from a tip-{}specific configuration file. Details can be found in the {\ttfamily tip}{\itshape (1)} manual page.

Example:

To start the session over the first serial interface (here {\ttfamily ttya}):
\\

\TemplateSpaceIndent{$\text{ }${}tip$\text{ }${}-{}9600$\text{ }${}/dev/ttya}


To leave the session:
\\

\TemplateSpaceIndent{$\text{ }${}\~{}.}

\subsection{{\ttfamily uucp}}
\label{139}
\subsubsection{Overview}
\label{140}
Uucp (Unix-{}to-{}Unix-{}Copy) is a set of programs for moving data over serial lines/modems between Unix computers. Before the rise of the Internet uucp was the heart and foundation of services like e-{}mail and Usenet (net news) between Unix computers. Today uucp is largely insignificant. However, it is still a good choice if two or more Unix systems should be connected via serial lines/modems.

The uucp suite also contains command line tools for login over a serial line (or another UUCP bearer to a remote system. These tools are {\ttfamily cu} and {\ttfamily ct}. They are e.g. useful when trying to access a device connected via a serial line and when debugging some serial line protocol.
\subsubsection{{\ttfamily cu}}
\label{141}

{\ttfamily cu} \symbol{34}call another UNIX system\symbol{34}, does what the name implies. Only, that the other system does not have to be a UNIX system at all. It just sets up a serial connection, possibly by dialing via a modem.

{\ttfamily cu} is the oldest Unix program for serial communication. It\textquotesingle{}s the reason why some serial devices on classic Unix systems are called something like {\ttfamily /dev/cul0} and {\ttfamily /dev/cua0}. Where {\itshape cu} of course stands for the {\ttfamily cu} program supposed to use the devices, {\itshape l} stands for {\itshape line} -{} the communication line, and {\itshape a} for acu (automatic call unit).

\LaTeXNOTETemplate{}{An ACU is kind of a modem. Modern modems work slightly different and don\textquotesingle{}t provide separate serial interfaces for dialing and communicating with the remote side. Instead they do both over the same serial interface, using some kind of inband signaling. See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%3AModems\%20and\%20AT\%20Commands}{Serial Programming:Modems and AT Commands}.}
\subsubsection{{\ttfamily ct}}
\label{142}

{\ttfamily ct} is intended to spawn a login to a remote system over a modem line, serial line, or similar bearer. It uses the uucp devices list to find the necessary dialing (modem) commands, and the serial line settings.
\section{System Configuration}
\label{143}
\LaTeXNullTemplate{}{\itshape inittab, ttytab, SAF configuration}
\section{Other Serial Programming Articles}
\label{144}





\myhref{http://en.wikibooks.org/wiki/Category\%3ASerial\%20Programming}{Category:Serial Programming}
\chapter{Serial Java}

\myminitoc
\label{145}





\label{146}



{}


\section{Using Java for Serial Communication}
\label{147}
\subsection{Introduction}
\label{148}
Because of Java\textquotesingle{}s platform-{}independence, serial interfacing is difficult. Serial interfacing requires a standardized API with platform-{}specific implementations, which is difficult for Java.

Unfortunately, Sun doesn\textquotesingle{}t pay much attention to serial communication in Java. Sun has defined a serial communication API, called \myhref{http://www.oracle.com/technetwork/java/index-jsp-141752.html}{ {\itshape JavaComm}}, but an implementation of the API is not part of the Java standard edition. Sun provides a reference implementation for a few, but not all Java platforms. Particularly, at the end of 2005 Sun silently withdrew {\itshape JavaComm} support for Windows. Third party implementations for some of the omitted platforms are available. {\itshape JavaComm} hasn\textquotesingle{}t seen much in the way of maintenance activities, only the bare minimum maintenance is performed by Sun, except that Sun has apparently responded to pressure from buyers of their own Sun Ray thin clients and has adapted JavaComm to this platform while dropping Windows support.

This situation, and the fact that Sun originally did not provide a {\itshape JavaComm} implementation for Linux (starting in 2006, they now do) led to the development of the free-{}software \myhref{http://rxtx.qbang.org/wiki/index.php/Main_Page}{ {\itshape RxTx}} library. {\itshape RxTx} is available for a number of platforms, not only Linux. It can be used in conjunction with {\itshape JavaComm} ({\itshape RxTx} providing the hardware-{}specific drivers), or it can be used stand-{}alone. When used as a {\itshape JavaComm} driver the bridging between the {\itshape JavaComm} API and {\itshape RxTx} is done by {\itshape JCL} ({\itshape JavaComm for Linux}). {\itshape JCL} is part of the {\itshape RxTx} distribution.

Sun\textquotesingle{}s negligence of {\itshape JavaComm} and {\itshape JavaComm{\bfseries s particular programming model gained }}{\bfseries JavaComm{\itshape  the reputation of being unusable. Fortunately, this is not the case. Unfortunately, the reputation is further spread by people who don\textquotesingle{}t know the basics of serial programming at all and make }JavaComm{\itshape  responsible for their lack of understanding.}}

{\itshape RxTx} -{} if not used as a {\itshape JavaComm} driver -{} provides a richer interface, but one which is not standardized. {\itshape RxTx} supports more platforms than the existing {\itshape JavaComm} implementations. Recently, {\itshape RxTx} has been adopted to provide the same interface as {\itshape JavaComm}, only that the package names don\textquotesingle{}t match Sun\textquotesingle{}s package names.

So, which of the libraries should one use in an application? If maximum portability (for some value of \symbol{34}maximum\symbol{34}) is desired, then {\itshape JavaComm} is a good choice. If there is no {\itshape JavaComm} implementation for a particular platform available, but an {\itshape RxTx} implementation is, then {\itshape RxTx} could be used as a driver on that platform for {\itshape JavaComm}. So, by using JavaComm one can support all platforms which are either directly supported by Sun\textquotesingle{}s reference implementation or by RxTx with JCL. This way the application doesn\textquotesingle{}t need to be changed, and can work against just one interface, the standardized {\itshape JavaComm} interface.

This module discusses both {\itshape JavaComm} and {\itshape RxTx}. It mainly focuses on demonstrating concepts, not ready-{}to-{}run code. Those who want to blindly copy code are referred to the sample code that comes with the packages. Those who want to know what they are doing might find some useful information in this module.
\subsection{Getting started}
\label{149}

\begin{myitemize}
\item{}  Learn the basics of \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming}{serial communication and programming}.
\item{}  Have the documentation of the device you want to communicate with (e.g. the modem) ready.
\item{}  Set up all hardware and a test environment
\item{}  Use, for example, a terminal program to manually communicate with the device. This is to be sure the test environment is set up correctly and you have understood the commands and responses from the device.
\item{}  Download the API implementation you want to use for your particular operating system
\end{myitemize}


\begin{myitemize}
\item{}  Read
\begin{myitemize}
\item{}  the JavaComm and/or RxTx installation instruction (and follow it)
\item{}  the API documentation
\item{}  the example source code shipped
\end{myitemize}

\end{myitemize}

\subsection{Installation}
\label{150}
\subsubsection{General Issues}
\label{151}
Both {\itshape JavaComm} and {\itshape RxTX} show some installation quirks. It is highly recommended to follow the installation instructions word-{}for-{}word. If they say that a jar file or a shared library has to go into a particular directory, then this is meant seriously! If the instructions say that a particular file or device needs to have a specific ownership or access rights, this is also meant seriously. Many installation troubles simply come from not following the instructions precisely.

It should especially be noted that some versions of {\itshape JavaComm} come with two installation instructions. One for Java 1.2 and newer, one for Java 1.1. Using the wrong one will result in a non-{}working installation. On the other hand, some versions/builds/packages of {\itshape RxTx} come with incomplete instructions. In such a case the corresponding source code distribution of {\itshape RxTx} needs to be obtained, which should contain complete instructions.

It should be further noticed that it is also typical for Windows JDK installations to come with up to three VMs, and thus three extension directories. 
\begin{myitemize}
\item{}  One as part of the JDK, 
\item{}  one as part of the private JRE which comes with the JDK to run JDK tools, and 
\item{}  one as part of the public JRE which comes with the JDK to run applications
\end{myitemize}

Some even claim to have a fourth JRE somewhere in the \textbackslash{}Windows directory hierarchy.

{\itshape JavaComm} should at least be installed as extension in the JDK and in all public JREs.
\subsubsection{Webstart}
\label{152}\paragraph{JavaComm}
{$\text{ }$}\newline\label{153}
A general problem, both for {\itshape JavaComm} and {\itshape RxTx} is, that they resist installation via \myhref{http://java.sun.com/products/javawebstart/}{ Java WebStart}:

{\itshape JavaComm} is notorious, because it requires a file called {\itshape javax.comm.properties} to be placed in the JDK lib directory, something which can\textquotesingle{}t be done with Java WebStart. This is particularly sad, because the need for that file is the result of some unnecessary design/decision in {\itshape JavaComm} and could have easily been avoided by the {\itshape JavaComm} designers. Sun constantly refuses to correct this error, citing the mechanism is essential. Which is, they are lying through their teeth when it comes to {\itshape JavaComm}, particular, because Java for a long time has a service provider architecture exactly intended for such purposes.

The contents of the properties file is typically just one line, the name of the java class with the native driver, e.g.:
\\

\TemplateSpaceIndent{$\text{ }${}driver=com.sun.comm.Win32Driver}


The following is a hack which allows to deploy JavaComm via Web Start ignoring that brain-{}dead properties file. It has serious drawbacks, and might fail with newer JavaComm releases -{} should Sun ever come around and make a new version.

First, turn off the security manager. Some doofus programmer at Sun decided that it would be cool to again and again check for the existence of the dreaded {\itshape javax.comm.properties} file, even after it has been loaded initially, for no other apparent reason than checking for the file.
\\

\TemplateSpaceIndent{$\text{ }${}System.setSecurityManager(null);}


Then, when initializing the JavaComm API, initialize the driver manually:
\\

\TemplateSpaceIndent{$\text{ }${}String$\text{ }${}driverName$\text{ }${}=$\text{ }${}\symbol{34}com.sun.comm.Win32Driver\symbol{34};$\text{ }${}//$\text{ }${}or$\text{ }${}get$\text{ }${}as$\text{ }${}a$\text{ }${}JNLP$\text{ }$\newline{}
$\text{ }${}property$\text{ }$\newline{}
$\text{ }${}CommDriver$\text{ }${}commDriver$\text{ }${}=$\text{ }$\newline{}
$\text{ }${}(CommDriver)Class.forName(driverName).newInstance();$\text{ }$\newline{}
$\text{ }${}commDriver.initialize();}

\paragraph{RxTx}
{$\text{ }$}\newline\label{154}

{\itshape RxTx} on some platforms requires changing ownership and access rights of serial devices. This is also something which can\textquotesingle{}t be done via WebStart.

At startup of your program you could ask the user to perform the necessary setup as super user.

Further, RxTx has a pattern matching algorithm for identifying \symbol{34}valid\symbol{34} serial device names. This often breaks things when one wants to use non-{}standard devices, like USB-{}to-{}serial converters. This mechanism can be overridden by system properties. See the RxTx installation instruction for details.
\section{JavaComm API}
\label{155}
\subsection{Introduction}
\label{156}

The official API for serial communication in Java is the JavaComm API. This API is not part of the standard Java 2 version. Instead, an implementation of the API has to be downloaded separately. Unfortunately, JavaComm has not received much attention from Sun, and hasn\textquotesingle{}t been really maintained for a long time. From time to time Sun does trivial bug-{}fixes, but doesn\textquotesingle{}t do the long overdue main overhaul.

This section explains the basic operation of the JavaComm API. The provided source code is kept simple to demonstrate important point. It needs to be enhanced when used in a real application.

The source code in this chapter is not the only available example code. The JavaComm download comes with several examples. These examples almost contain more information about using the API than the API documentation. Unfortunately, Sun does not provide any real tutorial or some introductory text. Therefore, it is worth studying the example code to understand the mechanisms of the API. Still, the API documentation should be studied, too. But the best way is to study the examples and play with them. Due to the lack of easy-{}to-{}use application and people\textquotesingle{}s difficulty in understanding the APIs programming model, the API is often bad-{}mouthed. The API is better than its reputation, and functional. But no more.

The API uses a callback mechanism to inform the programmer about newly arriving data. It is also a good idea to study this mechanism instead of relying on polling the port. Unlike other callback interfaces in Java (e.g. in the GUI), this one only allows one listener listening to events. If multiple listeners require to listen to serial events, the one primary listener has to be implemented in a way that it dispatches the information to other secondary listeners.
\subsection{Download \& Installation}
\label{157}
\subsubsection{Download}
\label{158}
Sun\textquotesingle{}s \myhref{http://java.sun.com/products/javacomm/}{ JavaComm} web page points to a \myhref{http://www.sun.com/download/products.xml?id=43208d3d}{ download location}. Under this location Sun currently (2007) provides JavaComm 3.0 implementations for Solaris/SPARC, Solaris/x86, and Linux x86. Downloading requires to have registered for a Sun Online Account. The download page provides a link to the registration page. The purpose of this registration is unclear. One can download JDKs and JREs without registration, but for the almost trivial JavaComm Sun cites legal and governmental restrictions on the distribution and exportation of software.

The Windows version of JavaComm is no longer officially available, and Sun has -{} against their own product end-{}of-{}live policy -{} not made it available in the \myhref{http://java.sun.com/products/archive/}{ Java products archive}. However, the 2.0 Windows version (javacom 2.0) is still downloadable from \myhref{http://wind.lcs.mit.edu/download/}{ here}.
\subsubsection{Installation}
\label{159}

Follow the installation instructions that come with the download. Some versions of JavaComm 2.0 come with two installation instructions. The most obvious of the two instructions is unfortunately the wrong one, intended for ancient Java 1.1 environments. The information referring to the also ancient Java 1.2 (jdk1.2.html) is the right one.

Particularly Windows users are typically not aware that they have copies of the same VM installed in several locations (typically three to four). Some IDEs also like to come with own, private JRE/JDK installations, as do some Java applications. The installation needs to be repeated for every VM installation (JDKs and JREs) which should be used in conjunction with the development and execution of a serial application.

IDEs typically have IDE-{}specific ways of how a new library (classes and documentation) is made known to the IDE. Often a library like JavaComm not only needs to be made known to the IDE as such, but also to each project that is supposed to use the library. Read the IDE\textquotesingle{}s documentation. It should be noted that the old JavaComm 2.0 version comes with JavaDoc API documentation that is structured in the historic Java 1.0 JavaDoc layout. Some modern IDEs are no longer aware of this structure and can\textquotesingle{}t integrate the JavaComm 2.0 documentation into their help system. In such a case an external browser is needed to read the documentation (a recommended activity ...).

Once the software is installed it is recommended to examine the samples and JavaDoc directories. It makes sense to build and run one of the sample applications to verify that the installation is correct. The sample applications typically need some minor adaptations in order to run on a particular platform (e.g. changes to the hard-{}coded com port identifiers). It is a good idea to have some serial hardware, like cabling, a null modem, a breakout box, a real modem, PABX and others available when trying out a sample application. \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ARS-232\%20Connections}{Serial_Programming:RS-{}232 Connections} and \myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3AModems\%20and\%20AT\%20Commands}{Serial_Programming:Modems and AT Commands} provide some information on how to set up the hardware part of a serial application development environment.
\subsubsection{Finding the desired serial Port}
\label{160}

The first three things to do when programming serial lines with JavaComm are typically 

\begin{myenumerate}
\item{} to enumerate all serial ports (port identifiers) available to JavaComm, 
\item{} to select the desired port identifier from the available ones, and
\item{} to acquire the port via the port identifier.
\end{myenumerate}


Enumerating and selecting the desired port identifier is typically done in one loop:
\\

\TemplateSpaceIndent{$\text{ }${}import$\text{ }${}javax.comm.*;$\text{ }$\newline{}
$\text{ }${}import$\text{ }${}java.util.*;$\text{ }$\newline{}
$\text{ }${}...<{}br>{}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Platform$\text{ }${}specific$\text{ }${}port$\text{ }${}name,$\text{ }${}here$\text{ }${}a$\text{ }${}Unix$\text{ }${}name$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}NOTE:$\text{ }${}On$\text{ }${}at$\text{ }${}least$\text{ }${}one$\text{ }${}Unix$\text{ }${}JavaComm$\text{ }${}implementation$\text{ }${}JavaComm$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}enumerates$\text{ }${}the$\text{ }${}ports$\text{ }${}as$\text{ }${}\symbol{34}COM1\symbol{34}$\text{ }${}...$\text{ }${}\symbol{34}COMx\symbol{34},$\text{ }${}too,$\text{ }${}and$\text{ }${}not$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}by$\text{ }${}their$\text{ }${}Unix$\text{ }${}device$\text{ }${}names$\text{ }${}\symbol{34}/dev/tty...\symbol{34}.$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Yet$\text{ }${}another$\text{ }${}good$\text{ }${}reason$\text{ }${}to$\text{ }${}not$\text{ }${}hard-{}code$\text{ }${}the$\text{ }${}wanted$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}port,$\text{ }${}but$\text{ }${}instead$\text{ }${}make$\text{ }${}it$\text{ }${}user$\text{ }${}configurable.$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}String$\text{ }${}wantedPortName$\text{ }${}=$\text{ }${}\symbol{34}/dev/ttya\symbol{34};<{}br>{}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Get$\text{ }${}an$\text{ }${}enumeration$\text{ }${}of$\text{ }${}all$\text{ }${}ports$\text{ }${}known$\text{ }${}to$\text{ }${}JavaComm$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}Enumeration$\text{ }${}portIdentifiers$\text{ }${}=$\text{ }$\newline{}
$\text{ }${}CommPortIdentifier.getPortIdentifiers();<{}br>{}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Check$\text{ }${}each$\text{ }${}port$\text{ }${}identifier$\text{ }${}if$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}$\text{ }${}$\text{ }${}(a)$\text{ }${}it$\text{ }${}indicates$\text{ }${}a$\text{ }${}serial$\text{ }${}(not$\text{ }${}a$\text{ }${}parallel)$\text{ }${}port,$\text{ }${}and$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}$\text{ }${}$\text{ }${}(b)$\text{ }${}matches$\text{ }${}the$\text{ }${}desired$\text{ }${}name.$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}CommPortIdentifier$\text{ }${}portId$\text{ }${}=$\text{ }${}null;$\text{ }${}$\text{ }${}//$\text{ }${}will$\text{ }${}be$\text{ }${}set$\text{ }${}if$\text{ }${}port$\text{ }${}found$\text{ }$\newline{}
$\text{ }${}while$\text{ }${}(portIdentifiers.hasMoreElements())$\text{ }$\newline{}
$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}CommPortIdentifier$\text{ }${}pid$\text{ }${}=$\text{ }${}(CommPortIdentifier)$\text{ }$\newline{}
$\text{ }${}portIdentifiers.nextElement();$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if(pid.getPortType()$\text{ }${}==$\text{ }${}CommPortIdentifier.PORT_SERIAL$\text{ }${}\&\&$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}pid.getName().equals(wantedPortName))$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}portId$\text{ }${}=$\text{ }${}pid;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}if(portId$\text{ }${}==$\text{ }${}null)$\text{ }$\newline{}
$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}System.err.println(\symbol{34}Could$\text{ }${}not$\text{ }${}find$\text{ }${}serial$\text{ }${}port$\text{ }${}\symbol{34}$\text{ }${}+$\text{ }$\newline{}
$\text{ }${}wantedPortName);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}System.exit(1);$\text{ }$\newline{}
$\text{ }${}\}<{}br>{}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Use$\text{ }${}port$\text{ }${}identifier$\text{ }${}for$\text{ }${}acquiring$\text{ }${}the$\text{ }${}port$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}...}


\LaTeXNOTETemplate{}{JavaComm itself obtains the default list of available serial port identifiers from its platform-{}specific driver. The list is not really configurable via JavaComm. The method  {\ttfamily CommPortIdentifier.addPortName()} is misleading, since driver classes are platform specific and their implementations are not part of the public API. Depending on the driver, the list of ports might be configurable / expendable in the driver. So if a particular port is not found in JavaComm, sometimes some fiddling with the driver can help.}

Once a port identifier has been found, it can be used to acquire the desired port:
\\

\TemplateSpaceIndent{$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Use$\text{ }${}port$\text{ }${}identifier$\text{ }${}for$\text{ }${}acquiring$\text{ }${}the$\text{ }${}port$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}SerialPort$\text{ }${}port$\text{ }${}=$\text{ }${}null;$\text{ }$\newline{}
$\text{ }${}try$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}port$\text{ }${}=$\text{ }${}(SerialPort)$\text{ }${}portId.open($\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\symbol{34}name\symbol{34},$\text{ }${}//$\text{ }${}Name$\text{ }${}of$\text{ }${}the$\text{ }${}application$\text{ }${}asking$\text{ }${}for$\text{ }${}the$\text{ }${}port$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}10000$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}Wait$\text{ }${}max.$\text{ }${}10$\text{ }${}sec.$\text{ }${}to$\text{ }${}acquire$\text{ }${}port$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${});$\text{ }$\newline{}
$\text{ }${}\}$\text{ }${}catch(PortInUseException$\text{ }${}e)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}System.err.println(\symbol{34}Port$\text{ }${}already$\text{ }${}in$\text{ }${}use:$\text{ }${}\symbol{34}$\text{ }${}+$\text{ }${}e);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}System.exit(1);$\text{ }$\newline{}
$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Now$\text{ }${}we$\text{ }${}are$\text{ }${}granted$\text{ }${}exclusive$\text{ }${}access$\text{ }${}to$\text{ }${}the$\text{ }${}particular$\text{ }${}serial$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}port.$\text{ }${}We$\text{ }${}can$\text{ }${}configure$\text{ }${}it$\text{ }${}and$\text{ }${}obtain$\text{ }${}input$\text{ }${}and$\text{ }${}output$\text{ }${}streams.$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}...}

\subsection{Initialize a Serial Port}
\label{161}

The initialization of a serial port is straight forward. Either individually set the communication preferences (baud rate, data bits, stop bits, parity) or set them all at once using the setSerialPortParams(...) convenience method. 

