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ELASTIC DISTORTION CORRECTION FOR THE BURNETT APPARATUS 

by 

John E„ Miller 

ABSTRACT 

General, equations for correcting elastic distortion are given. 

These equations are used to compute pressure expansion coefficients 

and jacket pressure ratios for the Helium Research Center Burnett 

apparatus. A method for computing distortion at pressures above the 

elastic limit is described« 

INTRODUCTION 

In the isothermal Burnett method, compressibility factors are de¬ 

termined from pressure measurements only. Therefore, anything that 

affects the accuracy of the pressure measurements should be corrected, 

when possible. One of the corrections is that for elastic distortion 

due to internal pressure. The pressure expansion coefficient can be 

computed for a cylinder if the inner and outer radii, Poisson’s ratio, 

and Young’s Modulus are known. Several, equations for computing expansion 

1 Research Chemist, Helium Research Center, Helium Activity, Bureau 

of Mines, Amarillo, Texas. 

Work on manuscript completed .May 1965. 





2 / 
coefficients- (2), (3), (4), and (5), are available, but the one 

2/ Underlined numbers in parentheses are bibliography references. 

given by Love (4) is used for all calculations in this report. 

2)j"1 [3(1 - 2p,)(a2P - b2P.) + 2(1 + „)b2 (Pg - P.) 

See page 13 for definition of terms in equation (1). 

An alternate method is to eliminate elastic distortion with pres 

sure jackets. Although the same equation. (1) is used to compute the 

ratio of P./P to make AV = 0, the computed jacket pressure ratio is 
J g 

independent of Young's Modulus and is constant for the temperature 

range of 0 to 150° F. Values of AV/VQ in (1) will vary slightly with 

temperature because Young's Modulus is a function of temperature. 

GENERAL EQUATIONS FOR THE BURNETT METHOD 

The first general relationship is that for pressure ratios : 

P 
r + 1 

P 
r 

Z 
r + 1 

Z 
r 

, r = No. of expansions that have 

r been made 

Equation (2) can be rewritten as follows: 

The volume ratio, NqS is defined as: 
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Substituting (4) into (3) gives 

r 

r + 1 

= N 

(1 + aP , ,) 
r ~r i 

0 (1 + PO zr + i 

There are three possible values for oi and 

Oi - (3 = 0 

oi = (3 0 

a f P f 0 

(5) 

(6) 

(7) 

(8) 

The relationship given by (6) can be realized by using pressure jackets, 

(7) will apply when Vj, V2, and the associated values and tubing have 

the same expansion coefficient; (8) is the usual case when pressure 

jackets are not used. 

Equation (5) implies that, extrapolation of pressure ratios to 

P = 0 will give Nq as the intercept, with or without a distortion cor 

rection. 

Lim 

P -» 0 
r 

P 
r 

P 
r + 1 

Zr (1 + o;Pr+ p 

Nq because — ~ -* 1 and ^ + j 

r + 1 r 

(9) 

Normally, it would be preferable to make the distortion correction 

before obtaining NQ. 

Lim P (1 + PP ) 
r r 

P 0 P , , (1 + c*P ) 
r r + 1 r 

(10) 

After Nq has been determined, the compressibility factors at the 

measured pressures can be computed. The exact procedure depends on 

which of the relationships (6), (7), or (8) is applicable. 
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When (6) is the case, it can be shown that 

Z 
r 

r 
N P 

0 r 

Lim N 

P - 
r 

When (7) applies, it can be shown that 

Lim N 1 P (1 + QfP ) = P0 (1 + QfPn) 
Or r ~~ 0 

P - 0 0 
r 

CD 

(12) 

N.r P (1 + orP ) 
Or' r 

Lim N„L P (1 + aP ) 
Or r 

P -+ 0 
r 

(13) 

The most complicated case is when equation (8) is applicable. 

!o _ Mo + Q,pi>zo 

P1 " (1 + PP0)Z1 
(14) 

!o_ _ 2 (1 + gp:l)Q + <*P2)ZQ 

P2 (1 + gP0)(l + gP1)z2 

Pn 3 (1 + P3 >X1 + c^) (1 + QiP^)ZQ 

T = No 7TT-ep”)7iT-pp^77n:'7p2)z3 
(lb) 

for r = 2, the general equation is given with sufficient accuracy by° 

r 
N 

0 

r 

1 + a ^ P 
zo 

(1 + bpa) \ i + ip 
H 0- L i r-J 

(17) 
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After equation (18), equations (14), and (17) can be rewritten. 

n0° p0 a + pp0) - r0 (1 + ^ z' 0" 0 
(18) 

N0L Pj (1 + aPj) " ~ (1 + PPn> z 

r-1 r 
jjl + (pi - p)£ pr L1 + “PrJ 

O' 1 

p. 

