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PREFACE.

At a meeting of the American Association for the Advancement of Science,

held in August, 18*76, at Buffalo, the writer read two papers, entitled respect-

ively, "Certain New Constructions in Graphical Statics," and "A New Funda-

mental Method in Graphical Statics." These papers, with considerable addi-

tions and amplifications, are presented on the following pages ; and to them
is added a third on The Theory of Internal Stress.

The paper, entitled JVew Constructions in Graphical /Statics, is largely-

occupied with the various forms of the elastic arch. The possibility of obtain-

ing a complete graphical solution of the elastic arch in all cases depends upon

a theorem not hitherto recognized as to the relative position of the equilibrium

curve due to the loading and the curve of the arch itself. The demonstration

of this theorem, which may be properly named the Theorem Respecting the

Coincidence of Closing Lines, as given on page 12, is somewhat obscure. How-
ever, a second demonstration is given on page 98, and this latter, stated at

somewhat greater length, may also be found in the America?! Journal of Pure

and Applied Mathematics, Vol. I, No. 3. Prof. Wm. Cain, A.M., C.E., has

also published a third demonsiration in Van Nostrand''s Magazine, Vol. XVIII.

The solution of the elastic arch is further simplified so that it depends upon that

of the straight girder of the same cross section. Moreover, it is shown that

the processes employed not only serve to obtain the moment, thrust and shear

due the loading, but also to obtain those due to changes of temperature, or to

any cause which alters the span of the arch. It is not known that a graphical

solution of temperature stresses has been heretofore attempted.

A new general theorem is also enunciated which affords the basis for a

direct solution of the flexible arch rib, or suspension cable, and its stiffening

truss.

These discussions have led Jo a new graphical solution of the continuous

girder in the most general case of variable moment of inertia. This is accom-

panied by an analytic investigation of the Theorem of Three Moments, in

which the general equation of three moments appears for the first time in

simple form. This investigation, slightly extended and amplified, may be also

found in the American Journal of Pure and Applied Mathematics, Yol. I, No. 1.

Intermediate between the elastic and flexible arch is the arch with block-

work joints, such as are found in stone or brick arches. A graphical solution

of this problem was given by Poncelet, which may be found in Woodbury's

treatise on the Stability of the Arch, page 404. Woodbury states that this

solution is correct in case of an unsymmetrical arch, but in this he is mis-

*taken. The solution proposed in the following pages is simpler, susceptible



VI PREFACE.

of greater accuracy, and is not restricted to the case when either the arch or

loading is symmetrical about the crown.

The graphical construction for determining the stability of retaining walls

is the first one proposed, so far as known, which employs the true thrust in

its real direction, as shown by Rankine in his investigation of the stress of

homogeneous solids. It is in fact an adaptation of that most useful conception,

Coulomb's Wedge of Maximum Thrust, to Rankine's investigation.

It has also been found possible to obtain a complete solution of the dome
of metal and of masonry by employing constructions analogous to those em-

ployed for the arch ; and in particular, it is believed that the dome of masonry

is here investigated correctly for the first time, and the proper distinctions

pointed out between it and the dome of metal.

In the paper entitled, A New General Method in Graphical Statics, a

fundamental process or method is established of the same generality as the

well-known method of the Equilibrium Polygon. The new method is designated

as that of the Frame Pencil, and both the methods are discussed side by side

in order that their reciprocal relationship may be made the more apparent. The

reader who is not familiar with the properties of the equilibrium polygon will

find it advantageous to first read this paper, or, at least, defer the others until

he has read it as far as page 83.

As an example affording a comparison of the two methods, the moments of

inertia and resistance have been discussed in a novel manner, and this is ac-

companied by a new graphical discussion of the distribution of shearing stress.

In the paper entitled. The Theory of Internal Stress in Graphical Statics,

there is considerable new matter, especially in those problems which relate to

the combination of states of stress, a subject which has not been, heretofore,

sufficiently treated.

It is hoped that these graphical investigations which afford a pictorial repre-

sentation, so to speak, of the quantities involved and their relations may not

present the same difficulties to the reader as do the intricate formulae arising

from the analytic solutions of the same problems. Indeed, analysis almost

always requires some kind of uniformity in the loading and in the structure

sustaining the load, while a graphical construction treats all cases with the

same ease ; and especially are cases of discontinuity, either in the load or

structure, difficult by analysis but easy by graphics.

H. T. E.
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CHAPTER I.

It is the object of this work to fully dis-

cuss the stability of all forms of the arch,

flexible or rigid, by means of the equili-

brium polygon—the now well recognized
instrument for graphical investigation.

One or two other constructions of inter-

est may also be added in the sequel.

The discussion will presuppose an ele-

mentary knowledge of the properties of

the equilibrium polygon, and its accom-
panying force polygon, for parallel

forces.

As ordinarily used in tlie discussion of

the simple or continuous girder, the

equilibrium polygon has an entirely arti-

ficial relation to the problem in hand,
and the particular horizontal stress as-

sumed is a matter of no consequence
;

but not so with respect to the arch. As
will be seen, there is a special equili-

brium polygon appertaining to a given
arch and load, and in this particular

polygon the horizontal stress is the ac-

tual horizontal thrust of the arch. W?ien
this thrust has been found in any given
case, it permits an immediate determ-
ination of all other questions respecting

the stresses. This thrust has to be de-

termined differently in arches of differ-

ent kinds, the method being dependent
upon the number, kind, and position of

the joints in the arch.

The methods we shall use depend upon
our ability to separate the stresses in-

duced by the loading into two parts; one

part being sustained in virtue of the re-

action of the arch in the same manner as

an inverted suspension cable (^.e., as an
equilibrated linear archj, and the remain-
der in virtue of its reaction as a girder.

These two ways in which the loading is

sustained are to be considered somewhat
apart from each other. To this end it

appears necessary to restate and discuss,

in certain aspects, the well-known equa-
tions applicable to elastic girders acted
on by vertical pressures due to the load
and the resistances of the supports.

Let jP represent any one of the various

pressures, Pj, P^j -^n, applied to the
girder.

Consider an ideal cross section of the
girder at any point 0.

Let i?=the horizontal distance from O
to the force P.

'Let ^=the radius of curvature of the
girder at 0.

At the cross section O, the equations

just mentioned become :

—

Shearing stress, S=^ (P)

Moment of flexure, J/=^ (Px)

Curvature, ~B EI
Total bending, B=:E{P) =^ (-^^)

Deflection, D = :S (Px) = 2
(^^)
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in which E is the modulus of elasticity

of the material, and I is the moment of

inertia of the girder; and as is well

known, the summation is to be extended
from the point to a free end of the
girder, or, if not to a free end, the sum-
mation expresses the effect only of the

quantities included in the summation.

Let a number of points be taken at

equal distances along the girder, and let

the values of P^ S, 3f, J5, D be com-
puted for these points by taking at

these points successively, and also erect

ordinates at these points whose lengths

are proportional to the quantities com-
puted. First, suppose T is the same at

each of the points chosen, then the

values of these ordinates may be ex-

pressed as follows, if a, b, c, etc., are any
real constants whatever :

yp = a . P . (1)

ys^b.2{P) . . (2)

ym= o.2(Px)=c.M.. (3)

yb = cl.2{M) . (4)

yd = e . :S{Mx) . (5)

If I is not the same at the different

cross sections, let P=^3f-^I • then the
last three equations must be replaced
by the following:

ym'=.f.P' (3')

(4')

The ordinates ym and ym' are not
equal, but can be obtained one from the
other when we know the ratio of the
moments of inertia at the different cross

sections.

Equation (1) expresses the loading,
and yp may be considered to be the
depth of some uniform material as

earth, shot or masonry constituting the
load. Lines joining the extremities of

these ordinates will form a polygon, or

approximately a curve which is the up-
per surface of such a load. When the
load is uniform the surface is a hori-

zontal line.

For the purposes of our investiga-

tion, a distributed load whose upper

surface is the polygon or curve, above
described, is considered to have the
same effect as a series of concentrated
loads proportional to the ordinates

yp acting at the assumed points of

division. If the points of division be
assumed sufficiently near to each other,

the assumption is sufficiently accurate.

If a polygon be drawn in a similar

manner by joining the extremities of the

ordinates ym computed from equation

(3), it is known that this polygon is an
equilibrium polygon for the applied

weights P, and it can also be construct-

ed directly without computation by the

help of a force polygon having some as-

sumed horizontal stress.

Now, it is seen by inspection that

equations (3) and (5), or (3') and (5'),

have the same relationship to each other
that equations (1) and (3) have. The re-

lationship may be stated thus :—If the
ordinates ym (or ym') be regarded as

the depth of some species of loading, so

that the polygonal part of the equili-

brium polygon is the surface of such
load, then a second equilibrium polygon
constructed for this loading will have for

its ordinates proportional to yd. But
these last are proportional to the actual

deflections of the girder.

Hence a second equilibrium polygon,
so constructed, might be called the de-

flection polygon, as it shows on an ex-

aggerated scale the shape of the neutral

axis of the deflected girder.

The first equilibrium polygon having
the ordinates ym may be called the mo-
ment polygon.

It may be useful to consider the physi-

cal significance of equations (3), (4), (5),

or (3'), (4'), (5').

According to the accepted theory of

perfectly elastic material, the sharpness
of the curvature of a uniform girder is

directly proportional to the moment of

the applied forces, and for different

girders or different portions of the same
girder, it is inversely proportional to the
resistance which the girder can afford.

Now this resistance varies directly as I
varies, hence curvature varies as M-^I^
which is equation (3) or (3').

Now curvature, or bending at a point,

is expressed by the acute angle between
two tangents to the curve at the distance

of a unit from each other: and the total
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bending, i.e. the angle between the tan-

gent at O, and that at some distant point

A is the sum of all such angles between
O and the point A. Hence the total

bending is proportional to ^(Jf-f-Z),
the summation being extended from
to the ]3oint A, which is equation (4) or

Again, if bending occurs at a point

distant from 0, as A, and the tangent at

A be considered as fixed, then is de-

flected from this tangent, and the

amount of such deflection depends both
upon the amount of the bending at A,
and upon its distance from 0. Hence
the deflection from the tangent at A is

proportional to ^ (Mx~J) which is

equation (5) or (5')..

It will be useful to state explicitly

several propositions, some of which are

implied in the foregoing equations. The
importance and applicability of some of

them has not, perhaps, been sufliciently

recognized in this connection.

Prop. I. Any girder (straight or other-

wise) to which vertical forces alone are

applied (^. e., there is no horizontal

thrust) sustains at any cross-section the

stress due to the load, solely by develop-

ing one internal resistance equal and op-

posed to the shearing, and another equal

and opposed to the moment of the applied

forces.

Prop. II. But any flexible cable or

arch with hinge joints can offer no re-

sistance at these joints to the moment
of the applied forces, and their moment
is sustained by the horizontal thrust de-

veloped at the supports and by the ten-

sion or compression directly along the

cable or arch.

It is well known that the equilibrium
polygon receives its name from its being
the shape which such a flexible cable, or

equilibrated arch, assumes under the
action of the forces. In this case we
may say for brevity, that the forces are

sustained by the cable or arch in virtue
of its being an equilibrium polygon.

Prop. III. If an arch not entirely flexi-

ble is supported by abutments against

which it can exert a thrust having a

horizontal component, then the moment

due to the forces applied to the arch will

be sustained at those points which are

not flexible, partly in virtue of its being

approximately an equilibrium polygon,

and partly in virtue of its resistance as a

girder.

It is evident from the nature of the
equilibrium polygon that it is possible

with any given system of loading to make
an arch of such form (viz., that of an equi-

librium polygon) as to require no bracing
whatever, since in that case there will

be no tendency to bend at any point.

Also it is evident that any deviation of

part of the arch from this equilibrium
polygon would need to be braced. As,
for example, in case two distant points
be joined by a straight girder, it must
be braced to take the place of part of

the arch. Furthermore, the greater the
deviation the greater the bending mo-
ment to be sustained in this manner.
Hence appears the general truth stated
in the proposition.

It will be noticed that the moment
called into action, at any point of a straight

girder, depends not only on the applied
forces which furnish the polygonal part
of the equilibrium polygon, but also on
the resistance which the girder is capa-
ble of sustaining at joints or supports, or
the like. For example, if the girder
rests freely on its end-supports, the mo-
ment of resistance vanishes at the ends,
and the "closing line" of the polygon
joins the extremities of the polygonal
part. If however the ends are fixed

horizontally and there are two free
(hinge) joints at other points of the gir-

der, the polygonal part will be as before,
but the closing line would be drawn so
that the moments at those two points
vanish. Similarly in every case (though
the conditions may be more complicated
than in the examples used for illustration)

the position of the closing line is fixed
by the joints or manner of support of
the girders, for these furnish the condi-
tions which the moments {i. e., the ordi-
nates of the equilibrium polygon) must
fulfill. For example, in a straight uni-
form girder without joints and fixed
horizontally at the ends, tlie conditions
are evidently these; the total bendino-
vanishes when taken from end to end
and the deflection of one end below the
tangent at the other end also vanishes.
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Prop. TV. If in any arch that equilibrium

polygon (due to the weights) be construct-

ed which has the same horizontal thrust

as the arch actually exerts; and if its

closing line be drawn from consideration

of the conditions imposed by the supports,

etc. ; and if furthermore the curve of the

arch itself be regarded as another equilib-

rium polygon due to some system of load-

ing not given, and its closing line be also

found from the same considerations re-

specting supports, etc., then, when these

two polygons are placed so that these

closing lines coincide and their areas

partially cover each other, the ordinates

intercepted between these two polygons

are proportional to the real bending mo-

ments acting in the arch.

Suppose that an equilibrium polygon
due to the weights be drawn having the
same horizontal thrust as the arch. We
are in fact unable to do this at the out-

set as the horizontal thrust is unknown.
We only suppose it drawn for the pur-

pose of discussing its properties. Let
also the closing line be drawn, which
may be done, as will be seen hereafter.

Call the area between the closing line

and the polygon, A. Draw the closing-

line of the curve of the arch itself (re-

garded as an equilibrium polygon) ac-

cording to the same law, and call the
area between this closing line and its

curve A". Further let A' be the area of

a polygon whose ordinates represent the

actual moments bending the arch, and
drawn on the same scale as A and A".
Since the supports etc., must influence

the position of the closing line of this

polygon in the same manner as that of

A, we have by Prop. Ill not only

A=A'-hA"

which applies to the entire areas, but
also

y=y'-\-y"

as the relation between the ordinates of

these polygons at any of the points of

division before mentioned, from which
the truth of the proposition api^ears.

This demonstration in its general form
may seem obscure since the conditions

imposed by the supports, etc., are quite

various, and so cannot be considered in

a general demonstration. The obscurity,

however, will disappear after the treat-

ment of some particular cases, where we
shall take pains to render the truth of

the proposition evident. We may, how-
ever, make a statement which will pos-

sibly put the matter in a clearer light by
saying that A" is a figure easily found,
and we, therefore, employ it to assist in

the determination of A' which is un-
known, and of A which is partially un-
known. And we arrive at the peculiar

propertyoiA\ that its closing line is found
in the same manner as that of ^, by no-
ticing that the positions of the closing

lines of A and A' are both determined
in the same manner by the supports, etc.

;

for the same law would hold when the
rise of the arch is nothing as when it

has any other value. But A" is the dif-

ference of A and A'. Hence what is

true of A and A' separately is true of

their difference A\ the law spoken of

being a mere matter of summation.
From this proposition it is also seen that

the curve of the arch itself may be re-

garded as the curved closing line of the
polygon whose ordinates are the actual

bending moments, and the polygon it-

self is the polygonal part of the equili-

brium polygon due to the weights.

It is believed that Prop. IV contains
an important addition to our previous
knowledge as to the bending moments in

' an arch, and that it supplies the basis

j

for the heretofore missing method of
I obtaining graphically the true equili-

j

brium polygon for the various kinds of

! arches.

Prop. y. If bending moments M act

on a uniform inclined girder at horizon-

tal distances x from 0, the amount of the

vertical deflection yd will be the same

as that of a horizontal girder of the

same cross section-, and having the same

horizontal span, upon which the same

moments M act at the same horizontal

distances x from 0. Also, if bending

moments JIfact as before, the amount of

the horizontal deflection, say xa, will be

the same as that of a vertical girder of

the same cross section, and having the

same height, upon which the same mo-

ments M act at the same heights.
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cy

Let the moment M act at A, produc-

ing according to equation (5) the deflec-

tion
0C=e.3f.A0

whose vertical and horizontal compo-

nents are

y^ — CE and xa — OE

For the small deflections occurring in a

girder or arch, ^OC=90°

,\ A0\ 0F\\ OC: CE

.-. GE^^.OF^e.M.OFAO
,'. q/d = e . Mx

Also, AO : AF\\ 00: OE

.'. OE=^,AF=e.M.AFAO
.-. Xd = e.My

The same may be proved of any other

moments at other points; hence a simi-

lar result is true of their sum; which
proves the proposition.

It may be thought that the demonstra-
tion is deficient in rigor by reason of the

assumption that ^4 0(7=90°.
Such, however, is not the fact as ap-

pears from the analytic investigation of

this question by Wm. Bell in his at-

tempted graphical discussion of the arch

in Vol, VIII of this Magazine, in which
the only approximation employed is that

admitted by all authors in assuming that

the curvature is exactly proportional to

the bending moment.
We might in this proposition substi-

tute f. M-^I for e . M, and prove a

similar but more general proposition re-

specting deflections, which the reader

can easily enunciate for himself.

Before entering upon the particular

discussions and constructions we have in

view, a word or two on the general

question as to the manner in which the

problem of the arch presents itself, will

perhaps render apparent the relations

between this and certain previous inves-

tigations. The problem proposed by
Rankine, Yvon-Villarceaux, and other

analytic investigators of the arch, has
been this:—Given the vertical loading,

what must be the form of an arch, and
what must be the resistances of the

spandrils and abutments, when the

weights produce no bending moments
whatever? By the solution of this ques-

tion they obtain the equation and prop-

erties of the particular equilibrium poly-

gon which would sustain the given

weights. Our graphical process com-
pletely solves this question by at once
constructing this equilibrium polygon.

It may be remarked in this connection,

that the analytic process is of too com-
plicated a nature to be effected in any,

except a few, of the more simple cases,

while the graphical process treats all

cases with equal ease.

But the kind of solution just noticed,

is a very incomplete solution of the

problem presented in actual practice

;

for, any moving load disturbs the dis-

tribution of load for which the arch is

the equilibrium polygon, and introduces

bending moments. For similar reasons

it is necessary to stiffen a suspension

bridge. The arch must then be propor
tioned to resist these moments. Since

this is the case, it is of no particular

consequence that the form adopted for

the arch in any given case, should be
such as to entirely avoid bending mo-
ments when not under the action of the

moving load.

So far as is known to us, it is the

universal practice of engineers to as-

sume the form and dimensions, as

well as the loading of any arch pro-

jected, and next to determine whether
the assumed dimensions are consistent

with the needful strength and stability.

If the assumption is unsuited to the

case in hand, the fact will appear by the
introduction of excessive bending mo-
ments at certain points. The considera-

tions set forth furnish a guide to a new



14 TsTEW COJ^STEUCTIOlSrS

assuraption which shall be more suitable,

it being necessary to make the form of

the arch conform more closely to that of

the equilibrium polygon for the given
loading.

The question may be regarded as one
of economy of material, and ease of

construction, analogous to that of the
truss bridge. In this latter case, con-

structors have long since abandoned any
idea of making bridges in which the
inclination of the ties and posts should
be such as to require theoretically the
minimum amount of material. Indeed,
the amount of material in the case of a

theoretic minimum, differs by such an
inconsiderable quantity from that in

cases in which the ties and posts have a

very different inclination, that the attain-

ment of the minimum is of no practical

consequence.
Similar considerations applied to the

arch, lead us to the conclusion that the
form adopted can in every case be
composed of segments of one or more
circles, and that for the purpose of con-

struction every requirement will then be
met as fully as by the more complicated
transcendental curA^es found by the
writers previously mentioned. If con-

siderations of an artistic nature render
it desirable to adopt segments of para-

bolas, ellipses or other ovals, it will be a

matter of no more consequence than is

the particular style of truss adopted by
rival bridge builders.

We can also readily treat the problem
in an inverse manner, viz :—find the
system of loading, of which the assumed
curve of the arch is the equilibrium
polygon. From this it will be known
how to load a given arch so that there
shall be no bending moments in it.

This, as may be seen, is often a very
useful item of information ; for, by leav-

ing open spaces in the masonry of the
spandrils, or by properly loading the
crown to a small extent, we may fre-

quently render a desirable form entirely

stable and practicable.

CHAPTER II.

THE ARCH ElB WITH FIXED ENDS.

Let us take, as the particular case to
be treated, that of the St. Louis Bridge,
which is a steel arch in the form of the

arc of a circle ; having a chord or span
of 518 feet and a versed sine or rise of

one-tenth the span, i. e. 51.8 feet. The
arch rib is firmly inserted in the im-
mense skew-backs which form part of

the upper portion of the abutments. It

will be assumed that the abutments do
not yield to either the thrust or weight
of the arch and its load, which was also

assumed in the published computations
upon which the arch was actually con-

structed. Further, we shall for the
present assume the cross section of the
rib to have the same moment of iner-

tia, T, at all points, and shall here only
consider the stresses induced by an
assumed load. The stresses due to

changes in the length of the arch itself,

due to its being shortened by the load-

ing, and to the variations of temperature,
are readily treated by a method similar

to the one which will be used in this

article, and will be treated in a subse-

quent chapter.

Let ^g a h\' in Fig. 2, be the neutral

axis of the arch of which the rise is one-

tenth the span. Let a x y z be the area
representing the load on the left half of

the arch, and a x' y' z' that on the right,

so that yp^=za . P^xy on the left, and
yrp z=z x'y' on the right.

Divide the sjjan into sixteen equal
parts 55^, 5^/, etc, and consider that the
load, which is really uniformly dis-

tributed, is applied to the arch at the

pomts a, CKj, '1 5
etc., in the verticals

through &, 5j, ^/, etc.; so that the equal
weights P are applied at each of the

points on the left of a and the equal
weights ^P dX each point on the right

of a, while f i^ is applied at a.

Take J as the pole of a force polj^gon

for these weights, and lay off the weights
which are applied at the left of a on the

vertical through Z>g, viz., h^w^-=^\ 7^= the

weight coming to a from the left
;

w^ i^^=r:P=the weight applied at a,
;

w^ ^€'3=P=:the weight applied at a^^ etc.

Using h still as the pole, lay off h^ w^-=
^P=the weight coming to a from the

right; %ol w^^=-\ _P=:the weight applied

at a/, etc. This amounts to the same
thing as if all the weights were laid oft'

in the same vertical. Part are put at

the left and part at the right for con-

venience of construction. Now draw
hw^ until it intersects the vertical 1 at c^;

then draw c c \\ hw ; and c^c^ \\ hw^y
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etc. In the same manner draw hw^ to

c/ ; then c/ c/ || hw„'^ etc. Then the

broken line hc^. . . c^ is the equilibrium
polygon due to the weights on the left

of a, and hc^' • . . c/ is that due to the

weights on the right. Had the polygon
been constructed for the uniformly dis-

tributed load (not considered as concen-
trated), on the left we should have a

parabola passing through the points

hc^ . . . Cg, and another parabola on the
rio-ht through he' . . . cj . From the^ through hc^' . . . cj

properties of this parabola it is easily

seen that c^ must bisect u\w.^, as cj must
also bisect w/ u\' ; which fact serves to

test the accuracy of our construction.

This test is not so simple in cases of

more irregular loading.

The equilibrium polygon c^ h c/ is that
due to the applied weights, but if these
weights act on a straight girder with
fixed ends, this manner of support re-

quires that the total bending be zero,

when the sum is taken of the bending
at the various points along the entire

girder ; for, the position of the ends
does not change under the action of the
weights, hence the positive must cancel
the negative bending. To expi*ess this

by our equations :

2/J=e. ^(J/)=rO .-. ^(J/)=:0.

This is one of two conditions which
are to enable us to fix the position of the
true closing line h^h^ in this case. The
other condition results from the fact
that the algebraic sum of all the deflec-

tions of this straight girder must be
zero if the ends are fixed horizontally.

This is evident from the fact that
when one end of a girder is built in, if

a tangent be drawn to its neutral axis
at that end, the tangent is unmoved
whatever deflections may be given to
the girder; and if the other end be also
fixed, its position with reference to this

tangent is likewise unchanged by any
deflections which may be given to the
girder. To express this by our equations:

]ld=f. ^ (J[f£C)=:0 .-. ^ {Mx)^^
The method of introducing these con-

ditions is due to Mohr. Consider the
area included between the straight line

Cg c'/ and the polygon Cg h cj as some
species of plus loading ; we wish to find I

what minus loading will fulfill the above
two conditions. Evidently the whole

tive load c^ c

in two parts.

^8 < '

negative loading must be equal numeric-
ally to the whole positive loading, if we
are to have ^ {M)^=^0. Next, as the
closing line is to be straight, the nega-

Ag Ag' may be considered

, viz., the two triangles,
' Ag and c^' Ag Ag'. Let the whole

span be trisected at t and t\ then the
total negative loading may be considered
to be applied in the verticals through
t and t\ since the centers of gravity of

the triangles fall in these verticals.

Again, the positive loading we shall find

it convenient to distribute in this man-
ner : viz., the triangle c^ h cj applied in

I

the vertical through b, the parabolic area
h c^ . . . c^ in the vertical 4 which con-

tains its center of gravity, and the para-
bolic area hc^' . . . cj in 4'.

Now these areas must be reduced to

equivalent triangles or rectangles, with
a common base, in order that we may
compare the loads they represent. Let
the common base be half the span : then
hh^-=^2jp' is the positive load due to the
triangle c^ h c^' ; and § c^ c^-^pp^ and

f c/ c^'=p'p^' are the positive loads due
to the parabolic areas.

Now assume any point ^ as a pole
for the load line p^}^-! ^nd find the center
of gravity of the positive loading by
drawing the equilibrium polygon, whose
sides are parallel to the lines of this

force polygon : viz., use qp)^ and qji) as

the 1st and 2nd sides, and make^g'
||

$'^9',

and q'q^ \\ qp>^ . The first and last sides

intersect at q^\ therefore the center of

gravity of the positive loads must lie in

the vertical through q^.

Now the negative loading must have
its center of gravity in the same vertical,

in order that the condition ^'(J!^)=
may be satisfied, for it is the numerator
of the general expression for finding

the center of gravity of the loading.
The question then assumes this form :

what negative loads must be applied in

the verticals through t and t' that their

sum may be p^p^^ and that they may
have their center of gravity in the verti-

cal through q^.

The shortest way to obtain these two
segments of p^p^ is to join ^^ and r'

which are in the horizontals through

p^ and ^/, and draw an horizontal
through q^^ which is the intersection of
r r' with the vertical through q^ ; then

are the required segmentsrr^ and r' r^
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of the negative load. For, let Tr^=^p^'p^

^nd take r' as the pole of the load r r,^
;

then, since i\q^ \\ o\r' and g^o^' \\ r r' we
have the equilibrium polygon i\ q^ r' ful-

filling the required conditions.

Now these two negative loads t^t^-=^

r'r' and rr^, are the required heights of

the triangles c^ li^ c^ and Cg c/ h^ \ there-

fore lay off Cg h^-=T' T^ and c^h^^^^rr^.

The closing line h^ li^ can then be
drawn, and the moments bending the

straight girder will then be proportional

to Aj Cj, h„ ^2, etc., the points of inflexion

being where the closing line intersects

the polygon. If the construction has
been correctly made, the area above the

closing line is equal to that below, a test

easy to apply.

Let us now turn to the consideration

of the curve of the arch itself, and treat

it as an equilibrium polygon. Since the

rise of the arch is such a small fraction

of the span, the curve itself is rather flat

for our purposes, and we shall therefore

multiply its ordinates ah^ a^ b^, etc., by
any number convenient for our purpose:
in this case, say, by 3. We thereby get

a polygon d^dd^ such that d b^=^ ah,

d^b^-—^d^b^, etc. If a curve be de-

scribe* I through d^. . . d . . . d^' it will be
the arc of an ellipse, of which d is the

extremity of the major axis.

If we wish to find the closing line k^Jc/

of this curve, such that it shall make
:^ (Md)=:0 and :S {Mdx)= 0, the same
process we have just used is here appli-

cable ; but since the curve is symmetri-
cal, the object can be effected more
easily. By reason of the symmetry
about the vertical through b, the center

of gravity of the positive area above the
horizontal through b lies in the vertical

through b. The center of gravity of the

negative area lies there also ; hence the

negative area is symmetrical about the

center vertical; the closing line must then

be horizontal. It only remains then to find

the height of a rectangle having the same
area as the elliptical segment, and hav-

ing the span for its base. This is done
very approximately by taking (in this

case where the span is divided into 16

equal segments) J the sum of the ordi-

nates b^ d^, etc.

We thus find the height bk and the
horizontal through k is the required

closing line.

Before effecting the comparison which

we intend to make between the poly-
gons c and d (as we may briefly desig-

nate the polygons Cg b c/ and d^ d d^), let

us notice the significance of certain oper-

ations which are of use in the construc-

tion before us. One of these is the
multiplication of the ordinates of the

polygon or curve a to obtain those of d.

If a was inverted, certain weights might
be hung at the points a^, a^, etc., such
that the curve would be in stable equi-

librium, even though there are flexible

joints at these points. Equilibrium
would still exist in the present upright
position under these same applied

weights, though it would be unstable.

If now, radiating from any point, we
draw lines, one parallel to each of the

sides aa^, a^ a^, aa^\ etc., of the polygon,
then any vertical line intersecting this

pencil of radiating lines will be cut by it

in segments, which represent the relative

weights needed to make a their equilibri-

um polygon. By drawing the vertical line

at a proper distance from the pole, its

total length, i. e., the total load on the

arch can be made of any amount we
please. The horizontal line from the

pole to this vertical will be the actual

horizontal thrust of the arch measured
on the same scale as the load. If a like

pencil of radiating lines be drawn paral-

lel to the sides of the polygon d and the

load be the same as that we had sup-

posed upon the polygon a, it is at once

seen that the pole distance for d is one-

third of that for a ; for, every line in d
has three times the rise of the corre-

sponding one in «, and hence with the

same rise, only one-third the horizontal

span. The increase of ordinates, then,

means a decrease of pole distance in the

same ratio, and vice versa. As is well

known, the product of the pole distance

by the ordinate of the equilibrium poly-

gon is the bending moment. This pro-

duct is not changed by changing the

pole distance.

Again, suppose the vertical load-line

of a force polygon to remain in a given

position, and the pole to be moved ver-

tically to a new position. No vertical

or horizontal dimension of the force

polygon is affected by this change,,

neither will any such dimension of the

equilibrium polygon corresponding to

the new position of the pole be differ-

ent from that in the polygon corre-
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spending to the first position of the pole

;

the direction of the closing line, how-
ever, is changed. Thus we see that the
closing line of any equilibrium polygon
can be made to coincide with any line

not vertical, and that its ordinates will

be unchanged by the operation. It is

unnecessary to draw the force polygon
to effect this change.

Now to make clear the relationship

between the polygons c and d^ let us

suppose, for the instant, that the poly-
gon e has been drawn by some means
as yet unknown, so that its ordinates
from c?, viz., e^d^=^y^, e„d^^=y^, etc., are

proportional to the actual moments 3fe

which tend to bend the arch.

The conditions which then hold re-

specting these moments Me, are three :

—

:E(Me) = 0, 2{Mex)^0, :S {Meij) = 0.

The first condition exists because the

total bending from end to end is zero

when the ends are fixed. The second
and third are true, because the total de-

flection is zero both vertically and hori-

zontally, since the span is unvariable as

well as the position of the tangents at

the ends. These results are m accord-
ance with Prop. V. IsTow by Prop. Ill

these moments Me are the differences of

the moments of a straight girder and of

the arch itself ; hence the polygon e is

simply the polygon c in a new position

and with a new pole distance. As
moments are unchanged by such trans-

formations, let us denote these moments
by Mc We have before seen that

2(Mc)= 0, and :S (Mcx)^0

Subtract

.-. :S{Mc-Me)=0, and 2{Mc-Me)x=0

.'. :2{Md)— and 2 {Mdx)=

From this it is seen that the polygon
d must have its closing line fulfill the
same conditions as the polygon c. This
is in accordance with Prop. IV.

Again, :E (Mey) — :E {Mc — Md) y=0

.-. 2{Mcy) = 2{3Idy).

This last condition we shall use for

determining the pole distance of tlie

polygon e, which is one-third of the
actual thrust of the arch measured on
the scale of the weights w^ to^, etc. The
physical significance of this condition
may be stated according to Prop. V,
thus : if the moments Md are applied to
a uniform vertical girder bd at the points
b, b"^ 6/', b" , etc., at the same height
with &g, d^, etc., they will cause the same
total deflection xd^=- e .'2. [Mdy) as wdll

the moments Mc when applied at the
same points. Hence if Md are used as

a species of loading, we can obtain the
deflection by an equilibrium polygon.
Suppose the load at d^ is d^ /<;„ and that
at d^ is c?g /(^g, etc., then that at b^ is

^ ^g k^. This approximation is sufficiently

accurate for our purposes.

N'ow lay off on l^ IJ as a load line

dm^=ib^k^, 7n^m^= d^k^, m^m^^d^h^^
etc. The direction of these loads must
be changed when they fall on the other
side of the line k\ e.g., 711. m^^i^h, d,.

Ir this process be continued through the
entire arch m/ (not drawn) will fall a&
far to the right of d as m^ does to the
left, and the last load will just reach
to d again. This is a test of the cor-

rectness with which the position of the
line k^ k/ has been found. Now using
any point as b for a pole, draw bm^ to /\y
then draw //^ || ^m^, /;/; || bm^, etc.

The curve bf is then the exaggerated
shape of a vertical girder bd, fixed at b^

under the action of that part of moments
Md which are in the left half of the
arch. The moments Md on the right
may act on another equal girder, havings

the same initial position bd, and it will

then be equally deflected to the right of

bd. This is not drawn.
Again, suppose these vertical girders

fixed at b are bent instead by the
moments Mc. We do not know just

how much these moments are, though we
do know that they are proportional to

the ordinates of the polygon c. There-
fore make dn^ — i- A„ c„, n„ n„ = h„ c

n„
2 8 8? 8 7 '"7 ^'i'i

n^ = h^ c„ etc. When all these loads
are laid off, the last one n/ d=^^hj c/
must just return to d. This tests the-

accuracy of the work in determining the
position of h^ lij.

Now using ^ as a pole as before, con-
struct the deflection curves bg and bg'.

Since these two deflections, viz., 2 dj^
and gg' ought to be the same, this fact
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informs lis that each of the ordinates
Aj Cj, A2 c^, must be increased in the ratio

of ^ gg' to f^/", in order that when they
are considered as loads, they may pro-

duce a total deflection equal to 2 df.

To etfect this, lay off bj=^clf and bi=
i gg\ and draw the horizontals through
i and /. At any convenient distance

draw the vertical i^j^^ and draw bi^ and
hj^. These last two lines enable us to

elfect the required proportions for any
ordinates on the left, and these or two
lines of the same slope on the right to

do the same thing on the right. M. g.

lay off the ordinate bij=^k^' c/, then
the required new ordinate is bj^' . Then
lay off k^' e^'=- bj\'. In the same man-
ner find k e from A b, and Jc^ e^ from Ag c^.

In the same manner can the other ordi-

nates k^ e^, etc., be found ; but this is

not the best way to determine the rest

of them, for we can now find the pole

and pole distance of the polygon e.

As we have previously seen, the pole

distance is decreased in the same ratio

as the ordinates of the moment curve
are increased, therefore prolong bi^ to v^,

and draw a horizontal line through v^

intersecting bj\ at v^ and the middle ver-

tical at v^ ; then is v^ "^0 the pole dis-

tance decreased in the required ratio.

Hence we move up the weight-line to^ w^
to the position u^ u^ verticall}^ through
<v^\ and for convenience, lay off the
weights 10^' w^' at w/ 2^/, etc.

Furthermore, we know that the new
<?losing-line is horizontal. To find the

position of the pole so that this shall

occur, draw bv parallel to A/ig, and from
V the horizontal vo. As is well known,
V divides the total weight into the two seg-

ments, which are the vertical resistances

of the abutments, and if the pole o is

on the same horizontal with v, the

closing line will be horizontal.

Now having determined the positions

of the points 6g, e, e/, starting from one
of them, say 6g, draw gg e„ || oic^^ e^^e^ \\ ou^^

etc.; then if the work be accurate, the

polygon will pass through the other two
points e and e^ . The bending moments
of the arch d or the arch a at «j, a^, etc.,

is the product of the pole distance

'o^xi^-=^X)'o by the ordinates d^e^^ ^^2^25

etc., respectively, and between these

points a similar product gives the mo-
anent with sufiicient accuracy. It would
ibe useful for the sake of accuracy to

multiply the ordinates of the arch by
some number greater than 3.

As a final test of the accuracy of the
work, let us see whether ^ {Mey) is ac-

tually zero, as should be. At cZ„ for ex-

ample, y=idj^.) and 3Ie is i:>roportional

to d^ e,. Then d^ s^ is proportional to

3Iey at that point if e^ s^ is the arc of

a circle, of which e. l^ is the diameter.
Similarly find dj s' etc. When e, for

example falls above c?^, the circle must
be described on the sum of L c?, and d, e,

as a diameter, and d^ s^ is proportional
to a moment of different sign from that

at d.. We have distinguished the sign

of the moments at the different points

along the arch, by putting different

signs before the letter s. It would have
been slightly more accurate to have used
only one-half the ordinates ^g e^ and
b^' gg', but as they nearly equal in this

case and of opposite sign, we have in-

troduced no appreciable error,

Now at any point s lay off ss^— d^s^,

and at right angles to it 5^ ^g= ^8 ^s?
then

at right angles to the hypothenuse ss^

make s^s'=^d's' etc. Then the sum
8 5 5 5"

of the positive squares is ss/, and simi-

larly the sum of the negative squares is

ss^. If these are equal, then ^ {3Iey)

vanishes as it should, and the construc-

tion is correctly made.

It would have been equally correct to

suppose the. two vertical girders fixed at

c?, and bent by the moments acting. We
could have determined the required ratio

equally well from this construction.

Further, in proving the correctness of

the construction by taking the algebraic

sum of the squares, we could have reck-

oned the ordinates, y, from any other

horizontal line as well as from l^ IJ.

To find the resultant stress in

the different portions of the arch,

we must prolong v'o to o\ say,

(not drawn) so that the pole distance

v^o'=^S v'o ; then if we join o' and u^,

o'u^ will be the resultant stress in the

segment b^a^', o'u^ will be the stress in

<2. ttg, etc., measured in the same scale as

the weights to^ lo^, etc. This resultant

stress is not directly along the neutral

j

axis of the arch.

I The vertical shearing stress is construct-

j

ed in the same manner as for a girder,

j

by drawing one horizontal through w^

I between the verticals 7 and 8, another



IN GRAPHICAL STATICS. 19

through w^ between 7 and 6, etc. (not

drawn). Then the shear will be the ver-

tical distance between vo and these hori-

zontals through w^^ w„ etc. It is seen

that the shear will change sign on the

vertical through b^ with our present

loading.

The actual position of the vertical

through the center of gravity of the

load may be found by prolonging the

first and last sides of the polygon c. A
weight = k jP =^ 10^ 10^ ought, however,
first to be applied at h„, and another
= \ P=: ii\' i(\' at hj. The shearing
stress under a distributed load will

actually change sign on the vertical so

found. It will not pass far however
fi'om by

Tlie resultant stress is the resultant of

the horizontal thrust and the vertical

shearing stress, and it can be resolved
into a tano-ential thrust alono; the arch
and a normal shearing stress. This
resolution will be effected in Fig. 3 of
the next chapter.

As to the position of the moving load
which will produce the maximum bend-
ing moments, we may say that the posi-

tion chosen, in which the moving load
covers one-half the span, gives in general
nearly this case. It is possible, how-
ever, to increase one or two of the
moments slightly by covering a little

more than half the span with the mov-
ing load.

The loading which produces maximum
moments will be treated more fully in

subsequent chapters.

The maximum resultant stress and
maximum vertical shear occur in gen-
eral when the moving load covers the
whole span. The construction in this

case is much simplified, as the poly-
gon G is then the same on the right of
b as it now is on the left, and the
center of gravity of the area is in the
center vertical ; so that the closing line

h^ h/ is horizontal, and can be drawn
with the same ease as k^ k/ was drawn.
We shall not, even in this case, be under
the necessity of drawing the curves b(/

and bg\ which would be both alike ; for,

as may be readily seen, the sum of the
positive moments Mc on the left must
be very approximately equal to the
positive moments 3fd on the left, and
the same thing is true for the negative

moments at the left. The same two
equalities hold also on the right. From
this we at once obtain the ratio by which
the ordinates of the polygon e must
be altered to obtain those of the poly-

gon e.

This last approximation also shows us
that for a total uniform load, the four
points of inflection when the bending
moment is zero, lie two above and two
below the closing line. It is frequently
a sufficiently close approximation in the
case when the moving load covers only
part of the span to derive the ratio

needed by supposing that the sum of all

the ordinates, both right and left, above
the closing line in the polygon c must
be increased, so that it shall equal the
corresponding sum in the polygon d.

If the sums taken below the closing

lines give a slightly different result, take
the mean value.

Thus the single construction we have
given in Fig. 2, and one other much
simpler than this, which can be ob-

tained by adding a few lines to

Fig. 2, give a pretty complete deter-

mination of the maximum stresses on
the assumptions made at the commence-
ment of the article.

One of these assumptions, viz., that
of constant cross section {i. e. jT^ con-
stant), deserves a single remark. In
the St. Louis Arch J was increased
one-half at each end for a distance of

one-twelfth of the span. This very
considerable change in the value of J
slightly reduced the maximum moments
computed for a constant cross section.

From other elaborate calculations, par-

ticularly those of Heppel,* on the Britan-

nia Tubular Bridge, it appears that the
variation in the moments caused by the

changes in cross section, which will

adapt the rib to the stresses it must sus-

tain, are relatively small, and in ordinary
cases are less than five per cent, of the
total stress. The same considerations

are not applicable near the free ends of

a continuous girder, where J may theo-
retically vanish. In the case before us,

where the principal part of the stress

arises not from the bending moments,
but from the compression along the
arch, the effect of the variation of 7" is

very inconsiderable indeed.

* Philosophical Magazine, Vol. 40, 1870.
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CHAPTER III.

ARCH EIB WITH FIXED ENDS AND HINGE
JOINT AT THE CROWN.

Let the curve a of Fig. 3 represent

the proportions of the arch we shall use
to illustrate the method to be applied to

arches of this character. The arch a is

segmental in shape, and has a rise of one-
fifth of the span. It is unnecessary to

assume the particular dimensions in feet,

as the above ratio is sufficient to deter-

mine the shape of the arch.

The arch is supposed to be fixed in the

abutments, in such a manner that the
position of a line drawn tangent to the
curve a at either abutment is not changed
in direction by any deflection which the

arch may undergo. At the crown, how-
ever, is a joint, which is perfectly free to

turn, and which will, then, not allow the
propagation of any bending moment
from one side to the other. In order
that we may effect the construction more
accurately, let us multiply the ordinates

of the curve a by some convenient num-
ber, say 2, though a still larger multi-

plier would conduce to greater accuracy:
We thus obtain the polygon d.

Having divided the span h into twelve
equal parts h^ h^., etc, (a larger number of

parts would be better for the discussion of

an actual case), we lay off below the hori-

zontal line b on the end verticals, lengths
which express on some assumed scale the

weights which may be supposed to be
concentrated at the points of division of

the arch. If a I is the depth of the load-

ing on the left and al'—-\al that on the
right, then h^iv^ + h^iu^^^ the weight con-

centrated at a\ w^w^-= the weight at a^\

w^ w./= the weight at a/, etc. Using
6 as a pole, draw the equilibrium polygon
c, whose extremities Cg and c/ bisect

w^ 10^ and w^ i/;/ respectively.

Now to find the closing line of this

equilibrium polygon so that its ordinates

shall be proportional to the bending mo-
ments of a straight girder of the same
span, and of a uniform moment of inertia

Z, which is built in horizontally at the

ends and has a hinge joint at its center;

we notice in the first place that the bend-
ing moment at the hinge is zero, and
hence the ordinate of the equilibrium
polygon at this point vanishes. The
closing line then passes through h the

point in question. Furthermore it is

evident that if we consider the parts of

the girder at the right and left of the
center as two separate girders whose
ends are joined at the center, these ends
have each the same deflection, by reason

of this connection.

This is expressed by means of our
equations by saying that ^{Mx) when
the summation is extended from one end
to the center is equal to 2{Mx) when the
summation is extended from the other

end to the center, for these are then pro-

portional to the respective deflections of

the center. We may then write it thus :

4^ (Mx)=4^iMx)

The equation has this meaning, viz :

that the center of gravity of the right

and left moment areas taken together is

in the center vertical : for, taking each

moment Jif as a weight, x is its arm, and
Mx its moment about the center.

In order to find in what direction to

draw the closing line through b so that

it shall cause the moment areas together

to have their center of gravity in fhe

center vertical through b, let us draw a

second equilibrium polygon using the

moment areas as a species of loading.

The area on the left included between
any assumed closing line as bb^ (or bh^)

and the polygon bc^ may be considered

to consist of a positive triangular area

bcj)^ (or bcji^) and a negative parabolic

area bc^c^c^; and similarly on the right a

positive area bcjb^' (or bcjhj) and a nega-

tive area bc^'cjc^'.

At any convenient equal distances from
the center as at p and p', lay off these

loads to some convenient scale. It is,

perhaps, most convenient to reduce the

moment areas to equivalent triangles

having each a base equal to half the

span: then take the altitudes of the tri-

angles as the loads. This we have done,

so that pp=^c^c^,^ and p'p'—^G^c^.
Now assume, for the instant, that closing

line is bp^^ which of course is incorrect,

and make p,p^— b^c^ and p'p^^b^c^.,
then these are the loads due to the posi-

tive triangular areas at the left and right

respectively, while pp)^ and p'p^ are the

negative parabolic loads.

Take o' as the pole of these loads, then

pjp' may be taken for the first side of the

second equilibrium polygon. Draw pq
II

o'pj^ and p'q'
\\ o'p^\ and then from q
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and q' draw parallels to o'p^' respective-

ly. These last sides intersect at q„. The
vertical through q.^ then contains the

center of gravity of the moment areas

when h^ b^ is assumed as the closing

line.

A few trials will enable us to find the

position of the closing line which causes

the center of gravity to fall on the center

vertical. We are able to conduct these

trials so as to lead at once to the required
closing line as follows. Since, evidently,

of the positivesum
Cg', it is seen that the

loads is constant.

Therefore niake^:>2P3=/5//>3' and m^q 2'^iP2

and 2^^p2 ^s the positive loads, in the

same manner as we used p>\Pi ^"^ P'iP'

i

previously.

This will be equivalent to assuming a

new position of the closing line. The
only change in the second equilibrium
polygon will be in the position of the
last t vvu sides. These must now be drawn
parallel to o'}')^ and o'p^' respectively;

and they intersect at q^. The vertical

through ^„ contains the center of gravity
for this assumed closing line. Another
trial gives us q^.

Xow if the direction of the closing

line had changed gradually, then the in-

tersection of the last sides of the second
equilibrium polygon would have de-

scribed a curve through q^^ q^ and q^. If

one of these points, as q^^ is near the cen-

ter vertical, then the arc of a circle q.^q^

q^, will intersect it at 5. indefinitely near
to the point where the true locus of the

points of intersection would intersect the

center vertical.

Let us assume that g. is then deter-

mined wdth sufficient exactness by the
circular arc q^q/i^^^ and draw qq.^ and q'q^

as the last two sides of the second equili-

brium polygon. Now draw o'p^
\\ qq^

and o'p^ II
§''5'., then/)j_2>5=<^6^^6 and^:?/^/

=:c/A/ are the required positive loads,

and liph^ is the position of the closing

line such that the center of gravity of

the moment areas is in the center verti-

cal.

It is evident that the closing line of the
polygon d considered as itself an equilib-

rium polygon is the horizontal line

through c?, for that will cause the center
of gravity of the moment areas on the
left and right, between it and the polygon
c?, to fall on the center vertical.

The next step in the construction is to

apply Prop. IV, for the determination of

the bending moments.
That Prop. IV is true for an arch of

this kind is evident; for, the loading
causes bending moments proportional to

the ordinates A^c^, AgC^, etc., while the arch
itself is fitted to neutralize, in virtue of

its shape,moments which are proportional
to /v/?2? ^'3*^^35 6tc. The differences of

the moments represented by these ordi-

nates are what actually produce bending
in the arch.

Xow the ordinates of the type lie are

not drawn to the same scale as those of the

type hd^ for each was assumed regardless

of the other. In order that we may find

the ratio in which the ordinates he must
be changed to lay them off on the same
scale as hd it is necessary to use another
equation of condition imposed by the
nature of the joint and supports, viz:

or tl^ {Mi~M,)y = 4^,{Ma-M,)v

. The left hand side of the equation is the

horizontal displacement {i.e., the total

, deflection) of the extremity a of the left

! half of the arch, due to the actual bend-
ing moments {Md —Mc) acting upon it:

and the rio-ht hand side is the horizontal

displacement of a the extremity of the

right half of the arch due to the moments
i actually bending it. These are equal be-
' cause connected by the joint.

