DRAFT

ENVIRONMENTAL STATEMENT

PROPOSED 20-YEAR PLAN OF MINING AND RECLAMATION, WESTMORELAND RESOURCES TRACT III, CROW INDIAN CEDED AREA,MONTANA

u.S. Department of interior GEOLOGICAL SURVEY

U.E. helethey

DIRECTOR

BLM Library

D-553A, Building 80
Denver Federal Contos
P. O. Box 25047

SUMMARY
Denver, CO 80225-0047
Draft Environmental Statement
Department of the Interior, U.S. Geological Survey

1. Type of Action:

(X) Administrative
() Legislative
2. Description of Action:

Approval of a 20 -year plan for strip mining of 190.6 million tons of coal for shipment from Montana and reclamation of the site, Westmoreland Resources Lease 1420-0252-4088, Crow Indian Ceded Area, Bighorn County, Montana. Coal ownership is by the Crow Tribe of Indians except for that in Sec. 36 which is owned by the State of Montana. Plan proposes extension eastward of pressentry approved Absaloka Mine in Sec. 25 and $26, \mathrm{~T} .1$ N., R. 37 E., into privately owned 1 and in Sec. 24 and 25, and State owned land in Sec. 36, T. 1 N., R. 37 E., and privately owned land in Sec. 19, 30 , and $31, \mathrm{~T} .1 \mathrm{~N}$. , R. 38 E. The plan would ultimately cover 2151 acres in the lease area known as Tract III.
3. Summary of Environmental Impacts
(a) The existing land surface, vegetation, and all aquifers above the base of the Robinson Coal in the proposed mine area will be destroyed.
(b) Wildlife habitats will be disrupted until disturbed areas are revegetated and human intrusions terminated.
(c) Ground and surface water quantity and quality, livestock grazing, scenic views and open space qualities will be degraded and restricted until revegetation is successfully completed.
(d) Dust and noise will be increased locally until recontouring and revegetation is successfully completed.
(e) Livestock and wildlife forage will be reduced until revegetation is successful.
(f) Employment for the Crow Indians and other citizens of Bighorn County will be increased.
(g) Lax and royalty income for the Crow Tribe, the State of Montana, and Bighorn County will be increased.
4. Alternatives Considered:
(a) Approve mining plan.
(b) Approve mining plan after modification.
(c) Reject mining plan.
(d) Prevent further development of the lease.
(e) Mine coal only on State owned 1 and.
5. Review and Coordination:

Environmental Protection Agency
Federal Energy Administration
Energy Research and Development Administration
Federal Power Commission
Department of the Army (Corps of Engineers)
Department of Health, Education and Welfare
Department of Labor
Clearing Houses for the States of Montana, Wyoming, North Dakota, South Dakota, Minnesota, Iowa, Wisconsin, and Illinois
Crow Tribal Council
Department of Commerce
Interstate Commerce Commission
Department of Transportation
Department of Interior
Bureau of Land Management
Bureau of Indian Affairs
Bureau of Outdoor Recreation
Fish and Wildlife Service
Bureau of Reclamation
Bureau of Mines
National Park Service
Mining Enforcement and Safety Administration
6. Date Made Available to CEQ and public:

TABLE OF CONTENTS

Page

I. DESCRIPTION OF THE PROPOSAL 1
A. Introduction 1
B. Purpose 3
C. Site Location 4
D. Permit and Lease Terms 6
E. Description of the Coal 7
F. Current Operations 11
G. Surface Facilities and Equipment 14
H. Mining Plan 17
I. Proposed Mining Procedures 24
J. Reclamation Plan 26
K. Alternate Mine Areas 33
L. Mine Employment 33
M. Transportation and Sale of the Coal 34
II. DESCRIPTION OF THE ENVIRONMENT 36
A. General Description of the Area 36
B. Climate 37
C. Air Quality 57
D. Sound 60
E. Physiography and Topography 69
F. Geology 71
G. Hydrology 75

1. Surface Water 75
a. Quality 85
b. Sediment 101
c. Existing Water Pollution Sources 104
2. Ground Water. 105
a. Methods of Monitoring 105
b. Occurrence and Quantity 106
c. Quantity and Use of Water 130
d. Quality 131
H. Soils 141
I. Vegetation 155
J. Fish and Wildiife 167
K. Non-Coal Mineral and Mining Activity 182
L. Land Use 183
M. Recreation 186
N. Culture 187
O. Scenic-Visual Resources 190
P. Archeological Sites 194
Q. Historical Sites 195
R. Socio-Economic Conditions 199
3. Todays Communities 199
4. Population Change 202
5. Age Distribution. 205
6. The Economy 206
7. Income 207
8. Public and Private Services 218
9. Land Use Planning Program 229
III. ENVIRONMENTAL IMPACT OF THE PROPOSAL 236
A. Air Quality 236
B. Sound 241
C. Physiography and Topography 244
D. Geology 246
E. Hydrology 247
10. Surface Water 247
11. Ground Water. 251
12. Water Quality 255
F. Soils 267
G. Vegetation 271
H. Fish and Wildiife 275
I. Mineral Depletion 282
J. Land Use 284
K. Recreation 290
L. Transportation and Use of the Coal 291
M. Risk of Accidents 295
N. Culture 297
13. Scenic-Visual Resources 299
P. Archeological and Historical Sites 300
Q. Socio-Economic Impacts 301
14. Employment Impacts 302
15. Income Impacts 304
16. Population Impacts 308
17. Population Related Impacts 310
18. Public Revenue Impacts 312
19. Cultural Change 313
20. Inter-Group Relations 313
IV. MITIGATING MEASURES INCLUDED IN THE PROPOSED
ACTION 315
A. Environmental Controls and Legislation 315
B. Lessee's Reclamation Plan 316
C. Air Pollution Control 318
D. Noise Control 320
E. Water Quality 321
F. Waste Management 330
G. Fish and Wildlife 332
H. Monitoring Plans 334
I. Scenic-Visual Resources 338
J. Archeological and Historical Sites 339
K. Safety 340
V. ADVERSE IMPACTS THAT CANNOT BE AVOIDED IF THE PROPOSAL IS IMPLEMENTED 342
A. Air Quality 342
B. Noise 344
C. Physiography and Topography 345
D. Geology 346
E. Hydrology 347
21. Surface Water 347
22. Ground Water 348
23. Water Quality 348
F. Soils 353
G. Vegetation 354
H. Fish and Wildlife 355
I. Depletion of Natural Resources 357
J. Land Use 358
K. Recreation. 359
L. Transportation 360
M. Scenic-Visual Resources 361
N. Archeological and Historical Sites 362
VI. THE RELATIONSHIP BETWEEN SHORT-TERM USES OF MAN'S ENVIRONMENT AND THE MAINTENANCE AND ENHANCEMENT OF LONG-TERM PRODUCTIVITY 363
VII. IRREVERSIBLE AND IRRETRIEVABLE COMMITTMENTS OF RESOURCES 368
A. Coal 368
B. Other Minerals 369
C. Aquifers 370
D. Soils 371
E. Vegetation. 372
F. Fish and Wildiife 373
G. Archeological and Historical Values 374
H. Energy, Fuels and Materials 375
I. Human Resources 376
VIII. ALTERNATIVES TO THE PROPOSED ACTION 377
A. Introduction 377
B. Approval of the Mining Plan as Submitted 379
C. Approve Mining Plan after Modification. 380
D. Reject the Mining Plan. 384
E. Prevent Further Development of the Lease. 385
F. Mine Coal only on State Owned Land. 386
IX. CONSULTATION AND COORDINATION WITH OTHERS. 387
REFERENCES 390
APPENDIX A - Data on Climate and Air Quality. A-1
APPENDIX B - Data on Sound B-1
APPENDIX C - Data on Water Resources C-1
APPENDIX D - Data on Soils, Vegetation, and Land Use D-1
APPENDIX E - Data on Fish and Wildife E-1
APPENDIX F - Data on Socio-Economics F-1
24. Location map of Westmoreland leases Tract II and Tract III 5
25. Geologic cross-section of lower strata in the Fort Union Formation. 8
26. In place mining ratio of proposed mine area. 10
27. Mine plant layout 15
28. Mining sequence in proposed mine area 18
29. Alternate mine areas and proposed relocation of roads and power lines 21
30. Surface drainage and water control facilities 23
31. Generalized cross-section through mine pit 27
32. Estimated post-mining topography of the proposed mine area 32
33. Mean monthly total precipitation, Colstrip, Montana 39
34. Mean monthly snowfall, Colstrip, Montana 41
35. Monthly means and extremes in temperature, Colstrip, Montana 46
36. Annual percent frequency of surface wind direction, all stability classes, Colstrip, Montana 50
37. Pre-miing topography of proposed mine site and vicinity. 70
38. Critical geologic aspects of the proposed mine area. 72
39. Geologic cross-section of proposed mine area 74
40. Map of Tullock and Sarpy Creek basins showing location of surface-water data collection sites 79
41. Flood magnitudes and recurrence intervals for selected sites in the Sarpy and Tullock Creek drainages 83
42. Location of surface and ground-water monitoring stations, Tract III 93
43. Levels of sulfate, bicarbonate and total dis- solved solids (TDS) along Sarpy Creek 96
44. Location of water wells and monitor wells in Tract III 107
45. Location of springs in Tract III 108
46. Generalized contours on the potentiometric sur- face of the Rosebud-McKay coal in the proposed mine area 113
47. Generalized contours on the potentiometric sur- face of the Robinson coal in the proposed mine area 114
48. Generalized contours on the potentiometric sur- face of the upper Sub-Robinson unit. 115
49. Hydrographs of we11s 1 A and 1 B 117
50. Hydrographs of we11s $2 \mathrm{~A}, 2 \mathrm{~B}$, and 2 C 118
51. Soils map of proposed mine area, Tract III. 144
52. Vegetation types on the proposed mine area. 157
53. Land use in Tract III and the proposed mine area. 184
54. Crow Reservation and Ceded Area showing area of greatest socio-economic impact. 200
55. Population trends, Big Horn County, 1930-1970. 204
56. Per capita income, Crow Indian, Big Horn and Treasure Counties, Montana, and United States 207
57. 1970 labor force participation rate, Big Horn County impact area compared with U.S., 1990 216
58. Crow Reservation region transportation net. 223
59. Employment impacts 1975-2000, Big Horn County impact area, Westmoreland Resources mining plan. 303
60. Non-agricultural wage income impacts 1971-2000, Big Horn County impact area, Westmoreland Re- Sources mining plan 306
61. Population impacts 1971-2000, Big Horn County impact area, Westmoreland Resources mining plan 309
Page
62. Physical and Chemical Analysis of West- moreland Coal (on as-received basis) 11
la. Average trace element concentrations (ppm) in Tract III coal seams compiled from data on 18 drill holes 12
63. List of surface-water data collection sites in the Tullock and Sarpy Creek basins 80
64. Pumping test results 129
65. Soil mapping units on proposed mine area 143
66. Major population changes 1940-70 204
67. Age distribution. 205
68. Labor force and employment 16 years old and older 1970 - on reservation and Hardin. 209
69. Employment by occupation on reservation and Hardin, Males 16 years old and older-1970 217
70. Big Horn County schools in the impact area. 219
71. Number of housing units - Indian and non-Indian, Crow Indian reservation, 1970 220
72. Payroll, linked expenditures and royalty payments to the Crow Tribe, Westmoreland Resources and Morrison - Knudsen 20-year mining plan 307
73. Taxes, Westmoreland Resources and Morrison - Knudsen mining plan 312

I. DESCRIPTION OF THE PROPOSAL

A. Introduction

Westmoreland Resources was the successful bidder on prospecting permits sold by the Crow Tribe of Indians at a competitive sale in 1970. The permit areas were located in what is known as the Ceded Area, north of the Crow Reservation. This area was ceded to the United States Government by the Congressional Act of April 27, 1904 (33 Stat. 352) and subsequently opened for settlement. The Indians then living on the land were either alloted the land or reimbursed for it if they moved to the Reservation.

After about 54 years on the market, the Congress by Act of May 19, 1958 (72 Stat. 121), restored to Tribal ownership all of the vacant and undisposed ceded land. These lands resumed trust status and the mineral rights were reinstated to the Crow Indians. The coal rights had been retained by the U.S. Government when the 1 and in the Ceded Area was patented to the settlers, and these rights were also returned to Crow Tribal ownership by the Act of 1958. Coal rights in the Ceded area total about 150,000 acres and are held in trust
for the Crow Indians and administered for the Secretary of Interior by the Bureau of Indian Affairs.

Surface ownership in the more than 1.1 million acres in the Ceded Area includes approximately 9000 acres of Tribal 1 and, 17,000 acres of alloted land, 45,000 acres of State land, and over $1,000,000$ acres of private fee land.

The existing Absaloka mine of Westmoreland Resources on Tract III began operations in 1974 under an approved mining plan covering 770 acres of which 360 acres was for plant and railroad facilities and the remainder for active mine operations. The initial mining operations and projected environmental impacts were described in "Final Environmental Statement FES 74-8" (U.S. Bureau of Indian Affairs, 1974).

Sebsequent to the approval of the mining and reclamation plan by the Secretary of Interior and the start of mining by Westmoreland, litigation related to the operation was initiated by local residents. As a result of this legal action, an opinion was handed down by the 9 th U.S. Court of Appeals on June 19, 1975, and a U.S. District Court order for the District of Montana, Billings

Division, dated January 20, 1976 was issued. These in part held that the Secretary of the Interiors approval of two Crow Indian coal leases with Westmoreland, covering approximately 30,876 acres constituted a "Major Federal Action" requiring a comprehensive environmental impact statement as well as impact statements for each separate subsequent mining plan (Cady vs Morton, CV-74-12-B16).

To bring the Department of Interior into compliance, a draft environmental impact statement covering the Westmoreland leases was prepared under leadership of the Bureau of Indian Affairs and filed with The Council on Environmental Quality (CEQ) on August 17, 1976. This statement was prepared under the leadership of the U.S. Geological Survey for the 20 -year mining plan. The leasewide impact statement will serve as the primary documentary basis upon which the Secretary of the Interior under the Court's order must reconsider his approval of the leases. Action cannot be taken by the Secretary on Westmorelands $20-y e a r$ mining and reclamation plan until the leasing issue has been decided.
B. Purpose

Westmoreland Resources submitted a $20-y e a r ~ m i n i n g ~$ and reclamation plan covering an area of 2151
acres on its Tract III Crow coal lease on Sarpy Creek, Montana to the Department of the Interior on September 30, 1975. The purpose of the new plan was to permit the expansion of the existing Absaloka Mine to other areas of the lease. This expansion is necessary to permit existing contracts for coal (77 million tons) to be filled.

The description of methods and equipment to be used in the mine as presented in this section is adapted from Westmoreland Resources Mining and Reclamation Plan (1975 p).
C. Site Location

The proposed mine area is located on Tract III of the lease in the southeast portion of T. 1 N., R. 37 E. and the southwest portion of T. 1 N., R. 38 E., east of Sarpy Creek in Big Horn County, Montana. The area lies entirely in the Crow Ceded Area and is adjacent to the north boundary of the Crow Reservation. Access to the lease area is by County road 384 from Hardin, Montana, which lies about 26 miles west. A gravel road also connects the area with Hysham, Montana, about 30 miles to the north. Figure 1 shows the location of the mine area in relation to its surroundings.

D. Permit and Lease Terms

Exploration of the Tract III area began in 1970. In June 1972, the Crow Tribe leased the rights to the coal to Westmoreland Resources.

Controversy subsequently arose between the lease parties, and in November 1974, an amended coal mining lease was signed. By the amended lease, Westmoreland agreed to pay a bonus of $\$ 500,000$ and advance royalty of $\$ 628,000$, a royalty of the greater of 25 cents per ton or 6 percent of the mine price on coal shipped during 1974 and 1975 , the greater of 30 cents per ton or 6 percent of the mine price on coal shipped during 1976 and 1977, and the greater of 35 cents per ton or 6 percent of the mine price on all coal shipped in 1978 or afterwards, to a maximum of 77 million tons, mined and shipped under contracts existing at the time of the agreement. Westmoreland further agreed to pay the greater of 40 cents per ton or 8 percent of the mine price on the balance of coal covered by the lease. Minimum royalties are payable only until the end of the "development period" which is approximately 1987. Westmoreland agreed, in addition, to mine coal at the rate of 10 million tons per year by 1982, subject to certain
stipulations. Although no specific plans have been developed, a production rate of 15 million tons by approximately 1987 is stipulated in the amended Tract III lease. The additional 5 million tons plus continuation of the 10 million ton rate is expected to come from the alternate areas shown in Figure 6 (page).

By the original and amended leases, Westmoreland agreed to reclaim the land. The operator is bound not to pollute surface or ground water, to landscape the spoils and replace the topsoil on and reseed the disturbed areas, and to minimize air pollution. Copies of the lease are on file in the offices of the Area Mining Supervisor, U.S. Geological Survey, and the Bureau of Indian Affairs in Billings, Montana.
E. Description of the Coal

Two major coalbeds and two smaller stray beds underlie the proposed mining area and are recoverable by current strip mining technology. The coal lies within the Tongue River Member of the Tertiary age Fort Union Formation. The Tongue River is composed of interbedded lightcolored clays and shales, and tan massive sandstones, as well as the coal.

The Rosebud-McKay coal seam is 30 to 35 feet thick and lies under 70 to 135 feet of sandstone and shale overburden. Sandstone and shale interburden 50 to 100 feet thick separates the RosebudMcKay seam from the underlying Robinson seam which ranges from 17 to 23 feet in thickness. Two unnamed stray seams occur in the area. Both are continuous except where burned and reach a maximum of 5 feet in thickness.

The S-1 seam 1ies 20 to 30 feet above the RosebudMcKay and the S-2, 5 to 10 feet below (Figure 2).

Figure 2. Geologic cross section of lower strata in the Fort Union Formation.

The in place mining ratio, which is the cubic yards of overburden which must be excavated to uncover 1 ton of coal, ranges up to 7 in the proposed mine area (Figure 3).

Westmoreland's analysis of data from its exploratory drilling program indicates that 850 million tons of minable coal underlie the entire Tract III, of which about 600 million tons is recoverable under current economic conditions. The proposed mining plan envisions the extraction of $190,600,000$ tons by 1997. The coal is classed as subbituminous "B", has a heating value of $8,450 \mathrm{Btu} / 1 \mathrm{~b}$, and contains 0.73 percent sulfur. Table 1 gives additional information on the coal properties. Table la gives average trace element concentrations for coal seams on Tract III. Additional trace element analyses for for the coals are given in Tables 12, 13, and 14 , Appendix C .

- 5 - Contours showing in-place mining ratio which is the ratio at non-marketable material in cubic yards to coal in place in tons.

Figure 3. In-place mining ratio of proposed mine area. Adapted from Westmoreland Resources, 1975 p, Exhibit 8.

Table 1. Physical and Chemical Analysis of Westmoreland Coal (On As-Received Basis)

Proximate Analysis

Component	25
Moisture	by
Volatile matter	29
Fixed carbon	37
Ash	$\frac{9}{100}$

Btu/1b
Equilibrium moisture
Grindability index (Hargrove)

Ultimate Analysis

Component $\quad \%$ by Weight

Carbon, C	50.18
Hydrogen, H_{2}	3.65
Sulfur, S	.73
Oxygen, O_{2}	10.58
Nitrogen, N_{2}	.66
Moisture, $\mathrm{H}_{2} 0$	25.11
Ash	9.09

8,450
23. 56.

F. Current Operations

The original mine plan for the Absaloka Mine was approved March 22,1974 , by the Department of the Interior. This plan covered about 247 acres of coal-bearing land. Initial stripping began in April 1974, and the first coal was shipped on July 1, 1974. The first monthly production was 134,502 tons and the mine currently produces about 333,000 tons per month or about 4 million tons per year.

In 1972 Westmoreland signed contracts with four midwestern utilities to supply 77 million tons of low sulfur coal over a $20-y e a r$ period. One additional midwestern utility now receives Westmoreland coal and test shipments have been sent to two others.

TABLE 1 a

Average Trace Element Concentrations (ppm) in
Tract III Coal Seams Compiled from
Data on 18 Drill Holes

	Stray-1	RosebudMcKay	Stray 2	Robinson
Uranium	1.96*	1.69*	2.00	1.39*
Lead	4.18	1.83	2.97	1.47
Cadmium	0.61*	0.83*	0.40*	0.72*
Silver	0.11*	0.08*	0.13*	0.08*
Molybdenum	5.81	3.37	5.43	3.80
Selenium	2.19*	0.55*	1.26	0.63*
Arsenic	3.03*	1.15*	19.19*	1.05*
Germanium	0.50	0.17*	1.32	0.30*
Zinc	17.45	51.33	72.07	29.01
Copper	20.75	18.87	22.31	17.72
Nickel	19.95	8.50	10.06	6.91
Manganese	111.80	149.13	114.07	131.60
Chromium	15.77	14.37	18.27	8.84
Vanadium	15.03	15.34	22.97	7.58
Flourine	67.10	119.73	167.53	76.84
Boron	43.30	36.43	63.73	31.90
Beryllium	2.89	0.58	3.89	0.44 *
Mercury	0.06	0.06	0.13	0.06

*Average includes "less than" detectable limit values.

A 75-cubic yard capacity dragline uncovers the coal and 18-cubic yard capacity front-end loaders load the coal into 120 -ton coal haulers. To date (June 1976) about 250 acres have been disturbed by mining and topsoil removal activities. About 78 acres have been completely regraded, 43 acres of which have been topsoiled and seeded. Seeding of the remaining 35 acres is planned in the fall of 1976; additional regrading behind the active pit is in progress. The current pit is shown on Figure 5. As the mine expansion will use the same mining procedures as are currently employed, these procedures are discussed in section I and are not covered here. A general description of the mine is in the December 1975 issue of Coal Age magazine (Vol. 80, No. 13).

In addition to obtaining approval from the Interior Department, Westmoreland must obtain each year a surface mining permit from the Montana Department of State Lands in order to mine as the surface to be mined is not owned by the Crow Tribe and is thus under State jurisdiction. This permit requires the posting of a reclamation bond
based on the actual costs of rehabilitation covering all land it plans to disturb each year. Approvals from the Department of Interior and Department of State Lands are not conditional one upon the other. They are independent approvals, and Westmoreland must have both to mine Indian coal on the Crow Ceded Area.

Westmoreland has obtained a State permit approving expansion of mining onto 231 acres of State land and coal in the proposed mine area. This permit and the acreage approved will allow one year of mining at which time a new State permit will be required.
G. Surface Facilities and Equipment

The existing plant layout of the Absaloka mine is shown in Figure 4. The present plant facilities are adequate to handle production from the proposed mine area and will be used without additions. Coal from the mine is dumped into the truck dump and run through the primary crusher. The crushed coal is transported by conveyor to the secondary crusher where it is reduced to minus 2 -inch size. From here, a conveyor takes it to the loading point where it can

Figure 4. Mine plant layout.
be directly loaded into railroad cars or transported by another conveyor to the coal storage building (a 700-foot long covered storage area of 50,000-ton capacity). Another conveyor transports the coal from this storage building back to the loading point. Other structures in the plant site include an office, shops, and change houses, boiler house, equipment storage, repair shop, water treatment plant, water tanks, fuel tanks, and ammonium nitrate storage. Three hundred and sixty acres were approved for the present plant site. To date, the actual area disturbed by plant construction and related activities is 104 acres, plus 57 acres for access and haul roads. The existing coal processing system can handle 14 million tons per year. Capacity can be increased to 19 million tons per year by upgrading the conveyors, adding a secondary crusher, and enlarging the storage barn.

The mine currently uses the following major equipment:

```
1-75-cubic yard dragline
2 - 18-cubic yard front-end loaders
4 - 120-ton bottom dump trucks
1 - Overburden drill (electric)
1 - Coal drill (diesel)
4 - Motor scrapers
5 - Bulldozers
1 - Grader
```

Power is delivered to the mine by a 69 kv transmission line and distributed to equipment by overhead lines and ground cables. Water for plant use and sprinkling of haulroads comes from a deep well at the plant site. A part of the water is treated to make it potable. Water used for dust control receives only primary treatment to lower the dissolved solids concentration. A sewage treatment plant and lagoon treats all domestic wastewater from the plant. Current peak water use in the summer is 60,000 gallons per day.

Two haulroads connect the pit with the plant site. These roads are about 80 feet wide and surfaced with scoria. Water wagons are used to control dust. H. Mining Plan

The new mining plan would extend the existing Sarpy Creek mine to areas of the lease to the south, east, and north of the existing operation (Figure 5). The existing pit would be lengthened and future cuts would run from the northern limits of the mine area toward the southeast. Later cuts would be oriented north-south and would eventually extend the full width of the mine area. The cuts would progress from west to east. The mine area on the north, south,

Figure 5. Mining sequence in proposed mine area. Lines show edge of every fifth cut. Dates are approximate. Adapted from Westmoreland Resources, 1975 p, Exhibit 3.
and west is generally controlled by the burned areas along the outcrop of the Rosebud-McKay coal bed. Thus two beds would be mined over most of the proposed mine area. The two stray seams would also be mined where they are recoverable and marketable.

At the planned production rate of 10 million tons per year, about 110.5 acres per year would be disturbed. The planned production by year is given on the following table:

Acres

Year	Disturbed
	66.0
1977	77.1
1978	78.4
1979	85.3
1980	90.2
1981	110.5
1982	110.5
1983	110.5
1984	110.5
1985	110.5
1986	110.5
1987	110.5
1988	110.5
1989	110.5
1990	110.5
1991	110.5
1992	110.5
1993	110.5
1994	110.5
1995	110.5
1996	57.6
1997	38.9
Tota1	$2,151.0$

Tons of Coal $\frac{\text { Produced }}{4,000,000}$ 6,000,000 6,000,000 7,500,000 7,500,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 6,000,000 $\frac{3,600,000}{190,600,000}$

The county road which crosses the northern part of the mining area would be temporarily rerouted around the mining area in a stepwise manner as determined by the mining sequence. At the termination of mining, the road would be relocated across the reclaimed area in nearly the same orientation as it was originally. Plans for the county road relocation have been discussed by Westmoreland with the Big Horn County Commission and though no formal agreement has been written, approval is anticipated at the time the relocation is required. The 115 kv powerline of Montana Power Company, which crosses the mine area from east to west, would be relocated north of the mining area. The 69 kv powerline would be relocated south of the mining area. The relocations of roads and powerlines are shown on Figure 6.

The State of Montana requires that natural surface drainage waters discharged from a mine area be monitored and treated as required to insure the maintenance of the quality of natural waters downstream from the development. Thus, detention facilities for mine runoff are necessary to meet

Figure 6. Alternate mine areas areas and proposed relocation of roads and power lines.
this requirement. The existing mine has an impoundment with a capacity of 77 acre feet just north of the railroad loop to catch runoff. Figure 7 shows this and additional water control facilities which would be necessary to control runoff on the proposed mine areas and the two alternate areas.

If the proposed area were to be mined, three additional water control facilities would be needed. They are indicated by the letter P on the figure. Drainage ditches would be used in some areas to collect runoff and channel it into impoundments. Otherwise, natural drainages would be utilized whenever possible. The proposed facilities have not yet been designed but estimated requirements will be a capacity of 164 acre feet for the northeast pond, 44 acre feet for the eastern pond; and 128 acre feet for the southern pond.

The control facilities are to be designed based upon the theory of a variable decant level spillway which allows for the retention of the minimum amount of water at any time for the settling of

Figure 7. Surface drainage and water control facilities.
suspended sediment loads. All facilities will have the capacity to store runoff from a 10 -year frequency storm of 24 hour duration. Spillways will accomodate a 100-year storm of 6 hours duration. All impoundments will be designed to meet MESA standards. Typical dams would have a 2.5 to 1 (horizontal to vertical) minimum upstream slope and a 20 -foot minimum width roadway, and on the downstream side a minimum slope of $2: 1$. Vegetation would be used to control erosion. The freeboard on the dams would be a minimum of 5 feet. The dams will be constructed of local earth materials of low permeability when compacted with internal blanket drains installed on the downstream side as required.
I. Proposed Mining Procedures

Westmoreland Resources would excavate the coal by area strip mining. First the topsoil suitable for use in reclamation is removed and stockpiled or redistributed on regraded spoils by a fleet of scraper-type earthmovers. Overburden is drilled with electric-powered, track-mounted rotary drills which make 9 -to-15-inch blastholes whose pattern and spacing are dictated by the physical characteristics of the overburden material. The holes
are loaded with detonators and an explosive consisting of 94 percent ammonium nitrate and 6 percent fuel oil. The explosive charges are then detonated in a predetermined fashion designed both to efficiently fragment the rock and to minimize damaging ground vibrations.

A large walking dragline removes overburden above the uppermost minable seam of coal, which may be the stray S-1 or the Rosebud-McKay. The overburden is placed into a previously mined area, or onto the ground surface in the case of an initial cut. The dragline removes the stray $S-1$ where appropriate and places it on the unmined area adjacent to its position to be hauled to the processing facilities, then removes additional overburden to the top of the Rosebud-McKay seam and places the overburden with the previously displaced material. The top of the RosebudMcKay is cleaned by bulldozers. The coal is then drilled and blasted in much the same manner as the overburden.

Rubber-tire front-end loaders then load the coal into bottom-dump trucks to be hauled to the processing plant.

Bulldozers and scrapers uncover the stray S-2 seam, which is removed and hauled by truck to the processing plant. The interburden overlying the Robinson is drilled, blasted, removed by a dragline, and placed on previously emplaced spoils. The Robinson is then drilled, blasted, and removed. The cycle then repeats in a new cut, and the new spoils are placed in the old cut. Figure 8 is a generalized cross section through the pit showing spoil placement.

To increase the production at the mine, one additional dragline would be obtained. This machine would have a 110-cubic yard bucket and would be erected during 1977 and 1978. Additional equipment to be obtained is listed below:

Equipment Type	Number of Units
Bulldozers	$7-10$
Scrapers	$4-6$
Overburden drills	1
Coal drills	1
Front-end loaders	$4-6$
Haulage trucks	$4-6$

J. Reclamation Plan

Westmoreland Resources would fully comply with all applicable laws and regulations relating to the reclamation of mined land. The operator

Figure 8. Generalized cross-section through mine pit.
also anticipates that regulations will change as knowledge of reclamation procedures increases.

Reclamation of mined lands begins before mining activity when topsoil is removed. Soil borings and tests indicate the depth of material suitable for plant growth, and all such soil will be removed. Wherever possible, the newly removed topsoil will be transported directly to recontoured spoils to prevent degradation of the soil and multiple handling. Otherwise, the topsoil will be stockpiled and seeded to retard erosion.

The spoil piles are reformed concurrently with the mining operation at a distance of two piles from the working area. Earthmoving equipment reduces the spoil piles to slopes of $5: 1$ or less, and will leave the landscape free of water impoundments. At the conclusion of all mining operations, the final highwall will be regraded to a 3:1 slope.

Westmoreland Resources expects to sample and test the spoils prior to the application of topsoil.

Parameters to be investigated include pH , conductivity, exchangeable sodium percentage, particle size distribution, and selected trace elements where drill core testing has indicated possible problems. Toxic or otherwise unsuitable spoils will be adequately buried with other material.

The operator will adequately prepare the spoil surface prior to application of topsoil. Such preparation normally includes discing to roughen the surface and relieve compaction. Topsoil is to be rotated directly onto fresh spoils whenever possible, and will be emplaced in fall or early spring to facilitate seeding and take advantage of seasonal moisture.

Westmoreland Resources will analyze the topsoil for nitrogen, phosphorus, and potassium in order to calculate fertilizer requirements. The topsoil surface will be disced prior to seeding. The seeds will be planted by drill seeding or broadcasting.

As soon after emplacement of topsoil as possible in the fall or spring, seed mixtures of native
and introduced grasses, forbs and legumes as recommended or approved by the Montana Department of State Lands will be utilized. The following is the currently utilized seed mixture recommended by Mr. J. A. Olsen, Soil Scientist, Soil Conservation Service, who is currently working with the Reclamation Division of MDSL:
Western Wheatgrass
Bluebunch or Whitmar
Beardless Wheatgrass
Side-oats grama
Little Bluestem
Green Needle grass
Blue grama
Thickspike Wheatgrass
Four-wing Saltbush
Hard Fescue
Kentucky Bluegrass
Pubscent Wheatgrass
Yellow Sweetclover
Eskci Sainfoin

Total
$41 \mathrm{bs} / \mathrm{acre}$
3 1bs/acre
2 1bs/acre
1 1b/acre
3 lbs/acre
1 1b/acre
2 1bs/acre
Trace
1 1b/acre
2 1bs/acre
1 1b/acre
$21 \mathrm{bs} / \mathrm{acre}$
1 1b/acre
23 lbs/acre

Trees and shrubs will be selectively planted. It is anticipated that the best ecological situation for shrub plantings may be along drainageways, while ponderosa pine plantings may be best suited to upper north facing slopes. The planting of woody plants will require considerable experimentation since it is anticipated that the uniformly deep topsoil gives herbaceous plants the competitive advantage.

Since fresh topsoil will be used where possible, plant growth from living roots, rhizomes, and seeds is expected to provide an important genetically adapted source of revegation.

Vegetation sampling will be conducted annually in reclaimed areas so that the progress of revegetation can be quantatively evaluated. Parameters to be measured include canopy coverage, height growth, herbage yield, and percent of survival (woody species). This information will provide a basis for comparing different reclamation treatments so that in future work the most successful procedures can be utilized.

The operator would regrade the spoil to the approximate original surface configuration. Reclamation will necessarily entail the reestablishment of a drainage pattern in the mined area. The anticipated configuration of reclaimed land and the new drainage pattern are shown in Figure 9. The spoil contours are matched with the natural contours at the boundary of the mined area. The drainages on the reclaimed land are less contorted than similar natural drainages, but nevertheless are adequate for the area. The artificial

Figure 9. Estimated post-mining topography of the proposed mine area. Adapted from Westmoreland Resources, 1975 p, Exhibit 15.
watercourses are routed to discharge into natural streams, thereby avoiding impoundments in the reclaimed area.
K. Alternate Mine Areas

In addition to the proposed mining area, Westmoreland has designated two other areas on the Tract III lease as alternate mining areas. As shown on Figure 6, these areas lie east and southwest respectively of the proposed area. Each of these areas represents a possible area for future expansion of the mine to a production level of 15 million tons per year by the late 1980's as stipulated in the amended Tract III lease; however, no detailed mine plans have been made for the areas at present. The area east of the proposed mine contains an estimated 130 million tons (both beds) in 1,439 acres and the area southwest of the proposed mine contains an estimated 104 million tons (several small areas of RosebudMcKay coal but mostly Robinson bed) in 2,918 acres.
L. Mine Employment

The mine currently employs 110 men. Fifty-three of these employees are members of the Crow Tribe. This figure would rise to 210 men by 1981 when the full 10 -million-tons-per-year production is reached. In addition, 50 men would be employed
on construction-related activity in 1977 and 1978. This would be primarily for construction of the second dragline. As mentioned previously, Crow Indians have preferential employment rights at the mine.
M. Transportation and Sales of the Coal A 36 -mile spur track connects the mine with the Burlington Northern main line two miles west of Sanders, Montana. This spur terminates in a loop at the mine plant which permits continuous loading of trains. Unit trains of 70 or more 100-ton hopper cars transport the coal via the Burlington Northern to the Minneapolis-St. Paul area. Currently, 9 to 11 trains per week cycle through the mine. Under the proposed expansion of the mine, this number would increase to 20 to 25 .

From Minneapolis-St. Paul, the coal is shipped by rail and river barges to power plants of the five main consumers of the coal: Northern States Power Company, Interstate Power Company, Dairyland Power Cooperative, Wisconsin Power and Light Company, and Central Illinois Light Company. Westmoreland has 20-year contracts to deliver a total of 77 million tons to these five utilities.

Test shipments have been sent to Detroit Edison and United Power Cooperative. All the coal is currently used for electric power generation. The following table shows the power stations presently receiving Westmoreland coal:

Power Company	Station	Location	Mode of Delivery
Northern States			
Power Company	Riverside	Minneapolis, Minn.	rail
(1,900,000 tons)	Highbridge	Minneapolis, Minn.	rail
	Sherburne	No. of Minneapolis	rail
	Black Dog	So. of Minneapolis	barge
	King	St. Croix River	barge
Central Illinois			
Light Company	Edwards	Summer, Illinois	rail
($1,000,000$ tons)	Wallace	Peoria, Illinois	rail
Interstate Power			
Company	Dubuque	Dubuque, Iowa	barge
(300,000 tons)	Kapp	Clinton, Iowa	barge
Wisconsin Power and Light Co. (300,000 tons)	Genoa	Genoa, Wisconsin	barge
Dairyland Power Cooperative (500,000 tons)	Alma	Alma, Wisconsin	barge

II. DESCRIPTION OF THE ENVIRONMENT
A. Description of the area

The area of Westmoreland Resources Tract III proposed for mining encompases about 2151 acres located in parts of Sections 24,25 , and 36, T. 1 N., R. 37 E, and Sections 19, 30, and 31, T. 1 N., R. 38 E., Big Horn County, Montana. The area adjoins on the east the presently operating mine and facilities in Section 25 and 26 , T. 1 N., R. 37 E.

The proposed mine site lies astride a ridge that is the divide between the valley of Sarpy Creek on the west, East Fork Sarpy Creek on the northeast, and Middle Fork Sarpy Creek on the southwest. The highest parts of the ridge are about 300 feet above the bordering valleys with the land sloping toward the valleys and in general direction west of north. The land is gently rolling with frequent groves of ponderosa pine interspersed with open rangeland and fields used for dryland grain crops.

Access to the area is by County road 384 from Hardin, Montana, about 26 miles to the west (20 miles pave, 6 miles gravel), and from Hysham about 30 miles to the north by gravel road. The county road from Hardin passes through the proposed mine area and serves farms and ranches to the east.

A spur line of the Burlington Northern Railroad running southward about 36 miles from a main line near Sanders, Montana, serves the presently operating mine. The spur terminates in a loading loop in Section 26 , about one mile west of the proposed mine area.
B. C1imate

Data Sources

Meteorlogical data from three stations are presented herein as a best estimate of long-term meteorological conditions at the Sarpy Creek site. These include the Billings airport (Logan Field), located 75 miles west of the Project area; the Miles City Municipal Airport, located 65 miles northeast of the project area; and the cooperative weather station at Colstrip, located 15 miles east-northeast of the project area. Additionally, evaporation data from Terry, located about 105 miles northeast of the project area, have been included. Shortterm recent data from Colstrip were used to the extent possible because of the proximity of Colstrip to the Sarpy Creek area and the similarities between the two locations with regard to elevation, surrounding terrain, and general airshed characteristics.

Also included are summaries of data collected at the Sarpy Creek project area. However, due to the short collection period, the data were not used extensively for developing conclusions regarding the climate of the Sarpy Creek area. Appendix A contains descriptions of the monitoring program in operation in the Tract III area.

Total Precipitation

Colstrip receives an average of about 15.0 inches of precipitation annually (Figure 10). Approximately 45 percent of this total can be expected to fall during the period May through July. Spring precipitation is commonly associated with major weather systems while summer precipitation is from thunderstorms. Thundershowers can be expected to occur on an average of about 30 days per year (U.S. Department of Commerce, 1974 b). Such thundershower activity can vary greatly in extent and rainfall and may occasionally be accompanied by hail and strong winds. May and June have the two highest monthly precipitation averages with 2.22 and 2.83 inches, respectively. May and June also have the highest mean number of days on which precipitation totals amounting to 0.10 inch or more are likely to occur (Table l, Appendix A). Twenty-four hour precipitation totals of
PRECIPITATION (inches)
0.50 inch or more are typically more numerous in June than in any other month. In fall, thundershower activity occurs less frequently, and general rain or snow systems of Pacific or arctic origin become the dominart storm feature (U.S. Department of Commerce, 1965).

On-site total precipitation data that were collected from April 16, 1975, through November 30, 1975, in the Sarpy Creek area are summarized in Table 2, Appendix A. This table shows the total daily precipitation for the period of record as well as the monthly totals. The total for the $71 / 2$ months of record was 12.21 inches.

The National Oceanographic and Atmospheric Administration (NOAA) has calculated the estimated return periods for various precipitation events. Representative data for the Sarpy Creek area are presented in Table 3, Appendix A.

Droughts are not uncommon in eastern Montana. Precipitation records show that in extreme years, annual precipitation may deviate as much as seven inches from the long term average.

Snowfall

Annual average of about 45.8 inches of snow was recorded at Colstrip during a 26-29 year period prior to and including 1960 (Figure 11). March has the highest

[^0]average snowfall, 9.3 inches, followed in order by February, December, January, and April with averages of 6.4 to 6.8 inches (U.S. Department of Commerce, 1965). Storms of either Pacific or arctic origin can bring snow to eastern Montana. Pacific storms tend to deposit only light amounts of snow because they lose much moisture in their passage over the Cascade and Rocky Mountain ranges. The exception is when a low pressure distrubance passes eastward through Wyoming, thus creating upslope conditions in eastern Montana, which may result in moderate to heavy snowfall.

Arctic storms from the north are not uncommon in winter. However, because of their continental origin, they also tend to deposit only light amounts of snow except in local areas on the north, northeast, and east slopes of mountain ranges where the upslope effect is greatest. Despite the typically light amounts of snowfall associated with these polar outbreaks, strong northerly or northeasterly winds are likely to cause blizzard conditions with moderate to severe drifting and blowing snow.

Measurable amounts of snow have been recorded at Colstrip as early as September and as late as June. Snow does not ordinarily accumulate to great depths due to occasional periods of thawing weather throughout the winter.

No extreme snowfall data were found for Colstrip. However, at Billings the maximum 24-hour snowfall recorded during 39 years prior to and including 1973 was 23.7 inches in April, 1955, and the maximum monthly total was 42.3 inches in the same month. In general, snowfall is heavier at Billings than in the Sarpy Creek area and hence, these maximum figures should not be considered as necessarily representative of the area (U.S. Department of Commerce, 1974 a).

Evaporation

Evaporation data from Terry are presented in Table 4, Appendix A. These data, based on 5-10 years of records through 1960, indicate than an average of about 40 total inches of evaporation can be expected during the months of May through September. Evaporation data are obtained from exposed pans of water and, therefore, data are not available from October through April because of frequent periods of below-freezing weather (U.S. Department of Commerce, 1965).

On-site evaporation data collected at the Absaloka Mine are presented in Table 5, Appendix A, which lists the weekly and cumulative evaporation amounts for the
period of April 25, 1975, through November 7, 1975. A total of about 23.8 inches of evaporation was recorded at the site during the four-month period.

Sky Cover

Sky cover data for the Billings area is presented in Table 6, Appendix A. These data indicate that cloudy days are most likely to occur in winter, whereas clear to partly cloudy days are most common in summer and early fall (U.S. Department of Commerce, 1974 a).

Incoming Solar Radiation

Weekly solar radiation data collected at the Sarpy Creek site are presented in Table 7, Appendix A. As would be expected, the highest figures tended to occur during June and July when days were relatively long and daytime cloudiness was minimal. The lower figures are indicative of shorter days or periods of increased cloudiness.

Heavy fog that reduced visibility to $1 / 4$ mile or less is rather uncommon in most of eastern Montana. Data from Billings and Miles City show that heavy fog occurs on an average of less than 20 days per year at each location (Table 8, Appendix A).

Temperature

Temperature data from Colstrip are presented in Figure 12, which is diagramed to show the mean daily maximum and minimum, and extreme high and low temperatures for each month. All data are based on records from a 28-29 year period prior to and including 1960. This diagram shows that temperatures at Colstrip ranged, during the period of record, from as $10 w$ as $-50^{\circ} \mathrm{F}$ to as high as $110^{\circ} \mathrm{F}$. July and August are typically the warmest months, averaging 17 to 14 days, respectively, when the temperature reaches or exceeds $90^{\circ} \mathrm{F}$ (Table 9, Appendix A). The daily maximum can be expected to reach or exceed $90^{\circ} \mathrm{F}$ on an average of about 39 days per year. The temperature can be expected to drop to $32^{\circ} \mathrm{F}$ or lower nearly every day in December, January, and February and on an average of about 181 days per year (U.S. Department of Commerce, 1965).

Freeze data from both Billings and Miles City are presented in Table 10, Appendix A. This table shows the mean dates of the last and first occurrences of specific temperatures in spring and fall, respectively, as well as the mean number of days between the dates.

Table 11, Appendix A, presents hourly average temperatures in centigrade degrees that summarize data collected near the water treatment building on Tract III. For the period of record February 11, 1975, through November 30, 1975, temperatures ranged from an average daily maximum and minimum of $-2^{\circ} \mathrm{C}\left(28^{\circ} \mathrm{F}\right)$ and $-12.0^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{F}\right)$ in February to comparative readings of $28.0^{\circ} \mathrm{C}\left(82^{\circ} \mathrm{F}\right)$ and $17.5^{\circ} \mathrm{C}\left(63^{\circ} \mathrm{F}\right)$ in July (Table 12, Appendix A). The extreme maximum and minimum temperatures for the period of record were $36.0^{\circ} \mathrm{C}\left(97^{\circ} \mathrm{F}\right)$ and $-21.0^{\circ} \mathrm{C}\left(-6^{\circ} \mathrm{F}\right)$.

Table 13, Appendix A, shows average temperature data, also in centigrade degrees, for the period April 19, 1975, through November 30, 1975, based on data collected from the hygrothermograph located near the administration building in the Sarpy Creek valley. As would be expected, since the hygrothermograph is located in a valley and the sensor is on a hill, average nighttime temperatures tend to be relatively cooler and daytime temperatures slightly warmer at the valley site.

Mean monthly relative humidity data from Billings, based on 14 years of records prior to and including 1973, are presented in Table 14, Appendix A. These data show that, in general, the average relative humidity is highest in winter and lowest in summer.

On-site relative humidity data collected during the period of April 19, 1975 through November 30, 1975, are presented in Table 15, Appendix A, which lists the average hourly and monthly relative humidity readings for the period of record. Average readings tended to reach a maximum in May, also the month of greatest precipitation, and decrease toward August in a trend similar to that of total precipitation. Nighttime readings were similar during April, May, June, and July, but daytime readings decreased significantly from May to July.

Wind

Wind data from a 307 -foot meteorological tower at Colstrip are presented herein. The data from Colstrip were collected and compiled under the auspices of Montana State University for the period of November 12, 1971, through November 11, 1972.

The data from Colstrip indicate that winds 307 feet above the ground blow more often from the northwest than any other quadrant (Figure 13). Westerly through northwesterly winds prevail during all months of the year except August, September, and October during which southeasterly winds were most prevalent. Average monthly wind speeds ranged from 9.4 miles per hour in November to 15.6 miles per hour in March with an annual average of 12.1 miles per hour (Environmental Systems, 1973).

Wind direction, frequency, and average speed data collected near the water treatment building at the Absaloka mine are summarized in Tables 16 and 17 , Appendix A, respectively. In general, the highest percentage frequencies of wind direction occurred with winds out of the south-southeast through west-northwest, although the single most common direction varied from month to month. Average wind speeds also varied greatly by direction from month to month, although for the period of record, as a whole, the highest average wind speeds were associated with winds out of the west through northwest. The average wind speed for the entire period was 8.3 miles per hour.

FIGURE 13
ANNUAL PERCENT FREQUENCY OF SURFACE WIND DIRECTION

ALL STABILITY CLASSES
COLSTRIP, MONTANA
NOVEMBER 12,1971 - NOVEMBER II, 1972
(FROM ENVIRONMENTAL SYSTEMS, 1973)

Inversions and Mixing Heights

Surface-based temperature inversions are not uncommon in eastern Montana. These inversions are typically formed by the rapid cooling of air close to the earth's surface soon after sunset, and their breakup is normally brought about by the warming of the cool air after sunrise. The breakup is typically followed by an increase in surface wing speeds. Low-level inversions occur approximately 45-50 percent of the time in fall and winter and approximately $30-35$ percent of the time in spring and summer in south-central and southeastern Montana (Hosler, 1961).

Mixing height is defined as the height of the layer of air above the surface of the ground through which relatively vigorous vertical mixing occurs. It is determined by various meteorological parameters and it affects to what extent atmospheric pollutants, of surface origin, will be dispersed vertically in the atmosphere. Table 18, Appendix A, presents a summary of mixing depths data collected from aircraft soundings taken above the Colstrip area by Montana State University personnel from November 12, 1971, through November 11, 1972. Table 19, Appendix A, presents data related to mixing heights in southeastern Montana as determined by Holzworth (1972). The
diurnal variations, as well as seasonal variations, in mixing heights are pronounced, although relatively slight variations in seasonal morning heights are noted. Average morning wind speeds within the mixing layer tend to be less than afternoon wind speeds. The least potential for the dispersion of atmospheric pollutants tends to exist most often in winter under conditions of low surface wind speeds and low mixing heights (Holzworth, 1972).

Data collected from the aircraft soundings under the auspices of Montana State University indicate that 215 inversions were noted during the one-year period of record. Most of the inversions persisted for less than 24 hours, although fourteen exceeded 24 hours in persistence. All occurrences exceeding 24 hours in length were observed in December, January, or February, with the longest 67 hours, occurring in December (Environmental Systems, 1973).

Severe Weather

During the 54-year period from 1916-1969, 103 tornadoes were reported in Montana, mostly in the eastern third of the state and mostly in open country. Damage from these storms totaled about $\$ 1,750,000$. The incidence of tornadoes is limited almost entirely to late spring and summer (Cordell, 1971).

Thom (1963) has developed a method whereby using the number of tornadoes observed in a 1° latitude by 1° longitude area during some ten-year period, one can estimate the point probability of occurrence of a tornado within the specified area, as well as an associated recurrence interval. During the period 1963-1972, four tornadoes were reported in Treasure County, two in Big Horn County, and none in Rosebud County. Therefore, conservatively assuming the occurrence of four tornadoes during the ten-year period of record in a one-degree square centered on the project area, it can be expected that the probablility of occurrence of a tornado at any given point is about 3.4×10^{-4}. The recurrence interval should be about 3000 years (Environmental Systems, 1973). Thom (1968) also has developed a method for determining the mean recurrence interval for high winds as measured 30 feet above the ground. The results of this analysis for the southeastern region of Montana are presented in Table 20, Appendix A. Local high winds associated with thunderstorm activity are not uncommon in spring and summer.

Hailstorms are typically the most common and damaging form of severe weather in Montana. Limited mainly to July and August, hailstorms cause crop and property damage amounting to about $\$ 5$ million annually (Cordell, 1971).

Because Montana is sufficiently distant from any sources of tropical moisture, the probability of occcurrence of a tropical storm is virtually zero. However, moisture of tropical origin may occasionally affect the area, especially in late spring and summer.

Blizzards which are a relatively common occurrence in Montana in winter bring high winds, extreme cold temperatures, and varying amounts of snow to the high plains of eastern Montana. Blizzard conditions seldom last longer than two to four days. However, even when blizzard conditions end, strong surface winds may create ground blizzards for an extended period of time. Nightime surface temperatures may drop to 30° to $50^{\circ} \mathrm{F}$ below zero following the passage of such storms. The combination of severe drifting and frigid temperatures can cause hardship for both humans and animals (U.S. Department of Commerce, 1974 b).

Ice storms may occur when rain falls from a warm layer of air through a shallow layer of cold air and freezes upon contact with objects on the ground. The frequency of such an occurrence is about three to six times per year. The thickness of accumulated ice on any surface can be expected not to exceed $1 / 4$ inch (Environmental Systems, 1973).

The National Climatic Center in Asheville, North Carolina has computer processed and reformatted surface wind data from both Billings and Miles City for the period of January, 1967 through December, 1971, into seasonal and annual summaries of frequency and relative frequency distributions by direction and Pasquill stability class. Tables 21 and 22, Appendix A, present the total annual relative frequency distributions for both locations. Analysis of surface wind data according to atmospheric stability is typically based upon the parameters of sky conditions, wind speed, season, time of day, net radiation, and isolation. The Pasquill stability classes are coded as follows:

$$
\begin{aligned}
& \text { A-Extremely unstable } \\
& \text { B-Moderately unstable } \\
& \text { C-Slightly unstable } \\
& \text { D-Neutral } \\
& \text { E-Slightly stable } \\
& \text { F-Moderately stable }
\end{aligned}
$$

This coding system defines each category as follows:
a) Unstable
conditions
(classes A, B, and
C) occur when
layers of air close to the ground undergo warming with associated low wind speeds; b) Stable conditions (classes E and F) occur when the layers of air close to the ground undergo cooling with associated low wind speeds; c) Drainage winds occur under E and F stability conditions; and d) Neutral conditions (class D) occur with cloudy and/or high wind speeds.

From the data presented in Tables 21 and 22 , it is seen that at Billings and Miles City, respectively, neutral conditions prevailed about 64 to 57 percent of the time, unstable conditions a total of about 14 to 15 percent of the time, and stable conditions a total of about 21.5 and 28.5 percent of the time. All of these data are based on three-hourly observations made at Logan Field in Billings and Miles City Municipal Airport from January, 1967 through December, 1971. Annual average wind speeds associated with the stability classes are presented in Table 23, Appendix A.
II. C. Air Quality

Air quality data were collected in the vicinity of Colstrip in 1972 by the Montana State Department of Health. A summary of average 24 -hour levels of particulates and SO_{3} (sulfate) and monthly dustfall amounts are presented in Table 24, Appendix A.

Total suspended particulates data collected in the Sarpy Creek area are presented in Table 25 , Appendix A. Station No. 1 was the temporary location of a high-volume air sampler atop the roof of the water treatment building on Tract III from February 17, 1975, through April 7, 1975. Data at this station were collected from 1300 MST through 1300 MST of the following day in approximate conformity with the EPA's Standard Sampling Schedule for 1975.

In mid-April, 1975, Station No. 1 was relocated about 100 feet south of the water treatment building and a new high-volume air sampler installed. Also, a highvolume air sampler was installed about 300 feet eastnortheast of the secondary crusher (Station No. 2). This sampler was installed to obtain representative background particulates level resulting from the mine operation near the coal processing equipment.

On April 24, 1975, dustfall canisters were installed on Tract III in two locations. A third canister (Station 3) was installed approximately five miles WNW of the mine
site on June 20,1975 , for the purpose of obtaining data on background levels of settleable particulates. Monthly data from these three sites are presented in Table 26 , Appendix A. The higher quantity of particulates that occur in the latter sampling periods is partially due to the growth of algae in the canister.

Federal primary and secondary Total Suspended Particulate standards and the Montana Standard for 24-hour samples are 260,150 , and 200 micrograms per cubic meter ($\mathrm{ug} / \mathrm{m}^{3}$), respectively. The Montana standard of $200 \mathrm{ug} / \mathrm{m}^{3}$ is not to be exceeded more than one percent of days a year (i.e. 3.7 days per year). Stations 1 and 2 may be considered one station since Station 2 represents a relocation of the sampler of only about 100 feet from the Station 1 location. This station is within the mine property and is generally upwind of mine operations. During the period of record, the Federal secondary 24hour standard was exceeded only once with a reading of 205 micrograms $/ \mathrm{m}^{3}$ on 7-29-75. Station 3 was established to obtain data on suspended particulates near the coal processing equipment. As expected, suspended particulates levels were quite high on several occasions. Probable sources include the primary crusher, secondary crusher and nearby roads. The Tract II location (Station 4) was established to measure suspended particulate levels at a
location removed from mine operations. Standards were not exceeded during the period of record, with values ranging from 7 to 37 micrograms $/ \mathrm{m}^{3}$.

Data on settleable particulates (dustfall) are difficult to interpret. Sites 1 and 2 were about 1.5 mi . ENE and 0.5 mi . south of the mine site, respectively. The range at Station No. 1 was from approximately 3 to 70 tons per square mile per month; at Station No. 2 the range was from somewhat less than 4 tons to nearly 91 tons per square mile per month. Station No. 3 was removed from and upwind (about 5 miles wNW) of the mine site, and was established to obtain data on background levels of settleable particulates. Values at Station No. 3 ranged from a little more than 2 tons to approximately 121 tons per square mile per month; the highest values were recorded at this location. Although interpretation is difficult due to the problem of algal growth in the canisters, the data suggest that background levels of settleable particulates in the area are quite high. Probable sources include agriculture and gravel roads.

Westmoreland Resources will be required to meet Federal and State Air Quality Standards. These standards are presented in Tables 27 and 28 , Appendix A.
D. Sound

To adequately describe sound quality an ambient sound survey was conducted by Westmoreland Resources (1975 n) at four locations adjacent to Tract III. These locations are listed below and were selected to reflect the present sound climates on the site, at noise sensitive land use areas, and along the railroad spur line which is used by unit trains to transport coal from the Tract III mine site. The numbers are those used in the studies by Westmoreland Resources (1975 n).

Location 2 Sarpy Creek valley west of present mine.

Location 3 Near east boundary of Tract III along county road.

Location 4 North of Tract III, along railroad spur line in Sarpy Creek valley.

Location 5 Southwest boundary of Tract III.

The ambient sound survey was conducted at the above locations during the period July 26 to August 2, 1975. Sound level recordings were made on typical weekdays and weekends during daytime (0700-1800), evening
(1800-2200) and nighttime (2200-0700) periods. The daytime and evening periods from 0700 to 2200 hours and nighttime periods from 2200 to 0700 hours are in accordance with the daytime and nighttime periods defined by the U.S. Environmental Protection Agency. A description of the instrumentation, method of data acquisition and analysis of the ambient sound survey is presented in Appendix B.

To assess the sound levels radiating offsite due to mining operations, the survey included monitoring sound levels of various mining equipment at the currently operating mine area on Tract III. Sound level monitoring of unit train passbys on the rail spur line also was conducted.

The range of sound pressures that can be heard by humans is very large. This range varies from two ten-thousand-millionths (2×10^{-10}) of an atmosphere for sounds barely audible to humans to two thousandths $\left(2 \times 10^{-3}\right)$ of an atmosphere for sounds which are so loud as to be painful. The decibel notation system is used to present sound levels over this wide physical range. Essentially, the decibel system compresses this range to a workable range using logarithms. It is defined as:

Sound pressure in decibels $(\mathrm{dB})=20 \log _{10}\left(\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{O}}}\right)$ Where P_{0} is a reference sound pressure required for a
minimum sensation of hearing. Zero decibels is assigned to this minimum level and 140 decibels to sound which is painful. Thus a range of more than one million is expressed on a scale of zero to 140. P is the measured sound pressure.

The human ear does not perceive sounds at low frequencies in the same manner as those at higher frequencies. Sound of equal intensity at low frequency do not seem as loud as those at higher frequencies. The A-weighting network is provided in sound analysis systems to simulate the human ear. A-weighted sound levels are expressed in units of dBA. These levels in dBA are used by the engineer to evaluate hearing damage risk (OSHA) or community annoyance impact. These values are also used in federal, state and local noise ordinances.

Sound is not constant in time. Statistical analysis is used to describe the temporal distribution of sound and to compute single number descriptors for the time-varying sound. This report contains the statistical A-weighted sound levels:

$$
\begin{aligned}
\mathrm{L}_{90} \text { - } & \text { This is the sound level exceeded } 90 \\
& \text { percent of the time during the measure- } \\
& \text { ment period and is often used to rep- } \\
& \text { resent the "residual" sound level. }
\end{aligned}
$$

L_{50} - This is the sound level exceeded 50 percent of the time during the measurement period and is used to represent the "median" sound level.
L_{10} - This is the sound level exceeded 10 percent of the time during the measurement period and is often used to represent the "intrusive" sound level.
$L_{e q}$ - This is the equivalent steady sound level which provides an equal amount of acoustic energy as the time varying sound.
L_{d} - Equivalent sound level, $L_{e q}$, for the daytime period ($0700-2200$) only.
L_{n} - Equivalent sound level, $L_{e q}$, for the nighttime period (2200-0700) only.
$L_{d n}$ - Equivalent day/night sound level, defined as:
$\mathrm{L}_{\mathrm{dn}}=10 \log _{10}\left[15 \times 10^{\mathrm{Ld} / 10}+9 \times 10^{(\mathrm{Ln}+10)} / 10 / 24\right]$
NOTE: A 10 dB correction factor is added to the nighttime equivalent sound level.

A summary of ambient sound survey results for the data collected at the four monitoring locations mentoned above is presented in Table 1, Appendix B. This table contains the statistical A-weighted sound level
$\mathrm{L}_{90}, \mathrm{~L}_{50}, \mathrm{~L}_{10}$ and L_{eq} for each measurement period, and L_{d}, L_{n} and $L_{d n}$ at each measurement location for both weekdays and weekends. These data represent the background ambient sound levels of the existing environment at and near the Tract III area. They were made during periods when there were no uncharacteristic activities on the site and thus, do not contain any intrusive sounds.

A summary of the average background ambient daytime $\left(L_{d_{0}}\right)$, nighttime $\left(L_{n_{0}}\right)$, and day/night equivalent sound levels ($L_{\mathrm{dn}_{0}}$) which includes the present mining activity are given below.

Average Background Ambient	Sound Levels	in dB	
Location	$\mathrm{L}_{\mathrm{d}_{0}}$	$\mathrm{~L}_{\mathrm{n}_{0}}$	$\mathrm{~L}_{\mathrm{dn}_{\mathrm{O}}}$
2	43	43	49
3	38	32	40
4	40	39	46
5	50	41	50

Locations 2 and 5 are noise sensitive locations immediately adjacent to Tract III mining area. Sound levels at these locations are contributed to by mining activities and local traffic.

Location 3 is a noise sensitive location a considerable distance from the mining activities, such that the contribution of noise from equipment to the background ambient sound levels is less significant, the major sound sources being local activities and traffic.

Location 4 is located about 130 feet from the railroad spur line and about 270 feet from Sarpy Creek Road north of Tract III. Background ambient sound level data at this location were taken when there was no traffic on the railroad spur line and thus do not contain near field train passby noise. Sound levels are mostly due to traffic on Sarpy Creek road. During late evenings, when the background ambient sound levels are low, noise from trains traveling on the railroad trunk line near Hysham are noticeable.

Sound Sources Related to Existing Mine Operations At the Tract III surface mining operation the following pieces of mobile equipment are in use:

1 - dragline
3 - 18-yard front end loaders
4 - 100-ton trucks
4 - tractors
1 - water wagon
1 - coal drill
3-4- scrapers
1- overburden drill

Much of this equipment is often operated simultaneously but non-continuously. To estimate the sound level radiating offsite during mining, sound level data were obtained for this equipment while it was in operation. In addition to these mobile sound sources, sound level data were obtained for stationary sound sources such as the primary crusher, secondary crusher, conveyor belt and coal cars being loaded. A summary of these data is presented in Table 2, Appendix B, which contains the statistical A-weighted sound level measured for the above mentioned mining equipment. Sound data for the mobile equipment represent near field sound radiated from the equipment while operating in their noisiest modes.

It is estimated that at the full production level of the proposed mine area the equipment sound level contribution at 1000 feet from the center of mining operations will be about 65 dB . Equivalent sound level contribution at 1000 feet from the center of the coal preparation faci1ities is estimated to be about 52 dB .

Trains operating between the mine area to the railroad trunk line near Hysham constitute another sound source. Sound level recordings were made during train passbys approximately 130 feet from the train at Location 4. Two sets of data were obtained, one of an empty train entering the mine area and another of a loaded
train leaving the mine area. A-weighted sound level time history of train passby for empty and load conditions are shown on Figures 1 and 2, Appendix B, respectively.

The measurements of the existing railroad operations on Tract III indicate that maximum A-weighted sound levels at 130 feet from a passing loaded and empty train may reach 84 dBA and 85 dBA respectively. These passbys are of about a two-minute duration. The energy average of this sound (Leq) at 130 feet for the passing loaded and empty train is 73 dB and 78 dB respectively. At a distance of 1000 feet the two-minute intrusions to background ambient sound produce an estimated daytime and nighttime equivalent sound level contribution of $48 \mathrm{~dB}\left(\mathrm{~L}_{\mathrm{d}}\right)$ and $46 \mathrm{~dB}\left(\mathrm{~L}_{\mathrm{n}}\right)$.

Noise resulting from the use of explosives for breaking up overburden and coal seams to facilitate their removal constitutes an impulsive sound source. During normal operation of the existing mine the frequency of blasting is about four times a week. Blasting will increase to 8-10 times per week at the 10 million ton production level. The overpressure created from blasting depends on many criteria, several which are variable. The more important ones include the following:

1. Amount of explosive detonated
2. Depth of explosion
3. Characteristics of overlying material
4. Meteorological conditions such as temperature inversion, wind direction and gradient and humidity.
5. Topography and vegetative cover
6. Distance from explosion

Measurements for these types of blasts indicated that the impulse noise levels produced might be as high as 91 dB at 1000 feet.

The overpressure created from blasting and its acoustical impact on people has been extensively studied by the U.S. Department of the Army (1). With a knowledge of the above criteria, the estimated impact of overpressures at the site can be computed.
(1) "Predicting Community Response to Blast Noise" CERL Technical Report E-17, December, 1973.
E. Physiography and topography

Sarpy Creek, a northward-flowing tributary of the Yellowstone River, drains the area newly proposed for mining by Westmoreland Resources. Most of the proposed new area lies between 3,350 and 3,746 feet in altitude along a divide between the northwest-flowing East Fork and Middle Fork of Sarpy Creek, immediately east of the area presently being mined. The divide trends northwest from the southeast corner to the northwest corner of the proposed area. At the north edge of the area, a tributary of the East Fork has entrenched to about 3,410 feet above sea level, and at the south edge a tributary of the Middle Fork has entrenched to about 3,470 feet above sea level. Slopes generally are gentle and rounded, but locally are broken by sandstone ledges or cliffs. A topographic contour map of the present topography of the proposed mine area is shown on Figure 14.

Ponderosa pine crowns the higher hills along the divide crest and cover much of the headward area of a main tributary of the East Fork of Sarpy Creek, on the north side of the divide. Most of the rest of the proposed area north of the county road is hayfield. South of the county road it is mostly wheatfield or distrubed grassland (Westmoreland Resources, 1975 o, plate 2.3.1-2).

Figure 14. Pre-mining topography of proposed mine site and vicinity.
F. Geology

The entire area newly proposed for mining is underlain by the Tongue River Member of the Fort Union Formation (Rogers and Lee, 1923; Thom and others, 1935), which contains all of the coal seams of economic importance in this area. The Tongue River Member is composed mainly of variegated siltstone, mudstone, shale or claystone, and interbedded sandstone layers. The two lowermost important coal seams of the Tongue River Member, the Robinson and the Rosebud-McKay, are preserved in this area. The lowest of the two seams, the Robinson, is about 20 feet thick, and the higher Rose-bud-McKay is about 30 feet thick. Two stray seams, three to five feet thick, are present locally above and below the Rosebud-McKay seam. All younger and stratigraphically higher coal seams have been removed by erosion.

A structural low (Figure 15) trends northeastward across the central part of the proposed mine area. The linear extent of this low suggests a relation to the dominant regional northeast trending fracture or fault pattern but no break in the coal beds can be demonstrated from the drilling done to the present time. Maximum structural decrease in elevation of the coal beds into the low is 10^{\prime} per 100^{\prime} horizontally on the north limb

$\perp \perp \perp \perp$ Burn line of Rosebud-Mckay coal.
-_ Structural Low
(//) Area where top of Robinson coal is more than 200 feet in depth.
Figure 15. Critical geologic aspects of the proposed mine area.
and 6^{\prime} per 100^{\prime} horizontally on the south limb, in Sec. 36 - T. 1 N - R. 37 E. Total recovery of elevation of the coal tops across the low occurs in approximately 3000'. At the south end of the proposed mining area the coal beds dip into another northeast trending low.

Northwest of the low, the top of the Rosebud-McKay seam generally is less than 100 feet below the surface and the top of the Robinson seam, which is 50 to 120 feet below the Rosebud-McKay, is mostly less than 200 feet below the surface. Southeast of the low, however, the base of the Rosebud-McKay is as much as 250 feet below the surface, and the top of the Robinson seam in many places is more than 300 feet below the surface (Westmoreland Resources, 1975 k , fig. 2.2.2-7).

There is an increase in the interval between the Rose-bud-McKay and the Robinson from northwest to southeast and an influence of a rise in topography in the same direction which combine to increase the overburden on the coal beds. Figure 16 illustrates the attitude of the coal beds in relation to structure and the topography. The burn line on the Rosebud-McKay seam (which in large part has determined the northern and southwestern boundaries of the proposed area) is mostly west of the proposed area, and intrudes along the north edge only along the valley walls of the major tributary of the
SE Doundary
NW Boundary

Pigure 16．Goologic cross－section of proposed mine area．Adapted from Westmoreland
（Ravised by Westmoreland Resources in June，1976） －L－て「て「て •Б下G＇Y SL6T＇sojanosey

3600
3500
3500
3400
3300
3200
3100
3000
2900
R

East Fork (Westmoreland Resources, Inc., 1975 p, Exhibit 8), so the area contains little clinker. Shale and siltstone constitute most of the overburden and about half the interburden southeast of the fault and immediately underlie both coal seams, although sandstone forms most of the lower part of the member below the Robinson seam. Northwest of the structural low sandstone layers are more uniformly distributed throughout the member, and underlie most of the land surface (Westmoreland Resources, 1975 k , fig. 2.2.2-7). There, too, the coal seams are immediately underlain by impermeable shale or claystone.
G. Hydrology

1. Surface-Water

Tract III, including the proposed mine area, is drained entirely by tributaries of Sarpy Creek. The main channel of Sarpy Creek, which is located just west of the western boundary of Tract III, flows northward, to its mouth on the right (south) bank of the Yellowstone River near Hysham. Sarpy Creek drains approximately 453 square miles, 23 square miles or 5.1 percent of which is located within Tract III. Two principle tributaries to Sarpy Creek flow through or near Tract III. East Fork Sarpy

Creek flows along the northeast boundary and drains about 10.3 square miles via small local drainages varying in size up to 2.5 square miles. Middle Fork Sarpy Creek, which flows through the southern and southwestern portion, directly drains 5.5 square miles of Tract III and an additional 6.0 square miles $10-$ cated upstream from the lease boundary. The remainder of Tract III drains directly into the main channel of Sarpy Creek through small local tributaries including the watershed which drains the existing Westmoreland Resources Absaloka Mine development.

With the exception of that portion of the Middle Fork drainage located upstream from the lease boundary all local drainages head within Tract III and are generally equal to or less than 2.5 square miles in size. The main channels of these local drainages have average slopes from basin divide to mouth ranging from 80 to 120 feet per mile and are relatively straight in their upper reaches where slopes are steeper. However, the channels meander considerably as they flow through the wider, less steeply sloping valleys near their mouths.

Although stock ponds exist in several of the small local drainages their sizes do not impose significant regulation to surface flow. Only in the westcentral portion of Tract III (Sec. 25 and 26 , T. $1 \mathrm{~N} .$, R. 37 E.) has significant development and regulation of streamflow taken place. This development, Westmoreland Resources Absaloka Mine complex, is located in a single 2.4 square mile watershed which drains into a water control facility formed by the embankment of the Burlington Northern Railroad spur. The 77 acre-foot detention pond is used primarily for sediment and water quality control and affords complete regulation of surface runoff from the mine complex. Releases from this impoundment, which must meet State and Federal water quality standards, flow about 2.3 miles downstream before emptying into Sarpy Creek.

All stream channels located in local drainages within Tract III flow only intermittently as a result of runoff from excess precipitation and snowmelt. Some spring flow has been observed in the upper reaches of some of these small watersheds but is generally very small, contributes little to the overall flow, and is normally lost to evapotranspiration or infiltrates to the water table before it travels any great
distance. Sustained flow has been observed, however, in channels draining larger watersheds at locations within or adjacent to Tract III. These streams include Sarpy Creek and two of its major tributaries, East and Middle Forks, respectively.

Data concerning the occurrence of surface water in the project area is limited and includes only data that has been collected since the latter part of 1973. The U.S. Geological Survey began monitoring flow in Sarpy Creek near its mouth in September 1973. In March 1975, Westmoreland Resources began collecting data at five sites on or near Tract III. These sites included two on Sarpy Creek, two on East Fork Sarpy Creek, and one on Middle Fork Sarpy Creek. Location of these sites are indicated on Figure 17, and pertinent information on the site is given in Table 2. Although no long-term surface water data have been collected in the project area, several larger streams in the vicinity have been monitored for many years. These include stations on the Bighorn, Little Bighorn, Tongue and Yellowstone Rivers in Montana and Wyoming.

Figure 17. Map of Tullock and Sarpy Creek basins showing location of surface-water data collection sites. Modified from U.S. Bureau of Indian Affairs, 1974.
Table 2.-- List of surfaoe-water data oollection sites in the Tullock and Sarpy Creek basins.

Type of record	Operated by	Drainage area, in 8q. mi.	Record began
(csg)	J.S. Geol. Sur.	8.63	10/73
(c)	do	446	8/74
(csg)	do	4.44	10/73
(c)	do	453	9/73
(sg/csg)	Westmoreland Resources	76.3	3/75
(c)	do	80.7	do
(sg/csg)	do	35.9	do
(c)	do	55.8	do
(sg)	do	7.8	do
do	do	6.7	do
do	do	11.8	do

1975 W.Y. records not available
1975 W.Y. records not available
no stage-disoharge relation
no stage-discharge relation do a - see map (figure 17) for location; csg - annual peak flows from orest stage gage readings; c fiows from record of
continuous stage; sg - periodic flows from stage readings (staff gage); sg/osg - periodic flows from staff gage readings and peak flows from crest stage gage readings.

Based on analysis of all data available and using methods discussed in Appendix C, the estimated annual unit runoff from Tract III is approximately 0.5 inches (about 27 acre feet per square mile). This is an average value and may vary by as much as 50 percent.

Base-line studies conducted by Westmoreland Resources during the period from March through November, 1975, indicate that surface-water flow in most drainages located within the project area ceases by midsummer. However, continued flow was observed on East Fork Sarpy Creek at Site 4 and Middle Fork Sarpy Creek at Site 7. Flow on East Fork Sarpy Creek at Site 2 ceased on or about August 1 , indicating that the intervening channel between Sites 4 and 2 is a losing reach wherein water is lost to evapotranspiration and through the channel bottom to the water table. This condition is apparently typical of most channels within the project area. The flows in upper East Fork and in the Middle Fork, Sites 4 and 7, respectively, are apparently derived from springs and ground-water discharge. Records of stream flow at sites on and near Tract III are given in Appendix C, Tables 2, 3, 4 , and 5.

Data concerning the occurrence of flood peaks and volumes is also very limited in the project area. Numerous studies involving aerial analysis of observed peak flows at locations within the Upper Missouri Basin have been conducted at various times during the last few years. These studies attempt to describe peak flows at unmeasured sites through use of regression equations which describe peak discharges for various recurrence intervals in terms of certain basin and channel characteristics. These techniques are discussed further and the equations derived are given in Appendix C, Table 1. Using these equations, unit peak discharges can be estimated at ungaged sites. For example, the peak flow for a flood in the project area with an expected recurrence interval of 10 -years is estimated to be about 22 cubic feet per second per square mile on drainages between 2 and 5 square miles in size. A graph showing the estimated peak discharges for various recurrence intervals on major streams in the project area are shown in Figure 18.

Water use in the project area is limited to the watering of livestock and wildife, for irrigation of small gardens, and to a lesser degree for domestic purposes. In the Sarpy Creek basin there are

53 water rights appropriations totaling 740 cubic feet per second. In the vicinity of Tract III there are 13 appropriations that require a total 193 cubic feet per second. Irrigation water rights of record on Sarpy Creek and tributaries are given in Appendix C, Table 6 .

It is apparent that the surface water supplies in Sarpy Creek have been overappropriated as the natural flow comprised only a small portion of the total appropriations (U.S. Bureau of Indian Affairs, 1974, p. 80).

Background:
Surface water in the Tract III area is characterized by intermittent streams, springs, and small ponds. Major streams are Sarpy Creek, which flows along the western boundary of the tract, and East Fork Sarpy Creek which flows northwest along the northern boundary of the tract. Middle Fork Sarpy Creek flows northwest from the southern part of the tract to Sarpy Creek. In addition, a second important tributary flows northwest to Sarpy Creek from the central portion of Tract III.

There are no long-term historical data available on the water quality of the major streams of the area. Recent data (last 4 years) have become available in a sporadic manner, as interest has developed in the regional coal resources. Published data are still few, however, and do not cover the entire project area in a systematic manner.

The natural water quality of a stream is primarily a result of the dissolved inorganic and organic material in the water. The water of a stream consists of a baseflow component from ground water that infiltrates into the stream and a direct runoff component which enters the drainage basin during precipitation events. At
various times of the year, either or both of these components may dominate the character of a stream. For instance, during summer and early fall when little or no precipitation has occurred, the ground water component dominates the flow of the stream. Water from the ground water component has had a long residence time in consolidated and unconsolidated material of the ground water reservoir. Thus its dissolved solids content is relatively high; however the streamflow, due to base flow only, is relatively low. During and after a rainfall, the direct runoff component enters the drainage basin and the streamflow increases rapidly. The runoff component has had no residence time in the ground-water reservoir, but it has had extensive contact with the soil and vegetation as the water moves over the surface of the drainage basin. Thus, the dissolved solids content of the stream is considerably higher than that of the direct precipitation, yet less than it would be during base flow conditions. In general, therefore, the concentration of chemical constituents in a stream tends to be inversely related to streamflow.

A few other generalizations should be noted. In early spring, runoff from snow melt within the basin is relatively low in dissolved solids because the water reflects the composition of the freshly melted snow. This
runoff dilutes the baseflow of the stream and often results in a moderate to low flow condition with low dissolved solids. On the other hand, at the beginning of a rainfall event and shortly thereafter, the runoff moving into the stream usually carries a relatively high dissolved solids concentration initially. That is, the sudden increase in water may tend to $f 1 u s h$ an area of readily dissolved material and initially increase the dissolved solids content of the runoff, and hence the stream, rather abruptly. Thereafter, the stream quality may return to the generalized case of high-flow, moderate to low dissolved solids content.

The chemical composition of a stream is influenced by other natural factors in addition to the ground water and surface runoff components. Other natural factors include reactions of stream water with mineral solids in the streambed and in suspension, reactions among solutes, losses of water by evaporation and transpiration, and effects of natural organic material and aquatic organisms (Hem, 1970). The effects of land use and water use by man are superimposed on the natural chemical composition of a stream and may modify the general observations described above. The Sarpy Creek basin has been used for many years for grazing and cropland which probably affected stream water quality to an unknown degree.

The surface cioal mine located in Sections 25 and 26, T.1 N., R. 37 E., is the only industrial development in the area. Current facilities include the operating mine, coal-haul roads and staging areas, coal preparation and storage facilities, a railroad spur and loading loop, various access roads, modified internal drainage system and a sediment detention pond. The excavations from the mine and subsequent replacement of spoil material have modified the surface water characteristics of this part of Tract III. Although water quality monitoring near the mine site to date has not detected adverse effects, the regional effect on the quality of surface water due to mining activities in the area has not yet been determined. Discussion of the water-quality characteristics of the areas affected by the mine will follow in subsequent sections.

Chemical quality and sediment sampling stations established by the USGS are located on the Bighorn and Tongue Rivers. Water-quality data are also available for selected stations on Rosebud Creek and Armells Creek, to the east of the project area. The data available for these rivers and streams are characteristic of surface water quality of southeastern Montana but are not directly transferable to the specific creeks of the project area.

Quality of streams in the project area can be generalized from recent data on Sarpy Creek and its major tributary, East Fork Sarpy Creek. According to U.S. Bureau of Indian Affairs, 1974, a sampling program was initiated in Sarpy Creek and East Fork Sarpy Creek in October 1972 by B. C. Research of Vancouver, British Columbia. Tables 7 and 8, Appendix C, give locations and analytical results for selected sites in October 1972, April and July 1973. U.S. Bureau of Indian Affairs, 1974, p. 82, states that "The B. C. Research report concluded that in Sarpy Creek the surface 'Waters were alkaline (pH 7.9-8.4), highly colored, slightly turbid, very hard, and high in dissolved solids, indicating a high concentration of dissolved salts. Probably because of low flow, suspended solids were only moderatly high."
U.S. Bureau of Indian Affairs, 1975, p. 129 states that consultants to Westmoreland Resources have monitored chemical quality of Sarpy and East Fork Sarpy Creeks since October 1972. The report described the water as predominantly magnesium and calcium sulfate type and containing 2,000 to $4,000 \mathrm{mg} / \mathrm{l}$ of dissolved solids, depending on the time of year and amount of runoff present; pH ranges from 7.9 to 8.4. Van Voast and Hedges, 1974 , provide chemical analyses of water in the area of Westmoreland Resources' coal reserves. Table 9, Appendix C shows these data. Samples were taken in the summers of

1972 and 1973 at several ground-water wells, springs, and stream sites located in and around Tract III. USGS began collecting water-quality data on a monthly basis at Sarpy creek near Hysham, Montana, in December 1974. Provisional data available are given in Appendix C, Table 10.

Data on other streams near Tract III are few. Some data on Tullock Creek, west of the project area, are given in Table 11, Appendix C. Selected analyses are shown for winter and spring months of 1974 at an upstream and downstream station on Tullock and Sarpy Creeks. In general, the specific conductivity, calculated dissolved solids, calcium, magnesium, bicarbonate, and sulfate concentrations are higher for Sarpy Creek. Results of trace metals analyzed for both creeks are about the same. Laboratory turbidity and total suspended solids are noticeably higher for the Tullock Creek stations.

Tables 12,13 , and 14 , Appendix C lists concentrations of trace elements of coals in the project area. Metals which are water soluble at the atmospheric temperature and pressure of exposed mining cuts may be found in water seepage or water that might accumulate in present mine pits in the project area. To date, water seepage into the existing mine pit has been negligible.

No data are available on the chemical quality of water which may accumulate in the mine pits of Tract III.

However, water accumulates in the mine pits in sec. 27 of the Big Sky Mine, near Colstrip, Montana (U.S. Department of the Interior, $1974, \mathrm{p} .91)$. Water seepage from truncated aquifers on the highwall and surface runoff during rainstorms accumulates on the floor of the pit. Table 15, Appendix C gives chemical analyses of water from the Big Sky Mine strip pit. Similarly high concentrations of dissolved solids, nitrogen species, and metals may be expected in any waters accumulating in mine pits of the project area. Water quality monitoring program:

Westmoreland Resources initiated a preliminary surface water monitoring program within the project area in April 1973. The program was later expanded to include ground-water quality observations; additional surface water stations were added in March 1975. The program is designed to obtain baseline chemical and physical characteristics of the surface and ground water in the project area (Westmoreland Resources, 1975 1). It has continued through the first phase of mining in Tract III and will continue through the duration of mining operations and into the reclamation phase of the operations. A one-year baseline study of surface water quality will be completed in the spring of 1976; ground water quality baseline studies will continue until late summer, 1976. (David W. Simpson, Westmoreland Resources,
oral communication' 1975). Methods of sampling and analyses used in the Westmoreland monitoring program are outlined in Appendix C.

Figure 19 shows the location of the surface waterquality monitoring stations in or near Tract III. The stations are concentrated on Sarpy Creek and its tributaries near the boundaries of the project area. Table 16, Appendix C describes the location of the stations. CT\&E locations 1 through 8 have been sampled since April 1973 at about month1y intervals. Results of analysis available thus far are given in Tables 17 and 18 , Appendix C. Surface water stations, $S W-1$ through $S W-7$, were established as quality and streamflow stations in March 1975. Quality samples from these stations have been collected twice during spring runoff, once during a May storm event, once during low-flow conditions, and once again in the fall. These data are given in Tables 19 and 20 , Appendix C.

The following comments on the surface water quality of the project area are adapted from a discussion of the data produced thus far from the monitoring program (see Westmoreland Resources, 1975 1).

The surface waters of the area are characterized by bicarbonate, sulfate, calcium, magnesium, potassium, and sodium. These ions comprise the bulk of the dis-solved-solids concentrations.

Surface water monitoring stations	
CT\&E-1	Commercial Testing and Engineering station
SW-1	Surface water station
∇ C	Water quality station-chemical
S	Water quality station-sediment
C	Water quanity station-continuous record
Sg	Water quantity station-staff gage
Csg	Water quantity station-crest stage gage

$\frac{\text { Ground water monitoring wells }}{\mathrm{W}-1 \quad \text { Westmoreland well }}$
M-1 Mont. Bureau of Mines and Geology well Observation well
Chemical quality observation well

Figure 19. Locations of surface and ground water monitoring stations; Tract III. Adapted from Westmoreland Resources, 19751.

Spring melt runoff: Analysis of surface waters sampled on March 21, 1975, indicate most of the flow consisted of snowmelt water. Relatively low sulfate, bicarbonate and dissolved solids concentrations were noted at most stations, except at SW-7 (Middle Fork Sarpy Creek) where concentrations of the above major constituents were considerably higher than those of the other five stations. Subsequent sampling of spring melt runoff was made about 24 days later, on April 13, 1975. Significantly higher dissolved solids and major ion concentrations were noted at all locations. Westmoreland Resources, 1975 1, p. 46, states that the higher dissolved solids concentrations indicate an increased contribution of water from the shallow ground-water system during the April sampling period. Trace metals concentrations were at relatively low values or near the limit of detection. Aluminum values for samples obtained on March 21, 1975, are suspect and probably resulted from inadequate filtration prior to being acidified for preservation (Westmoreland Resources, 1975 1, p. 2.2.3-46).

Storm runoff: Results of sampling during a storm event in May 1975 indicated that concentrations of the major constituents increased from those of the spring runoff event in April, except at SW-3 (upper Sarpy Creek). The concentrations of major constituents at this station
indicated consistently low values compared to the other stations sampled during the spring runoff period, as well as during the storm event. Westmoreland Resources, 1975 1, p. 47 suggests that much of the flow at SW-3 consisted of direct runoff, with only minor contributions from ground water. In Sarpy Creek at SW-1 and East Fork Sarpy Creek at SW-2 and SW-4, the concentrations of calcium, magnesium and sodium increased during the storm runoff. Of the trace metals analyzed, only boron and strontium showed relatively high concentrations during storm events.

Low flow: The streams which remained flowing in July and August, 1975, exhibited high dissolved solids content. Average values over $3,000 \mathrm{mg} / 1$ were present in Sarpy and East Fork Sarpy Creeks during the low-flow period. Figure 20 shows the average low-flow concentrations of dissolved solids, bicarbonate, and sulfate for the CT\&E stations along Sarpy Creek, during 1973 and 1974 (Westmoreland Resources, 1975 1). Concentrations of dissolved solids and sulfate increase in a downstream direction. Westmoreland Resources, 1975 1, suggests this observation could be the result of ground-water contribution to the creek and/or concentration of dissolved solids through evaporation of its waters. The reference concludes that evapotranspiration is mainly responsible for the increased concentrations because
800
600
400
200

levels of sulfate, bicarbonate and total dissolved solids (tds) along sarpy creek
From Westmoreland Resources, 1975 1, Fig. 2.2.3-10.
(I/Su) S(IL pue ojejfins
the ground water levels in the alluvium are 15 to 25 feet below stream water levels.

In Sarpy Creek, the high bicarbonate concentrations are relatively constant in the downstream direction. The availability of calcium and magnesium and their concentrations during low-flow conditions suggests the stream may be near saturation with respect to calcium, magnesium and bicarbonate. Sodium concentrations averaged $450 \mathrm{mg} / 1$ over the Sarpy and East Fork Sarpy Creek stations; however CT\&E (Sarpy above East Sarpy) had a sodium concentration of $1077 \mathrm{mg} / 1$. Boron and strontium appear to be the only two trace metals with high concentrations, $1.03 \mathrm{mg} / 1$ and $5.2 \mathrm{mg} / 1$, respectively.

Fall sampling: Many reaches of the streams in the project area were dry from September to November, 1975. Chemical data were collected from three surface-water stations: SW-1 (Sarpy Creek above East Fork Sarpy Creek), SW-2 (East Fork Sarpy Creek above Sarpy Creek), and SW-4 (East Fork Sarpy Creek at County Bridge). The following comments on the data are adapted from Dames and Moore, 1975, p. 17.

The data from fall samples indicated a significant increase in calcium, sodium, and potassium at SW-1 compared to the summertime low-flow results. Decreases of sodium concentrations of about 25 percent occurred at SW-2 and SW-4, both stations on East Fork Sarpy Creek.

Sulfate concentrations decreased from 20 to 30 percent compared to summertime low-flow measurements, whereas bicarbonate concentrations increased about 50 percent at $S W-1$. Substantial increases in oil and grease content were found in the November samples at all surface water stations. These values were many times the values reported in previous months, and it is probable that analytical error was responsible. Some increase in strontium occurred at SW-1; however, the concentrations at other stations ranged between previous known values. Concentrations of boron at all stations decreased compared to the low-flow summer results.

Sediment Pond: Water-quality samples were collected at the sediment pond (CT\&E-2) of Westmoreland Resources internal drainage system on Tract III. Table 21, Appendix C shows data collected monthly from February 1974 to October 1975. Qualitatively, the chemical species found in the pond resembled those of the streams of the drainage area. Quantitative ranges from the available data include the following: pH ranged from 7.4 to 8.6; dissolved solids, 221 to $974 \mathrm{mg} / 1 ;$ sulfate, 125 to 617 $\mathrm{mg} / 1$; alkalinity, 84 to $270 \mathrm{mg} / 1$; sodium, 41 to $73 \mathrm{mg} / 1$; calcium, 81 to $123 \mathrm{mg} / 1$; and magnesium, 60 to $110 \mathrm{mg} / 1$. Most of these ranges were significantly lower than ranges observed for the stream water-quality stations in the
project area; however, there were no significant differences in trace element concentrations.

On July 22 and October 1, 1975, samples were collected at the inlet to the sediment pond, as well as in the pond at station CT\&E-2. The concentrations of most major chemical constituents were greater at the inlet station than at the pond station; however, no significant differences in trace metal concentrations were noted. Summary

The following summary is adapted from Westmoreland Resources, 1975 1, p. 49-50. Sarpy and East Fork Sarpy Creeks have highest concentrations of most constituents measured. Sodium is the dominant cation and sulfate the dominant anion for both creeks, and the two creeks exhibit similar ratios of sodium and sulfate. Concentrations of magnesium are generally slightly less than sodium, and calcium is usually about one-third that of sodium. Sulfate concentrations are at least twice that of bicarbonate. The proportions of anions and cations observed are similar to the proportions in the groundwater ion relationship of the Robinson Coal.

The pH of the streams of the area ranges from 7.4 to 8.7 , with one value as low as 7.0 and one as high as 9.1. The pH and alkalinity data indicate that all streams have natural alkaline sources.

The chemical analyses of water from SW-3 (upper Sarpy Creek) suggest direct surface runoff was the major water source on the days sampled, with little or no groundwater contribution in evidence.

Results of water analyses from SW-7 (Middle Fork Sarpy Creek) obtained during the spring and low-flow periods show bicarbonate to be the predominant anion, and calcium and magnesium to be the predominant cations. The proportions of anions and cations from SW-7 are similar to the proportions observed in ground water from the Rosebud-McKay Coal and indicate the latter may be the major ground-water source to Middle Fork Sarpy Creek. Of the six springs observed in this valley, four discharge from the Rosebud-McKay Coal and associated clinker zones.

The observation of relatively high concentrations of strontium in the surface water after spring melt and in the ground water of the area substantiates the effect of ground water on the quality of water present in most surface waters in and around the project area. (Westmoreland Resources, 1975 1, p. 50).

Qualitatively, the chemical constituents found in the sediment pond at station CT\&E-2 resemble those found in the natural streams of the area. Ranges of concentrations, however, are lower at the pond station than at
most stream stations. The few data available for the pond inlet indicate that the concentrations at the inlet resemble the concentrations found at most other surfacewater stations.

Sediment
Tract III is located on a highly dissected plateau on which the regional surface water discharge is northward to the Yellowstone River. The land is susceptible to natural erosion. Surface runoff is the primary agent of erosion in the project area and is the principal vehicle for transport of eroded material, which is primarily suspended sediment. The major streams of the area and their many intermittent tributaries erode the land surface of Tract III and transport sediment from the small drainage basins of the project area. Sediment yield from a given drainage basin is dependent upon such factors as: geology of the area, nature of the soils, vegetation cover, topography, climate and local meteorology, amount and frequency of runoff, and use of the land. Sediment yield from the drainage basins of Tract III have not been measured.

Sediment sampling stations have been maintained by USGS on the Bighorn, Little Bighorn, and Tongue Rivers; however, records of sediment yields from these stations would not be applicable to Sarpy Creek or its tributaries
(U.S Bureau of Indian Affairs, 1974). There are, however, several studies of sediment yield over wider areas similar to the project area which suggest a general range in yield that may be expected from the Sarpy Creek drainage area (U.S. Bureau of Indian Affairs, 1974). A sediment delivery of 0.08 to 0.19 acre-feet per square mile per year is estimated for the basins of the project area (Westmoreland Resources, 1975 1). Land uses such as lumbering, mining, and overgrazing are examples of activities in the project area which could increase the estimate.

Suspended-sediment concentrations at selected stations on the Bighorn and Yellowstone Rivers during the period 1965 to 1973 are given in Appendix C, Table 22. Suspended-sediment concentrations vary widely in response to flow. The Montana Department of Natural Resources and Conservation, 1974, reports that suspended-sediment concentrations in the Yellowstone River are commonly less than $50 \mathrm{mg} / 1$ during low-flow periods and over $900 \mathrm{mg} / 1$ during high-flow periods.

Limited suspended-sediment data from two stations on Sarpy Creek have been taken periodically by USGS. (See Appendix C, Table 23).

Westmoreland Resources, 1975 1, also provides some data on suspended-sediment concentration from streams of the project area. Data from surface water stations

SW-1 through SW-7 are shown in Appendix C, Table 24. Thirty-eight samples were taken under various flow conditions from March to May 1975. All but one of the surface water stations is located in the Sarpy Creek basin. Thus, the sediment data are essentially representative of the Sarpy Creek basin over a short period of time. Continued monitoring of suspended-sediment concentrations, which is part of the overall water quality monitoring program in Tract III, should provide definitive data for the estimation of sediment yield from the streams of the project area.

Westmoreland Resources presently operates a strip mine in Tract III. Mine drainage facilities include an internal drainage system for diversion of runoff from the mining area to a sediment detention dam and settling pond. Some runoff is diverted around the mining area and to the settling pond. Water accumulating within the mine pit is pumped to the internal drainage system. The settling pond is used to minimize sediment concentrations in runoff leaving the mining property and entering the natural drainage. In addition, the water quality of the pond discharge is monitored before it enters the natural drainage system of the project area.

Westmoreland Resources discharges to their sediment pond an average of 0.012 million gallons per day (0.019 cfs)
of waters for which dissolved and suspended solids loadings average 0.03 tons per day and 0.001 tons per day, respectively. Other select chemical parameter loadings are presented in Montana Department of Resources and Conservation, 1974, p. 341 (Westmoreland Resources, 1975 1, p. 17).

Existing Water Pollution Sources
Low level pollution sources within the project area include organic contributions from plants and domestic and wild animals (living and dead) and inorganic contribution from the weathering and erosion of soils, unconsolidated material, and rocks of the area. There is little or no contribution from domestic wastes in the general project area. Algal growth, decaying vegetation and occasional intensive growth of water plants tend to alter the water quality of stock ponds and ponded areas of streams (U.S. Bureau of Indian Affairs, 1975, p. 136).

The major man-made water pollution source in the project area is probably from agriculture. Tillage and overgrazing contribute uncontrolled sediment to streams. The use of fertilizer and biocides in farming constitutes another pollution source. Cattle congregating around water sources also contributes to biological degradation. The surface coal mine located on Tract III is the only industrial development in the area and is a potential
pollution source. Alkaline mine drainage waters characterized by high dissolved solids concentrations and high concentrations of suspended sediment are typical potential pollutants. Miscellaneous sources of relatively low levels may be residues of biocides, wastewater from domestic and industrial sources, by-products of material buried in sanitary landfills, and organic residues dispersed by heavy machinery, vehicles, and railroad equipment.

2. Ground-Water

Methods of monitoring ground-water employed by Westmoreland Resources.

Background data that has been collected on the ground water system in the area include an inventory of springs and existing wells, their location and identification of source, and the drilling of new wells for monitoring purposes. Data was collected on yield, use, and chemical quality, well depths and depth to water in the wells (Figures 21 and 22, Tables 25 through 28, Appendix C).

A number of wells were drilled, cased and sealed by packers to measure the potentiometric heads in the overburden, the coals, the interburden, and the 50 to 150 foot thick section below the Robinson coal.

The groups of observation wells consist of two to three wells drilled at a location. The wells were cased
and sealed so as to sample specific stratigraphic horizons for changes in water quality and potentiometric head and thus provide a basis for determining local and regional effects of mining on ground water. The location of these wells is shown on Figure 21 and the results of chemical analysis are given in a subsequent section. Water levels have been measured monthly on a continuing basis and samples have been collected from the wells annually for chemical analysis. In order to determine hydrologic characteristics of the units sampled, pumping and packer tests were made to determine transmissivity and lateral permeability. Vertical permeability was determined by laboratory methods for a number of core samples.

Geophysical logs were made of the wells and include gamma ray, spontaneous potential, resistivity, velocity (continuous or three dimensional), neutron, density, caliper and temperature logs (Westmoreland Resources, 1975 1, Appendix, F.P.4).

Occurrence and quantity
Ground water occurs in a number of aquifers which underlie the proposed mining area in Tract III of the ceded area. These aquifers are parts of local, intermediate and regional flow systems. The water occurs in intergranular openings in both consolidated and unconsolidated rocks and in joints, fractures, and solution

SPRING LOCATION

1
Figure 22. Location of springs in Tract III. Adapted from Westmoreland Resources, 1975 1, Plate 2.2.3-2.
openings in consolidated rocks. The water which is in the coal bed aquifers is virtually all in fractures. Westmoreland Resources has subdivided the Tongue River member of the Fort Union Formation into the following units for purposes of description, sampling, and discussion; (Westmoreland Resources 1975 1); the RosebudMcKay overburden, the Rosebud-McKay coal beds, the coal interburden zone, the Robison coal, upper and lower sub-Robinson units. The lower sub-Robinson unit is also referred to as the undifferentiated Fort Union.

The aquifers in the Fort Union Formation are described by Van Voast and Hedges (1974, p. 3) as follows: "The Fort Union aquifers are difficult to describe. The siltstone and sandstone beds have poor lateral continuity; they cannot be mapped or traced over large areas. The coal beds have a much greater continuity but have less predictible hydrologic characteristics. They transmit water by way of fractures in some locales; in others, they are so nearly impermeable that water is perched above them or confined below them. Because of the nonconsistent nature of Fort Union aquifers in the area, they are best described as "aquifer zones" rather than "specific units."

Deeper aquifers are the Lebo Shale member of the Fort Union Formation and the combined Tullock member of
the Fort Union Formation and Hell Creek Formation. Below the Tullock-Hell Creek aquifer is a thick section of Cretaceous rocks which are predominantly shale of low permeability and contain highly mineralized saline water. These Cretaceous shales separate a shallow flow system which is approximately 600 feet thick from deep regional flow systems. The regional flow systems are recharged in outcrop areas on the eastern flank of the Big Horn uplift and flow down the structure into the Powder River basin. Aquifers in the regional flow system are the Parkman Sandstone and the Lakota Sandstone Member of the Cloverly Formation of Cretaceous age (U.S. Bureau of Indian Affairs, 1974, p. 87 and 88), the Madison Limestone of Mississippian age and the Red River Formation of Ordovician age (Westmoreland Resources 1975 1, p. 21). The base of the shallow, fresh water flow system in the project area is the Hell Creek Formation. Ground water in the proposed mining area can be considered in terms of several flow systems defined in terms of direction of flow and areas of recharge and discharge. Ground-water recharge is from precipitation either as direct infiltration or infiltration from overland flow. Ground-water discharge is through the more permeable beds to springs, seepage to the alluvium and through the alluvium to nearby creeks and to the Yellowstone River, the major drainage of the area.

The deep regional flow system is recharged in outcrop areas on the east flank of the Bighorn Mountains and flow is to the northeast down the structure to points of discharge deeper in the basin. These aquifers have relatively high potentiometric heads, and wells located in valleys or at low elevations that penetrate these aquifers have artesian flow. The deeper aquifers have calcium sulfate water and may contain hydrogen sulfide although hydrogen sulfide was not found in water from the Madison well supplying the current mine operation. These deeper aquifers are effectively separated from each other by poorly permeable strata and are separated from the shallower fresh water flow system by several thousand feet of Cretaceous shale.

In the project area, the potentiometric heads decrease in successively deeper units of the Tongue River member. There is a relatively high vertical head gradient and a relatively low lateral or horizontal gradient in the ground-water flow system. The flow systems are continuous under the higher topographic features but towards discharge areas are separated by ground water divides and near discharge areas become discontinuous where there is lateral flow through units having relatively high horizontal permeability in comparison to the relatively low vertical permeability of underlying rock. The comparative rapid lateral flow through
the more permeable coal beds and clinker and the more permeable sandstones drains overlying strata back away from points of discharge making the zone of saturation discontinuous in and near the discharge areas. The ground-water divides that locally separate the flow systems migrate in response to changes in potentiometric heads in the flow system.

Ground-water is recharged by precipitation on the area; but in addition, there is lateral flow of ground water into the tract from recharge areas in the topographically higher Little Wolf Mountains to the southeast. Potentiometric maps, Figures 23, 24 , and 25 , indicate that the direction of flow in the upper parts of the shallow flow systems is from topographic highs to topographic lows. The potentiometric maps of Tract III (Westmoreland Resources, 1975 1, p1s. 4, 5, and 6) which include the proposed mine area indicate a divide traversing the tract from the southeast corner to the northwest corner. East of this divide, flow is to the north and northeast to East Fork of Sarpy Creek. West of the divide, flow is westward to Sarpy Creek and its tributaries.