- r (1 + pVz 
0 r 

(19) 

(20) 

Plotting the quantities given by the left side or equation (18) 

(19), and (20) versus P^ and extrapolating lating to Pr = 0 will give as the 

intercept 

r= (1 + pV 
0 

(21) 

Dividing the left sides of equations (18), (19), and (20), by the 

intercept will give Z for the respective P’s 
r 

zo at P" = 

No° po (1 + PV 
0 P0 (1 + PP0) 

'0 

Z1 at P1 

N0 pi (1 + “V 

po (1 + 

z 
0 

r 
P 

> . _ 0 r 
Z at P for r - 2 - ———- 

r r 

(22) 

(23) 

r-1 r 1 
1 + oi - (3) ^ pr 1 + QfP 

rj 

PQ (1 + PP0) 

0 

(24) 



* 

* 
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Replacing the products of expansion terms as in equations (15) 

and (16) by a summation as in equations (17) and (24) will cause an 

error of about 1 part per million. Also, if oi = P, then equation (24) 

reduces to equation (13). 

EXAMPLE DISTORTION CALCULATION FOR a = £ ^ 0 

The following example calculations is given to illustrate use of 

equation (13). Assumptions are? 

N0= 2 

Z = 1 + BP 

B = 5 x 10 5 psi 1 

-7 .-1 
a = 1.5 x 10 psi 

P = 100,000 psia 
0 

The calculations are summarized in table 1. The pressures under 

column P are those that would be observed if there had not been any 
c 

distortion. Pressures under column P^ would be observed if ot 1°5 x 10 

psia ^; they are computed from equation (25). 

oiZ P2+P "P = 0 (25) 
cm m c 

The low pressure values of P^ (1 + QfP,m) are identical to the 

corresponding values of Pq, so extrapolation of the appropriate functions 

of Pm (1 + aP ) will give? 
m 

N = 2 from (10) 
0 

“5 ”1 
B = 5 x 10 psia from (12) 

P /Z = 16,666.6667 psia, from (12) 
0 0 



/ 



TABLE 1. - Pressures computed 

1/ 
XT P 

c 
Z 

c 
P 

m 

0 100,000,00000 6.000000000 92,327.98832 

1 14,285 o 71428 1.714285714 14,233.61819 

2 5,263 o15789 1.263157894 5,257.91975 

3 2,325.58139 1.116279070 2,324.67651 

4 1,098.90110 1.054945055 1,098.71008 

5 534.75936 1.026737968 534.71533 

6 263 .85224 1.013192612 263,84166 

7 131.06160 1.006553080 131.05901 

8 65.31679 1.003265840 65 .31615 

9 32.60515 1.001630258 32.60499 

1/ r = number of expansions that have been made 

for a Burnett isotherm when a. - B f 0 

(1 + aP ) 
m 

P (1 + aP ) 
m m 

r 

No 

1.013849198 93,606.65691 1 

1.002135043 14,264.00758 2 

1.000788688 5,262.06661 4 

1.000348701 2,325 .48713 8 

1.000164806 1,098.89115 16 

1.000080207 534.75822 32 

1.000039576 263,85210 64 

1.000019659 131.06159 128 

1.000009797 65.31679 256 

1.000004891 32.60515 512 

N1 [F (1 + QfP )] 1 + BP 
o m m m 

5.616399 5.616399 

1.711681 1.711681 

1.262896 1.262896 

1,116234 1.116234 

1.054936 1.054936 

1.026736 1,026736 

1,013192 1.013192 

1.006553 1,006553 

1.003266 1.003266 

1.001630 1.001630 
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The compressibility factors at P are then given by equation (13), 

as can be seen by computing the Z's from the known value of B. 

EXAMPLE DISTORTION CALCULATION WHEN a ¥ $ ? 0 

Pressures in the following example have been taken from Canfield 

(1); they are for helium at 0° C and have been converted to psia. 