I

The construction of the deflection

I

curves due to these moments will enable
I us to find the desired ratio.

The ordinates kd and he are rather

longer than can be used conveniently, to

I

represent the intensity of the moments
i

concentrated at d^,d^y etc, and c^,c^, etc.:

:
so we will use the halves of these quan-

I

titles instead. Therefore lay off dm^-=-

and also dn^ = ^ h^c^, 7i^n^ =: J h^c., etc.

I

We use only one-quarter of each end
' ordinate because the moment area sup-

posed to be concentrated at each end has

i

only one half the width of the moment
! areas concentrated at the remaining

I

points of division.

j

Using 5 as a pole we find the deflection
' curve fb due to the moment 3fa or Jla

;

and the deflection curve gb due to the

,
moments 3fc on the left. On the right
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we should find a deflection df'^df not
drawn, and similarly a deflection dg' not
equal to dg.

Now the equation we are using requires

that the ordinates he shall be elongated
so that when used as weights the deflec-

tions shall be identical : i.e., we must
have df^=^^gg'. To effect the elongation,

lay off aj:=df and ai=^gg'; and at any
convenient distance on the horizontals ii^

and j'j\ draw the vertical i^j\; then the

lines ai^ and aj\ will effect the required

elongation. For example, lay off a^g=.

AgCg, from which we obtain aj\=k^e^ for

the left end ordinate, and similarly aj/=

The pole distance tt^^ of the original

polygon c must be shortened in the
same ratio in which the ordinates are

elongated. Hence the new pole distance

of the polygon e is tt.^.

Since ^'g^/ is the closing line of the

polygon e, and is horizontal, the pole of

e is o, on the horizontal through h^\ for,

AgiOg is the part of the applied weight
sustained by the left support.

Now if the weight line be moved up
to t^ so that the applied weights are u^u^
at the center, etc., and o is the pole, the

polygon e may be described starting from
d, and it will finally cut off the end ordi-

nates ^g6g and ^g^^g^ before obtained.

Then will the ordinates of the type de
be proportional to the moments actually

bending the arch, and the moments will

be equal to the products of de by tt^.^ in

which de is measured on the scale of

distance, and tt^ on the scale adopted for

the weights w^io^., etc.

The accuracy of the construction is

finally tested by taking ^(<^5)'=0, an
equation deduced from I"{Ma—Mc)y=^0,
as explained in the previous article upon
the St. Louis Arch. It is unnecessary to

explain the details of this construction

since as appears from Fig. 3 it is in all

respects like that in Fig. 2.

Now let us find the intensity of the
tangential compression along the arch

and of the shearing normal to the arch.

Since the pole distance tt^ refers to the

difference of ordinates between the poly-

gons d and 6, whose ordinates are double
the actual ordinates, if we wish now to

return to the actual arch a whose ordi-

nates are halves of the ordinates of d,

we must take a pole distance U^= 2tt^ and
move the weight line so that it is the

vertical through t^. Then U^ is the actual
horizontal thrust of this arch due to the
weights; and ov^ is the resultant stress

in the segment a^b^ of the arch, which
may be resolved into two components
org and v^9\ respectively parallel and per-
pendicular to a^b^.

Then are or^ and ^g^g respectively, the
thrust directly along, and the shear di-

rectly across the segment aj>^ of the
arch. Similarly or^ and v^r^ represent
the thrust along, and the shear across
the segment a^a^, and so on for other
segments. These quantities are all

measured in the same scale as that of the
applied weights.
The shear changes sign twice, as will

be seen from inspection of the directions

in which the quantities of the type vr
are drawn. The shear is zero wherever
the curves d and e are parallel to each
other. Thus the shear is nearly zero at

Z>g, at a^ and at some point between a/
and a/.

The maxima and minima shearing
stresses are to be found where the incli-

nation between the tangents to the curves
d and e are greatest.

The statements made in the previous
article, respecting the position of the
moving load which causes maximum
bending moments, are applicable to this

kind of arch also.

The maximum normal shearing stress

will occur for the parts of the arch near
the center, when the moving load is near
its present position, covering one half of

the arch. But the maximum normal
shearing stress near the ends, may occur
when the arch is entirely covered by the
moving load, or when it may occur when
the moving load is near its present posi-

tion, it being dependent upon the rise of

the arch, and the ratio between the mov-
ing and permanent load.

The maximum tangential compressions
occur when the moving load covers the
entire arch. The stresses obtained by
the foregoing constructions, go upon the

supposition that the arch has a constant

cross-section, so that its moment of iner-

tia does not vary, and no account is

taken of the stresses caused by any
changes of the length of the arch rib,

due to variations of temperature or other

causes. These latter stresses we shall

now investigate for both of the kinds of

arches which have been treated.
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CHAPTER TV.

TEMPEKATUEE STRAINS.

It is convenient to classify all strains

and stresses arising from a variation in

the length of the arch, under the head
of temperature, as such stresses could
evidently have been brought about by
suitable variations of temperature.
The stresses of this kind which are of

sufficient magnitude to be worthy of con-

sideration, besides temperature stresses

are of two kinds, viz. the elastic short-

ening of the arch under the compression
to which it is subjected, and the yielding

of the abutments, under the horizontal

thrust applied to them by the arch.

This latter may be elastic or otherwise.

It was, I believe, neglected in the com-
putation of the St. Louis Arch, and no
doubt with sufficient reason, as the other

stresses of this kind were estimated with
a sufficient margin to cover this also.

Anything which makes the true span of

the arch differ from its actual span
causes strains of this character. By true

span is meant the span which the arch
would have if laid flat on its side on a

plane surface in such a position that

there are no bending moments at any
point of it, while the actual span is the

distance between the piers when the

arch is in position. If the arch be built

in position, but joined at the wrong tem-
perature the true and actual spans do
not agree and excessive temperature
strains are caused.

Taking the coefficient of expansion of

steel as ordinarily given, a change of

±80°F. from the mean temperature
would cause the St. Louis Arch to be
fitted to a span of about 3J inches, greater
or less than at the mean.
The problem we wish to solve then is

very approximately this : What hori-

zontal thrust must be applied to increase

or decrease the span of this arch by 3j
inches, and what other stresses are in-

duced by this thrust. In Fig. 4 the half

span is represented on the same scale as

in Fig. 2. The only forces applied to

the half arch are an unknown horizontal

thrust ^at ^g and an equal opposite
thrust ^at a. The arch is in the same
condition as it would be if Fig. 4 repre-

sented half of a gothic arch of a span =
2a5, of which a was one abutment, and h^

was the new crown at which a weio^ht of

2^ was applied. The gothic arch would
be continuous at the crown, but the
abutment a would be mounted on rollers,

so that although the direction of a tan-
gent at a could not be changed, neverthe-
less the abutment could afford no resist-

ance to keep the ends from moving
apart, i.e. there is no thrust in the direc-

tion of «^, any more than there is along
an ordinary straight girder.

In order to facilitate the accurate con-

struction, let us multiply the ordinates
of a by 3 and use the polygon d instead.

Now the real equilibrium polygon of the
applied forces H^ is the straight line hlc^.

By real equilibrium polygon is meant,
that one which has for its pole distance,

the actual thrust of the arch. As we
are now considering this arch, H is the
applied force, and the thrust spoken of

is at right angles to S, We have just

shown this thrust to be zero. We have
then to construct an equilibrium polygon
for the applied force II with a pole dis-

tance of zero. The polygon is infinitely

deep in the direction of H., and hence is

a line parallel to H. This fixes its direc-

tion.

Its position is fixed from the considera-

tion that the total bending is zero, (be-

cause the direction of the tangents at

the extremities a and h^ are unchanged),
which is expressed by the equation

This gives us the same closing line

through h which we found in Fig. 2, and
the ordinates of the type lid., are propor-
tional to the moments caused by the
horizontal thrust H.
Now lay off dm^=i^JcJ)^, on^m^^k^d^y

etc., as in Fig. 2.

The problem of finally determining^
will be solved in two steps:

1°. We shall find the actual values of

the moments to which the ordinates kd
are proportional;

2°. We shall find ^by dividing either

of these moments by its arm.

By considering the equation

lJyEI=2(My)

given in Chapter I, in which Dy is

the horizontal displacement, it is seen

that if the actual moments are used for

weights, and UI for the pole distance, we
shall obtain, as the second equilibrium
polygon, a deflection curve whose ordi-
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nates are the actual deflections due to

the moments. By actual moments, actual

deflections, etc, is meant, that all of the
quantities in the equation are laid off to

the scale of distance, say one 7i^^^ of the
actual size.

Now let the equation be written

nBy . \EI=I{My).
it

From which it is seen that if the ordi-

nates be multiplied by w, so that on the

paper they are of the same size as in the

arch, we must use one n^^^ of the former
pole distance, all else remaining un-

changed.
Novy for the St. Louis Arch, jET=

39680000 foot tons. Let us take 100-

tons to the inch, as the scale of force :

and since ^^=3 inches, the scale of dis-

tance n is found from the proportion

3 in. : : 51.8 ft. : : 1 \n = 210 nearly,

and EI~ 100 n^— ^ in. nearly,

which is the pole distance necessary to use
with the actual deflection ^ of 3:J^in.=

Ifin., in order that the moments may be
measured to scale. As it is inconvenient
to use so large a distance as 9 in. on our
paper, let us take f of 9 in. =3j in.

nearly :=^dz for the pole distance, and
f of if in. =4§ in. =<:?2/, for the deflec-

tion.

Now with 2 as a pole and the weights
dm^^ ni^m^., etc, draw the deflection curve

bf, having the deflection =^df. The mo-
ments Mci must be increased in such a

ratio that the deflection will be increased
from c7/ to dy. Therefore draw the

straight lines hf and by, which will ena-

ble us to effect the increase in the required

ratio. For example, the moment dm^-=^bi

is increased to hj^ and dm^-=.bj is increased

to l)j^. Now measuring bj in inches and
multiplying by 210 and by 100, we have
found that 21000 fy"=1809 foot tons=the
moment at d or a.

And again, 21000 bj\=:SH1 foot tons
=the moment at 5^.

By measurement 210 dk=l7 ft. and
210 ^>^=34.8 ft.

.-. ir= 1809 -^-17 = 106 tons, -f

or ^=:3747-v-34.8= 108 tons —

.

These results should be identical, and
the difference between them of less than
2 per cent, is due to the error occasioned

by using the polygon d instead of the
curve of the ellipse, and to small errors
in measurement. With a larger figure

and the subdivision of the span into a
greater number of parts this error could
be reduced. The value of H found for
the St. Louis Arch by computation was
] 04 tons, but that was not on the suppo-
sition of a uniform moment of inertia 7",

and should be less than the value w^e

have obtained.

Now this horizontal thrust IT due to

temperature and to any other thrusts

of like nature as compression, etc, is of

the nature of a correction to the thrust
due to the applied weights. Thus in

Fig. 2 we found Son' to be the thrust due
to the applied weights, and on applying
the correction we must use the two
thrusts 3o?;^-f^and 3o^;'—^as pole dis-

tances to obtain equilibrium polygons
whose ordinates reckoned from the arch
a will, when multiplied by its pole dis-

tance, give the true bending moments.
The tangential and normal stresses can
then be determined by resolution, pre-

cisely as in Fig. 3.

If it, however, appears desirable to

compute separately the strains due to

IT, this may be more readily done than
in combination with the stresses already
obtained. We have already seen suffi-

ciently how the bending moments due
to JTare found. Li fact the moments
are such as would be produced by apply-
ing ^at the point where the horizontal

through k cuts the polygon d, for this is

the point of no moment, and may be
considered for the instant as a free end
of each segment, to each of which J?" is

applied causing the moments due to its

arm and intensity.

To find the tangential stress and shear,

lay off in Fig. 4 av= II'aTid on it as a di-

ameter describe a semicircle, and draw
ar^

II a^a^, ar^ \\ ap^ etc.; then will ai\ be
the component of ^along a^a^^ and vr^ be
the component of H directly across the

same segment. In a similar manner the
quantities of which ar on the type are

the tangential stresses and the quantities

vr are the shearing stresses caused by

The scale used for this last construc-

tion is about fifty tons to the inch.

Now jETis positive or negative accord-
ing as the temperature is increased
above or diminished below the mean,
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and these tangential and normal com-
ponents, of course, change sign with 11.

It should also be noticed in this connec-

tion that thrusts and bending moments,
which are numerically equal but of op-

posite sign, are induced by equal con-

tractions and expansions.

The stresses due to variation of tem-
perature in the arch of Fig. 3, having a

center joint, are constructed in Fig. 5.

It is evident from reasoning similar to

that employed for the case just discussed,

that the closing line dl:^ of the polygon
d is the equilibrium polygon of the thrust

^induced by variation of temperature.
Suj^pose we have changed the equation
of deflections to the form.

mDo
EI
tnn

in which, if niDy^zdy and El-^mn^^zdz^
then the moments M and the ordinates

y will be laid off on the scale of 1 to n.

This is equivalent to doing what was
done in the previous case, where m was
equal to f. The remainder of the pro-

cess is that previously employed.
It should be noticed that we have in

Figs. 4 and 5, incidentally discussed two
new forms of arches, viz: in Fig. 4 that
of an arch having its ends fixed in direc-

tion, but not in position; i.e., its ends
may slide but not turn, and in Fig. 5,

that of an arch sliding freely and turn-

ing freely at the ends. The first of these
arches has the same bending moments as

a straight girder, fixed in direction at the

ends, and the second of them has the same
bending moments as a simple girder sup-

ported at its ends.

Errata.—The measurements of Fig. 4

given on page 24 do not agree with the
scale on which the drawing is engraved.
The following equations and quantities

agree with the dimensions of Fig. 4, and
are to be substituted instead of those
given on page 24.

Let the scale of force be 100 tons to

the inch, and since 5c?=4^ inches, 4J in.

: 51.8 ft. : : 1 : n=:140 nearly, and EI^
100n^= 20 in. nearly, which is the pole
distance to use with the actual deflection

of the half span= lf in.

Now take one fourth of this pole dis-

tance = 5 in. = dz^ and four times the
deflection = 6J in. = dy, as being more
convenient to use; the moments, which

are the products of the deflections by
the pole distance, will be unchanged by
this process.

Now increase the ordinates in such a

ratio that the deflection will be increased

from df to dy. For example, the mo-
ment dm^=-hi is increased to hj, and dm^
= bi^ is increased to bj^. Now by meas-
uring b] in inches and multiplying by
140 and by 100 we have found 14000 bj=
1809 foot tons=the moment at a or d.

And again, 14000 bj\=374:1 foot tons =
the moment at b^.

By measurement, 140 dk=11 it.

and 140 ^»^^=34.8 ft.

.-. ^=1809-^-l7= 106 tons -f,

or ^=3747-r-34.8= 108 tons —

.

Near the bottom of the second column
of page 24, instead of ar^, ar^^ vr^, ar, vr,

read av^. av^, vv^, av, vv.

The scale used in the last construction

in Fig. 4, is about 33J tons to the inch.

UNSYMMETRICAL AECHES.

The constructions which have been
given have been simplified somewhat
by the symmetry of the right and left

hand halves of the arch, but the meth-
ods which have been used are equally
applicable if such symmetry does not
exist, as it does not, if, for example, the
abutments are of different heights.

In particular, for the unsymmetrical
arch, its closing line is not in general
horizontal, and must be found precisely

as that for the equilibrium polygon due
to the applied weights.

If, in Fig. 3, the hinge joint is not
situated at the center, the arch is un-
symmetrical, and the determination of

the closing line due to the applied
weights, is not quite so simple as in Fig.

3. It Avill be necessary to draw the trial

lines through the joint by which the
curve of errors q is found.

CHAPTER V.

ARCH EIB AVITH END JOINTS.

Let the curve a of the arch to be
treated have a span of six times the rise,

as represented in Fig. 6, and having
divided the span into twelve equal parts,

make the ordinates of the type bd twice
the ordinates ab.

Let a uniform load having a depth :cy

cover the two-thirds of the span at the

left, and a uniform load having a deptli
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xy'^^\xy cover the one-third of the

span at the right. Assume any pole dis-

tance, as of one-third of the span, and
lay off 5^2^j—aJ2/= one-half of the load

supposed to be concentrated at the cen-

ter; w^%o^-=^2xy^=^\hQ load concentrated

above h^^ etc. Similarly at the left make
5/^(j/ =03?/= one-half the load above h ;
w^'io,^^=^2xy=:t\iQ load above ^/y '^^'^l
=.xy + xy' = ^xy = the load above b//
w/to/=^xy=^th.e load above ^g', etc.

From this force polygon draw the

equilibrium polygon c, just as in Figs. 2

and 3.

Now the closing line of the equilibrium

polygon for a straight girder with ends

free to turn, must evidently pass so that

the end moments vanish. Hence CgC/

is the closing line of the polygon c, and
bj)/ is the closing line of the polygon d,

drawn according to the same law. The
remaining condition by which to determ-

ine the bending moments is:

2{Ma-M,)y=0 ,'. 2{May)^:E{M,y)

which is the equation expressing the con-

dition that the span is invariable, the

summation being extended from end to

end of the arch.

This summation is effected first as in

Figs. 2 and 3, by laying off as loads

quantities proportional to the applied

moments concentrated at the points of

division of the arch, and thus finding the

second equilibrium polygon, or deflection

polygon of two upright girders, bent by
these moments.

Let us take one-fourth of each of the

ordinates bdiov these loads, i.e. bni=^\ of

^bd / mm^^^^b^d^, etc.: also bn, nii^, etc.,

equal to similar fractions of the ordinates

of the curve c. Using d as the pole for

this load, we obtain the total deflection

bf^ on the left, and the same on the right

(not drawn) due to the bending moments

Similarly y^gj is the total deflection

right and left due to the moments Me.
]!^ow the equation of condition re-

quires that ^^6^/= J/g. That this may
occur, the ordinates of the polygon c

must be elongated in the ratio of these

deflections. To effect this, make ai=:

iffMe ^^^ ^'j~ht\i ^11^ ^^ t^^ horizon-

tals through i and j at a convenient dis-

tance draw the vertical i^J^', then the

lines ai^^ and aj^ will effect the required

elongation, as previously explained. To

obtain the center ordinate be, for ex-

ample, make ai'=^bh .'. aj'=^be. To
find the new pole o, draw bv j)arallel to

CgCg' and vo horizontal, as before ex-

plained.

If ai^ cuts the load line at t^ and the
horizontal through t^ cuts aj\ at t^, then
the vertical through t.^ is the new position

of the load line and tt^ is the new hori-

zontal thrust.

Now using o as the pole of the load
line u^u/ etc., through t^ draw the equi-

librium polygon starting from e. It

must pass through b^ and bj, which tests

the accuracy of the construction.

The construction may now be com-
pleted just as in Fig. 3, by doubling the
pole distance, and finding the tangential

thrust along the arch and the normal
shear directly across the arch in the

segments into which it is divided. The
maximum thrust and tangential stress is

obtained when the line load covers the

entire span.

To compute the effect of changes of

temperature and other causes of like

nature in producing thrust, shear, bend-
ing moment etc., let us put the equation
of deflections in the following form:

„,j)^.^=2(A.^ . (D)
'^ ^nn n \ nn n I

This equation may perhaps put in

more intelligible form the processes used
in Figs. 4 and 5, and is the equation
which should be used as the basis for the
discussion of temperature strains in the

arch. In equation (D) n is the number
by which the rise of the arch must be
divided to reduce it to bd, i.e., it is the
scale of the vertical ordinates of the
type bd, in Fig. 6, so that if bd was on
the same scale as the arch itself, n would
be unity. Again, n' is the scale of force,

i.e., the number of tons to the inch; and
7)1 is a number introduced for convenience
so that any assumed pole distance ^9 may
be used for the pole distance of the sec-

ond equilibrium polygon. In Fig. 6, ^>

= bd.

We find m from the equation.

P =
EI

m:
EI

2y7i'^n'^

from which m may be computed, for EI'\9>

a certain known number of foot tons when
the cross-section of the rib is given, 2^ is
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a number of inches assumed in the draw-
ing, 01 and 7i' are also assumed. Now
Dy is the number of inches by which
the span is increased or decreased by the

change of temperature, and tnDy is at

once laid off on the drawing.
The quantities in equation (D) are so

related to each other, that the left-hand

member is the product of the pole dis-

tance and ordinate of the second equi-

librium polygon, while the right-hand
member is the bending moment pro-

duced by the loading M-^oin', which
loading is proportional to 31. The curve
/"was constructed with this loading, and
only needs to have its loads and ordi-

nates elongated in the ratio of hf^ to

^ mDy to determine the values of

M-^nn' at the various points of division

of the arch. One-half of each quantity

is used, because we need to use but one-

half the arch in this computation. Two
lines drawn, as in Figs. 4 and 5, effect

the required elongation.

The foregoing discussion is on the im-
plied assumption that the horizontal

thrust caused by variation of tempera-
ture is applied in the closing line hh^ of

the arch, which is so evident from pre-

vious discussions as to require no proof
here.

The quantity determined by the fore-

going process is M-^nn'=q say, a cer-

tain number of inches. Then M^=7in'q,

and S=^M-^y=^n'q~—. in which —is the
^ n n

length of the ordinate in inches on the

drawing at the point atwhichJfis applied.

The determination of the shearing and
tangential stress induced by H is found
by using H as the diameter of a circle,

in which are inscribed triangles, whose
sides are respectively parallel and per-

pendicular to the segments of the arch,

precisely as was done in Figs. 4 and 5.

The whole discussion of the arch with
end joints may be applied to an unsym-
metrical arch with end joints. In that case,

it would be necessary to draw a curvef
at the right as well as f at the left, and
the two would be unlike, as g and g' are.

This, however, would afford no difficulty

either in determining the stresses due to

the loads, or to the variations of tem-
perature.

When the live load extends over two-
thirds of the span, as in the Fig., the
maximum bending moment is nearly in

the middle of that live load, and is very
approximately the largest which can be
induced by a live load of this intensity,

while the greatest moment of opposite

sign is found near the middle of the un-
loaded third of the span.

If the curve of the arch were a para-

bola instead of the segment of a circle,

these statements would be exact and
not approximate, as may be proved
analytically. This matter will be fur-

ther treated hereafter.

CHAPTER VI.

ARCH RIB WITH THREE JOINTS.

Let the joints be at the center and ends
of the arch, as seen in Fig. 7. Let the
loading and shape of the arch be the

same as that used in Fig. 6. Now since

the bending moment must vanish at each
of the joints, the true equilibrium curve
must pass through each of the joints;

^. e., every ordinate of the polygon c

must be elongated in the ratio of dh to

hh. To effect this, make di=^hh, and at

a convenient distance on the horizontals

through b and i draw the vertical i^ h^.

Then the ratio lines di^ and dh^ will
4

enable us to elongate as required, or to

find the new pole distance ^^, dimin-
ished in the same ratio, by drawing the
horizontal ti through i^. The new pole o is

found in the same manner as in Fig. 6.

Now with the new pole o and the new
load line through t^ we can draw the
polygon 6 starting at d. It must then
pass through h^ and 5/ which tests the
accuracy of the construction.

The maximum thrust, and tangential

stress is attained when the live load
covers the entire span.

Variations in length due to changes
of temperature induce no bending mo-
ments in this arch, but there may be
slight alteration in the thrust, etc., pro-

duced by the slight rising or falling of

the crown due to the elongation or

shortening of the arch. This is so small

a displacement that it is of no import-
ance to compute the stresses due to it.

We have for the same reason, in the
previous and subsequent constructions,

omitted to compute the stresses arising

from the displacement which the arch
undergoes at various points by reason of

its being bent. It would be quite pos-

sible to give a complete investigation of

these stresses by analogous methods.
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The construction above given is appli-

cable to any arch with three joints. The
arch need not be symmetrical, and the
three joints can be situated at any points

of the arch as well as at the points

chosen above.

CHAPTER VII. .

THE ARCH EIB WITH ONE END JOINT.

Let the arch be represented by Fig. 8,

in which the load, etc., is the same as in

Fig. 6.

The closing line must pass through the
joint, for at this joint the bending
moment vanishes.

A second condition which must be
fulfilled is, that the total deflection be-

low the tangent at the fixed end of a

straight girder having one end joint

vanishes, for the position of the joint is

fixed. This is expressed by the equation

in which the summation is extended
from end to end.

This condition will enable us to draw
the closing line of the polygon c, and
also that of cl. The problem may be
thus stated:—In what direction shall a
closing line such as cji' be drawn from
Cg so that the moment of the negative
triangular area cfi^h' about Cg shall be
equal to the moment of the positive

parabolic area cf>c^
To solve this problem, first find the

center of gravity of the parabolic area
by taking it in parts. The parabolic
area Cg h c/ is a segment of a single

parabola whose area is ^hp^y^c^c^-^^h^
X ^6^6^ when Aj=the height of an equiva-
lent triangle having the span for its base

Lay off ljb=c^c^, and draw IJ)J .*.

hj,^=h^. Lay off c^p^-^h^ as proportion-
al to the weight of the parabolic area.

Again, c/p is proportional to the weight
of the triangle c^c^'c^'. The parabolic
area«= fc/c/x VV=i^^2X^eV. as

before, .*. h^z=z^cjc^\ which may be
found as h^ was before.

Let h^--pp^^ then on taking any pole,

as ^2, of this weight line, we draw qq^ \\

c^c^, since the left parabolic area has its

center of gravity in the vertical through
3'j, and the triangular area in that through
2', we draw qq^' \\ c^p^ to the vertical

through g/, which contains the center of
gravity of the right parabolic area.

The position of q midway between the

verticals containing b and h^ is slightly

to the right of its true position, as it

should be at one-third of the distance
from the vertical through h to that
through ^2* This does not affect the
nature of the process however.
Then q^q^ \\ c^p^ and q^q^ \\ c^p^ give ^,

in the vertical through the center of grav-
ity of the total positive area. The nega-
tive area, since it is triangular, has its cen-

ter of gravity in the vertical through c/.

iSTow if the total positive bending mo-
ment be considered to be concentrated
at its center of gravity and to act on a

straight girder it will assume the shape
rq^i\ of this second equilibrium polygon,
and if a negative moment must be ap-

plied such that the deflection vanish, the
remainder of the girder must be r^i\, a
prolongation of rr^. Now draw c^p^ \\

rr^, and we have p^p^'=^(^^h' the height
of the triangle of negative area. Hence
cji' is the closing line, fulfilling the re-

quired conditions.

Again, to draw the closing line hji^

according to the same law, we know
that the center of gravity of the poly-

gonal area d is in the center vertical.

To find the height p^o\ of an equivalent

triangle having a base equal to the span,

we may obtain an approximate result, as

in Fig. 2, by taking one twelfth of the

sum of the ordinates of the type hd^ but
it is. much better to obtain an exact
result by applying Simpson's rule which
is simplified by the vanishing of the end
ordinates. The rule is found to reduce
in this case to the following:—The
required height is one eighteenth of the

sum of the ordinates with even subscripts

plus one ninth of the sum of the rest.

[N'ow this positive moment concentrated
in the center vertical and a nes^ative

moment such as to cause no total deflec-

tion in a straight girder, will give as a

second equilibrium polygon ^^/^^V/;
and if c^p^ \\ rr^', then p'p^^hfi is the

height of the triangular negative area,

and the closing line is hjc'

,

Now the remaining condition is that

the span is invariable, which is expressed
by the equation

'2(Ma-M,)y=^, or :2[May)^^{Mcy),

Let us construct the deflection curve
due to the moments M^ in a manner
similar to that employed in Fig. 2. We
lay off quantities dm^^ ^^^5*?^4> etc.,
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equal to one-fourth of the corresponding
ordinates of the curve d, and dn^^

n^n^^ etc., one-fourth of the ordinates

of the curve c. We use one-fourth or

any other fraction or multiple of both
which may be convenient. By using b

for a pole we obtain the deflection curves

^/"andy for the moments proportional to

Md , and the curves g and g' for those

proportional to Mc .

Xow, Prop. IV. requires that the or-

dinates of the polygon c should be in-

creased so that gg' shall become equal to

ff. Make di=^gg' and dj^ff and draw
as before the ratio lines di^ and dj^^ then
the vertical through t^ is the new position

of the load line.

Find the new length of hh which is

he, and with the new pole o, draw the

polygon e starting at e. It must pass

through &g. The new pole o is found
thus: draw bv \\ hh\ then v divides the

weight line into two parts, which are

the vertical resistances of the abutments.
From %\ draw v^o \\ kk\ then the closing

line of the polygon e has the direction Jck\

A single joint at any point of an un-
svmmetrical arch can be ' treated in a

similar manner.
A thrust produced by temperature

strains will be applied along the closing

line kk\ and the bending moments in-

duced will be proportional to the ordin-

ates of the polygon d from this closing

line. The variation of span must be
computed not for the horizontal span,

but for the projections of it on the clos-

ing line kJi'. The construction of this

component of the total effect will be
like that previously employed. Another
effect will be caused in a line perpendic-
ular to Jck'. The variation of span for

this construction, is the projection of the

total horizontal variation on a line per-

pendicular to kk'y and the bending mo-
ments induced by this force applied at

^g, and perpendicular to the closing line,

will be proportional to the horizontal

distances of the points of division from
^g. As these constructions are readily

made, and the shearing and tangential
stresses determined from them, it is not
thought necessary to give them in detail.

CHAPTER VIII.

ARCH RIB WITH TWO JOINTS.

Let us take the two joints, one at the
center and one at one end as represented

in Fig. 9. Let the loading, etc., be as

in Fig. 6.

The closing line evidently passes

through the two joints, as at them the

bendino; moment vanishes.

The remaining condition to be fulfilled

is that the deflection of the right half of

the arch in the direction of this line,

shall be the same as that of the left

half.

Let us then suppose that the straight

girder b/ p' perpendicular to the closing

line, is fixed at b^' and bent first by
the moments Ma giving us the deflection

curve b/ f^ when bj is taken as the pole,

and the loads of the type 7nm are one-

quarter of the corresponding ordinates

of the polygon d; and secondly, by the

moments Mc giving us the deflection

curve bjg' when drawn with the same
pole, and the loads of the type 7in also

one-quarter of the corresponding ordi-

nates of the polygon c. It should be
noticed that the points at which these

moments are supposed to be concentra-

ted in the girder b/ p' , are on the paral-

lels to hh' through the points c?g, d^^

etc.

Similarly let^3 and/3/g be the deflec-

tion curves of the straight girder d^p
(using c^g as the pole distance), under the

applied moments.
We have used now a pole distance

differing from that used in the right half

of the arch. These pole distances must
have the same ratio that the quantity EI
has for the two parts of arch. If EI\^ the

same in both parts of the arch the same
pole distance must be used to obtain the

deflection curves in both sides of the mid-

dle. In the same manner the curves gg^
and ^g^g are found. Now must the mo-
ments Mc causing the total deflection

p'g' —gg^-=z\ai be elongated so that they

shall cause a total deflection pf —ff^r^
\aj. The ratio lines ai^, aj\' will enable

us to find the new position t^_ of the load

line to effect this.

To find the new pole, through

v.„ which divides the load line into

parts which are the vertical resistances

of the piers, draw v^o \\ bjc. Then draw
the polygon e as in Fig. 7, starting from
d. It must pass through b^. We can

find also whether he^ has the required

ratio to hc^ by the aid of the ratio lines,

which will further test the accuracy of

the work.
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Any unsymmetrical arch with joints

situated differently from the case consid-

ered can be treated by a like method.
The temperature strains should be

treated like those in Fig. 8, which are

caused by a thrust along the closing line.

Those at right angles to this line vanish

as the joints allow motion in this direc-

tion. The shearing and tangential stress-

es can be found as in Fig. 3.

Arches with more than three hinge
joints are in unstable equilibrium,

and can only be used in an inverted

position as suspension bridges. These
will be treated subsequently. If the

joints, however, possess some stiffness

so that they are no longer hinge joints,

but are block-work joints, or analo-

gous to such joints, we may still con-

struct arches which are stable within

certain limits although the number of

joints is indefinitely increased. Such
are stone or brick arches. These will

also be treated subsequently.

The constructions in Figs. 6, 7, 8, 9,

can be tested by a process like that em-
ployed in Figs. 2 and 3. In Fig. 2, for

instance, we obtained the algebraic sum
of the squares of the quantities of the

type ss, and showed that such sum van-

ishes. We can obtain the same result in

all cases.

CHAPTER IX.

THE cixciNXATi a:n-d covingtox suspe:n'-

SION BRIDGE. (Fig. 10.)

The main span of this bridge has a
length of 1057 feet from center to cen-

ter of the towers, and the end spans are

each 281 feet from the abutment to the

center of the tower. The deflection of

the cable is 89 feet at a mean tempera-
ture, or about 1— 11.87th of the span.

There is a single cable at each side of

the bridge. Each of these cables is made
up of 5200 ISTo. 9 wires, each wire having
a cross-section of 1-60th of a square
inch and an estimated strength of 1620

lbs. Each of these cables has a diameter
of 12J inches, and an estimated strength

of 4212 tons. Each cable rests at the

tower upon a saddle of easy curvature,

the saddle being supported by 32 rollers

which run upon a cast iron bed-plate

8X11 feet, which forms part of the top

of the tower. Since the bed-plate is

horizontal this method of support ensures

the exact perpendicularity of the force

which the cables exert upon the towers,
without its being necessary to make the
inclination of the cable on both sides of

the saddle the same. There is, there-

fore, no tendency by the cables to over-

turn the towers, and they need only be
proportioned to bear the vertical stresses

coming upon them.
As this bridge differs greatly in some

respects from other suspension bridges,

it seems necessary to describe its

peculiarities somewhat minutely.

The roadway and sidewalks make a
platform 36 feet wide, extending from
abutment to abutment, 1619 feet. It is

built of three thicknesses of plank solid-

ly bolted together, in all 8 inches thick.

This is strengthened by a double line of

rolled I girders, 1630 feet long, running
the entire length of the center of the
platform. These I girders are arranged
one line above the other, and across be-

tween them, at distances of 5 feet, run
lateral I girders which are suspended
from the cable. The upper line of

girders is 9 inches deep, (and 30 lbs. per
foot); the lower line is 12 inches deep
(and 40 lbs. per foot). The lateral

girders are 7 inches deep (and 20 lbs. per
foot), and are firmly embraced between
the double line of longitudinal girders.

The girders of this center line are

each 30 ft. long, and are spliced together

by plates in the hollows of the I, but
the holes through which the bolts pass

are slots whose length is two or three

times the diameter of the bolts. This
makes a " slip joint " such as is often

used in fastening the ends of the rails on
a railroad. The slip joints permit the

wooden planking of the roadway to ex-

pand and contract from variations of

moisture and temperature without inter-

ference from the iron girders which are

bolted to it.

There is also a line of wrought-iron
truss-work about 10 feet deep extending
from abutment to abutment on each side

of the roadway, consisting of panels of

5 feet each, to each lower joint of which
is fastened a lateral girder and a suspen-

der from the cable. This trussing is a

lattice, with vertical posts, and ties ex-

tending across two panels, and its chords
are both made with slip joints every 30

feet.

It is apparent that this whole arrange-

ment of flooring with the girders and
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trusses attached to it possesses a very
small amount of stiffness, in fact the

stiffness is principally that of the floor-

ing itself. It will permit a very large

deflection, say 25 feet, up or down from
its normal position without injury. Its

office is something quite different from
that of the ordinary stiffening truss of a

suspension bridge. It certainly serves

to distribute concentrated loads over
short distances, but not to the extent re-

quired, if that were the sole means of

preserving the cable in a fixed position

under the action of moving loads. Its

true function is to destroy all vibrations

and undulations, and prevent their pro-

pagation from point to point by the

enormous friction al resistance of these

slip joints. When a wave does work
against elastic forces, the reaction of

those forces returns the wave with
nearly its original intensity, but when it

does work against friction it is itself

destroved.

The means relied on in this bridge to

resist the effect of unbalanced loads is a

system of stays extending from the top
of the tower in straight lines to those

parts of the roadway which would be
most deflected by such loads. There are

76 such stays, 19 from the top of each
tower. The longest stays extend so far

as to leave only .^50 feet., i.e., a little

over one-third of the span, in the center

over which they do not extend. Each
stay being a cable 2^ inches in diameter
has an estimated strength of 90 tons.

They are attached every 15 feet to the

roadway at the lower joints of the truss-

ing, and are kept straight by being fast-

ened to the suspenders where they cross

them. This system is shown in Fig. 10 in

which all the stays for one cable are

drawn, together with every third sus-

pender. The suspenders occur every 5

feet throughout the bridge but none are

shown in the figure except those attach-

ed at the same points as the stays.

These stays must sustain the larger

part of any unbalanced load, at the same
time producing a thrust in the roadway
against either the abutment or tower.

It is really an indeterminate ques-
tion as to how the load is divided
between the stays and trussing; and I

this the more, because of the manner in i

which the other extremities of the stays

'

are attached. Of the nineteen stays

!

carried to the top of one tower, the eight
next the tower are fastened to the bed
plate under the saddle, and so tend to

pull the tower into the river; the remain-
ing eleven are carried over the top of

the tower, and rest on a small independ-
ent saddle, beside the main saddle, and
are eight of them fastened to the middle
portion of the side spans as shown in Fig.

10, while the other three are anchored to

the abutment.
In view of the indeterminate nature

of the problem, it has seemed best to

suppose that the stays should be j^ropor-

tioned to bear the whole of any excess
of loading of any portion of the bridge,

over the uniformly distributed load
(which latter is of course borne by the
cable itself) ; and further that the truss

really does bear some fraction of the
unbalanced load, and that the bending
moments have therefore the same relative

amounts as if they sustained the entire

unbalanced load. This fraction, how-
ever, is quite unknown owing to the im-
possibility of finding any approximate
value of the moment of inertia / for the

combined wood and iron work of the

roadway.
This method of treatment has for our

present purpose this advantage, that the
construction made use of is the same a8

that which must be used when there are

no stays at all, and the entire bending
moments induced by the live loads are

borne by the stiffness of the truss alone.

IsTow in order to determine the tension

in any stay, as for instance that in the

longest stay leading to the right hand
tower, lay off v^v^ equal to the greatest

unbalanced weight, which under any
circumstances is concentrated at its lower
extremity. This weight is sustained by
the longitudinal resistance of the floor-

ing, and the tension of the stay. The
stresses induced in the stay and flooring

by the weight, are found by drawing
from v^ and v^ the lines v^o and v.,o par-

allel respectively to the stay and the

flooring. Then v^o is the tension of the

stay, and that of the other stays may be
found in a similar manner.

It is impossible to determine with the

same certainty how the stress ov., paral-

lel to the flooring is sustained. It may
be sustained entirely by the compression
it produces in the part of the flooring

between the weight and the tower or the
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abutment; or it maybe sustained by the

tension produced in the flooring at the

left of the weight; or the stress ov^ may
be divided in any manner between these

two parts of the flooring, so that v^v^'

may represent the tension at the left,

and ov^' the compression at the right of

the weight. It appears most probable
that the induced stress is borne in the

case before us by the compression of the

flooring at the right, for the flooring is

ill suited to bear tension both from the

slip joints of the iron work and the want
of other secure longitudinal fastenings;

but on the contrary it is well designed

to resist compression. The flooring

must then be able at the tower to resist

the sum of the compressions produced by
all the unbalanced weights which can

be at once concentrated at the extremi-

ties of the nineteen stays.

There is one considerable element of

stiffness which has not been taken account
of in this treatment of the stays, which
serves very materiallyto diminish the max-
imum stresses to which they might other-

wise be subjected. This is the intrinsic

stiffness of the cable itself which is formed
of seven equal subsidiary cables formed
into a single cable, by placing six of

them around the seventh .
central cable,

and enclosing the whole by a substantial

wrapping of wire, so that the entire

cable having a diameter of 12J inches,

affords a resistance to bending of from
one sixth to one half that of a hollow
cylinder of the same diameter and equal

cross section of metal. Which of these

fractions to adopt depends somewhat
on the tightness and stiffness of the

wrapping.
It is this intrinsic stiffness of the cable

which is largely depended upon in the cen-

tral part of the bridge, between the two
longest stays, to resist the distortion

caused by unbalanced weights.

As might be foreseen the distortions

are actually much greater in the central

part of the bridge than elsewhere, though
they would have been by far the greater

in those parts of the bridge where the

stays are, had the stays not been used.

The center of a cable is comparatively
stable while it is undergoing quite con-

siderable oscillations, as may be readily

seen by a simj^le experiment with a rope
or chain.

Let us now determine the relative

amount of the stresses in the stiffening

truss, on the supposition that the actual

stresses are some unknown fraction of

the stresses which would be induced, if

there were no stays, and the truss was
the only means of stiffening the cable.

We, therefore, have to determine only
the total stresses, supposing there are no
stays, and then divide each stress ob-
tained by ?i (at present unknown) to ob-

tain the results required. Let us draw
the equilibrium polygon d which is due
to a uniform load of depth xy, and which
has a deflection bd six times the central

deflection of the cable. The loading of

the cable is so nearly uniform, that each
of the ordinates of the type bd, may be
considered with sufficient accuracy to be
six times the corresponding ordinate of

the cable. Any multiple other than six

might have been used with the same
facility. In order to cause the polygon
to have the required deflection with any
assumed pole distance it is necessary to

assume the scale of weights in a particu-

lar manner, which may be determined
easily in several ways. Let us find it

thus :

Let TF^one of the concentrated weights.

Let Z>= central deflection of cable.

Let /S'=span of the bridge

Let J!/= central bending moment due to

the applied weights.

Then, if the pole distance =JaS, M=^S
X6Z>=:2/S'Z>, for the moment is the pro-

duct of the pole distance by the ordinate

of the equilibrium polygon. Again, com-
puting the central moment from the ap-

plied forces,

M=hh TFx iS-5 TFx i S=^ WS,

in which the first term of the right hand
member is moment of the resistance of

the piers, and the second term is the mo-
ment of the concentrated weights applied

at their center of gravity.

Hence, if one-third of the span is to

represent the pole distance or true hori-

zontal tension of an equilibrium curve

having six times the deflection of the

cable, each concentrated weight when
the span is divided into twelve equal

parts, is represented by a length equal to

f of the deflection of the cable. The
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true horizontal tension of the cable will

be six times that of the equilibrium

polygon, or it will be represented, in the

scale used, by a line twice the length of

the span. Now taking h as the pole, at

distances bb^=bb^=iS, lay off b/io^=
b^w/=iW=^D, so that they together
represent the weight concentrated at b;

and let w^io^= W, represent the weight
concentrated at b^, etc. Then can the

equilibrium polygon d be constructed by
making dcl^ || bw^, d^d„ \\ bw^^ etc. If bd
= 6Z> the polygon must pass through b^

and ^/, which tests the accuracy of the

work.
Xow to investigate the effect of an

unbalanced load covering one-half the
span, let us take one half the load on the
right half of the span and jDlace it upon
its left, so that x?. and xb represent the
relative intensity of the loading upon
the left and right half of the span re-

spectively, the total load being the same
as before. If it is desirable to consider
that the total load has been increased
by the unbalanced load we have simply
to change the scale so that the same
length of load line as before, (viz, b^n^^

+ h^vi^) shall represent the total loading.
This will give a new value to the hori-

zontal tension also.

Now let a new equilibrium polygon c be
drawn, which is due to the new distribu-

tion of the concentrated weights. It is

necessary to have the closing line of this

polygon c horizontal, and this may be ac-

complished either, by drawing the polygon
in any position and laying off the ordi-

nates of the type be equal to those in the
polygon so drawn, or better as is done
in this Figure by laying off in each
weight line that part of the total load
which is borne by each pier, which is

readily computed, as follows. The
distance of the center of gravity of the
loading divides the span in the ratio of

17 to 27. Hence \\ and i I of the total
load are the resistances of the piers, or
since the total load= 11 TFJ we have b^u^
= rt TFand b^^=^l W. Now make u^
ii^=ihe weight concentrated at b^, etc.,

and b^u^-\-b^it^=z that at b^. Then draw
the jDolygon c.

The polygon c has the same central
deflection as the polygon d; for compute
as before.

in which the first term of the second
member is the moment of the resistance

of the right pier, and the second term is

the moment of the concentrated weights
applied at their center of gravity.

By similar computations we may prove
the following equalities;

d^c=d^c^ dlc^'-----d^c^
;

d^c„^=—d'c\

d:<
;

The quantities of the type dc are propor-

tional to the bending moments which the

stiffening truss must sustain if it pre-

serves the cable in its original shape,

when acted on by an unbalanced load

of depth bx, on the supposition that the

truss has hinge joints at its ends, and is

by them fastened to the piers. For in

that case the cable is in the condition of

an arch with hinge joints at its ends.

The condition which then holds is this:

^{31ay)=^:2{Moy)
or.

^{Ma-Mc)y=0,\ 2{cd)y=0.

This last is fulfilled as is seen by the

above equations, for to every product
such as + b^d^ X d^^c^ corresponds another
—b/d/xd/c/ of the same magnitude
but opposite sign.

The polygon c could have been ob-

tained by a second equilibrium polygon
in a manner precisely like that used be-

fore, but as it appears useful to show
the connection between the methods of

treating the arch rib which is itself stiff,

and the fiexible arch or cable, which is

stiffened by a separate truss, we have
departed from our previously employed
method for determining the polygon c,

as it is easy to do when both c and d are

parabolic.

Now let us compute the bending mo-
ment

= d^c^^XiS=3I^-3fci

3fc=h^WxhS=-^\^WS

3Ici

=

V-i\^x 1-2S=H WS
.'. Mc-3fd=-h'\VS.

Compute also the bending moment at

the vertical through b^,

Mc='i- Wx hS-i Wx I'^S^ WjS

Ma=h^Wx ^S- Wx ^S=^ WS
.-. Mc-3ra=^WS
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Similar computations may be made for

the remaining points, and this note-

worthy result will be found true, that

the bending moments induced in the

stiffening truss by the assumed loading,

are the same as would have been induced

by a positive loading on the left of a

depth 2/2, and a negative loading on the

right of an equal depth yh. For com-
pute the moments due to such loading

at the points h^ and 5^.

The resistance of the pier due to such

loading = f FT

and

M=. f Tfx i >Sf-J IFx hS= k WB, etc.

We arrive then at this conception of

the stresses to which the stiffening truss

is subjected, viz:—the truss is loaded

with the applied weights acting down-
ward, and is drawn upward by a uni-

formly distributed negative loading,

whose total amount is equal to the posi-

tive loading, so that the load actually

applied at any point may be considered

to be the algebraic sum of the two loads

of different signs which are there applied.

This conception might have been derived

at once from a consideration of the fact

that the cable can sustain only a uniform
load, if it is to retain its shape; but it

appears useful in several regards to show
the numerical agreement of this state-

ment with Prop. IV of which in fact it

is a particular case. It is unnecessary
to make a general proof of this agree-

ment, but instead we will now state a

proposition respecting stiffening trusses,

the truth of which is sufficiently evident
from considerations previously adduced.

Prop. VI. The stresses induced in the

stiffening truss of a flexible cable or arch,

by any loading, is the same as that which

would be induced in it by the application

to it of a combined positive and negative

loading distributed in the following

manner, viz : the positive loading is the

actual loading, and the negative loading

is equal numerically to the positive load-

ing, but is so distributed as to cause no

bending moments in the cable or arch,

i.e.^ the cable or arch is the equilibrium

polygon for this negative loading.

By flexible cable or arch is meant one
which has hinge joints at the points

where it supports the stiffening truss. It

need not actually have hinge joints at

these points : the condition is sufficiently

fulfilled if it is considerably more flexi-

ble than the truss which it supports.

The truth of Prop. VI has been recog-
nized by previous writers upon this sub-

ject in the particular case of the parabolic

suspension cable, and it has been errone-

ously applied to the determination of the

bending moments in the arch rib in gen-

eral. It is inaccurate for this purpose in

two particulars, inasmuch as in the first

place the arch to which it is applied is

not parabolic, though the negative load-

ing due to it is assumed to be uniform,

and in the second place the horizontal

thrust is not the same for the different

kinds of arch rib, while this assumes the

same thrust for all, viz : that arising

from a flexible arch or one with three or

more joints.

A similar proposition has been intro-

duced into a recent publication on this

subject*, but in that work the truss stiff-

ens a simple parabolic cable, and the

truss is not supposed to be fastened to

the piers, so that it may rise from either

pier whenever its resistance becomes
negative. As this should not be permit-

ted in a practical construction the case

will not be discussed. In accordance
with Prop. VI let us determine anew
the bending moments due to an unbal-

anced load on the left of an intensity

denoted by hz. As before seen this pro-

duces the same effect as a positive load-

ing of an intensity yz^:^fm-=^^hz on the

left, and a negative loading of an inten-

sity yh^=fn=^^bz. ISTow using g as a pole

with a pole distance of gf^= OT\Q third of

the span lay off the concentrated weight
ji9^ji92=that applied at &j, etc., on the

same scale as the weights were laid off

in the previous construction, and in such

a position that g is opposite the middle
of the total load, which will cause the

closing line to be horizontal. Then
draw the equilibrium polygon a due to

these weights. The ordinates of the

type af are by Prop. VI proportional to

the bending moments induced in the

stiffening truss by the unbalanced load

when the truss is simply fastened to the

* Graphical Statics, A. J. Du Bois, p. 329, published
by John Wiley & Son, New York.
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piers at the ends, and, as we have seen,
j

each of the quantities C(/'is identical with
the corresponding quantity cd.

