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American foulbrood (AFB) disease and chalkbrood disease (CBD)
are important bacterial and fungal diseases, respectively, that affect
honeybee broods. Exposure to agrochemicals is an abiotic stressor
that potentially weakens honeybee colonies. Gut microflora
alterations in adult honeybees associated with these biotic
and abiotic factors have been investigated. However, microbial
compositions in AFB- and CBD-infected larvae and the
profile of whole-body microbiota in foraging bees exposed to
agrochemicals have not been fully studied. In this study, bacterial
and fungal communities in healthy and diseased (AFB/CBD)
honeybee larvae were characterized by amplicon sequencing of
bacterial 16S rRNA gene and fungal internal transcribed spacer1
region, respectively. The bacterial and fungal communities
in disordered foraging bees poisoned by agrochemicals
were analysed. Our results revealed that healthy larvae were
significantly enriched in bacterial genera Lactobacillus
and Stenotrophomonas and the fungal genera Alternaria and
Aspergillus. The enrichment of these microorganisms, which had
antagonistic activities against the etiologic agents for AFB and
CBD, respectively, may protect larvae from potential infection. In
disordered foraging bees, the relative abundance of bacterial
genus Gilliamella and fungal species Cystofilobasidium macerans
were significantly reduced, which may compromise hosts’
capacities in nutrient absorption and immune defence against
pathogens. Significantly higher frequency of environmentally
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derived fungi was observed in disordered foraging bees, which reflected the perturbed microbiota

communities of hosts. Results from PICRUSt and FUNGuild analyses revealed significant
differences in gene clusters of bacterial communities and fungal function profiles. Overall, results
of this study provide references for the composition and function of microbial communities in
AFB- and CBD-infected honeybee larvae and foraging bees exposed to agrochemicals.

1. Introduction
Honeybee (Apis mellifera L.), one of the crop pollinators of great socioeconomic importance, is susceptible
to infection by a variety of organisms (including bacteria, fungi, viruses and parasites). Of all the
diseases, American foulbrood (AFB) disease [1] and chalkbrood disease (CBD) [2] are two infectious
diseases that affect honeybee broods and cause substantial economic losses to beekeepers. The spore-
forming bacterium Paenibacillus larvae and the fungus Ascosphaera apis are the causative agents for
AFB and CBD, respectively. The persistent nature of their spores, combined with several honeybee
behaviours (such as honey robbing and adult workers drift) [3,4], management activities (such as the
migration of apiaries, trading of beehive products, reuse and exchange of wax combs across colonies)
and higher within-colony densities in the foraging season [5] had increased both between-colony and
between-apiary transmission of these pathogens.

Besides biotic stressors, abiotic factors such as agrochemicals (including insecticides, fungicides and
herbicides) [6] and residues of in-hive antibiotics [7] can also reduce the fitness of honeybees and increase
colony failure [8].

It has been increasingly recognized that honeybee gut microbiota is involved in hosts’ metabolism,
development and immunity [9]. The relatively constant intestinal microflora plays an important role in
maintaining honeybee health [10]. In a recent study, the profiling of gut and whole-body microbiota
was suggested to be used to distinguish thriving and non-thriving honeybee hives [11]. However,
various factors (such as nutritional deficiencies, pathogens, pesticides and environmental pollution) can
cause the perturbation of microbiota. This may increase hosts’ susceptibility to pathogens, weaken their
abilities in immunomodulation and compromise their health [12]. For migratory apiaries, the microbiota
of honeybees are more inclined to be influenced by exposure to the new environment (novel microbes
and habitats, changed climate, potential agrochemicals etc.), which may sensitize the colony to various
stressors, destabilize the microflora and trigger the outbreak of diseases in potentially unhealthy colonies.

Gutmicroflora alterations associatedwith biotic and abiotic stressors have been investigated in honeybees.
Bacterial communities in workers and pupae from AFB-affected honeybee colonies have been studied [13].
Transcriptomic investigation on larval gut infected by A. apis has been performed in Apis cerana cerana [14].
Recently, the number of culturable aerobic gut bacteria in nurse bees from healthy and CBD-infected
honeybee colonies was compared. The decrease of this number was suggested as a prognostic marker for
the outbreak of CBD [15]. In the meantime, accumulating evidence suggests that pesticides and herbicides,
such as thiacloprid [16], thiamethoxam, fipronil, boscalid [17], nitenpyram [18] and glyphosate [19,20],
could significantly affect the compositions of intestinal bacterial communities in worker bees. Up until now,
the vast majority of microbiota research has focused on the intestinal bacteriobiota of adult honeybees. To
our knowledge, the bacterial and fungal compositions in AFB- and CBD-infected larvae and the profile of
whole-body microbiota in foraging bees exposed to agrochemicals have not been fully studied.