Flow through the upper part of the shallow system discharges to springs and seeps at the base of the coal beds and clinker and more permeable sandstone units. The system discharges to the alluvium and either to the

Figure 23. Generalized contours on the potentiometric surface of the Rosebud-McKay coal in the proposed mine area. Adapted from Westmoreland Resources, 1975 1, Plate 2.2.2-4.

- 3380 - Contour on piezometric surface. Elevations in feet above mean sea level. Contour interval 20 feet.

Figure 25. Generalized contours on the potentiometric surface of the upper Sub-Robinson unit. Adapted from Westmoreland Resources, 1975 1, Plate 2.2.3.6.
creeks or through the alluvium to the lower part of the shallow flow system.

In the lower parts of the shallow flow systems, the flow is to the northward to discharge points near the Yellowstone River (Westmoreland Resources, 1975 1, p. 20). The lower part of the shallow flow system is recharged in part from local precipitation and from lateral flow from the southeast.

Hydrographs of wells (Figures 26 and 27) indicate that recharge to the ground-water reservoir takes place during winter and early spring (Dames and Moore, 1975, pp. 43-48). The highest water levels in the wells that respond to seasonal changes are prior to the months of maximum precipitation as recorded at Colstrip (Westmoreland Resources, 1975 j, p. 5). This suggests that the recharge is largely from snowmelt.

During the growing season, evaporation and transpiration by vegetation depletes moisture in the soil zone. This moisture deficiency must be satisified before precipitation can percolate through the soil. Yearly precipitation averages 12 to 15 inches but is very unequally distributed in that 45 percent of the annual precipitation occurs in one-quarter of the yearApril, May, and June-whereas 32 percent of the annual precipitation falls from July to the end of October (Westmoreland Resources, 1975 j, p. 5). The small

Figure 26. Hydrographs of wells 1 A and 1 B .

Figure 27. Hydrographs of wells 2A, 2B, and 2 C .
amount of precipitation per month during most of the year would appear to preclude significant recharge to the ground-water system except in the winter or early spring. Much of the water that is recharged moves through the upper part of the ground-water reservoir to discharge at springs and seeps where it is largely lost to evapotranspiration. Only about three percent of the precipitation that falls on the area leaves as stream flow (U.S. Bureau of Indian Affairs, 1974, p. 74). Ground water as it moves from recharge areas to discharge areas dissolves, transports, and redistributes some of the mineral matter through which it moves. The chemistry of the reactions is complex in that it not only involves the chemistry of the original water entering the groundwater reservoir and the successive differing mineral environments it passes through, but it is also affected by changes in temperature and pressure in different parts of the flow system. In general, there is an increase in the concentrations of dissolved solids in the stratigraphically lower units (Westmoreland Resources, 1975 1, p. 51). Wells, if uncased, act as shorts in the natural flow system and water moves through the borehole from zones of higher head to those of lower head. Water produced from such wells may be a mixture of water from several producing zones, and the water level in the well may be a composite from the heads of the various producing zones.

Rosebud-McKay overburden
Rocks above the Rosebud-McKay coal are referred to as the Rosebud-McKay overburden (Westmoreland Resources 1975 1). This unit consists of discontinuous gray sandstone and siltstone with occasional shale layers and a coal bed (referred to as stray 1 coal) which is 15 to 75 feet above the Rosebud-McKay coal. The overburden unit is present in most of proposed mining area.

The sandstones and siltstones that form the overburden in the proposed mine area are weathered and uncemented to a depth of from 20 to 50 feet below land surface and have moderate porosity and infiltration capacity. Fractures in the overburden are rare except in the stray 1 coal. The siltstones and sandstones have intergranular porosity where as the porosity of the stray 1 coal results from fractures.

The overburden is up to 100 feet thick in the proposed mine area and is above the water table, but does transmit recharge to underlying aquifers.

Measurements of aquifer characteristics of the upper weathered zone where saturated on Tract III indicate a transmissivity of $700 \mathrm{gpd} / \mathrm{ft}$ and a permeability of $2 \times 10^{-3} \mathrm{~cm} / \mathrm{sec}$. The basal shale and siltstone overlying the Rosebud-McKay coal are reported to have a low permeability when not weathered. Vertical permeabilities determined from cores in siltstone and shale are 9×10^{-9}
$\mathrm{cm} / \mathrm{sec}$ and $2 \times 10^{-9} \mathrm{~cm} / \mathrm{sec}$ respectively (Table 29 , Appendix C). Pumping tests indicate a transmissivity of 17 gpd/ft and a permeability $1 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}$ for the stray 1 coal at Well 4A (Westmoreland Resources, 1975 1, p. 30).

Recharge of the overburden unit is from precipitation on the area and from lateral flow from the southeast. Hydrographs of wells 4A and 5A (Dames and Moore, 1975, p. 46 and 47) indicate a seasonal response to precipitation. Discharge from the overburden unit is to springs and downward to recharge deeper aquifers.

Rosebud-McKay coal
The Rosebud-McKay coal is present over most of the proposed mine area. It consists of 25 to 35 feet of cleated coal and includes a shale bed or parting. The fractures in the coal are partially saturated with ground water. Hydrographs made from water level measurements in observation wells (Figure 26 and Dames and Moore, 1975) indicate a seasonal response of the potentiometric surfaces at wells in the northern and central parts of Tract III and a subdued response in the southern part of the Tract where much of the recharge to the coal may be from lateral flow from the southeast.

Ground water occurs in fractures in the coal, and pumping tests on six wells in Tract III indicates a range of transmissibility of from one to $35 \mathrm{gpd} / \mathrm{ft}$ and a range
of permeability from $1 \times 10^{-6} \mathrm{~cm} / \mathrm{sec}$ to $4 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$ (Westmoreland Resources, 1975 1, p. 61).

Recharge to the Rosebud-McKay coal is from vertical leakage through overlying beds, infiltration into clinker and hence to the coal and from lateral flow from the southeast. Water discharges from the coal to springs and seeps along the base of the coal where it crops out or to clinker and thence to springs, and vertically to recharge deeper aquifers. The potentiometric head in the Rosebud-McKay coal is lower than that in the overburden and higher than that in the interburden and Robinson coal.

Coal interburden zone
The coal interburden zone is between the RosebudMcKay and the Robinson coals and consists of from 50 to 120 feet of discontinuous sandstones, siltstones, and shales and the stray 2 coal. In the western part of the proposed mine area, the interburden is 50 to 90 feet thick and is composed primarily of siltstone and some shale. In the eastern and southeastern part of Tract III, the interburden is 100 to 120 feet thick and contains more coarse clastics, predominantly sandstone. The sandstones and siltstones have intergranular porosity, and the stray 2 coal has porosity as a consequence of fracturing. Where exposed, the weathering and cementation of the interburden
is variable, and infiltration capacities are similar to those of the Rosebud-McKay overburden.

Field and laboratory measurements indicate an upper 20 to 30 foot zone of low permeability composed of shale, siltstone and the stray 2 coal. Three core samples from this zone have vertical permeabilities ranging from $3 \times 10^{-8} \mathrm{~cm} / \mathrm{sec}$ to $7 \times 10^{-9} \mathrm{~cm} / \mathrm{sec}$. (Table 29, Appendix C). The rest of the interburden is lithologically more varied than the upper part. The potentiometric head in the interburden is lower than that in the RosebudMcKay coal and higher than that in the Robinson coal.

In Tract III, recharge is from vertical flow from the overlying coal and lateral flow from the southeast of the Tract. Discharge from the interburden is mainly to the Robinson coal. Unsaturated zones exist near and in some instances to considerable distances from valley walls as a result of the low permeability of the interburden and the relatively high horizontal permeabilities of the Rosebud-McKay and Robinson coals.

Robinson coal
The Robinson coal is a 20 to 25 foot thick cleated coal having low to moderate fracture permeability. The Robinson is present over most of Tract III and all of the proposed mine area. Near areas where it crops out and the coal has been weathered and in places burned, it
has increased permeability. Fractures in the Robinson are saturated through most of the proposed mine area. Observation wells have been drilled at nine locations in Tract III. Pumping tests indicate transmissivity ranges from 2 to $20 \mathrm{gpd} / \mathrm{ft}$ and permeability from $2 \times 10^{-6} \mathrm{~cm} / \mathrm{sec}$ to $5 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$. The potentiometric head in the Robinson is lower than that of the interburden and higher than those in the sub-Robinson units.

Ground water in the Robinson coal is recharged by vertical and lateral flow in the proposed mine area in Tract III. Discharge is to springs at the base of the outcrop of the coal, and there is some vertical flow downward to recharge the sub-Robinson units.

Sub-Robinson units
Westmoreland Resources, for purposes of their baseline study, have investigated what are referred to as an upper sub-Robinson unit and a lower sub-Robinson unit. The upper sub-Robinson unit extends to approximately 100 feet below the base of the coal and consists of an upper zone of low permeability of predominantly silts and shales underlying the Robinson coal and a lower more clastic unit of sandstone and siltstone. Borehole packer tests of the shales, siltstones, and the sandstone beds of the upper zone indicate a range of horizontal permeability of from less than $5 \times 10^{-8} \mathrm{~cm} / \mathrm{sec}$ to $2 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$
(Westmoreland Resources, 1975 1, p. 38). The more clastic lower zone consists of 60 to 90 feet of fine to medium grained poorly cemented friable sandstone interlayered with some better cemented beds. Transmissivities calculated from pumping tests indicate a range of 20 to 90 gpd/ft and permeabilities of from $2 \times 10^{-6} \mathrm{~cm} / \mathrm{sec}$ to $4 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}$. Borehole packer tests indicate a wider range in horizontal permeabilities in this zone. The permeabilities ranged from $4 \times 10^{-8} \mathrm{~cm} / \mathrm{sec}$ in interlayered siltstone and well cemented sandstone to $6 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$ in poorly cemented, fine-grained sandstone (Westmoreland Resources, 1975 1, p. 38). Vertical permeabilities determined from two core samples were $1 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}$ and $4 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}($ Table 29 , Appendix C).

Potentiometric head in the sub-Robinson is below that in the Robinson coal and is below the base of the coal. The upper part of the sub-Robinson may be dry or partially saturated in the vicinity of discharge areas where vertical recharge to the unit has been short circuited as a result of the comparatively high permeability of the overlying Robinson coal where the gound water is moving laterally to discharge at springs at the base of the coal. Throughout most of the area, there is hydrologic continuity between the sub-Robinson and the other aquifers.

The sub-Robinson units are recharged vertically from the overlying coal from lateral flow from the southeast. Discharge is to springs, the alluvium, and to deeper aquifers.

Underlying the upper sub-Robinson unit is a 80 to 250 foot thick unit composed of interlayered sandstone, siltstone, and shale. These rocks are referred to as the lower sub-Robinson (Westmoreland Resources, 1975 1, p. 41), or the Fort Union undifferentiated. Most of the domestic and stock wells in the area are completed in this unit and are 50 to 300 feet deep (Westmoreland Resources, 19751, p. 43) and generally yield less than $10 \mathrm{gpm}(\mathrm{U} . S$. Bureau of Indian Affairs, 1974, p. 87). Recharge to this unit is vertically from overlaying rocks and laterally from the southeast (Westmoreland Resources, 1975 1, p. 42). Discharge is to springs, where the unit crops out, to lower aquifers and upward to overlying aquifers depending on location in the flow system. Deeper Aquifers

Deeper aquifers that do not crop out in the proposed mine area are little used as a source of ground water within a radius of 50 miles of the area (Westmoreland Resources, 1975 1, p. 22). Of the 156 wells inventoried in the project and for which the source of their yield zones could be identified, only 6 were from below the undifferentiated Fort Union aquifer, and 5 of these were
presumably in the Tullock-Hell Creek aquifer one to several miles west of Tract II and about nine miles west of the proposed mine area. In the project area, Westmoreland drilled three test holes from 90 to 180 feet into the Tullock member in an attempt to develop an adequate water supply for the mining operation. An insufficient supply of water was obtained from this drilling program (U.S. Bureau of Indian Affairs, 1974, p. 87). The other deep well tapping aquifers below the Fort Union undifferentiated aquifer is Westmoreland's 7,977-foot deep well to the Madison Limestone which has a potentiometric head of 175 feet above ground surface. A 9,336-foot deep well at Colstrip, Montana, 20 miles northeast of the project area, produces from the Madison Limestone and the Red River Formation and has a potentiometric head 460 feet above ground surface. (Westmoreland Resources, 1975 1, p. 20 and 21).

Aquifers below the Tongue River that probably discharge northward to the Yellowstone River are the Lebo shale aquifer and the Tullock-Hell Creek aquifer. The Lebo shale member of the Fort Union Formation includes few water-bearing sandstone beds, and the contained water is normally too highly mineralized to be usable for either stock or domestic supplies (U.S. Bureau of Indian Affairs, 1975, p. 131). The transmissivity of
the Hell Creek Formation in the southern Powder River area is reported to be 1,500 to $4,700 \mathrm{gpd} / \mathrm{ft}$, and a storage coefficient of 4×10^{-4} was estimated (U.S. Bureau of Indian Affairs, 1974, p. 88). Deeper aquifers belonging to the regional flow system from the Big Horn Mountains to the Powder River basin that are mentioned in the literature for nearby areas are: The Parkman Sandstone (U.S. Bureau of Indian Affairs, 1974, p. 88), The Cloverly Formation-particularly, its basal conglomeratic sandstone unit, The Amsden Formation, The Madison Limestone, and the Red River Formation (Westmoreland Resources, 1975, p. 21 and 22).

Throughout Big Horn County, the Cloverly Formation is reported to yield moderate to large quantities of water to wells tapping its basal sandstone, and the potentiometric head of this unit is reported to be above ground surface southeast and southwest of the project area (Westmoreland Resources, 1975 1, p. 21).

The Amsden and Madison aquifers are the result of solution of the carbonate rock. A well in the Amsden Formation in Big Horn County indicated that the Amsden had a relatively high yield potential (U.S. Bureau of Reclamation, 1972 , p. 54). Hydrologic characteristics of the deeper aquifers are given in the following table from Hurlbut, Kersich, and McCullough, 1972.
Pumping
Pumping Test Results

$$
\begin{aligned}
& \text { Coefficient of Trans - } \\
& \text { missibility - gpd/ft }
\end{aligned}
$$

$$
\begin{gathered}
\text { Storage } \\
\text { Coefficient }
\end{gathered}
$$

$$
\begin{array}{rc}
6,000 & \cdots \\
20,000 & 5 \times 10^{-4} \\
3,000 & \cdots \\
90,000 & \cdots
\end{array}
$$

Quantity and use of water
Typical domestic and stock wells in the area yield generally less than 10 gallons per minute from the Tongue River, Lebo shale, and Tullock members of the Fort Union Formation. Transmissivity values for the Fort Union derived from pumping tests in other areas indicate a range of from 500 to $1,000 \mathrm{gpd} / \mathrm{ft}$, and the storage coefficient is estimated to be 1×10^{-4} (U.S. Bureau of Indian Affairs, 1974, p. 88). Transmissivity and permeability values of the monitoring wells are given in Table 30, Appendix C. Maximum spring flow in the project area from the Rosebud-McKay and Robinson coal beds is between 0.5 and 5 gpm (Westmoreland Resources, 1975 1, p. 44). It is estimated that 90 percent of the total ground-water consumption in the project area and surrounding vicinity is for supplying livestock, based on information provided by land owners. Westmoreland plans to use 90,000 to 250,000 gpd for housekeeping and sanitary purposes. Sprinkling of roads to control dust will be done in the drier parts of the year and will consume most of the water pumped. The actual amount needed to control dust will depend on the degree of development and the length of the haulage roads. The present source of this water is the well drilled to the Madison Limestone.

Ground-water Quality

Background
There are no long term historical data available on the quality of the ground water resources specifically within Tract III. Only recently (1ast 4 years) have preliminary studies been made of the ground water quality of the project area as interest has developed in the regional coal resources.

The major man-made characteristic of the project area is the surface coal mine located in Sections 25 and 26 , T. 1 N., R. 37 E., of Tract III. The excavations from the mine and subsequent replacement of spoil material modify the ground-water characteristics of this part of Tract III. The resultant local and regional effect on the quality of ground water due to the mining activities has not yet been determined. Discussion of the waterquality characteristics of the areas affected by the mine will follow in subsequent discussion.

The following comments on the general quality of ground water of the area are taken from U.S. Department of the Interior, 1974:

Chemical quality of ground water depends upon the physical and chemical characteristics of the aquifer, the time the water resides in the aquifer, and the route through which the water travels. Water from clinkered
material is often of good quality because its source is usually from recent rainfall and snowmelt. The clinkered material is normally fratured and the fracture system results in a relatively high permeability. The concentration of the dissolved solids of this water is low, and likely to contain ions of magnesium, calcium, and sulfate (Hopkins, 1973). This water is termed "hard water", in reference to its soap consumption. Locally, water contains magnesium sulfate (epsom salt) at concentrations which may make it unsatisfactory for human consumption but acceptable for household use.

Water from the slope wash and alluvium deposits also contains magnesium, calcium and sulfate and is termed "hard". Dissolved solids concentrations of this water are usually higher than water from the clinker deposits. Some slope wash springs contain excessive magnesium sulfate.

Chemical composition of ground water in sandstone and coal bed aquifers in the Tongue River Member depends primarily on the depth at which the aquifer is tapped. The quality varies according to the characteristics of the aquifer intersected. The sandy beds of the Lebo Shale member contain water too highly mineralized to be used for domestic or stock supplies (U.S. Department of the Interior, 1974).
U.S. Bureau of Indian Affairs, 1974, cites the following data:

1) notes on the quality of ground water in the aquifers of the Sarpy Creek drainage basin (see Appendix C, Table 31).
2) selected chemical analyses of wells and springs on Westmoreland Resources Tract III (see Appendix C, Table 32). These data are from analyses of water samples collected by the Montana Bureau of Mines and Geology.
U.S. Bureau of Indian Affairs, 1974, p. 89-90, provides the following generalities from the above data:
(1) With one exception, all analyses indicate that the water is extremely high in hardness; the lowest hardness is from a well in the Lebo shaleTullock member aquifer.
(2) Varied water quality is present in the alluvium along the major water courses.
(3) Water qua1ity in the Rosebud-McKay overburden and coal seam aquifers is characterized by high calcium and magnesium concentrations in the forms of calcium sulfate and magnesium sulfate.
(4) High sodium as sodium sulfate and sodium bicarbonate is present in water from the Robinson coal seam aquifer.
(5) Water in the Lebo shale-Tullock member aquifer is high in sodium sulfate and sodium bicarbonate. The sodium-adsorption-ratio of this water is generally excessive.
(6) Lowest dissolved solids occur in the RosebudMcKay aquifer; the highest occur in the alluvium and Lebo-Tullock aquifers.
(7) Iron is found in the ground water, probably associated with sulfur as iron sulfide.
(8) Specific quality of ground water in many of the deeper aquifers underlying Tract III is unknown. It is probable that the Parkman sandstone and Cloverly Formation contain slightly brackish water, characterized by predominant concentrations of sodium bicarbonate and sodium sulfate. The high salinity and sodium precludes the use of this water for agricultural purposes.
(9) The Madison Limestone aquifer contains ground water of fair to poor chemical quality for potable use. Calcium sulfate is the principal constituent. Although this water has a high salinity, it may be utilized for agricultural purposes on soils of good permeability. Domestic users may require acclimation to minimize cathartic effects.
(10) Relatively high ground-water temperatures may be found in these deeper aquifers. Concentrations of iron and hydrogen sulfide may also be present although hydrogen sulfide has not been detected in water from the Madison well supplying the present mine.
(11) Ground water from the shallower aquifer formations is used mainly for domestic and agricultural purposes in the Sarpy Creek drainage.

Van Voast and Hedges, 1974, studied the ground-water quality of aquifers in Tract III. Their objectives were to determine the pre-mining hydrologic conditions in the area, and to establish an observation well system around the area of operations of the Westmoreland Resources mine.

Data presented by this study includes: 1) chemical analyses of a number of wells and springs in the area of Westmoreland Resources coal reserves (See Appendix C, Table 33); 2) well data for the Sarpy Creek area near the Westmoreland coal reserves (See Appendix C, Table 26);
3) spring data for the Sarpy Creek area near the Westmoreland Resources coal reserves (See Appendix C, Table 28).

A network of observation wells was established around the periphery of the proposed mine area in Tract III during the summer of 1973. The wells were drilled to different depth and completed to different aquifers. A list of the observation wells is given in Appendix C,

Table 34. Chemical analyses of water sampled from each well in 1974 and 1975 are shown in Appendix C, Table 35.

Results of this preliminary study showed the chemical characteristics of the ground water are diverse, depending on well depth, aquifer, and position in the flow system. Dissolved solids concentrations ranged from 400 to $5,000 \mathrm{mg} / \mathrm{l}$, with a few samples of greater concentration. Laboratory pH values all exceeded 7, with most ranging between 8 and 9. The chemistry of the ground water in the area was not closely related to specific locales or aquifer zones. These workers found water of different types in the Rosebud-McKay zone without any apparent areal pattern. Sodium was noted to be the predominant cation in waters of the Robinson and sub-Robinson zones, and magnesium was found as the predominant cation in waters in the stratigraphically higher zones. No fixed relationship was observed for the predominant anions, sulfate and bicarbonate.

Present Monitoring of the Project Area In addition to the ground-water monitoring network established by Montana Bureau of Mines and Geology (Van Voast and Hedges, 1974), Westmoreland Resources has also initiated a ground-water monitoring program in Tract III. The program is designed to obtain baseline chemical and
physical characteristics of the ground-water in the project area. (Westmoreland Resources, 1975 1). This network includes a selected number of the 43 observation wells within and around the project area. (See Figure 19).

Observation wells located in the Rosebud-McKay overburden and coal, Robinson coal, and the upper sub-Robinson unit were sampled during the summer and fall of 1974 and 1975. Wells in valley alluvium were sampled in the summer and fall of 1975. The chemical analyses produced thus far are given in Appendix C, Tables 36, 37, and 38. From these data, Westmoreland Resources, 1975 1, provides the following comments on the description of the ground water of the mining area during July and October 1974 and August 1975.
(1) Dissolved solids and evaporated solids concentrations range from $75 \mathrm{mg} / 1$ in the RosebudMcKay overurden to $2,700 \mathrm{mg} / 1$ in the Robinson coal, indicating increasing concentrations with depth. Likewise, in general, the lowest concentrations of sulfate (about $130 \mathrm{mg} / 1$ to $500 \mathrm{mg} / 1$) occur in the stratigraphically high zones on Tract III, the Rosebud-McКay Coal and overburden.
(2) Bicarbonate was the predominant anion in water from the Rosebud-McKay Coal. Both bicarbonate and sulfate were the major anions in water from the Robinson coal. Sulfate was the predominant
anion from the upper Sub-Robinson unit. Low levels of chlorides and nitrates were detected in ground water from all aquifers sampled.
(3) Calcium, magnesium, and sodium concentrations from waters of the Rosebud-McKay Coal showed no apparent areal pattern. Sodium was the predominant cation found in water from the Robinson and sub-Robinson zones. Minor levels of potassium (usually less than $10 \mathrm{mg} / 1$) were detected in all ground water samples.
(4) Three alluvial wells were sampled; two on Sarpy and one on East Fork Sarpy Creeks. The water quality was similar in all wells, with magnesium and sodium concentrations slightly higher than calcium. Evaporated solids ranged from 1,315 $\mathrm{mg} / 1$ to $1,691 \mathrm{mg} / 1$ and sulfate concentrations ranged from $617 \mathrm{mg} / 1$ to $788 \mathrm{mg} / 1$.
(5) All ground-water samples collected were alkaline with pH ranging from 7.3 to 9.0. This is attributed to the high bicarbonate and sulfate concentrations in the samples. Strontium was the only trace element found in relatively high concentrations; concentrations ranged from $0.8 \mathrm{mg} / 1$ to $11.8 \mathrm{mg} / 1$, with a $3.5 \mathrm{mg} / 1$ average for all aquifers sampled. Boron concentrations ranged from $0.04 \mathrm{mg} / 1$ to $0.85 \mathrm{mg} / 1$, with an average of 0.35 mg/1 for all samples.

Dames and Moore, 1975, p. 19 and 20 , provides comments on the monitoring wells sampled in October and November 1975. There was a general increase in the concentration of most major constituents in wells 1A(ROB), 1B(SR), and 2A(RMC), the Robinson Coal, sub-Robinson Zone, and Rose-bud-McKay Coal, respectively, since the summer of 1975. Sulfate concentrations decreased in wells 6A(RMC) and $6 \mathrm{~B}(\mathrm{ROB})$; however, there was a 300 percent increase in sulfate concentration of well $8 B(R O B)$. It appears that most published data are still too infrequent to detect any strong quantitative trends or changes in the water quality of the above wells.

Strontium concentrations from the samples taken in fall 1975 range from 0.42 to $18.79 \mathrm{mg} / 1$ (average of 5.5 mg/1), showing a 60 percent increase over those reported in the summer of 1975.

Sulfate concentrations in alluvial wells along East Fork Sarpy Creek increased significantly downstream from well 20 to 13. On August 11, the upstream well (20) provided a sulfate concentration of $788 \mathrm{mg} / 1$; wells 12 and 13 produced sulfate concentrations of $1007 \mathrm{mg} / 1$ and 1492 mg/l, respectively, on July 8. (Dames and Moore, 1975, p. 19). A similar increase was noted in sulfate concentration in the downstream direction of the surface waters of Sarpy and East Fork Sarpy Creeks.

In the future, Westmoreland Resources will concentrate ground-water monitoring efforts in wells immediately adjacent to the Tract III mining operations. Water-level measurements in Tract III wells will be made monthly and water-quality analyses annually or semi-annually. The wells to be sampled include the following: Montana Bureau of Mines and Geology wells 1, 2, 4, and 6; Dames and Moore 7 and 8 , and alluvium well 10 . As test wells are excavated, other wells will be utilized with new wells drilled if necessary. A one-year baseline study of the ground-water quality will be completed in the late summer of 1976. (David W. Simpson, Westmoreland Resources, written communication, 1976).
H. Soils

A soil survey of Tract III and the proposed mine area was made by Westmoreland Resources in 1975. The area was mapped at a scale of 1 inch $=400$ feet, following the tentative "Soils and Overburden Guidlines (1975)" issued by the Reclamation Division, Montana State Department of State Lands. These guidelines follow the mining permit application requirements that must be met pursuant to the Montana Strip Mining and Reclamation Act. The survey delineated the soil complexes on slopes over 20 percent, and each separate soil was delineated. The survey also combined slope phases that are important only for agriculture interpretations which eliminated some of the soil units that would normally be mapped. The methods of soil sampling and analysis used in the survey are given in Appendix C.

The soils in the area proposed for mining are formed from the Fort Union Formation. The landscape is characterized by rolling hills which are steeply dissected by intermittent drainages that are tributary to Sarpy and East Fork Sarpy Creeks. Outcrops of reddish baked shale occur along the knolls and esarpments overlooking the valleys. The Fort Union Formation is composed of stratified layers of sandstone, siltstone, and shale that weather to form loamy and clay loam soils. The
soils range in depth from shallow (10 inches) to deep (60 inches). The deep soils are found primarily in the narrow alluvial valleys, with the shallow soils formed on the knolls and steep escarpments common to the area. The smoother lands in the uplands usually weather to form moderately deep soils (20 to 36 inches) and are sometimes used for agriculture.

Nine soil mapping units were recognized on the proposed mine area. Table 4 lists the soils mapping units including the soil type, slope, suitability as topsoil, and depth-of the soil. The areal distribution of the soils on the proposed mine area is shown on Figure 28.

The following is a narrative description of the soils of the proposed mine area as adopted from Westmoreland Resources, 1975 m . A more detailed description of the soils is given in Appendix D.

Fort Collins Loam: This soil type consists of deep, sloping, well-drained soils on fans and in shallow drainageways. Slopes range from 2 to 8 percent. Soil depth ranges from 5 to 8 feet; being deepest along the stream channels. Typically, the A horizon is dark brown loam about 3 inches thick. The B horizon is grayish brown clay loam about 7 inches thick. The C horizon is light yellowish brown loam in the upper part and weakly stratified loam, fine sandy loam, and sandy loam in the lower part and extends beyond 60 inches. On the 4 to 8 percent
poog
poos
poog
Mapping
Unit
24 B
24 C
37 C
136D
334 C
636 C

$$
\begin{aligned}
& \text { Ft. } \\
& \text { Ft. } \\
& \text { Cush }
\end{aligned}
$$

Soil Type
Collins loam
Ft. Collins loam

$$
\text { 1. } 0
$$

$$
\begin{aligned}
& \text { Cushman loam } \\
& \text { Thedalund loam }
\end{aligned}
$$

Midway silty clay
Nelson fine sandy
Thedalund loam
Thedalund-Wibaux
Alice fine sandy

$$
\text { TABLE } 4
$$

$$
\begin{gathered}
\text { Slope } \\
\text { (Percent) }
\end{gathered}
$$

$$
\begin{aligned}
& 2-4 \\
& 4-8 \\
& 4-8 \\
& 8-25 \\
& 4-15 \\
& 2-15 \\
& 4-8 \\
& 8-15
\end{aligned}
$$

Proposed Mine Area

$$
\begin{aligned}
& \text { Suitability } \\
& \text { for Topsoiling }
\end{aligned}
$$

Good

$$
\begin{aligned}
& \text { poog } \\
& \text { XTY }
\end{aligned}
$$

Good
Poor to unsuitable
Depth of

Topsoil \quad| 60 inches or to bedrock |
| ---: |
| 60 inches or to bedrock |
| 30 inches or to bedrock |
| 24 inches or to bedrock |
| 12 inches |
| 30 inches or to bedrock |
| 20 inches or to bedrock |
| Not suitable |
| 60 inches or to bedrock |

ro sqụ@ suṭddew tios
weot sutctoj
อย
\cup
∞
\cdots
ê
n
n
838C
Alice fine sandy loam
From Westmoreland Resources, 1975 m .

$$
4-15
$$

Good

\square Good
Fair
(IIJ Poor to unsuitable
slope phase in valleys that drain red shale uplands the C horizons may contain 3 to 6 inch thick lenses of gravelly loam. Clay content of the B horizon ranges from 27 to 40 percent. With an accumulation of clay it is usually classified as a $B t$ horizon. $A C_{2} c a$ is often identifiable in the substratum.

The A and B horizons layer and subsoil are slightly acid to slightly alkaline, ranging in pH from 6.1 to 7.4. The pH of the C horizon ranges from 7.6 to 8.4. Boron concentrations exceeded 2 ppm in surface layers. Concentration then decreases with depth in the profile. The concentrations are not considered excessive.

Cushman Loam: This soil type consists of moderately deep, undulating, well-drained soils on broad, smooth ridges and hilltops in dissected uplands. They formed from underlying shale and sandstones of the Fort Union Formation which are at a depth of about 38 inches. Soil depth is mainly 30 to 48 inches on the 4 to 8 percent slope phase. Slopes range from 2 to 8 percent. Locally, where the soil occurs in areas of burned coal seams the depth ranges from 4 to 5 feet over the underlying shales. Typically, the A horizon is olive brown loam about 3 inches thick. The B horizon is olive brown to light olive brown clay loam about 12 inches thick. The C horizon is light yellowish brown silt loam. The soil in the

B horizon is calcareous at 11 inches with lime segregated into light gray mottles.

Soil pH ranges from 6.9 to 8.1 in the solum. The pH of soil within the C horizon ranges from 7.6 to 8.5 . The more alkaline material occurs within 13 inches of the surface. Conductivity and sodium concentrations are quite low although the SAR ranges between 1.44 and 3.52 on one horizon sampled (Sample 73-3). However, the sodium concentrations for this sample are based on ammonium acetate extraction rather than water extraction. Boron concentration ranges from 0.34 to 2.01 ppm ; the latter concentration occuring in the surface layer.

Thedalund Loam: This soil type occupies ridges, knolls, and hilltops. Slopes are short, convex and mainly 4 to 25 percent. Typically, the A horizon is grayish brown loam about 4 inches thick. The C horizon is light yellowish brown to pale yellow loam and silt loam resting on platy shale or siltstone at about 20 inches. Texture range included loam, silt loam, and light clay loam in all horizons. The C_{2} horizon usually has a layer of accumulated calcium carbonate.

Soil pH ranges from 7.1 to 8.1. Conductivity was less than $1 \mathrm{mmho} / \mathrm{cm}$ for all horizons sampled. Boron slightly exceeded 3 ppm (parts per million) in the surface layer of one horizon sampled (Sample 75-23). A

3 ppm concentration of boron is considered excessive or toxic to growth of some plants.

Midway Silty Clay Loam: This soil type consists of shallow, sloping to steep, and undulating to hilly, welldrained soils on sedimentary plains. Slopes range from 4 to 15 percent. These soils formed in place from materials weathered from silty clay loam and silty clay shale. Typically, the A horizon is characteristically grayish brown silty clay loam about 3 inches thick. The underlying material is pale olive, heavy silty clay loam containing partly weathered shale chips and rests on shale at about 20 inches. Included in the mapping with this soil are 1.8 to 1.4 acre inclusions of Thedalund loam and Nelson fine sandy loam.

Soil pH of the Midway ranges from 7.4 to 8.2 with the more alkaline material being in the C horizon below the 10 -inch depth. One C horizon sampled (Sample 75-34) had high concentrations of calcium, magnesium and sodium ions at the 10 to 18 inch depth. The SAR was 2.25 and 5.2 at the 6 to 10 inch and 10 to 18 inch depths, respectively. Boron concentration in the 10 to 18 inch depth was 2.12 ppm .

Nelson Fine Sandy Loam: This soil occurs on smooth hills, ridges, and shallow swales separating major drainageways where sandstone is the underlying rock. Slopes are constant and range from mainly 2 to 15 percent. Soil
depth varies between 20 and 45 inches, being least on the narrow ridges and where slopes exceed 10 percent. Typically, the A horizon is grayish brown sandy loam about 5 inches thick. The B horizon is grayish brown, heavy sandy loam about 7 inches thick. The C horizon is light yellowish brown grading to white sandy loam resting on soft sandstone at about 34 inches.

Soil pH ranges from 7.0 to 8.5 and usually increases with soil depth. Conductivity is less than $1 \mathrm{mmho} / \mathrm{cm}$. Typically, the sodium adsorption ratio (SAR) is less than one. However, one horizon (measured between 7 and 13 inches) sampled in 1973 (Sample 73-2) had a SAR value of 8.2. Sodium concentration was determined using ammonium acetate extraction on this sample rather than the saturation extract. Consequently, the relationship of sodium to the SAR is not available. Boron concentrations are not high enough to be toxic.

Thedalund-Wibaux Complex: The 8 to 15 percent slopes phase is characterized by about 55 percent Thedalund loam and about 45 percent Wibaux gravelly and channery loam on red shale uplands in the survey area of Tract III. Neither soil has a fixed or predictable position on the landscape. The red color of the Wibaux soil and the abundance of red baked shale and sandstone rock fragments identify the Wibaux soil from the grayish brown Thedalund. Fused rock boulders and sandstone ledges outcrop at random on the
steepest hillsides. Some Spearman loam is included in the mapping. These are in the heads of small drainageways and on the footslopes below rock ledges.

The 15 to 35 percent slopes phase is characterized by about 50 percent Thedalund 1 oam and about 50 percent Wibaux gravelly loam. Channery and stony loam occupies the steep uplands where burned coal beds have colored the rocks red. The soils occur in no predictable pattern but the red color and flat shale fragments covering the surface identify the Wibaux soil. Fused rock boulders and slaty shale outcrops are scattered throughout the Wibaux soil. These soils have profiles that contain more rock fragments than the ones described for laboratory analysis.

Soil depth ranges from 14 to 33 inches. Soil pH ranges from 7.1 to 7.6 which would classify this complex as neutral to slightly alkaline soils. Conductivity ranges from 2.1 to $12.7 \mathrm{mmhos} / \mathrm{cm}$. The highest conductivity occurred in depth range of 6 to 21 inches for one profile. The same depth range also contain high concentration of calcium, magnesium and sodium. This profile also had a 12.4 ppm boron which would be high1y toxic to plant growth. High salinity and boron are not characteristic of the Thedalund or Wibaux soils and contamination of the soil sample tested or analytical error is suspected.

Alice Sandy Loam: This soil type consists of deep, sloping to moderately steep, well-drained soils on footslopes, alluvial fans and valley bottoms. Slopes range from 4 to 15 percent. This soil type is formed in sandy alluvium from calcerous sandstone. Typically, the A horizon is dark grayish brown sandy loam and ranges from 4 to 12 inches thick. The B horizon is brown to yellowish brown sandy clay loam with a clay content range between 12 and 25 percent in the B. The C horizon is pale brown to light yellowish brown sandy loam to 60 or more inches.

Soil pH ranges from 6.6 to 7.4 in the A and B horizons, and from 8.0 to 8.4 in the C horizon which occurs at about 30 inches. Sodium concentrations are less than 1 meq/1 (milli-equivalent per liter) in the A or B horizons but increases to greater than $1 \mathrm{meq} / 1$ in the C horizon.

The average depth of soils on the proposed mine area is about 34 inches. Chemical limitations of the soils, especially salinity, boron, and alkalinity, would affect their suitability for topsoiling. No such limitations have been identified although a few samples have elevated values of salinity and/or boron in lower horizons.

In addition to the soil survey, the Colorado School of Mines Research Institute (1975 a) under contract to Westmoreland Resources, prepared an evaluation of the
overburden and interburden characteristics of Tract III and of the proposed mine area. The objective of this study was to evaluate overburden and interburden materials occurring on Tract III for their suitability as a subsoil in the reclamation program. As the properties of these materials will be highly significant when used as subsoil material during reclamation, the CSMRI summary related to the proposed mine area is presented in its entirety in Appendix D.

The studies by the Colorado School of Mines Research Institute (CSMRI) indicate that the pH values of the overburden range from 3.8 to 9.5 , but most values fall within the range of 7.2 to 8.5. Values below 7.0 were rare and generally associated with carbonaceous material. Only one 4-foot interval in the overburden of the proposed mine site had a pH below 4.5.

Saline material was found in the northwestern part of the proposed mine area. Average soluble salt electrical conductivity ranged from 4.1 to 7.8 mmhos/cm. Soluble salt concentrations of these magnitudes may restrict growth of salt intolerant plants but were rarely found below a depth of 25 feet and would normally be deeply buried.

Only three overburden intervals within the proposed mine area were alkali. Averaged overburden sodium adsorption ratio (SAR) values are low, ranging from 0.9 to
7.1. Alkali intervals are commonly found in the interburden and SAR values range as high as 51. Additional studies were made for Westmoreland by CSMRI to determine if SAR levels in the interburden of some test holes posed a hazard to revegetation. CSMRI compared SAR and exchanged sodium percentage (ESP) values on a number of samples and found that the relationship between these analyses in surface soils did not hold for drill hole material. In surface soils, ESP and SAR are functionally related and SAR was used to derive ESP which is a more complicated analytical procedure. Westmoreland is now using the ESP analytical procedure on overburden analyses. Limited clay minerology studies were also made by CSMRI to determine if interburden clays were expanding lattice type (montmorillinite). Expanding lattice clays in combination with high exchangeable sodium results in high dispersion and low water permeability characteristic of alkali soils. The majority of the interburden clays were non-expanding (kaolinite) with about 10 percent being montmorillinite. A copy of the CSMRI report on SAR-ESP and clay minerology is included in Appendix C.

In essentially all overburden and interburden on the proposed mine site, the concentration of nitrogen is insufficient to satisfy plant requirements. Analysis for other macronutrients included phosphorus, potassium, magnesium, sulfur, and calcium. Except for phosphorus,
the concentrations of these macronutrients were generally adequate for plant needs. Plant micronutrients were generally present in concentrations adequate for plant requirements.

Concentrations of DTPA extractable zinc in the overburden and interburden were above the level generally found in surface soils and ranged from 52 to 200 parts per million (ppm). The occurrence of high zinc levels was erratic and did not correlate between drill holes. To investigate possible contamination of samples, drilling and sample handing procedures were reviewed. It was found that the joint compound used on the drill pipe contained 50 percent $z i n c$, and was a likely source of contamination. A report by CSMRI evaluating the source of zinc contamination is included in Appendix D.

Except for three interburden samples from one drill hole, the boron concentration of overburden and interburden samples tested was less than 6 ppm and appears to be within the range considered nontoxic for many plant species used in revegetation.

The concentrations of total mercury, available selenium, and DTPA extractable cadmium, lead, and nickel were all within the ranges viewed as normal and nontoxic for surface soils. Quantitative analyses for total lead, cadmium, fluoride, and arsenic were made for some of the overburden and interburden in the proposed mine area and
semiquantitative spectrographic scans were made for other intervals. Trace element concentrations were within the ranges considered normal and nontoxic for surface soils.

Water retention capacity determined for samples from all but five of the drill holes in the proposed mine area indicate that, with rare exceptions, water retention capacity of the overburden and interburden should not restrict plant growth. Plant growth testing under greenhouse conditions and with fertilizer applied indicated that with few exceptions, the intervals tested were capable of supporting normal plant growth.
I. Vegegation

The vegetative community in the area covered by the proposed mine plan consists of a mixture of native grasslands, an interesting variety of shrub communities, a moderate amount of cultivated and improved lands, a small amount of previously cultivated land in various stages of revegetation, and a mixture of commercial and non-commercial ponderosa pine communities with a varied understory of grass, forbs and shrubs. Ponderosa pine predominates on well-drained soils derived from clinker or sandstone material, and reaches its best development on north and east facing slopes where moisture conditions are most favorable. The various plant communities are fairly evenly distributed throughout the proposed mine area. The size and location of the proposed mine area is such as to make the variation slight and fairly random. There are no known areas within the proposed mine area that are vegetatively unique in character.

The vegetation on Tract II was classified into 15 vegetation types most or all of which are presumably present on the proposed mine area. There were nine naturally occurring types, two agricultural types, and four disturbance-related types. The distribution of the vegetation types on and adjacent to the proposed mine
area is shown on Figure 29. A list of plant species observed in the area is given in Table 1 , Appendix D. Their designations and relative abundance on the proposed mine area are as follows:

Vegetation Type
Ponderosa Pine-Grassland

Grassland
Skunkbush Sumac-Grassland Big Sagebrush-Grassland

Snowberry
Boxelder-Hawthorn-Chokecherry

Greasewood-Grassland Trace
Agricultural 31.1
Disturbed Grassland 5.4

From Westmoreland Resources, written communication, July 1976.

The distribution of plant communities or vegetation types in the area is a result of the interaction of that plant community with its physical environment and in some cases the history of past disturbance.

A discussion of the plant communities, including their relation to the physical environment, influences of past disturbance and species composition, is presented in the following paragraphs.

EXPLANATION

GR - Grassland
BS - Big Sagebrush-Grassland
SS - Silver Sagebrush-Grassland
SG - Skunkbush Sumac-Grassland
BG - Box Elder - Hawthorn - Chokecherry
SB - Snowberry

PP - Ponderosa Pine-Grassland
HF - Hayfield
WF - Wheatfield
DG - Disturbed Grassland
MS - Mine Site
SR - Shadscale-Rabbitbrush

Figure 29. Vegetation types on proposed mine area. Adapted from Westmoreland Resources, 1975 o, Plate 2.3.1-2.

Woodland Communities
Ponderosa Pine - grassland type (Pinus ponderosagrass): This vegetation type was the most predominant and the only woodland community on the area. About 23.7 percent of Tract III was covered by this type. Typically, the Ponderosa Pine-grassland type occurred on upper slopes and ridges with shallow well-drained soils throughout the area and extended into lower elevations along drainage bottoms with cobble soils. Normally, this type was associated with the Thedalund-Wibaux Complex or ThedalundWibaux stony loam soils.

One subtype of the Ponderosa Pine-grassland type is the Ponderosa Pine-Juniper type. This type comprised a relatively small acreage on Tract III. Because of the relatively small area of this type on the area and because of its great similarity to the Ponderosa Pinegrassland type, this subtype was combined with the Ponderosa Pine-grassland type. The juniper species are the Rocky Mountain Juniper (Juniperus scopulorum) and Creeping Juniper (Juniperus horizontalis). Grass species associated with both vegetation types included Bluebunch Wheatgrass (Agropyron spicatum), Idaho Fescue (Festuca Idahoensis), Slender Wheatgrass (Agropyron trachycaulum), Side-Oats Grama (Bouteloua curtipendula) and Bluegrass (Poa sp.).

The density of the pine overstory varied from approximately 111 to 1381 trees per acre on Tract III, generally reaching greatest density on north facing slopes. Ages of trees sampled ranged from 17 to older than 106 years on Tract III. The diameter at breast height (DBH) of trees on Tract III was approximately 6 inches. The understory of the Ponderosa Pine-grassland type also varied. Open stands had a greater understory than closed stands. Grassland and Grassland-Shrub Communities

The grassland community differs from the grasslandshrub community in that the major portion of the grass1and vegetation consists of grasses and forb species, whereas, in grassland-shrub communities a predominant woody shrub species is present. These communities are composed of numerous plant community types. Particular communities and dominant species within the communities depend upon topography, soils and past history of disturbance.

Grassland type: The grassland vegetation of this south central Montana area is of note because it is within the region where the bunch grass prairie of the northwest and short grass prairie of the Great Plains meet. These grasslands intermingle along a wide zone as a result of variations in soils, micro-climate and broken topographic relief (Wright and Wright, 1948). The Tract III lease is located within this zone.

Wright and Wright (1948) studied several grassland types of south central Montana. Because their results parallel the observations made on the lease area, a brief comparison follows. They classified five grassland types. Listed from most mesophytic (medium moisture) to most xerophytic (arid) they are: 1) Idaho Fescue type; 2) Bluebunch Wheatgrass type; 3) Bluebunch WheatgrassNeedleleaf Sedge (Carex filifolia) Blue Grama (Bouteloua gracilis) type; 4) Blue Grama-Needle-and-Thread-Junegrass (Koeleria cristata) ; 5) Blue Grama-Needle-and-Thread type. Type 1 occurred in regions of well-drained soils with favorable moisture conditions. On the project area, the Idaho Fescue type grassland occurred mainly on north facing slopes with deep soils. Wright and Wright (1948) found that type 2 grassland occurred on spring moist sites with reduced grazing. On the lease area this type occupied sites of shallower soils in areas protected from grazing. Wright and Wright (1948) demonstrated that the type 3 grassland dominated on sandier soils. This type, however, was uncommon on the lease area. The type 4 grassland was the most common grassland type. According to Wright and Wright (1948), this type was found on the heavier textured soils throughout the Hardin-Billings area which includes the lease area. Type 5 grassland occupied extremely dry sites (Wright and Wright, 1948).

On the lease area, this type was present on extreme south and west facing slopes with sandy soils. The grassland type occurred on about 28.4 percent of Tract III. Grass species associated with this type included Western Wheatgrass, Bluebunch Wheatgrass, Side-oats Grama, Blue Grama, Sandberg Bluegrass (Poa sandbergii), Needle-and-Thread, Green Needlegrass (Stipa viridula), Little Bluestem (Andropogon scoparius), Junegrass, and Prairie Sandreed, Red Three-awn (Aristida longiseta), and Idaho Fescue. Silver Sagebrush-grassland type (Artemisia canagrass): This vegetation type comprised 9.7 percent of Tract III. It occurred on relatively level terrain, usually along drainage bottoms of the Thedalund-Ne1son or Thedalund-Wibaux Complex soils. Silver Sagebrush was the dominant shrub of this type. Houston (1961) studied the distributions of Big Sagebrush and Silver Sagebrush types near Miles City, Montana. He noted that two types were greatly influenced by edaphic and grazing effects. Big Sagebrush type was favored under heavy grazing on upland soils while light grazing favored Silver Sagebrush type on upland soils. Heavier textured terrace soils were unfavorable to both regardless of grazing pressure.

Common Forb species of this type included Yarrow (Achillea millefolium) , Golden Aster (Chrysopsis villosa), Silverleaf Scurfpea (Psoralea agrophylla), Chickweed
(Cerastium arvense), Aster (Aster sp.) and Prairie Coneflower (Ratibida columnifera). Common grasses included Green Needlegrass, Idaho Fescue, Japanese Brome (Bromus japonica) and Western Wheatgrass.

Skunkbush Sumac-grassland type (Rhus trilobata-grass):
The Skunkbush Sumac-grassland type covered approximately 10.8 percent of Tract III. This type occurred on relatively dry, steep, west and south facing slopes of the ThedalundWibaux Stony Loam or Thedalund-Nelson Complex soil types. On level terrain this type occupied areas with reddish-colored scoria outcrops. Skunkbush Sumac was the dominant shrub; however, Prairie Rose (Rosa Arkansana) and Western Snowberry (Symphoricarpos occidentalis) sometimes co-dominated. Common grasses of this type included Needle-and-Thread, Prairie Sandreed, Side-oats Grama, and Cheatgrass (Bromus tectorum). Forb species were not as prevalent in this type as in other types. However, common forbs species included False-taragon Sagewort (Artemisia draunculus), Low Ragweed (Ambrosia artemisifolia), and Rush Skeletonweed (Lygodesmia juncea).

Big Sagebrush-grassland type (Artemisia tridentatagrass): The Big Sagebrush-grassland type comprised about 5.0 percent of Tract III. It was associated with the Thedalund and Nunn series as well as the Thedalund-Midway Complex soils. As previously mentioned, Big Sagebrush
was shown to increase in dominance under heavy grazing pressure on the upland soils near Miles City, Montana (Houston, 1961).

Co-dominant grass species within this type included Western Wheatgrass, Side-oats Grama, Blue Grama and Sandberg Bluegrass. Common forbs included Fringed Sagewort (Artemisia frigida), Slimflowered Scurfpea (Psoralea tenuiflora), and Yarrow. Broom Snakeweed (Gutierrezia sarothae), a shrub, was also common.

Shadscale Saltbush-Rubber Rabbitbrush type (Atriplex con fertifolia-Chrysothamnus nauseosus): This type occurred only on Tract III. Ecological Consulting Service (ECS, 1974) studied this type and called it Caprock Gumbo Knob Type. They stated (p. 33):
"This type occupied only 0.3 percent of Tract III and was found at the northern end, and more extensively in the southeast corner of the study area where it was interspersed with the Ponderosa Pine type....This type was typically found on extremely severe sites with steep slopes and possible localized alkaline conditions. It appeared to function as a persistent subclimax or rather stable edaphic variant to the regional climax, using the terminology of Oosting (1956). The Midway-Thedalund soil complex was most closely associated with this vegetation type."

Referring to the ground cover, they stated (p. 33):
"This type generally had a very sparse ground surface cover with very little litter. Bluebunch Wheatgrass and Indian Ricegrass (Oryzopsis hymenoides) are the prevalent grass species. Eriogonum (Eriogonum multiceps) and Nuttail Goldenweed (Haplopappus nuttallii) are the most abundant forbs, while Rubber Rabbitbrush (Chrysothamnus nauseosus) and Prairie Rose are the common shrubs."

Greasewood-grassland type (Sarcobatus vermiculatusgrass): This type only occurred on Tract III. Concerning this type, ECS (1974) stated (p. 35):
"A very small acreage of this type exists at the northern end of Tract III....It has been heavily grazed by domestic livestock, and the shrub overstory and grassland understory appear depleted. In Sarpy Creek, this type appears to be confined to, or associated with, the alluvial soils of the Sarpy Creek floodplain. No field analysis of this limited habitat type was conducted during the course of this study." Shrub Thicket Communities

Two shrub thicket communities occurred on the area, the Snowberry type and the Boxelder-Hawthorn-Chokecherry type. Both communities occurred as dense stands along moist drainage bottoms but occupied different sites along
the moisture gradient. The Snowberry type occupied upland areas while lower more mesic areas were dominated by Boxelder-Hawthorn-Chokecherry type. Dominance of species within these communities is variable and dependent upon moisture conditions.

Snowberry type (Symphoricarpos occidentalis): This vegetation type occurred on about 5.3 percent of Tract III. The Snowberry type occurred in areas where moisture persists through the summer as a result of large accumulations of snow in the valley bottoms during the winter or overflow conditions. The dominant shrub, Western Snowberry, formed large oval stands with numerous stems present. This habit may indicate that the species was clonal at these locations. At the edge of the stand, Snowberry intergraded with the surrounding grassland. Few other plant species inhabited the dense thicket formed by the Snowberry; however, Kentucky Bluegrass (Poa pratensis) was one of the more prevalent grasses encountered and Yarrow was the common forb.

Boxelder-Hawthorn-Chokecherry type (Acer negundoCrataegus succulenta - Prunus virginiana): This vegetation type covered approximately 2.5 percent of Tract III. It occurred in narrow strips adjacent to permanent creeks and seasonally moist gully bottoms. A tree overstory of Boxelder was most common usually with an association of the shrub-like trees, Succulent Hawthorn and Chokecherry.

In addition, Green Ash (Fraximus pennsylvanica) commonly occurred with these species (ECS, 1974). Other associated shrubs included Prairie Rose, (Rosa arkansana) and Western Snowberry. The predominant grass species included Kentucky Bluegrass and Western Wheatgrass.

Agricultural types: The agricultural types comprised 11.9 percent of Tract III. Predominant crop plants included Alfalfa (Medicago sativa), Wheat (Triticum aestivum) and Barley (hordeum distichon). Figure 29 distinguishes two agricultural types, hay fields and wheat fields. Hay fields included alfalfa and native grass hay fields while wheat fields included fallowed fields and all small-grain fields.

Disturbed Area types: Disturbed areas were nonagricultural areas where practices of man, other than cattle grazing, have greatly altered the native communities. The vegetation at these sites exhibited various seral stages of plant succession toward the original climax state. On Tract III, several stands of Ponderosa Pine were commercially logged, thus altering the composition of this dominant species. Roadways throughout the lease area, both for railroad and highway traffic have altered the nature of the immediate and adjacent vegetation. On Tract III, the coal mine spoils and handing site have resulted in removal of the native vegetation on approximately 1.5 percent of the tract.
J. Fish and Wildlife

Numerous studies of fish and wildife have been conducted on Tract III since 1972 and are continuing today as mining proceeds in the approved mine area. Westmoreland Resources has contracted work from B. C. Research, Ecological Consulting Service, Dames and Moore Consultants and Montana State University to research the wildlife and fish of the area. The Montana Department of Fish and Game has made area-wide wildife and fishery studies on the Sarpy Creek Basin.

Tract III supports large numbers and a wide variety of wild animals. Due to the lack of large quantities of water, the fish populations in the area are minimal.

1. Mammals of the area

A total of 54 species of mammals have been listed (Table 1, Appendix E) that occur or may occur on Tract III. Table 2, Appendix E lists some habitat and food requirements of these mammals.

Those mammals classified as big game animals that occur on the area are the mule deer, Odocoileus hemionus, the white-tailed deer, Odocoileus virginianus, and the pronghorn or antelope, Antilocapra americana.

Mule deer are the most numerous of the three species on Tract III. Their greatest concentrations are located in the central to northern and extreme south-eastern and south-western portions of Tract III (Westmoreland Resources, 1975 o, Figure 2.3-2). These concentrations coincide with timbered areas on the lease (Ecological Consulting Service, 1974). A total of 559 mule deer sightings were made on Tract III from January to December, 1975 (Westmoreland 1975 o, and Dames and Moore, 1975). The greatest number sighted during one time period was 43. This number gives a minimum population density of 0.86 deer/square mile (Westmoreland Resources, 1975 o).

The composition of the mule deer herd on Tract III appears to differ with that of surrounding areas (Table 3 , Appendix E). Fawn production and/or survival is low resulting in a lower fawn per 100 doe ratio. The number of bucks per 100 does was generally higher than that in surrounding areas except during the 1975 survey (Westmoreland Resources, 1975 o).

The ponderosa pine-grassland association is the most used habitat type by mule deer on Tract III (Table 4, Appendix E). Escape cover, resting, and bedding are probably its chief functions. Secondary habitat use was varied depending upon the time of the year (Tables 5 and 6, Appendix E). Silver Sagebrush grasslands were used most heavily during the spring months; agricultural
lands were utilized in late winter, early spring and late summer; skunkbush-grasslands use occurred during the summer and fall; creek bottom, snowberry coulee, grassland and big sagebrush-grassland habitat types were used in spotted fashion throughout the year. Food availability undoubtedly dictates the habitat preferred by mule deer and thus accounts for their distribution.
"Known foods of mule deer include so many plants that it is not practical to list them all. Palatability is a relative factor, varying with local availability. Within one association a plant may rate high, whereas the same species occurring in a different association may be only lightly used (Taylor, 1965)." Foods of mule deer on the lease would be equally difficult to ascertain without intensive studies. Plants that are probably used in the mule deers diet are listed in Table 7, Appendix E.

Economically, the mule deer in Montana is very important. Thousands of sportsmen hunt deer each year and they provide a large portion of the Fish and Game Department's annual income to conserve all of Montanas' wild species.

White-tailed deer are the least numerous big game animal on Tract III. Most individuals were obseryed in the east-central portion of the area. A total of 65 white-tails were observed on Tract III from JanuaryDecember, 1975.

Dames and Moore (1975) reported a doe/fawn ratio of 60:100 for white-tails. On the basis of their finding, the population structure would be: 60 fawns $/ 100$ does; 45 fawns/100 adults; 33 bucks/100 does; 17.2 percent bucks -51.7 percent does 31.0 percent fawns. This small sample (15 does, 5 bucks, 9 fawns) is probably not enough to make a valid estimate for the population but is the only information available. White-tail numbers appear to be increasing throughout southeastern Montana (Martin, 1975).

White-tails were observed in only five habitat types: sprouted wheat fields, ponderosa pine-grasslands, grasslands, creek bottoms, and alfalfa hay (Westmoreland Resources 1975 o, and Dames and Moore, 1975). Ponderosa pine and creek bottom associations are probably the most important habitat types to these deer for cover, food and bedding, due to their secretive nature.

Foods of the white-tailed deer are numerous. Taylor (1965) suggests that it would be easier to list the plant species that are not eaten than to name those that are. Table 7, Appendix E, lists the plant species available from the lease that may be utilized. Most white-tail studies have been conducted on eastern populations; very little information on Montana white-tailed deer is available.

The Sarpy Creek Basin, including Tract III, is a relatively poor area for antelope production (Martin, 1975). For the period January-December, 1975, observations of antelope on Tract III totaled 169. The highest single count totaled 14 individuals (Westmoreland Resources, 1975 o). Observations were made during April-September and November. Habitat is apparently not suitable during the winter months to support the herd. Martin (1975) states that large areas of relatively flat land, covered with sagebrush, are necessary for good antelope range.

The fawn per female ratio is low in comparison to some Montana areas. Westmoreland (1975 o) reported a ratio of 36:100 on Tract III for 1974 and stated that a fawn:doe ratio of $30-40: 100$ could be expected in the Sarpy Creek area. Early 1975 counts were too low to estimate the fawn to doe ratio but for the period of July-December it was $24: 100$ (Dames and Moore, 1975). Martin (1975) reported a decline in the fawn:doe ratio from 58.6:100 to 38.4:100 in the Sarpy Basin during 1974. These data indicate that fawn production per survival is near the levels of adjoining areas.

Antelope sighting occurred on grasslands 71 percent of the time (Table 8, Appendix E). Other habitat types were relatively unimportant for antelope use.

Pronghorns consume a wide variety of plant foods. A portion of those that are available on Tract III are listed in Table 7, Appendix E.

Coyotes are numerous on the lease. Much emphasis has been placed on this member of the dog family because of its predatory nature, large numbers, and presently high fur values. Coyotes are highly adaptable to their surroundings and have survived and prospered through every concerted effort to reduce their numbers.

Coyotes may be found in all habitat types especially when they are hunting. They require terrain that provides cover for resting, bedding, and escape. Observations on Tract III were made in ponderosa pine-grassland (7 sightings), silver sagebrush-grassland (9 sightings), grassland (14 sightings), creek bottom (9 sightings), alfalfa hay (8 sightings), big sagebrush-grassland (1 sighting), skunkbush grassland (1 sighting), and snowberry coulee (1 sighting).

Foods of the coyote are mostly animal, however studies have shown that around 2 percent of their diet may be vegetable (Martin, et. al, 1961). They are blamed for depredations on large numbers of domestic stock, birds, and wild game animals. Their chief source of food is small mammals, birds and carrion.

Other predators observed on the project area include the Striped Skunk, Raccoon, and Bobcat. The only furbearer observed near the project area was the Muskrat although Beaver reportedly occur in Sarpy Creek.

Medium sized mammals observed on the project area included Desert Cottontail Rabbits, White-tailed Jackrabbits, and Red Squirrels. Evidence of Porcupine exists in the area but they were not observed. One small Blacktailed Prairie Dog town is present near the southeast corner of Tract III, but none have been observed on the proposed mine area.

A total of eight species of rodents have been identified from traps sampling representative habitats in the project area. Included were Deer Mouse, Western Harvest Mouse, Prairie Vole, Least Chipmunk, Olive-backed Pocket Mouse, Northern Grasshopper Mouse, Thirteen-lined Ground Squirrel, and Montane Vole. Evidence indicated that the Northern Pocket Gopher inhabits the area but none were observed.

The most abundant and widely distributed rodent species in all habitats was Deer Mouse. The Western Harvest Mouse was the second most widely distributed species but was most abundant in Ponderosa Pine.

A listing of food habits and habitat preference of the mammals is given in Table 2, Appendix E.
2. Birds of the area

A list of 236 species of birds that occur or potentially occur on or near Tract III is included in Table 9, Appendix E. This listing is revised from Westmoreland Resources data (1975 o). Species observed on the project area are indicated as well as those species that are of special interest in Montana. Information on food habits and habitats of family groups, sub-family groups and individual species is provided in Table 10 , Appendix E.

Sharp-tailed grouse are common on the lease. Information obtained by researchers on this important game bird is provided in Table 11, Appendix E.

Martin (1975) located a total of 16 shart-tail leks in the Sarpy Creek Basin; most were found on or just north of the lease. He observed 203 male birds on these grounds. By using the same formula (4 x number of male grouse) that Westmoreland researchers used to determine the grouse population on Tract III, there would be about 812 shart-tailed grouse in Martin's Sarpy Creek Basin study area.

One sharp-tail lek has been observed in the proposed mine area. When observed in 1975, this lek had 14 dominant males corresponding to an estimated spring population of 56 birds.

Sage grouse were not located on Tract III. This area is probably not good sage grouse habitat as they require extensive sagebrush plains. Martin (1975) located three sage grouse leks, all north of the lease. He stated that the 11.7 males per lek was an indicator of poor sage grouse habitat as the average for southeastern Montana is 43.2 sage grouse males per lek.

Ring-necked pheasants are one of the most visible birds on Tract III. The cover provided by Sarpy Creek and East Fork of Sarpy Creek along with the associated agricultural and grazing land produces good habitat for pheasants. Information compiled by researchers on the Sarpy Creek ring-necked pheasant population is presented in Table 12, Appendix E.

Although no population estimates are made, the crowing count routes are indicators, from year to year, of the stability of ring-necked pheasant populations. Lower Sarpy Creek undoubtedly contains the highest ring-necked pheasant populations of the area. The population on Tract III is comparable to the average for all of Sarpy Creek and much higher than the population in surrounding drainages.

Agricultural areas are important to the ring-necks of the lease for feeding. It is probable that counts were higher on alfalfa hay and grasslands due to the better visibility in these two habitat types. The amount
of available creek bottom habitat is probably the limiting factor with the pheasant populations of the lease. Merriam's wild turkeys that are present on Tract III are probably the result of stocking two tom and fifteen hen turkeys in 1957 (Martin, 1975). Table 13, Appendix E is a summary of Merriam's turkey data from Sarpy Creek.

The ponderosa pine-grassland, alfalfa hay, and silver sagebrush-grassland ranked highest in preferred habit type usage. No population estimates were made. Several flocks of 20 or more birds were observed.

Four species of ducks (mallard, green-winged teal, blue-winged teal, shoveler) were observed on Tract III. Other species probably use the area for resting and feeding during migrations. Lack of adequate aquatic habitat probably limits their use of the area. Nesting has been recorded in the vicinity and one mallard brood was hatched on an East Fork of Sarpy impoundment (Westmoreland, 1975 o).

Raptors observed on the lease were: great horned owl, saw-whet owl, golden eagle, sparrow hawk, prairie falcon, rough-legged hawk, red-tailed hawk, Swainson's hawk, and marsh hawk (Westmoreland, 1975 0, and Dames and Moore, 1975). No raptor nests have been reported on the lease, although with the exception of the roughlegged hawk all of the species listed may nest in the area.

Table 14, Appendix E is a summary of the data collected on the birds of Tract III. Species previously mentioned are included in this table.
3. Reptiles and Amphibians

Reptiles and amphibians that occur or potentially occur on or near Tract III are listed in Table 15, Appendix E. Notes on habitat and food requirements are given in Table 16, Appendix E. No species considered as endangered or threatened occur on the area.
4. Aquatic environment of the area

Tract III is drained by Sarpy Creek on the west and East Fork of Sarpy Creek on the east. These two streams roughly form the west and north boundaries of Tract III. All streams of this area are intermittent including Sarpy Creek. Thirty-five springs have been located (Westmoreland Resources, 1975 o, P1ate 2.2.3-2).

Researchers at the Cooperative Fishery Research. Unit, Montana State University, Bozeman, have conducted an aquatic resources study on Sarpy Creek for Westmoreland Resources (Dames and Moore, 1975). Fish species, aquatic invertebrates, bottom material composition, and
streamside vegetation were studied in the lease area and downstream to the Yellowstone River.

Bottom composition (Table 17, Appendix E), in Sarpy Creek is primarily classified as muck. This condition is explained by the abundance of plant material and the sluggish current found in the stream (Dames and Moore, 1975). Fiberous peat and detritus, both of organic nature, were second and third in occurrence in the stream.

Twenty-six families of aquatic invertebrates were classified from bottom samples taken from Sarpy Creek. These families are listed in Table 18, Appendix E. The upper sections of Sarpy Creek and East Fork of Sarpy Creek are dominated by species that prefer soft, muddy substrates and slow-moving waters.

Ten species of fish that were identified from the Sarpy drainage are listed in Table 19, Appendix E. Habitat and food requirements are 1 isted in Table 20 , Appendix E. Three species, the lake chub, fathead minnow, and white sucker were observed in the lease area. The remainder of the fish species collected were found below the lease in lower Sarpy Creek with the majority of them being taken near its confluence with the Yellowstone River. The sauger was the only Montana game fish collected from Sarpy Creek.

Endangered and threatened species

Endangered species that could potentially occur in the area are the peregrine falcon, whooping crane and the black-footed ferret. None of these has been observed on the Tract III lease, and it is highly unlikely that any would occur there due to the lack of suitable habitats. The peregrine falcon and whooping crane would occur only as migrants, and the black-footed ferret is normally associated with prairie dogs, which except for a very small colony southeast of the mining plan area are not present on the lease. The prairie falcon, a threatened species, has been observed in the area. The prairie falcon requires steep, precipitous terrain for nesting, and it is unlikely that suitable nesting sites would be affected by mining.

Nine species of mammals and 30 species of birds (Table 11) that occur or may occur on the lease are listed as priority management species by the Montana Department of Fish and Game (Westmoreland Resources, 1975 o). Mining and related activities may have special significance where these species are concerned. A number of these species have been observed in the area of the leases:

Desert Cottontail - The desert cottontail is common along major creek bottoms and other shrub habitats. It may
be adversely affected by mining of upland drainageways having suitable habitat, but planting of shrubs should create suitable habitat in reclaimed areas. Black-Tailed Prairie Dog - One small colony of about 20 animals is present on Tract III, but is not included in the mining plan area.

Golden Eagle - No steep precipitous areas used by the golden eagle for nesting will be affected. Prairie Falcon - (see above, first paragraph of the section).

Yellow-billed Cuckoo - The yellow-billed cuckoo is peripheral in Montana, is common over most of the country, and in the lease area is most likely to occur along Sarpy and East Fork Sarpy Creeks. Mining of wooded and brush habitats in upland areas could adversely effect this species in the lease area, although such habitats should eventually develop on reclaimed areas. Western Kingbird - The western kingbird is common in the area during the nesting season. It's primary habitat needs are met along drainageways where trees and shrubbery provide nesting habitat. Like the yellowbilled cuckoo, it may be adversely affected until suitable habitat develops on reclaimed areas, although significant areas of suitable habitat will not be affected.

Based on available information regarding endangered and threatened plant species, adverse effects are not expected since none of the species so identified are likely to exist on areas to be affected by mining.
K. Non-coal mineral and mining activity

There is no present or past history of mining activity other than coal in the proposed or alternate mining areas.
L. Land Use

There are approximately 785 acres of 1 and in the proposed mine area that is or has been cultivated. Some land is also used for roads, power transmission lines, and dwellings. The remainder of the area, about 1365 acres, is used for grazing. Within the grazing area there are scattered stands of Ponderosa pine occupying about 625 acres. All of the proposed mine area is utilized to some extent as habitat for a wide variety of wildife.

The farmland is used for the production of small grains and alfalfa. The alfalfa is commonly harvested for seed, which helps support the livestock industry of the area. Table 2, Appendix D shows the average yields, value, and price for various crops grown in Big Horn County in 1972 and 1973. Present land use on Tract III and the proposed mine area is shown on Figure 30.

In 1975, about 785 acres within the proposed mine area were used for dry cropland or had been cultivated previously. The 1975 value of dry cropland in the area has been estimated at $\$ 200$ to $\$ 350$ per acre and net income from dryland agriculture is estimated to be about $\$ 30.33$ per acre per year. Thus, the dry cropland on the proposed mine area might be expected to produce income of $\$ 23,809$ per year.

Permanent residential dwelling
Vacated structure (residential)
Vacated structure (school)
Mobile home dwelling
Surface mining structure
Burface mining area
Electrical substation

Field crops in past production

Field crops in production

The value of grazing land within the area is estimated to be about $\$ 90$ to $\$ 100$ per acre. The 1365 acres of grazing land should provide about 455 animal units months per year, or sufficient pasture for the grazing of about 45 cow-calf units assuming a 10 month grazing season. The net income from grazing land would bedirectly dependent on cattle prices, but if it is assumed that the net income from grazing was 30 percent of that generated by cropland, the grazing land on the proposed mine area would produce about $\$ 12,430$ per year.

The ponderosa pine forests of varying quality and density are estimated to have an average standing volume of 3300 board feet per acre. Thus, the timber would represent approximately 2.1 million board feet of timber and at a price of $\$ 30$ per thousand board feet, is worth about $\$ 63,000$. It is estimated that annual growth of ponderosa pine timber in this area is about. 90 board feet per acre per year.
M. Recreation

Recreational opportunities on and adjacent to Tract III and the proposed mine area relate directly to 1 and forms, vegetation, and wildlife features of the area and are very limited. No opportunities for water-based recreation exist on the proposed mine area and on nearby Sarpy and East Fork Sarpy Creeks would be extremely limited and of very poor quality. Hiking, horseback riding, nature study, and hunting are the principal recreational activities that might be pursued. However, ownership of the land surface is private and by the State of Montana, and public recreational opportunities are restricted by private posting of the land and by difficult access.
N. Culture

The population of Big Horn County, in which the Westmoreland leases are located, has been relatively stable over the past 40 years at approximately 10,000 persons. Treasure County, lying approximately north of the lease site had only 1,069 persons in 1970 and has experienced a steady decline since 1930. The Indians in Big Horn County have, on the other hand, had a continuous population growth since 1940. The U.S. Census of Population indicated an Indian population of 3,917 (primarily Crow members) in Big Horn County in 1970 while the tribal estimates based on enrollment statistics would indicate a higher Crow resident popu1ation at somewhat over 4,000.

The Sarpy Census Division population was 215 in 1970 , down from 246 in 1960 . Of the 215 , on $1 y 16$ were Indian. The Sarpy Division encompasses the proposed mine area and is divided almost equally between the reservation (the extreme northeastern corner of the Crow Reservation) and the Ceded Area (the southeastern part of the Crow Ceded Area).

The culture of the people, both Indian and non-Indian, in the region of the proposed Westmoreland coal mining site is highly influenced by generations of living in close association with nature. It is the often expressed
opinion that among both races, the local people have developed a way of 1 ife and a system of values, that reveres 1 and and open space.

The culture of the Crow Indians and the heritage of their people is more accurately described below by a tribal member.
"The Crows are of Siouan origin but had broken away from their ancestral group (Hidatsa) and settled along the valleys of the Yellowstone and Big Horn long before the coming of the white man. This tribe was originally called Absarokee which means 'Children of the large beaked bird', probably the raven.
"The Absarokee Tribe evolved through several stages of cultural development. The early ancestors who lived in the eastern forests practiced agriculture and achieved a fairly high level of civilization. As they were pushed westward, they gradually became more and more dependent upon the hunt. By the time of their settlement on the plains, their agricultural pursuits were limited to the planting of corn and squash. Soon after their separation from the main Tribe (probably somewhere in what is now North and South Dakota), the Absarokee abandoned agricultural ways and became a nomadic people."

Early dependence on the land has influenced the cultural values of the Crow Nation. "Personal gain and the accumulation of private wealth has little prestige value in the Crow Communities."

Religion also has an influence on a people's culture. The old time Crow Indians recognized a supreme being whom they called "First Maker" but did not worship it directly. They sought its benevolence and favor through the worship and devotion to various animals and objects of nature which were regarded as possessing supernatural powers given them by the "First Maker." Although virtually all Crow Indians are now heavily influenced by the Christian religion, elements of their old time beliefs in nature still prevail.

While the culture of the non-Indians in the area has seemed to vary greatly from that of the Crows, it developed many similar traits. The basic love for land dominates the life of both groups.
0. Scenic-visual resources

The concept of treating scenic values as a social and economic resource is gaining acceptance, but is complicated by the intangible nature of these resources and the subjectivity associated with their identification and interpretation. The visual environment accounts for a substantial part of the perceived environment, and the visual landscape has become a valuable tool in monitoring the degree to which man is adapting advanced technology to his environment.

People perceive the visual landscape differently, and there is little agreement on what is most scenic or most aesthetically pleasing. However, general principles which help to define what constitutes scenic resources have been, and continue to be developed and refined.

In general, the landscape is perceived as the interaction of topographic relief, geologic formations, vegetational coverage, water features, and the influences of man-made structures and 1 and use. The Sarpy Creek Basin, including the proposed mine area, consists primarily of rolling hills and deeply dissected plateaus and valleys. From a visual perspective, most of the land appears as a continuous mass characterized by subtle colors, contours, and open space, rather than as distinctly separate land forms. Within the proposed mine area and adjacent
lands, the visually perceived characteristics are largely a function of the drainage network, vegetational coverage, rock outcroppings, and areas of steep terrain and related valleys.

In addition to these natural features, various types of land uses and structures are found with and adjacent to the proposed mine area and Tract III. These land use features can have a positive, negative, or neutral visual influence on the adjacent landscape depending on their visual compatibility with the natural landscape elements and the integrity of the setting. In general, positive influences are created by structures having distinct cultural or architectural integrity while negative scenic influences are related to such uses as industrial facilities and utility corridors.

Westmoreland Resources (1975 g) conducted an inventory of the scenic resources that identified the dominant visual features of the landscape on and adjacent to its leases. The dominant visual landscape was classified within the following categories:

Steep slopes (30 percent and above)
Sandstone outcrops
Drainages and creeks
Vegetation
Riparian vegetation
Ponderosa pines

Grasslands
Shrubs and grasslands
Agriculture
Structures of cultural/visual interest
Scenic modifications
Sarpy Creek mine
Transmission lines
Railroad
Trailer courts
For the puropses of their study, Westmoreland Resources evaluated the scenic resources of their leases and compared them in two regional contexts in an effort to provide a broad frame of reference for assessing the scenic value of the leases. The first region was geographic in nature and defined by a one day travel distance from the leases. The second region was defined by the physiographic characteristics associated with the region adjacent to the leases.

The geographic regional context was chosen in order to relate the scenic values of the leases to other areas potentially available for aesthetic appreciation by residents within a one day traveling distance. The second regional context focused on the scenic quality of the leases in relation to lands within a similar physiographic region.

The visual landscape associated with the Westmoreland leases, including the proposed mine area would be described by most viewers as aesthetically pleasing. The primary landscape features determining the scenic character of the area are steep-sloping terrain, exposed colored soils, sandstone outcroppings on ridges and valley walls, scattered ponderosa pines that follow numerous ridges and slopes, riparian vegetation that creates interesting patterns along meandering creeks and drainages, open grasslands, grassland-shrub communities, agricultural areas, and several old \log and wood buildings.

The scenic amenities of this type of landscape is typical of large portions of eastern Montana. In comparison, the area is neither unique nor significantly representative of the scenery associated with this part of eastern Montana. In comparison to other landscapes within a one day travel distance, the proposed mine area and adjacent terrain represent neither the most scenic or least scenic of 1 andscapes.
P. Archeological Sites

Prior to 1972, there was little archeological work done in the upper Sarpy Creek area of Tract III including the proposed mine area. In 1972, an intensive survey of about 3000 acres within Tract III was conducted for Westmoreland Resources (Fredlund, L.B., and Fredlund, D.E., 1974). Additional surveys were completed on both Tracts II and III for Westmoreland Resources in the summer of 1975 (Westmoreland Resources, 1975 i). Ten sites were located and studied in 1972, and 34 additional sites were found on Tract III during the surveys of 1975.

The types of sites found in the area included open occupation sites, observation sites, quarry sites, rock art sites, stone ring sites, rock cairns, and chipping stations. Kill or butchering sites are not common in the area but do occur occasionally although none were found during the Westmoreland survey.

Prehistoric peoples undoubtedly used the entire area for various activities but no archeologic sites were found within the boundaries of the proposed mine area. This might be explained in part by lack of permanent water on or close to the area and the fact that the coal underlying the site has not burned. With no burned coal to produce clinker (porcelanite) which was the most common material for making tools, this important activity would not have been convenient on the proposed mine area.

Q. Historical Sites

The history of the Sarpy Creek area prior to homesteading is very sketchy. With few exceptions, records are lacking, and there is some confusion over the location of historic sites.

One early use of the area involved large-scale cattle ranching. The Kendrick Cattle Company, based on Tullock Creek, utilized lands in the study area for winter range, probably beginning soon after the cession of Crow Tribal holdings along the northern border of the reservation.

In 1904, a congressional act ratified an agreement between the Federal government and the Crow Tribe that ceded the northern part of the reservation back to the government for settlement by homesteaders. Indians living on these lands were given the choice of retaining individual lands and receiving allotments for them, or of moving to the reservation proper and receiving compensation for the land and any improvements.

The July 18, 1912 issue of the Hysham Echo reported that the Sarpy area had been opened up for settlement. Some people like John and Leonard Luther had come there at least a year earlier. The earliest patent date for any of the properties in the study area is 1914.

From 1907-1943, Sarpy had its own post office. In
the latter year the post office was moved to McRea, where it survived for another decade.

Big Horn County was organized January 20, 1913. As a result of a fall hunting trip by editor Sherman of the Hysham Echo, there is a good description of the people and countryside in the Sarpy area for that year: Sherman observed that the chief industry was stock raising, chiefly horses and cattle, and that most ranch buildings were of the log type (still much in evidence at various sites in the primary study area).

He also noted that although farming was relatively unimportant, there were numerous small fields of oats and corn. This, he thought, indicated the relative richness of the land, which that summer had yielded a rancher at the mouth of the East Fork some 50 bushels of corn to the acre, and another from North Beaver the same in oats. It was the writer's opinion that winter wheat and small grain farming could become an attractive enterprise if it were not for the tremendous distance to a suitable market-an observation which was later borne out when improved transportation and high wartime prices encouraged many Sarpy Creek residents to raise these crops.

Most homesteading in the primary study area occurred during the $1920^{\circ} \mathrm{s}$ in a poor economic climate. When many of these latecomers failed during the droughts of the 1930's, the established families were able to acquire
more than their original homestead lands. It was at this time that representatives of the Government tried to encourage all residents to move to the moister climates of the Pacific Northwest; however, many settlers like Bud Redding elected to stay. It is probably significant that most of those who remained had come to the area prior to the 1920 's; they, in short, had chosen the area on its merits, and not simply because it was some of the last free land available.

From the 1930's to the present, the consolidation of holdings by individuals has continued. Coupled with modern farming and ranching methods and better transportation, this process has brought the primary study area to the relative prosperity it has enjoyed in recent years.

Westmoreland Resources (1975 h) conducted a survey of historic resources of Tracts II and III and the surrounding area. Many sites of historic interest associated with the white mans settlement of the region and the wars with the Indians are present in the area. However, on Tract III and the nroposed mine area there are no sites that are included in the National Register of Historic Places or the Montana State Historic Sites Inventory. Six sites on the proposed mine area have been identified as being of possible local historic interest although for
most people visiting the area they would perhaps be considered more as a scenic resource. These generally are dilapidated old homesteads. The names and locations of the sites, all in T. $1 \mathrm{~N} ., \mathrm{R} .38 \mathrm{E} .$, are listed below:

Dychman Ranch-SE1 $\frac{1}{4} \mathrm{SE}^{\frac{1}{4}}, \mathrm{Sec} .30$
Second Sarpy School-NW $\frac{1}{4}$ SE $\frac{1}{4}$, Sec. 30
Jesse Wolf Place-SE $\frac{1}{4}$ NW $\frac{1}{4}$, Sec. 30
Old Homestead-NW ${ }^{\frac{1}{4} S W^{\frac{1}{4}}, ~ S e c . ~} 30$
Charles Hite Place-E $\frac{1}{2}$ SW $\frac{1}{4}$, Sec. 19
Roil Roberts Place-NW $\frac{1}{4}$, Sec. 31
It is unlikely that any of these sites would be eligible for inclusion on National or Montana registers of historic places.
R. Socio-economic conditions

Todays Communities
At present the study area (hereafter referred to as the impact area) is rural with a population mix of Indian and Ang1o. Big Horn County, in which the major portion of the reservation 1 ies, was 38.9 percent Indian in 1970 , and the Crow Reservation proper was 56.1 percent Indian. Although this is an agricultural area, the Indians do not participate to a large extent in the agricultural economy, and a high percentage of their land is leased to non-Indian operators.

The Crow Reservation lies 27 miles north of Sheridan, Wyoming, and extends northerly and westerly to about 5 miles east of Billings, Montana. These two cities (with 1970 populations of 10,856 and 71,197 , respectively) provide many services not available in Big Horn County. Billings is the major regional trade center and provides full medical and other services for a large section of southeastern Montana and northern Wyoming.

The reservation population, both Indian and non-Indian, lives mainly in the small towns and valleys. Although many Indians live on their own land, not many are engaged in farming and ranching, the main occupations of the white population. As shown on Figure 31, the geographic areas

CROW RESERVATION AND CEDED AREA SHOWING AREA OF GREATEST SOCIO ECONOMIC IMPACT

which are presently most populous and which are most likely to feel the major impacts of development are the Bighorn and Little Bighorn valleys.

Due to their proximity to the coal deposits, the communities on or near the reservation which will probably feel the greatest impact from Westmoreland Resources coal development are Hardin, Crow Agency, and Lodge Grass. Other communities on the reservation which will probably be less affected by the coal development are Wyola, St. Xavier, Fort Smith, and Pryor. More distant communities such as Billings, Hysham, and Sheridan will also feel some impacts from such development.

Hardin (1970 population: 2,733) is the Big Horn County seat and will be the epicenter of the socioeconomic impact area. Hardin is located about 26 miles from the Westmoreland Resources lease and is the main trade center for the Crow Reservation. Many Indians attend the public schools there. Hospital, truck and rail freight, banking, auto and equipment dealers, bulk fuel distributors, public accomodations and other facilities are available in Hardin.

Two communities within the reservation will be affected by coal development on Tract III. The first is the town of Crow Agency (1970 approximate population: 1,000), where the Crow Tribal headquarters, BIA Agency, and Indian Health Service Hospital are located. Crow

Agency is a predominantly Indian community with most of the non-Indians being government employees. A service station, elementary school, grocery store, and small cafe are the only facilities available. Two modern motels, including the Sun Lodge complex owned by the Crow Tribe, are located about two miles south of town near Custer Battlefield.

Another Indian community which is likely to feel a major impact is Lodge Grass (1970 population: 806) where the population is just over half Indian. It has a grade school and high school, but other service facilities are limited to an REA office, grocery stores, a general merchandise store, a small hotel, two garages, a cafe, liquid propane gas suppliers, an appliance store, post office, lumber yard, and several service stations.

Hysham (1970 population: 373) is the Treasure County seat and lies within the Ceded Area. A 35 mile gravelled county road runs north along Sarpy Creek from the lease sites to Hysham. This town provides limited trade facilities for a small farming area. Due to its proximity it will no doubt be affected by coal development on the Ceded Area and in the Colstrip region; however, its limited facilities and size do not make it a particularly attractive area for growth.

Population Changes - The total population of Big Horn County, Montana, in which most of the coal areas
are located, has remained at about 10,000 over the past 40 years. The 1970 U.S. Census reports a population of 10,057.

Census figures indicate a Crow population of 3,161 living within the boundaries of the Crow Reservation, or approximately 81 percent of the total Big Horn County Indian population. Outside the reservation boundaries, the towns of Hardin and Busby contain most of the country's remaining Indian population. The Crow Ceded Area als,o has about 100 Indian residents.

The non-Indian population in Big Horn County has declined from 8,433 in 1940 to 6,140 in 1970 (-27.1 percent) following an increase during the 1930-1940 decade. On the other hand, the Indian population has shown significant increases during every decade since 1940. The Indian population increased from 3,334 to $3,731(+11.9$ percent) during the 1960-70 decade, while the non-Indian population decreased from 6,673 to 6,149 (-8.0 percent) during the same period. 1/ Population change over the past 40 years

1/ Tribal estimates based on enrollment statistics for 1974 indicate a higher Crow resident population at somewhere over 4,000.
are shown graphically in Figure 32. In 1970, the Indian

population in Big Horn County was 38.9 percent of the total population. If the present trends continue, Big Horn County will have a population evenly divided between Indian and non-Indian in 10 or 15 years.

Table 5 shows population trends for two of the principal towns in the impact area.

Table 5. Major Population Changes 1940-70

	1940	1950	1960	1970
Lodge Grass	839	536	687	806
Hardin	1,886	2,306	2,789	2,733

Source: U.S. Census

Both Lodge Grass and Hardin remained relatively stable in population over the 1940-1970 period, with Lodge Grass decreasing by less than one percent and Hardin increasing about 14 percent. During the 19601970 decade, population in Lodge Grass increased by 17 percent and Hardin decreased by two percent. However, the 1973 census estimate for Hardin was 2,849 and local estimates placed the 1975 population at approximately 3,000 with sustained growth anticipated.

Age Distribution - An analysis of the age composition of a population is important for the planning of such program requirements as education, housing, and work force projections.

Population numbers and percentage composition by age groupings of the Indian people on the reservation compared to the non-Indian people in Big Horn County is shown in Table 6.

Table 6.
Age Distribution

Age	Indian Reservation			Non-Indian Big Horn County	
	On	number	percent	number	

Source: U.S. Census

By and large, both the Indian and non-Indian population are quite young. However, the Indian population is significantly younger compared to the non-Indian, with 43.6 percent of the Indians being 14 years of age or younger compared to 30.1 percent of the non-Indians. On a broader age distribution, 69.5 percent of the Indians are under 30 years of age compared to 51.5 percent of the non-Indians. Conversely, only 5.7 percent of the Indians are 60 years of age or older compared to 13.8 percent of the non-Indians.

The Economy - The present economic base of the Reservation and Ceded Area is agriculgure. Government employment also plays a major part in the economy, with Bureau of Indian Affairs, Public Health Service, National Park Service and Bureau of Reclamation having payrolls within the reservation. Other Federal, County, City and Tribal entities provide payrolls on and adjacent to the reservation. By comparison the present industrial payroll of the area is insignificant.

The economy of the proposed mining area is predominantly cattle ranching although about one third of the proposed mine area is or has been in cropland. Cattle graze these areas most of the year and receive supplemental feed in the winter. Feed crops and some small grain cash crops are grown where the soils are suitable.

Income - With agriculture dominating the economy, the census data indicates family income for Big Horn County was made up of $\$ 12,824,500$ from wages and salaries (including wages for farm hands), $\$ 3,561,300$ from farm selfemployment, and $\$ 1,206,900$ from non-farm self-employment. Family income in the Sarpy Census Division in Big Horn County, a census division typical of the Westmoreland Resources lease area, consisted of $\$ 486,200$ from wages and salaries (including wages for farm hands), and \$307,700 from farm self-employment.

Income, expressed on a per capita basis, is shown graphically in Figure 33.

FIGURE 33
PER CAPITA INCOME
CROW INDIAN, BIG HORN AND TREASURE COUNTIES, MONTANA, AND UNITED STATES

Source: U.S. Census

Income levels of Big Horn and Treasure County residents are lower than those of Montana or the nation, while the income of the Indians on the Crow Reservation is substantially lower still.

Another indication of income is a comparison of poverty levels. According to the 1970 U.S. Census poverty index, 39.4 percent of resident Crow Indian families are in poverty. By comparison, 21.4 percent of all families in Big Horn County and 10.4 percent for all of Montana are below the poverty level. The on-reservation median family income for the Crow Indians in 1969 was $\$ 5,260$ compared to $\$ 8,210$ for the white families on the reservation. 1/

1/ The nation-wide poverty threshold for a farm family of four headed by a male was $\$ 3,197$, while for a family of 6.16 (the average size of Crow families in poverty) the index was approximately $\$ 4,500$.

Labor Force and Employment - Table 7 shows that in 1970, of 1,686 Indians and 4,814 whites age 16 years or older, 38.9 percent of the Indians and 58.3 percent of the whites were in the labor force. There were 340 males and 690 female Indians not in the labor force, and 432 white males and 1,577 white females in the same category. For census analyses, the labor force is defined as those 16 years old or older employed or actively seeking work.

Table 7. Labor Force and Employment 16 Years Old and Older 1970 - On Reservation and Hardin

Many of those not in the labor force are 65 years old or older, are housewives, or are students. If bona fide employment opportunities existed, a considerable number of those not presently in the labor force probably would accept work. The actual number would depend upon training conditions, wages, working conditions, and living conditions, among other factors (Westmoreland Resources, 1975 c).

The March, 1975, BIA Labor Force Report on the Crow Reservation, using somewhat different definitions, reports an Indian labor force of 1,506 . This is more than twice that reported by the U.S. Census. Employment rates according to this BIA study, were 925 (61.0 percent) while unemployment rates were 581 unemployed (39.0 percent). Of the unemployed, 581 Indians (22.0 percent) were actively seeking work. Over the past 10 years, the BIA Labor Force Reports have repeatedly shown the unemployment of the Crows to be as high as 40 percent with approximately one-half of these actively seeking work.

Income, Mobility, and Employment Characteristics of Crow Employees of Westmoreland Resources - At present Crow Indians occupy about 40 percent of all jobs (administrative and mining) at the Absaloka mine. Of the jobs directly involved in mining such as dragline operators, truck drivers, etc., Crows occupy about 50 percent of the employment. Of 101 seasonal and full-time workers at the
mine as of August, 1975,39 were members of the Crow Tribe. An additional 14 were related to Crows, generally as spouses of tribal members.

The annual average earnings of $\$ 20,111$ for full-time Crow workers places this group in the upper two percent of Crow earners. These calculations imply that the Crow tribal members working at the mine earn a total of about one million dollars, and this figure could be higher since it is doubtful that over-time income has been adequately accounted for. The 53 comprise nearly 6 percent of the total eligible male workers on the Crow Reservation (903) and just under 10 percent of the employed male Crows on the reservation (550).

The Crow mine workers seem to be exceptional not only in their earnings but in work experience as well. All of them, whth the exception of a summer employee who was a college student, were steadily employed before obtaining employment at the mine. They average nearly 11 years of formal schooling (ranging from 6 to 13 years) and their average age is 35 years.

The majority of Crow workers at the Westmoreland Mine currently reside in either Crow Agency or Hardin and only five changed their place of residence after obtaining jobs at the mine. Only one of the five came from outside Montana (a college student who works summers only). The 16 Crows who do not live in Crow Agency or Hardin
are scattered in sịx residential areas (Garryowen, Lodge Grass, Pryor, rural Hardin, Kirby, and Sarpy Creek). Commuting distances for these workers (except the single Sarpy Creek resident) are substantial, and MorrisonKnudsen reimburses all employees for travel expenses. Hardin workers travel at least 60 round-trip miles daily and those living in Crow Agency travel about 80 miles. Although commuting distances are lengthy, workers expressed satisfaction with present wages and most of them resigned from full-time jobs nearer their residences in order to have substantially higher incomes at the mine (Westmoreland Resources, 1975 f).

Non-Indian-Crow related employees (these are also members of the Crow Tribe) are concentrated in Hardin (8 of 11). The remaining three are in Crow Agency or Lodge Grass. Only one of these workers, who had previously resided in Billings, changed his place of residence to be closer to the mine. Indian-Crow related workers, only two of whom work at the mine, did not relocate for their mine jobs. One of these lives in Hardin and one in Crow Agency.

In summary, only 11 percent of the Crow tribal, members employed at the mine (6 of 53) changed their place of residence and only three of the six moved from communities off the reservation to be nearer their place of work.

The non-Indian employees at the mine exhibit a much different profile in present and previous residential patterns from the Crow tribal members. The overwhelming majority of non-Indian workers reside in Hardin (85 percent) ; this compares with 23 percent of the Crow and Crow-related workers who live in Hardin. Furthermore, 31 non-Indian workers, or 57 percent, changed their place of residence to work at the mine. This compares with only 11 percent of the Crow tribal members who moved to another location.

Of the non-Indians who moved, 15 were Montana residents (32 percent of non-Indian) and 16 came from outside the state (34 percent). Thus 66 percent (31 of 47) of the non-Indian workers moved into Hardin or nearby communities to work at the mine. This compares with only three Crow tribal members who moved from off-reservation communities to be closer to their jobs.

The statement is frequently made that Indians are lax in adhering to regular work schedules and that absenteeism and tardiness are common characteristics of Indian labor. However, the Crow Indians employed at the Absaloka Mine generally do not exhibit these characteristics.

The Morrison-Knudsen personnel office reported that absenteeism among mine workers does not exceed three percent. Company records on tardiness and absenteeism do
not distinguish between members of the Crow Tribe (Crow and Crow-related workers) and others; however, personne1 officers do not believe Crow tribal members are absent in frequencies exceeding those of other workers (Roberta Vanderslooth, Morrison-Knudsen Co., Inc., personal communication, August, 1975).

The turnover rate at the mine is about two percent per year, which is relatively low (Vanderslooth, personal communication, August, 1975). The Crow and Crow-related mine workers are primarily men who had good work records before securing employment at the Sarpy Creek mine and have apparently continued these work habits.

Labor Force Participation Rates - One of the most important demographic characteristics of any population is the extent to which the residents will participate in the labor force. This concept is referred to as the labor force participation rate, and it measures the number of employed persons and unemployed persons seeking work as a percentage of the population of working age: employed persons plus persons actively seeking work divided by total population of working age. This provides a reasonably accurate measure of the potential labor force and hereafter will be referred to as such. If the participation rate increases, the potential labor force increases proportionately.

Figure 34 shows three sets of participation rates for both the male and female residents of the impact area. Rates* for 1970 for Crow and non-Crow residents are shown, as the projected rates for the U.S. population at large in 1990. The U.S. rates provide a standard of comparison and it can be seen clearly that only the Anglo males of the impact area participate in the labor force to about the same extent as their U.S. counterparts. The pattern of participation for crow males and for Crow and Anglo females are substantially lower than national rates. It is well known that persons drop out of the labor force (i.e. no longer "actively seek" employment) if over an extended period, they are unsuccessful in finding a job. However, this behavior leaves open the possibility that if employment opportunities improve, persons will rejoin the labor force; that is, the participation rate tends to be positively associated with employment opportunities. As coal development activity increases in the impact area, it would be unrealistic to assume that the participation rates of area residents will remain at their low 1970 leve1s.

[^1]FIGURE 34
1970 LABOR FORCE PARTICIPATION RATE
BIG HORN COUNTY IMPACT AREA
COMPARED WITH U.S. 1990
\[

$$
\begin{aligned}
& \text { KEY } \\
& \text { - }- \text { N.S. } 1990 \\
& *-\text { Non-Crow Impact Area } \\
& \text { Eon Impact Area }
\end{aligned}
$$
\]

Females

$$
\begin{aligned}
& \text { articipation } \\
& 100
\end{aligned}
$$

$$
\begin{array}{llllll|}
\hline 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
0
$$ Source: Mt West Research Inc. Feb. 1970.

Feb.
Table 8. Employment by Occupation
On Reservation and Hardin

Males 16 Years Old and Older - 1970

	Indian		Non-Indian	
	number	percent	number	percent
Professional, Managerial, and Kindred Workers	82	21.3	431	22.9
Craftsmen, Foremen, and Kindred Workers	39	10.1	307	16.3
Operatives, including transport	92	23.9	176	9.3
Laborers except farm	53	13.8	100	5.3
Farmers and Farm Managers	29	7.5	431	22.8
Farm Labors, except unpaid and Farm Foremen	68	17.7	188	10.0
Other Total	$\frac{22}{385}$	$\frac{5.7}{100.0}$	$\frac{253}{1,886}$	$\frac{13.4}{100.0}$
Source: U.S. Census				

Employment by Occupation - As shown in Table 8, the largest occupational category for Indian males is operatives. Operatives include those who operate and maintain machinery. This is a dominant occupation in coal and related industries. About one quarter of the employed Indian male work force (23.9 percent) is in the operatives category. The number of Indians in the professional, managerial, and kindred worker category is almost on a par with the whites: 21.3 percent compared
with 22.8 percent. The number of Indians working for the BIA and Indian Health Service partly accounts for this relatively high Indian figure.

Quite a large percentage of the whites (22.8 percent) are employed as farmers and farm managers, compared to the Indians (7.5 percent) in this category. However, agriculture plays an important part in Indian employment with 25.2 percent employed as farmers, farm managers, or farm laborers. These agricultural workers generally have a broad range of skills as operatives, which could be transferred to various jobs in strip mining.

The BIA Labor Force Report for March, 1973 lists occupational sectors a little differently, but the three highest employment categories for Indians were Agricultural (31.5 percent), Government (26.5 percent), and Commercial Industries and Tourism (17.6 percent). Public and Private Services -

Education - Educational facilities on and adjacent to the reservation are provided by public schools, and two private schools. These are described in Table 9.

Crow Indian educational attainments are significantly lower than the levels for Big Horn County and the State of Montana. The median educational level of school completed by Crow Indians 25 years of age and older is 9.4 compared to 11.8 for the Big Horn County total and 12.4 for the State of Montana (U.S. Census).
 *Average based on requirements in Standards for Accredition of Montana Schools as amended by the Board of Public Education, April $10,1973$. *Shared with other local schools. Superintendent, Superintendent of Elementary District Superintendent of Elementary District 27 and High personal communications, August, 1975.

The Hardin, Lodge Grass and Wyola schools listed in Table 9 have 1,736 students or 81 percent of all students in the county. All of the schools are open to both Indian and non-Indian students, with all four schools having a high representation from both groups. These schools, located near the coal lease area, are expected to be impacted by population changes associated with coal development.

Housing - The housing inventory on and adjacent to the Crow Reservation is presented in Table 10 . Housing needs in the coal impacted area are presently acute, with an estimated 800 housing units required for Indians

Table 10. Number of Housing Units - Indian and Non-Indian Crow Indian Reservation, 1970

	Indian	Non-Indian	Vacant	Number
On Reservation				
Owner occupied	427	411		848
Renter occupied	99	341		440
Vacant	--	--	169	169
Total	$\overline{536}$	$\overline{752}$	169	1,457
Adjacent to Reservation				
Owner occupied	18	978		996
Renter occupied	36	467		503
Vacant	--	--	97	97
Total	$\overline{54}$	1,445	97	$\overline{1,596}$
On and Adjacent to				
Reservation				
Owner occupied	455	1,389		1,844
Renter occupied	135	808		943
Vacant	--	--	266	266
Total	$\overline{590}$	$\overline{2,197}$	266	$\overline{3,053}$

Source: U.S. Census
alone. Mobile homes are presently filling much of the housing gap in all communities of the county.

Public Assistance - In 1974 the Big Horn County Welfare Department had a seven-member staff, including two social workers, one full-time and one part-time homemaker was responsible for meeting the needs of Big Horn County and the Crow Reservation. The Big Horn Economic Development Corporation has helped with welfare-related problems on the Reservation by sponsoring local business development and job training. The local Tri-County Legal Aid Service has also provided services helpful to many low income people.

The Big Horn County Welfare Department handles all categories of welfare for the Crow Reservation except general assistance and child welfare (both of which are handled by the BIA Welfare Office). In Big Horn County, total welfare disbursements increased about five percent between 1960 and 1970, due to increased medical assistance, foster care, and BIA general assistance. The major increase was in medical assistance which utilized funds previously allotted to other categories. County social workers spend much of their time on Indian cases. In addition, two full-time extension agents and legal service aides serve both the Crow and Northern Cheyenne Reservations, with offices located at Crow Agency and Lame Deer. Also, operating on both reservations, the Big Horn

Economic Development Corporation emphasized job training related to local needs (recently, twelve Crow tribal members graduated from the heavy equipment training school). Transportation - As shown in Figure 35, the general area is well served by the Interstate Highway System. The major north-south artery is Interstate 90 , some 24 miles to the west. Interstate 94 passes about 30 miles north in the Yellowstone valley near Hysham. U.S. Highway 212 passes east-west about 25 miles to the south. Montana Secondary Highway 315 is paved and connects Interstate 94 and U.S. Highway 212 about 30 miles to the east of the area through Colstrip. Montana Secondary Highway 384 leaves Hardin and travels north-easterly toward the mine area. At approximately the western boundary of Tract II, this highway changes to a gravel county road traversing the mine area and ends about six miles east of the mine. Gravel county roads connect the mine area and Interstate Highway 94 to the north.