According to Canfield, a = 1.402 x 10 psia 3 (3 = 1.415 x 10 psia , 

and = 1.49952. Canfield makes the distortion correction to NQ, 

which should be equivalent to using equations 18 - 24. 

The error introduced in equation 20 by replacing the product of 

the distortion terms by a summation 

table 2. If r “ 11° 

r= 10 — 

■ 1 + (a - P)S - P 
r= 1 r J 

1 + 
°^P11_ 

= (o = (0.9999830)(1.000010) = 0.9999930 

(. 1 + aPp (1 + ap2) - • •(1 * 0fPn-) _ 1.00184433 _ 
0.9999920 

whiie (1 . pp )(i + |3P2)../!(X+ pP1Q) 1.00185233 

The difference in the two expressions is about 1 part per million; the 

compressibility factor at P^ would, be in error by the same amount. 

DISTORTION CORRECTIONS FOR THE HELIUM RESEARCH CENTER BURNETT APPARATUS 

The distortion coefficients and jacket pressure ratios have been 

computed from Love’s equation (4)i 

AV 

vo 

2 2, 
E(b - a ) 3(1 - ^i)(a‘Pn - b2P.) + 2(1 + p,)b2 (Po - P )] 

Cr 
o 

(1) 



, 

. 



r 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

11 

TABLE 2. - Example calculation of distortion correction when 

r -1 p 

p 
r No a + eo (1 + c*P ) 

r 
E P 

•( r r=l 

7646.755 1.000000 1.001082 _« __ 

4705.042 1.49952 1.000666 1.000660 __ 

2978.306 2.248560 1.000421 1.000418 4705.0 

1919.606 3.371761 1.000272 1.000269 7683.3 

1251.674 5.056023 1.000177 1.000175 9602.9 

822.387 7.581608 1.000116 1.000115 10854.6 

543.044 11.368772 1.000077 1.000076 11677.0 

359.760 17.047702 1.000051 1.000050 12220.1 

238.861 25 .563370 1.000034 1.000033 12579.8 

158.834 38.332784 1.000022 1.000022 12818.7 

105.722 57.480776 1.000015 1.000015 12977.5 

70.420 86.193574 1.000010 1.000010 13083.3 

i B i o 

r-l , 

- Vj 
r=l 

.9999939 

.9999900 

.9999875 

.9999859 

.9999848 

.9999841 

.9999836 

.9999833 

.9999831 

.9999830 
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TABLE 2. - Example ralculation of distortion correction when a £ P ^ 0 

r 
r 2 / 

N Y~ 
0 r 

7 . 4/ 
Z given- 
r 

by Canfield (JL) 

0 7655.029 7655.029 1.26454 1.26434 

1 4708.147 7059.961 1.16624 1.16605 

2 2979.533 6699.659 1.10672 1.10654 

3 1920 o103 6474.128 1.06947 1.06929 

4 1251.877 6329.519 1.04558 1.04541 

5 822.470 6235.645 1.03007 1.02991 

6 543.077 6174.119 1.01991 1.01974 

7 359.772 6133.286 1.01317 1.01300 

8 238.865 6106.194 1.00869 1.00852 

9 158.835 6088.588 1.00578 1.00561 

10 105.722 6076.983 1.00386 1.00370 

11 70.420 6069.751 1.00267 1.00250 

1/ For r = 0, Y = Pq (1 + (3P0); r = 1 , Y = Pj (1 + “h 
); for r = 2, 

Y = P [ 1 + (a - 
r 

r ” 1 
P)£ P ] [ 1 + aP 1 . _1 T -L 

r-1 

2. The average straight line through Y’s for r - 5 to 11 gives 6053.5904 

as the intercept at P — 0. This 
r 

intercept is the quantity given by 1 

p0 a + e V 

3. 

zo 
Z = Y/6053.5904. 

T 

4. 
Canfield's Z's are lower by a constant percent (about 0.016%) which 

indicates that he probably used a slightly different value of Pq/Zq° 
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where AV = change in volume due to pressure 

V = internal volume of a closed cylinder at zero pressure 
0 

E = Young's Modulus 

a = inner radius 

b = outer radius 

p = Poisson's ratio 

P = gas pressure or internal pressure 
g 

P. = jacket pressure or external pressure 

A cross-section drawing of one of the jacketed pressure ceils is 

shown in figure h The two jacketed-cells are constructed of free- 

machining 300 stainless steel; both are identical in size and construc¬ 

tion. For the gas cylinder part of the cells (V^ and V^) 

a = 0.500 inch 

b = 1.250 inch 

6 
E = 29 x 10 psi 

(a = 0.305 

The internal volume of each gas cylinder is about 76 cc. The 

total volume that is not jacketed is estimated to be 2.8 cc; when gas 

is in V. only, the unjacketed volume is estimated to be 1.4 cc. It is 

assumed that this volume has the same expansion coefficient as 1/8 

inch tube (a = .028" and b = 0.0625", E and p same as for the jacketed 

cells). 