As part of the initialization process the Input and Output streams for communication will be configured in the example.
\\

\TemplateSpaceIndent{$\text{ }${}import$\text{ }${}java.io.*;$\text{ }$\newline{}
$\text{ }${}...$\text{ }$\newline{}
$\text{ }${}<{}br>{}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Set$\text{ }${}all$\text{ }${}the$\text{ }${}params.$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}This$\text{ }${}may$\text{ }${}need$\text{ }${}to$\text{ }${}go$\text{ }${}in$\text{ }${}a$\text{ }${}try/catch$\text{ }${}block$\text{ }${}which$\text{ }${}throws$\text{ }$\newline{}
$\text{ }${}UnsupportedCommOperationException$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}port.setSerialPortParams($\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}115200,$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}SerialPort.DATABITS_8,$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}SerialPort.STOPBITS_1,$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}SerialPort.PARITY_NONE);$\text{ }$\newline{}
$\text{ }${}<{}br>{}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Open$\text{ }${}the$\text{ }${}input$\text{ }${}Reader$\text{ }${}and$\text{ }${}output$\text{ }${}stream.$\text{ }${}The$\text{ }${}choice$\text{ }${}of$\text{ }${}a$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Reader$\text{ }${}and$\text{ }${}Stream$\text{ }${}are$\text{ }${}arbitrary$\text{ }${}and$\text{ }${}need$\text{ }${}to$\text{ }${}be$\text{ }${}adapted$\text{ }${}to$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}the$\text{ }${}actual$\text{ }${}application.$\text{ }${}Typically$\text{ }${}one$\text{ }${}would$\text{ }${}use$\text{ }${}Streams$\text{ }${}in$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}both$\text{ }${}directions,$\text{ }${}since$\text{ }${}they$\text{ }${}allow$\text{ }${}for$\text{ }${}binary$\text{ }${}data$\text{ }${}transfer,$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}not$\text{ }${}only$\text{ }${}character$\text{ }${}data$\text{ }${}transfer.$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}BufferedReader$\text{ }${}is$\text{ }${}=$\text{ }${}null;$\text{ }${}$\text{ }${}//$\text{ }${}for$\text{ }${}demo$\text{ }${}purposes$\text{ }${}only.$\text{ }${}A$\text{ }${}stream$\text{ }${}would$\text{ }$\newline{}
$\text{ }${}be$\text{ }${}more$\text{ }${}typical.$\text{ }$\newline{}
$\text{ }${}PrintStream$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}os$\text{ }${}=$\text{ }${}null;$\text{ }$\newline{}
$\text{ }${}<{}br>{}$\text{ }$\newline{}
$\text{ }${}try$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}is$\text{ }${}=$\text{ }${}new$\text{ }${}BufferedReader(new$\text{ }$\newline{}
$\text{ }${}InputStreamReader(port.getInputStream()));$\text{ }$\newline{}
$\text{ }${}\}$\text{ }${}catch$\text{ }${}(IOException$\text{ }${}e)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}System.err.println(\symbol{34}Can\textquotesingle{}t$\text{ }${}open$\text{ }${}input$\text{ }${}stream:$\text{ }${}write-{}only\symbol{34});$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}is$\text{ }${}=$\text{ }${}null;$\text{ }$\newline{}
$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}<{}br>{}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}New$\text{ }${}Linux$\text{ }${}systems$\text{ }${}rely$\text{ }${}on$\text{ }${}Unicode,$\text{ }${}so$\text{ }${}it$\text{ }${}might$\text{ }${}be$\text{ }${}necessary$\text{ }${}to$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}specify$\text{ }${}the$\text{ }${}encoding$\text{ }${}scheme$\text{ }${}to$\text{ }${}be$\text{ }${}used.$\text{ }${}Typically$\text{ }${}this$\text{ }${}should$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}be$\text{ }${}US-{}ASCII$\text{ }${}(7$\text{ }${}bit$\text{ }${}communication),$\text{ }${}or$\text{ }${}ISO$\text{ }${}Latin$\text{ }${}1$\text{ }${}(8$\text{ }${}bit$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}communication),$\text{ }${}as$\text{ }${}there$\text{ }${}is$\text{ }${}likely$\text{ }${}no$\text{ }${}modem$\text{ }${}out$\text{ }${}there$\text{ }${}accepting$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Unicode$\text{ }${}for$\text{ }${}its$\text{ }${}commands.$\text{ }${}An$\text{ }${}example$\text{ }${}to$\text{ }${}specify$\text{ }${}the$\text{ }${}encoding$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}would$\text{ }${}look$\text{ }${}like:$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}os$\text{ }${}=$\text{ }${}new$\text{ }${}PrintStream(port.getOutputStream(),$\text{ }${}true,$\text{ }$\newline{}
$\text{ }${}\symbol{34}ISO-{}8859-{}1\symbol{34});$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}os$\text{ }${}=$\text{ }${}new$\text{ }${}PrintStream(port.getOutputStream(),$\text{ }${}true);$\text{ }$\newline{}
$\text{ }${}<{}br>{}$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Actual$\text{ }${}data$\text{ }${}communication$\text{ }${}would$\text{ }${}happen$\text{ }${}here$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}performReadWriteCode();$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}<{}br>{}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}It$\text{ }${}is$\text{ }${}very$\text{ }${}important$\text{ }${}to$\text{ }${}close$\text{ }${}input$\text{ }${}and$\text{ }${}output$\text{ }${}streams$\text{ }${}as$\text{ }${}well$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}as$\text{ }${}the$\text{ }${}port.$\text{ }${}Otherwise$\text{ }${}Java,$\text{ }${}driver$\text{ }${}and$\text{ }${}OS$\text{ }${}resources$\text{ }${}are$\text{ }${}not$\text{ }$\newline{}
$\text{ }${}released.$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}if$\text{ }${}(is$\text{ }${}!=$\text{ }${}null)$\text{ }${}is.close();$\text{ }$\newline{}
$\text{ }${}if$\text{ }${}(os$\text{ }${}!=$\text{ }${}null)$\text{ }${}os.close();$\text{ }$\newline{}
$\text{ }${}if$\text{ }${}(port$\text{ }${}!=$\text{ }${}null)$\text{ }${}port.close();}

\subsection{Simple Data Transfer}
\label{162}\subsubsection{Simple Writing of Data}
\label{163}

Writing to a serial port is as simple as basic Java IO. However there are a couple of caveats to look out for if you are using the AT Hayes protocol:

\begin{myenumerate}
\item{}  Don\textquotesingle{}t use println (or other methods that automatically append \symbol{34}\textbackslash{}n\symbol{34}) on the OutputStream. The AT Hayes protocol for modems expects a \symbol{34}\textbackslash{}r\textbackslash{}n\symbol{34} as the delimiter (regardless of underlying operating system). 
\item{}  After writing to the OutputStream, the InputStream buffer will contain a repeat of the command that was sent to it (with line feed), if the modem is set to echoing the command line, and another line feed (the answer to the \symbol{34}AT\symbol{34} command). So as part of the write operation make sure to clean the InputStream of this information (which can actually be used for error detection).
\item{}  When using a Reader/Writer (not a really good idea), at least set the character encoding to US-{}ASCII instead of using the platform\textquotesingle{}s default encoding, which might or might not work.
\item{}  Since the main operation when using a modem is to transfer data unaltered, the communication with the modem should be handled via InputStream/OutputStream, and not a Reader/Writer.
\end{myenumerate}


\LaTeXNullTemplate{}
\\

\TemplateSpaceIndent{$\text{ }${}//$\text{ }${}Write$\text{ }${}to$\text{ }${}the$\text{ }${}output$\text{ }${}$\text{ }$\newline{}
$\text{ }${}os.print(\symbol{34}AT\symbol{34});$\text{ }$\newline{}
$\text{ }${}os.print(\symbol{34}\textbackslash{}r\textbackslash{}n\symbol{34});$\text{ }${}//$\text{ }${}Append$\text{ }${}a$\text{ }${}carriage$\text{ }${}return$\text{ }${}with$\text{ }${}a$\text{ }${}line$\text{ }${}feed$\text{ }$\newline{}
$\text{ }${}$\text{ }$\newline{}
$\text{ }${}is.readLine();$\text{ }${}//$\text{ }${}First$\text{ }${}read$\text{ }${}will$\text{ }${}contain$\text{ }${}the$\text{ }${}echoed$\text{ }${}command$\text{ }${}you$\text{ }$\newline{}
$\text{ }${}sent$\text{ }${}to$\text{ }${}it.$\text{ }${}In$\text{ }${}this$\text{ }${}case:$\text{ }${}\symbol{34}AT\symbol{34}$\text{ }$\newline{}
$\text{ }${}is.readLine();$\text{ }${}//$\text{ }${}Second$\text{ }${}read$\text{ }${}will$\text{ }${}remove$\text{ }${}the$\text{ }${}extra$\text{ }${}line$\text{ }${}feed$\text{ }${}that$\text{ }$\newline{}
$\text{ }${}AT$\text{ }${}generates$\text{ }${}as$\text{ }${}output}

\subsubsection{Simple Reading of Data (Polling)}
\label{164}

If you correctly carried out the write operation (see above) then the read operation is as simple as one command:
\\

\TemplateSpaceIndent{$\text{ }${}//$\text{ }${}Read$\text{ }${}the$\text{ }${}response$\text{ }$\newline{}
$\text{ }${}String$\text{ }${}response$\text{ }${}=$\text{ }${}is.readLine();$\text{ }${}//$\text{ }${}if$\text{ }${}you$\text{ }${}sent$\text{ }${}\symbol{34}AT\symbol{34}$\text{ }${}then$\text{ }${}response$\text{ }$\newline{}
$\text{ }${}==$\text{ }${}\symbol{34}OK\symbol{34}}

\subsubsection{Problems with the simple Reading / Writing}
\label{165}

The simple way of reading and/or writing from/to a serial port as demonstrated in the previous sections has serious drawbacks. Both activities are done with {\itshape blocking I/O}. That means, when there is
\begin{myitemize}
\item{}  no data available for reading, or
\item{}  the output buffer for writing is full (the device does not accept (any more) data),
\end{myitemize}

the read or write method ({\ttfamily os.print()} or {\ttfamily is.readLine()} in the previous example) do not return, and the application comes to a halt. More precisely, the thread from which the read or write is done gets blocked. If that thread is the main application thread, the application freezes until the blocking condition is resolved (data becomes available for reading or device accepts data again).

Unless the application is a very primitive one, freezing of the application is not acceptable. For example, as a minimum some user interaction to cancel the communication should still be possible. What is needed is {\itshape non-{}blocking I/O} or {\itshape asynchronous I/O}. However, JavaComm is based on Java\textquotesingle{}s standard blocking I/O system ({\ttfamily InputStream}, {\ttfamily OutputStream}), but with a twist, as shown later.

The mentioned \symbol{34}twist\symbol{34} is that JavaComm provides some limited support for {\itshape asynchronous I/O} via an event notification mechanism. But the general solution in Java to achieve {\itshape non-{}blocking I/O} on top of the blocking I/O system is to use threads. Indeed, this is a viable solution for serial writing, and it is strongly recommended to use a separate thread to write to the serial port -{} even if the event notification mechanism is used, as explained later.

Reading could also be handled in a separate thread. However, this is not strictly necessary if the JavaComm event notification mechanism is used. So summarize:

\begin{longtable}{>{\RaggedRight}p{0.14010\linewidth}>{\RaggedRight}p{0.77954\linewidth}} 
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Activity}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Architecture}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt}reading&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}use event notification and/or separate thread\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}writing&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}always use separate thread, optionally use event notification 
\end{longtable}


The following sections provide some details.
\subsection{Event Driven Serial Communication}
\label{166}\subsubsection{Introduction}
\label{167}
The JavaComm API provides an event notification mechanism to overcome the problems with {\itshape blocking I/O}. However, in the typical Sun manner this mechanism is not without problems.

In principle an application can register event listeners with a particular {\ttfamily SerialPort} to be kept informed about important events happening on that port. The two most interesting event types for reading and writing data are
\begin{myitemize}
\item{} {\ttfamily javax.comm.SerialPortEvent.DATA_AVAILABLE} and 
\item{} {\ttfamily javax.comm.SerialPortEvent.OUTPUT_BUFFER_EMPTY}.
\end{myitemize}


But there are also two problems:

\begin{myenumerate}
\item{} Only one single event listener per {\ttfamily SerialPort} can be registered. This forces the programmer to write \symbol{34}monster\symbol{34} listeners, discriminating according to the event type.
\item{} {\ttfamily OUTPUT_BUFFER_EMPTY} is an optional event type. Well hidden in the documentation Sun states that not all JavaComm implementations support generating events of this type.
\end{myenumerate}


Before going into details, the next section will present the principal way of implementing and registering a serial event handler. Remember, there can only be one handler at all, and it will have to handle all possible events.
\subsubsection{Setting up a serial Event Handler}
\label{168}
\\

\TemplateSpaceIndent{$\text{ }${}import$\text{ }${}javax.comm.*;$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}Listener$\text{ }${}to$\text{ }${}handle$\text{ }${}all$\text{ }${}serial$\text{ }${}port$\text{ }${}events.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}NOTE:$\text{ }${}It$\text{ }${}is$\text{ }${}typical$\text{ }${}that$\text{ }${}the$\text{ }${}SerialPortEventListener$\text{ }${}is$\text{ }$\newline{}
$\text{ }${}implemented$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}in$\text{ }${}the$\text{ }${}main$\text{ }${}class$\text{ }${}that$\text{ }${}is$\text{ }${}supposed$\text{ }${}to$\text{ }${}communicate$\text{ }${}with$\text{ }${}the$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}device.$\text{ }${}That$\text{ }${}way$\text{ }${}the$\text{ }${}listener$\text{ }${}has$\text{ }${}easy$\text{ }${}access$\text{ }${}to$\text{ }${}state$\text{ }$\newline{}
$\text{ }${}information$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}about$\text{ }${}the$\text{ }${}communication,$\text{ }${}e.g.$\text{ }${}when$\text{ }${}a$\text{ }${}particular$\text{ }$\newline{}
$\text{ }${}communication$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}protocol$\text{ }${}needs$\text{ }${}to$\text{ }${}be$\text{ }${}followed.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}However,$\text{ }${}for$\text{ }${}demonstration$\text{ }${}purposes$\text{ }${}this$\text{ }${}example$\text{ }${}implements$\text{ }$\newline{}
$\text{ }${}a$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}separate$\text{ }${}class.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*/$\text{ }${}$\text{ }$\newline{}
$\text{ }${}class$\text{ }${}SerialListener$\text{ }${}implements$\text{ }${}SerialPortEventListener$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Handle$\text{ }${}serial$\text{ }${}events.$\text{ }${}Dispatches$\text{ }${}the$\text{ }${}event$\text{ }${}to$\text{ }${}event-{}specific$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}methods.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}event$\text{ }${}The$\text{ }${}serial$\text{ }${}event$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}@Override$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}public$\text{ }${}void$\text{ }${}serialEvent(SerialPortEvent$\text{ }${}event)\{$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}Dispatch$\text{ }${}event$\text{ }${}to$\text{ }${}individual$\text{ }${}methods.$\text{ }${}This$\text{ }${}keeps$\text{ }${}this$\text{ }$\newline{}
$\text{ }${}ugly$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}switch/case$\text{ }${}statement$\text{ }${}as$\text{ }${}short$\text{ }${}as$\text{ }${}possible.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}switch(event.getEventType())$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.OUTPUT_BUFFER_EMPTY:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}outputBufferEmpty(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.DATA_AVAILABLE:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}dataAvailable(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}/*$\text{ }${}Other$\text{ }${}events,$\text{ }${}not$\text{ }${}implemented$\text{ }${}here$\text{ }${}-{}>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.BI:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}breakInterrupt(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.CD:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}carrierDetect(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.CTS:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}clearToSend(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.DSR:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}dataSetReady(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.FE:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}framingError(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.OE:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}overrunError(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.PE:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}parityError(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.RI:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}ringIndicator(event);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}<{}-{}$\text{ }${}other$\text{ }${}events,$\text{ }${}not$\text{ }${}implemented$\text{ }${}here$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Handle$\text{ }${}output$\text{ }${}buffer$\text{ }${}empty$\text{ }${}events.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}NOTE:$\text{ }${}The$\text{ }${}reception$\text{ }${}of$\text{ }${}this$\text{ }${}event$\text{ }${}is$\text{ }${}optional$\text{ }${}and$\text{ }${}not$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}guaranteed$\text{ }${}by$\text{ }${}the$\text{ }${}API$\text{ }${}specification.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}event$\text{ }${}The$\text{ }${}output$\text{ }${}buffer$\text{ }${}empty$\text{ }${}event$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}protected$\text{ }${}void$\text{ }${}outputBufferEmpty(SerialPortEvent$\text{ }${}event)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}Implement$\text{ }${}writing$\text{ }${}more$\text{ }${}data$\text{ }${}here$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Handle$\text{ }${}data$\text{ }${}available$\text{ }${}events.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}event$\text{ }${}The$\text{ }${}data$\text{ }${}available$\text{ }${}event$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}protected$\text{ }${}void$\text{ }${}dataAvailable(SerialPortEvent$\text{ }${}event)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}implement$\text{ }${}reading$\text{ }${}from$\text{ }${}the$\text{ }${}serial$\text{ }${}port$\text{ }${}here$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}\}}


Once the listener is implemented, it can be used to listen to particular serial port events. To do so, an instance of the listener needs to be added to the serial port. Further, the reception of each event type needs to be requested individually.
\\

\TemplateSpaceIndent{$\text{ }${}SerialPort$\text{ }${}port$\text{ }${}=$\text{ }${}...;$\text{ }$\newline{}
$\text{ }${}...$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Configure$\text{ }${}port$\text{ }${}parameters$\text{ }${}here.$\text{ }${}Only$\text{ }${}after$\text{ }${}the$\text{ }${}port$\text{ }${}is$\text{ }${}configured$\text{ }$\newline{}
$\text{ }${}it$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}makes$\text{ }${}sense$\text{ }${}to$\text{ }${}enable$\text{ }${}events.$\text{ }${}The$\text{ }${}event$\text{ }${}handler$\text{ }${}might$\text{ }${}be$\text{ }${}called$\text{ }$\newline{}
$\text{ }${}immediately$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}after$\text{ }${}an$\text{ }${}event$\text{ }${}is$\text{ }${}enabled.$\text{ }$\newline{}
$\text{ }${}...$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Typically,$\text{ }${}if$\text{ }${}the$\text{ }${}current$\text{ }${}class$\text{ }${}implements$\text{ }${}the$\text{ }$\newline{}
$\text{ }${}SerialEventListener$\text{ }${}interface$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}one$\text{ }${}would$\text{ }${}call$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}port.addEventListener(this);$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}but$\text{ }${}for$\text{ }${}our$\text{ }${}example$\text{ }${}a$\text{ }${}new$\text{ }${}instance$\text{ }${}of$\text{ }${}SerialListener$\text{ }${}is$\text{ }${}created:$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}port.addEventListener(new$\text{ }${}SerialListener());$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}//$\text{ }${}Enable$\text{ }${}the$\text{ }${}events$\text{ }${}we$\text{ }${}are$\text{ }${}interested$\text{ }${}in$\text{ }$\newline{}
$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}port.notifyOnDataAvailable(true);$\text{ }$\newline{}
$\text{ }${}port.notifyOnOutputEmpty(true);$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}/*$\text{ }${}other$\text{ }${}events$\text{ }${}not$\text{ }${}used$\text{ }${}in$\text{ }${}this$\text{ }${}example$\text{ }${}-{}>{}$\text{ }$\newline{}
$\text{ }${}port.notifyOnBreakInterrupt(true);$\text{ }$\newline{}
$\text{ }${}port.notifyOnCarrierDetect(true);$\text{ }$\newline{}
$\text{ }${}port.notifyOnCTS(true);$\text{ }$\newline{}
$\text{ }${}port.notifyOnDSR(true);$\text{ }$\newline{}
$\text{ }${}port.notifyOnFramingError(true);$\text{ }$\newline{}
$\text{ }${}port.notifyOnOverrunError(true);$\text{ }$\newline{}
$\text{ }${}port.notifyOnParityError(true);$\text{ }$\newline{}
$\text{ }${}port.notifyOnRingIndicator(true);$\text{ }$\newline{}
$\text{ }${}<{}-{}$\text{ }${}other$\text{ }${}events$\text{ }${}not$\text{ }${}used$\text{ }${}in$\text{ }${}this$\text{ }${}example$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}<{}/br>{}}

\subsubsection{Writing of Data}
\label{169}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\paragraph{Setting up a separate Thread for Writing}
{$\text{ }$}\newline\label{170}
\LaTeXNullTemplate{}
Using a separate thread for writing has one purpose: Avoiding that the whole application blocks in case the serial port is not
ready for writing.\subparagraph{A simple, thread-{}safe Ring Buffer Implementation}
{$\text{ }$}\newline\label{171}
Using a separate thread for writing, separate from some main application thread, implies that there is some way to hand off the data which needs to be written from the application thread to the writing thread. A shared, synchronized data buffer, for example a {\ttfamily byte{$\text{[}$}{$\text{]}$}} should do. Further, there needs to be a way for the main application to determine if it can write to the data buffer, or if the data buffer is currently full. In case the data buffer is full it could indicate that the serial port is not ready, and output data has queued up. The main application will have to poll the availability of new space in the shared data buffer. However, between the polling the main application can do other things, for example updating a GUI, providing a command prompt with the ability to abort the sending, etc.

At first glance a {\ttfamily PipedInputStream/PipedOutputStream} pair seems like a good idea for this kind of communication. But Sun wouldn\textquotesingle{}t be Sun if the a piped stream would actually be useful. {\ttfamily PipedInputStream} blocks if the corresponding {\ttfamily PipedOutputStream} is not cleared fast enough. So the application thread would block. Exactly what one wants to avoid by using the separate thread. A {\ttfamily java.nio.Pipe} suffers from the same problem. Its blocking behavior is platform dependent. And adapting the classic I/O used by JavaComm to NIO is anyhow not a nice task.

In this article a very simple synchronized ring buffer is used to hand over the data from one thread to another. In a real world application it is likely that the implementation should be more sophisticated. E.g. in a real world implementation it would make sense to implement OutputStream and InputStream views on the buffer.

A ring buffer as such is nothing special, and has no special properties regarding threading. It is just that this simple data structure is used here to provide data buffering. The implementation is done so that access to this data structure has been made thread safe.
\\