The impact of coal development on surface transportation needs is a matter of great concern to state and local government. Portions of the state coal severance taxes are intended to supplement road construction and maintenance. As long as the present plans to export all coal via rail are followed, mining in the Sarpy Creek area will place a limited demand on the surface transportation net of the area.

CROW RESERVATION REGION TRANSPORTATION NET

Present State Highway Department construction plans affecting the area are:

1. Paving of County Road 384 would extend to Spring Creek junction and northward to the Big HornTreasure County line.
2. Pave County Road 415 from the Treasure County line northward to Hysham, a distance of about 25 miles.
3. Upgrade and improve the roads from Crow Agency to Busby and from Lame Deer to Colstrip in 1976-77.
4. While the extension of the county road from the mine area project to Colstrip is recognized as a logical project, it is not yet in the planning phase.

The nearest major railroad is the main line of the Burlington Northern, 36 miles to the north at Sanders, Montana. A branch line along Sarpy Creek serves the mine, terminating in a loop at the present coal handing facilities. A branch line to Sheridan, Wyoming lies 27 miles to the west; a spur extends from Forsyth to Colstrip, 23 miles to the east. Present rail facilities are adequate to serve development of Tract III.

Excellent commercial air service is available in

 Billings, about 80 road miles from the mine. Small aircraft can land and obtain services in the surroundingcommunities of Hardin, Hysham, and Forsyth. There is an unpaved airstrip at Colstrip, which may be upgraded if coal generating units 3 and 4 are built. No air service is planned for the Sarpy Creek mine site.

Communications - Major media for mass communication coverage in the Billings and Hardin areas of southeastern Montana include radio, television and newspaper. Billings has 12 television channels which are available on cable T.V. to regional subscribers. Major regional newspapers include the Billings Gazette and the Great Falls Tribune. Local newspapers are the Hardin Herald, and the Crow Tribe's weekly, Kotta Hi Lik. For the interest of re-sources-conscious citizens in southeastern Montana, the Montana Department of Natural Resources, the U.S. Department of the Interior and the U.S. Department of Agriculture offer general and technical publications from time to time. Pamphlets and other media from various federal and state agencies are available in Billings, Hardin and Crow Agency. The Crow Indian Tribe's Office of Coal Research, and the Tribal Council, headquartered at Crow Agency, offer publications and a weekly radio program on coal and other resources development. Internal communications at the Westmoreland mine consist of a base station and several mobile unit radios in Westmoreland Resources vehicles.

Law and Order - Law and order on the Crow Reservation is maintained by the BIA and the Crow Tribe. This includes an agency special officer, a criminal investigator and a captain of police, all employed by the BIA. Eight additional police officers hired by the Crow Tribe serve the various Indian communities. The Crow Tribe also employs six support personnel including judicial, detention rehabilitation and administrative specialists and provides appropriate facilities for such activities.

At the Crow Tribal Council meeting of January 31, 1976, a resolution adopting a new Crow Law and Order Code was approved. The code extends tribal jurisdiction to most acitvities on the Crow Reservation and establishes tribal law enforcement and judicial systems. The code is presently undergoing review by the Secretary of Interior. The code will not apply to the Ceded Area.

Big Horn County has a sheriff and three deputies, as well as a jail at the county seat. Hardin, which employs a city police chief and four police officers, maintains a city jail. Finally, the town of Lodge Grass has a city marshal and a small detention cell.

Health Services - The Crow Reservation's health facilities for Indians are centered at Crow Agency, where a 35 -bed hospital complete with a staff of five physicians is operated by the Indian Health Service.

Health facilities include a full array of in-patient and out-patient services, including nursing, laboratory, pharmacy and dental facilities and staff.

A 16 -bed hospital with a 35 -bed nursing home wing is located in Hardin. It has a full nursing and technical staff. Hardin has two resident physicians and a third on a National Health Service contract. Hardin also has one dentist and visiting services of two optometrists.

Billings, Montana, has two large hospitals and a very extensive medical staff, including doctors of medicine in essentially all specialties. Sheridan, Wyoming, also has extensive medical facilities, including a Veterans Administration hospital, and serves the southern portion of the impact area.

Municipal Services - In Big Horn County the major municipal water system is located at Hardin and is presently at its 1 imit of capacity. Plans are underway to supplement the present 500,000 gallons storage capacity for treated water with an additional tank of the same size, addition of the new tank would provide the city with adequate storage capability for present demands. At present the water treatment plant is capable of supplying two million gallons daily and its present daily use is approaching this limit. The Hardin sewage disposal system, a two cell lagoon, covers a total of 12 acres and is also operating at capacity. Solid waste
disposal provisions are adequate in Hardin, but landfill dumping locations are needed for residents of rural areas. Several of the small towns are having sewer and water problems.

At Crow Agnecy the sewer and water system operated by BIA has reached full-capacity. Any significant population increase will require extensive expansion of the system. The municipal sewer and water system at Lodge Grass is adequate for immediate needs; but here again, any significant growth will demand expansion of the system. St. Xavier has no water or sewer system, depending upon individual wells and septic tanks or privies. This is also the case with the entire rural area up and down the Big Horn and Little Bighorn valleys. Hardin and Crow Agency have adequate land fill facilities which are used by the surrounding rural communities. Lodge Grass and St. Xavier have dumps with minimal fill and coverage capabilities.

Business Services - Hardin provides a central, full convenience shopping center for the coal resource area with seven food stores, six motels, one hotel, and seven automotive and implement dealers. The other communities on the reservation have minimal trade and shopping facilities and are essentially limited to food and gasoline outlets.

Billings, Montana, is the major off-reservation trade center and is capable of providing the full array of service facilities required for mine development and anticipated population increases. Sheridan, Wyoming, as well as Forsyth and Hysham, provide limited business services to the impacted area.

Utilities - Electric power and natural gas are provided by three companies. The Montana Power Company and Big Horn Electric Cooperative provide electric service to the reservation area. Six power transmission lines with voltages from $69-K V$ to $230-K V$ cross the area and are owned by Montana Power Company, the U.S. Bureau of Reclamation and the Rural Electric Association. Three woodpoled transmission 1 ines ($230-\mathrm{KV}, 100-\mathrm{KV}$, and $69-\mathrm{KV}$) pass through Tracts II and III, and an additional high voltage line from Colstrip to Broadview is presently being constructed by Montana Power Company approximately six miles north of the Tracts.

Montana-Dakota Utilities Company provides natural gas to the area with its twelve-inch Worland-to-Cabin Creek line passing near Hardin. A three-inch lateral serves Crow Agency, with the remainder of the reservation area being without natural gas service.

Land Use Planning Program - Organized community planning activities pursuant to state enabling legislation
(Section 11, Chapter 38, revised Codes of Montana) have been carried on in Big Horn County for over five years. 1/ In early 1969 the city of Hardin passed a resolution setting up a planning board, and a short time later the County Commission included the county area immediately surrounding Hardin in the planning program. Accordingly, the Hardin Planning Board is officially designated the Hardin-Big Horn City-County Planning Board, and its jurisdiction extends south and east to the Crow Indian Reservation, north from the city limits two miles, and three miles west of the city limits. A comprehensive planning document was prepared for Hardin in 1972, and a capital improvements study was completed in 1974.

Big Horn County Planning Board - In anticipation of

the prospects of massive coal development in or near Big Horn County, the county commission formed a county planning board in early 1973. The jurisdiction of this board, designated the Big Horn County Planning Board, includes the town of Lodge Grass and that portion of the county

[^2]exclusive of the Hardin-Big Horn City-County Planning Board jurisdiction as well as portions of the two Indian reservations.

The goals and objectives of the Bighorn County P1anning Board include:

1. Attaining the best possible living and working environment in the planning area.
2. Promoting the wise use of Big Horn County's economic resources in a manner which will co-exist with present elements of the county's economy.
3. Developing the best possible system of public facilities and utilities commensurate with county growth.

At the present time very limited progress has been made in developing this concept of integrating the Indian and non-Indian jurisdictions into a workable whole. As indicated, the town of Lodge Grass in the Little Big Horn Valley has been involved in the planning process of the Big Horn County Planning Board.

To date, the planning board has not opened an office or employed a resident planner, although it has utilized consultant services. A good deal of background information has been gained, a capital improvements study is continuing, and discussion between representatives of non-Indian and Indian interests on plan coordination has taken place.

Big Horn County, including the town of Lodge Grass, adopted a subdivision ordinance in May 1974. This ordinance prohibits a developer from recording a plat which does not conform to the State law and local ordinances. It requires the developer to go far beyond the mere alignment of roads and location of easements. The developer now must include adequate public space for light, air, and recreation; provide sanitary facilities, and avoid congestion.

Big Horn Area Planning Organization - Because of the need for area-wide and intergovernmental coordination, an area planning organization was also instituted and designated the Big Horn Area Planning Organization, or Big Horn APO. The APO was joined by the city of Hardin, the town of Lodge Grass, and Big Horn County. It is intended that this APO will be the nucleus of a much larger area planning program to include the Indian reservations and thus provide a forum for discussion of common problems and coordination of their solution.

Mid-Yellowstone Areawide Planning Organization - Water quality planning for Big Horn, Carbon, Stillwater, Sweet Grass and Yellowstone Counties is being coordinated by the Mid-Yellowstone Areawide Planning Organization (MYAPO), headquartered in Billings.

The MYAPO was designated in the autumn of 1975 to administer funds provided by Section 208 (Areawide Waste Treatment Management) of the Federal Water Pollution Control Act Amendments of 1972 (P.L. 92-500). The MYAPO has indicated (Oral Communication, February 12, 1976) that they hope to enter into a contract which would allow the Crow tribe to do their own planning for water quality within the reservation area. MYAPO would provide funds for the tribe to subcontract the services of a consultant to conduct the assessments of pollution sources and develop the necessary management strategies. The MYAPO has also issued a Request For Proposals (RFP) for assessment of non-point pollution sources in the several counties and development of management strategies, with some $\$ 5,000$ being designated for a review of the literature concerning water pollution from strip mines. No further assessment studies are planned concerning this problem, due to the abundance of existing research projects studying mine pollution. No responses have been received on the RFP as of February 12, 1976. Crow Tribal Codes and Ordinances - On January 31, 1976 the Crow Tribe adopted by resolution a Land Use Zoning Ordinance for the entire reservation. The ordinance states that the Crow Tribe has sole regulatory power within the boundaries of the Crow Reservation on the use of lands, the height and size of buildings, open
spaces, and density of population. The resolution also provides other criteria for the unified development of facilities such as roadways, utilities, parks and waste disposal.

On the same date the Tribe adopted by resolution an Environmental Health and Sanitation Ordinance which provides similar powers to the Tribe on all aspects of community activity which have an influence on health and sanitation.

Implementation procedures for these Crow Ordinances are now being developed. Their effectiveness will be highly dependent on the degree of co-operation which is maintained with adjoining jurisdictions.

In summary, a limited though significant beginning in effective land use planning and control has been made. Much more intensive planning processes and appropriate institutional structures need to be developed. This will call for a massive effort requiring a maximum of cooperation including significant financial contributions from appropriate tribal, state, county, city and other local governmental units as well as the appropriate federal agencies.

At the January 31, 1976, Tribal Council meeting, the tribe also adopted, "an Ordinance creating a method for the Taxation of coal by the Crow Tribe, and known as the

Crow Tribal Taxation Code". This authorized the Crow Tribe to levy a license tax of 25 percent of the contract sales price of all coal produced on the Crow Reservation and Ceded Area. The Taxation Code is subject to approval by the Secretary of the Interior and has been submitted for legal review.

II ENVIRONMENTAL IMPACT OF THE PROPOSAL
A. Air Quality

If mining on the proposed mine area is approved some deterioration of air quality beyond that caused by the present mine operation can be expected, especially in the vicinity of the mine operation and downwind from it. Operation of heavy mining equipment and the fugitive dust it creates even with the planned road watering program can be expected to be the most serious factor causing air-quality deterioration although other activities associated with the operation will also contribute. As the mining operation expands from the present production level of 4 million tons per year to 10 million, the number of pieces of heavy equipment can be expected to approximately double. An increase in the number of workshifts with less equipment is also a possibility and would affect the time distribution of pollutant generation, but the overall effect would probably be about the same. Increased exhaust emissions from the increased numbers of mining equipment can also be expected.

Increased use of the coal crushing and handling equipment and more loadings of unit trains will also add to an increase in dust generation. Although much of this equipment is covered to prevent fugitive dust, some leakage can be expected.

Based on the results of a study conducted in the early 1970's under the auspices of the U.S. Environmental Protection Agency (U.S. EPA, 1973) the average particulate loading at a typical road construction site was estimated to be one to two tons per acre per month during all phases of activity. Actual rates of emission due to relocation of the county road will be dependent on the rate of construction, number and type of construction vehicles involved, time of year, etc.

Emission rates of various effluents from light-duty gasoline-powered trucks, and heavy duty diesel-powered gasoline-powered construction equipment have been determined by the U.S. EPA (1976). Based on these emission rates and on the numbers of major equipment required, it is estimated that approximately 50 grams per second of nitrogen oxides (the most abundant gaseous emission by far from heavy-duty diesel-powered vehicles) would be emitted to the atmosphere at a production rate of 10 million tons per year. This amount is not considered to result in a serious adverse impact on the air quality of the site vicinity, because of numerous individual sources which are spread out over several thousand acres.

In general, dust loading that results from local traffic on unpaved roads is not expected to be a major problem during late fall, winter, and early spring. During that time of year ground conditions (that is, snow,
ice, frozen soil, etc.) should result in relatively low loading rates. However, during the remainder of the year, and particularly in late summer and early fall, traffic volume and roadway conditions will be conducive to relatively high particulate loading rates. The EPA study on fugitive dust (U.S. EPA, 1973) concluded that the effect of vehicular travel on dust loading to the atmosphere amounts to 5-10 pounds per vehicle-mile for standard vehicles, assuming a vehicular speed of 30 miles per hour. It was empirically determined that, on the average, 58 percent of the particulate loading was due to vehicle dust plumes and 42 percent was due to wind erosion. For heavy-duty vehicles the impact under the same conditions would be greater. It is estimated that a total of 325,000 vehicle miles are traveled annually on Tract III during present coal development of 4 million tons per year. At this rate, and based on a 10 pounds per vehicle-mile dust loading factor, the potential exists for about 1625 tons of dust loading to occur annually at this mine development level. This potential would increase to approximately 4,000 tons annually at the proposed production level of 10 million tons per year. However, the unpaved roads at the mine site will be heavily sprinkled with water during times the roadways are susceptible to considerable dust generation. Thus, sprinkling of roadways will significantly reduce this impact.

Fugitive dust will also be generated during many other mining activities besides vehicular traffic, e.g., blasting, coal preparation, coal loading and transportation, stockpiling, reclamation, etc. Accurate estimates of dust loading to the atmosphere as result of these activities cannot be made since definitive data on many of the factors involved are not available and/or are highly variable, e.g., soil types and moisture content, length of material exposure, ability to reclaim disturbed areas and micro-climate data. It should also be recognized that the indirect effect of wind erosion on disturbed materials contributes significantly to dust loading of the atmosphere, and that other sources of fugitive dust, such as vehicular traffic on county and private roads and agricultural activities, are present in the area. Settled particulates (dustfall) averaged approximately 33 tons/mile ${ }^{2} /$ month adjacent to the present mine site during late July to late August, 1975, and only about 4/tons/mile ${ }^{2} /$ month from late April to late May, 1975. However, dustfall at a Tract II site removed from and upwind of the mine operation was 120 tons/mile ${ }^{2} /$ month $^{\text {m }}$ during the July-August period (Data are not available at this location for the April-May period).

The period in which dust loading of the atmosphere is most susceptible is from midsummer through midfall (July to November). Based on limited on-site data,
fugitive dust created at the site during this period will most often be carried in an eastward direction from its source.

The large majority of fugitive dust created as result of the mining activities will settle out within a relatively short distance of its source. Based on results of recent studies, approximately 80 percent of fugitive dust created by tracked-vehicles settles out within a few hundred yards of its source (Viletto and Ohman, 1972). For dust particles less than two microns in diameter travel distance is much greater and they may be carried by air currents for several miles or further.

After mining operations have ceased and reclamation has been completed, it is expected that the only impact on the air quality resulting from previous operations will be some particulate loading from wind erosion effects on roadways and similar areas used for vehicular activity.

B. Sound

Increased use of heavy equipment, larger and more frequent blasts, increased vehiclular traffic, longer operating periods for coal crushing and handling facilities, and more unit trains associated with maximum coal prodution on the proposed mine area will increase ambient sound levels near the mine. The magnitude of the increase probably will not be proportional to the increased noise generating activity. Although much of the noise generating equipment is operated simultaneously it is not operated continuously. At full production level, much of the equipment and activity generating noise will be dispersed over a much larger area than at the present mining operation.

Strip mining operations, which include bench construction, stripping, removal of overburden and interburden, mining of coal and reclamation will occur simultaneously. The active mining area will be limited to a long narrow pit adjoining the reclamation area. The mining equipment will be distributed throughout the bench, pit and reclamation areas. At large distances the noise radiating from the combined mining operations will appear to radiate as a point sources.

It is estimated that the equipment sound level contribution at 1,000 feet from the center of mining operations at a production rate of 10 million tons per year will be 63 dB .

Blasting will be required during the removal of the overburden. It is estimated that there will be two blasts daily. The overpressure created from these blasts depends greatly on the weight of explosives detonated and on meteorological conditions. Measurements for these types of blasts indicated that the impulse noise levels produced might be as high as 91 dB at 1,000 feet. This overpressure level exists for a very short duration and thus does not provide hearing damage $r i s k$ and only minimal annoyance. An impulse noise level of less than 140 dB is acceptable by OSHA standards (Federal Register, 20 May 1967).

It is estimated that the present equivalent sound level contribution at 1,000 feet from the center of the coal preparation facility is 52 dB and would be present for a longer period at the full production level.

By 1981, when coal production reaches 10 million tons per year, it is estimated that there will be three train movements per day leaving the coal preparation facility. Measurements of the existing railroad operations at Tract III indicate that the maximum sound level at 130 feet from the passing of a loaded and empty train may reach 84 dBA (A weighted sound levels) and 85 dBA , respectively
(Westmoreland Resources, 1975 n). These passbys are for about a two-minute duration. The energy average of this sound, $L_{\text {eg }}$, at 130 feet for the passing of loaded and empty trains is 73 dB and 78 dB , respectively.

The greatest impact from increased noise will probably be felt by the workers in the mine and near the coal handling and loading facilities. Increased noise associated with increased access road and railroad traffic will be noticed by residents near these facilities.

C. Physiography and topography

Strip mining operations necessarily alter the physiography and topography of an area. All of the existing land surface in the mine area will be destroyed, and the 1ithologic structures that create variety and stability in the landscape will lose structural identity by blasting, overburden removal, and grading operations during the rehabilitation process.

These operations will alter the mechanical and chemical characteristics of the spoil materials. Relatively dense sedimentary rock will be transformed into broken and pulverized loose spoils, and the pore space ratio, density, and unit weight of the material will be changed. The exact dimensions of these transformations have not been defined, although research is beginning on this topic. The net reduction in volume due to removal of 20 to 50 feet of coal will probably be about 10 to 30 percent in most places. However, pulverization of overburden will tend to increase its pore space; the resulting increase in volume will tend to compensate for the missing coal volume. Increase in pore space of replaced spoils is estimated to produce about 15 percent dilation. This would approximately offset the volume lost due to removal of material from the coal seams in some areas. Immediately following replacement and grading, the main topographic
effect will generally be a somewhat lower land surface where volumetric increases are not sufficient to compensate for the volume of coal removed. Over time, the emplace loose spoils material will settle and compact, further reducing the volume of material and decreasing the elevation. Again, the extent of spoils settlement and its resulting impacts on rebuilt surface features is not known at this time.

Because slopes in regraded areas will not exceed 20 percent (except final highwall reductions), the postmining landscape will be smoother than now exists. Drainage patterns will be reestablished in the recontouring process, although gradients are expected to be decreased somewhat. The major stream channels of Sarpy Creek and East Fork Sarpy Creek will not be directly affected by mining operations.
D. Geology

The geologic character of the mine area will be totally altered by the mining operation. Instead of a layered sequence of rock materials of different hardness and permeability, the area will be reduced to a mixed mass of broken rock totally different from the layered sequence. The replaced spoil will have greater porosity and may have greater permeability than the original layered rocks, and if so will be more uniform in its transmissivity in all directions. Infiltration will be increased, and runoff correspondingly decreased. The mass likely will consolidate and settle with time, as a result of saturation and disaggregation, and permeability ultimately may be reduced.
E. Hydrology

1. Surface Water

The proposed mining plan as submitted by Westmoreland Resources would affect the upstream portions of several small local drainages that are tributary to Sarpy Creek, East Fork Sarpy Creek, and Middle Fork Sarpy Creek. Included is that portion of the drainage located above the present Absaloka Mine. The downstream portions of these drainages are to be protected by existing or proposed water control facilities (detention ponds) which will be located immediately downstream from boundaries of the proposed mine area (Figure 7). All detention structures will meet regulations of the Mining Enforcement and Safety Administration (MESA) and will be designed to contain a 10-year runoff event. For more extreme events, each structure will have a gated-standpipe and an ungated emergency spillway.

The primary impacts to surface-water resources in the area of the proposed mining operation will be to the availability of surface-water to the present downstream users. Primarily, these impacts will consist of the depletions of surface runoff originating from excess precipitation and snowmelt. The depletions will be caused by the following: 1) interception of runoff in the mine pit, 2) interception by reclaimed areas where runoff will infiltrate
and be lost to either the ground-water table or to evapotranspiration, 3) surface evaporation from detention ponds, and 4) consumptive use of water for road maintenance and dust control. The exact amount of depletions which will occur at any particular time are difficult to determine but will depend on the rate at which mining operations progress, in particular the number and size of local drainages isolated by the downstream water control facilities.

Another affect of the water control facilities (detention ponds) will be to reduce flood peaks resulting from runoff from intense precipitation or rapid snowmelt in the basins above the detention ponds. All runoff will be retained behind the structures thus reducing the chance of flooding in downstream channels and would be released at a later date. Only in extreme cases when runoff exceeds the capacity of these impoundments will downstream flooding occur. If these structures are breached or destroyed, extremely large peaks will occur immediately downstream. Although such an event is unlikely, should it occur the larger receiving streams will probably be at flood stage and the peak caused by a failed detention dam would not be noticeable a short distance downstream.

The extraction of coal seams and the associated overand interburden will result in disturbing ground-water aquifers and will have the effect of reducing springflow
in adjacent watersheds during the period of mining, particularly the contributions of flow to the East and Middle Forks of Sarpy Creek. These aspects will be further discussed in the section under ground water.

The over-all impact on the surface-water resources the amount of depletion of surface runoff available to downstream users - will be related to the rate of production of the proposed mining operations. As development progresses, each tributary drainage basin effected will be isolated from the over-all drainage systems of Sarpy Creek by impoundment structures. Hence, the amount of local drainage effected will not increase progressively and proportionately with the amount of surface area disturbed by mining operations, but will increase step-wise as operations affect each separate local drainage. However, the number of local drainages affected at any one time will be related to the rate or level of production. The effect of this isolation could result in the depletion of surface-water runoff by as much as 50 percent as long as the dams are in place. Although water will be released from these impoundments it will not be available for downstream use until such releases can meet Federal and State water pollution control regulations. In the meantime considerable depletion of those resources will take place due to evaporation from pond surfaces, consumptive use, and infiltration to the ground-water table.

The proposed mining plan calls for the continuation of mining operations in an easterly or upstream direction from the present mine development, all of which is located in the local drainage presently isolated by the existing water control facility. These operations affect about 2.4 square miles of drainage tributary to Sarpy Creek. About 1979 operations will cross the drainage divide into a local drainage tributary to Middle Fork Sarpy Creek. The associated water control facility will isolate about 1.5 square miles tributary to Middle Fork, about 0.8 square miles of which is located inside the proposed mine area. As mining operations progress eastward, they will cross the drainage divide between Sarpy Creek and East Fork Sarpy Creek, thus effecting the headwaters of three tributaries to East Fork totaling about 3.5 square miles, 2.0 square miles of which are located in the proposed mine area. At that time, maximum isolation of 7.4 square miles of local drainages including the present mine site from the overall drainage system of Sarpy Creek will have occured and will continue until further operations are planned and approved.

The maximum overall reduction of flow in Sarpy Creek as a result of the present and proposed mining operations is not expected to be significant. If it is assumed that runoff from the affected areas is directly proportional to its area, the runoff depletion attributable to the
project can be estimated. The total area of the Sarpy Creek basin is about 453 square miles, and the area above the confluence of East Fork Sarpy Creek is about 156 square miles. The drainage area affected by present and proposed mining is about 7.4 square miles. Thus, if the long term average runoff from the basin is 0.5 inch (26 acre feet) per square mile and assuming all other factors are equal (e.g., soils, terrain, vegetative cover, land use, climate, etc.) and that mining will result in a 50 percent depletion of runoff; the reduction in streamflow would be about 96 acre feet per year. This would represent a reduction in streamflow of 4.7 percent at the confluence of East Fork Sarpy Creeks and 1.6 percent at the mouth of Sarpy Creek.
2. Ground Water

The ground-water reservoir above the base of the
Robinson Coal will be destroyed by mining and, as a consequence, gradients in the ground-water flow system will be changed in adjacent areas, changing both the direction and amount of ground-water flow with a consequent relocation of discharge areas. In general, the effect of mining will steepen gradients south of the proposed mine area and diminish gradients north of the area.

The overburden and Rosebud-McKay coal near its clinker outcrop and in structurally high areas is commonly drained and removal of these rocks by mining should have minimal impact. Owing to the lenticular nature of the interburden,
the amount of water level lowering in this unit is difficult to predict but the unit will be drained adjacent to the mine pit. At the Decker mine in southeastern Montana which has been in operation since 1972, water levels have declined as much as 10 feet within $1-1 / 2$ miles down gradient of the active mine. Upgradient from the mine water level declines have been less. As the rocks above the Robinson Coal outcrop along Sarpy and East Fork Sarpy Creeks in the northern part of Tract III, the effect of water level declines will not extend beyond the creeks. Drainage into the present mine has not occurred to date and only one monitoring well appears to have been affected by a water level decline of about five feet.

Adverse effects on existing domestic and stock wells will be limited to those finished in aquifers above the base of the Robinson Coal. Most existing wells in the area are finished in the sub-Robinson unit and these aquifers are expected to be little affected by mining on the proposed mine area. After mining, if suitable water cannot be obtained from shallow aquifers in the reclaimed area; wells to the sub-Robinson unit could be drilled. The porosity and lateral and vertical permeability of the replaced spoil is an unknown factor; however, the spoil can be considered as a conglomerate having 'a higher porosity and possibly a higher permeability than the original rock. If the replaced material acts as a uniform
uncemented conglomerate having appreciable higher permeability than the original rock, much of the lateral flow into the mine and later to the reclaimed area will drain out through springs on the southern part of Tract III. On the north end of Tract III, the effect of lower gradients would be to decrease flow both through the rock and from springs.

When the mine area is reclaimed, a ground-water reservoir would develop having perhaps different dishcarge points than originally; and if the permeability of the replaced spoil is materially larger than the original rock, it can be expected that springs would react faster to changes in potentiometric head in the system. Flow would be greater in the winter and spring and less in the summer than originally.

Dust control will require an average production over the 20 -year project 1 ife of about 75,000 gallons of water per day (Bureau of Indian Affairs, 1974, p. 123). During summer months, production for all purposes will range from 90,000 gpd at the beginning of the project to 250,000 gallons at the end. Much of this water will be consumed by evaporation in the effort to control dust by sprinkling haulage roads. The water will be and is currently produced from the Madison Limestone. This water is high in dissolved solids, particularly, calcium sulfate. However, the

Madison well water received primary treatment with permanganate to precipitate dissolved solids before use in dust control. The dissolved solids not so removed will be left in the new environment as the water used there evaporates.

The Madison Limestone is a regional aquifer believed to contain an extremely large volume of water in storage. Although withdrawals will lower the head in the Madison for some distance around the well, the depletion in storage would not be significant on a regional basis and water levels should recover in a short time when withdrawals cease.

Rapid movement of water into and through reclaimed areas may change the quality of the ground water in that it is moving through a very different environment than it originally had. In the Colstrip, Montana, area, highly alkaline mine drainage contributions to surface-water supplies has occurred (U.S. Bureau of Indian Affairs, 1974, p. 121). It would seem that similar conditions could develop in the proposed mine area and cause problems in surface-water quality. The quality of the groundwater, except in and near the mine, would be less affected in that water moving from the mined area into the groundwater flow systems would tend to come to equilibrium with that environment and may not be much different than it is at present. Exceptions would be where more permeable zones rapidly transmit the water to wells or springs.

Blasting may have some very local effect on the groundwater system by creating new fractures in the rock, particularly the coal bed aquifers (U.S. Bureau of Indian Affairs, 1974, p. 124).
3. Water Quality

The proposed mining operation on Tract III will have some adverse effect upon the quality of surface and ground waters within and adjacent to the mine site. Potential water pollutants can be in a chemical form (e.g., acid or alkaline mine drainage) or a physical form (e.g., sediment) or a combination of both. Surface water quality is expected to be somewhat affected both physically and chemically, and ground water, chemically. The main factors which have the potential to cause these effects include the following:

1. Mine drainage
2. Leaching of distrubed materials
3. Increased sediment erosion
4. Drainage from wastewater and solid waste
5. Dust control
6. Biocide usage

With proper mining and reclamation operation none of these factors is expected to result in major degradation of surface or ground-water quality. A brief discussion concerning how and to what degree each of these factors may effect quality follows.

Mine Drainage

Acid-mine drainage is a major source of pollution from strip mining operations in the eastern United States, however, it is not considered a major problem in most eastern Montana coal fields (Environmental Quality Council, 1972). The U.S. Bureau of Indian Affairs (1974, p. 120) suggested that acid mine drainage problems will not occur in the Westmoreland Resources mines on Tract III due to the natural conditions at the site. These include:

1. A relatively low sulfur content (about 0.73 percent) is found in the Rosebud-McKay and Robinson coal beds.
2. The alkaline ground water of the coal beds has a pH range between 7 and 9 and, therefore, would aid in the neutralization of any acid conditions.
3. The unleached overburden material has a highly alkaline pH .

Although pumping of seepage water has not been necessary in the present mine, it is expected that water will have to be pumped from the proposed mine in order to mine efficiently, thus decreasing the contact time between the standing water and the coal seams or coal residue of the pit. Observations by people experienced in coal mining operations of eastern Montana (U.S. Bureau of Indian Affairs, 1972, p. 120-121) also confirm the lack of an acid mine drainage problem in this area. Thus, acid mine
drainage problems are not expected from future mining operations in Tract III and indeed, there is no evidence that acid mine drainages is a problem in the present Westmoreland mine on Tract III. (David Simpson, Westmoreland Resources, oral communications, 1975; Westmoreland Resources, 1975).

There is expected to be some alkaline mine drainage occurring on Tract III since waters of relatively high alkalinity and dissolved solids content are common and can be expected to flow over and through strip mined and reclaimed areas. Based on overburden analysis data, pH of surface runoff is not likely to exceed 9.0 , the upper limit under EAP regulations. Although some overburden and interburden intervals that will be exposed exceed a pH of 8.9 , most fall in the range of 7.5 to 8.5. A1though the potential exists for mixing of alkaline mine drainage waters containing possible high concentrations of dissolved solids with the surface and ground waters, adequate mitigating measures can substantially reduce the probability of adverse effects from such water. By means of an adequate internal drainage system, mine waters can be diverted to detention or holding ponds where a reduction of alkalinity concentration may take place by precipitation of calcium carbonate. Such a system is used on Tract III for the existing Westmoreland Resources mine and is planned for the proposed mine.

The alkalinity of water draining from the present mine on Tract III (collected at the intake to the sediment detention pond) ranges from about 500 to 600 milligrams per liter (Dames \& Moore, 1975, p. 25). These alkalinities are similar to and often less than the alkalinity of surface and ground waters adjacent to and within Tract III. Analyses conducted on samples collected from the sediment pond indicate overall reductions of alkalinity, bicarbonate, calcium, and magnesium of more than 50 percent from input concentrations. This indicates that use of detention ponds and an adequate internal drainage system at the Westmoreland Resources mine has significantly reduced the alkalinity of mine drainage water. Thus, alkaline mine drainage is not expected to cause an adverse deterioration of surface or ground waters in the site area with use of adequate mitigating measures during the mining operations.

Some alkaline water will drain into the overburden and spoils material and eventually enter the shallow aquifer system. In doing so, the water will probably become enriched in dissolved solids through leaching of soluble materials in route. This could only affect the quality of water in the Robinson Coal outside of the lease area, as higher aquifers outcrop along the valley walls of Sarpy and East Fork Sarpy Creeks in the direction of ground-water movement. However, some alkaline recharge
to the alluvium of the valleys would be possible from spring flow. The general aspects and effects that are expected to result from this process are discussed in the following section.
Leaching of Disturbed Material
Several aspects of surface mining (e.g., excavation of overburden and coal, stockpiling of soil and spoilbanks, and placement of overburden and soil into the mine pit) provide numerous opportunities for fresh porous material to be exposed to the atmosphere, precipitation, and water draining into the pit. The spoils material contains minerals which possess various degrees of solubility in water. As surface water percolates downward and ground water migrates laterally through stockpiled material and spoils, leaching of soluble salts will occur. The resultant water is expected to be alkaline, contain higher concentrations of dissolved solids, (including sulfates, bicarbonates and the alkaline earth metals), and to contain trace metals common to the overburden and mined coal seams. The amount of increase of dissolved constituents depend in part upon the leachability of the distrubed material.

Overburden analyses can be used to infer leachate composition. Based on saturation extract analyses, average conductivity for material from all test holes on Tract III was $3.0 \mathrm{mmhos} / \mathrm{cm}$; SAR averaged 6.0 ; and the pH for most
intervals ranged from 7.5 to 8.5. Trace metals concentrations cannot be inferred as analytical data are based on DTPA extraction. Owing to alkaline pH , water solubility for most metals is negligible. Molybdenum and selenium are soluble at high pH but the concentration of these metals is very low. The average hot water solubility of boron is 1.5 ppm and might possibly reflect maximum concentration in leachate.

As the leachate water moves down gradient through the disturbed material, it will come in contact with the existing aquifers in the undisturbed ground water system. As this water moves further down gradient, it will mix with other ground waters and improve somewhat in quality through dilution. Where ground water discharges at springs immediately adjacent to the mined area, the water will essentially be undiluted and it is expected to be of somewhat poorer quality than existing spring water. Where such discharge occurs into surface waters, the resulting overall quality of the surface water that receives ground water which has passed through the mine spoils is not expected to be measurably degraded because the existing surface water quality is generally poorer than that of most of the local ground water, except during periods of moderate to high surface flow. Possible exceptions to this may be for tributary streams that receive most of their
water during the low flow from springs discharging from the base of the Robinson Coal or higher.

There is expected to be little or no adverse effect to the water quality of aquifers beneath the Robinson Coal as result of the mining operation as these will not be disturbed.

The quality of ground-water samples obtained from spoils material of active surface coal mines within southeastern Montana indicates that these waters may or may not be more chemically diverse and different from mine effluent (drainage) waters and waters from undisturbed aquifers. Samples from the Decker mine contain much more sulfate and dissolved solids than other local water, more calcium, magnesium, potassium and manganese, and about the same amounts of fluoride, bicarbonate, silica, chloride, nitrate and iron (Van Voast and Hedges, 1975). However, results of analyses on ground waters from spoils material of the Rosebud Mine at Colstrip, Montana indicate these waters have similar chemical characteristics to waters in the adjacent unmined area (Van Voast and others, 1974). Principal constituents in all waters analyzed from the spoils were calcium, magnesium, and sulfate. Analyses results indicate that waters entering the mine area are not changed in their chemical type, but, if anything, the existing principal constituents in solution are increased. This relationship for the Rosebud Mine area (which also is expected to pertain to the Tract III area) is compatible
with the assumption that the quality of ground water is determined by the minerals available for dissolution, and these minerals are more available for dissolution in the spoils material than they are in the undisturbed strata. Increased Sediment Erosion

Erosion and sedimentation are natural processes occurring everywhere on the land surface. Surface mining activities accelerate these processes by the removal of ground cover, decreasing the strength of the overburden during excavation and the alteration of the natural topography.

By the use of mitigating measures, however, sediment discharge to the natural drainage systems outside of the project area in response to most runoff events can be controlled. Westmoreland Resources plans to use natural drainage systems within the mining area and sediment detention ponds on tributaries draining the mining area to regulate sediment discharge. The detention structures will be capable of capturing and containing runoff volumes equal to or less than lo-year precipitation event. Sediment laden runoff waters will be retained in the detention pond until sufficient clarification of the water occurs through settlement before it is released. For larger runoff events, releases must be made during the event resulting in a portion of the sediment load being passed downstream.

In general, the amount of sediment generated from a watershed is directly proportional to its area. Thus, by comparing the relative sizes of contributing areas within a watershed, the proportion of sediment attributed by each can be approximated. Therefore, using the watershed areas previously mentioned and assuming all other factors being equal, the 2151 acre mining plan would would yield about 0.7 percent of the natural sediment generated within the Sarpy Creek watershed.

Meaningful estimates of the potential increase in sediment load from areas disturbed by mining are not possible owing to the nature of the mining and reclamation plan and the many variables that affect sediment generation. On a conservative basis, potential sediment load from disturbed areas could be double the natural sediment loads draining from the area. However, the area would never be 100 percent disturbed by mining, and planned detention ponds would retain sediment generated by most runoff events. Thus, the impact of sediment production downstream from the mine area could be minimal and might be less than under natural conditions.

During periods of extreme runoff volume, precipitation exceeding a 10 -year event, it is estimated that the sediment load contribution from the project area will be somewhat greater than what would occur naturally. However,
the importance of such an increased sediment contribution in itself is not expected to cause a major impact because of the relatively small area involved ($3.4 \mathrm{mi}^{2}$) in the mining operation compared to the overall drainage basin areas. During such an event, the receiving streams would be in flood with large sediment loads and it is doubtful that the increased load from the mine area would be detectable using current sediment sampling techniques.

Water impounded in sediment detention ponds is often of poor quality, not only because of high sediment content, but also due to its chemical and biological composition. Biological degradation may be characterized by excessive phytoplankton, zooplankton, and bacterial growths occurring primarily during the warmest months of the year. Because the water accumulates from various parts of the internal drainage system of a mine, it may contain a low concentration of a variety of organic constituents (oils, greases, etc.) from various forms of industrial wastes, plankton nutrients such as nitrogen, phosphorus, carbon, and silica, and accumulations of trace metals, as well as the inorganic constituents. Although it is unlikely to happen, premature release of this water to the natural drainage system could adversely impact surface and groundwater quality in local downstream drainageways. Wastewater and Solid Wastes

Domestic or industrial liquid wastes generated within
the mining area present a potential waste pollution problem. Currently, domestic waste water is channeled to an approved evaporation lagoon at the existing Westmoreland mine. This facility would continue to serve the proposed mine area. There is not expected to be any discharge of inadequately treated domestic or industrial wastes to surface or ground-water resources of Tract III.

Various forms of solid wastes may accumulate throughout the area of mining operations. Such wastes will be disposed of in a sanitary landfill or other approved disposal facility within the mining area. The use of a sanitary landfill includes careful selection of a site, control of the dispersion of the leachate, and proper operational procedures. No significant adverse effects are expected to result from solid waste disposal within the mine area.

Dust Control
Frequent sprinkling will be conducted to control dust on roads in the mining area. Well water from the Madison Limestone aquifer will be used for this purpose and it contains moderately high concentrations of dissolved mineral salts. Currently, this water receives primary treatment to decrease dissolved solids concentrations prior to use for dust control. These salts (predominately calcium sulfate) can become concentrated on the roadways and later redistributed and transported out of the area through wind blown
dust, water runoff, or percolation into the local groundwater system. The main effect of the salts would be to increase the salinity of the topsoil adjacent to the roads, which may somewhat inhibit plant growth.
$\underline{B i o c i d e s}$
Excessive use of herbicides or pesticides in and around the mining area could cause some degradation to the water quality of the project area. Much of these chemicals would eventually be absorbed by clay and silt particles in the soil. Only a very minor fraction would be available for transport by surface runoff. At the present mine, Westmoreland Resources does not use biocides and does not not anticipate the use of biocides on the proposed mine site.

Use of Fertilizers

During the reclamation phase of post-mining operations, it may be necessary to apply fertilizer to regraded spoil material or to topsoil. Depending on the amount applied and the time of year it is applied, soluble chemical compounds in fertilizer which is distributed on reclaimed mine lands could be partially washed from the land surface into constructed or natural drainage and/or leached by percolation of water. This could result in a distribution of chemical nutrients to sediment ponds and eventually to the upper reaches of the major creeks near the project area.
F. Soils

The existing soils on the 2151 acres to be surface mined will be destroyed, in the sense that they will no longer exist as stratified, developed soils. In handing, the root zone (A and B horizons) will be randomly mixed, and in many instances the lower-lying substrata material (C horizon) will also become mixed with the upper horizons. When mining and reclamation are completed, the resulting physical and chemical properties of respread soil materials will be significantly different from the present soils.

Soils that must be stockpiled for future use in reclamation although they will be seeded to control erosion may become biologically sterile at depth, requiring inoculation with fresh topsoil. Some soil microorganisms can become dormant and will survive stockpiling, but the extent of this adaptation within the soil microcommunity is unknown. In general the chemical, biological and physical properties of the natural soil will be disrupted and changed to an unknown degree by stockpiling.

Excavation and regrading of overburden and interburden materials will result in drastically altered subsoil properties. In the mining process, materials of deepest origin generally are placed at the top of the spoil piles,
although in excavating to the Robinson seam, a substantial amount of rehandled overburden will be mixed with the interburden (Figure 8).

Based on analytical data from drill holes, regraded spoils will be alkaline, possible with some areas highly alkaline ($\mathrm{pH}>8.9$). High pH should not be detrimental to the growth of plant species used in reclamation. Regraded spoils in some cases may be slightly saline, but the degree of salinity should not be detrimental.

Materials originating near the Robinson coal seam may be slightly to moderately sodic, and it is expected that regraded spoils in some areas will be sodic. High levels of exchangeable sodium in combination with expanding lattice clays can result in impaired water penetration, root penetration and aeration. Serious sodium problems are not anticipated because sodic conditions generally are limited in occurrence and clays are predominantly kaolinitic. Addition of sufficient topsoil should mitigate potential sodium problems by placing a suitable plant growth medium at the surface, but exposure of sodic materials by erosion of topsoil may eventually result in surface materials not conducive to plant growth.

It is possible that in some areas of regraded spoil slightly elevated levels of boron may occur. Water soluble boron in concentrations above $5-10 \mathrm{ppm}$ is toxic to vegetation. If adequate fill is placed on areas high in boron prior to topsoiling, problems should not occur.

Some test holes indicated strata with higher than normal levels of $z i n c$ and lead. It is unlikely the levels observed would pose hazards to revegetation or to livestock (Colorado School of Mines Research Institute, 1975).

Regraded spoils may in many cases be high in clay. High clay levels may restrict water penetration and result in erosion. Addition of a sufficient layer of topsoil to absorb water during high rainfall periods should prevent possible erosion problems related to clay subsoils.

Overburden and interburden materials in the project area, although highly infertile, are expected to be reclaimable, particularly since topsoil will be redistributed (Colorado School of Mines Research Institute, 1975). Localized adverse conditions are not expected to be serious and will be adequately mitigated by the redistribution of topsoil or if necessary, addition of fill prior to topsoiling. If revegetation is not sufficiently rapid to control erosion, however, erosion of topsoils may result in exposure of spoil materials which would be difficult to revegetate, particularly on steeper slopes.

As a result of disturbance by mining, some soil will be lost from the mine area. Removal of plant growth and excavation of soil and overburden will create favorable conditions for erosion by wind and water.

Wind action is nearly constant in the region, and clay and silt-sized particles loosened by blasting,
digging, and grading will easily become airborne. Soil particles will also be transported off-site by surface water runoff. Soil erosion and deposition will be increased where soil permeability and infiltration are reduced by compaction and cementation. Any steep slopes left from mining excavations will be very susceptable to water erosion.

Soils in the immediate vicinity of haul roads and processing facilities as well as a long railroad line may be adversely affected by settling of coal dust.
G. Vegetation

All vegetation on the proposed mine site will be completely destroyed by strip mining operations. In addition, construction of roads, mine service facilities, and coal handling and storage facilities has and will remove small areas of vegetation. The actual rate and sequence of the destruction of vegetation is governed by the progress of the actual mining operation. On the proposed mine area, this will begin at the rate of 66 acres per year and increase annually until 110.5 acres will be disturbed annually as the mine reaches full production from 1981 until 1995. Acreage disturbed would then taper off sharply during the remaining two years of operation. This will result in a total of 2151 acres of vegetation being destroyed over the 20 -year 1 ife of the mine.

The topographic features and soil characteristics of the reclaimed lands will be sufficiently altered to preclude eventual re-establishment of the pre-existing plant communities. Some exchange of plant species with the surrounding areas can be expected, but the extent cannot be predicted. Westmoreland Resources' plan to redistribute topsoil transported directly from unmined areas will aid in introducing native species to reclaimed areas as a result of rhizomes, roots and seeds contained in the soil.

Invasion of reclaimed lands by native species from other seed sources may also eventually occur. To what extent native species will become re-established and the time factors involved are not known.

The potential of the reclamation program to successfully rehabilitate the lands affected by surface mining, in the long term, can only be speculated upon at this time. Likewise, the ability of the reclaimed lands to sustain any particular land use over a long period of time is speculation at this time. The most probable outcome will be the transformation of 2151 acres of mixed grasslands and agricultural lands (interspersed with brush and timber) into a predominately open, rolling grassland dominated by species which can survive and reproduce on disturbed, significantly altered land. Over time, species mix will change as ecological processes of selection and succession occur.

The potential for revegetation of mined lands appears to be relatively good. Precipitation is approximately 15 inches annually, with the majority occurring during the growing season. Adequate topsoil is available to provide a suitable plant growth medium to a depth exceeding 18 inches. Topsoil suitability is not limited by chemical characteristics, although some series contain sufficient clay that erosion due to excessive runoff may be a problem.

Problems with blowing of topsoil have not yet occurred at the existing mine (David W. Simpson, Westmoreland Resources, Personal communication). Long term success of revegetation is not known, but short term results at the Absaloka mine and at Colstrip, 20 miles to the east, are encouraging. Westmoreland Resources has seedings dating back to 1973 , but the oldest mined land revegetation plantings using a primarily native seed mix were seeded in the spring of 1975. It will be several years before the success of these plantings can be fully evaluated, although germination and plant establishment appear to have been good (David W. Simpson, Westmoreland Resources, Personal communication).

Operation of the dragline and other heavy equipment used in mining, as well as bare spoil piles and other exposed soil, will cause dust pollution during certain times of the year. The effects of the dust may extend to areas of vegetation not scheduled for mining when dust control procedures are made ineffective by climatic conditions or operator failure. Small amounts of vegetation will be lost to this effect.

Vegetation adjacent to roads, railroads and coal processing and handiing facilities will be stressed by exposure to road and coal dust settling on plants owing to increased traffic and activity in these areas.

The construction and relocation of power lines will result in the loss of vegetation from grubbing and leaning operations. There will also be changes in plant composition where forests or brush canopies are opened for power line or road construction.

The continuing dis ruption of 1 and use patterns brought about by the ever-moving mining operations may result in localized areas of overgrazing by livestock or wildlife. When confined to areas that will be mined this will be no additional impact.

Wildfire occurrence in adjacent rangeland and timber communities undoubtedly will increase over pre-mining conditions. Man caused fire starts will increase due to increased activity in and around the mining area. Without prompt response to fire outbreaks, the potential exists for increased impact on vegetation adjacent to the mining activity.
H. Fish and Wildlife

Wildife habitat will be lost wherever strip mining, road building, soil stockpiling, building construction, or any other disturbance requiring removal of plant material and/or reshaping of the surface occurs.

Reclamation following mining should allow mined-out areas to be suitable for some fish and wildife production. Approximately two years after the surface is stripped, reclamation should begin to return the land to a useful state. Following completion of reclamation techniques, it is estimated that a minimum five year time 1 ag will occur before the land can resume its former productivity (Westmoreland Resources, 1975). Development of trees and shrubs to provide habitat diversity will require considerably more time, possibly 5-20 years at a minimum. Therefore, although as much as 773.5 acres will be involved in mining and reclamation activities, wildlife habitat values will be diminished on a larger acreage due to time required for development of woody plant communities.

Most wild animal species are mobile enough to escape the mine area and will flee as equipment destroys their habitat. Sedentary or slow moving aquatic, and burrowing species will probably be destroyed by the mining operation. Those animals that are able to flee will probably encounter increased predation and stiff competition for food and
shelter as they are forced into neighboring territories already occupied by other animals.

All increased human activity will have an adverse effect on wildiffe in the area. For example, increased traffic in the area will require new roads and more fencing. New roads and heavier traffic will increase the dangers to wild species from road kills, dust pollution, and hunter-caused mortality (both legal and illegal). Danger due to accidental fires will also increase.

Fences do not generally restrict the movement of animals, with the exception of the pronghorn (antelope). The pronghorn prefers to crawl under rather than hurdling fences. The range of these animals is thus effectively reduced by sheep-proof fences. Fencing also poses the danger of entanglement to both deer and antelope. Westmoreland Resources does not plan to use sheep tight fencing and antelope movement should not be restricted.

Higher noise levels from roads, rail lines and mining activities will have adverse effects on some species of wildlife. Acceptance of noise levels by a few species will come in time, although periodic intrusive noises (blasting, train whistles, etc) may cause local disturbances.

If dis ruption of shallow aquifers results in the loss of seeps and springs, the lack of water availability may
decrease carrying capacity or result in population redistribution of some species.

Reclamation will alter the availability of habitats in such a manner that some species of wildlife will not be able to become established due to the absence of essential requirements for survival. Carrying capacity for some species may be decreased, while other species may become more numerous as hibitat changes favor their needs. The eventual long term changes in carrying capacity due to mining and reclamation are difficult to project because the degree of reclamation success is speculative, and because relationships between animal populations and their habitats are complex and poorly understood for many species.

The area probably will be less attractive to mule deer since mining and reclamation will result in a smoother topography than now exists, and the suitability of reclaimed soils for ponderosa pine, the habitat type most utilized by mule deer in the project area is questionable. This effect may be offset somewhat by the establishment of species utilized by deer as food, provided adequate cover develops or is retained in adjacent unmined areas. Whitetailed deer are most closely associated with creek bottoms, so effects on this species are expected to be minimal. Utilization of uplands probably will be decreased, however,
unless reclamation techniques succeed in establishing suitable cover.

The creation of a relatively smooth, rolling topography covered primarily by grassland probably will be attractive to pronghorn as summer range. Utility as winter range will depend primarily on whether or not sagebrush becomes established in reclaimed areas.

The coyote is extremely adaptable, and it is unlikely that the coyote numbers will be substantially affected.

Small mammals, particularly deer mice, should inhabit reclaimed areas in numbers comparable to those present in unmined areas.

Effects on sharptail grouse are difficult to predict. Mining will result in the elimination of at least one dancing ground, which based on 1975 spring population levels, corresponds to an estimated 56 birds. Opinions vary as to whether or not dancing grounds can be reestablished on mined and reclaimed areas. The critical factor may be whether or not other habitat requirements, such as nesting and winter cover, can be established. If these requirements are met, it is possible that new dancing grounds may become established and the long term effects may be neutral or positive. Otherwise, sharptails may not inhabit reclaimed areas.

Ring-necked pheasants should not be adversely affected since critical creek bottom habitats along Sarpy and East

Fork Sarpy Creeks will not be mined. Upland areas contain limited areas of suitable winter cover, and the birds are present during the breeding season when males are territorial. Reclaimed areas should be utilized by pheasants, particularly if suitable cover and agricultural land uses result.

Small numbers of waterfowl may be affected due to mining of limited amounts of aquatic habitat, primarily stock ponds. Significant degradation of Sarpy and East Fork Sarpy Creeks also would adversely affect waterfowl but such degradation is not expected. However, creation of aquatic habitats by construction of sediment ponds and other impoundments if approved by regulatory agencies may benefit waterfowl and other types of water birds. Some species of raptors may be adversely affected for a comsiderable period of time due to loss of nesting habitat. This is particularly true of the great horned owl, red-tailed hawk and Swainson's hawk, which utilize trees as nesting sites. The sparrow hawk, a cavity nester, may also decrease in numbers due to losses of rock ledges and dead trees. Rock ledges cannot be replaced after mining, but it is unlikely that nesting sites of prairie falcons and golden eagles would be affected since these birds prefer rugged, precipitous terrain that is not present in the mine plan area. Because reclaimed areas are expected to support suitable populations of prey
species, long term adverse effects on birds of prey are not expected.

Songbird populations are expected to be substantially affected in the short and long term. Woodland species such as the black-capped chickadee, red-headed woodpecker, mourning dove and others are expected to decrease in numbers until suitable haibtat becomes re-established. If reclaimed areas consist primarily of rolling grassland, these areas should be attractive to grassland species such as the western meadwolark. Elimination of rock ledges probably will prevent habitation of reclaimed areas by species dependent of these habitats, such as cliff swallows. A number of species use rock ledges and cavities for nesting, and will be adversely affected.

If reclamation does not succeed in the long term, or if post mining levels of productivity are substantially reduced, long term adverse effects on virturally all species of wildife in the project area can be expected.

Wherever any disturbance results in disruption of stream flow or watershed patterns, aquatic life will suffer either by elimination or degradation of the habitat.

Water pollution from leachates, fue1 spills, and sediment-laden runoff could eventually enter the streams of the area and cause damage to aquatic life downstream
from the lease. Availability of surface water for preservation of habitat values may be greatly affected. Significantly reduced flows would tend to eliminate aquatic life from affected stream reaches. Alteration of runoff cycles may disrupt behavior and reproductive success, and may force fish and other aquatic creatures to move further downstream, where water is available in suitable quantities, although alterations of sufficient magnitude to substantially affect stream flow are not expected.

Fish species of recreational importance should not be affected. Use of Sarpy Creek by the sauger, the only sport fish captured in fishery surveys is limited to areas near the confluence of Sarpy Creek with the Yellowstone River. Adverse effects on aquatic habitats for downstream of the lease are not expected.
I. Mineral depletion

Mining of the area proposed will result in the depletion of approximately 190.6 million tons of coal with a total heating value of about $1.6 \times 10^{12} \mathrm{BTU}$.

The increased traffic loads on the existing roads, and the construction of new roads necessary for the mining operation, will require the use of large quantities of gravel and clinker for road construction material. Gravel is available locally only in limited amounts, but extensive amounts of clinker of variable quality is available in the tract area and will be used as necessary. The clinker present within the area to be mined which is not utilized will be lost, since if it is not used during mining or before, it will be incorporated into the replaced spoil.

Mining of the area will not affect possible future exploration for oil and gas, since if present, these are found at far greater depths than will be mined.

Mining and transportation of coal will require the use of other fossil fuels. Currently, energy requirements to mine 1 million tons of coal include approximately 150,000 gallons of diesel fuel and $5,250,000 \mathrm{kwh}$ of electrical power. Shipping this coal (and train return assuming a 1600 mile round trip) requires an estimated $2,000,000$ gallons of diesel fuel. Based on conversion factors of $125,400 \mathrm{BTU}$
gal for diesel fuel and 10,000 BTU to generate 1 kwh of electricity, the energy required to mine and ship 1 million tons of coal is equivalent to approximately $322,110,000,000 \mathrm{BTU}$, or 1.91 percent of the energy contained in the coal itself at 8450 BTU/lb.
J. Land Use

Westmoreland Resources currently controls all of the surface within the proposed 20 year mining plan area with the exception of the southern half of Section $31, \mathrm{~T} .1 \mathrm{~N}$, R. 38 E. Acquisition of surface control has been accomplished through 1 and purchases from non-Indian land owners. Surface lands owned by Westmoreland Resources are to be offered for purchase to the Crow Tribe upon completion of mining and rehabilitation. Should the Crow Tribe elect to purchase these lands it is assumed they would be offered to Crow Indians for grazing and farming purposes where appropriate.

Successful rehabilitation of the mined lands will provide the Crow Tribe with lands suitable for livestock grazing. However, if reclamation is not successful and the land requires additional care such as frequent fertilization, the tribe will be forced to furnish monies and resources in order to try to sustain grazing or other agricultural uses. Lands adjoining the mined areas and primarily in non-Indian ownership would also suffer if reclamation is unsuccessfu1. Reduced surface water run-off, increased siltation of streams, and blowing dust would be a few of the potential problems in such an event.

Although the area to be mined is large, the area actually involved in mining at any one time will be relatively small due to reclamation activities following closely behind mining. Assuming a two-year lag between the onset of mining and the beginning of revegetation activities, and a minimum five-year period before revegetated lands can be utilized for agricultural purposes, about 773.5 acres would be involved in mining and reclamation at any one time at a peak production level of 10 million ton annually.

In 1975, approximately 785 acres within the proposed mine area were utilized for dry cropland, or had been previously cultivated. The 1975 value of dry cropland in the area has been estimated at $\$ 200$ to $\$ 350$ per acre (Westmoreland Resources, 1975 b). Income forgone when dryland agricultural land is mined is estimated to be $\$ 30.33$ per acre per year (Big Horn County Situation Statement Emphasizing Agriculture, 1972; U.S. Department of Agriculture, Committees for Rural Development, 1972), although this figure is highly dependent on market fluctuations and other factors. Therefore, foregone income from mined agricultural lands is expected to be that corresponding to 1000 acres for a period of seven years, or about $\$ 167,000$.

Lands in the valleys of Sarpy and East Sarpy Creeks adjacent to the leases are irrigable, but are not presently under irrigation. Because mining will not extend into these valleys, effects on irrigable lands will be neglibible.

Immigration due to increased employment provided by mining is expected to be concentrated in Hardin. Expansion of Hardin will encroach on irrigated cropland in the Big Horn River Valley. On the average, it is expected that construction of each new single family dwelling will result in the loss of about $1 / 4$ acre of irrigated cropland.

Grazing on native or reseeded grasslands and woodlands comprises the largest current usage of Tract III; over 90 percent of the total area is used for grazing. About 1365 acres of the proposed mine area are currently used for grazing. This corresponds to approximately 455 AUM's (animal unit months) per year, or sufficient acreage for the grazing of about 45 cow-calf units assuming a 10 month grazing season. Assuming that mined lands can be returned to grazing at equal capacity 7 years after mining, which may or may not be the case, a grazing capacity of about 315 cow-calf units will be forgone over the life of the proposed $20-y e a r$ mining plan. The average value of grazing land in the area is $\$ 90-\$ 100$ per acre. Cattle prices vary considerably and it is difficult to present valid figures for the net income represented. If the income generated by grazing 1 and is 30 percent of that generated by cropland as is implied by relative land values, then the foregone income from 1365 acres over seven years would be about $\$ 87,000$.

It should also be noted that 1 ivestock reservoirs and fences will be removed. These will have to be replaced before grazing can be effectively implemented and range management practices utilized.

Species of plants suited to highly disturbed sites will become established and may distribute noxious weed species on reclaimed lands. Special practices to eliminate these opportunistic species may be required, although as desirable plant communities become established the undesirable species should lose out due to limited ability to compete for water, nutrients, and light.

The impacts of coal mining on the timber resource will be of two types: the effect on the area disturbed by mining, and the effect on surrounding forest communities. The impact of removing the forest cover will be longlasting. Eventually coal mining activities (including stripping, construction of roads, processing and handling facilities) will completely destroy all vegetation in the areas they occupy. Ponderosa pine forest of varying quality and density is present on about 29 percent (625 acres) of the proposed mining plan area. These stands have an estimated average standing volume of 3300 board feet per acre. Therefore, mining will require the harvest of approximately 2.1 million board feet of ponderosa pine timber which at a price of $\$ 30.00$ per thousand board feet, is worth about $\$ 63,000$. Westmoreland Resources has stated that every
effort will be made to utilize timber resources from areas to be mined. However, if markets cannot be found, this resource will be lost when the timber is cleared in preparation for mining.

Stripmined forest land requires a number of years to return to its former use. Sawlog production on non-mined sites in the area presently requires a growing period of 80 to 120 years. After tree seedling establishment it will take approximately 40 years for the reclaimed area to achieve a forest-like appearance.

As evidenced by existent plant communities, aspect (direction of slope) has a profound effect on vegetation development and distribution on the project area. For example, environmental conditions on south facing slopes are generally too severe for forest communities to become established. Microclimatic changes will occur in the area due to removal of existent vegetation and significant changes in land forms during reclamation. Loss of suitable microclimates for tree growth may hamper reforestation efforts on even the best previously forested sites. Microclimatic alternation has hampered reforestation efforts on many clearcuts and burned over lands in the Northern Rocky Mountains, and these sites are only moderately altered in comparison with stripmined land.

Wildfire occurrence in surrounding forest communities will undoubtedly increase over pre-mining conditions.

Man-caused fire starts will increase due to increased activity in and around the mining area. These fires should not pose a great threat, since heavy equipment is available at the present mine site to construct fire lines.

Tree residue resulting from logging and mining operations could result in an environment conducive to insect population build-up. Mountain pine beetle (Dendroctonous ponderosa) is of primary concern in this type of timber stands and is presently destroying a considerable volume of commercial timber in the Wolf Mountains on the Crow Indian Reservation. Proper disposal of slash material will be necessary.

Because reclamation techniques may result in soil conditions not suitable for the growth of ponderosa pine, the timber production potential of mined areas may be permanently lost. If this occurred, the estimated loss in timber production on the approximately 625 acres of forest land involved would be about 56,250 board feet per year assuming 90 board feet per acre of annual growth. At a price of $\$ 30.00$ per thousand board feet, this would represent an annual income value of about $\$ 1700$.

It is unlikely that mined lands would be suitable for home construction and residential land use due to instability of the loosened spoil material. Lineal land uses (roads, powerlines etc.) will require temporary relocation as the mining operation progresses, but should not be affected in the long term.
K. Recreation

As recreational use of the proposed mine site is very limited at present owing to lack of facilities and restricted access, the impact of development of the site on recreation will be limited. Owing to the inherent hazards to visitors of a strip mining operation, access to the area will of necessity be restricted during the life of the mine. Use of the outlying areas of Tract III for present recreational uses should not be affected. Based on the high interest the public has shown in visiting coal mining operations, it is likely that sightseeing will increase and be the major recreational activity for the leasehold, in terms of visitor days, during the life of the mine.

As reclamation of the site proceeds and it is again available for use, the subdued topography, changed vegetation, and more homogeneous appearance of the area may make it less desirable for the limited recreational activities now possible.

Increased employment as mine production increases, if filled by newcomers to the area, would increase the demand for local recreational opportunities. As the anticipated immigration of workers as a result of development of the proposed mine site is not large, little impact would be noticed on recreational facilities now available in the general area.
L. Transportation and use of the coal

Shipment of coal from Sarpy Creek by rail will result in increased rail traffic. The number of trains leaving Sarpy Creek will be proportional to coal production, with an average of at least three trains per day expected at a production level of 10 million tons annually. Considering returning empty trains, this amounts to six train passbys per day along the Sarpy Creek railroad spur from Sarpy Creek to Sanders, Montana, and assuming eastward shipment of all coal, along the Burlington Northern main line to the upper mid-west. It is difficult to quantify transportation related impacts with certainty since it is not now known where all ultimate markets will be. However, annoyance due to train passby noise and increased traffic congestion at rail crossings will certainly occur along the railroad lines involved. Soils and plant communities along rail lines may be adversely affected by coal dust blowing from railroad cars.

Further shipment of coal by barge would increase barge traffic on portions of the Mississippi River, although interference with existing commercial navigation should not occur (Bureau of Indian Affairs, 1974, p. 130). However, increased conflict with recreational use of the river may result. The environmental consequences of coal shipment by barge are discussed in the Pigs Eye Terminal Environmental Impact Statement (Department of the Army,

Corps of Engineers, St. Paul District, July 3, 1973).
Air quality impacts of burning Sarpy Creek coal will vary depending on the situation. Where existing power plants now burning high sulfur mid-western or eastern coal convert to coal from the Tract III lease, beneficial impacts on air quality would occur since sulfur dioxide emissions would be reduced substantially. Emissions from plants currently burning western coal would remain essentially unchanged in the event of conversion to Sarpy Creek coal.

New plants utilizing Westmoreland Resources coal will be required to take measures to reduce sulfur emissions. Federal Air Standards (Bureau of National Affairs, 1975) limit allowable surfur dioxide emissions to 1.2 lbs. per million BTU. The average analysis of the coal in the lease area corresponds to about $1.73 \mathrm{lbs} . \mathrm{SO}_{2}$ per million BTU but which would be much closer to the allowable limit if the two stray seams were excluded. It should also be noted that recent testing conducted by consultants at Westmoreland's direction indicated that 87.5 percent of the sulfur in the coal was emitted. If the test was conducted in a modern boiler designed for this coal the precentage emitted would be expected to decrease. Alternative methods of reducing SO2 emissions include the installation of stack gas scrubbers, blending of fuels and fuel cleaning. It is probable that current research will result in
more advanced methods of sulfur removal and/or coal burning to reduce sulfur emissions.

Air quality impacts to be expected from the burning of Sarpy Creek coal in any particular plant depend upon a multitude of factors including design, meteorological conditions and surrounding topography. Northern States Power Company (1976) presents detailed air quality data for its proposed SHERCO Units 3 and 4 in Sherburne County, Minnesota, which will utilize coal from Sarpy Creek. These units will have stack gas scrubbers, and in no case are allowable class II significant deterioration increments expected to be exceeded or even approached (Northern States Power, 1976 pp. 4.2-41, 42).

The fate of trace elements in the burning of coal has been identified as a potential environmental problem. Trace element concentrations in the coal seams are presented in Table 1 b . Trace elements contained in coal are largely associated with the mineral portion and are predominantly carried with the bottom ash and fly ash. However some elements may be volatilized to varying degrees at combustion temperatures and emitted in the flue gas. For most elements, the majority will be retained in the scrubber slurry, presumably contained largely in the fly ash. Therefore, possible effects of trace elements on water quality, soils, plants and animals must be considered in fly ash or scrubber slurry disposal. For many
elements, notably mercury, chlorine and molybdenum, significant quantities were present in the flue gas and hence would be introduced to the atmosphere. Northern States Power (1976) calculated ground level concentrations of trace elements that will be present in the vicinity of the proposed SHERCO Units 3 and 4 , and concluded that a hazard to human health does not exist by comparing these values to threshold limit values at which harmful effects will occur to a human occupationally exposed over a long period of time.

Effects of trace elements on soils and the terrestrial food chain are more difficult to assess. Factors to be considered include the amounts involved, soil pH effects on chemical mobility, rainfall leaching effects, land use, interactions between elements, and the potential for toxic effects on plants or animals. Research on the fate of trace elements in biological systems is just beginning, and many questions remain unanswered. Because terrestrial inputs in any case would be quite small, adverse effects are extremely unlikely, although accumulations in surface soils over long periods of time could occur. Because analysis of the coals has not indicated abnormally high trace element concentrations, the environmental implications probably are not significant compared to those which would result from burning coal from other sources.
M. Risk of accidents

Industry related

The risk of fatal and disabling accidents to the employees in any industrial operation depends on many factors other than the physical hazards of the work. The experience, motivation, and training of employees as well as management commitment to safety can have a great effect on accident rates. Underground coal mining remains the most hazardous occupation in terms of fatalities and disabling accidents; however, the risks in surface coal mining are much smaller and are comparable to risks in the construction industries. The following statistics compare accident rates for surface and underground coal mining in the western United States for 1974, and include shops and crushing facilities:

Accidents Per Million Tons of Coal Mined

$$
\underline{1974}
$$

Type of Mining	Disabling*	Fatal
Underground	47.4	0.20
Surface	3.0	0.083

Source: Mining Enforcement and Safety Administration *Includes all lost-time accidents

The incidence of fatal accidents in underground mining was over three times the rate in surface mining while the incidence of disabling accidents was almost 16 times greater
in underground mines. Machinery caused most fatalities in surface mining. In Montana for the first nine months of 1975, there was no fatal accidents, and the nonfatal rate was 0.89 per million tons mined in surface mines.

The railroad would pose some risk of accients, but this risk should be fairly low because the trains are loaded continuously and remotely, and the train is not broken nor switched in normal loading. Personnel are protected in the engine cab or crewcar of the train. The only exposure from switching operations would be in placing equipment or supply cars on the siding.

Population related

Probably the greatest risk to mine employees would be commuting to and from the mine site. Based on 1974 figures from the Montana State Highway Department and assuming that most of the proposed 210 employees would commute from Hardin, there would be an estimated risk of 1 fatal accident every 5 years and 5 to 6 injuries per year for the next few years.
N. Culture

The increase in local income from mine employment and from increased economic activity in the secondary economic sectors, together with the influx of a few workers to fill the critical skill positions, will almost certainly change the local rural culture to a slight to moderate extent. The change, of course, need not be considered negative but some extent of change is inevitable when an industrial economic sector is superimposed upon an agrarian economy. The extent and effect of the cultural change depends to a large degree on the manner in which the Crow Tribe uses or distributes the Tribal income derived from coal royalties. Other influencing factors on the cultural change are the location of the secondary services and the new residences. If these are located at or near the mining site in the rural setting, they will have a substantial effect on the existing culture; if, on the other hand, they are located at existing population centers, the effect on the local culture will be much less severe.

The location of the secondary services and new residential areas at existing population centers, Hardin for example, will have an impact on the utility, public service, and transportation systems to these towns and cities.

Sewer, water, street, and utility requirements will increase.

Displacement of ranchers living in the mining area will be minimal. In purchasing the surface rights, Westmoreland has included an agreement permitting the ranchers to continue the grazing use of the land until mining takes place. As part of the terms of the amended lease for Tract III, the Crow Tribe has the first right to purchase the reclaimed 1 and after mining.
0. Scenic-visual resources

Existing scenic and visual resources now existing on the proposed mine site would be destroyed as mining progresses across the area. The varicolored rolling hills, stream valleys, rock outcrops, and vegetation patterns of the basically rural site will be removed by mining. In their place, the viewer would see the long deep scar of the mine pit and long parallel ridges of the predominately gray spoil piles until these are regraded and revegetated. The heavy, noisy, mobile equipment, the giant draglines, haul roads, coal handling facilities, plant facilities, and railroad during the life of the mine will be aesthetically displeasing to most people accustomed to a quiet rural setting. However, in so isolated a location, few visitors will stumble on to the site unexpectedly, and most will be coming to specifically visit the mine.

Reclaimed area behind the mining front will lack the scenic variety that existed on the undisturbed area. Although probably not visually offensive to most viewers, the reclaimed land may lack the scenic appeal that previously existed.
P. Archeological and Historical Sites

Westmoreland Resources studies of archeological and historical resources of their leases have been filed with the State Historical Preservation Officer. When approved, that officer will submit the studies to the National Council of Historical Preservation for their approval. Copies of these approvals will be included in the final environmental impact statement if available.

There are no known archeologic sites within the bounaries of the proposed mine area. Thus, there would be no impact on archeological values unless undiscovered sites are present that would be found during mining operation and not properly evaluated.

All sites of historical interest on the proposed mine area will be destroyed as mining progresses across the area. None of the sites are currently on or eligible for inclusion on State or National Historic Registers.
Q. Socio-Economic Impacts 1/

In presenting the socio-economic impacts of the proposed Westmoreland Resource mining plan it will be assumed that no other significant Crow coal development is to take place during the period between 1976 and 1997. This will enable the reader to obtain a clearer picture of the socio-economic impact of the Sarpy Creek development since it will separate it from impacts of other probable Crow coal development. The analysis also assumes that the Crow labor force participation rate will be at a maximum during the period of major impact and that this participation will remain constant throughout the life of the mine.

Detailed discussion of the impacts of other combinations of Crow labor force participation rates and levels of Crow coal development are presented in "Draft Environmental Statement; Crow Ceded Area Coal Lease, Tracts II and III Westmoreland Resources", hereafter referred to as the lease-wide statement.

1/ All data presented is abstracted or derived from Mountain West Inc., Phoenix, Arizona, reports: Economic Impact Assessment Summary Report, Feb. 1976; Technical Report (unprinted) and Westmoreland Resources, 1975 f .

Employment Impacts
Employment impacts are illustrated in Figure 36 which shows the anticipated levels of employment generated by the implementation of the Westmoreland Resources Sarpy Creek twenty-year mining plan.

Construction of mine facilities (dragline) will result in a sudden jump in direct employment from 110 in 1975 to 190 in 1977 and peaking in 1978 at 250 , this generates a similar jump in total employment to 300 employees, increases in anticipated employment opportunities of 140 direct and 150 total jobs over the 1975 level.

Following the completion of construction in 1978, a one year drop in employment to 185 is anticipated before the mine becomes fully operational in 1980 with a total direct work force of 210 , remaining constant at this level during the remaining projected 20 year life of the mining operation.

Total employment generated by the coal development follows a similar pattern and levels off at 250 jobs by 1980. Anticipated total Indian employment, a combination of direct and indirect, levels off at 167 total employment opportunities. 1/

[^3]Figure 36 Employment Impacts 1975-2000
Big Horn County Impact Area
Westmoreland Resources Mining Plan
Number of Employees

Income Impacts 1/
Income impacts attributable to Westmorelands 20-year mining plan will be derived from: (1) increased non-agricultural wage income, (2) royalty payments and (3) expenditures by Westmoreland Resources directly linked to their coal mining operation.

Increased non-agricultural wage income will be presented as (1) wage income from direct employment in the mining operation and, (2) total wage income from employment in services generated by the mining operations. Direct wage employment in current mining operations is expected to exceed $\$ 2,805,000$ in 1976. With the advent of construction associated with mine expansion this is expected to increase by $\$ 935,000$ in 1977 to a total of $\$ 3,739,000$. In 1978, payroll for construction and operation is expected to total $\$ 4,862,000$. In 1979, with completion of construction and with mine employment not yet at a maximum, the total payroll is expected to be decreased to

[^4]$\$ 3,459,500$. Upon reaching maximum production, the mine operational payroll is expected to reach $\$ 3,927,000$ and remain at that level throughout the 20 -year mining period. Projected total non-agricultural wage income for the impact area is shown in Figure 37.

The lower line for both Indian and total income is the base line representing the projected level of nonagricultural income without any coal development. The upper line shows the level with Westmoreland development with the cross-hatched area indicating the actual income impact.

Without any coal development, annual Indian non-agricultural wage income would grow at a fairly constant rate from about $\$ 4,827,000$ in 1971 to an estimated $\$ 8,292,000$ in 2000. With Westmoreland's 20 -year plan development, it would more than double between 1971 and 1985 rising from $\$ 4,827,000$ to an estimated $\$ 9,113,000$ in 1985 . It would then further increase at a slower rate to an estimated $\$ 10,727,000$ by the year 2000 .

Without any coal development, total non-agricultural wage income would, after a slight decline by 1975, gradually increase an estimated $\$ 16,149,000$ to approximately $\$ 23,178,000$ in the year 2000. With Westmoreland's 20-year plan development it would rise rapidly from the 1971 level to an estimated $\$ 20,546,000$ by 1980 and then continue a

Figure 37 Non-Agricultural Wage Income Impacts 1971-2000 Big Horn County Impact Area Westmoreland Resource Mining Plan

Million Dollars

gradual increase to an estimated $\$ 26,563,000$ by the year 2000.

Royalty payments to the Tribe are expected to increase from approximately $\$ 1,500,000$ in 1976 to $\$ 3,398,000$ in 1979 and level out at $\$ 7,488,000$ in 1982. Under the proposed mining plan and present agreement they would remain at this latter level through the year 2000 (Table 11).

Actual 1 inked expenditures made by Westmoreland for local purchases of goods and services are expected to be $\$ 105,000$ during 1976 and 1977, rise to $\$ 129,000$ in 1978 and level off at $\$ 217,000$ between 1980 and 2000 (Table 11).

TABLE 11

> PAYROLL, LINKED EXPENDITURES AND
> ROYALTY PAYMENTS TO THE CROW TRIBE WESTMORELAND RESOURCES AND MORRISON-KNUDSEN 20 YEAR MINING PLAN
> (Based on constant January 1,1976 prices)
$\xrightarrow{\text { Payroll }}$
Year Construction Operation

1976		\$2,805,000	\$105,000	\$1,500,000
1977	\$ 935,000	2,805,000	105,000	2,468,000
1978	1,402,500	3,459,500	129,000	2,468,000
1979		3,459,500	129,000	3,398,000
1980		3,927,000	217,000	3,398,000
1981		3,927,000	217,000	6,188,000
1982		3,927,000	217,000	7,488,000
			1	
2000		3,927,000	217,000	7,488,000

Source: Westmoreland Resources.

Population Impacts
Long term population impacts resulting from the Westmoreland Resources Sarpy Creek coal development are shown in Figure 38.

As discussed in the draft lease-wide statement, changes in the resident Crow population will be a product of birth rates and migration patterns and will not be directly attributable to Crow coal development. As shown in Figure 38 the resident Crow population is expected to increase by more than $21 / 2$ times between 1970 and 2000 rising from an estiamted 3514 in 1971 to 9120 in 2000.

Total long-range population of the Big Horn County impact area will not be dramatically altered by the implementation of the Westmoreland Resources 20-year mining plan. Although total population is projected to increase from 9180 in 1970 to about 16,000 in 2000 , the net population impact attributable to the Westmoreland mining plan, as shown by the cross hatched area, is expected to be approximately 236 persons by the year 2000 . The population impact of the proposed Westmoreland operation constitutes only about three percent of the projected increase in the long term Big Horn County population.

If the Crow people do not take full advantage of the employment generated by the Westmoreland Resources development or if significant other coal development occurs

Figure 38 Population Impacts 1971-2000
Big Horn County Impact Area
Westmoreland Resources Mining Plan

People

Source: Mountain West Research | 1970 | 1975 | 1980 | 1985 | 1990 | 1995 | 2000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

simultaneously, the population impacts would be much more significant. These alternatives are discussed in detail in the lease-wide draft statement.

Population Related Impacts
Population related impacts attributable to the Westmoreland Resources development will be felt in Big Horn County in direct proportion to the increase in population generated by this development.

The city of Hardin and its immediate off-reservation environs will be the only area which will have any measurable impact on its service facilities. It is estimated that in this area there will be an increase of something like 15 to 20 households with a total population increase of 1 ess than 200 attributable to the development of the mining plan. $1 /$

[^5]Since the projected Crow population increases are independent of coal development, the projected population impacts attributable to the planned Westmoreland Resources 20-year operation on the predominately Crow communities would be so minor as to be immeasurable. There will be a need for significant increase in various types of services in these communities which must be met, but they will not be attributable to the planned Westmoreland Re sources operation. This fact must be kept in mind to gain proper perspective on impact assessment.

The projected increases in population even without coal development will call for increased educational, health, public safety, municipal and other services. If a lower Indian employment level or a higher level of coal production occurs in the impact area, the impacts may be intense. Such impacts are discussed at length in the lease-wide statement which takes variables into account.

As implied by the peak of employment during the constricution phase (about 75 persons) there may be short term population increase in the impact area, creating a temporary shortage of housing and some other facilities. However it is anticipated that at least half of the nonCrow construction workers will commute from outside of the impact area thus, short term impact should not be critical.

Public Revenue Impacts
Public revenue impacts will be very positive. As detailed in Table 12, Westmoreland Resources and MorrisonKnudson anticipates that by 1979 they will be paying well over 10 million dollars annually to the state of Montana in severance and resource indemnity taxes and after 1982 well over 21 million dollars annually.

TABLE 12

TAXES

```
WESTMORELAND RESOURCES AND MORRISON-KNUDSON
Mining Plan
(Based on constant January 1, 1976 prices)
```

State

Year	Severance	Resource Indemnity	Proceeds	Property
1976	\$ 4,508, 000	\$ 48,000	\$ 888,000	\$ 437,000
1977	7,858,000	72,000	1,798,000	905,000
1978	7,858,000	72,000	1,798,000	905,000
1979	10,371,000	90,000	2,481,000	1,638,000
1980	10,371,000	90,000	2,481,000	1,638,000
1981	17,908,000	144,000	4,528,000	1,638,000
1982	21,258,000	168,000	5,438,000	1,638,000
1997	$21,258,000$	168,000	5,438,000	1,638,000

Source: Westmoreland Resources.

Big Horn County will also receive significant revevenue benefits from the operation of the mine. If the plan proceeds on schedule, revenues to the county will total over 1.3 million dollars in 1976 from proceeds and property taxes and over 7 million dollars by 1982.

Cultural Change

Inherent in the continually urbanizing environment that prevails in the impact area is a relatively rapid cultural change. The degree of social stress experienced as a result of this change will be in direct proportion to the rate of coal and other development and the involvement of the Crow people and other impact area residents in the development.

For those Crow people who take industrial type employment for the first time, the cultural change is likely to be dramatic. New concepts of social priority and new avenues for financial support are likely to significantly modify the cultural environment of not only the employee but that of his kin and significant others. If sufficient numbers in any community are exposed to such experiences, the likely result will be significant cultural changes influencing the entire community.

The subject of cultural change under differing levels of Crow coal production are discussed in detail in the lease-wide statement.

Inter-group Relationship
In view of the relatively little population impact associated with the planned development and since this will be concentrated in the immediate Hardin area, there
is little indication that any significant change in intergroup or intercultural relationships can be attributable to the Westmoreland Resources Sarpy Creek development. In an urbanizing environment, such as that which is continually occurring on the Crow Reservation and Big Horn County, increases in inter-group and inter-cultural stress are to be expected without the influence of significant Crow coal development. However, any change that occurs will be almost entirely a result of other factors and events than the development of the Westmoreland Resources Sarpy Creek mining plan. This development will make its small contribution to change in inter-group relationships but to consider it a major factor would be to underrate present trends and situations.

For a discussion on the probable inter-group relationships impacts under alternative levels of coal development and Crow employment participation rates the reader is referred to the lease-wide statement.

In summary, if no other significant Crow coal development takes place and if Crow Indians take maximum advantage of employment opportunities, there will be no serious impact on population related services attributable to the proposed Westmoreland 20 -year mining plan. This applies to both government and private sector services such as health care, public assistance, education, law and order, water and waste disposal services, housing, shopping and other community facilities and services.
A. Environmental controls and legislation

The Crow Indian mining leases, Federal and State legislation, and Crow Tribal codes all contain provisions that when enforced will provide mitigation of most environmental impacts. These provisions are discussed in detail in the Draft Environmental Statement, Crow Ceded Area Coal Lease Tracts II and III, Westmoreland Resources, (U.S. Bureau of Indian Affairs, 1976), and the reader is referred to that publication for details.
B. Lessee's reclamation plan

In Section I the Westmoreland reclamation plan was described in detail. As with any plan, its success will depend partly on Westmoreland's commitment to proper reclamation including a willingness to adopt additional measures, should the original plan require changes.

The plan includes the following important provisions:

1. A11 topsoil and other soil horizons determined by tests to be capable of sustaining vegetation will be removed from the overburden prior to stripping.
2. Spoils will be graded to a rolling topography with no more than a 5 to 1 (11 degree) slope. The final highwall will be graded to not more than 3 to 1 (19 degrees). Grading of spoils will be kept up to two piles back from the active pit.
3. Overburden will be sampled for toxic material, and any such material will be buried deep enough to protect vegetation.
4. The regraded surface will not contain any water impoundments without prior arrangement with State agencies.
5. To the extent possible, topsoil would be replaced directly on regraded spoils without stockpiling
or double handling. Current practice is to place an average of 24 inches of topsoil on regraded spoils.
6. When possible, topsoiling will be done in fall or early spring so that planting can be done immediately to take advantage of early season moisture.
7. Reclamation progress would be monitored and results incorporated into future work.

This plan contains all of the requirements of the Montana Strip Mine and Reclamation Act as well as those of 30 CFR 211.40 although these are not now applicable to Indian lands. The regulations and technology concerning mined land reclamation can be expected to change with time. Westmoreland recognizes that this plan is tentative and may require changes.
C. Air Pollution Control

All activities associated with construction and operation of the proposed mine area must comply with appropriate Federal and State air quality standards. These Federal and State laws and regulations include:
(1) Federal Clean Air Act, as amended in 1970 ; 42USC. , 1857.
(2) National Primary and Secondary Air Quality and Air Pollution Control, Vol. 36 \#21 Part 2 CFR 1971.
(3) State of Montana, Air Pollution Act: Title 69, Chapter 39, sections 14-25, RCM 1947.

Dust will comprise the greatest amount of pollutants and therefore will receive the most extensive control measures. A dust reduction program accomplished by graveling, patrolling, and watering of roads is in effect at the present mine and will be continued. Dust control measures incorporating latest technology are included in the design of crushers, conveyors, and loading facilities in operation at the present mine and their use will be continued. Vehicles and equipment are equipped with factory installed pollution control devices as required by EPA.

Federal and industrial fire prevention campaigns are in use at the presently operating mine and will be continued to minimize the frequency of coal, forest, and rangeland
fires. Firefighting equipment and trained operators are presently available on the site.

Stripped and stored topsoil will be subject to immediate revegetation which will reduce air pollution from dust from this source. Spoil banks will be recontoured, topsoiled, and planted to control erosion and dust as soon as practical after mining but will usually lag two spoil rows behind the mining operation.
D. Noise Control

Much of the noise associated with strip mining is that generated by heavy vehicles of various types in use, blasting, coal crushing and handling, and unit trains in transit. The main effects of noise will be felt by the workers in the mine and coal handing facilities.

Westmoreland Resources present and proposed mining operations must comply with the Federal noise regulations established pursuant to Sections $6(a)$ and $8(\mathrm{~g})$ of P.L. 91-596, The Occupational Safety and Health Act of 1970, and specifically the noise exposure regulations set forth in 29 CFR 1910.95. Workpersons in areas subject to high noise levels will be required to wear ear plugs.

E. Water Quality

Because any disturbance of the land surface will alter the environment in the vicinity of the disturbance, premining planning is a necessary prerequisite to any environmentally sound surface mining operation. The proposed mining plan, Tract III, is a planning document which addresses many probable environmental impacts. In addition, the coal mining lease for Tract III specifies that the Lessee agrees to preserve and protect the natural environmental conditions on the land covered by the lease, or land affected by its mining operation, and to take corrective actions within the scope of normal stream pollution control practices. Thus, the Lessee is obligated to mitigate adverse envirinmental impacts and can do so through the utilization of proven techniques. For instance, if proper planning, modern mine practices, and current pollution control measures are employed, most adverse environmental effects of surface coal mining can be minimized. With regard to water quality, it is not only important to minimize impacts on water quality in the vicinity of the mine; it is of primary importance to minimize or negate any water quality problems downstream and "down aquifer" from the mining operation. Furthermore, by complying fully to all applicable State and

Federal water pollution control and reclamation regulations, the mining company can utilize a variety of mitigating measures.

Mine Drainage

Acid-mine drainage is not a serious problem in eastern Montana, and recent as well as past experience with mine operations on and near Tract III have verified this observation. Alkaline mine drainage problems should be expected; however, certain preventive measures can be taken to mitigate their impacts on the local area and downstream from Tract III.

The proposed mining plan states that the company will develop water control facilities to assure the quality of natural surface drainage waters as required by the Montana Strip Mining and Reclamation Act and EPA Standards. These facilities would be constructed to intercept all runoff waters originating from areas being mined and would include sediment detention ponds. Figure 7 shows the location of the proposed water control facilities within and around the proposed mine area. This plan includes an internal drainage system for each sub-basin which is mined. That is, the remaining unmodified natural drainage system and additional constructed drainage would be designed to divert runoff away from the mining area and away from access to local aquifers, spoil banks, open pits, large
cleared areas for staging or processing operations, and coal-haul roads. In addition, any dilute waters from direct precipitation or snowmelt which the internal drainage system can collect (e.g., via small collection ponds, runoff from undisturbed areas, etc) would aid in the dilution of mine drainage water collected throughout the mine area. Also, in order to prevent the accumulation of standing water within a mine pit due to seepage, runoff or direct precipitation, any water accumulating in a mine pit will be pumped to the internal drainage system. An internal drainage system similar to that described above is presently in use at the Westmoreland mine on Tract III. (David W. Simpson, Westmoreland Resources, oral communication, 1975).

In the event that alkaline mine drainage problems are so severe that the water from the internal drainage system cannot be released to natural surface drainage, a facility for chemical treatment to neutralize alkaline mine drainage water would be provided by the mining company. A1though neutralization will decrease pH and reduce alkalinity, the resulting water may still contain high levels of sulfates and dissolved solids. Water from internal drainage would not be released to the natural drainage system unless it meets current water-quality standards of the appropriate State and Federal agencies. Dilution
of alkaline mine drainage water appears to be one of the best treatments for mitigating its impact. Experience to date at the operating mine has shown that dissolved solids decrease substantially in the detention pond from levels present in the inflow.

Control of Leaching
The control of leaching is intimately connected to the prevention of mine drainage water problems. The most effective control is the proper use of mining and reclamation techniques. The mining and reclamation techniques to be used in the proposed mine area are described in the Proposed Mining Plan, Tract III. Reclamation of spoil bank material by contouring, replacement of topsoil and revegetation of overburden and diversion of surface runoff around active mine areas will help to prevent the percolation of water through freshly disturbed and exposed materials. To minimize the production of leachate, one must prevent access by water to freshly disturbed material in spoil banks above the pits, in the open pits, and in the overburden material replaced in the mine pit after completion of mining. Leachate which enters surfacewater systems within the mine area will be routed to the internal drainage system with the expectation it can be diluted and released in a controlled manner to the natural drainage system. The reclamation techniques and internal drainage system mentioned above are currently
in use at the Westmoreland mine on Tract III and are to be employed in the proposed mine area, as stated in the Proposed Mining Plan.

Sediment

Siltation from surface mining in flat to rolling terrain is less acute than from mining operations in mountainous regions (Grim and Hill, 1974). Nevertheless, the control of erosion and sedimentation on the topography which is characteristic of Tract III is intimately linked to the prevention of mine drainage in the project area. The most positive controls consist of proper pre-mining planning and the use of improved mining practices and modern reclamation techniques. These plans are described in the Proposed Mining Plan for Tract III. All earthmoving activities can be planned such that the minimum amount of disturbed area will be exposed for a minimum amount of time. This can be accomplished by excavating and mining an area in stages, with progressive backfilling and reclamation as mining progresses. Similar plans are given in the Proposed Mining Plan, Tract III.

Specific mitigating measures that can be taken during and after mining include the design of properly contoured spoil banks; prompt revegetation; controlled use of the disturbed surface after revegetation; properly designed and constructed coal-haul roads; construction of an internal drainage system along roads and expansive staging
and processing areas; and the use of sediment detention ponds.

The internal drainage system established within and around the mining area to control mine drainage water will also serve as a suspended sediment control. Suspended sediment will be channeled to sediment detention basins and settling ponds as described in the Proposed Mining Plan and shown in Figure 7. A sediment pond can minimize high suspended sediment concentrations in runoff emanating from mining areas. An internal drainage system for sediment control and a sediment detention pond similar to that described above, are presently in use at the Westmoreland mine on Tract III.

Sediment detention basins are utilized for the collection and retention of eroded material before it reaches the natural streams of the project area. In addition, by retaining storm water, sediment basins may be used to reduce peak flows during heavy rainstorms and potential flood conditions. The Proposed Mining Plan states that in accordance with MESA regulations, the detention ponds will retain a storm of 24 hours duration with a recurrence interval of 10 years. Emergency spillways will allow for a 100-year frequency storm of 6 hours duration.

Water in the settling basins will be monitored for chemical and biological quality as well as for concentration of suspended sediment. Water would be released only
when its chemical, biological, and suspended sediment content are within established State and Federal limits, and when its quality would not degrade the natural surface water drainage of the area or adversely affect local groundwater resources susceptible to recharge. The water of the sediment detention pond presently in use on Tract III is monitored as part of the water quality monitoring network at the operating Westmoreland mine on Tract III.

Periodic dredging of accumulated material from sediment ponds will ensure the maintenance of their designed capacities. The Proposed Mining Plan states that upon completion of mining, the landscape will be left free of water impoundments unless prior approval is obtained from appropriate State agencies. Subject to State approval and future modification of their mining plan, Westmoreland Resources intends to leave water detention facilities in place for use as stock water ponds, wildife habitat improvement, and possible future use of water for irrigation.

Water Quality Monitoring

A water-quality monitoring network has been established within the present, actively mined area of Tract III, peripheral to the mining area, and at key downstream locations and outlying aquifers. The network was established in 1973 before mining operations began in order to observe
the baseline, pre-mining condition of the area's surfaceand ground-water quality. The monitoring network will continue throughout all phases of mining operations. The monitoring program provides the water-quality information required by the Montana Strip Mining and Reclamation Act. The proposed mine area is located within the area presently covered by water-quality monitoring network. Additional quality stations would be added to the network to comply with State regulations regarding the quality of water discharged from new mining areas.

A ground water monitoring program has also been established on Tract III by the Montana Bureau of Mines and Geology. (Van Voast and Hedges, 1974). The network was established in 1973 and has been used to determine the general, pre-mining, hydrologic conditions of the groundwater system in Tract III and the conditions around the immediate area of operations of the present Westmoreland Resources mine. The observation network will continue to monitor the ground-water quality in the area during any subsequent mining operations and after reclamation operations have been completed. The program objective is to determine long-term water level trends and quality changes (if any) of local and regional aquifer systems as a result of mining activities.

Biocides

Westmoreland Resources does not anticipate the use of biocides in the proposed mine area. If any such compounds are used and if of a persistent nature, water quality monitoring programs will be modified appropriately. Use of Fertilizer

Fertilizer may be applied to the reclaimed surfaces. As outlined in the proposed mining plan, fertilizer requirements will be determined after top soil analyses have been made and after consultation with the Montana Department of State Lands. From past experience, little or no adverse impact is expected.

Blasting
Although the effects of blasting can disrupt the flow of ground water to aquifers or produce fissures for the entry of contaminated waters, recent developments in blasting matrerials and methods have minimized some problems (Grim and Hill, 1974). Blasting associated with strip mining at Colstrip, Montana, has not contributed to any documented degradation of water quality (U.S. Dept. of the Interior, 1974).
F. Waste management

Through the general provisions of the Coal Mining Lease, the Lessee is obligated to mitigate adverse environmental impacts. This can be accomplished through the utilization of acceptable techniques and by the compliance with State and Federal laws.

Domestic liquid wastes generated within the project area are routed to an approved sewage lagoon at the present facilities and the practice will continue on the proposed mine area. The water quality of any effluent discharged to watercourses of the area must comply fully with Local, State, and Federal pollution control standards.

Industrial liquid wastes, such as excess, contaminated, or finished fuels, lubricants, solvents or other organic liquids, are transported from the site for disposal. Proper safeguards would be maintained to prevent the dispersal of organic liquids to surface-or ground-water resources of the project area.

Combustible solids wastes at the present mining operation are burned at an approved site. Non-combustible solid wastes are buried in the mine pit. These operations would continue on the proposed mine area.

All potential waste management, as well as waterquality problems, must be addressed in full compliance
with all State and Federal regulations. The regulations include, but are not limited to, the following:

1) Federal Water Pollution Control Act of 1956 (70 Stat. 498).
2) Amendments of 1961 to the above Act (75 Stat. 204; PL 87-88).
3) Water Quality Act of 1965 (75 Stat. 903; PL 89-234).
4) Amendments of 1972 to the Federal Water Pollution Control Act of 1956 (89 Stat. 816).
5) 33 U.S.C. 44 - Codes for the Federal Water Pollution Control Act as amended.
6) State of Montana Senate Bill 94 (The Montana Strip Mining and Reclamation Act).
G. Fish and Wildiife

Westmoreland Resources (1975 a) has outlined some of the measures that will be taken during reclamation to lessen the impact of strip mining on Tract III that will be of benefit to wild species of animals.

1. "All reclamation and revegetation procedures will be conducted in compliance with the Montana Strip Mining Reclamation Act (Chapter 325), pursuant rules and regulations, and guidelines issued by the Montana Department of State Lands, as well as applicable federal regulations."
2. All suitable topsoil will be removed and either stockpiled or spread directly on recontoured lands to a uniform eight-inch depth. Stockpiled topsoil will be seeded to prevent erosion. These procedures will be beneficial in speeding the process of revegetation and thus re-establishing wildlife habitat. Erosion control will help eliminate downstream pollution of water that would effect aquatic life.
3. High walls resulting from mine cuts will be reduced to a slope of not greater than three units horizontal to one unit vertical. This will help stop erosion and lessen the hazard of injury or death to wildife by falling.
4. Seeds of native and introduced grasses, forbs and legumes will be sewn on recontoured lands. Trees and shrubs will be planted. The recommended seed mixture is given elsewhere in this statement. Planting of trees and shrubs will aid in restoring wildife habitat values.
5. Sampling of vegetation will be conducted on an annual basis to determine the success of reclamation.
6. An earthfill dam, with 77 acre-feet capacity, has been constructed to detain rainfall runoff, ground water seep, plant washdown and water encountered and pumped from the presently operating mine. Sediment accumulated will be removed and used in reclamation or if not suitable, buried in the mine pit. Rip-rap is used to retard erosion. Additional water control facilities will be added as necessary when mining operations proceed across drainage divides.
7. Roads are sprinkled with water to retard suspended dust particles.

H. Monitoring Plans

The success of planning and implementation of a program for mitigation of environmental damage will be dependent on a monitoring program whereby environmental changes can be detected and evaluated. Westmoreland Resources (written communication, January 2, 1976) plans to continue a monitoring program upon completion of baseline studies on Tract III in the areas of wildlife, vegetation, aquatic biology, hydrology, meteorology, and air quality. Present plans discussed below are subject to revision if required to conform with State of Montana mining regulations.

A program of wildlife monitoring was initiated on Tract III in January 1975 following completion of baseline studies. For big game species, aerial surveys are conducted on a monthly basis. Survey of ring-necked pheasants and sharptail grouse are conducted in the spring. Observations of predators, raptors, game birds, and other species are recorded as observations are made. Habitat use by each species is analyzed seasonally, and it is planned that as mining progresses, assessing wildiife use of reclaimed areas will be a primary objective. Small mammal trapping studies are conducted annually on reclaimed and unmined areas. It is planned that as reclamation progresses, songbird surveys also will be conducted in
reclaimed areas. It is expected that this program will be continued during the life of mining and reclamation activities with modifications to the program to address changing situations.

Vegetation in reclaimed areas is sampled annually to monitor the progress of revegetation. Ground cover and above ground production of herbaceous species will be measured and compared to corresponding parameters of unmined areas. Percent survival of trees and shrubs also will be measured. It is anticipated that over the long term this information will be useful in evaluating various reclamation treatments.

Surface water flow measurement stations were established on Sarpy and East Fork Sarpy Creeks adjacent to Tract III for baseline studies of surface water hydrology. Measurement of surface water flows will continue. Two continuous recording stations on East Fork Sarpy Creek operated by AMAX Coal Company presumably will remain operational. The Westmoreland system consists of a network of staff gauges and crest stage gauges to measure flows above and below discharge points.

Surface water samples are collected monthly at sampling stations for chemical analysis. Analyses performed include the following:

Acidity	Settable solids
Alkalinity	Evaporated solids
Alkalinity $\left(\mathrm{CaCO}_{3}\right)$	Total suspended solids
Flouride	Oil and grease
Sulfate	pH
Total iron	Temperature
Dissolved iron	Turbidity

This program will continue, although sampling locations may be modified to meet changing conditions. In addition, analyses for metals, including trace metals, will be made quarterly.

Ground-water monitoring will concentrate on those monitoring wells immediately adjacent to the mine operation. Water level measurements will be made monthly and water quality analyses will be made semiannually or annually or as required or approved by the Montana Department of State Lands. As monitoring well sites are mined out, other wells will be monitored with new wells installed if necessary.

Weather stations currently in operation at the existing water treatment plant and the administration office located adjacent to Tract III in the NE $\frac{1}{4}$ Sec. 21, T. 1 N., R. 37 E., will be operated indefinitely. When baseline air quality studies are completed, the two high volume air samplers will be moved to locations suitable for monitoring air quality downwind of the mine site. Operation will continue on a six-day cycle. Dustfall jar locations
will be modified according to prevailing wind directions determined by the baseline studies. A minimum of four locations around the mine site are planned with additional stations located downwind from the mine.
I. Scenic-visual resources

Both Federal regulations and the Montana Strip Mining and Reclamation Act require that strip mined land be returned to a condition as near as possible to that which existed before mining. The reclamation program planned for the proposed mine area by Westmoreland Resources will conform to Montana state laws and if successful will restore many scenic and visual amenities to the land.

The spoil piles will be recontoured to a topographic configuration as near as possible to that present before mining. New surface drainages will be established as near as possible to those present before mining. Topsoil removed ahead of the mining front will, when possible, be placed immediately on recontoured spoils material and seeded with a mixture of native and introduced grasses, forbs, and shrubs. Planting of trees native to the area in favorable locations is also planned. Immediate placement of topsoil is expected to re-establish many native species from seeds and roots.

As mining is completed, all roads, utilities, and mine facilities will be removed and the land reclaimed. Although the reclaimed mine site will be visually quite different from adjacent unmined land it should not be aesthetically displeasing to most people.
J. Archeological and Historical Sites

Although there are no known archeological sites on the proposed mine area, it is possible that unrecognized sites are present. Machine operators assigned to topsoil removal are instructed to be alert for artifacts. If such sites are discovered during soil removal operations ahead of the mining front, work would stop at the site and a qualified archeologist would be contacted to document and evaluate the site and excavate if the evaluation so warranted.