As was previously mentioned, the distortion can be eliminated by 

using pressure jackets; equation (1) is used to compute the ratio of 



'■ 

I 



Dimensions at Point inside Radius Outside Radius 

A 
B 
C 

D 
E 

1.4375” 
1.2656" 
0.625" 
0.5625" 
0.500" 

2.000" 

2.000" 
1.250" 
1.250" 
1.250" 

FIGURE I - Cross Section of one of the Jacketed Bombs 
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external, pressure to internal pressure to make AV = 0. These jacket 

pressure ratios are constant for the temperature range of 0 to 150° F 

and are independent of Young’s Modulus, Young’s Modulus is a function 

of temperature; for stainless steels, it can change 5 percent between 

32 °F and 150 °F (6) . 

When the jacket pressure is zero, equation (1) reduces to 

, 2 
2u) a 

2 
E(b - 

+ 2(1 + u,) 
2 

a ) 
P = aP 

g g 
(26) 

The expansion coefficients and jacket pressure ratios for possible 

combinations of the three volumes (V^, 3 and the unjacketed volume) 

are given in table 3, For comparison, the calculations were repeated 

/ 

using the Lame equation (8), which is for long open-end cylinders. 

AV 

V 
0 E (b 

2, 
- a ) 

(1 p) (a2p bV) + 
J 

(1 + p ) b (P 
g 

- P.) 
J J 

(27) 

When the jacket pressure is zero, equation (27) reduces to 

AV 

vo 

2 [(1 - p)a2 + (1 + p)b2] P 

E (b* 
2 

a ) (28) 

In table 3, the expansion coefficient for and/or was com¬ 

puted by substituting a = 0,5", b = 1,25", E = 29 x 1.0 psi, and 

jj, = 0,305 into equation (26), The expansion coefficient for is 

assumed to be that for 1/8 inch tube. The expansion coefficient for 

is taken as 



, 

■ 
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TABLE 3. - Summary of distortion coefficients and jacket pressure ratios 

Love's eq. (1) Lam4 eq. (27) 

Section of Estimated Int 

Apparatus vol., cc 

1/ 
C~) 

0 70° F 

(P./P )‘ 

2/ 3/ 

(P./P )’ 

4/ 

j s AV=0 V0 70° F ^ g AV-0 

JL/ Computed from equation (26), P is in psi. 

2/ Computed from equation (1) . 

3/ Computed from equation (28). P is in psi. 

4/ Computed from equation (27). 

5/ V is the total unjacketed volume; about 1/2 of V 
”3 J 

V 76.0 1/148 X io”7p 0.74000 1.163 X 10~7P 0.70810 

1 

+
 

>
 V2 

152 o0 1/148 X io"7p .74000 1/163 X 1.0“7P .70810 

v^/ 2 o 8 1.227 X 10~7P 1.246 X 10“7P - _ 

3 

V1 +_ 
0 

77.4 1.149 X f-
* 

O
 1 

►x)
 

.75457 1.164 X 10~7P .72208 

vi + 

Z 

V2 + V3 
154 . 8 1.149 X 10 "7P .75457 1.164 X lo"7P .72208 

is associated with V 
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4r4 (1.148 x l(f7P) + (1.227 x 10'7 P) = 1.149 x 10‘7 P (29) 
77.4 ' / / .4 

while that for V^ is 

-|p- (1.148 x lcf7 P) + (1.227 x 10“7 P) = 1.149 x lo"7 P (30) 

The temperature dependence of Young’s Modulus for annealed 303 

stainless steel is not readily available at this time, but it is 

possible that there could be about 5 percent variation in a between 0° 

and 150 °F. 