\TemplateSpaceIndent{$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}Synchronized$\text{ }${}ring$\text{ }${}buffer.$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}Suitable$\text{ }${}to$\text{ }${}hand$\text{ }${}over$\text{ }${}data$\text{ }${}from$\text{ }${}one$\text{ }${}thread$\text{ }${}to$\text{ }${}another.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}**/$\text{ }$\newline{}
$\text{ }${}public$\text{ }${}{\bfseries synchronized}$\text{ }${}class$\text{ }${}RingBuffer$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }${}internal$\text{ }${}buffer$\text{ }${}to$\text{ }${}hold$\text{ }${}the$\text{ }${}data$\text{ }${}**/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}protected$\text{ }${}byte$\text{ }${}buffer{$\text{[}$}{$\text{]}$};$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }${}size$\text{ }${}of$\text{ }${}the$\text{ }${}buffer$\text{ }${}**/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}protected$\text{ }${}int$\text{ }${}size;$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }${}current$\text{ }${}start$\text{ }${}of$\text{ }${}data$\text{ }${}area$\text{ }${}**/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}protected$\text{ }${}int$\text{ }${}start;$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }${}current$\text{ }${}end$\text{ }${}of$\text{ }${}data$\text{ }${}area$\text{ }${}**/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}protected$\text{ }${}int$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Construct$\text{ }${}a$\text{ }${}RingBuffer$\text{ }${}with$\text{ }${}a$\text{ }${}default$\text{ }${}buffer$\text{ }${}size$\text{ }${}of$\text{ }${}1k.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}public$\text{ }${}RingBuffer()$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}this(1024);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Construct$\text{ }${}a$\text{ }${}RingBuffer$\text{ }${}with$\text{ }${}a$\text{ }${}certain$\text{ }${}buffer$\text{ }${}size.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}size$\text{ }${}$\text{ }${}$\text{ }${}Buffer$\text{ }${}size$\text{ }${}in$\text{ }${}bytes$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}public$\text{ }${}RingBuffer(int$\text{ }${}size)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}this.size$\text{ }${}=$\text{ }${}size;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}buffer$\text{ }${}=$\text{ }${}new$\text{ }${}byte{$\text{[}$}size{$\text{]}$};$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}clear();$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Clear$\text{ }${}the$\text{ }${}buffer$\text{ }${}contents.$\text{ }${}All$\text{ }${}data$\text{ }${}still$\text{ }${}in$\text{ }${}the$\text{ }${}buffer$\text{ }${}is$\text{ }$\newline{}
$\text{ }${}lost.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}public$\text{ }${}void$\text{ }${}clear()$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}Just$\text{ }${}reset$\text{ }${}the$\text{ }${}pointers.$\text{ }${}The$\text{ }${}remaining$\text{ }${}data$\text{ }${}fragments,$\text{ }${}if$\text{ }$\newline{}
$\text{ }${}any,$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}will$\text{ }${}be$\text{ }${}overwritten$\text{ }${}during$\text{ }${}normal$\text{ }${}operation.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}start$\text{ }${}=$\text{ }${}end$\text{ }${}=$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Return$\text{ }${}used$\text{ }${}space$\text{ }${}in$\text{ }${}buffer.$\text{ }${}This$\text{ }${}is$\text{ }${}the$\text{ }${}size$\text{ }${}of$\text{ }${}the$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}data$\text{ }${}currently$\text{ }${}in$\text{ }${}the$\text{ }${}buffer.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}<{}p>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Note:$\text{ }${}While$\text{ }${}the$\text{ }${}value$\text{ }${}is$\text{ }${}correct$\text{ }${}upon$\text{ }${}returning,$\text{ }${}it$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}is$\text{ }${}not$\text{ }${}necessarily$\text{ }${}valid$\text{ }${}when$\text{ }${}data$\text{ }${}is$\text{ }${}read$\text{ }${}from$\text{ }${}the$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}buffer$\text{ }${}or$\text{ }${}written$\text{ }${}to$\text{ }${}the$\text{ }${}buffer.$\text{ }${}Another$\text{ }${}thread$\text{ }${}might$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}have$\text{ }${}filled$\text{ }${}the$\text{ }${}buffer$\text{ }${}or$\text{ }${}emptied$\text{ }${}it$\text{ }${}in$\text{ }${}the$\text{ }${}mean$\text{ }${}time.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@return$\text{ }${}currently$\text{ }${}amount$\text{ }${}of$\text{ }${}data$\text{ }${}available$\text{ }${}in$\text{ }${}buffer$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}public$\text{ }${}int$\text{ }${}data()$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}return$\text{ }${}start$\text{ }${}<{}=$\text{ }${}end$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}?$\text{ }${}end$\text{ }${}-{}$\text{ }${}start$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}:$\text{ }${}end$\text{ }${}-{}$\text{ }${}start$\text{ }${}+$\text{ }${}size;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Return$\text{ }${}unused$\text{ }${}space$\text{ }${}in$\text{ }${}buffer.$\text{ }${}Note:$\text{ }${}While$\text{ }${}the$\text{ }${}value$\text{ }${}is$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}correct$\text{ }${}upon$\text{ }${}returning,$\text{ }${}it$\text{ }${}is$\text{ }${}not$\text{ }${}necessarily$\text{ }${}valid$\text{ }${}when$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}data$\text{ }${}is$\text{ }${}written$\text{ }${}to$\text{ }${}the$\text{ }${}buffer$\text{ }${}or$\text{ }${}read$\text{ }${}from$\text{ }${}the$\text{ }${}buffer.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Another$\text{ }${}thread$\text{ }${}might$\text{ }${}have$\text{ }${}filled$\text{ }${}the$\text{ }${}buffer$\text{ }${}or$\text{ }${}emptied$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}it$\text{ }${}in$\text{ }${}the$\text{ }${}mean$\text{ }${}time.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@return$\text{ }${}currently$\text{ }${}available$\text{ }${}free$\text{ }${}space$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}public$\text{ }${}int$\text{ }${}free()$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}return$\text{ }${}start$\text{ }${}<{}=$\text{ }${}end$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}?$\text{ }${}size$\text{ }${}+$\text{ }${}start$\text{ }${}-{}$\text{ }${}end$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}:$\text{ }${}start$\text{ }${}-{}$\text{ }${}end;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Write$\text{ }${}as$\text{ }${}much$\text{ }${}data$\text{ }${}as$\text{ }${}possible$\text{ }${}to$\text{ }${}the$\text{ }${}buffer.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}data$\text{ }${}$\text{ }${}$\text{ }${}Data$\text{ }${}to$\text{ }${}be$\text{ }${}written$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@return$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Amount$\text{ }${}of$\text{ }${}data$\text{ }${}actually$\text{ }${}written$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}write(byte$\text{ }${}data{$\text{[}$}{$\text{]}$})$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}return$\text{ }${}write(data,$\text{ }${}0,$\text{ }${}data.length);$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Write$\text{ }${}as$\text{ }${}much$\text{ }${}data$\text{ }${}as$\text{ }${}possible$\text{ }${}to$\text{ }${}the$\text{ }${}buffer.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}data$\text{ }${}$\text{ }${}$\text{ }${}Array$\text{ }${}holding$\text{ }${}data$\text{ }${}to$\text{ }${}be$\text{ }${}written$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}off$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Offset$\text{ }${}of$\text{ }${}data$\text{ }${}in$\text{ }${}array$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}n$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Amount$\text{ }${}of$\text{ }${}data$\text{ }${}to$\text{ }${}write,$\text{ }${}starting$\text{ }${}from$\text{ }${}{\ttfamily off}.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@return$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Amount$\text{ }${}of$\text{ }${}data$\text{ }${}actually$\text{ }${}written$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}write(byte$\text{ }${}data{$\text{[}$}{$\text{]}$},$\text{ }${}int$\text{ }${}off,$\text{ }${}int$\text{ }${}n)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if(n$\text{ }${}<{}=$\text{ }${}0)$\text{ }${}return$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}remain$\text{ }${}=$\text{ }${}n;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}@todo$\text{ }${}check$\text{ }${}if$\text{ }${}off$\text{ }${}is$\text{ }${}valid:$\text{ }${}0=$\text{ }${}<{}=$\text{ }${}off$\text{ }${}<{}$\text{ }${}data.length;$\text{ }$\newline{}
$\text{ }${}throw$\text{ }${}exception$\text{ }${}if$\text{ }${}not$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}i$\text{ }${}=$\text{ }${}Math.min(remain,$\text{ }${}(end$\text{ }${}<{}$\text{ }${}start$\text{ }${}?$\text{ }${}start$\text{ }${}:$\text{ }$\newline{}
$\text{ }${}buffer.length)$\text{ }${}-{}$\text{ }${}end);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if(i$\text{ }${}>{}$\text{ }${}0)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}System.arraycopy(data,$\text{ }${}off,$\text{ }${}buffer,$\text{ }${}end,$\text{ }${}i);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}off$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}remain$\text{ }${}-{}=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}end$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}i$\text{ }${}=$\text{ }${}Math.min(remain,$\text{ }${}end$\text{ }${}>{}=$\text{ }${}start$\text{ }${}?$\text{ }${}start$\text{ }${}:$\text{ }${}0);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if(i$\text{ }${}>{}$\text{ }${}0$\text{ }${})$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}System.arraycopy(data,$\text{ }${}off,$\text{ }${}buffer,$\text{ }${}0,$\text{ }${}i);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}remain$\text{ }${}-{}=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}end$\text{ }${}=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}return$\text{ }${}n$\text{ }${}-{}$\text{ }${}remain;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Read$\text{ }${}as$\text{ }${}much$\text{ }${}data$\text{ }${}as$\text{ }${}possible$\text{ }${}from$\text{ }${}the$\text{ }${}buffer.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}data$\text{ }${}$\text{ }${}$\text{ }${}Where$\text{ }${}to$\text{ }${}store$\text{ }${}the$\text{ }${}data$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@return$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Amount$\text{ }${}of$\text{ }${}data$\text{ }${}read$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}read(byte$\text{ }${}data{$\text{[}$}{$\text{]}$})$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}return$\text{ }${}read(data,$\text{ }${}0,$\text{ }${}data.length);$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Read$\text{ }${}as$\text{ }${}much$\text{ }${}data$\text{ }${}as$\text{ }${}possible$\text{ }${}from$\text{ }${}the$\text{ }${}buffer.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}data$\text{ }${}$\text{ }${}$\text{ }${}Where$\text{ }${}to$\text{ }${}store$\text{ }${}the$\text{ }${}read$\text{ }${}data$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}off$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Offset$\text{ }${}of$\text{ }${}data$\text{ }${}in$\text{ }${}array$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}n$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Amount$\text{ }${}of$\text{ }${}data$\text{ }${}to$\text{ }${}read$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@return$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}Amount$\text{ }${}of$\text{ }${}data$\text{ }${}actually$\text{ }${}read$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}read(byte$\text{ }${}data{$\text{[}$}{$\text{]}$},$\text{ }${}int$\text{ }${}off,$\text{ }${}int$\text{ }${}n)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if(n$\text{ }${}<{}=$\text{ }${}0)$\text{ }${}return$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}remain$\text{ }${}=$\text{ }${}n;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}@todo$\text{ }${}check$\text{ }${}if$\text{ }${}off$\text{ }${}is$\text{ }${}valid:$\text{ }${}0=$\text{ }${}<{}=$\text{ }${}off$\text{ }${}<{}$\text{ }${}data.length;$\text{ }$\newline{}
$\text{ }${}throw$\text{ }${}exception$\text{ }${}if$\text{ }${}not$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}i$\text{ }${}=$\text{ }${}Math.min(remain,$\text{ }${}(end$\text{ }${}<{}$\text{ }${}start$\text{ }${}?$\text{ }${}buffer.length$\text{ }${}:$\text{ }${}end)$\text{ }$\newline{}
$\text{ }${}-{}$\text{ }${}start);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if(i$\text{ }${}>{}$\text{ }${}0)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}System.arraycopy(buffer,$\text{ }${}start,$\text{ }${}data,$\text{ }${}off,$\text{ }${}i);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}off$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}remain$\text{ }${}-{}=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}start$\text{ }${}$\text{ }${}+=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if(start$\text{ }${}>{}=$\text{ }${}buffer.length)$\text{ }${}start$\text{ }${}=$\text{ }${}0;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}i$\text{ }${}=$\text{ }${}Math.min(remain,$\text{ }${}end$\text{ }${}>{}=$\text{ }${}start$\text{ }${}?$\text{ }${}0$\text{ }${}:$\text{ }${}end);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if(i$\text{ }${}>{}$\text{ }${}0$\text{ }${})$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}System.arraycopy(buffer,$\text{ }${}0,$\text{ }${}data,$\text{ }${}off,$\text{ }${}i);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}remain$\text{ }${}-{}=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}start$\text{ }${}=$\text{ }${}i;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}return$\text{ }${}n$\text{ }${}-{}$\text{ }${}remain;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}\}}


With this ring buffer one can now hand over data from one thread to another in a controlled way.  Any other thread-{}safe, non-{}blocking mechanism would also do. The key point here is that the write does not block when the buffer is full and also does not block when there is nothing to read.
\subparagraph{Using the Buffer together with Serial Events}
{$\text{ }$}\newline\label{172}
\paragraph{Usage of OUTPUT_BUFFER_EMPTY Event in Writing}
{$\text{ }$}\newline\label{173}

Referring to the skeleton event handler presented in the section \mylref{168}{Setting up a serial Event Handler}, one can now use a shared ring buffer from section \mylref{171}{A simple, thread-{}safe Ring Buffer Implementation} to support the  {\ttfamily OUTPUT_BUFFER_EMPTY} event. The event is not supported by all JavaComm implementations, therefore the code might never be called. However, in case the event is available it is one building block for ensuring best data throughput, because the serial interface is not left idle for too long.

The skeleton event listener proposed a method {\ttfamily outputBufferEmpty()}, which could be implemented as it follows.
\\

\TemplateSpaceIndent{$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}RingBuffer$\text{ }${}dataBuffer$\text{ }${}=$\text{ }${}...$\text{ }${};$\text{ }$\newline{}
$\text{ }${}<{}br$\text{ }${}/>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Handle$\text{ }${}output$\text{ }${}buffer$\text{ }${}empty$\text{ }${}events.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}NOTE:$\text{ }${}The$\text{ }${}reception$\text{ }${}is$\text{ }${}of$\text{ }${}this$\text{ }${}event$\text{ }${}is$\text{ }${}optional$\text{ }${}and$\text{ }${}not$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}guaranteed$\text{ }${}by$\text{ }${}the$\text{ }${}API$\text{ }${}specification.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}@param$\text{ }${}event$\text{ }${}The$\text{ }${}output$\text{ }${}buffer$\text{ }${}empty$\text{ }${}event$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}protected$\text{ }${}void$\text{ }${}outputBufferEmpty(SerialPortEvent$\text{ }${}event)$\text{ }${}\{}


\LaTeXNullTemplate{}\\

\TemplateSpaceIndent{$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}}






\LaTeXNullTemplate{}
\subsubsection{Reading of Data}
\label{174}
\LaTeXNullTemplate{}

The following example assumes that the data\textquotesingle{}s destination is some file. Whenever data becomes available it is fetched from the serial port and written to the file. This is an extremely simplified view, because in reality one would need to check the data for an end-{}of-{}file indication to, for example, return to the modem command mode. 
\\

\TemplateSpaceIndent{$\text{ }${}import$\text{ }${}javax.comm.*;$\text{ }$\newline{}
$\text{ }${}<{}br>{}$\text{ }$\newline{}
$\text{ }${}...$\text{ }$\newline{}
$\text{ }${}InputStream$\text{ }${}is$\text{ }${}=$\text{ }${}port.getInputStream();$\text{ }$\newline{}
$\text{ }${}BufferedOutputStream$\text{ }${}out$\text{ }${}=$\text{ }${}new$\text{ }${}BufferedOutputStream(new$\text{ }$\newline{}
$\text{ }${}FileOutputStream(\symbol{34}out.dat\symbol{34}));$\text{ }$\newline{}
$\text{ }${}<{}br>{}$\text{ }$\newline{}
$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*$\text{ }${}Listen$\text{ }${}to$\text{ }${}port$\text{ }${}events$\text{ }$\newline{}
$\text{ }${}$\text{ }${}*/$\text{ }${}$\text{ }$\newline{}
$\text{ }${}class$\text{ }${}FileListener$\text{ }${}implements$\text{ }${}SerialPortEventListener$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}/**$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*$\text{ }${}Handle$\text{ }${}serial$\text{ }${}event.$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}*/$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}void$\text{ }${}serialEvent(SerialPortEvent$\text{ }${}e)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}SerialPort$\text{ }${}port$\text{ }${}=$\text{ }${}(SerialPort)$\text{ }${}e.getSource();$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}Discriminate$\text{ }${}handling$\text{ }${}according$\text{ }${}to$\text{ }${}event$\text{ }${}type$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}switch(e.getEventType())$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}SerialPortEvent.DATA_AVAILABLE:$\text{ }$\newline{}
$\text{ }${}<{}/br>{}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }${}Move$\text{ }${}all$\text{ }${}currently$\text{ }${}available$\text{ }${}data$\text{ }${}to$\text{ }${}the$\text{ }${}file$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}//$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}try$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}int$\text{ }${}c;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}while((c$\text{ }${}=$\text{ }${}is.read())$\text{ }${}!=$\text{ }${}-{}1)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}out.write(c);$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }${}catch(IOException$\text{ }${}ex)$\text{ }${}\{$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}...$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}case$\text{ }${}...:$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}...$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}break;$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}...$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(is$\text{ }${}!=$\text{ }${}null)$\text{ }${}is.close();$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}if$\text{ }${}(port$\text{ }${}!=$\text{ }${}null)$\text{ }${}port.close();$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}\}}

\subsection{Handling multiple Ports in one Application}
\label{175}
\LaTeXNullTemplate{}\subsection{Modem Control}
\label{176}

JavaComm is strictly concerned with the handling of a serial interface and the transmission of data over that interface. It does not know, or provide, any support for higher-{}layer protocols, e.g. for Hayes modem commands typically used to control consumer-{}grade modems. This is simply not the job of JavaComm, and not a bug.

Like with any other particular serial device, if the control of a modem is desired via JavaComm the necessary code has to be written on top of JavaComm. The page \mylref{201}{\symbol{34}Hayes-{}compatible Modems and AT Commands\symbol{34}} provides the necessary basic generic information to deal with Hayes modems.

Some operating systems, e.g. Windows or certain Linux distributions provide a more or less standardized way how modem control commands for a particular modem type or brand are configured for the operating system. Windows modem \symbol{34}drivers\symbol{34}, for example, are typically just registry entries, describing a particular modem (the actual driver is a generic serial modem driver). JavaComm as such has no provisions to access such operating-{}system specific data. Therefor, one either has to provide a separate Java-{}only facility to allow a user to configure an application for the usage of a particular modem, or some platform-{}specific (native) code needs to be added.
\section{RxTx}
\label{177}
\LaTeXNullTemplate{}\subsection{Overview and Versions}
\label{178}

Due to the fact that Sun didn\textquotesingle{}t provide a reference implementation of the JavaComm API for Linux, people developed RxTx for Java and Linux \myplainurl{http://rxtx.qbang.org/}. RxTx was then further ported to other platforms. The latest version of RxTx is known to work on 100+ platform, including Linux, Windows, Mac OS, Solaris and other operating systems.

RxTx can be used independent of the JavaComm API, or can be used as a so called provider for the JavaComm API. In order to do the latter, a wrapper called JCL is also needed \myplainurl{http://www.geeksville.com/~kevinh/linuxcomm.html}. JCL and RxTx are usually packaged together with Linux/Java distributions, or JCL is completely integrated into the code. So, before trying to get them separately, it is worth having a look at the Linux distribution CD.

There seems to be a trend to abandon the JavaComm API, and using RxTx directly instead of via the JCL wrapper, due to Sun\textquotesingle{}s limited support and improper documentation for the JavaComm API. However, RxTx\textquotesingle{}s documentation is extremely sparse. Particularly, the RxTX people like to make a mess of their versions and package contents (e.g. with or without integrated JCL). Starting with RxTx version 1.5 RxTx contains replacement classes for the public JavaComm classes. For legal reasons they are not in the {\ttfamily java.comm} package, but in the {\ttfamily gnu.io} package. However, the two currently available RxTx versions are packaged differently:
{\bfseries
\begin{mydescription}RxTx 2.0
\end{mydescription}
}
\begin{myquote}\item{}RxTx version supposed to be used as a JavaComm provider. This one is supposed to have its roots in RxRx 1.4, which is the RxTx version before the {\ttfamily gnu.io} package was added.
\end{myquote}
{\bfseries
\begin{mydescription}RxTx 2.1
\end{mydescription}
}
\begin{myquote}\item{}RxTx version with a full {\ttfamily gnu.io} package replacement for {\ttfamily java.comm}. This version is supposed to have its roots in RxTx 1.5, where {\ttfamily gnu.io} support started.
\end{myquote}


So, if one wants to program against the original JavaComm API one needs

\begin{myenumerate}
\item{} Sun\textquotesingle{}s generic JavaComm version. As of this writing this is in fact the Unix package (which contains support for various Unix versions like Linux or Solaris). Even when used on Windows, the Unix package is needed to provide the generic {\ttfamily java.comm} implementations. Only the part implemented in Java is used, while the Unix native libraries are just ignored.
\item{} RxTx 2.0 in order to have a different provider below the generic generic JavaComm version than the ones comming with the JavaComm package
\end{myenumerate}


However, if one just wants to program against the {\ttfamily gnu.io} replacement package, then 
\begin{myitemize}
\item{} only RxTx 2.1 is needed.
\end{myitemize}

\subsection{Converting a JavaComm Application to RxTx}
\label{179}

So, if you belong to the large group of people who have been let down by Sun when they dropped Windows support for JavaComm, you are in need to convert a JavaComm application to RxTx. As you can see from the above, there are two ways to do it. Both assume that you manage to install a version of RxTx first. Then the options are either

\begin{myenumerate}
\item{} Using RxTx 2.0 as a JavaComm provider
\item{} Porting the application to RxTx 2.1
\end{myenumerate}


The first option has already been explained. The second option is surprisingly simple. All one has to do to port some application from using JavaComm to using RxTx 2.1 is to replace all references to {\ttfamily java.comm} in the application source code with references to {\ttfamily gnu.io}. If the original JavaComm application was properly written there is nothing more to do.

RxTx 2.1 even provides the tool {\ttfamily contrib/ChangePackage.sh} to perform the global replacement on a source tree under Unix. On other platforms such a global replacement is easy to do with IDEs supporting a decent set of refactoring features.
\section{See also}
\label{180}

\begin{myitemize}
\item{} \myhref{http://java.sun.com/products/javacomm/}{ Sun Java Communications API}
\item{} \myhref{http://wass.homelinux.net/howtos/Comm_How-To.shtml}{ Java Comm Serial API How-{}To for Linux}
\item{} \myhref{http://code.google.com/p/java-simple-serial-connector/}{ jSSC -{} java serial port library. Work under Win32(Win98-{}Win7), Win64(x86-{}64), Linux x86, Linux x86-{}64}
\item{} \myhref{http://rxtx.qbang.org/}{ RxTx Home Page}
\item{} \myhref{http://lopica.sourceforge.net/faq.html\#comm}{ Unofficial Java Web Start/JNLP FAQ -{} How can I use Web Start and Comm API together?}
\item{} \myhref{http://serialio.com/products/serialport/serialport.php}{ SerialIO has a free trial version of their SerialPort package}
\item{} Ben Resner has \myhref{http://web.media.mit.edu/~benres/simpleserial/}{ a free download of his SimpleSerial package} and \myhref{http://www.ambientdevices.com/datacasting/index.html}{ a newer version without the C++ code}
\end{myitemize}






{}


\chapter{Forming Data Packets}

\myminitoc
\label{181}





\label{182}



{}



Just about every idea for communicating between computers involves \symbol{34}data packets\symbol{34}, especially when more than 2 computers are involved.

The idea is very similar to putting a check in an envelope to mail to the electricity company.
We take the data (the \symbol{34}check\symbol{34}) we want to send to a particular computer,
and we place it inside an \symbol{34}envelope\symbol{34} that includes the address of that particular computer.

A packet of data starts with a preamble, some address information, some other transmission-{}related information, followed by the raw data, and finishes up with a few more bytes of transmission-{}related error-{}detection information -{}-{} often a \myhref{http://en.wikipedia.org/wiki/\%20Fletcher\%27s\%20checksum}{ Fletcher-{}32} \myhref{http://en.wikipedia.org/wiki/\%20checksum\%20}{ checksum}.
We will talk more about what we do with this error-{}detection information in the next chapter, \mylref{187}{Serial Programming/Error Correction Methods}.

The accountant at the electricity company throws away the envelope when she gets the check.
She already knows the address of her own company. Does this mean the \symbol{34}overhead\symbol{34} of the envelope is useless ? No.

In a similar way, once a computer receives a packet, it immediately throws away the preamble. If the computer sees that the packet is addressed to itself, and has no errors, then it discards the wrapper and keeps the data.

Unfortunately, there are dozens of slightly different, incompatible protocols for data packets, because people pick slightly different ways to represent the address information and the error-{}detection information.

... gateways between incompatible protocols ...
\subsection{packet size tradeoffs}
\label{183}

Protocol designers pick a maximum and minimum packet size based on many tradeoffs.
\begin{myitemize}
\item{}  packets should be \symbol{34}small\symbol{34} to prevent one transmitter transmitting a long packet from hogging the network.
\item{}  packets should be \symbol{34}small\symbol{34} so that a single error can be corrected by retransmitting one small packet rather than one large packet
\item{}  packets should be \symbol{34}large\symbol{34} so more time is spent transmitting good data and less time is spent on overhead (preamble, header, footer, postamble, and between-{}packet gap).
\item{}  the packet header and trailing footer should be short, to reduce overhead
\item{}  The footer should hold a large error-{}detection codeword field, because a shorter codeword is more likely to incorrectly accept an error-{}riddled packet. (We discuss error-{}detection in more detail in the next chapter, \mylref{187}{../Error Correction Methods/}).
\item{}  making the packet header a little longer, so that meaningful fields fall on byte or word boundaries, rather than highly encoded bit fields, makes it easier for a CPU to interpret them, allowing lower-{}cost network hardware.
\item{}  making the packet header a little longer -{}-{} instead of a single error-{}detection field that covers the whole packet, we have one error-{}detection field for the header, and another error-{}detection field for the data -{}-{} allows a node to immediately reject a packet with a bit error in the destination address or the length field, avoiding needless processing. The same CRC polynomial is used for both.
\end{myitemize}


\begin{myitemize}
\item{}  fixed-{}size packets -{}-{} where all packets fall into a few length categories -{}-{} do not require a \symbol{34}length\symbol{34} field, and simplify buffer allocation, but waste \symbol{34}internal\symbol{34} data space on padding the last packet when you want to send data that is not an exact multiple of the fixed data size.
\end{myitemize}

\subsection{start-{}of-{}packet and transparency tradeoffs}
\label{184}

Unfortunately, it is impossible for any communication protocol to have all these nice-{}to-{}have features:
\begin{myitemize}
\item{}  transparency: data communication is transparent and \symbol{34}8 bit clean\symbol{34} -{}-{} (a) any possible data file can be transmitted, (b) byte sequences in the file always handled as data, and never mis-{}interpreted as something else, and (c) the destination receives the entire data file without error, without any additions or deletions.
\item{}  simple copy: forming packets is easiest if we simply blindly copy data from the source to the data field of the packet without change.
\item{}  unique start: The start-{}of-{}packet symbol is easy to recognize, because it is a known constant byte that never occurs anywhere else in the headers, header CRC, data payload, or data CRC.
\item{}  8-{}bit: only uses 8-{}bit bytes
\end{myitemize}


Some communication protocols break transparency, requiring extra complexity elsewhere -{}-{} requiring higher network layers to implement work-{}arounds such as \myhref{http://en.wikipedia.org/wiki/binary-to-text\%20encoding}{w:binary-{}to-{}text encoding} or else suffer mysterious errors, as with the \myhref{http://en.wikipedia.org/wiki/Time\%20Independent\%20Escape\%20Sequence}{w:Time Independent Escape Sequence}.

Some communication protocols break \symbol{34}8-{}bit\symbol{34} -{}-{} i.e., in addition to the 256 possible bytes, they have \symbol{34}extra symbols\symbol{34}. Some communication protocols have just a few extra non-{}data symbols -{}-{} such as the \symbol{34}long pause\symbol{34} used as part of the Hayes escape sequence; the \symbol{34}long break\symbol{34} used as part of the \myhref{http://en.wikipedia.org/wiki/SDI-12}{SDI-{}12} protocol; \symbol{34}command characters\symbol{34} or \symbol{34}control symbols\symbol{34} in 4B5B coding, 8b/10b encoding; etc. Other systems, such as 9-{}bit protocols,\myfootnote{
\myfnhref{http://ulan.sourceforge.net/}{ uLan}: 9-{}bit message oriented communication protocol, which is transferred over RS-{}485 link.
}\myfootnote{
Pavel Pisa.
\myfnhref{http://cmp.felk.cvut.cz/~pisa/ulan/ul_drv.html}{ \symbol{34}uLan RS-{}485 Communication Driver\symbol{34}}
\symbol{34}9-{}bit message oriented communication protocol, which is transferred over RS-{}485 link.\symbol{34}
}\myfootnote{
Peter Gasparik.
\myfnhref{http://www.rtjcom.com/6811/jackpot/rs485-commspec.html\#3}{ \symbol{34}9-{}bit data transfer format\symbol{34}}
}\myfootnote{
Stephen Byron Cooper.
\myfnhref{http://www.ehow.com/facts_7735117_9bit-serial-protocol.html}{ \symbol{34}9-{}Bit Serial Protocol\symbol{34}}.
}\myfootnote{
\myfnhref{http://electronicdesign.com/article/embedded/use-the-pc-s-uart-with-9-bit-protocols6245.aspx}{ \symbol{34}Use The PC\textquotesingle{}s UART With 9-{}Bit Protocols\symbol{34}}.
1998.
}\myfootnote{
\myfnhref{http://en.wikipedia.org/wiki/\%20multidrop\%20bus}{Wikipedia: multidrop bus} (MDB) is a 9-{}bit protocol used in many vending machines.
}\myfootnote{
\myfnhref{http://www.docklight.de/examples_en.htm}{ ParitySwitch_9BitProtocols}: manipulate parity to emulate a 9 bit protocol
}
transmit 9 bit symbols.
Typically the first 9-{}bit symbol of a packet has its high bit set to 1, waking up all nodes; then each node checks the destination address of the packet, and all nodes other than the addressed node go back to sleep. The rest of the data in the packet (and the ACK response) is transmitted as 9 bit symbols with the high bit cleared to 0, effectively 8 bit values, which is ignored by the sleeping nodes.
(This is similar to the way that all data bytes in a MIDI message are effectively 7 bit values; the high bit is set only on the first byte in a MIDI message).
Alas, some UARTs make it awkward,\myfootnote{
\myfnhref{http://electronicdesign.com/article/embedded/use-the-pc-s-uart-with-9-bit-protocols6245.aspx}{ \symbol{34}Use The PC\textquotesingle{}s UART With 9-{}Bit Protocols\symbol{34}}.
Electronic Design.
1998-{}December.
}\myfootnote{
Thomas Lochmatter.
\myfnhref{http://www.lothosoft.ch/thomas/libmip/markspaceparity.php}{ \symbol{34}Linux and MARK/SPACE Parity\symbol{34}}.
2010.
}
difficult, or impossible to send and receive such 9-{}bit characters.