All sites of historical interest on the proposed mine area have been studied and recorded as a part of the historical record of the area.

K. Safety

The Sarpy Creek mine is subject to Federal safety laws with standards covering every aspect of mining. The laws require training of miners, procedural and equipment safeguards, health standards, and frequent, detailed inspections to enforce standards by personnel of the Mining Enforcement and Safety Administration (MESA).

The mine operator, Morrison-Knudsen Co., employs a full-time safety director. Mine inspections are made on a near daily basis. All new mine employees, at the time of their employment, are required to read the MorrisonKnudsen Co. safety handbook. All mine employees are required to attend weekly safety meetings lasting about one half hour that are related to day to day operations. More formal safety meetings are held quarterly with keynote speakers and safety films. Special safety training meetings are held for affected employees when new equipment or techniques are introduced into the operation. A11 employees assigned duties in fire fighting and/or first aid are required to update these skills at annual training courses. These procedures would be continued in the enlarged operation of the proposed mine area.

Railroad safety is the responsibility of the Federal Railroad Administration, which has standards covering track construction and maintenance, car and locomotive
maintenance, and operating rules. The Treasury Department regulates the transportation and storage of explosives. The mine has an ambulance to transport injured workers to the hospital in Hardin or Billings.
A. Air Quality

The generation of fugitive dust by heavy mining equipment, coal handing facilities, and vehicles cannot be completely eliminated even with the best control programs and thus will contribute to degraded air quality, particularly in the vicinity of the proposed mine and for some distance downwind from the mine. The potential dust loading from vehicle activity associated with the production level of 10 million tons per year is estimated to be 4000 tons annually. However, the sprinkling of unpaved roads in the mine area will greatly reduce this impact. The same would be true for exhaust and particulate emissions by heavy mining equipment, support vehicles, and unit trains serving the mine. It is estimated that about 50 grams per second of nitrogen oxides, the most abundant gaseous emissions, from heavy duty diesel power vehicles, would be emitted to the atmosphere at a production rate of 10 million tons per year. Vehicular traffic of employees and businesses serving the proposed mine will also contribute to air quality degradation from exhaust emissions and dust along access roads.

Fugitive dust from two rows of bare spoil piles which will be exposed to wind action during the life of the mine is unavoidable as these areas are generally not accessible for dust control by sprinkling. Reclaimed and seeded land on which vegetation is not yet established will also be a source of dust. Accurate estimates of dust loading to the atmosphere as a result of these activities cannot be made since definitive data on many of the factors involved are not available and are highly variable.

Some damage to vegetation from dust along access roads, the railroad spur line, and adjacent to the proposed mine is unavoidable. The extent of damage will be dependent on the frequency of precipitation that will wash the dust from plants.

B. Noise

An increase in near field noise levels in the mine area will be unavoidable as output from the mine is increased to the planned full production level and additional heavy mining equipment is put into use. More frequent blasting, start up warning at the plant, and back-up signals will be the most noticeable intrusive noises. Noise of the coal and overburden drills, two operating draglines, scrapers, loaders, and coal hauling trucks will all add to increased noise levels and will last for longer periods during each working day. Longer operation periods for the coal crushers, conveyors, and loading equipment will add to the noise. Noise levels from these activities are estimated to be 63 dB at 1000 feet from the center of mining activity, impulse noise levels of about 91 dB at 1000 feet from two blasts per day, and equivalent sound levels of about 52 dB at a distance of 1000 feet from the coal handling facilities.

Three unit trains per day transporting coal from the mine will result in more frequent noise along the railroad right of way from the mine site to the trains destination. Experience at the present mine indicates that the maximum sound level at 130 feet from the passing of a loaded and empty train may reach $84 d B A$ and $85 d B A$ respetively. These passbys are for about a two-minute duration.
C. Physiography and topography

Mining in the newly proposed mining area will destroy the existing diversity of the landscape that lends character to this land. The ledges and cliffs and caprocks that create this diversity also provide protective cover for some small and medium-sized mammals and will be lost. Although the post mining topography will be similar to that before mining, some lowering of the land surface due to removal of the coal is unavoidable.
D. Geology

The primary impact on the geologic character of the region is the depletion of the natural fuel resource and of clinker used for road surfacing. The loss of continuity of beds caused by the excavation and mixing of the rock undoubtedly will eliminate some local bodies of ground water, but the lensing character of the sandstone beds now limits their productivity as aquifers. The increased porosity of the replaced spoil will increase infiltration and reduce runoff, which will alter slightly the hydrologic balance of the area. Increased surface area of rock materials, resulting from breakage, and increased infiltration likely will cause greater leaching of salts from the rocks. These dissolved salts likely will be confined largely to the area of excavation initially, and, as the excavated area becomes saturated, will be transmitted to adjoining permeable rocks where the concentrations of salines may become greater. Because of the limited potential for future use of nearsurface ground water, this is not considered a serious impact.

E. Hydrology

Surface Water
The most prominent adverse impacts to surface-water resources resulting from mining operations will be those to the quality and quantity of surface-water supplies. Substantial depletions of surface-water runoff from the proposed mine site will result from evaporation from ponded surfaces, consumtive use, and infiltration to the groundwater table. These depletions can conceivably amount to as much as 50 percent of the total runoff which would have been expected with unaltered surface conditions. As about five square miles on and adjacent to the proposed mine area will be affected by detention ponds, surface water depletion could be about 65 acre feet per year or about 1.1 percent of the runoff from the Sarpy Creek basin. Subsequent to the completion of mining operations, surfacewater supplies originating from local watersheds could conceivably return to near pre-mining conditions. However, depletions which take place during mining operations are in fact irretrievable. It is unlikely however that such supplies will return to equal conditions due primarily to the altered land surfaces which will facilitate greater infiltration r ates and, thus reduce the amount of unit runoff.

Ground Water

The ground-water reservoir above the base of the Robinson Coal in the area mined will be destroyed. The replaced spoil will have different hydrological characteristics than the original rock and may have a tendency to transmit water more rapidly to discharge. Gradients in the ground-water reservoir adjacent to the mine area will be altered as will flow paths. Current spring flow from the coals will be affected. Pumpage of large quantities of water for dust control will locally lower the head in the Madison Limestone-the source of the water used for dust control.

Water Quality

Water quality will be degraded to some degree in and around the area of mining operations on Tract III. The degree of degradation will depend on such factors as the number and size of operations, the location of the excavation activities, the mining practices used, and the pollution control practices employed.

With the removal of overburden, interburden, and coal, certain local aquifers will be permanently lost. Removal of the aquifers, pumping of mine drainage water from open pits, and subsequent replacement of aquifers with unconsolidated overburden will alter the local ground-water flow patterns within and around the mined area. A change in quality of local shallow aquifers may
result due to the leaching of surface water through freshly replaced overburden, seepage of water between contacts of replaced overburden and undisturbed material, and a change in the drainage pattern of runoff on the land surface of the replaced overburden. Local springs and wells within Tract III which are located near mining excavations may experience some change in water quality during mining and after reclamation. The degree of degradation would not be expected to be severe or long lasting.

A general degradation of surface water quality in the mined area during operations can be expected. Construction and mining excavations will disrupt natural drainage boundaries. Disturbed natural surface drainages and internal constructed drainage will exhibit the characteristics of alkaline mine drainage. The resultant physical and chemical composition of mine drainage water flowing from mine pits, over, through (leaching) and around spoil banks, and over mine staging areas and coal-haul roads will be found in sediment detention ponds. In spite of monitoring and control, this water may cause some degree of degradation of the quality of creeks to which it discharges, depending on the extent of mining, the quantity of runoff, and the flow conditions. Chemical and sediment inputs to local creeks may cause concentrations of waterquality constituents to be higher than what are presently observed. Exceptionally high chemical and sediment inputs
may occur during periods of extreme flooding conditions if the capacity of the internal drainage system and the capacity of the sediment detention ponds are exceeded. Conditions under which this might occur are:

1) The occurrence of high intensity thunderstorms over the mining area.
2) The presence of extensive unreclaimed or denuded spoil banks susceptible to considerable erosion by runoff during periods of excessive precipitation.
3) The accidental release of water from sediment detention ponds.
4) The designed capacities of the sediment ponds have been decreased by sediment loading which was not removed.
5) The designed capacities of the sediment ponds are less than required by an actual flood event. The potentially high chemical concentrations entering a creek during a period of high flow or flood, however, may be mitigated by the dilution factor of the high flow. Light suspended sediment fractions (e.g. coal fines) might be transported far downstream from their source; however, they would be relatively chemically inert.

The use of sanitary landfills and sewage treatment facilities in or around mining areas of Tract III may leave a permenent long-term impact. However, if the sites were
selected properly, and adequate operation and control of the site has been enforced, no serious after effects should be observed.

The new operations in the proposed mine area would essentially be a continuation of the operations started in 1974. Initially this should mitigate any increase in degree of severity of adverse impacts to Tract III.

However, expansion of facilities and roads over a larger area is proposed. The gradual increase in coal production after 1976 and the projected sharp increase of production in 1980 after the construction of a second dragline, mean an increase in the rate of expansion of mining operations in the proposed mining area. With two drag lines working simultaneously, the degree of severity of adverse impacts may be increased as the scale of the operation increases.

It is impossible to guarantee that adverse effects on water quality by the mining of coal can be completely eliminated. However, it is realistic to expect that the degradation of water quality can be greatly reduced. In general, pollution problems associated with western coal mining are not well characterized (Grim and Hill, 1974). With regard to the project area under consideration, the experiences being gained from prevention and control of adverse effects on water quality in the operating mine
in the approved mine area of Tract III can be transferred readily to any future operations in the proposed mining area.
F. Soils

Destruction of 2151 acres of soils as they now exist on the proposed mine area during the life of the mining operation is unavoidable. Although the soils will when possible be immediately placed on recontoured spoils, the removal and handling process will thoroughly mix the soils and soil structure as it now exists will be destroyed. Surplus soil that will be stockpiled until needed will suffer some deterioration in its properties.

Some loss of topsoil during handling is unavoidable. Other losses will occur by erosion of the placed and stored topsoil until such time as vegetation is established that will control the action of wind and water.

Replacement of natural subsoils with spoil material could be an adverse impact as adverse physical or chemical problems may be present. Erosion of replaced soil materials could expose these spoils which lack adequate plant nutrients and may be too clayey for seedling establishment.
G. Vegetation

Destruction of all vegetative cover which includes about 775 acres of agricultural crops, 1365 acres of grass, and 625 acres of timber, is unavoidable in the areas that will be mined. The degree of impact will depend upon the rapidity of revegetation including restoration of partial tree cover on the area.

Also unavoidable is the loss of income that would have been generated from the vegetation if mining did not take place. This loss is estimated to be $\$ 167,000$ for agricultural crops, $\$ 87,000$ of grazing income, and $\$ 1,700$ for tree growth that would take place.

Changes in soils and other physical features of the environment are altered by strip mining in such a way that it may permanently preclude the re-establishment of pre-mining climax vegetation communities. Many species of plants are extremely slow in reinvading a site that has been disturbed. There will therefore very probably be a change in the composition of the plant cover on disturbed areas.
H. Fish and Wildlife

Numerous adverse impacts on fish and wildlife are unavoidable as the mining of Tract III coal proceeds. These impacts will be felt by wild populations both on the lease as mining destroys their habitat and off the lease as activities related to mining occur. Food, shelter, and breeding grounds will be lost.

Building of transportation routes will destroy wildlife habitat and increase noise levels, promote increased dust pollution, increase road deaths of animals and make some wild species more susceptible to hunter losses (both legal and illegal).

Fences along roadways and the active mine area alter normal movement patterns of deer and antelope and will increase the probability of injury or death by entanglement.

Removal of coal by strip mining will completely destroy all wildlife habitat on the proposed mine area. Mobile species will probably escape the area but more sedentary animals (burrowing and slow moving forms) will be lost during blasting and excavation. Competition will increase in outlying areas as escaping mammals and birds invade niches occupied by resident species. Traditional breeding grounds for grouse will be lost and are
probably not replaceable. There is one lek present within the proposed mine area that had 14 dominant males present in 1975. This would represent an estimated spring population of about 56 birds. Water-shed flow patterns will be at least temporarily lost. Springs and seeps in the area will be eliminated. To the extent not mitigaged, pollution of the air and water will be caused by blasting, earth moving equipment, vehicular traffic, exhaust emissions, oil and fuel spills and other means which will have effects on the quality of the environment of wild species. Noise levels will increase and have a potential disruptive effect on wildlife behavior. Mine-cuts (high walls) may be dangerous to animals wandering in the area.

Post mining habitats resulting from reclamation will differ in carrying capacity for many species, and some species may not be able to meet their habitat needs. Populations of some species will decrease, while others may not inhabit reclaimed areas.
I. Depletion of natural resources

Other than coal and clinker use for road surfacing, there will be no depeltion of local mineral resources as a result of the mining operation. The Tongue River Member of the Fort Union Formation here contains no other minerals of potential economic value. The ultimate recovery of petroleum, if present, will not be affected by the mining operation.

The consumption of other fossil fuels for mining, transport of coal, and reclamation activities is unavoidable. Current estimates of requirements for mining one million tons of coal include 150,000 gallons of diesel fuel and $5,250,000$ kwh of electrical power. Shipping of this coal and return of the train requires an estimated 2 million gallons of diesel fuel.
J. Land Use

Disruption of all present 1 and uses on the proposed mine area during the life of the mine is unavoidable. Curtailment of present land uses will take place at approximately the same rate as mining progresses across the site. All agricultural activity in the mining and reclamation areas will cease, dwelling and other structures will be destroyed, and roads and power lines will have to be relocated.

Although only 500 to 600 acres of land will be unavailable for use at any given time at the full production level of the mine, reclaimed areas may not be suitable for present land uses. Roads will be re-established in the reclaimed area. Many species of wildife will return but some species formerly using the area may find it unsuitable. Owing to expected instability of the reclaimed spoils, building of structures, especially large structures, may not be feasible without pilings driven to undisturbed strata for support.
K. Recreation

Complete disruption of the limited recreational opportunities now available in the proposed mine area is unavoidable as mining and reclamation activity move across the site. It is not likely that the reclaimed site when again available for use will have the same appeal for recreational activities as the pre-mining surface with its varied topography, colors, and vegetation communities.
L. Transportation

Transportation routes, both road and rail, are already established to the operating Westmoreland mine. The unavoidable impacts related to transportation will be those associated with road relocations on the proposed mine site and increased road and rail traffic.

Relocation of the county road crossing the proposed mine site in stages as mining encroaches on the present site will result in dust and sediment production until the road is graveled and cuts are stabilized with vegetation. This activity will also cause some inconvenience to local residents who must use the road.

Increased traffic on all roads serving the mine will increase the potential for vehicular accidents and road deaths of wildife crossing the roads. The increase in the number of unit trains serving the mine will also increase the potential for accidents throughout the rail route and will add to noise and air pollution along the right of way.
M. Scenic-visual resources

Radical alteration of the scenic and visual resources of the proposed mine area is unavoidable as mining and reclamation activities take place. The existing scenic amenities which would be aesthetically pleasing to most viewers will by nature of strip mining be destroyed.

The reclaimed and revegetated site will lack the variety in color, topographic features, rock outcrops, and vegetation patterns now present on the site. A1though not visulally displeasing, the reclaimed site will lack the scenic values that it now has for most people.
N. Archeological and Historical Sites

Ultimate destruction of any undiscovered archeological sites is unavoidable if the proposed mine area is developed. The sites will not be available for future study after mining and reclamation.

VI THE RELATIONSHIP BETWEEN SHORT-TERM USES OF MAN'S ENVIRONMENT AND THE MAINTENANCE AND ENHANCEMENT OF LONG-TERM PRODUCTIVITY

Westmoreland Resources proposes over a period of 20 years to mine from the proposed mine site in Tract III of the Crow Ceded Area about $190,600,000$ tons of low sulfer subbituminous coal. The proposed mine area covers 2151 acres of which 314 acres with an estimated $31,867,000$ tons of coal in place is owned by the State of Montana. The remainder of the surface area is in private ownership with the underlying coal reserves the property of the Crow Indian Tribe.

The proposed action represents a planned use of 1 and in the Crow Ceded Area that would result in the beneficial use of the areas coal reserves for electric power generation in the midwest, and insure that the land was promptly returned to a condition suitable for resumption of use as rangeland and wildife habitat. The proposed action would also provide employment opportunities and royalty income for the Crow Tribe.

Projected mining rates call for mining 4 million tons in 1976 , 6 million tons in 1977 and 1978 , with the addition of a second dragline 7.5 million in 1979 and 1980 , reaching full production level of 10 million tons per
year in 1981 through 1995, with production dropping sharply in 1996 and 1997 within the proposed mine area as the coal reserves are depleted. At the full production level, about 110.5 acres of 1 and per year will be disturbed by mining. Reclamation of the mined land would follow two spoil piles behind the mining front and once underway, about the same acreage would be reclaimed each year as was disturbed by mining. The reclaimed and revegetated areas would not be available for grazing for a probable minimum of five years to allow the vegetation to become firmly established.

The short term effects of mining on the physical and biological environment will be mostly confined to the years of active mining plus a probable two years following mining for final reclamation of the site. Most visible of the effects will be the displacement of overburden into long steep spoil banks that will contrast sharply with the color and topography of the surrounding area. Mining will also result in the short term introduction into a relatively undistrubed area of roads, power lines, increased road and rail traffic, and the noise of blasting and heavy machinery at work.

The impoundment of tributaries draining the mine site, the lowering of the water table near the mine pit, stripping of vegetation and topsoil ahead of mining and
displacement of wildiife would be less visible but would be short term effects.

Most impacts resulting from the short-term use of the area will be largely unnoticed by regional inhabitants and the public. The population of the proposed mine area is very sparse and its location remote from principal highways will preclude public notice of the activity except for increased road and railroad use.

The impacts resulting from the short-term use of the environment would be minimized to the greatest extent possible consistent with well designed mining and reclamation practices. Westmoreland Resources is committed to a comprehensive reclamation program as required by stipulations of the lease with the Crow Indian Tribe and Federal and State laws and regulations. The reclamation program previously described and conducted concurrently with extraction of the coal would return the topography to a configuration similar to that prior to mining, but more subdued and blended into the unmined areas adjoining the mine site. Pre-mining drainages would be returned to near their present courses and new tributary drainage systems established. Vegetation compatible with range and wildife use would be re-established.

The preceding indicates that the short-term use of the proposed mine site for extraction of coal should ultimately result in returning the land to a similar or
possibly greater degree of productivity as rangeland. The suitability of reclaimed lands for agriculture is a significant issue. As the topography will be smoother than before mining, the area probably will be more suitable for agriculture, provided productivity is not decreased by soil characteristics. Its suitability for wildife habitat will be dependent on the successful re-establishment of suitable plant communities. Although the appearance of the land would be permanently changed, its attractiveness should not be greatly diminished. However, other potential long-term land uses such as by heavy industry, for housing development, or transportation routes, may be impaired by the inherent instability of the reclaimed spoils.

Loss of the shallow aquifers in the proposed mine site would be permanent and it is not known if the replaced spoils would function as a source of ground-water supply. Water levels lowered in adjacent areas by mining should recover in time. Little use was made of the shallow aquifers of the site prior to mining, but they would not be available for productive use if desired.

The possible introduction of vegetation more desirable as forage than the native vegetation could, without adequate management, result in over-grazing when cattle are introduced to the reclaimed mine site. This would result in erosion and encroachment of undesirable plant species
with untimate degradation of the land and its long-term productivity.

Improved road access to the remote mine site could result in more intensive use of the area. More intensive use could improve the productivity of the area for agricultural and rangeland recreational uses, but without adequate management could be detrimental to long-term productivity.

VII IRREVERSIBLE AND IRRETRIEVABLE COMMITMENTS OF RESOURCES
A. Coal

Westmoreland Resources mining operation is planned to reach a maximum production level of 10 million tons per year in 1981. The planned production levels will result in a cumulative production of 190.6 million tons. With losses of about 13 percent, this will exhaust the known reserves of about 219 million tons of coal in the area newly proposed for mining by 1997.
B. Other minerals

An undetermined quantity of local clinker material will be used for road surfacing during the life of the mine. This material and the clinker resources of the mine site not so used will be irretrievably committed.
C. Aquifers

All aquifers in the proposed mine area above the base of the Robinson coal bed will be destroyed during mining and irretrievably lost to future use. The aquifers include the Robinson coal, the interburden, the RosebudMcKay coal, and in parts of the area the overburden. Adjacent parts of these aquifers will be affected by lowered water levels during the 20 -year life of the mine, but the change will not be permanent.

A11 aquifers above the Robinson coal and the Robinson in the northern part of the area outcrop in the valleys of Sarpy and East Fork Sarpy creeks, and lowered water levels cannot extend beyond these areas. Five existing wells and 10 springs will be destroyed by mining and as many as 24 wells and 12 springs could be affected by lowered water levels.
D. Soils

The soils now existing on the 2151 acres of the proposed mine area will no longer exist after mining. A whole new sequence of soil formation factors will be activated as the land is reclaimed. The climate is the only factor which will not be altered. The reclamation program will be starting with a new parent material, topography, and biological organisms may have to be introduced and it will take a very long time to develop a new soil. The use of topsoil and fertilizers will speed this process but it will take time to develop soil structure, permeability, and aeration which is essential for optimum plant growth.

Also irretrievably lost will be the income produced from the soils of the site estimated as $\$ 255,700$ during the life of the mine.
E. Vegetation

All existing vegetation on the proposed mine area will be forever lost if mining is approved. The reshaping of the land, topsoil mixing and displacement, and subsoil disturbance and alteration during reclamation may preclude the re-establishment of exact premining native plant communities. However, many native species will be present.

Also foregone will be the income from grazing use and timber growth, estimated as $\$ 87,000$ and $\$ 1,700$ respectively, that could have been generated if mining did not take place.
F. Fish and Wildife

Little is known of the long-term effect that habitat destruction and reclamation will have on the wild species on Tract III. Certainly, critical habitat needs such as timber and brush will be destroyed and may not be successfully replaced.

Grouse dancing grounds are special areas to these birds and used year after year. Only one sharp-tail lek is known on the proposed mine area. Destruction of this dancing ground may result in the permanent loss of as many as 56 grouse.

As many as 10 seeps and springs may be destroyed and as many as 12 may be affected during the life of the mine and result in the loss of habitat to numerous small birds, mammals, reptiles and amphibians. Loss of these areas as watering places would cause shifts in the ranges of other wild species.
G. Archeological and Historical Values

Any archeological sites not discovered during mining operations and historic sites now present on the proposed mine area will be irretrievably lost if the area is mined and will no longer be available for future study or enjoyment.
H. Energy, fuels, and materials

The extraction and transportation of coal and the reclamation of disturbed areas will require the use of electrical power, liquid fuels in the form of diesel fuel and gasoline, explosives, and structural and repair materials for the facilities and equipment used in mining. Experience at the present mine has shown that to mine one million tons of coal requires about 150,000 gallons of diesel fuel and 5,250,000 kwh of electrical energy. Shipment of the coal to present markets and return of the unit train requires an estimated $2,000,000$ gallons of diesel fuel. Estimates of the requirements for gasoline and expolsives are not available. The electrical energy, fuels, and explosives used are irretrievably committed and would not be available for other uses. Much of the equipment and material used in mining can be salvaged for future use, but materials such as concrete, road materials, and chemicals would not be recoverable and thus irreversibly lost to future uses.
I. Human resources

During the construction of the proposed new dragline, a maximum of about 50 persons would be employed during the period 1977 through 1978. At maximum production level of the mine, about 210 persons would be employed, about 100 more than in the present operation. In addition, many people not employed in mining but providing short term services would be needed throughout the life of the mining and reclamation operation and their services so expended would not be available for other productive endeavors.

VIII ALTERNATIVE TO THE PROPOSED ACTION

A. Introduction

In the discussion that follows, the alternatives discussed relate specifically to the consideration of the approval of Westmoreland Resources 20-year mining plan for Tract III as submitted. Other relevant alternatives that are related to taking action on the proposed ultimate development of the leases of both Tracts II and III are considered in the EIS being prepared by the Bureau of Indian Affairs (1976). Prior to his consideration of this proposed plan, the Secretary of Interior must, under the orders of the 9 th USCA decision in Cady vs Morton, first reconsider his previous approval of the lease itself.

The Department of Interior in considering the Westmoreland Resources proposed plan of mining and reclamation of Crow Indian coal lands on Tract III will have several courses of action. These actions could include approval of the mine plan as submitted, require modification of the plan, reject the plan, or prevent further development on the lease beyond that which has already been approved and is currently being mined. Any alternatives adopted that would place restrictions on Westmoreland Resources over and above the lease terms would most probably result in legal action against the lessors or
the Secretary of the Interior, whichever imposed such restrictions.

In considering any alternative to the mining of Crow Indian coal, it should be born in mind that the primary purpose of leasing the coal in the Ceded Area was to provide income and employment opportunities to the Crow Tribe.
B. Approval of the mining plan as submitted

The approval of the mining plan as submitted would carry with it the stipulations set forth in the lease and mining plan and as required by regulations to insure the plan would be adhered to. The impacts associated with this alternative would be as previously described.
C. Approve mining plan after modification

Another alternative would be to require changes in the proposed mining and reclamation plan before the plan would be approved, or as conditions of Secretarial approval. Changes could be made in the configuration of the proposed mine area, the requirements and procedures for reclamation, and mining procedures.

1. Configuration of the proposed mine area

The proposed mine area has been selected to obtain the maximum recovery of a non-renewable fuel resource consistent with reclamation of the land and protection of other resources. Restriction of the size or shape of the area to be mined or relocation of the mine area to another part of the lease; as briefly discussed in Part I, Section K, might reduce the environmental impacts in the presently proposed area but would result in the transfer of most of those impacts elsewhere with differences in impact that would likely be negligible.
2. Stipulations and procedures for reclamation

The reclamation plan as submitted has been designed to comply with existing Federal and State laws and regulations and to the terms of the lease. The plan calls for a high level of reclamation and it is questionable
that exceeding the present plans would result in significant environmental benefit. Westmoreland Resources has accepted the fact that technology and regulations regarding reclamation are constantly changing and is prepared to adapt to changes that will improve reclamation success.

Less stringent reclamation plans would result in greater environmental impacts to the land and people. These could include less vegetation on reclaimed land, pollution of ground and surface water, permanent disruption of drainage patterns, serious erosion, aesthetic damage, and generally hazardous conditions, depending on the requirements reduced. At a lower level of reclamation, mining costs would be reduced and resulting reductions in the price of coal could be passed on to consumers.
3. Mining procedures

Different procedures could be required for removing topsoil, overburden, and coal if the procedures as proposed were considered technically inadequate, or to result in unacceptable environmental consequences, or unsafe operating conditions. The methods proposed in the mining plan are those currently in use at the existing Absaloka mine. These procedures are used at other large strip mines in the west and are generally accepted as being the most technically and economically
feasible for this type of operation.
Any major changes in the proposed procedures that would require additional rehanding of spoils, different mining equipment, or increased complexity of operation for the reasons of improved reclamation, greater coal recovery, or protection of other resources would probably result in lower production rates and higher production costs without any significant further reduction in environmental impacts as described and evaluated in this statement.

4. Production rates

Under terms of the lease and existing regulations, the Secretary of Interior lacks the authority to regulate production per se from the leasehold. However, on environmental or other adequate grounds within his trust responsibility to the Crow Tribe, some degree of controlled production rates could be effected.

The proposed mining plan calls for a production rate of 10 million tons per year by 1981. Five million tons per year are needed to satisfy existing contracts. Sale of the remaining five million tons is being negotiated.

A lower mining rate would result in less land being disturbed, and thus a lesser environmental impact each year. However, to produce the same total
amount of coal from the lease, the duration of impact would be extended. Less production would also mean reduced employment and royalty income to the Crow Tribe and less tax revenue generated annually. Reducing production would conflict with minimum production requirements of the amended Tract III lease with the Crow Tribe.

Increasing the rate of production would result in an accelerated rate of land disturbance, higher employment levels, additional vehicle and rail traffic in the area, and an acceleration in the rate of environmental impacts previously discussed. There would also be larger royalty payments to the Crow Tribe, higher payrolls, and increased tax revenues if production was increased. The total duration of impacts would be shortened accordingly.
D. Reject the mining plan

If the mining plan was found to be totally unacceptable, there would be no environmental impact on the proposed mine area and a new plan would be required or alternate sources of coal found to meet contractural obligations. The plan as submitted is based on established practice at the Sarpy Creek Mine and at other surface coal mines in the west.

If the plan were rejected, Westmoreland Resources would have to prepare a new plan. This would entail considerable time and expense to the company and the Government as a new impact statement would be required for a new mine plan under the decisions of the USCA decision in Cady vs Morton.

If mining on the leasehold were rejected by the Secretary, such action would also deprive the Crow Tribe of projected royalty income and employment opportunities until an acceptable mine plan was developed and activated for mining of the Crow-owned coal under this lease.
E. Prevent further development of the lease

The granting of the lease entails the right to mine the coal under an approved mining and reclamation plan. Any alternative that prevented further development on the lease would require revocation of or changes in the lease. This would probably result in legal action by the lessee to recover damages. Coal production would end as soon as the currently approved mine area was exhausted. There would be no further adverse environmental impacts on the area following that expiration. However, it is likely that the coal production foregone would be supplied by some other surface mines in Montana or Wyoming and the general environmental impacts of such operations would be simply transferred to another area. Depending on many factors, these impacts could be lesser or greater than would occur on the proposed mine area.

This action would in the near future also deprive the Crow Tribe of the royalty income and employment opportunities associated with the proposed mine expansion.
F. Mine coal only on State-owned land

As 314 acres within the proposed mine area underlain by $31,867,000$ tons of coal is a part of a State-owned section, mining of the State land only is an alternative to development of the proposed Crow leasing and mining area. Mining on State 1 and would not require approval by the Department of the Interior but would require approvals by the appropriate State agencies. Mining of the State land only would permit Westmoreland Resources to meet its contractural obligations for an undetermined but comparatively short period but would deprive the Crow Tribe of all royalty income and could negate the company committment on employment of Indians.

Environmental impacts of mining the State land would be essentially the same as those previously discussed for the proposed mine area.

Guidlines

Pursuant to NEPA, the Council on Environmental Quality (CEQ) issued guidelines to Federal Agencies for preparation of environmental impact statements. (Federal Register, 38 (147), August 1, 1973). Provisions for review of proposals and for public comments on environmental impact statements are a part of these guidelines.

In accordance with these guidelines, this environmental impact statement will be submitted for review by the general public and a wide spectrum of governmental agencies, and revised accordingly in response to these reviews. This action is in response to CEQ guidelines which, in part, require that Federal agencies shall:
(1) Provide for circulation of draft environmental statements to other Federal, State, and local agencies and for their availability to the public in accordance with the provisions of these guidelines.
(2) Consider the comments of the agencies and the public; and
(3) Issue final environmental impact statements responsive to the comments received. (CER 138 (147) Section 1500.2.b).

Consultation in the Preparation of this EIS

Task Force

The U.S. Geological Survey, Department of Interior, was the lead agency for the preparation of this draft statement. The Geological Survey provided a project leader and the same personnel that had been assembled for the preparation of the Westmoreland lease EIS (U.S. Bureau of Indian Affairs, 1976) also contributed to this statement. Members of the task force included appropriate discipline specialists from several offices of the Geological Survey, the Billings area office of the Bureau of Indian Affairs, the Fish and Wildiffe Service, and representatives of the Crow Tribe of Indians.

State Agencies

The Montana Department of State Lands provided early input and coordination into the planning of this statement. The Montana Department of Highways submitted date pertaining to future road improvement and reconstruction plans. The Montana State Air Quality Bureau supplied air quality information and consultation on air quality standards.

Consultants

Representatives of Westmoreland Resources provided consultation on company plans, and extensive use was made of consultants reports of environmental baseline studies prepared for that company.

Review of Statement
This statement will be circulated to other Federal, State and local agencies, and shall be available to the public for comment. Copies for general public inspection and review will be available in appropriate Geological Survey and Bureau of Indian Affairs offices to be announced in the "Notice of Availability" in the Federal Register at the time of release of the Document.
B.C. Research, 1973, Environmental analysis, Sarpy Creek coal development: Prepared for Westmoreland Resources, Billings, Montana.

Boner, F. C. and Buswe11, G. W., 1970, A proposed stream-flow-data program for Montana: USGS openfile rept., 96 p.

Booth, E. S., 1960, How to know the mammals: Wm. C. Brown Co., Dubuque, Iowa. 203 p.

Borror, D. J. and White, E., 1970, A field guide to the insects of America north of Mexico: Houghton Mifflin Company, Boston.

Brown, C.J.D., 1971, Fishes of Montana: Big Sky Books, Bozeman, Mont. 207 p.

Burt, W. H., and Grossenheider, R. P., 1964, A field guide to the mammals: Houghton Miffiin Company, Boston. 284 p.

Colorado School of Mines Research Institute, 1975 a, An evaluation of overburden and interburden characteristics of Tract 3 and of the proposed 20 -year mining plan area: vol. 1, p. 140 , i fig.

Colorado School of Mines Research Institute, 1975 b, An evaluation of overburden and interburden characteristics of Tract 3 and of the proposed 20 -year mining area: vol. 2, p. 180.

Corde11, Grayson V., 1971, The climate of Montana, Climates of the United States, vol. 2, Water Information Center, Inc., Port Washington, N.Y., p. 743-762.

Dames and Moore, 1975, Interim Report - Environmental Baseline Studies for Crow Indian coal leases known as Tract II and Tract III, Westmoreland Resources, Sarpy Creek Basin, Big Horn County, Montana. 119 p., 22 fig.

Ecological Consulting Service, 1974, Four Season wildife survey of the area known as Tract III - report period: June 1973-June 1974. Prepared for Westmoreland Resources, Billings, Montana.

Environmental Quality Council, 1972. Coal Development potential in eastern Montana: State of Montana, Helena, Montana.

Environmental Systems, 1973, Colstrip generation and transmission project, Applicants Environmental Analysis.

Fredlund, L. B., and Fredlund, D. E., 1974, 1972 archeological reconnaisance and salvage excavations on Westmoreland Resources coal lands, Big Horn County, Montana. Univ. of Montana Statewide Archeological Survey.

Grim, E. C. and Hill, R. D., 1974, Environmental protection in surface mining of coal: U.S. Environmental Protection Agency Technology Series, EPA-670/2-74-093, October, 1974. 277 p.

Hedman, E. R., Moore, D.O., Hejl, H. R., 1974, Selected streamflow characteristics as related to activechannel geometry of streams in Kansas: Kansas Water Resources Board Tech. Rept. no. 10, 21 p.

Hedman, E. R. and Kastner, W. M., 1974, Progress report on streamflow characteristics as related to channel geometry of streams in the Missouri River basin: USGS open file rept., 24 p.

Hem, J. D., 1970 , Study and interpretation of the chemical characteristics of natural water [2nd ed.]: U.S. Geol. Survey Water-Supply Paper 1473, 363 p.

Hoffman, R. S., and Pattie, D. L., 1968, A guide to Montana mammals: University of Montana Press, Missoula. 133 p.

Hopkins, W. B., 1973, Water resources of the Northern Cheyenne Indian Reservation and adjacent area, southeastern Mont.: U.S. Geol. Survey Hydrol. Inv. Atlas HA-468.

Holzworth, George C., 1972, Mixing heights, wind speeds, and potential for urban air pollution throughout the contiguous United States, USEPA, Office of Air Programs, Research Triangle Park, North Carolina.

Hosler, Charles R., 1961, Low-level inversion frequency in the contiguous United States, Monthly Weather Preview, September, 1961, p. 319-339.

Houston, W. R., 1961, Some interrelations of sagebrush, soils, and grazing intensity in the northern Great Plains: Ecology vol. 42, p. 31-38.

Hurlbut, Kersich and McCullough, 1972, Inventory of Water Resources Crow Indian Reservation, Montana: Phase 1Water Resource Base., U.S.D.I. Contract No. C5014204081.

Jackson, Dan, 1975, Montana-based Westmoreland Resources mines Crow Indian-owned coal at Absaloka mine: Coal Age, v. 80, no. 13, p. 66-73.

Johnson, Maxine C., 1972, Montana Business Quarterly, Spring 1972, vol. 10, no. 2., 37 p.

Mapel, W. J., Sarnecki, J. C., and Bohor, B. F., 1975, Tribal land resource report for the administrative report for Bureau of Indian Affairs.

Martin, A. C., Herbert, S. Z., and Nelson, A. L., 1961, American wildlife and plants - a guide to wildife food habits: Dover Publications Inc., New York. 500 p.

Martin, P. R., 1975, Sarpy Basin wildife ecology study: Montana Department of Fish $\&$ Game.

Montana Department of Natural Resources and Conservation, 1974, Draft environmental impact statement, Colstrip electric generating units 3 and 4 and 500 kilovolt transmission lines and associated facilities: 384 p.

Moore, D. O., 1968, Estimating mean runoff in ungaged semiarid areas: Internat. Assoc. Sci. Hydrology Bull. 13, v. 1, p. 29-39.

Moore, D. O., 1974, Estimating flood discharges in Nevada using channel-geometry measurements: Nevada Highway Dept., Hydrologic Report no. 1,43 p.

Northern Great Plains Research Program, 1975, Effects of coal development in the northern Great Plains: 165 p .

Northern States Power Co., 1976, Environmental report for Sherburne County generating plant, units 3 and 4.

Oosting, H. G., 1956, The study of plant communities. 2nd ed., W. T. Freeman and Co., San Francisco, Calif.

Palmer, R. S., 1954, The mammal guide (mammals of N.A., north of Mexico): Doubleday and Co., Garden City, N.Y. 384 p.

Peterson, R. T., 1961, A field guide to western birds: Houghton Mifflin Co., Boston.

Pfister, R. D., Kovalchik, B. L., Arno, S. F., and Presby, R. C., 1974, Forest Habitat types of Montana: Intermountain forest and Range Experiment Station and Northern Region, U.S.F.S., Missoula, Montana, 32 p.

Renick, B. C., 1929, Geology and ground water resources of Central and Southern Rosebud County, Montana, with chemical analyses by H. C. Riffenburg: U.S. Geol. Survey Water-Supply Paper 600.

Rogers, G. S., and Lee, Wallace, 1923, Geology of the Tullock Creek Coal field, Rosebud and Bighorn Counties, Montana: U.S. Geol. Survey Bull. 749, 181 p., 16 p1.

Scott, W. B. and Crossman, E. J., 1973, Freshwater fishes of Canada: Fisheries Research Board of Canada, Ottawa, Bulletin 184. 966 p.

Somers, J. L., 1973, Present use of surface water and shallow ground water-upper Sarpy Creek area, Big Horn Co., Montana. Prepared for Westmoreland Resources.

Stebbins, Robert C., 1966, A field guide to Western reptiles and amphibians: Houghton Mifflin Co., Boston. 279 p.

Taylor, Walter P., 1965, The deer of North America: Stackpole Co. and the Wildife Management Institute. 668 p.

Thom, H.C.S., 1968, New distributions of extreme winds in the United States, Journal of the Structural Division, Procedings of the American Society of Civil Engineers, July 1968.

Thom, W. T., Jr., Ha11, G. M., Wagemann, C. H., and Moulton, G. F., 1935, Geology of Big Horn County and the Crow Indian Reservation, Mont., with special reference to the water, coal, oil, and gas resources: U.S. Geol. Survey Bull. 856, 200 p.
U.S. Army Crops of Engineers, 1973, Environmental impact statement, Pig's Eye Coal Terminal, Mississippi River at St. Paul, Minnesota.
U.S. Bureau of Indian Affairs, 1974, Final environmental statement FES-74-8, Crow Ceded Area coal lease, Westmoreland Resources mining proposal. 253 p.
U.S. Bureau of Indian Affairs, 1975, Draft programmatic environmental statement, projected coal development, Coal Indian Reservation: 431 p .
U.S. Bureau of Indian Affairs, 1976, Draft environmental statement, Crow Ceded Area coal lease Tracts II and III, Westmoreland Resources.
U.S. Bureau of Reclamation, 1972, Report on Resources of Eastern Montana Basins, Pick Sloan Missouri Basin Program Montana.
U.S. Department of Commerce, 1965, Decennial census of United States Climate, Climatic summary of the United States, Supplement for 1951 through 1960, Climatography of the United States no. 86-20.
U.S. Department of Commerce, 1974 a, Local climatological data, Annual summary with comparative data, Billings Montana, 1973.
U.S. Department of Commerce, 1974 b , Local climatological data, Annual summary with comparative data, Miles City, Montana, 1973.
U.S. Department of Interior, 1974, Final environmental statement, Proposed plan of mining and reclamation, Big Sky Mine, Peabody Coal Company Coal Lease M-15965, Colstrip, Montana: vol. 1,438 p., 17 fig.
U.S. Department of Interior, 1976, Draft environmental statement, Crow Ceded Area coal lease, Tracts II and III, Westmoreland Resources, U.S. Bureau of Indian Affairs, Billings, Montana.
U.S. Geological Survey, 1974, Water Resources Data for Montana, Part 1, Surface Water Records: open-file rept.

Van Voast, W. A. and Hedges, R. B., 1974, Hydrology of the area of Westmoreland Resources Tract III coal reserves near Sarpy Creek, southeastern Montana: Montana Bureau of Mines and Geology open-file report, 10 p .

Westmoreland Resources, 1975 a, Environmental baseline studies for Crow Indian coal leases, Project Description: 25 p., 3 pl .

Westmoreland Resources, 1975 b, Environmental baseline studies for Crow Indian coal leases, Land Use: 42 p., 5 pl .

Westmoreland Resources, 1975 c, Environmental baseline studies for Crow Indian coal leases, Socio-Economic Report, Part 1 - Regional Base Situation: 155 p., 3 fig.

Westmoreland Resources, 1975 d, Environmental baseline studies for Crow Indian coal leases, Socio-Economic Report, Part 2 - Public Revenue and Expenditure Base Situation: 63 p., 4 fig.

Westmoreland Resources, 1975 e, Environmental baseline studies for Crow Indian coal leases, Socio-Economic Report, Part 3 - Tri-County Base Situation: 238 p., 1 pl.

Westmoreland Resources, 1975 f, Environmental baseline studies for Crow Indian coal leases, Socio-Economic Report: $483 \mathrm{p} ., 15 \mathrm{fig}$.

Westmoreland Resources, 1975 g , Environmental baseline studies for Crow Indian coal leases, Scenic-Visual Resources: 39 p., 2 fig., 2 pl.

Westmoreland Resources, 1975 h , Environmental baseline studies for Crow Indian coal leases, Historic Resources: 49 p., 2 pl.

Westmoreland Resources, 1975 i, Environmental baseline studies for Crow Indian coal leases, Archeological Resources: 98 p., 2 fig., 1 pl.

Westmoreland Resources, 1975 j, Environmental baseline studies for Crow Indian coal leases, Meteorology and Air Quality: 58 p., 6 fig., 1 p1.

Westmoreland Resources, 1975 k, Environmental baseline studies for Crow Indian coal leases, Geology: 29 p., 14 fig., 3 pl.

Westmoreland Resources, 1975 1, Environmental baseline studies for Crow Indian coal leases, Hydrology: 72 p., 6 pl.

Westmoreland Resources, 1975 m, Environmental baseline studies for Crow Indian coal leases, Soils: 126 p., 2 pl.

Westmoreland Resources, 1975 n , Environmental baseline studies for Cŕow Indian coal leases, Sound: 60 p., 55 fig.

Westmoreland Resources, 1975 o, Environmental baseline studies for Crow Indian coal leases, Biology: 168 p., 3 fig., 2 pl.

Westmoreland Resources, 1975 p., Proposed mining plan, Tract III: $15 \mathrm{p} ., 19 \mathrm{pl}$.

Wright, J. C., and Wright, E. A., 1948, Grassland-types of southcentral Montana. Ecology, vol. 29, p. 449-460.
APPENDIX A
Data on Climate and Air Quality
Page
Monitoring Program A-3
TABLES

1. Mean number of days with precipitation ≥ 0.10 or ≥ 0.50 inch, Colstrip, Montana. A-9
2. Total precipitation (inches) Sarpy Creek area A-10
3. Estimated return period for specified precipita- tion events for Sarpy Creek area A-12
4. Mean evaporation (inches), Terry, Montana A-13
5. Evaporation data, Sarpy Creek area A-14
6. Sky cover data, Billings, Montana A-16
7. Incoming solar radiation, Sarpy Creek area A-17
8. Mean number of days with heavy fog A-19
9. Mean number of days with temperature $\geq 90^{\circ} \mathrm{F}$ or $\geq 32^{\circ} \mathrm{F}$, Colstrip, Montana. A-20
10. Freeze data A-21
11. Mean temperatures $\left({ }^{\circ} \mathrm{C}\right)$, (40-foot pole near water treatment building), Sarpy Creek area A-22
12. Mean daily and monthly temperature data ($\left.{ }^{\circ} \mathrm{C}\right)$, (40-foot pole near water treatment building, Sarpy Creek area A-24
13. Mean temperatures (${ }^{\circ} \mathrm{C}$), (hygrothermograph near administration building), Sarpy Creek area A-2 6
14. Mean relative humidity (percent), Billings, Montana A-28
15. Mean relative humidity (percent), Sarpy Creek area A-29
16. Percentage frequency of wind direction, Sarpy Creek area A-31
17. Mean wind speeds (MPH), Sarpy Creek area A-33
18. Mid-afternoon mixing depths at Colstrip A-35
19. Estimated average mixing heights and wind speeds in mixing layers in southeastern Montana. A-36
20. Mean recurrence intervals for extreme winds, southeastern Montana A-37
21. Total relative frequency distribution of sur- face winds by stability class, Billings, Mon- tana A-38
22. Total relative frequency distribution of sur- face winds by stability class, Miles City, Montana A-39
23. Mean annual wind speed by stability class, Billings and Miles City, Montana (1/67-12/71) A-40
24. Summary of air quality background around Colstrip site A-41
25. Total suspended particulates, Sarpy Creek area A-42
26. Settleable particulates (dustfall), Sarpy Creek area. A-44
27. Federal primary and secondary air quality standards A-46
28. State of Montana ambient air quality standards A-47

METEOROLOGY AND AIR QUALITY

MONITORING PROGRAM

On February 11, 1975, the meteorology and air quality monitoring program at Sarpy Creek was initiated with the installation of a battery-operated, self-contained mechanical weather station adjacent to and a high-volume air sampler atop the water treatment building on Tract III. In addition to samples of total suspended particulates collected by the high-volume sampler, the mechanical weather station recorded continuous wind direction, wind speed (wind run), and temperature data. Specifications for the mechanical weather station and high-volume air sampler are presented in Tables $\mathrm{H}-1$ and $\mathrm{H}-2$. The mechanical weather station was mounted atop a 30foot pole on a small rise of ground approximately 100 feet south of the water treatment building; the high-volume air sampler was mounted on the roof of the water treatment building.

On April 14, 1975, the mechanical weather station was removed and on April 18, it was replaced by individual wind direction, wind speed, and temperature sensors wired to a single signal trans.a. tor and separate recorders located within the water treatment buililag. Specifications of these sensors, translator, and recorders are included in Table H-3. Also, the high-volume air sampler was removed from the roof of the water treatment building and two new samplers were

Installed, one approximately 300 feet east-northeast of the secondary crusher and the other near the base of the pole on which the meteorological sensors were mounted.

After the installation of the meteorological sensors was complete, a small impoundment near the pole was filled with relatively hot water as part of the water treatment process. Because water temperatures in the pond were significantly high, it was decided that to ensure the continued collection of quality, data, the sensors should be moved to another location。 Therefore, on May 20, 1975, the sensors were removed and mounted atop a 40 -foot pole, located about 300 feet southsoutheast of the water treatment building, which is their current location. The high-volume sampler, however, was left at its original location near the base of the 30 -foot pole.

On April 18 and 19, 1975, additional meteorological monitoring equipment were installed about 100 feet east-northeast of the administration building. Included were an evaporation pan, a hygrothermograph, maximum-minimum thermometers, a recording rain and snow gage, and a recording pyrhelimoter. On May 21, 1975, a microbaragraph was also installed at that site. The specifications of all of these instruments are listed in Table $\mathrm{H}-2$.

On April 24, 1975, dustfall canisters were set out at two locations on Tract III (Plate 2.2.1-1). To expand the dustfall sampling, a third dustfall canister was installed on Tract II on June 23, 1975 (Plate 2.2.1-1).

All equipment was calibrated or checked for accuracy at installation and also after approximately three months of operation. Data collected from the instruments are summarized in Sections 2.2.1.2 and 2.2.1.3.

Data Reduction Techniques
All hourly wind direction, wind speed, temperature, relative humidity, and precipitation data were copied onto computer keypunching forms. After being keypunched the data were then loaded for computer storage and subsequent analysis as described below.

Wind Direction
All wind direction data were abstracted from stripcharts according to sector. Consequently, all data were segregated into the sixteen cardinal directions. The direction assigned to any given hour was the direction deemed most persistent during each preceding hour; a "variable" direction classification was assigned to any hour during which a variation of more than 180 degrees occurred.

Wind Speed
Wind speed (wind run) data from the mechanical weather station that was at the site from February 11, 1975, through April 14, 1975, were abstracted to the nearest 0.1 mile per hour. Qualitative analysis of the TechEcology Met Set 3 data, collected from April 18, 1975, through August 31,1975 , did not allow the abstraction of wind speed data to the nearest 0.1 mile per hour, but rather whole miles per hour. Therefore, although wind speed averages are presented to the nearest 0.1 mile per hour, resolution of the data beyond one whole mile per hnur is a factor attributable mainly to the analysis process. The average wind speed for any given hour was determined from data recorded during each preceding hour.

Temperature

Temperature data from the mechanical weather station were abstracted to the nearest whole Fahrenheit degree with the reading at 30 minutes before any given hour being recorded as best representative of each preceding hour; hygrothermograph temperature data were abstracted on the hour to the nearest $0.5^{\circ} \mathrm{F}$; and the Met Set 3 data were abstracted at 30 minutes before each recorded hour to the nearest $0.5^{\circ} \mathrm{C}$. A11 Fahrenheit data were then converted to Centrigrade degrees, the result being that all on-site temperature data are presented herein to the nearest $0.5^{\circ} \mathrm{C}$.

Relative Humidity
All relative humidity data were abstracted on the hour and analyzed to the nearest whole percent.

Solar Radiation
To obtain solar radiation data from the weekly records a chart constant for each chart was determined. This constant was then multiplied by the area under the trace on the chart with the product representing incoming solar radiation in gram-calories per square centimeter.

Evaporation
Weekly evaporation data were determined from measurements of evaporation from an exposed pan of water using a graduated hook gage.

Precipitation
Precipitation data were abstracted from weekly charts to the nearest 0.1 inch according to hourly events. These data were then summed by computer to provide daily totals.

Total Suspended Particulates
High-volume air sampler filters were initially weighed, prior to exposure in the field, in Dames \& Moore's Denver office. After being used in a sampler each filter was returned to Denver
for final weighing. The difference between the initial and final weights, the sampling time, and the flow rate were used in the following equation to determine total suspended particulates densities:

Density $\left(\frac{\mathrm{gm}}{\mathrm{m}^{3}}\right)=\frac{\text { weight (gm) }}{\text { Time (hrs.) } \times 60\left(\frac{\text { min. }}{\text { hour }}\right) \times \text { flow rate }\left(\frac{\mathrm{ft}^{3}}{\mathrm{~min}}\right) \times 0.02832\left(\frac{\mathrm{~m}^{3}}{\mathrm{ft}}\right)}$
Also, a multiplicative factor of 0.88 was applied to the results of the equation above to allow for changes in air flow characteristics due to increased elevation above sea level. This factor was obtained from the following equation:

$$
\begin{aligned}
& \text { Flow Rate } \begin{aligned}
& \text { Flow Rate }_{2} \times \mathrm{K} \times \sqrt{\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}} \\
& \text { Where Flow Rate }{ }_{1}= \begin{aligned}
\text { Flow rate under standard temperature } \\
\text { and pressure conditions }
\end{aligned} \\
& \text { Flow Rate }{ }_{2}= \begin{array}{l}
\text { Flow rate at } 3500^{\prime} \text { elevation, based } \\
\text { on standard conditions }
\end{array} \\
& \mathrm{P}_{1}= \text { Pressure under standard conditions } \\
& \mathrm{P}_{2}= \text { Average pressure at } 3500^{\prime} \text { elevation } \\
& \mathrm{K}= \text { Constant, determined from calibration } \\
& \text { data }
\end{aligned}
\end{aligned}
$$

Solution of this equation indicated that Flow Rate ${ }_{2}=$ Flow Rate X $_{2}$ 1.13, or, when Flow Rate 2 was substituted for the flow rate in the previous equation the result was the same as multiplying the entire equation by 0.88 .

Dustfall

Dustfall samples were shipped to Corning Laboratories, Inc., Cedar Falls, Iowa, where they were analyzed according to American Society for Testing Materials (ASTM) Designation D1739-70.
TABLE 1
MEAN NUMBER OF DAYS WITH PRECIPITATION
≥ 0.10 OR ≥ 0.50 INCH ${ }^{\text {O }}$
COLSTRIP, MONTANA

DAY OF 1975					
				JUL	AUG
1		0.	8.	O.	θ •
2		$0 \cdot$	$\theta \because$	0%	0%
3		$0 \because$	$\bigcirc 1$	$0 \because$	0%
4		0	80	$\because 85$	$0 \because$
5		. 33	0.	$\because 82$	$0 \because$
6		1.86	$\because 24$	0%	$0 \because$
7		-03	-01	$\because 30$	$0 \because$
8		-85	1.02	0%	$0 \because$
9		-83	. 24	0%	0%
10		$\because 17$	0 。	$\because 01$	$0 \because$
11		0 0:	$0 \cdot$	$0 \because$	$0 \because$
12		20	8%	0%	80
13		θ 。	-23	8%	80
14		0%	0%	0%	$\because 84$
15		0.	- 1	$0 \because$	$\because 28$
16	θ.	$\because 10$	-26	0%	J
17	0%	0	$\because 21$	-36	$\because 16$
18	$\because 15$	8%	. 28	0 :	$0 \because$
19	.24	$\bigcirc 67$	$\because 86$	0%	0%
20	-83	$\because 15$	-23	0%	0%
21	$\bigcirc 8$	$\because 86$	$\bigcirc 57$	0%	$0 \because$
22	$\because 87$	$\because 26$	$\bigcirc 1$	$\because 33$	$0 \because$
23	$\because 19$	$0 \because$	$\bigcirc 1$	0%	8%
24	$0 \because$	$\because 18$	$0 \because$	$0 \because$	$0 \because$
25	.82	$\because 87$	8%	0%	$\because 4$
26	$\because 21$	$0 \because$	-12	$0 \because$	$0 \because$
27	$0 \because$	0%	0%	0%	8%
28	$\because 38$	$0 \because$	0%	0%	8%
29	$\because 68$	0%	$0 \because$	$\because 2$	$0 \because$
30	$\because 28$	0%	80	$\because 81$	$0 \because$
31	0 0.	$\bigcirc 36$	8%	$\because 39$	$0 \because$
TOTAL	1:92	3:32	2.23	$1 \because 19$	$\bigcirc 52$

TABLE 2

TOTAL PRECTPITATION（INCHES）
SARPY CREEK AREA
（1975）

DAY OF MONTH	Montin（1975）		
	SEPT	OCT	NOV
1	0.	0.	0.
2	． 15	0.	0.
3	0.	0.	0.
4	0.	0.	0.
5	0.	0.	0.
6	0.	0.	0.
7	0.	0.	0.
8	0.	0.	0.
9	0.	0.	0.
10	0.	0.	． 11
11	0.	0 。	0.
12	0.	． 02	0 。
13	0.	． 03	0.
14	0.	． 22	0.
15	0.	0.	0.
16	0.	0.	． 06
17	． 19	0.	． 08
18	0.	0.	． 24
19	0.	0 。	0 。
20	0.	． 15	0 。
21	0.	． 46	0.
22	0.	． 18	0.
23	0.	0.	． 02
24	0.	0.	． 59
25	0.	0.	． 11
26	0.	0 。	． 02
27	0.	0.	． 02
28	0.	0.	． 30
29	0.	0.	． 04
30	0.	0.	． 04
31	0.	0 ．	0.
TOTAL	． 34	1.06	1.63

ESTIMATED RETURN PERIOD FOR SPECIFIED PRECIPITATION EVENTS ${ }^{\text {a }}$ FOR SARPY CREEK AREA

6-Hour Precipitation (inches)	24-Hour Precipitation (inches)	Return Period (years)
1.0	1.4	2
1.3	2.0	5
1.6	2.4	10
2.0	3.0	25
2.2	3.4	50
2.4	3.8	100

a_{U}. S. Department of Commerce, 1973

A-13

TABLE 5

EVAPORATIGN DATA
 SARPY CREEK AREA

Week Ending	Weekly Evaporation (Inches)	Cumulative Evaporation (Inches)
$5 / 2 / 75$	0.76	0.76
$5 / 16 / 75$	-0.22	0.54
$5 / 23 / 75$	1.06	1.60
$5 / 30 / 75$	0.02	1.62
$6 / 6 / 75$	1.36	2.98
$6 / 13 / 75$	1.40	4.38
$6 / 20 / 75$	0.11	4.49
$6 / 27 / 75$	1.21	5.03
$7 / 4 / 75$	2.42^{a}	1.52^{a}

TABLE 5
EVAPORATION DATA
SARPY CREEK AREA

Week Ending	Weekly Evaporation (Inches)	Cumulative Evaporation (Inches) (from week ending 5/2/75)
$9 / 5 / 75$	1.62	25.44
$9 / 12 / 75$	2.28	27.72
$9 / 19 / 75$	1.04	28.76
$9 / 26 / 75$	1.01	29.77
$10 / 3 / 75$	1.03	30.80
$10 / 10 / 75$	0.35	31.15
$10 / 17 / 75$	0.04	31.19
$10 / 24 / 75$	-0.45	30.74
$10 / 31 / 75$	0.31	31.05
$11 / 7 / 75$	0.64	31.69

SKY COVER DATA ${ }^{\text {a }}$
BILLINGS, MONTANA

				ise to	
	Percent of Possible Sunshine	Mean Sky Cover Sunrise to Sunset ${ }^{\text {b }}$	Clear Days	Partly Cloudy Days	Cloudy Days
J	48	7.1	5	8	18
F	54	7.1	4	8	16
M	61	7.1	4	9	18
A	58	7.1	4	9	17
M	61	6.5	6	11	14
J	64	5.9	7	12	11
J	78	4.0	15	12	4
A	77	4.1	14	12	5
S	67	5.3	10	10	10
0	61	5.7	9	10	12
N	46	6.9	5	9	16
D	46	6.8	6	9	16
Yr.	62	6.1	89	119	157
abased on records from 34 years prior to and including 1973					
${ }^{\text {b }}$ Sky cover is expressed in a range of 0 for no clouds or obscuring phenomena to 10 for complete sky cover.					

Week Ending	Incoming Solar Radiation (gram-calories/cm²)
4/25/75	2570
5/2/75	3188
5/9/75	3216
5/16/75	4595
5/23/75	3233
5/30/75	4683
6/6/75	4428
6/13/75	4147
6/20/75	3488
6/27/75	5228
7/4/75	4868
7/11/75	4727
7/18/75	5166
7/25/75	4885
8/1/75	4718
8/8/75	3753
8/15/75	3445
8/22/75	3753
8/29/75	3911

TABLE 7
INCOMING SOLAR RADIATION SARPY CREEK AREA

Week Ending	Incoring Solar Radiation $\left(g r a m-c a l o r i e s / \mathrm{cm}^{2}\right)$
$9 / 5 / 75$	4033
$9 / 12 / 75$	3691
$9 / 19 / 75$	3155
$9 / 26 / 75$	3164
$10 / 3 / 75$	Incomplete data*
$10 / 10 / 75$	Incomplete data*
$10 / 17 / 75$	2698
$10 / 24 / 75$	1380
$10 / 31 / 75$	1230
$11 / 7 / 75$	1582
$11 / 14 / 75$	1485
$11 / 21 / 75$	923
$11 / 28 / 75$	817
Instrument clock being winterized	

TABLE 8

FREEZE DATA ${ }^{a}$

	Freeze Threshold Temperature	Mean Date Of Last Spring Occurrence	Mean Date of First Fall Occurrence	Mean Number Of Days Between Dates
Billings	32	5/15	9/24	132
	28	4/29	10/9	163
	24	4/17	10/18	185
	20	4/9	11/1	206
	16	3/29	11/12	228
Miles City	32	5/5	10/3	150
	28	4/24	10/11	170
	24	4/13	10/22	191
	20	4/5	11/2	211
	16	3/30	11/12	226
Based on records from 1921-1950				
a From Cordell, 1971				

TABLE 11
(40-foot Pole Nean TEMPERATURES (${ }^{\circ} \mathrm{C}$) SARPY CREEK AREA

LOCAL TIME

Mean terferatures (${ }^{\circ} \mathrm{C}$)
(40-foot Pole Near Water Treatment Building)
SARPY CREEK AREA
(1975)

LOCAL TIME (MST)	Month			QUARTERLY AVERAGES
	OCT	NOV		
0100	13.0	7.0	-1.5	6.2
0200	12.5	6.5	-1.5	5.8
0300	12.0	6.5	-1.5	5.7
0400	11.5	6.0	-1.5	5.3
0500	11.0	5.5	-1.5	5.0
0600	10.5	5.5	-2.0	4.7
0700	10.0	5.5	-1.5	4.7
0800	11.0	5.5	-.5	5.3
0900	13.0	7.0	0.	6.7
1000	15.0	8.0	1.0	8.0
1100	16.5	9.5	2.0	9.3
1200	17.5	10.5	2.5	10.2
1300	18.5	11.5	3.0	11.0
1400	19.0	11.5	3.0	11.2
1500	20.0	11.5	3.0	11.5
1600	20.0	11.5	2.5	11.3
1700	19.5	11.5	1.5	10.8
1800	19.5	10.5	.5	10.2
1900	18.0	9.5	.5	9.3
2000	16.5	9.0	0.0	8.5
2100	15.5	8.5	-.5	7.8
2200	15.0	8.0	-1.0	7.3
2300	14.0	7.5	-1.0	6.8
2400	13.5	7.0	-2.0	6.2
				7.9

MEAN DAILY AND MONTHLY TEMPERATURE DATA (${ }^{\circ} \mathrm{C}$) (40-foot Pole Near Water Treatment Building) SARPY CREEK AREA

1975

DAILY DAILY DAILY MONTHLY MONTHLY MONTH MAXIMUM MINIMUM AVERAGE MAXIMUM MINIMUM

MAR	$\because 5$	-8.0	$-3: 5$	11.8	-18.0
APR	5.8	$-3 \because 5$	$\because 5$	28.8	-13.5
MAY	$15 \% 8$	$5 \because 5$	$10 \% 8$	28.8	-. 5
JUN	19.8	$10 \cdot 8$	$14 \because 5$	24.8	$5 \cdot 0$
JUL	28.8	$17 \because 5$	$23 \because 8$	36.8	$12 \cdot 8$
AUG	$25: 5$	$14 \because 8$	28.8	$33 \cdot 8$	8.5
R10D	13.5	$4 \cdot 3$	9.0	35.8	$-21 \cdot 8$

MEAN DAILY AND MONTHLY TEMPERATURE DATA (${ }^{\circ} \mathrm{C}$) (40-foot Pole Near Water Treatment Building)

SARPY CREEK AREA
(1975)

MONTH	DAILY MAXIMUM	DAILY MINTMUM	DAILY AVERAGE	MONTHLY MAXIMUM	MONTHLY MINIMUM
Sep	20.5	9.5	15.0	29.0	1.0
Oct	12.5	4.0	8.5	28.0	-4.0
Nov	4.5	-3.5	0.5	24.0	-22.0
Quarterly Averages	12.5	3.0	8.0	29.0	-22.0

TABLE 13

MEAN TEMPERATURES (${ }^{\circ} \mathrm{C}$)
(Hygrothermograph Near Administration Building)
SARPY CREEK ARFA

1975

LOCAL TIME	MONTH					PERIOD
(MST)	APR	MAY	JUN	JUL	AUG	OF RECORD
100	4.5	5.5	9.5	16.5	14.5	11.8
200	$3 \because 5$	$5 \because 0$	$9 \because 0$	$15: 5$	13.5	$10 \% 0$
320	308	4.5	8.5	15.5	$12 \% 5$	$9 \because 5$
400	$2 \because 5$	$4 \because 0$	8.8	$14: 5$	$12 \% 8$	9%
508	$2 \because 5$	$4 \cdot 8$	8%	$14: 5$	$11: 5$	9.8
600	$3 \because 2$	$5: 5$	$18: 0$	$16: 5$	$12 \% 8$	$19: 5$
700	$4 \% 2$	8\%8	13.8	$19: 5$	15%	$13 \because 9$
800	$5 \because 8$	$18 \% 8$	$14 \% 5$	$21 \because 5$	18%	$15 \% 5$
900	$7 \because 5$	$11 \% 5$	16%	$24 \% 8$	21:0	$17 \% 8$
1000	$8 \because 5$	13.0	17.2	$25: 5$	$22 \because 5$	$18: 5$
1100	$9 \because 5$	13.5	18.8	27:0	$24 \% 8$	$28: 8$
1200	12.0	13.2	18.5	$27 \because 5$	25%	20.5
1308	11.8	140%	19.5	28.5	26\%0	21.8
1400	$11 \% 8$	14.0	$19 \% 5$	29:0	$26 \% 8$	21.5
1500	$11 \% 0$	14.0	$19 \% 5$	29:3	26:5	21:5
1680	$11 \because 5$	14.0	$19 \% 5$	$29 \% 8$	$25 \because 5$	$21 \% 8$
1780	11.5	13.5	$10 \% 8$	$28 \% 0$	25:8	$28: 5$
1800	10.5	$12 \% 5$	$13 \% 8$	26:5	23.5	$19: 5$
1900	$9 \because 8$	$11 \% 8$	16.5	$24 \because 5$	21\%0	$17 \because 5$
2000	$7 \because 8$	$9 \because 8$	14.5	$22: 0$	$19: 5$	$15 \% 5$
2100	$6 \because 0$	$8: 8$	13.0	19%	$17 \because 5$	$13 \% 5$
2208	$5 \because 0$	7:0	12%	$17 \because 5$	16%	$12 \because 5$
2300	$4: 5$	$6 \div 5$	$11 \because 5$	16.5	$15 \% 5$	$12 \% 8$
2403	$4: 5$	6\%0	18.5	16:3	$15 \% 0$	11.8
AUERAGE	$7 \because 3$	9:5	14.5	$22 \cdot 3$	$19 \% 0$	$15 \% 5$

TABLE 13

MEAN TEMPERATURES (${ }^{\circ} \mathrm{C}$)
(Hygrothermograph Near Administration Building)
SARPY CREEK AREA
(1975)

LOCAL TIME (MS'T)	Month			QUARTERLY
	SEP	OCT	NOV	AVERAGES
0100	7.0	2.0	-3.0	2.0
0200	6.5	2.0	-3.5	1.7
0300	5.5	1.5	-3.5	1.2
0400	5.0	1.0	-3.0	1.0
0500	5.0	0.5	-3.5	0.7
0600	5.0	0.5	-3.0	0.8
0700	9.0	1.0	-2.0	2.7
0800	13.5	2.5	0.0	5.3
0900	17.0	5.0	2.0	8.0
1000	18.0	7.0	4.0	9.7
1100	20.0	9.0	5.0	11.3
1200	20.5	10.0	5.5	12.0
1300	21.5	10.5	6.0	12.7
1400	22.0	10.0	5.5	12.5
1500	22.0	10.0	5.0	12.3
1600	21.5	9.5	3.5	11.5
1700	20.0	8.0	1.0	9.7
1800	17.0	6.5	-0.5	7.7
1900	14.0	5.0	-1.5	5.8
2000	12.0	4.0	-1.0	5.0
2100	10.0	3.5	-2.0	3.8
2200	9.0	3.5	-2.5	3.3
2300	8.0	3.5	-3.0	2.8
2400	7.5	3.0	-3.0	2.5
AVERAGE	13.2	5.0	0.1	6.1

MEAN RELATIVE HUMIDITY (PERCENT) ${ }^{\text {a }}$ BILLINGS, MONTANA

	0500	1100	1700	$\underline{2300}$
J	65	61	58	64
F	67	59	53	64
M	68	53	46	62
A	69	51	43	60
M	70	48	42	60
J	73	48	42	61
J	63	39	30	49
A	59	39	29	45
S	68	51	41	57
0	63	49	42	56
N	67	59	55	63
D	65	61	58	64
Yr	67	51	45	59

Based on records from 14 years prior to and including 1973
${ }^{\text {a }}$ From U. S. Department of Commerce, 1974A

MEAN RELATIVE HUMIDITY (PERCENT)

 SARPY CREEK AREA1975

LOCAL TIME	MONTH					
(MST)	APR	MAY	JUN	JUL	AUG	PERIOD
100	75	76	76	73	63	73
200	77	38	78	74	62	75
300	79	81	79	75	67	77
400	80	82	81	79	70	79
500	78	85	78	80	72	79
680	80	83	71	78	72	75
780	75	70	55	56	62	52
800	65	61	48	51	53	54
900	56	53	43	43	40	46
1000	51	45	41	38	36	41
1100	47	41	37	34	35	38
1200	43	40	35	32	32	36
1300	41	46	33	29	29	35
1400	38	42	33	28	28	33
1500	37	41	34	27	28	33
1600	37	43	35	28	30	34
1708	38	45	36	31	33	36
1800	42	47	39	34	37	40
1900	45	52	44	38	43	44
2000	56	59	53	50	48	53
2100	67	55	52	62	55	62
2200	75	72	67	69	61	68
2300	77	75	70	73	61	71
2400	77	74	73	72	61	71
AUERAGE	68	61	54	50	47	54

TABIE 15
MEAN RELATIVE HUMIDITY (FERCENT)
SARPY CREEK AREA
(1975)

$\begin{aligned} & \text { LOCAL TIME } \\ & \text { (MST) } \end{aligned}$	SEP	$\frac{\text { onth }}{\text { OCT }}$	Nov	QUARTERLY AVERAGES
0100	68	69	79°	72
0200	69	74	77	73
0300	72	77	73	74
0400	76	79	69	75
0500	76	75	74	75
0600	78	78	74	77
0700	66	73	76	72
0800	51	71	68	63
0900	40	68	54	54
1000	36	53	47	45
1100	33	48	42	41
1200	30	44	43	39
1300	28	43	43	38
1400	27	45	45	39
1500	27	48	45	40
1600	28	49	46	41
1700	29	53	49	44
1800	35	57	58	50
1900	42	63	64	56
2000	49	71	57	59
2100	58	71	57	62
2200	63	68	66	66
2300	65	72	73	70
2400	65	71	77	71
AVERAGE	50	63	61	58

DIRECTION IN

TABLE 16
PERCEIVTAGE FREQUENCY OF WIND DIRECTION
SARPY CREEK AREA
(1975)

DIRECTION IN SECTORS	Month			QUARTERLY AVERAGES
SEP	OCT		HOV	
NNE	4.3	5.9	1.7	4.0
NE	2.4	1.7	.7	1.6
ENE	2.1	2.8	.3	1.7
E	3.9	1.0	1.8	2.2
ESE	7.1	2.6	2.9	4.2
SE	5.2	2.7	3.5	3.8
SSE	10.3	10.6	15.7	12.2
S	6.3	11.2	13.1	10.2
SSW	5.4	9.7	11.1	8.7
SW	3.4	7.7	7.9	6.3
WSW	2.8	7.1	5.5	5.1
W	6.6	8.0	5.2	6.6
WNW	8.4	8.1	8.7	8.4
NW	8.7	4.9	6.3	6.6
NNW	10.1	5.5	9.3	8.3
N	7.8	7.0	4.9	6.6
Light and Variable	5.2	3.5	1.4	3.4

$$
\frac{1975}{\text { MONTH }}
$$

TABLE 18
MID-AFTERNOON MIXING DEPTHS AT COLSTRIP ${ }^{\text {a }}$

Season	Mixing Depth (feet)		
	Maximum $^{\text {b }}$	Mean	Minimum
Winter	6770	3800	0
Spring	6770	6030	3800
Surmer	6770	6490	5640
Fall	6770	5620	2210
Mean	(-)	5250	(-)

[^6]$$
1-35
$$
TABLE 19
ESTIMATED AVERAGE MIXING HEIGHTS AND WIND SHEEDS IN MIXING LAYERS IN SOUTHEASTERN MONTANA ${ }^{\text {a }}$

	Winter		Spring		Summer		Autumn		Annual	
	AM	PM								
Mixing Heights (meters)	300	900	400	2000	300	2800	300	1600	325	1825
Wind Speeds (mph)	11	15	13	18	10	15	10	16	11	16

MEAN RECURRENCE INTERVALS FOR EXTREME WINDS ${ }^{\text {a }}$ SOUTHEASTERN MONTANA

Wind speed (mph)	Mean Recurrence Interval (years)
60	2
70	10
80	25
90	100
Thom, 1968	

TOTAL RELATIVE FREQUENCY DISTRIBUTION OF SURFACE WINDS ${ }^{a}$

BY STABILITY CLASSb
BILLINGS, MONTANA

Direction	A	B	c	D	E	F
N	0.0	0.1	0.4	4.5	1.5	1.2
NNE	0.0	0.2	0.3	3.9	0.8	0.5
NE	0.0	0.2	0.6	5.6	0.7	0.5
ENE	0.0	0.3	0.8	3.2	0.5	0.5
E	0.0	0.4	0.7	1.4	0.6	0.4
ESE	0.0	0.2	0.4	0.6	0.4	0.2
SE	0.0	0.2	0.3	0.6	0.5	0.2
SSE	0.0	0.3	0.4	0.5	0.3	0.3
S	0.1	0.5	1.0	1.1	0.7	0.7
SSW	0.0	0.4	1.0	2.1	1.1	0.5
SW	0.0	0.3	1.9	10.0	3.2	0.5
WSW	0.0	0.3	1.0	13.9	1.8	0.5
W	0.0	0.1	0.3	4.2	0.7	0.2
WNW	0.0	0.1	0.2	4.4	0.5	0.2
NW	0.0	0.1	0.3	5.2	0.6	0.3
NNW	0.0	0.1	0.3	3.0	0.5	0.4
TOTAL	0.1	3.8	9.9	64.2	14.4	7.1
Total number of observations	50	587	1491	9399	2106	1054
a National Weather Service data, 1/67-12/71 Calms have been statistically distributed according to the frequency of low wind speed occurrences						

TABLE 22

TOTAL RELATIVE FREQUENCY DISTRIBUTION OF SURFACE WINDS ${ }^{\text {a }}$ BY STABILITY CLASS ${ }^{\text {b }}$ MILES CITY, MONTANA

Direction	A	B	C	D	E	F
N	0.0	0.2	0.4	4.7	0.8	0.3
NNE	0.0	0.1	0.3	3.4	0.9	0.4
NE	0.0	0.1	0.4	3.6	1.0	0.5
ENE	0.0	0.1	0.5	2.7	0.7	0.6
E	0.0	0.2	0.5	1.6	0.5	0.6
ESE	0.0	0.2	0.5	1.0	0.3	0.4
SE	0.0	0.5	1.0	2.9	1.1	0.9
SSE	0.0	0.5	1.6	4.4	3.0	1.4
S	0.1	0.6	1.4	3.3	2.7	2.3
SSW	0.0	0.1	0.5	0.8	0.5	0.5
SW	0.0	0.3	0.4	1.0	0.4	0.4
WSW	0.0	0.2	0.6	2.3	0.6	0.4
W	0.0	0.3	0.8	5.1	1.3	0.8
WNW	0.1	0.2	0.6	5.3	1.4	0.6
NW	0.0	0.2	0.6	8.4	1.2	0.8
NNW	0.0	0.1	0.5	6.2	0.6	0.4
TOTAL	0.2	3.9	10.6	56.7	17.0	11.3
Total Number of observations	133	651	1603	8376	2496	2064
${ }^{\text {a }}$ National Weather Service data, 1/67-12/71 b Calms have been statistically distributed according to the frequency of low wind speed occurrences.						

TABLE 23

MEAN ANNUAL WIND SPEED

 BY STABILITY CLASS ${ }^{\text {a }}$ BILLINGS, AND MILES CITY, MONTANA$$
(1 / 67-12 / 71)
$$

Stability Class	Mean Wind Speed (mph) Billings Miles City	
A	4.8	4.7
B	6.6	6.9
C	8.7	8.7
D	12.0	12.3
E	8.2	8.4
F	5.6	5.9

$a_{\text {National }}$ Weather Service Data, 1/67-12/71.

TABLE 24

SUMMARY OF AIR QUALITY
BACKGROUND AROUND COLSTRIP SITE ${ }^{\text {a }}$

Station	Particulates (ug/m $/ \mathrm{m}^{3} /$ day)	$\begin{gathered} \text { Dustfall } \\ \text { (tons/mi }{ }^{2} / \text { month) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{SO}_{3} \\ \left(\mathrm{mg} / 100 \mathrm{~cm}^{2} / \text { day }\right) \end{gathered}$
Colstrip 4.5 SSE	35.5	9.6	0.05
Forsyth	68.6	18.3	0.09
Miles City	71.5	24.0	0.08
Broadus	39.7	45.2	0.09
Hardin	58.4	9.8	0.10
Lame Deer	(-)	10.7	0.06

[^7]TABLE 25
TOTAL SUSPENDED PARTICULATES SARPY CREEK AREA

$\begin{gathered} \text { Date } \\ (1975) \\ \hline \end{gathered}$	$\begin{gathered} \text { TSP }\left(\mu g / \mathrm{m}^{3}\right) \\ \text { High-Volume Air } \\ \text { Sampler Station il } \\ \hline \end{gathered}$	$\begin{gathered} \text { TSP }\left(\mu \mathrm{g} / \mathrm{m}^{3}\right) \\ \text { High-Volume Air } \\ \text { Sampler Station }{ }^{2} 2 \end{gathered}$	$\begin{gathered} \text { TSP }\left(\mu \mathrm{g} / \mathrm{m}^{3}\right) \\ \text { High-Volume Air } \\ \text { Sampler Station } ⿰ ⿰ 三 丨 ⿰ 丨 三 一 3 \end{gathered}$
2／17－2／13	（－）	（－）	（－）
2／18－2／19	6	（－）	（－）
2／23－2／24	7	（－）	（－）
3／1－3／2	22	（－）	（－）
3／7－3／8	36	（－）	（－）
3／13－3／14	27	（－）	（－）
3／19－3／20	74	（－）	（－）
3／25－3／26	61	（－）	（－）
3／31－4／1	（－）	（－）	（－）
4／6－4／7	6	（－）	（－）
4／12	（－）	（－）	（－）
4／18	（－）	（－）	（－）
4／24	（－）	18	34
4／30	（－）	3	25
5／6	（－）	17	44
5／12	（－）	39	（－）
5／18	（－）	17	47
5／24	（－）	25	38
5／30	（－）	42	235
6／5	（－）	40	（－）
6／11	（－）	20	131
6／17	（－）	27	86
6／23	（－）	35	207
6／29	（－）	34	82
7／5	（－）	（－）	61
7／11	（－）	76	（－）
7／17	（－）	31	82
7／23	（－）	108	（－）
7／29	（－）	205	1，132
8／4	（－）	46	323
8／10	（－）	92	178
8／16	（－）	40	94
8／22	（－）	（－）	（－）
8／28	（－）	82	302

TABLE 25

TOTAL SUSPENDED PARTICULATES
 SARPY CREEK AREA (1975)

Date	$\begin{gathered} \text { TSP }\left(\mu \mathrm{g} / \mathrm{m}^{3}\right) \\ \text { High-Volume Air } \\ \text { Sampler Station }{ }^{\text {R }} 2 \end{gathered}$	$\begin{gathered} \text { TSP (} \mu \mathrm{g} / \mathrm{m}^{3} \text {) } \\ \text { High-Volume Air } \\ \text { Sampler. Station }{ }^{2} 4 \end{gathered}$
9/3/75	73	
9/9/75	(-)	
9/15/75	63	
9/21/75	22	S10-e
9/27/75	24	$37^{\text {a }}$
10/3/75	26	21
10/9/75	27	16
10/15/75	14	12
10/21/75	19	7
10/27/75	12	11
11/2/75	11	8
11/9/75 ${ }^{\text {b }}$	16	17
11/14/75	(-)	18
11/20/75	29	7
11/26/75	11	8

${ }^{\text {a }}$ First date of data collection at new location of Station \#3 on Tract II ${ }^{\mathrm{b}}$ Sampling date out of sequence
(-) Missing data

page 1 of 2

TABLE 26 sarpy creek area

Data Collection Period	Settleable Particulates ${ }^{\text {a }}$ (tons/mile ${ }^{2} /$ month)		
	Sampling Station \#1	Sampling Station \#	Sampling Station Station \#3
4/24/75-5/23/75	4.157	3.734	$(-)$
5/23/75-6/20/75	7.609	8.157	(-)
6/20/75-7/21/75	4.691	$20.500^{\text {b }}$	17.884
7/21/75-8/19/75	26.135	40.222	120.69

TABLE 26

SETTLEABLE PARTICULATES (DUSTFALL)

SARPY CREEK AREA

Data Collection Period	Settleable Particulates (tons/mile ${ }^{2} /$ month $)$		
	Sampling	Sampling	Sampling
	$\begin{gathered} \text { Station } \\ \quad \# 1 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Station } \\ & \text { \#2 } \end{aligned}$	$\begin{gathered} \text { Station } \\ \# 3 \\ \hline \end{gathered}$
8/19/75-9/18/75	70.153	90.547	85.527
9/18/75-10/17/75	2.949	8.126	16.048

FEDERAL AND STATE AIR QUALITY STANDARDS
The Federal and State of Montana air quality standards are contained in Tables 27 and 28, respectively.

TABLE 27

FEDERAL PRIMARY AND SECONDARY AIR QUALITY STANDARDS ${ }^{\text {a }}$

Pollutant	Averaging Time	Federal Primary Standard	Federal Secondary Standard
Nitrogen dioxide ${ }^{\text {e }}$	Annual Average	$\begin{aligned} & 0.05 \mathrm{ppm}^{\mathrm{b}} \\ & \left(100 \mathrm{\mu g} / \mathrm{m}^{3}\right)^{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 0.05 \mathrm{ppm} \\ & \left(100 \mathrm{\mu g} / \mathrm{m}^{3}\right) \end{aligned}$
Sulfur Dioxide	Annual Average	$\begin{aligned} & 0.03 \mathrm{ppm}_{3} \\ & \left(80 \mu \mathrm{~g} / \mathrm{m}^{2}\right) \end{aligned}$	$(-)$
	24 Hour	$\begin{aligned} & 0.14 \mathrm{ppm} \\ & \left(365 \mathrm{\mu g} / \mathrm{m}^{3}\right) \end{aligned}$	(-)
	3 Hour	$(-)$	$\begin{aligned} & 0.05 \mathrm{ppm} \\ & \left(1300 \mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{aligned}$
Suspended	Annual Geometric		
Particulate	Mean 24 Hour	$\begin{aligned} & 75 \mu \mathrm{~g} / \mathrm{m}^{3} \\ & 260 \mu \mathrm{~g} / \mathrm{m}^{3} \end{aligned}$	$\begin{aligned} & 60 \mu \mathrm{~g} / \mathrm{m}^{3} \\ & 150 \mu \mathrm{~g} / \mathrm{m}^{3} \end{aligned}$
Hydrocarbons (corrected for methane)	$\begin{aligned} & 3 \text { Hour } \\ & 6-9 \text { a.m. } \end{aligned}$	$\begin{aligned} & 0.24 \mathrm{ppm}^{\mathrm{f}} \\ & \left(160 \mathrm{\mu g} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & 0.24 \mathrm{ppm} \\ & \left(160 \mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{aligned}$
Photochemical Oxidants	1 Hour	$\begin{aligned} & 0.08 \mathrm{ppm} \\ & \left(160 \mathrm{\mu g} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & 0.08 \mathrm{ppm} \\ & \left(160 \mathrm{\mu g} / \mathrm{m}^{3}\right) \end{aligned}$
Carbon Monoxide	8 Hour	$\begin{aligned} & 9 \mathrm{ppm} \\ & \left(10 \mathrm{mg} / \mathrm{m}^{3}\right) \mathrm{d} \end{aligned}$	$\begin{aligned} & 9 \mathrm{ppm} \\ & \left(10 \mathrm{mg} / \mathrm{m}^{3}\right) \end{aligned}$
	1 Hour	$\begin{aligned} & 35 \mathrm{ppm} \\ & \left(40 \mathrm{mg} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & 35 \mathrm{ppm} \\ & \left(40 \mathrm{mg} / \mathrm{m}^{3}\right) \end{aligned}$

All standards except annual average are not to be exceeded more than once a year.
a From The Bureau of National Affairs, 1975
b ppm $\overline{\overline{3}}$ parts per million
c $\mu \mathrm{g} / \mathrm{m}_{3}^{3}=$ micrograms per cubic meter
dg/m ${ }^{3}$ milligrams per cubic meter
e Nitrogen dioxide is the only one of the nitrogen oxides
f considered in the ambient standards.
Maximum 3-hour concentration between 6-9 a.m.

STATE OF MONTANA AMBIENT AIR QUALITY STANDARDS ${ }^{a}$

Pollutants	(Maximum permissible Standards concentrations)
Sulfur dioxide	0.02 ppm , maximum annual average $0.10 \mathrm{ppm}, 24$-hour average, not to be exceeded over 1 percent of the days in any 3 -month perio 0.25 ppm not to be exceeded for more than 1 hour in any 4 consecutive days
Reactive sulfur (sulfation)	0.25 milligrams sulfur trioxide per 100 square centimeters per day, maximum annual average 0.50 milligram sulfur trioxide per 100 square centimeters per day, maximum for any l-month period
Suspended sulfate	4 micrograms per cubic meter of air, maximum allowable annual average 12 micrograms per cubic meter of air, not to be exceeded over 1 percent of the time
Sulfuric acid mist	4 micrograms per cubic meter of air, maximum allowable annual average 12 micrograms per cubic meter of air, not to be exceeded over 1 percent of the time 30 micrograms per cubic meter of air, hourly average, not to be exceeded over 1 percent of the time
Hydrogen sulfide	$0.03 \mathrm{ppm}, 1 / 2$-hour average, not to be exceeded more than twice in any 5 consecutive days $0.05 \mathrm{ppm}, 1 / 2$-hour average, not to be exceeded over twice a year

[^8]| Pollutants | (Maximum permissible
 Standards concentrations |
| :---: | :---: |
| Total suspended | 75 micrograms per cubic meter of air, annual geometric mean 200 micrograms per cubic meter of air, not to be exceeded more than 1 percent of days a year |
| Settle particulate (dustfall) | 15 tons per square mile per month, 3 -month average in residential areas
 30 tons per square mile per month, 3 -month average in heavy industrial areas |
| Lead | 5.0 micrograms per cubic meter of air, 30-day average |
| Beryllium | 0.01 micrograms per cubic meter of air, 30-day average |
| ```Fluorides, total (as HF) in air``` | 1 part per billion parts of air, 24-hour average |
| Fluorides (as F) in forage for animal consumption dry weight basis | 35 parts per million |
| Fluorides (gaseous) | 0.3 micrograms per square centimeter per 28 days |

APPENDIX B

Data on Sound

Page
Data acquisition analysis B-2
TABLES

1. Summary of ambient sound levels B-42. A-weighted sound levels from operation mobileand stationary mine equipmentB-8
FIGURES
A-weighted sound level time history of train(empty) passby or measured at 130 feet fromtrainB-9
2. A-weighted sound level time history of train passby (loaded) as measured 130 feet from train. B-10

DATA ACQUISITION AND ANALYSIS
This section describes the instrumentation, data acquisition and analysis of the ambient sound survey conducted at the proposed mine site.

The data acquisition system consisted of a General Radio omnidirectional one-inch electret condenser microphone with windscreen, a General Radio Type 1933 Sound Level Meter and Octave Band Analyzer, and a Nagra 4.2L single track magnetic tape recorder. The General Radio Type 1933 Sound Level Meter and Octave Band Analyzer were used as a linear amplifier and step attenuator. Ambient sound was recorded on Scotch 177 magnetic tape.

The above system was calibrated before each recording by means of a reference signal at 1000 Hertz of 114 dB generated by a General Radio Type 1562A Sound Level Calibrator.

The microphone was mounted on a tripod four feet above the ground surface and at least ten feet from any sizable sound reflecting surfaces in order to avoid major interference with sound propagation.

Most recordings of the background ambient sound were 15 minutes in length. However, if a large number of intrusions, such as aircraft over-flights or wind induced system overloads, occurred, the measurement period was extended.

Meteorological parameters such as wet bulb and dry bulb temperature, barometric pressure, and wind speed and direction were noted during each recording period. If high relative humidity (over 90\%) or excessive wind speed (over 12 miles per hour) occurred during the measurement period, the recording session was terminated. The tape recorded data were returned to the acoustic laboratory at Dames \& Moore for analysis, using a General Radio Real-Time Analyzer and a Digital Equipment Corporation mini-computer shown schematically in Figure G-55.

During the recording sessions, any unusual intrusions, such as wind pop over the microphone or clipping due to overloads, were noted by the engineer monitoring the signal input to the tape. Such intrusions are not characteristic of the acoustic environment, and are deleted during the analysis phase. Each sample tape is used to obtain a cumulative distribution of A-weighted sound levels.

Sound level recordings were made at the near field of various mining equipment. Sound level recordings of coal car passbys were also obtained. From these recordings, one-third octave band sound pressure level spectra and A-weighted sound levels of the major noise sources during the operation of the coal mine were obtained.

TABLE 1

SUMMARY OF AMBIENT SOUND LEVELS

Weekdays

Location
Daytime
(0700-1800)
Evening
Nighttime
(1800-2200)
(2200-0700)

2	7/30/75	1735	7/31/75	1940	7/31/75	0315
L_{90}	4		37			
L_{50}	4		39			
L_{10}	4		44			
$\mathrm{L}_{\text {eq }}$						
L_{d}						42.8
L_{n}						44.6
L_{dn}						40.8
3	7/30/75	1120	7/31/75	2040	7/30/75	2345
L_{90}	3		31			
L_{50}	3		31			
L_{10}	3		40			
${ }_{\text {Leq }}$						
${ }^{\mathrm{L}} \mathrm{d}$						31.1
L_{n}						33.6
$L_{\text {dn }}$						41.0

TABLE $\quad 1$

Weekdays

Location	$\begin{gathered} \text { Daytime } \\ (0700-1800) \end{gathered}$		$\begin{aligned} & \text { Evening } \\ & (1800-2200) \end{aligned}$		$\begin{aligned} & \text { Nighttime } \\ & (2200-0700) \end{aligned}$	
4	7/30/75	1344	7/31/75	2140	7/31/75	. 0105
L_{90}	29		29		36	
L_{50}	32		30		39	
$\mathrm{L}_{10} 10$	40		32		42	
${ }_{\text {L }}$ eq	35.0		30.7		40.1	
L_{d}						34.2
L_{n}						40.1
$L_{\text {dn }}$						46.0
5	7/31/75	1440	7/30/75	1845	7/31/75	0220
L_{90}	41		51		41	
L_{50}	44		52		42	
${ }_{L}{ }_{10}$	50		54		43	
$\mathrm{L}_{\text {eq }}$	50.4		52.5		42.2	
I_{d}						51.1
L_{n}						42.2
$L_{\text {dn }}$						51.5

TABLE 1
Sheet 3 of 4

Weekends

Weekends

A-WEIGHTED SOUND LEVELS FROM OPERATION MOBILE AND STATIONARY MINE EQUIPMENT

Equipment	Distance $^{\text {a }}$	Sound Level in dBA
1. Dragline	100 ft	74
2. Two Front End Loaders	55 ft	71
And 100-Ton Truck	75	71
3. 100-Ton Truck (Loaded		
Traveling at about 12 mph	30 ft	80
4. 100-ion Truck (Unloaded)		
Traveling at about 20 mph	30 ft	77
5. Tractor	100 ft	72
6. Water Wagon Traveling at $10-12 \mathrm{mph}$	30 ft	75
7. Coal Drill Rig	30 ft	90
8. Scraper Traveling at about 15 mph	20 ft	81
9. Overburden Drill Rig	40 ft	65
10. Primary Coal Crusher	50 ft	57
11. Secondary Coal Crusher	50 ft	73
12. Conveyor Belt	50 ft	63
13. Loading of Coal Cars	50 ft	78
${ }^{\text {a }}$ Distance in feet from sound so	that measu	nt was obtained.

A-Weichted sound level time history of train (empty) passby as measured at 130 feet FROM TRAIN
Note: One-third octave band sound pressure level spectrum at the position of the pointer is presented in Appendix G, Figure G-52.

Note: One-third octave band sound pressure level spectrum at the position
of the pointer is presented in Appendix G, Figure G-53. of the pointer is presented in Appendix G, Figure G-53. AT 130 FEET FROM TRAIN

figure A-WEIGHTED SOUND LEVEL TIME HISTORY OF TRAIN PASSBY (LOADED) AS MEASURED In A-NETGHTED SOUND LEVEL TIGE HISTORY 2 (RIN PASSBY (LOADED) AS MEASURED
 -

90
80
70
60
50
40

APPENDIX C

Data on Water Resources

Page
Methods of Investigation, surface water hydrology C-4
Water Quality: Methods of sampling and analyses C-6
TABLES

1. Examples of equations used to estimate average annual runoff and peak discharges or drainages in or near Tracts II and III C-8
2. Discharge record, Sarpy Creek near Hysham, Montana, 1974 water year C-10
3. Discharge measurements, Sarpy Creek near Hysham, Montana, and Tullock Creek near Bighorn, Mon- tana, September, 1974 to January, 1976 C-11
4. Records of partial record crest-stage gages in the Tullock and Sarpy Creek basins C-12
5. Discharge measurements made during this investi- gation, stations SW-1, SW-2, SW-4, and SW-5, in the project area C-13
6. Irrigation water rights filed on Sarpy Creek and tributaries C-15
7. Sarpy Creek sampling locations C-21
8. Chemical analyses of Sarpy Creek waters C-22
9. Chemical analyses of water in the area of West- moreland Resources' coal reserves, southeastern Montana C-23
10. Chemical analyses, Sarpy Creek near Hysham, Mon- tana, December 1974, to August 1975. C-28
11. Water quality analyses of Tullock and Sarpy Creeks C-37
12. Tabulation of some selected trace element con- centrations in coals taken from Rosebud, Robinson, and McKay seams C-38
13. Selected trace element concentrations, West- moreland Resources - Tract III, Sarpy Creek, Stray \#1, Stray \#2, Rosebud-McKay, Robinson. C-39
14. Trace element concentrations of coals in the project area. C-40
15. Chemical analyses of water from strip pit, Big Sky Mine, Rosebud County, Montana, 1972-73 C-42
16. Surface water quality monitoring locations C-45
17. Chemical analyses from CT\&E Stations, April 1973 to May 1975 C-46
18. Chemical analyses of surface water collected at CT\&E location 1, January to October 1975 C-60
19. Chemical analyses of surface water from gaging stations SW-1 through SW-7 in the project area, March through July, 1975 C-67
20. Chemical analyses of surface water from gaging stations, November, 1975 C-75
21. Chemical analyses of sediment pond water on Tract III from February 1974 to October 1975 C-76
22. Suspended sediment concentrations Bighorn and Yellowstone Rivers C-79
23. Streamflow and suspended sediment concentrations on Sarpy Creek as recorded by U.S. Geological Survey C- 80
24. Suspended sediment concentrations ($\mathrm{Mg} / 1$) deter- mined at surface water stations SW-1 through SW-7 in the project area. C-81
25. Well data for the project area C- 82
26. Well data for the Sarpy Creek area near West- moreland Resources coal reserves, southeastern Montana C-93
27. Spring data for project area C-100
28. Spring data for the Sarpy Creek area near the Westmoreland Resources coal reserves, south- eastern Montana C-108
29. Vertical permeability of core samples C-113
30. Transmissivity and permeability of geologicunits tapped by observation wells in the pro-ject area.C-114
31. Geologic formations and their hydrologic proper-ties in the Sarpy Creek and Tullock drainages..... C-115
32. Chemical quality of water data for wells andsprings on Westmoreland Resources Tract III....... C-118
33. Chemical analyses of water in the area ofWestmoreland Resources coal reserves, south-eastern Montana.C-123
34. Observation wells near Westmoreland Resources Tract III coal reserves, Sarpy Creek area, southeastern Montana. C-128
35. Chemical analyses from wells near Westmore-land Resources Tract III coal reserves, SarpyCreek area, southeastern Montana.C-129
36. Chemical analyses of ground water from selectedmonitoring wells in the project area, July andOctober, 1974, and August, 1975C-144
37. Chemical analyses of ground water from selected monitoring wells in the project area from Octo- ber and November, 1975 C-153
38. Chemical analyses of ground water from East Fork Sarpy Creek alluvial wells No. 12 and 13. C-162

Appendix C

METHOD OF INVESTIGATION

Surface-water hydrology.
Numerous published and unpublished reports and studies were reviewed and data therefrom analyzed prior to and during preparation of the surface-water hydrology portion of this environmental statement. The published reports consisted of: 1) Previously prepared environmental statements for coal development in the immediate area of the Crow Ceded Area, 2) The Environmental Baseline Studies for Crow Indian Coal Leases prepared by Westmoreland Resources, and 3) Reports of the U.S. Geological Survey and private consulting firms. Sources of existing unpublished data were the U.S. Geological Survey, Water Resources Division, Billings, Montana, for the 1974 , 1975 streamflow data on Tullock and Sarpy Creeks and the U.S. Geological Survey, Water Resources Division, for unpublished studies which describe techniques of estimating streamflow and peak discharges in streams of Montana and the Upper Missouri River basin.

There exists several varied techniques with which flow characteristics in ungaged watersheds can be estimated. These techniques were used to estimate mean runoff and peak discharges within the project area due to the fact that no long-term surface-water data are available in the immediate area. These techniques are discussed in the various referenced material, hence will not be described in detail in this statement. In that several techniques for estimating mean annual flows were available, none were allowed to stand by themselves. Hence, the various techniques were used to compute estimated values; extreme values were disregarded and the remainder averaged. The result of the computations should yield
a reasonable estimate of actual conditions. The same approach was used for determining peak discharges from drainage areas located within the project area.

The technique most widely used in recent years has been to relate certain flow characteristics to specific basin and meteorologic parameters and hence describe the characteristics through use of derived equations. Particular basin and meteorological parameters include drainage area size, main channel length and slope, and probable recurrances of certain rainfall intensities. Also, in recent years significant results have been obtained by relating flow characteristics to channel dimensions, in particular the widths and depths of the active channel and depositional bars both of which are identifiable and measurable features of stream channels. These particular characteristics of stream channel geometry are more adequately described in the references Moore $(1968,1974)$, Hedman, Moore, and Hejl (1974), and Hedman and Kastner (1974). The use of regression techniques and resulting equations to describe various flow characteristics has proved quite successful and has become a useful tool to the environmentalist to estimate flow characteristics in areas where little or no data are available. One of the byproducts of regression analyses are certain statistics which measure the reliability of the resulting regression equations. One such statistic is the standard error of estimate. Normally expressed as a percentage, the standard error indicates the limit above and below the computed value wherein lie two-thirds of the points used to derive the subsequent equation. Listed in Appendix C, Table 1 are some of the equations used to describe certain flow characteristics within the project area, along with the standard error of estimate for each equation and the referenced material from which the equations were obtained.

Appendix \qquad
Water Quality: Methods of Sampling and Analyses

Methods of sampling and analyses of all constituents reported in the Westmoreland Resources monitoring program are given in Westmoreland Resources, 1975 (1), Appendix F, p. F-6 and F-7 and are quoted below:
"Most measurements of temperature, specific conductance, and dissolved oxygen, and some pH measurements were made in the field at the time of sample collection, using portable field instrumentation. Suspended sediment samples were collected by a hand-held, standard, suspended sediment collector (depth-integrating suspended-sediment wading-type hand sampler, U.S. DH-48).

Methods and materials used for sample collection, sample preservation, and analysis were generally those described in Standard Methods for the Examination of Water and Wastewater, Thirteenth Edition, 1971, and also those recommended in U.S. EPA Manual EPA-625-16-74-003, Methods for Chemical Analysis of Water and Wastewater (1971). The following table gives the parameters and method of laboratory analysis of samples collected during 1975. Determination of the suspended sediment constant weight was done by a qualified commercial testing laboratory in accordance with procedures recommended by the U.S. Geological Survey Laboratory at Worland, Wyoming (H. Fabricius and S. Druse, personal communication, 1975).