The jacket pressure ratios are computed by setting AV = 0 in 

equation (1). If the unjacketed volume (V^) was zero, the proper ratio 

of P /P would be 0.74000. Setting the jacket pressure ratio at 0.75457 
j g 

will keep the total volume constant by making the decrease in volume 

of V. + V equal to the increase in the unjacketed volume. 
1 2 

The jacket pressure is measured with a Heise gage: 0 to 10,000 psi 

with 10 psi divisions. It is possible to estimate to within 5 psi. 

Using equation (1), it can be shown that changing the jacket pressure 

by 5 psi will cause the gas pressure to change by about 1 part per 

million. This is less than the sensitivity of the Ruska piston gage 

(5 to 50 parts per million). 

BORE DEFORMATION AT PRESSURES ABOVE THE LIMIT OF PERFECT ELASTICITY 

A recent paper (7) by No L. Svennson gives a theory of stress"Strain 

relationships applicable to large plastic strains in a cylinder. The 

author (Svennson) claims the theory is exact if the true stress-logarithmic 



' 

. 
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strain relationship is known exactly for the cylinder material. This 

theory may be used, to estimate permanent bore deformations due to 

internal pressures greater than P , where P is the pressure required 

to initiate plastic deformation at the bore of a cylinder. Several 

recent papers (2), (7) give: 

P - (^/) (31) 

y {T b2 

where a is the yield strength at 0.01% offset in a simple tensile 
y .Ol/o 

test. 

The initial portion of a stress-strain curve for a particular 

metal can be constructed if one knows Young’s Modulus and yield strength 

at two offsets. The true stress-log strain curve may be computed from 

the relationships: 

a = c (1 + e ) (32) 

e = In (1 + e ) (33) 

where: 

ct is true stress 

o' is engineering stress = load/original area 

e is log (or natural) strain 

67 is engineering strain = AL/L^ 

For small values of s', there is little difference between the engi¬ 

neering stress - engineering strain curve and the true stress-log 

strain curve. 

The nonlinear part of the stress-strain curve can be represented 

by an equation of the form: 



>• 

■ 

. 
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o = 
n 

ce (34) 

Then if a at two offsets is known, the constants c and n can be found. 

The 0.2% yield strength will usually be given; it is desirable to have 

the other offset at some smaller value ~ 0.01.4 or 0.0024. The stress 

strain curve up to the 0.2% yield stress is given byi 

= f(e) = Eg for 0 = e< e at the proportional limit a 

= ceD for e at prop, limit =e = e at. 0.2% offset. (35) 

Svensson gives the strain equations for a cylinder 

tV 
X. = l.+ e! = 1 + — 
i l R 

bore strain - e - ”~T ^ 
a 0- 

1 
surface strain - e, ~_ In 

b 

r- 1 'I? S . 

ri - 

K 

(36) 

(37) 

(38) 

where K = b/a 

Then if a bore strain is assumed, the corresponding eb can be computed 

In equation (36.), is displacement from the original radius, . 

Svensson gives the pressure required to cause a given bore strain as. 

r b , 
P = V “—g , and for <j 

^ 1-e 

n 
ce “ (39) 

P = 
\f3 l- n ' 2(n+1) 

n \ 1 + ” € 
CO 

(- l ) riV' ' Bm ( (3 e) 
(2ml) (2m + n) 

, 2m" 

X 
m= 1 

where B are the Bernoulli numbers; 
m 

(40) 



y 
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B = 1/6, B2 = 1/30, B3 = 1/42, B4 = 1/30, 

The stress-strain function (35) has two segments, so (39) must 

be integrated accordingly. Therefore, when a is given by equation 

(35), (40) must bet 

P = 
(€ e)2 . (€ e)4 

36 ^ 3600 

proporational limit 

(41) 

1 + ^ e 
n 2 (ri+1) 

2 i- 4 
(\|3 s) C <3 e ') 

12 (2 + n) 720(4 + n) 

nl3e4 
30,240(6+n) 

0 at propor¬ 

tional limit 

Example Calculation 

An example calculation of the bore deformation curve for the gas 

cylinder part of the jacketed bombs is given to illustrate the method. 

The initial information is; material is 303 stainless steel, 0.24 yield 

g 
stres = 38,000 psi, Young’s Modulus = 29 x 10 psi, inner radius = 0.5 

inch, outer radius = 1.25 inch. Also, it can be estimated that the 

0.01% yield stress is about 28,500 psi. 