In this study,weexplored (i) thebacteriobiota andmycobiota inAFB- andCBD-affected larvae, respectively,
in two migratory apiaries that reported the sporadic occurrence of AFB and CBD; (ii) the compositional and
structural shifts taking place in the microbiome of foraging bees suspected of being exposed to
agrochemicals in a third migratory apiary. We aimed to characterize and compare the bacterial and (or)
fungal compositions between healthy and diseased larvae, as well as between healthy foraging bees and
disordered ones exposed to agrochemicals. Our results may provide insights into the relationship between
perturbed microbiota and health status of larvae/honeybees under pathogenic and environmental stressors.
2. Materials and methods
2.1. Sample collection
From 5 to 12 April 2019, close to the ending of the full-blooming period of oilseed rape (Brassica napus L.),
three migratory apiaries of western honeybee (Apis mellifera L.) reported sporadic occurrences
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of AFB disease, CBD, and suspected poisoning of agrochemicals, respectively. These three apiaries were

located in the villages of Yangzhou city, Jiangsu Province, China, belonged to different beekeepers, and
were at least 3.5 km apart from each other. Honeybees were all housed in 10-frame deep Langstroth bee
boxes.

In the apiary (migrated from Zhejiang Province, China) suspected of being infected with AFB disease,
larvae showing clinical symptoms of AFB were detected in only three brood frames in one hive. During a
regular afternoon check of colonies, the experienced beekeeper noticed faint and unfavourable odour
emitting from one examined frame. A further examination revealed that the source of the odour was
sporadic larvae (aged from 48 to 96 h old) in brood nests which were darker than the normally
translucent and lustrous larvae. No other AFB-diseased colonies within the apiary were detected after
a thorough visual inspection. The remaining colonies in the same apiary were presumed as healthy.
For larvae sampling, six larvae per healthy colony were collected with sterile tweezers and pooled
together in plastic tubes. Since only one hive showed the existence of AFB-infected larvae, all diseased
larvae were from the same colony. Six diseased larvae were pooled together in one tube as described
for the healthy ones. Larvae collected in the diseased and healthy colonies were designated as group
AFB and group CT.AFB, respectively. After sample collection, the affected hive together with all
equipment potentially related to the diseased colony were burned to limit the spread of pathogens.

In the apiary (migrated from Guizhou Province, China) suspected of being inflicted with CBD, larvae
with mummified chalky appearances were scattered in 11 colonies. The proportion of infected colonies
was approximately 5.1% (11 out of 216). The diseased larvae had white-coloured masses under the
skin. Some were fully covered with a layer of fungal mycelium. Six larvae per diseased/healthy
colony in the same apiary were extracted aseptically from brood cells, which were designated as
group CBD and group CT.CBD, respectively.

In the apiary (migrated from Jilin Province, China) that reported foraging bees (foragers) being
poisoned by agrochemicals, an unusual number of dying foragers were observed in approximately 5%
colonies (10 out of 198 colonies). Disordered foragers exhibited symptoms suspected of pesticide
poisoning which included unnaturally quick movements on the ground and lack of vitality after their
return flight home at approximately 15.45–16.30. Most of them died in close proximity to hives’
entrances. For sample collection, foragers were collected at the entrance of the hive when they returned
to the hives in the afternoon. Three disordered foragers per colony were collected and pooled, which
were designated as group DIS. At the same time, three foragers per colony from colonies exhibiting no
abnormal symptoms within the same apiary were collected, which were designated as group CT.DIS. In
this study, eight replicates were prepared for each group. Samples were immediately freeze-killed by
burying them in dry ice, conveyed to the laboratory and stored at −80°C until DNA extraction.
2.2. Amplicon sequencing of the bacterial 16S rRNA gene and fungal internal transcribed
spacer region

In order to determine potential changes in microbiota compositions, larvae samples from AFB-infected
apiary (group AFB and group CT.AFB) and CBD-infected apiary (group CBD and group CT.CBD)
were subjected to amplicon sequencing of the 16S rRNA gene and internal transcribed spacer (ITS)1
region, respectively. Foragers from group DIS and group CT.DIS were subjected to both 16S rRNA
gene and ITS1 region amplicons sequencing. Sequencing of this study was performed at Novogene
Biological Information Technology Co., Ltd, Beijing, China.