If the stiffening truss is fixed horizon-

'

tally at its ends a closing line hli' must

'

be drawn in such a position that ^(-^T/)

= 0, and as it is evident that it must di-

1

vide the equilibrium polygon symmetri-
cally it passes through / its central

point.
!

As stated in a previous article, the

maximum bending moments at certain

points of the span are caused when the
\

unbalanced load covers somewhat more
than half of the span. In the case of a

parabolic cable or arch the maximum
maximorum bending moment is caused

when this load extends over two-thirds
\

of the span, as is proved by Rankine in !

his Applied Mechanics by an analytic

process. Let the load extend then over

all except the right hand third of the

span with an intensity represented by '

hz=q^q^'. Then if fJq,=^f,'q/, the

truss may by Prop. VI be considered to

sustain a positive load of the intensity

f/q^ on the left of b„\ and a negative

load of the intensity f^^q/ on the right

of ^/. Using g^ as the pole and the

same pole distance as before, lay off the
|

weight q^q.^ concentrated at J., etc., so
j

that g' is opposite the middle of the

'

weight line. We thus obtain the equili-

brium polygon e, in which the ordinates
;

of the type ef are proportional to the
\

bendinsc moments of the truss under the

assumed loading, when its ends are sim-

ply fastened to the piers.

Now bd was the ordinate of an equili-

brium polygon having the same horizon-

tal tension, and under a load of the same
intensity covering the entire span. It

will be found that bd=^/\e^, which may
be stated thus:—the greatest bending
moment induced in the stiffening truss,

by an unbalanced load of uniform in-

tensity is four twenty-sevenths of that
produced in a simple truss under a load
of the same intensitv coverins^ the entire

span. This result was obtained by Ran-
kine analytically. If the truss is fixed

horizontally at its ends, we must draw a

closing line kk', which fulfills the condi-

tions before i^sed for the straight girder
fixed at the ends, as discussed previously
in connection with the St. Louis Arch.
By the construction of a second equili-

brium polygon, as there given, we find

the position of Jck'; then the ordinates

ke will be proportional to the bending
moments of the stiffenins; truss.

The shearing stress in the truss is obtained
from the loading which causes the bend-
ing moment, in the same manner as that

in any simple truss. The horizontal ten-

sion in the cable, is the same whenever
the total load on the span is the same,
and is not changed by any alteration in

the distribution of the loading, which
fact is evident from Prop. VI. The
maximum tension of the cable is found
when the live load extends over the
entire span, and is to be obtained from a

force polygon which gives for its equili-

brium polygon the curve of the cable

itself, as would be done by using the

weights w^w^, etc., and a pole distance of

six times ^;^^=twice the span.

The temperature strains of a stiffening

truss of a suspension bridge are more
severe than those of the truss stiffening

an arch, because the total elongation of

the cable in the side spans as well in the
main span, is transmitted to the main
span and produces a deflection at its

center. This is one reason why stays

furnish a method of bracing, particularly

applicable to suspension bridges. But
supposing that the truss bears part of

the bending moment due to the elonga-

tion of the cable, it is evident that when
the truss is simply fastened to the piers,

the bending moments so induced are

proportional to the ordinates of the type
bd, for by the elongation of the cable, it

transfers part of its uniformly distrib-

uted weight to the truss.

That load which the cable still sus-

tains, is uniformly distributed, if the

cable still remains parabolic, therefore

that transferred to the truss is uniformly
distributed.

When the truss is fixed horizontally

at the piers, the closing line of the curve

d must be changed so that 2{M)=^0,
and the bending moments induced by
variations of temperature, will be pro-

portional to the ordinates between the

curve d and this new closing line.

It remains only to discuss the stability

of the towers and anchorasje abutments.
The horizontal force tending to overturn

the piers comes from a few stays only,

as was previously stated, and is of such
small amount that it need not be consid-

ered.
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The weight of the abutment in

the case before us is almost exactly

the same as the ultimate strength

of the cable. Suppose that st=sv are

the lines representing these quantities in

their position relatively to the abutment.
Since their resultant sv intersects the

base beyond the face of the abutment,
the abutment would tip over before the

cable could be torn asunder. And since

the angle vsr is greater than the angle

of friction between the abutment and
the ground it stands on, the abutment if

standing on the surface of the ground,

would slide before the cable could be
torn asunder.

The smallest value which the factor of

safety for the cable assumes under a

maximum loading is computed to be six.

Take sf=ist as the greatest tension

ever induced in the cable, then sr' the

resultant of sv and sf cuts the base so

far within the face that it is apparent
that the abutment has sufficient stability

against overturning, and the angle VS7''

is so much smaller than the least value

of the angle of friction between the

abutment and the earth under it, that

the abutment would not be near the

point of sliding even if it stood on the

surface of the ground. It should be
noticed tha all the suspenders in the

side span assist in reducing the tension of

the cable as we approach the abutment,
and conduce by so much to its stability.

Also the thrust of the roadway may as-

sist the stability of the abutment, both
with respect to overturning and sliding.

CHAPTER X.

THE CONTINUOUS GIRDER WITH VARIABLE
CROSS-SECTION.

In the foregoing chapters the discussion

of arches of various kinds has been shown
to be dependent upon that of the straight

girder; but as no graphical discussion has,

up to the present time, been published

which treats the girder having a variable

cross-section and moment of inertia, our
discussion has been limited to the case of

arches with a constant moment of iner-

tia.

Certain remarks were made, however,
in the first chapter tending to show
the close approximation of the i*esults

in case of a constant moment of inertia

to those obtained when the moment of

inertia is variable. We, in this chapter,

propose a new solution of the continuous
girder in the most general case of varia-

ble moment of inertia, the girder resting

on piers having any different heights

consistent with the limits of elasticity of

the girder. This solution Avill verify the
remarks made, and enable us easily to see

the manner in which the variation of the

moment of inertia affects the distribution

of the bending moments, and by means
of it the arch rib with variable moment
of inertia can be treated directly.

Besides the importance of the con-

tinuous girder in case it constitutes the

entire bridge by itself, we may remark
that the continuous girder is peculiarly

suited to serve as the stiffening truss of

any arched bridge of several spans in

which the arches are flexible. Indeed, it

is the conviction of the writer that the

stiff arch rib adopted in the construction

of the St. Louis Bridge was a costly mis-

take, and that, if a metal arch was desir-

able, a flexible arch rib with stiffening

truss was far cheaper and in every way
preferable.

Let us write the equation of deflections

in the form

mn n \nn n I

in which n is the number by which any
horizontal dimension of the girder must
be divided to obtain the corresponding

dimension in the drawing, n' is the

divisor by which force must be divided

to obtain the length by which it is to

be represented in the drawing, m is an
arbitrary divisor which enables us to

use such a pole distance for the second
equilibrium polygon as may be most
convenient, I^ is the moment of inertia

of the girder at any particular cross sec-

tion assumed as a standard with which
the values of / at other cross sections

are compared, and z^Z^-r-/ is the ratio

of I^ (the standard moment of inertia),

to I (that at any other cross-section).

For the purpose of demonstrating the

general properties of girders, the equation

need not be encumbered with the coeffici-

ents mnn\ but for purposes of explaining

the graphical construction they are very
useful, and can be at once introduced in-

to the equation when needed.

In the equation
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the quantity D is the deflection of any
point of the girder below the tangent

at the point a where the summation be-

gins, and M is the actual bending mo-
ment at any point between and a.

These moments M at any point consist

in general of three quantities, represented

in the construction by the positive ordi-

nate of the equilibrium polygon due to

the weights, and by the two negative ordi-

nates of the triangles into which we have
divided the negative moment area. If

we distinguish these components of JSI

by letting M^ represent that due to the

weights, while J/, and ilf, represent the

components due to the left and right

negative areas respectively, the equation
of deflections becomes

D . EI,^ll{MJ.x)-:l{M^ix)-Il(MJx)

Now let us take at a pier at one end
of a span and extend the summation
over the entire span.

If the piers are b and h' as in Fig. 11,
let us suppose that coincides with h

and a with h' \ also suppose for the in-

stant that -/is constant, so that i=\ at
all points of the girder. Then we have

in which />& is the deflection of b below
the tangent at b', x^ is the distance of
the center of gravity of the moment
area due to the applied weights from b,

while x^ and x^ are the distances of the
centers of gravity of the negative areas
from b. In Fig. 11 let cc/ be the posi-
tive area due to the weights and repre-

senting ^l {MX while ^j,(J/,) and J^^,

(il/J are represented by hcc^ and AAV/
respectively. Let the center of gravity
of cc^c' be in gq^^, while the centers of
the two negative areas are in tr and t'r'.

Let the height of a triangle on some as-

sumed base, and equivalent in area to
cCqC', be 7i\, then by a process like that
in Fig. 2 it is evident that 7'7\ and r r
are the heights of the right and left

negative triangles, having the assumed
base, on the supposition that the girder
is fixed horizontally over the piers.

Now introducing the constants 7n7i?i'

into the last equation and into the equa-
tion before that, the relation of the quan-
tities is such that if the moments be ap-
plied as weights at their centers of
gravity with the pole distance ji9^=^/-^
7nn^7i\ the equilibrium polygon so obtain-
ed will be tangent at the piers to the ex-

aggerated deflection curve obtained when
the distributed moments are used as
weights; and the deflection at the pier
b from the tangent at b' will be the same
as that of this exaggerated deflection

curve, and vice versa.

Let pm—i\T,^^ p'm'—rr^ and pt:=^p't^

then t and t' constitute the pole, pm and
p'm' the negative loads, and ptn-^p'm'
the positive load. Then is btqt'h' the
equilibrium polygon for these loads.

The deflection of b below b't' vanishes
as it should in case the girder is fixed
horizontally over the pier.

Now let the direction of the tangents
at the piers be changed so that the
tangents to the exaggerated deflection

curve assume the directions bt^ and h't^.

Then the load line and force polygon
assume a new position, such that t^ and t

'

form the pole, and chi^^pm and d'7i'=z

p'm' comprise the positive load while
np^ and n'p^ are the new negative loads
which will cause the equilibrium polygon
bt^qj}^'b\ which is due to them, to have
its sides bt^ and b't^' in the directions as-

sumed.

There are several relations of quanti-
ties in this figure to which we wish to
direct attention. It is evident, in

case / is not constant, that from the
area cc^c' whose ordinates are propor-
tional to _/I/g, the actual bending mo-
ments due to the weights, another area
whose ordinates are proportional to
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MJ,^ the effective bending moments, can
be obtained by simple multiplication,

since lis known at. every point of the

girder. Moreover, the vertical through
the center of gravity of this positive

effective moment area can be as readily

found as that through the actual positive

moment area. Call this vertical "the
positive center vertical." Again, the

negative moment areas proportional to

MJ, and MJ, can be found from the tri-

angular areas proportional to J/^ and M,
by simple multiplication, and if Tve pro-

ceed to find the verticals through their

centers of gravity we shall obtain the

same verticals whatever be the magni-
tude of the negative triangular areas,

since their vertical ordinates are all

chano;ed in the same ratio bv assumino^

the negative areas differently. Let us

call these verticals the "left" and
*' right " verticals of the span. In case

i=l, as in Fig. 11, the left and right

verticals divide the span at the one-third

points. This matter will be treated

more fully in connection with Fig. 13.

Again, let us call the line tj}^' " the

third closing line." It is seen that,

whatever may be the various positions

of the tangent ht^^ the ordinate dn^ be-

tween the third closing line and t^q^ pro-

longed, is invariable; for the triangle

t^q^t^ is invariable, being dependent on
the positive load and pole distance alone.

By similarity of triangles it then follows

that the ordinate, such as lo\ on any as-

sumed vertical continues invariable; and
when there is no negative load at ^^,

then ht^q^ becomes straight, o' coincides

with h and n with ^:>^. Similar relations

hold at the right of q^. The quantity

d}^^ is of the nature of a correction to be
subtracted from the negative moment
when the s^irder is fixed horizontally at

the piers in order to find the negative

moment when the tangent assumes a new
position, for np^-=dn—dp^. The negative

moments can consequently be found from
the third closing line and the tangents

at the piers; while the remaining lines

qf^ and q^t^ will test the correctness of

the work. Before applying these pro-

perties of the deflection polygon and its

third closing line to a continuous girder,

it is necessary to prove a geometrical

theorem from Fig. 12.

Let the variable triangle xyz be such

that the side x?. always passes through

.

the fixed point g^ the side xy always
passes through the fixed point jl>, and the

vertices xyz are always in the verticals

through those points; then by the prop-
erties of homologous triangles the side

yz also has a fixed point/" in the straight

line gp. Furthermore, if there is a point

z' in the vertical through s, and in all

positions of z it is at the same constant

distance from z^ then on the line yz' there

is a fixed point g' where the vertical

through f intersects yz'; for, if z' main-
tains its distance zz' invariable, then
must any other point as g' remain con-

stantly at the same vertical distance

from/", as appears from similarity of tri-

angles. But as f is fixed g' is also.

When, for instance, the triangle xyz as-

sumes the position x^y^z^^ then z' moves
to 2/.

Let us now apply the foregoing to the

discussion of a continuous girder over
three piers 79"^;^:)' as shown in Fig. 13,

in which the lengths of the spans have
the ratio to each other of 2 to 3. Divide
the total length of the girder into such a

number of equal parts or panels, say 15,

that one division shall fall at the inter-

mediate pier, and let the number of lines

in any panel of the type aa represent its

relative moment of inertia. Assume the

moment of inertia where there are three

lines, as at a, «^, etc., as the standard or

jTq, then 2=1 at a, i=^ at a^, i=^ at «/,
etc.

Let the polygons c and c' be those due
to the weights in the left and right spans
respectively. Then the ordinates of

the type be are proportional to JI^ in the
left span. The figure hc^c"c^'c"c^c^c^c"

5g is the positive effective moment area

in the left span, and its ordinates are

proportional to MJ^. Its center of gravi-

ty has been found, by an equilibrium
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polygon not drawn, to lie in the positive

center vertical qq^^. A similar positive

effective moment area on the right has

its center of [gravity in the positive cen-

ter vertical q q,'.

Now assume any negative area, as

that included between the lines h and c?,

and draw the lines fih^ and A^/, dividing

the negative area in each span into right

and left triangular areas. Let the quan-
tities of the type hh be proportional to

if,, Ac? to M^, h'h' to J^^/, etc., then the

ordinates of hbJj^'b^b^'hJ)Jj^'hJ, are pro-

portional to MJ., and the center of gravi-

ty of this area has been found to lie in

the i-ight negative vertical t^'i\. Similar-

ly, the left negative vertical containing

the center of gravity of the left negative
the right

are the left and right

Tcrticals. As before stated, these verti-

cals would not be changed in position

by changing the position in any manner
whatever of the line d by which the

negative moments were assumed, for

sucPi change of position would change
all the ordinates in the same ratio.

Let us find also the vertical containing
the center of gravity of the effective

moment area, corresponding to the actual

moment area hjih,'. It is found by a

polygon not drawn to be vo. Call vo
"the negative center vertical." It is

unchanged by moving the line d. If a

effective moments, is t.^i\. In
span ^/r/ and t. V/

polygon be drawn due to the effective

moments as loads, two of its sides must
intersect on -yo, because it contains the

center of gravity of contiguous loads.

Now let rr^ represent 2(M,i) :—it is in

fact one eighth of the sum of the ordi-

nates 6jC, 4-'^jC/', etc., and hence is the
height of a triangle having a hane^^bb^,
and an area equal to the effective mo-
ment area in the left span. Also r'r/ is

the height of a triangle having the same
base, and an area equal to the effective

moment area in the right span.

As previously explained, sr^ is the
amount of the right negative effective

moment area in the left span, measured
in the same manner, while sr is that on
the left when the girder is fixed horizon-

tally at the piers. We obtain s'r/ and
s'r' in the right span, in a similar manner.
Xow assume the arbitrary divisor rn=l,
and take the pole distance r^9i^=JEJI^-^

nW. Then as seen previously, if mn^=sr^j
ou is the constant intercept on the nega-
tive center vertical, between the third

closing line in the left span, and a side

of the type qt. Also ou' is a similar

constant intercept on this vertical due
to the right span. Make r^n^=r/t^ and
n,//22=:.sr, then Ib^ is a similar invariable

intercept; as is I'bJ, which is obtained
in a similar manner.
Now the negative center vertical ov

was obtained from the triangle bJJj,^^ i.e.
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on the supposition that the actual mo-
ment over the pier is the same whether
it be determined from the left or right

of the pier. It is evident that while the

girder is fixed horizontally at the inter-

mediate pier, the moment at that pier is

generally different on the two sides, at

points iufinitesimally near to it, but that

when the constraint is removed an equali-

zation takes place.

Since oic and oit' are derived from
the positive effective moments, it appears

that when the tangent at ^9 is in such a

position that the two third closing lines

intercept a distance uu' on ov and the

two lines of the type qt when prolonged
intersect on ov, the moments over the

pier will have become equalized.

We propose to determine the position

of the tangent at 2^ which will cause this

to be true, by finding the proper position

of the third closing lines in the two spans.

Move the invariable intercepts to a

more convenient position, by making
o^s=ow, and o^z'=^ou'. Now by making
the arbitrary divisor m=l, as we did,

the ordinates of the deflection polygon
became simply Z>, i.e., they are of the

same size in the drawing as in the girder,

hence the difference of level of p", p and
p)' niust be made of the actual size. By
changing m this can be increased or

diminished at will.

Now we propose to determine two
fixed points g and g\ through which the

third closing line in the left span must
pass, and similarly g'" and g' on the

right.

If the girder is free at p" then as shown
in connection with Fig. 1], the third

closing line must pass through g, if gp"=^

Ib^. Draw gz as a tentative position of

the third closing line, and complete the

triangle xy'z as in Fig. 12.

Then is xy' the tentative position of

the tangent at p, and since the third clos-

ing line in the right span must pass

through y\ and make an intercept on
the negative center vertical equal to uu',

then z'y' is its corresponding tentative

position. But wherever gz may be
drawn, every line making an intercept

=iuit' and intersecting t^'r^' in such a

manner that the tangent passes through

p) must pass through the fixed point g',

found as described in Fig. 12. There-

fore the third closing line in the right

span passes through g'. Similarly, if

there were more spans still at the right
of these, we should use g' for the deter-

mination of another fixed point, as we
have used g to determine it.

Now find g'" and g" precisely as g and
g' have been found, and draw the third
closing lines tj;^ and t^'t^'. If tj^^' passes
through p the construction is accurate.

Make uu"=^vv", then is n^m^ the nega-
tive effective moment at the left, and
n^m^ that at the right of the pier.

Let hw be the effective moment area
corresponding to the triangle hM^, and
measured in the same manner as the
positive area was, by taking one eighth
of its ordinates, and let hw^^=^n^m^\ then
as the effective moment hw is to the

actual moment hh corresponding to it, so

is the effective moment hw^ or n^m^ to

the actual moment hh corresponding to

it. The same moment hh is also found
from n^'m^', by an analogous construc-

tion at the right of h, which tests the ac-

curacy of the work.
Several other tests remain which we

will briefly mention.
Prolong p)"t^ to q, and ^9^^/ to q', then

qt^ and q't^' must intersect on the nega-

tive center vertical at o^ so that o^v^'^:^

ou" . Also vv' must be equal to uu'

.

Again t^-o' passes through f, and ^/v

through f. Also yo^ intersects qo^ on
the fixed vertical /^'^ at e, and y'o^ inter-

sects q^o^ on the fixed vertical f'g' at e'

.

That these must be so is evident from a

consideration of what occurs during a

supposed revolution of the tangent t^t-l,

to the position xy'

.

Now having determined the moment
hh over the pier, hh^ and hh^ are the
true closing lines of the moment poly-

gons G and g'
. Call these closing

lines h, then the ordinates of the

type he will represent the bending mo-
ments at different points of the girder.

The points of the contra flexure are at

the points where the closing lines inter-

sect the polygons g and g'
. The direc-

tions of the closing lines will permit at

once the determination of the resistances

at the piers and the shearing stresses at

any point.

The particular difference between the

construction in case of constant and of

variable moment of inertia, is seen to be
in the positions of the center verticals

positive and negative, and the right and
left verticals.
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The small change in their position due
to the variation in the moment of inertia,

is the justification of the remarks previ-

ously made respecting the close approxi-

mation of the two cases.

It is seen that the process here devel-

oped can be applied with equal facility

to a girder with any number of spans.

Also if the moment of inertia varies con-

tinuously instead of suddenly, as assumed
in Fig. 13, the panels can be taken short

enough to approximate with any re-

quired degree of accuracy to this case.

CHAPTER XI.

THE THEOREM OF THREE MOMENTS.

The preceding construction has been
in reality founded on the theorem of

three moments, but when the equation
expressing that theorem is written in

the usual manner, the relationship is

difficult to see. Indeed the equation as

given by Weyrauch* for the girder hav-
ing a variable moment of inertia, is of so

complicated a nature that it may be
thought hopeless to attempt to associate

mechanical ideas with the terms of the

equation, in any clearly defined relation-

ship. We propose to derive and express

the equation in a novel manner, which
will at once be easy to understand, and
not difficult of interpretation in connec-
^tion with the preceding construction.

Let us assume the general equation of

deflections in the form.

I):=:E(3Ix^EI), or D.ET^:2{Mix)

in which Z is the variable moment of

inertia, I^ some particular value of J" as-

sumed as the standard of comparison,
i^I^-^I^ and x is measured horizontally

from the point as origin, where the de-

flection D is taken to the point of appli-

cation of the actual bending moment 31.

The quantity 3Ii is called the effective

bending moment, and the deflection JD

is the length of the perpendicular from
the origin to the line tangent to the de-

flection curve at point to which the sum-
mation is extended.

Xow consider two contiguous spans
of a continuous girder of several spans,

and let aci denote the piers, c being the

intermediate pier. Let the span ac=-l

and hc^^V. Take the origin at a and

* Allgemeine Theorie und Berechnuug der Coutinuir-
lichen und Einfachen Trager. Jakob I. Weyrauch.
Leipzig 18T3.

extend the summation to c, calling the

deflection at a, Da- When the origin is

at b and the summation extends to c, let

the deflection be 2>i). Let also 2/a,2/b and
2/c be the heights of a, h and c respective-

ly above some datum level. Then, as

may be readily seen,

^a = Va — Vc — Itc
,

^b — yb — yc — Vtc,

if tc is the tangent of the acute angle at

c on the side towards a between the tan-

gent line of the deflection curve at c

and the horizontal, and ^c' is the tangent
of the corresponding acute angle on the
side of c towards h.

Now if we consider equation (7) to

refer to the span /, the moment M may
be taken to be made up of three parts,

viz:

—

M^ caused by the weights on the
girder, M^ dependent on the moment
Mc at c, and M^ dependent on the mo-
ment Ma at a. The moments in the
span V may be resolved in a similar man-
ner. We may then write the equations
of deflections in the two spans when the
summation extends over each entire span
as follows:

ElXya-yc-U^=^l {M^x)-X (Mjx)

-X{MJx) (8)

^I.{yb -y-Vt:)=X{M:i'x')

-^\{M^i'x')-^\{JSi:i'x') (9)

in which x is measured from a, and x'

from h towards a. Now if the girder is

originally straight, tc =^ ~ tc ^ hence
we can combine these two equations so

as to eliminate tc and tc\ and the result-

ing equation will express a relationship

between the heights of the piers, the
bending moments (positive and negative),

their points of application and the mo-
ments of inertia; of which quantities the
negative bending moments are alone un-
known. The equation we should thus
obtain would be the general equation
of which the ordinary expression of the
theorem of three moments is a particular

case. Before we write this general
equation it is desirable to introduce cer-

tain modifications of form which do not
diminish its generality. Suppose that

then is x^ the distance from a to the cen-

ter of gravity of the negative effective
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moment area next to c. As was shown
in connection with Fig. 13, the position

of this center of gravity is independent
of the magnitude of M^ or Mq and may
be found from the equation,

i^nJU \XinJU

93, /a . • • • (10)

for M^ is proportional to x. Similarly

it may be shown that

X-
i{l—x)xdx

/a
i{l—x)dx

(11)

is the distance of the center of gravity

of the negative effective moment area

next to a.

Again, suppose that

then is ^\ an ' average value of ^ for the
negative effective moment area next to

0, which is likewise independent of the

magnitude of il/^, as appears from reason-

ing like that just adduced respecting x^.

Hence ^\ may be found from the equation

/: iiXCuX

^,=/a
xdx

Similarly it may be shown that
/a

i(l—x)dx

(12)

^„=/a
{l—x)dx

(13)

in which i^ is the average value of i for

the negative effective moment area next
to a.

The integrals in equations (lO), (11),

(12). (13), and in others like them refer-

ring to the span I', which contain i must
be integrated differently, in case i is dis-

continuous, as it usually is in a truss,

from the case where i varies continuous-

ly. When i is discontinuous the integral

extending from c to a must be separated
into the sum of several integrals, each of

which must extend over that portion of

the span I in which i varies continuously.

Furthermore we have

X{M;}=iMj

,

(14)

since each member of this equation rep-

resents the negative actual moment area
next to e in the span I.

Similarly, we have the equations

If there is no constraint at the pier

then must Mo = M^'

.

Now making the substitutions in equa-
tions (8) and (9), which have been indi-

cated in the developments just com-
pleted, and then eliminating tc and tc\

V
^Mw^i^'\ . . . (15)

in which "^^ is the distance from a of the
center of gravity of the positive effect-

ive moment area due to the weights in

the span ^, and "^Z is a similar distance
from h in the span l\ while i^ and ^/ are
average values of i for these areas de-

rived from the equations in each span,

^•=2(i!/,^)-2(ilf,).

It may frequently be best to leave the

expressions containing the positive mo-
ments in their original form as expressed
in equations (8) and (9).

Equation (15) expresses the theorem of

three moments in its most general form.

Let us now derive from equation (15),

the ordinary equation expressing the

theorem of three moments, for a girder

having a constant cross section. In this

case ^=l, and we wish to find the value

of the term ^{M^x) in each span. Let
M^ be caused by several weights P ap-

plied at distances z from a, then the mo-
ment due to a single weight P at its

point of application is

M^ = Pz{l-z)~l,

which may be taken as the height of the

triangular moment area whose base is I

which is caused by P. This triangle

whose area is ^Mzl is the component of

2(M^ due to P and can be applied as a

concentrated bending moment at its cen-

ter of gravity at a distance x from a.

Now x^=-^{l+z)y and taking all the

weights P at once

Also in equation (15) we have in this

case
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QEI

.17 - 27 —' 17' ~' 27'

Va—Vc .
2/j>-yc

= Mal+2Mc{l+l')-\-Mj,V . (16)

Equation (16) then expresses the the-

orem of three moments for a girder hav-

ing a constant moment of inertia /, and
deflected by weights applied in the span

I at distances z from a, and also by
weights in the span I' at distances z' from
b.

Let us also take the particular case of

equation (15) when the moment of inertia

is invariable and the piers on a level; then

i=\, and if we let A^ and AJ be the

positive moment areas due to the weights

we have

Mal+2Mc{l-\-l')+M^V . . {11)

This form of the equation of three mo-
ments was first given by Greene.*
The advantage to be derived in discus-

sing this theorem in terms of the bending
moments, instead of the applied weights
is evident both in the analytical and the

graphical treatment. The extreme com-
plexity of the ordinary formulae arises

from their being obtained in terms of

the weights.

In order to complete the analytic solu-

tion of the continuous girder in the gen-

eral case of equation (15), it is only
necessary to use the well known equa-

tions,

M=Me+SoZ-Sl{Pz:) . . 08)

Se=]iMa-Me+K{Pz)-] . . (l9)

Sc'= \{M^-Mc+ll{Pz')^ . (20)

P^ = Sc-\- jS/ (21)

S=Se-K{P) (22)

In (18) 3f is the bending moment at

any point in the span I, Sc is the shear
at c due to the weights in the span I,

and z^ is the distance from towards c

of the applied forces P and jSc in the seg-
ment Oc.

* Graphical Method for the Analysis of Bridge Trusses.
Chas. E, Greene. Published by D. Van Nostrand. New
York, 1875.

Equation (19) is derived from (18) by
taking at a, and (20) is obtained simi-

larly in the span I'. Pc is the reaction

of the pier at c. JS is the shear at in

the span I. These equations also com-
plete the solution of the cases treated in

(16) and (11),

CHAPTER XII.

THE FLEXIBLE ARCH EIB AND STIFFENING
TRUSS.

Whenever the moment of inertia of

an arch rib is so small, that it cannot
afford a sufficient resistance to hold in

equilibrium the bending moments due
to the weights, it may be termed a flexi-

ble rib.

It must have a sufficient cross section

to resist the compression directly along
the rib, but needs to be stiffened by a
truss, which will most conveniently be
made straight and horizontal. The rib

may have a large number of hinge joints

which must be rigidly connected with
the truss, usually by vertical parts. It

is then perfectly flexible.

If, however, the rib be continuous
without joints, or have blockwork joints,

it may nevertheless be treated as if per-

fectly flexible, as this supposition will

be approximately correct and on the side

of safety, for the bending moments in-

duced in the truss will be very nearly as

great as if the rib were perfectly flexible,

in case the same weight would cause a
much greater deflection in the rib than
in the truss. It will be sufficient to
describe the construction for the flexible

rib without a figure, as the construction
can afford no difficulties after the con-
structions already given have been mas-
tered.

Lay off on some assumed scale the
applied weights as a load line, and let

us call this vertical load line ww\
Divide the span into some convenient
number of equal parts by verticals,

which will divide the curve a of the rib

into segments. From some point b as a
pole draw a pencil of rays parallel to the
segments of a, and across this pencil

draw a vertical line im% at such a dis-

tance from b that the distance taf/ be-

tween the extreme rays of the pencil is

equal to ww\ Then the segments of
im' made by the rays of the pencil are

the loads which the arch rib would sus-
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tain in virtue of its being an equilibrium

polygon, and they would induce no bend-
ing moments if applied to the arch.

The actual loads in general are different-

ly distributed. By Prop. VI the bending
moments induced in the truss are those

due to the difference between the weight
actually resting on the arch at each
point, and the weight of the same total

amount distributed as shown by the

segments of the line %iu'

.

Now lay off a load line vv' made up
of weights which are these differences

of the segments of uu' and %ov:)\ taking
care to observe the signs of these dif-

ferences. The algebraic sum of all the

weights 'C'o' vanishes when the weights
which rest on the piers are included, as

appears from inspection of the construc-

tion in the lower part of Fig. 10. The
construction above described will differ

from that in Fig. 10 in one particular.

The rib will not in general be parabolic,

and the loads which it will sustain in

virtue of its being an equilibrium poly-

gon will not be uniformly distributed,

hence the differences which are found as

the loading of the stiffening truss do
not generally constitute a uniformly
distributed load.

The horizontal thrust of the arch is

the distance of %iu' from h measured on
the scale on which the loads are laid off,

and the thrust along the arch at any
point is length of the corresponding ray
of the pencil between h and ilu' . These
thrusts depend only on the total weight
sustained, while the bending moments
of the stiffening truss depend on the
manner in which it is distributed, and
on the shape of the arch.

Having determined thus the weights
applied to the stiffening truss, it is to be
treated as a straight girder, by methods
previously explained according to the

way in which it is supported at the

piers.

The effect of variations of temperature
is to make the crown of the arch rise

and fall by an amount which can be
readily determined with sufficient exact-

ness, (see Rankine's Applied Mechanics
Art. 169). This rise or fall of the arch

produces bending moments in the stiffen-

ing truss, which is fastened to the tops

of the piers, which are the same as would
be produced by a positive or negative
loading, causing the same deflection at

the center and distributed in the same
manner as the segments of uu' : for it'

is such a distribution of loads or pres-

sures which the rib can sustain or pro-

duce. A similar set of moments can be
induced in the stiffening truss by length-
ening the posts between the rib and
truss.

When this deflection and the value of
El in the truss are known, these mo-
ments can be at once constructed by
methods like those already- employed.
A judicious amount of cambering of this

kind is of great use in giving the struc-

ture what may be called "initial stiff-

ness." The St. Louis Arch is wanting in

initial stiffness to such an extent that

the weight of a single person is sufficient

to cause a considerable tremor over an
entire span. This would not have been
possible had the bridge consisted of an
arch stiffened by a truss which was an-

chored to the piers in such a state of

bending tension as to exert considerable

pressure upon the arch. This tension of

the truss would be relieved to some ex-

tent during the passage of a live load.

The arch rib with stiffening truss, is a

form of which many wooden bridges
were erected in Pennsylvania in the
earlier days of American railroad build-

ing, but its theory does not seem to have
been well understood by all who erected

them, as the stiffening truss was itself

usually made strong enough to bear the

applied weights, and the arch was added
for additional security and stiffness,

while instead of anchoring the truss to

the piers and causing it to exert a pres-

sure on the arch, a far different distribu-

tion of pressures was adopted. Quite a
number of bridges of this pattern are

figured by Haupt* from the designs of

the builders, but most of them show by
the manner of bracing near the piers

that the engineers who designed them
did not know how to take advantage of

the peculiarities of this combination.

This further appears from the fact, that

the trussing is not usually continuous.

A good example, however, of this

combination constructed on correct prin-

ciples is very fully described by Haupt
on pages 169 et seq. of his treatise. It

is a wooden bridge over the Susquehanna
River, 5^ miles from Harrisburg on the

* Theory of Bridge Construction. Herman Haupt, A.M.
New York. 1853.
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Pennsylvania Railroad, and was-designed

by Haupt. It consists of twenty-three
spans of 160 feet each from center to

center of piers. The arches have each
a span of 149:^ feet and a rise of 20
ft. 10 in., and are stiffened by a Plowe
Truss which is continuous over the

piers and fastened to them. It was
erected in 1849. Those parts which were
protected from the weather have re-

mained intact, while other parts have
been replaced, as often as they have de-

cayed, by pieces of the original dimen-
sions. This bridge, though not designed
for the heavy traffic of these days, still

stands after twenty-eight years of use, a

proof of the real value of this kind of

combination in bridge building.

CHAPTER XIII.

THE ARCH OF MASONRY.

Arches of stone and brick have joints

which are stiff up to a certain limit

beyond which they are unstable. The
loading and shape of the arch must be so

adjusted to each other that this limit

shall not be exceeded. This will appear
in the course of the ensuing discussion.

Let us take for discussion the brick
arch erected by Brunei near Maidenhead
England, to serve as a railway viaduct.

It is in the form of an elliptic ring, as

represented in Fig. 14, having a span of

128 ft. with a rise of 24J feet. The
thickness of the ring at the crown is 5j
ft., while at the pier the horizontal thick-

ness is 7 ft. 2 inches.

Divide the span into an even number
of equal parts of the type hh^ and with a
radius of half the span describe the
semicircle gg. Let 5a=24j ft. be the

rise of the intrados, and from any con-
venient point on the line hh as h^ draw
lines to a and g. These lines will enable
us to find the ordinates ha of the ellipse

of the intrados from the ordinates hg of

the circle, by decreasing the latter in the

ratio of hg to ha. For example, draw a
horizontal through g^ cutting h^g at i^^

then a vertical through ^3, cutting h^a at

7*3, then will a horizontal through /^ cut

off af)^ the ordinate of the ellipse corre-

sponding to h^g^ in the circle, as appears
from known properties of the ellipse.

Similarly let ^$'=64 ft. + 7 ft. 2 in.,

and with hq as radius describe a semicir-

cle. Let hd—1i\ix,. + h\ ft. be the rise

Fig.14

ARCH OF MASONRY
MAIDENHEADHAILWAY VIADUCT
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of the extrados, and from any convenient
point on hh, as b^ draw lines to d and q.

These will enable us to find the ordinates

hd of the ellipse of the extrados, from
those of the circle, by decreasing the

latter in the ratio of hq to hd. By this

means, as many points as may be desired,

can be found upon the intrados and ex-

trados; and these curves may then be
drawn with a curved ruler. We can use

the arch ring so obtained for our con-

struction, or multiply the ordinates by
any convenient number, in case the arch

is too flat for convenient work. Indeed
we can use the semicircular ring itself if

desirable. We shall in this construction

employ the arch ring ad which has just

been obtained.

We shall suppose that the material of

the surcharge between the extrados and
a horizontal line tangent at d causes by
its weight a vertical pressure upon the

arch. That this assumption is nearly

correct in case this part of the masonry is

made in the usual manner, cannot well be
doubted. Rankine, however, in his Ap-
plied Mechanics assumes that the press-

ures are of an amount and in a direction

due to the conjugate stresses of an homo-
geneous, elastic material, or of a material

which like earth has an angle of slope due
to internal friction. While this is a cor-

rect assumption, in case of the arch of a

tunnel sustaining earth, it is incorrect

for the case in hand, for the masonry of

the surcharge needs only a vertical resist-

ance to support it, and will of itself pro-

duce no active thrust, having a horizon-

tal component.

This is further evident from Moseley's
principle of least resistance, which is

stated and proved by Rankine in the

following terms:

"If the forces which balance each
other in or upon a given body or struc-

ture, be distinguished into two systems,

called respectively, active and passive^

which stand to each other in the rela-

tion of cause and effect, then will the

passive forces be the least which are

capable of balancing the active forces,

consistently with the physical condition

of the body or structure.

For the passive forces being caused by
the application of the active forces to

the body or structure, will not increase

after the active forces have been balanced

by them; and will, therefore, not increase
beyond the least amount capable of bal-

ancing the active forces."

A surcharge of masonry can be sus-

tained by vertical resistance alone, and
therefore will exert of itself a pressure
in no other direction upon the haunches
of the arch. Nevertheless this surcharge
will afford a resistance to horizontal

pressure if produced by the arch itself.

So that when we assume the prestures

due to the surcharge to be vertical alone,

we are assuming that the arch does not
avail itself of one element of stability

which may possibly be employed, but
which the engineer will hesitate to rely

upon, by reason of the inferior character

of the masonry usually found in the sur-

charge. The difficulty is usually avoided,

as in that beautiful structure, the London
Bridge, by forming a reversed arch over
the piers which can exert any needed
horizontal pressure upon the haunches.
This in effect increases by so much the
thickness of the arch ring at and near
the piers.

The pressure of earth will be treated

in connection with the construction for

the Retaining Wall. On combining the

pressures there obtained with the weight,
the load which a tunnel arch sustains,

may be at once found, after which the

equilibrium polygon may be drawn and
a construction executed, similar in its

general features to that about to be em-
ployed in the case before us.

Let us assume that the arch is loaded
with a live load extending over the left

half of the span, and having an intensity

which when reduced to masonry of the

same specific gravity as that of which
the viaduct is built, would add a depth
(?/* to the surcharge. Now if the number
of parts into which the span is divided
be considerable, the weights which may
be supposed to be concentrated at the

points of division vary very approximately
as the quantities of the type af. This
approximation will be found to be suffi-

ciently exact for ordinary cases; but
should it be desired to make the con-

struction exact, and also to take account
of the effect of the obliquity of the joints

in the arch ring, the reader will find the

method for obtaining the centers of

gravity, and constructing the weights, in

Woodbury's Treatise on the Stability of

the Arch pp. 405 et seq. in which is
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given Poncelet's graphical solution of

the arch.

With any convenient pole distance, as

one half the span, lay off the weights.

We have used b as the pole and made
h^w^ — i the . weight at the crown =
J (af+ad) = b/tv^\ w^w,^ = a^f^, w^w^ =
C6^f„, etc. Several of the weights near
the ends of the span are omitted in the

Figure; viz., w^w^, etc. From the force

polygon so obtained, draw the equili-

brium polygon c as previously explained.

The equilibrium polygon which ex-

presses the real relations between the

loading and the thrust along the arch, is

evidently one whose ordinates are pro-

portional to the ordinates of the polygon
c.

It has been shown by Rankine, Wood-
bury and others, that for perfect stability,

—^.e, in case no joint of the arch begins
to open, and every joint bears over its

entire surface,—that the point of appli-

cation of the resultant pressure must
everywhere fall within the middle third

of the arch ring. For if at any joint the

pressure reaches the limit zero, at the
intrados or extrados, and uniformly in-

creases to the edge farthest from that,

the resultant pressure is applied at one
third of the depth of the joint from the
farther edge.

The locus of this point of application
of the resultant pressure has been called

the " curve of pressure," and is evidently
the equilibrium curve due to the weights
and to the actual thrust in the arch. If

then it be possible to use such a pole dis-

tance, and such a position of the pole,

that the equilibrium polygon can be in-

scribed within the inner third of the
thickness of the arch ring, the arch is

stable. It may readily occur that this is

impossible, but in order to ensure suffi-

cient stability, no distribution of live

load should be possible, in which this

condition is not fulfilled.

We can assume any three points at

will, within this inner third, and cause a

projection of the polygon c to pass
through them, and then determine by in-

spection whether the entire projection

lies within the prescribed limits. In
order to so assume the points that a new
trial may most likely be unnecessary, we
take note of the well known fact, that

in arches of this character, the curve of

pressure is likely to fall without the pre-

scribed limits near the crown and near
the haunches. Let us assume e at the
middle of the crown, e/ at the middle of

a/d/. and e^near the lower limit on a,d^,
o o / 5 5

This last is taken near the lower limit,

because the curvature of the left half of

the polygon is more considerable than
the other, and so at some point between
it and the crown it may possibly rise to

the upper limit. The same consideration
would have induced us to raise e/ to the
upper limit, were it not likely that such
a procedure would cause the polygon to

rise above the upper limit on the right

of e/.

Draw the closing line kk through e^e/,

and the corresponding closing line hh
through c^c/, and decrease all the ordi-

nates of the type he in the ratio of hb to

ke, by help of the lines bn and bl, in a

manner like that previously explained.

For example h^c^=n^o^, and l^o^=k^e^.

By this means we obtain the polygon e

which is found to lie within the required
limits. The arch is then stable: but is

the polygon e the actual curve of
pressures? Might not a different as-

sumption respecting the three points

through which it is to pass lead to a dif-

ferent polygon, which would also lie

within the limits ? It certainly might.
Which of all the possible curves of pres-

sure fulfilling the required condition, is

to be chosen, is determined by Moseley's
principle of least resistance, which ap-
plied to the case in hand, would oblige

us to choose that curve of all those lying
within the required limits, which has the

least horizontal thrust, z.6. the smallest

pole distance. It appears necessary to

direct particular attention to this, as a
recent publication on this subject asserts

that the true pressure line is that which
approaches nearest to the middle of the
arch ring, so that the pressure on the

most compressed joint edge is a mini-

mum; a statement at variance with the

theorem of least resistance as proved by
Rankine.
Now to find the particular curve which

has the least pole distance, it is evidently

necessary that the curve should have its

ordinates as large as possible. This may
be accomplished very exactly, thus:

above e^ where the polygon approaches
the upper limit more closely than at any
other point near the crown, assume a new
position of e^ at the upper limit; and be-
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low e' where it approaches the lower
limit most nearly on the right, assume a

new position of e/ at the lower limit.

At the left e^ may be retained. Now on
passing the polygon through these points

it will fulfill the second condition, which
is imposed by the principle of least resist-

ance.

A more direct method for making the

polygon fulfill the required condition

will be given in Fig. 1 8.

It is seen in the case before us, the

changes are so minute that it is useless

to find this new position of the polygon,

and its horizontal thrust. The thrust ob-

tained from the polygon e in its present

position is suflBciently exact. The hori-

zontal thrust in this case is found from
the lines hn and hi. Since ""Ivv^ is the

horizontal thrust, i.e. pole distance of the

polygon c, ^vv^ is the horizontal thrust

of the polygon e.

By using this pole distance and a pok
properly placed, we might have drawn
the polygon e with perhaps greater ac-

curacy than by the process employed,
but that being the process employed in

Figs. 2, 3, etc., we have given this as an
example of another process.

The joints in the arch ring should be

approximately perpendicular to the

direction of the pressure, i.e. normal to

the curve of pressures.

With regard to what factor of safety

is proper in structures of this kind, all

engineers would agree that the material

at the most exposed edge should never

be subjected to a pressure greater than

one fifth of its ultimate strength. Owing
to the manner in which the pressure is as-

sumed to be distributed in those joints

where the point of application of the re-

sultant is at one third the depth of the

joint from the edge, its intensity at this

edge is double the average intensity of

the pressure over the entire joint. We
are then led to the following conclusion,

that the total horizontal thrust (or pres-

sure on any joint) when divided by the

area of the joint where this pressure is

sustained ought to give a quotient at

least ten times the ultimate strength of

the material. The brick viaduct which
we have treated is remarkable in using
perhaps the smallest factor of safety in

any known structure of this class, having

at the most exposed edge a factor of only

3^ instead of 5.

It may be desirable in a case like that
under consideration, to discuss the
changes occuring during the movement
of the live load, and that this may be
effected more readily, it is convenient to

draw the equilibrium polygons due to

the live and dead loads separately. The
latter can be drawn once for all, while
the former being due to a uniformly
distributed load can be obtained with
facility for different positions of the load.

The polygon can be at once combined
into a single polygon by adding the ordi-

nates of the two together. Care must
be taken, however, to add together only
such as have the same pole distance. In
case the construction which has been
given should show that the arch is un-

stable, having no projection of the equili-

brium polygon which can be inscribed

within the middle third of the arch ring,

it is possible either to change the shape
of the arch slightly, or increase its

thickness, or change the distribution of

the loading. The last alternative is

usually the best one, for the shape has
been chosen from reasons of utility and
taste, and the thickness from considera-

tion of the factor of safety. If the cen-

ter line of the arch ring (or any other,

line inscribed within the middle third)

be considered to be an equilibrium poly-

gon, and from a pole, lines be drawn
parallel to the segments of this polygon,
a weight line can be found which will

represent the loading needed to make
the arch stable. If this load line be
compared with that previously obtained,

it will be readily seen where a slight

additional load must be placed, or else a

hollow place made in the surcharge,

such as will render the arch stable. In
general, it may be remarked, that an
additional load renders the curvature of

the line of pressures sharper under it,

while the removal of any load renders

the curve straighter under it.

The foregoing construction is unre-

stricted, and applies to all unsymmetrical
forms of arches or of loading, or both.

As previously mentioned, a similar con-

struction applies to the case of an arch

sustaining the pressure of water or earth;

in that case, however, the load is not ap-

plied vertically and the weight line be-

comes a polygon.
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CHAPTER XIV.

RETAINING WALLS AND ABUTMENTS.

Let aa'h'h in Fig. 15 represent the

cross section of a wall of masonry which
retains a bank of earth having a surface

aa^. Assume that the portion of the

wall and earth under consideration is

bounded by two planes parallel to the

plane of the paper, and at a unit's dis-

tance from each other: then any plane

containing the edge of the wall at ^, as

ha^^ ha^^ etc., cuts this solid in a longitu-

dinal section, which is a rectangle having
a width of one unit, and a length ha^^ ba^,

etc.

The resultant of the total pressure

distributed over any one of these rec-

tangles of the type ha is applied at one-

third of that distance from b\ i.e. the re-

sultant pressure exerted by the earth

against the rectangle at ha^ is applied at

a distance of M'=^ ha^ from b.

That the resultant is to be applied at

this point, is due to the fact that the dis-

tributed pressure increases uniformly as

we proceed from any point a of the sur-

face toward b: the center of pressure is

then at the point stated, as is well known.
Again, the direction of the pressures

against any vertical j^lane, as that at ba^^

is parallel to the surface aa.^. This fact

is usually overlooked by those who treat

this subject, and some arbitrary assump-
tion is made as to the direction of the
pressure.

That the thrust of the earth against

a vertical plane is parallel to the ground
surface is proved analytically in Ran-
kine's Applied Mechanics on page 127;
which proof may be set forth in an
elementary manner by considering the

small parallelepiped mn, whose upper
and lower surfaces are parallel to the

ground surface. Since the pressure on
any plane parallel to the surface of the

ground is due to the weight of the earth

above it, the pressure on such a plane is

vertical and uniformly distributed. If

mn were a rigid body, it would be held

in equilibrium by these vertical pressures,

which are, therefore, a system of forces

Fig.l5

THRUST OF EARTH
DETAINING WALL
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in equilibrium; but as tnn is not rigid it

must be confined by pressures distributed

over each end surface, which last are dis-

tributed in the same manner on each end,

because each is at the same depth below
the surface. I^ow the vertical pressures

and end pressures hold 7nn in equilibrium^

they therefore form a system in equili-

brium. But the vertical pressures are in-

dependently in equilibrium, therefore the

end pressures alone form a system which
is independently in equilibrium. That this

may occur, and no couple be introduced,

these must directly oppose each other;

i.e. be parallel to the ground line aa^.

Draw kp \\ aa^, it then represents the

position and direction of the resultant

pressure upon the vertical ha^. Draw
the horizontal H, then is the angle ik2:>

called the ohliqidty of the pressure, it

being the angle between the direction of

the pressure and the normal to the plane
upon which the pressure acts.