Parameter	Analytical Technique
Bicarbonate.	"Standard Methods" 13th edition. 1102.
Carbonate	Potentionctric method
Hydroxide	
Alkalinity	
Chloride	"Standard Methods" 13th edition, 1112A Argentometric method
Nitrate	"Standard Methods" 13 th edition, 1133, Phenoldisulfonic method (Cadmiun reduction method, tentative)
Nitrite	Sulfanilamide-N-(I-naphthy 1)ethylenediamine dihydrochloride metbis
Fluoride	Specific Ion Electrode, Orion
Ortho phosphate	Potassium antimonyl tartate-amoniln molybdate-ascorbic method, EPA
TDS and evaporated sollds	Evaporation method
Hardness	Calculation
Non-carbonate Hardness	
Carbonate Hardness	
011 and Crease	"Standard Methods" 13th edition, 137. Frion Extraction method
SAR	Calculation
Acidity	"Standard Methods" 13th edition, 1101, Phenolphthalein acidity at boiling point
Calciua	Atomic Absorption Spectrophotometer
Magnesium	and Plasmu Euission Spectrometer
Sodiun	
Potassiun	Atomic Absorption Spectrophotometer
Mercury	Cold Vapor
Selenium, arsenic	Gaseous Bydride method
Iron, Manganese, Aluminum, Zinc, Chromium, Nickel.	Plasma Emission Spectrometer
Cadmium, Strontiun, Lead, Vanadium, Borou	
COD	"Standard Methods" 13th edition, 1220
100	"Standard Methods" 13th editioa. 1219
TSS	"Standard Methods" 13th edition, 1224C
Turbidity	Hach Iurbidiacter
p ${ }^{2}$	ph moter
Total Colifors	S tube or M-colifora agar
Fecal Coliform	mfe agar or EC broth
Sulfate	"Standned Kethods" 13th edition, Gravimetrle method with igaition of residue, 0156A

Table $1 .--$ Examples of equations used to estimate average annual runoff and peak discharges on drainages in or near Tracts II \& III.
a. Average annual runoff, Q_{a}, in acre-feet

$$
\begin{align*}
& \text { 1. } Q_{a}=37.9 \mathrm{~L}^{1.47}, \mathrm{Se}=53(\underline{1}) \\
& \text { 2. } \left.Q_{a}=77.0 \mathrm{~W}_{\mathrm{ac}}^{1.587}, \mathrm{Se}=47.7 \mathrm{(2} /\right) \\
& \text { 3. } \mathrm{Q}_{\mathrm{a}}=95.8 \mathrm{~W}_{\mathrm{ac}}^{1.455 \mathrm{D}_{\mathrm{ac}} 0.497, \mathrm{Se}=43.6} \tag{2}\\
& \text { 4. } \mathrm{Q}_{\mathrm{a}}=196 \mathrm{~W}_{\mathrm{db}}^{1.531}, \mathrm{Se}=33.5 \mathrm{(2/)} \\
& \text { 5. } Q_{a}=52.3 \mathrm{~A}^{1.08 \mathrm{P}_{24,2}}-2.918, \mathrm{Se}=71.4 \tag{2}
\end{align*}
$$

b. Peak discharge, Q_{n}, in cubic feet persecond ($n=$ recurrence interval, in years'

$$
\begin{equation*}
\text { 1. } Q_{2}=58.5 A^{0.449} S^{-0.466} P_{24,2}{ }^{2.40}, \mathrm{Se}=100 \tag{1/}
\end{equation*}
$$

2. $Q_{2}=5.01 W_{Q C}^{1.497}, \quad \mathrm{Se}=56.9 \quad(3 /)$
3. $Q_{2}=6.94 \mathrm{~W}_{\mathrm{db}} 1.537, \quad \mathrm{Se}=52.0 \quad(3 /)$
4. $Q_{2}=9.91 A^{0.940} P_{24,2}-3.931, \quad \mathrm{Se}=88.5(3 /)$
5. $Q_{10}=367 \mathrm{~S}^{-0.365} \mathrm{~L}^{0.767}, \quad \mathrm{Se}=88(1 /)$
6. $Q_{10}=47.0 W_{\mathrm{ac}}^{1.212}, \quad \mathrm{Se}=30.0 \quad(3 /)$
7. $Q_{10}=82.7 W_{d b}^{1.137}, \quad \mathrm{Se}=48.8 \quad(3 /)$
8. $Q_{10}=57.4 A^{0.718} \mathrm{P}_{24,2}-1.969, \mathrm{Se}=84.2 \quad(3 /)$
9. $Q_{50}=198 \mathrm{~W}_{\mathrm{ac}}^{1.027}, \mathrm{Se}=37.6 \quad(3 /)$
10. $\mathrm{Q}_{50}=390 \mathrm{~W}_{\mathrm{db}}^{0.892}, \quad \mathrm{Se}=64.2 \quad(3 /)$
11. $Q_{50}=121 \mathrm{~A}^{0.575}, \mathrm{Se}=83.6 \quad(3 /)$

Table 1.-- continued
12. $Q_{100}=333 \mathrm{~W}_{\mathrm{ac}}^{0.959}, \quad \mathrm{Se}=44.2 \quad(3 /)$
13. $Q_{100}=307 \mathrm{~W}_{\mathrm{ac}}{ }^{1.07} \mathrm{D}_{\mathrm{ac}}{ }^{-0.467}, \quad \mathrm{Se}=37.8 \quad(3 /)$
14. $Q_{100}=683 \mathrm{~W}_{\mathrm{db}}^{0.804}, \mathrm{Se}=71.6 \quad(3 /)$
15. $Q_{100}=224 A^{0.529}, \quad \mathrm{Se}=84.0 \quad(3 /)$

Footnotes - 1/ from Boner and Buswell, 1970, region B; $2 /$ from Hedman and Kastner, 1974, region A; $2 /$ from Hedman and Kastner, 1974, region 1.
where $L=$ length of main channel, in miles; $W_{a c}=$ width of active channel, in feet; $D_{a c}=$ depth of active channel, in ${ }^{a c}$ feet; $W_{d b}=$ width between channel bars, in feet; $A=$ drainage area, in square miles; $S=$ main channel slope, in feet per mile; $P_{24,2}=$ rainfall, in inches, having probable recurrance interval of 2 years; $\mathrm{Se}=$ average standard error of estimate, in percent.

Table \qquad

06294940 Sarpy Creek near Hysham, Mt.
LOCATION. - Lat $46^{\circ} 14^{\prime} 12^{\prime \prime}$, long $107^{\circ} 08^{\prime} 03^{\prime \prime}$, in SE $\frac{4}{4}$ SE $\frac{1}{4} \sec .30$, T. $6 \mathrm{~N} .$, R. 37 E., Treasure County, on left bank $100 \mathrm{ft}(30 \mathrm{~m})$ upstream from bridge on FAS Route $415,0.8 \mathrm{mi}(1.3 \mathrm{~km})$ upstream from Hysham Canal, and 5.5 mi $(8.8 \mathrm{~km})$ southeast of Hysham.

DRAINAGE AREA. $-453 \mathrm{mi}^{2}\left(1,173 \mathrm{~km}^{2}\right)$.
PERIOD OF RECORD.--September 1973 to current year.
GAGE.-Water-stage recorder. Altitude of gage is $2,680 \mathrm{ft}(817 \mathrm{~m})$, from topographic map.
EXTREMES. --September 1973: No flow during period.
Water year 1974: Maximum discharge, $36 \mathrm{ft}^{3} / \mathrm{s}\left(1.02 \mathrm{~m}^{3} / \mathrm{s}\right) \mathrm{June} 10$, gage height, $5.88 \mathrm{ft}(1.792 \mathrm{~m})$; maximum gage height, $7.06 \mathrm{ft}(2.152 \mathrm{~m})$ Jan. 18 (backwater from ice); no flow for many days.

REMARXS.--Records fair except those for winter period, which are poor. Diversions for irrigation of about 870 acres ($352 \mathrm{~m}^{2}$) above station.

DISCHARGE, IN CUBIC FEET PER SECONB, WATER YEAR OCTOAER 1973 TO SEPTEMBER 1974

PEAK DISCHARGE (BASE, 100 CFS). --No peaks above base.

NOTE.-Stage-discharge relation affected by ice Nov. 24 to Feb. 19.
(From U.S. Geological Survey, 1974)

Table 3.--Discharge Measurements, Sarpy Creek
near Hysham, Montana, and Tullock Creek near Bighorn, Montana, September, 1974 to January, 1976. (a)

Sarpy Creek near Hysham, Montana (06294940)

Date	Discharge (cfs)	Date	Discharge (cfs)
Sept. 23, 1974	0.0	Feb. 26	178.0
Oct. 18	0.0	Mar. 3	387.0
Nov. 1	0.0	Apr. 1	15.5
Nov. 6	0.0	June 2	11.4
Dec. 3	0.28	July 9	3.4
Jan. 6, 1975	0.58	Aug. 12	0.25
Jan. 19	193.0	Sept. 9	0.0
Jan. 20	392.0	Sept. 13	0.0
Jan. 22	160.0	Oct. 14	. 02
Jan. 24	57.6	Nov. 4	. 62
Feb. 3	5.37	Dec. 1	. 77
		Jan. 13, 1976	1.41

Tullock Creek near Bighorn, Montana (06294690)

Date
Aug. 12, 1974
Sept. 12 0.0
Oct. $18 \quad 0.0$
Oct. 220.0
Nov. $1 \quad 1.86$
Nov. 8 . 11
Dec. 30.49
Jan. 6, 1975
Jan. $10 \quad 672.0$
Jan. $19 \quad 527.0$
Jan. $23 \quad 203.0$
Jan. $28 \quad 43.9$
Feb. $26 \quad 30.1$

Date
Mar. 3
Mar. 4
Mar. 17
Apr. 23
May 10
June 11
July 14
Aug. 19
Aug. 27 . 33
Sept 13
Sep. 13 . 28
Oct. 29 . 32
Nov. $18 \quad 1.40$
Jan. 15, 1976

Discharge (cfs)
1160.0
403.0
49.4
28.5
69.1
9.54
12.6
0.92
.33
. 28
3.10
(a) Provisional data subject to change. Data from U.S. Geological Survey, Water Resources Division, Billings, Montana.

Table 4.-- Records of partial record crest-stage gages in the Tullock and Sarpy Creek basins.

Sarpy Creek tributary near Colstrip, Mt. (06294930)
Location. --Lat $45^{\circ} 54^{\prime} 54^{\prime \prime}$, long $107^{\circ} 07^{\prime} 57^{\prime \prime}$, in $\mathrm{SW}^{\frac{1}{4}} \mathrm{SW}^{\frac{1}{4}} \mathrm{sec} .16, \mathrm{~T} .2 \mathrm{~N} .$, R. 37 E., Treasure County, at culvert on county road, 0.1 mi (0.2 km) north of the Treasure and Big Horn county line, 25 mi (40 km)
west of Colstrip.
Drainage area. $--4.44 \mathrm{mi}^{2}\left(11.5 \mathrm{~km}^{2}\right)$.
Records available. --October 1973 to current year. Gage.--Crest-stage gage installed Oct. 30, 1973. Altitude of gage is $3,120 \mathrm{ft}$ (951 m), from topographic map.
Annual maximum data.--

Water year	Date	Gage height (ft)	Discharge (cfs)
1972	--	4.33	194
1973	--	1.27	6
1974	--	--	(c)
1975	April 15, 1975	2.27	20

Tullock Creek tributary near Hardin, Mt. (06294600)
Location. --Lat $45^{\circ} 47^{\prime} 52^{\prime \prime}$, long $107^{\circ} 15^{\prime} 40^{\prime \prime}$, in $\mathrm{NW}^{\frac{1}{4}} \mathrm{NW}^{\frac{1}{4}}$ sec. 33, T. 1 N., R. 36 E., Big Horn County, at culvert on State Highway 384, 18 mi (30 km) northeast of. Hardin.
Drainage area. $--8.63 \mathrm{mi}^{2}\left(22.4 \mathrm{~km}^{2}\right)$.
Records available. --October 1973 to current year.
Gage. --Crest-stage gage installed Oct. 30, 1973. Altitude of gage is $3,180 \mathrm{ft}(969 \mathrm{~m})$, from topographic map.
Annual maximum data.--

Water year	Date	Gage height (ft)	Discharge (cfs)
1973	--	2.12	95
1974	June 8, 1974	1.75	Not determined
1975	April 15, 1975	2.34	100

DISCHARGE MEASUREMENTS MADE DURING THIS INVESTIGATION, STATIONS SW-1, SW-2, SW-4, AND SW-5, IN THE PROJECT AREA

Date		Discharge (cfs)			
		SW-1	SW-2	SW-4	SW-5
March	4, 1975				1.5
	5, 1975				1.0
	7, 1975	14.4	10.1	2.8	0.6
	8, 1975	15.9	12.7	2.2	
	9, 1975	10.7	4.0	1.4	0.5
	10, 1975	9.4	5.6		0.5
	11, 1975			1.7	
	12, 1975			1.3	
	13, 1975		6.0		0.8
	14, 1975	1.6	4.3	1.8	
	15, 1975		68.3		
	17, 1975	39.6		24.2	0.6
	18, 1975	19.4	63.9	26.2	
	19, 1975	30.4	78.1	19.7	0.4
	20, 1975	20.0	72.4	10.6	0.4
	21, 1975				0.4
	24, 1975		7.5	1.0	0.4
	25, 1975		7.4	1.0	0.4
	26, 1975	0.8	6.5	1.0	0.5
	27, 1975	1.0	6.3	1.0	
	28, 1975	1.0			
	30, 1975	1.0	3.8	1.2	0.6
	31, 1975	0.7	3.8	1.0	
April	1, 1975	0.7	3.3	1.0	
	2, 1975	0.7	3.1	1.5	0.3
	3, 1975	0.8	3.7	9.3	0.4
	4, 1975	0.8	8.3	5.4	0.3
	5, 1975	0.8	3.5	2.2	0.2
	7, 1975	0.8	6.7	1.2	0.2
	9, 1975	0.8	3.4	1.1	
	10, 1975	0.7	8.6	1.0	
	11, 1975	0.7	5.7	1.0	0.4
	12, 1975	0.7	6.1	1.0	
	13, 1975	0.8	7.8	1.1	0.4
	14, 1975	1.4	16.2	5.4	
	15, 1975	1.1	43.8	3.6	0.4
	16, 1975	2.3	40.1	1.5	0.4

Date

Date
Apri'l 17,1975
18,1975
19,1975
21,1975
22,1975
25,1975
30,1975

May 1, 1975
2, 1975
6, 1975
7, 1975
8, 1975
9, 1975
15, 1975
23, 1975
29, 1975
June 4, 1975
12, 1975
18, 1975
26, 1975
July 11, 1975
17, 1975
21, 1975
August 8, 1975
15, 1975
20, 1975
October 11, 1975

November 13, 1975 Standing water, no flowa
1.3
1.1
1.7
1.9
1.7
0.7
0.7
0.5
0.4
0.4
0.4
0.4
0.2
0.1
dry
dry
dry
dry
Standing
water, no
flow

Discharge (cfs)

Discharge (cfs)			
SW-1	$\underline{S W-2}$	$\underline{S W-4}$	$\underline{S W-5}$
1.4	31.2	1.2	0.4
1.0	11.4	1.2	0.4
0.8	10.6		
0.7	6.2	1.0	0.1
0.7	5.3	1.0	0.3
0.6	4.8	1.0	0.3
1.2	8.9	1.2	0.9

$0.7^{\text {b }}$
0.6
0.7

aFrozen

$\mathrm{b}_{\text {Frozen, }}$ flow beneath ice

$$
\begin{aligned}
& \text { TABLE } 6 \\
& \text { IRRIGATION WATER RIGHTS FILED ON SARPY CREEK AND TRIBUTARIES } \\
& \text { (SOMERS, } 1973 \text { SCHEDULE A) }
\end{aligned}
$$

$$
\text { Sheet } 1 \text { of } 6
$$

SChedule a IRRIGATION WATER RIGHTS FILED ON SARPY CREEK AND tributaries							
B00K	PAGE	APPROPRIATOR	LAND DESCRIFTION	WATERCOURSE	$\begin{aligned} & \text { DATE OF } \\ & \text { APPRO. } \end{aligned}$	CFS	REMARKS
BIG HORN COUITTY TWP IN RG 38E							
Misc 1		B. F. Hertzler	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	E. Fk. Sarpy Creek	8/9/19	10.00	
Misc A-T	452	Morgan L. Howell		East Sarpy Creek	9/24/06	7.50	RS1-533
BIG HORN COUNTY TWP $2 N$ RG 37E							
Mise 1	160	Hubert Nichols	35 SWSW	E. Fk. Sarpy Crcek	9/19/14	20.00	Also in T. 1N - R. 37 E
TREASURE COUNTY TWP 3N RG 37E							
1	40	C. R. Dick	$3 E_{\frac{1}{2}} E^{\frac{1}{2}}$	Sarpy Creek	1/24/08	12.50	RBIWRI-610
1	192	J. C. Gamble	9	Unnamed Coulee	10/1/27	5.00	
1	195	W. R. Nichols,	29	Rainwater Coulee	7/15/49	5.00	
1	196	W. R. Nichols,	32	Cox Coulee	7/15/49	5.00	
1	191	Otto J. Peterson	2	South Beaver Creek	6/20/46	5.00	Alsq-in T. 4N - R. 37E
TREASURE COUNTY TWP 4N RG 37E							
1	178	C. H. Lowry	33 SET	Sarpy Creek	3/1/40	7.50	
1	18	R. I. Lyon	$\begin{array}{lll} 3 & \text { Lot } 4-5 \\ 4 & \text { Lot } 8-9 \end{array}$	Sarpy Creek	8/6/06	5.00	BHWRI-491

Sheet 3 of 6 -

$\overline{\text { BCOK }}$	P^GE	APPROPRIATOR	LAND DESCRIPTION	WATERCOURSE	$\begin{aligned} & \text { DATE OF } \\ & \text { APPRO. } \end{aligned}$	CFS	REMARKS
TREASURE COUNTY TWP 4N RG 37E							
1	191	Otto J. Peterson		S. Beaver Creek	6/20/46	5.00	Also in T . 3N - R. 37 E
1	188	William R.E. Plummer	$28 \mathrm{~S}_{\frac{1}{2} \mathrm{SE}^{\frac{1}{4}}}$ $33 \mathrm{NE}_{\frac{2}{4}}$	Unnamed Coulee	8/12/46	20.00	
1	189	William R.E. Pluminer	$27 W_{\frac{1}{3}}^{1} W^{\frac{1}{4}}$	Unnamed Coulee	8/12/46	15.00	
1	190	William R. E. Plummer	$22 W_{\frac{1}{2}}^{2} W^{\frac{1}{4}}$	Unnamed Coulee	8/12/46	15.00	
1	243	J. D. Romine	10-11-12-13	E. Bear Creek	0/10/42	15.00	
Misc12	294	J. D. Romine	10-11-12-13	E. Bear Creek	$\begin{aligned} & 6 / 10 / 42 \\ & 7 / 7 / 51 \end{aligned}$	15.00	
1	17	William M. Selvidge	ge $9 E^{1} E_{2}^{1 / 2}$	Sarpy Creek	7/23/06	5.00	RBIVRI-489
TREASURE COUNTY TWP SN RG 37E							
1	61	Ezra Cleaver	17 SESW	Unnamed Coulee	9/22/09	5:00	REIVR2-87
1	115	Bert. T. Coleman	$22 W_{1 / 2}^{1}, S^{\frac{1}{2}} \mathrm{NE}^{\frac{1}{4}}$, SE ${ }^{1 / 4}$	Corral Creek	10/30/12	25.00	RBiNR2-37?
1.	76	C. L. Criswell	$\begin{aligned} & 8 \text { SESW } \\ & 17 E_{2}^{2} N W_{S} S_{S}, N E S W \end{aligned}$	Koskie Creek	10/19/10	25.00	RBINR2-186

9 ¥ロ ヶ चəəบS
TABLE 6

SCHEDULE A IRRIGATION WATER RIGHTS PILED ON SARPY CREEK AND TRIBUTARIES								
100K	PAGE	APPROPRIATOR	LAN	ND DESCRIPTION	WATERCOURSE	DATE OH APPRO.	CFS	REMARKS
TREASURE COUNIY TWP 5N RG 37E								
2	93	Geo. Criswell	8 17	$W_{1}^{1}{ }_{2} S E_{\frac{1}{4}}^{\frac{1}{4}}, S W N E{ }^{\circ}$ NWNE	Sarpy Creek	8/7/11	. 289	RBWR2-259
1	33	Loyd Criswell, etal		$W_{1}^{1} \mathcal{1}_{2} S E^{\frac{1}{4}}, S E S W$, SWNE ${ }^{1}{ }_{2} N W \frac{1}{4}, ~ N E S W$, NINE:	Sarpy Creek	9/17/07	50.00	RBWR1-577
1	181	Leo Ferguson	$\begin{aligned} & 20 \\ & 21 \end{aligned}$		Sarpy Creek	3/1/42	5.00	
1	116	Henry vander Pauwert	29	SE portion	Unnamed Creek	11/11/12	10.00	RBWR2-374
1	114	John vander Pauwert	30		Unnamed Creek	11/1/12	20.00	RBiVR2-371
1	111	John varder Pauwert, etal	30		Unnamed Creek	11/1/12	20.00	REW:22-369
1	152	Roy C. Sweetser	5	NWNW NENE	Sarpy Creek	6/2/19	3.00	Also in T. $O N-R \cdot 37 E$

Sheet 5 of 6

			IRRIGATION SARPY CRE	EDULE A ER RIGITTS FILED AND TRIBUTARI			
OK	PAGE	APPROPRIATOR	LAND DESCRIPTION	WATERCOURSE	DATE OF APPRO.	CHS	REYARKS
TEEASURE COUNTY TWP 6N RG 37E							
1	174	Ray Garverich	$30 \mathrm{~N}_{2}^{2} \mathrm{SE}_{\frac{1}{4}}^{1}, \mathrm{NESW}$, $E_{2}^{1} \mathrm{NW}^{\frac{3_{4}^{4}}{4}}, W_{2}^{\frac{1}{2}} \mathrm{NE}_{4}^{\frac{1}{4}}$	Sarpy Crack ${ }^{\text {P }}$	3/5/38	40.00	
1	143	Edward Kimball		Sarpy Crack	3/12/19	10.00	RBWR3-12
1	68	C. W. Lyndes	$31 \mathrm{E}^{\frac{1}{2}} \mathrm{NE}^{\frac{1}{4}}$	Butte Creck	4/1/10	5.00	RBNR2-124
TREASURE COUNTY TWP 6N RG 37E							
1	152	Roy C. Sweetser	$\begin{array}{ll} 31 & E^{1} \mathrm{~S}_{2}^{2} \mathrm{SE}^{\frac{1}{4}} \\ 32 \mathrm{~W}^{2} \\ \mathrm{~S}^{\frac{1}{4}} \end{array}$	Sarpy Creek	6/2/19	3.00	$\begin{aligned} & \text { Also in } T . \\ & 5 \mathrm{~N}-\mathrm{R} .37 \mathrm{E} \end{aligned}$
1	39	John M. Vail	30 W $\frac{1}{2}$ NE ${ }^{\frac{1}{4} \text {, NWNE }}$	Sarpy Creek	2/15/08	7.50	RBiNR1-603
1	80	John M. Vail	$30 W^{\frac{1}{2}} \mathrm{NE}^{\frac{1}{4}}$	Unnamed Creek	10/28/10	. 289	RBWR2-196
1	150	John M. Vail	$\begin{aligned} & 30 \text { SWSE } \\ & 31 \text { NWSE } \end{aligned}$	Sarpy Creek	5/29/19	2.00	
1	151	John M. Vail	30 W $\frac{1}{2}$ NE $\frac{1}{6}$, NWSE, NESW	Sarpy Creek	$5 / 29 / 19$	2.00	

Table 7 Sarpy Creek Sampling Locations

Sample Description	Location	Remarks
East Sarpy	Below East Sarpy Bridge	Water hole contained fish (cyprinids and suckers)
Main Sarpy No. 1	300 ft . above confluence of Main and East Sarpy Creek	Water sampled from pool, no surface flow at this point.
Main Sarpy No. 2	Above old ranch headquarters, NE $\frac{1}{4} N E \frac{1}{4}$, section $28, \mathrm{~T} .1 \mathrm{~N} .$, R. 37 E .	Creek not running; sample taken from pool.

From U.S. Bureau of Indian Affairs, 1974, p. 82

Parameter	East Sarpy	Main Sarpy No. 1	Main Sarpy No. 2	Recommended U.S.P.H.S. Drinking Water Standards
pH	$\begin{gathered} 8.4 \\ (8.3) \frac{1}{1} \\ ((8.2)) \end{gathered}$	$\begin{gathered} 8.1 \\ (8.3) \\ ((8.0)) \end{gathered}$	$\begin{gathered} 7.9 \\ (8.1) \\ ((8.2)) \end{gathered}$	- -
Color (units)	$\begin{gathered} 30 \\ \left(\begin{array}{l} 30 \end{array}\right) \\ ((40)) \end{gathered}$	$\begin{gathered} 30 \\ \left(\begin{array}{l} 30 \end{array}\right) \\ ((40)) \end{gathered}$	$\begin{gathered} 90 \\ \left(\begin{array}{c} 95 \end{array}\right) \\ ((30)) \end{gathered}$	15
Turbidity	$\begin{gathered} 2.2 \\ (17.0) \\ ((3.7)) \end{gathered}$		$\begin{gathered} 7 \\ (3.9) \\ ((3.9)) \end{gathered}$	5
Hardness as CaCO_{3} (mg/l)	$\begin{gathered} 1,125 \\ (1,387) \\ ((1,632)) \end{gathered}$	$\begin{gathered} 1,835 \\ (1,187) \\ ((1,854)) \end{gathered}$	$\begin{gathered} 1,095 \\ (1,040) \\ ((1,668)) \end{gathered}$	- - -
Specific conductance (mmhos/cm)	$\begin{gathered} 2,433 \\ (3,300) \\ ((4,080)) \end{gathered}$	$\begin{gathered} 4,493 \\ (2,900) \\ ((4,880)) \end{gathered}$	$\begin{gathered} 2,433 \\ (2,400) \\ ((4,350)) \end{gathered}$	-
Total solids (mg/l)	$\begin{gathered} -\ldots \\ (3,236) \\ ((4,318)) \end{gathered}$	$\begin{gathered} 4,453 \\ (2,540) \\ ((5,068)) \end{gathered}$	$\begin{gathered} 2,048 \\ (2,050) \\ ((4,376)) \end{gathered}$	- - -
Dissolved solids (mg/l)	$\begin{gathered} 2,260 \\ (3,032) \\ ((3,755)) \end{gathered}$	$\begin{gathered} 4,523 \\ (2,350) \\ ((4,518)) \end{gathered}$	$\begin{gathered} 2,025 \\ (1,920) \\ ((3,918)) \end{gathered}$	1,000 2/
Suspended solids (mg/l)	$\begin{gathered} (36) \\ \left(\left(\begin{array}{c} (5)) \end{array}\right)\right. \end{gathered}$	$\begin{gathered} 20 \\ \left(\begin{array}{c} 4 \end{array}\right) \\ ((11)) \end{gathered}$	$\begin{gathered} 23 \\ \binom{2}{4} \end{gathered}$	- -

1/ Values in parentheses are for samples collected on April 27, 1973; values in double parentheses are for samples collected on July 17, 1973. 2/ Maximum concentration desirable. $500 \mathrm{mg} / 1$ recommended.

From U.S. Bureau of Indian Affairs, 1974, p. 83

	Kㄱu28y Bu！nation
（20）amjeradual	
	$\begin{array}{r} \text { ousey } \\ \text { uoud aspy } \\ \text { ur!pos } \end{array}$
	ajeuoquejuon
	¢ areuoqajo

（・ファว） sp！os ponjossua $\left(\varepsilon^{\text {ON }}\right.$ ）วefuln （a） Pp ！mota
（Iว）әр！IоІчว
 ${ }^{\text {EODej }}$ se Kimulpeyiv （HO） p！$^{\text {xosp }} \mathrm{K}_{\mathrm{H}}$
 （ ${ }^{\text {ODI }}$ ）วлеиочдеэя （x）unissejod
（8N）untpos （碞）unisousid
 （IIN）as วuci̛uew
（25）M6． 1
（20isiestis
401290\％
10
710
ydax：

иоиегот

MBMG	RbC
MBMG	Subrb
MBMG	Subrb
MBMG	A1
MBMG	$\mathrm{R}-\mathrm{McC}$
MBMG	Suldrh
MBMG	Subrh
MBMG	SulRb
MBMC；	$\mathrm{R}-\mathrm{McCl}$
MBMG	$\mathrm{R}-\mathrm{McCl}$
MBMG	$\mathrm{R}-\mathrm{McCl}$
M ${ }^{\text {BMG }}$	$\mathrm{R}-\mathrm{McCl}$
MBMG	RbC
MBMG	$\mathrm{R}-\mathrm{McC}$
MBMG	
MBMG	
MBMG	SubR b
MBMG	SubRb
MBMG	
MBMG	Subrb
MBMG	$\mathrm{R}-\mathrm{Mc} \mathrm{O}^{\text {a }}$
MBMG	$\mathrm{R}-\mathrm{McC}$
MBMG	$\mathrm{R}-\mathrm{McC}$

弟

（Кरojejoçet）$h^{\text {d }}$
（：3 ，Sz ie soчworग！u） әэиејоприоว sy！วəds 8． 0 MBMG $\mathrm{R}-\mathrm{McO}$
 0
\sum_{i}^{U}
n 0
\sum_{i}^{0}
n U
\sum_{0}
\vdots
0 8 ＜合
号号 RO
 u
\sum_{i}^{u}
\dot{x}

 $0-\infty$

（・フモっ） sp！̣os рәлıossia （ ${ }^{\text {ON ONETM }}$ ）

（a） ）

（os）arejint
Eojej
ọeyiv se Kupupleyiv
un！pos

 （HO）ор！холр K_{H}

 （ ${ }^{\text {on）ojeuoqjej }}$
 0000000000000000000000 000000000 NN $\stackrel{0}{1} 0010000010$ （x）untesserd

 （sW）unis ausew
（とう）ums ว！

（uw）assut8uew
（ 7.11101 ！ 8
8
8

บотวม！oŋ

IO
コ18

0
N
$\stackrel{1}{1}$
$\stackrel{1}{2}$
$\dot{1}$

[^9] below sutppable interval．

\[

$$
\begin{aligned}
& \text { 路 }
\end{aligned}
$$
\]

(3 of 9 pages)

$$
\begin{aligned}
& \text { 工 }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{0}{v}-\frac{0}{v} \quad 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { 起え : : i i i }
\end{aligned}
$$

(6 of 9 pages)

$$
\begin{aligned}
& \text { 可気N゙き }
\end{aligned}
$$

(9 of 9 pages)

CAtE	11ME	$\begin{aligned} & \text { INSTAN- } \\ & \text { TADIEOUS } \\ & \text { BIS } \\ & \text { CHAHGE } \\ & \text { (CFS) } \end{aligned}$	(1)5- solveo fatural l/KANIUM (U) (UG/L)	DIS- SOL VEU HA-2?6 iradon ME THOO) (PC/L)	nisSOLVED finioss ALPHA 4S IU-NAT. (UG/L)	$\begin{aligned} & \text { MIS- } \\ & \text { SOLVEN } \\ & \text { GROSS } \\ & \text { BETA } \\ & \text { AS SR90 } \\ & \text { SY90 } \\ & \text { (PC/L) } \end{aligned}$	DIS- SULVEO GROSS BETA AS CS-137 (PC/L)	TOTAL FILTRABLE aESIDUE (MG/L)	SUS- QENDEO GROSS ALPHA AS U-NAT. (UG/.)	SUSPENDED r,ROSS UETA AS SR90 /Y90 (PC/L)	SUS- PEADEO GROSS BETA AS CS-137 (PC/L)	tOTAL NON-FILTRAPLE RESIDUE (MG/L)
$\begin{aligned} & \text { OEC. } \\ & 03 . . . \end{aligned}$	1300	- 30	9.0	. 04	3H	20	23	2700	<.4	3.5	3.8	5

TABLE 11
WATER QUALITY ANALYSES OF TULLOCK AND SARPY CREEKS ${ }^{\text {a }}$

Tabulation of Some Selected Trace Element Concentrations in Coals taken from the Rosebud, Robinson and McKay Seams. Samples are Physical Composites of Five Core Holes Drilled in the Sarpy Creek Area, Big Horn County, near Hardin, Montana. Core Holes Drilled during period of December, 1970 to June, 1971. Concentrations are PPM Weight analysis by Spark Source Mass Spectrometry.

Sample 72-10490 Sample 72-10491 Sample 72-10492 Weighted Rosebud Seam(1) McKay Seam (2) Robinson Seam(3) Average
3.60
0.35
1.20
1.85

CADMIUM (Cd)
1.80
0.53
0.69
1.06

VANADIUM (V)
7.70
5.80
5.80
6.51

NICKEL (Ni)
9.00
0.90
9.00
6.65

FLUORINE (F)
130.00
130.00
380.00
215.00

BERYLLIUM (Be)
0.70
2.00
2.00
1.52

MERCURY (Hg)
0.26
0.43
0.35
0.34

LEAD (Pb)
3.60
7.20
1.44
3.91

ARSENIC (As)
3.00
1.00
0.75
1.66

SELENIUM (Se)
0.08
0.30
0.08
0.14

ZINC (Zn)
22.00
33.00
13.00
(1) Total Footage 86.0' - Average Seam Thickness 17.2' (37.2\%)
(2) Total Footage 67.0' - Average Seam Thickness 13.4' (29.0\%)
(3) Total Footage 78.0' - Average Seam Thickness 15.6' (33.8\%)

From U.S. Bureau of Indian Affairs, 1974, p. 248

Table 13

	Seam \#1	Seam \#2	Seam	Seam	Average
Cobalt (Co)	12	11	13	8.3	11.32
Cadmium (Cd)	0.43	0.87	2.1	2.1	1.95
Vanadium (V)	48	33	25	11	22.04
Nickel (Ni)	30	30	30	15	25.14
Fluorine (F)	330	340	510	340	436.58
Beryllium (Be)	14	18	1.8	3.7	3.92
Mercury (Hg)	0.03	0.26	0.14	0.07	0.12
Lead (Pb)	6.2	5.7	8.6	2.9	6.47
Arsenic (As)	3.3	20	3.3	0.65	3.38
Selenium (Se)	1.4	1.1	1.1	0.22	0.83
Zinc (Zn)	170	45	45	45	51.13

Table No. $3 \quad$ Hole No. 414

Cobalt (Co)	11	11	11	5.6	9.39
Cadmium (Cd)	0.66	0.87	0.66	1.7	0.98
Vanadium (V)	22	44	83	11	55.60
Nickel (Ni)	150	15	30	15	31.11
Fluorine (F)	120	110	680	340	509.53
Beryllium (Be)	7.4	7.4	1.8	1.8	2.49
Mercury (Hg)	0.06	0.30	0.07	0.14	0.11
Lead (Pb)	29	14	5.7	2.9	6.71
Arsenic (As)	6.3	17	1.3	2.5	3.00
Selenium (Se)	11	1.8	0.56	0.73	1.27
Zinc (Zn)	22	67	45	22	38.39

Table No. $4 \quad$ Hole No. 12C

Cobalt (Co)	1.5	1.3	1.43
Cadmium (Cd)	3.9	4.6	4.14
Vanadium (V)	11	11	11.00
Nickel (Ni)	21	21	21.00
Fluorine (F)	120	70	102.74
Beryllium (Be)	0.09	0.20	0.13
Mercury (Hg)	0.18	0.18	0.18
Lead (Pb)	5.4	5.4	5.40
Arsenic (As)	6.5	2.0	4.95
Selenium (Se)	1.4	1.4	1.40
Zinc (Zn)	200	200	200.00

From U.S. Bureau of Indian Affairs, 1974, p. 249

Ce Elmmenta	$\begin{aligned} & S-1 \\ & 10: 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{S}-1 \\ & \mathrm{H} \dot{\mathrm{~S} \boldsymbol{2}} \mathrm{~h} \\ & \hline \end{aligned}$	S-1 Averace	$\begin{aligned} & \mathrm{S}-2 \\ & \text { Low } \end{aligned}$	$\begin{aligned} & \mathrm{S}-2 \\ & \mathrm{HI} \mathrm{~S}_{3} \\ & \hline \end{aligned}$	$s-2$ Average	$\begin{aligned} & \text { R-1 } \\ & \text { Low } \end{aligned}$	R-1 Hirh	R-1 Averace	$\begin{aligned} & R-2 \\ & \text { Le: } \end{aligned}$	$\begin{aligned} & \mathrm{R}-2 \\ & : 8: ~ \end{aligned}$	$\begin{aligned} & \mathrm{K}-7 \\ & \therefore \because \text {-see } \end{aligned}$
Urandum	$<.5$	3.10	1.66	. 5.	1.20	. 9	$<.5$	2.40	1.43	. 5	1.60	¢?
Thorium	1.80	4.90	3.2	1.7	6.7	4.0	1.40	7.30	3.64	1.50	3.50	2.:
Bisouth	. 10	. 97	. 39	1.40	1.40	. 47	. 18	. 66	. 23	. 10	L.i5	-32
Lead	3.10	68.00	17.94	5.7	14.0	8.6	.70	8.6	3.57	1.4?	5.0	2.
Thalliun	6.1	. 11	. 16	. 70	-. 70	. 23	. 1	. 65	. 5	. 12	.72	. 25
Kercury	. 03	. 14	. 07	. 16	. 50	. 24	. 06	. 14	. $¢ \subseteq 2$. 04	$\therefore 0$. C^{-2}
Tungsten	. 42	8.20	3.50	. 3	2.90	1.19	. S	2.0	1.21	. 53	2.ju	1. $:$
Tantalum	. 16	4.60	1.29	. 20	. 20	. 07	. 12	3.50	. 51	. 17	3. ${ }^{\circ}$	-9
Hafnium	. 20	1.20	. 5	1.20	1.20	. 4	. 16	1.10	. 18	. 23	. S	.35
Lutetium	. 04	. 35	. 17	. 06	. 06	. 02	. 05	. .35	. 16	. 05	L. 5	- -5
Yecerbluam	L. 23	<2.00	. 93	. 39	. 39	. 13	<. 23	<2.00	. 91	. 25	<2.3	. 92
Thuliue	. 09	<. 24	. 11	. 03	. 03	. 01	. 03	- <. 24	.12	.0:	<. 3 ?	.17
Erbium	. 13	L. 81	. 53	. . 21	. 21	. 07	. 07	<.St	. 37	. 07	$<.51$	- 3
Holciun	. 07	$<.21$. 12	. 13	. 13	:04	. 03	-. 12	. 12	. $\mathrm{C6}$	<. 21	.
Dysprosium	6.81	2.10	1. 20	2.0	2.0	. 67	$<.81$	2. $\therefore 0$	1.04	. 55	1. 5 ?	. 0
Terbium	. 05	2.16	. 09	. 09	. 35	. 15	. 09	. 15	. 1	. 05	L.: 6	. 6
Cadolinium	. 15	. is	. 38	. 14	. 33	. 16	. 03	. 48	. 35	. 03	$\angle \mathrm{S}$	- 29
Europlua	. 12	. 35	. 24	. 7	. 48	. 44	. 15	L. 36	. 25	. 07	4.55	- $:$?
Samarium	. 50	1.50	2.06	. 78	6.30	3.43	. 34	1.6	. 91	. 17	<.5:	. 53
Meodymium.	3.00	20.00	12.18	2.50	30.0	15.83	5.40	11.0	8.12	2.09	25.0	S.S:
Prascodyalum	. 61	3.20	2.16	1.6	4.0	2.23	. 42	1.70	1.07	.$\therefore 6$	1.70	1.C:
Ceriun	2.95	17.00	11.78	7.50	33.0	24.50	6.60	32.0	17.64	3. ¢ 3	20.0	11.9:
Lanthanuma	1.63	8.60	3.50	1.50	3i. 0	23.17	1.40	17.0	5.52	. 57	8.0	3.:3
zartua	21.C)	170.05	81.20	39.0	7800.0	2628.67	78.0	450.0	181.60	26.0	150.0	79.3
Cesium	. 03	. 52	. 12	. 4	3.0	1.4	. 09	1.5	. 54	$\therefore 1$. 00	. 15
Iodine	. 03	. 87	. 49	.03	. 53	. 21	. 03	. 57	. 57	$\therefore \therefore$. 63	. 3
telluríua	$<.03$. 31	. 11	<.13	4.13	. 04	<03	$<.30$. 12	$\angle 5$. 26	. 21
Antimony	. 19	. 56	. 34	. 64	4.0	2.08	. 11	1.60	. 67	. ${ }^{5}$. -1	- 51
In -	. 99	6.0	2.40	. 75	2.0	1.58	. 74	1.80	1.23	1.?	4.60	3.:1
Cadmium	.93	1.60	. 79	. 87	1.20	. 93	1.10	2.40	1.50	1.:?	2.ćs	1.65
Silver	. 04	. 19	-.09	. 05	. 19	. 12	. 05	. 16	. 09	- ${ }^{\text {a }}$. 12	. 63
Molybdenum	. 77	85.0	27.25	4.60	10.0	8.2	. 95	8.60	4.57	2.0	\$. 60	․:
Hiobium	2.53	10.0	5.98	1.90	15.0	6.9	1.70	11.0	6.50	1.00	6.90	5.33
zirconius	22.0	130.0	73.0	68.0	190.0	108.67	22.0	310.0	128.0	29.0	205.0	95.50

[^10]
禀

是苛密芯

～～～
宽

 폰

$\begin{gathered}\text { Date of } \\ \text { coll }\end{gathered}$
1972
$1-31$
$2-29$
$3-27$
$5-10$
$6-19$
$8-2$
$9-5$
$10-6$
$10-30$

1973
$1-29$
$3-2$
$4-2$
$5-1$
$5-31$
$7-1$
$7-31$
$9-4$
$9-29$
$111-1$
$12-6$
 Table 15 －－Chemical Analyses of Water from Strip Pit，Big Sky Mine，Rosebud County，Montana，1972－73－－Continued ［Analyses made by Peabody Coal Company］
 Nitrogen．
organic にー

気关苞号 둧 ： 1
－ －

 흥
$\stackrel{y y}{\circ}=$

SURFACE WATER QUALITY MONITORING LOCATIONS

Location	CT\&E	SW
East Sarpy Creek at County Bridge	CT\&E-1	SW-4
Sediment Pond	CT\&E-2	
Upper Luther Buildings (Sarpy Creek)	CT\&E-3	
Sarpy Creek at County Bridge	CT\&E-4	
Sarpy Creek above Junction with East Fork Sarpy Creek	CT\&E-5	SW-1
East Fork Sarpy Creek above Junction		
with Sarpy Creek	CT\&E-7	SW-2
East Sarpy Creek-Section 12	CT\&E-8	
Main Sarpy Creek above Pleasant Creek Sarpy Creek on R. Thrower Property Pleasant Creek (North of Tract II) Plum Creek (West of Tract II) Middle Fork Sarpy Creek Sarpy Creek just above Junction with Spring Creek (Temporary station near SW-7	SW-5	

From Westmoreland Resources, 1975 1, Appendix F, p. F-90

$$
c-4.5
$$

lccation (CTSE) No. 11date	Stin	CTGE - east sarpy criex at county bridge								
		2-11-74	3-5-74	4-10-74	5-8-74	6-10-74	7-9-74	8-8-74	9-9-74	10-23-74
Axalysis ${ }^{\text {a }}$										
Actidity to ph 8.2	(meq/1)			0.7	0.84	0.22	A	A	A	\wedge
Aikalinity to PH 4.5	(meq/1)			10.8	9.4	9.60	8.8	7.8	3.8	2.6
Alkainity (CaCO_{3})		125	430		470	480	440	390	474	322
ammona (Nitrogen)		0.6	2.6							
bicarbenate		150	525							
BCD. S-day		4	2							
sicate		A	\wedge							
Cerbenate		A	\wedge			19				
COJ		53	40							
Chiorise		6	11							
Color	($\mathrm{Pt}-\mathrm{Co}$ Onita)	150	45							
Ccliform Bncteris, total		8	62							
Flucride		0.1	0.8	0.5	0.28	0.29	0.80	1.00	0.70	0.95
Hardness, total (CaCO_{3}) sictate (Nitrogen)		196	1060							
Nitite (Nitrosen)		A	A							
Nitregen, total Kjeldahl		2.2	3.							
011 \& Crease		1	<1	<1	<1	<1	2	3	4	1
${ }^{\mathrm{pH}}$		7.5	8.0	8.1	8.2	8.0	8.2	8.7	8.1	8.0
Phosphorus, total Ser:lesble Sollds		<0.1	0.1					606		
Evaporated Sollds, total	$\left(105^{\circ} \mathrm{C}\right)$	470	1970	14	17	\wedge	22	606	$3751{ }^{<0.1}$	$<0.1{ }^{6}$
Total Dissolved Solids		360	1852	2740	2700	2263	3206	3090	3751	
Tctal Suspended Solids		104	7	21	21	226	23	613		
Tota! Volatile Solide		102	360		21	9	23	613	6	15
Spectifie Conductance	(umhos/cme2s ${ }^{\circ} \mathrm{C}$)	541	2222							
Sulfate		166	1037	2383	1519	1234	1737	2202	1400	1950
Sulfide		A	A							
Turbidity	$\begin{aligned} & (\mathrm{C}) \\ & \text { (JTU) } \end{aligned}$	${ }_{4}{ }^{1}$	${ }_{5}^{1} .8$	7.4	12	14	30	20	9	2.5
Aluminua	(PPB)	A		7.4	5.5	7.2	6.0	47	10	
Cadeiua	(PPB)	1	<1							
Calcrum		34	178							
Chrozium, total	(PPB)	5	<s							
Corper	(PPB)	6	6							
Iren, total Iren, dissolved	(PPB)	0.79	0.127							
Iren, dissolved				0.5	0.06	0.09	0	0.22	0.09	0.30
Yanganese	(PPB)	172	$\begin{aligned} & 150 \\ & 246 \end{aligned}$							
Mercury	(PPB)	0.7	<. 05							
Nickel	(PPB)	12	4							
Sodium		so	213							
$z \mathrm{nc}$	(PPB)	8	7							
a Units reported in parte per million unless otherwise indicated b Analyele reported in parte per thousand A. Abseat										

ZIT of 66-』•d 'A xTpuəddy 'T SL6T 'səoxnosəy puetaxomzsəM moxy

Sheet 2 of 14

TABLE $\quad 17$

LOCATION (CT\&E) NO. 3					8 -	UPPER LUTHER	BUILDING			
DATE		4-27-73	5-25-73	6-29-73	7-26-73	3 9-6-73	2- 5-74	3-5-74	4-10-74	5-8-74
A'iAl.YSIS *										
Acidity to pH 8.2	(meq/1)								0.9	1.28
Alkalinity to pH 4.5	(meq/1)								12.2	11.7
Alkelinity (CaCO_{3})		530	645	560	610	140	310	495		585
Amonia (Nicrogen)		<1	<1	<1	<1	0.3	<0.1	3.3		
Bicarbonate		500	763	610	744	170	380	605		
BOD, S-day		14	3	23	10	11	36	5		
Bromide		A	\wedge	A	\wedge	A	A	\wedge		
Carbonate		72	12	36	A	A	A	A		
COD		36	48	136	59	73	55	24		
Chlorlde		12	16	18	15	16	11	16		
Coior	(Pt-Co Unite)	40	50	75	65	75	160	35		
Collform Bacterls, cotel	(per 100 al)	A	95	1165	50	440	A	A		
Fluoride		0.6	0.9	0.6	0.2	0.5	0.2	0.8	0.8	0.26
Hardness, cotal (CaCO_{3})		872	1102	754	1002	323	495	870		
Nitrate (Nitrogen)		<0.1	<0.1	<0.1	0.1	0.1	<0.1	0.9		
Nitrite (Nitrogen)		A	A	A	A	A	\wedge	\wedge		
Nitrogen. total Kjeldahl		<1	<1	13	<1	1.1	2.8	4.1		
011 Crase		0.5	<1	4	<1	1	2	1	2	1
pH		8.3	8.2	8.3	8.0	8.2	7.3	7.5	8.1	8.2
Phosphorus, total		0.1	<0.1	<0.1	<0.1	<0.1	0.3	0.7		
Settleable Sollde									23	49
Evaporated Sollda. total	$\left(105^{\circ} \mathrm{C}\right.$)	1860	2150	2006	2108	824	1042	1640		
Total Dissolved Sollde	$\left(180{ }^{\circ} \mathrm{C}\right)$	1634	2096	1518	1960	720	881	1572	1896	1878
Total Suspended Sollda		114	9	310	16	43	132	2	28	51
Totai Volatile Sollde		462	520	494	468	184.	196	292		
Specific Conductanca	(Hmhou/cme $25^{\circ} \mathrm{C}$)	210	250	213	2380	901	1010	1960		
Sulfate		718	978	737	951	344	361	749	859	858
Sulfide		1	A	A	A	A	A	A		
Temperature	$\left({ }^{\circ} \mathrm{C}\right)$	8	12	17	15	12	A	1	4	
Turbicity	(JTU)	44	4.6	110	8.2	18	21	4.7	7.4	3.6
Aluminum	(PPB)	<10	<10	<10	<10	<10	A	A		
Carcium	(PPB)	<5	13	8	<2	<2	1	<1		
Calcium		104	140	65	90	44	75	123		
Chromium, tocal	(PPB)	<5	<5	< 5	9	2	<5	<5		
Coprer	(PPB)	8	<5	18	10	12	14	6		
Irin. rotal	(PPB)	25	35	75	65	50	267	70		0.37
Iron, dissolved									0.2	0.22
Magnestum		149	183	144	189	52	75	137		
Manganese	(PPB)	35	28	720	90	22	197	222		
Mercusy	(PPB)	8	2	4	. 5	3	0.5	3		
Nickel	(PPB)	16	12	6	6	5	8	3		
Sod ${ }^{\text {cos }}$		194	268	275	284	90	95	197		
zine	(PPB)	23	<5	4	42	7	14	12		

[^11]| location (ctien) No. 3 DATE | | $6-10-74$ | 7-9-74 | - - $8-74$ | 9-9-74 | ${ }_{12-27-74}^{\text {Pre }}$ | | 3-31-75 | 5-29-75 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analrsis ${ }^{\text {a }}$ | | | | | | | | | |
| Acidity to PH 8.2 | (meq/1) | 0.12 | 0.3 | 0 | , | 0 | . 12 | . 08 | 0 |
| Atrainity to pH 6.5 | (009/1) | 8.60 | 5.9 | 173.4 | ${ }_{21}^{13}$ | | $10^{2.16}$ | 474.39 | ${ }_{596} 11.91$ |
| | | 430 | 295 | 770 | 214 | | | | |
| ${ }_{\text {Blearbonate }}$ | | | | | | N/A | N/A | N/A | n/A |
| | | | | | | | | | |
| ${ }^{\text {branilde }}$ | | | | | | | | | |
| Carbonate | | | | | | | | | |
| | | | | | | | | | |
| Color (Pt-Co Unita) | | | | | | | | | |
| | | | | | | | | | |
| ${ }_{\text {Colliform }}^{\text {Bacteris. }}$, total | | 0.29 | 0.45 | 0.50 | 0.5 | . 48 | . 15 | . 07 | . 44 |
| Hardness, cotal (CaCO_{3}) | | | | | | | | | |
| (intrate (Nitrogen) | | | | | | | | | |
| | | | | | | | | | |
| Nitrogen, total Kjeldah1 | | | | | | | | | |
| ${ }^{0} 116$ Grease | | 7.9 | 8.0 | 8.3 | 8.0 | 7.3 | 7.1 | 7.9 | 8.1 |
| Phosphorus. total | | | | | | | | | |
| Sectleable Solide | | 30 | 109 | 2333 | 9.14 | 5616.0 | $329.1{ }^{0.1}$ | ${ }_{1619}{ }^{\text {co }}$. $1^{\text {b }}$ | |
| Reparated Solides rotal | ${ }_{(180}\left(100^{\circ} \mathrm{C}\right)$ | | | | | | | | |
| Total Dissolved Sollds | | 129 37 | 8120 120 | ${ }_{2443}$ | 2460 | 373 | 10 | 11 | 48 |
| Total Suspended solide ${ }_{\text {Total voilatile solide }}$ | | | | | | | | | |
| specific Conductance | (\% | | | | | | | | |
| Sulitide | | 487 | 260 | 400 | 224 | 750 | 2.5 | 25 | 1075 |
| Sulife | $\left({ }^{\circ} \mathrm{C}\right)$ | | | | | | | | |
| Temperature | (JTU) | 14 | 65 | 90 | 142 | 2500 | 92 | 5 | <25 |
| Aluminum | (PP8) | | | | | | | | |
| Caicium | | | | | | | | | |
| | | | | | | | | | |
| Chronium, totas | ${ }_{\text {(PPB }}\left({ }^{\text {P }}\right.$) | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| Magnealua | | | | | | | | | |
| Mosizanese | (PPB) | | | | | | | | |
| Mercury | (PP8) | | | | | | | | |
| Mickel | (PPB) | | | | | | | | |
| zine | (PPB) | | | | | | | | |

5 of 14

$\stackrel{\rightharpoonup}{\circ}$

 O

 (P t-Co Unite)

Acidity to pH 8.2	(meq/1)
Alkalinity to pH 4.5	(neq/1)

Carbonate
COD
Chloride
Color
Fluoride
Hardness, total (CaCO_{3})
Nitrate (Nitrogen)
Nitrate (Nitrogen)
Nitrite (Nitrogen)
Nitrogen, total Kjeldahl
Nitrogen, total Kjeldahl
011 Grease
${ }_{\mathrm{pH}} \mathrm{pH}^{2} 11$ Grease
Phosphorus, total
Settleable Solid
Evaporated Solids.
$\left.\begin{array}{ll}\text { Evaporated Solids, total } & \left(105^{\circ} \mathrm{C}\right) \\ \text { Total Dissolved Solids } & \left(180^{\circ} \mathrm{C}\right)\end{array}\right)$
Evaporated Solids, total
Total Dissolved Solids
Total Suspended Solids
Total Suspended Solid
Total Volatile Solid
Total Volatile Solid
Specif Conductance
Sulfide

- Unite reported in parts per million unless otherwise indicated
- Analysis reported in pate per thousand
collfora too numerous to count

LOCation (CTGE) NQ. 7				-	T SARPY	EEX - SEC	10x 12			
DATE		2-5-74	3-5-74	$4-10-74$	S-8-74	6-10-74	7-9-74	8-8-74	9-9-74	10-23-74
ANALYSIS ${ }^{\text {a }}$										
Acidity to pH 8.2	(meq/1)			$0.7{ }^{\circ}$	0.84	0.04	A		A	A
Alkalinity to pH 4.5	(meq/1)			10.8	10.0	9.20	8.0	7.2	6	20
Alicaliniey (CaCO_{3})		475	490		500	460	400	360	372	478
Amonia (iitrogen)		<0.1	3.7							
Bicarbonate		580	600							
BOD, 5-dey		7	3							
Browide		\wedge	A							
Carbonate		\wedge	A							
COD		39	26							
Chloride		16	14							
Color	(Pt-Co Unita)	65	25							
Coliform Bacteria, cotal		66	10							
rluoride		1.3	0.9	0.5	0.34	0.28	0.85	0.90	0.75	0.85
Harcinese, total (CaCO_{3})		1176	1196							
Nitrete (iftrogen)		1.3	A							
Nitrice (Nitrogen)		A	A							
Nitrogen, cotal Kjeldahl		1.4	1.2							
011 Grease		<1	1	<1	<1	1	1	1	2	1
pH		7.5	7.7	8.1	8.1	8.1	8.2	8.2	8.2	7.9
Phosphorus, total		0.2	<0.1							
Settleable Solids				8	11	1	0	10	$<0.1{ }^{\text {b }}$	$<0.1^{\text {b }}$
Evaporated Sollds, total	$\left(105^{\circ} \mathrm{C}\right)$	2546	2514						3232	3092
Tctal Dissolved Solide		2474	2352	. 2886	2948	2290	2675	3027		
Total Suspended Solide		13	15	30	15	22	12	12	50	12
Total Volatile Solide		454	396							
Specific Conductance	(umhos/cme $25^{\circ} \mathrm{C}$)	2632	2597							
Sulfate		1338	1317	1437	1661	1274	1677	1875	1952	1800
Sulfice		A	A							
Temperature	$\left({ }^{\circ} \mathrm{C}\right)$	0	1	4	14	18	30	19	11	8
Iurbidicy	(JTU)	10	6.9	8.5	5.7	8.0	7.2	5.0	10	2
Aluminum	(PPB)	A	A							
Cadulum	(PPB)	<1	<1							
Calcium		188	178							
Chrovium, total	(PPB)	<5	<5							
Copper	(PPB)	14	7							
Iron, total	(PPB)	0.162	0.074		0.14	0.35	0.38	0.32	0.60	0.32
Iron, dissolved				0.3	0.09	0.00°	0.09	0.27	0.07	0.16
Kagnesium		172	183							
Manganese	(PPB)	540	238							
Mercury	(PPB)	0.5	<0.5							
Nickel	(PPB)	10	3							
Sodius		328	315							
Rine	(PPB)	11	25							

[^12]TABLE 17

LOCATION (CTGE) NO. 7		$\underset{11-27-74}{\text { CTGE }}$	EAST SARPY $12-27-74$	$\begin{aligned} & \text { CREEX } \\ & 2-25-75 \end{aligned}$	$\begin{gathered} \text { SECTION } 12 \\ 3-32-75 \end{gathered}$	5-29-75
ALALYSIS ${ }^{\text {a }}$						
Actulcy to pH 8.2	(meq/1)	A	0	. 14	0	0
Alkalinity to pH 4.5	(meq/1)	30	26	7.49	8.91	11.19
Alkalinity (CaCO_{3})		572	604	375	450	560
Bicarbonate						
BOD. S-day		\$/A	W/A	N/A	N/A	N/A
Bromide Cartionate						
COD						
Chloride						
Color (Pt-Co Unito)						
Colifere Bacteria, total						
Fluoride		1.41	. 37	. 32	. 27	. 44
Hardnesar, total (CaCO_{3})						
Nitrate (Nitrogen)						
Nitrite (Nitrogen)						
Nitrcgen, cotal kjeldahl						
Oil Grease		<1	3	7	N/A	<5
pH		7.9	7.7	8.2	7.9	8.0
Phosphorus, total						
Settleable Solids		$<0.1{ }^{\text {b }}$	$<0.1{ }^{\text {b }}$	$0.1{ }^{\text {b }}$	$<0.1{ }^{\text {b }}$	$<0.1{ }^{\text {b }}$
Evaporated Solids, total	$\left(105^{\circ} \mathrm{C}\right)$	3015	3431	1899	2540	3170
Total Dismolved Solids						
Total Sumpended Solide		27	19	28	6	6
Total Volatile Solide ${ }^{\text {a }}$						
Specitic Conductance	($\mu \mathrm{mhoa} / \mathrm{cme} 25^{\circ} \mathrm{C}$)					
Temperature	$\left({ }^{\circ} \mathrm{C}\right)$	0	0	0	0	12
Turbidity	(JTU)	2	2	52	8	<25
Alcminum	(PPB)					
Cadmium	(PPB)					
Calcium						
Chromium, total	(PPB)					
Copper	(PPB)					
Iron, total	(PPB)	0.4	. 18	. 05	. 3	. 3
lron, dissolvedMagnesium						
Manganese	(PPB)					
Mercury	(PPB)					
Nickel	(PPB)					
Sodium						
zise	(PPB)		0			

LOCATION (CTSE) NQ, 8			CTEE -	MIIM SARPY	Creek as	LeAsA	EEX			
DATE		4-27-73	5-25-73	6-29-73	7-26-73	9- 6-73	2-11-74	3-5-74	4-10-76	5-8-74
AMALYSIS ${ }^{\text {a }}$										
Acidity to pH 8.2	(meq/1)								0.8	0.88
Alkalinity to pH 4.5	(meq/1)								10.8	10.2
Alkalinity (CaCO_{2})		300	565	439	615	490	400	4.60		510
Anmonia (Nitrogen)		<1	<1	<1	<1	0.6	1.4	0.9		
bicarbonate		464	653	535	750	600	490	560		
BCD, S-day		5	2	2	2	3	4	2		
Brenide		A	A	A	A	A	A	\wedge		
Carbenate		72	18	A	0	0	0	0		
CCD		21	36	36	20	21	56	29		
Chioride		15	19	21	28	28	16	15		
Color	(Pt-Co Un1te)	35	45	30	20	10	65	25		
Fluoride		0.9	1.1	1.0	0.4	0.6	0.8	1.0	0.7	0.34
Pardness, total (CaCO_{3})		1307	1805	1668	2151	1984	1076	1647		
Nitrate (Nitrogen)		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0		
Nitrite (Nitrogen)		A	A	\wedge	${ }^{\text {A }}$	\wedge	A	\wedge		
sitropen, :otal Kjeldahl		<1	<1	<1	<1	2.7	3.6	6.1		
cil s Crease		0.4	<1	<1	<1	5	<1	<1	<1	2
pH		8.3	8.3	8.2	7.6	8.0	7.9	7.7	8.1	8.2
Phosphorus, total		0.1	0.1	\wedge	0.2	<0.1	<0.1	0.1		
Settleable Solids									15	15
Evaporated Sollds, totsl	($105^{\circ} \mathrm{C}$)	2968	4314	4376	6152	6060	2904	2760		
Total Dissolved Solids		2808	3920	3918	5486	5668	2166	2586	2978	3402
Total Suspended Solids		10	30	3	6	${ }^{6}$	106	20	22	20
Total Volatile Solids		646	948	704	938	878	526	538		
Specific Conductance	($\mathrm{umhos} / \mathrm{cm@} 25^{\circ} \mathrm{C}$)	310	420	435	5700	5714	2632	2941		
Sulface		1486	2300	2519	3480	3252	1300	1531	1734	2066
Sulfice		A	A	\wedge	,	A	A	A		
Temperature	$\left({ }^{\circ} \mathrm{C}\right)$	11	73	21	17	13	,	1	4	14
Turbicity	(JTU)	10	4.8	3.9	6.0	6.4	160	12	9.7	4.9
Aluminum	(PPB)	<10	<10	<10	<10	<10	\wedge	\wedge		
Cadetus	(PPB)	< 5	8	10	<2	<2	<1	<1		
Calctua		148	175	115	180	170	158	168		
Chreolum, total	(PPB)	< 5	< 5	12	13	<2	13	5		
Copper	(PPB)	11	12	10	<2	3	8	9		
Iron, total	(PPB)	35	32	42	46	60	740	43		0.14
Iron, dissolved									0.1	0.07
Magnesium		228	333	336	414	378	166	299		
Manganese	(PPB)	39	9	74	439	1030	269	117		
Mercury	(PPB)	,	4	2	. 1	2	0.3	0.6		
Nickel	(PPB)	25	23	20	4	5	10	4		
Sodium		350	542	653	976	890	322	195		
$21 n e$	(PPB)	13	< 5	8	7	5	21	12		

From Dames and Moore, 1975, p. 26-32

(page 3 of 7)

Chemical analyses of surface water collected at ctae location: 4							
Location CTSE No. 4							
Date	1/24/75	4/25/75	6/30/75	7/31/75	8/25/75	9/18/75	10/31/75
Avalysis $^{\text {a }}$							
Acidity to pH 8.2 (meq/L)	0	0	0	Dry	Dry	Dry	Dry
Alkalinity to pH 4.5 (meq/L)	8	10.57	11.56				
Alkalinity (CaCO_{3})	92	534	579				
Fluoride	. 13	. 30	. 50				
$0: 11$ and Grease	3	8	< 5	8			${ }^{8}$
pH	7.4	8.1	8.1				?
Settleable Solids ${ }^{\text {b }}$	<.1	<.1	< 11	38			
Total Suspended Solids	7	3	2	\%			20)
Sulfate	163	863	1073				
Temperature		$4^{\circ} \mathrm{C}$	$22^{\circ} \mathrm{C}$		das	Dex	
Turbidity	27	16	25				
Iron, Total	. 07	. 60	. 4	13132	913012x	121]	(1)
Iron, Dissolved	. 01	. 08	0				
${ }^{2}$ Units reported in parts per million unless otherwise indicated							

Chemical analyses of surface water collected at ct\&e location 5

Location CT\&E No. 5							
Date	1/24/75	4/25/75	6/30/75	7/31/75	8/25/75	9/18/75	10/31/75
ANALYSIS $^{\text {a }}$							
Acidity to pH 8.2 (meq/L)	0	0	. 08	0	Dry	Dry	0
Alkainity to pH 4.5 (meq/L)	6	10.77	9.73	10.54			11.86
Alkalinity (CaCO_{3})	80	5.44	487	528			594
Fluoride	. 12	. 32	. 4	. 38			. 42
011 and Grease	2	5	<5	< 5			< 5
pH	7.3	8.1	8.0	8.1			8.2
Settleable Solids ${ }^{\text {b }}$. 03	< . 1	<.1	$<.1$			$<.1$
Total Suspended Solids	16	2	7	9			8
Sulfate	175	1275	1470	1562			1842
Temperature		$4^{\circ} \mathrm{C}$	$22^{\circ} \mathrm{C}$				
Turbidity	34	13	<25	<25			<25
Iron, Total	. 04	. 40	. 3	. 4			. 6
Iron, Dissolved	0	. 10	0	c			. 08
$\mathrm{a}_{\text {Units }}$ reported in parts per million unless otherwise indicated							
${ }^{\mathrm{b}}$ Analysis reported in parts	ousand						

$$
\text { Chemical analyses of surface water collected at ct\&e location } 7
$$

(page 7 of 7)

CHEMICAL ANALYSES OF SURFACE WATER FROM GAGING STATIONS SW-1 THROUGH SN-7 IN THE PROJECT AREA

Location ${ }^{\text {a }}$	On sanps curs on k. throwre phopeaty		
DITE	2-21-75	4-13-75	5-7-75
tine	1945	1353	0200
start cace level	9.03	8.33	
TIPE	Epriag Runoff	Eprins lunote	storm
anulitis ${ }^{\text {b }}$			
celctue	23	33	
Hagnealua	17	35	47.25
sodium	10	123	67.25
potasilum	6	10	12.81
1ron (total)	0.37	0.15	0.41
Manganese	<. 01	0.54	0.06
Numinum	3.4	0.17	1.1
silice	6.8	13.4	
Bicarbonate	117	465	364.29.
carbonate	0	0	0.0
bydroxide	0	0	0.0
Chioride	8	14	83.72
sulfate	46	376	92.0
- 1 erate ($\mathrm{NO} 3+\mathrm{NO} 2)$	0.15	0.05	0.74
Fluoride	0.09	0.41	0.2
Oetion Mraphate	0.14	40.01	0.09
Field $\mathrm{pH}^{\text {c }}$ (momite)	7.73		
Leb pl (${ }^{\text {co unita) }}$	7.8	8.3	7.84
	4.5	8.5	
	164	990	
Lab Conductivity (${ }^{\text {a }}$ (mos/cme $25^{\circ} \mathrm{C}$)	203	1400	750.
Total Suspended Solida	74	3	34.7
Toral Disaolved Solids $\left(105^{\circ} \mathrm{C}\right.$	162	930	
Eraporated Sollda (${ }^{\text {a }}$ ($105^{\circ} \mathrm{C}$)			864.4 298.5
	-		298.3 10.26
Total Hardneas (CaCO) ${ }^{\text {a }}$)	128	530	308.76
Total Nkalinity (CaCO_{3})	96	376	298.5
sodiva Adsorption Ratid (no unita) seldiey (CaCO_{3})		2.9	1.68 3.75
zine	0.03	0.01	0.03
Cironilu			
seleniv	0.003	0.002	0.3
Mercury	<0.001	<0.001	<0.002
Mickel	<0.01	<0.01	0.16
Areenle	<0.01	<0.01	<0.25
Boren	:0.01	<0.01	0.14
cadmium			
Strontium	<0.01	<0.01	2.7
Lead	<0. 01	<0.01	0.1
Vanadium	<0.01	<0.01	0.3
Molybdenum	<0.01	<0.01	-6.00
cyanide	40.01	40.01	
seryllifum	c0.01	<0.01	
SPECIPIC SURFACR HATER PARURETERS			
rield Dionolved Oxysen			
000	29	29	39.6
800	4.4	2.3	0.4
Depletion 2			32.94
furbidity (nTu)	131	51	63.0
0116 Creses	1	<1	
Totel Collform ($/ 100 \mathrm{ml}$)	8	50	410
Tecel Collform (1100 ml)			215
cmonle Mitroren it"	0.1	0.9	
Orgente mitrogen is	0.3	0.3	

lecartor	Pa_{-1-15}			5-7-73	7-82-18
800	1730	2140	coso	9783	-130
start ceat una		0.06	P. 28	8.97	
T17	Uprimy teote	ercias impt?	sere	esere	Len n -
cursis ${ }^{\circ}$					
calefoe	81	242	283.3	14.50	123.21
Hopuolo	10	877	830.0	204.83	316.32
colv	33	215	232.5	291.00	34.81
pereeste	¢	-	83.3	21.7	20.400
2 mon (tetel)	0.78	0.13	-. 4	0.20	0.337
trigenees	$0 \cdot *$	0. 38	0.14	0.16	-.08
Alulem	3.9	0.17	8.8	-. 8	0.31
sfises	6.:	20.3			
licartosete	48	28	298.238	30.018	20.43
Corteore	-	-	$0 \cdot 0$	0.0	.
ExTrenite	-	-	-. 0	-. 0	-
Giorste	4	13	82.313	7.763	0.06
mlfate (moymy	48		1812.2	2032.12	1913.18
Iitsere (m03403)	0.17	0.81	1.05	16.61	8.719
Plepride Prepphate	0.10	0.46	0.1	4.2	-.85.
-rito Propplete	0.6	¢.an	0.08	-.01	
Fiold fe (mente)	-	-	-		
Let pereite)	9.1	0.3	0.11	8.08	8.0
	3.0	3.0	8.0	6.7	19
	238 300	2130	1960	1390	9000
Tokel suppeoded sollde	8	33		2000.	8410
feeol Diesolued Solide	30	nis	-	13.8	15
swepereted solids ($109^{\circ} \mathrm{C}$)			1713.50	2090.6	3093.8
Carteesta tardnese ($\mathrm{CaCO}_{\text {, }}$)	-		482.0	293.0	740.46
no-carbonde Mardinese (Comj)			382.9.	903.19	871.843
torel tordnses (Coco)	131	103	139.09	1198.73	1611.303
Seral almilintey (Caco) (ouseo)	108	40	482.0	295.0	740.45
	*. 6	2.1	3.16	2.66	3.31
Esidity (CaCO_{3})	-	-	7.3	6.23	38.48
Orent -0.0.					
selone	0.603	- 2.008	-. 3	4.3	cos
Mrewry	-.001	40.001	0.016	+0.0016	\$0.004
Oletel	¢. 01	co.08	0.01	0.03	-. 01
arocele	4.01	<0.01	-. 23	co.23	¢. 1
Seres	-0.08	0.13	0.72 .	-. 327	-.sce
ceprer	4.01	0.02	20.	-.08*	ces
cerention	- 0	\cdots			
Luat	8.01	40.01	8.2	0.1	1.9
Penasion	-. 01	∞ ¢01	0.3	co. 3	
mijumemom	- .n.	+0.01	-6.008	-0.0)	4.1
cyeld.	*.01	¢.01		-	
sercilio	cos	4.01			
erecific surface vatie pmuctios					
Most elcoulved onysem	30.8	20.2	8.8	0.8	
. 0	3	8	10.0	\%.	
0	. 61	2.6	8.8	6.3	19.8
Enplatín $\frac{1}{}$	-	-	83.85	24.14	
merbidity (mTU)	180	\%	27.0	2.8	
Mn 6 Craese	1	8			110
Setel Colltore (/1000-1)	\bullet	\%	\cdots	240	90
Feral colltorm (/100 ol)	8.4	0.3	∞	80	4
mimale liliegien on	-6	0.3			

cocistan*	-1) munts apt			
-37t	-21-75	(-13-73	3-1-38	7-28-78
STET	fens	1010	1830	0925
gtart cace livts	2.18	2.21	2.28	
Tr	uring tunots	Eritar Remot?	*ere	
pulstis				
Calcive	¢	\boldsymbol{n}	89.50	100.00
Hageein	838	143	207.50	354.00.
gedion	194	848	17.78	261.45
potecera	,	8	15.12	16.51
1ree (tocel)	0.03	0. 13	0.36	0.36
Masaseee	0.12	0.11		0.02
4100	3.2	0.18	1.0	- . 17
sutce	3.6	9.1		
Blearbonote	41	400	100.44	1012:26
Cerionato	-	-	23.8	O
briceside	-	-	0.0	0
Cleride	30 .	20	0.0	11.40
mifat	115	751	1076. ${ }^{\text {P }}$	1371.30°
Bierate (003+N03)	0.6	0.03	- 1.29	1.78
Heorlse	0.22	0.44	¢. 2	0.85
Orim Pbesplate	cen	¢.01	0.03	0.08
	\bigcirc	-	-	
	8.2	6.3	3.37	8.1
Tield tmperature (${ }^{\circ} \mathrm{C}$)	3.3	2.6	13.5	21
	1820	1030	2240	2890
Let conductivity ${ }^{\circ}$ (matoo/cue23 ${ }^{\circ} \mathrm{C}$)	1950	1740	2400	2450
Setel Suspended sollde	8	S	2.7	
Setel Diesolved Sollds	3180	148		
Eveporated solide ($105^{\circ} \mathrm{C}$)	-		1251	3039.7
Cartonate IErdneas (CaCO_{3})	-		840.0	1709.09
	-		173.26	
Setal Esarsaeee (CaCO) ,	1308	78	1413.26	
Setal Altalinity (CadO, (m ente)	358.13	318	240.0	219.43
sadiva Aduorption ketic (memite) ecidiey (CaCO	2.31	8.3	2.26	2.75 10.23
lise	4.01	- 08	0.02	10.85
Curonio			0.02	0.02
selesin	0.008	0.002		+0.05
marevery	0.002	<0.001	-0.000	\$0.0004
Bretel	Q. 01	co. 01	0.07	<0.01
Areeste	4.01	¢0. 01	¢0.25	<0.1
Berom	0.31	¢0.01	1.02	1.35
Cepper	40.01	0.02	-0.01	0.05
streetio	¢0.01	<0.01	7.00°	- 1.608
Leod	\$0.01	<0.01	0.2	1.8
Venotio	¢0.01	¢0.01	¢0. 5	0.09
miyMema	¢0.01	*.01	- 0.3	-0.2
creald.	Q. 1	co.01		
Sergllime	¢ 0	¢.01		
gricific sumfact uater parntetis				
Preld Dieselved Oxysen	12.4	12.8	0.3	
∞	10	14	39.6	
80	$0 \cdot$	2.6	11.1	. 121.8
Eplarion 1			42.35	
Turbicity (NTU)	12	3	2.3	
915 Crease	8	1		-0.0s
Tefel Collfore (/100 01)	4		00	
Tocel Coliferm (/100 a)	e	-	140	4.0
*remio Mierogon on	8	4		

LOCATION	SW-1	SW-2	SW-4	SW-5
DATE	$11 / 13 / 75$	$11 / 13 / 75$	$11 / 13 / 75$	$11 / 13 / 75$
TIME	$5: 00 \mathrm{pm}$	$5: 25 \mathrm{pm}$	$6: 25 \mathrm{pm}$	$4: 30 \mathrm{pm}$
STAFF GAGE LEVEL				

TYPE

AMALYSIS ${ }^{\text {a }}$				
Calcium	222.19	228.57	156.38	71.43
Magnesium	288.78	316.07	338.27	355.61
Sodium	913.27	466.84	255.10	200.77
Potassium	54.40	36.20	16.72	13.08
Iron (total)	0.26	0.38	-0.05	0.11
Manganese	0.49	0.85	0.34	-0.02
Aluminum	0.23	0.16	0.16	0.05
Sllica				
Blcarbonate	1999:02	1326.57	1229.55	1127.65
Carbonate				16.20
Hydroxlde				
chioride	26.79	11.66	8.19	15.13
Sulfate	1853.89	1902.28	1300.22	1103.89
Nitrate ($\left.\mathrm{NO}_{3}+\mathrm{NO} 2\right)$	0.14	0.08	0.34	0.43
Fluoride	0.52	0.38	0.28	0.22
Ortho Phosphate	0.036	0.009	0.018	0.009
Fleid pH (no units)				
Lab pH (no unlts)	7.8	8.2	8.3	8.4
Fleld Temperature (${ }^{\circ} \mathrm{C}$)	3.0	1.0	3.5	2.0
Fleld Conductivity ${ }^{\text {c }}$ (mhos/ Cm , amblent	4000.0	2100.0	1700.0	1450.0
Lab Conductivity (mhos $/ \mathrm{cmQ} 25^{\circ} \mathrm{C}$)	6660.0	3640.0	2770.0	2500.0
Total Suspended Sollds	25.12	5.01	15.18	5.79
Total Dissoived Solids 5.79				
Evaporated Solids (1050 C)	7001.5	3684.8	2649.3	2242.9
Carbonate Hardness (CaCO_{3})	1638.0	1087.0	1007.5	951.0
Non-Carbonate Hardness (CaCO_{3})	124.1	792.7	781.0	695.6
Total Hardness (CaCO_{3}) -	1762.1	1879.7	1788.5	1646.6
Total Alkalinity (CaCO_{3})	1638.0	1087.0	1007.5	951.0
Sodium Adsorption Ratlo (no unlts)	9.52	4.7	2.63	2.16
Acldley $\left(\mathrm{CaCO}_{3}\right)$	0	- 0	0	0
Zinc	0.05	0.04	0.01	0.02
Chromium	-0.02	-0.02	-0.02	-0.02
Selenium	-0.005	-0.005	-0.005	-0.005
Mercury	-0.2	-0.2	-0.2	-0.2
Nlckel	-0.2	-0.02	-0.02	-0.02
Arsenlc	-0.02	-0.02	-0.02	-0.02
Boron		0.64	0.28	0.71
Copper	0.01	$0: 04$	0.05	0.04
Cadmlum	0.003	-0.002	-0.002	-0.002
Strontlum	13.92	4.23	3.67	3.57
Lead	0.43	0.31	0.08	0.68
Vanadlum	-1.0	-1.0	-1.0	-1.0
Molybdenum	0.20	0.16	0.17	0.13
Cyanlde Berylllum				

SPECIFIC SURFACE WATER PARAMETERS

Fleld Dissolved Oxygen COD	14.4	17.3	20.2	11.15
B00	5.62	1.80	2.44	2.80
Depletion \%				
Turbidlty (WTU)	11.0	1.7	7.0	1.5
0116 Grease	17.87	78.6	33.75	14.9
Total Collform (100 ml)		110	70	100
Fecal Collform (/100 ml)		1	,	48

Amonla Nltrogen as N
Organic Nigrogen as N
CHEMICAL ANALYSES OF SEDIMENT POND WATER ON TRACT III Sheet 1 of 3
from February 1974 to October 1975 Sher

Linits reported in parts per million unless otherwise indicated
dinalysis reporied in parts per thousand

Sheet 2 of 3
TABLE 21

Sheet 3 of 3
$\begin{array}{r}\text { Irtake to } \\ \text { Sedinent Pond } \\ 71 / 22 / 75 \quad 10 / 1 / 75 \\ \hline\end{array}$

\circ
mi

$\stackrel{\infty}{\sim}$

\approx

 y
 ì
 ~~

$\stackrel{\infty}{\square}$
$\stackrel{n}{n}$

-

$\begin{array}{ll}8 & \circ \\ 0 & 0 \\ 0\end{array}$ 8.70$\stackrel{n}{\stackrel{n}{\infty}} \stackrel{\sim_{0}^{\infty}}{\substack{\infty \\ j}}$$\stackrel{n}{\square} \quad \underset{\sim}{\infty}$ $\stackrel{r}{i} \quad$ $\underset{\sim}{\infty} \underset{\sim}{\sim}$ $\stackrel{\circ}{\circ}$

:. $\quad \underset{v}{\circ} \mathrm{i}$ \because $-$ $\underset{\sim}{\circ} \underset{\sim}{\sim}$ • TABLE 21
․․․․
n

1.542

0.500
657.041
2.653
 0.051
0.357 09.949
<0.05 $\stackrel{0}{0}$
 กิ

$\stackrel{\otimes}{\circ}$
© $\quad \sim \underset{\sim}{\circ}$ $\stackrel{7}{-}$ m 7 13
$<\quad 25$

N:ALYSIS
ACtity to pH 8.2
Lialinity to ${ }^{\text {PH }} 4.5$
likalinity
$\left(\mathrm{CaCO}_{3}\right)$ 3 iearbona
$305,5-c a y$
grosice
Carbonate
Chiorid
color

$$
\begin{aligned}
& \text { coldferm Bacteria, total } \\
& \text { F:uo:ide }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Eyrdaess, total (} \mathrm{CACO}_{3} \text {) } \\
& \text { Mitiace (nicrogen) }
\end{aligned}
$$

$$
\begin{aligned}
& \because \text { itrice (nitrcgea) } \\
& \text { Xitrien. total Kleldahl }
\end{aligned}
$$

$$
0: 1 \text { grease }
$$

$$
\begin{aligned}
& \because: \text { itricen, total Kjeldahl } \\
& 0: 1 \text { Grease }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Pinsphorus, rotal } \\
& \text { Seattleable solids }
\end{aligned}
$$

PY

$$
\begin{aligned}
& \text { Seattleable solidds } \\
& \text { Eapozated sollds, cotal }\left(105^{\circ} \mathrm{C}\right)
\end{aligned}
$$

iopsl dissoived solids $\left(180^{\circ} \mathrm{C}\right)$
Total suspenced solids
Tetal volatile solids
Specific Conductance (umhos/ $\mathrm{cme} 25^{\circ} \mathrm{C}$)
Sulfate
Te--perature $\quad\left({ }^{\circ} \mathrm{C}\right)$
Iurbicity (JTU)
Aluainua (PPB)
Calclus
Chroinelum, cotal (PPB)
$\begin{array}{ll}\text { Chrosium, cotal } & \text { (PPB) } \\ \text { Copper } & \text { (PPB) }\end{array}$ Cepper total (PPB)
ranesís
-i.ganese (PPB)
Zaganese
Uercury
ercury
sickel
Socki
Soldua
Sadua
2lac
a Units reported in parts per willion unless otherwise indicated
${ }^{b}$ Analysis reported in parts per thousand

SUSPENDED SEDIMENT CONCENTRATIONS, BIGHORN AND YELLOWSTONE RIVERS ${ }^{\text {a }}$

Station Location	Suspended $(\mathrm{mg} / 1)$
Bighorn River at Bighorn, Montana	
maximum value	21,000
minimum value	42
average value	4,088
Yellowstone River near	
Sidney, Montana	
maximum value	15,500
minimum value	167
average value	2,308

a Data from Northern Great Plains Resource Program, 1975, p. 89

TABLE 23

STREAMFLOW AND SUSPENDED SEDIMENT CONCENTRATIONS ON SARPY CREEK AS RECORDED BY U.S. GEOLOGICAL SURVEYa

Station Location

Streamflow
$(c f s)$

Total Suspended Sediment
(mg/1)
Westmoreland
1-18-74
25.9
190.0
1-31-74
0.0
5.0
3-19-74
1.0
6.0

Hysham
12-27-73
2.8
6.0
2-9-74
3.7
9.5
4-17-74
3.2
14.0
6-11-74
30.2
159.0
${ }^{\text {a }}$ Data reported by Montana State Dept. of Natural Resources and Conservation, 1974.

From Westmoreland Resources, 1975 1, p. 2.2.3-59

```
TABLE 24
```

SUSPENDED SEDIMENT CONCENTRATIONS (MG/L) DETERMINED AT SURFACE WATER STATIONS SW-1 THROUGH SW-7 IN THE PROJECT AREA (TIME OF SAMPLING LISTED WITH CONCENTRATIONS IN PARENTHESES)

${ }^{\text {a All }}$ station locations are in the Sarpy Creek drainage basin except
SW- 6 which is in the Tullock Creek drainage basin.
well data for the project area

From Westmoreland Resources, 1975, Appendix F
TABLE 25
80
88
88 요
긍

 O | 8 |
| :--- |
8

\circ
윽

n ~n H~ $\underset{-}{m}$ | 0 |
| :--- |
| |
| |
| |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |

$\circ 08$
20
20
1

 8
8
-

登
n
n
n
 Depth To
Waterb $\cdots \underset{\sim}{\sim}$ $\underset{4}{4}$

TABLE 25

a
TT э๐ દ コววчง

 Depth To
Water ${ }^{\text {b }}$
(feet) (feet)

Well
Depth
(feet)
Number ${ }^{\text {a }}$
uspron

> 3220
> onnioo indo
TABLE 25
Consumption 8 $\left.\begin{array}{lll} & w \\ 4 & 0 \\ 0 & 0 \\ 0 & y \\ 0 & 3 \\ 0 & 0 \\ 3 & 0\end{array} \right\rvert\,$
 $\begin{array}{ll}4 \\ y \\ 3 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \text { 日 } \\ 0 & \\ 4 & \end{array}$

 \pm

Conductivityd
（Hmhos／cm）

Date
Examined Nぃ～～

8／19／75
1150L

3

$8 / 14 / 75$

Elevation ${ }^{\text {C }}$

N 37 E .27 DAA

1N37E． 23 ACCA

G
U
心
N
N
N
Z
1N37E11DBAA
1：37E11DBAA
1N37E11DBAA
1N37E26BABC

2N37E10
$2 N 37 E 16$
2N37E16
2 N 37 E 16
\sim
$\underset{\sim}{w}$
$\underset{\sim}{\sim}$
$\stackrel{\underset{4}{4}}{\stackrel{\rightharpoonup}{4}}$
H
山
N
己
N

漦 117
118
119
120

$\begin{array}{ll} & 4 \\ & 0 \\ y & 0 \\ 0 & H \\ 0 & 3 \\ 0 & 0 \\ 3 & 0 \end{array}$	
$\left.\begin{array}{cc} \mu & 0 \\ & 0 \\ 0 & 0 \\ & 0 \end{array} \right\rvert\,$	

Conductivity
$(\mu$ mhos $/ \mathrm{cm})$
Date
Examined

10－73
n
\vdots
\vdots
\vdots
n
n
n
Mッツ ㅇㅜㅓ

 0 | 0 |
| :--- |
| 0 |
| 0 | 2710L \circ

月
－

0
0
0
0
0
0
0
0

Depth To
Water
（feet）

か○ Well
Depth
（feet）
 880 8 옹 응앙
 Well

TABLE 25
等
 Conductivityd
$(\mu \mathrm{mhos} / \mathrm{cm})$

TABLE 25
Consumption ${ }^{8}$
（gal／day）

Water
Source

コ
岃岂岂
 $\underset{\substack{3 \\ H}}{3}$ \bigcirc $\begin{array}{r}\text { Water } \\ \text { Use } \\ \hline\end{array}$
$\omega \quad \omega$
eseses es

 \begin{tabular}{l}
-3

8

8

\multirow{2}{*}{}

 3340 L

\circ \& \multirow{2}{\circ}{}

\sim

N
\end{tabular} 20901 1835L 0

－
N
 N
1
1

$10-73$
$7-67$ $\underset{\sim}{n}$ $\underset{\sim}{\sim}$ Date
Examined

4
5
0
0
0
0
0
0
0
0
0

TABLE 25
Consumption ${ }^{8}$

$\left.\begin{array}{ll\|} & 4 \\ \hline & 0 \\ 0 & 0 \\ 0 & 4 \\ \mu & 3 \\ 3 & 0 \\ 3 & 0 \end{array} \right\rvert\,$			
	のぃぃつDつDつ	のぃDDぃエささぃ	いいのいのひ

2310
1690 L
 o
へ
N
N 1390

 n

∞ n

1 $\begin{array}{lc}n & n \\ & 1 \\ \infty & \infty\end{array}$ Elevation ${ }^{\text {c }}$

 ヘMn mNon m N

 $\left.\begin{array}{ll}\mu & 0 \\ 0 & 0 \\ \mu & 0 \\ 0 & 0\end{array} \right\rvert\,$

TABLE 25
 onnNu

Well
Number

TABLE 25

$\begin{array}{c}\text { Temperature } \\ \left({ }^{\circ} \mathrm{C}\right)\end{array}$

$\begin{array}{c}\text { Conductivityd } \\ (\mu \text { mhos } / \mathrm{cm})\end{array}$
921
1680 L
1575

$\begin{array}{c}\text { Conductivityd } \\ (\mu \text { mhos } / \mathrm{cm})\end{array}$
921
1680 L
1575

Date
Examined

Elevation ${ }^{\text {c }}$

$\begin{array}{r}\text { Well } \\ \text { Number } \\ \hline\end{array}$

$\overline{\varsigma z^{3 T q v i}}$

$\begin{aligned} & \text { Well } \\ & \text { Nurber } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Well } \\ \text { Location } \\ \hline \end{gathered}$	Well Depth (feet)	$\begin{aligned} & \text { Depth To } \\ & \text { Water } \\ & \text { (feet) } \\ & \hline \end{aligned}$	Elevation ${ }^{\text {c }}$	Date Examined	$\begin{aligned} & \text { Conductivity } \\ & (\mu \text { mhos } / \mathrm{cm}) \\ & \hline \end{aligned}$	Temperature (${ }^{\circ} \mathrm{C}$)	Water Use ${ }^{e}$	Water Source ${ }^{f}$	$\begin{gathered} \text { Consumption }{ }^{8} \\ \text { (gal/day) } \\ \hline \end{gathered}$
354	$1537 E 03 \mathrm{MBD} 2$			3362	7-73	1510 L				
355	1537 E 03 CCCC			3402	フ-73	1510L		H		
356	1 S 37 E 04 АСіВВ			3431						
357 358	1S37EO4ADDD			3431				S		
358 359	1S37E05DECD	250		3530		1120L		S		
359	1537 E 06 CCHB	80		3430	7-73	1153L		S	TEu	
360	1538:03CACC	180	80	3652	6-73	-578L		S	Terl	
361	1S38EOSDI3ND	83	57	3466		5782		S	Terl	
362	1S38EO5DDB	44	14.3	3480				U	Tfu	
363	1538108 CACC			3543				U	rc	
364	1538 E 09 ACBB	120	15.3	3517	7-72	1060L		S		
365	1S38E09BADD	80		3505	7-72	1230L		S	ImC	
366	1S38E09BDDA	84	5.9	3508	7-72	1780L		H	rmi	
367	1S38E09CAM	98	5.9	3518	7-72	1780L		S	TmC	
368	1S38E09CAAS			3526	7-72	13702		S	Tfu	
369	1 S 38 E 11 BCBC	180	74.6	3700	9-73			S		
370	1 S 38 E 12 BBDB	260	153.2	3651	9-73	2460L		S	Tfu	
371	1S38E12DDBD	210	139.1	3700	9-73			S	Ifu	

Well location	Well depth (feet)	Depth to water (feet)	Land-surface altitude (feet)	Date examined	Specific conductance of water (यmhos/cm)	$\begin{aligned} & \text { Dissolved } \\ & \text { Solids } \\ & \text { (mg/l) } \end{aligned}$	Water use	Water source
2N37E20ABDC	90	60	3170	ó-73	2640 L	2361	S	SubRb
2N37E21CAAC	30	15	3135		3040	2644E	H	Al
2N37E21CADB			3390		2260	1966E	S	Al or Sub
2N37E22DBAB	60	22.4	3188	10-73			S	SubRb
2N37E 24 CBCC	100	40	3342		3640	3166	S	SubRb
2N37E27DABB	440	300	3285				S	SubRb
2N37E27DABC		44	3285				U	SubRb
2N37E 27DCBA	100	34.9	3247	10-73	2710L	2037	S	SubRb
2N37E28ACBC		50	3160					SubRb
2N37E28ACCB1	50	12	3160				S	SubRb
2N37E28ACCB2	80	15	3160				H	SubRb
2N37E 28CADC			3178				S	SubRb
2N37E29CADD	50	6	3180				S	SubRb
2N37E31CBCD	30		3290	7-73	1670	1452 E	S	SubRb
2N37E31CBDB	30		3276	7-73	2670	2380 E	S	SubRb
2N37E31CCCB	60		3310	7-73	1544L	1296	H	SubRb
2N37E32BBBB	100	70	3220	7-73	2970 L	2768	S	SubRb
2N37E 33DCBB		10	3208	:0-73			S	Al
2N37E 34BCDA		65	3165		4860	4228 E	S	Subrb
2N37E 34DABC	60	19.2	3210	9-73			U	SubRb
2N37E 34DABD	70		3218	6-73	4490 L	3623	H	SubRb
2N37E 34DACA	60	22.7	3210	9-73			S	SubRb
2N37E 34DAC:B	80	28.3	3220	9-73			U	SubRb
2N37E:34nc:AB			3210		3760	3271 E	H	SubRb

[^13]From Van Voast and Hedges, 1974 , Table 2

Well location	Well depth (feet)	Depth to water (feet)	Land-surface altitude (feet)	Date examined	Specific conductance of water (umhos/cm)	Dissolved Solids (mg/l)
2N37E 35CDCB		75	3240		Water use	Water source
2N37E 36CCCC			3282		2680 L	2385E

[^14]| Well location | Well depth (feet) | Depth to water (feet) | Land-surface altitude (feet) | Date examined | Specific conductance of water (umhos/cm) | Dissolved Solids (mg/l) | Water use | Water source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1N37E08CCDA | 100 | | 3380 | 6-72 | | | | SuhRb |
| 1N37E 10BBAD | 400 | | 3235 | | 1760L | 1531 | | SubRb |
| 1N37E10CDDB | 47 | | 3235 | | | | S | SubRb |
| 1N37E! 10ACB | 164 | | 3351 | | | | S | SubRb |
| 1N37E12DAAA | | | 3292 | | | | H | SubRb |
| 1N37E13ACAB | | 36.5 | 3355 | | | | S | |
| $1 \mathrm{~N} 37 \mathrm{E} 13 \mathrm{CABB1}$ | 72 | 24.4 | 3408 | 11-73 | | | | RbC (M) |
| 1N37E13CABB2 | 125 | 87.4 | 3408 | 11-73 | | | | SubRb(M) |
| 1N37E14ACCC | 130 | 60 | 3395 | 7-72 | 2000L | 1740 | S | SubRb |
| 1N37E14ACDC | 50 | | 3451 | | | | S | $\mathrm{R}-\mathrm{McCl}$ |
| 1N37E 15BAAD | | 40 | 3280 | 7-72 | 3340 L | 2695 | S | SubRb |
| 1N37E15BBRA | | | | 6-73 | | | H H | |
| 1N37E15 M1CA | 140 | 17 | 3274 | 7-72 | 2290 | 1919 | H | SubRb |
| 1N37E16AC.C. | | | 3325 | 7-72 | 2400L | 1973 | C | SubRb |
| N37E1613DDC | 68 | | 3310 | 11-66 | | | | SubRb |
| 1N37E16DDDD | | | 3272 | | | | S | |
| 1N37E17DABD | | | 3395 | | | | S | |
| 1N375:18AABA | 130 | 60 | 3435 | 10-73 | 2090L | 1818 | S | SubRb |
| | 1.32 | 65 | 3490 | $7 \cdot 67$ | | | S | SubRb |
| 1N37E19DABD | | | 3395 | | | | | |
| 1N37E20ABCA | | | 3480 | 7-73 | 18.35 L | 1613 | S | |
| 1N37E20CCBC | | | 3432 | | | | S | |
| 1N37E21ACDD | 30 | 10 | 3289 | 8-72 | 2170 | 1859 | U | Al |
| 1N37E21DDCA | 4.5 | | 3357 | | | | S | RbC |
| 1N37E22BBAD | | | 3300 | 7-72 | 2310 | 1860 | S | SubRb |
| 1N37E23DBCD | 80 | 41 | 3450 | 7-72 | 1690L | 1473 | S | RbC |

[^15]| Well location | Well depth (feet) | Depth to water (feet) | Land-surface altitude (feet) | Date examined | Specific conductance of water (umhos/cm) | Dissolved Solids (mg/l) | Water use | Water source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1N37E24CACA | 15 | | 3540 | | | | S | R-Mc |
| 1N37E24CACC | 8 | 6 | 3549 | 7-72 | 910 | 716 | U | $\mathrm{R}-\mathrm{McO}$ |
| 1N37E24CADB | 11 | 6.8 | 3550 | 10-73 | | | U | R -McO |
| 1N37E26ABBC | 123 | 39.5 | 3419 | 7-72 | 941L | 904 | U | SubRb |
| 1N37E26CAAA | 7977 | +175 | 3545 | 10-73 | 1926L | 1705 | U | Mission Canyon |
| 1N37E27BDCB | 30 | 8 | 3360 | 8-72 | 2430 L | 1964 | U | SubRb |
| 1N37E29DABB | 160 | | 3463 | | 2820 | 2453 E | S | SubRb |
| 1N37E31ADDB | | | | | | | | |
| 1N37E32DDCC | 50 | | 3398 | | | | S | SubRb |
| 1N37E33AAAB | 130 | | 3331 | ?-73 | 2270L | 1995 | S | SubRb |
| 1N37E34DAAC | | 21.2 | 3380 | 9-73 | 5130L | 4505 | | SubRb |
| $1 \mathrm{~N} 37 \mathrm{E} 34 \mathrm{DABC}_{1}$ | 80 | 28.3 | 3220 | 9-73 | | | U | SubRb |
| 1 N 37 E 34 DABC_{2} | 60 | 19.2 | 3210 | 9-73 | | | U | |
| 1N37E 35CBCB | | | 3390 | 8-72 | 1390 | 903 | S | Al |
| 1N37E36BDAD1 | 110 | 46.8 | 3545 | 11-73 | | | | $\mathrm{R}-\mathrm{McC}$ (M) |
| 1N37E36BDAD2 | 196 | 108.7 | 3545 | 11-73 | | | | RbC (M) |
| 1N37E36BDAD3 | 288 | 160.4 | 3545 | $11-73$ | | | | SubRb (M) |
| 1N38E 04DCCA | 140 | 53.7 | 3517 | 8-73 | | | S | $\mathrm{R}-\mathrm{McCl}$ |
| 1N38E05CCCB | | | 3398 | | | | S | |
| 1N38E08ADI3D | 146 | 104.8 | 34.55 | \%-73 | 2780L | 2053 | S | Subrb |
| 1N38E10ADCA | | | 3679 | | | | S | $\mathrm{R}-\mathrm{Mc} \mathrm{O}$ |
| 1N38E11BBCB | | 24.7 | 3760 | 3-73 | 5040 L | 4384 | S | R-MCO |
| 1N38E13CDCC | | | 3660 | | | | S | $\mathrm{R}-\mathrm{McO}$ |
| 1N38E17ADDD | 113 | 63.5 | 3396 | 8-73 | 712 L | 546 | S | SubRb |
| 1N38E17CBDA | 190 | 78.5 | 3408 | 8-73 | | | S | SubRb |
| 1N38E19BC.CC | 160 | 24.5 | 3463 | | | | S | $\mathrm{R}-\mathrm{McC}$ |
| EXPLANATKON
 Depth to water: Whole numbers only--reported; whole numbers and tenths--measured.
 Land-surface altttude: EstImated from U.S. Geol. Survey $7 \frac{1}{2} \mathrm{mln}$. topog. maps; accurate to 10 feet.
 Specific conductance: Micromhos per centimeter; field measurements unless otherwise noted (L: laboratory). times specific conductance).
 Dissolved solids; Milligrams per liter; laboratory calculations unless otherwise noted (E : estimated; equal to (.87 $\pm .13$)
 Water use: C. commercial; H, domestic; S, stock; U, unused.
 Water source: Coded sources--Al, Alluvium; R-McO, Rosebud-McKay overburden; R-McC, Rosebud-McKay coal; R-McCl, Rosebud-McKay clinker; RbC, Robinson coal; RbCl, Robinson clinker; SubRb, unspecified aquifers below strippable interval.
 (M) denotes monitor well. | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |

(L jo S asied)

SubRb
SubRb

Depth to water：Whole numbers only－－reported；whole numbers and tenths－－measured．
Land－surface altitude：Estimated from U．S．Geol．Survey $7 \frac{1}{2} \mathrm{~min}$ ．topog．maps；accura
Land－surface altitude：Estimated from U．S．Geol．Survey $7 \frac{1}{2} \mathrm{~min}$ ．topog．maps；accurate to 10 feet．
Specific conductance：Micromho per centimeter；field measurements unless otherwise noted（L：laboratory）．
Dissolved solids；Milligrams per liter；laboratory calculations unless otherwise noted（ E ：estimated；equal to（． $87 \pm .13$ ）
Water use：C．commercial；H，domestic；S，stock；U，unused．
Water source：Coded sources－－Al，Alluvium；R－McO，Rosebud－McKay overburden；R－McC，Rosebud－McKay coal；R－McCl， Rosebud－McKay clinker；RbC，Robinson coal；RbCl，Robinson clinker；SubRb，unspecified aquifers below strippable interval．（M）denotes monitor well．
Well location

80
57
14.3
15.3

5.9

74.6
153.2
139.1
Depth to
water
（feet）

0	
in	8

$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$
$\stackrel{2}{-1}$
$\stackrel{N}{N}$
$\underset{N}{N}$
$9-73$
$9-73$
9－73
Specific
conductance
of water
（umhos／cm）
2380 L
3287 L
2050L
$\stackrel{\rightharpoonup}{6}$
in
\cdots

1060 L
1230 L
1780 L
1370 L
2460 L
2713
Date
examined Land－surface
altitude
（feet）
3494
3501
3509
332
3362
3402
3431
3431
3530
3430
3652 3466 \circ
$\stackrel{\circ}{\infty}$
$\stackrel{1}{1}$ 3543芯 in $\stackrel{\infty}{\stackrel{\infty}{\sim}}$ 3526 3600
3651 3700 times specific conductance）
Well
depth
（feet）
ai 8 8 8 \qquad 80
ま $\stackrel{\infty}{\sim}$ $\underset{\substack{0 \\ 0}}{0}$ \sum_{i}^{c} 210

IS 37E01BAAD2
1S37E02CCAD IS 37E03AABD1 15 37E03AABO2
0
0
0
0
0
2
2
 1S37E04ADDD

 IS 38E 05DBAD 1S38E05DDB 0
0
0
0
0
0
0
0
0
0 IS 38E09ACBB
 く38E09BDDA

 1538：12DDI3D

SPRING DATA FOR THE PROJECT AREA \quad Sheet 1 of 8								
Spring Number ${ }^{\text {a }}$	Location	Water Source ${ }^{\text {b }}$	Land Owner	Elevation ${ }^{\text {c }}$	Estimated Flow (gpm)	$\begin{aligned} & \text { Temperature } \\ & \text { (} \left.^{\circ} \mathrm{C}\right) \end{aligned}$	Specific Conductance $(\mu \text { mhos } / \mathrm{cm})^{\mathrm{d}}$	$\underline{U s e^{\mathrm{e}}}$
1	1N36E11DDC	Ttr3	G. Luther	3500	<0.5			
2	$1 \mathrm{~N} 36 \mathrm{E} 14 \mathrm{BBA}$	TEu	G. Luther	3440	<0.1	$2{ }^{8}$	$\begin{aligned} & 510 \\ & 875 \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \end{aligned}$
3	1N36E14CCCC	Tfu	G. Luther	3390	~ 0.1	13	1175	S
4	1 N 36 El 10 BBD	Tfu	G. Luther	3380	0	18	1225	U
5	1N36E10CDA	Tfu	G. Luther	3400	<0.1	15	1900	S
6	1N36E23DDB	Tfu	G. Luther	3480		25	1990	S
7	1 N 36 E 14 DBC	Tfu	G. Luther	3435		24	835	S
8	1N36E13ABB	Ttr2	G. Luther	3590	0	23	2190	U
9 11	1N36E12CDC	Ttr2	G. Luther	3575	0	23	2650	U
11	2N36E17DDB		L. Hammond	3070	<0.1	17.5	2400	S
12	2N36E17BBD		L. Hammond	3040	<0.1	20	2800	U

[^16]| ${ }^{\text {b }}$ Source: | Q - Quaternary alluvium or slope wash; Ttrl - Tongue River member above Rosebud-McKay Coal; Ttr2 - Tongue |
| ---: | :--- |
| | River member between Rosebud-McKay Coal and Robinson Coal; Ttr3 - Tongue River member to about loo below |
| | Robinson Coal; rmcl - Rosebud-McKay clinker; rmc - Rosebud McKay Coal; rcl - Robinson clinker; rc - Robinson |
| | Coal; Tfu - undfferentiated Fort Union formation. |

${ }^{\mathrm{C}}$ Estimated from U.S. Geological Survey 7.5 minute topographic maps.
Van Voast and Hedges, 1974.
e_{S} - stock, H - domestic, U - Unused.
From Westmoreland Resources, 1975, Appendix F

 Elevation ${ }^{\text {C }}$

 Kendrick

Kendrick | Water |
| :--- |
| Source | Location

1 N 36 E 17 CDB 1N36E8BAC 1N36E8BBC 1N36E17DDA

 1 N36E9AAB 1N36E5AAB 1N36E6DBA 1N36E6BCD 1N36E5DBA 2N36E29ACC

Land Owner
Kendrick
Kendrick
Kendrick
Kendrick Scote L\＆L Scote L\＆L E．Miller E．Miller Davidson Davidson Davidson 5
0
0
0
0
0 Davidson uosptined R．Fly Davidson Davidson uosptaed KTA－y मै
范
ज

 E．Stark uosptinec

Water
Source ${ }^{\text {b }}$

$$
\underset{\underset{F}{\rightleftarrows}}{\underset{\sim}{3}}
$$

 2N36E32ACA 2N36E34BBB 2N36E7CAC 1S36E14ADC 1S37E20DCB vVaعヨ9をSโ aのวてJ9をst U
N
H1
\％
z．
 Z
N
N
H
z
z

 U
0
0
n
N
M
$\underset{\sim}{2}$

 M
N
N
H
N
N

 U
N
H
0
0
\widetilde{Z} 1N36E13DAA

Sheet 5 of

Temperature
$\left(^{\circ} \mathrm{C}\right)$

$$
\overbrace{N}^{9} \cdot N
$$

.5 $\pm ナ$
E1Land OwnerJ．Romine
J．Romine
G．Luther
G．Luther

Spring
Number

${ }_{\sim}^{*}$
Sheet 6 or

3280 3430 3365
3430 3420 3290 io 운 ~ $\stackrel{\infty}{n}$ ~~ 3497 N ô \circ
0
0
0 ○ \circ
$\stackrel{n}{n}$ \checkmark
is
in \circ

$\substack{n \\ n \\ n \\ n \\ 0}$ | Water |
| :--- |
| Source ${ }^{\text {b }}$ |

 1N37E12CADA 1N37E12CBAD 1N37E13CCAD 1N37E14CCDC 1N37E16DDDD 1N37E19CDDA 1N37E20BADC 1N37E22CBCC 1N37E24DADD 1N37E26ABBB 1N37E26DAAB 1N37E32BCDA 1 N 37 E 35 DBBB 1N37E36BDCA 1N37E36DBBB
 1N38E03AACC 1N38E03ACDC 1N38E03DBAA 1N38E05ACDD 1N38E05CACB 1 N 38 E 08 ADBC 1N38E10BBDC N38E10bBD
 1N38E12CDCA

\section*{| Spring |
| :--- |
| Number |}

Sheet 8 of 8

Location	Land-surface altitude (feet)	Dissolved Solids (mg / l)	Date examined	Specific conductance of water (imhos/cm)	Flow	Water use	Water source
2N37E23BBCD	3204	3427 E		3940		S	SubRb
2N37E25DCAD	3380	1687 E		1940		S	$\mathrm{R}-\mathrm{McCl}$
2N37E 33ACCD	3210						SubRb
2N38E19ACDA	3400	4672	7-73	4440 L		S	SubRb SubRb
2N38E 20CDCA	3420					S	Sub
2N38E20DAC	3430						RbC
2N38E20DBAC	3430	864 E		994		S	RbC
2N38E29ABBD	3360					S	RbC
2N38E 30AABD	3455	458	7-73	534L			$\mathrm{R}-\mathrm{McCl}$
2N38E30BBCA	3480						$\mathrm{R}-\mathrm{McCl}$
2N:381E30BCCC	3495	547	7-73	680 L	2		$\mathrm{R}-\mathrm{McCl}$
2N38E 30BDDD	3498	594		683L	2	S	$\mathrm{R}-\mathrm{McCl}$ $\mathrm{R}-\mathrm{McCl}$
2N38E34ABBC	3630		7-73		1	S	$\mathrm{R}-\mathrm{McO}$
2N38E 35ACAD	3700						$\mathrm{R}-\mathrm{McO}$
2N38E 36BBBD	3660		7-73				
2N38E36DCDC	3750		7-73		. 5	S	$\mathrm{R}-\mathrm{McO}$ $\mathrm{R}-\mathrm{McO}$
1N37E07CCAA	3500				4	S	R bic
1N37E07CCCD	3500				4	S	
1N37E07DBAC	3480				4	S	R-Mcl
IN37E10BDCB	3230					S	
1N37E12ADCD	3280					S	

Land-sur face alttrude: Estimated from U.S. Geol. Survey $7 \frac{1}{2}$ min. topog. maps; accurate to 10 feet.
Dissolved solids: Milligrams per liter; laboratory calculations unless otherwise noted (E : estimated; equal to (. $87 \pm .13$)
times specific conductance).
Specific conductance: Micromhos per centimeter; field measurements unless otherwise noted (L: laboratory).
Flow: Estimated spring discharge (gallons per minute).
Water use: H, domestic; S, stock; U, unused.
Water source: Coded sources--Al, Aluvium; R-McO, Rosebud-McKay overburden; $R-M c C$, Rosebud-McKay coal; $R-M c C l, ~$
Rosebud-McKay clinker; RbC, Robinson coal; RbCl, Robinson clinker; SubRb, unspecified aquifers below
strippable interval.
From Van Voast and Hedges, 1974, Table 3

Location	Land-surface altitude (feet)	Dissolved Solids (mg/1)	Date examined	Specific conductance of water (umhos/cm)	Flow	Water use
source						

[^17](ऽ ғ๐ ε ə 8 ed)

Location	Land-surface altitude (feet)	Dissolved Solids (mg/l)	Date examined	Srecific conductance of water (umhos/cm)	Flow	Water use	Water source
1N38E05ACDD	3470		8-73		. 1	S	$\mathrm{R}-\mathrm{McC}$
1 N 38 E 05 CACB	3440				1	S	R-McC
1N38E08ADBC	3450		8-73		. 1	S	$\mathrm{R}-\mathrm{McC}$
1N38E10BBDC	$35+4$	1783	8-73	2050L	1	S	$\mathrm{R}-\mathrm{McO}$
1N3SE11CCDD	3660		8-73			S	$\mathrm{R}-\mathrm{McO}$
1-38E11DBBC	3.50	5080	8-73	5840 L	. 1	S	$\mathrm{R}-\mathrm{McO}$
1N38E12CDCA	3855						R-McO
1N38E13AADA	3930	1618	8-73	1860L	5	S	$\mathrm{R}-\mathrm{McO}$
1N38E13BABB	3820						$\mathrm{R}-\mathrm{McO}$
1N38E13BCBA	3750						$\mathrm{R}-\mathrm{McO}$
1 N 38 E 15 BBDA	3460	2401	8-73	2830L	. 1	S	SubRb
1 N 38 E 1.5 BCCD	3425	6368	8-73	7320 L		S	R.-MicC
1N38E15DAAD	3.527						$\mathrm{R}-\mathrm{McO}$
1N38E17CAA	33.30		8-73		4	S	A1
1N38E18ABAB	3.300		8-73			S	RbC
1N38E18ACAB	3.300						RbC
1N38E18BABB	3300						Rbc
1N38E18DCCD	3.360		8-7.3		1	S	AI
1N38E1913C.DC	. 3440	1.372	8-7.3	1580 L	1	S	$\mathrm{R}-\mathrm{McCl}$
1N38E1913DDB	3392		8-73			S	Al
1N38E19CABA	3405	1272	8-73	1460L			Al

($\varsigma ~ \ddagger 0 \vdash$ ว

Location	Land-surface altitude (feet)	Dissolved Solids (mg/l)	Date examined	Specific conductance of water (umhos/cm)	Flow	Water use	Water source
1N38E 19CBBC	3455	1.90	7-72	1750			$\mathrm{R}-\mathrm{McO}$
1N38E19CCAC	3445	1820	8-72	1999		S	$\mathrm{R}-\mathrm{McCl}$
1N38E 19DCDB	3468	659	7-72	734L		S	$\mathrm{R}-\mathrm{McC}$
1N38E 22CADD	3400	3124	6-73	3425L	. 5	S	Al
1N38E 22CBAC	3385				. 5	S	$\mathrm{R}-\mathrm{McCl}$
1N38E 24ADBA	3710					S	$\mathrm{R}-\mathrm{McO}$
1N38E 26CABA	3463		8-73			U	Al
1N38E 29ACDC	. 3460						$\mathrm{R}-\mathrm{McO}$
1N38E 29DBBB	3470	1249	8-72	1340L		S	$\mathrm{R}-\mathrm{McO}$
1N38E 29DBCC	3465	1998	8-72	2060L		S	$\mathrm{R}-\mathrm{McO}$
1N38E 30BADB	3460					S	$\mathrm{R}-\mathrm{McO}$
1N38E 30BBBA	3465	1720	8-72	1880L		S	$\mathrm{R}-\mathrm{McCl}$
1N38E 30BCCC	3560		7-72			S	$\mathrm{R}-\mathrm{McO}$
1N38E 30DADD	3520	695	7-72	742L		S	$\mathrm{R}-\mathrm{McO}$
1N38E 36BCCC	3510						$\mathrm{R}-\mathrm{McO}$
1N38E 36CDAC	3519		7-73		1	S	$\mathrm{R}-\mathrm{McO}$
1S37E 01DACC	3550	580	10-73	753 L			$\mathrm{R}-\mathrm{McCl}$
1S38E02BBCB	3650	1415	8-72	1620L			$\mathrm{R}-\mathrm{McO}$
1S38E03ACDB	3575	2382	8-72	2400L		S	$\mathrm{R}-\mathrm{McO}$
1 S 38 E 03 DBAB	3592	921	8-72	1040L			$\mathrm{R}-\mathrm{McO}$
$1 \mathrm{~S} 38 \mathrm{E} 03 \mathrm{DBDB}_{2}$	3625	1547	8-72	1620L			$\mathrm{R}-\mathrm{McO}$
Land-surface altitude: Estimated from U.S. Geol. Survey $7 \frac{1}{2}$ min. topog. maps; accurate to 10 fe							
Dissolved solids: Milligrams per liter; laboratory calculations unless otherwise noted (E : estimated; equal to (. $87 \pm .13$) times specific conductance).							
Specific conductance: Micromhos per centimeter; field measurements unless otherwise noted (L: laboratory).							
Flow: Estimated spring discharge (gallons per minute).							
Water source: Coded sources--Al, Alluvium; R-McO, Rosebud-McKay overburden; R-McC, Rosebud-McKay coal; R-McCl Rosebud-McKay clinker; RbC, Robinson coal; RbCl, Robinson clinker; SubRb, unspecified aquifers below strippable interval.							