Some communication protocols break \symbol{34}unique start\symbol{34} -{}-{} i.e., they allow the no-{}longer-{}unique start-{}of-{}packet symbol to occur elsewhere -{}-{} most often because we are sending a file that includes that byte, and \symbol{34}simple copy\symbol{34} puts that byte in the data payload. When a receiver is first turned on, or when cables are unplugged and later reconnected, or when noise corrupts what was intended to be the real start-{}of-{}packet symbol, the receiver will incorrectly interpret that data as the start-{}of-{}packet. Even though the receiver usually recognizes that something is wrong (checksum failure), a single such noise glitch may lead to a cascade of many lost packets, as the receiver goes back and forth between (incorrectly) interpreting that data byte in the payload as a start-{}of-{}packet, and then (incorrectly) interpreting a real start-{}of-{}packet symbol as payload data.

In order to keep the \symbol{34}unique start\symbol{34} feature, many communication protocols break \symbol{34}simple copy\symbol{34}. This requires a little extra software and a little more time per packet than simply copying the data -{}-{} which is usually insignificant with modern processors.
The awkwardness comes from (a) making sure that the entire process -{}-{} the transmitter encoding/escaping a chunk of raw data into a packet payload that must not include the start-{}of-{}packet byte, and the receiver decoding/unescaping the packet payload into a chunk of raw data -{}-{} is completely transparent to any possible sequence of raw data bytes, even if those bytes include one or more start-{}of-{}packet bytes, and (b) since the encoded/escaped payload data inevitably requires more bytes than the raw data, we must make sure we don\textquotesingle{}t overflow any buffers even with the worst possible expansion, and (c) unlike \symbol{34}simple copy\symbol{34} where a constant bitrate of payload data bits results in the same constant goodput of raw data bits, we must make sure that the system is designed to handle the variations in payload data bitrate or raw data bit goodput or both.
Some of this awkwardness can be reduced by using consistent-{}overhead byte stuffing.\myfootnote{
\myfnhref{http://www.stuartcheshire.org/papers/COBSforToN.pdf}{ \symbol{34}Consistent Overhead Byte Stuffing\symbol{34}} by Stuart Cheshire and Mary Baker, 1999.
}
rather than variable-{}overhead byte stuffing techniques such as the one used by
\myhref{http://en.wikibooks.org/wiki/Serial_Programming\%2FIP_Over_Serial_Connections\%23SLIP\%20}{ SLIP}.

Calculate the CRC and append it to the packet *before* encoding both the raw data and the CRC with COBS.\myfootnote{
Jason Sachs.
\myfnhref{http://www.embeddedrelated.com/showarticle/113.php}{ \symbol{34}Help, My Serial Data Has Been Framed: How To Handle Packets When All You Have Are Streams\symbol{34}}.
2011.
}
\section{For further reading}
\label{185}
\LaTeXNullTemplate{}
\begin{myitemize}
\item{}  Optical and radio receivers usually require a preamble of some minimum length in order to synchronize bit clocks. For detailed information on calculating exactly how long (how many transitions) the preamble needs to be, see \myhref{http://en.wikibooks.org/wiki/Clock\%20and\%20Data\%20Recovery\%2FDesign\%20values\%20used\%20in\%20practice\%2FBurst\%20transmission\%20mode\%2FStep\%20response\%20of\%20a\%20phase\%20aligner}{Clock and Data Recovery/Design values used in practice/Burst transmission mode/Step response of a phase aligner}.
\item{}  \myplainurl{http://intcomm.wiki.taoriver.net/moin.cgi/ProtocolMadness}
\item{}  UDP
\item{}  \myhref{http://en.wikibooks.org/wiki/Internet\%20Technologies\%2FProtocols}{Internet Technologies/Protocols} including TCP/IP and HTTP
\item{}  ATM
\item{}  VSCP -{} Very Simple Control Protocol \myplainurl{http://www.vscp.org/} \symbol{34}The protocol is free\symbol{34}
\item{}  \symbol{34}Protocol Design Folklore\symbol{34} by Radia Perlman. Jan 15, 2001. \myplainurl{http://www.awprofessional.com/articles/article.asp?p=20482}
\item{}  \symbol{34}Devices that play together, work together: UPnP defines common protocols and procedures to guarantee interoperability among network-{}enabled PCs, appliances, and wireless devices.\symbol{34} article by Edward F Steinfeld, EDN, 9/13/2001 \myplainurl{http://www.reed-electronics.com/ednmag/index.asp?layout=article\&articleid=CA154802\&spacedesc=readersChoice\&rid=0\&rme=0\&cfd=1}
\item{}  CAN bus \myplainurl{http://computer-solutions.co.uk/} \myplainurl{http://computer-solutions.co.uk/gendev/can-module.htm}
\end{myitemize}

\begin{myquote}
\item{} \symbol{34}CMX-{}MicroNet is the first system that allows TCP/IP 
\item{} and other protocols to be run natively on small processors
\item{}  ... {$\text{[}$}including{$\text{]}$} AVR, PIC 18, M16C.\symbol{34}
\end{myquote}

\begin{myitemize}
\item{}  \symbol{34}byteflight is a high speed data bus protocol for automotive applications\symbol{34} \myplainurl{http://byteflight.com/}
\item{}  Nagle\textquotesingle{}s rule ... The Nagle algorithm. \symbol{34}Nagle\textquotesingle{}s rule is a heuristic to avoid sending particularly small IP packets, also called tinygrams. Tinygrams are usually created by interactive networking tools that transmit single keystrokes, such as telnet or rsh. Tinygrams can become particularly wasteful on low-{}bandwidth links like SLIP. The Nagle algorithm attempts to avoid them by holding back transmission of TCP data briefly under some circumstances.\symbol{34} -{}-{} \myplainurl{http://www.tldp.org/LDP/nag/node45.html}
\item{}  \myhref{http://wiki.slimdevices.com/index.php/SLIMP3ClientProtocol}{ The SLIMP3 Client Protocol}
\item{}  \myhref{http://beej.us/guide/bgnet/output/htmlsingle/bgnet.html}{ Beej\textquotesingle{}s Guide to Network Programming Using Internet Sockets} by Brian \symbol{34}Beej\symbol{34} Hall 2005-{}11-{}05
\item{}  \myhref{http://www.zilog.com/docs/appnotes/an_rflink.pdf}{ \symbol{34}RF Link Using the Z86E08\symbol{34}} describes yet another \symbol{34}simple\symbol{34} packet protocol ... also mentions a preamble to train the RF receiver just before the rest of the packet.
\item{}  \myhref{http://en.wikibooks.org/wiki/Algorithm\%20Implementation\%2FChecksums}{Algorithm Implementation/Checksums} 
\item{}  ... other packet protocols ? ...
\item{}  \myhref{http://en.wikibooks.org/wiki/Communication\%20Systems\%2FPacket\%20Data\%20Systems}{Communication Systems/Packet Data Systems}
\item{}  \myhref{http://en.wikibooks.org/wiki/Communication\%20Networks}{Communication Networks}
\end{myitemize}

\chapter{Error Correction Methods}

\myminitoc
\label{186}






\label{187}




\section{Introduction}
\label{188}

There are 3 main types of handling errors:

\begin{myitemize}
\item{}  acknowledge or retry (ACK-{}NAK).
\end{myitemize}


\begin{myitemize}
\item{}  \symbol{34}Forward Error Correction\symbol{34} (FEC)
\end{myitemize}


\begin{myitemize}
\item{}  Pretend It Never Happened
\end{myitemize}

\section{ACK-{}NAK}
\label{189}

Each packet is checked by the receiver to make sure it is \symbol{34}good\symbol{34}.

If it *is* good, the receiver (eventually) tells the sender that it came through OK -{}-{} it acknowledges (ACK) the packet.


All versions of ACK-{}NAK absolutely require
\myhref{http://en.wikibooks.org/wiki/Serial_Programming\%3ABi-directional_Communication}{Two Way Communication}
.
\subsubsection{How does the {\itshape receiver} know it\textquotesingle{}s good ?}
\label{190}

The sender calculates a checksum or CRC for the entire packet (except for the footer), then appends it to the end of the packet (in the footer/trailer).

The typical CRC is 32 bits, often a \myhref{http://en.wikipedia.org/wiki/\%20Fletcher\%27s\%20checksum}{ Fletcher-{}32} \myhref{http://en.wikipedia.org/wiki/\%20checksum\%20}{ checksum}.

Aside: Note that the checksum or CRC are forms of {\bfseries hashing}, ie, irreversibly shrinking data.  Checksums and CRCs are weaker algorithms than \symbol{34}cryptographically strong\symbol{34} message authentication code algorithms such as MD5 or SHA variants.  Cryptographically strong algorithms can detect errors better than checksums or CRCs, but they take more time to calculate.

Whenever the receiver receives a packet, the receiver calculates exactly the same checksum or CRC, then compares it to the one in the footer/trailer. If they match, the entire packet is (almost certainly) good, so the receiver sends an ACK.

When there\textquotesingle{}s even the slightest question that the packet has any sort of error (which could be *either* in the actual data *or* in the header *or* in the checksum bits -{}-{} there\textquotesingle{}s no way for the receiver to tell), the receiver discards it completely and (in most cases) pretends it never saw it.

If it\textquotesingle{}s not good, the {\itshape sender} sends it again.
\subsubsection{How does the {\itshape sender} know it wasn\textquotesingle{}t good ?}
\label{191}

It never got the ACK. (So either the packet was corrupted, *or* the ACK was corrupted -{}-{} there\textquotesingle{}s no way for the sender to know).
\subsubsection{\symbol{34}Stop-{}and-{}wait ARQ\symbol{34}}
\label{192}

The simplest version of ACK-{}NAK is \symbol{34}Stop-{}and-{}wait ARQ\symbol{34}.

The sender sends a packet, then waits a little for an ACK.
As soon as it gets the ACK, it immediately sends the next packet.
If the sender doesn\textquotesingle{}t hear the ACK in time, it starts over from the beginning, sending the same packet again, until it does get an ACK.

The receiver waits for a packet. If the packet passes all the error-{}detection tests perfectly, the receiver transmits an ACK (acknowledgment) to the sender.

Subtleties:
If the receiver receives the packet perfectly, but the ACK message is delayed too long, then the transmitter sends another copy of the message (a \symbol{34}communication echo\symbol{34}).
Imagine the packet contained the message \symbol{34}deduct \${}11,000 from Fred\textquotesingle{}s account.\symbol{34}.
When the receiver gets this second copy of the packet, what should it do?
Certainly it should send an ACK (otherwise the transmitter will keep trying to send this packet over and over).
Either or both of the following problems could occur:
\begin{myitemize}
\item{}  The delayed first ACK could hit the transmitter after it transmits the second copy of the message, so it transmits the next packet. Then the second ACK hits the transmitter, tricking the transmitter into thinking that \symbol{34}next packet\symbol{34} has been successfully received, when it hasn\textquotesingle{}t.
\item{}  When the receiver gets 2 identical consecutive packets saying \symbol{34}deduct \${}11,000 from Fred\textquotesingle{}s account\symbol{34}, are these 2 legitimate independent transactions, and so it should deduct \${}22,000 from Fred\textquotesingle{}s account? Or is it really just 1 transaction, with a bit of echo, and so should deduct a total of only \${}11,000 from Fred\textquotesingle{}s account?
\end{myitemize}


Both of these problems can be solved by adding a \symbol{34}sequence number\symbol{34}.
The transmitter keeps a count of how many independent packets it has transmitted to that receiver, and puts that sequence number in the header of each packet.
But when it re-{}transmits a packet, it re-{}transmits that same identical packet with that same identical sequence number.
Also, the receiver, rather than sending a generic \symbol{34}ACK\symbol{34} message, specifies which particular packet it is responding to by putting its sequence number in the ACK message.
When there is a communication echo, the receiver sees the same sequence number, so ACKs that sequence number (again) but then discards and ignores the extra, redundant copy of a packet it already received.
When the transmitter is sending a new packet that merely happens to contain the same data, the receiver sees a different sequence number, so it ACKs that new sequence number, and takes another \${}11,000 out of Fred\textquotesingle{}s account. Poor Fred.

A 1-{}bit sequence number (alternating 1 -{} 0 -{} 1 -{} 0 for each new packet, and ACK1 ACK0 ACK1 ACK0 in response) is adequate for a stop-{}and-{}wait system.
But as we will see, other ARQ protocols require a larger sequence number.

Subtleties:
Some early protocols had the receiver send a NAK (negative acknowledgment) to the sender whenever a bad packet was received, and the sender would wait indefinitely until it received *either* an ACK *or* a NAK.
This is a bad idea.
Imagine what happens when (a) a little bit of noise made a bad packet, so the receiver sends the NAK back to the sender, but then (b) a little bit of noise made that NAK unrecognizable.
Alternatively, imagine a shared-{}medium network with 1 sender and 2 receivers. What happens when a little noise messes up the \symbol{34}destination\symbol{34} field of the packet ?

With \symbol{34}Stop-{}and-{}wait ARQ\symbol{34}, the sender and the receiver only needs to keep 1 packet in memory at a time.
\subsubsection{streaming ARQ}
\label{193}

The sender sends a packet, then the next packet, then the next, without waiting.

As it sends each packet, it puts a copy of that packet in a \symbol{34}window\symbol{34}.

Each packet is consecutively numbered.
(The sequence number must be at least large enough to uniquely identify every packet in the window).

... turn-{}around time ... bouncing off geostationary satellites ...

The receiver occasionally transmits an acknowledgment (\symbol{34}I got all packets up to 8980\symbol{34}, \symbol{34}I got all packets up to 8990\symbol{34}).

If the receiver is expecting packet number 9007, but it receives a packet with an *earlier* number (that it had already received successfully), it transmits (or possibly re-{}transmits) a \symbol{34}I got all packets up to 9006\symbol{34} message.

When the sender receives an acknowledgment of any packet in the \symbol{34}window\symbol{34}, it deletes that copy.

When the sender\textquotesingle{}s window gets full, it waits a little, then tries re-{}sending the packets in the window starting with the oldest.

So when the sender suspects an error in some packet, it resend *all* packets starting with the erroneous packet. This guarantees that the receiver will (eventually) receive all packets in order.

Optionally,
If the receiver is expecting packet number 9007, but it receives packet number 9008, it may transmit a negative acknowledge (NAK) for 9007, and ignores any higher packet numbers until it gets packet 9007.

When the sender receives a NAK for any packet in the window, it re-{}starts transmission with that packet (and keeps it in the window).

With \symbol{34}streaming ARQ\symbol{34}, the sender needs to keep the entire window of packets in memory at a time.
But the receiver still only needs to handle 1 packet at a time, and handles them in consecutive order.

(Some people think of \symbol{34}streaming\symbol{34} as one big packet the size of the window using \symbol{34}stop-{}and-{}wait\symbol{34} protocol, divided into smaller \symbol{34}sub-{}packets\symbol{34}).
\subsection{Selective Repeat ARQ}
\label{194}
\myhref{http://en.wikipedia.org/wiki/Selective\%20Repeat\%20ARQ}{w:Selective Repeat ARQ}

A selective repeat ARQ system is a kind of streaming ARQ.

But instead of the receiver only handling 1 packet at a time, and discarding all packets higher or lower than the one it is looking for, the receiver tries to keep a copy of all packets it receives in a window of its own, and negotiates with the sender to try to resend *only* the erroneous packets.
\section{FEC}
\label{195}

If you have only one-{}way communication,
you are forced to use Forward Error Correction, sometimes called EDAC (Error Detection And Correction).

You transmit the data, then (instead of a CRC) you transmit \symbol{34}check bits\symbol{34} that are calculated from the data.

... NASA space probes ... compact disks ...

The simplest kind is \symbol{34}repeat the message\symbol{34}.

If I send the same packet twice, and noise only corrupts one of them, *and* the receiver can tell which one was corrupted, then no data was lost.
If I send the same packet 3 times, and noise corrupts any one of them, then the receiver can do \symbol{34}best 2 out of 3\symbol{34}. The \symbol{34}check bits\symbol{34} are 2 copies of the data bits.
In fact, noise could corrupt a little bit of *all three* of them, and you could still extract all the data -{}-{} align the 3 packets next to each other,
and do \symbol{34}best 2 out of 3\symbol{34} for every bit. As long as there were only a few bits of noise in each packet, and the noise was in a different place in each packet, all the data can be recovered.

... (put picture here) ...

There are some very clever kinds of FEC (Hamming codes, Reed-{}Solomon codes) that can correct all kinds of common errors better than \symbol{34}best 2 out of 3\symbol{34}, and only require the same number of \symbol{34}check bits\symbol{34} as there are data bits.
\section{Pretend It Never Happened}
\label{196}

A sender often streams audio and video live, in real-{}time.

What should a receiver do when a packet gets mangled ?

If it sends a message back to the sender, asking it to resend that packet,
by the time the reply gets back, it\textquotesingle{}s probably several video frames later.
It\textquotesingle{}s too late to use that information.

Rather than pausing the entire movie until the request makes a round-{}trip, it\textquotesingle{}s far less jarring to the audience if the receiver silently discards the mangled packet, fills in as best it can (for example, with nearby pixels\textquotesingle{} colors), try not to draw attention to the error, and continue on as if nothing had happened.

\LaTeXNOTETemplate{Signal degradation should be documented and easily findable as to let users know that there is no guarantee of exact reproduction.}{}
\section{combination}
\label{197}

Even when they have 2-{}way communication, sometimes people use FEC anyway. That way small amounts of noise can be corrected at the receiver. If a packet is corrupted so badly that FEC cannot fix it, the protocol falls back on ACK-{}NAK retransmission (or on Pretend It Never Happened).\section{further reading}
\label{198}
\myhref{http://en.wikipedia.org/wiki/error\%20detection\%20and\%20correction}{w:error detection and correction}

a detailed description of one ACK-{}NAK protocol:
\symbol{34}XModem / YModem Protocol Reference\symbol{34}
by Chuck Forsberg 1988-{}10-{}14
\myplainurl{http://www.commonsoftinc.com/Babylon_Cpp/Documentation/Res/yModem.htm}

a detailed description of one streaming protocol:
\symbol{34}The ZMODEM Inter Application File Transfer Protocol\symbol{34}
by Chuck Forsberg 1988-{}10-{}14
\myplainurl{http://www.commonsoftinc.com/Babylon_Cpp/Documentation/Res/zModem.htm}

\symbol{34}Data Link Error Detection / Correction Methods\symbol{34}
\myplainurl{http://techref.massmind.org/techref/method/errors.htm}
brief descriptions of
several error correction methods:
Hamming codes, Fire codes, Reed-{}Solomon codes, Viterbi decoding, etc.


\section{further reading}
\label{199}

\begin{myitemize}
\item{}  \myhref{http://en.wikibooks.org/wiki/Computer\%20Networks\%2FError\%20Control\%2C\%20Flow\%20Control\%2C\%20MAC}{Computer Networks/Error Control, Flow Control, MAC}
\item{}  \myhref{http://en.wikibooks.org/wiki/Data\%20Coding\%20Theory\%2FTransmission\%20Codes}{Data Coding Theory/Transmission Codes}
\item{}  \myhref{http://en.wikipedia.org/wiki/Automatic\%20repeat-request}{Wikipedia:Automatic repeat-{}request} (ARQ)
\item{}  \myhref{http://en.wikipedia.org/wiki/forward\%20error\%20correction}{Wikipedia:forward error correction} (FEC)
\item{}  \myhref{http://en.wikipedia.org/wiki/Radio\%20Link\%20Protocol}{Wikipedia:Radio Link Protocol}
\item{}  \myhref{http://www.lammertbies.nl/comm/info/crc-calculation.html}{ On-{}line CRC calculation and free CRC library}
\item{}  \myhref{http://en.wikibooks.org/wiki/Algorithm\%20Implementation\%2FChecksums}{Algorithm Implementation/Checksums}
\end{myitemize}


\myhref{http://en.wikibooks.org/wiki/Category\%3ASerial\%20Programming}{Category:Serial Programming}\chapter{Appendex A:Modems and AT Commands}

\myminitoc
\label{200}





\label{201}



{}


\section{Introduction}
\label{202}
\subsection{General}
\label{203}
This content is part of the \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming}{Serial Programming} book. It covers the programming of Hayes and Hayes-{}compatible telephone modems. Such types of modems are the norm in consumer applications, as well as many professionals applications -{} wherever modems are still used. 

Modem programming is slowly becoming a lost art, particular with the wide-{}spread movement of users from modem dial-{}up lines to DSL for very obvious performance reasons. Still modems are used for many applications, at home, or in a professional environment. In recent times, modems can be found in new areas where they were previously not seen. E.g. embedded modems in machines are used to automatically  \symbol{34}call home\symbol{34} to the manufacturer in case the machine is in need of some service. Often this is done via a wireless phone system, where the wireless module still provides a Hayes-{}compatible interface for dialing and data transmission.

The original Hayes modem command set is exclusively used as a reference in this module. {\bfseries Vendor specific extensions are not covered, and do not belong into this module}. The module explains the origin of the term {\itshape Hayes}, and the related {\itshape AT commands}. Also some principal information about what a {\itshape modem} is, and how the signaling with a modem happens are provided for completeness. The module then continues with a description of the basics of modem programming, including the set-{}up of a development environment.

Further, the content provides detailed programming information ({\itshape incomplete}), and a reference of the original Hayes command set and registers ({\itshape incomplete}).
\subsection{Administrative Information}
\label{204}

This section particularly addresses potential authors. Please note:

\begin{myitemize}
\item{}  This module {\bfseries is not} a dumping ground for random modem programming information and folklore.
\item{}  This module is {\bfseries operating system agnostic}. The \myhref{http://en.wikibooks.org/wiki/Programming\%3ASerial\%20Data\%20Communications}{Programming Serial Data Communications} book provides other modules for such information.
\item{}  This module deals with {\bfseries generic Hayes modems}, not with any vendor specific extensions. If you really want to see your particular love-{}child covered, provide an Appendix with that vendor/brand specific information. 
\item{}  Do not assume that just because something works on you particular modem it is the standard and other modems do it the same way. If you have no first hand experience that something is done the same way on \symbol{34}almost\symbol{34} all Hayes-{}compatible modems, then leave it out, or mark it at least as doubtful.
\end{myitemize}


The reason why this module sticks with the original Hayes command set is to have a defined boundary. This module is not intended as a reference manual. Once someone has mastered the basic set, and implemented the code, it is rather straight forward to deal with vendor-{}specific extensions. Other extensions, e.g. the very rough and basic FAX extensions require some deep insight into the involved protocols (e.g. in the case of FAX the detailed encoding, compression and timing of fax data on the phone line). This is out of the scope of this book. If you know how to handle the FAX extensions, write your own book.
\subsection{What is Hayes?}
\label{205}

{\itshape Hayes Microcomputer Products, Inc.} was a modem manufacturer from the beginning of the 1980s until the end of the 1990s, with its heyday in the early \textquotesingle{}90s. The name {\itshape Hayes} still exists as a brand name, owned by {\itshape Zoom Telephonics, Inc.} (as of Fall 2004). 

In 1981, Hayes developed the {\bfseries Hayes Smartmodem}.  This was a unique product at the time, because this modem was no longer simply a \symbol{34}dumb\symbol{34} device blindly converting serial data to and from audio tones, but contained some \symbol{34}intelligence\symbol{34}. It was possible to send commands to the modem to configure it, to execute certain operations (such as dialling a number, quieting the speaker, hanging up, etc.), and to read the current status of the connection. Hayes developed and published a command set to control the modem over a serial line. This command set became popular among consumer modem manufacturers, and was cloned a thousand times. Known as both the \symbol{34}Hayes command set\symbol{34} and the \symbol{34}AT command set\symbol{34}, it has long been the de-{}facto standard for controlling consumer modems and also many professional modems. Modems which support this command set are called {\itshape Hayes-{}compatible}. 