Let ehc=-^hQ the angle offriction, i.e.

the inclination which the surface of

ground would assume if the wall were
removed.
The obliquity of the pressure exerted

by the earth against any assumed plane,

such as ha^ or ba^, must not exceed the
angle of friction; for should a greater
obliquity occur the prism of earth, aj)a^

or afia^, would slide down the plane, ba^

or ba^, on which such obliquity is found.
For dry earth ^ is usually about 30°;

for moist earth and especially moist clay,

^ may be as small as 15°. The inclina-

tion of the ground surface aa^ cannot be
greater than ^.

Now let the points a^, a^, a^, etc., be
assumed at any convenient distances

along the surface: for convenience we
have taken them at equal distances, but
this is not essential. With ^ as a center

and any convenient radius, as be, describe

a semi-circumference cutting the lines

ha^, ba^, etc. at c^, c^, etc. Make ee^-=ec;

also e/^^CgCj, e^e^^c^c^, etc.: then be^

has an obliquity ^ with ba^, as has also

he^ with ba^, ^e,
"

"

= afie^— aJ^e^-^^^°-\- ^.

Lay off bb^, bb^, bb^, etc., proportional

to the weights of the prisms of earth

a})a^, ctfia^, a^ba^, etc.: we have effected

this most easily by making a^a^= bb^,

a^a^— bb^, a^a^— bb^, etc. Through J, b^ b^,

etc., draw parallels to kp\ these will inter-

sect be^, be^, be^, etc., at b, t^, t^, etc.

with ba^y etc.; for a^be^

Then is bb^t^ the triangle of forces hold-
ing the prism a^ba^ in equilibrium, just

as it is about to slide down the plane ba^,

for. bb^ represents the weight of the
prism, b^tj^ is the known direction of the
thrust against ba^, and bt^ is the direc-

tion of the thrust against ba^ when it is

just on the point of sliding: then is t^b^

the greatest pressure which the prism
can exert agsCinst ba^. Similarly t^b^ is

the greatest pressure which the prism

afia^ can exert. ISTow draw the curve
t^t^t^, etc., and a vertical tangent inter-

secting the parallel to the surface through
b a,t t; then is tb the greatest pressure

which the earth can exert against ba^.

This greatest pressure is exerted approxi-
mately by the prism or wedge of earth

cut off by the plane ba^, for the pressure
which it exerts against the vertical plane
through b is almost exactly bj>^=bt.

This is Coulomb's " wedge of maximum
thrust" correctly obtained: previous de-
terminations of it have been erroneous
when the ground surface was not level,

for in that case the direction of the press-

ure has not been ordinarily assumed to

be parallel to the ground surface.

In case the ground surface is level the

wedge of maximum thrust will always
be cut off by a plane bisecting the angle
cbc^, as maybe shown analytically, which
fact will simplify the construction of that
case, and enable us to dispense with
drawing the thrust curve U.

The pressure tb is to be applied at k,

and may tend either to overturn the wall
or to cause it to slide.

In order to discuss the stability of the

wall under this pressure, let us find the

weight of the wall and of the prism of

earth aba^. Let us assume that the
specific gravity of the masonry compos-
ing the wall is twice that of earth.

Make a^h=bb', then the area abb'a'^
abli=-abh^\ and if ah^^^2ah, then ah^

represents the weight of the wall reduced
to the same scale as the prisms of earth

before used. Since aa^ is the weight of

cibci^^ aji^ is the weight of the mass on-05

the right of the vertical ba^ against

which the pressure is exerted.

Make bq=-aji^, and draw tq, which
then represents the direction and amount
of the resultant to be applied at o where
the resultant pressure applied at k inter-

sects the vertical gw through the center

of gravity g of the mass aajbb'a' . The
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center of gravity g is constructed in the

following manner. Lay off a'h^-W ^ and
hl=^aa' \ and join hi. Join also the mid-
dle points of ah and a'b': the line so

drawn intersects Jil at g^ the center of

gravity of aa'h'h. Find also the center

of gravity g„_^ of ciba^^ which lies at the

intersection of a line parallel to aa^, and
cutting ha^ at a distance of J ba^ from a^

and of a line from h bisecting aa^.

Through g^ and g^ draw parallels, and
lay off g.J\ and^,/!^ on them proportional

to the weights applied at g^ and g^
respectively. We have found it con-

venient to make g^f ^=^i(^(^h^, and g^f^=:^
aa^. Then/'j/*2 divides g^g^ inversely as

the applied weights; and g, the point of

intersection, is the required center of

gravity.

Let or be parallel to tq ; since it

intersects bb' so far within the base,

the wall has sufficient stability against

overturning. The base of the wall is so

much greater than is necessary for the

support of the weight resting upon it,

that engineers have not found it neces-

sary that the resultant pressure should
intersect the base within the middle third

of the joint. The practice of English en-

gineers, as stated by Rankine, is to per-

mit this intersection to approach as near
b' as \bb', while French engineers permit
it to approach as near as \bh' only. In
all cases of buttresses, piers, chimneys,
or other structures which call into play
some fraction of the ultimate strength
of the material, or ultimate resistance of

the foundation as great as one tenth, or

one fifteenth, the point should not ap-
proach b' nearer than ^ bb'.

Again, let the angle of friction be-

tween the wall and the earth under it be
^'

: then in order that the thrust at k
may not cause the wall to slide, the
angle wor must be less than ^'.

When, however, the angle ^' is less than
wor itbecomes necessary to gain additional
stability by some means, as for example
by continuing the wall below the sur-

face of the ground lying in front of it.

Let «/«/ be the surface of the ground
which is to afford a passive resistance to

the thrust of the wall: then in a manner
precisely analogous to that just employed
for finding the greatest active pressure
which earth can exert against a vertical

plane, we now find the least passive
pressure which the earth in front of the

!

wall will sustain without sliding up some
plane such as b'a^' or b'a/, etc. The
difference in the two cases is that in the

former case friction hindered the earth

from sliding down, while it now hinders

it from sliding up the plane on which it

rests.
*

Lay off e'e/=6e„; then taking any
points a^'a^', etc. on the ground surface,

make e./ej^=cjcj^ eje/=^cjcj^ etc.'1 J '3 5

Lay off b'b^'-=a^'a^\ etc., and drawing
parallels through ^/, b^\ etc., we obtain

the thrust curve t^'t^\ etc.

The small prism of earth between b'aj
and the wall adds to the stability of the*

wall, and can be made to enter the con-

struction if desired, in the same manner
as did aba^.

The vertical tangent through s' shows
us that the earth in front of the wall can
withstand a thrust having a horizontal

component b's' measured on a scale such
that b'b^^=^a^a^ is the weight of the

prism of earth ajb'a^.
This scale is different from that used

on the left. To reduce them to the

same scale lay off from b\ the distances

b'd^ and b'dj proportional to the perpen-

diculars from b on aa, and b^ on a/
a'

4 14
respectively. In the case before us, as

the ground surfaces are parallel, we have
made b'd^-=^ba^ and b'd^=.b'a^.

'

Then from any convenient point on
b'b^., as V, draw vd^ and vd^\ these lines

will reduce from one scale to the other.

We find then that ic'f? is the thrust on
the scale at the left corresponding to

xd^b's' on the right: i.e., the earth

under the surface assumed at the right

can withstand something over one fourth
of the thrust sb at the left.

It will be found that a certain small

portion of the earth near a/ has a thrust

curve on the left of b', but as it is not
needed in our solution it is omitted.

If any pressure is required in pounds,
as for example sb, it is founds as follows:

—the length of ah^ is to that of sb as the

weight of bb'aa' in lbs. is to the pressure

S'5 in lbs.

Frequently the ground surface is not a
plane, and when this is the case it often

consists of two planes as ad, da^ Fig. 16.

In that case, draw some convenient line

as ad^, and lay off ad^, d^d.^, etc. at will,

which for convenience we have made
equal. Draw d^a^, <^^2^25 ®*^* parallel to

bd, and join ba^, ba^, etc.: then are the
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^0-7 <^5 "5 rt4 rtsd

\\ \\^v^ Fig.16

ado ci

triangles bda, bcla^, bda^, bda^, etc. pro-

portional in area to the lines ea, ea^, etc.

Hence the weights of the prisms of earth

baa^y baa^, etc., are proportional to ad^,

ad^, etc.

In case ab slopes backward the part of

the wall at the left of the vertical ba^

rests upon the earth below it sufficiently

to produce the same pressure which
would be produced if baa^ were a prism
of earth. The weights of the wedges
which produce pressures, and which are

to be laid off below b, are then propor-
tional to d^d^=bb^, d^d^= bb^, etc. The
direction of the pressures of the prisms
at the right of bd are parallel to ad; but
upon taking a larger prism the direction

may be assumed to be parallel to a^a^,

ci^a^y etc., which is very approximately
correct. Now draw b^t^ || a„a^, b^t^ \\ a^a^,

etc.; and complete the construction for

pressure precisely as in Fig. 15, using
for resultant pressure the direction and
amount of that due to the wedge of maxi-
mum pressure thus obtained.

In finding the stability of the wall, it

will be necessary to find the weight and
center of gravity of the wall itself, minus
a prism of earth baa^, instead of plus this

prism as in Fig. 15; for it is now sus-

tained by the earth back of the wall.

When the back of the wall has any

other form than that above treated, the
vertical plane against which the pressure
is determined should still pass through
the lower back edge of the wall.

In case the wall is found to be likely

to slide upon its foundations when these

are level, a sloping foundation is fre-

quently employed, such that it shall be
nearly perpendicular to the resultant pres-

sure upon the base of the wall. The con-

struction employed in Fig. 15 applies

equally to this case.

The investigation of the stability of

any abutment, buttress, or pier, against

overturning and against sliding, is the

same as that of the retaining wall in Fig.

15. As soon as the amount, direction,

and point of application, of the pressure

exerted against such a structure is deter-

mined, it is to be treated precisely as

was the resultant pressure kp in Fig. 15.

In the case of a reservoir wall or dam,
the construction is simplified from the

fact ^hat, since the surface of water is

level and the angle of friction vanishes,

the resultant pressure is perpendicular

to the surface upon which the water
presses. It is useful to examine this as

a case of our previous construction. In

Fig. 17, let abb^ be the cross-section of

the dam; then the wedge of maximum
pressure against ba^ is cut off by the
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plane ha^ when cJaj=45°, i.e. ha^ bisects

cba^ as before stated.

This produces a horizontal resultant

pressure at k equal to the weight of the

wedge. Now the total pressure on ah is

the resultant of this pressure, and the

weight of the wedge aha^. The forces

to be compounded are then proportional

to the lines a^a^= bv^ and aa^. By simi-

larity of triangles it is seen that ro the

resultant is perpendicular to ab.

It is seen that by making the inclina-

tion of ab small, the direction of ro can

be made so nearly vertical that the dam
will be retained in place by the pressure

of the water alone, even though the dam
be a wooden frame, whose weight maybe
disregarded.

We can now construct the actual

pressures to which the arch of a tunnel
surcharged with water or earth is sub-

jected. Suppose, for example, we wish
to find the pressure of such a surcharge
on the voussoir a^d^d^a^ Fig. 14. Find
the resultant pressure against a vertical

plane extending from d^ to the upper
surface of the surface and call it 2^^-

Draw a horizontal through d^ and
let its intersection with the vertical

just mentioned he called d". Find
the resultant pressure against the verti-

cal plane extending from d" to the sur-

face, and call it p\ ISTow let p" ^=-

^:).—^/and let it be applied at such a point

of d^d" that p.^ shall be the resultant of79/
and p" . Then will the resultant press-

ure against the voussoir be the resultant

oi p^ and the weight of that part of the

surcharge directly above it.

FOUNDATIONS IN EARTH.

A method similar to that employed in

the determination of the pressure of

«arth against a retaining wall, or a tunnel
arch, enables us to investigate the sta-

bility of the foundations of a wall stand-

ing in earth.

Suppose in Fig. 15 that the wall abb'
a'

is a foundation wall, and that the press-

tire which it exerts upon the plane bb'

is vertical, being due to its own weight
.and the weio'ht of the building or other

load which it sustains. Now consider a

vertical plane of one unit in height, say,

as hb^ ; and determine the resultant press- -

ure against it on the supposition that

the pressure is produced by a depth of

earth at the right of it, sufficient to pro-

duce the same vertical pressure on bh'

which the wall and its load do actually

produce. In other words we^suj^pose
the wall and load replaced by a bank of

earth having its upper surface horizontal

and weighing the same as the wall and
load. Call the upper surface z^ and find

the pressure against the vertical plane zb

due to the earth under the given level

surface; similarly, find the pressure

against zh^. The surface being level, the

maximum pressure, as previously stated

will be due to a wedge cut off by a plane

bisecting the . angle between bz and a

plane drawn from b at the inclinatian ^,

of the limiting angle of friction. This
enables us to find the horizontal pres-

sures against zb and zb^ directly: their

difference is the resultant active pressure

against bb^.

Next, it must be determined what pas-

sive pressure the earth at the left of bb^

can support. The passive resistance of

the earth under the surface a ao^ainst

the plane ab as well as that against the

plane ab^ can be found exactly as that

was previously found under the surface

a' . The difference of these resistances is

the resistance which it is possible for bb^

to supj^ort. Indeed bb^ could support
this pressure and afford this resistance

even if the active pressure against ab
were, at the limit of* its resistance, which
it is not. The limiting resistance which
is thus obtained, is then so far within

the limits of stability, that ordinarily, no
further factor of safety is needed, and
the stability of the foundation is secured,

if the active pressure against bb^ does not

exceed the passive resistance. This con-

struction should be made on the basis of

the smallest angle of friction ^ which
the earth assumes when wet; that being
smaller than for dry earth, and hence
giving a greater active pressure at the

right, and a less resistance at the left.

CHAPTER XV.
SPHERICAL DOME OF METAL.

The dome which will be treated in the

following construction is hemispherical

in shape; but the proposed construction
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applies equally to domes of any different

form generated by the revolution of the
arc of some curve about a vertical axis :

such forms are elliptic, parabolic or hy-
perbolic domes, as well as pointed or

gothic domes, etc. Let the quadrant aa
in Fig. 18, represent the part of the
meridian section of a thin metallic dome
between the crown and the springing
circle. The metallic dome is supposed
to be so thin that its thickness need not
be represented in the Figure : the thick-

ness of a dome of masonry, however, is a
matter of prime importance and will be
treated subsequently.

In a thin metallic dome the only thrust

along a meridian section is necessarily

in a direction tangent to that section at

each point of it. This consideration will

enable us to determine this thrust as well

as the hoop tension or compression along
any of the conical rings into which the
dome may be supposed to be divided
by a series of horizontal planes.

Let the height ah of .the dome be
divided into any number of parts, which
we have in this case, for convenience,
made equal. Let these equal parts of the

type c?w be the distances between horizon-

tal planes such that the planes through
thepoints.c?,, c?^, etc., cut small circles from
the hemisphere which pass through the
point a^, ^2) Gtc, and similarly the planes
through Wj, ^2, etc., cut small circles which
pass through g^^ g^^ etc. Now suppose the

thickness of this dome to be uniform,
and if ah be taken to represent the weight
of a quadrantal lune of the dome included
between two meridian planes making
some small angle with each other; then

SPHERICAL DOME
rig.is
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from the well-known expression for the

area of the zone of a sphere it appears that

ad^ will represent the weight of that

part of the lune above a^d^. Similarly

an^ is the weight of the lune • ag^
;

ad^ the weight of aa^^ etc.

This method of obtaining the weight
applies of course in case the dome is any
segment of a sphere less than a hemi-
sphere and of uniform thickness. If the

thickness increases from the crown, the

weights of the zones cut by equi-distant

horizontal planes increase directly as the

thickness. In case the dome is not

spherical the weights must be determin-

ed by some process suited to the form of

the dome and its variation in thickness.

Now the weight of the lune aa^ is sus-

tained by a horizontal thrust which is

the resultant of the horizontal pressures

in the meridian planes by which it is

bounded, and by a thrust, as before re-

marked, in the direction of the tangent
at a* Draw a horizontal line through d^^

and through a a parallel to the tangent
at a: these intersect at s^, then is ad^s^^

the triangle of forces which hold in

equilibrium the lune aa^. Similarly,

au^t^ is the triangle of forces holding the

lune ag^ in equilibrium, etc. Draw a

curve St through the points thus determ-
ined. This curve is a well-known cubic

which when referred to ba as the axis of

X and bg^ as that of y has for its equa-
tion

x'

r—x
r + x

On being traced at the right of a it has
in the other quadrant of the dome a part
like that here drawn forming a loop; it

passes through b at an inclination of 45°

and the two branches below b finally

become tangent to a horizontal line

drawn tangent to the circle aa of the
dome. The curve has this remarkable
property :—If any line be drawn from a,

cutting the curve here drawn and, also,

the part below bg^, the product of these
two radii vectores of the curve from the
pole a is constant, and the locus of the

intersection of the normals at these two
points is a parabola.
Draw a vertical tangent to this curve :

the point of contact is very near ^3, and g^,
the corresponding point of the dome is

almost 52° from the crown a. A determi-
nation of this maximum point by means

of the equation gives the height of it

above b sls ^ (a/5~-^) ^'» corresponding to

about51°49'. Now consider any zone, as,

for example, that whose meridian section

is g/i^: the upper edge is subjected to a

thrust whose radial horizontal compo-
nent is proportional to ti^t^, while the

horizontal thrust against its lower edge
is proportional to d^s^, and the difference

s^x^ between these radial forces produces

a hoop compression around the zone pro-

portional to s^x^. It will be seen that

these differences which are of the type
sx or tg, change sign at t^. Hence all

parts of the dome above 51° 49' from the

crown, are subjected to a hoop compres-
sion which vanishes at that distance from
a, while all parts of the dome below
this are subjected to hoop tension. This
may be stated by saying that a thin

dome of masonry would be stable under
hoop compression as far as 51^ 49' from
the crown, but unstable below that, being
liable to crack open along its meridian
sections. A thick dome of masonry,
however, does not have the resultant

thrust at every point of its meridian
section in a direction which is tangential

to its surface,—this will be discussed

later.

It is necessary to determine the actual

hoop tension or compression in any ring

in order to determine the thickness of

the dome such that the metal may not

be subjected to too severe a stress.

The rule for obtaining hoop tension

(we shall use the word tension to in-

clude both tension and compression) is :

Multiply the intensity of the radial

pressure by the radius of the hoop, the

product is the tension at any meridian
section of the hoop. The correctness of

this rule appears at once from considera-

tion of fluid pressure in a tube, in which
it is seen that the tensions at the two ex-

tremities of a diameter prevent the total

pressure on that diameter from tearing

the tube asunder.

Now in the case before us t^g^ is the

radial force distributed along a certain

lune. The number of degrees of which,

the lune consists is at present undeterm-
ined : let it be determined on the suppo-

sition that it shall be such a number of

degrees as to cause that the total radial

force against it shall be equal to the

hoop tension. Call the total radial force

P and the hoop tension T, then the lune
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is to be such that P= T. Also let Q be
the number of degrees in the lune, then
90° -4-^ is the number of lunes in a quarter
of the dome, and 90 P-^O is the radial

force against a quarter of the dome,
which last must be divided by Jtt to ob-

tain the hoop tension; because if ^:> is the
intensity of radial pressure, ^nrj^ is the

total pressure against a quadrant and rj),

as previously stated, is the hoop tension.

The ratio of these is ^tt, and by this we
must divide the total radial pressure in

every case to obtain hoop tension

180 P_
' On ~

'

ior P=T

6^
180^

7t

This is the number of degrees of which
the lune must consist in order that when
ab represents its weight, t^y^ shall rep-

resent the hoop tension in the meridian
section ct^g^. The expression we have
found is independent of the radius of the

ring, and hence holds for any other ring

as g^a^, in which s^x^ is the hoop tension,

etc. To find what fraction this lune is

of the whole dome, divide 6 by 360°

e 180
nearly,

360 360;r 27t 25

from which the scale of weight is easily

found, thus; let TK be the total weight
of the dome and r its radius, then

271)' : W\ ',1 : n, the weight per unit, or

the hoop tension per unit of the distances

ti/ or sx.

Distances a^or as, on the same scale,

represent the thrust tangential to the

dome in the direction of the meridian

sections, and uniformly distributed over

an arc of 5'7°.3— : e.g. if we divide at^

measured as a force by X u^g^ measured
as a distance we shall obtain the intensi-

ty of the meridian compression at the

joint cut from the dome by the horizon-

tal plane through a^.

Analogous constructions hold for

domes not spherical and not of uniform
thickness. Approximate results may be
obtained by assuming a spherical dome,
or a series of spherical zones approxi-

mating in shape to the form which it is

desired to treat.

CHAPTER XVI.

SPHERICAL DOME OF MASO]S^RY.

Let the dome treated be that in Fig.

18 in which the uniform thickness of the

masonry is one-sixteenth of the internal

diameter or one-eighth of the radius of

the intrad OS. Divide ab the radius of

the center line into any convenient num-
ber of equal parts, say eight, at tc^, u^,

etc.: a much larger number would be
preferable in actual construction. At
the points a^, a^, etc., on the same levels

with ^<^, 1^2, etc. pass conical joints nor-

mal to the dome, so that b is the vertex

of each of the cones.

If we consider a lune between meridian
planes making a small angle with each
other, the center of gravity of the parts

of the lune between the conical joints lie

at g^, ^2) 6tc. on the horizontal midway
between the previous horizontals. These
points are not exactly upon the central

line aa, but if the number of horizontals

is large, the difference is inappreciable.

We assume them upon aa. That they
fall upon the horizontals through d^, d^^

etc., midway between those through u^,

t/.^, etc., is a consequence of the equality

in area between spherical zones of the

same height.

In finding the volume of a sphere it

may be considered that, we take the sum
of a series of elementary cones whose
bases form the surface of the sphere, and
whose height is the radius. Hence, if

any equal portions of the surface of a
sphere be taken and sectorial solids be
formed on them as bases and having
their vertices at the center, then the

sectorial solids have equal volumes.
The lunes of which we treat are equal

fractions of such equal solids.

Draw the verticals of the type bg
through the centers of gravity g^, g^, etc.

The weights applied at these points are

equal and may be represented by au^,

it^u^^^w^io^, etc. Use a as the pole and
w^w^ as the weight line; and, beginning
at the 23oint /"g, draw the equilibrium

polygon c due to the weights.

We have used for pole distance the

greatest horizontal thrust which it is

possible for any segment of the dome to

exert upon the part below it, when the

hoop compression extends to 51° 49'

from the crown.
Below the point where the compression
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vanishes we shall not assume that the

bond of the masonry is such that it can

resist the hoop tension which is develop-

ed. The upper part of the dome will be

then carried by the parts of the lunes

below this point by their united action

as a series of masonry arches standing

side by side.

Now it is seen that the curve of equi-

librium c, drawn with this assumed hori-

zontal thrust falls within the curve of the

lune, which signifies that the dome will

not exert so great a thrust as that as-

sumed. By the principle of least resist-

ance, no greater horizontal thrust will

be called into action than is necessary to

cause the dome to stand, if stability is

possible. If a less thrust than that just

employed be all that is developed in the

dome, then the point where the hoop
compression vanishes is not so far as 51°

49' from the crown, and a longer portion

of the lune acts as an arch, than has been
supposed by previous writers on this

subject,* none of whom, so far as known,
have given a correct process for the solu-

tion of the problem, although the results

arrived at have been somewhat approxi-

mately correct.

To ensure stability, the equilibrium
curve must be inscribed within the inner

third of that part of the meridian section

of the lune which is to act as an arch ; as

appears from the same reasons which
were stated in connection with arches of

masonry.
And, further, the hoop compression

will vanish at that level of the dome
where the equilibrium curve, in departing
from the crown, first becomes more
nearly vertical than the tangent of the

meridian section; for above that point

the greatest thrust that the dome can
exert, cannot be so great as at this point

where the thrust of the arch-lune is equal

to that of the dome.
Now to determine in what ratio the

ordinates of the curve c must be elongat-

ed to give those of the curve e which
fulfills the required conditions, we draw
the line /o, and cut it at ^9„ p^^ etc. by
the horizontals m^p^^ '^iPit ^tc, the quan-
tities rah being the ordinates of exterior

of the inner third. Again draw verticals

through /)j, ^2) ^tC'j ^"<^ ^^^ them at q^^

* See a paper read before the Royal Inst, of British
Architects, "on the Mathematical Theory of Domes,"
Feb. 6th, 1S71. By Edmund Beckett Denison, L.L.D.,
Q.C., F.R.A.S.

$'2' ?35 ^^^' ^y horizontals through c„ c^,

C3, etc. Through these points draw the

curve qq^ whose ordinates are of the type
qh. Some one of these ordinates is to

be elongated to its corresponding ph^
and in such a manner that no qh shall

then become longer than its correspond-

ing ph. To eifect this, draw oq^ tangent
to the curve qq\ then will oq^ enable us

to effect the required elongation: e.g. let

the horizontal through c^ cut oq^ at y^,

and then the vertical through j^ cuts/b
at i^, then is e^ (which is on the same
level with i^ the new position of c^.

Similarly, we may find the remaining
points of the curve e; but it is better to

determine the new pole distance, and use
this method as a test only.

The curve qq made use of in this con-

struction for finding the ratio lines for

so elongating the ordinates of the curve

e, that the new ordinates shall be those

of a curve e tangent to the exterior line

of the inner third, may be applied with
equal facility to the construction for the

arch of masonry. This furnishes us with
a direct method in place of the tentative

one employed in connection with Fig.

14.

To find the new pole distance, draw

fj II
oq^ cutting ww at /, then will i the

intersection of the horizontal through j^
be the new position of the weight line liV)^

having its pole distance from a diminish-

ed in the required ratio.

The equilibrium curve e will be parallel

to the curve of the dome at the points

where the new weight line vv cuts the
curve 8t. It should be noticed that the

pole distance which we have now determ-
ined is still a little too large because
the polygon e is circumscribed about
the true equilibrium curve; and as the
polygon has an angle in the limiting

curve mvin the equilibrium curve is

not yet high enough to be tangent to the
limiting curve. If the number of divi-

sions had originally been larger (which
the size of our Figure did not permit)

this matter would be rectified.

The polygon e is seen at e^ to fall just

without the required limits, this would
be partly rectified by slightly decreasing
the pole distance as just suggested; the

point, however, would still remain just

without the limit after the pole distance

is decreased, and by so much is the dome
unstable. A dome of which the thick-
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ness is one fifteenth of the internal dia-

meter, is almost exactly stable.

It is a remarkable fact that a semi-

cylindrical arch of uniform thickness and
without surcharge must be almost exact-

ly three times as thick, viz., the thickness

must be about one fifth the span in order

that it may be possible to inscribe the

equilibrium curve within the inner third.

The only large hemispherical dome, of

which I have the dimensions, which is

thick enough to be perfectly stable with-

out extraneous aid such as hoops or ties,

is the Gol Goomuz at Beejapore, India.

It has an internal diameter of 137^ feet,

and a thickness of 10 feet, it being

slightly thicker than necessary, but it

probably carries a load upon the crown
which requires the additional thickness.

The hemispherical dome of uniform
thickness is a very faulty arrangement
of material. It is only necessary to

make the dome so light and thin for 51°
49' from the crown that it cannot exert

so great a horizontal thrust as do the

thicker lunes below, to take complete ad-

vantage of the real strength of this form
of structure. A dome whose thickness

gradually decreases toward the crown
takes a partial advantage of this, but
nothing short of a quite sudden change
near this point appears to be completely
effective.

The necessary thickness to withstand
the hoop compression and the meridian
thrust can be found as previously shown
in the dome of metal.

Domes are usually crowned with a
lantern or pinnacle, whose weight must
be first laid off below the pole a after

having been reduced to the same unit

as that of the zones of the dome.
Likewise when there is an eye, at the

crown or below, the weight of the mate-

rial necessary to fill the eye must be sub-

tracted, so that a is then to be placed

below its present position. The construc-

tion is then to be completed in the same
manner as in Fig, 18.

It is at once seen that the effect of an
additional weight, as of a lantern, at the

crown, since it moves the point a upward
a certain distance, will be to cause the

curve St to have all its points except b to

the left of their present position, and
especially the points in the upper part of

the curve, thus making the point of no
hoop tension much nearer the crown than

in the metallic dome. It will be noticed
that the addition of very small weight at

the crown will cause the point ni^ of no
hoop tension in the dome of masonry to

approach almost to the crown, so that
then the lunes will act entirely as stone

arches with the exception of a very small
segment at the crown.
On the contrary, the removal of a seg-

ment at the crown, or the decrease of the

thickness, or any device for making the

upper part of the dome lighter will re-

move the point of no hoop tension further
from the crown, both for the dome of

metal and of masonry. In any dome of

masonry the thickness above the point
of no hoop tension, as determined by the

curve St, need be only such as to with-

stand the two compressions to which it

is subjected, viz; hoop compression and
meridian compression: while below that

the lunes acting as arches must be thick

enough to cause a horizontal thrust equal
to the maximum radial thrust of the
dome above the point of no hoop ten-

sion.

Several large domes are constructed of

more than one shell, to give increased

security to the tall lanterns surmounting
them : St. Peter's, at Rome, is double,

and the Pantheon, at Paris, is triple.

The different shells should all spring

from the same thick zone below the
point of no hoop tension; and the lunes

of this thick zone should be able to

afford a horizontal thrust equal to the
sum of the radial thrusts of all the

shells standing upon it.

Attention to this will secure the sta-

bility in itself of any dome of masonry
spherical or otherwise; and, though I

here offer no proof of the assertion, I am
led to believe that this is the solution of

the problem of constructing the dome of

a minimum weight of material, on the
supposition that the meridian joints can
afford no resistance to hoop tension.

Now, in fact, it is a common device to

ensure the stability of large domes by
encircling them with iron hoops or

chains, or by embedding ties in the ma-
sonry; and this case appears to be of

sufficient importance to demand our at-

tention.

If the hoop encircles the dome at 51®

49' or any other less distance from the
crown the dome will be a true dome at

all points above the hoop. Suppose the
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hoop to be at 51° 49', then the curve e

should, below that point, be made to

pass through the points f\ and /"g, from
which it is seen that the dome may be
made thinner than at present, and the

horizontal thrust caused will be less.

The tension of the hoop would be that

due to a radial thrust which is the dif-

ference between that given by the curve
St for this point and the horizontal thrust

(pole distance) of the polygon e when it

passes through /g and/g. That the curve
e passes through these last mentioned
points is a consequence of the principle

of least resistance.

Again, suppose another hoop encircles

the dome at/'^; the curve e must pass
through ^/"g and/*^, and in this part of the
lune will have a corresponding horizon-
tal thrust. The curve e must also pass
through /g and/g, but in this part of the
lune will have a horizontal thrust cor-

responding to it, differing from that in

the part between f^ and f^^: indeed the
horizontal thrust in the segment of a

dome above any hoop depends exclusive-

ly upon that segment and and is unaf-
fected by the zone below the hoop. The
tension sustained by the hoop is, how-
ever, due to the radial force, which is

the difference of the horizontal thrusts
of the zones above and below the
hoop.

It is seen that the introduction of a
second hoop will still further diminish
the thickness of lune necessary to sus-

tain the dome, unless indeed the thick-

ness is required to sustain the meridian
compression.
Had a single hoop been introduced at

f^ with none above that point, the dome
above /*g should then be investigated, just

as if the springing circle was situated at

that point. The curve e must then start

from /^, as it before did from /g, and be
made to become tangent to the limit-

ing curve at some point between /^ and
the crown.
By the method here employed for

finding the tension of a hoop it is possi-

ble to discuss at once the stresses in-

duced in the important modern domes
constructed with rings and ribs of metal
and having the intermediate panels
closed with glass.

On introducing a large number of
rings at small distances from each other,

it will be seen that the discussion just

given leads to the method previously

given for the dome of metal.

The dome of St. Paul's, London, is one
which has excited much adverse criticism

by reason of the novel means employed
to overcome the difficulties inherent in so

large a dome at so great a height above
the foundations of the building. The
exterior dome consists of a framework of

oak sustained by conical dome of brick

which forms the core. There is also a

parabolic brick dome under the cone
which forms no essential part of the sys-

tem. Since the conical dome in general
presents some peculiarities worthy of

notice we will give an investigation of

that form of structure as our concluding
construction.

CHAPTER XVH.

CONICAL DOME OF METAL.

In Fig. 19, let hd be the axis of the

frustum of a metallic cone cut by a ver-

tical plane in the meridian section a.

The cone is supposed to have a uniform
thickness too small to be regarded in

comparison with its other dimensions.

Suppose the frustum to be cut by a series

of equi-distant horizontal planes as at g^^

g^, etc., into a series of frustra or rings :

then the weight of each ring is propor-

tional to its convex surface. The convex
surface of any ring =-27trX slant height;

when r is half the sum of the radii of the

two bases, i.e., r is the mean radius.

Consequently, the weights of these

rings, or any given fraction of them in-

cluded between two meridian planes, is

proportional to their mean radii. Let us

draw these mean radii d^a^, ^2^25 ^tc, be-

tween the horizontals through g^^g^, etc.,

and use some convenient fraction, say ^,

of these quantities of the type da as the

weights. The line ii cuts off ^ of each
of these : then lay off du^-=^d^i^ as the

weight of the ring ag^, lay off u^i^-=^

^2^2? ^2^3^<^3^*35 etc., as the weights of

the rings g^g^, g^g^, etc.

Draw the line dt \\ aa, it corresponds

to the curve st of Fig. 18; then the

quantities of the type tu represent the

horizontal radial thrust which the cone

exerts upon the part below it, while the

radial thrust borne by any ring is the

difference between two successive quanti-

ties of the type tu, i.e., the radial thrust

in the ring g^g^ is represented by t^y^,
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that in g^g^ by t^y^^ etc. As previously

shown in connection with the spherical

dome, if the scale of weights be such

that du^ represents a part of the cone
between two meridian planes which make
an angle of ^= 180°-^;r=57''.3— , then
will t^y^^ t^y^ etc., be the total hoop com-
pression of the corresponding rings of

the cone. It is to be noticed that this

quantity does not change sign in the

cone, and is always compression.
The meridian compression is expressed,

under the same circumstances by the

quantities dt^^ dt^^ etc.

Such a cone as this must be placed
upon a cylindrical drum or other support
which can exert a resistance in the direct-

ion aa, but if this support is very
slightly displaced by the horizontal radial

thrust, a hoop tension will be induced at

the base of the cone. As this displace-

ment is very likely to occur it is far bet-

ter to have the base of the cone sufficient-

ly strong to withstand this tension,

which is t^u^ when du^ is the weight of

57°. 3 : then the supports will sustain a

vertical force alone.

This discussion applies equally well to

a cone formed of a network of rings and

inclined posts with intermediate panels

of glass or other material.

COl^^ICAL DOME OF MASOKRY.

Let us assume that the uniform hori-

zontal thickness of the dome to be

treated, is one sixteenth of the internal

diameter of the base, or one eighth of

the internal radius, as shown in Fig. 19.

The actual thickness is less than this, but

since the horizontal thickness is a con-

venient quantity, we shall call it the

thickness unless otherwise specified.

Pass equidistant horizontal planes as

previously stated: then the volumes of

these rings may be found by the pris-

moidal formula. The volume

in which h is the height of the ring, r^

and r/ are the radii external and internal

of one base, r^ and r/ of the other, and r

and r' of the middle section. Now
r —r ':^r—r'=^r —rj^^t the thickness11 -1^

of the cone; and
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.*. Volume = 7tht{r '\-^')=^^7chtr

when J (?•+ /)=?' the mean radius of the

middle section. From this it is seen

that the weights vary in the same man-
ner, and are represented by the same
quantities as previously stated in case of

a thin cone. Assume that the centers

of gravity of any thin lunes cut from
these rmgs by meridian planes making a

small angle with each other, are at the

middle points a^, a^, etc., this assumption
is sufficiently exact for the part of the

<3one near the base, which we are now
specially to investigate.

By means of the weights w^iu^=-ic^a^^

etc., at some assumed distance from the

pole (/, describe the equilibrium polygon
<?, starting from n at the inner third of

the base.

Now if the cone stands upon a drum
which necessarily exerts a sufficient radi-

al thrust to keep the meridian joints of

the cone closed down to the base, then
all the circumstances will be precisely as

before explained in respect to the metallic

dome : but if the drum exerts a less radi-
cal thrust, the meridiab joints will open
near the base, and the conditions of sta-

bility of that part of the cone will need
to be investigated, as was done in the
spherical dome of masonry, by consider-
ing the upper part of the dome as sus-

tained by a series of stone arches. From
/draw fc^ tangent to the curve c\ then
must cfi^ be elongated to mfi^ and the
other ordinates of c must be elongated
in the same ratio in order that the equili-

brium polygon may be tangent to the
exterior limit fm; and, further, fm and
fc^ are the ratio lines by which to effect

the elongation. To find how much the
thrust is diminished, draw through the
intersection of/m with bd, a line parallel

to fc^ intersecting the weight line at w,
and then v the point where the horizontal
through ID intersects /"m gives us the new
position of the weight line, and its dis-

tance from the pole d. This vertical in-

tersects tt about midway between t^ and
t,, thus showing that the meridian joints
of the cone will be open from the base to

about the point g^. It is unnecessary to
draw the equilibrium polygon in its new
position.

We thus obtain the least horizontal
thrust against which the dome can stand.

The actual thrust which the drum exerts

may have any value greater than this

least thrust.

It is seen that the effect of diminishing

the thickness of the cone, is to carry the

tangent point c^ and the point of no com-
pression nearer to the base. In other

words the *thin dome of masonry of given
semi-vertical angle necessarily exerts a

greater thrust in proportion to its weight
than does a thick dome, though that

proportion is unchanged if the joints

are to remain closed all the way to the

base.

All of the circumstances respecting

radial thrust above the point of no hoop
compression, and respecting meridian
thrust, are the same as in the metallic

cone.

Any additional loading above that of

the weight of the cone itself, as for ex-

ample, the weight of a lantern, or of an
external dome, as in the case of St. Paul's,

can be introduced and treated as an ad-

ditional height or thickness of certain

rings of the cone. The same method
which has been here applied may be ap-

plied to all such cases, if the weights be
determined by some suitable process.

For example, it may be shown by the

help of the prismoidal formula, that the

volume of the ring cut from a uniformly
tapering cone by equidistant horizontal

planes, varies as the product of the mean
radius of the mid-section by the thick-

ness at the mid-section.

OTHER VAULTED STEUCTURES.

Similar principles to those above devel-

oped apply to domes with an elliptical or

polygonal base, to domes whose meridian
sections are ogee curves, to Skew Arches,
to Groined Arches formed by the com-
bination of cylindrical arches, as well

as to Groined Arches which are dome-
shaped.
By the application of the principles

developed it is easy to treat the cone or

dome which sustains the pressure of earth

or water. Indeed, it is not too much to

say that the complete solution of the

problem of the stability of vaulted struc-

tures has now been set forth for the first

time, and that the proper connection and
relationship between similar structures,

in metal and masonry, may now be
clearly seen. In particular, the discus-
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sions have made manifest the applicabil- are all projections of any one of them,
ity of a particular equilibrium polygon and the possil*lity of deriving from it in

among the infinite number which are ' each of the structures treated, a complete
due to a given set of weights, and which i and sufficiently exact solution.
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FIG. Ill

Fig.3

ARCH RIB
WITH FIXED ENDS

and

TTTNffiy. JOINT ATTHE CROWN:

GRAPHICAL METHOD.
by

HENRY T, EDDY, C.E.
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FIG. IV.

Fig.4,

TEMPERATURE STRAINS
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Fig.5.

TEMPERATURE STRAINS



6J

81

it

a]

d







FIG'S VI.VII.VIII.IX.

Fig.9

ARCH RIB
WITH END AND CENTER JOINTS

GRAPHICAL MF.THOD,









FIG.X.





A NEAV GENERAL METHOD
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GRAPHICAL STATICS





A NEW GENERAL METHOD
IN

GRAPHICAL STATICS
— *«"z:rjr o

All general processes used in the

graphical computation of statical prob-
lems consist, in their last analysis, in a

systematized application of the proposi-
tion known as the "parallelogram of

forces," which states that if two forces

be applied to a material point, and if

they be represented in magnitude and
direction by two determinate straight

lines, then their resultant is represented
in magnitude and direction by the
diagonal of a parallelogram, two of

whose sides are the just mentioned de-

terminate lines. This is the basis of all

grapKo-statical construction, but the
methods by which it is systematized, and
the auxiliary ideas incorporated in the
processes, have so enlarged its possi-

bilities of usefulness, that Graphical
Statics may perhaps claim to be a science

of itself;—the science of the geometrical
treatment of force.

In order to introduce to the public a

new set of auxiliary ideas, which shall

constitute a new method, of a character
equally general with that now in use and
known as the "equilibrium polygon
method," it has seemed best to give, in

the first place, a brief review of the prin-

cipal ideas already employed by the cul-

tivators of this science.

RECIPROCAL FIGURES.

When a framed structure, such as a
roof or bridge truss, is subjected to the
action of certain weights or forces, these
applied forces form a system which is in

]
equilibrium. Now any system of forces

in equilibrium may be represented in

magnitude and direction by the sides of

a closed polygon, a fact which follows

at once from the doctrine of the parallelo-

gram of forces. Such a polygon is called

the polygon of the applied forces.

Again, the forces which act at any
joint of a frame are in equilibrium, and
hence there is a closed polygon of the

forces acting at each joint. The forces

which meet at a joint of a frame are the

longitudinal tensions or compressions of

the pieces meeting at that joint, together
with any of the applied forces whose
point of application may be the joint in

question. Draw a diagram of the frame
and the applied forces all of which we
will suppose lie in a single plane. Call

this the "frame diagram:" it represents

the position and direction of all the
forces acting in and upon the frame.
The frame diagram necessarily has at

least three lines meeting at each joint.

A piece which constitutes part of the

frame does not necessarily have both
its extremities attached at joints of the

frame; one extremity may be firmly at-

tached to any immovable object. The
frame diagram is, therefore, not neces-

sarily made up of closed figures.

Now draw the closed polygon of the

forces applied to the frame, and at each
of the joints where forces are applied

draw the closed polygon of the forces

which meet at that joint, using so far as

possible the lines already drawn as sides
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of the new polygons, and at the same
time draw polygons for the forces acting

at each of the remaining joints. If this

process be effected with care as to the

order of procedure, as well as to the
order in which the forces follow each
other in the polygon of the applied

forces, then the resulting " diagram of

forces," which is formed of the combi-
nation of the polygon of the applied

forces with the polygons for each joint,

will contain in it a single line and no
more parallel to each line of the frame
diagram. In that case the force dia-

gram is said to be a reciprocal figure to

the frame diagram. If sufficient care is

not exercised in the particulars men-
tioned some of the lines in the force

diagram will have to be repeated, and
the figure drawn will not be the recipro-

cal of the frame diagram, nevertheless

it will give a correct construction of the

quantities sought.

If the frame diagram and the force

diagram are both closed figures then
they are mutually reciprocal. The
properties of reciprocal figures were
clearly set forth by Professor James
Clerk Maxwell, in the Philosophical

Magazine^ vol. 27, 1864; in which is

stated, what is also evident from con-
siderations already adduced above, that
mutually "reciprocal figures are me-
chanically reciprocal; that is, either may
be taken as representing a system of
points {i.e. joints) and the other as rep-

resenting the magnitudes of the forces

acting between them."
The subject has also been treated by

Professor B. Cremona in a memoir en-

titled "Le figure reciproche nelle statica

grafica." Milan, 1872.

We shall now give examples of this

method of computing the forces acting
between the joints of a frame, together
with certain extensions by which we are

enabled to treat moving loads, etc.

The method is correctly called " Clerk
Maxwell's Method." The notation em-
ployed, which is particularly suitable for

the treatment of reciprocal diagrams, is

due to R. H. Bow, C.E. ; and is used by
him in his work entiled " Economics of

Construction."^ London, 1873. In this

work will be found a very large number
of frame and force diagrams drawn by
this method.

Let the right hand part of Fig. 1

represent a roof truss having an in-

clination of 30° to the horizon, of

which the lower chord is a polygon in-

scribed in an arc of 60° of a circle. If

the lower extremities of the truss abut
against immovable walls a change of

temperature causes an horizontal force

between these lower joints, the effect of

which upon the different pieces of the

truss is to be constructed. No other

weights or forces are now considered

except those due to this horizontal force.

FIg.l.

ROOF TRUSS
TEMPERATURE STRESSES

This force is considered thus apart from
all others because it is a force between
two joints, and must enable us to obtain

a pair of mutually reciprocal figures,

such as weights and other applied forces

seldom give.

It is seen that the force between these

joints might be suppobcd to be caused
by a tie joining these points; and in

general it may be stated that the dia-

gram of forces due to any cambering or

stress induced in a frame by "keying"
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pieces, is mutually reciprocal to the

frame diagram.
Let any piece of the frame be denoted

by the letters in the spaces on each side

of it; thus the pieces of the lower chord

are qa^ qc, qe^ etc.; and those of the

upper chord are rh, rd, etc., while ah, he,

etc., are pieces of the bracing, and qr is

the tie whose tension produces the stress

under consideration.

In the force diagram upon the left, let

qr represent, on some assumed scale of

tons to the inch, the tension in the piece

qr ; and complete the triangle aqr with

its sides parallel to the pieces which con-

verge to the joint aqr; then must this

triangle represent the forces which are

in equilibrium at that joint. Kext, with
ar as one side, complete the triangle ahr,

by making its sides parallel to the pieces

meeting at the joint of the same name:

—

its sides will represent the forces in

equilibrium at that joint. In a similar

manner we proceed from joint to joint,

using the stresses already obtained in

determining those at the successive

joints.

It is not possible to determine in

general more than two unknown stresses

in passing to a new joint, unless aided

by some considerations of symmetry
which may exist at such a joint as ghijq.

Now from the left hand figure as a

frame diagram, in w^iich stresses are

induced by causing tension in the tie qr,

we can construct the right hand figure

as a force diagram, but it must be noticed

in that case that rh, rh, rf, rd are sepa-

rate and distinct pieces meeting at the

joint r, although they all lie in the same
right line, and that the same is true

along the line oik on.

One or two considerations of a general

nature should be recalled in this con-

nection.

A polygon encloses the space q : in

the reciprocal figure the lines parallel to

its sides must all diverge from the point

q: and if the upper chord had been a

polygon, instead of being of uniform
slope, the lines parallel to its sides would
diverge from the point r. As it is, ra,

rh, rd, rm etc., form the rays of such a
pencil, in which several rays are super-

posed one upon another.

The determination of the question

as to whether the stress in a given
piece is tension or compression is

effected by following the polygon for

any joint completely around and noting

whether the forces act toward or from
the joint ; e.g, at the point fghrf, from
following the diagrams of preceding
joints in the manner stated, it will be
found thatyj/ is under tension, and acts

from the joint; consequently, gh which
acts toward the joint is under compres-
sion, as are also the two remaining pieces.

Hence if the tension in the tie qr be re-

placed by an equal compression in a part,

tending to move the lower extremities

of the roof from each other, the sign of

every stress in the roof will be changed,
but the numerical amount will remain
unchanged, and no change will be made
in the force diagram.

ROOF TRUSS.

As another example let us take a roof

truss represented in Fig. 2, acted upon
by the equal weights /e, ed, dd' , etc.

Suppose that the effect of the wind
against the right hand side of the truss

is such as to cause a deviation of the

force applied at the joint a'h'e'f of the

amount indicated in the figure. Such a

deviation may of course occur at several

joints of a roof, but the treatment of

the single joint at which the force of the

wind is, in this case, principally concent
trated, will sufliciently indicate the me-
thod to be employed in more intricate

examples.
Suppose that this pressure of the wind

is sustained by the left abutment. The
manner in which it is really sustained

depends upon the method by which the

roof is fixed to the walls.

This horizontal pressure of the wind is

not directly opposed to the thrust of the

left abutment, consequently a couple is

brought into play by these forces, whose
effect is to transfer a part of the weight
from the right to the left abutment. To
compute the amount of this effect, draw
an horizontal line through this joint (or

in case the wind acts at several joints the
horizontal line has to be drawn through
the center of action of the wind pressure)

and prolong it until it intersects the

vertical at the right abutment at 3. Let
14 be equal to the pressure of the wind.
Join 13 and prolong 13 until it intersects

the vertical through 4 at 5, then is 45
the amount by which the weight upon
the left abutment is increased, and that
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upon the left abutment decreased. For,

let k.'T4='\2 . then^. 45= 23. Now the

couple due to the wind =23 • 14 but

^~23.T4=T2. 23=^. 12". 45, .'. "23
.

14=12 . 45. The right hand side of this

last equation is the couple equivalent to

the wind couple, having the arm 12 and
a pair of equal and opposite forces repre-

sented by 45. Let 45 be added to half

the weight of the symmetrical loading

upon the roof to obtain the vertical re-

action of the left abutment, and sub-

tracted from the same quantity for the

vertical reaction of the right abutment.

If any doubt occurs as to the manner
in which the wind pressure is distributed

between the abutments that distribution

should be adopted which will cause the

greatest stresses upon the pieces, or, as

it may be stated in better terms, each
piece should be proportioned to bear the

greatest stress which any distribution of

that pressure can cause.