A previously described CTAB/phenol-based extraction protocol [21] was used to extract total
genomic DNA (gDNA) from larvae/forager samples. To this end, forager samples were prepared as
follows. Individual forager was first rinsed in ample sterile water three times to remove the
microorganisms on its body surface. Then, three foragers per colony were pooled together in 50 ml
sterile tubes and homogenized with sterilized distilled H2O (1%, w/v) using a homogenizer. The
obtained homogeneous solution was filtered through sterilized one-layer gauze to remove the floating
slimy materials and then centrifuged at 3500g for 25 min. The resulting pellets, which contained
microbes from the guts and other parts of honeybees, were collected for further DNA extraction.

Primer pairs (515F: 50-GTGCCAGCMGCCGCGGTAA-30; 806R: 50-GGACTACHVGGGTWTCTAAT-30)
and (ITS5-1737F: 50-GGAAGTAAAAGTCGTAACAAGG-30; ITS2-2043-R: 50-GCTGCGTTCTTCATC-
GATGC-30) were used to amplify the hyper-variable V4 region of the 16S rRNA gene of bacteria and
the ITS1 region of fungi, respectively. PCR amplifications were conducted in a total reaction volume of
25 µl, using 12.5 µl of Phusion® High-Fidelity PCR Master Mix with GC Buffer (New England Biolabs,
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Beijing, China), 2.5 µl of each primer (5 µM) and approximately 10 ng of template gDNA. The procedures

for PCR amplification were as follows: an initial denaturation step at 98°C for 2 min, followed by 25 cycles
of 98°C for 30 s, 55°C for 30 s and 72°C for 30 s, ended with a final extension step at 72°C for 5 min.
Amplicons were visualized by 2% agarose gel electrophoresis and purified using a Thermo GeneJET
Gel Extraction Kit (Thermo Fisher Scientific, Shanghai, China). The sequencing library was constructed
by using Ion Plus Fragment Library Kit (48 rxns, Thermo Fisher Scientific) according to the
manufacturer’s instructions. After being quantified using a Qubit 2.0 Fluorometer (Thermo Fisher
Scientific) and the assessment of the size on an Agilent Bioanalyzer 2100 system (Agilent Technologies,
Santa Clara, CA), libraries were pooled in equimolar amounts and subjected to sequencing on an Ion
S5TMXL (Thermo Fisher Scientific) platform according to standard protocols.

2.3. Bioinformatical analyses of sequences
The brief processing stepswere as following: Cutadapt (v. 1.9.1, http://cutadapt.readthedocs.io/en/stable/)
was used to filter out reads of low quality using the default parameters. Sequencing data from different
samples were de-multiplexed according to the barcode sequences. Raw data were obtained after trimming
the barcode and primer sequences. Then, clean reads were acquired after the removal of chimeric
sequences (https://github.com/torognes/vsearch/). Clean reads were clustered into operational
taxonomic units (OTUs) at an identity threshold of 97% similarity by using the UPARSE software (v.
7.0.1001, http://www.drive5.com/uparse/). The tag sequence with the highest abundance was selected as
the representative sequence of each OTU, which was used to perform taxonomic assignment by using the
SILVA132 database (https://www.arb-silva.de/) and the fungal Unite database (v. 7.2, https://unite.ut.
ee/) to describe the taxonomic bacterial and fungal composition of tested samples, respectively.

Analyses of alpha- and beta-diversity were performed with QIIME (v. 1.9.1) software. Indexes,
including the observed species, Chao1 and ACE (describing community richness), the Shannon index,
the Simpson index (describing community diversity), the Good’s coverage and the PD whole tree index
were analysed for alpha-diversity differences between groups from the same apiary. To investigate
patterns of microbial community diversity, unweighted and weighted UniFrac distances and Bray–
Curtis distance matrices were calculated using QIIME. The resulting dissimilarity matrices were further
analysed via non-metric multidimensional scaling (NMDS) to visualize the clustering of samples by
using R package ‘vegan’. Hypothesis testing was carried out using permutational multivariate analysis
of variance (PERMANOVA) (‘adonis’ function in the vegan package) based on Bray–Curtis dissimilarity
distance matrices to determine differences in microbial communities between groups [22].

Biomarker features in each group were screened by Metastats (version 1.0) and LEfSe was used for the
quantitative analysis of biomarkers within different groups [23]. The contributions of the microorganisms
to the differences between groups were evaluated using the linear discriminant analysis (LDA) score and
a LDA score larger than 4 indicated a significantly higher relative abundance in the corresponding group
( p < 0.05).

PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States)
(http://picrust.github.io/picrust) was used for predictive functional genomic analyses of bacterial
communities. Bacterial function predictions were categorized into Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. FUNGuild (https://github.com/UMNFuN/FUNGuild) database was
used for fungal functional prediction [24].

2.4. Statistical analysis
All statistical analyses were performed using R (v. 2.15.3) software. Student t-test and non-parametric
Wilcoxon test were performed for comparisons between two groups from the same apiary. All p-values
were adjusted with the Benjamini and Hochberg method to reduce the false discovery rate.
3. Results
3.1. General information about sequencing
Our sampling regimen resulted in a total of 62 distinct barcoded amplicons (two samples from
group CT.CBD failed to produce specific bands on gel and were excluded from the study). A total of
2 528 446 and 2 251 474 clean reads were obtained from high-throughput sequencing of 16S rRNA and
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ITS1 region amplicons, respectively. The number of sequences per sample in each group ranged

from 69 577 to 81 754. General information about the sequencing results are listed in electronic
supplementary material, file S1.

The number of OTUs detected in larvae from two diseased groups (214 in group AFB and 70 in group
CBD) was significantly ( p < 0.05) lower than that detected in larvae from the corresponding healthy
colonies (879 in group CT.AFB and 473 in group CT.CBD). In samples from group DIS, ITS amplicons
sequencing yielded an average of 421 OTUs, which was significantly ( p = 0.047) higher than the
number (320) in group CT.DIS. Similarly, results of the 16S rRNA amplicons sequencing showed that
more OTUs were detected in group DIS (474) than that in group CT.DIS (358) (p = 0.342).

3.2. Overall microbiota profile of different groups
Our results revealed significant changes in the taxonomic composition of microbiota between diseased
and the presumed healthy groups.

In terms to bacterial communities, the most abundant phylum in larvae from group CT.AFB was
Proteobacteria (54.49%), followed by Firmicutes (26.64%) and Bacteroidetes (11.43%). In group AFB,
the predominant phylum shifted to Firmicutes (98.43% including 97.75% of the genus Paenibacillus),
while the relative abundance of Proteobacteria was significantly decreased to 1.28% ( p = 0.002). When
group DIS was compared with group CT.DIS, both groups were dominated by Proteobacteria (54.26%
and 67.07%, respectively). A significant alteration was observed in the composition of the phylum
Firmicutes with foragers in group DIS had significantly higher relative abundance (34.51%) than that
in group CT.DIS (19.04%) ( p = 0.038).

Concerning the fungal communities, Ascomycota was the most abundant phylum in larvae from
group CT.CBD (26.96% including 14.37% of the genus Ascosphaera), followed by Basidiomycota
(2.83%). In the diseased group CBD, a strong dominance of Ascomycota was observed (99.94%
including exclusively the genus Ascosphaera). Similar trends of increased relative abundance of
Ascomycota and decreased proportion of Basidiomycota were also observed in disordered foragers.
Foragers from group DIS had a significantly higher ( p = 0.001) proportion of Ascomycota (23.57%)
when compared with that in group CT.DIS (1.90%), accompanied by a significant reduction (p = 0.006)
in the abundance of Basidiomycota (from 7.27% in group CT.DIS to 1.70% in group DIS). Community
structure with regard to the relative abundance of top 10 taxa at the genus level in different groups is
shown in figure 1.

3.3. Microbial community differences between groups from the same apiary
Results from the analysis of alpha-diversity (figure 2) revealed significant decreases in the number of
observed species and the Shannon index in group AFB and group CBD, which indicated that the
bacterial/fungal communities in diseased larvae were significantly less rich and less even than that in
healthy larvae.

When group DIS was compared with group CT.DIS, significant differences in alpha-diversity indexes
were observed in the fungal community composition. Disordered foragers had significantly higher
fungal community richness. Results based on 16S rRNA sequencing showed that alpha-diversity
indexes in group DIS, including the observed species, Shannon and Simpson indexes, Chao1, ACE
and PD whole tree, all exhibited a trend of statistically non-significant increase in value when
compared with group CT.DIS. Our results indicated that disordered foragers may have more
opportunistic or transient colonizers. Detailed results of the alpha-diversity analysis are shown in
electronic supplementary material, file S2.

The detailed changes in the microbes between different groups from the same apiary were further
revealed by LEfSe analysis (figure 3).