The commands were standardised at some point in time, however, as it is typical with standards, there are several standards. Plus, of course, there are still vendor-{}specific extensions and implementations in different modems vary slightly. Some of these enhancements were required to support at that time emerging features, such as data compression and FAX support. As a result, the command sets of modern modems are not fully compatible with each other. The original Hayes commands, however, should still work, and still form the core of almost all consumer modem command sets.

The basic set of commands was at some point in time standardised as \myhref{http://www.tiaonline.org/standards/search_results2.cfm?document_no=TIA/EIA\%2D602}{ TIA/EIA-{}602} and the syntax as EIA/TIA-{}615. But as already mentioned, modem manufacturers added their extensions. A larger extended set, particular under the pressure from cell phone manufacturers, was standardised as \myhref{http://www.itu.int/rec/recommendation.asp?type=folders\&lang=e\&parent=T-REC-V.250}{ ITU V.250} (old name V.25ter). That one usually forms the base for professional Hayes-{}compatible modems, and cell phones with build in data modems. ITU V.250 further referes to a bunch of other standards (e.g. V.251, V.252, V.253) for particular applications and extensions, and also has some supplements. Plus, of course there are the many standards defining other aspects of a modem, like compression and transmission.

{\itshape See Also:}
\begin{myitemize}
\item{}  \myhref{http://en.wikipedia.org/wiki/Hayes\%20Communications}{Wikipedia:Hayes Communications}
\item{}  \myhref{http://en.wikibooks.org/wiki/Transferring\%20Data\%20between\%20Standard\%20Dial-Up\%20Modems}{Transferring Data between Standard Dial-{}Up Modems}
\end{myitemize}

\subsection{What are AT Commands?}
\label{206}

Almost all of the Hayes modem commands start with the two letter sequence {\ttfamily AT} -{} for getting the modem\textquotesingle{}s {\itshape attention}. Because of this, modem commands are often called {\itshape AT Commands}. This still holds for many of the manufacturer specific command set extensions. Most of them also start with {\ttfamily AT}, and are called {\itshape AT Commands}, too. Please note, that just because an AT command contains a {\itshape \&} does not make it an extensions. {\itshape \&} commands were already part of the original Hayes command set.

The exact usage of the term {\itshape AT command set} slightly varies from manufacturer to manufacturer, often subject to marketing blurbs. In general, it can be assumed that a modem with an {\itshape AT command set}

\begin{myitemize}
\item{}  uses commands mostly starting with {\ttfamily AT},
\item{}  uses the original Hayes way of separating data and commands, and
\item{}  supports the original Hayes commands and register settings as a subset.
\end{myitemize}

\subsection{What is a Modem?}
\label{207}
\myhref{http://en.wikipedia.org/wiki/Modem}{w:Modem}
A modem in the classic sense is a {\bfseries mo}dulator/{\bfseries dem}odulator for transmitting digital information over analog wires, such as the analog telephone system\textquotesingle{}s two-{}wire or four-{}wire lines. The term has come to be used as acceptable slang for many communication devices used to link a computer to either another computer, or a wide-{}area network (\myhref{http://en.wikipedia.org/wiki/WAN}{Wikipedia:WAN}).  For example, the Ricochet radio data transceivers were commonly known as \symbol{34}Ricochet modems\symbol{34}.

This module deals with the classic type of {\itshape smart} modems, designed to convert data from/to a serial interface to/from an analog line. The module also applies to modems which provide the classic serial interface but connect over a different physical layer, such as a digital line, as well as devices providing a serial modem-{}like interface for other purposes. For our purpose, the modem is a classic DCE (data communications equipment) device, controlled via serial line by a classic DTE (data terminal equipment) device (such as a computer).

Depending on the type of modem, the modem can use a number of different technologies and speeds to transmit the data over the analog line. The details of these technologies are of no particular interest here, other than to note that it is possible with most modems to specify these communication parameters (for example, to disable compression, or to change modulation techniques).  The data this module deals with is not the data on the analog line, but the data as it appears on the serial interface between the DTE and DCE. I.e. the data as read and written by a device like a computer.

({\itshape Smart}) Modems also provide auxiliary services, such as dialling a particular number to set up a connection. As a consequence, a modem can be in a number of different states and modes, which are not always orthogonal. It is possible, for example, for a modem to be in the command mode while still keeping a connection (see the {\ttfamily +++} sequence for details).

Non-{}smart modems had to rely on other equipment like an ACU (automatic call unit) to provide these auxiliary services, but they are practically extinct today.
\subsection{Inband Signalling}
\label{208}

The original RS232C/V.24 specification contained a TX wire for transmitting data and a RX wire for receiving data, and other completely separate wires for transmitting control information between the DTE and DCE, the idea being to separate data and control information. In telecommunication jargon this is called {\bfseries outband signalling}.

Hayes-{}compatible modems use almost none of these RS232C/V.24 features. Instead, communication with the modem is done almost exclusively via the same RX/TX lines which are used for transferring the data. This mechanism is called {\bfseries inband signalling}.

Inband signalling has significant disadvantages. At any point in time, both the DTE and DCE must know if information sent or received via the TX and RX lines is for signalling purposes, or if it is data, which should be handled transparently.  Therefore, the DTE and DCE must operate in sync. If they get out of sync, either data will be lost, data will be incorrectly interpreted as commands, or signalling information will be interpreted as data, effectively destroying the original data.

Inband signalling has the advantage that the wiring between the DTE and DCE is simpler, and also that, at least at first glance, the communication software in the DTE is simpler.

As it has been said, Hayes-{}compatible modems use almost none of the RS232 control lines. But only almost. For example, they often drive DCD (data carrier detect). This, however creates the situation that modem-{}driving software now has to take care not only of the inband, but also the outband signalling with a modem. This slightly complicates the communication software\textquotesingle{}s \mylref{219}{state machine}.

Further, especially with the rise of cell phone modems, manufacturers have again started to introduce more outband signaling. Such modems provide multiple virtual serial interfaces. Some of these interfaces are exclusively dedicated to data transport, controlled by another serial interface which is either used exclusively for signalling (i.e. outband signalling) or can still also be used in the more conventional inband signalling scenario. In such cases the communication software needs to manage even more complex states.
\subsection{Command State / On-{}line State}
\label{209}

With respect of controlling the modem a Hayes-{}compatible modem is one of two main states:
{\bfseries
\begin{mydescription} Command State
\end{mydescription}
}

\begin{myquote}
\item{}  The modem interprets data from the DTE as modem commands. The modem can be in command state while still keeping a connection with a remote party.
\end{myquote}

{\bfseries
\begin{mydescription} On-{}line State
\end{mydescription}
}

\begin{myquote}
\item{}  The modem interprets data from the DTE as payload and transmits it to the other party. This state requires that a connection to the remote site has been established.
\end{myquote}


Inside these main states are a number of sub states. Also, with respect to other issues a modem has a number of communication states, e.g. if a remote carrier has been detected or not.
\subsection{Originating Mode / Answer Mode}
\label{210}
{\bfseries
\begin{mydescription} Originating mode
\end{mydescription}
}

\begin{myquote}
\item{}  A modem in originating mode is a modem which is setting up a connection, e.g., by dialing the number of a remote station and initiating the negotiation of protocols.
\end{myquote}

{\bfseries
\begin{mydescription} Answer Mode
\end{mydescription}
}

\begin{myquote}
\item{}  A modem in answer mode is a modem waiting to be contacted and ready to \symbol{34}answer the phone\symbol{34}.
\end{myquote}

\subsection{Command Responses}
\label{211}

A modem is supposed to send a response for almost all commands it receives. These responses can either be in the form of ASCII strings, or numeric values. The response type can be switched with a command, but it is typical to use the ASCII responses.

Responses need to be tracked by the DTE with great care. Among other things they inform the DTE if the dialling of the remote site was successful or not, and if the modem switches from command state to on-{}line state or not.

Unfortunately, the set of response messages has been greatly enhanced since the original Hayes modems and are often configurable via additional {\ttfamily AT} commands. It is suggested to not strictly parse response messages but to forgivingly check if they contain interesting keywords, like {\ttfamily CONNECT}. It is also suggested to study the manual of a particular modem very carefully.
\subsection{S-{}Registers}
\label{212}

The so called S-{}registers are also a Hayes heritage which all Hayes-{}compatible modems support. They are registers in the modem which contain various settings. And like the AT commands, they have been extensively enhanced by different modem manufacturers.

The reason why they are called {\bfseries S}-{}Registers is a little bit unclear. Some say the {\bfseries S} stands for modem {\itshape settings}. Some say they are just called like this, because      they are set and read with {\ttfamily ATS}... commands.  In the common vernacular they were usually termed {\itshape storage} registers because they permanently stored the values even through power-{}off.

Several of the other {\ttfamily AT} commands also change values of particular S-{}Registers. There is usually no difference in setting a value directly via an S-{}Register or via another {\ttfamily AT} command. It depends on the particular situation which way of setting a register is better.
\section{Modem Programming Basics}
\label{213}
\subsection{Command Reference}
\label{214}

In order to program for an actual modem it is a rather good idea to obtain the command reference for that particular modem. Unfortunately, it has become quite common for no-{}name modems to ship without any kind of usable command reference. Thanks to Windows\textquotesingle{} Plug \& Play feature it is no longer necessary on Windows to know the individual commands. Instead, all that is needed for a modem to run on Windows is to be shipped with the necessary {\ttfamily .inf} files (often hidden inside some \symbol{34}installer\symbol{34} software, and called a \symbol{34}driver\symbol{34} which is technically not the case, Windows already contains the necessary drivers).

If the modem doesn\textquotesingle{}t come with a command reference the next logical step is to search the web. However, unfortunately, a lot of modem information has vanished from the surface of the earth and the web in recent years. With the rise of broadband Internet connections, modems have become old fashioned devices and many sources are no longer available. It has become more and more difficult to find basic information about particular modem types. Even for modern modems like cell phone modems it can be difficult to find the necessary information.

There are a number of alternatives to obtain a command reference if one doesn\textquotesingle{}t come with the modem:

\begin{myitemize}
\item{}  Maybe the distributor provides one on its website
\item{}  Maybe the OEM manufacturer provides one.$\text{ }$\newline{}
This requires to identify the OEM manufacturer. A possible way is to use the FCC number of the device, and then looking the original manufacturer up on the FCC web site.
\item{}  Maybe the chipset manufacturer provides one.$\text{ }$\newline{}
Consumer modems are often just build around \symbol{34}off-{}the-{}shelf\symbol{34} modem chipsets from larger hardware manufacturers. The cheaper the modem, the more likely it is that the modem manufacturer didn\textquotesingle{}t change anything in the firmware and is using the original example software from the chipset manufacturer. Some chipset vendors provide command references for their modems.
\item{}  By looking into the corresponding Windows {\ttfamily .inf} files it is possible to at least obtain the basic commands
\item{}  By using the generic Hayes command reference in this Wikibook module.
\item{}  Obtaining the previously mentioned standard documents if there is an indication a particular modem complies to such a command standard.
\item{}  Using some kind of {\itshape sniffer} program to monitor the communication between the modem and the DTE and reverse engineering the commands using the obtained information. This requires that (a) reverse engineering is legal in your justification and (b) that there is some DTE communication software available that handles the particular modem so there is some valid communication to sniff.
\end{myitemize}

\subsection{Setting up a Development Environment}
\label{215}

It is highly recommended to spend some preparation time setting up a suitable development environment before starting to write drivers or software for a modem. Most of this consists of hardware set-{}up.

It is suggested to set up a small network with a \symbol{34}remote\symbol{34} computer and a second modem in answer mode. \symbol{34}Remote\symbol{34} computer in this case means a computer sitting right next to the development machine, but connected via the modems. If a {\bfseries terminal program} is being developed, the \symbol{34}remote\symbol{34} computer should run some small BBS software (for example), so there is always someone ready to answer, and/or protocol analysis/data dump software. Developing modem software without such a setup can be extremely frustrating. Such a set-{}up pays off a hundred times in reduced development time and lower stress.  Likewise, the modems used should have real speakers, and support {\ttfamily ATM}{\itshape n} commands well enough that you can leave the speaker on for the entire connection process (and ideally have the option to leave it on, period).  \symbol{34}Debugging by ear\symbol{34} can be a reality with modems, particularly during compatibility testing.

If possible, a hardware protocol analyser, or at least an \mylref{23}{RS-{}232 breakout box}, should be obtained.  These can be placed between the computers and modems, if needed, to troubleshoot the serial link and ensure that data is, in fact, being transferred between the modem and the computer -{}-{} a sanity check which comes in handy far more often than you might expect.  Actual hardware protocol analysers are surprisingly expensive, however; old Wyse terminals are not, and are almost as useful for this purpose.  If you find one, pick it up.  Terminals that support automatic baud-{}rate detection are particularly useful.

If dialing with the modem also needs to be tested, a small analog PABX for home usage is needed.  These PABX units are dirt cheap; an analog PABX for four internal lines and one external line should cost no more than US\${}50. If dialing is not needed, then the modems should be capable of directly driving a two-{}wire or four-{}wire line in {\bfseries leased-{}line} mode; otherwise, the PABX is still needed.

Possible setups are for example:

a) Leased-{}Line Mode\\

\TemplateSpaceIndent{$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}2-{}wire$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}Development$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Modem$\text{ }${}A$\text{ }${}|-{}-{}-{}-{}\textbackslash{}/-{}-{}-{}-{}|$\text{ }${}Modem$\text{ }${}B$\text{ }${}$\text{ }$\newline{}
$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}BBS$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}$\text{ }${}Computer$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}/\textbackslash{}-{}-{}-{}-{}|$\text{ }${}(answer)$\text{ }$\newline{}
$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Computer$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+}


or

b) With PABX\\

\TemplateSpaceIndent{$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}phone$\text{ }${}wire$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}phone$\text{ }$\newline{}
$\text{ }${}wire$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}Development$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Modem$\text{ }${}A$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}PABX$\text{ }$\newline{}
$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Modem$\text{ }${}B$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}BBS$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}$\text{ }${}Computer$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}$\text{ }${}X$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}(answer)$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Computer$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+}


or

c) Leased-{}Line Mode with Protocol Analyser
\\

\TemplateSpaceIndent{$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}2-{}wire$\text{ }${}$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}serial$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}Development$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Y$\text{ }${}Cable$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Modem$\text{ }${}A$\text{ }${}|-{}-{}-{}-{}\textbackslash{}/-{}-{}-{}-{}|$\text{ }$\newline{}
$\text{ }${}Modem$\text{ }${}B$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}BBS$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}$\text{ }${}Computer$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Breakout|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}/\textbackslash{}-{}-{}-{}-{}|$\text{ }$\newline{}
$\text{ }${}(answer)$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Computer$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}||$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}||$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}||$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|$\text{ }${}Protocol$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|$\text{ }${}Analyser$\text{ }${}|$\text{ }$\newline{}
$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+}


Other combinations are of course also useful. And being able to easily reconnect the protocol analyser, e.g. between Modem B and the BBS Computer is helpful, too.
\subsection{Operating System, Programming Language \& Communication Basics}
\label{216}

Before dealing with the details of handling a modem, a few basics should be in place. First of all, the communication with the serial interface should be in place. This includes that the APIs as provided by the particular operating system for serial communication -{} if any -{} should be understood. If the operating system doesn\textquotesingle{}t provide such APIs, then it is recommended to first implement the UART access and wrap it into a library, if the serial UART in some hardware is supposed to be programmed directly. Alternatively, a programming language which provides convenient access to a serial interface can be used.

Whatever is used, it should be tested before starting to program for the modem. There is nothing more annoying than not knowing if a particular misbehaviour is caused by a failure in the serial communication with the modem, or is a problem with the modem (usually with the commands sent to it).

Unless in the most simple case, it is suggested to use hardware handshaking with the modem -{} particularly for speeds greater then 2400 bps or 9600 bps. Therefore, the used low-{}level serial communication software and hardware should support hardware handshake. If the UART supports some FIFO, like the 16550 UART, the FIFO should be enabled (both for sending and receiving data). 

It is undecided if data reception via polling or via interrupts is better. If every incoming byte raises an interrupt there are many interrupts at high communication speeds, and, as surprising as it might sound, polling the UART might be more efficient in such cases.

Communication as supported by a modem is usually half-{}duplex. Either the DTE or the DCE talks, the other side is supposed to listen. The communication with the modem should best be done with

\begin{myitemize}
\item{}  8 Bit
\item{}  No parity
\item{}  1 Stop bit
\end{myitemize}


See the next section for speed information.
\subsection{Line Speed is not DTE/DCE Speed}
\label{217}\\

\TemplateSpaceIndent{$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}DTE/DCE$\text{ }${}speed$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}line$\text{ }${}speed$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}DTE$\text{ }${}/$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}Modem$\text{ }${}/$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}$\text{ }$\newline{}
$\text{ }${}|$\text{ }${}$\text{ }${}Computer$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}|$\text{ }${}$\text{ }${}DCE$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}|-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}$\text{ }$\newline{}
$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}+-{}-{}-{}-{}-{}-{}-{}-{}-{}+$\text{ }${}}


\LaTexHelpFulHintTemplate{Some modem manufacturers call the DTE/DCE speed {\itshape DTE speed}, and the line speed {\itshape DCE speed}. Others distinguish between {\itshape DTE speed} (DTE/DCE speed on the serial interface), {\itshape DCE speed} (bps between the modems), and {\itshape line speed} (Baud rate between the modems). Carefully observing the terminology can help to correctly interpret a manufacturer\textquotesingle{}s documentation.}
An issue which can be very confusing is the difference between the line speed (the data transfer speed on the telephone line) and the speed on the serial line between the DTE (computer) and the DCE (modem).

First, there is always some general confusion about the line speed, because some line speed is given with taking compression into account, while other data is given without taking compression into account. Also, there is a difference between {\itshape bps} and {\itshape Baud} due to the modulation schema used on the line. In addition, marketing blurbs obscure the picture. We will not make any attempt to clean up the long-{}standing Baud vs. bps confusion here (it is hopeless :-{})). It is just recommended that whenever the modem returns information about line speed the above mentioned differences are taken into account to avoid any misinterpretation.

Second, the speed on the telephone line does not necessarily have to be the same as the speed on the serial line. In fact, it usually isn\textquotesingle{}t on modern modems. It is recommended to set the DTE/DCE speed to a fixed speed instead of following the line speed. Logically, the fixed DTE/DCE speed should be large enough to cope with the highest expected line speed. V.90 modems should e.g. be accessed via 115200 bps or higher on the serial interface.

Setting the DTE/DCE speed on modern modems is quite simple. They all use autosensing on the serial interface. That is, they themselves detect the speed of data as received from the DTE and use the same speed to return data to the computer. They usually also autosense the parity, and 7 bit / 8 bit data length. Usually modems assume one stop bit when autosensing the serial interface. Therefore it is enought to just configure the serial interface on the DTE to the desired DTE/DCE communication parameters and let the modem figure it out on its own.

Autosensing can fail in rare cases and some modems might have broken autosensing. If a modem tends to fail autosensing it can help to start the initial communication after the DTE is configured with one or more {\itshape nop} AT commands\\

\TemplateSpaceIndent{$\text{ }${}AT{\itshape <{}CR>{}}}

repeated a limited number of times until the modem starts to return\\

\TemplateSpaceIndent{$\text{ }${}OK}

for the {\itshape nop} commands.

When a modem sets up a connection with a remote party it can report the used speed. In fact, it can report the line speed or just the DTE speed (some modems can report both). The end user is most probably interested in the line speed, and not the DTE/DCE speed. So from this point of view, it is best to set the modem to report the line speed, and e.g. write the received information to a log file.  However, some old communication software or modem drivers interpret the response from the modem as a request to change the DTE/DCE speed. In such cases the modem must be set to always return the DTE/DCE speed. Since this DTE/DCE speed will be the same as detected via autosensing there will be no speed change.

In the rare case that the DTE/DCE speed should indeed follow the line speed, the responses from the modem should of course be set to return the line speed. Then the DTE software has to evaluate the response, and change the DTE/DCE speed accordingly. This is really not recommended these days.

See the \mylref{228}{\#W: Negotiation Progress Message Selection} command for details on how to set which response to get.
\subsection{Character Set and Character Case}
\label{218}

Commands sent to the modem, and textual responses are supposed to be in the ISO 646 character set. ISO 646 is just another name for the  familiar 7-{}bit \myhref{http://en.wikipedia.org/wiki/ASCII}{ASCII} character set. Typically, modems chop off any 8th bit in commands they receive anyhow. They interpret the result as if the command has been sent using only 7-{}bit characters. However, it is not recommended to rely on this, but instead ensure that commands are only sent using 7-{}bit characters.

Commands are not case sensitive, assuming a modern modem. Some early modems insisted on uppercase-{}only commands. Still, a generic driver could do worse than ensuring that all commands are sent in uppercase, and all responses are interpreted case-{}independent. Typically, both letters of the {\ttfamily AT} command prefix must be of the same case. So {\ttfamily AT} and {\ttfamily at} are acceptable, while {\ttfamily At} and {\ttfamily aT} are not.
\subsection{Welcome to the World of State-{}Machines}
\label{219}

Modem programming means to tap into the world of telecommunications. This is an unknown field for most amateur, as well as professional programmers. Telecommunication is heavily centered around state-{}machines. And in fact, it is rather difficult or impossible to program a modem without using a state-{}machine. The modem is at any time in a particular state, and any DTE software which tries to control and use the modem needs to track the state of the modem -{} in an own state machine. This is necessary, because a Hayes-{}compatible modem can only do certain things when it is in a certain state. E.g. it can only dial out if it is not already connected to some remote site.

Part of a modem\textquotesingle{}s state can be tracked via particular RS-{}232 lines. E.g. DCD (data carrier detect) can be used to figure out if the modem has detected a remote modem\textquotesingle{}s carrier signal. Other information is provided by the flow-{}control lines. However, some states, and associated data need to be tracked via interpreting the modem\textquotesingle{}s \mylref{236}{result codes}.

People unfamiliar with the theory and practice of state machines often try to circumvent the issue by \symbol{34}tough coding\symbol{34}. Which means, they throw more and more code onto the problem (wrapped in a heap of if/the/else/otherwise/maybe/... statements), until things seem to work -{} sort of. If they are lucky they have implicitly managed to create a state machine which works. If they are unlucky, they end up with a partial state machine, which breaks down should something unusual happen in the communication. This usually comes with the problem that the software was not designed to recover if things break down. So such software tends to hang or crash.

It is much more efficient to first spend a few hours to to learn the basics of simple state machines, and then spending a few more hours to describe the communication with the modem as a state machine. The result of this planning serves as a nice template for implementing the DTE software.

\LaTeXNullTemplate{}
\section{Flow Control}
\label{220}
A slow device needs a way to tell its peer that currently, it is busy, so further incoming data must be stopped until this slow device tells otherwise. This mechanism is provided by flow control.
There are two ways of doing flow control: by hardware or software.\subsection{Hardware Flow Control}
\label{221}
Hardware flow control is usually implemented using the CTS (\mylref{28}{Clear To Send}) and RTS (\mylref{28}{Request To Send}) lines, which needs separate hardware data lines between devices. This is allocated in the RS-{}232 cable specification.

Hardware flow control based on DSR (\mylref{28}{Data Set Ready}) and DTR (\mylref{28}{Data Terminal Ready}) is uncommon, particular for modems. It can usually be found at serial printers. Again, DSR/DTR hardware flow control requires additional hardware data lines between devices.

From a programming point of view there is usually not much difference in programming CTS/RTS or DSR/DTR hardware flow control. The hardware has to provide means to drive/read the corresponding signals in the serial interface. If the hardware supports both, CTS/RTS and DSR/DTR flow control, then it is recommended to support both and provide the user with a configuration option.

It should be noted that some hardware or operating system drivers do not provide means to drive/read the less common DSR/DTR combination. If the remote device insists on DTR/DSR flow control a common workaround is to use CTS/RTS in the software, but rewire the cabling so the CTS/RTS wires are in fact connected to DSR/CTS.
\subsection{Software Flow Control}
\label{222}
This kind of flow control doesn\textquotesingle{}t need extra signal line(s) like hardware flow control, but instead uses special control characters within the data content.  To stop further incoming data, the receiving device sends the XOFF character.  To enable more data, an XON character will be sent.

However, since the data being sent cannot contain these characters (unless you know that the receiving device ignores such information), binary (non-{}ASCII) data cannot be transmitted this way.  Software flow control is typically used for communications to terminals and other character-{}based devices.  Binary data should not be sent this way as it could, randomly, contain these characters.  Hardware flow control using RTS/CTS is usually used.

Helpful Hint: Realizing that the Control Key is a special \symbol{34}shift\symbol{34} key that chops off the 100 bit (octal), it is easy to remember that the ASCII character used for sending XOFF is a Control-{}S (23 Octal) while the character for XON is a Control-{}Q (21 Octal).  {$\text{[}$}Think of \symbol{34}S\symbol{34} for Stop and \symbol{34}Q\symbol{34} for Qontinue... don\textquotesingle{}t you spell it that way?{$\text{]}$}
\section{Changing State}
\label{223}
\subsection{General}
\label{224}

Changing the state from command state to on-{}line state or vice versa is either straightforward or a great mystery. This module covers the more obscure ways.
\subsection{On-{}line State to Command State}
\label{225}

It is of course possible to switch from on-{}line state to command state by dropping the connection (going on-{}hook in modem terminology). It is also possible to temporarily switch into command state while keeping the connection.