Let us suppose that a horizontal com-
pression is exerted upon the truss due to

temperature or other cause, and repre-

sented by the width 26 of the rectangle
at the right abutment, then the reaction

at that point is the resultant 92 of this

compression and the vertical reaction;

while at the left abutment the total hori-

zontal reaction 71 is the sum of this

compression and the resistance called

into action by the wind, giving 81 as the
resultant reaction at the left abutment.

Fig.2.

TEMPERATURE,
WIND AND WEIGHT STRESSES

Now, using a scale of force twice that

just employed, for the sake of greater

convenience and accuracy, construct

defyfe'd' the polygon of the applied
forces; and proceed to construct as in

Fig. 1 the polygons of forces for each of

the joints. The accuracy of the conr
struction will be tested by the closing

of the figure at the completion of the

process.

The force diagram at the left is the
reciprocal figure of the diagram of the
frame and applied forces at the right,

but the figure at the right is not the re-

ciprocal of that at the left since it is not
a closed figure with at least three lines

meeting at each intersection.

BRIDGE TRUSS.

As a further example take the bridge
truss shown in Fig. 3, which is repre-

sented as of disproportionate depth in

order to fit the diagram to the size of the
page. The method employed is a simpli-

fication of that given by Mr. Charles H.
Tutton on page 385, vol. XVII of this

Magazine.

Let us suppose the dead load of the
bridge itself to consist of a series of
equal weights ?o, applied at the upper
joints cCj, x'2, etc., of the bridge. Let
each of these weights when laid off to

scale be represented by the length of
zy"'=zw, then the horizontal lines xx and
y"'o include between them ordinates

which represent these weights.
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Let the live load consist of one or

more locomotives which stand at the
joints x^ and x^, and a uniform train of

cars which covers the remaining joints.

Let the load at each joint due to the cars

be represented by y"'y'-=w' ^ and the ex-

cess above this of the load at each of the

joints covered by the locomotives be
represented hj y'y"=^v)\ .\ w + w' + io"

the load at x^ and at

=zy' is the load at x„

isz=G^c^=zy
X.. and w-\-w' ^=^(iji^

= c^c^

and at each of the remaining joints.

Draw y'o, y"o and 20, then is z^y"
=^2?/* that part of the load at x^

which is sustained at the left abutment,
as appears from the principle of the

lever. Again ^22//'—Ti^2/" i'^ ^^^^ P^^'*

of the load at x^ sustained by the same
abutment, and ^^y^^^W^y' ''^^ a similar

part of load at x^. Let the sum of these

weights sustained by the left abutment
be obtained; it is c^e upon the lower
figure. Upon cfi lay off c^c^-^w-Vw*

+ 1//, G^e^—w^w'^^^o\ c^e^=w-hw\ etc.,

equal to the loads applied at x^, x^, etc.

We are now prepared to construct a dia-

gram of forces which shall give the

stresses in the various pieces uuder this

assumed loading. Before constructing

such a diagram, we wish to show that

the assumed position of the load causes

greater stresses in the chords of the

bridge than any other possible position.

The demonstration is quoted nearly ver-
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batim from Rankine's Applied Mechanics,
and though not strictly applicable to the

case in hand, since it refers to a uni-

formly distributed load, it is substan-

tially true for the loading supposed,
when the excess of weight in the loco-

motives is not greater than occurs in

practice.

"For a given intensity of load per
unit of length, a uniform load over the

whole span produces a greater moment
of flexure at each cross section than any
partial load."

" Call the extremities of the span 1

and 2, and any intermediate cross section

3. Then for a uniform load, the moment
of flexure at 3 is an upward moment, be-

ing equal to the upward moment of the

supporting force at either 1 or 2 rela-

tively to 3, minus the downward moment
of the uniform load between that end
and 3. A partial load is produced by
removing the uniform load from part of

the span, situated either between 1 and
3, between 2 and 3, or at both sides of 3.

First, let the load be removed from any
part of the span between 1 and 3. Then
the downward moment, relatively to 3,

of the load between 2 and 3 is unaltered,

and the upward moment, relatively to 3,

of the supporting force at 2 is diminished
in consequence of the diminution of the

force; therefore the moment of flexure

is diminished. A similar demonstration
applies to the case in which the load is

removed from a part of the span be-

tween 2 and 3; and the combined effect

of those two operations takes place when
the load is removed from portions of the

span lying at both sides of 3; so that

the removal of the load from any portion

of the beam diminishes the moment of

flexure at each point."

The stress upon a chord multiplied by
the height of the truss is equal to the

moment of flexure; hence in a truss of

uniform height the stresses upon the
chords are proportional to the moments
of flexure, and when one has its greatest

value the other has also.

The sides of the triangle c^eh^ repre-

sents the forces in equilibrium at the
joint c,e&, at the left abutment 1. The
polygon c^Gf>^a^c^ represents the forces

in equilibrium at the joint of the same
name, ^.e., at the joint x^. The forces at

the other joints are found in a similar

manner.

It is unnecessary to complete the
flgure above e unless to check the
process. The stresses obtained for the
corresponding pieces in the right half of

the truss would, upon completing the
diagram, be found to be slightly less

than those already determined because
there are no locomotives at the right.

The greatest stresses upon the pieces

of the lower chord are eh^^ 6^,, etc., and
on the upper chord are ^gCg, a,c„ etc.

To determine the greatest stress upon
the pieces of the bracing (posts and ties)

it is necessary to find what distribution

of loading causes the greatest shearing

force at each joint, since the shearing

forces are held in equilibrium by the

bracing. We again quote nearly word
for word from Rankine's Applied Me-
chanics.

"For a given intensity of load per
unit of length, the greatest shearing
force at any given cross-section in a

span takes place when the longer of the

two parts into which that section di-

vides the span is loaded, and the shorter

unloaded."
" Call the extremities of the span, as

before, 1 and 2, and the given cross-

section 3; and let 13 be the longer part,

and 23 the shorter part of the span. In

the first place, let 13 be loaded and 23

unloaded. Then the shearing force at 3

is equal to the supporting force at 2, and
consists of a tendency of 23 to slide up-

wards relatively to 13. The load may be
altered either by putting weight between
2 and 3, or by removing weight between
1 and 3. If any weight be put between
2 and 3, a force equal to part of that

weight is added to the supporting force

at 2, and, therefore, to the shearing force

at 3 ; but at the same time a force equal

to the whole of that weight is taken away
from that shearing force; therefore the

shearing force at 3 is diminished by this

alteration of the load. If weight be re-

moved from the load between 1 and 2,

the shearing force at 3 is diminished

also, because of the diminution of the

supporting force at 2. Therefore any
alteration from that distribution of load

in which the longer segment 13 is loaded,

and the shorter segment 23 is unloaded,

diminishes the shearing force at 3."

The shearing force at any point is the

resultant vertical force at that point,

and can be computed by subtracting
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from the weight which rests upon either

abutment the sum of all the weights be-

tween that point and the abutment, i.e.,

by taking the algebraic sum of all the
external forces acting upon the truss

from either extremity to the point in

question; the reaction of the abutment
is, of course, one of these external

' forces.

The greatest stress upon the brace
a^bj is that already found, while x^ is

loaded with the live load.

If the live load be moved to the right

so that no live load rests upon x^, and
the locomotives rest upon x^ and x^^ the

pieces b^a^ and a^b^ will sustain their

greatest stress. To find the shear at x^

in that case, we notice that the change
in position of the live load has changed
the reaction c^e of the left abutment by
the following amounts : the reaction has
been diminished by the quantity yl" yl^'=^ {w' -\-io'')^ since the load at x^ has
been removed, and it has been increased

by y^'y^" =^\^io" , since x^ is loaded more
heavily than before, therefore the re-

action of the abutment has on the whole
been decreased by the total amount -^
(\bw' + 2w").

Now the shear at x^ is this reaction di-

minished by the load lo at x^. In order

to construct it, draw 2/2/14" parallel to

2/'o, then yy'z=i^%o"

.

.*. Shear at x^

=Lec^—w — yig- [ibw' -^210") = ec^ — x^y^.

Lay off c^c^^=^x^y^^ then the shear at

x^ = ec/ = the greatest stress in the
brace b^a^; and b^c^=. the greatest stress

in alj^.

Again, to find the greatest shear at x^

when the live load has moved one panel
further to the right, we have the equa-
tion: Shear at x^^^ec^—w—\^ {w' + io")

—x^^ Lay off c^c^'=x^y^, then the
shear at x^=ec^', which is the greatest

stress in the piece b^a^^ while b^'c^' is the

greatest stress in aj)^.

In similar manner lay off, c^'c^^^x^y^^

G^c^'^x^y^^ etc., until the whole of the
original reaction ec^ of the abutment is

exhausted, then are eCj, ec/, ec^', ec/, etc.,

the successive shearing stresses at the

end of the load, i.e. the greatest shearing
stresses, and consequently these stresses

are the greatest stresses on the succes-

sive vertical members of the bracing,

while Cj6j, c/6/, c^'b^'^ etc., are the great-

est stresses on the successive inclined

members of the bracing.

Had the greater load, such as the loco-

motives, extended over a larger number
of panels, the line y^y^y^ would have cut

off a larger fraction of y'y" . Suppose,
for instance, that the locomotives had
covered the joints x^x^ inclusive, then
the line y^y^ would have passed through
^/g", and been parallel to its present posi-

tion. In that case the ordinates x^y^,

x^y^ would have been successively sub-

tracted from the reaction of the abut-

ment due to a live load covering every
joint, in order to obtain the shearing
forces, just as at present, until we arrive

at iCg, after which it would be necessary
to subtract the ordinates x^y/, ^g^/g", etc.

The counter braces are drawn with
broken lines. Two counters are necessary
on each side of the middle under the
kind of loading which we have supposed.
It is convenient, and avoids confusion in

lettering the diagram to let ci^b^, for in-

stance, denote the principal or counter
indifferently, as both are not subject to

stress at the same time.

The devices here used can be applied
to a variety of cases in which the loading
is not distributed in so simple a manner
as in this case.

IlSr GENERAL.

This method permits the determina-
tion of the stresses in any frame when
we know the relative position of its

pieces and the applied forces, provided
the disposition of the pieces is such as to

admit of a determination of the stresses.

The determination of what the applied

forces are in case of a continuous girder

or arch i^ a matter of some complexity,

depending upon the elasticity of the ma-
terials employed, and the method in its

present form affords little assistance in

finding them.
Some authors have applied the method

to find the stresses induced in the various

pieces of a frame by a single force first

applied at one joint, and then at another,

and so on, and, finally, to find the

stresses induced by the action of several

simultaneous forces, by taking the alge-

braic sum of their separate effects. This
is theoretically correct but laborious in

practice in ordinary cases. Usually, some
supposition respecting the applied forces

can be made from which the results of
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all the other suppositions which must be
made, can be derived with small labor.

The bridge trass treated was a remarka-
ble case in point.

WHEEL WITH TENSION-ROD SPOKES.

A very interesting example is found
in the wheel represented in Fig. 4, in

which the spokes are tension rods, and

the rim is under compression. Let the
greatest weight which the wheel ever sus-

tains be applied at the hub of the wheel
on the left, and let this weight be rep-

resented by the force aa' on the right,

which is also equal to the reaction of
the point of support upon which the
wheel stands; hence aa' represents the
force acting between two joints of this

frame. The same effect-would be caused
upon the other members of the frame by
"keying" the rod aa' sufficiently to

cause this force to act between the hub
and the lowest joint.

It should be noticed in passing, that
the weights of the parts of the wheel it-

self are not here considered; their effect

will be considered in Fig. 5. Also, the

construction is based upon the supposi-
tion that there is a flexible joint at the

extremity of each spoke. This is not an
incorrect supposition when the flexibility

of the rim is considerable compared with
the extensibility of the spokes, a condi-

tion which is fulfilled in practice.

A similar statement holds in the case

of the roof truss with continuous rafters,

or a bridge truss with a continuous upper
chord. The flexibility of the rafters or

the upper chord is sufficiently great in

comparison with the extensibility of the
bracing, to render the stresses practically

the same as if pin joints existed at the
extremities of the braces.

Furthermore, the extremities of the
spokes are supposed to be joined by
straight pieces, since the forces be-

tween the joints of the rim act in those

directions. Such forces will cause small

bending moments in the arcs of the rim
joining the extremities of the spokes.

Each arc of the rim is an arch subjected

to a force along its chord or span, and it

can be treated by the method applicable

to arches. This discussion is unimport-
ant in the present case and will be
omitted.

Upon completing the force polygon in

the manner previously described, it is

found that the stress on every spoke is

the same in amount, and is represented

by a side of the regular polygon abcd^

etc. upon the left, while the compression
of the pieces of the rim are represented

by the radii oa oh, etc.

As previously explained these dia-

grams are mutually reciprocal, and it

happens in this case that they are also

similar figures.

We then conclude that in designing

such a wheel each spoke ought to be
proportioned to sustain the total load,

and that the maker should key the

spokes until each spoke sustains a stress

at least equal to that load. Then in no



A NEW GEjSLERAL METHOD IN GKAPIIICAL STATICS. 7a

position of the wheel can any spoke be-

come loose. The load here spoken of

includes, of course, the effect of the

most severe blow to which the wheel
may be subjected while in motion.

WATER WHEEL WITH TENSION-EOD SPOKES.

The effect of a load distributed uni-

formly around the circumference of such
a wheel as that just treated is repre-

sented in Fig. 5. Should it be desirable

to compute the effect of both sets of

forces upon the same wheel, it will be
sufficient to take the sum of the separate

effects upon each piece for the total

effect upon that piece, though it is

perfectly possible to construct both at

once.

We shall suppose a uniform distribu-

tion of the loading along the circumfer-

ence in the case of the Water Wheel,
because in wheels of this kind such is

practically the case so far as the spokes
are concerned, since the power is trans-

mitted, not through them to the axis,

but, instead, to a cog wheel situated near
the centej* of gravity of the " water arc."

This arrangement so diminishes the
necessary weight of the wheel, and the
consequent friction of the gudgeons, as

to render its adoption very desirable.

aa cannot
' is suited

The discussion of the stresses appears
however, to have been heretofore^erro-

neously made.*
Let the weight pp\ at the highest

joint of the wheel, be sustained by the

rim alone, since the spoke
assist in sustaining pp\ as aa
to resist tension only. Conceive, for the
moment, that two equal and opposite

horizontal forces are introduced at the

highest joint such as the two parts of

the rim exert against each other, then
^pp' ^^pqz=ip'q' being sustained by each
of the pieces a/9, a'p' respectively we
have apq and a'p'q' as the triangles

which together represent the forces at

the highest joint. The force aa' on the

right is the upward force at the axis,

equal and opposed to the resultant of

the total load upon the wheel, and the

apparent peculiarity of the diagram is

due to this;—the direction of the reaction

or sustaining force of the axis passes

through the highest joint of the wheel
and yet it is not a force acting between
those joints and could not be replaced

by keying the tie connecting those joints.-

In other particulars the force diagram is

* " A Manual of the Steam Engine, etc.," by W,
Rankine. Page 18-2, 7th Ed.

J. M
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constructed as previously described and
is sufficiently explained by the lettering.

Should the spoke aa' have an initial ten-

sion greater than pp' ^ then there is a

residual tension due to the difference of

those quantities whose effect must be
found as in Fig. 4.

Should the wheel revolve with so great

a velocity that the centrifugal force

must be considered, its effect will be to

increase the tension on each of the spokes

by the same amount,—the amount due
to the deviating force of the mass sup-

posed to be concentrated at the extremity
of each spoke. The compression of the

rim may be decreased by the centrifugal

force, but as this is a temporarj'^ relief,

occurring only during the motion, it does
not diminish the maximum compression
to which the rim will be subjected.

We conclude then, that every spoke
must be proportioned to endure a ten-

sion as great as hh' from the loading
alone; and that if other forces, due to

centrifugal force or to keying, are to act

they must be provided for in addition.

Furthermore, we see that the rim must
be proportioned to bear a compression
as great as /^^, due to the loading alone,

and that the centrifugal force will not
increase this, but any keying of the
spokes beyond that sufficient to produce
an initial tension on each spoke as great
as pp' must be provided for in addi-

tion.

The diagram could have been con-

structed with the same facility in case
the applied weights had been supposed
unequal.

It can be readily shown that the dif-

ferential equation of the curve circum-
scribing 'the polygon abcd^ etc. of Fig. 5

is

dx —^ldx\

dy

which equation is not readily integrable.

When, however, the number of spokes is

indefinitely increased, it appears from
simple geometrical considerations that

this curve becomes a cycloid having its

cusps at q and q'

.

ASSUMED FRAMING.

Thus far, we have treated the effect

of known external forces upon a given
form of framing, and it is evident from
the previous discussions and the illustra-

tive examples that any such problem,
which is of a determinate nature, can be
readily solved by this method. But in

case the problem under discussion has
reference to the relations of forces among
themselves, it is necessary to assume
that the forces are applied to a frame or
other body, in order to obtain the re-

quired relationship. Certain general
forms of assumed framing have proper-
ties which are of material assistance in

treating such problems, and this is true

to such an extent that even though the

form of framing to which the forces are

applied is given, it is still advantageous
to assume, for the time being, one of the

forms having properties not found in

ordinary framing. The special framing
which has been heretofore assumed for

such purposes is the Equilibrium Polygon,
whose various properties will be treated

in order. We now propose another form
of framing, which we have ventured to

call the Frame Pencil, with equally

advantageous properties which will also

be treated in due order.

It may be mentioned here, that the

particular case of parallel forces is that

most frequently met with in practice. In
case of parallel forces the properties of

the equilibrium polygon and frame pen-

cil are more numerous and important
than those belonging to the general case

alone. We shall first treat the general

case, and afterwards derive the additional

properties belonging to parallel forces.

THE EQUILIBRIUM POLYGON FOR ANY
FORCES IN ONE PLANE.

Let a5, 5c, cd^ de Fig. 6 be the dia-

gram of any forces lying in the plane of

the paper, and ahcde their force polygon,
then, as previously shown, ae the ch>sing

side of the polygon of the applied forces

represents the resultant of the given
forces in amount and direction. Assume
any point /> as a pole, and draw the

force "^ewoWp— abode. The object in view
in so doing, is to use this force pencil

and polygon of the applied forces

together in order to determine a figure

of which it is the reciprocal.

From any convenient point as 2 draw
the side ap parallel to the ray ap until

it intersects the line of action of the force

ab^ and from that intersection draw the

side bp parallel to the ray bp^ etc., etc.;

then the polygon jt) will have its sides
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EQUILIBRIUM POLYGON.

RECIPROCAL FIGURES.

f Force Diagram, abcde,

DwecUcn and \ Equilibrium Polygon, ap, bp, cp, dp, ep,

I Equilibrium Polygon, ap' , bp' , cp' , dp' , ep'

,

PoBiiion. Closing Line, 23 || pq.
Resultant Force, ae.

Force Polygon.

Foice Pencil.

Force Pencil.

Closing Bay.
Resultant Force.

Direction and

Magnitude.

parallel respectively to the rays of the

pencil J9.

The polygon p and the given forces

a5, &c, etc, then form a force and frame
diagram to which the pencil j9— aJccZe is

reciprocal, and of which it is the force

diagram. It is seen that no internal

bracing is needed in the polygon jo, and
hence it is called an equilibrium (frame)

polygon: it is the form which a funicular

polygon, catenary, or equilibrated arch,

would assume if occupying this position

and acted upon by the given forces.

As represented in Fig. 6 the sides of

the polygon jt? are all in compression so

that p represents an ideal arch. If the

line 23 be drawn cutting the sides ap, ep

so that it be considered to be the span of

the arch having the points of support 2

ancl 3, then this arch exerts a thrust in

the direction 23 which may be borne
either by a tie 23 or by fixed abutments
2 and 3 : the force in either case is the

same and is represented by pq \\ 23. It

is usual to call 23 a closing line of the
polygon p. The point q divides the
resultant ae into two parts such that
qapq and epqe are triangles whose sides

represent forces in equilibrium, i.e., the
forces at the points 2 and 3; hence, qa
and eq are the parts of the total resultant

which would be applied at 2 and 3

respectively.

This method is frequently employed
to find the forces acting at the abutments
of a bridge or roof truss such as that in

Fig. 2. But it appears that it has often

been erroneously employed. It must be
first ascertained whether the reaction at

the abutments is really in the direction

ae for the forces considered. It may
often happen far otherwise. If the
surfaces upon which the truss rests with-
out friction are perpendicular to ae, then
this assumption is probably correct; as,

for instance, when one end is mounted
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on rollers devoid of friction, running
on a plate perpendicular to ae. But in

cases of wind pressure against a roof

truss the assumption is believed to be in

ordinary cases quite incorrect. Indeed,

the friction of the rollers at end of a

bridge has been thought to cause a

material deviation from the determina-
tion founded on this assumption. It is

to be noticed that any point whatever on

pq {or pq prolonged) might be joined to

a and e for the purpose of finding the re-

actions of the abutments. Call such a

point X (not drawn), then ax and ex might
be taken as two forces which are exerted

at two and 3 by the given system. It ap-

pears necessary to call attention to this

point, as the fallacious determination of

the reactions is involved in a recently

published article upon this subject.* We
shall return to the subject again while
treating parallel forces and shall extend
the method given in connection with
Fig. 2 to certain definite assumptions,

such as will determine the maximum
stresses which the forces can produce.
Prolong the two sides ap and ep of the

polygon jo until they meet. It is evident
that if a force equal to the resultant ae be
applied at this intersection of ap and ep

prolonged, then the triangles apq and epq
will represent the stresses produced at 2

and 3 by the resultant. But as these aro

the stresses actually produced by the

forces, and as the resultant should cause
the same effects at 2 and 3 as the forces,

it follows that the intersection of ap and
ep must be a point of the resultant ae

;

and if, through this intersection, a line

be drawn parallel to the resultant ae, it

will be a diagram of the resultant,

showing it in its true position and
direction.

This is in reality a geometric relation-

ship and can be proved from geometric
considerations alone. It is sufficient for

our purposes, however, to have estab-

lished its truth from the above mentioned
static considerations which may be re-

garded as mechanical proof of the
geometric proposition.

The pole p was taken at random : let

any other point jo' be taken as a pole.

To avoid multiplying lines p' has been

• See paper No. 71 of the Civil Engfineers' Club of the
Northwest. Applications of the Equilibrium Polygon
to determine the Reactions at the Supports of Roof
Trusses. By James R, Willett, Architect. Chicago.

taken upon pq. Now draw the force

pencil p'— abode and the co:fresponding
equilibrium polygon for the same forces

ah, he, etc. This equilibrium polygon
has all its pieces in tension except p'c.

It is to be noticed that the forces are

employed in the same order as in the
previous construction, because that is the
order in the polygon of the applied
forces : but the order of the forces in

the polygon of the applied forces is, at

the commencement, a matter of indiffer-

'^ence, for the construction did not depend
upon any particular succession of the
forces.

As previously shown, the intersection

of ap' with ep' i'^ a point of the result-

ant, and the line joining this intersection

with the corresponding intersection

above is parallel to ae.

Again, prolong the corresponding sides

of the two equilibrium polygons until

they intersect at 1234, these points fall

upon one line parallel to pp^. For, sup-

pose the forces which are applied to the

lower polygon p' to be reversed in direc-

tion, then the system applied to the poly-

gons jo and p' must together be in equili-

brium; and the only bracing needed is a
piece 23 \\pp', since the upper forces pro-

duce a tension pq along it, and the lower
forces a tension qp' , while the parts aq
and qe of the resultant which are applied

at 2 and 3 are in equilibrium. The same
result can be shown to hold for each of the

forces separately; e.g. the opposite forces

ah may be considered as if applied at

opposite joints of a quadrilateral whose
remaining joints are 1 and 2 : the force

polygon corresponding to this quadrilat-

eral is aphp' , hence 12 \\pp' . Hence
1234 is a straight line. The intersection

of pe and p'c does not fall within the

limits of the figure.

It is to be noticed that the proposi-

tion just proved respecting the col-

linearity of the intersections of the

corresponding sides of these equili-

brium polygons is one of a geometric
nature and is susceptible of a purely

geometric proof.

THE FRAME PENCIL FOR ANY FORCES IN

ONE PLANE.

Let ah, he, cd, de in Fig. 7 represent a

system of forces, of which ahcde is the

force polygon. Choose any single point

upon the line of action of each of these
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FRAME PENCILS.

Direction and

Position.

RECIPROCAL FIQURES.

f Force Diagram, ah c d e, Force Polygon.

j

F'ame Pencil, a' b' c' d' e' , Equilibrating Polygon.

\ Frame Pencil, a" b" c" d" e", Equilibrating Polygon.
Frame Polygon, bb' , cc' , dd' , ee\ Force Lines.

Resultant Force, a e, Resultant Force.

^ Resultant Ray, a' e

,

Resultant Side.

Direction and

Magnitude.

J

forces, and join these points to any as-

sumed vertex v' by the rays of the frame
pencil a'h'o^d'e' . Also join the success-

ive points chosen by the lines hh' ^ cc\ dd'

which form sides of what we shall call

the frame polygon. Now consider the

given forces to be borne by the frame
pencil and frame polygon as a system of

bracing, which system exerts a force at

the vertex v' in some direction not yet

known, and also exerts a force along
some assumed piece ee', which may be
regarded as forming a part of the frame
polygon. The stresses upon the rays of

the frame pencil will be represented by
the sides of ah'c'd'e' which we shall call

the equilibrating (force) polygon; while

the stresses in the frame polygon are

given by the force lines hh\ cc', etc. If a

resultant ray a'e' be drawn from v' par-

allel to the resultant side ae' of the

equilibrating polygon it will intersect ee'

at a point of the resultant of the system

of forces; for that is a point at which if

the resultant be applied it will cause the
same stresses along the pieces ct'e' and ee'

which support it as do the forces them-
selves.

If the point e' in the force polygon be
moved along e'd', the locus of the inter-

section of the corresponding positions of

the resultant ray a'e' and the last side ee'

will be the resultant ae. It would have
been unnecessary to commence the equi-

librating polygon at a had the direction

of aa' been known. Having obtained
the direction of aa' as shown at 8, the

equilibrating polygon could be drawn
by commencing at any point of aa, ||

aa'.

In cases like that in the Fig., where
there is no reason for choosing the points

which determine the sides of the frame
polygon otherwise, it is simpler to make
the frame polygon a straight line, which
may in that case be called the frame
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line. Then the force lines are parallel

to each other and to aa' also. This is a

practical simplification of the general
case of much convenience.

It should be noticed here that the

equilibrium polygon, as well as the

straight line, is one case of the frame
polygon. The interesting geometric re-

lationships to be found by constructing

the frame and equilibrium polygons as

coincident must be here omitted.

Suppose that it is desired to find the

point q which divides the resultant into

two parts, which would be applied in

the direction of the resultant at two
such points as 8 and 9: draw a6 || v'%

and 6'6
|| v'9 and then through 6 draw

qq' 11 89. This may be regarded as the

same geometric proposition, which was
proved when it was shown that the locus

of the intersection of the two outside

lines of the equilibrium polygons (recip-

rocal to a given force pencil) is the re-

sultant, and is parallel to the closing side

of the polygon of the applied forces.

The proposition now is, that the locus of

the intersection of the two outside lines

of the equilibrating polygon (reciprocal

to a given frame pencil) is the resolving

line, and is parallel to the abutment
line: for these two statements are geo-
metrically equivalent.

Assume a different vertex -u", and
draw the frame pencil and its correspond-
ing equilibrating polygon a"b"c"d"e. If

a, 6 and e 5 be drawn parallel to v" 8

and v" 9 respectively their intersection

is upon qq' as before proven.

Again, the corresponding sides of these

two equilibrating polygons intersect at

12 3 4 upon a line parallel to v'v", for

this is tjhe same geometric proposition

respecting two vertices and their equili-

brating polygons which was previously

proved respecting two poles and their

equilibrium polygons.

It would be interesting to trace the

geometric relations involved in different

but related frame polygons, as for exam-
ple, those whose corresponding sides in-

tersect upon the same straight line, but
as our present object is to set forth the

essentials of the method, a consideration

of these matters is omitted. Enough
has been proven, however, to show that

we have in the frame pencil an inde-

pendent method equally general and

fruitful with that of the equilibrium
polygon.

EQUILIBEIUM POLYGON FOR PARALLEL
FORCES.

Let the system of parallel forces in

one plane be four in number as repre-

sented in Fig. 8, viz : lo^w^, ^^'^s* ^^^-j

acting in the verticals 2 3 4 5 of the
force diagram on the left. Let the
points of support be in the verticals 1

and 6.

The force polygon at the right re-

duces, in case of vertical forces, to a ver-

tical line wio. Assume any arbitrary

point j!9 as pole of this force polygon, (or

weight line, as it is often designated)

and, parallel to the rays of the force

pencil at p, draw the sides of the equili-

brium polygon ee, in the manner pre-

viously described. Draw the closing

line hk of this polygon ee, and parallel

to it draw the closing ray pq\ then, as

previously shown, pq divides the result-

ant w^w^ at q into two parts which are

the reactions of the supports. The
position of the resultant is in the vertical

171771 which passes through the inter-

section of the first and last sides of the

polygon ee, as was also previously

shown.
Designate the horizontal distance from

p to the weight line by the letter H. It

happens in Fig. 8 that jt?t^j=H, but in

any case the pole distance H is the hori-

zontal component of the force pq acting

along the closing line.

Now by similarity of triangles

the moment of flexure, or bending mo-
ment at the vertical 2, which would be
caused in a simple straight beam or gir-

der under the action of the four given

forces and resting upon supports in the

verticals 1 and 6.

Again, from similarity of triangles,

KK (=62/3) =^3/3 :
''S:iw^w^

.'.S(kJ-ej:)= H.k,e,

_ =qw^,hJi^—w^w^,hJi=M,

the moment of flexure of the simple gir-

der at the vertical 3.

Similarly it can be shown in general
that

JEr.he=M,
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EQUILIBRIUM POLYGON.

i.e. that the moment of flexure at any
vertical whatever (be it one of the
verticals 2 3 4, etc., or not) is equal
to the product of the assumed pole

distance S multiplied by the vertical

ordinate he included between the equili-

brium polygon ee and the closing line

kk at that vertical.

From this it is evident that the
equilibrium polygon is a moment curve,

i.e. its vertical ordinate at any point
of the span is proportional to the
bending moment at that point of

a girder sustaining the given weights
and supported by simply resting without
constraint upon piers at its extremities.

From this demonstration it appears
that H.e^f^-=xo^w^JiJi^ is the moment of

the force w^io^ with respect to the verti-

cal 3; and similarly H.v%^r)%^-=^w^w^.e^r}%^

is the moment of the same force with
respect to the vertical through the cen-

ter of gravity. Also, JE[.y^y^-=w^^.hJi^
is the moment of the same force with
respect to the vertical 6.

Similarly m^r)i^ is proportional to the
moment of all forces at the right, and
m^m^ to all the forces left of the center

of gravity, \ivXm^m^-\-m^m^-=^^.^ as should
be the case at the center of gravity,

about which the moment vanishes.

From these considerations it appears
that the segments 'mm of the resultant

I

are proportional to the bending moments
of a girder supporting the given weights

I and resting without constraint upon a

!
single support at their center of gravity.

i Let us move the pole to a new position

\p' having the same pole distance H %% p^
and in such a position that the new clos-

j

ing line will be horizontal, i.e. p'q must
be horizontal.

One object in doing this is to furnish

a sufficient test of the correctness of the

drawing in a manner which will be im-

mediately explained; and another is to

transfer the moment curve to a new
position CO such that its ordinates may
be measured from an assumed horizontal

position hh of the girder to which the

forces are applied, so that the girder

itself forms the closing line.

The polygon cc must have its ordinates

he equal to the corresponding ordinates

^e, for

M^H.ke^H.hc
Also the segments of the line mm are

equal to the corresponding segments of

the line nn for similar reasons.

Again, as has been previously shown,
the corresponding sides (and diagonals

as well) of the polygons ee and ce inter-

sect upon the line yy \\pp'.

These equalities and intersections fur-

nish a complete test of the correctness of

the entire construction.
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FRAME PENCIL.

Fig. 9

FEAME PENCIL FOR PARALLEL FORCES.

Let the same four parallel forces in

one plane which were treated in Fig. 8

be also treated in Fig. 9, and let them
be applied at 2, 3, 4, 5 to a horizontal

girder resting upon supports at 1 and 6.

Use 16 as the frame line and choose

any vertex v at pleasure from which to

draw the frame pencil dd. Draw the

force lines wd parallel to the horizontal

frame line 16, and then draw the equili-

brating polygon dd with its sides paral-

lel to the rays of the frame pencil dd.

As has been previously shown, if a re-

sultant ray vo of the frame pencil dd be

drawn from v, as represented in Fig. 9,

parallel to the closing side uu of the

equilibrating polygon, this ray intersects

16 at the point o where the resultant of

the four given forces cuts 16.

Furthermore, the lines w^r^ and d^r^

parallel to the abutment rays -yl and vQ

of the frame pencil intersect on rr the

resolving line, which determines the

point of division q of the reactions of

the two supports, as was before shown.

Let the vertical distance between the

vertex and the frame line be denoted by
V,

In Fig. 9 it happens that v6= V.

If the frame polygon is not straight, or

being straight is inclined to the horizon,

F'has different values at the different

joints of the frame polygon: in every
case V is the vertical distance of the
joint under consideration above or below
the vertex. It will be found in the se-

quel that this possible variation of V
may in certain constructions be of con-

siderable use.

By similarity of triangles we have

12 : v6 : : r^r^ : w^q

M.
2>

.*. Y.r^r^=w^q.l2

the bending moment of the girder at the

point 2.

Draw a line through w^ parallel to v3;
this line by chance coincides so nearly

with w^s^ that we will consider that it is

the line required, though it was drawn
for another purpose. Again, by simi-

larity of triangles

13 : v6 : : r^s^ : w^q

23 : V6 : : d^g{=r^s^) : w^w^

= tv^q.l3—w^w^.23=M^

the bending moment at 3.

Similarly it may be shown that

i.e. that the moment of flexure at any
point of application of a force to the
girder is the product of the assumed
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vertical distance V multiplied by the

corresponding segment rr of the resolv-

ing line.

The moment of flexure at any point

of the girder may be found by drawing
a line tangent to the equilibrating poly-

gon (or curve) parallel to a ray of the

frame pencil at that point, the intercept

r,r of this tanajent is such that Fir,r is
1 O 1

the moment required.

Also by similarity of triangles

02 : vQ : : u^d^ : w^w^

.', VM^d^=w^w^.o2

o2(=o3-f32) : vQ : : u^l : lo^w^

32 : v6 : : dj : w^w^

••• v{uj-d,i)=rMA

i.e. the horizontal abscissas ud between
the equilibrating polygon dd and its

closing side uu multiplied by the verti-

cal distance V are the algebraic sum of

the moments of the forces about their

center of gravity. The moment of any
single force about the center of gravity

being the difference between two success-

ive algebraic sums may be found thus:

draw dj || uu, then is V^.d/ the moment
of w^w^ about the center of gravity, as

may be also proved by similarity of tri

angles.

Again by proportions derived from
similar triangles, precisely like those
already employed, it appears that

Y.w^d^=w^w^.2Q

is the moment of the force w^w^ about
the point 6. And similarly it may be
shown that

V.w^d^=w^w^.2Q + «^^^3. 3 6

is the moment of w^tu^ and w^w^ about 6.

Furthermore, as this point 6 was not
specially related to the points of applica-

tion 1 2 3 4, we have thus proved the
following property of the equilibrating

polygon: if a pseudo resultant ray of

the frame pencil be drawn to any point
of the frame line, then the horizontal

abscissas between the equilibrating poly-
gon and a side of it parallel to that ray,

(which may be called a pseudo closing

side), are proportional to the sum total

of the moments about that point of those
forces which are found between that
abscissa and the end of the weight line

from which this pseudo side was drawn.
The difference between two successive

sum totals being the moment of a single

force, a parallel to the pseudo side en-

ables us to obtain at once the moment of

any force about the point, e.g. draw d^i^

II
wio .*. V.dJ' is the moment of w^io^

about 6.

Now move the vertex to a new posi-

tion v' in the same vertical with o : this

will cause the closing side of the equili-

brating polygon (parallel to v'o) to coin-

cide with the weight line. The new
equilibrating polygon bb has its sides

parallel to the rays of the frame pencil

whose vertex is at v\ If V^ is un-

changed the abscissas and segments of*

the resolving line are unchanged, and vv'

is horizontal. Also xx \\ vv' contains

the intersections of corresponding sides

and diagonals of the equilibrating poly-

gon. These statements are geometri-

cally equivalent to those made and
proved in connection with the equili-

brium polygon and force pencil.

In Figs. 8 and 9 we have taken j5^= F,

hence the following equations will be
found to hold,

^>,e=r.r^^, 7c^e=r^r^, Jc^e=r^r^, etc.

m^m^—u^d^, 7n^m^=u^d^, m^m^=u^d^, etc.

y,y,='^^<^,, 2/i2/3=^3^3J yi2/4^^4^4; etc.

m^m=dj,, etc., yjc=dj.', etc.

By the use of etc. we refer to the more
general case of many forces. From
these equations the nature of the rela-

tionship existing between the force and
frame pencils and their equilibrium and
equilibrating polygons becomes clear.

Let us state it in words.
The height of the vertex (a vertical

distance), and the pole distance (a hori-

zontal force) stand as the type of the

reciprocity or correspondence to be
found between the various parts of the
figures. '

The ordinates of the equilibrium poly-

gon (vertical distances) correspond to the

segments of the resolving line (horizontal

forces), each of these being proportional

to the bending moments of a simple
girder sustaining the given weights, and
resting without constraint upon supports
at its two extremities.

The segments of the resultant line

(vertical distances) correspond to the

abscissas of the equilibrating polygon
(horizontal forces) each of these being
proportional to the bending moments of
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a simple girder sustaining ttie given
weights and resting without constraint

upon a support at their center of gravity.

The segments of any pseudo resultant

line, parallel to the resultant, which are

cut off by the sides of the equilibrium
polygon, are proportional to the bending
moments of a girder supporting the

given weights and rigidly built in and
supported at the point where the line in-

tersects the girder; to these segments
correspond the abscissas between the

equilibrating polygon and a pseudo side

of it parallel to the pseudo resultant ray.

The two different kinds of support
which Ave have supposed, viz. support
without constraint and support with con-

straint, can be treated in a somewhat
more general manner, as appears when
we consider that at any point of support
there may be, besides the reaction of the

support, a bending moment, such as

would be induced, for instance, when
the span in question forms part of a con-

tinuous girder, or when it is fixed at the

support in a particular direction. In

such a case the closing line of the equili-

brium polygon is said to be moved to a

new position. It seems better to call it

in its new position a pseudo closing line.

The ordinates between the pseudo closing

line and the equilibrium polygon are

proportional to the bending moments of

the girder, so supported. It is possible

to induce such a moment at one point of

support as to entirely remove the weight
from the other, and cause it to exert no
reaction whatever; and any intermediate

case may occur in which the total weight
in the span is divided between the sup-

ports in any manner whatever. When
the weight is entirely supported at h^

then y^e^ is the pseudo closing line of the

polygon ee. In that case xx becomes the

pseudo resolving line, and in general the

ordinates between the pseudo closing

line and the equilibrium polygon corre-

spond to the segments of the pseudo
resolving line, and are proportional to

the bending moments of the girder.

This general case is not represented in

Figs. 8 and 9; but the particular case

shown, in which the total weight is

borne by the left pier, gives the equa-

tions

^3/3=«^i«'2» ^4/4='^,a'3» ^J,='^r^.^ etc.

In order to represent the general case

in which the weights, supported by the

piers, are not the same as in the case of

the simple girder, by reason of some kind

of constraint, we propose to treat the case

of the straight girder, fixed horizontally

at its extremities; but it is necessary

first to discuss the following auxiliary

construction.

SUMMATION POLYQON.
Fig. 10

THE SUMMATION POLYGON.
In Fig. 10 let aabh be any closed

figure of which we wish to determine the

area. The example which we have
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chosen is that of an indicator card taken
from page 12 of Porter's Treatise on
Richard's Steam Indicator, it being a

card taken from the cylinder of an old-

fashioned paddle-wheel Cimarder, the
Africa. The scale is such that ap^ is

26.9 pounds per square inch and 06

parallel to the atmospheric line is the
length of the stroke.

Divide the figure by parallel lines afi^^

(ifi^, etc. into a series of bands which
are approximately trapezoidal. A suffi-

cient number of divisions will cause this

approximation to be as close as may be
desired. The upper and lower bands
may in the present case be taken as ap-

proximating sufficiently to parabolic
areas. Let 06 be perpendicular to cifi^^

etc., then will 01, 12, etc., be the heights
of the partial areas. Lay off

KK=i{^A-^^A)y etc.

then will these distances be the bases of

the partial areas. Assume any point c

at a distance I from 06 as the common
point of the rays of a pencil passing-

through 0,. 1, 2, etc.; and draw the
parallels hs : then from any point v^ of

the first of these make v^s^ \\ cO, and
s^s^

II cl, s^s^
II c2, etc.

The polygon ss is called the summa-
tion polygon, and has the following
properties.

By similarity of triangles

; : 01 : : hA- v,v^, .'. 0\.hA=l'V,v^

is the area of the upper band. Similarly

Vi.h^h^=^l.v^v^ is the area of the next
band, and finally

OQS{hA=l^v,v=lp

is the total area of the figure.

In the present instance we have taken
/=06, the length of stroke, conse-

quently/) is the average pressure during
the stroke of the piston, and is 21.25

pounds, which multiplied by the volume
of the cylinder gives the work per stroke.

This method of summation, which ob-

tains directly the height 2^ of a rectangle
of given base I equivalent in area to any
given figure, is due to Culmann, and is

applicable to all problems in planimetry;
it is especially convenient in treating the
problems met with in equalizing the
areas of profiles of excavation and em-
bankment, and is frequently of use in

dividing land. It is much more ex-

peditious in application than the

method of triangles founded on Euclid,

and is also, in general, superior to

the method of equidistant ordinates,

whether the partial areas are then
computed as trapezoids or by Simp-
son's Rule; for it reduces the number
of ordinates and permits them to be
placed at such points as to make the

bands approximate much more closely

to true trapezoids than does the method
of equidistant ordinates.

GIRDEK WITH FIXED ENDS.

It is to be understood that by a girder

with fixed ends, we mean one from which
if the loading were entirely removed,
without removing the constraint at its

ends, there would be no bending moment
at any point of it, and, when the loading
is applied to it the supports constrain

the extremities to maintain their original

direction unchanged, but furnish no
horizontal refsistance. Under those cir-

cumstances the girder may not be
straight, and may not have its supports
on the same level, but it will be more
convenient to think of the girder as

straight and level, as the moments, etc.,

are the same in both cases.

Suppose in Fig. 11 that any weights
lo^w^, etc. are applied at A^, /^3, A^, h^, to

a girder which is supported and fixed

horizontally at h^ and Ag. With p as the
pole of a force pencil draw the equili-

brium polygon ee as in Fig. 8. The re-

sultant passes through m.
It is shown in my New Constructions

in Graphical Statics, Chapter II, that the

position of the pseudo closing line k'7c\

in case the girder has its ends fixed as

above stated, is determined from the

conditions that it shall cut the curve ee

in such a way that the moment area

above Jc'Jc' shall be equal to that below
]c'k\ and also in such a way that the

center of gravity of the new moment
area shall be in the same vertical as the

original moment area.

, To find the center of gravity of the

moment area ek\ determine the areas of

the various trapezoids of which it is com-
posed by help of the summation poly-

gon ss. In constructing ss we make
hj.—k^e^, h^'l=k^e^-\:k^e^, etc., and using

V as the common point of the pencil we
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shall have h^v.h^z^ = twice the area of

the moment area. We have used the
sum of the two parallel sides of each
trapezoid instead of half tjiat quantity
for greater accuracy.

Now lay off from 2^, z^z^-=h^z^^

z^z^=.h^z^, etc., as a weight line and
assume the pole jo'.

Of the triangle hji^e^^ one-third

rests at li^ and two-thirds at A^;

make 'z^z^=^\z^z^^ it is the part of the

area applied at A^. Of the area h^e^eji.^^

one half, approximately, rests at h^ and
one half at A„. Bisect z^z^ at z\ then"2 5

zJz^ rests at A„. Bisect each of the2*

Other quantities z^z^^ etc. except z^z^^ in

which make 2^2/=J z^z^. With the

weights z'z' so obtained, construct the

second equilibrium polygon yy, 'which
shows that the center of gravity of the

moment area is in the vertical through
n. There is a balancing of errors in this

approximation which renders the posi-

tion of n quite exact; if, however,
greater precision is desired, determine
the centers of gravity of the trapezoids

forming the moment area, and use new
verticals through them as weight lines,

with the weights zz instead of the

weights z'z'

.

Draw A^erticals which divide the span
into three equal parts,—they cut ny^ and
ny^ at t^ and ^g, and draw p't' \\ t^t^.

Then is t^t^nt^t^ an equilibrium polygon
due to the force z^z^ applied at n, and to

the forces z^t' ^ and t'z^ applied at t^ and

^3 respectively. As explained when

hh'=\ t'z

treating this matter in the New Con-
structions in Graphical Statics, z^t' and
t'z^ are proportional to the bending mo-
ments at the extremities of the fixed gird-

er. In this case, since we have taken
we find that hJc^--rz\zJL'^ and
are the end moments, and

they fix the position of the pseudo clos-

ing line. Draw pq' \\ 7c'k' then are w^q'^

and q'w^ the reactions of the piers. The
pseudo resultant is at m'.

To obtain the same result by
help of a frame pencil, let Fig. 12
represent the same weights applied

in the same manner as in Fig. 11.

Choose the vertex v, and draw the
equilibrating polygon dd, etc. as in Fig.

8. Make \\=r^r^, \2=r^r^ + r^r^, etc.,

since these quantities are proportional

to the bending moments as previously

shown. With v as the common point of

the rays of a pencil, find h^z^ by the help
of the summation polygon 55 just as in

Fig. 11.

Lay off the second weight line z^z^\

etc., just as in Fig. 11, and with v as

vertex construct the second equilibrating

polygon XX. Then as readily appears
vn 11 z^x, determines 7i the center of

gravity of the moment area. Make z^x^

II ?;^.^ and x^x^\\vt^\ if t^ and t^ divide

the span into three equal parts, then the

horizontal through x^ fixes ^' correspond-

ing to t' in Fig. 11.

To find the position of the pseudo
resolving line and its segments pro-

portional to the new bending mo-
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ments, lay off rj=\{t'z^—z^t') the differ-

ence of the bending moments at the

ends, and make />/ || r^w^ and prolong
it^r^ until they meet at r/ which is on the

pseudo resolving line. Then lay off

r^r'=\z^t' and ry=\t'z^'- upon this

pseudo resolving Mne r'q', then r'r^', ^'^g'?

etc., are the bending moments when the

girder is fixed at the ends. For by simi-

larity of triangles

r 't
'

16 9.9.'^

is the moment, and qq' is the weight
which is transferred from one support to

the other by the constraint, hence r'q' is

the correct position of the pseudo resolv-

ing line. Thence follows the proof that

the bending moments are proportional

to intercepts upon this line in a manner
precisely like that employed in Fig. 9.

Again, draw m^ \\ wy and vi^ \\ uy,
then are i^ and i^ the points of inflexion

of the girder when the bending moment
vanishes, being in reality points of sup-

port on which the girder could simply

rest without constraint and have tlie

pseudo resultant in that case as the true

resultant.

In Figs. 11 and 12 we have taken
11=^ V, consequently the new moments
can be directly compared, the ordinates

k'e being equal to the corresponding
segments rV.

Apparently in this example Fig. 12

presents a construction somewhat more
compact than that of Fig. 11, it is cer-

tainly equally good.
It remains to remark before proceed-

ing to further considerations of a slight-

ly different character, that we owe to

the genius of Culmann* the establishment
of the generality of the method of the
equilibrium polygon.
He adopted the funicular polygon,

some of whose properties had long been
known, and upon it founded the general
processes and methods of systematic
work which are now employed by all.

Furthermore it should be stated that
parallelograms of forces were com-
pounded and applied in such a way as to

* Graphische Statik. Zurich, 1866.

give rise to a frame pencil and equili-

brating polygon by the illustrious

Poncelet* who by their use determined
the centers of gravity of portions of the

stone arch. Whether he recognized

other properties besides the simple de-

termination of the resultant of parallel

forces, I am not informed, as my
knowledge of Poncelet's memorial is de-

rived from so much of his work as

Woodburyf has incorporated in his

graphical construction for the stone

arch.

So far as known, the method has been
advanced by no one of the numerous
recent writers upon Graphical Statics

* Memorial de 1' officier du Genie. No. 12.

t Treatise on the Stability of the Arch. D. P. Wood-
bury, New York, 1858.
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which would certainly have been the

case had Poncelet established its claim

to be regarded as a general method.
I think the method of the frame pen-

cil may now fairly claim an equal gen-
erality and importance with that of the

equilibrium polygon.