Location	$\begin{aligned} & \text { Land-surface } \\ & \text { altitude } \\ & \text { (feet) } \end{aligned}$	Dissolved Solids: (mg/1)	Date examined	Specific conductance of water (umhos/cm)	Flow	Water use	Water source
1538E03DBDI31	3615	1374	8-72	1.530 L			
1538E04C	.4, 75			1.530 L			R-Mco
1S38E05DDB	3480						R-Mc
1 S 38 E 10 CABA	. 3600	2,788	8-72	2320 L			- McC
1.38E12BBAC	3650					S	- McO

[^18]VERTICAL PERMEABILITY OF CORE SAMPLES

Geologic Unit	Litholog:	Core Hole	Depth (feet)	Vertical Permeability (cm/sec)
Rosebud-McKay	siltstone	292C	$\simeq 51$	1.8×10^{-9}
Overburden	siltstone	26	$\simeq 70$	8.8×10^{-9}
Coal	siltstone	292C	$\simeq 107$	2.9×10^{-8}
Interburden	sandstone	292C	$\simeq 188$	1.3×10^{-4}
Zone	shale	619	$\simeq 97$	6.5×10^{-8}
	shale	626	$\simeq 148$	6.6×10^{-9}
Upper	sandstone	626	$\simeq 307$	1.1×10^{-4}
Sub-Robinson	siltstone	627	$\simeq 121$	2.8×10^{-8}
Units	sandstone	627	$\simeq 181$	4.1×10^{-4}
	sandstone	627	$\simeq 182$	3.9×10^{-4}
	sandstone	630	$\simeq 125$	1.7×10^{-4}
	siltstone	630	$\simeq 164$	1.4×10^{-9}
Lower	shale	619	$\simeq 269$	1.5×10^{-8}
Sub-Robinson 1.5×10^{-8}				
Units				

TRANSMISSIVITY ${ }^{(T)}$ AND PERMEABILITY (K) OF GEOLOGIC UNITS TAPPED BY OBSERVATION WELLS IN THE PROJECT AREA

-quitis xaysMIL N:MSER	cravel ImTERVAL (reer) Trou: 0		PLMPINC				Mceover			YALIINC YEAD				
			$\begin{aligned} & \text { TESTED } \\ & \text { THIELiESS } \\ & \text { (fert) } \end{aligned}$	$\left(\cos ^{\mathrm{d}} /(t)\right.$	$\begin{gathered} \mathrm{I} \\ (\mathrm{col} / \mathrm{ec}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { LEWTH } \\ & \text { OF ILS8 } \end{aligned}$ $(010 .)$	${ }_{-1}^{1}$	$\stackrel{8}{(c w l e c)}$	$\begin{aligned} & \text { LENCIM } \\ & \text { OF IES: } \\ & \text { (min.) } \end{aligned}$	$\underset{(x p d / f t)}{T}$	$\underset{\sim}{1} / \mathrm{sec})$	$\begin{aligned} & \text { IENGTE } \\ & \text { of IEST } \\ & \text { (ein.) } \end{aligned}$		
dueviux - 10	2	10	18			. 75	$1.1{ }^{*}$	2.9×10^{-6}	15					
11	3	30	47	\$280	3.3×10^{-3}	15	$\begin{aligned} & 6815 \\ & 11733 \end{aligned}$	$\begin{aligned} & 6.8 \times 10^{-3} \\ & 1.2 \times 10^{-1} \end{aligned}$	15					
19	3	40	37			15	$\begin{aligned} & 1005 \\ & 2640 \end{aligned}$	$\begin{aligned} & 1.3 \times 10^{-3} \\ & 3.4 \times 10^{-3} \end{aligned}$	15					
20	3	10	71			. 15	6212	3.8×10^{-3}	15					
coserud-ricut CERBLTDER														
S4	46	63	17	634^{6}	2.8×10^{-3}	180°	581	2.6×10^{-5}	31	725	2.0×10^{-3}	16		
coscbid-rickut														
COAL 24	15	45	30	14	2.2×10^{-5}	25	21	3.3×10^{-3}	60					
3	112	142	30				4.6	7.2×10^{-6}	15					
48	70	111	41	3	$5.8=10^{-6}$	130	,	1.0×10^{-5}	40	4.07	4.7×10^{-6}	55		
38	91	135	44	35	3.8×10^{-5}	60°	$3.1{ }^{\text {x }}$	3.3 ± 10^{-6}	17	44.3	4.8×10^{-5}	45		
61	10	110	40	$1{ }^{1}$	1.2×10^{-8}	40	3.5^{2}	4.1×10^{-6}.	20	5.3	3.9×10^{-6}	45		
ec	68	100	32			11	.$^{1.8}{ }^{\text {a }}$	$2.1=10^{-6}$	11	9.5	1.1×10^{-5} 1.4×10^{-5}	55		
ABIERGIPDIA 14B	131	116	39	7.3	0.8×10^{-6}	60	1	9.7×10^{-6}	60	$\begin{gathered} 38 \\ 36 \end{gathered}$	3.4×10^{-5} 4.4×10^{-5}	60		
21	105	125	20	2.9	$6.8=10^{-6}$	110^{8}	$2.3 *$	5.4×10^{-6}	10	3.9	$9.2=10^{-6}$. 50		
33	195	215	20			15	$2.4{ }^{1}$	$3: 3 \times 10^{-6}$	15					
46	165	212	47			60	2.1 12.5	2.4×10^{-8}	485	17.6	1.8×10^{-3}	60		
5	247	261	20	$3{ }^{3}$	1.1 $\times 10^{-6}$	120°	$4.1{ }^{*}$	1.1×10^{-5}	33	2.2	5.2×10^{-6}	60		
83	175	196	21	13^{8}	$2.9=10^{-5}$ $4.7=10^{-5}$	110° 120	1	2.8×10^{-5}	60	12	$2.7=10^{-5}$	60		
33	141	185	44			15	2.83	3.0×10^{-6}	15	1.6	1.1×10^{-6}	73		
158	70	91	27			15	$3.1{ }^{1}$	5.4×10^{-6}	15					
168	65	100	35			15	1.3^{3}	2.3×10^{-6}	16	2.1	2.4×10^{-6}	46.		
$\begin{array}{r} \text { sus-10:1xscor } \\ 11 \end{array}$	85	115	40.	87	1.0×10^{-4}	110	36	6.6×10^{-5}	289					
2 C	172	231	60	$\begin{aligned} & 469 \\ & 508 \end{aligned}$	3.7×10^{-6} 4.0×10^{-4}	$\begin{aligned} & 150^{b} \\ & 690 \end{aligned}$	131	$1.0=10^{-4}$ $5.0=10^{-4}$	50	${ }^{62}$	$\begin{aligned} & 7.3 \times 10^{-5} \\ & 5.8 \times 10^{-4} \end{aligned}$	20		
x	250	290	40			120	50	3.5×10^{-5}	48					
84	236	280	44	21	2.3×10^{-3}	300	17	1.8×10^{-3}	120	22	2.4×10^{-5}	60		
164	161	112	31			263	32	4.9 $\times 10^{-3}$	60	2.3	$\begin{aligned} & 3.8 \times 10^{-6} \\ & 6.7 \text { ¥ } 10^{-5} \end{aligned}$	64		
cue sub-tosinsow														
9 A	172	341	69							30	$\begin{aligned} & 2.1 \times 10^{-5} \\ & 2.7 \times 10^{-5} \end{aligned}$. 45		

- Calculaced ualng Q at itm incovary rata in gpe.

From Westmoreland Resources, 19751
Table 31 Geologic Formatlons and Their Hydrologic Properties

System and Formation	Member	Approximate Thickness (feet)	Water Supply Capability
Quaternary			
Allvuium Tertiary		Less than 60	Alluvium present along the major water courses is water-bearing and yields small quantities of water to wells and springs. Larger well yields may be obtainable where more extensive sand and gravel beds or lenses are present. Water quality is fair to poor and consists of calcium, magneslum and sodium sulfate and sodium bicarbonate types. The water is high in hardness.
Fort Union	Tongue River	$\begin{aligned} & +1650 \text { (approximately } \pm 300^{\prime} \\ & + \text { present on Tract } 111)^{\prime} \end{aligned}$	Sandstone and coal beds are water-bearing. They yield small quantities of water to wells and springs. Water quality is fair to poor. Chemical constituents of the water ranges from calcium and magnesium sulfates, to that contained in the alluvium. The water is generally high in hardness.
	Lebo shale	± 100	Sandstone or coal beds may yield some water to wells although the formation is not considered to be an aquifer. Water is usually very poor in quality and is of the sodium bicarbonate and sodium sulfate types.
	Tullock	± 300	Sandstone beds furnish small (Tullock) to moderate (Hell Creek) supplles of water to wells. Water quality is fair to poor. Near the forma-
Hell Creek		± 600	hardness prevail; while at greater depth sodium bicarbonate and sodium sulfate type water containing low hardness predominates.

Table of Geologic Formations and Their Hydrologic Properties In the Sarpy Creek and Tullock Creek Drainages

System and Formation	Member Approximate Thickness (feet)	Water Supply Capability
Bearpaw shale	± 600	Relatively impermeable. Weathered part may contain some water, but probably the quantity would be small and the water highly mineralized.
Parkman sandstone	± 250	Wells that tap the basal sandstone yield adequate supplies of water: but toward the north, where mudstone is present, yields are smaller and the water is more mineralized.
Cody shale	$\pm 2,600$	Small supplies of mineralized water can be obtained from the weathered shale.
Frontier	± 250	Upper part may yield small amounts of water; lower part is not water-bearing.
Mowry shale	± 300	Possibly would yield small amounts of mineralized water.
Thermopolis shale	± 550	Nearly impermeable. Would yield little or no water to wells.
Cloverly	± 200	Yields moderate to large supplies of water to wells that tap the lower part of the formation. Water is under artesian pressure and wells in favorable topographic locations will flow. Water is mineralized but is suitable for stock, domestic, and limited irrigational use.
Jurassic		
Morrison	± 150	Yields small quantities of water to wells tapping the more permeable beds.
Ell is group	± 700	Possibly would yield small quantities of water

Table of Geologic Formatins and Thelr Hydrologic Properties
in the Sarpy Creek and Tullock Creek Drainages

System and Farmation	Member		Water Supply Capability
Tilassic-Permian			
Chugwater		± 350	Relatively impermeable.
Pennsylzanlan			
Tensleep sandstone		± 50	Yields moderate to large supplies of water to wells that tap thick sections of the formation.
Amsden		± 250	Large ylelds of water reportedly are obtained where rocks are brecciated or limestone is cavernous
Mississlepian			
Madison llmestone		± 700	Formatlon contains numerous caverns, open joints and fissures, and is the most prolific waterbearing formation underiying the area. Water quallty is unknown, but may be potable. Water probably high in calcium-sulfate and hardness.

(1) Ra
(2) Range In water quallty may be deflned by the following:

$$
\begin{array}{lrlrl}
\text { Good - } & 0 & \text { to } & 500 \mathrm{mg} / 1 & \text { of total dissolved solids } \\
\text { Falr - } & 500 & \text { to } 1500 \mathrm{mg} / 1 & \text { of total dissolved solids } \\
\text { Poor - }>1500 \mathrm{mg} / 1 & & \text { of total dissolved sollds }
\end{array}
$$

ALIUVINE AQUIFER \quad Table $\frac{32 \text { Chemical mality of }}{\text { Data for Wellis and Sit }}$on Vestmoreland ResoTRMCT III											
VELLS ICCATIO！	$\begin{gathered} \text { Calcium } \\ (\text { nc/1 }) \\ \hline \end{gathered}$	：Magnesium （ $m 弓 / 1$ ）	$\begin{aligned} & \text { Sodium } \\ & (a s / 1) \end{aligned}$	$\begin{gathered} \text { Iron } \\ (\mathrm{ms} / 1) \end{gathered}$	Bicarbonate $\left(m \varepsilon^{\prime} 1\right)$	$\begin{aligned} & \text { Sills.te } \\ & (\mathrm{ms} / 1) \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { Hardn.ess } \\ & \text { as } \mathrm{CaCO} \\ & (\text { me/I }) \end{aligned}$	Total Alkalinity as $\mathrm{Ca}_{2} \mathrm{CO}_{3}$ （ $\mathrm{m} / \mathrm{L} / 2$ ）	$\begin{aligned} & \text { Disczired } \\ & \text { sol.as } \\ & (m y 1) \end{aligned}$	$\begin{aligned} & \text { Conal.ctanse } \\ & (\text { mance }=\text { an } \end{aligned}$	OH
－IS											
II－3TE－21ACDD（I二BO？）	51	183	207	． 02	419	943	894	$3+3$	1859	2080	7.5
I：T－3TE－26ADBC（RC？）	45	61	73	39.5	293	345	365	240	904	94	8.1
I：$-37 \pm$－2TEDコ3	52	59	458	0	265	1103	377	218	1954	2430	？ 4
IM－3TE－35C3CB	44	99	55	0	278	390	526	236	903	1089	7.4
İ－32อ－22ccc	81	106	235	3.1	439	767	643	360	1655	1950	7.6
エ゙－32こ－2cioda（2：0B？）	80	146	81	0	486	540	809	393	1359	1520	？ 4
I！－39E－323B．2A（20\％？）	37	.45	4.2	0	314	42	281	265	478	$5^{\prime}+0$	73
ลวRI：											
İ－37E－22C3CC	58	210	338	0	795	10i．1	1024	552	2487	2590	8.5

From U．S．Bureau of Indian Affairs，1974，237－241
ROSEBUD - MCKAY, CLINKER OR OVERBURDEn! AQUIFERS

（page 3 of 5）

ROSESOD－MOKAY COAL BED AUTIER

こ～n・ー－－－	$\begin{aligned} & \text { Calcium } \\ & (=\leq / 1) \end{aligned}$	$\begin{aligned} & \text { Nagnesium } \\ & (\because / 1) \end{aligned}$	$\begin{aligned} & \text { Sodium } \\ & \text { (:rsi1) } \end{aligned}$	$\begin{aligned} & \text { Iron } \\ & (\mathrm{mg} / \mathrm{l}) \end{aligned}$	Bicarbo．．ate （1：～！1）	$\begin{aligned} & \text { Sulrate } \\ & (m=/ 2) \end{aligned}$	Total Hardness $\frac{\mathrm{as} \mathrm{CaCO}}{(\mathrm{rg} / \mathrm{l})} \mathrm{B}$	$\begin{aligned} & \text { Total } \\ & \text { Alvali:lity } \\ & \text { as CaCO3 } \\ & (\mathrm{mg} / \mathrm{g}) \end{aligned}$	$\begin{aligned} & \text { İscol } \\ & \text { Soled } \\ & (\because \because \because ; \end{aligned}$	
TIS										
	37	70	22	． 05	j？	320	135	$3: 3$	－	8：
－－3：こ－こ30：30	\therefore ？	50	21.	C	336	152	$\therefore=1$	275	02	83：－
I．－j－－-200	55	130	5	0	こた	275	600	ここう	$102 ?$	$\pm 2 \leqslant 0$
－－－－ミ－3050こ	25	68	23	0	$5 氵 7$	？ 6	3！	23	58.	$65 ?$
$\pm 5-3^{0}=-032533$	70	37	15	2.1	510	235	579	418	28	1060
İ－3？－093：	22	35	62	1.2	433	364	604	355	1055	2330
IS－3ここ－03こ	$10{ }^{1}$	140	143	0	256	901	94.3	210	1572	1こご
さミーコミミーロコCAス	90	54	182	c	517	1441	493	424	1321	1370
PEIGS										
$\because-372-2300 \wedge D$	236	95	62	． 05	222	650	733	132	1225	1450
	72	72	46	0.90	331	257	437	312	905	1010
I：－3？$-3520 \leq C$	5	78	35	0	233	216	339	2，96	592	743
I！－30：－193020	51	166	27	． 02	32%	700	8.24	206	1372	1590
	195	142	$5]$.	． 0 ？	$\because 1$	－33	1072	386	15\％	170
エロ－33ミーマシこここ：	225	159	18	． 05	330	－002	1220	278	1820	12ミ0
エ－－33こ－1こロコロ	19	37	22	0	$\therefore 6^{\prime}:$	73	410	355	55？	73^{1}

（page 4 of 5）

20ヶRTEC：	$\begin{array}{r} \text { Calcium } \\ (\mathrm{ms} / 1 \mathrm{l} \\ \hline \end{array}$	$\begin{gathered} \text { Megnesium } \\ (\mathrm{mg} / \mathrm{l}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Sodium } \\ & (\text { mb/j.) } \end{aligned}$	$\underset{(\mathrm{mc} / 1)}{\text { Iron }}$	$\begin{gathered} \text { Bicarconate } \\ (\mathrm{mg} / 1) \end{gathered}$	$\begin{aligned} & \text { Sulfate } \\ & (\mathrm{mg} / 1) \end{aligned}$	（mg／l） Total Hardress as CaCO as		$\begin{aligned} & \text { Dissoived } \\ & \text { soitici } \\ & ([; ; 1) \end{aligned}$	$\begin{aligned} & \text { Coniuczare } \\ & (- \text {-hos/cm } \end{aligned}$		8
SIIS												
こ：－37－－23DEC5	122	112	120	10.8	406	676	770	333	1473	1600	7.6	<10
I：－ 3 TE－26：P3C （A11ットium？）	45	61	73	39.5	293	345	366	240	90\％	541	£．1	
	14	30	242	． 02	360	360	162	311	1020	1210	2.4	
I：i－39E－31cce	45	43	244	0	420	445	290	360	1225	1470	7．35	
1 I：－33E－328BCA	51	28	430	\bigcirc	346	951	243	205	1879	2230	7．55	13.4
$\stackrel{\sim}{*}$ ¢nvias												
	117	105	73	2.7	457	499	728	375	1304	1450	7.35	

（page 5 of 5）

50：020：	$\frac{c o l c i u m}{(-\delta / 2)}$	$\begin{gathered} \text { :arraz=um } \\ (\mathrm{mg} / 1) \end{gathered}$		Iron	$\begin{gathered} \text { 2icavonaze } \\ (\ldots, 1 I) \end{gathered}$	$\begin{aligned} & \text { Surato } \\ & (m g / 1) \end{aligned}$	Potal H2ロれてss （ms／1） ${ }_{(\mathrm{m}}^{\mathrm{as} / 1)}$	Total Alkalinity $(\mathrm{mj} / \mathrm{I}$ ${ }_{(\mathrm{m}, 3 / 2)^{3}}$	$\begin{aligned} & \text { Dissoived } \\ & \text { soli } \\ & \left(\begin{array}{ll} \text { metion } \end{array}\right. \end{aligned}$	$\begin{aligned} & \text { Conductan } \\ & (\text { mhes/c. }) \end{aligned}$	P：	$5:$
$\because こ$												
	162	232	$2+2$	0.62	4.54	820	950	372	173？	2000	7.1	2．${ }^{\text {a }}$
エ゙ージミ－253ECA	6	1.6	564	0.05	670	635	22	611	1912	2320	9．3？	
	51	183	207	0.02	419	943	894	343	1859	2080	7.25	3.2
エi－3TE－22PE：D	76	415	415	1.8	443	859	362	363	1860	2230	7.6	3.5
			MADISON L	mestone	SSION CANYON）	AQUIFER						
LOCATION	Calcium （mg／l）	Magnesium （mg／l）	Sodium (mg/l)	$\begin{aligned} & \text { Iron } \\ & (\mathrm{mg} / 1) \end{aligned}$	Bicarbonate （mg／l）	Sulfate （mg／l）	Total Hardness （mg／1） $\underset{(\mathrm{mg} / \mathrm{I})^{3}}{ }$	Total Alkalinity $(\mathrm{mg} / 1)^{3}$ $\underset{(\mathrm{ma} / 1)^{3}}{ }$	Dissolved solids （ $\mathrm{mg} / 1$ ）	Conductanc （mhos／cm）		SAR
WELL												
1N－37E－260	309	60	44	6.7	136	980	－－	－－	1540	－－	6.6	0.4

southeastern Mical analyses of water in the area of Westmoreland Resources'coal reserves, southeastern Montana.

[^19]
Table 34 - Observation wells near Westmoreland Resources' Tract 3 coal reserves, Sarpy Creek
area, southeastern Montana.
area, southeastern Montana.
area, southeastern Montana.

Table 35 Chemical analyses from wells near Westmoreland Resources Tract III coal reserves, Sarpy Creek area, southeastern Montana.
(From Van Voast and Hedges, 1974, Chemical analyses)

[^20]| STATE | MONTANA | COUNTY | BIGHORN |
| ---: | :--- | ---: | :--- |
| LATITUDE-LONGITUDE | | LOCATION OIN $37 E$ | 13CABB |
| SAMPLE TYPE | WELL | LAB NO. | T4-706 |

PROJECT SARPY CR WESTMORELAND TPACT 3 MEMS SMITH
REMARKS STATE RESEARCH WEL.

PARAMETERS REPORTED IN MILLIGRAMS PER RITER EXCEBT AS INDICATED

ADDITICNAL PARAMETERS
LEAD (PB) . 02

NOTE. PARAMETERS ARE TOTAL DISSOLVED UNLESS LABELED TR-TOTAL RECUVERABLE DILUTE SPECIFIC CONDUCTANCE $\begin{array}{llllllllllll}\text { MEAS DSC } & \text { C. } & \text { CALC DSC } & \text { 3779. } & \text { CA } & \text { MG } & \text { NA } & \text { K } & \text { CL } & \text { SO4 HCO3 CO3 } & \text { NO3 } \\ \text { ERROR DSC } & 0.0 & & & 12 & 16 & 71 & 1 & 1 & 78 & 20 & 2\end{array} 0$ NOTE. IN CORRESPONDENCE RELATED TO THIS ANALYSIS REFER TO NUMBER 74-70S

STATE MONTANA
LATITUDE-L ONGITUDE SAMPLE TYPE GEOLOGICAL SOURCE

DRAINAGE BASIN DATE SAMPLED TIME SAMPLED DATE ANALYZED SAMPLE HANDLING METHOO SAMPLED SANITARY CONDITION

WELL

COUNTY BIGHORN
LOCATION OIN.38E L9CBBB
LAB NO. 74-707
SAMPLE OR BOTTLE NO. AGENCY AND STATION CODE DEPTH HATER ENTERS WELL SWL ABOVE(t) OR BELOW GS ALTITUDE OF SANPLE POINT HATER FLOW RATE FLOW MEAS METHOD PRINCIPAL USE OF WATER UNUSED

```
PROJECT SARPY CR WESTMORELAND TRACT 3 MBMG SMITH
```

PROJECT SARPY CR WESTMORELAND TRACT 3 MBMG SMITH
REMARKS STATE RESEARCH WELL ROSEBUD MCKAY COAL

```

PARAMETERS REPORTED IN MILLIGRAMS PER LITER EXCEPT AS INDICATED
\(\begin{array}{rc}\text { CALCIUM (CA) } & 116 . \\ \text { MAGNESIUM (MG) } & 124 . \\ \text { SODIUM (NA) } & 67.5 \\ \text { OTASSIUM }(K) & 2.7 \\ \text { OT. IRON (FE) } & .00 \\ \text { ANGANESE (MN) } & .00 \\ \text { SILICAM (AL) } & \\ \text { SIO2) } & 10.6\end{array}\) MEQ/L
\begin{tabular}{lr}
5.768 & BICARBONATE(HCO3) \\
10.218 & CARBONATE (CO3) \\
2.936 & HYDROXIDE (OH) \\
0.069 & CHLORIDE (CL) \\
0.0 & SULFATE (SO4) \\
0.0 & NITRATE (NO3) \\
& FLUORIDE \\
& PHOSPHATE (PO4)
\end{tabular}
\begin{tabular}{cc} 
MG/L & MEQ/L \\
448. & 7.342 \\
0. & 0.0 \\
0. & 0.000 \\
10.5 & 0.296 \\
529. & 11.018 \\
7.9 & 0.127 \\
.3 & 0.016
\end{tabular}

TOTAL CATIONS 18.991 TOTAL ANIONS 18.799 STANDARD DEVIATION OF CATION-ANION BALANCE -0.48 SIGMA

LABORATORY PH
FIELD TEMPERATURE CALCULATED DISSOLVED SOLIDS EVAPORATED SOLIDS AT 105 C SPECIFIC CONDUCTANCE IN MICROMHOS/CM AT 25 C SODIUM ADSORPTION RATIO
\begin{tabular}{rrrr} 
8.04 & CARBONATE HARDNESS AS CACO3 & 367 \\
& NON-CARB. HARDNESS AS CACO3 & 437 \\
1316.5 & TOTAL HARDNESS AS CACO3 & 805 \\
& TOTAL ALKALINITY AS CACO3 & 367 \\
1549.0 & LANGLIER SATURATION INDEX \\
1.0 & RYSNAR STABILITY INDEX
\end{tabular}

LEAD (PB) . 03
ADDITIONAL PARAMETERS

NOTE. PARAMETERS ARE TOTAL DISSOLVED UNLESS LABELED TR-TOTAL RECOVERABLE DILUTE SPECIFIC CONDUCTANCE

PERCENT REACTANCE VALUES
MEAS DSC 0. CALC DSC 2091. CA MG NA K CL SO4 HCO3 CO3 NO3 ERROR DSC 0.0
ANALYST LAW
NOTE. IN CORRESPONDENCE RELATED TO THIS ANALYSIS REFER TO NUMBER 74-707


ADDITIONAL PARAMETERS
LEAD (PB) <. 02

NOTE. PARAMETERS ARE TOTAL DISSOLVED UNLESS LABELED TR-TOTAL RECOVERABLE DILUTE SPECIFIC CONDUCTANCE
 ANALYST LAW NOTE. IN CORRESPONDENCE RELATED TO THIS ANALYSIS REFER TO NUMBER 74-708


PARAMETERS REPDRTEO IN MILLIGRAMS PER IITTR EXCEPY AS INDICATED


LEAD (PB) <. 02

NOTE. PARAMETERS ARE TOTAL DISSOLVED UNLESS LABELED TR-TOTAL RECOVERABLE DILUTE SPECIFIC CONDUCTANCE

STATE MONTANA
LATITUDE-LONGITUDE SAMPLE TYPE GEGLOGICAL SOURCE DRAINAGE BASIN DATE SAMPLED TIME SAMPLED DATE ANALYZED SAMPLE HANOLING METHOD SAMPLED SANITARY CONDITICN

WELL
\begin{tabular}{ll} 
COUNTY & BIGHORN \\
LOCATION & \(01 N 38 E 29 B B E O\) \\
LAB NO. & \(74-710\)
\end{tabular}

SAMPLE OR BQ TLE NO. AGENCY AND STATION CODE DEPTH WATER ENTERS WELL SWL ABOVE(+) CR BELOW GS ALTITUDE OF SAMPLE PGINT WATER FLOW RATE
FLOW MEAS METHOD PRINCIPAL USE OF WATER UNUSED
PROJECT SARPY CR-WESTMORELAND TRACY 3 MBMG SMITH REMARKS STATE OBSERVATION WELL-ROSEBUD MCKAY COAL


ADOITIONAL PARAMETERS

AA CALCIUM (CA)
SPEC.COND., FIELD
8.76
2200.

AA MAGNESIUM (MG) 2.45
LEAD (P3) <.U2

NOTE. PARAMETERS ARE TUTAL DISSCLVED UNLESS LABELED TR-TOTAL RECOVERABLE dIlUTE SPECIFIC CONDUCTANCE PERCENT REACTANCE VALUES MEAS DSC O. CALC DSC 1350. CA MG NA K CL SO4 HCO3 CO3 NO3 ERROR DSC 0.0
ANALYST LAW NOTE. IN CORRE: NUENCE RELATED TO THIS ANALYSIS REFER TG NUMBER 74-710

STATE MONTANA
LAT I TUDE-L ONGITUDE SAMPLE TYPE GEOLOGICAL SOURCE DRAINAGE BASIN DATE SAMPLED TIME SAMPLED DATE ANALYZED SAMPLE HANDLING METHOD SAMPLED SANITARY CONDITION

HELL

07-11-74
8-27-74
11
BOTTLE
\begin{tabular}{cl} 
COUNTY & BIGHORN \\
LOCATION & OIN \(38 E\) 29BBBD \\
LAB NO. & \(74-711\)
\end{tabular}

\section*{PROJECT SARPY CR-WESTMORELAND TRACT 3 MEMG SMITH} REMARKS STATE OBSERVATION WELL, ROBINSON COAL

SAMPLE OR BOTTLE NO. AGENCY AND STATION CODE DEPTH WATER ENTERS HELL SWL ABOVE(+) OR BELDG GS ALTITUDE OF SAMPLE POINT WATER FLOW RATE FLOW MEAS METHOD PRINCIPAL USE OF WATER UNUSED
\[
\text { MBMG } \quad 3-8
\]
\[
\begin{aligned}
& 195 \mathrm{FT} \\
& 155.8 \\
& 3565
\end{aligned}
\]

BIGHORN
OIN 38E 29BBBD
74-711

\begin{tabular}{rlrl} 
STATE & MONTANA & COUNTY BIGHORN \\
LATITUDE-LONGITUDE & & LOCATION & \(01 N\) 38E \\
SAMPLE TYPE & WELL & LAB NO. & \(74-712\)
\end{tabular}
PROJECT SARPY CR-WFSTMORELAND TRACT 3 MBMG SMITH
REMARKS STATE OBSERVATION WEL\&

PARAMETERS REPOKTED IN MILLIGRAMS PER LITER EXCEPT AS INUICATEV
\begin{tabular}{lrrrrr}
\(M G / L\) & \(M E Q / L\) & & \(M G / L\) & \(M E Q / L\) \\
31. & 1.557 & BICARBONATE(HCO3) & 386. & 6.326 \\
61. & 5.002 & CARBONATE (CO3) & 7. & 0.240 \\
55.8 & 2.427 & HYOROXIDE (OH) & 0. & 0.000 \\
8.2 & \(C .210\) & CHLORIDE (CL) & 3.2 & 0.093 \\
.00 & 0.0 & SULFATE (SO4) & 129. & 2.694 \\
.00 & 0.0 & NITRATE (NO3) & 2.4 & 0.047 \\
& & FLUORIDE & \((F)\) & 0.1 & 0.005 \\
18.2 & & PHOSPHATE (PO4) &
\end{tabular}

TOTAL CATIONS 9.196 TOTAL ANIONS 9.405 STANDARD DEVIATION UF CATION-ANION BALANCE 0.84 SIGMA

LABORATORY PH FIELD TEMPERATURE CALCULATED DISSOLVED SOLIDS EVAPORATED SOLIDS AT 105 C SPECIFIC CONDUCTANCE IN MICROMHOS/CM AT 25 C SODIUM ADSORPTION RATIO
8. 51

CARBONATE HARONESS AS
CACJ3 332
NON-CARB. HARDNESS AS CACO3
0
703.1

TOTAL HARDNESS AS CACU3
332
TOTAL ALKALINITY AS CACO3 341
LANGLIER SATURATION INDEX RYSNAR STABILITY INDEX TECH. CORROSIDN INDEX
878.6
1.3

AA CALCIUM (CA) 31.2 LEAD (PB) <.02

ADOITIONAL PARAMETERS

AA MAGNESIUM (MG) 60.3

NOTE. PARAMETERS ARE TOTAL DISSOLVED UNLESS LABELED TK-TOTAL RECOVERABLE
DILUTE SPECIFIC CDNDUCTANCE
PERCENT REACTANCE VAI.UES

ANALYST LAW
PRIDCESSING PROGRAM 72 (REVB)
NOTE. IN CORRESPONDENCE RELATED TO THIS ANALYSIS REFER TO NUMBFH 74-712


NOTE. PARAMETERS ARE TOTAL DISSOLVED UNLESS LABELED TR-TOTAL RECOVERABLE DILUTE SPECIFIC CONDUCTANCE MEAS DSC 0. CALC DSC 609. CA MG NA K CL SO4 HCO3 CO3 NO3 ERROR DSC 0.0
ANALYST LAW
\(\begin{array}{lllllllll}18 & 13 & 62 & 7 & 3 & 64 & 32 & 0 & 1\end{array}\)
PROCESSING PROGRAM 72 (REV3)
NOTE. IN CORRESPONDENCE RELATED TO THIS ANALYSIS REFER TO NUMBER 74-713
\begin{tabular}{rlrl} 
STATE & MONTANA & COUNTY & BIGHORN \\
LATITUDE-LONGITUDE & & LOCATION & OIN \(38 E\) \\
SAMPLE TYPE & HELL & LAB NOD & \(74-714\)
\end{tabular}

\section*{PROJECT SARPY CR-WESTMORELAND TRACT 3 MBMG SMITH REMARKS STATE DBSERVATION WELL ROBINSON COAL}

PARAMETERS REPORTED IN MILLIGRAMS PER LITER EXCEPT AS INDIGATED
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & MG/L & \multicolumn{2}{|l|}{MEQ/L} & & & *G/L & MEQ/L \\
\hline CALCIUM & (CA) & 21. & 1.048 & BICARBONATE & HCO3) & & 318. & 5.207 \\
\hline MAGNESIUM & (MG) & 3.5 & c. 291 & CARBONATE & (CO3) & & 14. & 0.464 \\
\hline SODIUM & (NA) & 455. & 19.792 & HYOROXIDE & \((\mathrm{OH})\) & & 0. & 0.000 \\
\hline POTASSIUM & (K) & 3.0 & 0.077 & CHLORIDE & (CL) & & 9.3 & 0.26 ' \\
\hline TOT. IRON & (FE) & . 00 & 0.0 & SULFATE & (SO4) & & 744. & 15.494 \\
\hline MANGANESE & (MN) & . 00 & 0.0 & NITRATE & (N03) & & 4.8 & 0.077 \\
\hline ALUMINUM & ( \(A L\) ) & & & FLUORIDE & (F) & & . 2 & 0.011 \\
\hline \multicolumn{2}{|l|}{SILICA (SIO2)} & 9.5 & & PHOSPHATE & (PO4) & & & \\
\hline & \multicolumn{2}{|l|}{STANOARD DEVIATION} & 21.208
OF CATI & N-ANION BAL & NCE & \[
\begin{array}{r}
\text { TOTAL } \\
0.70
\end{array}
\] & ANIONS SIGMA & 21.510 \\
\hline
\end{tabular}

LABGRATORY PH
FIELD TEMPERATUPE
CALCULATEO DISSOLVED SOLIDS
EVAPORATED SOLIDS AT 105 C SPECIFIC CONDUCTANCE IN MICROMHOS/CM AT 25 C SODIUM ADSORPTION RATIO
8.53
1582.2
2163.0
24.2

CARBONATE HARONESS AS CACO3 60
NON-CARB. HARDNESS AS CACO3 O
TOTAL HARDNESS AS CACC3 ób
TOTAL ALKALINITY AS CACO3 307
LANGLIER SATURATIGN INDEX
RYSNAR STABILITY INOEX TECH CORROSION INDFX

ADDITIONAL PARAMETERS
LEAD (PB) .03

NOTE. PARAMETERS ARE TOTAL DISSOLVED UNLESS LABELED Tr-TOTAL RECGVERAble DILUTE SPECIFIC CONDUCTANCE
MEAS DSC O. CALC DSC 2481. CA MG NA K CL SO4 HCO3 CO3 NO3
 ANALYST LAW NOTE. IN CORRE ONDENCE RELATED TO THIS ANALYSIS REFFR TO NUMEER 74-714

STATE MONTANA
LATITUDE-LONGITUDE SAMPLE TYPE GEOLOGICAL SOURCE DRAINAGE BASIN DATE SAMPLED
TIME SAMPLED DATE ANALYZED SAMPLE HANDLING METHOD SAMPLED SANITARY CONDITION

WELL
07-11-74
    8-27-74
11
BOTTLE

COUNTY
LOCATION LAB NO.
SAMPLE OR BOTTLE NO. AGENCY AND STATION CODE DEPTH WATER ENTERS WELL SWL ABOVE(+) OR BELOW GS ALTITUDE OF SAMPLE POINT WATER FLOW RATE FLOW MEAS METHOD PRINCIPAL USE OF WATER

BIGHORN
OlIN 38E 31 DDBA 74-715
MBMG
46 FT
30.0
3585

PROJECT SARPY CR-WESTMORELAND TRACT 3 MB WC SMITH REMARKS STATE OBSERVATION HELL

PARAMETERS REPORTED IN MILLIGRAMS PER LITER EXCEPT AS INDICATED
\begin{tabular}{rc} 
& MG/L \\
CALCIUM (CA) & 105. \\
MAGNESIUM (MG) & 134. \\
SODIUM (NA) & 29. \\
POTASSIUM (K) & 4.2 \\
MOT IRON (FE) & .01 \\
MANGANESE (MN) & .00 \\
ALUMINUM (AL) & \\
SILICA (SIO2) & 19.3
\end{tabular}
TOTAL CATIONS 17.615
STANDARD DEVIATION OF CATION
7.97 CARBONATE HARDNESS AS CACO3 532

FIELD TEMPERATURE
CALCULATED DISSOLVED SOLIDS EVAPORATED SOLIDS AT 105 C SPECIFIC CONDUCTANCE IN MICROMHOS/CM AT 25 C SODIUM ADSORPTION RATIO MEQ/L
5.240
11.006
1.261
0.108
0.001
0.0

BIC
\begin{tabular}{cc} 
MG/L & MEQ/L \\
649. & 10.637 \\
0. & 0.0 \\
0. & 0.000 \\
11.0 & 0.312 \\
329. & 6.841 \\
1.6 & 0.026 \\
.0 & 0.0
\end{tabular}

PHOSPHATE (POL)
\begin{tabular}{rrrrr} 
LABORATORY PH & 7.97 & CARBONATE HARDNESS AS CACO3 & 532 \\
FIELD TEMPERATURE & & NON-CARB. HARDNESS AS CACO3 & 287 \\
CALCULATED DISSOLVED SOLIDS & 1281.6 & TOTAL HARDNESS AS CACO3 & 819 \\
EVAPORATED SOLIDS AT IO C & & TOTAL ALKALINITY AS CACD3 & 532 \\
SPECIFIC CONDUCTANCE IN & & LANGLIER SATURATION INDEX & \\
MICROMHOS/CM AT \(25 C\) & 1432.0 & RYSNAR STABILITY INDEX
\end{tabular}

LEAD (PB) <. 02

\begin{tabular}{|c|c|c|c|}
\hline State & MUNTANA & COUNTY & BIGHLRN \\
\hline LATITUDE-LONGITUDE & & LOCATICN & OIN 38E 31DJBA \\
\hline SAMPLE TYPE & WELL & LAB NQ. & 74-716 \\
\hline GEGLOGICAL SOURCE & & sample or bottle no. & \\
\hline DRAINAGE BASIN & & AGENCY AND STATICN CODE & MBMG 5- \\
\hline CATE SAMPLED & 07-11-74 & DEPTH WATER ENTERS WELL & 91 FT \\
\hline TIME SAMPLED & & SWL ABCVE(+) OR BELO'N GS & 53.3 \\
\hline DATE ANALYZED & 8-27-74 & ALTITUDE OF SAMPLE POINT & 3535 \\
\hline SAMPLE HANDLING & 11 & WATER FLUN RATE & \\
\hline METHOD SAMPLEC & bottle & FLCW MEAS METHOD & \\
\hline SANITARY CONDITION & & PRINCIPAL USE OF WATER & UNUSER \\
\hline
\end{tabular}
PROJECT SARPY CR-WESTMDRELAND TRACT 3 MBMG SMITH
REMARKS STATE OBSERVATICN WELL, ROSEBUD-MCKAY CCAL

PARAMETERS REPORTED IN MILLIGRAMS PER LITEF EXCEPT AS INDIGATEU
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & MG/L & \multicolumn{3}{|l|}{MEQ/L} & Mg/L & MEU/L \\
\hline CALCIUM & (CA) & 19.2 & 0.956 & BICARBONATE & ( HCO 3\()\) & 379. & 6.546 \\
\hline MAGNESIUM & (MG) & 11.2 & C. 918 & CARBONATE & \((\mathrm{CO} 3)\) & 15. & 0.485 \\
\hline SODIUM & (NA) & 187. & 8.134 & HYDROXIDE & \((\mathrm{OH})\) & 0. & 0.000 \\
\hline POTASSIUM & (K) & 3.5 & 0.090 & CHLORIDE & (CL) & 4.1 & 0.117 \\
\hline TOT. IRON & (FE) & . 00 & C. 0 & Sulfate & (S04) & 145. & 3.027 \\
\hline MANGANESE & (MN) & . 00 & C. 0 & NITRATE & (N03) & 2.0 & 0.032 \\
\hline ALUMINUM & (AL) & & & FLUORIDE & (F) & . 1 & 0.005 \\
\hline SILICA IS & I02) & 8.1 & & PHOSPHATE & (P04) & & \\
\hline
\end{tabular}

TOTAL CATIONS \(10.098 \quad\) TOTAL ANICNS 10.216 STANDARD DEVIATION OF CATION-ANION RALANCE 0.44 SIGMA

LABORATCRY PH
FIELD TEMPERATURE
CALCulated dissolved solios EVAPORATED SOLIDS AT \(105 \%\) SPECIFIC CONDUCTANCE IN MICROMHOS/CM AT 25 C SOOIUM AOSORPTION RATIO

LEAD (PB) \(<.02\)

NOTE. PARAMETERS ARE TOTAL DISSCLVEE UNLESS LABELEU TR-TUTAL RECSVERAGLE dilute specific conductance
 ANALYST LAW PROCESSING PROGRAM 72 (REV 31 NOTE. IN CURRE UNDENCE FELATED TIT THIS ANALYSIS RIFER TU NUMBGR \(\quad 4-716\)

STATE MONTANA
LAT ITUDE-LONGITUDE SAMPLE TYPE GEOLDGICAL SOURCE DRAINAGE BASIN DATE SAMPLED TIME SAMPLED DATE ANALYZED SAMPLE HANDLING METHOD SAMPLED SANITARY CONDITION

WELL
\begin{tabular}{rl} 
COUNTY & BIGHORN \\
LOCATION & \(01 N 37 E\) \\
LAB NO. & \(74-718\)
\end{tabular}

SAMPLE OR BOTTLE NO. AGENCY AND STATION CDOE DEPTH WATER ENTERS WELL SHL ABOVE( + ) DR BELOW GS ALTITUDE DF SAMPLE POINT HATER FLOW RATE FLOH MEAS METHOD PRINCIPAL USE OF WATER
```