At the 0.2% yield stress, e = 0.00200 + 38 x 10 /29 x 10 = 0.003310; 
3 

and at the 0.01% yield stress, 0 = .0001 + = 0.001083. Sub- 
29 x 10 

stituting into equations (32) and (33): 

a (0.2% offset) = (38,000)(1.003310) = 38,125 psi, e = 0.0033045 

o- (.01% offset.) = (28,500) (1.001083) = 28,530 psi, e = 0.0010822 

Substituting the true stress-natural strain values into equation 

(34) and solving for c and n gives s 

a = 168,100 e 
0.2597 

(42) 



, 
f 

■ 

■ 
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Equation (42) intersects the elastic line, cr = 29 x 10 g, at 

(0.00095145; 27,592 psi). This intersection is assumed to be the 

proportional limit. Equation (42) and the elastic Lines are plotted, 

in fig. 2. 

Substituting equation (42) and Young's Modulus into equation 

(41) : 

P = 
29 x 10 

6 

vfT 

0.00095145 

’b 

(43) 

168,100 0.2597f 1 

j0.2597 

( € e ) 
2.5194 ' 27.12 

6 
2 

+ 
}] 

a 

0.00095145 

To use equation (43), a value of eg is assumed, is computed 

from equation (38), and the pressure required to cause is given by 

equation (43). 

If g is known, u. can be found from equations (36) and (37). The 
a i 

bore pressure-bore deformation calculations are summarized in table 4. 

The bore pressure-bore deformation curve is plotted in fig. 3. 

Equation (31) gives P = 13,800 psi; taking e as the proportional .Limit 
n y a 

in equation (43) gives P = 1.3,400 psi. In fig. 3, the curve becomes 
y 

non-linear at. pressures above P^, and. the deformation becomes inelastic 

(non-reversible). 

The permanent deformation at. the bore can be estimated, by drawing 

a line that is parallel to the elastic portion of the curve in i ig. 3 

through a particular point on the non-linear part of the curve. Tue 

intersection of this line with the bore displacement, axis gives the 
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TABLE 4 o - Summary of calculations for bore deformation at pressures 

e 
a 

above P 
y 

{3 e 
e' a 

0.2597 
e 

a, 

Bore Pressure 

eb P, Psi 
, , i/ 
V‘a, in- 

0.00095145 1.0016494 0.164149 0.00015234 13,373 0.0004121 

.0010 1.0017335 .166285 .0001,6011 14,040 .0004332 

C
M

 
T“H 
o

 
o

 1.0020807 .174346 .00019218 16,513 .0005198 

.0014 1.0024278 .181502 .00022423 18,648 .0006066 

o 0016 1.0027751 .187872 .00025629 20,488 .0006933 

.0020 1.0034701 .199084 .00032046 23,597 .0008667 

.0024 1.0041655 .208738 .00038466 26,122 .0010403 

.0028 1.0048615 .217264 .00044891 28,189 .0012139 

.0032 1.0055580 .224930 .00051319 30,007 .0013876 

1/ Uu is (e')(R.) = displacement from original radius, R. . See eq. (36) . 
— a a ' i 
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Figure 2. - Partial stress-strain curve for 303 stainless steel 
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FIGURE 3. - Bore displacement for the gas cylinder in Fig. 1 
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Cylinder made from 303 stainless steel 

Inner radius = 0.5000 inch 

Outer radius =■ 1.2500 inch 

0.2% yield stress =38,000 psi 

0.01% yield stress = 28,500 psi 

P = 13,800 psi 
y 

The dashed line is the unloading line from 

20,000 psi. The permanent bore deformation 

is 0.54 x 10 ^ inch. 
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permanent deformation at the bore. In other words, it is assumed that 

the bore deformation follows Hooke’s Law when the cylinder is unloaded. 

For examples the unloading line from 20,000 psi is shown in fig. 3. 

If the cylinder, initially annealed, is pressured up to 20,000 psi, 

the bore deformation is given by the solid curve between P - 0 and 

P = 20,000 psi. When the cylinder is depressured, the bore deformation 

is given by the dashed line, which intersects the bore deformation 

A- 
axis at 0.54 x 10 inch. The bore radius would now be 0.500054 inch. 

The normal tolerance in making a cylinder on a lathe is about 0.001 

inch; so for the curve in fig. 3, the pressure required to cause a 

permanent deformation as great as the uncertainty in the original radius 

is about 32,000 psi (by extrapolation). 
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