ANY FORCES LYING IN ONE PLANE, AND
APPLIED AT GIVEN POINTS.

We have previously referred to this

problem, having treated a particular case

of it in Fig. 2 ; and subsequently cer-

tain statements were made respecting the
indeterminateness of the process for find-

ing the reactions of supports in case the
applied forces were not vertical.

The case most frequently encountered
in practice is wind-pressure combined
with weight, and we can take this case

as being sufficiently general in its nature;

so that we are supposed to know the
precise points of application of each of

the forces, and its direction. Now it

may be that the reaction of the supports
cannot be exactly determined, but in all

cases an extreme supposition can be made
which will determine stresses in the
framework which are on the safe side.

For example, if it is known that one
of the reactions must be vertical, or nor-

mal to the bed plate of a set of support-
ing rollers, this will fix the direction of

one reaction and the other may then be
found by a process, like that employed
in Fig. 2, of which the steps are as fol-

lows :

Resolve each of the forces at its point

of application into components parallel

and perpendicular to the known direction

of the reaction, which we will call verti-

cal for convenience, since the process is

the same whatever the direction may be.

By means of an equilibrium polygon or

frame pencil find the line of action of

the resultant of the horizontal compo-
nents, whose sum is known. Then this

horizontal resultant, can be treated pre-

cisely as was the single horizontal force

in Fig. 2, which will determine the alter-

ation of the vertical components of the
reactions due to the couple caused by the
horizontal components.

Also, find by an equilibrium polygon,
or frame pencil, the vertical reactions due
to the vertical components. Correct the
point of division q of the weight line as

found from the vertical components by

the amount of alteration already found
to be due to the horizontal components.
Call this point q\ then the polygon of

the applied forces must be closed by two
lines representing the reactions, which
must meet on a horizontal through q'

\

but one of them has a,known direction,

hence the other is completely determined.

This determination causes the entire

horizontal component to be included in

a single one of the reactions, and it is

usually one of the suppositions to be
made when it is not known that the reac-

tion of a support is normal to the plane

of the bed joint.

Another supposition in these circum-

stances is that the horizontal component
is entirely included in the other reaction;

and a third supposition is that the hori-

zontal component is so divided between
the reactions that they have the same
direction. These suppositions will usu-

ally enable us to find the greatest possible

stress on any given piece of the frame by
taking that stress for each piece which is

the greatest of the three.

In every supposition care must be
taken to find the alteration of the verti-

cal components due to the horizontal

components. This is the point which has

been usually overlooked heretofore.

KERNEL, MOMENTS OF RESISTANCE AND
INERTIA : EQUILIBRIUM POLYGON METHOD.

The accepted theory respecting the

flexure of elastic girders assumes that

the stress induced in ^ny cross section

by a bending moment increases uniform-

ly from the neutral axis to the extreme
fiber.

The cross section considered, is sup-

posed to be at right angles to the plane

of action or solicitation of the bending
moment, and the line of intersection of

this plane with that of the cross section

is called the axis of solicitation of the

cross section.

The radius of gyration of the cross

section about any neutral axis is in the

direction of the axis of solicitation.

It is well known that these two axes

intersect at the center of gravity of the

cross section, and have directions which
are conjugate to each other in the ellipse

which is the locus of the extremities of

the radii of gyration.

We shall assume the known relation
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in which 31 is the magnitude of the

bending moment, or moment of resistance

of the cross section, S is the stress on

the extreme fiber, /is the moment of in-

ertia about any neutral axis aj, and y is

the distance of the extreme fiber in the

direction of the axis of solicitation, ^. e.

the distance between the neutral axis x

and that tangent to the cross section

which is parallel to x and most remote
from it, the distance being measured
along the axis of solicitation.

Let M=Sm in which m is called

the "specific moment of resistance" of

the cross section; it is, in fact, the

bending moment which will induce a

stress of unity on the extreme fiber.

Now I=¥A
in which k is the radius of gyration and

A is the area of the cross section.

Let l^-7-y^=.i\ .'. 77i=rA,

is the specific moment of resistance

about X, and when the direction of x
varies, r varies in magnitude: r is called

the " radius of resistance " of the cross

section. The locus of the extremity of

r, taken as a radius vector along the

axis of solicitation, is called the "ker-

nel."

The kernel is usually defined to be the

locus of the center of action of a stress

uniformly increasing from the tangent

to the cross section at the extreme fiber.

It was first pointed out by Jung,* and
subsequently by Sayno, that the radius

vector of the kernel is the radius of

resistance of the cross section measured
on the axis of solicitation. This will

also appear from our construction by a

method somewhat different from that

heretofore employed.
Jung has also proposed to determine

values of 7c, by first finding r/ and has

given methods for finding r. We shall

obtain r by a new method which renders

the proposal of Jung in the highest

degree useful. "

The method heretofore employed by
Culmann and other investigators has
been to find values of k first, and then
having drawn the ellipse of inertia to

* " Rappresentazioni graflsche dei momenti resistenti
dj. una sezione plana." G. Jung, Rendiconti dell' Instituto
Sombardo, Ser. 2, t, IX, 1876, No. XV. " Complemento
alia nota precedente." No. XVI.

construct the kernel as the locus of the

antipole of the tangent at the extreme
fiber. The method now proposed is the

reverse of this, as it constructs several

radii of the kernel first, then the corre-

sponding radii of gyration, and from
them the ellipse, and finally completes

the kernel. In the old process there are

inconvenient restrictions in the choice of

pole distances which are entirely avoided

in the new process.

Let the cross section treated be that

of the X I'^il represented in Fig. 13,

which is 4|x2j inches and ^ inch thick.

We have selected a rail of uniform
thickn'ess in order to avoid in this small

figure the numerous lines needed in the

summation polygon for determining the

area; but any cross section can be treat-

ed with ease by using a summation j^oly-

gon for finding the area.

To find the center of gravity, let the

weights w^io^ and toj.o^, which are propor-

tional to the areas between the verticals

at b^b^ and b^b^ be applied at their centers

of gravity a^ and a^ respectively; then

the equilibrium polygon c^c^, having the

pole ^9^, shows that ois the required cen-

ter of gravity.

Let the area b^b^ be divided into two
parts at o, then w^io^ and w^to^ are

weights proportional to the areas b^o and
063 respectively; and c^o^c^ is the equili-

brium polygon for these weights applied

at their centers of gravity a^ and a^.

The intercepts mm have been previ-

ously shown to be proportional to the

products of the applied weights by their

distances from the center of gravity o.

We have heretofore spoken of these

products as the moments of the weights
about their common center of gravity 0.

But the weights in this case are areas

and the product of an area by a distance

is a volume. Let us for convenience call

volumes so generated "stress solids."

The elementary stress solids obtained by
multiplying each elementary area by its

distance from the neutral axis will cor-

rectly represent the stresses on the dif-

ferent parts of the cross section, and they
will be contained between the cross sec-

tion and a plane intersecting the cross

section along the neutral axis and mak-
iug an angle of 45° with the cross sec-

tion.

If b^b^ is the ground line, ^^^3 and d^cl^

are the traces of the planes between
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which the stress solid lies on a plane at

right angles to the neutral axis.

The distances of the centers of gravity

of the stress solids from o are also the

distances of the points of application of

the resultant stresses, and the magnitude
of the resultant stresses are are propor-
tional to the stress solids. The stress

solids may be considered to be some kind
of homogeneous loading whose weight
produces the stress upon the cross section.

The moment of inertia J is the mo-
ment of this stress with respect to o.

Now the intercept m^m^ represents

the weight of the stress solid whose
profile is ob^d^. Its point of applica-

tion is ^3, if og^=^ob^. Similarly the

weight m^m^ has its point of application

at g^ if og^=-\oh^. And the weight m^rn^

is applied in the vertical through g^ ; for

the profile of this stress solid is the trape-

zoid hj)^d^d^, and g^ is its center of grav-
ity found geometrically. In case the

area is divided into narrow bands paral-

lel to the neutral axis the points of appli-

cation coincide sensibly with the centers

of gravity of the bands.

Now take any pole p^ and construct a

second equilibrium polygon ee due to the

stress solids applied in the verticals

through g.g^g^.
The last two sides e^n^ and e^n^ are

necessarily parallel and have their inter-

section at infinity, for the total stress i&

a couple.

The intercept n^n^ is not drawn through
the common center of gravity of the

stress solids, i. e., it is not an intercept

on the line of the resultant stress, but
since parallels are everywhere equidis-

tant this intercept is proportional to the

moment of the stresses about their center

of gravity ; in other words n/i^ when
multiplied successively by the two pole

distances would be /. We shall not need
to effect the multiplication.
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Prolong c^m^ to e^ on the tangent to

the extreme fiber and draw c^m^W p^ic^,

then m^m^ represents the product of the

total weight-area w^w^ by oh^-=-y the dis-

tance of the extreme fiber, or m^m,^ is

proportional to the volume of a stress

solid whose base is the entire cross sec-

tion and whose altitude is 'b^d^-=^ob^.

Suppose this stress to be of the same
sign as that at the right of o, let us com-
bine it with the stress already treated.

Its point of application is necessarily at

0, and its amount is m^m^ if measured
on the same scale as the other stresses.

Draw n^e^ lli^a^o? ^^^^ ^^ ^i ^^ ^^ verti-

cal through e^ the point of application of

the combined stresses. But the com-
bined stresses amount to a stress whose
profile is included between d^d^ and a

horizontal line through d^^ i.e. to a stress

uniformly increasing from h^ to h^\ hence
h^ is a point of the kernel as usually de-

fined.

If c^m^ be prolonged to c^ and we draw
^6^6 lli^i^^i, t-hen m^^ (not shown) is the

weight of a stress solid of a uniform
depth h^d^ over the entire cross section;

and if we draw n^e^ Wp^'n^i then will h^

on the vertical through e^ be also in like

manner a point of the kernel, i.e. the

point of application of a stress uniformly
increasing from ^3 to 1)^.

But now let us examine our construc-

tion further in order to gain a more
exact understanding of what the dis-

tances r^-zoJc^ and r^=zo7c^ signify.

We have shown that m^m^ represents
the product of the area of the cross sec-

tion by the distance ob^ of the extreme
fiber, i.e. the quantity Ay^\ but 7i^n^ rep-

resents the moment of this weight when
applied at ^„ i.e. the product Ay/^.
Also as previously shown n/i^ repre-

sented I on the same scale, hence

I=Ay^r^, but I=Ak^' .\ r=Jc^'-^y^

and r^ is the radius of resistance pre-

viously mentioned.
In order to determine the radius of

gyration \, which is a mean proportional
between r^ and y^, describe a circle on
b^k^ as a diameter intersecting 771771 at A
then oh=k^ the semi-axis of the ellipse

of inertia conjugate to mm as a neutral

axis. The accuracy of the construction
is tested by using b^k^ as a diameter and
finding the mean proportional between
ok^ and ob^. It should give the same

result as that just obtained. In our Fig.

both circles intersect at h.

It is known from the symmetry of

figure of the cross section that k^ is one

of the principal axes.

In similar manner we construct the

radius of resistance, etc., when b^b^ is

taken as the neutral axis.

Knowing before hand that this line

passes through the centre of gravity,

we have taken the weights of the area

above it in two parts, viz.: that extend-

ing from 5j^25 ^^^ t^^t from ^^^g, and
we have taken w/w/ and w^w^ respec-

tively, as the weights of these. Choose
any pole jo/ and draw the equilibrium

polygon c'c'\ use its intercepts m'm\
which represent the weights of stress

solids, as weights and with any pole p^
construct the second equilibrium polygon
e'e' on the verticals through the points of

application of the stresses. Also find

TYilm^ the product of the total area by
the distance of the extreme fiber and
make n^e^ ||p/m/; then is h^ which is

on the same vertical as e/ a point of the

kernel, and ok^^^r^ the radius of resist-

ance. Use h^b^ as a diameter, then is

oh'='k^' the radius of gyration, for

With these two principal axes tlius

determined, it is possible at once to con-

struct the ellipse of inertia. In any case

it will be possible to determine the direc-

tion of the axis of solicitation correspond-

ing to any assumed neutral axis by actual

construction, it being simply necessary to

find the line through o upon which lie

the points of application of the positive

and negative stresses considered separate-

ly. These axes being conjugate direc-

tions in the ellipse of inertia, when we
have found the radii of resistance in

those two directions we can at once ob-

tain the corresponding radii of gyration

which are conjugate semi-diameters, and
so draw the ellipse.

After the ellipse is drawn the kernel

can be readily completed by making r

in every direction a third proportional to

the distance of the extreme fiber and
the radius of gyration.

We are assisted in drawing the kernel

by noticing that to each straight side of

the cross section there corresponds a

single point in the kernel, and to each
non re-entrant angular point aside of the

kernel, these standing in the mutual re-
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lation of polar and anti-pole withi respect

to the ellipse of inertia, as shown by the

equation Jc^^ry.

In Fig. 13 the point Ic^ corresponds to

the left hand vertical side, the point k^

to the right hand vertical side, and the

sides ^\A;/, hjc.^ to the angular points at

the upper and lower extremities of the

left side respectively, while the points

Jc^'k^' at the very obtuse angular points

of the kernel correspond to the upper
and lower horizontal sides of the flange.

The two remaining angular points of the
kernel correspond to tangent lines when
they just touch the corners of the flange

and web, while the intermediate sides

correspond to the angles at the extremi-

ties of these lines.

My Uji Ms m Us) Us U2

kernel, moments of resistance and
inertia: frame pencil method.

Let the cross section treated be that

shown in Fig. 14, which is nearly that

of a 56 lb. steel rail, the difference con-

sisting only in a slight rounding at the
.angles.

Let the cross section be divided by
lines perpendicular to the axis of symme-
try bh at ^2) ^3) Gtc, then the partial areas

and the total area may be found by a

summation polygon.
Take c as the common point of the

rays through bj)^, etc., and make 01, 02,

etc., proportional to the mean ordinates

of the areas standing on the bases bfi^^

b^b^, etc. respectively. Draw s^u^^ || cb^y

s^u^
II 0^2, etc., then will the segments of

the line ww represent the respective par-

tial areas, and u^ii^ will represent the

total area.

Divide the vertical line %ow into seg-

ments equal to those of the line nn, then
is WW the weight line for finding the

center of gravity, etc., of the cross sec-

tion. Let a^, «2) <^3) 6tc., be the centers
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of gravity of the partial areas, and let

V be the vertex of a frame pencil whose
rays pass through these centers of

gravity. Draw the equilibrating poly-

gon dd with its sides parallel to the rays
of this frame pencil, then the ray vo
parallel to the closing side yy of the

equilibrating polygon determines the

center of gravity o of the cross section,

according to principles previously ex-

plained.

It will be convenient to divide the
cross section into two parts by the verti-

cal line o^, which we shall take as the

neutral axis. The partial areas d^o and
od, have a/ and a„ as their centers of

gravity. Make s^u^ \\ co, then ^o^ which
corresponds to ii^, divides the weight
line into two parts, representing the

areas each side of the. neutral axis, and
the polygon dd can be completed by
drawing d^d^ \\ va^' and d^d^ || vaj\ It

has been previously shown that the

abscissas yd represent the sum of the

products of the weights {i.e. areas) by
their distances from o; and any single

product is the difference of two success-

ive abscissas. Project the lengths yd
upon the horizontal zz by lines parallel

to yy, then the segments of zz represent

the products just mentioned. But these

products are the stress solids or resultant

stresses before mentioned. Hence zz is

to be used as a weight line and is trans-

ferred to a vertical position at the left

of the Fig. The points of application of

the resultant stresses may without sensi-

ble error be taken at the centers of

gravity a^a^, etc., of the partial areas ex-

cept in case of the segments of the web
on each side of o. For these, let oyj
=§ob^, and og^"=^ob^, then y/ and ^3"
are the required points of application.

Now with the weight line zz, which
consists partly of negative loads, and
with the same vertex v construct the

second equilibrating polygon ff, then

^ifi I'epresents the moment of inertia of

the cross section, it being proportional

the moment of the resultant stresses

about 0. It is seen that the sides f^f^
and f^/^ are so short that any small de-

viation in their directions would not
greatly affect the result, and that there

would therefore have been little error if

the resultant stresses in the web had
been applied at a/ and a^'\

Again, draw dd^^ || vb^, then the hori-

zontal line dw^ [=d^d') represents Ay^,
the product of the total weight w^w^
{i. e. the total area of the cross sec-

tion), by the distance of the extreme
fiber ob^-=y^. Use this as a stress solid

or resultant stress applied at o and hav-
ing a weight zz=d^d\ and draw oj \\ zf ^,

j being at the same vertical distance from
bb as V is; then is 7*;^, which on Ihe same
vertical at 7, a point of the kernel. For
Jc^ is such a point that the product of oJc^

(=rj by the weight zzJ^=Ay;) is zj^-1
on the same scale as Zwas previously
measured.

Similarly draw w^d^ \\ vb^ and make
z^z^=d^d^\ also draw iA;^ i|//g: then is

Jc^ another point of the kernel as appears
from reasons like those just given in

case of k^.

Use bjc^ as a diameter, then oh is a
semi-axis of the ellipse of inertia. The
same point h should be found by using
kjb^ as a diameter. Another semi-axis

of the ellipse of inertia with reference

to bb as a neutral axis, and conjugate to

oh can be determined, using the same
partial areas, by finding the centers of
gravity and points of application of the
stresses of the partial areas on one side

of bb, the^process being similar to that
employed in Fig. 13, except in the em-
ployment of the frame pencil instead of

the equilibrium polygon.
It is to be noticed that the closing side

f^z^ of the second equilibrating polygon

ff is parallel to a resultant ray which
intersects bb at infinity, the point of ap-
plication of the resultant of the applied
stresses, i. e. the stresses form a couple.

When the ellipse of inertia has been
found by determining the magnitude and
direction of two conjugate axes, the ker-

nel can be readily completed as has been
shown in connection with Fig. 13.

trJSriFOEMLY VARYIISrG STRESS IJST GENERAL.

The methods employed in Figs. 13
and 14 are applicable also to any uni-

formly varymg stress, for a stress which
uniformly increases from any neutral
axis X through the center of gravity of
the cross section can be changed into a
stress which uniformly increases from
same parallel axis x' at a distance y
from X by simply combining with the
former a stress uniformly distributed

over the cross-section and of such intens-
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ity as to make the resultant Id tensity

zero along x'

.

In the construction given in Figs. 13

and 14 it is only necessary to use the

proposed line x' at a distance y^ from o,

instead of the tangent to the extreme

fiber at a distance y^ or y^ from o, when
we wish to determine the weight or

volume of the resultant stress solid, its

moment about o, and its center of gravi-

ty or application.

Since the locus of the center of appli-

cation of the resultant stress is the anti-

pole of x' with respect to the ellipse of

inertia, it is evident that when the pro-

posed axis x^ lies partly within the cross

section the center of application of the

resultant stress is without the kernel,

and that when x' is entirely without the

cross section its center of application is

within the kernel.

It is frequently more convenient to

determine the center of application from
the kernel itself than from the ellipse

of inertia. This can be readily found
from the equation which we are now to

state

in which equation Ay^ and Ay^ are the

volumes of the stress solids which if

uniformly distributed and compounded
with the stress whose neutral axis is a;,

will cause the resultant stresses to vanish

at distances y^ and y^, respectively;

while T^ and r^ are the distances from o

of the respective centers of application

of these stresses.

The truth of the equation is evident

from the fact that the moment about o

of any stress solid uniformly distributed

is zero, hence the composition of such a

stress with that previously acting will

leave its moment unchanged.
From the equation just stated we

have ,

from which r^ can be found by an ele-

mentary construction, since y^^ y^ and r^

are known quantities. When it is de-

sired to express these results in terms of

the intensities of the actual stresses,

let p^-=ny^ be the mean stress;

and let p^'=n [y^-^-y^ be the greatest,

and let p^=-n {y^—y^ be the least

intensity at the extreme fiber:

then ny^=p^ ' —ny^ =p^'-p^
or

or

Po 'P/-Po ' :^ :^o

Po 'Po-P, : r : T

in which r^ and r^ are the two radii of

the kernel.

DISTRIBUTION OF SHEARING STRESS.

It is well known that the equation

dM^= TdZy expresses the relation of the

total shearing stress T sustained at any
cross section of a girder to the variation

dM of the bending moment il/ at a

parallel cross-section situated at the

small distance dz from the first men-
tioned cross section.

We have already treated the normal
components of the stress caused by the

bending moment M'. we shall now treat

the tangential component or shear which
accompanies any variation of the bend-
ing moment.
We shall assume as already proved

the following equation* which expresses

the intensity q of the shearing stress at

any point of the cross section:'-

Iqx- TV
in which x is the width of the girder

measured parallel to the neutral axis at

any distance y from the neutral axis, and

q is the intensity of the shearing stress

at the same distance, I'\% the moment of

inertia of the cross section about the

neutral axis, T is the total shear at this

cross section, and V is the volume of

that part of one of the stress solids used
in finding the moment of inertia which
is situated at a greater distance than y
from the neutral axis, i.e. in Fig. 13 if

we were finding the value of q at h^,

with respect to om^ as the neutral axis,

then y would signify the stress solid

whose profile is d^d^ ^fix- -^^j however,
makes no difference whether we define V
as the stress solid situated at the left or

at the right of h^\ for, since the total

stress solid, positive and negative, is

zero, that on either side of any assumed
plane is the same.
The first step in our process is to find

the intensity of the shear at the neutral

axis, which we denote by q^\ and if we
also call x^ the width here and V^ the

volume of either of the two equal stress

• See Rankine's Applied Mechanics. Eighth Edition,
Art. 309, p. 338.
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solids between this axis and the extreme
€ber, we have

when d is the distance between the cen-
ters of application of the equal stress

solids, i.e., d is the arm of the couple of

the resultant stresses. Also T=Aq
when A is the total area of the cross

section and q is the mean intensity of
the shearing stress. Hence at the neu-
tral axis we have the equation

q^x^d=Aq=T

Now the length of the arm d is found
in Fig. 13 by prolonging the middle side
{i.e. the side through w,) of the second
equilibrium polygon until it intersects
the first side and the last. These inter-
sections will give the position of the
centers of gravity of the stress solids on
either side of o.

In Fig. 14 the same points are found
by drawing rays from v parallel respect-
ively to zj^ and /y„ until they inter-
sect aa.

In Fig. 15 the points /, and f^ are
found by either of these methods and
fxfi=^^ is the required distance.

Now in Fig. 15 let the segments uxi
of the summation polygon be obtained
just as in Fig. 14, and parallel to uu
draw a line through s representing the
width of the cross section x^ on the same
scale as before used in constructing the
summation polygon. Also make su^

\\

cf^^ and su || c/*^, c being the common
point in the rays of the pencil of the
summation polygon for finding the area.
Then uu^ represents the product x^d

on same scale that u^u^ represents A.

Now draw from any point ^ rays to w^,

li and 2^^,_and also a parallel to* iii^ at a

distance q and intersecting iu at some
point t^ such that tt^^jf to such a scale
as may be convenient. The mean intens-

ity q is supposed to be a known quanti-
ty, and U^

II
uu. Then from the proposed

equation we have the proportion

x^d A
or uu„ u^u^

<1 2o

tt.
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Hence tt^ represents the intensity of the

shearing stress at the neutral axis on
the same scale that tt^ represents the

mean intensity.

This first step of our process has de-

termined the intensity of the stress at

the neutral axis relatively to the mean
stress; the second step will determine

the intensity of the stress at any other

point relatively to the stress at the neu-

tral axis. When this last point is all

that is desired the first step may be
omitted.

The equation Ixq= TV may be written

xq^=-c F, in which c= T-^ F is a constant.

At the neutral axis this equation is

i»o^o=^^^oOi' ^0 : ^0 — a;„ • ^

In Fig. 15 lay off the segments of the

line zz just as in Fig. 14; then z^z^ rep-

resents the weight or volume F^; also

make £cO, cc2, x6, etc., proportional to

width of the girder at o, b^, b^^ etc., and
lay off z^r=z^rJ= U^,

Draw pO \\ i\z^^ then by similar tri-

angles

^1^0 * ^/o * •' ^0 : xp

or V^\q^'.\x^\G

.*. px represents the constant c.

Now the several segments z^z^^ z^z^^ z^z^^

etc., represent respectively the values of

F^, Fg, F4, or the stress solids between
one extreme fiber and b^, b^, b^, etc.; it

is of no consequence which extreme fiber

is taken as the stress solid is the same
in either case.

Now using 2^ as a pole draw rays to

2 3 4 5 etc., and make s./^
II />2, z^r^ 11^93,

etc., then by similar triangles

v., ' z,r^ : : a;2 : c, or x^q^z=cV^

and z.z^ : z^i\ : : a;3 : c, or x^q^'^^cV^

etc., etc., and z^i\^ z^r^, etc., represent

the intensity of the shearing stresses at

^2, ^3, etc. These can be constructed

equally well by drawing rays from z^

parallel to the rays at p, from which we
obtain

V/=2i^j 23^'=2^i^5 etc.

Now lay off b^y^-z^r^, ^,y,=^,'^z, etc.,

then the ordinates by of the polygon yy
represent the intensity of the shearing

stress on the same scale that tt^-=z^r^ rep-

resents the intensity q^ at the neutral

axis, and on the same scale that U^-=oy'

represents the mean intensity q. The

lines joining y^^ 2/3, etc., should be
slightly curved, but when they are

straight the representation is quite

exact.

RELATIVE STRESSES.

It is proposed here to develop a new
construction which will exhibit the rela-

tive magnitude of the normal compo-
nents of the stresses produced by a

given system of loading in the various

cross-sections of a girder having a varia-

ble cross section. The value of such a

construction is evident, as it shows
graphically the weakest section, and in-

vestigates the fitness of the assumed dis-

position of the material for sustaining

the given system of loading.

The constructions heretofore given
for the kernel and moments of resistance

at any given cross section admit of the

immediate comparison of the normal
components of the stresses produced in

that single cross section when different

neutral axes are assumed, but by this

proposed construction, a comparison is

effected between these stresses at any
different cross sections of the same gird-

er or truss.

In the equation previously used

M^ SI-^y= SAk'-^y= SAr

in which 3f is the moment of flexure

which produces the stress S in the ex-

treme fiber of a cross section whose area

is A and whose radius of resistance is r,

we see, since the specific moment of re-

sistance m:=Ar is the product of two
factors, that the same product can result

from other and very different factors.

For example, let 971=Ay in which A^
is the area of some cross section which
is assumed as the standard of comparison,
and ')''=Ar-t-A^^= ar, when a=^A-i-A^,
Then is Ay the specific moment of re-

sistance of a cross section of an assumed
area A^ which has a. different disposition

of material from that whose specific

moment of resistance is Ar, but the

cross sections A and A^ are equivalent

to each other in this sense, that they
have the same specific resistance, and
consequently the same bending moment
will produce equal stresses in the

extreme fiber in each.

The two cross sections do not have
the same moment of inertia, and so the
deflections of the girder would be



A NEW GENERAL METHOD IN GRAPHICAL STATICS. 95

changed by substituting one cross sec-

tion for the other. We shall then speak
of them as equivalent only in the former
sense, and on the basis of this definition,

state the result at which we have
arrived thus: Equivalent cross sections

under the action of the same bending
moment, have the same stresses at the

extreme fiber (though they are not

equally stiff) ; hence in comparing
stresses equivalent cross sections may be

substituted for each other (but they may
not be so substituted in comparing de-

flections).

It is proposed to utilize this result by
substituting for any girder or truss hav-

ing a variable cross section A or a varia-

ble specific moment of resistance wliose

magnitude is expressed by the variable

quantity Ar^ a, different one having a

cross section everywhere of constant

area A^, but of such disposition of mate-
rial that its specific moment of resistance

is Ay=Ar at corresponding cross sec-

tions.

The proposed substitution is especially

easy in case of a truss, for in it the value

of r varies almost exactly as its depth,

as may be seen when we compute the

value of m=Ak^-T-y=Ar
in this case.

Since the material which resists

bending is situated in the chords alone

and is all approximately at the same
distance from the neutral axis we have
k^=3/=^r=ih very nearly when h is the
distance between the chords, .*. tnr=^Ah
nearly. Even when the two chords are

of unequal cross section and tlie neutral

axis not midway between them the same
result holds when the ratio of the two
cross sections is constant.

In Fig. 16 let axe be the axis of a gird-

er sustaining at the points iCj, ic^, etc.,

the weights c^c^, c^Cg, etc. Lay off the

ordinates xy at each of the points at

which weights are applied, so that xy=
At on some assumed scale: then since

Ay^=Ar—xy, xy varies as r\ the radius

of resistance of a girder having at every
point a cross section A^ so disposed as

to be equivalent to that of the given
girder xx.

Assume some form of framing con-
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necting the points xy as shown in the

Fig., and suppose the weights applied

at the points yy of the lower chord, the

points of support being at y^ and y^.

Then by a method like that employed in

Fig. 3, we obtain the total stresses ea^^

ea^, ea^, etc., in the segments of the

upper chord which are opposite to 2/j, y^,

2/3, etc. Now these total stresses are

resisted by a cross section of constant

area A^^ consequently they have the

same ratio to one another as the intensi-

ties per square unit; or further, they
represent, as we have just shown, the

relative intensities of the stresses on the

extreme fiber of the given girder.

It is well known from mechanical
considerations, that the stress, in the

several segments of the upper chord is

dependent upon the loading and upon
the position of y^, y^? ^tc, and is not
dependent upon the position of the
joints in the upper chord. Of this fact

we offer the following geometrical proof
derived from the known relations be-

tween the frame and force polygons.
We know, if any joint of the upper

chord, such as eafi^ for example, be re-

moved to a new position, such as v, that

so long as the weights c^c^, c^Cg, etc, are

unchanged, that the vertex 6, of the tri-

angle eap^ in the force polygon must be
found on the force line c^/^ || y^y^. We
shall show that while the side ea^ is un-

changed, the locus of h^ is the force line

o^f^\ hence conversely, so long as e^f^ is

the locus of Z>j, ea^ is unchanged, since

there can be but one such triangle.

In Fig. 17 let the two triangles abe^ hnk^

have the sides meeting at h and n
mutually parallel. Let the bases ae and
hh be invariable but let the vertex h be

removed to any point d such that hd \\ lik^

then will the vertex n be removed to a

point m such that mn \\ ae.

For, prolong ad and eb^ and draw
bf\\ed and dc\\ah^ then is ahfcdea a

hexagon inscribed in the conic section

consisting of the two lines af and ec,

hemce by Pascal's Theorem, the oppo-

site diagonals ea and c/* intersect on the

same line as the remaining pairs of oppo-

site diagonals, ah\\dc and ed \\ hf. But
this line is at infinity, hence cf\\ ae.

Also c'f II
c/", from elementary considera-

tions; and c'f II
mn from similarity of

figures, hence mn \\ ae. There are two
cases, according as mn is above or below
hhy but we have proved them both.

Now in Fig. 16 let all the joints in the

upper chord be removed to w, then the

segments ea^, (^^cl^-, etc., are unchanged,
hence ea^, ea^, etc. are unchanged, and
the assumed framing reduces to the

frame pencil whose vertex is v. The
corresponding force polygon is the

equilibrating polygon dd.

Hence the frame pencil can be used as

the assumed framing just as well as any
other form of framing, and it is unneces-

sary to use any construction except that

of the frame pencil and equilibrating

polygon for finding the relative stresses

ea^j ^^3) etc.
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STRESSES IN A HORIZONTAL CHORD.

If Fig. 16 be regarded as representing

an actual bridge truss, wliose chords are

not of uniform cross section; it is seen

that the total stresses on the horizontal

chord are given by the segments ea^, ea^,

etc., which are found from the equili-

brating polygon alone without regard to

the kind of bracing in the truss, which it

is unnecessary to consider; and tliis

method can be used to take the place of

that given in connection with Fig. 3 for

finding the maximum stresses on the

chords.

The equilibrating polygon/*/* was con-

structed to determine the reactions of

the piers by finding the point e. The
outer sides of the polygon /'/ intersect

at g which determines e as explained in

Fig. 7 in a manner different from that

given in Fioj. 3.

This construction sheds new light

upon the significance of the frame pencil

and equilibrating polygon. The frame
pencil is the limiting case of a truss

when the joints along one chord are re-

moved to a single point, so that each ray

may be regarded as compounded of a

tension member and a compression mem-
ber, having the same direction, e.r/.y the

tension member of which y^v is com-
pounded has the stress d/i^^ and the

compression member the stress d,^a.^^ but

if the two be combined, the resultant

tension is d/I.^.

In case yy is the equilibrium curve
due to the applied weights, and v falls

upon the closing line, the force lines cd
meet at the pole and the lines ed^, ed^,

coincide with aa, so that the polygon dd
is at the pole and infinitely small, and
the stress in every segment of the upper
chord is equal to the pole distance de.



NOTE A.

ADDENDUM TO PAGE 12, CHAPTER I

The truth of Proposition IV is, perhaps, not
sufficiently established in the demonstration
heretofore given. As it is a fundamental pro-

position in tlie graphical treatment of arches,

and as it is desirable that no doubt exist as to
its validity, we now offer a second proof of it,

which, it is thought, avoids the difficulties of
the former demonstration.

Prop. IV. If in any arch that equilibrium

polygon (due to the weights), be constructed

which has the same horizontal thrust as the

arch actually exerts ; and if it^ closing line be

drawn from considerations of the conditions

imposed by the supports, etc. ; and if, further-

more, the curve of the arch itself be regarded

as another equilibrium polygon due to some

system of loading not given, and its closing

line be also found from the same considera-

tions respecting supports, etc. ; then when
these two polygons are so placed that their

closing lines coincide, and their areas partially

cover each other, the ordinates intercepted be-

tween these two polygons are proportional to

the real bending moments acting in the arch.

The bending moments at every point of an
arch are due to the applied forces and to the

shape of the arch itself.

The applied forces are these : the vertical

forces, which comprise the loading and the

vertical reactions of the piers; the horizontal

thnist ; and the bending moments at the piers,

caused by the constraint at these points of sup-

port. The loading may cause all the other ap-
plied forces or it may not: in any case the
bending moments are unaffected by the de-
pendence or want of dependence of the thrust,

etc. , upon the loading.
Now, so far as the loading and the moments

due to the constraint at the piers are concerned,
they cause the same bending moments at any
point of the arch as they would when applied
to a straight girder of the same span, for
neither are the forces nor their arms different
in tbe two cases.

But the horizontal thrust, which is the
same at every point ^of the arch, causes a
bending moment proportional to its arm,
which is ihe distance of its line of ap-
plication from the curve of the arch. This
line of application is known to be the closing
line; hence the ordinates which represent the
bending moments due to the horizontal thrust,

are included between the curve of the arch and
a closing line drawn in such a manner as to
fulfill the conditions imposed by the joints or
kind of support at the piers, hence the curved
neutral axis of the arch is the equilibrium or
moment polygon due to the horizontal thrust.

But the same conditions fix both the closing
line of the equilibrium polygon which repre-
sents the bending moments due to the loading
and to the constraint at the piers, and the clos-

ing line of the equilibrium polygon due to the
horizontal thrust. Hence the resultant bend-
ing moment is found by taking the difference
of the ordinates at each point, or by laying
them off from one and the same closing line

exactly as described in the statement of our
proposition.



NOTE B.

ADDENDUM TO PAGE 10, CHAPTER I

Attention should be directed to the two
senses in which M is used in our fundamental
fojmulae.

In equation (3) the primary signification of
M is this : it is the numerical amount of the
bending moment at the point 0; and if this

magnitude be laid off as an ordinate, ym is the
fraction or multiple of it found by equation (8).

Now M assumes, in the equations (3), (4), (5)

and (3'), (4'), (5'), a slightly different and sec-

ondary signification ; viz. , the intensity of the
bending moment at 0. The intensity of the
bending moment is the amount distributed

along a unit in length of a girder, and may be
exactly obtained as follows :

/ Mdx, ^^o{M)=/ Mdx.

In this secondary sense M is geometrically
represented by an area one unit wide, and hav-
ing for its height the average value which
ordinate M, as first found, has along the unit

considered.

Thus the M used in the equations of curva-
ture, bending and deflection is one dimension
higher than that used in the equation express-
ing the moment of the applied forces; but the
double sense need cause no confusion, and is

well suited to express in the shortest manner
the quantities dealt with in our investigation.

Furthermore, in case of an inclined girder
such as is treated in Prop. V, if the bending
moment M, which causes the deflection there

treated, be represented, it must appear as an
area between two normals to the girder which
are at the distance of one unit apart.

In order to apply Prop. V to inclined and
curved girders, such as constitute the arch,

with entire exactness, one more proposition is

needed.

Prop. If weights be sustained by an in-

clined girder, and the amount of the deflection

of this girder, which is caused by the weights,

be compared with the deflection of an hori-

zontal girder of the same cross section, and of

the same horizontal span, and deflected by the

same weights applied in the same verticals

;

the vertical component of the deflection of

the inclined girder, at any point 0, is equal to

the corresponding vertical deflection of the

horizontal girder, multiplied by the secant of

the inclination.

For the bending moment of both the inclined
girder and the horizontal girder is the same in

the same vertical, but the distance along the

inclined girder exceeds that along the hori-

zontal girder in the ratio of the secant of the
inclination to unity; hence the respective mo-
ment areas have this same ratio ; therefore the
deflections at right angles to the respective

girders of their corresponding points are in

the ratio of the square of the secant to unity:

and the vertical components of the deflections

are therefore in the ratio of the secant of the
inclination to unity.

In applying this proposition to the graphical
construction for the arch, it will be necessary
to increase the ordinate of the moment poly-

gon at each point by multiplying by the secant
of the inclination of the arch at that point.

This is easily effected when the ordinates are

vertical by drawing normals at each point of

the arch ; then the distance along the normal
whose vertical component is the bending mo-
ment is the value of Mto be used in determin-
ing the deflection.

In the arches which we have treated the

rise is so small a fraction of the span that the

secant of the inclination at any point does not
greatly exceed unity ; or, to state it otherwise,

the length of the arch differs by a compara-
tively small quantity from the actual span. It

IS a close approximation under such circum-
stances to use the moments themselves in de-

termining the deflections ; and we have so used
them in our constructions. A more accurate
result can be obtained by multiplying each
ordinate by the secant of the inclination of

the arch at that point to the horizon.
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Stress includes all action and reaction

of bodies and parts of bodies by attrac-

tion of gravitation, cohesion, electric

repulsion, contact, etc., viewed espe-

cially as distributed among the particles

composing the body or bodies. Since

action and reaction are necessarily equal,

stress is included under the head of

Statics, and it may be defined to be the

equilibrium of distributed forces.

Internal stress may be defined as the

action and reaction of molecular forces.

Its treatment by analytic methods is

necessarily encumbered by a mass of

formulae which is perplexing to any ex-

cept an expert mathematician. It is

necessarily so encumbered, because the

treatment consists in a comparison of

the stresses acting upon planes in vari-

ous directions, and such a comparison
involves transformation of quadratic

functions of two or three variables, so

that the final expressions contain such
a tedious array of direction cosines that

even the mathematician dislikes to em-
ploy them.
Now, since the whole difficulty really

lies in the unsuitability of Cartesian co-

ordinates for expressing relations which
are dependent upon the parallelogram of

forces, and does not lie in the relations

themselves, which are quite simple, and,

which no doubt, can be made to appear
so in quaternion or other suitable nota-

tion; it has been tbought by the writer

that a presentation of the subject from a

graphical stand point would put the

entire investigation within the reach of

any one who might wish to understand
it, and would also be of assistance to

those who might wish to read the analyt-

ic investigation.

The treatment consists of two princi-

pal parts: in the first part the inherent

properties of stress are set forth and
proved by a general line of reasoning

which entirely avoids analysis, and
which, it is hoped, will ijiake them well

understood; the second part deals with
the problems which arise in treating

stress. These problems 'are solved

graphically, and if analytic expressions

are given for these solutions, such ex-

pressions will result from elementary
considerations appearing in the graphi-

cal solutions. The constructions by
which the solutions are obtained are

many of them taken from the works of

the late Professor Rankine, who em-
ployed them principally as illustrations,

and as auxiliary to his analytic investi-

gations.

It is thus proposed to render the

treatment of stress exclusively graphical,

and by so doing to add a branch to the

science of Graphical Statics, which has
not heretofore been recognized as sus-

ceptible of graphical treatment. It

seems unnecessary to add a word as to

the importance, not to say necessity, to

the engineer of a knowledge of the
theory of combined internal stress, since

all correct designing presupposes such
knowledge.
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SxRiEss ON A Plane.—" If a body be

conceived to be divided into two parts

by an ideal plane traversing it In any

direction, the force exerted between

those two parts at the plane of division

is an internal stress?''—Ranhine.

A State of Internal Stress is such
a state that an internal stress is or may
be exerted upon every plane passing
through a point at which such a state

exists.

It is assumed as a physical axiom that

the stress upon an ideal plane of divi-

sion which traverses any given point of

a body, cannot change suddenly, either

as to direction or magnitude, while that

plane is gradually turned in any vvay

about the given point. It is also as-

sumed as axiomatic that the stress at

any point upon a moving plane of divi-

sion which undergoes no sudden changes
of motion, cannot change suddenly
either as to direction or amount. A
sudden variation can only take place at

a surface where there is a change of

material.

GENERAL PROPERTIES 'OF PLANE STRESS.

We shall call that stress a plane stress

which is parallel to a plane; e.g., let the

plane of the paper be this plane and let

the stress acting upon every ideal plane
which is at right angles to the plane of

the paper be parallel to the plane of the

paper, then is such a stress a plane
stress.

The obliquity of a stress is the angle
included between the direction of the
stress and a line perpendicular to the

ideal plane it acts upon. This last

plane we shall for brevity call the plane

of action of the stress, and any line

perpendicular to it, its normal. In plane
stress, the planes of action are shown by
their traces on the plane of the paper,

and then their normals, as well as their

directions, the magnitudes of the stresses,

and their obliquities are correctly rep-

resented by lines in the plane of the

paper.

The definition of stress which has
been given is equivalent to the state-

ment that stress \9, force distributed over
an area in such wise as to be in equili-

brium.
In order to measure stress it is neces-

sary to express its amount per unit of

area: this is called the intensity of the
stress.

Stress, like force, can be resolved into

components. An oblique stress can be
resolved into a component perpendicular
to its plane of action called the normal
component, and a component along the
plane called the tangential component or
shear.

When the obliquity is zero, the entire

stress is normal stress, and may be either

a compression or a tension, i.e., a thrust
or a pull. When the obliquity is +90%
the stress consists entirely of a tangen-
tial stress or shear. If a compression be
considered as a positive normal stress, it

is possible to consider a normal tension

as a stress whose obliquity is +180°,
and the obliquities of two shears having
opposite signs, also differ by 180°.

Fig. 1

Conjugate Stresses.—If in Fig. 1

any state of stress whatever exists at o,

and XX be the direction of the stress on a

plane of action whose trace is yy, then is

yy the direction of the stress at o on the

plane whose trace is xx. Stresses so

related are said to be conjugate stresses.

For consider the effect of the stress

upon a small prism of the body of which
a^a^a^a^ is a right section. If the stress

is uniform that acting upon a^a^ is equal

and opposed to that acting upon a,^a^,

and therefore the stress upon these

faces of the prism are a pair of forces in

equilibrium. Again, the stresses upon
the four faces form a system of forces

which are in equilibrium, because the
prism is unmoved by the forces acting

upon it. But when a system of forces

in equilibrium is removed from a sys-

tem in equilibrium, the remaining forces

are in equilibrium. Therefore the re-

moval of the pair of stresses in equili-

brium acting upon a^a^ and a^a^ from
the system of stresses acting upon the

four faces, which are also in equilibrium,

leaves the stresses upon a^a^ and a^a^ in

equilibrium. But if the stress is uni-

form, the stresses on a^a^ and a^a^ must
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be parallel to yy, as otherwise a couple
must result from these equal but not
directly opposed stresses, which is iu-

consisLerit with equilibrium.

This proves the fact of conjugate

stresses when the state of stress is uni-

form: in case it varies, the prism, can be
taken so small that the stress is sensibly

uniform in the space occupied by it, and
the proposition is true for varying stress

in case the prism be indefinitely dimin-

ished, as may always be done.

Tangential Stresses.—If in Fig. 2

the stress at o on the plane xx is in the

direction xx^ i.e. the stress at o on xx

consists of a shear only; then there

necessarily exists some other plane

througli o, as yy, on which the stress

consists of a shear only, and the shear

upon each of the planes xx and yy is of

the same intensity, but of opposite sign.

For let a plane which initially coin-

cides with XX revolve continuously
through 180° about o, until it again co-

incides with xx^ the obliquity of the

stress upon this revolving plane has
changed gradually during the revolution

through an angle of 360°, as we shall

show.
Since the obliquity is the same in its

final as in its initial position, the total

change of obliquity during the revolu-

tion is 0° or some multiple of 360°. It

cannot be 0°, for suppose the shear to be
due to a couple of forces parallel to xx^

having a positive moment; then if the

plane be slightly revolved from its

initial position in a plus direction, the

stress upon it has a small normal com-
ponent which would be of opposite sign,

if the pair of forces which cause it were
reversed or changed in sign; or, what is

equivalent to that, the sign of the small

normal component would be reversed if

the plane be slightly revolved from its

initial position in a minus direction.

Hence the plane xx^ on which the stress

is a shear alone, separates those planes

through o on which the obliquity of the

stress is greater than 90° from those on
which it is less than 90°, ^.e., those hav-
ing a plus normal component from those

having a minus normal component.

Since in revolving through -f 1 80° the

plane must coincide, before it reaches its

final position, with a plane which has
made a slight minus rotation, it is evi-

dent that the sign of the normal com-
ponent changes at least once during a

revolution of 180°. But a quantity can
change sign only at zero or infinity, and
since an infinite normal component is

inadmissible, the normal component
must vanish al, least once during the

proposed revolution. Hence the obliq-

uity is changed by 360° or some multi-

ple of 360° while the plane revolves 180°.

In fact the normal component vanishes

but once, and the obliquity changes by
once 360° only, during the revolution.

It is not in every state of stress that

there is a plane on which there is no
stress except shear, but, as just shown,
when there is one such plane xx there is

necessarily another yy, and all planes

through o and cutting the angles in

which are h^ and h^ have normal com-
ponents of opposite sign from planes

through o and cutting the angles in

which are h^ and h^.

To show that the intensity of

the shear on xx is the same as

that on yy^ consider a prism one unit

long and having the indefinitely small

right section bfiJ)J)^. Let the area of

its upper or lower face be a^^=hj)^, that

of its right or left face be a^=bj)^, then

a^s^ and a^s^ are the total stresses on
these respective faces if .^^ and s^ are the

intensities of the respective shears per

square unit. Let the angle xoy=^i, then

ttjSj . a^ sm. ^

is the moment of the stresses on the

upper and lower faces of the prism, and

a/2 • ^1 ^^^' ^

is the moment of the stresses on the

right and left faces; but since the prism
is unmoved these moments are equal.

s, ~s„

These stresses are at once seen to be
of opposite sign.
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Fig. 3

i

X
4'

^

y

Tangential Components.—In Fig. 3

if XX and yy are any two planes at right

angles to each other, then the intensity

at o of the tangential component of the

stress upon the plane xx is necessarily

the same as that upon the plane yy, but

these components are of opposite sign.

For the normal components acting
upon the opposite faces of a right prism
are necessarily in equilibrium, and by a

demonstration precisely like that just

employed in connection with Fig. 2 it is

seen that for equilibrium it is necessary
and sufficient that the intensity of the tan-

gential component on xx be numerically
equal to that on yy, but of opposite
sign.

State of Stkess.—In a state of plane

stress, the state at any point, as o, is

completely defined, so that the intensity

and obliquity of the stress on any plane

traversing o can be determined, when
the intensity and obliquity of the stress

on any two given planes traversing that

point are known.

For suppose in Fig. 4 that the intensi-

ty and obliquity of the stress on the
given planes a;a; and yy are known, to

find that on any plane x'x' draw
mn II x'x' then the indefinitely small
prism one unit in length whose right

section is mno, is held in equilibrium by
the forces acting upon its three faces.

The forces acting upon the faces oin and
on are known in direction from the
obliquities of the stresses, and, if 2>x and

Py are the respective intensities of the
known stresses, then the forces are

om.px and 07i.py respectively. The re-

sultant of these forces and the reaction

which holds it in equilibrium, together
constitute the stress acting on the face
mn'. this resultant divided by mn is the

intensity of the stress on mn and its

direction is that of the stress on m,n or

x'x'.

Fig. 4

It should be noticed that the stress at

on two planes as xx and yy cannot be
assumed at random, for such assumption
would in general be inconsistent with
the properties which we have shown
every state of stress to possess. For in-

stance we are not at liberty to assume
the obliquities and intensities of the
stresses on xx and yy such that when
we compute these quantities for any
plane x'x' and another plane y'y' at

right angles to x'x' in the manner just

indicated, it shall then appear that the

tangential components are of unequal
intensity or of the same sign. Or, again,

we are not at liberty to so assume these

stresses as to violate the principle of con-

jugate stresses.

But in case the stresses assumed are

conjugate, or consist of a pair of shears

of equal intensity and different sign on
any pair of planes, or in case any stresses

are assumed on a pair of planes at right

angles such that their tangential compo-
nents are of equal intensity but different

sign, we know that we have made a con-

sistent assumption and the state of stress

is possible and completely defined.