MBMG G-A
70 FT
45.2
3545

```

UNUSED
PROJECT SARPY CR-WESTMORELAND TRACT 3 MBMG SMITH
REMARKS STATE OBSERVATUON HELL ROSEBUD- MCKAY COAL

PARAMETERS REPORTED IN MILLIGRAMS PER LITER EXCEPT AS INOICATED
MG/L
52.
71.
40.2
4.7
.00
.00
21.3 MEQ/L
\(\begin{array}{rr}\text { CALCIUM (CA) } & 52 . \\ \text { AGNESIUM (MG) } & 71 . \\ \text { SODIUM (NA) } & 40.2 \\ \text { OTASSIUM (K) } & 4.7 \\ \text { OT IRON (FE) } & .00 \\ \text { ANGANESE (MN) } & .00 \\ \text { ALUMINUM (AL) } & \\ \text { SILICA (SIO2) } & 21.3\end{array}\)
TOTAL CATIONS 10.278 TOTAL ANIONS 10.097 STANDARD DEVIATION OF CATION-ANION BALANCE - 0.68 SIGMA

LABORATORY PH
FIELD TEMPERATURE
CALCULATED DISSOLVED SOLIDS
EVAPORATED SOLIDS AT 105 C SPECIFIC CONDUCTANCE IN MICROMHOS/CM AT 25 C SODIUM ADSORPTION RATIO
8. 16 CARBONATE HARDNESS AS CACO3

NON-CARB. HARDNESS AS CACO3
TOTAL HARDNESS AS CACO3
TOTAL ALKALINITY AS CACO 3 LANGLIER SATURATION INDEX
900.2 RYSNAR STABILITY INDEX 0.9 TECH. CORROSION INOEX

392
32
424
392

\author{
ADDITIONAL PARAMETERS
}
note. parameters are total dissolved unless labeled tr-total recoverable DILUTE SPECIFIC CONDUCTANCE MEAS DSC 0. CALC DSC 1009. CA MG NA K CL SO4 HCO3 CO3 NO3 ERROR DSC 0.0 ANALYST LAW PROCESSING PROGRAM 72 (REV3) NOTE. IN CORRESPONDENCE RELATED TO THIS ANALYSIS REFER TO NUMBER 74-718
\begin{tabular}{|c|c|c|c|c|}
\hline STATE & MONTANA & COUNTY & BIGHORN & \\
\hline LATITUDE-LONGITUDE & & LOCATION & O1N 38E & \(3680 A D\) \\
\hline SAMPLE TYPE & WELL & LAB NO. & 74-719 & \\
\hline GEULOGICAL SOURCE & & SAMPLE OR BOTTLE NO. & & \\
\hline DRAINAGE BASIN & & AGENCY AND STATION CODE & MBMG & \(6-8\) \\
\hline DATE SAMPLED & 07-11-74 & DEPTH WATER ENTERS WELL & 176 FT & \\
\hline TIME SAMPLED & & SHL ABOVE +1 OR BELOW GS & 107.4 & \\
\hline DATE ANALYZED & \(8-27-74\) & ALTITUDE OF SAMPLE POINT & 3545 & \\
\hline SAMPLE HANOL ING & 11 & WATER FLOW RATE & & \\
\hline METHOD SAMPLED & BOTTLE & FLOW MEAS METHOD & & \\
\hline SANITARY CONDITION & & PRINCIPAL USE OF WATER & UNUSED & \\
\hline
\end{tabular}

\section*{PROJECT SARPY CR-WESTMORELAND TRACT 3 MBMG SMITH REMARKS STATE OBSERVATION WELL ROBINSON COAL}

PARAMETERS REPORTED IN MILLIGRAMS PER LITER EXCEPT AS INDICATED


LEAD (PB) <. 02

NOTE. PARAMETERS ARE TOTAL DISSOLVED UNLESS LABELED TR-TOTAL RECOVERABLE DILUTE SPECIFIC CDNDUCTANCE

ADDITIONAL PARAMETERS


\section*{CHEMICAL ANALYSES OF GROUND WATER FROM SELECTED MONITORING WELLS IN THE PROJECT AREA}
\begin{tabular}{|c|c|c|c|c|}
\hline WELL MUAEER & 14 & 14 & 18 & 18 \\
\hline g CuIFER & 108 & 108 & 52 & 81 \\
\hline DATE & 7-11-74 & 0-12-75 & 7-11-74 & 0-12-75 \\
\hline METHNO SAMPLD & Sotele & huped & Sottle & \\
\hline mater level & \[
22.2
\] & 22.07 & 86.3 & \[
86.62
\] \\
\hline AKALISIS \({ }^{\text {b }}\) & & & & \\
\hline Calciue & 86 & 75.5 & 78 & \\
\hline Magnesium & 47 & 45.0 & 64 & 76.25
48.20 \\
\hline Sodium & 650 & 587.7 & 535 & 480.67 \\
\hline Potaselue & 0.5 & 14.2 & 6.4 & 11.05 \\
\hline Iron (cotal) & ¢.01 & 14.2 & 6.4
0.01 & 11.05 \\
\hline Monganeas & 0.01 & 0.05 & 0.01 & 0.19
0.02 \\
\hline Aluminue & 0. & 0.18 & 0.01 & 0.02 \\
\hline silica & 10.8 & & 9.3 & 0.20 \\
\hline Bicarbonate & 307 & 488.40 & 389 & \\
\hline Carbonate & 7 & 0 & 15 & \\
\hline Eydroxide & 0 & 0 & 15 & 0 \\
\hline Chloride & 2.4 & 6.62 & 8.8 & 6.13 \\
\hline Sulfarac & 1535 & 1399.68 & 1194 & 1200.88 \\
\hline Eitrate & 2 & 0.37 & 1.6 & 0.56 \\
\hline Puoride & 0.3 & 40.20 & 0.1 & \(<0.20\) \\
\hline Orcho. Phoaphaca & & . 001 & 0.1 & P0.20
0.008 \\
\hline Lab ph (mounte) & 0.51 & 8.1 & 8.36 & \\
\hline Fiald Temperatura ( \({ }^{\circ} \mathrm{C}\) ) & & 12.5 & 8.36 & 13.7 \\
\hline Field Conductivigy \({ }^{\text {d }}\) (Luhoo/cmambleat tmp.) & & 2550.0 & & 13.0
2220.0 \\
\hline Lab Conductivity (Hehoa/cee \(25^{\circ} \mathrm{C}\) ) & 3248.0 & 4050.0 & 2878.0 & 32200 \\
\hline Total Suspandad Solids & & & 2078.0 & \\
\hline Total Dissolvad Solids \({ }^{\text {a }}\) ( \(0^{\circ} \mathrm{C}\) ) & 2674.7 & 2480.2 & 2301.0 & 2180.4 \\
\hline Traporated Sollds ( \(105^{\circ} \mathrm{C}\) ) & & & 2301.0 & 2100.4 \\
\hline Carbonata Hardnesa ( \(\mathrm{CaCO}_{3}\) ) & 276 & 378.30 & 370 & \\
\hline Mon-Carbonsta Hardnass ( \(\mathrm{CaCO}_{3}\) ) & 158 & 0 & 69 & \[
0
\] \\
\hline Total Hardness ( \(\mathrm{CaCO}_{3}\) ) & 434 & 378.30 & 460 & 395.64 \\
\hline  & 276 & 400.20 & 370 & \$20.9 \\
\hline Sodiun Adsorption Racio (no unite) & 13.6 & 13.45 & 10.9 & 10.60 \\
\hline Leidity ( \(\mathrm{CaCO}_{3}\) ) & & 0 & & 0 \\
\hline ziac & & & & \\
\hline Corosiu & & - 0.01 & & 0.04 \\
\hline Seleniu & & 0.02 & & ¢0.02 \\
\hline Mercury & & \[
\begin{aligned}
& 0.05 \\
& 0.000
\end{aligned}
\] & & \(<0.05\) \\
\hline Mickel & & <0.05 & & ¢0.01 \\
\hline Arcenic & & \(\infty .10\) & & <0.10 \\
\hline Copper & & 0.51 & & 0.67 \\
\hline cedalum & & 0.01 & & 10.02 \\
\hline serontium & & 2.002 & & -0.002 \({ }^{\circ}\) \\
\hline Lead & ¢ 2 & 2.4
\(<0.05\) & & 4.3
40.05 \\
\hline Vanadium & . 2 & & -as & c0. 05 \\
\hline Molybdanue & & ¢.0.0s & & \[
9.5
\] \\
\hline
\end{tabular}

\footnotetext{
- Ueter level measurement below cround eurface
- Analyeae raportad so mg/l unleae otharwice indicered
- Hitrate reportad as N03 for 1974 semplee. (MO34M02) for thoee after 1974
- Conductivity refere to opecific conductance
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline vell mumat & 24 & 24 & 28 & 28 & 28 & 26 & 26 & 26 \\
\hline Aquifit & \(\pm\) & H6C & 403 & 208 & 203 & 88 & st & 52 \\
\hline Datt & 7-11-78 & --12-75 & 7-11-74 & 10-21-74 & -12-75 & |-11-74 & 10-25-74 & 6-12-73 \\
\hline METwno savit & Racele & n-pe4 & Botele & tuped & nopa & Sotele & Pepod & nueged \\
\hline matea leveb & 7.6 & 13.0 & 49.1 & 49.4 & 50.4 & 126.9 & 121.7 & 225.6 \\
\hline \multicolumn{9}{|l|}{axalrsis \({ }^{\text {a }}\)} \\
\hline Coletue & 116 & 109.60 & 1.3 & 3.3 & 124.12 & 12.0 & 25.0 & 18.8) \\
\hline Magnes lvo & 126 & 863.61 & 4.0 & 0.6 & 171.38 & 19.6 & 13.3 & 26.17 \\
\hline Sodiue & 67.5 & 61.31 & 109.5 & 127 & 188.14 & 800. & 330. & 413.63 \\
\hline Potaeelue & 2.7 & 2.73 & 2.7 & 2.5 & 11.13 & 4.2 & 3.6 & 2.53 \\
\hline Irem (total) & -0.01 & <0.01 & 1.46 & 2.26 & 20.01 & -0.01 & 0.02 & 0.01 \\
\hline Manganese & -.08 & 0.06 & 0.02 & 0.01 & -0.02 & -0.02 & 0.01 & 0.02 \\
\hline Aluelinu & & 0.42 & & & 0.18 & & & 0.22 \\
\hline Blise & 20.6 & & 19.5 & 20.7 & & 1.0 & 0.0 & \\
\hline Blcerbonate & 48 & 120.28 & 276 & 184 & 680.37 & 621. & 311. & 492.98 \\
\hline Cartnnece & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 21. & 22. & 0 \\
\hline bydroxide & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0 \\
\hline Clersid & 10.5 & 6.62 & 4.2 & 3.3 & 7.08 & 1.8 & 2.7 & 7.25 \\
\hline sulfeco & 829 & 401.41 & 120 & 131 & 112.06 & 823. & 927. & 130.20 \\
\hline Eitrete & 1.8 & 0.67 & 2.0 & 4.6 & 0.79 & 2.0 & 2.4 & 0.30 \\
\hline Tivorido & 0.3 & 0.20 & 0.2 & 0.2 & <0. 20 & 0.2 & 0.3 & 0.64 \\
\hline Orthe thoophece & & 0.008 & & & 0.008 & & & 0.00 \\
\hline Lob on (no matce) & 0.06 & 7.4 & 1.22 & 1.05 & 8.0 & 1.35 & 0.56 & 0.3 \\
\hline Pield Tempereture \(\quad\left({ }^{\circ} \mathrm{C}\right)\) & & 12.1 & & 14.0 & 14.0 & & 13.0 & 15.0 \\
\hline Pield Conducivigy (whoelentanione eas.) & & 1220.0 & & 620 & 1780.0 & & \[
2110 .
\] & \[
1350.0
\] \\
\hline Lel Conduceivity (Luboe/ent23 \({ }^{\circ}\) ) & i349.0 & 1930.0 & 548.0 & 599.6 & 2700.0 & 2396.0 & 2319.0 & 2900.0 \\
\hline \multicolumn{9}{|l|}{Tecel Suapended solide} \\
\hline Totel Diasolved Solide & 1316. & & 44.4 & 412.5 & & 1835.2 & 1243.7 & \\
\hline Eveporeted solsde (205 \({ }^{\circ} \mathrm{C}\) ) & & 1192.2 & & & 1624.6 & & & 1773.2 \\
\hline Cartonete Wardneee ( CaCO ) & 367 & 390.20 & 32 & 10 & 537.50 & 160. & 46. & 314.03 \\
\hline Men-Carbonete Mordnese ( \(\mathrm{CaCO}_{\mathrm{g}}\) ) & 437 & 287.10 & 0 & 0 & 491.00 & 0.0 & 0.0 & 0.00 \\
\hline Tetel Mardnese ( \(\mathrm{CaCO}_{3}\) ) & 4 & 177.30 & 32 & 10 & 1041.50 & 160. & 46. & 34.03 \\
\hline Total Alkelinity (CadO) & 467 & 850.20 & 243 & 132 & 837.50 & 438. & 393. & 603.78 \\
\hline  & 2.0 & 0.62
0.8 & ©. 3 & 17. & 2.13
0.0 & 27.2 & 21.2 & \$.96 \\
\hline \multicolumn{9}{|l|}{8190} \\
\hline Ehrowlu & & c 0.02 & & & +0.02 & & & -0.02 \\
\hline Selentu & & c0.05 & & & 4.05 & & & 4.05 \\
\hline Mercury & & 0.0003 & & & 0.0002 & & & . 0005 \\
\hline Areenie & & \(\infty .01\) & & & \(\infty .05\) & & & \(\infty .05\) \\
\hline Sorem & & 0.81 & & & 0.12 & & & c0.2 \\
\hline Copoer & & ¢0.01 & & & 0.02 & & & -. 03 \\
\hline Cadasua & & <0.002 & & & 10.002 & & & 0.002 \\
\hline serontive & & 2.0 & & & 2.8 & & & 2.7 \\
\hline Vened1 & - 0 & 0.5 & 409 & -40 & co.05 & - 0 & 483 & ce. 05 \\
\hline Molstian & & -10 & & & 2.3 & & & . 5 \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|c|}
\hline WFIL. MUMEER & 0 & 83 & 86 \\
\hline Alditipa & 82 & ROL & NHC \\
\hline DATE. & C-14-75 & -14-75 & 8-14-73 \\
\hline METI()) SAMPLPD & Pumped & Pumped & Pumped \\
\hline WATER I.AVEL \({ }^{\text {a }}\) & 197.5 & 130.85 & 13.18 \\
\hline \multicolumn{4}{|l|}{ANAIYSIS \({ }^{\text {b }}\)} \\
\hline Calcium & 228.68 & 306.77 & 176.23 \\
\hline Maxncefue & 36.38 & 1.73 & 124.15 \\
\hline Sodiun & 71.91 & 280.73 & 48.28 \\
\hline Potanalum & 42.94 & 46.36 & 24.94 \\
\hline Iron (totel) & 0.19 & < 0.01 & 0.36 \\
\hline Manganeat & & 0.02 & 0.35 \\
\hline Aluminum & 0.49 & 0.56 & 0.36 \\
\hline \multicolumn{4}{|l|}{stlica} \\
\hline Blearbonate & 322.98 & 0.0 & 386.63 \\
\hline Carbonste & 0.0 & 479.40 & 0.0 \\
\hline Mydroxide & 0.0 & 203.78 & 0.0 \\
\hline Chloride & 16.35 & & 9.87 \\
\hline Sulfate & 619.54 & 339.46 & 489.19 \\
\hline Mitrate & 0.13 & 0.75 & 0.05 \\
\hline Fluoride & 3.77 & 1.12 & 1.67 \\
\hline Ortho Phosphate & 0.01 & 0.001 & 0.08 \\
\hline Lab ply (no unite) & 7.3 & 13.0 & 7.5 \\
\hline Field Temperature ( \({ }^{\circ} \mathrm{C}\) ) & 14.0 & 12.8 & 12.8 \\
\hline Field Conductivity (fmos/cmembient temp) & 1430.0 & 3600.0 & 1010.0 \\
\hline Leb Conductivity (umhos/cme \(25^{\circ} \mathrm{C}\) ) & 2120.0 & 5100.0 & 1700.0 \\
\hline \multicolumn{4}{|l|}{Totel Suspended Sollds} \\
\hline Total Dissolved Sollds \(0^{\circ}\) c) & & & \\
\hline Evaporated Sollde ( \(105^{\circ} \mathrm{C}\) ) & 1635.6 & & 1160.6 \\
\hline Carbonate Hardnesa ( \(\mathrm{CaCO}_{3}\) ) & 264.65 & 781.34 & 479.05 \\
\hline Mon-Carbonste Hardnesa ( \(\mathrm{CaCO}_{3}\) ) & 501.77 & 0.0 & 481.19 \\
\hline Total Hardness ( \(\mathrm{CaCO}_{3}\) ) & 766.42 & 781.36 & 960.24 \\
\hline  & 264.65 & 1392.7 & 479.05
0.68 \\
\hline Sodium Adsorption tatio (momite)
Acidity ( \(\mathrm{CaCO}_{3}\) ) & 1.01
0.0 & 4.39
0.0 & 0.68
0.0 \\
\hline Acidity ( \(\mathrm{CaCO}_{3}\) ) & 0.0 & 0.0 & \\
\hline zixc & & 0.11 & 0.08 \\
\hline Chroain & < 0.02 & < 0.02 & -0.02 \\
\hline Seleniu & c0.05 & <u. 05 & <0.05 \\
\hline Mercury & 0.0005 & 0.0010 & 0.0004 \\
\hline Hickel & 0.05 & \(<0.05\) & 0.05 \\
\hline Arsenic & 0.1 & <0.1 & <0.1 \\
\hline Borea & 0.30 & 0.10 & 0.17 \\
\hline Copper & & 0.01 & 0.07 \\
\hline Cedelum & - 0.002 & 0.002 & - 0.002 \\
\hline strentive & 6.8 & 4.1 & 8.3 \\
\hline Lead & 0.75 & co.05 & 0.51 \\
\hline Veaedive & - 0.5 & co. 5 & \(\infty .5\) \\
\hline Molydeme & . 01 & 0.01 & C.003 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline vell muack & 148 & 158 & 16A & 168 \\
\hline AQUIFER & 105 & 8R & 82 & 208 \\
\hline DATE & 2-14-35 & S-12-75 & 8-13-75 & --13-75 \\
\hline VETHOO SNTPLED & Pexped & Pumped & Pumed & Puped \\
\hline MATEA LEVEL & & 81.13 & 152.27 & 78.04 \\
\hline \multicolumn{5}{|l|}{nuersis \({ }^{\text {b }}\)} \\
\hline Calcium & 297.39 & 126.90 & 269.79 & 170.34 \\
\hline Magnesium & 109.65 & 165.30 & 109.65 & 118.83 \\
\hline Sodiue & 59.16 & 168.77 & 59.42 & 462.32 \\
\hline Poceasilu & 39.63 & 11.58 & 38.45 & 28.31 \\
\hline Iron (total) & 0.54 & C 0.01 & -0.01 & 0.36 \\
\hline Manganese & & ¢0.02 & 1.03 & 0.02 \\
\hline Aluainum & 0.52 & 0.28 & 0.50 & 0.47 \\
\hline silice & & & & \\
\hline Blearbonate & 486.08 & 775.26 & 215.58 & 648.83 \\
\hline Carborate & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Iydrozide & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Chloride & 14.34 & 2.21 & 17.58 & 18.20 \\
\hline sulfate & 923.12 & 665.85 & 1087.10 & 138.19 \\
\hline Mitrate \({ }^{\text {c }}\) & 0.05 & 0.73 & 0.09 & 0.14 \\
\hline Invoride & 2.38 & <0.20 & 1.38 & 0.62 \\
\hline Ortbo Phoephate & 0.02 & 0.0 & 0.001 & 0.001 \\
\hline Lab pi (no valte) & 7.3 & 7.7 & 7.9 & 1.7 \\
\hline Field Temerature ( \({ }^{\circ} \mathrm{C}\) ) & 14.0 & & 17.0 & 18.0 \\
\hline  & ; 760.0 & & 1740.0 & 2600.0 \\
\hline Lab Conductivity ( \(\mu\) mhos/cme25 \({ }^{\circ} \mathrm{C}\) ) & 2500.0 & 2250.0 & 2500.0 & 4290.0 \\
\hline \multicolumn{5}{|l|}{Total Suspended Solids} \\
\hline \multicolumn{5}{|l|}{Totel Disaolved Solids} \\
\hline svaporated Sollds ( \(105^{\circ} \mathrm{C}\) ) & 1175.2 & 1469.3 & 1829.8 & 2653.7 \\
\hline Carbonate Hardness ( \(\mathrm{CaCO}_{3}\) ) & 398.30 & 635.25 & 176.65 & 531.67 \\
\hline Moa-Carbonate Hardneas ( \(\mathrm{CaCO}_{3}\) ) & 813.03 & 367.02 & 961.72 & 400.69 \\
\hline Total Hardneas ( \(\mathrm{CaCO}_{3}\) ) & 1211.33 & 1002.27 & 1138.37 & 932.15 \\
\hline Totel Alkalinity ( \(\mathrm{CaCO}_{3}\) ) & 398.3 & 635.25 & 176.65 & 331.67 \\
\hline Sodius adsotption Ratio (no units) & 0.74 & 2.32 & 0.77 & 6.65 \\
\hline cidity ( \(\mathrm{CaCO}_{3}\) ) & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 2Lac & 0.10 & 0.16 & 0.02 & 0.11 \\
\hline Chroalu & < 0.02 & < 0.02 & < 0.02 & - 0.02 \\
\hline Seleniu & <0.05 & <0.05 & <0.05 & <0.05 \\
\hline Mercury & 0.0003 & 0.0016 & 0.0008 & 0.0006 \\
\hline Hickel & c0.05 & <0.05 & <0.01 & <0.01 \\
\hline Arsealc & co. 1 & <0.1 & <0.1 & <0.1 \\
\hline Soran & 0.59 & 0.84 & 0.25 & 0.43 \\
\hline Copper & 0.40 & 0.06 & 0.04 & 0.01 \\
\hline Cadalua & - 0.002 & -0.002 & - 0.002 & 0.002 \\
\hline Strontium & 11.8 & 2.9 & 7.2 & 6.3 \\
\hline Lead & co.0s & \(<0.05\) & 0.76 & <0.05 \\
\hline Venadio & ¢. \({ }^{\circ}\) & <0.5 & C0. 3 & <0.5 \\
\hline Molytuma & -013 & 0.005 & 0.01 & <0.005 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline WFi.l mumbed & 18 & 19 & 20 & 10 \\
\hline m,NIFER & AL & AL & AL & AL \\
\hline Daty. & -12-75 & -12-75 & -11-75 & B-19-73 \\
\hline MH:THOD SAMPLED & Puoped & Pumped & Pumped & Batled \\
\hline watir lievel \({ }^{\text {a }}\) & 23.47 & 16.30 & 29.89 & 16.5 \\
\hline \multicolumn{5}{|l|}{NALTST \({ }^{\text {b }}\)} \\
\hline Calctum & 109.40 & 69.11 & 121.48 & 107.375 \\
\hline Magnes tue & 150.20 & 131.12 & 206.97 & \$7.23 \\
\hline Sodiun & 121.25 & 195.61 & 153.36 & 75.0 \\
\hline Potasifum & 12.63 & 10.83 & 9.69 & 10.62 \\
\hline Iron (total) & 0.19 & 0.19 & 0.19 & 0.19 \\
\hline Manganese & <0.02 & 0.18 & & \\
\hline Alualnus & 0.23 & 0.27 & 0.09 & 0.37 \\
\hline Stlice & & & & \\
\hline -lcarbonate & 762.87 & 629.91 & 041.65 & 451.98 \\
\hline Carbonate & 0.0 & 0.0 & 0.0 & 0 \\
\hline Mydroxide & 0.0 & 0.0 & 0.0 & 0 \\
\hline Chloride & 7.25 & 6.46 & 2.67 & 5.36 \\
\hline Sulfate & 654.08 & 617.91 & 788.02 & 263.15 \\
\hline Mitrate & 1.64 & 0.155 & 1.20 & 0.18 \\
\hline Fluoride & 0.20 & \(<0.20\) & \(<0.20\) & 1.08 \\
\hline Ortho Phosphate & 0.0 & 0.002 & 0.001 & 0.001 \\
\hline Leb pli le (no uate) & 7.4 & 7.7 & 8.0 & 7.5 \\
\hline Field Temperature d ( \({ }^{\circ} \mathrm{C}\) ) & 13.0 & 14.8 & 11.4 & \\
\hline Field Conductivigy (Hehoa/culamicar ter.) & 1460.0 & 1400.0 & 1310.0 & \\
\hline Lab Conductivity \(\quad\) (ushos/cme \(25^{\circ} \mathrm{C}\) ) & 2460.0 & 2100.0 & 2300.0 & 1150.0 \\
\hline Total Suspended Sollda & & & & 369.9 \\
\hline \multicolumn{5}{|l|}{} \\
\hline Evaporated Sollda ( \(105^{\circ} \mathrm{C}\) ) & 1691.0 & 1318.8 & 1667.3 & 916.3 \\
\hline Carbonate Hardness ( CaCO ) & 625.10 & 316.50 & 689.65 & 370.35 \\
\hline Mon-Carbonate Hardnesa ( \(\mathrm{CaCO}_{3}\) ) & 271.38 & 200.65 & 471.46 & 136.37 \\
\hline Total Hardness ( \(\mathrm{CaCO}_{3}{ }^{\text {\% }}\), \({ }_{\text {lotal }}\) Alkalinity ( \(\mathrm{CaCO}_{3}\) ) & 896.48 & 716.95 & 1161.09 & 506.72 \\
\hline Sodium Adsorption Retio (no urita) & 625.10
1.77 & 516.50
3.19 & 689.65
1.96 & 370.35
1.40 \\
\hline Acidity ( \(\mathrm{CaCO}_{3}\) ) & 1.77
0.0 & 3.19
0.0 & 1.94
0.0 & 1.40
0.0 \\
\hline zlac & 0.02 & 0.01 & & 0.010 \\
\hline Chroniut & - 0.02 & & < 0.02 & < 0.02 \\
\hline Seleniu & <0.05 & <0.0s & <0.05 & < 0.05 \\
\hline Marcury & 0.0002 & 0.0008 & 0.0002 & 0.008 \\
\hline Wickel & <0.05 & <0.01 & <0.01 & 0.08 \\
\hline Arsenic & <0.1 & <0.1 & <0.1 & < 0.1 \\
\hline . Boron & 0.85 & 0.52 & 0.29 & 0.63 \\
\hline Copper & ¢0.01 & & & < 0.02 \\
\hline Cadalua & -0.002 & & 0.002 & < 0.002 \\
\hline Stront lum & 2.9 & 2.3 & 3.6 & 2.3 \\
\hline Lead & <0.05 & 0.05 & 0.76 & 0.20 \\
\hline Fanedie & \(\infty .5\) & <0.5 & \(\infty .5\) & < 0.5 \\
\hline Molybeant & 40.008 & c.003 & co.005 & < 0.003 \\
\hline
\end{tabular}

CHEMICAL ANALYSES OF GROUND WATER FROM SELECTED
MONITORIHG WELLS IN THE PROJECT AREA
from October and November, 1975
\begin{tabular}{|c|c|c|c|c|c|}
\hline WELL NUMBER & & 18 & 1A & 18 & 18 \\
\hline AQUIFER & & ROB & ROB & SR & SR \\
\hline DATE & & 10-1-75 & 11-12-75 & 10-1-75 & 11-12-75 \\
\hline METHOD SAMPLED
WATER LEVEL & & 23.15 & 23.20 & 86.71 & 86.63 \\
\hline \multicolumn{6}{|l|}{ANALYSIS \({ }^{\text {b }}\)} \\
\hline Calcium & & 61.73 & 51.02 & 81.12 & 71.43 \\
\hline Magnesium & & 38.78 & 30.61 & 92.35 & 91.50 \\
\hline Sodium & & 686.22 & 855.10 & 500.0 & 532.66 \\
\hline Potassium & & 9.95 & 13.08 & 8.37 & 11.06 \\
\hline Iron (total) & & 0.33 & -0.05 & 0.20 & 0.26 \\
\hline Manganese & & 0.04 & 0.07 & -0.02 & -0.02 \\
\hline Aluminum & & 0.22 & 0.31 & 0.23 & 0.26 \\
\hline Silica & प.8 - keat & & & & \\
\hline Bicarbonate & & 536.53 & 665.73 & 689.14 & 823.77 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Carbonate Hydroxide}} \\
\hline & & & & & \\
\hline Chloride & & 6.37 & 6.93 & 5.80 & 0.63 \\
\hline Sulfate \({ }_{\text {c }}\) & & & 1428.28 & 1125.53 & 1180.06 \\
\hline Nitrate \({ }^{\text {c }}\) & & -0.04 & 0.05 & -0.04 & 0.10 \\
\hline Fluoride & & 0.24 & -02.0 & -0.20 & -0.20 \\
\hline Ortho Phosphate & & 0.008 & -0.001 & 0.001 & 0.012 \\
\hline Field pH & (no units) & & & & \\
\hline Lab pH & (no units) & 8.0 & 0.1 & 7.7 & 7.9 \\
\hline & \(\left({ }^{\circ} \mathrm{C}\right)\) - \({ }^{\text {a }}\) & 13.1 & 10.8 & 13.6 & 11.8 \\
\hline Field Conductivity & ( \(\mu \mathrm{mhos} / \mathrm{cm}^{\text {a }}\) ambient temp.) & 2600.0 & 2390 & 2300.0 & 2150.0 \\
\hline Lab Conductivity & ( \(\mu \mathrm{mhos} / \mathrm{cm}^{2} 25^{\circ} \mathrm{C}\) ) & 3700.0 & 3700 & 3220.0 & 3100.0 \\
\hline Total Suspended Solids & & 52.3 & 22.7 & 18.9 & 3.7 \\
\hline \multicolumn{6}{|l|}{Total nissolved Solids} \\
\hline Evaporated Solids & \(\left(105^{\circ} \mathrm{C}\right)\) & 608.0 & 2480.9 & 2313.0 & 2127.1 \\
\hline Carbonate Hardness & \(\left(\mathrm{CaCO}_{3}\right)\) & 315.7 & 258.3 & 584.5 & 562.9 \\
\hline Non-Carbonate Hardness & \(\left(\mathrm{CaCO}_{3}^{3}\right)\) & 0 & 0 & 0 & 0 \\
\hline Total Hardness & \(\left(\mathrm{CaCO}_{3}^{3}\right)\) & 315.7 & 258.3 & 584.5 & 562.9 \\
\hline Total Alkalinity & \(\left(\mathrm{CaCO}_{3}^{3}\right)\) & 559.0 & 545.5 & 718.0 & 675.0 \\
\hline Sodium Adsorption Ratio & (no uñits) & 16.86 & 23.38 & 9.02 & 9.86 \\
\hline Acidity & \(\left(\mathrm{CaCO}_{3}\right)\) & 0 & 0 & 0 & 0 \\
\hline Zinc & & 0.06 & -0.01 & 0.09 & 0.01 \\
\hline Chromium & & -0.02 & -0.02 & -0.02 & 0.02 \\
\hline Selenium & & -0.005 & -0.005 & -0.005 & -0.005 \\
\hline Mercury & & -0.2 & -0.2 & -0.2 & -0.2 \\
\hline Nickel & & -0.02 & 0.02 & -0.02 & -0.02 \\
\hline Arsenic & & -0.1 & -0.02 & -0.1 & -0.02 \\
\hline Boron & & 0.493 & 0.19 & 0.873 & 0.43 \\
\hline Copper & & 0.04 & -0.01 & 0.02 & -0.01 \\
\hline Cadmium & & -0.002 & 0.003 & -0.002 & 0.002 \\
\hline Strontium & & 2.16 & 2.69 & 4.9 & 5.20 \\
\hline Lead & & 0.57 & 0.08 & -0.02 & 0.22 \\
\hline Vanadium & & -1.0 & -1.0 & -1.0 & -1.0 \\
\hline Molybdenum & & -0.10 & 0.04 & -0.10 & 0.09 \\
\hline
\end{tabular}

\footnotetext{
a Water level measurement below ground surface.
b Analyses reported as mg/l unless otherwise indicated.
\({ }^{\text {c }}\) Nitrate reported as NO 3 for 1974 samples, ( \(\mathrm{NO} 3+\mathrm{NO} 2\) ) for those after 1974.
d Conductivity refers to specific conductance.
c
\(f\) Oupllcate analysis for quallty control
Minus sign indicates concentration less than stated detectable limits
From Dames and Moore, 1975, p. 33-41
}

\section*{CHEMICAL ANALYSES OF CROUNO WATER FPOH SELECTED \\ MONITORING WELIS IN THE PLEDECT AREA}
\begin{tabular}{|c|c|c|c|c|c|}
\hline WELL NUMELR. & & 2 A & \(2 A\) & 2 C & 2 C \\
\hline AQUIFER & & RMC & F.MC & SR & SR \\
\hline DATE & & 10-1-75 & 11-11-75 & 10-1-75 & 11-11-75 \\
\hline METHOD SAMPLED WATER I.EVEL \({ }^{\circ}\) & & 15.76 & 9.70 & 125.6 & 125.55 \\
\hline \multicolumn{6}{|l|}{ANALYSIS \({ }^{\text {b }}\) f} \\
\hline Calcium & & 142.09 & & 17.14 & 19.80 \\
\hline Magnes ium & & 185.87 & & 37.40 & 12.35 \\
\hline Sodium & & 87.65 & & 561.22 & 572.45 \\
\hline Potassium & & 2.04 & 6.56 & 5.20 & 6.79 \\
\hline Iron (total) & & 0.12 & -0.05 & 0.44 & 0.20 \\
\hline Mangenese & & 0.02 & 0.04 & -0.02 & -0.02 \\
\hline Aluminum & & 0.31 & 0.18 & 0.16 & 0.02 \\
\hline \multicolumn{6}{|l|}{Silica} \\
\hline Bicarbonate & & 858.06 & 809.13 & 645.95 & 810.35 \\
\hline Carbonate & & 0 & & & \\
\hline Hydroxide & & 0 & & & \\
\hline Chloride & & 6.62 & 3.28 & 4.66 & 4.41
256.66 \\
\hline Sulfate & & 500.26 & 893.20 & 924.23 & 256.66 \\
\hline Nitrate \({ }^{\text {c }}\) & & 0.53 & 0.20 & -0.04 & 0.43 \\
\hline Fluoride & & 0.49 & 0.26 & 0.27 & 0.36 \\
\hline Ortho Phosphate & & 0.03 & 0.013 & 0.018 & 0.009 \\
\hline Field pH & (no units) & 7.4 & 8.3 & 8.3 & 8.3 \\
\hline Lab pH & (no units) & 7.4
12.4 & 12.2 & 16.0 & 13 \\
\hline Field Temperature d &  & 12.4
1400.0 & 1900 & 16.0
2100.0 & 1940 \\
\hline Field Conductivity & (umhos/cm ambient temp.) & 1820.0 & 2100 & 2840.0 & 2120 \\
\hline \multicolumn{6}{|l|}{\(\begin{array}{lll}\text { Total Suspended Solids } & 971.2 & 3.4\end{array}\)} \\
\hline Total Dissolved Solids & & & & & 1726.4 \\
\hline Evaporated Solids & \(\left(105^{\circ} \mathrm{C}\right)\) & 1191.0
894.0 & 1709.5
107.6 & 172.9 & 101.64 \\
\hline Carbonate Hardness & \(\left(\mathrm{CaCO}_{3}\right)\) & 894.0
227.9 & 107 & \({ }^{23} 0\) & 0 \\
\hline Non-Carbonate Hardness
Total Hardness & \(\left(\mathrm{CaCO}_{3}{ }^{\left(\mathrm{CaCO}_{3}\right)}\right.\) & 1121.9 & 107.6 & 232.9 & 101.64 \\
\hline Total Alkalinity & \(\left(\mathrm{CaCO}_{3}^{3}\right)\) & 894.0 & 663.0 & 673.0 & 663.9 \\
\hline Sodium Adsorption Ratio & (nounits) & 1. 14 & 23.92 & 24.40 & 24.89 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Acidity
\[
\left(\mathrm{CaCO}_{3}\right)
\]}} & 0 & 0 & 0 & \\
\hline & & 0.08 & -0.01 & 0.03 & -0.01 \\
\hline Zinc & & -0.02 & -0.02 & -0.02 & -0.02 \\
\hline & & -0.005 & -0.005 & -0.005 & -0.005 \\
\hline Mercury & & -0.2 & -0.2 & -0.2 & -0.2 \\
\hline Mercury
Nickel & & -0.02 & -0.02 & -0.02 & -0.02 \\
\hline Arsenic & & -0.1 & -0.02 & -0.1 & -0.02 \\
\hline Arsenic & & 0.349 & 0.25 & 0.566 & 0.34 \\
\hline Boron & & -0.01 & 0.07 & 0.02 & 0.07 \\
\hline Copper & & -0.002 & -0.002 & -0.002 & 0.003 \\
\hline Cadmium & & 2.21 & 0.73 & 0.72 & 0.75 \\
\hline Strontium & & -0.02 & 0.63 & 0.12 & 0.08 \\
\hline Lead & en 0 & -1.0 & -1.0 & -1.0 & -1.0 \\
\hline Vanadium & & -0.10 & -0.01 & -0.10 & 0.07 \\
\hline Molybdenum & & & & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{2}\) Water level measurement below ground surface.
b. Analyses reported as \(\mathrm{mg} / \mathrm{l}\) unless otherwise indicated.

C Nitrate reported as N03 for 1974 samples, ( \(\mathrm{NO} 03+\mathrm{NO} 02\) ) for those after 1974.
\({ }^{d}\) Conductivity refers to speciflc conductance.
f Dupllcate analysls for quallty control.
Minus sign indicates concentration less than stated detectable limits
}

CHEMICAL ANALYSES OF GROUNO WATER FPOH SELECTED MONITORING WLLLS IN THE PROJECT AREA
\begin{tabular}{|c|c|c|c|c|c|}
\hline WELL NUMBER & & 4 A & 4 A & 4 B & 48 \\
\hline AQUIFER & & Rrico & ruco & RMC & RMC \\
\hline DATE & & 10-1-75 & 11-11-75 & 10-1-75 & 11-11-75 \\
\hline & & & & & \\
\hline water levela \({ }^{\text {a }}\) & & 33.45 & 33.68 & 46.92 & 47.00 \\
\hline \multicolumn{6}{|l|}{\[
\text { ANALYSIS }{ }^{\text {bf }}
\]} \\
\hline Calcium & & 90.05 & 80.61 & 95.15 & 88.40 \\
\hline Magnes ium & & 114.29 & 115.31 & 127.55 & 124.5 \\
\hline Sodium & & 58.16 & 48.27 & 41.02 & 47.19 \\
\hline Potassium & & 5.20 & 6.33 & 4.08 & 6.35 \\
\hline Iron (total) & & 0.77 & 0.41 & 0.20 & 0.20 \\
\hline Manganese & & 0.09 & 0.14 & 0.05 & 0.04 \\
\hline Aluminum & & 0.12 & 0.16 & 0.16 & 0.21 \\
\hline \multicolumn{6}{|l|}{Silica} \\
\hline Bicarbonate & & 914.69 & 1156.94 & 962.20 & 1255.i8 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Carbonate Hydroxide}} \\
\hline & & & & & \\
\hline Chioride & & 5.04 & 4.54 & 5.42 & 3.91 \\
\hline & & 147.48 & & 114.77 & 129.54 \\
\hline Nitrate \({ }^{\text {c }}\) & & 0.44 & 0.20 & -0.04 & 0.12 \\
\hline Fluoride & & -0.20 & 0.19 & -0.20 & -0.20 \\
\hline Ortho Phosphate & & 0.01 & -0.001 & 0.015 & 0.001 \\
\hline Field pH & (no units) & & & & \\
\hline Lab pH & (no units) & 7.5 & 7. 3 & 7.9 & 7.4 \\
\hline Field Temperature d & ( \({ }^{\circ} \mathrm{C}\) ) e \({ }^{\text {e }}\), & 16.0 & 9 & 13.8 & 10.6 \\
\hline Field Conductivity & (umhos/cmambient temp.) & 780.0 & 790 & 910.0 & 890 \\
\hline Lab Conductivity & ( \(\mu \mathrm{mhos} / \mathrm{cm}^{-2} 25^{\circ} \mathrm{C}\) ) & 1260.0 & 920 & 1310.0 & 970 \\
\hline Total Suspended Solids & & 67.4 & 20.5 & 68.1 & 142.0 \\
\hline Total Dissolved Solids & & & & & 740.5 \\
\hline Evaporated Solids & \(\left(105^{\circ} \mathrm{C}\right)\) & 674.0 & 1328.3 & 813.0 & 740.5 \\
\hline Carborlate Hardness & \(\left(\mathrm{CaCO}_{3}\right)\) & 697.6 & 682.5 & 764.0 & \\
\hline Non-Carbonate Hardness & \(\left(\mathrm{CaCO}_{3}^{3}\right)\) & 0 & 0 & 0 & \\
\hline Total Hardness & \(\left(\mathrm{CaCO}_{3}^{3}\right)\) & 697.6 & 682.5 & 764.0 & 1028.5 \\
\hline Total Alkalinity & \(\left(\mathrm{CaCO}_{3}^{3}\right)\) & 953.0 & 948.0 & 1002.5 & 740.5 \\
\hline Sodium Adsorption Ratio & (nounits) & 0.96 & 0.81 & 0.64 & 0.76 \\
\hline Acidity & \(\left(\mathrm{CaCO}_{3}\right)\) & 0 & 0 & 0 & 0 \\
\hline Zinc & & 0.08 & 0.06 & 0.02 & 0.05 \\
\hline Chromium & & -0.02 & -0.02 & -0.02 & -0.02 \\
\hline Selenium & & -0.005 & -0.005 & -0.005 & -0.005 \\
\hline Mercury & & -0.2 & -0.2 & -0.2 & -0.2 \\
\hline Nickel & & -0.02 & -0.02 & -0.02 & -0.02 \\
\hline Arsenic & & -0.1 & -0.02 & -0.1 & -0.02 \\
\hline Boron & & 0.077 & 0.07 & 0.134 & 0.04 \\
\hline Copper & & 0.01 & 0.08 & 0.03 & 0.02 \\
\hline Cadmium & & -0.002 & 0.002 & -0.002 & 0.003 \\
\hline Strontium & & 4.13 & 4.0 & 4.16 & 4.9 \\
\hline Lead & & 0.02 & 0.37 & -0.02 & 0.17 \\
\hline Vanadium & & -1.0 & -1.0 & -1.0 & -1.0 \\
\hline Molybdenum & & -0.10 & 0.02 & -0.1 & 0.03 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) Water level measurement below ground surface.
b Analyses reported as \(\mathrm{mg} / \mathrm{l}\) unless otherwise indicated.
c Nitrate reported as N 03 for 1974 samples, ( \(\mathrm{NO} 3+\mathrm{NO}\) ) for those after 1974.
\({ }^{d}\) Conductivity refers to specific conductance.
e
f Duplicate analysis for quality control.
f Minus sign indicates concentration less than stated detectable limits
}

\section*{CHEMICAL ANALYSES OT GROHNO WATER FPOM SELECTED} monitoring wells in the project area
\begin{tabular}{|c|c|c|c|c|c|}
\hline WELL NUMBER & & 40. & 4 C & 6 A & 6A \\
\hline AQUIFER & & ROB & ROB & RMC & RMC \\
\hline DATE & & 10-1-75 & 11-11-75 & 10-1-75 & 11-12-75 \\
\hline METHOD SAMPLED & & & & & \\
\hline WATER LEVEL \({ }^{\text {a }}\) & & 111.25 & 111.05 & 45.81 & 45.15 \\
\hline \multicolumn{6}{|l|}{ANALYSIS \({ }^{\text {b }} \mathrm{f}\)} \\
\hline Calcium & & 22.96 & 19.90 & 71.43 & 71.88 \\
\hline Magnesium & & 12.24 & 12.76 & 101.53 & 97.45 \\
\hline Sodium & & 486.22 & 422.19 & 70.92 & 39.16 \\
\hline Potassium & & 16.04 & 7.22 & 4.31 & 5.67 \\
\hline |ron (total) & & 0.77 & 0.10 & 0.44 & -0.05 \\
\hline Manganese & & -0.02 & -0.02 & 0.13 & 0.11 \\
\hline Aluminum & & 0.02 & 0.11 & 0.23 & 0.02 \\
\hline \multicolumn{6}{|l|}{Silica} \\
\hline Bicarbonate & & 491.90 & 641.32 & 767.36 & 967.78 \\
\hline Carbonate & & 0 & & 0 & \\
\hline Hydroxide & & 0 & & 0 & \\
\hline Chloride & & 4.60 & 3.28 & 3.97 & 6.62 \\
\hline Sulfate & & 664.82 & 723.58 & & 75.39 \\
\hline Nitrate \({ }^{\text {c }}\) & & -0.04 & 0.16 & 0.40 & 0.01 \\
\hline Fluoride & & 0.29 & 0.42 & -0.20 & -0.20 \\
\hline Ortho Phosphate & & 0.036 & 0.011 & 0.004 & 0.065 \\
\hline Field pH & (no units) & & & & \\
\hline Lab pH & (no units) & 8.2 & 8.0 & 7.7 & 7.9 \\
\hline Field Temperature d & & 17.0 & 12. & 16.0 & 11.9 \\
\hline Field Conductivity \({ }^{\text {d }}\) & ( (mhos/ene ambient temp.) & 1700.0 & 1510 & 780.0 & 700.0 \\
\hline Lab Conductivity & (umhos/cm \({ }^{\text {e }} 25^{\circ} \mathrm{C}\) ) & 2300.0 & 1600 & 1100.0 & \[
1050.0
\] \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Total Suspended Solids \\
34.8 \\
16.0
\[
54.3
\]
\end{tabular}} \\
\hline Total Dissolved Solids & & & & & \\
\hline Evaporated Solids & \(\left(105{ }^{\circ} \mathrm{C}\right)\) & 1524.0
109.3 & 1357.0
104.4 & 517.0
429.2 & 512.9
585.3 \\
\hline Carbonate Hardness
Non-Carbonate Hardness & \(\left(\mathrm{CaCO}_{3}{ }_{\left(\mathrm{CaCO}_{3}\right)}\right.\) & 109.3
0 & 104.4
0 & 429.2
0 & 585.3
0 \\
\hline Total Hardness & \(\left(\mathrm{CaCO}_{3}^{3}\right)\) & 109.3 & 104.4 & 429.2 & 585.3 \\
\hline Total Alkalinity & ( \(\mathrm{CaCO}_{3}^{3}\) ) & 512.5 & 525.5 & 799.5 & 793.0 \\
\hline Sodium Adsorption Ratio & (no units) & 20.33 & 18.18 & 1.26 & 0.71 \\
\hline Acidity & \(\left(\mathrm{CaCO}_{3}\right)\) & 0 & 0 & 0 & 0 \\
\hline Zinc & & 0.06 & 0.01 & 0.06 & 0.04 \\
\hline Chronium & & -0.02 & -0.02 & -0.02 & -0.02 \\
\hline Selenium & & -0.005 & -0.005 & -0.005 & -0.005 \\
\hline Mercury & & -0.2 & -0.2 & -0.2 & -0.2 \\
\hline Nicke! & & -0.02 & -0.02 & -0.02 & -0.02 \\
\hline Arsenic & & -0.1 & -0.02 & -0.1 & -0.02
0.16 \\
\hline Boron & & 0.108
0.02 & 0.05
0.06 & 0.107
0.01 & 0.16
0.03 \\
\hline Copper & & -0.002 & 0.015 & -0.002 & 0.005 \\
\hline Strontium & & 0.92 & 1.15 & 3.54 & 3.81 \\
\hline Lead & & -0.02 & 0.44 & -0.02 & 0.64 \\
\hline Vanadium & & -1.0 & -1.0 & -1.0 & -1.0 \\
\hline Molybdenum & ate & -0.10 & 0.01 & -0.10 & 0.08 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) Water level measurement below ground surface.
b Analyses reported as \(\mathrm{mg} / \mathrm{l}\) unless otherwise indicated.
C Nitrate reported as NO3 for 1974 samples, (NO3+NO2) for those after 1974.
\({ }^{\text {d }}\) Conductivity refers to specific conductance.
f Dupllcate analysis for quallty control.
Minus sign indicates concentration less than stated detectable limits
}

CHEMICAL ANALYSES OF GROUND WATER FROM SELECTED
MONITORING WELLS IN THE PROJECT AREA
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{WELL NUMBER} & 68 & 88 & 1415 & \(148^{e}\) \\
\hline \multicolumn{2}{|l|}{AQUIFER} & ROB & 808 & INT & INT \\
\hline \multicolumn{2}{|l|}{OATE} & 10-1-75 & 11-12-75 & 10-2-75 & 10-2-75 \\
\hline \multicolumn{2}{|l|}{METHOD SAMPLED} & & & & \\
\hline WATER LEVEL \({ }^{\text {d }}\) & & 102.66 & 130.80 & 135.20 & 135.20 \\
\hline \multicolumn{6}{|l|}{ANALYSIS \({ }^{\text {b }}\)} \\
\hline Calcium & & 9.69 & 184.44 & & 372.96 \\
\hline Magnesium & & 12.24 & 8.16 & & 145.66 \\
\hline Sodium & & 330.36 & 251.74 & 84 & 77.76 \\
\hline Potassium & & 4.78 & 54.40 & 26 & 20.41 \\
\hline Iron (total) & & 0.44 & 0.28 & 3.70 & 0.55 \\
\hline Manganese & & 0.02 & -0.02 & 1.61 & 1.84 \\
\hline Aluminum & & 0.19 & 0.31 & -0.1 & 0.52 \\
\hline \multicolumn{2}{|l|}{Silica} & & & 26.6 & \\
\hline \multicolumn{2}{|l|}{Bicarbonate} & 508.69 & & 485 & 671.38 \\
\hline \multicolumn{2}{|l|}{Carbonate} & 27.0 & 84.90 & 0 & 0 \\
\hline \multicolumn{2}{|l|}{Hydroxide} & 0 & 274.03 & 0 & 0 \\
\hline \multicolumn{2}{|l|}{chloride} & 4.41 & 34.67 & 15 & 10.72 \\
\hline \multicolumn{2}{|l|}{Sulfate} & 403.14 & 973.28 & 1052 & 977.85 \\
\hline \multicolumn{2}{|l|}{Nitrate \({ }^{\text {c }}\)} & -0.04 & 0.06 & 0.09 & 0.04 \\
\hline \multicolumn{2}{|l|}{Fluoride} & 1.00 & 0.85 & 1.0 & 0.67 \\
\hline \multicolumn{2}{|l|}{Ortho Phosphate} & 0.013 & 0.009 & 0.05 & 0.013 \\
\hline Field pH & (no units) & & & & \\
\hline Lab pH & (no units) & 8.7 & 12.1 & 6.8 & 7.3 \\
\hline Field Temperature d & \(\left({ }^{\circ} \mathrm{C}\right)\) & & 13.0 & 19 & 19 \\
\hline Field Conductivity \({ }^{\text {d }}\) & (umhos/cm ambient temp.) & & 3000.0 & 1975 & 1975 \\
\hline Lab Conductivity & ( \(\mu \mathrm{mhos} / \mathrm{cm}^{-25^{\circ} \mathrm{C}}\) ) & 1950.0 & 3900.0 & 2231 & 2200 \\
\hline \multicolumn{2}{|l|}{Total Suspended Solids} & 13.5 & 25.5 & & 52.7 \\
\hline \multicolumn{2}{|l|}{Total Dissolved Solids} & & & 1976 & \\
\hline Evaporated Solids & \(\left(105^{\circ} \mathrm{C}\right)\) & 232.0 & 989.1 & & 2239 \\
\hline Carbonate Hardness & \(\left(\mathrm{CaCO}_{3}\right)\) & 76.5 & 501.1 & 398 & 699.5 \\
\hline Non-Carbonate Hardness & \(\left(\mathrm{CaCO}_{3}^{3}\right)\) & 0 & 0 & 879 & 838.64 \\
\hline Total Hardness & \(\left(\mathrm{CaCO}_{3}\right.\) ) & 76.5 & 501.1 & 1277 & 1538.1 \\
\hline Total Alkalinity & ( \(\mathrm{CaCO}_{3}^{3}\) ) & 575.0 & 947.0 & 398 & 699.5 \\
\hline Sodium Adsorption Ratio & (no units) & 16.51 & 5.13 & 1.02 & 0.86 \\
\hline Acidity & \(\left(\mathrm{CaCO}_{3}\right)\) & 0 & 0 & 0 & 20.46 \\
\hline Zinc & & 0.06 & 0.05 & 0.19 & 0.06 \\
\hline Chromium & & -0.002 & -0.02 & 0.02 & -0.02 \\
\hline Seleniun & & -0.005 & -0.005 & 0.005 & -0.005 \\
\hline Mercury & & -0.2 & -0.2 & -0.001 & -0.2 \\
\hline Nickel & & -0.02 & -0.02 & 0.02 & -0.02 \\
\hline Arsenic & & -0.1 & -0.02 & -0.01 & -0.1 \\
\hline Boron & & 0.123 & 0.05 & 0.65 & 1.276 \\
\hline Copper & & 0.01 & 0.05 & 0.04 & 0.02 \\
\hline Cadmium & & -0.002 & 0.002 & 0.007 & -0.002 \\
\hline Strontium & & 0.42 & 4.04 & 15.40 & 11.62 \\
\hline Lead & & 0.05 & 0.13 & 0.09 & -0.02 \\
\hline Vanadium & & -1.0 & -1.0 & -0.5 & -1.0 \\
\hline Molybdenum & & -0.10 & 0.16 & 0.06 & -0.1 \\
\hline
\end{tabular}

\footnotetext{
a Water level measurement below ground surface.
b Analyses reported as \(\mathrm{mg} / \mathrm{l}\) unless otherwise indicated.
C Nitrate reported as NO3 for 1974 samples, (NO3+NO2) for those after 1974.
\({ }^{d}\) Conductivity refers to specific conductance.
e
Duplicate analysis for quality control.
f Minus sign indicates concentration less than stated detectable limits.
}

CHEMICAL ANALYSES OF GROUND WATER FROM SELECTED

\section*{mONITORING WELLS IN THE PROJECT AREA}


\footnotetext{
\({ }^{3}\) Water level measurement below ground surface.
\({ }^{\text {b }}\) Analyses reported as mg/l unless otherwise indicated.
\({ }^{c}\) Nitrate reported as \(N 03\) for 1974 samples, (NO3 MO2) for those after 1974.
\({ }^{d}\) Conductivity refers to specific conductance.
e
f Duplicate analyst: for qualliy control.
Minus sign indicates concer. ration less than stated detectable limits.
}

CHEMICAL ANALYSES OF GROUHD WATER FROM SELECTED MONITORING WELLS IN THE PROJECT AREA
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & 168 & 168 & 18 & 18 \\
\hline AQUIFER & & ROB & RO8 & & \\
\hline DATE & & 10/1/75 & 11/12/75 & 10-1-75 & 11-11-75 \\
\hline METHOD SAMPLED WATER LEVEL \({ }^{\text {a }}\) & & 77.73 & 77.65 & 23.46 & 23.50 \\
\hline \multicolumn{6}{|l|}{ANALYSIS \({ }^{\text {f }}\)} \\
\hline Calcium & & 132.65 & & 142.09 & 114.29 \\
\hline Magnesium & & 83.67 & & 190.53 & 199.49 \\
\hline Sodium & & 505.10 & & 161.53 & 139.29 \\
\hline Potassium & & 2.27 & 58.60 & 10.41 & 12.17 \\
\hline Iron (total) & & 0.44 & 5.38 & 0.20 & 0.26 \\
\hline Manganese & & 1.85 & 5.10 & -0.02 & 0.05 \\
\hline Aluminum & & 0.29 & 0.77 & 0.31 & 0.26 \\
\hline \multicolumn{6}{|l|}{Silica} \\
\hline Bicarbonate & & 928.13 & 1288.13 & 827.35 & 1054.43 \\
\hline Carbonate & & & & 0 & \\
\hline Hydroxide & & & & 0 & \\
\hline Chloride & & 13.30 & 16.07 & 5.17 & 33.66 \\
\hline Sulfate & & & & 653.42 & \\
\hline Nitrate \({ }^{\text {c }}\) & & 0.22 & 0.09 & 0.40 & 0.15 \\
\hline Fluoride & & 0.94 & 0.70 & 0.24 & -0.20 \\
\hline Ortho Phosphate & & 0.005 & 0.018 & 0.019 & 0.001 \\
\hline Field pH & (no units) & & & & \\
\hline Lab pH & (no units) & 7.6 & 7.5 & 7.6 & 7.6 \\
\hline Field Temperature & \(\left({ }^{\circ} \mathrm{C}\right)\) & 16.0 & 13.5 & 13.5 & \[
10.2
\] \\
\hline Field Conductivity \({ }^{\text {d }}\) & (umhos/cmambient temp.) & 2580.0 & 2490 & 1440 & \[
1350
\] \\
\hline Lab Conductivity & (umhos \(/ \mathrm{cm}^{3} 25^{\circ} \mathrm{C}\) ) & 3490.0 & 4000 & 2020 & \[
1520
\] \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Suspended Solids}} \\
\hline & & & & & \\
\hline Evaporated Solids & \(\left(105{ }^{\circ} \mathrm{C}\right)\) & 731.0
681.5 & 3685.3
1055.5 & & \[
\begin{array}{r}
1478.1 \\
864.0
\end{array}
\] \\
\hline Carbonate Hardness & \(\left(\mathrm{CaCO}_{3}{ }_{(2)} \mathrm{CaCO}_{3}\right.\) & 681.5
0 & 1055.5
1647.8 & 862.0
279.2 & 864.0
248.3 \\
\hline Non-Carbonate Hardness
Total Hardness & \(\left(\mathrm{CaCO}_{3}^{3}\right)\) & 681.5 & 1647.8
2703.3 & 279.2
1141.2 & 248.3
1112.3 \\
\hline Total Hardness
Total Alkalinity & \(\left(\mathrm{CaCO}_{3}^{3}\right)\)
\(\left(\mathrm{CaCO}_{3}\right)\) & 681.5
967.0 & 2703.3
1055.5 & 1141.2
862.0 & 1112.3
864.0 \\
\hline Total Alkalinity \(\begin{aligned} & \text { Sodium Adsorption Ratio }\end{aligned}\) & ( CaCO
3 & 967.0
8.45 & 1055.5
1.64 & 862.0
2.08 & 864.0
1.82 \\
\hline Acidity & \(\left(\mathrm{CaCO}_{3}\right)\) & 0 & 0 & 0 & 0 \\
\hline Zinc & & 0.06 & 0.04 & 0.08 & -0.01 \\
\hline Chromium & & -0.02 & -0.02 & -0.02 & -0.02 \\
\hline Selenium & & -0.005 & -0.005 & -0.005 & -0.005 \\
\hline Mercury & & -0.2 & -0.2 & -0.2 & -0.2 \\
\hline Nickel & & -0.02 & 0.80 & -0.02 & 0.08 \\
\hline Arsenic & & -0.1 & -0.2 & -0.1 & -0.02 \\
\hline Boron & & 1.643 & 1.23 & 1.234 & 0.52 \\
\hline Copper & & 0.02 & 0.02 & 0.02 & 0.08 \\
\hline Cadmium & & -0.002 & 0.002 & -0.002 & -0.002 \\
\hline Strontium & & 4.60 & 16.42 & 2.94 & 3.29 \\
\hline Lead & & -0.02 & 0.44 & -0.02 & 0.69 \\
\hline Vanadium & & -1.0 & 2.6 & -1.0 & -1.0 \\
\hline Molybdenum & & -0.10 & 0.12 & -0.10 & 0.07 \\
\hline
\end{tabular}

\footnotetext{
a Water level measurement below ground surface.
b Analyses reported as \(\mathrm{mig} / 1\) unless otherwise indicated.
c Nitrate reported as \(N 03\) for 1974 samples, ( \(N 03+N 02\) ) for those after 1974.
d Conductivity refers to specific conductance.
e
f Duplicate analysis for quality control.
Minus sign indicates concentration less than stated detectable limits.
}

\section*{CHEMICAL ANALYSES OF GROUNO WATER FFOOM SELECTED}

MONITORING WELLS IN THE PROJECT AREA
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & 20 & 20 & Romine & Romine \({ }^{\text {e }}\) \\
\hline AQUIFER & & AL & AL & & \\
\hline DATE & & 10-1-75 & 11-11-75 & 10-2-75 & 10-2-75 \\
\hline METHOD SAMPLED WATER LEVEL & & 30.56 & 30.32 & 29.18 & 29.18 \\
\hline \multicolumn{6}{|l|}{ANALYSIS \({ }^{\text {bf }}\)} \\
\hline Calcium & & 127.55 & 132.65 & & 175.26 \\
\hline Magnes ium & & 244.11 & 236.05 & 244 & 30.36 \\
\hline Sodium & & 133.16 & 127.04 & 170 & 56.63 \\
\hline Potassium & & 7.02 & 9.04 & 1.65 & 45.92
0.77
0.02 \\
\hline Iron (total) & & 1.55 & 0.43 & 0.02 & -0.02 \\
\hline Manganese & & 0.46
0.24 & 0.43
0.11 & -0.1 & 0.24 \\
\hline Aluminum & & 0.24 & 0.1 & 17.8 & \\
\hline \multicolumn{6}{|l|}{Silica \({ }^{\text {a }}\)} \\
\hline Bicarbonate & & 906.53 & 1145.35 & & 899.33 \\
\hline Carbonate & & 0 & & 0 & \\
\hline Hydroxide & & 0 & 3.28 & 10 & 6.93 \\
\hline Chloride & & 664.82 & 634.90 & 923 & 866.25 \\
\hline Sulfatec & & 664.82
-0.02 & 634.90
1.60 & 0.69 & -0.04 \\
\hline Nitrate & & -0.02 & 0.29 & 0.2 & 0.22 \\
\hline Fluoride & & 0.2611 & 0.001 & -0.01 & 0.012 \\
\hline Ortho Phosphate & & 0.011 & & & \\
\hline Ficld pH & (no units) & & 7.4 & 7.3 & 7.6 \\
\hline Lab pH & (no units) & 10.7 & \(10^{7.4}\) & 7.3 & 12 \\
\hline Field Temperature d &  & 1460 & 10
1420 & & 1660 \\
\hline Field Conductivity & (umhos/cmambient temp.) & 1460
2300 & 1790 & 2258 & \\
\hline Lab Conductivity & ( \(\mu \mathrm{mhos} / \mathrm{cm}^{\circ} 25^{\circ} \mathrm{C}\) ) & 1300
13 & 1790
21.6 & 2258 & 11.4 \\
\hline \multicolumn{2}{|l|}{Total Suspended Solids} & & & \multicolumn{2}{|l|}{1862 .} \\
\hline Total Oissolved Solids & & & 1451.2 & & \\
\hline Evaporated Solids
Carbonate Hardness & \(\left(105^{\circ} \mathrm{C}\right)\) & & 338.5 & 490 & \[
937.0
\] \\
\hline Carbonate Hardness
Non-Carbonate Hardness & \(\left(\mathrm{CaCO}_{3}\right)\) & 944.35
384.02 & 338.5
372.4 & 577 & 451.6 \\
\hline Non-Carbonate Hardness & \(\left(\mathrm{CaCO}_{3}^{3}\right)\) & 384.02
1328.37 & 1310.9 & 1067 & 1388.6 \\
\hline Total Hardness & \(\left(\mathrm{CaCO}_{3}{ }^{\text {) }}\right.\) ) & 1328.37
944 & 938.5 & 490 & 937.0 \\
\hline Total Alkalinity & \(\left(\mathrm{CaCO}{ }_{3}^{3}\right.\) ) & 944.35
1.59 & 938.5
1.53 & 2.26 & 1.83 \\
\hline Sodiun Adsorption Ratio & (nounits) & 0 & 0 & 0 & 0 \\
\hline Acidity & \[
\left(\mathrm{CaCO}_{3}\right)
\] & 0 & 0 & & \\
\hline & & 0.05 & 0.02 & -0.01 & 0.07 \\
\hline Chromium & & -0.02 & -0.02 & -0.02 & -0.02 \\
\hline Chromium
Sclenium & & -0.025 & -0.005 & -0.005 & -0.005 \\
\hline Selenium & & -0.2 & -0.2 & -0.001 & -0.2 \\
\hline Mercury & & -0.02 & -0.02 & -0.01 & -0.02 \\
\hline Nicke! & & -0.1 & -0.02 & -0.01 & -0.1 \\
\hline Arsenic & & 0.255 & 0.11 & 0.74 & 1.055 \\
\hline Boron & & -0.01 & 0.02 & -0.01 & 0.01 \\
\hline Copper & & -0.002 & 0.002 & 0.005 & 0.008 \\
\hline Cadmium & & 3.68 & 3.89 & 5.90 & 4.09 \\
\hline Strontium & & 0.02 & 0.31 & 0.05 & -0.02 \\
\hline Lead & & -1.0 & -1.0 & -0.5 & -1.0 \\
\hline Vanadium & & -0.10 & 0.04 & 0.05 & -0.1 \\
\hline Molybdenum & & & & & \\
\hline
\end{tabular}

\footnotetext{
a Water level measurament belo: ground surface.
b Analyses reported as nig/l willess otherwise irdicated.
C Nitrate reported as N03 for 137' satiples, ( \(\mathrm{N}: 03+\mathrm{NO2}\) ) for those after 1974.
d Conductivity refers to specific conúuctance.
e
f Duplleate anily is for quality conerol.
Minus sign indicates concentration less than stated detectable limits.
}

CHEMICAL ANALYSES OF GROUND WATER FROM SELECTED MONITORING WELLS IN THE PROJECT AREA
\begin{tabular}{|c|c|c|c|c|}
\hline WELL NUMBER & & Romine \({ }^{\text {e }}\) & Romine & Romine \({ }^{e}\) \\
\hline AQUIFER & & & & 11-13-75 \\
\hline DATE & & 10-2-75 & 11-13-75 & \(11-13-75\) \\
\hline METHOD SAMPLED & & & & \\
\hline WATER LEVEL \({ }^{\text {a }}\) & & 29.18 & & \\
\hline ANALYSIS \({ }^{\text {bf }}\) & & & & \\
\hline Calcium & & 127.55 & 137.24 & 156.12 \\
\hline Magnesium & & 230.61 & 255.10 & 248.72 \\
\hline Sodium & & 163.78 & 169.90 & 176.02 \\
\hline Potassium & & 8.59 & 11.94 & 12.17 \\
\hline Iron (total) & & 0.20 & 0.38 & 0.18 \\
\hline Manganese & & -0.02 & -0.02 & -0.02 \\
\hline Aluminum & & 0.40 & 0.09 & 0.12 \\
\hline Silica & & & & \\
\hline 8icarbonate & & 900.77 & 1191.72 & 1181.96 \\
\hline Carbonate & & & & \\
\hline Hydroxide & & & & 5.04 \\
\hline Chloride & & 7.12
799.21 & 849.54 & 890.82 \\
\hline Sulfate \({ }_{c}\) & & 799.21
-0.04 & 849.54
0.15 & 890.82
0.49 \\
\hline Nitrate & & 0.26 & 0.23 & 0.22 \\
\hline Ortho Phosphate & & 0.006 & 0.041 & 0.009 \\
\hline Field pH & (no units) & & & \\
\hline Lab pH & (no units) & 7.6 & 8.0 & 8.1 \\
\hline Field Temperature & \(\left({ }^{\circ} \mathrm{C}\right)\) & & 10.0 & 11.5 \\
\hline Field Conductivity \({ }^{\text {d }}\) & (whos/cmambient temp.) & & 1600.0 & 1700.0 \\
\hline Lab Conductivity & ( mhos \(/ \mathrm{cm}^{2} 25^{\circ} \mathrm{C}\) ) & 2250.0 & 2120.0 & 2160.0 \\
\hline Total suspended Solids & & 31.3 & 6.4 & . 5.5 \\
\hline Total Dissolved Solids & & & & \\
\hline Evaporated Solids & \(\left(105^{\circ} \mathrm{C}\right)\) & 202.0 & 1950.4 & 1882.0 \\
\hline Carbonate Mardness & \(\left(\mathrm{CaCO}_{3}\right)\) & 938.5 & 976.5 & 968.0 \\
\hline Non-Carbonate Hardness & \(\left(\mathrm{CaCO}_{3}^{3}\right)\) & 331.85 & 422.7 & 452.1 \\
\hline Total Hardness & \(\left(\mathrm{CaCO}_{3}^{3}\right)\) & 1270.0 & 1399.2 & 1420.1 \\
\hline Total Alkalinity & \(\left(\mathrm{CaCO}_{3}^{3}\right)\) & 93.5 & 976.5 & 968.0 \\
\hline Sodium Adsorption Ratio & (no units) & 2.0 & 1.98 & 1.51 \\
\hline Acidity & \(\left(\mathrm{CaCO}_{3}\right)\) & 0 & 0 & 0 \\
\hline Zinc & & 0.05 & 0.06 & 0.06 \\
\hline Chromium & & -0.02 & -0.02 & -0.02 \\
\hline Selenium & & -0.005 & -0.005 & -0.005 \\
\hline Mercury & & -0.2 & -0.2 & -0.2 \\
\hline Nickel & & -0.02 & -0.02 & -0.02 \\
\hline Arsenic & & -0.1 & -0.02 & -0.02 \\
\hline Boron & & 1.107 & 0.78 & 0.76 \\
\hline Copper & & 0.02 & 0.04 & 0.07 \\
\hline Cadmi un & & -0.002 & -0.002 & 0.01 \\
\hline Strontium & & 3.99 & 4.59 & 4.82 \\
\hline Lead & & 0.08 & 0.49 & 0.08 \\
\hline Vanadium & & -1.0 & -1.0 & -1.0 \\
\hline Molybdenum & & -0.10 & 0.15 & 0.18 \\
\hline
\end{tabular}

\footnotetext{
a Water level measurement below ground surface.
\({ }^{b}\) Analyses reported as mg/l unless otherwise indicated.
C Nitrate reported 35 N03 for 1974 simples, ( \(1: 03+W 02\) ) for those after 1974.
\({ }^{d}\) conductivity refers to specific conductance.
e
f Duplicate analysis for quality control.
Minus sign indicates concentration less than stated detectable limits.
}

\section*{ChEMICAL AHALYSES OF GROUND WATER FROM}
east fork sarpy creek alluvtal wells no. 12 and 13
July, 1975
\begin{tabular}{|c|c|c|}
\hline WELL NUMBER & 12 & 13 \\
\hline AQUIFER & AL & AL \\
\hline DATE & 7-8-75 & 7-8-75 \\
\hline METHOD SAMPLED & Pumped & Pumped \\
\hline WATER LEVEL \({ }^{\text {a }}\) & 25.2 & 14.5 \\
\hline \multicolumn{3}{|l|}{ANALYSIS \({ }^{\text {b }}\)} \\
\hline Calcium & 173.47 & 170.66 \\
\hline Magnesium & 194.56 & 226.28 \\
\hline Sodium & 211.56 & 363.27 \\
\hline Potassium & 11.26 & 12.64 \\
\hline Iron (Eotal) & 0.19 & 0.19 \\
\hline Manganese & 0.31 & <0.05 \\
\hline Aluminum & 0.02 & 0.02 \\
\hline Bicarbonate & \(13.487 \mathrm{meq} / \mathrm{L}\) & \(11.552 \mathrm{meq} / \mathrm{L}\) \\
\hline Carbonate & 0 & 0 \\
\hline Hiydroxide & 0 & 0 \\
\hline Chloride & 4.32 & 11.37 \\
\hline Sulfate & 1007.43 & 1491.81 \\
\hline Nitrate \({ }^{\text {c }}\) & 1.84 & 1.42 \\
\hline Eluoride & 0.385 & 0.394 \\
\hline Ortho Phosphate & 0.009 & 0.008 \\
\hline Field pH (no units) & 6. 6 & 6.8 \\
\hline Lab pH (no units) & 7.5 & 7.7 \\
\hline \multicolumn{3}{|l|}{Field Temperature \(\delta^{\text {O }}\) C)} \\
\hline Field Conductivity & & \\
\hline ( \(\mu\) mhos/cm@ambignt teap.) \({ }^{\circ}\) & 1180.0 & 1240.0 \\
\hline Lab Conductivity ( \(\mu \mathrm{mhos} / \mathrm{cme} 25^{\circ} \mathrm{C}\) ) & 2380.0 & 2920.0 \\
\hline Total Suspended Solids & 35520.8 & 4758.5 \\
\hline \multicolumn{3}{|l|}{Total Dissolved Solids \({ }^{\circ}\)} \\
\hline Evaporated Solids ( \(105^{\circ} \mathrm{C}\) ) & 2110.0 & 2939.0 \\
\hline Carbonate Hardness ( \(\mathrm{CaCO}_{3}\) ) & 674.35 & 577.59 \\
\hline Non-Carbonate Hardness ( \(\mathrm{CaCO}_{3}\) ) & 560.71 & 780.41 \\
\hline Total Hardness ( \(\mathrm{CaCO}_{3}\) ) & 1235.06 & 1358.00 \\
\hline Total Alkalinity ( \(\mathrm{CaCO}_{3}\) ) & 674.35 & 577.59 \\
\hline Sodium Adsorption Ratio (no units) & 1.854 & 4.288 \\
\hline Acidity ( \(\mathrm{CaCO}_{3}\) ) & 213.13 & 254.05 \\
\hline Zinc & 0.05 & 0.03 \\
\hline Chromium & 0.02 & \\
\hline Selenium & 20.05 & \(<0.05\) \\
\hline Mercury & < 0.4 ppb & < 0.4 \\
\hline Nickel & 0.03 & \(<0.01\) \\
\hline Arsenic & \(<0.1\) & < 0.1 \\
\hline Boron & 0.802 & 0.878 \\
\hline Copper & 0.21 & 0.15 \\
\hline Cadriun & 0.03 & 0.03 \\
\hline Strontiuin & 10.0 & 13.0 \\
\hline Lead & 0.19 & 0.45 \\
\hline Vanadtum & \(<0.5\) & \(<0.5\) \\
\hline Molybdenum & 0.005 & 0.005 \\
\hline
\end{tabular}

\footnotetext{
Whater level measurement below gound surface
Analyses reported as my/L miness otherwise indicated
\({ }_{d}\) Nitrate reported as \(N O 3+N 02\)
Conductivity refers to specifir conductance
}

> APPENDIX D
> Data on Soils, Vegetation, and Land Use
Page
Methods of soil sampling and analysis ..... D-2
Description of soil mapping units and associated series. ..... D - 5
An overview of the overburden and interburden characteristics of the proposed 20-year mining plan area ..... D-18Report on analyses for exchangeable sodium percent-age and clay mineralogyD-34
Report on possible zinc contamination ..... D-40
TABLES
1. List of plant species observed on the project area ..... D-42

METHODS OF SOIL SAMPLING AND ANALYSIS
Sample Collection
Soil samples for laboratory analysis were collected from hand dug pits. Individual horizons, described and identified according to procedures outlined in Agriculture Handbook No. 18., Soil Survey Manual USDA, 1951, were sampled. Quart size samples were taken of each significant horizon from a yertical section of the pit. Horizons below \(21 / 2\) to 3 feet were sampled with a hand auger or mechanical soil probe to a maximum depth of 5 to 7 feet.

Soil profiles were selected to represent the central concept of the soil series within the survey area where ranges in characteristics were small. Where soil characteristics ranged broadly the profiles were selected to represent the extremes.

Sample Preparation
Soil samples were air dried and split into two samples, one for chemical analysis and the remaining half was kept for later use. Each sample was passed through a 9 mesh screen for mechanical analysis and 20 mesh screen for chemical analysis.

Chemical and Physical Analysis
The following determinations were carried out on horizon sample material after screen (9 and 20 mesh).

Chemical Determinations
pH, water

Soluble Salts
(conductivity)

Calcium, water soluble

Magnesium,
water soluble

Sodium, water soluble

Sodium Adsorption Ratio (SAR)

Reference or Procedure
American Society of Agronomy (ASA) Monograph No. 9, Methods of Soil Analysis, Method 60-3.4, p. 922933, except that a 1 to 2 sample to water ratio is used.

American Society for Testing and Materials (ASTM), Publication STP479, p. 288-290, note that a 1 to 2 sample to water ratio is used.

APHA, AWWA, WPCF, Standard Methods for the Examination of Water and Wastewater, 13 th Edition, Part 129, p. 210-215. A 1 to 2 water extract is analyzed.

APHA, AWWA, WPCF, Standard Methods for the Examination of Water and Wastewater, 13 th Edition, Part 129, p. 210-215. A 1 to 2 water extract is analyzed.

ASA Agronomy Monograph No. 9, method 62-3.3.2, p. 944-945, a 1 to 2 water extract is analyzed.
U.S. Dept. of Agriculture, Agriculture Handbook No. 60, p. 26, Ca1culated from the equation:
\(\mathrm{SAR}=\frac{\mathrm{Na}}{\frac{\mathrm{Ca}+\mathrm{Mg}}{2}}\)
U.S. Department of Agriculture, Agriculture Handbook No. 60, p. 142.

Chemical and Physical Analysis-Continued

Chemical Determinations
Particle size analysis

Saturation percentage

\section*{Reference or Procedure}

ASA Agronomy Monograph No. 9, Method 43-5, p. 562-566. A sedimentationsieving procedure. The sample material is sieved to pass a 9 mesh ( 1.981 mm ) screen and dispersed in water prior to analysis.
U.S. Department of Agriculture, Agriculture Handbook 60, p. 84, Method 2 or 3 a.

DESCRIPTION OR SOIL MAPPING UNITS AND ASSOCIATED SERIES

\section*{ALICE SERLES}

The Alice series consists of deep, sloping and moderately steep and rolling, well-drained soils on narrow footslopes, fans and valley bottoms. Slopes range from 4 to 15 percent. They formed in sandy alluvium from calcareous sandstone at elevations of 2900 to 3700 feet.

Vegetation is green sagewort, little bluestem, prairie sandreed, sideoats grama, blue grama, broom snakeweed, ragweed and eriogonum. Precipitation is 13 to 14 inches, mean annual soil temperature is 47 to 49 degrees F., and the frost free season is 115 to 125 days.

Typically, the surface layer is grayish brown fine sandy loam about 2 inches thick. The subsoil is grayish brown and light olive brown sandy loam about 10 inches thick. The substratum is light olive brown, light yellowish brown, and pale yellow sandy loam and loamy sand.

The soil has moderately rapid permeability and an effective rooting depth of 60 or more inches.

Most of these soils are used for range. Small areas are in dryland hay.

A typical profile of Alice sandy loam in grassland, 30 feet north and 10 feet west of power line pole 252 in the NW \(1 / 4\), NW \(1 / 4\) of Sec .2 , T. 1 S., R. 35E.

A
0 to 2 inches, grayish brown (2.5Y 5/3) fine sandy loam, very dark grayish brown (2.5Y 3/2) moist; weak coarse crumb structure parting to single grain; soft, very friable, nonsticky and slightly plastic; many fine and very fine roots; clear smooth boundary. (2 to 6 inches thick)

B21 2 to 6 inches, grayish brown (2.5Y 5/2) sandy loam, very dark grayish brown (2.5Y 3/2) moist; moderate, coarse prismatic structure; slightly hard, friable, slightly sticky and slightly plastic; common fine roots; gradual wavy boundary.

6 to 12 inches, light olive brown (2.5Y 5/3) sandy loam, olive brown (2.5Y 4/3) moist; slightly hard, friable, nonsticky and slightly plastic; common fine roots; gradual wavy boundary. (B2 horizon is 5 to 10 inches thick)

Cl
12 to 17 inches, light olive brown (2.5Y 5/3) light sandy loam, olive brown ( \(2.5 Y\) 4/3) moist; massive, slightly hard, friable, nonsticky and slightly plastic; very slightly effervescent; a few very fine roots; clear sinooth boundary.

17 to 28 inches, light yellowish brown (2.5Y 6/3) light sandy loam, light olive brown (2.5Y 5/3) moist; massive; hard, friable, nonsticky and slightly plastic; slightly effervescent; a few fine, soft masses of lime; a few very fine roots; gradual wavy boundary.

28 to 41 inches, light yellowish brown (2.5Y 6/3) light sandy loam, light olive brown (2.5Y 5/3) moist; massive; slightly hard, friable, nonsticky and slightly plastic; slightly effervescent; a few very fine roots; gradual wavy boundary.

41 to 65 inches, pale yellow ( \(2.5 \mathrm{Y} 7 / 3\) ) heavy loamy sand, olive (2.5Y 5/3) moist; massive, slightly hard, very friable, nonsticky and slightly plastic; slightly effervescent.

The A horizon ranges in color from dark grayish brown to light olive brown. The texture is sandy loam or fine sandy loam. The B2 horizon thickness ranges from 5 to 10 inches. Clay content ranges between 12 and 18 percent. Segregated lime in the \(C\) horizons is in indistinct fine threads and soft masses.

Alice soils are associated with Nelson, Travessilla, and Thedalund soils. They have greater depth to sandstone than the Nelson soils and have greater depth to sandstone than the Travessilla soils. They are more sandy than the Thedalund soils.

Alice fine sandy loam, 4 to 15 percent slopes (Ar).
This soil is on footslopes, fans and valley bottoms in 20 to 30 acre size areas. Slopes are smooth and mainly 4 to 10 percent. Steeper slopes occur beiow the higher hills and the residual soils that border the deep valleys. Slope length is 200 to 400 feet. Included with this soil in mapping are small areas of 0lney fine sandy loam on gently slopes of the larger fans. Also included is a 50 to 75 feet wide band of Glenberg fine sandy loam on 8 to 15 percent slopes below the sandstone ledges and outcrops that border the valley. The soil profile is the one described as typical for the series.

Runoff is slow, the wind erosion hazard is severe.
This soil is used for range and dry cropland.
(Capability Unit IIIe-3 Dryland; Sandy range site \(10-14\) inch precipitation zone; Windbreak Suitability Group 2M).

\section*{CUSHMAN SERIES}

The Cushman series consists of moderately deep, undulating, well-drained soils on smooth ridges and hilltops in the sedimentary plains. The slopes range from 4 to 8 percent. They formed in place from underlying mixed shale and sandstone at elevations of 3100 to 3800 feet.

The vegetation is mainly needle-and-thread, big sage, western wheatgrass, and fringed sagewort. Annual precipitation is 12 to 14 inches, the mean annual soil temperature is 47 to 49 degrees \(F\)., the frost free season is 115 to 125 days.

Typically, the surface layer is brown loam about 5 inches thick. The subsoil is brown and light brownish gray clay loam and loam about 11 inches thick. The substratum is light gray loam. Shale and sandstone bedrock are at about 30 inches. The soil reaction is mildly alkaline throughout. The soil is noncalcareous to about 9 inches and moderately calcareous below this depth. Lime in the substratum is segregated into soft masses and nodules.

The soil has moderate permeability and an effective rooting depth of about 36 inches. Available water holding capacity is 5 to 6 inches.

These soils are used for range and for dry cropland.
A typical profile of Cushman loam in a crop field, 36 feet east of trail, 1000 feet north and 175 feet west of the SI/4 corner of Sec. 1 , T. 1 S., R. 37 E.

Ap \(\quad 0\) to 5 inches, brown (10YR 5/3) loam, dark brown (10YR 3/3) moist; cloddy; hard, friable, very sticky and plastic; a few fine roots; abrupt smooth boundary.

B2t 5 to 10 inches, brown (10YR 5/3) clay loam, dark brown (10YR 4/3) moist; moderate medium prismatic structure parting to moderate medium blocks; hard, firm, very sticky and plastic; thin patchy clay films on ped surfaces; a few very fine roots; clear wavy boundary.

B3 \(\quad 10\) to 16 inches, light brownish gray (2.5Y 6/2) loam, grayish brown (2.5Y 5/2) moist; moderate medium prismatic structure, parting to moderate medium blocks; thin patchy clay films on ped surfaces; strongly effervescent, a few medium lime mottles and some film lime; a few very fine roots; clear wavy boundary.

C1ca \(\quad 16\) to 25 inches, light gray (2.5Y 7/2) loam, light olive brown (2.5Y 5/3) moist; weak angular blocky structure; hard, friable, sticky and plastic; strongly effervescent, common medium and coarse lime mottles; a few very fine roots; gradual wavy boundary.

25 to 35 inches, light gray ( \(2.5 Y 7 / 2\) ) loam, grayish brown (2.5Y 5/2) moist; massive; hard, friable, sticky and plastic; strongly effervescent, a few coarse lime mottles; clear wavy boundary.

R
30 to 40 inches, soft platy shale.
Depth to the shale and sandstone is 30 to 40 inches. The depth to the calcareous part of the soil is 9 to 11 inches. Clay content of the B 2 t is 27 to 33 percent. Lime segregations in the Cca horizon are few to common. Ap horizon color range is grayish brown to brown. The C horizon has color range of light yellowish brown to light gray.

Cushman soils are associated with Thedalund, Midway, and Renohill soils. They have a B2t horizon not present in the Thedalund soils and Renohill soils. They are less slayey than the Midway and Renohill soils.

Cushman loam, undulating ( 4 to 8 percent slopes) (Cz).
This undulating soil is on sedimentary plains. It occupies smooth ridges and hills on the broad divides between major stream valleys. The areas range from 10 to 50 acres in size. The soil has the profile described as typical for the series. Included with this soil in mapping are small areas of Heldt, Midway, and Thurlow soils.

The runoff is medium, the crosion hazard is moderate.
This soil is used for range and dry cropland.
(Capability Unit IIIe-3 Dryland; Silty range site 10-14 inch precipitation zone; Windbreak Suitability Group 3M).

\section*{FORT COLLINS SERIES}

The Fort Collins series consists of deep, nearly level to sloping and rolling, well-drained soils on terraces and fans. Slopes range from 0 to 15 percent. They formed in loam and clay loam alluvium in stream valleys at elevations of 2850 to 3400 feet.

The vegetation is mainly blue grama, needle-and-thread, big sagebrush, and cheatgrass. The annual precipitation is 12 to 14 inches, the mean annual soil temperature is 47 to 49 degrees \(F\)., the frost free season is 115 to 125 days.

Typically, the surface layer is grayish brown loam about 4 inches thick. The subsoil is brown clay loam and loam about 7 inches thick. The substratum is light brownish gray loam to 60 or more inches.

These soils have moderate permeability and an effective rooting depth of 60 or more inches. Available water holding capacity is 9 to 11 inches.

These soils are used for irrigated and dry cropland and for range.
A typical profile of Fort Collins loam in grassland, 380 feet south and 710 feet east of the center of Sec. 12, T. I S., R. 34 E.

A \(\quad 0\) to 3 inches, grayish brown (1Y 5/2) loam, dark grayish brown (1Y 4/2) moist; moderate, medium platy structure; soft, friable, nonsticky and nonplastic; clear smooth boundary. (2 to 4 inches thick)

3 to 4 inches, brown (1Y 5/3) loam, dark grayish brown (1Y 4/2) moist; moderate, medium platy structure; slightly hard, friable, slightly sticky and slightly plastic; clear smooth boundary. (0 to 2 inches thick)

B21t 4 to 9 inches, brown (1Y 5/3) clay loam, dark brown (1Y 4/3) moist; moderate, medium prismatic structure parting to moderate medium blocks; hard, firm, sticky and slightly plastic; thin continuous clay films on ped surfaces; gradual wavy boundary.

B22t 9 to 12 inches, brown (1Y 5/3) clay loam brown (1Y 4/3) moist; moderate, medium prismatic structure parting to moderate, medium blocks; hard, firm, slightly sticky and slightly plastic; thin patchy clay films on ped surfaces; gradual wavy boundary. (B2t 6 to 10 inches thick)

B3ca \(\quad 12\) to 22 inches, grayish brown (1Y 5/2) loam, grayish brown (1Y 4/2) moist; weak, weak prismatic structure parting to weak medium blocks; hard, friable, slightly sticky and plastic; strongly effervescent; a few fine lime mottles. Clear wavy boundary. (6 to 10 inches thick)

22 to 27 inches, light brownish gray (2.5Y 6/2) loam, light olive brown (2.5Y 5/3) moist; weak, coarse prismatic structure; hard, friable, slightly sticky and slightly plastic; strongly effervescent; a few medium and coarse lime mottles; gradual wavy boundary.

27 to 33 inches, light brownish gray (2.5Y 6/2) loam, light olive brown (2.5Y 5/3) moist; massive; hard, friable, slightly sticky and slightly plastic; strongly effervescent; gradual wavy boundary.

C3 \(\quad 33\) to 65 inches, light gray (2.5Y 7/2) loam, grading to silt loam below 53 inches; massive; strongly effervescent.

The depth to the calcareous soil ranges from 7 to 12 inches. Coarse fragment in the upper 24 inches of the profile range from 0 to 10 percent. Soil color hue is 10 YR to \(5 Y\). The A horizon color range is light brownish gray and grayish brown. The B2t horizon color range is grayish brown to olive brown. The Cca horizon color range is grayish brown and olive. Segregated lime is in fine and medium soft masses, and threads. Stratification in the \(C\) horizon includes textures of fine sandy loam, clay loam, and silt loam.

Fort Collins soils are associated with Thurlow, McRae, and Hydro soils. They contain less clay than the Thurlow soils and more clay than the McRae soils. They lack the A2 and B \& A horizons of the Hydro soils.

Fort Colljns loam, 2 to 4 percent slopes (Fk).
This soil is on fans and terraces in river and intermittent stream valleys. The areas are 5 to 40 acres in size. The soil profile is the one described as typical for the series. In the areas of gravel terraces the soil may include strata of loamy and below 30 inches. Included with the soil in mapping are small spots of McRae and Thurlow soils.

The runoff is slow and the erosion hazard moderate.
This soil is used for irrigated and dry cropland and for range.
(Capability Unit 111e-3, Dryland, 1le-1 Irrigated; Silty range site 10-14 inch precipitation zone; Windbreak Suitability Group 1).

Fort Collins loam, 4 to 8 percent slopes (Fm).
This soil is on footslopes, fans and terraces. It lies in 20 to 50 acre patches in the tributary drainageways to major stream valleys. Slope length ranges between 250 and 450 feet. The soil has a profile sirilar to the typical one described for the series. Included with this soil in mapping on the footslopes are narrow bands of Mckae soils immediately below the residual soils of the valley rim.

The runoff is medium and the erosion hazard moderate.

This soil is used for dry and irrigated cropland and range.
(Capability Unit IIIe-3 Dryland, IIIe-1 Irrigated; Silty range site \(10-14\) inch precipitation zone; Windbreak Suitability Group 1).

\section*{MIDWAY SERIES}

The Midway series consists of shallow, sloping to steep and undulating to hilly, well-drained soils on sedimentary plains. Slopes range from 2 to 35 percent. They formed in place in materials weathered from silty clay loam and silty clay shales at elevations of 3000 to 4000 feet.

The vegetation is sideoats grama, green needlegrass, big sage, skunkbush sumac, western wheatgrass and broom snakeweed. Annual precipitation is 12 to 14 inches, the mean annual soil temperature is 47 to 49 degrees F., the frost free season is 105 to 115 days.

Typically, the surface layer is light olive gray silty clay loam about 2 inches thick. The underlying material is olive gray silty clay loam underlain by shale at about 11 inches. Shale chips make up 30 percent of the volume in the lower substratum.

Permeability is slow and the effective rooting depth is about 15 inches. Available water holding capacity is 1 to 3 inches.

These soils are used for range. Small areas are used for dry cropland.

A typical profile of Midway silty clay loam in grassland, in bank of old road 110 feet south of new road, 1500 feet west and 50 feet north of the \(\mathrm{N} 1 / 16\) corner of Sec. 10 and \(11, \mathrm{~T} .1 \mathrm{~S} ., \mathrm{R} .35 \mathrm{E}\).

A
0 to 2 inches, light olive gray (5Y 6/2) light silty clay loam, olive gray (5Y 5/2) strong, very fine granular structure; hard, friable, sticky and plastic; common, fine roots; slightly effer-
vescent; clear smooth boundary. (2 to 4 inches thick)
Cl 2 to 5 inches, olive gray (5Y 5/2) silty clay loam olive gray ( 5 Y 4/2) moist; moderate, thin platy structure; hard, firm, very sticky and plastic; many fine and micro roots; many micro pores; strongly effervescent; gradual wavy boundary.

C2 \(\quad 5\) to 11 inches, olive gray ( \(5 Y 5 / 2\) ) silty clay loam, olive gray (5Y 4/2) moist; weak, coarse blocky structure; hard, firm, very sticky and very plastic; 30 percent of volume in fine, partly weathered shale chips; common fine roots; common, fine and micro pores; strongly effervescent; diffuse wavy boundary.

C3 \(\quad 11\) to 14 inches, platy shale containing root mats between horizontal fractures.

Depth to the shale beds ranges from 10 to 20 inches. Clay content throughout the soil ranges from 35 to 45 percent. The soil color hue is 2.5 Y or 5 Y . Texture of the Al horizon is silty clay loam, clay loam or clay. The color range is light olive brown, light olive gray, and light brownish gray. Volume of shale chips in the C horizon ranges from 5 to 35 percent. Few to many gypsum crystals occur immediately above the shale bedrock in some pedons.

Midway soils are associated with Thedalund, Lismas, Renohill and Thurlow soils. They contain more clay than the loam Thedalund soils and less clay than the Lismas soils. They have less depth to shale than the Renohill soils, and they lack the B2t horizon of the deep Thurlow soils.

Midway silty clay loam, undulating (2 to 8 percent slopes) (Mu).
This soil is in narrow, irregular areas on smooth ridges between intermittent stream valleys. Slopes range in length between 100 and 250 feet. Slopes are mainly 5 to 8 percent but range downward to 2 percent. The soil profile is similar to the typical one described for the series. Included with this soil in mapping were areas of Renohill silty clay loam in the heads of drainageways and spots having concave, 2 to 4 percent slopes. A few spots with a gravelly silty clay loam surface are also included.

Surface runoff is medium, and the erosion hazard is moderate.
This soil is suited to dry cropland and range. Moisture conservation is an important practice in managing the cultivated soil.
(Capability Unit IVe-3 Dryland; Clayey range site 10-14 inch precipitation zone; Windbreak Suitability Group 3M).

Midway silty clay loam, rolling (8 to 15 percent slopes) (MVa).
This soil is on the drainage divides between major valleys. The areas consist of ridges and hills that separate the short tributary drainageways to the main valley. Where total relief is under 150 feet the soil extends from the valley floor to the top of the drainage divide. Where relief is greater than 150 feet, this soil lies above steeper Midway soils. The soil profile is similar to the typical one described for the series. Included with this soil in mapping were small areas of Heldt, Lohmiller and McRae soils. These soils are in drainageways, and on the narrow footslopes of the main valleys. Also included on the ridge cresta were areas of Thedalund loam and Nelson sandy loam.

The surface runoff is rapid, and the erosion hazard is severe.
This soil is suited to range.
(Capability Unit VIe Dryland; Clayey range site 10-14 inch precipitation zone; Windbreak Sultability Group 3M).

\section*{NELSON SERIES}

The Nelson series consists of moderately deep, undulating and rolling, well-drained soils on hills and ridges of sedimentary plains. Slopes are mainly 4 to 15 percent, but range downward to 2 percent and upward to 20 percent. They formed, in places, in materials weathered from calcareous, weakly consolidated sandstones at elevations of 3000 to 3800 feet.

The vegetation is mainly prairie sandreed, dryland sedges, silver sage, green sagewort, yucca and bluebunch wheatgrass. Annual precipitation is 13 to 14 inches, mean annual soil temperature is 48 to 50 degrees \(F\)., the frost free season is 115 to 125 days.

Typically, the surface layer is light olive brown and grayish brown fine sandy loam about 5 inches thick. The underlying material is light olive brown, light yellowish brown grading to pale yellow sandy loam resting on sandstone at about 29 inches.

Permeability is moderately rapid, the effective rooting depth is about 30 inches. Available water holding capacity is 3 to 5 inches.

These soils are used for range.
A typical profile of Nelson fine sandy loam, grassland, 9 percent slope, about 1100 feet south and 175 feet west of the center of Sec. 3, T. 1 S., R. 35 E.

A \(\quad 0\) to 3 inches, light olive brown (2.5Y 5/3) fine sandy loam, dark grayish brown ( \(2.5 \mathrm{Y} 4 / 2\) ) moist; single grain structure breaking from a weak crust; soft, very friable, nonsticky and slightly plastic; clear smooth boundary.

AC \(\quad 3\) to 5 inches, grayish brown (2.5Y 5/2) fine sandy loam, dark grayish brown (2.5Y 4/2) moist; weak coarse prismatic structure; soft, very friable, nonsticky and slightly plastic; clear smooth boundary.

C1 5 to 16 inches, light olive brown (2.5Y 5/3) sandy loam, dark grayish brown (2.5Y 4/2) moist; weak coarse prismatic structure; slightly hard, very friable, nonsticky and slightly plastic; slightly effervescent; diffuse boundary.

16 to 21 inches, light yellowish brown ( \(2.5 \mathrm{Y} 6 / 3\) ) sandy loam, light olive brown (2.5Y 5/3) moist; massive; slightly hard, friable, nonsticky and slightly plastic; strongly effervescent; diffuse boundary. ( \(5 \%\) 6/3) moist; massiye with some evidence of platy of the rock structure; slightly hard, friable, nonsticky and slightly plastic; strongly effervescent; clear wavy boundary.

29 to 44 inches, pale yellow ( \(5 Y\) 7/3) sandstone, ( \(5 Y\) 6/3) moist; banded soft sandstone augered with moderate pressure; strongly calcareous.

Depth to the calcareous soil ranges from 0 to 6 inches. Depth to sandstone and loam shale ranges from 20 to 40 inches. Content of coarse fragments ranges from 0 to 15 percent. Color hue is \(2.5 Y\) or \(10 Y R\) in the surface and upper part of the underlying material. The lower part of the underlying material has hue of \(2.5 Y\) or \(5 Y\).

Nelson soils are associated with Alice, Tullock, and Thedalund soils. They have lighter colored surfaces and bedrock at shallower depths than the Alice soils. They have more clay than the Tullock soils and are more sandy than the Thedalund soils.

Nelson fine sandy loam, undulating ( \(\underline{\text { to }} 15\) percent slopes) (Nd).
This undulating soil is on hills and ridges separating major drainageways in sandstone land. Slopes are smooth except for a few thin ledges and outcrops of sandstone on the steep sides of prominent ridges. Slopes are mainly 4 to 8 percent but range downward to 2 percent and upward to 15 percent. The soil has a profile like the typical one described for the series. Included with this soil in mapping are narrow 10 acre areas of Alice fine sandy loam on valley sides and bottoms.

The surface runoff is medium and the erosion hazard is moderate.
This soil is suited to range and limited dryland crops.
(Capability Unit IVe-3 Dryland; Sandy range site 10-14 inch precipitation zone; Windbreak Suitability Group 3M).

\section*{THEDALUND SERIES}

The Thedalund series consists of moderately deep, undulating to very steep, well-drained soils on sedimentary plains. Slopes range from 4 to 90 percent. They formed in materials weathered in place from shale at elevations of 2800 to 3800 feet.

Vegetation is mainly western wheatgrass, needle-and-thread, sideoats grama, dryland sedges, and big sagebrush. Annual precipitation is 12 to 14 inches, mean annual soil temperature is 48 to 50 degrees \(\mathrm{F}_{\mathrm{o}}\), the frost free season is 105 to 125 days.

Typically, the surface layer is grayish brown loam about 2 inches thick. The underlying material is olive brown light yellowish brown, and light gray loam resting on loam shale at about 28 inches. A few shale and sandstone fragments occur below 20 inches.

Permeability is moderate, the effective rooting depth is about 28 inches. The available water holding capacity is 4 to 5 inches.

These soils are used for range. Small areas included with deeper soils are in dry cropland.

A typical profile of Thedulund loam, grassland, 125 feet east of trail, 1610 feet north and 1400 feet east of the SW corner of Sec. 14 T. 1 S., R. 35 E.

A \(\quad 0\) to 2 inches, grayish brown (2.5Y 5/2) loam, dark grayish brown (2.5Y 4/2) moist; weak, coarse crumb structure; slightly hard, very friable, slightly sticky and slightly plastic; slightly effervescent; common very fine roots; clear smooth boundary. (1 to 4 inches thick)

C1 2 to 8 inches, light olive brown (2.5Y 5/3) heavy loam, olive brown (2.5Y 4/3) moist; weak, coarse prismatic structure; hard, friable, slightly sticky and slightly plastic; slightly effervescent; a few fine threads and soft masses of lime; many very fine pores; common very fine roots; gradual wavy boundary.

C2 8 to 14 inches, light yellowish brown (2.5Y 6/3) heavy loam, olive brown (2.5Y 4/3) moist; weak, coarse prismatic structure; hard, friable, slightly sticky and plastic; strongly effervescent; a few fine soft masses of lime; common very fine pores and roots; gradual wavy boundary.

C3 \(\quad 14\) to 22 inches, light yellowish brown (2.5Y 6/3) loam, light olive brown (2.5Y 5/3) moist; massive; slightly hard, friable, slightly sticky and plastic; strongly effervescent; common, fine, soft masses of lime; a few very fine roots; common very fine pores; gradual wavy boundary.

22 to 28 inches, light gray (5Y 7/2) loam, olive (5Y 5/3) moist; very weak, coarse platy structure; slightly hard, friable, sticky and plastic; a few shale and sandstone chips; strongly effervescent; common, medium soft masses of lime; a few very fine roots; common very fine pores; diffuse boundary.

28 to 37 inches, platy loam shale, hard when dry; a few very fine roots.

Some visible segregated calcium carbonate occurs at random in most profiles. The 10 to 40 inches section is loam, or light clay loam with clay ranging from 18 to 30 percent. Content of coarse fragments range from 0 to 20 percent. The \(A\) and upper \(C\) horizons have hues of 25.Y and loYR. The lower \(C\) horizon has hue of \(2.5 Y\) and \(5 Y\). Color range in the A horizon is grayish brown, brown and dark grayish brown. The lower C horizon has color range of light olive brown, light yellowish brown and pale olive.

Thedalund soils are associated with Midway, Cushman, and McRae soils. They contain less clay and have greater depth to shale than the Midway soils. They lack the B2t horizon on the Cushman soils and have less depth to bedrock than the McRae soils.

Thedalund loam, undulating ( 4 to 8 percent slopes) ( Tg )
This soil is on narrow ridges between intermittent stream valley and on broad drainage divides at the heads of several shallow valleys. The areas occur in mixed shale and sandstone highlands. The soil profile is the typical one described for the series. Included with this soil in mapping are areas having very fine sandy loam surfaces.

The surface runoff is medium, and the erosion hazard is moderate.
This soil is suited to dryland crops and range.
(Capability Unit IIe-2 Dryland; Silty range site \(10-14\) inch precipitation zone; Windbreak Suitability Group 2M)

\section*{AN OVERVIEW OF THE OVERBURDEN AND INTERBURDEN CHARACTERISTICS OF THE PROPOSED 20-YEAR MINING PLAN AREA}

The 20-year mining plan area is located near the center of Tract 3 and is approximately 2,550 acres in size. Westmoreland Resources is currently surface mining the northwestern section of the mining plan area. This overview of the 20 -year mining plan area evaluates the overburden and interburden material from 21 drill holes (Figure 2) for their suitability for use as a subsoil in the reclamation program. Thirteen of these drill holes are located in the area of ongoing mining operations. pH

Values of pH range from 3.8 to 9.5 , but most values fall within the rather narrow range from 7.2 to 8.5 . Values below 7.0 are rare and are generally associated with carbonaceous material. Highly acid material (pH less than 4.5) may restrict the growth of some plant species. Only one interval in the proposed 20 -year mining plan area, the \(16-20 \mathrm{ft}\) interval as represented by material from Drill Hole 140 B , has a pH below 4.5 and undoubtably this interval will be mixed with basic intervals during mining operations.

Values of pHem 8.9 to 9.5 were frequently associated with high sodium adsorption ratios. This highly alkaline material was generally limited to interburden samples from the following drill holes: 440, \(441,442,446,448\), 489, and 490. As much as \(90 \%\) of the interburden as represented by the se drill holes had pH values of 8.9 or greater. It is unlikely that subsoil pH values as high as 9.5 will significantly restrict the germination and growth of plant species generally used in revegetation of mining lands in western United States.

FIGURE
DRILL HOLE LOCATIONS FOR
OVERBURDEN AND INTERBURDEN SAMPLING

PROPOSED 20-YEAR MINING PLAN AREA

WESTMORELAND RESOURCES


D 19

In addition, the se relatively high pH values indicate the presence of small amounts of sodium carbonate. Upon exposure to air, this compound is converted to bicarbonate, thus causing the pH to decrease.

\section*{SOLUBLE SALT CONCENTRATIONS}

Saline material is commonly found in the northwestern part of the 20-year mining plan area. Potentially saline spoils (based on Tables 1 and 2) may occur in the area represented by the following drill holes:
\begin{tabular}{lc} 
Drill Hole Number & \begin{tabular}{c} 
Averaged Soluble Salt \\
Electrical Conductivity \\
(mmhos/cm)
\end{tabular} \\
\cline { 2 - 3 } 140 B (Overburden) & 4.9 \\
414 (Overburden) & 8.5 \\
440 (Interburden) & 4.1 \\
446 (Overburden) & 7.8 \\
490 (Overburden) & 4.4 \\
547 (Overburden) & 5.4 \\
600 (Overburden) & 5.1
\end{tabular}

With the exception of the interburden represented by Drill Hole 440 , potentially saline spoils are limited to the overburden. Soluble salt concentrations of the se magnitudes may restrict the growth of salt-intolerant plant species, but would not restrict the growth of salt-tolerant plants. Many plant species used in revegetation are considered salt tolerant. The application of nonsaline topsoil to spoil surfaces will considerably reduce any adverse impact of a saline subsoil. The movement of salts from a saline subsoil into the topsoil is possible. Application of a deep layer (approximately 2 ft ) of topsoil to saline spoils should preclude significant amounts of soluble salts from moving into the topsoil.

Overburden and interburden may be combined during stripping and recontouring operations. The soluble-salt electrical conductivity of such a mixture is presented in Table 3. Potentially saline spoils appear to be limited to the following material:
Drill Hole Number \begin{tabular}{cc}
\begin{tabular}{c} 
Averaged Soluble Salt \\
Electrical Conductivity \\
mmhos/cm
\end{tabular} \\
\(140 B\) & 4.5 \\
414 & 6.6 \\
446 & 5.0 \\
547 & 4.4
\end{tabular}

This saline material should not hinder reclamation if salt-tolerant species are used for revegetation. With the exception of two highly saline intervals as represented by Drill Hole 414 , individual intervals which are highly saline occur near the surface (from the surface to 25 ft in depth). During stripping operations, the upper portion of overburden may be deposited near the bottom of the spoil pile, and the lower portion of the overburden is likely to form the spoil surface. If this occurs, the highly saline intervals will be buried well below the plant-rooting zone. SODIUM ADSORPTION RATIO

Only three overburden intervals (one from Drill Hole 489 and two from Drill Hole 639) are alkali, and it is likely that this alkali material will be dispersed during mining and recontouring. Averaged overburden SAR values (Table 1) are very low (from 0.9 to 7.1 ) and indicate that alkali overburden spoils are not probable.

\section*{TABLE 1}

Averaged Values of Selected Characteristics for Overburden Material (a)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Drill \\
Hole \\
No.
\end{tabular}} & \multirow[b]{2}{*}{Overburden Thickness ft} & \multirow[t]{2}{*}{Soluble Salt Electrical Conductivity mmhos/cm} & \multirow[b]{2}{*}{Sodium Adsorption Ratio} & \multicolumn{3}{|l|}{DTPA Extractable} & \multicolumn{2}{|l|}{Boron Water} \\
\hline & & & & Zinc ppm & Nickel ppm & Lead ppm & Soluble ppm & \begin{tabular}{l}
Clay \\
Percent
\end{tabular} \\
\hline 73 & 132 & 2.0 & 4.9 & 4.6 & 0.7 & 1.8 & 0.4 & 28 \\
\hline 140 B & 94 & 4.9 & 1.6 & 23.3 & 3.8 & 13.2 & 1. 3 & 21 \\
\hline 186 & 95 & 1.6 & 1.1 & 11.2 & 0.5 & 2.3 & 1.0 & 21 \\
\hline 298 & 10 & 1.5 & 1. 0 (c) & 12.5 & (b) & (b) & 3.3 & 25 \\
\hline 324 & 65 & 0.6 & 0.9 & 10.3 & 0.7 & 0.8 & 0.2 & 19 \\
\hline 341 & 60 & 4.4 & 6.5 & 11.5 & 1.4 & 2.4 & 3.3 & 26 \\
\hline 352 & 50 & 4.7 & 1.7 & 2.9 & 0.7 & 2.4 & 1. 4 & 30 \\
\hline 391 & 88 & 1.0 & 1.6(c) & 2.3 & (b) & (b) & 0.8 & (b) \\
\hline 414 & 116 & 8.5 & 1. 4 (c) & 4.4 & (b) & (b) & 0.8 & (b) \\
\hline 417 & 35 & 1. 3 & 1.6 & 3.6 & 0.4 & 2.6 & 1.8 & 37 \\
\hline 440 & 88 & 3.1 & 2. 2(c) & (b) & (b) & (b) & (b) & (b) \\
\hline 441 & 60 & 3.5 & 2.3(c) & 1. 7 & 1. 8 & 12.6 & 0.9 & 19 \\
\hline 442 & 61 & 2.6 & 1. 0 (c) & (b) & (b) & (b) & (b) & (b) \\
\hline 446 & 60 & 7.8 & 2. 2(c) & 8.7 & (b) & (b) & 1.4 & 29 \\
\hline 448 & 31 & 2.7 & 1.0(c) & 8.7 & (b) & (b) & 0.1 & 27 \\
\hline 489 & 75 & 3.2 & 3.8 (c) & 12.7 & 2.4 & 14.4 & 1.5 & 24 \\
\hline 490 & 73 & 4.4 & 2.6(c) & 22.5 & 1.9 & 6.9 & 1.5 & 21 \\
\hline 507 & 57 & 1.9 & 7. 8(c) & 15.5 & 2.0 & 9.2 & 1.9 & 19 \\
\hline 546 & 68 & 3.7 & 2.6(c) & 15.4 & 3.7 & 9.9 & 1.6 & 28 \\
\hline 547 & 106 & 5.4 & 2.1(c) & 19.2 & 2.0 & 6.8 & 1.2 & 20 \\
\hline 554 & 73 & 2.1 & 4.7(c) & 26.8 & 2.0 & 6.6 & 4.7 & 23 \\
\hline 562 & 51 & 0.9 & 1.0 & 10.4 & 2.9 & 8.5 & 2.0 & 22 \\
\hline 564 & 50 & 1.9 & 1.0 & 11.3 & 1.3 & 4.8 & 0.1 & 28 \\
\hline 568 & 73 & 0.9 & 1.0 & 10.3 & 1.0 & 1. 9 & 0.5 & 18 \\
\hline 570 & 42 & 1.0 & 1.0 & 2.2 & 0.4 & 0.6 & 1. 3 & 25 \\
\hline 572 & 142 & 2.2 & 1.0 & 3.0 & 0.5 & 1.6 & 0.9 & 17 \\
\hline 579 & 83 & 4.3 & 1.1 & 3.4 & 0.8 & 2.6 & 2.8 & 26 \\
\hline 599 & 80 & 2.6 & 1. 9 & 3.4 & 0.6 & 1.9 & 0.7 & 17 \\
\hline 600 & 68 & 5.1 & 2.0 & 5.0 & 1.4 & 5.7 & 1. 1 & 24 \\
\hline 604 & 82 & 5.6 & 5.0 & 5.8 & 1.2 & 2.4 & 5.0 & 20 \\
\hline 605 & 169 & 4.3 & 3.7 & 2. 9 & 0.7 & 2.2 & 2.8 & 27 \\
\hline 606 & 18 & 6.2 & 6.8 & 3. 9 & 0.7 & 1.4 & 6.7 & 32 \\
\hline 607 & 133 & 6.0 & 2.5 & 33.2 & 1.2 & 2. 8 & 8.7 & 24 \\
\hline 608 & 47 & 1.5 & 1. 6 & 15.7 & 0.3 & 3.1 & 0.7 & 24 \\
\hline 614 & 192 & 4.0 & 3.0 & 20.2 & 1.2 & 2. 1 & 1.0 & 32 \\
\hline 615 & 275 & 2.6 & 5.0 & 18.7 & 1.0 & 0.6 & 1.3 & 24 \\
\hline 639 & 86 & 1.7 & 7.1 & 8.6 & 1.3 & 5.1 & 2.0 & 21 \\
\hline 640 & 103 & 2.9 & 2. 1 & 21.5 & 1.6 & 3.7 & 2.1 & 24 \\
\hline
\end{tabular}
a/ Calculated from analyses on individual interval samples by the following equation:
\(\begin{array}{r}\text { Value of Selected } \\ \text { characteristic }\end{array}=\Sigma\left[\right.\) (individual interval analysis) \(\left.\quad\left(\frac{\text { interval thickness }}{\text { overburden thickness }}\right)\right]\).
b/ Data not available.
c/ Calculated by USDA correlation from exchangeable sodium percentage:
\[
E S P=\frac{100(-0.0126+0.01475 \mathrm{SAR})}{1+(-0.0126+0.01475 \mathrm{SAR})}
\]

TABLE 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Drill } \\
\text { Hole } \\
\text { No. } \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{Interburden Thickness ft} & \multirow[t]{2}{*}{Soluble Salt Electrical Conductivity mmhos/cm} & \multirow[b]{2}{*}{Sodium Adsorption Ratio} & \multicolumn{3}{|l|}{DTPA Extractable} & \multirow[t]{2}{*}{\begin{tabular}{l}
Boron \\
Water \\
Soluble \\
ppm
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
Clay \\
Percent
\end{tabular}} \\
\hline & & & & Zinc ppm & Nickel ppm & Lead ppm & & \\
\hline 140 B & 54 & 3.9 & 6.9 & 68.4 & 5.0 & 10.5 & 1.0 & 32 \\
\hline 186 & 66 & 3.7 & 17.2 & 47.8 & 1.4 & 3.7 & 0.3 & 37 \\
\hline 298 & 51 & 2.5 & 6.6 (d) & 10.3 & (c) & (c) & 2. 3 & 29 \\
\hline 324 & 53 & 3.4 & 4.2 & 19.3 & 1.6 & 3.6 & 1.4 & 37 \\
\hline 391 & 54 & 0.7 & 4.4(d) & 8.8 & (c) & (c) & 1.9 & (c) \\
\hline 414 & 59 & 3.1 & 15. 1 (d) & 6.7 & (c) & (c) & 1.2 & (c) \\
\hline 417 & 63 & 2.4 & 14.3 & 10.0 & 1.5 & 3.2 & 1.3 & 32 \\
\hline 440 & 51 & 4.1 & 7.6(d) & (c) & (c) & (c) & (c) & (c) \\
\hline 441 & 59 & 3.2 & 12.0 (d) & 1. 5 & 2. 1 & 6.8 & 0.9 & 21 \\
\hline 442 & 52 & 3.3 & 11. 1 (d) & (c) & (c) & (c) & (c) & (c) \\
\hline 446 & 50 & 1.6 & 7.3(d) & 14.8 & (c) & (c) & 6.0 & 31 \\
\hline 448 & 53 & 1.5 & 7.4 (d) & 15.7 & (c) & (c) & 4.0 & 28 \\
\hline 489 & 57 & 2.9 & 13.0 (d) & 27.0 & 2.8 & 6.6 & 2.6 & 27 \\
\hline 490 & 59 & 2.6 & 15.4 (d) & 53.9 & 3.2 & 5.9 & 2.4 & 28 \\
\hline 507 & 57 & 2.9 & 8.7 (d) & 30.7 & 4.4 & 9.2 & 2.0 & 25 \\
\hline 546 & 57 & 3.3 & 6.8 (d) & 16.8 & 3.3 & 6.4 & 1. 3 & 26 \\
\hline 547 & 54 & 2.6 & 7.7 (d) & 31.3 & 2.9 & 9.2 & 2.4 & 23 \\
\hline 554 & 51 & 4.0 & 8. 2 (d) & 59.3 & 4.0 & 6.9 & 1.8 & 31 \\
\hline 562 & 63 & 1.9 & 6.5 & 22.5 & 5.0 & 7.7 & 1.5 & 31 \\
\hline 564 & 53 & 2.9 & 4.7 & 22.2 & 1.4 & 3.3 & 0.1 & 31 \\
\hline 568 & 63 & 2.8 & 5.2 & 28.2 & 1.5 & 2.8 & 0.6 & 31 \\
\hline 570 & 42 & 2.6 & 4.1 & 11.7 & 1.2 & 2.5 & 0.6 & 19 \\
\hline 572 & 82 & 2. 1 & 3.2 & 2.5 & 1.0 & 3.2 & 1.1 & 29 \\
\hline 600 & 66 & 2.7 & 3.8 & 4.8 & 1.8 & 3.3 & 1.6 & 15 \\
\hline 606 & 64 & 2.7 & 8.0 & 18.4 & 1.4 & 2.6 & 2.5 & 28 \\
\hline 608 & 81 & 3.6 & 29.1 & 21.0 & 0.7 & 3.5 & 0.6 & 26 \\
\hline 614 & -4. 92 & 4.3 & 13.9 & 73.8 & 1.9 & 4.6 & 1.4 & 26 \\
\hline 615 & 87 & 1.7 & 13.5 & 12.3 & 1.5 & 4.7 & 0.4 & 18 \\
\hline 639 & 64 & 3.2 & 18.5 & 12.8 & 2.5 & 3.8 & 1.3 & 22 \\
\hline 640 & 63 & 2.5 & 25.7 & 7.9 & 1.8 & 3.9 & 0.3 & 22 \\
\hline
\end{tabular}
a/ Calculated from analyses on individual interval samples by the following equation: \(\begin{aligned} & \text { Value of Selected } \\ & \text { Characteristic }\end{aligned}=\Sigma\left[\right.\) (individual interval analysis) \(\left.\left(\frac{\text { interval thickness }}{\text { interburden thickness }}\right)\right]\).
b/ Interburden was not present for the material represented by drill holes 73, 341 , \(352,579,599,604,605\), and 607.
c/ Data not available.
d/ Calculated by USDA correlation from exchangeable sodium percentage:
\[
\mathrm{ESP}=\frac{100(-0.0126+0.01475 \mathrm{SAR})}{1+(-0.0126+0.01475 \mathrm{SAR})}
\]

TABLE 3
Averaged Values of Selected Characteristics for
Overburden Plus Interburden \((a, b)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Drill } \\
& \text { Hole } \\
& \text { No. } \\
& \hline
\end{aligned}
\]} & \multirow[b]{2}{*}{Thickness ft} & \multirow[t]{2}{*}{Soluble Salt Electrical Conductivity mmhos \(/ \mathrm{cm}\)} & \multirow[b]{2}{*}{Sodium Adsorption Ratio} & \multicolumn{3}{|r|}{DTPA Extractable} & \multirow[t]{2}{*}{Boron Water Soluble ppm} & \multirow[b]{2}{*}{\begin{tabular}{l}
Clay \\
Percent
\end{tabular}} \\
\hline & & & & Zinc ppm & Nickel ppm & Lead ppm & & \\
\hline 140 B & 148 & 4.5 & 3.5 & 39.8 & 4.2 & 12.3 & 1. 2 & 25 \\
\hline 186 & 161 & 2.4 & 7.7 & 26.2 & 0.9 & 2.9 & 0.7 & 28 \\
\hline 298 & 61 & 2.3 & 5.7 (d) & 10.7 & (c) & (c) & 2.5 & 28 \\
\hline 324 & 118 & 1.9 & 2.4 & 14.3 & 1.1 & 2. 1 & 0.7 & 27 \\
\hline 391 & 142 & 0.9 & 2.6(d) & 4.8 & (c) & (c) & 1. 2 & (c) \\
\hline 414 & 175 & 6.6 & 6.0 (d) & 5.2 & (c) & (c) & 0.9 & (c) \\
\hline 417 & 98 & 2.0 & 9.7 & 7.7 & 1. 1 & 3.0 & 1.5 & 33 \\
\hline 440 & 139 & 3.4 & 4.2 & (c) & (c) & (c) & (c) & (c) \\
\hline 441 & 119 & 3.3 & 7. 1(d) & 1.6 & 1.9 & 9.7 & 0.9 & 20 \\
\hline 442 & 113 & 2.9 & 5.6(d) & (c) & (c) & (c) & (c) & (c) \\
\hline 446 & 110 & 5.0 & 4.5(d) & 11.4 & (c) & (c) & 3.5 & 30 \\
\hline 448 & 84 & 2.0 & 5.0 (d) & 13.1 & (c) & (c) & 2.5 & 28 \\
\hline 489 & 132 & 3.1 & 7.8(d) & 18.9 & 2.6 & 11.0 & 2.0 & 25 \\
\hline 490 & 132 & 3.6 & 8.3(d) & 36.6 & 2.5 & 6.5 & 1.9 & 24 \\
\hline 507 & 114 & 2.4 & 8. 3(d) & 23.1 & 3.2 & 9.2 & 2.0 & 22 \\
\hline 546 & 125 & 3.5 & 4.5(d) & 16.0 & 3.5 & 8.3 & 1.5 & 27 \\
\hline 547 & 160 & 4.4 & 4.0(d) & 23.3 & 2. 3 & 7.6 & 1. 6 & 21 \\
\hline 554 & 124 & 2.9 & 6. 1 (d) & 40.2 & 2.8 & 6.3 & 3.5 & 26 \\
\hline 562 & 114 & 1.5 & 4.1 & 17.2 & 4.1 & 8.1 & 1.7 & 27 \\
\hline 564 & 103 & 2.4 & 2.9 & 16.9 & 1.4 & 4.0 & 0.1 & 29 \\
\hline 568 & 136 & 1.8 & 2.9 & 18.6 & 1.2 & 2.3 & 0.6 & 24 \\
\hline 570 & 84 & 2.0 & 2.9 & 8.0 & 0.9 & 1. 8 & 0.9 & 21 \\
\hline 572 & 224 & 2.2 & 1.8 & 2.8 & 0.7 & 2.1 & 1.0 & 21 \\
\hline 600 & 134 & 3.9 & 2.9 & 4.9 & 1.6 & 4.5 & 1.3 & 20 \\
\hline 608 & 128 & 4.0 & 19.0 & 19.1 & 0.5 & 3.3 & 0.6 & 26 \\
\hline 614 & 284 & 4. 1 & 6.5 & 37.5 & 1.4 & 2.9 & 1.1 & 30 \\
\hline 615 & 362 & 2.4 & 7.1 & 17.2 & 1. 1 & 1.6 & 2.4 & 22 \\
\hline 639 & 150 & 2. 3 & 12.0 & 10.4 & 1. 8 & 4.5 & 1.7 & 21 \\
\hline 640 & 166 & 2.8 & 11.1 & 16.3 & 1.7 & 3.8 & 1.4 & 23 \\
\hline
\end{tabular}
a/ Calculated from analyses on individual interval samples by the following equation:
\(\begin{array}{l}\text { Value of Selected } \\ \text { Characteristic }\end{array}=\Sigma\left[\right.\) (individual interval analysis) \(\left.\left.\left\lvert\, \frac{\text { interval thickness }}{\text { overburden +interburden thickness }}\right.\right)\right] \cdot\)
b/ Interburden was not present for the material represented by drill holes 73, 341, 352,
\(579,599,604,605\), and 607.
c/ Data not available.
d/ Calculated by USDA correlation from exchangeable sodium percentage:
\[
E S P=\frac{100(-0.0126+0.01475 \mathrm{SAR})}{1+(-0.0126+0.01475 \mathrm{SAR})}
\]

Alkali intervals are commonly found in the interburden, and SAR values range as high as 51 . Areas in which stripped and recontoured interburden may be alkali (based on Table 2) are as follows:

Averaged Interburden
Drill Hole Number Sodium Adsorption Ratio

414
417
489
490
639
640
15. 1
14. 3
13.0
15.0
18.5
25.7

These alkali levels are generally low and do not represent a serious reclamation problem. The interburden material as represented by material from Drill Holes 639 and 640 is moderately alkali and may significantly reduce plant growth and water infiltration. However, application of a deep layer of nonalkali material to spoil surfaces and the use of sodium-tolerant plants in revegetation should produce favorable substrate conditions for revegetation of alkali spoils. If overburden is combined with interburden, the nonalkali overburden will dilute the above-mentioned alkali interburden. The resulting mixture should not be alkali, as suggested in Table 3.

In the areasrepresented by \(38 \%\) of the drill holes, alkali material is found within 10 feet of the Robinson coal seam. These drill holes are:
\begin{tabular}{cc} 
Drill Hole Number & \begin{tabular}{c} 
Sodium Adsorption Ratio of \\
Lowest 10 ft of Interburden
\end{tabular} \\
414 & 18 \\
417 & 16 \\
440 & 14 \\
441 & 19 \\
442 & 14 \\
490 & 19 \\
639 & 23 \\
640 & 27
\end{tabular}

Stripping operations may deposit this material on the top of spoil piles. Recontouring may mix this alkali material with nonalkali material, but spoil surfaces may still be alkali. If this occurs, the previously-mentioned procedure of applying nonalkali material to spoil surfaces and of using sodiumtolerant species in revegetation should mitigate the undesirable effects of alkali subsoils.

\section*{PLANT NUTRIENTS}

In essentially all overburden and interburden intervals in the proposed 20-year mining plan area, the concentration of nitrogen (nitrate plus ammonium) is insufficient to satisfy plant requirements for this macronutrient. The supply of plant-available nitrogen can be brought up to an adequate level by applying nitrogen fertilizer to spoil surfaces.

Overburden and interburden samples from approximately \(90 \%\) of the drill holes in the mining plan area were analyzed for the macronutrients phosphorus, potassium, magnesium, sulfur, and calcium. Except for phosphorus, the concentrations of these macronutrients were generally adequate to ample for plant needs. Phosphorus was deficient in almost all intervals tested and the application of phosphorus fertilizers to spoil surfaces would be beneficial to plant growth.

Plant micronutrients are generally present in concentrations that are adequate to ample for plant requirements. Intervals deficient in micronutrients are limited to the material represented by material from Drill Holes \(417,564,572,639\), and 640. The mixing that occurs during overburden and
interburden stripping and recontouring should combine intervals with low concentrations of micronutrients with intervals containing abundant concentrations of micronutrients. However, overburden spoils from the area represented by material from Drill Hole 572 may be deficient in copper. Plants may be able to obtain sufficient copper from the topsoil that will be applied to spoil surfaces. If the topsoil fails to supply sufficient plant-available copper, supplemental forms of copper can be applied to the topsoil.

Concentrations of DTPA extractable zinc are above the level generally found in surface soils in the following intervals:
\begin{tabular}{|c|c|c|}
\hline Drill Hole Number & Interval, ft & Zinc, ppm \\
\hline 140 B & 20-24 & 110 \\
\hline 140 B & 82-89 & 61 \\
\hline 140 B & 125-131 & 152 \\
\hline 140 B & 140-150 & 135 \\
\hline 140 B & 160-164 & 197 \\
\hline 489 & 151-161 & 52 \\
\hline 490 & 49-45 & 140 \\
\hline 490 & 118-127 & 140 \\
\hline 490 & 148-153 & 164 \\
\hline 507 & 130-134 & 74 \\
\hline 546 & 60-68 & 58 \\
\hline 547 & 36-41 & 60 \\
\hline 547 & 154-159 & 60 \\
\hline 547 & 159-168 & 53 \\
\hline 547 & 178-184 & 66 \\
\hline 554 & 44-51 & 54 \\
\hline 554 & 57-67 & 125 \\
\hline 554 & 120-130 & 73 \\
\hline 554 & 137-141 & 95 \\
\hline 554 & 159-166 & 128 \\
\hline 564 & 101-103 & 61 \\
\hline 564 & 136-143 & 58 \\
\hline 639 & 40-44 & 90 \\
\hline 640 & 61-68 & 200 \\
\hline
\end{tabular}

These zinc concentrations are not thought to be phytotoxic. High zinc concentrations can restrict plant uptake of iron, but the abundance of iron in overburden and interburden intervals should preclude this event. As previously mentioned, if plants absorb and accumulate relatively large amounts of zinc, this zincenriched vegetation may be beneficial to animal growth. Based on the data presented in Tables 1 and 2, high zinc concentrations of spoils appear likely in only three cases. Interburden spoils represented by material from Drill Holes \(140 \mathrm{~B}, 490\), and 554 may be high in zinc, but such spoils should not create reclamation problems. If overburden and interburden are combined, the intervals high in zinc will be greatly diluted and the resulting spoils should have zinc concentrations within the range generally found for surface soils (Table 3).

Except for three interburden intervals from Drill Hole 446, the boron concentration of overburden and of interburden intervals in the proposed 20 year mining plan area is less than 6.0 ppm and appears to be within the range considered nontoxic for many plant species used in revegetation. In the material from Drill Hole 446, interburden intervals from 91 to 122 ft have boron concentrations ranging from 6.4 to 11.7 ppm . Westmoreland Resources investigated the procedures used in drilling this hole and reported that when these interburden intervals were bored, water was obtained for the drilling mud from a source which may have contained considerable boron. If contamination did not occur in this case, any problems due to high boron content could be solved by deep topsoiling of spoil surfaces and the use of boron-tolerant plants.

\section*{TRACE ELEMENTS}

The concentrations of total mercury, available selenium, and DTPA extractable cadmium, lead, and nickel appear to be within the ranges reported in the literature and viewed as normal and nontoxic for surface soils. Lead is the only trace element found in the proposed 20 -year mining plan area which approaches a level thought to be outside the range of normal soils. The 54-61 ft interval as represented by material from Drill Hole 489 had a DTPA extractable lead concentration of 41 ppm , and this represented the highest lead concentration on the proposed mining plan area. This lead concentration is within the range cited in the literature and is considered nontoxic to plants and to animals consuming plants growing on such soils. Spoils that may have lead concentrations greater than 10 ppm (Tables 1 and 2) are likely to occur from material represented by the following drill holes:
\begin{tabular}{lcc} 
& \multicolumn{2}{c}{\begin{tabular}{c} 
Average Concentration of \\
Drill Hole Number \\
DTPA Extractable Lead, ppm
\end{tabular}} \\
140B(Overburden) & 10.5 \\
l40B(Interburden) & 13.2 \\
44 1 (Interburden) & 12.6 \\
489 (Interburden) & 14.4
\end{tabular}

While these lead concentrations are higher than average values commonly cited for surface soils, they are still within the range considered normal for surface soils. Spoils from the area represented by the above-mentioned drill holes should create no reclamation problems either to plants or to grazing animals.

In addition to the previously mentioned trace elements, total lead, total nickel, total cadmium, total fluoride, and total arsenic were quantitatively
determined for some of the overburden and interburden found in the proposed mining area. Semiquantitative spectrographic scans were made for many of the interval samples from the proposed mining area. Trace element concentrations determined by the above methods were within the ranges found in the literature and considered normal and nontoxic for surface soils. PHYSICAL CHARACTERISTICS

Water-holding capacity was determined for all but five of the drill holes located in the proposed mining area. As previously mentioned, these data indicate that, with only rare exceptions, overburden and interburden materials have a retention capacity for water which should not restrict plant growth. Spoils generated from coal removal in the proposed 20 -year mining plan area should be of suitable texture for use as a subsoil. The overburden and interburden as represented by material from most drill holes have occasional intervals in which the clay content is slightly higher than \(40 \%\) The overburden as represented by material from Drill Holes 417 and 564 has several intervals in which the sand content is higher than \(80 \%\). The mixing that occurs during stripping and recontouring operations should disperse high-clay and high-sand intervals. It is unlikely that subsoil texture will have a significant influence on revegetation or on other reclamation activities.

\section*{PLANT-GROWTH TESTING}

Plant-growth testing was conducted on all intervals as represented by the drill holes found in the proposed mining plan area except for that material as represented by material from Drill Holes 562, 572, 600, 639, and 640. As
discussed in the overview of Tract 3, plant-growth testing demonstrated, with only a few exceptions, that the intervals tested were capable of supporting normal plant growth and seed-head development under greenhouse conditions and when fertilizers were applied to all interval samples. These greenhouse tests suggest that plants growing on revegetated areas will be able to complete their life cycle and that their growth will not be restricted by subsoil traits.

\section*{REFERENCES}
1. Buckman, H. O., and Brady, N. C., 1969, The nature and properties of soils: New York, Macmillan Co., 7th Edition, 653 p.
2. Richards, L.A. (Editor), 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. of Agriculture, Agriculture Handbook No. 60. 160 p.
3. Underwood, E. J., 1971, Trace elements in human and animal nutrition: New York, Academic Press, 3rd Edition, p. 240.
4. Eaton, F. M., 1944, Deficiency, toxicity, and accumulation of boron in plants: J. Agr. Research, v. 69, p. 237-277.
5. National Academy of Sciences, 1974, The relation of selected trace elements to health and disease, Volume I of Geochemistry and the environment: Washington, D. C., National Academy of Sciences, 113 p.
6. Lagerwerff, J. V., 1971, Uptake of cadmium, lead, and zinc by from soil and air: Soil Sci., v. 111, p. 129-133.
7. Vanselow, A. P., 1966, Nickel, in Chapman, H. D., ed., Diagnostic criteria for plants and soils: Univ. of California, Division of Ag. Sci., p. 302-309.
8. Colorado School of Mines Research Institute, 1975, Study of overburden and interburden characteristics, Drill Holes 546 and 547, Big Horn County, Montana: (prepared for Westmoreland Resources).
9. Shacklette, H. T., Boerngen, J. B., and Turner, R. L., 1971 , Mercury in the environment--surficial materials of the conterminous United States: U.S. Geological Survey Circ., 5 p.
10. Beath, O.A., 1959, Selenium-bearing plants: Univ. of Wyo. Ag. Exp. Sta. Bull. 360, 12 p.
11. Brewer, R.F., 1966, Lead, in Chapman, H. D., ed., Diagnostic criteria for plants and soils: Univ. of Calif., Division of Ag. Sci., p. 213-217.
12. Baumhardt, G. R., and Welch, L. F., 1972, Lead uptake and corn growth with soil-applied lead: J. Environ. Quality, v. 1, p. 92-94.
13. Hammond, P. B., and Aronson, A. L., 1964, Lead poisoning in cattle and horses in the vicinity of a smelter: Ann. New York, Acad. Sci., v. 3, p. 595-611.
14. Pearson, G. A., and Bernstein, L., 1958, Wheat, barley, oats, rice, tall fescue, and tall wheatgrass, pt. II of Influence of exchangeable sodium on yield and chemical composition of plants: Soil Sci., v. 86, p. 254-261.
15. Sindelar, B. W., 1973, Surface mined land reclamation research in Montana: Bozeman, Montana State University, Montana Agricultural Experiment Station, Research Report 40, 122 p.
16. Pearson, G. A., 1960, Tolerance of crops to exchangeable sodium: U. S. Dept. Agriculture, Agr. Inf. Bull. 216, 4 p.
17. Nishimura, J. Y., 1974, Soils and soil problems at high altitudes, in Berg, W.A., Brown, J.A., and Cuany, R. L., eds., Revegetation of high-altitude disturbed lands: Fort Collins, Colorado State University Environmental Resources Center, Inf. Ser. 10.
18. Bernstein, L., 1965, Salt tolerance of plants: Agr. Inf. Bull. 283, 23 p.
19. Swaine, D. J., and Mitchell, R. L., 1960, Trace element distribution in soil profiles: J. Soil Sci., v. 11, p. 348-367.
20. Patel, C. A., and Mehta, B. V., 1970, Selenium status of soils and common fodders in Gujarat: Indian J. Agric. Sci., v. 40, p. 389-399.

\title{
Colorado School of Mines Research Institute
}

\author{
Mr. David Simpson \\ Environmental Administrator \\ Westmoreland Resources \\ P. O. Box 449 \\ Hardin, Montana 59034
}

\section*{Dear Dave:}

This letter is to report the results of analyses for exchangeable sodium percentage and the results of clay mineralogy studies on 10 selected burden interval samples from drill hole 640. These intervals included one immediately above the upper coal seam, the eight between the upper and lower coal seam, and one immediately below the lower coal seam.

\section*{Exchangeable Sodium Percentage Determinations}

The results of chemical analyses used for calculation of exchangeable sodium percentage, the ESP values, and for comparison the previously determined SAR values for these interval samples are given in the attached Table 1. A comparison of the ESP values with the SAR values for these samples again indicates that ESP values are significantly less than the parallel SAR values for these strata. The SAR ranged from 1.3 times the ESP value to 7.6 times.

\section*{Clay Mineralogy}

The results of the clay mine ralogy study are given in the attached Tables 2, 3, and 4.

Kaolinite and montmorillonite were the only clay minerals found in these intervals by x-ray diffraction methods. However, an amorphous clay mineral phase not detectable by x-ray diffraction is probably present in several of the intervals. This indication is based on comparisons of clay mineral concentrations as estimated from the \(x\)-ray diffraction determinations with the corresponding cation exchange capacity values as given in Table l, and taking into consideration the cation exchange capacity ranges reported in the literature for specific clay minerals. It is thought
that this amorphous phase is an alteration product derived from crystalline montmorillonite which retains the capacity for cation exchange, but which does not contribute to swelling with addition of moisture. The intervals with the most definite indication of this amorphous phase are as follows: \(104-108,148-156,166-174\), and 231-238 ft. However, it may be present to some extent in the others as well.

You may note that the overall concentration of clay minerals as indicated by x-ray diffraction is for some intervals less, and for some intervals more than the percentage of minus 2 micron particles as determined by the hydrometer method. This appears to be due to combinations of factors including the probable presence of an amorphous clay mineral phase, the presence of nonclay minerals with particle sizes of less than 2 microns, and the presence of clay minerals with indicated particle sizes greater than 2 microns. The later two factors are probably the result of the expected less than complete separations obtained from the water suspensions of the sample materials.

A comparison of the data on estimated clay mineral concentrations with the corresponding exchangeable sodium percentages shows a somewhat rough trend of increasing ESP with increasing clay minerals concentration but the correlation would not be good enough to make any firm predictions of the level of one versus the other.

If you would like to discuss any aspects of this work, please give us a call.

Best regards,


Lawrence Tisdel
Project Manager
Environmental Technology Division

/haj
Attach.
cc: S. R. Olsen

\section*{TABLE 1}

Determination of Exchangeable Sodium Percentage for Selected Burden Strata Intervals of Drill Hole 640


TABLE 2

\section*{Particle Size Analysis by Hydrometer Method}

Drill Hole 640
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Sample
\(\qquad\)} & \multicolumn{2}{|l|}{Interval, ft} & \multicolumn{2}{|r|}{Particle-Size Analysis, Wt. \%} & \multirow[b]{2}{*}{Location} \\
\hline & From & To & +0.43mm & \(\underline{-0.043 \mathrm{~mm}+0.002 \mathrm{~mm}-0.002 \mathrm{~mm}}\) & \\
\hline 369 & 104 & 108 & 9.5 & 42.5 48.0 & above upper cos seam \\
\hline 370 & 148 & 156 & 14.0 & 53.0 33.0 & between upper and lower coal seams \\
\hline 371 & 156 & 166 & 70.0 & 17.512 .5 & 11 \\
\hline 372 & 166 & 174 & 30.5 & 22.5 8.0 & " \\
\hline 373 & 174 & 184 & 40.0 & \(40.0 \quad 20.0\) & " \\
\hline 374 & 184 & 194 & 22.0 & 52.5 25.5 & " \\
\hline 375 & 194 & 201 & 25. 0 & 52.5 22.5 & " \\
\hline 376 & 201 & 206 & 60.0 & 27.0 13.0 & " \\
\hline 377 & 206 & 211 & 80.0 & 33.0 47.0 & immediately above lower coal seam \\
\hline 378 & 231 & 238 & 25.0 & 45.0 30.0 & below lower coal seam \\
\hline
\end{tabular}

\section*{TABLE 3}

Mineral Identification and Semiquantitative Concentration Estimates for \(-0.043 \mathrm{~mm}+0.002 \mathrm{~mm}\) and -0.002 mm Fractions by X-Ray Diffraction \({ }^{(1)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Sample No. \(\rightarrow\)} & \multicolumn{10}{|c|}{\(-43 \mu+2 \mu\) Fraction, Wt. \%} \\
\hline & 369 & 370 & 371 & \(\underline{372}\) & \(\underline{373}\) & \(\underline{374}\) & 375 & 376 & 377 & 378 \\
\hline Quartz & 50 & 55 & 15 & 15 & 20 & 45 & 30 & 15 & 40 & 45 \\
\hline Plagioclase & -. (2) & 3 & 2 & 2 & 5 & 5 & 5 & 5 & -- & -- \\
\hline k Feldspar & 5 & 5 & 2 & 2 & -- & 5 & 5 & 5 & 13 & 5 \\
\hline Calcite & - - & -- & -- & 2 & 5 & 5 & 5 & 5 & tr & -- \\
\hline Dolomite & 5 & 3 & 4 & 4 & 10 & 20 & 15 & 5 & 2 & 2 \\
\hline Sericite & 20 & 17 & 12 & 15 & 15 & 10 & 15 & 10 & 15 & 24 \\
\hline Kaolinite & 20 & 17 & 65 & 60 & 45 & 10 & 25 & 55 & 30 & 24 \\
\hline Montmorillonite & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline & \multicolumn{10}{|c|}{\(-2 u\) Fraction, Wt. \%} \\
\hline Quartz & 5 & 5 & 5 & -- & 1 & 2 & 2 & 3 & 2 & 5 \\
\hline Sericite & 40 & 30 & 25 & 20 & 9 & 3 & 3 & 20 & 10 & 25 \\
\hline Kaolinite & 55 & 65 & 70 & 80 & 60 & 15 & 10 & 77 & 30 & 70 \\
\hline Montmorillonite \({ }^{(3)}\) & -- & -- & -- & -- & 30 & 80 & 85 & -- & 58 & -- \\
\hline
\end{tabular}

1/ A \(2-65^{\circ} \mathrm{Cu}\) two theta scan was run on a random mount of the \(-43 \mu+2 \mu\) fraction of each sample. An oriented mount was prepared from each of the two fractions of each sample and a diffractometer scan run from \(2-30^{\circ} \mathrm{Cu}\) two theta; these mounts then being glycollated and scanned again to enhance definition of clay minerals.

2/ -- mineral not detected
3/ some montmorillonite may be present which has been altered by chemical action to an amorphous form not detectable by x-ray diffraction.

TABLE 4

Semi-Quantitative Estimates of Clay Mineral Concentrations in Selected Intervals of Drill Hole \(640^{\text {(1) }}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Sample No.} & \multicolumn{2}{|l|}{Interval, ft} & \multirow[b]{2}{*}{Kaolinite, \%} & \multirow[b]{2}{*}{Montmorillonite, \%} & \multirow[b]{2}{*}{Other, \%} \\
\hline & From & To & & & \\
\hline 369 & 104 & 108 & 35 & ND \({ }^{(2)}\) & ND \\
\hline 370 & 148 & 156 & 30 & ND & ND \\
\hline 371 & 156 & 166 & 20 & ND & ND \\
\hline 372 & 166 & 174 & 20 & ND & ND \\
\hline 373 & 174 & 184 & 30 & 6 & ND \\
\hline 374 & 184 & 194 & 9 & 20 & ND \\
\hline 375 & 194 & 201 & 15 & 19 & ND \\
\hline 376 & 201 & 206 & 25 & ND & ND \\
\hline 377 & 206 & 211 & 24 & 27 & ND \\
\hline 378 & 231 & 238 & 32 & ND & ND \\
\hline
\end{tabular}

1/ Based on data shown in Tables 2 and 3.
2/ ND = none detected by \(x\)-ray diffraction.

\section*{Colorado School of Mines Research Institute}

Mr. David W. Simpson
Environmental Administrator
Westmoreland Resources
P. O. Box 449

Hardin, Montana 59034

\section*{Dear Dave:}

The purpose of this letter is to present our findings on possible zinc contamination by a grease reported to be used in drilling operations. A sample of this grease was sent to CSMRI by Westmoreland Resources.

\section*{METHODS}

The minus 9 mesh fraction of the \(15-25 \mathrm{ft}\) interval sample from Drill Hole 639 and the 83-86 ft interval sample from Drill Hole 640 were used as test materials. Both intervals had chemical and physical characteristics considered typical for overburden material. Two levels of grease contamination were used: \(1 \%\) grease to \(99 \%\) interval sample (by weight) and \(5 \%\) grease to \(95 \%\) interval sample. The grease and interval sample were carefully weighed, mixed, and ground to a minus 150 mesh. DTPA extractable zinc was determined using the standard method cited in our formal reports.

\section*{RESULTS}

Chemical analysis of the overburden samples gave the following results:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Drill Hole
No.} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Interval, Ft}} & \multirow[b]{3}{*}{pH} & \multicolumn{3}{|l|}{DTPA Extractable Zinc, ppm} \\
\hline & & & & 0\% & \(1 \%\) & 5\% \\
\hline & From & To & & grease & grease & grease \\
\hline 639 & 15 & 25 & 8.2 & \(<1.0\) & 1180 & 1252 \\
\hline 640 & 83 & 86 & 7.2 & 20.0 & 1520 & 17~0 \\
\hline
\end{tabular}

\section*{DISCUSSION}

Drilling grease could be a significant source of zinc contamination of interval samples. The DTPA extractable zinc values obtained at the \(1 \%\) grease level were considerably higher than those values found in the interval samples previously tested by CSMRI. The amount of grease needed to give an extractable zinc concentration of 200, a value sometimes encountered in interval testing but rarely exceeded, would be quite small. Based on the experimental data, for al foot section of 2 inch diameter core which weighs about 1500 g , only 2.2 g of grease would be needed to give a zinc value of 200 for this foot of core sample.

Increasing the amount of grease in the sample material by a factor of 5 increased the amount of DTPA extractable zinc by only \(12 \%\) The DTPA method was developed to determine the amount of plant-available zinc in soils. The average DTPA extractable zinc in soils is probably in the range of 5 to 15 ppm . Anomalous results may occur when materials with a very high concentration of zinc are analyzed by this method, possibly because the extracting solution may become saturated with zinc.

The pH value may influence the amount of extractable zinc from contaninated core samples. Slightly more zinc was extracted from the sample with a pH value of 7.2 than from the sample with a pH of 8. 2. Research has shown that most heavy metals, including zinc, are more available at lower pH values than at higher pH values.

\section*{CONCLUSIONS}

Based on the experimental data, the drilling grease could be a source of zinc contamination in overburden and interburden samples. Only small amounts of grease are necessary to give unusually high values of DTPA extractable zinc.

If you would like to discuss any aspects of this report, please feel free to contact us.

Sincerely,


Richard C. Barth
Senior Research Ecologist
Environmental Technology Division

APPROVED:


Lawrence C. Tisdel
Project Manager
Environmental Technology Division

\section*{LIST OF PLANT SPECIES OBSERVED ON THE PROJECT AREA \({ }^{a}\)}
\begin{tabular}{|c|c|}
\hline & Scientific Name \\
\hline \multirow[t]{8}{*}{TREES:} & Acer negundo \\
\hline & Fraxinus pennsylvanica \\
\hline & Juniperus horizontalis \\
\hline & Juniperus scopulorum \\
\hline & Pinus ponderosa \\
\hline & Populus deltoides \\
\hline & Salix sp. \\
\hline & Ulmus americana \\
\hline \multirow[t]{21}{*}{SHRUBS :} & Artemisia biennis \\
\hline & Artemisia cana \\
\hline & Artemisia tridentata \\
\hline & Atriplex confertifolia \\
\hline & Atriplex muttallii \\
\hline & Chrysothammus nauseosus \\
\hline & Crataegus succulenta \\
\hline & Eurotia lanata \\
\hline & Gutierrezia sarothrae \\
\hline & Oenothera serrulata \\
\hline & Prunus americana \\
\hline & Prunus virginiana \\
\hline & Rhus trilobata \\
\hline & Ribes aureum \\
\hline & Ribes cereum \\
\hline & Ribes setosum \\
\hline & Rosa arkansana \\
\hline & Rosa sp. \\
\hline & Shepherdia argentea \\
\hline & Symphoricarpos occidentalis \\
\hline & Symphoricarpos sp. \\
\hline \multirow[t]{5}{*}{GRASSES \& GRASS-LIKE PLANTS:} & Agropyron cristatum \\
\hline & Agropyron smithii \\
\hline & Agropyron spicatum \\
\hline & Agropyron trachycaulum \\
\hline & Andropogon gerardi \\
\hline
\end{tabular}

\section*{Common Name}

Boxelder
Green ash
Creeping juniper
Rocky Mountain juniper
Ponderosa pine
Plains cottonwood
Willow
American elm
Biennial sagewort
Silver sagebrush
Big sagebrush
Shadscale saltbush
Nuttall saltbush
Rubber rabbitbrush
Fleshy hawthorn
Winterfat
Snake weed
Shrubby evening primrose
Wild plum
Chokecherry
Skunkbush sumac
Golden currant
Squaw currant
Redshoot gooseberry
Prairie rose
Rose
Buffaloberry
Western snowberry
Snowberry
Crested wheatgrass
Western wheatgrass
Bluebunch wheatgrass
Slender wheatgrass
Big blucstem

\footnotetext{
\({ }^{\text {a }}\) List of species obtained from observation of plants on Tract II and lists published by Ecological Consulting Service (1974a).
}

GRASSES \& Andropogon scoparius
GRASS-LIKE Aristida longiscta
PLANTS: Bouteloua curtipendula
(Cont'd) Bouteloua gracilis
Bromus inermis
Bromus japonicus
Bromus tectorum
Calamovilfa longifolia
Carex filifolia
Carex sp .
Carex viridula
Distichlis stricta
Elymus canadensis
Festuca idahoensis
Festuca octoflora
Hordeum distichon
Hordeum jubatum
Koeleria cristata
Muhlenbergia cuspidata
Oryzopsis hymenoices
Oryzopsis micrantha
Panicum virgatum
phalaris arundinacea
Poa ampla
Poa canbyi
Poa pratensis
Poa scabrella
Poa secunda
Poa sp.
Scirnus olneyi
Spartina gracilis
Sporobolus airoides
Stipa coinata
Stipa viridula
Triticum aestivum
Typha latifolia
FORBS: Achillea millefolium
Agoseris Elanca
Alisum plantago-aquatica
Allium Lextile
Alyssum alyssoides
Amaranthus albus
Amaranthus retroflexus
Ambrosia artomisifolia
Androsiae septentrional is

Little bluestem
Red three-awn
Side-oats grama
Blue grama
Smooth brome
Japanese chess
Downy chess brome
Prairic sandreed
Needleleaf sedge
Sedge
Green sedge
Inland saltgrass
Canada wild-rye
Idaho fescue
Six-week fescue
Barley
Foxtail barley
Junegrass
Plains muhly
Jndian ricegrass
Littleseed ricegrass
Switchgrass
Reed canary grass
Big bluegrass
Canby bluegrass
Kentucky bluegrass
Pine bluegrass
Sandberg bluegrass
Bluegrass
Rush
Alkali cordgrass
Alkali dropseed
Needle-and-thread
Green nee!legrass
W.nter wheat

Common cattail

\section*{Yarrow}

Pale agoseris
American water-plantain
Wild onion
Pale alyssum
White pigwed
Redroot pigweed
Low ragweed
Northern androsace

Antennaria parvifolia
Antennaria rosea
Apocynum androsaemifolium
Arabis holboelii
Arenaria hookeri
Argemone intermedia
Artemisia dracunculus
Artemisia frigida
Artemisia Iudoviciana
Ascelepias speciosa
Ascelepias verticillata
Asclepias viridiflora
Aster canescens
Aster falcatus
Aster occidentalis
Aster sp.
Astragalus bisulcatus
Astragalus canadensis
Astragalus cicer
Astragalus dasyglottis
Astragalus gracilis
Astragalus missouriensis
Astragalus purshii
Astragalus spatulatus
Astragalus striatus
Astrayalus sp.
Bahia oppositifolia Balsamorhiza sagittata
Besseya wyomingensis
Brodiaea grandiflora
Calochortus nuttallii
Canelina microcarpa
Campanula rotundifolia
Capsella bursa-pastoris
Carduus nutans
Castilleja sessiliflora
Cerastium arvense
Chaenactis douglasii
Chenopodium album
Chenopodium leptophyllum
Chorispora tenella
Chrysopsis villosa
Cirsium undulatum
Collinsia parviflora
Collomia linearis
Comandra umbellata
Convolvulus arvensis
Coiydylanthus ramosus

Small-leaf pussytoes
Rose pussytoes
Spreading dogbane
Holboell rockcress
Hooker sandwort
Prickly poppy
False-tarragon sagewort
Fringed sagewort
Cudweed sagewort
Showy milkweed
Green milkwerd
Hoary aster
Western aster
Aster
Two-grooved milkvetch Canada milkvetch
Cicer milkvetch
Purple milkvetch
Missouri milkvetch Pursh loco
Tufted milkvetch
Prairie milkvetch Milkvetch
Opposite-leaf bahia Arrowleaf balsamroot Kittentail

Mariposa lily
Littlepod false-flax foundleaf harebel.1
Shepherd's purse fusk tinistle
Indian paintbrush Field chickweed Douglas dusty maiden Lamb's quarter Narrowleaf goosefoot

Golden-aster
Wavyleaf thistle
Blue-eyed Mary
Narrow-leaved collomia
Pale bastard toadflax Field bindweed Bird's beak
\begin{tabular}{|c|c|}
\hline Crepis accuminata & Tapertip hawksbeard \\
\hline Cryptantha bradburiana & Miner's candle \\
\hline Delphinium bicolor & Low larkspur \\
\hline Descurainia pinnata & Pinnate tansy mustard \\
\hline Draba nemorosa & Wooris draba \\
\hline Draba sp. & Draba \\
\hline Echinaceae pallida & Purple coneflower \\
\hline Epilobium paniculatum & Panicled willow-herb \\
\hline Erigeron divergens & Spreading fleabane \\
\hline Erigeron pumilus & \\
\hline Erigeron strigosus & \\
\hline Eriogonum annuum & Annual eriogonum \\
\hline Eriogonum multiceps & \\
\hline Erodium cicutarium & Alfilaria \\
\hline Erysimum asperum & Plains wallflower \\
\hline Euphorbia robusta & Robust spurge \\
\hline Evoloulus nuttallianus & \\
\hline Fragaria virginiana & Virginia strawberry \\
\hline Fritillaria pudica & Yellow bell \\
\hline Galium boreale & Northern bedstraw \\
\hline Gaura coccinea & Scarlet gaura \\
\hline Gaura parviflora & Small-flowered gaura \\
\hline Geum triflorum & Prairie smoke \\
\hline Gilia congesta & Densely flowered gilia \\
\hline Glycyrrhiza lepidota & Wild licorice \\
\hline Grindelia squarrosa & Curlcap gumweed \\
\hline Hackelia floribunda & Many flowered stickseed \\
\hline Haplopappus lanceolatus & Lance goldenweed \\
\hline Haplopappus nuttallii & Nuttall goldenweed \\
\hline Haplopappus spinulosus & Spiny goldenweed \\
\hline Hedeoma drummondii & Drumond false pennyroyal \\
\hline Helianthus annuus & Common sunflower \\
\hline Helianthus petiolaris & Prairie sunflower \\
\hline Hesperis motronal is & Rocket \\
\hline Hymenopappus filifolius & Narrowleaf hymenopappus \\
\hline Kochia scoparia & Kochia, summer cypress \\
\hline Lactuca pulchella & Blue lettuce \\
\hline Lactuca serriola & \\
\hline Lappula echinata & European stick tight \\
\hline Lappula redowskii & Western stick tight \\
\hline Lepidium densiflorum & Prairie pepperweed \\
\hline Lepidium perfoliatum & Clasping pepperweed \\
\hline Lesquerella ludoviciana & Silver bladderpod \\
\hline Leucocrinum montanum & Mountain star lily \\
\hline Liatris punctata & Dotted blazingstar \\
\hline Linanthus septentrional is & \\
\hline Linum perenne & Blue flax \\
\hline Linum regidum & Stiffstem flax \\
\hline
\end{tabular}

Lithophragma parviflora
Lithospermum arvense
Lithospermum incisum
Lomatium sp .
Lupinus lepidus
Lygodesmia juncea
Mamillaria vivipara
Marrubium vulgare
Medicago lupulina
Medicago sativa
Melilotus alba
Melilotus officinalis
Mentha arvensis
Mentzelia decapetala
Mertensia lanceolata
Microseris cuspidata
Microseris nutans
Monarda fistulosa
Oenothera diennis
Oenothera caespitosa
Oenothera nuttallii
Opuntia polycantha
oxytropis lambertii
0xytropis sericea
Pedicularis apysoniana
Penstemon albidus
Penstemon eriantherus
penstemon nitidus
Petolostemon candidum
Petalostemon purpureum
Phacelia hastata
Phacelia linearis
Phlox hoodii
Phlox kelseyi
Physaria didymocarpa
Plantago purshii
Potentilla gracilis
Potentilla sp .
Psoralea argophylla
Psoralea esculenta
Psoralea tonuiflora
Ranunculus glaverriumus
Ratibida columnifera
Rhus radicans
Rumex crispus
Sagittaria cuneata
Salsola kuil

Small flower woodlandstar
Field gromwell
Narrowleaf gromwell
Pacific lupine
Rush skeleton weed
Pink pincushion cactus
Horehound
Black medic
Alfalfa
White sweetclover
Yellow sweetclover
Field mint
Ten-petal blazing star
Lanceleaf bluebell

Nodding microseris
Horse inint
Rydberg's evening primrose
Tufted evening primrose
Nuttall evening primrose
Plains pricklypear
Pruple pointloco
White pointloco
White penstemon
Fuzzytongue pensetmon
Waxleaf penstemon
White prairie-clover
Purple prairie-clover Silverleaf phacelia
Linear-leaf placelia
Hoods phlox
Kelsey phlox
Common twinpod
Woolly plantain
Northwest cinquefoil
Silverleaf scurfpea
Breadroot scurfpea
Slimflower scurfpea
Sigebrush buttercup
Prairie coneflower
Poison ivy
Curl dock
Arum-leaved arrowleaf
Russian thistle

Senecio canus
Senecio integerrimus
Sisymbrium altissimum
Sisymbrium loeselii
Smilacina stellata
Solidago canadensis
Solidago missouriensis
Solidago mollis
Solidago sp.
Sphaeralcea coccinea
Taraxacun officinale
Thermopsis rhombifolia
Thalaspi arvense
Townsendia hookeri
Trandescantia occidentalis
Trasopogon dubius
Urtica dioica
Vaccaria segetalis
Verbascum thapsus
Verbena bracteata
Vicia americana
Viola nuttallii
Yucca glauca
Zigadenus venenosus

Woolly groundsel
Lambstongue groundsel
Tumblemustard
Smallpod tumblemustard
Starry false Solomon's seal
Canada goldenrod
Goldenrod
Scarlet globemallow
Common dandelion
Prairie thermopsis
Fanweed
Spiderwort
Common salsify
Stinging nettle
Pink Cockle
Flannel mullein
Bracted verbena
American vetch
Nuttall violet
Soapweed
Meadow death camas
*Price per ton baled N/A
Source: Montana Agricultural Statistics Vol. XV. County Statistics 1972 and 1973 Montana Department of Agriculture and Statistical
Reporting Service - USDA December 1974.

\(\sim\)
Table

\section*{APPENDIX E}

\section*{Data on Fish and Wildlife}

TABLES
Page
1. Species of mammals observed or potentiallyoccurring in the vicinity of the Sarpy Creekmine, Big Horn County, MontanaE-3
2. Brief listing of some habitats and food re-quirements of mammals that occur or may occuron the Westmoreland leaseE-7
3. Herd composition of Tract II and Tract III with comparison of other studies and other areas ..... E-14
4. Percent of mule deer observation by habitattype for the period January-December 1975, onTract IIIE-15
5. Percent of mule deer observed using each habitat type on Tract III by month for period January to June, 1975 ..... E-16
6. Percent of mule deer observed using each habitattype on Tract III by month for the period July
7. Partial listing of foods of the mule deer, white-tail deer, and pronghorn............................ E-18
8. Habitat type used by antelope on Tract III fromJanuary to December 1975.E-19
9. Species of birds observed or potentially occur- ring in the vicinity of the Sarpy Creek mine, Big Horn County, Montana ..... E-20
10. List of bird families, sub-families, and species that occur or may occur on Westmoreland Re- sources Sarpy Creek lease with notes on habitat and food habits ..... E-31
11. Summary of data collected by researchers on the sharp-tail grouse of Tract III. ..... E-45
12. Summary of ring-necked pheasant data from Sarpy Creek, Big Horn and Treasure Counties, Montana.... E-46
13. Summary of data collected on the Merriam's Turkey on Sarpy Creek, Big Horn and Treasure Counties, Montana ..... E-47
14. Summary of data of bird species collected from Sarpy Creek, Big Horn County, Montana ..... E-48
15. Species of amphibians and reptiles observed or possibly occurring on the project area near Sarpy Creek, Big Horn County, Montana. ..... E-49
16. Notes on habitat and food habits of amphibians and reptiles that occur or may occur on or near Westmoreland Resources Sarpy Creek lease ..... E-51
17. Bottom composition (percentage) of Sarpy Creek, Big Horn, and Treasure Counties, Montana ..... E-55
18. Aquatic invertebrates collected on Sarpy Creek, Treasure and Big Horn Counties, Montana ..... E-56
19. Fish species ..... E-57
20. List of the species of fish that occur in Sarpy Creek with notes on habitat and food require- ments ..... E-5 8

SPECIES OF MAMMALS OBSERVED OR POTENTIALLY OCCURRING IN THE VICINITY OF THE SARPY CREEK MINE, BIG HORN COUNTY, MONTANA

Order Insectivora - Insectivores

Family Soricidae - Shrews
\begin{tabular}{ll} 
Sorex \(\frac{\text { cinereus }}{}\) Sorex & \begin{tabular}{l} 
Masked Shrew \\
merriami
\end{tabular}
\end{tabular}

Order Chiroptera - Bats
Family Vespertilionidae - Vespertilionid Bats

\author{
Myotis lucifugus \\ Myotis leibii \\ Lasionycteris noctivagans \\ Eptesicus fuscus \\ a Euderma maculatum \\ aplecotus townsendii
}

Order Lagomorpha - Lagomorphs
Family Leporidae Hares and Rabbits
\(a b\) Sylvilagus audubonii
Lepus townsendii

Order Rodentia - Rodents
Family Sciuridae - Squirrels
\[
\begin{aligned}
& \text { beutamias minimus } \\
& \text { bspermophilus tridecemlineatus } \\
& \text { Spermophilus richardsonii }
\end{aligned}
\]

> Little Brown Myotis
> Small-footed Myotis
> Silver-haired Bat
> Big Brown Bat
> Spotted Bat
> Townsend's Big-eared Bat

Desert Cottontail
White-tailed Jack Rabbit

Least Chipmunk
Thirteen-lined Ground Squirrel
Richardson's Ground Squirrel

\footnotetext{
\({ }^{\text {a Species }}\) of special interest or concern (Flath, 1975).
bobserved on Project area in 1975.
}

Family Sciuridae - Squirrels (continued)
\({ }^{\mathrm{ab}}\) Cynomys Iudovicianus
\(b\) Tamiasciurus hudsonicus
Family Geomyidae - Pocket Gophers

\section*{\({ }^{\text {b Thomomys }}\) talpoides \\ Northern Pocket Gopher}

Family Heteromyidae - Heteromyids
\(\mathrm{b}_{\text {Perognathus }}\) fasciatus Dipodomys ordii

Black-tailed Prairie Dog Red Squirrel

Olive-backed Pocket Mouse Ord's Kangaroo Rat

Family Cricetidae - New World Rats and Mice
\(\mathrm{b}_{\text {Reithrodontomys megalotis }}\)
peromyscus maniculatus Peromyscus leucopus
b Onychomys leucogaster Neotoma cinerea Microtus pennsylvanicus Microtus longicaudus
bMicrotus ochrogaster
a Lagurus curtatus Ondatra zibethicus

Western Harvest Mouse Deer Mouse White-footed Mouse Northern Grasshopper Mouse Bushy-tailed Woodrat Meadow Vole
Long-tailed Vole
Prairie Vole
Sagebrush Vole Muskrat

Family Zapodidae - Jumping Mice

> aZapus hudsonius

Meadow Jumping Mouse
Family Erethizontidae - New World Porcupines
\(\mathrm{b}_{\text {Erethizon dorsatum }} \quad\) Porcupine

Order Carnivora - Carnivores
Family Canidae - Canids
\({ }^{\mathrm{b}}\) Canis latrans \(\quad\) Coyote
Vulpes vulpes
Red Fox
avulpes velox Swift Fox
Family Procyonidae - Procyonids
bprocyon lotor
Raccoon

Family Mustelidae - Mustelids
\(\frac{\text { Mustela }}{\text { Mustela }} \frac{\text { erminea }}{\text { frenata }}\)
\(\frac{\text { Mustela }}{\text { nigripes }}\)
Mustela \(\frac{\text { vison }}{\text { Taxidea }}\) taxus
Mephitis mephitis

Family Felidae - Cats
\({ }^{b_{\text {Lynx }}}\) rufus.

Order Artiodactyla - Even-toed Ungulates
Family Cervidae - Cervids
b Odocoileus \(\frac{\text { hemionus }}{\text { Odocoileus }}\)
Family Antilocapridae - Pronghorn
\({ }^{\mathrm{b}}\) Antilocapra americana

\section*{Ermine}

Long-tailed Weasel
Black-footed Ferret
Mink
Badger
Striped Skunk

Bobcat

Mule Deer
White-tailed Deer

\section*{Pronghorn}

Order Chiroptera-Bats
Family Vespertilionidae
Mytosis evotis
Mytosis yumanensis
Long-eared bat
Mytosis volans
Lasivrus cinereus
Lasivrus borealis

Yuma bat
Long-1egged bat
Hoary bat
Red bat

Order Lagormorpha-Lagomorphs
Family Leporidae-Hares and Rabbits
Sylvilogus nutlalli
Mountain cottontail

Order Rodentia-Rodents
Family Sciuridae-Squirrels
Marmota flaviventris Yellow-bellied Marmot
Family Muridae-Old World Rats and Mice
Rattus Norvegicus Norway rat Mus musculus Family Costoridae-Beaver Castor canadensis Beaver

Order Carnivora-Carnivores
Family Mustilidae-Mustilids
Spilogale grocilis Western spotted skunk

\section*{TABLE 2.}

Brief listing of some habitat and food requirements of mammals that occur or may occur on the Westmorland lease. Where family groups are similar in requirements the family will be treated as a group, otherwise individual species requirements are listed. Food habits and habitat requirements are taken from Martin, et. al. (1961) and Burt and Grossenheider (1964).

Name: Shrews-Family Soricidae
Habitat: Moist areas-forests, brushlands, open country (Masked); arid areas-sagebrush, bunchgrass (Merriams).
Foods: Earthworms, insects, snails, spiders, mice.
Misc.:

Name: Plainnose Bats-Vespertilionidae
Habitat: Nocturnal, free roaming in search of food. Occur in caves, tunnels, buildings, forests.
Foods: Insectivorous.
Misc.:

Name: Raccoon-Procyon lotor
Habitat: Dense or rocky areas near water.
Foods: Omnivorous. Frogs, crayfish, insects, fish, small mammals, alfalfa, corn, barley.
Misc.: May damage crops and poultry. Fur of value. Edible.

Name: Shorttail Weasel(Ermine)-Mustela erminea
Habitat: Areas of dense vegetative growth, near water. Mostly nocturnal.
Foods: Rabbits, rodents, snakes, frogs, fish, birds, eggs.
Misc.: Winter pelts are of value. Good mousers.

Name: Longtail Weasel-Mustela frenata
Habitat: All areas near water. Mostly nocturna.
Foods: Rabbits, rodents, snakes, frogs, fish, birds, eggs.
Misc.: Winter pelts are of value. Kills many rodents.

Name: Mink-Mustela vison
Habitat: Aquatic. Found near lakes, marshes, streams.
Foods: Rodents, snakes, crustaceans, frogs, birds, eggs.
Misc.: Valuable for their pelts.

Name: Badger-Taxidea taxus
Habitat: Open areas of grasslands and deserts. Mostly nocturnal.
Foods: Rodents, rabbits, insects, grouse, lizards.
Misc.:

Name: Striped Skunk-Mephitis mephitis
Habitat: Open country, mixed woods, brushland, prairie preferred. Mainly nocturnal.
Foods: Mostly animal. Insects, spiders, toads, frogs, lizards, mice, gophers, turtle eggs, birds, fleshy fruits, grasses.
Misc.:

Name: Coyote-Canis latrans
Habitat: No boundaries. Prefers areas where cover is readily available such as brush, boulders, ravines.
Foods: Wide variety of plants and animals. Small mammals to deer, sheep, fleshy fruits, carrion, etc.
Misc.: Valuable pelts during winter. Blamed for high mortality to domestic stock and wild populations.

Name: Red Fox-Vulpes fulva
Habitat: Brushy areas where escape cover is available, will hunt in open. Mostly nocturnal.
Foods: Mainly animal. Mice, other small rodents, rabbits, birds, frogs, insects, carrion, various fruits and berries.
Misc.: May cause damage to domestic and wild fowl. Pelt is valuable.

Name: Swift Fox-Vulpes velox
Habitat: Open areas; sandy, plains, low vegetation. Nocturnal.
Foods: Sam11 rodents, rabbits.
Misc.: Few in number in U.S.; of special concern to conservationists.

Name: Bobcat-Lynx rufus
Habitat: Areas where cover is available, (secretive). From deserts to mountains, rimrock areas are preferred.
Foods: Small mammals, birds, occasionally deer.
Misc.: Valued for its winter pelt.

Name: Blacktailed Prairie Dog-Cynomys ludovicianus
Habitat: High, dry, plains, and prairies. Live in communities called "towns".
Foods: Predominantly plants. Occasionally insects. Almost any green vegetation, wheatgrass, Russian thistle, fescue, bluegrass, grama, barley, saltbush, globe mallow, sunflower, plantain.
Misc:
Name: Red Squirrel-Tamiasciurus hudsonicus
Habitat: Pine or spruce forests.
Foods: Insects, young birds, eggs, fresh carrion, conifer seeds, fleshy fruits, nuts.
Misc.:

Name: Least Chipmunk-Eutamias minimus
Habitat: Sagebrush deserts, coniferous forests, mixed-hardwoods. Highly variable.
Foods: Insects ( \(50 \%\) in warm months), seeds and fruits. Wheat, sedge, gooseberry, cinquefoil, ragweed, buffaloberry, dandelion, bromegrass, sunflower, sagebrush, goosefoot.
Misc:
Name: Thirteen-1ined Ground Squirrel-Citellus tridecemlineatus
Habitat: Clear areas, deserts, plains.
Foods: Grasshoppers, other insects, mice, birds, carrion, ragweed, sunflower, clover, wheat, needlegrass, Russian thistle.
Misc:
Name: Richardsons Ground Squirrel-Citellus richardsoni
Habitat: Sagebrush, grasslands.
Foods: Grasshoppers, caterpillars, mice, birds, carrion, goosefoot, bluegrass, dandelion, sunflower, cinquefoil.
Misc.:

Name: Northern Pocket Gopher-Thomomys talpoides
Habitat: Subterranean in prairies, meadows, open pine forests, brushy areas.
Foods: Roots, bulbs, rootstocks, seeds, nuts; most plants that grow near the burrow.
Misc.: May cause damage to some crops. Cause problems with irrigation waters.

\section*{MAMMALS-4}

Name: Olive-backed (Wyoming) Pocket Mouse-Perognathus fasciatus
Habitat: Shortgrass prairies.
Foods: Locoweed, pigweed, fescue, saltbush, bromegrass, bindweed, sunflower, plantain, barley, Russian thistle, saltbush.
Misc.:

Name: Ord's Kangaroo Rat-Dipodomys ordii
Habitat: Plains, prairies on sandy soil.
Foods: Pigweed, saltbush, ragweed.
Misc.:

Name: Beaver-Castor canadensis
Habitat: Streams, rivers, lakes, marshes with trees and brush available for cutting.
Foods: Bark and wood, main diet. Willow, pine.
Misc.: Pelts valuable at times. May cause damage through dam building activities.

Name: Western Harvest Mouse-Reithrodontomys megalotis
Habitat: Grasslands, open deserts, weed patches, near water.
Foods: Insects and seeds.
Misc.:

Name: White-footed Mice-Peromyscus
Habitat: Well distributed in a wide variety of habitats.
Foods: Insects, snails, centipedes, small mammals, small birds, pine, Russian thistle, corn, sunflower, three-own.
Misc.: Includes: deer mouse and white-footed mouse.

Name: Northern Grasshopper Mouse-Onychomys 1eucogaster
Habitat: Open country, grass, sagebrush, sandy or gravelly soil.
Foods: Mainly animal. Insects, scorpions, mice, lizards, spiders, wheat, barley, needlegrass, Russian thistle.
Misc.:

Name: Bushy-tailed Woodrat-Neotoma cinerea
Habitat: High mountains, rimrocks, rockslides, pines.
Foods: Green vegetation, twigs, shoots, grasses.
Misc.:

Name: Voles-Microtus sp.
Habitat: Moist areas, streamside, swamps except prairie vole, which prefers open prairies, fence rows, dry places.
Foods: Grasses, sedges, seeds, grain, bark, insects, bulbs.
Misc.: May cause damage to trees by girdling. Includes: Meadow, long-tailed and prairie voles.

Name: Sagebrush Vole-Lagurus curtatus
Habitat: Sagebrush, loose soil.
Foods: Sagebrush and other green vegetation.
Misc.:

Name: Muskrat-Ondatia zibethica
Habitat: Rivers, lakes, ponds, marshes, ditches, swamps.
Foods: Mostly plants. Fish, mussels, insects, crayfish, snails, cattail, bullrush, pondweed, corn, willow, buttercup.
Misc.: Valuable for fur. May cause damage due to burrowing.

Name: Meadow Jumping Mouse- శapus hudsonius
Habitat: Widespread habitat but feeds in low meadows.
Foods: Little known habits. Probably seeds, leaves, shoots, insects in available habitat.
Misc.:

Name: Porcupine-Erethizon dorsatum
Habitat: Forested areas but also areas with low brush.
Foods: Pine, clover, dande1ion, sedge, goldenrod.
Misc.: Cause severe damage to trees in some areas.

Name: Desert Cottontail-Sylvilagus auduboni
Habitat: Open areas, grasslands, sagebrush, scattered forests.
Foods: Summer: herbaceous plants. Winter: twigs and bark. Plaintain, bluegrass, clover, goldenrod, strawberry, willow, wheat, corn, wild rose, elm, sagebrush, rush.
Misc:Very important game and food animal in much of the U.S. May cause damage to crops and orchards when in sufficient numbers.
Name:White-tailed Jack Rabbit
Habitat: Open, grassy or sagebrush plains.
Foods: Rabbitbush, sagebrush, and other plants.
Misc.: May cause some crop damage.

Name: Mule Deer-Odocoileus hemionus
Habitat: Coniferous forest, desert shrubs, chaparral, grasslands.
Foods: Sagebrush, fescue, bluegrass, bromegrass, needlegrass, wheatgrass, ricegrass, pine, snowberry, rabbitbush, willow, al£alfa, phlox, Russian thistle, pussytoes, rose, clover, corn, lichen.
Misc: Important game animal.
Name: White-tailed Deer-Odocoileus virginianus
Habitat: Brushy areas, forests, river bottoms.
Foods: Pine, wi-low, alfalfa, wheatgrass, rose, bluegrass, snowberry, pussytoes.
Misc.: Important game animal.

Name: Pronghorn (Antelope)-Antilocapra americana
Habitat: Open prairies and sagebrush plains.
Foods: Sagebrush, snowberry, wheatgrass, grama grass, saltbush, bromegrass, locoweed, thistle, ragweed.
Misc.: Important game animal.

\section*{Name:}

Habitat:
Foods:
Misc. :
TABJE

TABLE 4
 on Tract III. 1. Ponderosa Pine Grassland
2.
3.
TABLE 5
PERCENT OF MULE DEER OBSERVED USING EACH HABITAT TYPE ON TRACT III BY MONTH FOR PERIOD JANUARY TO JUNE 1975
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Habitat Type} & \multicolumn{7}{|l|}{Percent of Mule Deer Observed} \\
\hline & \[
\begin{aligned}
& \mathrm{a}_{37}{ }^{37}(16) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Feb. } \\
& 10(04)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Mar. } \\
& 61(27)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Apr. } \\
& 62(27) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { May } \\
& 17(08)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Jun } \\
& 42(18) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { A1I } \\
& 229(100) \\
& \hline
\end{aligned}
\] \\
\hline Grassland & (-) & \(\mathrm{b}_{20 / 10}\) & 03/13 & 06/10 & (-) & 10/09 & 07/09 \\
\hline Big Sagebrush-Grassland & \({ }^{\text {c }} 16\) & (-) & (-) & (-) & (-) & 05/02 & 04/02 \\
\hline Silver Sagebrush-Grassland & (-) & (-) & 02/06 & 13/17 & 35/35 & 19/21 & 10/14 \\
\hline Skunkbush-Grassland & (-) & \(0 / 30\) & 0/15 & (-) & 0/03 & 12/14 & 02/09 \\
\hline Creek Bottom & 25 & 0/20 & (-) & (-) & 0/12 & 02/02 & 04/02 \\
\hline Snowberry Coulee & (-) & (-) & 0/02 & \(0 / 10\) & (-) & 0/02 & 0/04 \\
\hline Ponderosa Pine-Grassland & 35 & 80/40 & 62/49 & 13/30 & 18/26 & 50/48 & 40/41 \\
\hline Ponderosa Pine-Juniper & 08 & (-) & (-) & (-) & (-) & (-) & 01/0.7 \\
\hline Alfalfa Hay & (-) & (-) & (-) & 40/19 & 18/09 & 02/02 & 13/07 \\
\hline Fallow & (-) & (-) & (-) & 10/05 & (-) & (-) & 03/01 \\
\hline Sprouted Wheat & (-) & (-) & (-) & 13/09 & (-) & (-) & 05/03 \\
\hline Mature Wheat or Stubble & 16 & (-) & 16/03 & (-) & (-) & (-) & 06/04 \\
\hline Reclaimed Spoils & (-) & (-) & 12/06 & (-) & (-) & (-) & 03/02 \\
\hline Disturbed Grassland & (-) & (-) & (-) & (-) & 29/15 & (-) & 02/01 \\
\hline Roadways (with borrow pits) & (-) & (-) & 0/01 & (-) & (-) & (-) & 0/0.2 \\
\hline
\end{tabular}
a Number and (percent) of total observations.
Percent of observations within habitat type/percent of observations including next habitat type.
\({ }^{c}\) The next nearest habitat type was not recorded for January observations.
TABLE 6
percent of mule deer observed using each habitat type on tract ilf by month FGR THE PERIOD JULY TO DECEMBER 15, 1975
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Habitat Type} & \multicolumn{7}{|l|}{Percent of Mule Deer Observed} \\
\hline & \[
\begin{aligned}
& \text { July } \\
& a_{43}(13) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Aug. } \\
& 63(19) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Sept. } \\
& 97(29) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Oct. } \\
& 15(5)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Nov. } \\
& 91(28)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Dec. } \\
& 20(6) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { A11 } \\
& 329(100)
\end{aligned}
\] \\
\hline Grassland & \(\mathrm{b}_{05 / 12}\) & (-) & 10/07 & 00/07 & 10/07 & (-) & 06/06 \\
\hline Big Sagebrush-Grassland & (-) & 08/13 & 01/01 & (-) & 00/12 & (-) & \(02 / 06\) \\
\hline Silver Sagebrush-Grassland & 02/08 & 02/i1 & 04/19 & 47/23 & 21/22 & 00/30 & 10/18 \\
\hline Skunkbush-Grassland & 12/20 & 03/18 & 12/13 & 27/13 & 10/05 & 00/20 & 10/13 \\
\hline Creek Bottom & 14/07 & 06/03 & 25/17 & 00/23 & 13/08 & (-) & 14/10 \\
\hline Snowberry Coulee & \(14 / 08\) & 00/07 & 03/02 & 13/07 & 02/01 & (-) & \(04 / 03\) \\
\hline Ponderosa Pine-Grassland & 49/41 & 81/44 & 18/26 & 00/20 & 00/02 & 100/50 & 33/26 \\
\hline Alfalfa Hay & 05/05 & 00/01 & 20/10 & 07/03 & 00/04 & (-) & 07/05 \\
\hline Faliow & (-) & (-) & 05/03 & (-) & 44/39 & (-) & 14/12 \\
\hline Nature Wheat or Stubble & (-) & (-) & \(02 / 01\) & 07/03 & (-) & (-) & \(01 / \mathrm{tr}^{\text {c }}\) \\
\hline Roadways (with borrow pits) & (-) & (-) & 00/01 & (-) & (-) & (-) & 00/tr \\
\hline Pond & (-) & 00/02 & (-) & (-) & (-) & (-) & 00/tr \\
\hline Strip Xine & (-) & (-) & 00/02 & (-) & (-) & (-) & 00/tr \\
\hline
\end{tabular}
\(c_{\text {tr }}=\) trace; a value less than \(0.5 \%\).

\section*{GTgVI}
Partial listing of foods of the mule deer, white-tailed deer and pronghorn. Species

\[
\begin{aligned}
& \text { Pussytoes } \\
& \text { Clover } \\
& \text { Pine } \\
& \text { Fescus } \\
& \text { Brome } \\
& \text { Needlegrass } \\
& \text { Wheatgrass }
\end{aligned}
\]

\section*{MULE DEER}
WHTTE-TAILED DEER

PRONGHORN

Nestmorland Resources, 19750 Taylor, 1965
Martin, et. a1., 1961
: əounos

A1EaIEa Hay
\[
\text { * } 169 \text { observations. }
\]
\[
\text { Source: Westmorland }(19750) \text { and Dames and Moore } 1975 .
\]

SPECIES OF BIRDS OBSERVED OR POTENTIALLY OCCURRING IN THE VICINITY OF THE SARPY CREEK MINE, BIG HORN COUNTY, MONTANA
\begin{tabular}{|c|c|c|}
\hline Scientific Name & \multirow[t]{2}{*}{\(\underline{\text { Status }}^{\text {z }}\)} & Common Name \\
\hline \multicolumn{2}{|l|}{Order Gaviiformes - Loons} & \\
\hline \multicolumn{3}{|l|}{Family Gavidae - Loons} \\
\hline Gavia immer & M & Common Loon \\
\hline \multicolumn{3}{|l|}{Order Podicipediformes - Grebes} \\
\hline \multicolumn{3}{|l|}{Family Podicipedidae - Grebes} \\
\hline Podiceps auritus & M & Horned Grebe \\
\hline Podiceps nigricollis & S & Eared Grebe \\
\hline Aechmophorus occidentalis & S & Western Grebe \\
\hline Podilymbus podiceps & S & Pied-billed Grebe \\
\hline
\end{tabular}

Order Pelecaniformes - Tropicbirds, Boobys, and Cormorants
Family Pelecanidae - Pelicans
Pelecanus erythrorhynchos M White Pelican
Family Phalacrocoracidae - Cormorants
Phalacrocorax auritus S Double-crested Cormorant

Order Ciconiiformes - Herons, Egrets, Bitterns, Ibises, Spoonbills, and Flamingos

Family Ardeidae - Herons and Bitterns
\begin{tabular}{lll} 
Ardea herodias & R & Great Blue Heron \\
Nycticorax nycticorax & S Black-crowned Night Heron \\
Botaurus lentiginosus & S American Bittern
\end{tabular}

\footnotetext{
\({ }^{2}\) Status symbols: \(M=\) Migrant; \(R=\) Resident;
\(S=\) Summer Resident; \(W=\) Winter Resident.
}

Order Anseriformes - Swans, Geese, and Ducks

Family Anatidae - Swans, Geese, and Ducks
\begin{tabular}{|c|c|c|}
\hline Branta canadensis & S & Canada Goose \\
\hline Anser albifrons & M & White-fronted Goose \\
\hline Chen caerulescens & M & Snow Goose \\
\hline a Anas platyrhynchos & S & Mallard \\
\hline Anas strepera & S & Gadwall \\
\hline Anas acuta & S & Pintail \\
\hline a Anas crecca & S & Green-winged Teal \\
\hline a Anas discors & S & Blue-winged Teal \\
\hline Anas cyanoptera & S & Cinnamon Teal \\
\hline Anas americana & S & American Wigeon \\
\hline a Anas clypeata & S & Shoveler \\
\hline Aythya americana & S & Redhead \\
\hline Aythya collaris & M & Ring-necked Duck \\
\hline Aythya valisineria & S & Canvasback \\
\hline Aythya marila & M & Greater Scaup \\
\hline Aythya affinis & S & Lesser Scaup \\
\hline Bucephala clangula & W & Common Goldeneye \\
\hline Bucephala albeola & M & Bufflehead \\
\hline Oxyura jamaicensis & M & Ruddy Duck \\
\hline Lophodytes cucullatus & S & Hooded Merganser \\
\hline Mergus merganser & S & Common Merganser \\
\hline Mergus serrator & S & Red-breasted Merganser \\
\hline
\end{tabular}

Order Falconiformes - Vultures, Hawks, Kites, Falcons, and Eagles
Family Cathartidae - American Vultures
Cathartes aura
S Turkey Vulture

Family Accipitridae - Kites, Hawks, Eagles, and Harriers
\begin{tabular}{lll} 
bAccipiter \\
bentilis & Wecipiter & striatus \\
b Accipiter & Goshawk \\
a Buteo jamaicensis & S & Sharp-shinned Hawk \\
a Buteo Swainsoni & S & Cooper's Hawk \\
\hline
\end{tabular}

\footnotetext{
a observed on Project area in 1975.
Highest management priority (Flath, 1975).
}
```