Going on-{}hook programmatically (and not via dropping a modem control line) requires to first switch into command state while keeping the connection, too. 

Switching into command state, while in fact in the middle of transferring data (nothing else is meant with on-{}line state) requires to send a certain escape sequence as part of the data. This escape sequence is detected by the modem and the modem changes state. Since this character sequence might also be part of the normal data, an additional mechanism is needed to separate the escape sequence from normal data. This is the curse of inband signalling.

The separation of the escape sequence is done by using a so called guard time, which was once patented by Hayes. As a result, some modem manufacturers eliminated the guard time using an alternate escape sequence called the Time Independent Escape Sequence. Anyway, the escape sequence is only recognized by the modem when there was no other data from the DTE (terminal) for at least the duration of the guard time, and when there was no other data from the terminal after the escape sequence for at least the duration of the guard time, too.

An escape sequence consists of three times the same particular character. The character, as well as the guard time is configurable. By default, the character is {\ttfamily +}, and the guard time is one second. So, with the default configuration, a change to command state requires
\\

\TemplateSpaceIndent{$\text{ }${}{\itshape <{}1 sec. nothing>{}}+++{\itshape <{}1 sec. nothing>{}}}


If the connection should be dropped, this escape sequence should be followed by the {\ttfamily AT} command to go on-{}hook, which is {\ttfamily ATH0}:
\\

\TemplateSpaceIndent{$\text{ }${}{\itshape <{}1 sec. nothing>{}}+++{\itshape <{}1 sec. nothing>{}}ATH0{\itshape <{}CR>{}}}

\subsection{Command State to On-{}line State}
\label{226}

The usual way to go from command state to on-{}line state is via dialing the remote site (see {\ttfamily D} command). But if the connection already exists, and the modem has been switched to command mode via the escape sequence, the way is different.

If the connection should not be dropped, but instead data transmission should be continued, the {\ttfamily ATO0} (letter o, digit zero) command is needed:
\\

\TemplateSpaceIndent{$\text{ }${}{\itshape <{}1 sec. nothing>{}}+++{\itshape <{}1 sec. nothing>{}}$\text{ }$\newline{}
$\text{ }${}{\itshape send a few more modem commands, then go back on-{}line}$\text{ }$\newline{}
$\text{ }${}ATO0{\itshape <{}CR>{}}}

\section{Sync. vs. Async. Interface}
\label{227}





\section{X.25 Interface}
\label{228}





\section{AT Commands}
\label{229}

The following list is the list of the original Hayes commands. Different modems use slightly different commands. However, this list is supposed to be as \symbol{34}generic\symbol{34} as possible, and should not be extended with modem specific commands. Instead it is recommended to provide such command lists in an Appendix.







\subsection{AT Command Format}
\label{230}

Here is a summary of the format and syntax of AT commands. Please note that most of the control characters are configurable, and the summary only uses the default control characters.

\begin{myitemize}
\item{}  AT commands are accepted by the modem only when in command mode. The modem can be forced into command mode with the \mylref{228}{\#+++: Escape Sequence}.
\end{myitemize}


\begin{myitemize}
\item{}  Commands are grouped in command lines.
\end{myitemize}


\begin{myitemize}
\item{}  Each command line must start with the \mylref{228}{\#AT: Command Prefix} and terminated with \mylref{228}{\#<{}CR>{}: End-{}of-{}line Character}. The only exception is the \mylref{228}{\#A/: Repeat Last Command} command.
\end{myitemize}


\begin{myitemize}
\item{}  The body of a command line consists of visible ASCII characters (ASCII code 32 to 126). Space (ASCII code 32) and ASCII control characters (ASCII code 0 to 31) are ignored, with the exception of \mylref{228}{\#<{}BS>{}: Backspace Character}, \mylref{228}{\#<{}CAN>{}: Cancel Character}, and \mylref{228}{\#<{}CR>{}: End-{}of-{}line Character}.
\end{myitemize}


\begin{myitemize}
\item{}  All characters preceding the \mylref{228}{\#AT: Command Prefix} are ignored.
\end{myitemize}


\begin{myitemize}
\item{}  Interpretation / execution of the command line starts with the reception of the first (and also command-{}line terminating) \mylref{228}{\#<{}CR>{}: End-{}of-{}line Character}.
\end{myitemize}


\begin{myitemize}
\item{}  Characters after the initial \mylref{228}{\#AT: Command Prefix} and before the \mylref{228}{\#<{}CR>{}: End-{}of-{}line Character} are interpreted as commands. With some exceptions, there can be many commands in one command line.
\end{myitemize}


\begin{myitemize}
\item{}  Each of the basic commands consists of a single ASCII letter, or a single ASCII letter with a {\ttfamily \&}prefix, followed by a numeric value.  Missing numeric values are interpreted as {\ttfamily 0} (zero).
\end{myitemize}


\begin{myitemize}
\item{}  The following commands can\textquotesingle{}t be followed by more commands on the command line. They must always be the last commands in a command line. If they are followed by other commands, these other commands are ignored. However, some of these commands take command modifiers and it is possible that a following command is accidentally interpreted as a command modifier. Therefore, care should be taken to not follow these commands with any more commands on the same command line. Instead, they should be placed in an own command line.
\begin{myitemize}
\item{}  \mylref{228}{\#A: Answer Command}
\item{}  \mylref{228}{\#D: Dial Command}
\item{}  \mylref{228}{\#Z: Soft Reset Command}
\end{myitemize}

\end{myitemize}


\begin{myitemize}
\item{}  A command line can be edited if the terminating \mylref{228}{\#<{}CR>{}: End-{}of-{}line Character} has not ben entered, using the \mylref{228}{\#<{}BS>{}: Backspace Character} to delete one command line character at a time. The initial \mylref{228}{\#AT: Command Prefix} can\textquotesingle{}t be edited/deleted (it has already been processed, because upon reception of the \mylref{228}{\#AT: Command Prefix} the modem immediately starts command line parsing and editing, but not execution).
\end{myitemize}


\begin{myitemize}
\item{}  The modem echoes command lines and edits when \mylref{228}{\#E: Command State Character Echo Selection} is on (surprise, surprise :-{})).
\end{myitemize}


\begin{myitemize}
\item{}  When echo is on, \mylref{228}{\#<{}BS>{}: Backspace Character}s are echoed with a sequence of {\ttfamily <{}BS>{} <{}BS>{}} (backspace, space, backspace) to erase the last character in e.g. a terminal program on the DTE.
\end{myitemize}


\begin{myitemize}
\item{}  A command line can be cancelled at any time before the terminating \mylref{228}{\#<{}CR>{}: End-{}of-{}line Character} by sending the \mylref{228}{\#<{}CAN>{}: Cancel Character}. No command in the command line is executed in this case.
\end{myitemize}


\begin{myitemize}
\item{}  The \mylref{228}{\#A: Answer Command} and \mylref{228}{\#D: Dial Command} can also be cancelled as long as the handshake with the remote site has not been completed. Cancellation is done by sending an additional character. In theory, it doesn\textquotesingle{}t matter which character. But care has to be taken that cancellation is not attempted when the handshake has already completed. In this case the modem has switched to on-{}line state (\mylref{226}{\#Command State to On-{}line State}) and the character will be send to the remote side. A save way to avoid this problem is to always use the \mylref{228}{\#+++: Escape Sequence} followed by going on-{}hock with the \mylref{228}{\#H: Hook Command Options}. If the modem is already in the on-{}line state, this will drop the connection. If the modem is still in the handshake phase the first character of the \mylref{228}{\#+++: Escape Sequence} will cancel the command (and the rest will be interpreted as a normal command line, doing no harm).
\end{myitemize}


\begin{myitemize}
\item{}  Command line execution stops when the first command in the command line fails, or the whole command line has been executed. Every command before the failed command has been executed. Every command after the failed command and the failed command in the command line has not been executed.
\end{myitemize}


\begin{myitemize}
\item{}  There is no particular indication which command in a command line failed, only that one failed. It is best to repeat the complete command line, or to first reset the modem to a defined state before recovering from a failure.
\end{myitemize}


\begin{myitemize}
\item{}  A modem only accepts a new command line when the previous command line has been executed (half-{}duplex communication). Therefore, care should be taken to only send the next command line after the result code from the previous command line has been received.
\end{myitemize}

\subsection{{\itshape Command Description Template}}
\label{231}
{\itshape To be removed when all commands are documented.}

{\bfseries Syntax:}
\\

\TemplateSpaceIndent{$\text{ }${}{\itshape <{}The syntax of the command, when necessary in EBNF>{}}}


{\bfseries Description:}

{\itshape <{}Description of the command, including information about the purpose and effects>{}}

{\bfseries Result Codes:}
\begin{longtable}{>{\RaggedRight}p{0.17543\linewidth}>{\RaggedRight}p{0.74421\linewidth}} 
\multicolumn{2}{>{\RaggedRight}p{0.95982\linewidth}}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Result Codes}}\\ {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Code}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Description}\endhead  \hspace*{0pt}\ignorespaces{}\hspace*{0pt} OK    &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Parameter was valid {\itshape <{}description of success>{}}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt} ERROR &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Otherwise {\itshape <{}description of failure>{}} 
\end{longtable}


{\bfseries Related Commands and Registers:}
\begin{myitemize}
\item{}  {\itshape <{}Link list of related commands and registers>{}}
\end{myitemize}

\subsection{Special Commands and Character Sequences}
\label{232}

See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%2FModems\%20and\%20AT\%20Commands\%2FSpecial\%20Commands\%20and\%20Character\%20Sequences}{Special Commands and Character Sequences Reference}
\subsection{AT Commands A -{} M}
\label{233}
See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%2FModems\%20and\%20AT\%20Commands\%2FCommands\%20A\%20-\%20M}{ AT Commands A -{} M}
\subsection{AT Commands N -{} Z}
\label{234}
See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%2FModems\%20and\%20AT\%20Commands\%2FCommands\%20N\%20-\%20Z}{ AT Commands N -{} Z}
\subsection{AT\& Commands}
\label{235}

See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%2FModems\%20and\%20AT\%20Commands\%2F\%26\%20Commands}{AT\& Commands}
\section{Result Codes}
\label{236}

See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%2FModems\%20and\%20AT\%20Commands\%2FResult\%20Codes}{Result Codes}
\section{S-{}Registers}
\label{237}

See \myhref{http://en.wikibooks.org/wiki/Serial\%20Programming\%2FModems\%20and\%20AT\%20Commands\%2FS-Registers}{S-{}Registers}
\section{Advanced Features}
\label{238}
\subsection{Introduction}
\label{239}

Modern consumer modems provide a number of additional features which were originally uncommon for a modem, but became standard features over time. This section provides an overview about how to program these features.





\subsection{Fax Class 1}
\label{240}\subsection{Fax Class 2}
\label{241}\subsection{Voice Services}
\label{242}




{}



\LaTeXNullTemplate{}



\chapter{Contributors}
\label{Contributors}
\begin{longtable}{rp{0.6\linewidth}}
\textbf{Edits}&\textbf{User}\\
10& \myhref{http://en.wikibooks.org/w/index.php?title=User:Adrignola}{Adrignola}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Alsocal}{Alsocal}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Benoswald}{Benoswald}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Boots8181}{Boots8181}\\
10& \myhref{http://en.wikibooks.org/w/index.php?title=User:Breakpoint}{Breakpoint}\\
10& \myhref{http://en.wikibooks.org/w/index.php?title=User:Dallas1278}{Dallas1278}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Damian_Yerrick}{Damian Yerrick}\\
10& \myhref{http://en.wikibooks.org/w/index.php?title=User:Darklama}{Darklama}\\
30& \myhref{http://en.wikibooks.org/w/index.php?title=User:DavidCary}{DavidCary}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:DavidL}{DavidL}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Derbeth}{Derbeth}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:EdDavies}{EdDavies}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Fishpi}{Fishpi}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Geocachernemesis}{Geocachernemesis}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Guanabot}{Guanabot}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Gumba_gumba}{Gumba gumba}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:HumbertoDiogenes}{HumbertoDiogenes}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Insaneinside}{Insaneinside}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:JenVan}{JenVan}\\
10& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jguk}{Jguk}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jhdiii}{Jhdiii}\\
4& \myhref{http://en.wikibooks.org/w/index.php?title=User:Jomegat}{Jomegat}\\
11& \myhref{http://en.wikibooks.org/w/index.php?title=User:Lehoaithanh}{Lehoaithanh}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Micha_s}{Micha s}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Mike518}{Mike518}\\
6& \myhref{http://en.wikibooks.org/w/index.php?title=User:Netch}{Netch}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Ninly}{Ninly}\\
4& \myhref{http://en.wikibooks.org/w/index.php?title=User:Panic2k4}{Panic2k4}\\
15& \myhref{http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual}{QuiteUnusual}\\
6& \myhref{http://en.wikibooks.org/w/index.php?title=User:Recent_Runes}{Recent Runes}\\
80& \myhref{http://en.wikibooks.org/w/index.php?title=User:Renffeh}{Renffeh}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Rmallins}{Rmallins}\\
89& \myhref{http://en.wikibooks.org/w/index.php?title=User:Robert_Horning}{Robert Horning}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Rustamabd}{Rustamabd}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Sandcat01}{Sandcat01}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Theodore.cackowski}{Theodore.cackowski}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Trainsonplanes}{Trainsonplanes}\\
2& \myhref{http://en.wikibooks.org/w/index.php?title=User:Wajidstar}{Wajidstar}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Webaware}{Webaware}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Xania}{Xania}\\
3& \myhref{http://en.wikibooks.org/w/index.php?title=User:Xenodevil}{Xenodevil}\\
1& \myhref{http://en.wikibooks.org/w/index.php?title=User:Yuriybrisk}{Yuriybrisk}\\
\end{longtable}
\pagebreak
\listoffigures
\label{ListOfFigures}
\begin{itemize}
\item GFDL: Gnu Free Documentation License. \url{http://www.gnu.org/licenses/fdl.html}
\item cc-by-sa-3.0:  Creative Commons Attribution ShareAlike 3.0 License. \url{http://creativecommons.org/licenses/by-sa/3.0/} 
\item cc-by-sa-2.5:  Creative Commons Attribution ShareAlike 2.5 License. \url{http://creativecommons.org/licenses/by-sa/2.5/} 
\item cc-by-sa-2.0:  Creative Commons Attribution ShareAlike 2.0 License. \url{http://creativecommons.org/licenses/by-sa/2.0/} 
\item cc-by-sa-1.0:  Creative Commons Attribution ShareAlike 1.0 License. \url{http://creativecommons.org/licenses/by-sa/1.0/} 
\item cc-by-2.0:  Creative Commons Attribution 2.0 License.  \url{http://creativecommons.org/licenses/by/2.0/}  
\item cc-by-2.0:  Creative Commons Attribution 2.0 License. \url{http://creativecommons.org/licenses/by/2.0/deed.en}  
\item cc-by-2.5:  Creative Commons Attribution 2.5 License. \url{http://creativecommons.org/licenses/by/2.5/deed.en}  
\item cc-by-3.0:  Creative Commons Attribution 3.0 License. \url{http://creativecommons.org/licenses/by/3.0/deed.en}  
\item GPL:  GNU General Public License. \url{http://www.gnu.org/licenses/gpl-2.0.txt} 
\item LGPL:  GNU Lesser General Public License. \url{http://www.gnu.org/licenses/lgpl.html}
 \item PD: This image is in the public domain.
\item ATTR:  The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted. 
\item EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the common face of the euro coins belongs to the European Commission. Authorised is reproduction in a format without relief (drawings, paintings, films) provided they are not detrimental to the image of the euro.
\item LFK: Lizenz Freie Kunst. \url{http://artlibre.org/licence/lal/de} 
\item CFR: Copyright free use. 
\item EPL: Eclipse Public License. \url{http://www.eclipse.org/org/documents/epl-v10.php} 
\end{itemize}
Copies of the GPL, the LGPL as well as a GFDL are included in chapter \mylref{Licenses}{Licenses}. Please note that images in the public domain do not require attribution. You may click on the image numbers in the following table to open the webpage of the images in your webbrower.
\pagebreak
\small
\begin{longtable}{|p{0.05\textwidth}|p{0.6\textwidth}|p{0.15\textwidth}|}
\hline
\href{http://en.wikibooks.org/wiki/File:RS-232.jpeg}{1}& 


 & GFDL\\ \hline 
\href{http://en.wikibooks.org/wiki/File:9\%20pin\%20d-sub\%20connector\%20male\%20closeup.jpg}{2}& 

User \myhref{http://en.wikibooks.org/wiki/User\%3AMike1024}{Mike1024}
 & PD\\ \hline 
\href{http://en.wikibooks.org/wiki/File:Parallelport.jpg}{3}& 

\myhref{http://en.wikibooks.org/wiki/User\%3AAfrank99}{Afrank99}
 & GFDL\\ \hline 
\href{http://en.wikibooks.org/wiki/File:Scsi\%20extern\%20db25\%20st.jpg}{4}& 

User \myhref{http://en.wikibooks.org/wiki/\%3Ade\%3ABenutzer\%3ASmial}{Smial} on \myhref{http://de.wikipedia.org}{ de.wikipedia}
 & cc-by-sa-2.0\\ \hline 
\href{http://en.wikibooks.org/wiki/File:Klinkenstecker\%20stereo\%203.5mm.jpg}{5}& 

\myhref{http://en.wikibooks.org/wiki/User\%3AAfrank99}{Afrank99}
 & cc-by-sa-2.5\\ \hline 
\href{http://en.wikibooks.org/wiki/File:DB-9_Female_PinOut.png}{6}& 


 & GFDL\\ \hline 

\end{longtable}
\pagebreak\KOMAoptions{fontsize=9pt,DIV=90,BCOR=0pt} 
\pagebreak
\chapter{Licenses}
\label{Licenses}
{\tiny
\section {GNU GENERAL PUBLIC LICENSE}
\begin{multicols}{4}

Version 3, 29 June 2007

Copyright Â© 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS
0. Definitions.

â��This Licenseâ�� refers to version 3 of the GNU General Public License.

â��Copyrightâ�� also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

â��The Programâ�� refers to any copyrightable work licensed under this License. Each licensee is addressed as â��youâ��. â��Licenseesâ�� and â��recipientsâ�� may be individuals or organizations.

To â��modifyâ�� a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a â��modified versionâ�� of the earlier work or a work â��based onâ�� the earlier work.

A â��covered workâ�� means either the unmodified Program or a work based on the Program.

To â��propagateâ�� a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.

To â��conveyâ�� a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays â��Appropriate Legal Noticesâ�� to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.
1. Source Code.

The â��source codeâ�� for a work means the preferred form of the work for making modifications to it. â��Object codeâ�� means any non-source form of a work.

A â��Standard Interfaceâ�� means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.

The â��System Librariesâ�� of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A â��Major Componentâ��, in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The â��Corresponding Sourceâ�� for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.
4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:

    * a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
    * b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to â��keep intact all noticesâ��.
    * c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.
    * d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an â��aggregateâ�� if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.
6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

    * a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.
    * b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.
    * c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.
    * d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.
    * e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

A â��User Productâ�� is either (1) a â��consumer productâ��, which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, â��normally usedâ�� refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

â��Installation Informationâ�� for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.
7. Additional Terms.

â��Additional permissionsâ�� are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:

    * a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or
    * b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or
    * c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or
    * d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
    * e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or
    * f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered â��further restrictionsâ�� within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.
8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.
9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License.

An â��entity transactionâ�� is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.
11. Patents.

A â��contributorâ�� is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's â��contributor versionâ��.

A contributor's â��essential patent claimsâ�� are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, â��controlâ�� includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a â��patent licenseâ�� is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To â��grantâ�� such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. â��Knowingly relyingâ�� means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is â��discriminatoryâ�� if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such.
14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License â��or any later versionâ�� applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.
15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM â��AS ISâ�� WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the â��copyrightâ�� line and a pointer to where the full notice is found.

    <one line to give the program's name and a brief idea of what it does.>
    Copyright (C) <year>  <name of author>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:

    <program>  Copyright (C) <year>  <name of author>
    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
    This is free software, and you are welcome to redistribute it
    under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an â��about boxâ��.

You should also get your employer (if you work as a programmer) or school, if any, to sign a â��copyright disclaimerâ�� for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
\end{multicols}

\section{GNU Free Documentation License}
\begin{multicols}{4}

Version 1.3, 3 November 2008

Copyright Â© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.
1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.
2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.
4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

    * A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
    * B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
    * C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
    * D. Preserve all the copyright notices of the Document.
    * E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
    * F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
    * G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
    * H. Include an unaltered copy of this License.
    * I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
    * J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
    * K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
    * L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
    * M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
    * N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
    * O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various partiesâ��for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".
6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.
7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.
8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.
9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.
10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document.
11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.
ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

    Copyright (C)  YEAR  YOUR NAME.
    Permission is granted to copy, distribute and/or modify this document
    under the terms of the GNU Free Documentation License, Version 1.3
    or any later version published by the Free Software Foundation;
    with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
    A copy of the license is included in the section entitled "GNU
    Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with â�¦ Texts." line with this:

    with the Invariant Sections being LIST THEIR TITLES, with the
    Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.
\end{multicols}

\section{GNU Lesser General Public License}
\begin{multicols}{4}


GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright Â© 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below.
0. Additional Definitions.

As used herein, â��this Licenseâ�� refers to version 3 of the GNU Lesser General Public License, and the â��GNU GPLâ�� refers to version 3 of the GNU General Public License.

â��The Libraryâ�� refers to a covered work governed by this License, other than an Application or a Combined Work as defined below.

An â��Applicationâ�� is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library.

A â��Combined Workâ�� is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is also called the â��Linked Versionâ��.

The â��Minimal Corresponding Sourceâ�� for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version.

The â��Corresponding Application Codeâ�� for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version:

    * a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or
    * b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following:

    * a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License.
    * b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following:

    * a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License.
    * b) Accompany the Combined Work with a copy of the GNU GPL and this license document.
    * c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document.
    * d) Do one of the following:
          o 0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.
          o 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version.
    * e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following:

    * a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License.
    * b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License â��or any later versionâ�� applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is permanent authorization for you to choose that version for the Library.
\end{multicols}
}
\pagebreak
\end{CJK}
\end{document}








headers/options.tex~

% Festlegungen für minitoc
% \renewcommand{\myminitoc}{\minitoc}
% \renewcommand{\mtctitle}{Überblick}
% \setcounter{minitocdepth}{1}
% \dominitoc   % diese Zeile aktiviert das Erstellen der minitocs, sie muss vor \tableofcontents kommen

% Seitenformat
% ------------
%\KOMAoption{paper}{A5}          % zulässig: letter, legal, executive; A-, B-, C-, D-Reihen
\KOMAoption{open}{right}			% zulässig: right (jedes Kapitel beginnt rechts), left, any
\KOMAoption{numbers}{auto}
% Satzspiegel jetzt neu berechnen, damit er bei Kopf- und Fußzeilen beachtet wird
\KOMAoptions{DIV=13}

% Kopf- und Fusszeilen
% --------------------
% Breite und Trennlinie
%\setheadwidth[-6mm]{textwithmarginpar}
%\setheadsepline[textwithmarginpar]{0.4pt}
\setheadwidth{text}
\setheadsepline[text]{0.4pt}

% Variante 1: Kopf: links Kapitel, rechts Abschnitt (ohne Nummer); Fuß: außen die Seitenzahl
\ohead{\headmark}
\renewcommand{\chaptermark}[1]{\markleft{#1}{}}
\renewcommand{\sectionmark}[1]{\markright{#1}{}}
\ofoot[\pagemark]{\pagemark}

% Variante 2: Kopf außen die Seitenzahl, Fuß nichts
%\ohead{\pagemark}
%\ofoot{}

% Standardschriften
% -----------------
%\KOMAoption{fontsize}{18pt}
\addtokomafont{disposition}{\rmfamily}
\addtokomafont{title}{\rmfamily} 
\setkomafont{pageheadfoot}{\normalfont\rmfamily\mdseries}

% vertikaler Ausgleich
% -------------------- 
% nein -> \raggedbottom
% ja   -> \flushbottom    aber ungeeignet bei Fußnoten
%\raggedbottom
\flushbottom

% Tiefe des Inhaltsverzeichnisses bestimmen
% -----------------------------------------
% -1   nur \part{}
%  0   bis \chapter{}
%  1   bis \section{}
%  2   bis \subsection{} usw.
\newcommand{\mytocdepth}{1}

% mypart - Teile des Buches und Inhaltsverzeichnis
% ------------------------------------------------
% Standard: nur im Inhaltsverzeichnis, zusätzlicher Eintrag ohne Seitenzahl
% Variante: nur im Inhaltsverzeichnis, zusätzlicher Eintrag mit Seitenzahl 
%\renewcommand{\mypart}[1]{\addcontentsline{toc}{part}{#1}}
% Variante: mit eigener Seite vor dem ersten Kapitel, mit Eintrag und Seitenzahl im Inhaltsverzeichnis
\renewcommand{\mypart}[1]{\part{#1}}


% maketitle
% -----------------------------------------------
% Bestandteile des Innentitels
%\title{Einführung in SQL}
%\author{Jürgen Thomas}
%\subtitle{Datenbanken bearbeiten}
\date{}
% Bestandteile von Impressum und CR
% Bestandteile von Impressum und CR

\uppertitleback{
%Detaillierte Daten zu dieser Publikation sind bei Wikibooks zu erhalten:\newline{} \url{http://de.wikibooks.org/}
%Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Daten sind im Internet  zu erhalten: \newline{}\url{https://portal.d-nb.de/opac.htm?method=showSearchForm#top}
%Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Daten sind im Internet unter der Katalog-Nr. 1008575860 zu erhalten: \newline{}\url{http://d-nb.info/1008575860}

%Namen von Programmen und Produkten sowie sonstige Angaben sind häufig geschützt. Da es auch freie Bezeichnungen gibt, wird das Symbol \textregistered{} nicht verwendet.