At the genus level, group AFB showed a significant enrichment of Paenibacillus (Paenibacillus larvae)
with an LDA score of 5.67 ( p < 0.001), while group CT.AFB was significantly enriched in
Stenotrophomonas ( p = 0.0008), Bombella ( p = 0.040), Lactobacillus (Lactobacillus acetotolerans, p = 0002),
unidentified Lachnospiraceae ( p = 0006) and Gallicola ( p = 0.016) with LDA scores of 5.22, 4.50, 4.38, 4.29
and 4.18, respectively. These differences were probably responsible for the reduction in alpha-diversity
in group AFB as compared with group CT.AFB. When group DIS and group CT.DIS were compared,
Firmicutes was significantly enriched in group DIS ( p = 0.036, LDA score 4.92), while Spiroplasma
and Gilliamella were significantly enriched in group CT.DIS ( p < 0.030) with LDA scores of 4.73 and
4.82 respectively.
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Ascosphaera (Ascosphaera apis) was selectively enriched in group CBD with an LDA score of 5.57
( p = 0002). Alternaria (Alternaria alternata) and Polythrincium (Polythrincium trifolii), with an LDA score
of 4.13 and 4.19, respectively, were the two genera significantly enriched in group CT.CBD. When
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Figure 3. Significantly different taxa between groups from the same apiary identified by LEfSe. (a, c, e and g) LefSe analysis (the
threshold of the LDA score was 4.0). (b, d, f and h) Taxonomic cladogram based on the results of LEfSe analysis. The size of the
circles was based on relative abundance. Yellow represents no significant difference in taxa; green and red represent significantly
different taxa in the correspondingly colour-labelled groups. Only taxa with greater than 0.1% proportional abundance are
visualized. (a, b, c, d), based on 16S rRNA sequencing data. (e, f, g, h), based on ITS sequencing data.
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group DIS and group CT.DIS were compared, LEfSe identified Alternaria (Alternaria alternata) and
Cladosporium (Cladosporium chasmanthicola), with an LDA score of 5.06 and 4.34, respectively, as the
significantly enriched genera in group DIS ( p < 0.021).

Furthermore, non-metric multidimensional scaling (NMDS) based on Bray–Curtis dissimilarities
revealed a clear separation of samples between diseased larvae (group AFB and group CBD) and the
corresponding healthy larvae (group CT.AFB and group CT.CBD respectively), indicating that the
microbial community compositions between these groups were different from each other (figure 4).
Consistently, pairwise PERMANOVA comparisons also indicated that there were significant differences
in microbial communities between larvae from two AFB-related groups (F = 16.805, R2 = 0.54553,
p = 0.001) and larvae from the two CBD-related groups (F = 23.191, R2 = 0.65901, p = 0.001).

Concerning group DIS and group CT.DIS, the NMDS plot showed some separation in fungal
communities, but no separation in bacterial communities (overlapped). Results from the PERMANOVA
analyses demonstrated that comparisons between foragers in these two groups were significantly
different in fungal communities (F = 2.5537, R2 = 0.15427, p = 0.029) and bacterial communities
(F = 2.3877, R2 = 0.1457, p = 0.005). Taken together, these results suggested that the intra-group differences
were much smaller than the inter-group differences. Meanwhile, the relatively smaller R2 value indicated
that other sources of variation may exist besides the composition of bacterial and fungal communities.

3.4. Predicted microbial function classification via PICRUSt and FUNGuild
Results from the PICRUSt analysis indicated that changes in the bacterial taxa in AFB-diseased larvae
altered the microbiota function. The analysis of KEGG functional classes (level 3) revealed significant
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differences in functional gene categories between group AFB and group CT.AFB. The amino sugar and
nucleotide sugar metabolism, sporulation and glycolysis/gluconeogenesis gene clusters were
significantly more abundant in AFB-diseased larvae. On the other hand, diverse gene clusters,
including DNA repair and recombination protein, purine metabolism, ribosome, secretion system,
peptidases, oxidative phosphorylation, ribosome biogenesis, chaperones and folding catalysis were
more abundant in larvae from group CT.AFB. When group DIS was compared with group CT.DIS,
differentially enriched genes included energy metabolism and galactose metabolism-related genes, and
genes involved in the biosynthesis of lipopolysaccharide and streptomycin (figure 5a).