Family Accipitridae - Kites, Hawks, Eagles, and Harriers (continued)

```
\({ }^{\text {a Buteo }}\) lagopus
Buteo regalis abAquila chrysaetos
bHaliaeetus leucocephalus abcircus cyaneus

W Rough-legged Hawk
R Ferruginous Hawk
R Golden Eagle
W Bald Eagle
S Marsh Hawk
```

Family Pandionidae - Ospreys
${ }^{\mathrm{b} \text { Pandion haliaetus }}$ S Osprey
Family Falconidae - Caracaras and Falcons

abealco mexicanus	S	Prairie Falcon
bealco peregrinus	M	Peregrine Falcon
Falco columbarius	S	Pigeon Hawk
a alco sparverius	S	Sparrow Hawk

```

Order Galliformes - Grouse, Pheasants, Ptarmigans, Prairie Chickens, Quail, and Turkeys

Family Tetraonidae - Grouse and Ptarmigan
apedioecetes phasianellus Centrocercus urophasianus
R Sharp-tailed Grouse
R Sage Grouse

Family Phasianidae - Quail, Pheasants, and Partridge
\({ }^{\text {aphasianus }}\) colchicus
R Ring-necked Pheasant
aperdix perdix
R Gray Partridge

Family Meleagrididae - Turkeys
\({ }^{a_{\text {Meleagris }}}\) gallopavo \(\quad\) R Turkey

Order Gruiformes - Cranes, Rails, and Allies
Family Gruidae - Cranes
Grus canadensis
S Sandhill Crane

Family Rallidae - Rails, Gallinules, and Coots
\begin{tabular}{lll}
\(\frac{\text { Porzana carolina }}{\text { Coturnicops noveboracensis }}\) & S & Sora \\
a Fulica americana & M & Yellow Rail \\
Y & S & American Coot
\end{tabular}

Order Charadriiformes - Shorebirds, Gulls, and Allies

Family Charadriidae - Plovers, Turnstones, and Surfbirds
\begin{tabular}{lll} 
Charadrius semipalmatus & M & Semipalmated Plover \\
a Charadrius vociferus & \(R\) & Killdeer \\
b Charadrius montanus & \(S\) & Mountain Plover \\
\hline Pluvialis squatarola & \(M\) & Black-bellied Plover
\end{tabular}

Family Scolopacidae - Woodcock, Snipe, and Sandpipers
\begin{tabular}{|c|c|c|}
\hline a Capella gallinago & S & Common Snipe \\
\hline Numenius americanus & S & Long-billed Curlew \\
\hline Bartramia longicauda & S & Upland Plover \\
\hline anctitis macularia & S & Spotted Sandpiper \\
\hline Tringa solitaria & M & Solitary Sandpiper \\
\hline Tringa melanoleuca & M & Greater Yellowlegs \\
\hline Tringa flavipes & M & Lesser Yellowlegs \\
\hline Catoptrophorus semipalmatus & S & Willet \\
\hline Calidris melanotos & M & Pectoral Sandpiper \\
\hline Calidris fuscicollis & M & White-rumped Sandpiper \\
\hline Calidris bairdii & M & Baird's Sandpiper \\
\hline Calidris minutilla & M & Least Sandpiper \\
\hline \({ }^{\text {c Calidris }}\) pusilla & M & Semipalmated Sandpiper \\
\hline Calidris mauri & M & \\
\hline calidris alba & M & Sanderling \\
\hline a Limnodromus scolopaceus & M & Long-billed Dowitcher \\
\hline Micropalama himantopus & M & Stilt Sandpiper \\
\hline Tryngites subruficollis & M & Buff-breasted Sandpiper \\
\hline Limosa fedoa & M & Marbled Godwit \\
\hline Limosa haemastica & M & Hudsonian Godwit \\
\hline
\end{tabular}

Family Recurvirostridae - Avocets and Stilts
Recurvirostra americana
S American Avocet

\footnotetext{
\({ }^{\text {c }}\) Third highest management priority (Flath, 1975)
}

Family Phalaropodidae - Phalaropes
Steganopus tricolor S Wilson's Phalarope
Family Laridae - Gulls and Terns
\({ }^{\mathrm{b} \text { Larus }}\) argentatus Larus californicus Larus delawarensis Larus pipixcan
\({ }^{c}\) Larus philadelphia Sterna forsteri
chydroprogne caspia Chlidonias niger

M Herring Gull
M California Gull
S Ring-billed Gull
M Franklin's Gull
M Bonaparte's Gull
M Forster's Tern
M Caspian Tern
S Black Tern

Order Columbiformes - Pigeons and Doves
Family Columbidae - Pigeons and Doves
\begin{tabular}{lll} 
a Columba \\
a livia & \(R\) & \begin{tabular}{l} 
Rock Dove \\
Zenaida \\
macroura
\end{tabular}
\end{tabular} \begin{tabular}{l} 
Mourning Dove
\end{tabular}

Order Cuculiformes - Cuckoos, Roadrunners, and Anis
Family Cuculidae - Cuckoos, Roadrunners, and Anis
\begin{tabular}{cl}
\({ }^{\text {ad }}\) Coccyzus \\
Coccyzus & americanus \\
\hline
\end{tabular}

Order Strigiformes - Owls
Family Strigidae - Typical Ow1s
\({ }^{\mathrm{b} \text { Otus asio }}\)
a Bubo virginianus
bspeotyto cunicularia Strix varia
Asio otus
Asio flammeus
baegolius acadicus

R Screech Ow1
R Great Horned Owl
R Burrowing Ow1
R Barred Owl
R Long-eared Owl
R Short-eared Owl
R Saw-whet Owl

\footnotetext{
\({ }^{\mathrm{d}}\) Fourth highest management priority (Flath, 1975).
\({ }^{e}\) Second highest management priority (Flath, 1975).
}
```

Order Caprimulgiformes - Goatsuckers
Family Caprimulgidae - Goatsuckers
a Phalaenoptilus
S Poor-will
S Common Nighthawk
Order Apodiformes - Swifts and Hummingbirds
Family Apodidae - Swifts

```

Aeronautes saxatalis \(S\)
White-throates: Swift
```

Order Coraciiformes - Kingfishers
Family Alcedinidae - Kingfishers
a Megaceryle alcyon \quad S Belted Kingfisher
Order Piciformes - Woodpeckers, Flickers, and Sapsuckers
Family Picidae - Woodpeckers, Flickers, and Sapsuckers

```
aColaptes auratus
aMelanerpes erythrocephalus Sphyrapicus varius
bsphyrapicus thyroideus
adendrocopos villosus Dendrocopos pubescens

S Common Flicker
S Red-headed Woodpecker S Yellow-bellied Sapsucker
S Williamson's Sapsucker
R Hairy Woodpecker
R Downy Woodpecker
```

Order Passeriformes - Perching Birds
Family Tyrannidae - Tyrant Flycatchers

Tyrannus tyrannus	S	Eastern Kingbird
abtyrannus verticalis	S	Western Kingbird
Sayornis phoebe	M	Eastern Phoebe
Sayornis saya	S	Say's Phoebe
Empidonax traillii	S	Willow Flycatcher
Empidonax minimus	S	Least Flycatcher
Empiconax difficilis	S	Western Flycatcher
Contonus sordidulus	S	Western Wood Pewee
Nuttallornis borealis	S	Olive-sided Flycatcher

```

Family Alaudidae - Larks

\section*{Eremophila alpestris}

R Horned Lark

Family Hirundinidae - Swallows
\begin{tabular}{lll} 
a Tachycineta thalassina & S Violet-green Swallow \\
aRiparia riparia & S & Bank Swallow \\
astelgidopteryx ruficollis & S Fough-winged Swallow \\
aHirundo rustica & S Barn Swallow \\
a Petrochelidon pyrrhonota & S & Cliff Swallow \\
eprogne subis & S Purple Martin
\end{tabular}

Family Corvidae - Jays, Magpies, and Crows
\begin{tabular}{lll} 
Perisoreus canadensis & \(R\) & Gray Jay \\
apica pica & \(R\) & Black-billed Magpie \\
a Corvus brachyrhynchos & \(R\) & Common Crow \\
aGymorhinus cyanocephalus & \(R\) & Pinyon Jay \\
\hline Nucifraga columbiana & \(R\) & Clark's Nutcracker
\end{tabular}

Family Paridae - Chickadees, Titmice, Verdins, and Bushtits
aparus atricapillus
R Black-capped Chickadee

Family Sittidae - Nuthatches
\({ }^{3}\) Sitta carolinensis
R White-breasted Nuthatch
asitta canadensis
R Red-breasted Nuthatch

Family Certhiidae - Creepers

\section*{Certhia familiaris \\ S Brown Creeper}

Family Troglodytidae - Wrens
\begin{tabular}{lll} 
Proqlodytes aedon & S & House Wren \\
Telmatodytes palustris & M & I. ong-billed Marsh Wren \\
Salpinctes obsoletus & S & Fisk Wren
\end{tabular}

Family Mimidae - Mockingbirds and Thrashexs
\[
\begin{aligned}
& \text { Dumetella carolinensis } \\
& \frac{\text { Oroxostoma }}{\text { Orfum }}
\end{aligned}
\]

S Catbird
S Brown Thrasher
S Sage Thrasher

Family Turdidae - Thrushes, Solitaires, and Bluebirds
\begin{tabular}{ll} 
aTurdus migratorius & S American Robin \\
\(\frac{\text { Hylocichla mustelina }}{\text { Catharus ustulatus }}\) & S Wood Thrush \\
\(\frac{\text { Catharus }}{\text { minimus }}\) & S Swainson's Thrush \\
Catharus fuscescens & M Gray-cheeked Thrush \\
Sialia sialis & S Veery \\
asialia currucoides & S Eastern Bluebird \\
Myadestes townsendi & R Mountain Bluebird \\
\hline
\end{tabular}

Family Sylviidae - Arctic Warblers, Kinglets, Gnatcatchers
Regulus satrapa
M Golden-crowned Kinglet
Regulus calenpula M Ruby-crowned Kinglet

Family Motacillidae - Wagtails and Pipits
\[
\frac{\text { Anthus }}{\text { Anthus }} \frac{\text { spinoletta }}{\text { spragueii }}
\]

Family Bombycillidae - Waxwings

> Bombycilla garrulus
> Bombycilla cedrorum

Family Laniidae - Shrikes
\[
\frac{\text { Lanius }}{\text { axcubitor }}
\]

Family Sturnidae - Starlings

> asturnus vulgaris

Family Vireonidae - Vireos
\[
\frac{{ }^{\text {avireo }}}{\frac{\text { Sireo }}{\text { Solitarius }}} \frac{\text { Vireo }}{\text { gilvaceus }}
\]

Family Parulidae - Wood Warblers
\[
\frac{\text { dMiotilta }}{\text { bvermivora }} \frac{\text { varia }}{\text { peregrina }}
\]

M Water Pipit
M Sprague's Pipit

W Bohemian Waxwing
\(S\) Cedar Waxwing

W Northern Shrike
S Loggerhead Shrike

R Starling
\(S\) Solitary Vireo
S Red-eyed Vireo
\(S\) Warbling Vireo

M Black-and-white Warkler
M Tennessee Warbler

Family Parulidae - Wood Warblers (Continued)

> Vermivora celata
> a Dendroica petechia
> Dendroica magnolia
> a Dendroica coronata
> Dendroica townsendi
> Dendroica virens
> Dendroica pensylvanica
> Dendroica striata
> Dendroica palmarum Seiurus aurocapillus Seiurus noveboracensis Oporornis tolmiei Geothylpis trichas Icteria virens a Wilsonia pusilla Setophaga ruticilla

S Orange-crowned Warbler
\(S\) Yeliow Warbler
M Magr:olia Warbler
M Yelicw-rumped Warbler
M Triwn, end's Wuthler
M Black-throated Green Warbler
M Chestnut-sided Warbler
M Blackpoll Warbler
M Palm Warbler
S Ovenbird
M. Northern Waterthrush

S MacGillivray's Warbler
\(S\) Yellowthroat
S Yellow-breasted Chat
S Wilson's Warbler
S American Redstart

Family Ploceidae - Weaver Finches
apasser domesticus
R
House Sparrow

Family Icteridae - Meadowlarks, Blackbirds, and Orioles

Dolichonyx oryzivorus
asturnella neglecta
Xanthocephalus xanthocephalus
a Agelaius phoeniceus
b Icterus spurius
a Icterus cabula
aEuphagus cyanocephalus
Quiscalus quiscula
a Molothrus ater

S Bobolink
S Western Meadowlark
S Yellow-headed Blackbird
R Red-winged Blackbird
S Orchard Oriole
\(S\) Northern Oriole
R Brewer's Blackbird
S Common Grackle
S Brown-headed Cowbird

Family Thraupidae - Tanagers

\section*{Piranga ludoviciana}

S Western Tanager

Passerina amoena S
bSpiza americana
Hecporiphona vespertina

Dickcissel
R Evening Grosbeak

\section*{Family Eringillidae - Grosbeaks, Sparrows, Finches, and Buntings (continued)}
\begin{tabular}{|c|c|c|}
\hline Carpodacus purpureus & M & Purple Finch \\
\hline Carpodacus mexicanus & R & House Finch \\
\hline Pinicola enucleator & R & Pine Grosbeak \\
\hline Leucosticte tephrocotis & W & Gray-crowned Rosy Finch \\
\hline Leucosticte atrata & R & Black Rosy Finch \\
\hline Acanthis flammea & W & Common Redpoll \\
\hline \({ }^{\text {a Spinus pinus }}\) & R & Pine Siskin \\
\hline aspinus tristis & S & American Gclafinch \\
\hline aLoxia curvirostra & R & Fed Cressbill \\
\hline Chlorura chlorura & S & Green-tailed Towhee \\
\hline apipilo erythrophthalmus & S & Rufous-siced Towhee \\
\hline acalamospiza melanocorys & S & Lark Bunting \\
\hline apasserculus sandwichensis & S & Savannah Sparrow \\
\hline Anmodramus savannarum & S & Grasshopper Sparrow \\
\hline Anmodramus bairdii & M & Baird's Sparrow \\
\hline Ammospiza caudacuta & S & Sharp-tailed Sparrow \\
\hline apooecetes gramineus & S & Vesper Sparrow \\
\hline a chondestes grammacus & S & Lark Sparrow \\
\hline Junco hyemalis & W & Dark-eyed Junco \\
\hline Spizella arborea & W & Tree Sparrow \\
\hline Spizella passerina & S & Chipping Sparrow \\
\hline Spizella pallida & S & Clay-colored Sparrow \\
\hline Spizella breweri & S & Brewer's Sparrow \\
\hline espizella pusilla & S & Field Sparrow \\
\hline Zonotrichia querula & M & Harris's Sparrow \\
\hline Zonotrichia leucophrys & R & White-crowned Sparrow \\
\hline Zonotrichia albicollis & M & White-throated Sparrow \\
\hline Passerella iliaca & S & Fox Sparrow \\
\hline Melospiza lincolnii & S & Lincoln's Sparrow \\
\hline Melospiza melodia & R & Song Sparrow \\
\hline Calcarius mecownii & S & McCown's Longspur \\
\hline Calcarius lapponicus & W & Lapland Longspur \\
\hline Calcarius pictus & M & Smith's longspur \\
\hline Calcarius ornatus & S & Chestnut-collared Longspur \\
\hline Plectrophenax nivalis & M & Snow Bunting \\
\hline
\end{tabular}

Order Strigiformes-Owls
Family Strigidae-Typical Owls
Nyctea scandioca

Order Apodiformes-Swifts and Hummingbirds Family Trochilidae-Hummingbirds

Archilochus colubris
Archilochus alexandri
Selasphorus rufus

Order Passeriformes-Perching Birds Family Cinclidae-Dippers
Cinclus mexicanus
Dipper (Water Ouzel)

TABLE 10

List of bird families, sub-families, and species that occur or may occur on Westmorland Resources Sarpy Creek lease with notes on habitat and food habits.

Sources: Peterson, 1961 Martin, Tim, and Nelson, 1961

Name: Common Loon, Gavia immer
Habitat: Conniferous lakes
Foods: Fish, mollusks, frogs, insects
Misc.: Feeds on fish species considered undesirable.

Name: Grebes-Family Podicipediformes
Habitat: Lakes, ponds, streams and marshes
Foods: Fish, aquatic insects, mollusks and crustaceans. Also eat their own feathers.
Misc.: As with the loons, undesirable fish species are a major portion of their diet.

Name: White Pelican, Pelecanus erythrorhynches
Habitat: Lakes and marshed
Foods: Fish and some crustaceans
Misc.: More than \(90 \%\) of fish diet is undesirable species.

Name: Double-crested Cormorant-Phalacrocorax auritus
Habitat: Lakes and rivers
Foods: Fish and crustaceans
Misc.: Beneficial by removing undesirable fish species.

Name: Herons and Bitterns-Family Arderdae
Habitat: Marshes, swamps, streams, ditches, ponds-anywhere that food and water are available.
Foods: Fish, crustaceans, amphibians, mice, shrews, snakes and turtles.
Misc.: Generally beneficial through removal of undesirable species. May cause damage at fish hatcheries.

Name: Geese-Subfamily Anserinae
Habitat: Lakes, rivers, marshes, prairies and grainfields.
Foods: Pondweed (1), saltgrass (1), bullrush (1), wheat (2) brome grass (3), wild barley (3)
Misc.: Sought after by sportsmen and bird-watchers alike. Cause some damage to crops when concentrations are high enough.

Name: Surface-feeding ducks-Subfamily Anatinae
Habitat: Lakes, ponds, rivers, marshes, grainfields, irrigated lands, and prairies
Foods:Pondweed (1), bullrush (1), spikerush (1), muslegrass (1), corn (1), sedge (1), wheat and algae
Misc.:Prized by sportsmen.

Name: Diving ducks-Subfamily Aythyinae
Habitat: Lakes, marshes, and rivers
Foods:Pondweed (1), bullrush, algae, saltgrass, sedge, waterweed, aquatic insects (adult and larvae), crustaceans, mollusk and fish.
Misc:Goldeneye and bufflehead feed mostly on animal life.
Name: Stiff-tailed Ducks-Subfamily Oxyurinae
Habitat: Lakes, marshes, and ponds
Foods: Pondweed, bullrush, sedge, aquatic grasses, aquatic insects, mollusks and crustaceans.
Misc.: The ruddy duck, Oxyura jamaicensis is the only species of this subfamily found in Montana.

Name: Mergansers-Subfamily Merginae
Habitat: Wooded lakes, lakes, ponds, and rivers
Foods: Fish (major diet), crayfish, shrimps, frogs, insects, and mollusks.
Misc.: Fish eating habits cause some damage to game fish population.

Name: American Vultures-Family Cathartidae
Habitat: Usually seen airborne, perched, or feeding on gournd.
Foods: Carrion
Misc.: Turkey vulture, Cathartes aura is only Montana species. Very beneficial.

Name: Bird Hawks-Subfamily Accipitrinae
Habitat: Forests, river gorges and wooded areas.
Foods: Mostly other birds including domestic fowl and game birds, some rodents.
Misc.: All members are of Genus Accipiter. Habit of preying on important birds has given this group a bad reputation.

Name: Buzzard Hawks-Subfamily Butconinae
Habitat: Open country, woodlands, mountains, deserts.
Foods: Rodents, rabbits, snakes, lizards and small birds. Swainsons feed on insects commonly.
Misc.: Swainsons migrates south in winter. Mostly beneficial habits however, red-tailed may become problem with poultry.

Name: Harriers-Subfamily Circinae
Habitat: Marshes, fields and prairies.
Foods: Rodents, reptiles, amphibians and birds.
Misc.: Marsh hawk is the representive in this subfamily.

Name: Ospreys-Family Pandionidae
Habitat: Rivers and lakes. Nests nolmally in high open places, sometimes on ground.
Foods: Fish
Misc.: Only hawk that dives into water for fish.

Name: Falcons-Subfamily Falconinae
Habitat: Wide-ranging, nearly cosmopolitan.
Foods: Birds, rodents, insects.
Misc.: Three species discussed in text.

Name: Hungarian or Gray Partridge-Perdix perdix
Habitat: Open farmland, grainfields. Nests in grass-lined hollow in grass or brush.
Foods: Wheat (1), barley (1), brome grass (2), alfalfa (3) clover (3), sunflower (3), and insects.
Misc.: Introduced species. Important game bird.

\section*{Name: Sandhill Crane-Grus canadensis}

Habitat: Prairies, grainfields, marshes and mountain meadows. Nests in marshes on ground.
Foods: Mostly domestic crops (corn, wheat, oats), and grasses, also insects, small mammals (rodents), amphibians and snails.
Misc.: Hunted in some areas for meat. Relative of the endangered whooping crane.

\section*{BIRDS-4}

Name: Rails and Coots-Family Rallidae
Habitat: Ponds, lakes, marshes. Rails build grass cup in marshy areas for nesting. Coots nest in reeds or vegetation rafts on ponds and lakes.
Foods: Pondweed, bullrush, algae, duckweed, saltgrass, insects, crustaceans, small fish and mollusks.
Misc:Coot is second only to the mallard and pintail in population numbers.
Name: Plovers-Family Charadriidae
Habitat: Shorelines, grasslands, plains, mudflats and open marshes. Nests are usually made on open, bare ground.
Foods: Insects, crustaceans, mollusks. Killdeer feed on insects for major portion of their diet.
Misc.: Semiplalmated plover occurs as migrant only.

Name: Snipe, Sandpiper-Family Scolopacidae (partial)
Habitat: Rangeland (curlew, plover), streamside, lake shores, ponds, marshes, wet meadows. Most nest in small ground depressions of natural material (rock, tundra, leaves)
Foods: Insects, crustaceans, mollusks, worms.
Misc.: Includes: long-billed curlew, upland plover, spotted, solitary Bairds', least, western and buff-breasted sandpipers, greater and lesser yellow legs, willet, sanderling.
Name: Snipe, Sandpiper-Family Scolopacidae (partial)
Habitat: Marshes, ditches, streamsides, bogs, meadows, mudflats, prairie pools; nests in shallwo depressions on ground.
Foods: These birds feed on plants more than the above group. Insects, crustaceans, mollusks, worms, clover, sunflower, sedge, cattail, pondweed, bullrush.
Misc: Includes: common snipe, pectoral, white-rumped, semipalmated and stilt sand pipers, long-billed dowitcher, and the marbled and Hudsonian godwits.
Name: American Avocet, Recurvirostra americana
Habitat: Marshes, mudflats, alkaline lakes, ponds. Nest in depression in the ground.
Foods: Mostly animal: Insects, crustaceans, mollusks, worms, pondweed bullrush, algae.
Misc.:

Name: Wilson's Phalarope- Steganopus tricolor
Habitat: Shallow lakes, marshes, pools, shores, mudflats. Nest in grass-lined hollows in meadows.
Foods: Plankton, aquatic insects, water fleas, snails.
Misc.: Distinguished from sandpipers by swimming rapidly in a tight circle ::hile feeding.

Name: Gulls-Subfamily Larinae
Habitat: Lakes, farmlands, cities, piers, refuge dumps, rivers, marshes. Nest in colonies (usually) on ground (isolated areas)
Foods: Garbage, fish, mollusks, bird eggs, insects, algae, pondweed, gooseberry, wheat, oats, duckweed.
Misc.: Beneficial birds through their scavaging and insectiverous food habits.

Name: Terns-Subfamily Sterninae
Habitat: Marshes and lakes. Nests are built near water on ground, nets of aquatic vegetation, muskrat houses.
Foods: Small fish, aquatic insects.
Misc.:

Name: Rock Dove (Domestic Pigeon), Columbia livia
Habitat: Cosmopolitan. Nests in buildings, bridges, cliffs, etc.
Foods: Seeds, grain, fruits, insects.
Misc.:

Name: Cuckoos-Family Cuculidae
Habitat: Areas of thick brush; rivers, forests, willowgroves.
Nest in low trees or bushes.
Foods: Insectivorious; caterpillars main food.
Misc.:

Name: Owls-Family Strigidae
Habitat: May be found in most habit types due to their free-roaming nature. Nests found on ground, in trees, tree cavities, cliffs, rodent burrows.
Foods: Variety of animals depending on size of owl (rabbits, mice, frogs, birds, squirrels, crayfish and insects.
Misc: Beneficial to man due to their food habits.
Name: Goatsuckers-Family Caprimulgidae
Habitat: Gencrally open areas, sparse brush. Eggs laid on bare ground or flat roofs.
Foods: Insectivorous.
Misc.: Nocturnal.

Name: Swifts-Family Apodidae
Habitat: Seen in flight almost anywhere.
Foods: Insectivorous.
Misc.: Chimney and Voux's swift probably are migratory only.

Name: Hummingbirds-Family Trochilidae
Habitat: Flowering plants, gardens, wooded areas, rivergroves, and meadows. Nests are usually a cup-like of soft material in a shrub or tree.
Foods: Flower nectar, insects, fruit juice and tree sap. May be attracted to feeder with colored water and sugar.
Misc: Plants utilized (partial) garden flowers, sage, larkspur, bindweed, phlox, rose, milkweed, gooseberry, current and evening primrose.
Name: Belted Kingfisher-Megaceryle \(\frac{\text { alcyon }}{\text { Habitat: Near water; rivers, ponds, } 1 \text { akes and marshes. Nest in }}\)
burrow of river bank or sand bank.
Foods: Fish is main diet but also crayfish, frogs and lizards.
Misc.:

Name: Woodpeckers-Family Picidae
Habitat: May be found in or near any wooded area, in town, around buildings.
Foods: Various insects during summer months. All but hairy and downy migrate during winter and their diet consists of about \(50 \%\) plant material including poison ivy, sumac, corn, pine.

Name: Tyrant Flycatchers-Family Tyrannidae
Habitat: Prefer mostly open country, farmyards, roadsides, scattered trees except Trails flycatcher, western wood pewee, and Olive-sided flycatcher.
Foods: Mostly insects captured during flight except for king birds and phoebes which consume a small portion of plant foods.

Name: Horned Lark-Eremophila alpestris
Habitat: Open areas such as plains, deserts, fields, airports, golf courses. Nest in grass lined depression in ground.
Foods: Pigweed, goosefoot, ragweed, sedge, corn, wheat, sunflower, saltbush, chickweed, shepherds-purse, gromwell, Russian Thistle and dropseed.

Name: Swallows - Family Hirundinidae
Habitat: Widespread; found in towns, near water, fields, canyons, wooded areas, etc. Barn and Cliff swallow build nests, remainder use holes in banks, trees and crevices.
Foods: Insectivorous, capture food on the wing.
Misc.:

Name: Gray Jay-Perisoreus canadensis
Habitat: Coniferous forests. Nests are feather-lined bowls.
Foods: Omniverous.
Misc.:Also called camp robbers.

Name: Black-billed Magpie-Pica pica
Habitat: Free-ranging, may be found in most areas of N.E. United States. Prefers areas of moderate to dense cover.
Foods: Omniverous, will feed on berries, seeds, carrion, insects, etc.
Misc.: Good scavanger.

Name: Common Crow-Corvus brachyrhynchos
Habitat: Woodlands, farm lands, river groves and shores. Wherever food may be found.
Foods: Omniverous, grasshoppers, scarab beetles, carrion, ground beetles, caterpillars, crustaceans, amphihiars, reptiles, corn, whea and sunflower.
Misc: May be destructive to crops and other bird populations.
Name: Pinyon Jay-Gymnorhinus cyanocephala
Habitat: Found in or near pinon pines, junipers or sage. Build nests in colony.
Foods: Insects, pinon and pine seeds, wheat, corn and barley.
Misc.: Large numbers of these birds feed together.

Name: Clark Nutcracker-Nucifraga columbiana
Habitat: Found in mountainous areas.
Foods: Pine seeds are major diet, also insects, wheat, corn, oats and barley.
Misc.:

Name: Black-capped Chickadee-parus atricapillus
Habitat: Mixed woodlands, willow groves. Nest in cavity of tree or stump.
Foods: Primarily use animal foods. Eggs of insects and spiders, insects, spiders, pine, poison ivy, sunflower and ragweed.
Misc.:

Name: Nuthatches-Family Sittidae
Habitat: Conifer forests, mixed forests, river groves and bushy areas Nest in tree cavity.
Foods: Beetles, weevils, ants, spiders, moths, caterpillars-also pine wheat and oats.
Misc.:

Name: Brown Creeper-Certhia familiaris
Habitat: Forest groves. Nest behind loose bark.
Foods: Insects and spiders found on trees, some pine and corn.
Misc.:

Name: Dipper (water cuzel)-Cinclus mexicanus
Habitat: Near water, usually fast flowing stream. Construct nest of moss along stream bank.
Foods: Mainly aquatic insects, snails, moths, fish eggs and small fish.
Misc.: Able to walk on bottom of fast flowing stream in search of food.

Name: Wrens-Family Troglodytidae
Habitat: House Wren-thickets, open woods, brush; Long-billedmarshes; Rock Wren-rocky areas of plains to high mountains.
Foods: Animal matter such as insects and spiders.
Misc.:

Name: Trashers and Catbirds-Family Mimidae
Habitat: Brushy areas. Nests are a twig bowl placed in brush.
Foods: Insects such as ants, beetles, grasshoppers, caterpillars; also spiders, frogs, lizards, buffaloberry, gooseberry, strawberry and corn.

Name: Robin-Turdus migratorius (F. Turdidae)
Habitat: Open areas anywhere. Likes towns and short grass. Nests mud-grass bow 1 in trees.
Foods: Caterpillars, beetles, earthworms, currant and wheat.
Misc.: One of our most familiar birds.

Name: Thrushes-Family Turdidae (partial)
Habitat: Prefer areas with heavy vegetation growth (thickets, forests, etc). Nests are usually small cups of leaves, grass and/or twigs.
Foods: Insects, spiders, snails, earthworms, crayfish, pine,
Misc.: gooseberry, sumac, rose and strawberry

Name: Bluebirds-Family Turdidae (partial)
Habitat: Prefer open country with scattered trees. Nests are usually in hollow of tree, cliff, stump or birdbox.
Foods: Insects, spiders, snails, centipedes, poison ivy and sumac.

\section*{Misc.:}

Name: Kinglets-Family Sylviidae
Habitat: Conifers and other densly wooded areas. Nest of moss in conifers.
Foods: Insects (wasps, flies, beetles, plant lice).
Misc.:

Name: Pipits-Family Motacilladae
Habitat: Plains and short-grass prairies. Nest of grass on ground.
Foods: Insects, spiders, millipedes, crustaceans. Small quantities of grasses are also utilized.
Misc.: Water Pipit is migratory only.

Name: Bohemian Waxwing-Bombycilla garrula
Habitat: Forests and muskeg. Nest of moss and twigs in conifer.
Foods: Fleshy fruits (hawthorn, cherry, apple, strawberry) account for most of diet, also supplemented by insects.
Misc.:

Name: Cedar Waxwing-Bombycilla cedrorum
Habitat: Open woodlands, fruiting trees, orchards. Nest composed of grass and twigs on branch.
Foods:Same as Bohemian Waxwing
Misc. :

Name: Shrikes-Family Laniidae
Habitat: Semi-open to open country with lookout post available.
Nests are well lined cups (bulky) on branch.
Foods:Almost entirely animal life. Large insects, other birds, small rodents, reptiles.
Misc.: Includes: Loggerhead and Northern Shrikes. Have a habit of hanging prey on thorns, cactus spines, or barbed wire.
Name: Starlings-Family Sturnidae
Habitat: Open areas; fields, farm yards, ranches, sparse tree groves. Nests in holes of trees, buildings, etc.
Foods: Insects and various fruited plants.
Misc.: Introduced species. Usually considered a nuisance because of its gregarious nature.

Name: Vireos-Family Vireonidae
Habitat: Mixed forests, shade trees, groves. Nests are baskets hung from branch.
Foods: Main diet consists of insects, spiders, snails. Also various berries.
Misc.:

Name: Wood Warblers-Family Parvlidae
Habitat: Most prefer dense conifer forests but some utilize wet areas of streams and marshes. Nests are usually grass or moss cups in low branches or on ground.
Foods: Mainly insectivorous. Consume caterpiliars, beetles, wasps, Misc.: ants, flies, true bugs, plant lice, bees, cankerworms, locusts; also spiders.

Name: House (English) Sparrow-Passer domesticus
Habitat: Cities, towns, farms. Nest of various twigs, grass, and strings woven into bulky mass
Foods: Mostly plants. Corn, oats, wheat, ragweed, elm, sunflower, insects.
Misc.: Introduced species. Sometime damage crops.

Name: Meadowlarks, Blackbirds, Drioles-Family Icteridae (partialsee below)
Habitat: Open fields, hay meadows, prairies, plains. Nests are in grassy bowls on ground.
Foods: 50\% animals: insects, spiders, centipedes, ants, sunflower, wheat.
Misc.: Includes: hobolink and western meadowlark.

Name: Family Icteridae (partial)
Habitat: Fresh marshes, tules, swamps-forages in open areas. Nest of woven plant fibers suspended above water in tules.
Foods: \(50 \%\) plants: insects, snails, crustaceans, spiders, oats, corn, ragweed, wheat, sunflower, dandelion.
Misc.: Includes: yellow-headed and red-winged blackbirds.

Name: Family Icteridae (partial)
Habitat: Orchards, farms, towns, shade trees, open woods, lakeshores, parks. Nests are grass-lined pouches suspended from trees or a cup on ground (Brewers blackbird).
Foods: Mostly animal: insects, spiders, snails, corn, oats, wheat, sunflower, dandelion, berries.
Misc: Includes: Brewer's blackbird, Orchard and Northern (Baltimore) Orioles.
Name: Family Icteridae (partial)
Habitat: Croplands, towns, streamsides, stockyards, farms. Cowbirds lay their eggs in other birds nests. Grackles build nest in trees, reeds, hollows.
Foods: 50/50. Insects, spiders, myriapods, crustaceans, worms, snails, toads, mice, bird eggs, ragweed, oats, wheat, corn, sunflower.
Misc: Includes: common grackle and brown-headed cowbird.
Name: Western Tanager-Piranga ludoviciana
Habicat: Open conifer or mixed forest. Nest in shallow bowl of oak, pine, or fir.
Foods: Insects plus fruits of various trees.
Misc.:

Name: Grosbeaks-Family Fringillidae (partial)
Habitat: Conifer forests. Nests are loose, low cups in conifers.
Foods: Mostly seed and fruits, also insects, spiders.
Misc.: Includes: evening and pine grosbeaks.

Name: Buntings-Family Fringillidae (partial)
Habitat: Sagebrush, brushy slopes, streamsides. Nests are looslyformed cups in brush.
Foods: Insects, seeds of weeds, grasses.
Misc.: Includes: lazuli bunting.

Name: Dickcissel-Family Fringillidae (partial)
Habitat: Roadsides, field, meadows, other open areas. Nests in low bush.
Foods: \(50 \%\) animal matter. Insects, bristlegrass, oats, wheat, corn.
Misc.:

Name: Finches-Family Fringillidae (partial)
Habitat: Mountains and woodlands except for house finch which may inhabit towns, ranches, open woods, canyons and deserts.
Foods: Near \(100 \%\) plant foods-buds, fruit, seeds. Elm, ragweed, aspen, poison ivy, mullein, mustard, pigweed, chickweed, sedge, oats, wheat; aphids, caterpillars and others.
Misc: Includes: purple, house, gray-crowned rosy, black rosy finches, and pine siskin.
Name: Goldfinches-Family Fringillidae (partial)
Habitat: Rivergroves, willows, orchards, roadsides. Nest is a felt cup in a tree.
Foods: Near \(100 \%\) plant except spring. Aphids, caterpillars, ragweed, thistle, shepards-purse, goosefoot, sunflower, dandelion, golden rod, chickweed, evening primrose, cane flower, pine, elm.
Misc: Includes: American (common) goldfinch.
Name: Crossbills-Family Fringillidae (partial)
Habitat: Conifer forests and groves. Nest is a flat cup in a conifer.
Foods: Near \(100 \%\) plants except in summer months. Spiders, insects, pine ( \(66 \%\) ), ragweed, other conifers.
Misc.: Includes: Red Crossbill.

\section*{Name: Towhees-Family Fringillidae (partial)}

Habitat: Dry mountain brush, chaparral, sage, open pines, city shrubs. Nests are on the ground or low in bush.
Foods: Spiders, insects, pigweed, dandelion, ricegrass, corn, sedge, strawberry, chickweed.
Misc.: Includes: Green-tailed and rufous-sided towhees.

Name: Lark Bunting-Family Fringillidae (partial)
Habitat: Plains and prairies. Nest on ground.
Foods:Mostly animal. Grasshoppers (50\% +), beetles and weevils (second), other insects, needlegrass, pigweed, oats, dropMisc.: seed, gromwell, goosefoot.

Name: Sparrows-Family Fringiilidae (partial)
Habitat: Large group; may be present in most habitat types.
Foods: Large variety of invertebrates and plant materials.
Misc.: Includes: Savannah, grasshopper, Baird's, sharp-tailed, vesper, lark, tree, chipping, clay-colored, Brewer's, field, Harris's, white-crowned, white-throated, fox, Lincoln's, and song sparrows.
Name: Juncos-Family Fringillidae (partial)
Habitat: Conifers and mixed forests. Nest on ground.
Foods: Caterpillars, beetles, ants (choice animal foods), other insects, spiders, ragweed, dropseed, pigweed, goosefoot, wheat, sedge.
Misc:
Name: Longspurs-Family Fringillidae (partial)
Habitat: Open areas; plains, prairies, airports, fields. Nest on ground.
Foods: Insects, spiders, sunflower, wheat, goosefoot, grama, needlegrass, ragweed, sedge, dropseed, clover, bullrush, three-own, pigweed.
Misc: Includes: McCown's, lapbird, Smith's, and chestnutcollared longspurs.
Name: Snow Bunting-Family Fringillidae (partial)
Habitat: Prairies, fields, shores. Nest on ground.
Foods: Mostly plants. Fly larvae, true bugs, sand fleas, ragweed, pigweed, goosefoot, sedge, buttercut, dropseed, wheat, fescue, bullrush.
Misc:

\section*{Name:}

Habitat:
Foods:
Misc.:

Summary of data collected by researchers on the sharp-tailed grouse of Tract III.

Sharp-tailed grouse observation 272
Population estimate 404
Density
8.1/sq. mile

Leks (dancing grounds)

Food habits, Tract III, Fall:
1973- \(\begin{aligned} & \text { Prairie rose hips } \\ & \begin{array}{l}\text { Skunkbush sumac berries } \\ \text { Common dandelion leaves }\end{array} 14 \text { percent by volume } \\ & \end{aligned}\)
1974*- Grasshoppers, other animal matter-79 percent by volume Prairie rose hips
Skunkbush sumac berries 16.1 percent by volume
Snowberry berries
*1974 collection was made earlier and may account for insect use.

Habitat type preference. Percentage use of birds observed during January-December, 1975.
1. Grassland 24
2. Silver sagebrush-grassland17
3. Roadways (with burrow pits) 13.5
4. Pasture
9.5
5. Mature wheat or stubble
6. Alfalfa hay
7. Big sagebrush-grassland
8. Skunkbush-grassland
9. Disturbed grassland

4
10. Ponderosa pine-grassland
2.5
11. Creek bottom
12. Grass hay
13. Fallow
14. Tall shelter belt

Source: Westmorland, 19750, and Dames and Moore, 1975.
Montana.
\(\begin{array}{llll}\wedge & 0 & m & n \\ 0 & 0 & 0 & - \\ & & -\end{array}\)
13.3
27.7
23.4
4.7 Creek bottom
Creek bottomush and
Silver sagebrush-grassland
Roadways
Residential


\section*{Other Areas}
' Үәәхј Kdxes moxf
eqre queseəyd pəyวəu-8uṭ fo Kıeumis
Pheasants observed:

Sarpy Creek route, 1974
Sarpy Creek route, 1975
E. Fork Sarpy Creek route, 1974
SL6I'əznox yәәxว Kdxes yxoд ・ヨ
Sarpy Basin study area, \(1975^{2}\)
2
Lower Sarpy Creek, \(1975^{2}\)
Lower Sarpy Creek, seven prior years
Surrounding drainages \({ }^{2}\)
> \(\begin{array}{ll}\text { rcent observations within habitat type } \\ 49 & \text { Alfalfa hay } \\ 17 & \text { Grassland } \\ 13 & \text { Silver sagebrush-grassland } \\ 6 & \text { Creek bottom } \\ 6 & \text { Pasture } \\ 4 & \text { Roadways }\end{array}\)

。d
0
\[
\begin{aligned}
& \text { 1. Westmorland Resources, } 19750 . \\
& \text { 2. Martin, } 1975 \text {. }
\end{aligned}
\]

Summary of data of bird species collected from Sarpy Creek,Bighorn County, Montana.
Species potentially occurring ..... 237
Species observed ..... 73
Species that may nest in area ..... 162
Species known to nest in area ..... 13
Resident species ..... 41
Species of special interest ..... 30
From Westmorland Resources, 19750 and Dames and Moore, 1975.

SPECIES OF AMPHIBIANS AND REPTILES OBSERVED OR POSSIBLY OCCURRING ON THE PROJECT AREA NEAR SARPY CREEK, BIG HORN COUNTY, MONTANA
\begin{tabular}{|c|c|}
\hline Species & Common Name \\
\hline \multicolumn{2}{|l|}{Order Caudata - Salamanders} \\
\hline Family Ambystomatidae - Mole Salamander & \\
\hline Ambystoma tigrinum & Tiger Salamander \\
\hline \multicolumn{2}{|l|}{Order Salientia - Frogs and Toads} \\
\hline \multicolumn{2}{|l|}{Family Pelobatidae - Spadefoot Toads} \\
\hline Scaphiopus bombifrons & Spadefoot Toad \\
\hline \multicolumn{2}{|l|}{Family Bufonidae - True Toads} \\
\hline \({ }^{\text {a Bufo woodhousei }}\) & Woodhouse's Toad \\
\hline Bufo cognatus & Great Plains Toad \\
\hline \multicolumn{2}{|l|}{Family Ranidae - True Frogs} \\
\hline \({ }^{\text {a Rana }}\) pipiens & Leopard Frog \\
\hline \multicolumn{2}{|l|}{Family Hylidae - Tree Frogs} \\
\hline Pseudacris triseriata & Chorus Frog \\
\hline \multicolumn{2}{|l|}{Order Testudines - Turtles} \\
\hline \multicolumn{2}{|l|}{Family Chelydridae - Snapping, Musk, and Mud Turtles} \\
\hline Chelydra serpentina & Snapping Turtles \\
\hline \multicolumn{2}{|l|}{Family Testudinidae - Water and Box turtles, Tortoises and Allies} \\
\hline \({ }^{\text {ax }}\) Chrysemys picta & Painted Turtles \\
\hline \multicolumn{2}{|l|}{Family Trionychidae - Softshell Turtles} \\
\hline Trionyx spiniferus & Spiny Softshell \\
\hline \(\mathrm{S}-49\) & \\
\hline
\end{tabular}

Species
Order Squamata - Lizards and Snakes
Family Iguanidae - Iguanids

\section*{Sceloporus graciosus \\ Sagebrush Lizard}

Phrynosoma douglassi
Family Colubridae - Colubrids
Heterodon nasicus
\({ }^{\text {a Coluber }}\) constrictor
Pituophis melanoleucus
Lampropeltis triangulum
Thamnophis sirtalis
Thamnophis elegans

Thamnophis radix
Family Viperidae - Vipers and Pit Vipers
\({ }^{\text {a Crotalus }}\) viridis viridis

Common Name

Short-Horned Lizard

Western Hognose Snake
Racer
Gopher Snake
Milk Snake
Common Garter Snake
Western Terrestrial Garter Snake

Plains Garter Snake

Prairie Rattlesnake
\({ }^{2}\) Observed on Project Area

\section*{TABLE 16}

Notes on habitat and food habits of amphibians and reptiles that occur or may oc cur on or near Westmorland Resources Sarpy Creek lease.

Sources: Stebbins, Robert C., 1966 Martin, Tim, and Nelson, 1961

Name: Tiger Salamander-Ambystoma tigrinum
Habitat: Adults terrestrial, larvae aquatic. Adults usually not seen except during breeding season. Range from high mountains to plains.
Foods: Worms, insects, carrion.
Misc.:

Name: Spadefoot Toad (plains)-Scaphiopus bombifrons
Habitat: Areas of low rainfall; plains, hills and river bottoms. Burrows in spil. Uses both temporary and permanent water.
Foods:Tadpoles, sometimes cannibalistic, insects.
Misc.:

Name: True Toads-Family Bufonidae
Habitat: Woodhouse's-wide variety. Great Plains-prairies and deserts.
Foods: Invertebrates.
Misc.: Includes: Woodhouse's and Great Plains toads.

Name: Leopard Frog-Rana pipiens
Habitat: Most widely distributed amphibian in North America.
Foods: Invertebrates.
Misc.:

Name: Chorus Frog-Pseudacris triseriata
Habitat: Quiet pools of lakes and marshes.
Foods: Invertebrates.
Misc.:

Name: Snapping Turtle-Chelydra serpentina
Habitat: Lakes, ponds, marshes, slow rivers and streams. Prefers areas of dense aquatic vegetation.
Foods: Crayfish, snails, insects, fish, frogs, salamanders, reptiles, birds, mammals and aquatic plants.
Misc.:

Name: Painted Turtle-Chrysemys picta
Habitat: Quiet waters of lakes, marshes, rivers, streams. Prefer aquatic vegetation-mud bottoms.
Foods: Aquatic plants, insects, spiders, earthworms, mollusks, crayfish, fish, frogs, tadpoles, carrion.
Misc.:

Name: Spiny Softshell-Trionyx spiniferus
Habitat: Quiet water of rivers, ponds, canals. Likes mud bottoms.
Foods: Earthworms, snails, crayfish, insects, fish, frogs, tadpoles, aquatic plants, carrion.
Misc.:

Name: Sagebrush Lizard-Sceloporus graciosus
Habitat: Sagebrush areas; also forests and river bottoms where open areas and sunlight are available.
Foods: Insects, spiders, mites, scorpions, snails.
Misc.:

Name: Short-Horned Lizard-Phrynosoma douglassi
Habitat: Plains to mountains. Live-bearer.
Foods: Mainly ants.
Misc.:

Name: Western Hognose Snake-Heterodon nacicus
Habitat: Sandy, gravelly prairies, farmlands and flood plains.
Foods: Toads, frogs, salamanders, lizards.
Misc.:

Name: Racer-Coluber constrictor
Habitat: Open areas; meadows, prairies, thin brush, forest glades. Foods: Lizards, frogs, small mammals, insects.

Misc.:

Name: Gopher Snake-Pituophis melanoleucus
Habitat: Nation wide-most habitat types.
Foods: Rodents, rabbits, birds, eggs, lizards.
Misc.:

Name: Milk Snake-Lampropeltis triangulum
Habitat: Widely distributed in U.S. in most habitat types. Secretive.
Foods: Snakes, lizards, mice, birds, eggs.
Misc.:

Name: Common Garter Snake-Thamnophis radix
Habitat: Most widely distributed U.S. reptile. Found in most habitat tupes but usually near water.
Foods: Fish, toads, frogs, dadpoles, salamanders, birds, small mammals, earthworms, slugs, leeches. Live-bearer.
Misc.:

Name: Western Terrestrial Garter Snake-Thamnophis elegans
Habitat: Grassland, brushland, woodland, forest. May frequent water.
Foods: Fish, toads, frogs, tadpoles, salamanders, birds, small mammals, earthworms, slugs, leeches, lizards, snakes. Live-bearer.
Misc:
Name: Plains Garter Snake-Thamnophis radix
Habitat: Wet prairies and farmland, also pinon-juniper types. Live-bearer.
Foods: Fish, toads, frogs, tadpoles, earthworms, insects, carrion.
Misc.:

Name: Prairie Rattlesnake-Crotalus viridis viridis
Habitat: Many habitat types; avoids deserts. Rock outcrops, talus, rocky stream courses and ledges. Live-bearing.
Foods: Small mammals, birds, lizards, frogs.
Misc. :
TABLE 17
es, Montana.*
In Lease Area
        \(\wedge \infty 0 \forall N\)
2.
0.
2.
4.
0.
以Mッ
 Darners
Darners



\footnotetext{
Source: Dames and Moore, 1975. Brown, 1971.
}

\section*{TABLE 20}

List of the species of fish that occur in Sarpy Creek with notes on habitat and food requirements.

References: Dames and Moore, 1975. Brown, 1971.

Name: Goldeye-Hiodon alosoides
Habitat: Montana native. Generally found in large turbid rivers, lakes, and marshes.
Foods: Mostly insects, also crustaceans, mollusks, small fish. Whatever is available at the time.
Misc.: Goldeye are consumed both fresh and smoked; have good fighting qualities; are not considered a game fish. Some commercial fishing in state.
Name: Carp-Cyprinus carpio
Habitat: Introduced species. Prefer warmer, shallow water of lakes and streams. Withstand turbid and polluted waters.
Foods: Omnivorous. Feed on large variety of plants and aquatic animals as the opportunity arises.
Misc.: Non-game fish. Some commercial value. Good fighter on light fishing tackle. Generally disliked.

Name: Golden Shiner-Notemigonus crysoleucas
Habitat: Montana native (eastern) ; introduced as forage fish in other areas. Prefers clear quiet waters of rivers and ponds, likes heavy weed growth.
Foods:Crustaceans, snails, zooplankton, aquatic insects, terrestrial insects, mollusks, felamentous algae.
Misc: Important as a forage and bait fish over much of its range.
Name: Flathead Chub-Hybopsis gracilis
Habitat: Montana native. Turbid, quiet waters of streams and rivers.
Foods: Predaceous, opportunistic feeders. Most aquatic insects and occasional terrestrial forms that occur in their vicinity.
Misc.: Probably are important forage fish for predaceous game fishes. Little value to man except as bait fish.

Name: Lake Chub-Covesius plumbeus
Habitat: Montana native. Rare in large streams; prefers small streams; sometimes found in lakes.
Foods: Terrestrial and aquatic insects, zooplankton, algae, other fish.
Misc.: Probably an important food source for predaceous game fishes.

Name: Emerald Shiner-Notropis atherinoides
Habitat: Montana native. Prefers open water of lakes and rivers, avoids vegetation.
Foods: Zooplankton, terrestrial and aquatic insects, microcrustaceans, algae, diatoms.
Misc.: Importand as a food source for predatory species.

Name: Plains Minnow-Hybognathus placitus
Habitat: Montana native. Large, quiet rivers, weedy areas.
Foods: Feeds on bottom ooze. Algae, minute anima1s.
Misc.: Food source for predatory species.

Name: Fathead Minnow-Pimephales promelas
Habitat: Montana native. Hardy fish, can survive in numerous habitats. Lakes, streams, swamps.
Foods: Algae, debritus, insect larvae, zooplankton.
Misc.: Good forage fish.

Name: Longnose Dace-Rhinichthys cataractae
Habitat: Montana native. Wide distribution. Swift, cold streams to warm muddy lakes and ponds.
Foods: Bottom feeder. Aquatic insect larvae, fish eggs, algae.
Misc.: Important forage fish.

Name: River Carpsucker-Carpoides carpio
Habitat: Montana native. Warmer lakes, streams and rivers, brackish waters.
Foods: Algae, diatoms, desmids, crustaceans, mollusks, rotifers, aquatic insect larvae.
Misc.:

Name: Shorthead Redhorse-Moxostoma macrolepidotum
Habitat: Montana native. Streams and rivers, swift, shallow water, clean rocky bottom.
Foods: Aquatic insects, crustaceans, diatoms, worms, mollusks.
Misc.: Fair food fish.

Name: Longnose Sucker-Catostomus catostomus
Habitat: Montana native. Prefers clear lakes, streams and rivers but found in warmer, more turbid waters.
Foods: Aauatic invertebrates and plants.
Misc.: Provide forage for predatory species. Flesh sometimes eaten by mar.

Name: White Sucker-Catostomus commerson
Habitat: Wide-spread in all habitat types except very cold, very fast water.
Foods: Aquatic invertebrates and plants.
Misc.: Provide forage for predatory species. Flesh sometimes eaten by man.

Name: Mountain Sucker-Catostomus platyrhynchus
Habitat: Streams and rivers. Seldom in lakes.
Foods: Diatoms, other algae, higher plants, dysterous larvae.
Misc.: May be important as a forage fish.

Name: Black Bullhead-Ictalurus melas
Habitat: Probably introduced species. Shallow ponds, lakes and backwaters of streams. Tolerant of poor quality water.
Foods: Omnivorous. Aquatic insects, fish, crayfish, worms, snails, aquatic plants, carrion.
Misc.: Considered good sport fish and food fish in some areas.

Name: Green Sunfish-Lepomis cyanellus
Habitat: Probably introduced species. Inhabits wide variety of habitats. Likes backwater of streams.
Foods: Insects, mollusks, crustaceans, small fish.
Misc.: Not a good sportfish except for young anglers. Provides forage for predators.

Name: Sauger-Stizostedion canadense
Habitat: Montana native. Prefer large lakes and rivers that are turbid.
Foods: Small fish (any species), crayfish, aquatic insects.
Misc.: Prized game fish.

\section*{Name:}

Habitat:
Foods:
Misc.:

\section*{APPENDIX F}

\section*{Data on Socio-Economics}

\section*{TABLES}

> Page
1. Population and employment analysis: converging labor force participation rate......................... F-2
2. Population and employment analysis: converging labor force participation rate with Westmoreland's 20-year mining plan.
3. Non-agricultural wage income imports, Big Horn County impact, Westmoreland's 20 -year mining plan annual income levels.............................. F-4


 Births Deaths Migra- Total \begin{tabular}{l}
\(\begin{array}{c}\text { Mion Change }\end{array}\) \\
\hline
\end{tabular}
 \(00 \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\infty} 000000000000000 \underset{\sim}{\infty} 000 \underset{\sim}{-1}\)

 Unemployment Rate in in in トゥ \(㇒\) Mr











\section*{POPULATION AND EMPLOYMENT ANALYSIS:} CONVERGING LABOR FORCE PARTICIPATION RATE WITH WESTMORELANDS 20 YEAR MINING PLAN


 ○○



\author{
Non-Agricultural Wage Income Impacts \\ Big Horn County Impact \\ Westmoreland 20 Year Mining Plan \\ Annual Income Levels
}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{With No Crow Coal Development} & \multicolumn{2}{|l|}{With Westmoreland} & \multicolumn{2}{|l|}{Change Relative to Baseline} \\
\hline & Crow Income & Total Income & Crow Income & Total Income & Crow Income & Total Incor \\
\hline 1971 & 4827.1 & 16148.5 & 4827.1 & 16148.5 & 0 & 0 \\
\hline 72 & 5193.4 & 16131.0 & 5193.4 & 16131.0 & 0 & 0 \\
\hline 73 & 5507.6 & 15865.0 & 7059.6 & 21969.5 & 1552.0 & 6104.5 \\
\hline 74 & 5857.4 & 15446.2 & 7341.3 & 20966.2 & 1483.9 & 5520.0 \\
\hline 75 & 5920.8 & 15634.7 & 6998.1 & 17535.4 & 1077.3 & 1900.7 \\
\hline 76 & 5987.2 & 15847.5 & 7698.1 & 18315.9 & 1710.9 & 2468.4 \\
\hline 77 & 6338.6 & 16426.8 & 8631.4 & 19627.9 & 2292.8 & 3201.1 \\
\hline 78 & 6419.3 & 16719.3 & 9402.3 & 20822.4 & 2983.0 & 4103.0 \\
\hline 79 & 6501.3 & 16981.3 & 8624.7 & 19951.8 & 2123.4 & 2970.5 \\
\hline 1980 & 6553.6 & 17205.8 & 8968.5 & 20546.3 & 2414.9 & 3337.5 \\
\hline 81 & 6350.9 & 17125.4 & 8778.1 & 20444.8 & 2427.2 & 3319.4 \\
\hline 82 & 6438.8 & 17357.4 & 8862.4 & 20712.0 & 2423.6 & 3354.6 \\
\hline 83 & 6531.7 & 17637.9 & 8952.1 & 21005.2 & 2420.4 & 3367.3 \\
\hline 84 & 6621.4 & 17929.1 & 9032.7 & 21263.0 & 2411.3 & 3333.9 \\
\hline 85 & 6702.0 & 18179.3 & 9113.0 & 21521.3 & 2411.0 & 3342.0 \\
\hline 86 & 6782.3 & 18437.6 & 9205.1 & 21797.9 & 2422.8 & 3360.3 \\
\hline 87 & 6874.4 & 18724.5 & 9298.0 & 22079.1 & 2423.6 & 3354.6 \\
\hline 88 & 6967.3 & 19003.0 & 9387.9 & 22358.7 & 2420.6 & 3355.7 \\
\hline 89 & 7048.6 & 19253.9 & 9476.9 & 22645.4 & 2428.3 & 3391.5 \\
\hline 1990 & 7189.9 & 19732.1 & 9565.1 & 22908.7 & 2375.2 & 3176.6 \\
\hline 91 & 7278.1 & 19998.6 & 9634.4 & 23168.4 & 2356.3 & 3169.8 \\
\hline 92 & 7367.1 & 20269.3 & 9722.8 & 23442.6 & 2355.7 & 3173.3 \\
\hline 93 & 7464.8 & 20590.5 & 9880.6 & 23930.4 & 2415.8 & 3339.9 \\
\hline 94 & 7628.6 & 21063.9 & 9981.3 & 24241.8 & 2352.7 & 3177.9 \\
\hline 95 & 7722.3 & 21392.5 & 10075.0 & 24555.0 & 2352.7 & 3162.5 \\
\hline 96 & 7825.4 & 21705.7 & 10178.1 & 24875.8 & 2352.7 & 3170.1 \\
\hline 97 & 7935.5 & 22066.2 & 10288.2 & 25208.4 & 2352.7 & 3142.2 \\
\hline 98 & 8064.2 & 22431.3 & 10469.2 & 25790.1 & 2405.0 & 3358.8 \\
\hline 99 & 8171.3 & 22779.6 & 10591.9 & 26171.0 & 2420.6 & 3391.4 \\
\hline 2000 & 8291.6 & 23178.4 & 10726.9 & 26563.6 & 2435.3 & 3385.2 \\
\hline
\end{tabular}
```


[^0]:

[^1]: *These rates are from the 1970 Census except that they have been smoothed to eliminate obvious errors on the Census tapes (e.g. labor force exceeding the population), or where there is behavior that on a priori grounds did not make sense, (i.e. even if it did exist in 1970, it would not be expected to continue in the future even under an assumption of no change in participation behaviour). Of the total 36 data points, 8 were adjusted. These are explained in detail in TR, pp. 26-34.

[^2]: 1/ Comprehensive Plan, Big Horn County Planning Board Jurisdictional Area 1974-75, prepared by Intermountain Planning Inc., Billings, Montana.

[^3]: 1/ For numerical details see Tables 1 and 2, Appendix F.

[^4]: 1/ All in constant 1976 prices. For numerical details see Table 3, Appendix F.

[^5]: 1/ In a related analysis Mountain West Research shows no measurable impact for the Hardin area through 1981.

[^6]: a Environmental Systems, 1973
 bMaximum height of aircraft

[^7]: a Environmental Systems, 1973

[^8]: a From The Bureau of National Affairs, 1975

[^9]:

[^10]: Data besed on analysee from five eamplee of each coal unit provided by Weatmorelend Resourcea. Concentratione
 given in perts per mililon. Cosi Unicei S-1 - Screy 1 Coel: R-1 - Rosebud-Mckay Coal: S-2 - Screy 2 Coal: glven Robsnson Coal.

 From Westmoreland Resources, 1975 1, Appendix E, p. E-5, 6

[^11]: Unite reported in parte per million unlees otherwiee indicated Aalysis reported in parts per thousand

[^12]: Onita reported in parta per aillion unleas otherwiee indicated
 Analyaia reported in parta per thousand - abseat

[^13]: Depth to water: Whole numbers only--reported; whole numbers and tenths--measured.
 Land-surface altitude: Estimated from U.S. Geol. Survey $7 \frac{1}{2}$ min. topog. maps; accurate to 10 feet.

 Water use: C, commercial: H times domestic; S. stock; U, unused.
 Water use: C, commercial; H, domestic; S, stock; U, unused.
 Rosebud-McKay clinker; RbC, Robinson coal; RbCl, Robinson clinker; SubRb, unspecified aquifers below strippable interval. (M) denotes monitor well.

[^14]: Depth to water: Whole numbers only--reported; whole numbers and tenths--measured.
 Land-surface altitude: Estimated from U.S. Geol. Survey $7 \frac{1}{2} \mathrm{~min}$. topog. maps; accurate to 10 feet.
 Specific conductance: Micromhos per centimeter; field measurements unless otherwise noted (L: laboratory).
 Dissolved solids; Milligrams per liter; laboratory calculations unless otherwise noted (E: estimated; equal to
 Water use: C, commercial; H, domestic; S,
 Water use: C, commercial; H, domestic; S, stock; U, unused.
 times specific conductance).
 Water source: Coded sources--Al, Alluvium; R-McO, Rosebud-McKay overbur den; R-McC, Rosebud-McKay coal; R-McCl, Rosebud-McKay clinker; RbC, Robinson coal; RbCl, Robinson clinker; SubRb, unspecified aquifers below strippable interval. (M) denotes monitor well.

[^15]: Depth to water: Whole numbers only--reported; whole numbers and tenths--measured.
 Land-surface altitude: Estimated from U.S. Geol. Survey $7 \frac{1}{2} \mathrm{~min}$. topog. maps; accurate to 10 feet.
 Specific conductance: Micromhos per centimeter; field measurements unless otherwise noted (L: laboratory).
 Dissolved solids: Milligrams per liter; laboratory calculations unless otherwise noted (E: estimated; equal to (. $87 \pm .13$)
 times specific conductance).
 times specific conductance).
 Water source: Coded sources--Al, Alluvium; R-McO, Rosebud-McKay overburden; R-McC, Rosebud-McKay coal; R-McCl,

[^16]: Information for numbers greater than 200 from

[^17]: Land-surface altitude: Estimated from U.S. Geol. Survey $7 \frac{1}{2}$ min. topog. maps; accurate to 10 feet
 Dissolved solids: Milligrams jer liter; laboratory calculations unless otherwise noted (E: estimated; equal to (.87 $\pm .13$)

 Specific conductance: Micromhos per centimeter; field measurements unless otherwise noted (L: laboratory).
 Flow: Estimated spring discharge (gallons per minute).
 Water source: Coded sources--Al, Alluvium; R-McO, Rosebud-McKay overburden; R-McC, Rosebud-McKay coal; R-McCl, моโəq sxəj! strippable interval.

[^18]: Land-surtace aititute simated from U.S. Geol. Survey $7 \frac{1}{2}$ min.
 Dissolved solids: Mingrams per hiter; laboratory calculations unless otherwise noted (E; estimated; equal to (.87 $\pm .13$)
 Specific conductance Viocromhos conductance).
 Flow: Estimated spring discharge (gallons per minute) measurements unless otherwise noted (L: laboratory).
 Water use: H, domestic: S, stock; U, unused.
 Water source: Coded sour:.es $-\lambda$, shluvium:
 Rosebud-McKay clinker; RbC, Robinson coal; RbCl, Robinson clinker; SubRb, unspecified aquifers below strippable interval.

[^19]: Rose bud-McKay over bur den: Roblnson coal: RBCI, Robla clinker: SubRb. unspecifled aquifers
 below strippable Interval.

[^20]: NOTE. PARAMETERS ARE TRTAL DISSCLVLD UNLESS LAEELEE TE-TOTAL REGEVERAGLE
 CILUTE SPECIFIC CUNJULTANCE DEREFAT REACTANEE VALUFS
 ERROR DSC U. O 131070 i i pe is i j ANALYST LAN
 NOTE. IN CORRF NDFNGE RELATEL TO THIS ANALYSIS REFOR TO NUAER T4-70S