The state of stress is not completely
defined when the stress upon a single

plane is known, because there may be
any amount of simple tension or com-
pression along that plane added to the

state of stress without changing either

the intensity or obliquity of the stress on
that plane.

Principal Stresses.—In any state of

stress there is one pair of conjugate

stresses at right angles to each other, i.e.

there are two planes at right angles on

which the stresses are normal only.

Stresses so related are said to hQ princi-

pal stresses.



IlSr GEAPHICAL STATICS. 107

It has been previously shown that if

a plane be taken in any direction, and
the direction of the stress acting on it be
found, then these are the directions of a

pair of conjugate stresses of which either

may be taken as the plane of action and
the other as the direction of the stress

acting upon it.

Consider first the case in which the

state of stress is defined by a pair of

conjugate stresses of the same sign; i.e.,

the normal components of this pair of

conjugate stresses are both compressions
or both tensions.

It is seen that they are of opposite

obliquities, and if a plane which initially

coincides with one of these conjugate
planes of action be continuously revolved
until it finally coincides with the other,

the obliquity must pass through all in-

termediate values, one of which is 0°, and
when the obliquity is 0° the tangential

component of the stress vanishes. But
as has been previously shown the^'e is

another plane at right angles to this

which has the same tangential compo-
nent; hence the stress is normal on this

plane also.

Consider next the case in which the

pair of conjugate stresses which define

the state of stress are of opposite sign,

i.e., the normal component on one plane
is a compression and that on the other

a tension.

In this case there is a plane in some
intermediate position on which the stress

is tangential only, for the normal com
ponent cannot change sign except at

zero. It has been previously shown that

in case there is one plane on which the

stress is a shear only, there is another
plane also on which the stress is a shear

only, and that this second shear is of

equal intensity with the first but of

opposite sign. Let us consider then that

the state of stress, in the case we are

now treating, is defined by these oppo-
site shears instead of the conjugate
stresses at first considered.

Now let a plane which initially coin-

cides with one of the planes of equal

shear revolve continuously until it finally

coincides with the other. The obliquity

gradually changes from +90° to —90",

during the revolution, hence at some
intermediate point the obliquity is 0°;

and since the tangential component has

the same intensity on a plane at right

angles to this, that is another plane on
which the obliquity of the stress is also
0°.

We have now completely established

the proposition respecting the existence

of principal stresses which may be
restated thus:

Any possible state of stress can be

completely defined by a pair of normal

stresses on two planes at right angles to

each other.

As to the direction of these principal

planes and stresses, it is easily seen from
considerations of symmetry that in case
the state of stress can be defined by
equal and opposite shears on a pair of

planes, that the principal planes bisect

the angles between the planes of equal
shear, for there is no reason why they
should incline more to one than to the
other. We have before shown that the
planes of equal shear are planes of

separation between those whose stresses

have normal components of opposite
sign: hence it appears that the principal

stresses are of opposite sign in any state

of stress which can be defined by a pair

of equal and opposite shears on two
planes.

It will be hereafter shown how the
direction and magnitude of the principal

stresses are related to any pair of con-
jugate stresses.

For convenience of notation in discuss-

ing plane stress let us denote compression
by the sign +, and tension by the sign

Let us also call that state of stress

which is defined by equal principal

stresses of the same sign a Jluid stress.

A material fluid can actually sustain

only a }- fluid stress, but it is convenient
to include both compression and tension
under one head as fluid stress, the proper-
ties of which we shall soon discuss.

Let us call a state of stress which is

defined by unequal principal stresses of

the same sign cm oblique stress. This
may be taken to include fluid stress as

the particular case in which the ine-

quality is infinitesimal. In this state of

stress there is no plane on which the
stress is a shear only, and the normal
component of the stress on any plane
whatever has the same sign as that of the
principal stresses.

Furthermore let us call that state
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of Stress which is defined by a pair

of shearing stresses of equal intensity

and different sign on two planes at

right angles to each other a right

shearing stress. We shall have occasion

immediately to discuss the properties of

this kind of stress, but we may advan-
tageously notice one of its properties in

this connection. It has been seen pre

viously from considerations of symmetry
that the principal stresses and planes

which may be used to define this state

of stress, bisect the angles between the

planes of equal shear. Hence in right

shearing stress the principal stresses

make angles of 45° with the planes of

equal shear. We can advance one step

further by considering the symmetrical
pt)sition of the planes of equal shear with

respect to the principal stresses and
show that the principal stresses in a state

of right shearing stress are equal but of

opposite sign.

We wish to call particular attention

to fluid stress and to right shearing stress,

as with them our subsequent discussions

are to be chiefly concerned : they are the

special cases in which the principal

stresses are of equal intensities, in one
case of the same sign, in the other case

of different sign.

Let us call a state of stress which
is defined by a pair of equal shearing

stresses of opposite sign on planes

not at right angles an oblique shear-

ing stress. The principal stresses, which
in this case are of unequal intensity

and bisect the angles between the

planes of equal shear, are of opposite

sign. A right shearing stress may be
taken as the particular case of oblique

shearing in which the obliquity is in-

finitesimal.

We may denote a state of stress as +
or — according to the sign of its larger

principal stress.

be yy two planes at right angles, on

which the stress at o is normal, of equal

intensity and of the same sign; then the

stress on any plane, as x'x\ traversing o

is normal, of the same intensity and

same sign as that on xx or yy.

For co^isider a prism a unit long and
of infinitesimal cross section having the

face mn \\ x'x\ then the forces /a; and/y „

acting on the faces oni and on are such

that

fx ' fy - '- om : on.

Now nm^=^ \^om^ -\- on"^ ^ and the result-

ant force which the prism exerts against

nm is

f^'^/Jx'+fy'^ .-./,:/:: om : mn.

Bnt fx-^07n is the intensity of the

stress on xx and f^mn is the intensity

of the stress on x'x', and these are equal.

Also by similarity of triangles the result-

ant/^ is perpendicular to mn.

r

Fig. 5 2/
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Fljid Stress. -In Fig. 5 let xx and

Eight Shearing Stress.—In Fig. 6,

let XX and yy be two planes at right

angles to each other, on which the stress

is normal, of equal intensity, but of

opposite sign; then the stress on any

plane, as x'x% traversing o is of the same

intefisity as that on xx and yy, but its

obliquity is such that xx and yy respect-

ively, bisect the angles between the

direction rr of the resultant stress, and

the normal y'y' to its plane of action.

For, if the intensity of the stress on

x'x' be computed in the same manner as

in Fig. 5, the intensity is found to be the

same as that on xx or yy; for the stresses

to be combined are at right angles and
are both of. the same magnitude. The
only difference between this case and
that in Fig. 5 is this, that one of the
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component stresses, that one normal to

yy say, has its sign the opposite of that

in Fig. 5. In Fig. 5 the stress on x'x'

was in the direction y'y' ^ making a cer-

tain angle yoy' with yy. In Fig. 6 the

resultant stress on x'x' must then make
an equal negative angle with yy, so that

yor^^yoy' . Hence the statement which

lias been made respecting right shearing

stress is seen to be thus established.

Combination and Separation.—Any
states of stress which coexist at the same

point and have their principal stresses in

the same directions xx and yy combine

to form a single state of stress whose

principal stresses are the sums of the re-

spective principal stresses lying in the

same directions xx and yy : and con-

versely any state of stress can be separ-

ated into several coexistent stresses by

separating each of its two principal

stresses into the same number of

parts in any manner, and then grouping

these parts as pairs of principal stresses

in any manner whatever.

The truth of this statement is nec-

essarily involved in the fact that stresses

are forces distributed over areas, and that

as a state of stress is only the grouping
together of two necessarily related

stresses, they must then necessarily fol-

low the laws of the composition and
resolution of forces.

For the sake of brevity, we shall use

the following nomenclature of Avhich the
meaning will appear without further ex-

planation.

The terms applied to

forces and stresses are

:

Compound,

Composition,

Component,

Resolve,

Resolution,

Resultant.

The terms applied to

states of stress are

:

Combine,

Combination,

Component state,

Separate,

Separation,

Resultant state.

Other states of stress can be combined
besides those whose principal stresses

coincide in direction, but the law of

combination is less simple than that of

the composition of forces; such combi-
nations will be treated subsequently.

Component Stresses.—Any possible

state of stress defined by principal

stresses whose intensities are px and

Py on the planes xx and yy respect-

ively is equivalent ' to a combination

of the fluid stress whose intensity is

4- ^ ( Pa; + ^9^/ ) on each of the planes xx

and yy respectively, and the right shear-

ing stress whose intensity \^-V\^Px— Py)
on XX and —\{px —/>?/) on yy-

For as has been shown, the resultant

stress due to combining the fluid stress

with the right shearing stress is found

by compounding their principal stresses.

Now the stress on xx is

\{P^^P )-^h{fx-Py)=Px
and that on yy is

i(Px -^Py )-\{Px -Py )=Py

and hence these systems of principal

stresses are mutually equivalent

In case py = 0, the stress is complete-

ly defined by the single principal stress

Px , which is a simple normal compression
or tension on xx. Such a stress has been
called a simple stress.

A fluid stress and a right shearing

stress which have equal intensities com-
bine to form a simple stress.

It is seen that the definition of a

state of stress by its principal stresses,

is a definition of it as a combination of

two simple stresses which are perpendicu-
lar to each other.

There are many other ways in which
any state of stress can be separated into

component stresses, though the separa-

tion into a fluid stress and a right shear-

ing stress has thus far proved more use-

ful than any other, hence most of our
graphical treatment will depend upon it.

It may be noticed as an instance of a

different separation, that it was shown
that the tangential components of the

stresses on any pair of planes xx and yy
at right angles to each other are of equal

intensity but opposite sign. These
tangential components, then, together
form a right shearing stress whose prin-

cipal planes and stresses x'x' and y'y'

bisect the angles between xx and yy,
while the normal components together
define a state of stress whose principal

stresses are, in general, of unequal in-

tensity.
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Hence any state of stress can be sepa-

rated into component stresses one of

which is a right shearing stress on any

two planes at right angles and a stress

having those planes for its principal

planes.

The fact of the existence of conjugate
stresses points to still another kind of
separation into component stresses.

PROBLEMS IN PLANE STRESS.

Problem 1.—When a state of stress is

defined by principal stresses which are

of unequal intensity and like sign, i.e., in

a state of oblique stress, to find the in-

tensity and obliquity of the stress at o

on any assumed plane in the direction

uv.

Fig. 7.

In Fig. Y let the principal stresses at o

be a on yy and h on xx ; and on some
convenient scale of intensities let oa=^a
and oJ)= h. Let uv show the direction

of the plane through o on which we are

to find the stress, and make on perpendic-

ular uv. Make oa'^^^oa and oh'^^oh.

Bisect a'h' at m, then on^=^\(a \-})) and
7ia'^=\{a—b). Make xol:=xon and com-
plete the paralellogram nomr\ then is

the diagonal or^r the resultant stress

on the given plane in direction and in-

tensity.

The point r can also be obtained more
simply by drawing b'r\\xx and a'r

\\ yy.
We now proceed to show the correct-

ness of the constructions given and to

discuss several interesting geometrical

properties of the figure which give to it

a somewhat complicated appearance,

which complexity is, however, quite un-

necessary in actual construction, as will

be seen hereafter. It has been shown

that a state of stress defined by its two
principal stresses a and b can be separ-

ated into a fluid stress having a normal
intensity ^ (a -1-5) on every plane, and a
right shearing stress whose principal

stresses are 4-J(a— Z>) and —^{a—b) re-

spectively.

Since the fluid stress causes a normal
stress on any given plane, its intensity is

rightly represented by on=-^(a+ b),

which is the amount of force distributed

over one unit of the given plane. Since,

further, it was shown that a right shear-

ing stress causes on any plane a stress

with an obliquity such that the principal

stress bisects the angle between its direc-

tion and the normal to the plane, and
causes a stress of the same intensity on
every plane, we see that om=^{a—b)
represents, in direction and amount, the

force distributed over one unit of the

given plane which is due to the right

shearing stress.
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To find the resultant stress we have
only to compound the forces ooi and om,
which give the resultant or:=r.

The obliquity nor is always toward
the greater principal stress, which is here

assumed to be a.

It is seen that in finding r by this

method it is convenient to describe one
circle about o with a radius o/=^(a + 6)

and another with a radius og--^{a—b),
after which any parallelogram tnn can

be readily completed. Let ?^r and mr
intersect xx and yy in hk and ij respect-

ively; then we have the equations of

angles,

noh^?iho^=^Jcno, nok=9iko=^h7io,

'moi=7nio=^^jmOj nioj=mJo:=^i7nOy

hence hn=kn=^on=:-^(a+ b)

and rk=r/=a, rh=ri=b.

It is well known that a fixed point r

on a line of constant length as hk=a-\-by
or ij=a—b describes an ellipse, and
such an arrangement is called a trammel.
If X and y are the coordinates of the

point r, it is evident from the figure that

x=acosx7i, y=b sin xn, in which xn
signifies the angle between xx and the

normal on,

x^ y^
• *. -^+ T^=1 is the equation of the stress

a b

ellipse which is the locus of r; and xn is

then the eccentric angle of r. Also, since

noh=:nho, nb'r=.nrb' \ hence b'r \\ icccand

a'r
II yy determine r.

In this method of finding r it is con-

venient to describe circles about o with
radii a and 6, and from a' and b' where
the normal of the given plane intersects

them find r.

We shall continue to use the notation
employed in this problem, so far as ap-

plicable, so that future constructions

may be readily compared with this. It

will be convenient to speak of the angle
xon as xn^ nor as nr^ etc.

Pkoblem 2.—When a state of stress is

defined by principal stresses of unequal

intensity and unlike sign, i.e. in a state

of oblique shearing stress, to find the in-

tensity and obliquity of the stress at o

on any assumed plane having the direc-

tion uv.

In Fig. 8 the construction is effected

according to both the methods detailed

in Problem 1, and it will be at once ap-
prehended from the identity of notation.

Since a and b are of unlike signs a-\-b

=zon is numerically less than a—b^^a'b'.
The results of these two problems are

expressed algebraically thus:

T^=l{a^bY-V\{a-bY^\{a^-b'')Q,Qs^xn
,'. r'=^[a' + b' + (a'-b')G0s2xnJ

or, r^
— a^ cos'^xn + b^ sin^xn.

Fig. 8.

If r be resolved into its normal and
tangential components oi=n and rt=:t

then, n=i[a -^-b-h {a— b) cos 2xn\,

or, n=^a c.os^xn-\-b sm^xn,
and,

t^:^^{a—b)sm 2xn=i{a—b)sm xn Qosxn,

It is evident from the value of the
normal component n, that the sum of the
normal components on any two i)lanes at

right angles to each other is the same
and its amount is a + b: this is also a
general property of stress in addition to

those previously enumerated.

., t a—b
Also tannr-—-= ^

n a cot xn-Vb tan xn

The obliquity nr can also be found
from the proportion

sin nr : ^{a—b) : : sin 2xn : r.

In the case of fluid stress the equations
reduce to the more simple forms:

a=^b=r=znj t=:0

For right shearing stress they are:

a=—b=-\-r, n= :ta cos rn,

t=:t a sin rn, rn=2 xn.
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And for simple stress they become:

5=0, r=« cos rUy n=a cos'ni,

t=a sin rn cos ni, rn=xn.

Problem 3.—In any state of stress

defined by its principal stresses, a and b,

to find the obliquity and plane of action

of the stress having a given intensity r

intermediate between the intensities of

the principal stresses.

To find the obliquity nr and the direc-

tion tiv let Fig. 7 or 8 be constructed as

follows: assume the direction uv and its

normal oUj and proceed to determine the

position of the principal axes with re-

spect to it. Lay off oa'=a, ob'= b, in

the same direction if the intensities are

of like sign, in opposite directions if un-

like. Bisect a'b' at n, and on a'b^ as a

diameter draw the circle a^rb'. Also,

about o as a center and with a radius

07'=r draw a circle intersecting that pre-

viously drawn at r; then is nr the re-

quired obliquity; and xxW^r, yy\\a'r

are the directions of the principal stresses

Avith respect to the normal on.

Problem 4.—In a state of stress de-

fined by two given obliquities and in-

tensities, to find the principal stresses,

and the relative position of their planes

of action to each other and to the

principal stresses.

Fig. 9.

In Fig. 9 let wr^, nr, be the given
obliquities measured from the same nor-

mal on^ and c>rj=r„ or^-=^r^ the given in-

tensities. As represented in the figure

these intensities are of the same sign, but
should they have different signs, it will

be necessary to measure one of them
from o in the opposite direction, for a
change of sign is equivalent to increas-

ing the obliquity by 180°, as was pre-

viously shown.

Join r/g and bisect it by a perpendicu-
lar which intersects the common nor-

mal at n. About n describe a circle

r^r^a'b'\ then oa'= a, ob'=b^ a'r^^ 6V,,

are the directions of the principal stresses

with respect to r^ and b'r^^ a'r^ with re-

spect to r-j, ^.e., obW^-=-xn^ and ob'r^-=xn^

.*. n^n^^=^ob'r^—ob'r^^=rJb'r^:=^r^a'r^

In case the given obliquities are of op-

posite sign, as they must be in conjugate
stresses, for example, it is of no conse-

quence, in so far as obtaining principal

stresses a and b is concerned, whether
these given obliquities are constructed on
the same side of o?^, or on opposite sides

of it; for a point on the opposite side of

on, as r^\ and symmetrically situated with
respect to r^, must lie on the same circle

about n. But in case opposite obliquities

are on the same side of on we have
n^n^-=ob'r^ \- ob'r^=^rJ)'r^',

It is unnecessary to enter into the

proof of the preceding construction as

its correctness is sufliciently evident from
preceding problems.

Thq algebraic relationships may be
written as follows:

l(a-hy=::l[a-^by + r^'-r^(a-\-b)Qo^n/^

i (a— Z>) '=4 (a -I- ^>) -I- r^'— r' (a -f ^>) cos w,r,

.*. (a + ^)(^iCOS n/j— r^cos 'i\f^=i''^—r*

Also {a—b)Q0^2xn^'\-a-\-b^=2r^QO^n^r^

{a—b)cos 2xn^ + a-\-b=2r^coan^r^

which last equations express twice the
respective normal components, and from
them the values of xn^ and xn^ can be
computed.

Problem 5.—If the state of stress be

defined by giving the intensity and

obliquity of the stress on one plane, and

its inclination to the principal stresses,

and also the intensity of the stress on a

second plane and its inclination to the

principal stresses, to find the obliquity of
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the stress on the second plane, and the

magnitude of the principal stresses.

Let the construction in Fig. 9 be

effected thus: from the common normal

on lay off or^ to represent the obliquity

and intensity of the stress on the first

plane; draw od so that nod=xn^—xn^
the difference of the given inclinations

of the normals of the two planes;

through r^ draw^j^^ perpendicular to od;

about as a center describe a circle with

radius 7\ the given intensity on the

second plane, and let it intersect r^7\ at

r^ or r/, then is 9ir^ the required obliquity.

This is evident, because

, \ nod:= one= \{om\ + onr^
= 1 80'— {xn^—xn^

If xn^ and xn^ are of different sign

care must be taken to take their alge-

braic sum.
The construction is completed as in

Problem 4.

Problem 6.—In a state of stress de-

fined by two given obliquities and either

both of the normal components or both

of the tangential components of the in-

tensities, to find the principal stresses

and the relative position of the two

planes of action.

If in Fig. 9 the obliquities nr^^ nr^^ and
the normal components ot^-=n^^ ot^-=^n^

are given, draw perpendiculars at t^ and
t^ intersecting or^ and or^ at r, and r^ re-

spectively.

If the tangential components i^r^-=^t^

and^^rj=^2 ^^® given instead of the nor-

mal components, draw at these distances

parallels to on which intersect oi\ oi\ at

r^i\ respectively. Complete the con-

struction in the same manner as before.

Problem 7.—In a state of stress de-

fined by its principal stresses a and 5, to

find the positions and obliquities of the

stresses on two planes at right angles to

each other whose stresses have a given

tangential components.

Fig. 9, slightly changed, will admit of

the required construction as follows: lay

off on the same normal on, oa'=^a, oh'^h\
bisect a'h' at n ; erect a perpendicular

ne-=t to a'h' at n ; draw through e a

parallel r^r^ to on intersecting oi\ and

oi\ at r^ and r^ respectively. Then the

stresses or^^=^r^, or^=^r^ have equal tan-

gential components, and as previously

shown these belong to planes at right

angles to each other provided these tan-

gential components are of opposite sign.

So that when we find the position of the
planes of action, one obliquity, as nr^j

must be taken on the other side of oti,

as ni\\ The rest of the construction is

the same as that already given.
,

Problem 8.—In a state of stress de-

fined by its principal stresses, to find the

intensities, obliquities and planes of

action of the stresses which have maxi-

mum tangential components.

In Fig. 9 make o«'=a, oh'^=^h and
describe a circle on a'h' as a diameter;
then the maximum tangential component
is evidently found by drawing a tangent
at r parallel to on^ in which case t^a—h,
and rh\ ra the directions of the
principal stresses make angles of 45°

with on^ which may be otherwise stated

by saying that the planes of maximum
tangential stress bisect the angles be-

tween the principal stresses; or con-
versely the principal stresses bisect the
angles between the pair of planes at

right angles to each other on which the
tangential stress is a maximum.

It is unnecessary to extend further the
list of problems involving the relations

just employed as they will be readily

solved by the reader.

In particular, a given tangential and
normal component may replace a given
intensity and obliquity on any plane.

We shall now give a few problems
which exhibit specially the distinction

between states of stress defined by
pjincipal stresses of like sign and by
principal stresses of unlike sign, {i.e. the
distinction between oblique stress and
oblique shearing stress).

Problem 9.—In a state of stress de-

fined by like principal stresses, to find

the inclination of the planes on which

the obliquity of the stress is a maximum,

to find this maximum obliquity and the

intensity.

In Fig. 10 let oa'=a, bh'= h, the
principal stresses; on a'h' as a diameter
describe a circle; to it draw the tangent
oi\\ then m\ is the required maximum
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obliquity and or^ the required intensity.

It is evident from inspection that in the

given state of stress there can be no
greater obliquity than nr^. The direc-

tions of the principal axes are h'r^^ a'r^

as has been before shown.
There are two planes of maximum

obliquity, and or^' represents the second;

they are situated symmetrically about
the principal axes.

Bisect nr^ by the line od, then

oa'r^-=yn .*. oni\=2yn, but

owr„ + woro=90° or, 2yn+ nr^=Q0°

.'. \nr^-\yn^=^b°, but

odi\=.doa' -\-oa'd ,\ odr^--4:5''y

hence the line bisecting the angle of

maximum obliquity bisects also the

angle between the principal axes. This
is the best test for the correctness of the

final position of the planes of maximum
obliquity with reference to the principal

axes.

Fig. 10.

Problem 10.—In a state of stress de-

fined by its maximum obliquity and the

intensity at that obliquity, to find the

principal stresses.

In Fig. 10 measure the obliquity nr^

from the normal on and at the extremity

of or^-=r^ erect a perpendicular inter-

secting the normal at n. Then complete
the figure as before. The principal

axes make angles of 45° at o with od
which bisects the obliquity nr^.

The algebraic statement of Problems
9 and 10 is:

sm nr^
a—h
a+ b

= — cos 2xnj r*=:ab.

r^=a cot xn=b tan xn, .*. a=b tan*xn

The normal and tangential compo-
nents are:

2r'

"""-^T^'
^r^(a-b)

a-hb

Problem 11.—When the state of

stress is defined by like principal stresses,

to find the planes of action and intensi-

ties of a pair of conjugate stresses having

a given common obliquity less than the

maximum. *

In Fig. 10 let nr=nr^ be the given
obliquity; describe a circle on a'b' as a
diameter; then or^-=r^^ or^=r^ are the
required intensities. The lines aV^, b'r^

show the directions of the principal axes
with respect to or^, and ar\ b'r\ with
respect to or^=or^. The obliquities of
conjugate stresses are of opposite sign,

and for that reason r^' is employed for

finding the position of the principal

stresses. The algebraic expression of

these results can be obtained at once
from those in Problem 4.

Problem 12,—When the state of stress

is defined by the intensities and common
obliquity of a pair of like conjugate

stresses, to find the principal stresses and

maximum obliquity.

This is the case of Problem 4, so far as

finding the principal stresses is concerned,
and the maximum obliquity is then found
by Problem 9. The construction is given
in Fig. 10.

Problem 1*^.—Let the maximum ob-

liquity of a state of oblique stress be

given, to find the ratio of the intensities

of the pair of conjugate stresses having

a given obliquity less than the maxi-

mum.

In Fig. 10 let m\ be the given maxi-
mum obliquity, and 7i r^ the given ob-

liquity of the conjugate stresses. At
any convenient point on or^^ as r^ erect

the perpendicular r^n, and about n (its

point ot intersection with on) as a center

describe a circle with a radius m\ which
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outs wr^ at r, and r^; then or-^oi\:=r^

-f-^2 is the required ratio.

It must be noticed that the scale on

which oi\ and 07\ are measured is un-

known, for the magnitude of the princi-

pal stresses is unknown although their

ratio is oh'-^oa\ In ordet to express

these results in formulae, let r represent

either of the conjugate stresses, then as

previously seen

\{a—hY=\ {a-^hy^r'^—r{ct-\-h) cos nr

,'. 2r=^(«-f-^)cos nr±.

[(a-f 5)''cos'wr— 4a6]>^

Call the two values of r, r^ and t^\

and as previously shown T^^=-r^r^\ also

COS. nr=r^-^\{a^h)

r^_Q.o?>nr — {Gos^nr—Gos^7i9\)y^

7*2 COS nr + {C0ii'^7l7'— G0S^nr^)>^

When 917^=0 the ratio becomes

b 1 — sin nr„

a 1 -I- sin nr„

Pkoblem 14.— In a state of stress

defined by unlike principal stresses, to

find the inclination of the planes on

which the stress is a shear only, and to

find its intensity.

In Fig. 11 let oa'=«, ob^= b, the

given principal stresses of unlike sign;

on a'b' as a diameter describe a circle;

at o erect the perpendicular or^ cutting

the circle at 7\i, then is or^=^?\ the re-

quired intensity, and b'r^, a'7\ are the di-

rections of the principal stresses.

It is evident from inspection that there

is no other position of r^ except r/
which will cause the stress to reduce to

a shear alone. Hence as previously
stated the principal stresses bisect the
angles between the planes of shear.

Problem 15.— In a state of stress de-

fined by the position of its planes of

shear and the common intensity of the

stress on these planes, to find the princi-

pal stresses.

In Fig. 11 let or^—r^, the common in-

tensity of the shear, and orJb'^=.xn^

or^a'=^yn the given inclinations of a

'plane of shear; then oa'^=a and ob'= b^

the principal stresses.

The algebraic statement of Problems

14 and 15, when n^ denotes the normal
to a plane of shear, is:

Fig. 11.

a-\-b

a—b
= — cos 2xn^ T^=—ab—t,

r^= ^a cotxn^=4-btSin xn^^a=-bX,2^n^x7i^

Problem 16.—When the state of

stress is defined by unlike principal

stresses, to find the planes of action and

intensities of a pair of conjugate stresses

having any given obliquity.

In Fig. 11 let nr^ be the common ob-

liquity, oa'=^a, ob'=^b, the given princi-

pal stresses. On ab\ as a diameter,

describe a circle cutting 07\ at r^ and r2>

then or^=r^, or^=r^ are the required in-

tensities. Also, since the obliquities of

conjugate stresses are of unlike sign, the

lines r/a% r/5^ show the directions of the

principal stresses with respect to on^y

and r^a', 7\b' with respect to on^.

Problem 11.—When the state of stress

is defined by the intensities and common
obliquities of unlike conjugate stresses,

to find the principal stresses and planes

of shear.

In finding the principal stresses this

problem is constructed as a case of

Problem 4, and then the planes of shear

are found by Problem 14. The con-

struction is given in Fig. 11.

Problem 18.—Let the position of the
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planes of shear be given in a state of

oblique shearing stress, to find the ratio

of the intensities of a pair of conjugate

stresses having any given obliquity.

In Fig. 11 at any convenient point r^

make orJ)'^^xn^ or^a'=^yn^ the given

angles which fix the position of the

planes of shear. On a'h' as a diameter
describe a circle; make nr^ equal to the

common obliquity of the conjugate
stresses; then is or^-r-or^^=^r^^r^\hQ ratio

required.

The ratio may be expressed as in

Problem 13, and after reducing by the

relations

r^=—ah^ r„-j-J(« + 5)= — tan2a!^,

we have,

r, cos nr + (cos'^^r^-tan''2£c?^J^

r^ ~ cos nr — (cos^?2rH-tan'2a;w.„)>^

When nr=0 the ratio becomes

a_H-cos 2x71^

^~1— cos 2xn^

COMBINATION AND SEPARATION OF STATES
OF STRESS.

Problem 19.—When two given states

of right shearing stress act at the same

point, and their principal stresses have a

given inclination to each other, to com-

bine these states of stress and find the

resultant state.

In Fig. 12 let ox^, ox^ denote the di-

rections of the two given principal +
stresses, and let a^=^on^, a^-=on^ repre-

sent the position and magnitude of these
principal stresses. Since the given
stresses are right shearing stresses

<^j= — 5j, ^2=— ^2 and the respective
planes of shear bisect the angles between
the principal stresses. Now it has been
previously shown that the intensity of
the stress caused by the principal stresses

<Xj=— 6j is the same on every plane
traversing o: the same is true of the
principal stresses a^-= — h^ : hence, when
combined, they together produce a stress

of the same intensity on every plane
traversing o. This resultant state of
stress evidently .does not cause a normal
stress on every plane, hence the result-

ant state must be a right shearing stress.

Let us find its intensity as follows :

The principal stresses a^=—b^ cause a
stress on^ on the plane

.Vi^/i* ^"^ ^^^ princi-

pal stresses a^=—b^ cause a stress om^ on
the same plane in such a direction that

x^om^=x^ox^, as has been before shown.
Complete the parallelogram n^om^r^;
then oi\ represents the intensity and di-

rection of the stress on y^y^. But the

principal stresses bisect the angles be-

tween the normal and the resultant in-

tensity, therefore, oa?, which bisects

x^oi\^ is the direction of a principal stress

of the resultant state, and orz=or^=a is

the intensity of the resultant stress on
any plane through o.

The same result is obtained by finding

the stress the plane y^y^y in which case

we have on^-=a^ acting normal to the

plane, and om^^^a^ in such a direction

that x^o')n^.^=iX^ox^. The sides and angles

of n^om^r^ and n^om^i\ are evidently

equal, hence the resultants are the same,^

or^:=or^=:a, and ox bisects x^or^.

The algebraic solution of the problem^

is expressed by the equation,

a^=a^ + a^ -{-2a^a^ cos 2 x^x,^,

from which a may be found, and, finally^

the position of or is found from the pro"

portion,

sin 2xx^ : «2 • ^i" ^aja;^ : a^',', sin 2x^x^ : a.

Problem 20.—When any two states

of stress, defined by their principal

stresses, act at the same point, and their

principal stresses have a given inclina-

tion to each other, to combine these*

states and find the resultant state.

Let a^, 6j, and a^, b^ be the given prin-
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cipal stresses, of which a. and a^ have
the same sign and are inclined at a

known angle x^x^,, but in so taking a^

and a^ they may not both be numerically

greater than b^ and h^ respectively.

Separate the pair of principal stresses

a^b^ into the fluid stress -\-\(a^ + b^, and
the right shearing stress ±.^{a^— b^) as

has been previously done; and in a simi-

lar manner the principal stresses a^ b^

into +1(^2 + ^2) ^."^ d-i(<^2—^J- Then
the combined fluid stresses produce a

fluid stress of +^(«i + ^i + «2 + ^2) ^^
every plane through 0; and the com-
bined right shearing stresses cause a

stress whose intensity and position can

be found by Problem 19. .

The total stress is obtained by com-
bining the total fluid stress w;,ith the re-

sultant right shearing stress.

Of course, any greater number of

states of stress than two, can be com-
bined by this problem by combining the

resultant of two states with a third state

and so on.

The algebraic expression of the com-
bination of any two states of stress is as

follows :

[a + b)= {a^ + b, + a^ + b;),

(a-by={a-by + (a-b:)^
+ 2{a-b^) {a^-bj cos 2x^x^,

.'. a=i{a^-]-b^-\-a^ + b^ + [{a-by
+ K-^2)" + 2(a -5J («,-^)cos 2x^x^]y^),

b=^(a^ + b^-i-a^ + b,-[{a-b;)^ + (a-b:)^
+ 2{a-b^)(a^-b^)Gos 2x^x^]y^),

in which a and b are the resultant prin-

cipal stresses. Also, sin 2xx^: a^—b„

: : sin 2xx^-. ci^— b^ : : sin 2x^x^: a—b.

Pkoblkm 21.—In a state of stress

defined by the stresses upon two planes

at right angles to each other, to find the

principal stresses.

Let the given stresses be resolved into

tangential and normal components; it

has been shown that the tangential com-
ponents upon these planes are of equal
intensity and unlike sign. Let the in-

tensity of the tangential component be
at, and that of the normal components
an and bn respectively. The tangential

components together constitute a state

of right shearing stress of which the
given planes are the planes of shear,

and the principal stresses bisect the
angles between the given planes.

Separate the remaining state of stress

into the fluid stress -\-^{an + bn) and
the right shearing stress ±\(an — bn)y
and combine this last right shearing
stress with that due to the tangential
components. The final result is found,
just as in Problem 20, by combining the
fluid stress |(«n + bn) with the resulting

right shearing stress.

This problem can also be solved in a
manner similar to that employed in

Problem 6.

The result is expressed by the equa-
tions,

a + b=an + bn,

{a—by=i(an — bny + 4:at
'

for the angle which has been heretofore

denoted by x^x^ is in this case 45° .'. cos

2i:CjCC2=
.-. ci=^{an -\-bn + [(an -bn)' + 4af=']>^J

b=i{an + bn -[{an - bnY-h^atY')

sin. 2xx^ : 2a t : : sin. 2xx^ : an — bn

: : 1 : a— b^

but 2a!a;j= 90°— 2a!iC2
,

.*. tan 2xx^= 2at -^ {an — bn)>

Problem 22.—In a state of stress

deflned by two simple stresses which act

at the same point and have a given

inclination to each other, to combine

them and find the resultant state.

It has been previously mentioned that

any simple stress as a^ can be separated
into the fluid stress +i«i and the right

shearing stress ±J«i, as it is simply a
case *in which b^=^0. Hence the simple
stresses a^, a^ can be combined as a spe-

cial case of Problem 20, in which b^ and
b^ vanish. The results are expressed
algebraically as follows:

a^b=a^ + a^^

{a—b)^=a^^-\-a^^-\-2a^a^ cos 2x^x^

,'. ab=ia^a^{l— cos 2x^x^)

.'. ab^^a^a^ sin^x^x^.

Since a simple compression or tension

produces a simple stress in material, this

problem is one of frequent occurrence,

for it treats the superposition of two,
and hence of any number of simple
stresses lying in the same plane.

This problem is of such importance
that we think it useful to call attention
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to another solution of it, suggested by
the algebraic expressions just found.

In Fig. 13 let

o'a'^^j, o'h'=^a^ .*. o'r'= ^a^a^=^oi.

Now, if oir=x^x^^ then or=.o'r' sin x^x^

.-. or'^:=^oa'.ol>^-=o'a'.o'b' ^m^x^x^

.'. oa'=a and oh' =.h.

This solution is treated more fully in

Problem 23.

Problem 23.—When a state of stress

is defined by its principal stresses, it is

required to separate it into two simple

stresses having a given inclination to

each other.

It was shown in Problem 22 that

a+ d=:a^4-a,, and ab=a^a^^\xi x^x^.

Let us apply these equations in Fig.

13 to effect the required construction.

Make oa'= a^ oh'=h\ then a'h'=a^ + a^.

At erect a perpendicular to a'h' cut-

ting the circle of which a'b' is the dia-

meter at r; then or^= o,h, the product of

the principal stresses. Also make a'oi

•=x^x^ the given inclination of the sim-

ple stresses, and let ri \\ a'h' intersect oi

at ^ ; then or=ioi sin x^x^ .*. oi"^ = a^a^.

Make oj—oi and draw jr' \\ a'h' ^ then

o'r'= oi, and o'a',o'h'=zo'r'^,

•.• o'a'-=a^ and o'h'=za^^

the required simple stresses. This con-
struction applies equally whether the
given principal stresses are of like or

unlike sign, and also equally whether
the two simple stresses are required to

have like or unlike signs.

Problem 24.—When a state of stress

is defined by its principal stresses, to

find the inclination of two given simple

stresses into which it can be separated.

In Fig, 13 let oa'= a, oh'^h be the
intensities of the principal stresses, and
o'a'^=a^, o'b'=^a^ be the intensities of the

given simple stresses. It has been
already shown that a-\-h^=a^-\-a^. Draw
the two perpendiculars or and o'r'\

through ?' draw ri \\ a'h' \ make oi=oj
= o'r'i then is oir=ioa' the required

inclination, for it is such that

ah=a^a^ sin^'a^^ir^

Problem 25.—To separate a state of

right shearing stress of given intensity

into two component states of right shear-

ing stress whose intensities are given, and

to find the mutual inclination of the

principal stresses of the component

states.

In Fig. l2, about the center o, describe

circles with radii 09i^— a^^ on^=a^y the

given component intensities; and also

about o at a distance or^= a, the given
intensitv. Also describe circles with radii

r^7n^=^on^, r^n^=09i^ cutting the first

mentioned circles at m^ and 7i^: then is

i9i^07n^=x^x^ the required mutual inclina-

tion of the principal stresses of the com-
ponent states. This is evident from
considerations previously adduced in con-

nection with this figure. The relative

position of the principal stresses and
principal component stresses is also read-

ily found from the figure.

Problem 26.—In a state of right

shearing stress of given intensity to sep-

arate it into two component states of

right shearing stress, when the intensity

of one of these components is given and

also the mutual inclination of the princi-

pal stresses of the component states.

In Fig. 12, about the center o describe

a circle rr with radius or=a, the inten-

sity of the given right shearing stress,

and at 7i^, at a distance on^=a^ from o

which is the intensity of the given com-
ponent, make x^)i^r^=2x^x^f twice the
given mutual inclination ; then is n^r^

the distance from n^ to the circle rr the
intensity of the required component
stress. The figure can be completed as

was done previously.

It is evident, when the component a^

exceed «, that there is a certain maxi-
mum value of the double inclination,

which can be obtained by drawing n^r^
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tangent to the circle rr, and the given in-

clination is subject to this restriction.

Other problems concerning the com-
bination and separation of states of

stress can be readily solved by methods
like those already employed, for such

problems can be made to depend on the

combination and separation of the fluid

stresses and right shearing stresses into

which every state of stress can be sep-

arated.

PROPERTIES OF SOLID STRESS.

We shall call that state of stress at a

point a solid stress which causes a stress

on every plane traversing the point. In

the foregoing discussion of plane stress

no mention was made of a stress on the

plane of the paper, to which the plane

stress was assumed to be parallel. It is,

evidently, possible to combine a simple

stress perpendicular to the plane of the

paper with any of the states of stress

heretofore treated without changing the

stress on any plane perpendicular to the

paper.

Hence in treating plane stress we have
already treated those cases of solid stress

which are produced by a plane stress

combined with any stress perpendicular

to its plane, acting on planes also per-

pendicular to the plane of the paper.

We now wish to treat solid stress in a

somewhat more general manner, but as

most practical cases are included in plane

stress, and the difficulties in the treat-

ment of solid stress are much greater

than those of plane stress, we shall make
a much less extensive investigation of its

properties.

Conjugate Stresses.—Let xx,, yy, zz

be any three lines through 0/ now, if

any state of stress whatever exists at 0,

and XX be the direction of the stress on

the plane yoz, and yy that on zox, then

is zz the direction of the stress on xoy

:

i.e., each of these three stresses lies in

the intersection of the planes of action of

the other two.

Reasoning like that employed in con-

nection with Fig. 1, shows that no other
direction than that stated could cause
internal equilibrium; but a state of stress

is a state of equilibrium, hence follows
the truth of the above statement.

'

Tangential Components.—Let xx,

yy, zz be rectangular axes through 0;
then, whatever may be the state of stress

at o, the tangential components along xx

and yy are equal, as also are those along

yy and zz, as well as those along zz and

XX.

The truth of this statement flows at

once from the proof given in connection
with Fig. 3.

It should be noticed that the total

shear on any plane xoy, for example, is

the resultant of the two tangential com-
ponents which are along xx and yy re-

spectively.

State of Stress.—Any state of solid

stress at is completely defined, so that

the intensity and direction of the stress

on any plane traversing o can be com-

pletely determined, when the stresses on

any three planes traversing are given

in magnitude and direction.

This truth appears by reasoning simi-

lar to that employed with Fig. 4, for the

three given planes with the fourth en-

close a tetrahedron, and the total dis-

tributed force acting against the fourth

plane is in equilibrium with the resultant

of the forces acting on the first three.

Principal Stresses.—In any state of

solid stress there is one set of three con-

jugate stresses at right angles to each

other, i.e. there are three planes at right

angles on which the stresses are normal

only.

Since the direction of the stress on any
plane traversing a given point can
only change gradually, as the plane

through changes in direction, it is

evident from the directions of the

stresses on conjugate planes that there

must be at least one plane through on
which the stress is normal to the plane.

Take that plane as the plane of the

paper; then, as proved in plane stresses,

there are two more principal stresses

lying in the plane of the paper, for the

stress normal to the plane of the paper
has no component on any plane also

perpendicular to the paper.

Fluid Stress.—Let the stresses on

three rectangular planes through o be
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normal stresses of equal intensity and

like sign; then the stress on any plane

through is also normal of the same in-

tensity and same sign.

This is seen to be true when we com-
bine with the stresses already acting in

Fig. 5, another stress of the same inten-

sity normal to the plane of the paper.

Right Shearing Stress.—Let the

stresses on three rectangular planes

through be normal stresses of equal

intensity, but one of them, say the one

along icic, of sign unlike that of the other

two; then the stress on any plane through

0, whose normal is x'x' ^ is of the same

intensity and lies in the plane xox' in

such a direction rr that xx and the plane

yz bisect the angles in the plane xox' be-

tween rr and its plane of action, and

vox' respectively.

The stress parallel to yz is a plane

fluid stress, and causes therefore a normal
stress on the plane xox' . Hence the re-

sultant stress is in the direction stated,

as was proved in Fig. 6.

Component States of Stress.—Any
state of solid stress, defined by its prin-

cipal stresses abc along the rectanglar

axes of xyz respectively, is equivalent to

the combination of three fluid stresses,

as follows:

^(a-fJ) alongtc andy,— ^(a + 5) along z\

\{c^-a) along z and x^—\(c-\-a) along y\

J(6-i-c) along y and 2,— i(^ + c) along y\

For these together give rise to the fol-

lowing combination:

\(a-\-h)-^\{c^-d)—\{})^c)—a, along cc;

\(a^-'b)— \{c-\-a)^\{})^c)= h, along y;
^(a-i-5)+J(c-|-a)-fi(^>-fc)=c, along x.

In case J=0 and c=0 this is a simple

stress along x.

Component Stresses.—Any state of

solid stress defined by its principal

stresses can also be separated into a fluid

stress and three right shearing stresses^

as follows:

i(a -f ?> + c) along x, y, z ;

\{a—'b — c) along cc, and
—\{Gi -b—c) along 2/ and z;

\(b— ('—a) along y, and
— iip—c—a) along z and x ;

\{c—a—b) along 2, and
—\{c — a-—h) along x and y

;

It will be seen that the total stresses

along xyz are abc respectively. This
system of component stresses is remarka-
ble because it is strictly analagous in its

geometric relationships to the trammel
method used in plain stress. We shall

simply state this relationship without
proof, as we shall not use its properties

in our construction.

If the distances po.^=:.a, pb^-=b, pc^^=c
be laid off along a straight line from the

point p, and then this straight be moved
.so that the points a^ b^ c^ move respec-

tively in the planes yz, zx, xy ^' then p
will describe an ellipsoid, as is well

known, whose principal semiaxes are

along xyz, and are abc respectively.

Now the distances pa^^pb^, pc^, maybe
laid off in the same direction from p or
in different directions; so that, in all,

Tour different combinations can be made,
either of which will describe the same
ellipsoid. But the position of these

four generating lines through any as-

sumed point x^y^z^ of the ellipsoid is such

that their equations are

^{x-x;) =. +- {y-y,)= ±-(2-2,)
X y.

Now if the fluid stress ^(a-t-6-f c)=or,
be laid off along the normal to any plane,

i.e. parallel to that generating line which
in the above equation has all its signs

positive, and the other three right shear-

ing stresses r^r.^, r^r^, r^9\ be laid off

successively parallel to the other generat-

ing lines, as was done in plane stresses,

the line oi\ will be the resultant stress on

the plane.

problems in solid stress.

Problem 27.—In any state of stress

defined by the stresses on three rectangt-

lar planes, to find the stress on any given

plane.

Let the intensities of the normal com-
ponents along X y z he an bn Cn respect-

ively, and the intensities of the pairs of

tangential components which lie in the

planes which intersect in x y z and are
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perpendicular to those axes be at ht ct re-

spectively, e.g.^ at is the intensity of the

tangential component on xoy along y, or

its equal on xoz along z.

In Fig. 14 let a plane parallel to the
given plane cut the axes at x^y^z^\ then

the total forces on the area x^y^z^ along
xyz are respectively:

y y
/
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in which ajb^c^ are the intensities of the
components of the stress on the plane
xj/^z^ along xyz respectively. Now

y^oz^—x^y^z^^ 0,0^ xoi

z^ox^—x^y^z^=^co% yn

x^oy^ -f- x^y^z^

=

cos zn.

.'. a^=an cos X7i + ht . cos zn + ct cos yn

h^-=.ct cos jvn + at • cos 2;?i+ h^ cos yn

tfJ= hi cos .^n + Cn . cos 2?^ + at cos y?i

and r''=a3' + 6^' + c/, therefore the result-

ant stress T is the diagonal of the right

parallelopiped whose edges are afi^c^.

In order to construct aj)^c^ it is only
necessary to lay off an hn Cn, at bt Ct along
the normal, and take the sums of such
projections along xyz as are indicated in

the above values of af>^c^.

Thus, in Fig. 14, let ^^y^^^ be the

traces of a plane, and it is required to

construct the stress upon a plane parallel

to it through o.

The ground line between the planes of
xoy and xoz is ox. The planes xoz and
yoz on being revolved about ox and oy
respectively, as in ordinary descriptive

geometry, leave oz in two revolved posi-

tions at right angles to each other.

The three projections of the normal
at to the given plane are, as is well

known, perpendicular to the traces of the

given plane, and they are so represented.

Let oay be the projection of the normal
on xoy^ and oay that on xoz. To find

the true length of the normal, revolve it

about one projection, say about oa^, and
if «2 an = <^2 cty then is oan the revolved
position of the normal.
Upon the normal let oan = ^n, ohn =

hn^ ocn = Cn, the given normal compo-
nents of the stresses upon the rectangu-

lar planes, and also let oat=at, obt — bt,

oct = Ct^ the given tangential compo-
nents upon the same planes.

Let a.^b^c,^, ^i'^/^-2 ^® ^^^ respective

projections of the points an bn Cn, dt bt Ct

of the normal upon the plane xoy by
lines parallel to 02, similarly ay^ etc., are

projections by parallels to oy, and ax\
etc., by parallels to ox.

We have taken the stresses Cn and Ct of
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different sign from the others, and so
have called them negative and the others
positive.

It is readily seen that the first of the
above*- equations is constructed as fol-

lows:

a^= oa^=oa^-\-ht hz'— CzC^'

Similarly, the other two equations be-

come:

h^= oh^= — oc^ -\'at a^'-\-ob,_

c^= oc^= ab„'— CzCt + oa^'

^
We have thus found the coordinates

01 the extremity r of the stress or upon
the given plane; hence its projections
upon the planes of refererence are re-

spectively OTx, OVy^ Ol'z.

Problem 28.—In any state of stress

defined by its three principal stresses,

to find the stress on any given plane.

This problem is the special case of

Problem 27, in which the tangential com-
ponents are each zero. Taking the nor-

mal components given in Fig. ,14 as

principal stresses we find oa^^a^cos xn^

oh^^hnGO^ yn^ oc^^= Cn cos zn, as the co-

ordinates which determine the stress o?*'

upon the given plane, and the projections

of or' are ovx, ovy, orz\ respectively.

From these results it is easy to show
that the sum of the normal components
of the stresses on any three planes is

constant and equal to the sum of the

principal stresses. This is a general

property of solid stress in addition to

those previously stated.

Problem 29.—Any state of stress be-

ing defined by given simple stresses, to

find the stresses on three planes at right

angles to each other.