Results from the FUNGuild analysis indicated that the relative abundance of the animal pathogen in
group CBD was significantly higher than that in group CT.CBD. Similarly, group DIS had significantly
more animal and plant pathogen-related function guilds than group CT.DIS. In addition, FUNGuild
analysis also suggested that an unassigned function guild was significantly higher in relative
abundance in both group CT.CBD and group CT.DIS when compared with their corresponding
diseased groups (figure 5b).
4. Discussion
In the present study, significant differences in microbial compositions were observed between larvae
from healthy and diseased colonies. In healthy larvae, the top 10 bacterial and fungal genera
accounted for 58.29% and 22.92% of the whole microbial composition in group CT.AFB and group
CT.CBD respectively. The rest was mainly composed of low-abundance (relative abundance less than
0.1%) microorganisms, which were actually the main part that contributed to the community
diversity. In infected larvae, the pathogenic P. larvae and A. apis comprised the overwhelming
majority of the bacterial and fungal microbiota in larvae from group AFB (96.48%) and group CBD
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(99.89%) respectively. The abundance of other microorganisms was too low to be detected. As a result,
the community richness and diversity were significantly reduced in diseased larvae.

In the meantime, our results also demonstrated the presence of P. larvae (3.75%) and A. apis (14.44%) in
the presumed healthy larvae from group CT.AFB and group CT.CBD respectively. A detailed look into the
data revealed that the relative abundance of P. larvae in one sample in group CT.AFB was as high as 23.28%,
while this proportion in the other seven larvae samples in group CT.AFB averaged only 0.96%. Similarly, the
frequency of A. apis detected in group CT.CBD was mainly contributed by three larvae samples (averaged
28.17%), while the other three samples averaged only 0.71%. Our present results indicated that P. larvae and
A. apis may persist as asymptomatic infections in these presumed healthy colonies.

In fact, detection of P. larvae in brood and adult honeybee samples in asymptomatic colonies was not
uncommon [25–27]. P. larvae may exist as a pathobiont in the microbiota of worker bees, from where it is
transmitted to broods [13]. Colonies infected by P. larvae but without manifested clinical symptoms could
be attributed to variations in hosts’ tolerance, pathogens’ virulence, the density of colonies [28] and other
abiotic or even random factors [29]. Similarly, A. apis could be detected in hives showing no symptoms of
infection [30] and resided in hives asymptomatically as inactive spores.

Data from high throughput sequencing of 16S rRNA gene and ITS1 region amplicons enabled us to
analyse the dynamic structure of microbial composition in larvae under different physiological
conditions. The bacterial communities observed in honeybee larvae (second to fourth instars) in this
study were consistent with previous results which demonstrated that honeybee larvae were
dominated by Acetobacteraceae Alpha 2.2 (first and second larval instars) and Lactobacillus (later
instars) [31]. Our results showed that larvae in group CT.AFB had a significantly higher proportional
abundance of Lactobacillus (Lactobacillus acetotolerans), Lactobacillaceae (family) and Lactobacillales
(order) than AFB-diseased larvae. As is known, Lactobacillus, an important genus within lactic acid
bacteria (LAB), is beneficial to its hosts through the production of antimicrobial metabolites and
peptides, as well as through the modulation of immune response [32]. Accumulated results have
demonstrated that Lactobacillus isolated from larvae or the gut of adult A. mellifera, exhibited
antagonistic activity against the growth of P. larvae [33]. Results from both in vitro and in vivo studies
also demonstrated that Lactobacillus could stimulate the innate immune response in honeybees [34]
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and inhibit the growth of P. larvae [35,36]. A recent study suggested the usage of Lactobacillus as a
probiotic approach to reduce pathogen load and improve honeybee survival towards P. larvae
infection [37]. Other genera that existed in significantly higher abundance in larvae from group
CT.AFB included Stenotrophomonas and Bombella. The former was reported to present antagonism with
P. larvae [38]. The latter, belonging to a clade of acetic acid bacteria (AAB) within the family
Acetobacteraceae Alpha 2.2, could increase larval fitness [39] in such aspects as carbohydrate
utilization, host–microbe interaction and resistance to pathogens [40,41]. Based on these results, we
proposed that the presence of much more abundant Lactobacillus, Stenotrophomonas and Bombella in
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larvae from group CT.AFB could protect the larvae from succumbing to AFB infection, which may partly

explain the asymptomatic status in the presence of P. larvae.
Concerning the fungal composition in larvae from group CBD and group CT.CBD, the relative

abundance of genus Alternaria (Alternaria alternata) and family Aspergillaceae in larvae from group
CT.CBD were significantly higher than that in group CBD. Genus Aspergillus was also present in
much higher abundance (not of statistical significance) in group CT.CBD compared with that in group
CBD. Recent research demonstrated that Alternaria and Aspergillus had antagonistic activities against
CBD [42]. Their abundant presence in larvae from group CT.CBD may provide larvae with potential
protection against CBD infection.