%Erstellt am 
\today{}
}

\lowertitleback{
{\footnotesize
On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An URI to this license is given in the list of figures on page \pageref{ListOfFigures}. If this document is a derived work from the contents of one of these projects and the content was still licensed by the project under this license at the time of derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section 4b of the license. The list of contributors is included in chapter Contributors on page \pageref{Contributors}. The licenses GPL, LGPL and GFDL are included in chapter Licenses on page \pageref{Licenses}, since this book and/or parts of it may or may not be licensed under one or more of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of figures on page \pageref{ListOfFigures}. This PDF was generated by the \LaTeX{} typesetting  software. The \LaTeX{} source code is included as an attachment ({\tt source.7z.txt}) in this PDF file. To extract the source from the PDF file, we recommend the use of \url{http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/} utility or clicking the paper clip attachment symbol on the lower left of your PDF Viewer, selecting {\tt Save Attachment}. After extracting it from the PDF file you have to rename it to {\tt source.7z}. To uncompress the resulting archive we recommend the use of \url{http://www.7-zip.org/}. The \LaTeX{} source itself was generated by a program written by Dirk Hünniger, which is freely available under an open source license from \url{http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf}. This distribution also contains a configured version of the {\tt pdflatex 
} compiler with all necessary packages and fonts needed to compile the \LaTeX{} source included in this PDF file. Click on the Icon below to save the attached latex source. \attachfile{source.7z.txt}

}}


\renewcommand{\mysubtitle}[1]{}
\renewcommand{\mymaintitle}[1]{}
\renewcommand{\myauthor}[1]{}

\newenvironment{myshaded}{%
  \def\FrameCommand{ \hskip-2pt \fboxsep=\FrameSep \colorbox{shadecolor}}%
  \MakeFramed {\advance\hsize-\width \FrameRestore}}%
 {\endMakeFramed}








headers/packages1.tex~

% Standard für Formatierung
%\usepackage[utf8]{inputenc} % use \usepackage[utf8]{inputenc} for tex4ht
\usepackage[usenames]{color}
\usepackage{textcomp} 
\usepackage{alltt} 
\usepackage{syntax}
\usepackage{parskip} 
\usepackage[normalem]{ulem}
\usepackage[pdftex,unicode=true]{hyperref}
\usepackage{tocstyle}
\usepackage[defblank]{paralist}
\usepackage{trace}
%\usepackage{bigstrut}
% Minitoc
%\usepackage{minitoc}

% Keystroke
\usepackage{keystroke}
\usepackage{supertabular}

\usepackage{wrapfig}
%\newcommand{\bigs}{\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut\bigstrut{}}







headers/packages2.tex~

% für Zeichensätze


%replacemnt for pslatex
\usepackage{mathptmx}
\usepackage[scaled=.92]{helvet}
\usepackage{courier}


\usepackage[T1]{fontenc} % disable this line for tex4ht

% für Tabellen
\usepackage{multirow}
\usepackage{multicol}
\usepackage{array,ragged2e}
\usepackage{longtable}

% für Kopf- und Fußzeilen, Fußnoten
\usepackage{scrpage2}
\usepackage{footnote}

% für Rahmen
\usepackage{verbatim}
\usepackage{framed}
\usepackage{mdframed}
\usepackage{listings}
\usepackage{lineno}

% für Symbole
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}

\usepackage{pifont}
\usepackage{marvosym}
\let\Cross\undefined 
\usepackage{fourier-orns}  % disable this line for tex4ht   % für weitere Logos, z.B. \danger

% für Grafik-Einbindung
\usepackage[pdftex]{graphicx}
\usepackage{wasysym}
\let\Square\undefined 

% unklare Verwendung
\usepackage{bbm}
\usepackage{skull}

%arabtex
\usepackage[T1]{tipa}  % disable this line for tex4ht

\usepackage{fancyvrb}
\usepackage{bbding} 
\usepackage{textcomp}
\usepackage[table]{xcolor}
\usepackage{microtype}
\usepackage{lscape}
\usepackage{amsthm}







headers/templates.tex~

\newcommand{\wbtempcolora}{white}
\newcommand{\wbtempcolorb}{white}
\newcommand{\wbtempcolorc}{white}
\newcommand{\wbtemptexta}{}
\newcommand{\wbtemptextb}{}
\newcommand{\wbtemptextc}{}
\newlength{\wbtemplengtha}
\setlength{\wbtemplengtha}{0pt}
\newlength{\wbtemplengthb}
\setlength{\wbtemplengthb}{0pt}
\newlength{\wbtemplengthc}
\setlength{\wbtemplengthc}{0pt}
\newlength{\wbtemplengthd}
\setlength{\wbtemplengthd}{0pt}
\newlength{\wbtemplengthe}
\setlength{\wbtemplengthe}{0pt}
\newcount\wbtempcounta
\wbtempcounta=0
\newcount\wbtempcountb
\wbtempcountb=0
\newcount\wbtempcountc
\wbtempcountc=0

\newcommand{\CPPAuthorsTemplate}[4]{
\LaTeXZeroBoxTemplate{
The following people are authors to this book:

#3

You can verify who has contributed to this book by examining the history logs at Wikibooks (http://en.wikibooks.org/).

Acknowledgment is given for using some contents from other works like #1, as from the authors #2.

The above authors release their work under the following license:

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. In short: you are free to share and to make derivatives of this work under the conditions that you appropriately attribute it, and that you only distribute it under the same, similar or a compatible license. Any of the above conditions can be waived if you get permission from the copyright holder.
Unless otherwise noted, #4 used in this book have their own copyright, may use different licenses than the one used here, and were not created by the above authors. The authors, contributors, and licenses used should be acknowledged separately.}
}


\newcommand{\tlTemplate}[1]{{\{\{{\ttfamily #1}\}\}}}

\newcommand{\matrixdimTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
{\bfseries Matrix Dimensions: }\\
A: $p \times p$ \\
B:  $p \times q$\\
C:  $r \times p$\\
D:  $r \times q$\\
\end{myshaded}
}

\newcommand{\matlabTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
This operation can be performed using this MATLAB command:
{\ttfamily #1}
\end{myshaded}}

\newcommand{\PrintUnitPage}[3]{\pagebreak
\begin{flushleft}
{\bfseries \Large #1}
\end{flushleft}

\begin{longtable}{>{\RaggedRight}p{0.5\linewidth}>{\RaggedRight}p{0.5\linewidth}}
& #2
\end{longtable}}

\newcommand{\LaTeXCodeTipTemplate}[3]{

\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
#1 \\
#2 \\
#3
\end{myshaded}
}

\newcommand{\DisassemblySyntax}[1]{

\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
This code example uses #1 Syntax
\end{myshaded}}


\newcommand{\LaTeXDeutschTemplate}[1]{ {\bfseries deutsch:} #1 }



\newcommand{\LaTeXNullTemplate}[1]{}
\newcommand{\LatexSymbol}[1]{\LaTeX}

\newcommand{\LaTeXDoubleBoxTemplate}[2]{

\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #1} \\
#2
\end{myshaded}
\end{minipage}

}


\newcommand{\LaTeXSimpleBoxTemplate}[2]{
{\bfseries #1} \\
#2
}

\newcommand{\SolutionBoxTemplate}[2]{
#2
}


\newcommand{\LaTeXDoubleBoxOpenTemplate}[2]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #1} \\
#2
\end{myshaded}

}


\newcommand{\LaTeXLatinExcerciseTemplate}[3]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries Excercise: #1} \\
#2 \\
{\bfseries Solution}
#3
\end{myshaded}

}


\newcommand{\LaTeXShadedColorBoxTemplate}[2]{
{\linewidth}#1\begin{myshaded}
#2
\end{myshaded}
}

\newcommand{\PGP}[1]{PGP:#1}


\newcommand{\ADAFile}[1]{\LaTeXZeroBoxTemplate{File: #1}}
\newcommand{\ADASample}[1]{\LaTeXZeroBoxTemplate{This code sample is also available in #1}}

This code sample is also available in

\newcommand{\LaTeXZeroBoxTemplate}[1]{
\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
\end{minipage}
}

\newcommand{\LaTeXZeroBoxOpenTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
}

\newcommand{\PDFLink}[1]{
\textbf{PDF} #1
}

\newcommand{\SonnensystemFakten}[3]{
#1 \\
\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #2}  \\
#3 \\
\end{myshaded}
}


\newcommand{\VorlageReferenzenEintrag}[3]{
\begin{longtable}{p{0.2\linewidth}p{0.8\linewidth}}

{[\bfseries #1]} & {\itshape #2} #3 \\
\end{longtable}

}

\newcommand{\MBOX}[2]{\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
\begin{longtable}{p{0.2\linewidth}p{0.7\linewidth}}
#1 & #2 \\
\end{longtable}
\end{myshaded}}



\newcommand{\LaTeXIdentityTemplate}[1]{#1
}

\newcommand{\TychoBrahe}[1]{Tycho Brahe}

\newcommand{\LaTeXPlainBoxTemplate}[1]{
\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded} 
#1
\end{myshaded}
\end{minipage}
}


\newcommand{\Hinweis}[1]{
\begin{TemplateInfo}{{\Huge \textcircled{\LARGE !}}}{Hinweis}
#1
\end{TemplateInfo}}



\newcommand{\LaTexInfoTemplateOne}[1]{
\begin{TemplateInfo}{\Info}{Information}
#1
\end{TemplateInfo}}

\newcommand{\EqnTemplate}[1]{
\begin{flushright}
\textbf{[#1]}
\end{flushright}}

\newcommand{\RefTemplate}[1]{[#1]}


\newcommand{\LaTeXGCCTakeTemplate}[1]{
\LaTeXDoubleBoxTemplate{Take home:}{#1}
}

\newcommand{\LaTeXEditorNote}[1]{\LaTeXDoubleBoxTemplate{Editor's note}{#1}}

\newcommand{\BNPForVersion}[1]{
\LaTeXInfoTemplateOne{Applicable Blender version: #1}
}

\newcommand{\LaTeXInfoTemplateOne}[1]{
\begin{TemplateInfo}{\Info}{Information}
#1
\end{TemplateInfo}
}


\newcommand{\LaTexHelpFulHintTemplate}[1]{
\LaTeXDoubleBoxTemplate{Helpful Hint:}{#1}
}

\newcommand{\MyLaTeXTemplate}[3]{
\LaTeXDoubleBoxTemplate{MyLaTeXTemplate1:}{#1 \\ #2 \\ #3}
}

\newcommand{\TemplatePreformat}[1]{
\par
\begin{scriptsize}
%\setlength{\baselineskip}{0.9\baselineskip}
\ttfamily
#1
\par
\end{scriptsize}
}

\newcommand{\TemplateSpaceIndent}[1]{
\begin{scriptsize}
\begin{framed}
\ttfamily
#1
\end{framed}
\end{scriptsize}
}

\newcommand{\GenericColorBox}[2]
{
\newline
\begin{tabular}[t]{p{0.6cm}p{4cm}}
#1&#2\\  
\end{tabular}
}

\newcommand{\legendNamedColorBox}[2]
{
  \GenericColorBox{
    \parbox[t]{0.5\linewidth}{
      \textsuperscript{
        \fcolorbox{black}{#1}{
          \Huge{\,\,}
        }
      }
    }
  }{
    #2
  } 
}

\newcommand{\legendColorBox}[2]
{
  \GenericColorBox{
    \definecolor{tempColor}{rgb}{#1}
    \parbox[t]{0.5\linewidth}{
      \textsuperscript{
        \fcolorbox{black}{tempColor}{
           \Huge{\,\,}
        }
      }
    }
  }{
    #2
  } 
}



%\newcommand{\ubung} {{\LARGE $\triangleright$}}
\newcommand{\ubung}{\ding{228} \textbf{Aufgabe:}\,}

\newcommand{\TemplateSource}[1]
{
%\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{true}
\begin{scriptsize}
\begin{myshaded}\ttfamily
#1
\end{myshaded}
\end{scriptsize}
%\end{TemplateCodeInside}
}


\newenvironment{TemplateInfo}[2]
% no more parameters
%****************************************************
% Template Info
% Kasten mit Logo, Titelzeile, Text
% kann für folgende Wiki-Vorlagen benutzt werden:
%          Vorlage:merke, Vorlage:Achtung u.ä.
%
% #1 Logo  (optional) default: \Info
% #2 Titel (optional) default: Information; könnte theoretisch auch leer sein,
%                     das ist aber wegen des Logos nicht sinnvoll
%****************************************************
{
% Definition des Kastens mit Standardwerten
% u.U. ist linewidth=1pt erorderlich
\begin{mdframed}[ skipabove=\baselineskip, skipbelow=\baselineskip,
linewidth=1pt,
innertopmargin=0, innerbottommargin=0 ]
% linksbündig ist besser, weil es in der Regel wenige Zeilen sind, die teilweise kurz sind
\begin{flushleft}
% Überschrift größer darstellen
\begin{Large}
% #1 wird als Logo verwendet, Vorgabe ist \Info aus marvosym
%    für andere Logos muss ggf. das Package eingebunden werden
%    das Logo kann auch mit einer Größe verbunden werden, z.B. \LARGE\danger als #1
{#1 } \
% #2 wird als Titelzeile verwendet, Vorgabe ist 'Information'
{\bfseries #2}
\medskip \end{Large} \\
} % Ende der begin-Anweisungen, es folgenden die end-Anweisungen
{ \end{flushleft}\end{mdframed} }


\newcommand{\TemplateHeaderExercise}[3]
% no more parameters
%****************************************************
% Template Header Exercise
% Rahmen als minisec mit Nummer der Aufgabe und Titel und grauem Hintergrund
% ist gedacht für folgende Wiki-Vorlage:
%          Vorlage:Übung4
% kann genauso für den Aufgaben-Teil folgender Vorlagen verwendet werden:
%          Vorlage:Übung    (wird zz. nur einmal benutzt)
%          Vorlage:Übung2   (wird zz. gar nicht benutzt)
%          Vorlage:Übung3   (wird zz. in 2 Büchern häufig benutzt)
%          C++-Programmierung/ Vorlage:Aufgabe  (wird zz. nur selten benutzt,
%                            ist in LatexRenderer.hs schon erledigt)
%
% #1 Text   (optional) 'Aufgabe' oder 'Übung', kann auch leer sein
% #2 Nummer (Pflicht)  könnte theoretisch auch leer sein, aber dann sieht die Zeile
%                      seltsam aus; oder die if-Abfragen wären unnötig komplex
% #3 Titel  (optional) Inhaltsangabe der Aufgabe, kann auch leer sein
%****************************************************
{
\minisec{\normalfont \fcolorbox{black}{shadecolor}{\large \, #1 #2 \ifx{#3}{}{}\else{-- #3}\fi \,} \medskip }
}
 
\newcommand{\TemplateHeaderSolution}[3]
% no more parameters
%****************************************************
% Template Header Solution
% Rahmen als minisec mit Nummer der Aufgabe und Titel und grauem Hintergrund
%
% ist gedacht für den Lösungen-Teil der Vorlagen und wird genauso
% verwendet wie \TemplateHeaderExercise
%****************************************************
{
\minisec{\normalfont \fcolorbox{black}{shadecolor}{\large \, Lösung zu #1 #2 \ifx{#3}{}{}\else{-- #3}\fi \,} \medskip }
}

\newcommand{\TemplateUbungDrei}[4]
{
\TemplateHeaderExercise{Übung}{#1}{#2}
#3
\TemplateHeaderSolution{Übung}{#1}{#2}
#4
}

\newcommand{\Mywrapfigure}[2]
{
\begin{wrapfigure}{r}{#1\textwidth}
\begin{center}
#2
\end{center}
\end{wrapfigure}
}



\newcommand{\Mymakebox}[2]
{
\begin{minipage}{#1\textwidth}
#2
\end{minipage}
}

\newcommand{\MyBlau}[1]{
\textcolor{darkblue}{#1}
} 
\newcommand{\MyRot}[1]{
\textcolor{red}{#1}
} 
\newcommand{\MyGrun}[1]{
\textcolor{mydarkgreen}{#1}
} 
\newcommand{\MyBg}[2]{
\fcolorbox{#1}{#1}{#2} 
} 

\newcommand{\BNPModule}[1]{
the "#1" module
} 


\newcommand{\LaTeXMerkeZweiTemplate}[1]{\LaTeXDoubleBoxTemplate{Merke}{#1}}

\newcommand{\LaTeXDefinitionTemplate}[1]{\LaTeXDoubleBoxTemplate{Definition}{#1}}

\newcommand{\LaTeXAnorganischeChemieFuerSchuelerVorlageMerksatzTemplate}[1]{\LaTeXDoubleBoxTemplate{Merksatz}{#1}}

\newcommand{\LaTeXTextTemplate}[1]{\LaTeXDoubleBoxTemplate{}{#1}}

\newcommand{\LaTeXExampleTemplate}[1]{\LaTeXDoubleBoxTemplate{Example:}{#1}}

\newcommand{\LaTeXexampleTemplate}[1]{\LaTeXDoubleBoxTemplate{Example:}{#1}}

\newcommand{\LaTeXPTPBoxTemplate}[1]{\LaTeXDoubleBoxTemplate{Points to ponder:}{#1}}

\newcommand{\LaTeXNOTETemplate}[2]{\LaTeXDoubleBoxTemplate{Note:}{#1 #2}}

\newcommand{\LaTeXNotizTemplate}[1]{\LaTeXDoubleBoxTemplate{Notiz:}{#1}}

\newcommand{\LaTeXbodynoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXcquoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Quote:}{#1}}

\newcommand{\LaTeXCquoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Quote:}{#1}}

\newcommand{\LaTeXSideNoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXsideNoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXExercisesTemplate}[1]{\LaTeXDoubleBoxTemplate{Exercises:}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageTippTemplate}[1]{\LaTeXDoubleBoxTemplate{Tip}{#1}}

\newcommand{\LaTeXTipTemplate}[1]{\LaTeXDoubleBoxTemplate{Tip}{#1}}
\newcommand{\LaTeXUnknownTemplate}[1]{unknown}

\newcommand{\LaTeXCppProgrammierungVorlageHinweisTemplate}[1]{\LaTeXDoubleBoxTemplate{Hinweis}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageSpaeterImBuchTemplate}[1]{\LaTeXDoubleBoxTemplate{Thema wird später näher erläutert...}{#1}}

\newcommand{\SGreen}[1]{This page uses material from Dr. Sheldon Green's Hypertext Help with LaTeX.}
\newcommand{\ARoberts}[1]{This page uses material from Andy Roberts' Getting to grips with LaTeX with permission from the author.}

\newcommand{\LaTeXCppProgrammierungVorlageAnderesBuchTemplate}[1]{\LaTeXDoubleBoxTemplate{Buchempfehlung}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageNichtNaeherBeschriebenTemplate}[1]{\LaTeXDoubleBoxTemplate{Nicht Thema dieses Buches...}{#1}}

\newcommand{\LaTeXPythonUnterLinuxVorlagenVorlageDetailsTemplate}[1]{\LaTeXDoubleBoxTemplate{Details}{#1}}

\newcommand{\LaTeXChapterTemplate}[1]{\chapter{#1}
\myminitoc
}

\newcommand{\Sample}[2]{
\begin{longtable}{|p{\linewidth}|}
\hline
#1 \\ \hline
#2 \\ \hline
\end{longtable}
}

\newcommand{\Syntax}[1]{
\LaTeXDoubleBoxTemplate{Syntax}{#1}}


\newcommand{\LaTeXTT}[1]{{\ttfamily #1}}
\newcommand{\LaTeXBF}[1]{{\bfseries #1}}
\newcommand{\LaTeXIT}[1]{{\itshape #1}}



\newcommand{\LaTeXCenter}[1]{
\begin{center}
#1
\end{center}}


\newcommand{\BNPManual}[2]{The Blender Manual page on #1 at \url{http://wiki.blender.org/index.php/Doc:Manual/#1}}
\newcommand{\BNPWeb}[2]{#1 at \url{#2}}

\newcommand{\Noframecenter}[2]{
\begin{tablular}{p{\linewidth}}
#2\\ 
#1 
\end{tabluar}
}


\newcommand{\LaTeXTTUlineTemplate}[1]{{\ttfamily \uline{#1}}
}



\newcommand{\PythonUnterLinuxDenulltails}[1]{
\begin{tabular}{|p{\linewidth}|}\hline
\textbf{Denulltails} \\ \hline
#1 \\ \hline 
\end{tabular}}

\newcommand{\GNURTip}[1]{
\begin{longtable}{|p{\linewidth}|}\hline
\textbf{Tip} \\ \hline
#1 \\ \hline 
\end{longtable}}

\newcommand{\PerlUebung}[1]{
\begin{longtable}{|p{\linewidth}|}\hline
#1 \\ \hline 
\end{longtable}}

\newcommand{\PerlNotiz}[1]{
\begin{table}{|p{\linewidth}|}\hline
#1 \\ \hline 
\end{table}}

\newcommand{\ACFSZusatz}[1]{\textbf{ Zusatzinformation }}
\newcommand{\ACFSVorlageB}[1]{\textbf{ Beobachtung }}
\newcommand{\ACFSVorlageV}[1]{\textbf{ Versuchsbeschreibung }}
\newcommand{\TemplateHeaderSolutionUebung}[2]{\TemplateHeaderSolution{Übung}{#1}{#2}}
\newcommand{\TemplateHeaderExerciseUebung}[2]{\TemplateHeaderExercise{Übung}{#1}{#2}}

\newcommand{\ChemTemplate}[9]{\texttt{     
#1#2#3#4#5#6#7#8#9}}


\newcommand{\WaningTemplate}[1]{     
\begin{TemplateInfo}{\danger}{Warning}
#1
\end{TemplateInfo}}


\newcommand{\WarnungTemplate}[1]{     
\begin{TemplateInfo}{\danger}{Warnung}
#1
\end{TemplateInfo}}


\newcommand{\BlenderAlignedToViewIssue}[1]{     
\begin{TemplateInfo}{\danger}{Blender3d Aligned to view issue}
This tutorial relies on objects being created so that they are aligned to the view that you’re looking through. Versions 2.48 and above have changed the way this works. Visit Aligned (\url{http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Aligned_to_view_issue}) to view issue to understand the settings that need to be changed.
\end{TemplateInfo}}


\newcommand{\BlenderVersion}[1]{     
{\itshape Diese Seite bezieht sich auf }{\bfseries \quad Blender Version #1}}

\newcommand{\Literal}[1]{{\itshape #1}}

\newcommand{\JavaIllustration}[3]{
\begin{tablular}
{Figure #1: #2}
\\
#3
\end{ltablular}
}

\newcommand{\PDFLink}[1]{#1 PDF}

\newcommand{\Ja}[1]{\Checkmark {\bfseries Ja}}
\newcommand{\Nein}[1]{\XSolidBrush {\bfseries Nein}}

\newcommand{\SVGVersions}[8]{
{\scriptsize
\begin{tabular}{|p{0.45\linewidth}|p{0.13\linewidth}|}\hline
Squiggle (Batik) & #1 \\ \hline
Opera (Presto) & #2 \\ \hline
Firefox (Gecko; auch SeaMonkey, Iceape, Iceweasel etc) & #3 \\ \hline
Konqueror (KSVG) & #4 \\ \hline
Safari (Webkit) & #5 \\ \hline
Chrome (Webkit) & #6 \\ \hline
Microsoft Internet Explorer (Trident) & #7 \\ \hline
librsvg & #8 \\\hline
\end{tabular}}

}


\theoremstyle{plain}
\newtheorem{satz}{Satz}
\newtheorem{beweis}{Beweis}
\newtheorem{beispiel}{Beispiel}

\theoremstyle{definition}
\newtheorem{mydef}{Definition}

\newcommand{\NFSatz}[2]{\begin{satz}#1\end{satz}#2}

\newcommand{\NFDef}[2]{\begin{mydef}#1\end{mydef}#2}

\newcommand{\NFBeweis}[2]{\begin{beweis}#1\end{beweis}#2}

\newcommand{\NFBeispiel}[2]{\begin{beweis}#1\end{beweis}#2}

\newcommand{\NFFrage}[3]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\itshape \uline{#1}: #2} \\
#3
\end{myshaded}

}

\newcommand{\NFFrageB}[2]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\itshape \uline{Frage}: #1} \\
#2
\end{myshaded}

}


\newcommand{\NFVertiefung}[1]{
{\bfseries Vertiefung:} \\
Der Inhalt des folgenden Abschnitts ist eine Vertiefung des Stoffes. Für die nächsten Kapitel ist es nicht notwendig, dass du dieses Kapitel gelesen hast.