In Fig. 14 let a simple stress act along
the normal to the plane x^y^z^, and cause

a stress on that plane whose intensity is

an = oan, then is a^cos xn=oa^ the in-

tensity of the stress in the same direction
acting on the plane yoz. The normal
component of this latter intensity is

a. cos x7i=:oa^. cos xn=oa^,

and it is obtained by making oa/-'.oa^y

a^'ttz" II
.Tj^/j, and Uz'Ui^ \\ oy. The tan-

gential component on yoz is od' in mag-
nitude and direction, and it is obtained
thus: make az"d^:^az"ci^\ then in the
right angled triangle da^a" ^ da^ is the
magnitude of the tangential component;
now make od':=da^. This tangential

component can be resolved along the

axes of y and z. The stress on the

planes zox and xoy can be found in simi-

lar manner, since the tangential compon-
ents w^hich act on two planes at right

angles to each other and in a direction

perpendicular to their intersection are,

as has been shown, equal; the complete
construction will itself afford a test of its

accuracy.

Other simple stresses may be treated in

the same manner, and the resultant stress

on either of the three planes, due to these

simple stresses, is found by combining
together the components which act on
that plane due to each of the simple

stresses.

It is useless to make the complete
combination. It is sufficient to take the

algebraic sum of the normal components
acting on the plane, and then the alge-

braic sum of the tangential components
along two directions in the plane which
are at right angles, as along y and z in

yoz.

The treatment of conjugate stresses in

general appears to be too complicated to

be practically useful, and we shall not

at present construct the problems arising

in its treatment.
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sylvania Steel Works. With numerous wood-cuts, 8vo., together with

a folio atlas of 10 lithographed plates of Rolls, Measurements, &c..

Grrnner on Steel.

8vo. Cloth. $3.50.

The Manufacture of Steel. By M. L. Gruner ; translated from

the French. By Lenox Smith, A.M., E.M. ; with an Appendix on

the Bessemer Process in the United States, by the translator. Illus-

trated by lithographed drawings and wopd-cuts.

Barba on the Use of Steel.

12ma Illustrated. Cloth. $1.50.

The Use of Steel in Construction. Methods of Working, Apply

ing, and Testing Plates and Bars. By J. Barba, Chief Naval

Constructor. Translated from the French, with a Preface, by A. L.

IIOLLEY, P.B.

Bell on Iron Smelting.
8va Cloth. $6.0a

Chemical Phenomena of Iron Smelting. An experimental and

practical examination of the circumstances which determine the

capacity of the Blast Furnace, the Temperature of the Air, and the

Proper Condition of the Materials to be operated upon. By

I. Lowthian Bell.
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The Useful Metals and tlieir Alloys ; ScofFren,
Truran, and otliers.

Fifth Edition. 8vo. Half calf. $3.75

Toe Useful Metals and their Alloys, employed in the conver-

sion of Iron, Copper, Tin, Zinc, Antimony, and Lead Ores,

with their applications to the Industrial Arts. By John Scof-

FREN, William Truran, William Clay, Robert Oxland,
William Fairbairn, W. C. Aitkin, and William Vose Pickett.

Collins' Useful Alloys.
ISmo. Flexible. 50 cents.

The Private Book op Useful Alloys and Memoranda for Grold-

smiths, Jewellers, etc. By James E. Collins.

Joynson's Metal Used in Construction.
12mo. Cloth. 75 cents.

The Metals Used in Construction : Iron, Steel, Bessemer Metal,

etc., etc. By Francis H. Joynson. Illustrated.

Dodd's Dictionary of Manufactures, etc.
12nio. Cloth. $1.50.

Dictionary of Manufactures, Mining, Machinery, and thb
Industrial Arts. By George Dodd.

Von Cotta's Ore Deposits.
8vo. Cloth. $4.00.

Treatise on Ore Deposits. By Bernhard Von Cotta, Professor

of Geology in the Royal School of Mines, Freidburg, Saxony. Trans-

lated from the second German edition, by Frederick Prime, Jr.,

Mining Engineer, and revised by the author ; with numerous illus-

trations.

Plattner's Blow-Pipe Analysis.
Third Edition. Revised. 568 pages. 8vo. Cloth. $5.00.

Plattner's Manual of Qualitative and Quantitative Analy-
sis with the Blow-Pipe, From the last German edition. Revised

and enlarged. By Prof. Th. Richter, of the Royal Saxon Mining

Academy. Translated by Professor H. B. Cornwall; assisted by

John H. Caswell. AVith eighty-seven wood-cuts and Lithographis

Plate.



Plymptoix's ]Blo^\^-Pipe Analysis.
12mo. aoth. $1.50.

The Blow-Pipe: A Guide to its Use in the Determination of Salts

and Minerals. Compiled from various sources, by George "W.

Plympton, C.E., A.M., Professor of Physical Science in the Polytech-

nic Institute, Brooklyn, N.Y.

Pynclioii's Clieinical -Physics.
New Edition. Revised and enlarged. Ciovnti 8vo. Cloth. $3.00.

Introduction to Chemical Physics ; Designed for the Use of

Academies, Colleges, and High Schools. Illustrated with numerous

engravings, and containing copious experiments, with directions for

preparing them. By Thomas Buggles Pynchon, M.A., President

of Trinity College, Hartford.

Eliot and Storer's Qnalitative Clieraical
Analysis.

New Edition. Revised. 12mo. Illustrated. CJloth. $1.50.

A Compendious Manual of Qualitative Chemical Analysis.

By Charles W. Eliot and Frank H. Storer. Revised, with

the cooperation of the Authors, by "William IIipley Nichols,

Professor of Chemistry in the Massachusetts Institute of Technology.

Rammelsberg's Cliemical Analysis.
8vo. Cloth. $2.25.

Guide to a Course op Quantitative Chemical Analysis,

Especially of Minerals and Furnace Products. Illustrated

by Examples. By C. F. Rammelsberg. Translated by J. Towler,

M.D,

Naqnet's Legal Clieinistrj^.

Illustrated. 12mo. Cloth. $2.00.

Legal Chemistry. A Guide to the Detection of Poisons, Falsifica-

tion of Writings, Adulteration of Alimentary and Pharmaceutical

Substances; Analysis of Ashes, and Examination of Hair, Coins,

Fire-arms, and Stains, as Applied to Chemical Jurisprudence. For

the Use of Chemists, Physicians, Lawyers , Pharmacists, and Experts.

Translated, with additions, including a List of Books and Memoirs

on Toxicology, etc., from the French of A. Naquet. By J. P.

Battershall, Ph. D., with a Preface by C F. Chandler, Ph. D.,

M.D.,LL.D.
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Prescott's Proximate Organic Analysis.
12rao. Cloth. $1.75.

Outlines of Proximate Organic Analysis, for the Identification,

Separation, and Quantitative Determination of the more commonly
occurring Organic Compounds. By Albert B. Prescott, Professor

of Organic and Applied Chemistry in the University of Michigan.

Prescott's Alcoliolic Liqnors.
12ino. Cloth. Si. 50.

Chemical Examination of Alcoholic Liquors.—A Manual of the

Constituents of the Distilled Spirits and Fermented Liquors of Com-
merce, and their Qualitative and Quantitative Determinations. By
Albert B. Prescott, Professor of Organic and Applied Chemistry

in the University of Michigan.

Prescott and Douglas's Ctnalitative Cliemi-
cal Analysis.

Second Edition. Revised. 8vo. Cloth. $3.50.

A Guide in the Practical Study of Chemistry and in the Work ofAnalysis.

Pope's Modern Practice of tlie Electric
Telegraph..

Ninth Edition. 8vo. Cloth. $2.00.

A Iland-book for Electricians and Operators. By Frank L. Pope.

Ninth edition. Revised and enlarged, and fully illustrated.

Sabine's History of tlie Telegrapli.
Second Edition. 12ino. Cloth. $1.25.

History and Progress of the Electric Telegraph, with De-

scriptions of some of the Apparatus. By Robert Sabine, C.E.

Haskins' Gralvanometer.
Pocket form. Illustrated. Morocco tucks. $2.00.

The Galvanometer, and its Uses ;—A Manual for Electricianf

and Students. By C. H. Haskins.

Larrabee's Secret Letter and Telegraph.
18mo. Cloth. Sl.OO.

Cipher and Secret Letter and Telegraphic Code, with Hogg s

Improvements. By C. S. Larrabee.
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Gillmore's Limes and Cements.
Fifth Edition. Revised and Enlarged. 8vo. Cloth. $4.00.

Practical Treatise ox Limes, Hydraulic Cements, axd Mor-
tars. By Q. A. GiLLMORE, Lt.-Col. U. S. Corps of Engineers.

Brevet Major-General U. S. Army.

Gillmore's Coignet Beton.
Nine Plates, Views, etc. 8vo. Cloth. $2.50.

Coignet Beton and Other Artificial Stone.—By Q. A. Gill-

more, Lt.-Col. U. S. Corps of Engineers, Brevet Major-General U.S.

Army.

Grillmore on Roads.
Seventy Illustrations. 12mo. Cloth. $2.00.

A Practical Treatise on the Construction op Roads, Streets,

AND Pavements. By Q. A. Gillmore, Lt.-Col. U. S. Corps of

Engineers, Brevet Major-General U. S. Army.

Grillmore's Bnilding Stones.
8vo. Cloth. $1.00.

Report on Strength of the Building Stones in the United
States, etc.

Holley's Rail^vay Practice.

1 vol. folio. Cloth. $12.00.

American and European Railway Practice, in the Economical

Generation of Steam, including the materials and construction of

Coal-burning Boilers, Combustion, the Variable Blast, Vaporization,

Circulation, Super-heating, Supplying and Heating Feed-water, &c.,

and the adaptation of Wood and Coke-burning Engines to Coal-

burning ; and in Permanent Way, including Road-bed, Sleepers,

Rails, Joint Fastenings, Street Railways, etc., etc. By Alexander
L. IIoLLEY, B.P. AVith 77 lithographed plates.

Useful Information for Railway Men.
Pocket form. Morocco, gilt. $2.00.

Compiled by W. G. Hamilton, Engineer. Kew Edition, Revised

and Enlarged. 577 pages.
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Stuart's Civil and Military Engineers of
America.

8vo. Illustrated, Cloth. $5.00.

The Civil and Military Engineers of America. By General

Charles B. Stuart, Author of " Naval Dry Docks of the United

States," etc., etc. Embellished with nine finely-executed Portraits

on steel of eminent Engineers, and illustrated by Engravings of some

of the most important and original works constructed in America.

Ernst's Manual of Military Engineering.
193 Wood-cuts and 3 Lithographed Plates. 12nio. Cloth. $5.00.;

A Manual of Practical Military Engineering. Prepared for

the use of the Cadets of the U. S. Military Academy, and for Engineer

Troops. By Capt. O. H. Ernst, Corps of Engineers, Instructor in

Practical Military Engineering, U. S. Military Academy.

Simms' Levelling.

12EQO. Cloth. $2.50.

A Treatise on the Principles and Practice of Levelling,

showing its application to purposes of Railway Engineering and the

Construction of Roads, etc. By Frederick W. Simms, C.E. From
the fifth London edition. Revised and Corrected, with the addition of

Mr. Law's Practical Examples for Setting-out Railway Curves.

Illustrated with three lithographic plates and numerous wood-outs.

JelFers' Nantical Surveying.
Illustrated with 9 Copperplates and 31 Wood-cut Illustrations. 8vo. Cloth. $5.00.

Nautical Surveying. By William N. Jeffers, Captain U. S.

Navy. .

Text-book of Snrveying.
8vo. 9 Lithograph Plates and several Wood-cuts. Cloth. $3.00.

A Text-book on Surveying, Projections, and Portable Instruments,

for the use of the Cadet Midshipmen, at the U. S. Naval Academy.

The Plane Table.
8vo. Cloth. $2.00.

Its Uses in Topographical Surveying. From the papers of the

U. S. Coast Survey.



Chaiivenet's Lunar Distances.
8vo. Cloth. $2.00.

New Method of Correcting Lunar Distances, and Improved
Method of Findin-g the Error and Rate of a Chronometer, by equal

altitudes. By Wai. Chauvenet, LL.D., Chancellor of Washington
University of St. Louis.

Bnrt's Key to Solar Compass.
Second Edition. Pocket-book form. Tuck. $2.60.

Key to the Solar Compass, and Surveyor's Companion ; comprising

all the Rules necessary for use in the Field ; also Description oi the

Linear Surveys and Public Land System of the United States, Notes

on the Barometer, Suggestions for an Outfit for a Survey of Four

Months, etc. By W. A. Burt, U. S. Deputy Surveyor.

Ho^vard's Earth.\^rork: Mensuration.
8vo. niustrated. Clotli. $1.50.

Earthwork Mensuration on the Basis op the Prismoidal

Formula. Containing simple and labor-saving method of obtaining

Prismoidal Contents, directly from End Areas. Illustrated by

Examples, and accompanied by Plain Rules for practical uses. By
Conway R. Howard, Civil Engineer, Richmond, Va.

[Morris' Easy Rules.
78 Illustrations. 8vo. Cloth. $1.50.

Easy Rules for the Measurement of Earthworks, by means of

the Prismoidal Formula. By Elwood Morris, Civil Engineer.

Clevenger's Surveying.
Illustrated Pocket Form. Morocco, gilt. $2.50.

A Treatise on the Method of Government Surveying, as

prescribed by the U. S. Congress and Commissioner of the General

Land Office. With complete Mathematfcal, Astronomical, and Prac-

tical Instructions for the use of the U. S. Surveyors in the Field, and

Students who contemplate engaging in the business of Public Land

Surveying. By S. V. Clevenger, U. S. Deputy Surveyor.

He'wson on Embankments*
8vo. aoth. $2.00.

Principles and Practice of Embanking Lands from River

Floods, as applied to the Levees of the Mississippi. By William
Hewson, Civil Engineer.



Minifie's Mecliaiiical Drawing.
Ninth Edition. Royal 8vo. Cloth. $4.00.

A Text-Book of Geometrical Drawing, for the use of Mechanics

and Schools. AVith illustrations for Drawing Plans, Sections, aad

Elevations of Buildings and Machinery ; an Introduction to Isometri-

cal Drawing, and an Essay on Linear Perspective and Shadows.

With over 200 diagrams on steel. By William Minifie, Architect.

With an Appendix on the Theory and Application of Colors.

Minifie's Greometrical Orawine:.C3'
New Edition. Enlarged. 12mo. Cloth. $2.00.

Geometrical Drawing. Abridged from the octavo edition, for the

use of Schools. Illustrated with 48 steel plates.

Free Hand. Drawing.
Profusely Illustrated. 18mo. Boards. 60 cents.

A Guide to Ornamental, Figure, and Landscape Drawing. By an

Art Student.

Tlie Meclianic's Friend.
12mo. Cloth. 300 Illustrations. Si. 50.

The Mechanic's Friend. A Collection of Receipts and Practical

Suggestions, relating to Aquaria—Bronzing—Cements—Drawing

—

Dyes—Electricity—Gilding—Glass-working—Glues—Horology— Lac-

quers—Locomotives—^INIagnetism—Metal-working— Modelling— Pho-

togi'aphy—Pyrotechny—Railways— Solders— Steara-Engine— Tele-

graphy—Taxidermy—^Varnishes—Waterproofing—and Miscellaneous

Tools, Instruments, Machines, and Processes connected with the

Chemical and Mechanical Arts. By William E. Axon, M.R.S.L.

Harrison's Meclianic's Tool-Book:.
M Illustrations. 12mo. Cloth. $1.50.

Mechanics' Tool Book, with Practical Rules and Suggestions, for the

use of Machinists, Ii'on Workers, and others. By W. B. Harrison.

Randall's Qnartz Operator's Hand-Book.
12mo. Cloth. $2 00.

Quartz Operator's Hand-Book. By P. M. Randall. New
edition. Revised and Enlarged. Fully illustrated.
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Joynson on Machine Q-earing.
8vo. Cloth. $2.00.

The Mechanic's and Student's Guide in the designing and Con*

structionof General Machine Gearing, as Eccentrics, Screws, Toothed
Wheels, etc., and the Drawing of Rectilineal and Curved Surfaces.

Edited by Francis H. Joynson. With 18 folded plates.

Silversmitli's Hand-Book.
Fourth Edition. Illustrated. 12nio. Cloth. $3.00.

A Practical Hand-Book for Miners, Metallurgists, and Assayers.

By Julius Silversmith. Illustrated.

Barnes' Submarine Warfare.
8vo. Cloth. $5.00.

Submarine Warfare, Defensive and Offensive. Descriptions

of the various forms of Torpedoes, Submarine Batteries and Torpedo

Boats actually used in War. Methods of Ignition by Machinery,

Contact Fuzes, and Electricity, and a full account of experiments

made tD deterinine the Explosive Force of Gunpowder under Water.

Also a discussion of the Offensive Torpedo system, its effect upon

Iron-clad Ship systems, and influence upon future Naval Wars. By
Lieut.-Com. John S. Barnes, U.S.N. With twenty lithographic

plates and many wood-cuts.

Foster's Submarine Blasting.
4to. Cloth. $3.50.

Submarine Blasting, in Boston Harbor, Massachusetts—Removal of

Tower and Corwin Rocks. By John G. Foster, U. S. Eng. and

Bvt. Major-General U. S . Army. With seven plates.

Mowbray's Tri-Nitro-Grtycerine.
8vo. Cloth, niustrated. $3.00.

Tri-Kitro-Glycerine, as applied in the Hoosac Tunnel, and to Sub-

marine Blasting, Torpedoes, Quarrying, etc.

\Villiamson on the Barometer.
4to. Cloth. $15.00.

On the Use of the Barometer on Surveys and Reconnais-

sances. Part I.—^Meteorology in its Connection with Hypsometry.

Part n.—Barometric Hypsometry. By R. S. Williamson, Bvt.

Lt.-Col. U. S. A., Major Corps of Engineers. With illustrative tables

and engravings.



Williamson's Meteorological Tables.
4to. Flexible Cloth. $2.50.

Practical Tables in Meteorology and Hypsometry, in connection

with the use of the Barometer. By Col. R. S. Williamson, U.S.A.

Butler's Projectiles and Rifled Cannon.
4to. 36 Plates. Cloth. $7.50.

Projectiles and Rifled Cannon. A Critical Discussion of the

Principal Systems of Rifling and Projectiles, with Practical Sugges-

tions for their Improvement. By Capt. John S. Butler, Ordnance

Corps, U. S. A.

Benet's Clironoscope.
Second Edition. Illustrated. 4to. Cloth. $3.00.

Electro-Ballistic Machines, and the Schultz Chronoscope. By
Lt.-Col. S. V. Benet, Chief of Ordnance U. S. A.

Micliaelis' Chronograph.
4to. Illustrated. Cloth. $3.00.

The Le Boulenge Chronograph. With three lithographed folding

plates of illustrations. By Bvt. Captain O. E. Michaelis, Ordnance

Corps, U. S. A.

Nugent on Optics.
12mo. Cloth. $1.50.

Treatise on Optics ; or. Light and Sight, theoretically and practically

treated; with the application to Fine Art and Industrial Pursuits.

By E. Nugent. With 103 illustrations.

Peirce's Analytic Mechanics.
4to. Cloth. $10.00.

System of Analytic Mechanics. By Benjamin Peirce, Pro-

fessor of Astronomy and Mathematics in Harvard University.

Craig's Decimal System.
Square 32mo. Limp. 60a

Weights and Measures. An Account of the Decimal System, with

Tables of Conversion for Commercial and Scientific Uses. By B. P.

Craig, M.D.
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Alexander's Dictionary ofWeights and.
Measures.

New Edition. 8vo. Cloth. $3.50.

Universal Dictioxary of Weights and Measures, Ancient and

Modern, reduced to the standards of the United States of America.

By J. H. Alexander.

Elliot's European Liglit-Honses.
51 Engravings and 21 Wood-cuts. 8vo. Cloth. $5.00.

European Light-House Systems. Being a Report of a Tour of

Inspection made iu 1873. By Major GitORGE H. Elliot, U. S.

Engineers.

Sweet's Keport on Coal.
With Maps. 8vo. Cloth. $3.00.

Special Report on Coal. By S. H. Sweet.

Colbnrn's Gras Works of London.
12mo. Boards. 60 cents.

Gas Works of London. By 2Jerah Colburn.

Walker's Scre^v Propulsion.
Svo. Cloth. 75 cents.

Notes on Screw Propulsion, its Rise and History. By Capb. W. H.
Walker, U. S. Navy.

Pook on Sliipbnilding.
Svo. Cloth. Illustrated. $5.00.

Method of Preparing the Lines and Draughting Vessels

Propelled by Sail or Steam, including a Chapter on Laying-off

on the Mould-loft Floor. By Samuel M. Pook, Naval Constructor.

Saeltzer's Acoustics.
12mo. Cloth. $2.00.

Treatise on Acoustics in connection with Ventilation. By Alex-

ander Saeltzer.

Eassie on Wood and its XTses.
250 Illustrations. Svo. Cloth. $1.50.

A Hand-book for the Use op Contractors, Builders, Architects,

Engineers, Timber Merchants, etc., with information for drawing up

Designs and Estimates.



Wanklyn's Milk Analysis.
12mo. Cloth. $1.00.

Milk Analysis. A Practical Treatise on the Examination of Milk,

and its Derivatives, Cream, Butter, and Cheese. By J. Alfred
AVanklyn,M.R.C.S.

Rice & Jolmsoii's OifFerential Fanctions.

Paper, I'imo. 50 cents.

Ox A New Method of Obtaining the Differentials of Func-
tions, with especial reference to the Newtonian Conception of Rates

or Velocities. By J. Minot Rice, Prof, of Mathematics, U. S. Na^7,

and W. WooLSEY Johnson, Prof, of Mathematics, St. John's

College, Annapolis.

Coffin's Navigation.
Fifth Edition. 12mo. Qoth. $3.50.

Navigation and Nautical Astronomy. Prepared for the use of

the U. S. Naval Academy. By J. H. C. Coffin, Professor of

Astronomy, Navigation and Surveying ; with 52 wood-cut illustra-

tions.

Clark's Theoretical Navigation,
8vo. Qoth. $3.00.

Theoretical Navigation and Nautical Astronomy. By Lewis

Clark, Lieut.-Commander, U. S. Navy. Illustrated with 41 wood-

cuts, including the Vernier.

Toner's Dictionary of Elevations.

8vo. Paper, S3.00 Cloth, S3, 75.

Dictionary of Elevations and Climatic Register of the
United States. Containing, in addition to Elevations, the Latitude,

Mean Annual Temperature, and the total Annual Kain Fall of many
Localities ; with a brief introduction on the Orographic and Physical

Peculiarities of North America. By J. M. Toner, M.D.
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VAN NOSTKAND'S SCIENCE SEMES.
It is the intention of the Publisher of this Series to issue them at

intervals of about a month. They will be put up in a uniform, neat,

and attractive form, 18mo, fancy boards. The subjects will be of an
eminently scientific character, and embrace as wide a range of topics as

possible, all of the highest character.

Price, 50 Ceuts Eacli.

I. Chimneys for Furxaces, Fire-places, and Steam Boilers. By
R. Armstrong, C.E.

ir. Steam Boiler Explosions. By Zerah Colburn.

III. Practical Designing of Retaining Walls. By Arthur Jacob,

A.B . With Illustrations.

lY. Proportions of Pins Used in Bridges. By Charles E.

Bender, C.E. With Illustrations.

V. Ventilation OF Buildings. By W. F. Butler. With Illustrations.

YI. On the Designing and Construction of Storage Reservoirs.

By Arthur Jacob. AVith Illustrations.

YII. Surcharged and Different Forms of Retaining Walls.
By James S. Tate, C.E.

YIII. A Treatise on the Compound Engine. By John Turnbull.
With Illustrations.

IX. Fuel. By C.William Siemens, to which is appended the value of

Artificial Fuels as Compared with Coal. By John Worm"
ALD, C.E.

X. Compound Engines. Translated from the French of A. Mallet.
Illustrated.

XI. Theory of Arches. By Prof. W. Allan, of the Washington and

Lee College. Illustrated.

XII A Practical Theory of Youssoir Arches. By William Cain,

C.E. Illustrated.
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XIII. A Practical Treatise ox the Gases Met With in Coal
Mines. By the late J. J. Atkinson, Government Inspector of

Mines for the County of Durham, England.

XIV. Friction of Air in Mines. By J. J. Atkinson, author of " A
Practical Treatise on the Gases met with in Coal Mines."

XV. Skew Arches. By Prof. E. W. Hyde, C.E. Illustrated with

numerous engravings and three folded plates.

XVI. A Graphic Method for Solving Certain Algebraic Equa-
tions. By Prof. George L. Vose. With Illustrations.

XVII. Water and Water Supply. By Prof. W. II. Corfield,

M.A., of the University College, London.

XVIII. Sewerage and Sewage Utilization. By Prof. W. H.
Corfield, M.A., of the University College, London.

XIX. Strength of Beams Under Transverse Loads. By Prof.

W. Allan, author of "Theory of Arches." With Illustrations

XX. Bridge and Tunnel Centres. By John B. McMasters,
C.E. With Illustrations.

XXI. Safety Valves. By Richard II. Buel, C.E. With Illustra-

tions.

XXn. High Masonry Dams. By John B. McMasters, C.E.

With Illustrations.

XXm. The Fatigue of Metals under Repeated Strains, with

various Tables of Results of Experiments. From the German of

Prof. Ludwig Spangenberg. With a Preface by S. H. Shreve,

A.M. With Illustrations.

XXIV. A Practical Treatise on the Teeth of Wheels, with

the theory of the use of Robinson's Odontograph. By S; W. Robin-

son, Prof, of Mechanical Engineering, Illinois Industrial University.

XXV. Theory and Calculations of Continuous Bridges. By
Mansfield Merriman, C.E. With Illustrations.

XXVI. Practical Treatise on the Properties of Continuous
Bridges. By Charles Bender, C.E.
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XXVII. On Boidbr Inckustation and Corrosion, By J, F. Rowan.

XXVIII. On Transmission op Power by Wire Rope. By Albert "W.

Stabl.

XXIX. Injectors : Their Theory and Use. Translated from the

French of M. Leon Pouchet.

XXX. Terrestrial Magnetism and the Magnetism op Iron Ships.

By Professor Fairman Rogers.

XXXI. The Sanitary Condition of Dwelling Houses in Town and
Country. By George E. "Waring, Jr.

IN PRESS,

Heating and Ventilation in its Practical Ap-
plication for tlie Use of Engineers and
Architects.

Embracing a Series of Tables and Formulae for dimensions for Heating

Flow and Return Pipes, for Steam and Hot Water Boilers, Flues, etc.,

etc. By F. Schumann, C. E. 1 vol. 13mo. Illustrated.

A Griiide to th.e Determination of Rocks.
Being an Introduction to Litholagy. By Edward Jannettaz, Doctuer des

Sciences. Translated from the French by Geo. W. Plympton, Profes-

sor of Physical Science, Brooklyn Polytechnic Institute. 12mo.

Shield's Treatise on Enigineering
Constrnction,

12mo. Cloth.

Embracing Discussions of the Principles involved and Descriptions of the

Material employed in Tunnelling, Bridging, Canal and Road Build-

ing, etc., etc.
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Benton's Ordnance and G-nnnery.
Fourth Edition, Revised and Enlarged. 8vo. Clotli. .S5.00.

Ordnance and Gunnery. A Courso of Instruction iu Ordnanco

and G unnery. Compiled fortlio iiS3 of tho Cadots of tlio U. S. Military

Academy, by Col. J. G. Benton, Major Ordnanco Dcp., late Instructor

of Ordnance aud Gunnery, Military Academy, West Point. Illus-

trated.

Holley's Ordnance and Armor.
Svo. Half Roan, $10.00. Half Russia, $12.00.

A Treatise on Ordnance and Armor. With an Appendix, refer-

ring to Oun-Cotton, Hooped Guns, etc. , etc. By Alexander L. lloUey,

B. P. With 493 illustrations. 948 pages.

Scott's Military Dictionary.
8x0. Half Roan, SOvOO. Half Russia, ^8.00. Full Morocco, $10.00.

Military
,
Dictionary. Comprising Technical Definitions ; Informa-

tion on Raising and Keeping Troops ; Law, Government, Kegu-

lation, and Administration relating to Land Forces. By Col. II. L.

Scott, U.S.A. 1vol. Fully illustrated.

Koemer's Cavalry.
Svo. Cloth, $0.00. Half Calf, $7.50.

Cavalry : Its History, Management, and Uses in War. By J.

Koemer, LL.D., late an officer of Cavalry in the Service of the Nether-

lands. Elegantly illustrated with one hundred and twenty-seven fine

wood engravings. Beautifully printed on tinted paper.
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Micliaelis' Clironograpli.
4to. Illustrated. Cloth. $3.00,

The Le Boulexge Ciiroxograph. With three lithographed folding

plates of illustrations. By Brevet Capt. O. E. Michaelis, First Lieu-

tenant Ordnance Corps, U. S. Army.

IBenet's Cliroiioscope.
Second Edition. Illustrated. 4to. Cloth. $3.00.

Electro-Ballistic Machines., and the Schultz Chronoscope. By
GenL S. Y. Benct, Chief of Ordnance, U. S. Army.

DnfoTir^s Principles of Strategy and. GrrancI
Tactics. ^ —

12mo. Cloth. S3.00.

The Prixciples of Strategy ani> Grand Tactics. Translated

from the French of General G. II. Dufour. By William P. Craighill,

U. S. Engr. , and late Assistant Professor of Engineering, Military

•Academy, West Point. From the last French edition. Illustrated.

Jomini's Life of tlao Emperor jSTapoleon.
4 vols. 8vo., and Atlas. Cloth. Half Calf,

Military and Political Life of the Emperor Kapoleon. By
Baron Jomini, General-in-Chief and Aid-de-Camp to tlie Emperor cf

Hussia. Translated from the French, with IsTotes, by II.. Yf. Halleekj

LL.D., Major-Generai U. S. Army. With GO l^Iaps and Plans.

Jominfs Campaign of Waterloo.
Tliird Edition. 12hio. Cloth, s^l.25.

The Political and Military History of Tiiii: Campaign of Y^a-

terloo. Translated from the French of General Baron de Jomini, by

Genl. S. Y. Benet, Chief of Ordnance.

JoiTiini's Grranci Military Operations.
2vol.s.8vo,, r.ud Atlas. Qoth, $15.00. Half Calf or Morocco, S21. Half Russia,

Treatise on Grand Military Operations. Illustrated by a Critical

and Military History of the "\7ars of Frederick the Great. Y/ith a

Summary of the ^lost Important Principles of the Art of War. By
Baron de Jomini. Illustrated by Maps and Plans. Translated froiri

the French by Col. S. B. Ilolabird, A. I). C, U. S. Army.
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Rodenbongli's Everglade to Canon.
Royal 8vo. Illustrated with Cliromo-Lithographs. Extra Cloth. $7,50.

Everglade to Canon, with the Second Dragoons (Second U. S. Car-

alry), an authentic account of service in Florida, Mexico, Virginia and

the Indian Country, including Personal Hecollections of Distinguished

Officers. By Theo. F. Eodenbough, Colonel and Brevet Brigadier-

General, U. S. Army.

History of Brevets.
Crown 8vo. Extra Cloth, $3.50.

The History and Legal, Effects of Bkevets in Iho Armies of

Great Britain and the United States, from the origin in 1C02 until the

present time. By Gen. James B. Fry, U. S. Army.

Barre Dnparcq's Military Art and llistory.

8vo. Cloth. $5.00.

Elements of Military Art and History. By Edward de la Barre

Duparcq, Chef de Bataillon of Engineers in the Army of France, and

Professor of the Military Art in the Imperial School of St. Cyr.

Translated bv Colonel Geo. AV. CuUum, U. S. E.

Discipline and Drill of tbe Militia.

Crown 8vo. Flexible cloth. $3.00.

The Discipline and Drill of the Militia. By Major Frank S.

Arnold, Assistant Quartermaster-General, Rhode Island.

^Vallen's Service Man^ial.
12mo. Cloth. $1.50.

Service Manual for the Instruction of newly appointed Commissioned

Oincers, and the Rank and File of the Army, as compiled from Army
Regulations, The Articles of War, and the Customs of Service. By
Henry D. Yfalien, Bvt. Brigadier-General U. S. Army.

Boynton's I-listory of West Point.
Second Edition, 8^'o. Fancy Cloth. $3.50.

History of V/'est Point*, and its Military Importance during the

American Revolution ; and the Origin and Progress of the United

States Military Academy. By Bvt. Maj. Edward C. Boynton, A. M.,

Adjutant of the I^Iilitary Academy. With oG Maps and Engraving
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\¥ood's West Point Scrap-Book.
8vo, Extra Cloth. $5,00

The West Point Scrap-Book. Being a Collection of Legends, Stories,

Songs, &c. By Lieut. O. E. Wood, U. S. A. With 69 wood-cut
Illustrations. Beautifully printed on tinted paper.

West Point Life.
Oblong 8vo, Cloth, $2.50,

West Point Life. A Poem read before the Dialectic Society of the

United States Military Academy. Illustrated with twenty-two full-

page Pen and Ink Sketches. By A Cadet. To which is added tha

song, "Benny Havens, Oh!"

Grillmore's Fort Snmter.
8vo. Cloth. $10,00. Half Russia, $12.00.

Gillmore's Fort Sumter. Official Report of Operations against the

Defences of Charleston Harbor, 1863. Comprising the descent upon

Morris Island, the Demolition of Fort Sumter, and the siege and

reduction of Forts Wagner and Gregg. By Maj.-Gen. Q. A. Gill-

more, U. S. Engineers. With 76 lithographic plates, views, maps, etc.

Gillmore's Supplementary Report on Fort
Snmter.

8vo. Cloth. $5.00,

Supplementary Report to the Engineer and Artillery Operations

against the Defences of Charleston Harbor in 1863. By Maj.-Gen. Q.

A. Gillmore, U. S, Engineers. With Seven Lithographed Maps and

Views.

Grillmore's Fort Pulaski.
8vo, Cloth, $2.50

Siege and Reduction of Fort Pulaski, Georgia. By Maj.-Gen.

Q. A. Gillmore, U. S. Engineers. Illustrated by Maps and Views.

Barnard and Barry's Report.
8vo. Cloth, S4.00.

Report of the Engineer and Artillery Operations of the

Army of the Potomac, from its Organization to the Close of the

Peninsular Campaign. By Maj.-Gen. J. G. Barnard, U. S. Engineers,

and Maj.-Gen. W. F. Barry, Chief of Artillery. Illustrated by 18

Maps, Plans, &c.
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Griiide to ^Vest Point.
18mo. Flexible Cloth. $1,00,

Guide to West Poixt axd the IJ. S. Military Academy. With

Maps and Engravings.

Barnard's C. S. A., and tlie Battle of Bull
Ilnn.

8vo. Cloth. $2.00,

The "C. S. A.," and the Battle of Bull Run. By Maj.-Gen. J. G.

Barnard, U. S. Engineers. With five Maps.

Barnard's Peninsnlar Campaign.
8vo, Cloth. $1.00. 12mo. Paper 30c.

The Peninsular Campaign and its Antecedents, as developed by

the Report of Maj.-Gen. Geo. B. McClellan, and other published

Documents. By Maj.-Gen. J. G. Barnard, U. S. Engineers.

Barnard's Notes on Sea-Coast Defence.
8vo. Cloth. $2.00.

Notes on Sea-Coast Defence : Consisting of Sea-Coast Fortifica-

tion ; the Fifteen-Inch Gun ; and Casemate Embrasure. By Major-

Gen. J. G. Barnard, U. S. Engineers. AVith an engraved Plate of

the 15-inch Gun.

Henry's Military Record of Civilian
Appointments, U. S. A.

2 Vols. Svo. Cloth. SlO.OO.

Military Record of Civilian Appointments in the United
States Army. By Guy V. Henry, Brevet-Colonel U. S. A.

Harrison's Pickett's Men.
12mo. Cloth. S2.00.

Pickett's Men. A Fragment of War History. By Col. Walter Har-

rison. W^ith portrait of Gen. Pickett.

Todleben's Defence of Sebastopol.
12mo. Cloth. $2.00.

Todleben's (General) History of the Defence of Sebastopol.

By William Howard Russell, LL.D., of the London Times.
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Hotclikiss and Allan's Battle of Cliaiieellors-
ville.

8vo. Cloth. ^5.00.

The Battle-fields of Virginia. ChancellorsVille, embracing the

Operations of the Army of Northern Virginia. From the First Battle

of Fredericksburg to the Death of Lt.-Gen. T. J. Jackson. By Jed.

Ilotchkiss and AVilliam Allan. Illustrated with five Maps and Por-

trait of Stonewall Jackson.

Andre^vs' Campaign of Mobile.
8vo. Cloth. $3.50.

The Campaign of Mobile, including the Co-operation of General

Wilson's Cavalry in Alabama. By Brevet Maj.-Gen. C. C. Andrews.

With five Maps and Views.

Stevens' Three Years in tlie Sixth. Corps.
N'ew and Revised Editiou. 8vo. Cloth. $3.00

Three Years in the Sixth Corps. A concise narrative of events in

the Army of the Potomac from 1861 to the Close of the Bebellion.

April, 1865. By Geo. T. Stevens, Surgeon of the 77th Regt. New
York Volunteers. Illustrated with 17 engravings and six steel portraits.

Lecomte's War in the United States.
12mo. Cloth. $1.00.

The AVar in the United States. A Report to the Swiss Military

Department. By Ferdinand Lecomte, Lieut.-Col. Swiss Confedera-

tion. Translated from the French by a Staff Officer.

Koberts' Hand-Book of Artillery.
IGmo. Morocco Clasp. $2.00.

IIand-Book of Artillery. For the service of the United States

Army and Militia. Tenth edition, revised and greatly enlarged. By
Joseph Roberts, Lt.-Col. 4th Artillery and Brevet. Maj.- General U. S.

Army.

Instrnctions for Field Artillery.
12rao. Cloth. $3.00.

Instructions for Field Artillery. Prepared by a Board of Artil-

lery Officers. To which is added the "Evolutions of Batteries,"

translated from the French, by Brig.-Gen. R. Anderson, U. S. A. 122

plates.
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Hea^^y Artillery Tactics.
12rao. Cloth. S2.50.

Heavy Artillery Tactics.—1863. Instructions for Heavy Artillery;

prepared by a Board of Officers, for the use of the Army of the United

States. With service of a gun mounted on an iron carriage and 3.9

plates.

Andersons' Evolutions of Field Artillery.
24mo. Cloth. $1.00.

Evolutions of Field Batteries of Artillery. Translated from

the French, and arranged for the Army and Militia of the United

States. By Gen. llobert Anderson, U. S. A. Published by order of

the War Department. 33 plates.

Dnane's Manual for Engineering- Troops.
12nio. Half Morocco. ^2.50.

Manual for Engineer Troops : Consisting of—Part I."'Ponton Drill

;

II. Practical Operations of a Siege; III. School of the Sap ; IV. Mili-

tary Mining ; V. Construction of Batteries. By General J. C. Duane,

Corj)s of Engineers, U. S. Army. With IG pla,tes and numerous wood-

cut illustrations.

CLillnm's Military Bridges.
8vo. Cloth. $3.50.

Systems of Military Bridges, in use by tho United States Army;

those adopted by the Great European Powei s ; and such as are em-

ployed in British India. With Directions for the Preservation,

Destruction', and Re-establishment of Bridges. By Col. George Y>^.

'

Cullum, U. S. E. With 7 folding plates.

Mendell's Militar^^ Surveying.
12m o. Cloth. S2.00.

A Treatise on Military Surveying. Theoretical and Practical,

including a description of Surveying Instruments. By G. II. Mendell,

Major of Engineers. With 70 wood-cut illustrations.

Abbot's Siege Artillery Against Kidinaond.
8vo. Cloth. $3.."0.

Siege Artillery in the Campaign Against Biciimond.

L. Abbot, Major of U. S. Engineers. Illustrated.

By Ilcnry
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Haupt's Military Bridges.
8vo. Cloth. $6.50.

Military Bridges ; For the Passage of Infantry, Artillery and Bag-

gage Trains ; with suggestions of many new expedients and construc-

tions for crossing streams and chasms. Including also designs for

Trestle and Truss-Bridges for Military Railroads, adapted specially to

the wants of the Service of the United States. By Herman Haupt,

Brig.-Gen. U. S. A., author of *' General Theory of Bridge Construc-

tions," &c. Illustrated by 69 lithographic engravings.

Lendy's Maxims and Instructions on the
Art of War.

18mo. Cloth. 75c.

Maxims and Instructions on the Art of "War. A Practical

Military Guide for the use of Soldiers of All Arms and of all Coun-

tries, Translated from the French by Captain Lendy, Director of the

Practical Military College, late of the French Staff, etc., etc.

Benet's Military La^v and Conrts-Martial."'
Sixth Editiou, Revised and Enlarged. 8vo. Law Sheep. $4.50- v.;^ J

Benet's Military Law. A Treatise on Military Law and the Prac-

tice of Courts-Martial. By Gen. S. V. Benet, Chief of Ordnance U. S. A.,

late Assistant Professor of Ethics, Law, &c., Military Academy, West
Point.

Lippitt's Special Operations of War,
Illustrated. 18mo. Cloth. $1.00.

Lippitt's Field Service in War.
12mo. Cloth. $1.00.

Lippitt's Tactical Use of tlie Three Arms.
12mo. Cloth. $1.00.

Lippitt on Intrenclinients.
41 Engravings. 12mo. Cloth. $1.25.

Kelton's Nevi^ Bayonet Exercise,
Fifth Edition. Revised. 12mo. Cloth. $2.00.

New Bayonet Exercise. A New Manual of the Bayonet, for the

Army and Militia of the United States. By General J. C. Kelton,

U. S. A. "With 40 beautifully engraved plates.



Craighiirs Army Officers' Companion.
18mo. Full Roan. $2.00.

The Army Officers' Pocket Companion. Principally designed for

Staff Officers in the Field. Partly translated from the French of

M. de Rouvre, Lieut.-Col. of the French Staff Corps, with additions

from Standard American, French, and English authorities. By Wm.
P. Craighill, Major U. S. Corps of Engineers, late Assistant Professor

of Engineering at the U. S. Military Academy, West Point.

Casey's U. S. Infantry Tactics. •

3 vols. 24mo. Cloth. $2.50.

U. S. Infantry Tactics. By Brig.-Gen. Silas Casey, U. S. A. 3 vols.,

24mo. Vol. I.—School of the Soldier; School of the Company; In-

struction for Skirmishers. Vol. II.—School of the Battalion. Vol.

HI.—Evolutions of a Brigade ; Evolutions of a Corps d'Armee.

Lithographed plates.

United States Tactics for Colored Troops.
24mo. Cloth. $1.50.

U. S. Tactics for Colored Troops. U. S. Infantry Tactics for the

use of the Colored Troops of the United States Infantry. Prepared

under the direction of the War Department.

Morris' Field Tactics for Infantry.
Illustrated. 18mo. Cloth. 75c.

Field Tactics for Infantry. By Brig.-Gen. Wm. II. Morris, U. S.

Vols., late Second U. S. Infantry.

Monroe's Liglit Infantry andCompany Drill.
32mo. Cloth. 75c.

Light Infantry Company and Skirmish Drill. Bayonet Fencing
;

with a Supplement on the Handling and Service of Light Infantry.

By J. Monroe, Col. Twenty-Second Regiment, N. G., N. Y. S. M. for-

merly Captain U. S. Infantry.

Berriman's Sword Play.
Fourth Edition. 12mo. Cloth. Si- 00.

Sword-Play. The Militiaman's Manual and Sword-Play without a

Master. Bapier and Broad-Sword Exercises, copiously explained and

illustrated; Small-Arm Light Infantry Drill of the United States

Army ; Infantry Manual of Percussion Musket ; Company Drill of the

United States Cavalry. By Major M. W. Berriman.



Morris' Infantry Tactics.
2 vols. 24mo. $2.00. 2 vols, in 1. Cloth. $1.50.

Infantry Tactics. By Brig. -Gen. William 11. Morris, U. S. Vols,

and late U. S. Second Ii>M«try.

8

Le Oal's Scliool of tlie Grnides.
16mo. Cloth. 60c.

The School of the Guides. Designed for the use of the Militia of

the United States. By Col. Eugene Le Gal.

Dnryea's Standing Orders of tlie Seventli
Regiment.

New Edition. 16mo. Cloth. 50c.

Standing Orders of the Seventh Regiment National Guards.

By A. Duryea, Colonel.

Heth-'s System of Target Practice.
18mo. Cloth. 75c.

System of Target Practice ; For the use of Troops when armed
with the Musket, Rifle-Musket, Rifle, or Carbine. Prepared princi-

pally from the French, by Captain Henry Heth, Tenth Infantry,

U. S. A.

Wilcox's Rifles and Rifle Practice.
New Edition. Illustrated. 8vo. Cloth. $2.00.

Rifles and Rifle Practice. An Elementary Treatise on the Theory
of Rifle Firing ; with descriptions of the Infantry Rifles of Europe
and the United States, their Balls and Cartridges. By Captain C. M.
AVilcox, U. S. A.

Viele's Pland-Book for Active Service.
12rao. Cloth. $1.00.

IIand-Book for Active Service, containing Practical Instructions in

Campaign Duties. For the use of Volunteers. By Brig.-Gen. Egbert

L. Viele, U. S. A.

Nolan's System for Training Cavalry Horses.
24 Plates. Cloth. $2.00.

ISTolan's System for Training Cavalry Horses. By Kenner Gar-

rard, Bvt. Brig.-Gen. U. S. A.
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Arnold's Cavalry Service.
Illustrated ISino. Cloth. 75c.

Notes ox Horses for Cavalry Service, embodying the Quality,

Purchase, Care, and Diseases most frequently encountered, ^\'ith lessons

for bitting the Horse, and bending the neck. By Bvt. Major A. K.
Arnold, Capt. Fifth Cavalry, Assistant Instructor of Cavalry Tactics,

U. S. Mil. Academj.

Cooke's Cavalry Practice.
100 Illustrations. 12mo. Cloth. $1.00.

Cavalry Tactics; Regulations for the Instruction, Formation and
Movements of the Cavalry of the Army and Volunteers of the United
States. By Philip St. George Cooke, Brig.-Gen. U. S. A.

This is the edition now iu use in the U. S. Army.

Patten's Cavalry Drill.
93 Engraviugg. 12mo. Paper. 50c.

Cavalry Drill. Containing Instructions on Foot ; Instructions on
Horseback

; Basis of Instruction ; School of the Squadron, and Sabre

Exercise.

Patten's Infantry Tactics.
92 Engravings. 12mo. Paper. 50c.

Infantry Tactics. School of the Soldier ; Manual of Arms for the

Rifle Musket ; Instructions for Recruits, School of the Company

;

Skirmishers, or Light Infantry and Rifle Company Movements ; the

Bayonet Exercise ;' the Small-Sword Exercise ; Manual of the Sword
or Sabre.

Patten's Infantry Tactics.
Revised Edition. 100 Engravings, 12mo. Paper. 75c.

Infantry Tactics. Contains Nomenclature of the Musket; School

of the Company ; Skirmishers, or Light Infantry and Rifle Company
Movements ; School of the Battalion ; Bayonet Exercise ;

Small Sword

Exercise ; Manual of the Sword or Sabre.

Patten's Army Man^^al.
8vo. Cloth. S2.00.

Army Manual. Containing Instructions for Officers in the Preparation

of Rolls, Returns, and Accounts required of Regimental and Company
Commanders, and pertaining to the Subsistence and Quartermaster's

Department, &c., &c.



Patten's Artillery l>rill.'
12mo. Papei. 50c.

Artillery Drill. Containing instruction in the School of the Piece,

and Battery Manoeuvres, compiled agi-eeably to the Latest Regulations

of the War Department. From Standard Military Authority. By
George Patten, late tJ. S. Army.

AndreAvs' Hints to Company Officers.
ISrao. Cloth. 60c.

Hints to Company Officers on their Military Duties. By
General C. C. Andrews, Third Regt, Minnesota Vols.

Thomas' Rifled. Ordnance.
Fifth Editiou, Revised. Illustrated. 8to. Cloth. $2.00.

Rifled Ordnance ; A Practical Treatise on the Application of the

Principle of the Rifle to Guns and Mortars of every calibre. To which

is added a new theory of the initial action and force of Fired Gun-

powder. By Lynall Thomas, F. R. S. L.

Brinkerh-ofF's Volunteer Q^iartermaster.
12mo. Cloth. $2.50.

The Volunteer Quartermaster. By Captain R. Brinkerholf , Post

Quartermaster at Washington.

Hnnter's Manual for Qnartermasters and
Commissaries.

12mo. Cloth. $1.25. Flexible Morocco, Si. 50.

Manual for Quartermasters and Commissaries. Containing

Instructions in the Preparation of Vouchers, Abstracts, Returns, etc.

By Captain R. F. Hunter, late of the U. S. Army. 12mo. Cloth.

$1.25.

Grreener's Griinnery.
8vo. Cloth. S4.00. Full Calf. SG.OO.

Gunnery in 1858. A Treatise on Rifles, Cannon, and Sporting Arms.

By W'm. Greener, R. C. E.

Head's System of Fortifications.
Illustrated. 4to. Paper. $1.00.

A New System of Fortifications. By George E. Head, A. M.,

Capt. Twenty-Ninth Infantry, and Bvt. Major U. S. A.
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