In the present study, the predominance of A. apis in larvae from group CBD was expected since larvae
sampled in this group showed clinical symptoms of CBD. However, most ‘unhealthy’ larvae in group
AFB didn’t have obvious symptoms. Our results indicated that the growth of other bacteria in larvae
had been significantly inhibited by P. larvae before the initiation of typical symptoms of AFB disease,
which was most likely due to the capacities of P. larvae to produce various secondary metabolites
(including siderophores, paenilarvins, paenilamicins, sevadincin and bacteriocin) to enhance its ability
to kill potential microbial competitors [43,44]. Furthermore, the significant decline of non-pathogenic
bacteria, which were capable of stimulating the innate immune response of honeybee larvae [45],
made larvae more vulnerable to potential pathogens.

It should be noted that testing positive for the presence of P. larvae and A. apis does not necessarily
imply the final outbreak of the disease, which actually depends on the genetic background
(susceptibility) [46] and general health status (co-infection with other pathogens) of the honeybees
[47], the number and virulence of contaminated pathogens (or spores) [48], and environmental
conditions [49]. A variety of stressors, including malnutrition, the presence of parasites, exposure to
pesticides and disturbed gut microbiome [50], might increase larvae’s susceptibility to pathogens and
trigger disease emergence.

In this study, three migratory apiaries housed their colonies in a region with oilseed rape
being the principal flora from the beginning of March to the middle of April. We proposed that the
lack of varied floral resources throughout this season, together with the reduction of flowers
(the oilseed rape flowers started fading) might enhance these infectious risks and lower the threshold
for the occurrence of diseases in potentially unhealthy colonies. The other possibility was that
honeybees in these migratory apiaries had not been treated with any medicinal treatments for
more than one month, which might lead to the appearance of symptoms originally masked by
prophylactic antibiotic treatment. Under such circumstances, improved management and sanitation
practices were of great importance to keep these diseases in check [51] and to achieve localized
extinction of the disease [52]. In fact, the two AFB- and CBD-infected apiaries stopped honey
production immediately after the detection of diseased larvae. They focused on such measures as
keeping hives clean and well ventilated, enhancing nutritional supplements and avoiding chemical
exposure, which proved to be successful to prevent outbreaks of the diseases and future losses
stemming from weakened colonies.

When group DIS was compared with group CT.DIS, variations in the relative abundance of certain
bacterial and fungal taxa that made up the microbiota of foragers were observed.

Among the bacterial community members harboured in the gut of adult honeybees, six taxa
(Gilliamella, Lactobacillus, Snodgrassella, Bartonella, Frischella and Bifidobacterium) were considered to be
the core members represented in high proportions [53]. These bacteria were the major gut symbionts
and crucial to the health of honeybees with regard to their beneficial effects on nutrient acquisition,
pathogen defence and immunity [54]. In the present study, six core gut taxa were all identified in
foragers from both group CT.DIS and group DIS, which altogether, accounted for 62.03% and 75.01%
of the whole bacterial communities, respectively. In previous reports, the proportion of these core
bacterial members in the gut of adult honeybees accounted for over 95% of the community [55,56].
We attributed this difference to different sampling methods. In this study, the whole-body microbiota
of foragers was analysed, not only the intestinal flora, but also the microorganisms in other parts of
honeybees (such as the mouth parts and the hypopharyngeal glands), the inclusion of which may
reduce the proportion of the top 10 microbes.

Our results showed that none of the core bacterial members was eliminated from colonization due to
the suspected toxicity of agrochemicals. Except for the genus Snodgrassella, which remained stable in
foragers (8.59% and 8.04% in group CT.DIS and group DIS, respectively), these beneficial bacteria
were different in their proportional abundance between foragers from different groups. Our results
showed that the relative abundance of Gilliamella experienced a significant reduction (p = 0.018) in
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disordered foragers (21.48% and 6.28% for group CT.DIS and group DIS, respectively). Previous research

demonstrated that Gilliamella contributed to pectin degradation and the breakdown of pollen walls and
was involved in biofilm formation in the gut of honeybees [57]. Gilliamella apicola, a dominant gut
bacterium in honeybees exclusively catabolizing carbohydrates [58], was capable of using sugars
harmful to honeybees and breaking down other potential toxic carbohydrates [59]. The significant
decrease in the relative abundance of Gilliamella in disordered foragers may compromise hosts’ dietary
tolerances, weaken hosts’ capacities in absorbing nutrients from pollen and sustaining
immunocompetence against the invasion of opportunistic pathogens.