}







headers/title.tex~

\publishers{Wikibooks.org}
\title{Serial Programming/Complete Wikibook}







main/main.toc

\select@language {english}
\contentsline {chapter}{\numberline {1}Introduction and OSI Model}{3}{chapter.1}
\contentsline {section}{\numberline {1.1}Introduction}{3}{section.1.1}
\contentsline {section}{\numberline {1.2}Why Serial Communication?}{3}{section.1.2}
\contentsline {section}{\numberline {1.3}OSI Layered Network Communications Model}{4}{section.1.3}
\contentsline {subsection}{\numberline {1.3.1}Serial Comm Layers}{4}{subsection.1.3.1}
\contentsline {section}{\numberline {1.4}Software Examples}{5}{section.1.4}
\contentsline {section}{\numberline {1.5}Applications in Education}{5}{section.1.5}
\contentsline {section}{\numberline {1.6}External Links / References}{6}{section.1.6}
\contentsline {section}{\numberline {1.7}Other Serial Programming Articles}{6}{section.1.7}
\contentsline {chapter}{\numberline {2}RS-{}232 Connections}{7}{chapter.2}
\contentsline {section}{\numberline {2.1}Introduction}{7}{section.2.1}
\contentsline {section}{\numberline {2.2}Data Terminal/Communications Equipment}{7}{section.2.2}
\contentsline {subsection}{\numberline {2.2.1}Straight Serial Connections}{7}{subsection.2.2.1}
\contentsline {subsection}{\numberline {2.2.2}Null Modems}{8}{subsection.2.2.2}
\contentsline {subsection}{\numberline {2.2.3}Loopback Connectors}{8}{subsection.2.2.3}
\contentsline {subsection}{\numberline {2.2.4}Protocol Analyzer}{9}{subsection.2.2.4}
\contentsline {subsubsection}{General}{9}{section*.2}
\contentsline {subsubsection}{Y \char 34\relax Cable\char 34\relax }{9}{section*.3}
\contentsline {subsubsection}{Man-{}in-{}the-{}Middle}{10}{section*.4}
\contentsline {subsubsection}{Others}{10}{section*.5}
\contentsline {subsection}{\numberline {2.2.5}Breakout Box}{10}{subsection.2.2.5}
\contentsline {subsection}{\numberline {2.2.6}Character Sequence Generator}{11}{subsection.2.2.6}
\contentsline {section}{\numberline {2.3}Connection Types}{12}{section.2.3}
\contentsline {subsection}{\numberline {2.3.1}EIA/TIA 574: \char 34\relax DB-{}9\char 34\relax }{12}{subsection.2.3.1}
\contentsline {subsection}{\numberline {2.3.2}RS-{}232C: DB-{}25}{13}{subsection.2.3.2}
\contentsline {subsection}{\numberline {2.3.3}mini-{}stereo plug connector}{14}{subsection.2.3.3}
\contentsline {subsection}{\numberline {2.3.4}RS-{}232D: RS232 on RJ45}{15}{subsection.2.3.4}
\contentsline {subsection}{\numberline {2.3.5}RS232 on RJ11}{15}{subsection.2.3.5}
\contentsline {section}{\numberline {2.4}Wiring Pins Explained}{16}{section.2.4}
\contentsline {subsection}{\numberline {2.4.1}DCD (Data Carrier Detect)}{17}{subsection.2.4.1}
\contentsline {subsection}{\numberline {2.4.2}RX (Receive Data)}{17}{subsection.2.4.2}
\contentsline {subsection}{\numberline {2.4.3}TX (Transmit Data)}{17}{subsection.2.4.3}
\contentsline {subsection}{\numberline {2.4.4}DTR (Data Terminal Ready)}{17}{subsection.2.4.4}
\contentsline {subsection}{\numberline {2.4.5}GND (Signal Ground)}{18}{subsection.2.4.5}
\contentsline {subsection}{\numberline {2.4.6}DSR (Data Set Ready)}{18}{subsection.2.4.6}
\contentsline {subsection}{\numberline {2.4.7}RTS (Request To Send)}{18}{subsection.2.4.7}
\contentsline {subsection}{\numberline {2.4.8}CTS (Clear To Send)}{18}{subsection.2.4.8}
\contentsline {subsection}{\numberline {2.4.9}RI (Ring Indicator)}{19}{subsection.2.4.9}
\contentsline {subsection}{\numberline {2.4.10}Other RS-{}232 Pins}{19}{subsection.2.4.10}
\contentsline {section}{\numberline {2.5}Baud Rates Explained}{19}{section.2.5}
\contentsline {subsection}{\numberline {2.5.1}Modems Explained}{21}{subsection.2.5.1}
\contentsline {section}{\numberline {2.6}Signal Bits}{22}{section.2.6}
\contentsline {subsection}{\numberline {2.6.1}Start Bit}{22}{subsection.2.6.1}
\contentsline {subsection}{\numberline {2.6.2}Data Bits}{22}{subsection.2.6.2}
\contentsline {subsection}{\numberline {2.6.3}Parity Bit}{23}{subsection.2.6.3}
\contentsline {subsubsection}{Odd Parity}{23}{section*.6}
\contentsline {subsubsection}{Even Parity}{23}{section*.7}
\contentsline {subsubsection}{Mark Parity}{23}{section*.8}
\contentsline {subsubsection}{Space Parity}{23}{section*.9}
\contentsline {subsubsection}{Parity None}{23}{section*.10}
\contentsline {subsection}{\numberline {2.6.4}Stop Bits}{23}{subsection.2.6.4}
\contentsline {subsection}{\numberline {2.6.5}Data Transmission Rates}{24}{subsection.2.6.5}
\contentsline {section}{\numberline {2.7}Relationship of Baud Rate to Maximum Distance}{24}{section.2.7}
\contentsline {section}{\numberline {2.8}External References}{25}{section.2.8}
\contentsline {section}{\numberline {2.9}Other Serial Programming Articles}{26}{section.2.9}
\contentsline {chapter}{\numberline {3}8250 UART Programming}{27}{chapter.3}
\contentsline {section}{\numberline {3.1}Introduction}{27}{section.3.1}
\contentsline {section}{\numberline {3.2}8086 I/O ports}{28}{section.3.2}
\contentsline {subsection}{\numberline {3.2.1}Software I/O access}{28}{subsection.3.2.1}
\contentsline {subsection}{\numberline {3.2.2}x86 port I/O extensions}{29}{subsection.3.2.2}
\contentsline {section}{\numberline {3.3}x86 Processor Interrupts}{30}{section.3.3}
\contentsline {subsection}{\numberline {3.3.1}IRQs Explained}{30}{subsection.3.3.1}
\contentsline {subsection}{\numberline {3.3.2}Interrupt handlers}{31}{subsection.3.3.2}
\contentsline {subsection}{\numberline {3.3.3}Software interrupts}{31}{subsection.3.3.3}
\contentsline {section}{\numberline {3.4}8259 PIC (Programmable Interrupt Controller)}{32}{section.3.4}
\contentsline {subsection}{\numberline {3.4.1}8259 Registers}{32}{subsection.3.4.1}
\contentsline {subsection}{\numberline {3.4.2}Device Registers}{33}{subsection.3.4.2}
\contentsline {subsection}{\numberline {3.4.3}ISR Cleanup}{34}{subsection.3.4.3}
\contentsline {subsection}{\numberline {3.4.4}PIC Device Masking}{34}{subsection.3.4.4}
\contentsline {section}{\numberline {3.5}Serial COM Port Memory and I/O Allocation}{35}{section.3.5}
\contentsline {section}{\numberline {3.6}UART Registers}{36}{section.3.6}
\contentsline {subsection}{\numberline {3.6.1}Transmitter Holding Buffer/Receiver Buffer}{37}{subsection.3.6.1}
\contentsline {subsection}{\numberline {3.6.2}Divisor Latch Bytes}{38}{subsection.3.6.2}
\contentsline {subsection}{\numberline {3.6.3}Interrupt Enable Register}{40}{subsection.3.6.3}
\contentsline {subsection}{\numberline {3.6.4}Interrupt Identification Register}{41}{subsection.3.6.4}
\contentsline {subsection}{\numberline {3.6.5}FIFO Control Register}{44}{subsection.3.6.5}
\contentsline {subsection}{\numberline {3.6.6}Line Control Register}{45}{subsection.3.6.6}
\contentsline {subsection}{\numberline {3.6.7}Modem Control Register}{47}{subsection.3.6.7}
\contentsline {subsection}{\numberline {3.6.8}Line Status Register}{48}{subsection.3.6.8}
\contentsline {subsection}{\numberline {3.6.9}Modem Status Register}{50}{subsection.3.6.9}
\contentsline {subsection}{\numberline {3.6.10}Scratch Register}{51}{subsection.3.6.10}
\contentsline {section}{\numberline {3.7}Software Identification of the UART}{52}{section.3.7}
\contentsline {section}{\numberline {3.8}External References}{53}{section.3.8}
\contentsline {section}{\numberline {3.9}Other Serial Programming Articles}{54}{section.3.9}
\contentsline {chapter}{\numberline {4}Serial DOS}{55}{chapter.4}
\contentsline {section}{\numberline {4.1}Introduction}{55}{section.4.1}
\contentsline {section}{\numberline {4.2}{\bfseries Hello World}, Serial Data Version}{55}{section.4.2}
\contentsline {section}{\numberline {4.3}Finding the Port I/O Address for the UART}{56}{section.4.3}
\contentsline {subsection}{\numberline {4.3.1}Looking up UART Base Address in RAM}{57}{subsection.4.3.1}
\contentsline {subsection}{\numberline {4.3.2}Searching BIOS Setup}{58}{subsection.4.3.2}
\contentsline {section}{\numberline {4.4}Making modifications to UART Registers}{59}{section.4.4}
\contentsline {section}{\numberline {4.5}Basic Serial Input}{60}{section.4.5}
\contentsline {subsection}{\numberline {4.5.1}Polling the UART}{61}{subsection.4.5.1}
\contentsline {subsubsection}{Serial Echo Program}{61}{section*.11}
\contentsline {subsubsection}{Simple Terminal}{61}{section*.12}
\contentsline {section}{\numberline {4.6}Interrupt Drivers in DOS}{63}{section.4.6}
\contentsline {subsection}{\numberline {4.6.1}Far Procedure Calls}{64}{subsection.4.6.1}
\contentsline {subsection}{\numberline {4.6.2}Interrupt Procedures}{65}{subsection.4.6.2}
\contentsline {subsection}{\numberline {4.6.3}Procedure Variables}{65}{subsection.4.6.3}
\contentsline {subsection}{\numberline {4.6.4}Getting/Setting Interrupt Vectors}{66}{subsection.4.6.4}
\contentsline {subsection}{\numberline {4.6.5}Hardware Interrupt Table}{66}{subsection.4.6.5}
\contentsline {subsection}{\numberline {4.6.6}Other features}{67}{subsection.4.6.6}
\contentsline {section}{\numberline {4.7}Terminal Program Revisited}{68}{section.4.7}
\contentsline {subsection}{\numberline {4.7.1}Serial ISR}{68}{subsection.4.7.1}
\contentsline {subsection}{\numberline {4.7.2}FIFO disabling}{68}{subsection.4.7.2}
\contentsline {subsection}{\numberline {4.7.3}Working with the PIC}{69}{subsection.4.7.3}
\contentsline {subsection}{\numberline {4.7.4}Modem Control Register}{70}{subsection.4.7.4}
\contentsline {subsection}{\numberline {4.7.5}Interrupt Enable Register}{70}{subsection.4.7.5}
\contentsline {subsection}{\numberline {4.7.6}Putting this together so far}{70}{subsection.4.7.6}
\contentsline {subsection}{\numberline {4.7.7}Command Line Input}{72}{subsection.4.7.7}
\contentsline {subsection}{\numberline {4.7.8}Grabbing Terminal Parameters}{72}{subsection.4.7.8}
\contentsline {chapter}{\numberline {5}Serial Linux}{75}{chapter.5}
\contentsline {section}{\numberline {5.1}The Classic Unix C APIs for Serial Communication}{75}{section.5.1}
\contentsline {subsection}{\numberline {5.1.1}Introduction}{75}{subsection.5.1.1}
\contentsline {subsubsection}{Scope}{75}{section*.13}
\contentsline {subsubsection}{Basics}{75}{section*.14}
\contentsline {subsection}{\numberline {5.1.2}Serial I/O via Terminal I/O }{77}{subsection.5.1.2}
\contentsline {subsubsection}{Basics}{77}{section*.15}
\contentsline {subsubsection}{Line Discipline}{78}{section*.16}
\contentsline {subsection}{\numberline {5.1.3}Unix V6/PWB}{78}{subsection.5.1.3}
\contentsline {subsection}{\numberline {5.1.4}Unix V7}{79}{subsection.5.1.4}
\contentsline {subsection}{\numberline {5.1.5}termios}{79}{subsection.5.1.5}
\contentsline {subsection}{\numberline {5.1.6}termio / ioctl(2) }{80}{subsection.5.1.6}
\contentsline {section}{\numberline {5.2}Serial I/O on the Shell Command Line }{80}{section.5.2}
\contentsline {subsection}{\numberline {5.2.1}Introduction}{80}{subsection.5.2.1}
\contentsline {subsection}{\numberline {5.2.2}Configuration with {\ttfamily stty}}{80}{subsection.5.2.2}
\contentsline {subsection}{\numberline {5.2.3}Permanent Configuration}{82}{subsection.5.2.3}
\contentsline {subsubsection}{Overview}{82}{section*.17}
\contentsline {subsubsection}{\ttfamily /etc/ttytab}{82}{section*.18}
\contentsline {subsubsection}{\ttfamily /etc/ttydefs}{82}{section*.19}
\contentsline {subsubsection}{\ttfamily /etc/serial.conf}{83}{section*.20}
\contentsline {subsection}{\numberline {5.2.4}\ttfamily tty}{83}{subsection.5.2.4}
\contentsline {subsection}{\numberline {5.2.5}\ttfamily tip}{83}{subsection.5.2.5}
\contentsline {subsection}{\numberline {5.2.6}\ttfamily uucp}{84}{subsection.5.2.6}
\contentsline {subsubsection}{Overview}{84}{section*.21}
\contentsline {subsubsection}{\ttfamily cu}{84}{section*.22}
\contentsline {subsubsection}{\ttfamily ct}{84}{section*.23}
\contentsline {section}{\numberline {5.3}System Configuration}{84}{section.5.3}
\contentsline {section}{\numberline {5.4}Other Serial Programming Articles}{85}{section.5.4}
\contentsline {chapter}{\numberline {6}Serial Java}{87}{chapter.6}
\contentsline {section}{\numberline {6.1}Using Java for Serial Communication}{87}{section.6.1}
\contentsline {subsection}{\numberline {6.1.1}Introduction}{87}{subsection.6.1.1}
\contentsline {subsection}{\numberline {6.1.2}Getting started}{88}{subsection.6.1.2}
\contentsline {subsection}{\numberline {6.1.3}Installation}{88}{subsection.6.1.3}
\contentsline {subsubsection}{General Issues}{88}{section*.24}
\contentsline {subsubsection}{Webstart}{89}{section*.25}
\contentsline {paragraph}{JavaComm}{89}{section*.26}
\contentsline {paragraph}{RxTx}{89}{section*.27}
\contentsline {section}{\numberline {6.2}JavaComm API}{90}{section.6.2}
\contentsline {subsection}{\numberline {6.2.1}Introduction}{90}{subsection.6.2.1}
\contentsline {subsection}{\numberline {6.2.2}Download \& Installation}{91}{subsection.6.2.2}
\contentsline {subsubsection}{Download}{91}{section*.28}
\contentsline {subsubsection}{Installation}{91}{section*.29}
\contentsline {subsubsection}{Finding the desired serial Port}{92}{section*.30}
\contentsline {subsection}{\numberline {6.2.3}Initialize a Serial Port}{93}{subsection.6.2.3}
\contentsline {subsection}{\numberline {6.2.4}Simple Data Transfer}{95}{subsection.6.2.4}
\contentsline {subsubsection}{Simple Writing of Data}{95}{section*.31}
\contentsline {subsubsection}{Simple Reading of Data (Polling)}{95}{section*.32}
\contentsline {subsubsection}{Problems with the simple Reading / Writing}{95}{section*.33}
\contentsline {subsection}{\numberline {6.2.5}Event Driven Serial Communication}{96}{subsection.6.2.5}
\contentsline {subsubsection}{Introduction}{96}{section*.34}
\contentsline {subsubsection}{Setting up a serial Event Handler}{97}{section*.35}
\contentsline {subsubsection}{Writing of Data}{99}{section*.36}
\contentsline {paragraph}{Setting up a separate Thread for Writing}{99}{section*.37}
\contentsline {subparagraph}{A simple, thread-{}safe Ring Buffer Implementation}{99}{section*.38}
\contentsline {subparagraph}{Using the Buffer together with Serial Events}{103}{section*.39}
\contentsline {paragraph}{Usage of OUTPUT\@uscore .BUFFER\@uscore .EMPTY Event in Writing}{103}{section*.40}
\contentsline {subsubsection}{Reading of Data}{103}{section*.41}
\contentsline {subsection}{\numberline {6.2.6}Handling multiple Ports in one Application}{104}{subsection.6.2.6}
\contentsline {subsection}{\numberline {6.2.7}Modem Control}{104}{subsection.6.2.7}
\contentsline {section}{\numberline {6.3}RxTx}{105}{section.6.3}
\contentsline {subsection}{\numberline {6.3.1}Overview and Versions}{105}{subsection.6.3.1}
\contentsline {subsection}{\numberline {6.3.2}Converting a JavaComm Application to RxTx}{106}{subsection.6.3.2}
\contentsline {section}{\numberline {6.4}See also}{106}{section.6.4}
\contentsline {chapter}{\numberline {7}Forming Data Packets}{109}{chapter.7}
\contentsline {subsection}{\numberline {7.0.1}packet size tradeoffs}{109}{subsection.7.0.1}
\contentsline {subsection}{\numberline {7.0.2}start-{}of-{}packet and transparency tradeoffs}{110}{subsection.7.0.2}
\contentsline {section}{\numberline {7.1}For further reading}{112}{section.7.1}
\contentsline {chapter}{\numberline {8}Error Correction Methods}{115}{chapter.8}
\contentsline {section}{\numberline {8.1}Introduction}{115}{section.8.1}
\contentsline {section}{\numberline {8.2}ACK-{}NAK}{115}{section.8.2}
\contentsline {subsubsection}{How does the {\itshape receiver} know it\textquotesingle {}s good ?}{115}{section*.42}
\contentsline {subsubsection}{How does the {\itshape sender} know it wasn\textquotesingle {}t good ?}{116}{section*.43}
\contentsline {subsubsection}{\char 34\relax Stop-{}and-{}wait ARQ\char 34\relax }{116}{section*.44}
\contentsline {subsubsection}{streaming ARQ}{117}{section*.45}
\contentsline {subsection}{\numberline {8.2.1}Selective Repeat ARQ}{118}{subsection.8.2.1}
\contentsline {section}{\numberline {8.3}FEC}{118}{section.8.3}
\contentsline {section}{\numberline {8.4}Pretend It Never Happened}{118}{section.8.4}
\contentsline {section}{\numberline {8.5}combination}{119}{section.8.5}
\contentsline {section}{\numberline {8.6}further reading}{119}{section.8.6}
\contentsline {section}{\numberline {8.7}further reading}{119}{section.8.7}
\contentsline {chapter}{\numberline {9}Appendex A:Modems and AT Commands}{121}{chapter.9}
\contentsline {section}{\numberline {9.1}Introduction}{121}{section.9.1}
\contentsline {subsection}{\numberline {9.1.1}General}{121}{subsection.9.1.1}
\contentsline {subsection}{\numberline {9.1.2}Administrative Information}{121}{subsection.9.1.2}
\contentsline {subsection}{\numberline {9.1.3}What is Hayes?}{122}{subsection.9.1.3}
\contentsline {subsection}{\numberline {9.1.4}What are AT Commands?}{123}{subsection.9.1.4}
\contentsline {subsection}{\numberline {9.1.5}What is a Modem?}{123}{subsection.9.1.5}
\contentsline {subsection}{\numberline {9.1.6}Inband Signalling}{124}{subsection.9.1.6}
\contentsline {subsection}{\numberline {9.1.7}Command State / On-{}line State}{125}{subsection.9.1.7}
\contentsline {subsection}{\numberline {9.1.8}Originating Mode / Answer Mode}{125}{subsection.9.1.8}
\contentsline {subsection}{\numberline {9.1.9}Command Responses}{125}{subsection.9.1.9}
\contentsline {subsection}{\numberline {9.1.10}S-{}Registers}{126}{subsection.9.1.10}
\contentsline {section}{\numberline {9.2}Modem Programming Basics}{126}{section.9.2}
\contentsline {subsection}{\numberline {9.2.1}Command Reference}{126}{subsection.9.2.1}
\contentsline {subsection}{\numberline {9.2.2}Setting up a Development Environment}{127}{subsection.9.2.2}
\contentsline {subsection}{\numberline {9.2.3}Operating System, Programming Language \& Communication Basics}{128}{subsection.9.2.3}
\contentsline {subsection}{\numberline {9.2.4}Line Speed is not DTE/DCE Speed}{129}{subsection.9.2.4}
\contentsline {subsection}{\numberline {9.2.5}Character Set and Character Case}{131}{subsection.9.2.5}
\contentsline {subsection}{\numberline {9.2.6}Welcome to the World of State-{}Machines}{131}{subsection.9.2.6}
\contentsline {section}{\numberline {9.3}Flow Control}{132}{section.9.3}
\contentsline {subsection}{\numberline {9.3.1}Hardware Flow Control}{132}{subsection.9.3.1}
\contentsline {subsection}{\numberline {9.3.2}Software Flow Control}{132}{subsection.9.3.2}
\contentsline {section}{\numberline {9.4}Changing State}{133}{section.9.4}
\contentsline {subsection}{\numberline {9.4.1}General}{133}{subsection.9.4.1}
\contentsline {subsection}{\numberline {9.4.2}On-{}line State to Command State}{133}{subsection.9.4.2}
\contentsline {subsection}{\numberline {9.4.3}Command State to On-{}line State}{134}{subsection.9.4.3}
\contentsline {section}{\numberline {9.5}Sync. vs. Async. Interface}{134}{section.9.5}
\contentsline {section}{\numberline {9.6}X.25 Interface}{134}{section.9.6}
\contentsline {section}{\numberline {9.7}AT Commands}{134}{section.9.7}
\contentsline {subsection}{\numberline {9.7.1}AT Command Format}{134}{subsection.9.7.1}
\contentsline {subsection}{\numberline {9.7.2}\itshape Command Description Template}{136}{subsection.9.7.2}
\contentsline {subsection}{\numberline {9.7.3}Special Commands and Character Sequences}{137}{subsection.9.7.3}
\contentsline {subsection}{\numberline {9.7.4}AT Commands A -{} M}{137}{subsection.9.7.4}
\contentsline {subsection}{\numberline {9.7.5}AT Commands N -{} Z}{137}{subsection.9.7.5}
\contentsline {subsection}{\numberline {9.7.6}AT\& Commands}{137}{subsection.9.7.6}
\contentsline {section}{\numberline {9.8}Result Codes}{137}{section.9.8}
\contentsline {section}{\numberline {9.9}S-{}Registers}{138}{section.9.9}
\contentsline {section}{\numberline {9.10}Advanced Features}{138}{section.9.10}
\contentsline {subsection}{\numberline {9.10.1}Introduction}{138}{subsection.9.10.1}
\contentsline {subsection}{\numberline {9.10.2}Fax Class 1}{138}{subsection.9.10.2}
\contentsline {subsection}{\numberline {9.10.3}Fax Class 2}{138}{subsection.9.10.3}
\contentsline {subsection}{\numberline {9.10.4}Voice Services}{138}{subsection.9.10.4}
\contentsline {chapter}{\numberline {10}Contributors}{139}{chapter.10}
\contentsline {chapter}{List of Figures}{141}{chapter*.46}
\contentsline {chapter}{\numberline {11}Licenses}{145}{chapter.11}
\contentsline {section}{\numberline {11.1}GNU GENERAL PUBLIC LICENSE}{145}{section.11.1}
\contentsline {section}{\numberline {11.2}GNU Free Documentation License}{146}{section.11.2}
\contentsline {section}{\numberline {11.3}GNU Lesser General Public License}{147}{section.11.3}







images/trans.dict