Besides Gilliamella, genus Spiroplasma (Spiroplasma montanense) also existed in significantly higher
proportional abundance in foragers from group CT.DIS. Among the eight forager samples in group
CT.DIS, the relative abundance of Spiroplasma montanense (S. montanense) in two samples averaged
35.40%, while the other six samples averaged only 0.57%. Given the close association of spiroplasmas
with flowers [60], together with the great variation in the frequency of S. montanense in foragers
within group CT.DIS, we proposed that S. montanense carried by foragers were more likely to be from
forage sources (i.e. nectar and pollen) than from the gut. On the other hand, S. montanense was not
the etiologic pathogens (Spiroplasma melliferum and Spiroplasma apis) that caused spiroplasmosis (also
referred as ‘May disease’) in honeybees [61]. Thus, the disordered foragers sampled in our study were
less likely to have suffered from spiroplasma infection despite exhibiting similar symptoms of
crawling bees on the ground in front of the hive as honeybees infected with spiroplasmosis [62].

As for the proportion of Lactobacillus, Bartonella, Frischella and Bifidobacterium, they all showed a trend
of increase in disordered foragers, changed from 17.95%, 6.29%, 6.02% and 1.7% in group CT.DIS to
32.29%, 11.70%, 12.18% and 4.53%, respectively, in group DIS. However, due to the greater variability
among forager samples, these differences were of no statistical significance. Taken together, the lack of
significantly enriched bacterial pathogens, together with the non-significantly increased proportion of
total beneficial bacteria in foragers from group DIS, confirmed our conclusion that the observed
disorder in foragers were unlikely driven by the prevalence of pathogenic bacteria.

As for the mycobiota (fungal community) in foragers from group DIS and group CT.DIS, our current
results demonstrated that foragers in both groups were dominated by the fungal phylum Ascomycota,
followed by Basidiomycetes, which was consistent with the previous research [63,64]. Furthermore,
foragers from group CT.DIS were significantly higher in the relative abundance of species
Cystofilobasidium macerans than foragers from group DIS. Previous reports demonstrated that strains from
genus Cystofilobasidium were producers of pectinase, including polygalacturonase [65] and pectin lyase
[66], which were important for the degradation of the polysaccharide walls of pollen grains.
Cystofilobasidium macerans was also capable of secreting diverse extracellular enzymes and exhibited
cellulytic and proteolytic [67] activities besides the pectinolytic activity. The significant reduction in the
relative abundance of C. macerans in disordered foragers may impair their capacities in nutrient utilization.

On the other hand, a significantly higher frequency of Alternaria (Alternaria alternata) and Cladosporium
(Cladosporium chasmanthicola) was observed in disordered foragers. Alternaria alternata was one of the most
common phytopathogens capable of producing phytotoxins, mycotoxins and other secondary toxic
metabolites [68,69]. Cladosporium was commonly found in pollen [70] and existed in a beehive
environment [71]. The existence of these environmentally derived fungi might reflect the features of the
foraging sites. It was worthy to note that disordered foragers exhibited greater taxonomic diversity
(especially more diverse mycobiota) compared with foragers in group CT.DIS, which reflected the
perturbed microbiota communities and imbalanced interactions between them.

Our results indicated that the microbiota changes in foragers from group DIS were more likely caused
by transient floral and airborne microbes to which foragers were exposed in the local environment. In the
current study, we correlated the unusual death of foragers with agrochemical exposure based on the
following facts: (i) no history of viral disease outbreak in the apiary, (ii) no prevalence of pathogenic
bacteria or fungi detected, and (iii) death of foragers stopped when beekeepers transferred the apiary
to another location 13 km away. However, we do not know whether the alteration of microbiota
happened first which led to the increased sensitivity of foragers to potential agrochemicals, or the
exposure to agrochemicals resulted in the disturbances of microbiota communities in foragers. In
either way, we are still unable to associate their presence with the neurological symptoms observed in
disordered foragers before further investigations are performed.

All in all, the current study delineated the alterations of bacterial and fungal communities in
honeybee larvae under the stress of AFB and CBD, as well as in foragers poisoned by agrochemicals.
Our results demonstrated that the composition of microbiota is closely related to the health status of
their hosts.
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